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Preface: Introduction to Domain Engineering:
Product Lines, Languages, and Conceptual
Models

A domain is an area of knowledge that uses common concepts for describing phe-
nomena, requirements, problems, capabilities, and solutions. A domain is usually
associated with well-defined or partially defined terminology. This terminology
refers to the basic concepts in that domain, their definitions (i.e., their semantic
meanings), and their relationships. It may also refer to behaviors that are desired,
forbidden, or perceived within the domain. Domain engineering is a set of activities
that aim to develop, maintain, and manage the creation and evolution of domains.

Domain engineering has become of special interest to the information systems
and software engineering communities for several reasons. These reasons include,
in particular, the need to maintain and use existing knowledge, the need to manage
increasing requirements for variability of information and software systems, and the
need to obtain, formalize, and share expertise in different, evolving domains.

Domain engineering as a discipline has practical significance as it can provide
methods and techniques that may help reduce time-to-market, development cost, and
projects risks, on the one hand, and help improve product quality and performance
on a consistent basis, on the other hand. It is used, researched, and studied in various
fields, predominantly: software product line engineering (SPLE), domain-specific
language engineering (DSLE), and conceptual modeling.

This book presents a collection of state-of-the-art research studies in
the domain engineering field. About half of the chapters in this collection
originated from a series of workshops, named domain engineering, which were
associated with the Conference of Advanced Information Systems Engineering
(CAiSE) during the years 2009–2011 and with the international confer-
ence on conceptual modeling (also known as the ER conference) in 2010.
The authors of the other chapters were personally invited to contribute to this
book. The chapters are organized in three parts. The first part includes research
studies that deal with domain engineering in SPLE. The second part refers to
domain engineering as a research topic within the field of DSLE. Finally, the third
part presents research studies that deal with domain engineering within the field of
conceptual modeling.

v
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Part I: Software Product Line Engineering

A software product line is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way [1, 8]. While reuse has always made sense as a means to take advantage of the
commonality across systems, most reuse strategies fail to have any real technical
or economic impact. SPLE is a discipline that addresses technical and economic
benefit and achieves strategic reuse of software across the product line through:
(1) capturing common features and factoring the variations across the domain or
domains of a product line; (2) developing core assets used in constructing the
systems of the product line; (3) promulgating and enforcing a prescribed way for
building software product line assets and systems; and (4) evolving both core assets
and products in the product line to sustain their applicability.

Although SPLE has been a recognized discipline within the software engi-
neering community for two decades, the practice of SPLE in industry still faces
significant challenges in achieving strategic reuse. Challenges are seen in each
of the four areas mentioned above. Specific examples include: (1) capturing
commonality—modeling and representation approaches, tools, and analysis for
variation and variation management; (2) developing assets—architecture design
approaches including real-time embedded, design patterns, automatic generation
of software, and design approaches including aspect-orientation; and (3) building
software—implementation of software assets for reuse, composition techniques, and
use of domain-specific languages (DSLs) for software construction. In addition,
there is a need to deal with the evolution of the core assets and the product line
systems and a need for specific tools to assist the coevolution of product line core
assets and dependent systems.

In the field of SPLE, domain engineering deals with specifying, designing,
implementing, and managing reusable assets, such as specification sets, patterns,
and components, that may be suitable, after customization, adaptation, or even
extension, to families of software products. The focus of domain engineering in
this field is on conducting commonality and variability analysis and representing
the results of this analysis in a comprehensible way. Commonly, feature-oriented
methods and UML profiles are used for this purpose.

The chapters in this part of the book deal with application of domain engineering
to address some of the aforementioned challenges. Two chapters deal with domain
engineering to capture commonality and manage variation across a software product
line:

• “Separating concerns in feature models: Retrospective and support for multi-
views” by Mathieu Acher, Arnaud Hubaux, Patrick Heymans, Thein Than Tun,
Philippe Lahire, and Philippe Collet looks at managing common features and
their variants in software product lines with thousands of features. This chapter
describes the separation of concerns, that can be applied to partition the feature
space.
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• “A survey of feature location techniques” by Julia Rubin and Marsha Chechik
examines over 20 techniques that offer automated or semi-automated approaches
to isolate features from existing software. This chapter provides a description of
the overarching technology for isolating features for software code and analyzes
the potential that each of the 20C techniques offers. The chapter also provides
guidance in selecting the appropriate technique.

One chapter deals with architecture and design for software product lines,
specifically those software product lines that are real-time (RT) embedded:

• “Modeling real-time design patterns with the UML-RTDP profile” by Saoussen
Rekhis, Nadia Bouassida, Rafik Bouaziz, Claude Duvallet, and Bruno Sadeg
applies domain engineering to design RT patterns for capturing commonality
and managing variation across the software product line. This chapter introduces
UML-based models that represent the static and dynamic patterns of a software
product line architecture for RT systems. It describes the application of these
models in an example of an RT control system.

The two remaining chapters in this part apply domain engineering to develop
techniques for building core assets and systems in the software product line:

• “When aspect-orientation meets software product line engineering” by Iris
Reinhartz-Berger discusses an approach that melds aspect-oriented and SPLE
methods through domain engineering. The approach uses the Application-based
DOmain Modeling (ADOM) method to support families of aspects and weave
them to families of software products. Reuse is enhanced through the three levels
addressed by ADOM: language, domain, and application.

• “Utilizing application frameworks: a domain engineering approach” by Arnon
Sturm and Oded Kramer also uses ADOM. In this chapter, the modeling
approach supports specification and use of frameworks as a construct to support
reuse across the software product line. ADOM also contributes to domain-
specific languages to reduce the development effort and increase their reusability
and code quality.

Part II: Domain-Specific Language Engineering

DSLs are specification or programming languages tailored to specific domains [6,
7]. These languages are developed in a domain engineering process and are later
used to develop and maintain solutions (i.e., software systems) in the specific
domains. The focus on a specific domain is achieved by abstracting from general
programming language implementation details such as variable locations and
control structures. The resulting DSL features correspond to domain elements and
are often referred to as declarative (as opposed to imperative) because they focus
on expressing desirable states of the problem domain rather than computations in
the solution domain. The benefits of adopting DSLs include increased productivity,
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improved quality, reuse of experts’ knowledge, and, perhaps most importantly,
better maintainability [6, 7].

Conceptually, a DSL is a formal language that is expected to be understood by
domain experts and that can be interpreted by domain-specific software tools to
produce lower level specifications. Practically, a DSL is a preferably small language
that focuses on a particular aspect of software systems (e.g., [3]) and that is used by
domain-specific software tools to generate code in a general purpose programming
language or other lower level formal specification languages, e.g., [7]. Examples of
domain-specific programming approaches are elaborated in [4, 5].

Domain-specific language engineering (DSLE) is concerned with methods and
tools for specifying and utilizing such languages. This includes the identification
of relevant language concepts and their relationships, the determination of the most
appropriate level of abstraction for the envisaged users of the language, and the
specification of all required transformations.

Although the practice of DSLE has evolved considerably in the last two decades,
a number of challenges remain. There is a need to study the ways in which people
use DSLs and to what extent. In line with the increasing popularity of DSLs,
there is a need to evaluate the ways in which DSLs are composed, to examine
maintainability and interoperability, and to devise mechanisms that enable end users
to extend DSLs. The trade-offs between using general purpose languages and DSLs
also merit further discussion. From an engineering perspective, there is a need
to explore how DSL elements can be reused, which types of transformation are
required, what best practices can be distilled from detailed case studies, how to
define and evolve the semantics of a DSL, and how to evaluate the design and
implementation of a DSL.

In this part of the book, we have gathered five chapters that address some of the
challenges mentioned above.

The first chapter discusses the notion of domain-specific languages:

• “Domain-specific modeling languages—requirement analysis and design guide-
lines” by Ulrich Frank attempts to provide instructions for developing a domain-
specific modeling language. In particular, this chapter introduces a set of
guidelines, which consist of requirements for the meta-modeling language, as
well as a detailed process description of the stages to devise a new DSL.

The following two chapters discuss the design process of domain-specific
languages. Designing a DSL involves the creation of a new formal language, and
therefore it is important to investigate the emergence of new languages as well as
their engineering:

• “DSLs and standardization: Friends or foes?” by Øystein Haugen argues that
creating a good language requires knowledge not only of the domain but also
of the language design process. This chapter discusses the tension between
DSLs and standardization efforts, demonstrates how DSLs can benefit from
standardization, and provides a comprehensive example of language evolution
and standardization.
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• “Domain engineering for software tools” by Tony Clark and Balbir Barn
proposes a language-driven approach that elaborates the notion of domain-
specific tool chains and related tool interoperability challenges. The approach
presented in the chapter views domains as languages and emphasizes the need for
modularity, in particular the need for modular composition of domains and tool
chains. The suggested approach for tool design involves a model of the semantic
domain, a model of the abstract syntax, a model of the concrete syntax, as well
as a model of the relationships between the semantic domain and the abstract
syntax.

A key motivation for developing one or more DSLs for the same domain is the
desire to capture all the meta-data that is needed to automate the production of
detailed artifacts (such as code) from the abstract concepts supported by the DSLs.
A common way of producing derived artifacts is through model transformation.
Although a large number of model transformation languages have been developed,
there are only few heuristics for engineering model transformation languages. The
fourth chapter in this part tackles this issue:

• “Modeling a model transformation language” by Eugene Syriani, Jeff Gray, and
Hans Vangheluwe introduces a technique for developing model transformation
languages that refers to each language as a DSL and that includes a model of all
domain concepts at the appropriate level of abstraction.

As developing a DSL is a complex task that involves stakeholders from different
disciplines, a cooperative environment that supports cross-disciplinary collaboration
is required. The fifth and last chapter in this part addresses this challenge:

• “A Reconciliation framework to support cooperative work with DSM” by
Amanuel Alemayehu Koshima, Vincent Englebert, and Philippe Thiran proposes
a communication framework that links the changes made by the language
engineers and their effects on DSL users. This framework is concerned with the
effects of language evolution and the propagation of changes in tool chains and
across the stakeholders and the language user community.

Part III: Conceptual Modeling

Before any system can be collaboratively developed, used, and maintained, it is
necessary to study and understand the domain of discourse. This is commonly done
by developing a conceptual model. The main purposes of conceptual models are: (1)
supporting communications between different types of stakeholders and especially
between developers and users; (2) helping analysts understand the domain of
interest, its terminology, and rules; (3) providing input for the next development
phases, namely top level and detailed design; and (4) documenting the requirements
that originate from the real world for maintenance purposes and future reference.
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The process of building conceptual models, conceptual modeling, involves devel-
oping and maintaining representations of selected phenomena in the application
domain [12]. These representations, the conceptual models, are usually developed
during the requirements analysis phase of software or information systems devel-
opment. Such models aim to capture the essential features of systems in terms of
the different categories of entity, their properties, relationships, and their meaning.
They are used for representing both structural and dynamic phenomena, usually in
a graphic way. Once a conceptual model is constructed and agreed on, it forms a
foundational basis for subsequent engineering activities.

Although research in conceptual modeling has existed for many years, its
boundaries are quite vague. In particular, conceptual modeling has significant
overlap with the field of knowledge engineering [9]. Many of the features of
modern notations for conceptual modeling can be traced to examples in both early
system design notations and knowledge representation notations, such as conceptual
structures [10]. Conceptual modeling also has a strong relationship to ontologies
[11], and the question whether conceptual models and ontologies are alternatives
of each other is open. Clearly, Conceptual modeling is also related to model-
driven architecture (MDA), which has become a significant research topic in recent
years. MDA promotes the idea that systems should be modeled at a high level of
abstraction and then systems are partially or completely generated from the models.

In light of technology improvements, many challenges that concern domain
engineering in the context of conceptual modeling arise. In particular, how can
the real world be modeled to better support the development, implementation, use,
and maintenance of systems? [1] Conceptual modeling applies to many different
application domains which raises the question of how to support the representational
needs of each domain. Should there be a single universal language for conceptual
modeling or several different languages? Do methods that apply to one type of
application (finance for example) also apply in another (for example an embedded
system)? The representational issue is often addressed using meta-techniques that
allow the conceptual modeler to use a standard notation to design a bespoke notation
that is used to express the conceptual model. While the best meta-technology is an
open question, UML provides profiles that allow the UML standard to be tailored in
a number of ways to support new concepts in terms of abstract modeling elements
and the ways they are represented on diagrams. Also, following the evolvement
of the MDA approach, it is interesting to examine how conceptual models fit into
various MDA technologies and processes. Finally, the management of conceptual
models is also a challenge, especially those that involve meta-technologies [2]. In
addition to the usual problems related to distributed multi-person development, a
conceptual model written using a notation that has been specifically defined for this
purpose requires care when the meta-model is evolved, otherwise the conceptual
model becomes meaningless.

The chapters in this part of the book address some of the challenges mentioned
above. The first chapter in this part suggests using domain engineering for formal-
izing the knowledge of domain experts.
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• “Model oriented domain analysis and engineering” by Jorn Bettin presents a
model-oriented domain analysis and engineering methodology. This methodol-
ogy, whose roots are in both SPLE and conceptual modeling, can be used to
uncover and formalize the knowledge that is inherent in any software-intensive
business or any scientific discipline.

The second chapter analyzes the relationships between different abstraction
levels of modeling in order to support the definition of domain-specific modeling
languages.

• “Multi-level meta-modeling to underpin the abstract and concrete syntax for
domain-specific modelling languages” by Brian Henderson-Sellers and Cesar
Gonzalez-Perez discusses the relationships between models, meta-models, mod-
eling languages, and ontologies. They further provide a theoretical foundation
for the construction of domain-specific modeling languages, exemplifying this
foundation on two languages: ISO/IEC 24744 that can be used to define software-
intensive development methods and FAML that can be used for the specification
of agent-oriented software systems.

The third chapter discusses an ontology-based framework for evaluating and
designing conceptual modeling languages.

• “Ontology-based evaluation and design of visual conceptual modeling lan-
guages” by Giancarlo Guizzardi addresses another methodological issue and
focuses on the evaluation of the suitability of a language to model a set of real-
world phenomena in a given domain. In the proposed approach, the suitability can
be systematically evaluated by comparing the level of homomorphism between a
concrete representation of the worldview underlying the language and an explicit
and formal representation of a conceptualization of that domain (represented as
a reference ontology).

The fourth chapter addresses the challenge of managing conceptual models in
distributed multi-person development.

• “Automating the interoperability of conceptual models in specific development
domains” by Oscar Pastor, Giovanni Giachetti, Beatriz Marı́n, and Francisco
Valverde discusses the model management, interoperability, and reuse. In par-
ticular, it discusses the problems related to conceptual interoperability across
applications in a domain. This chapter introduces a framework for describing
levels of conceptual interoperability and the challenges that must be overcome
to achieve the various levels and then outlines a process for achieving and
automating interoperability through the integration of modeling languages.

As mentioned before, MDA promotes the idea that systems should be modeled
at a high level of abstraction and then systems are partially or completely generated
from the models. The benefits that are claimed for this approach are that it shields
the developer from constantly changing technology platforms, increases quality, and
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makes change easier to manage. The last chapter exemplifies this notion for the
domain of geographic databases.

• “Domain and model-driven geographic database design” by Jugurta Lisboa-
Filho, Filipe Ribeiro Nalon, Douglas Alves Peixoto, Gustavo Breder Sampaio,
and Karla Albuquerque de Vasconcelos Borges describes the use of the MDA
approach in the design of databases in the geographical domain. In particular, a
UML Profile, called GeoProfile, is proposed and is aligned with international
standards of the ISO 191xx series. This chapter also shows that with the
automatic transformation of models it is possible to achieve the generation of
scripts for spatial databases from a conceptual data schema in a high level of
abstraction.

Concluding and Further Remarks

As elaborated above, domain engineering is closely related to several fields,
primarily SPLE, DSLE, and conceptual modeling. This book provides a collection
of research studies that are related to these three fields. The fields promote domain
engineering differently; however, they do have significant overlap. In particular,
some of the studies could pertain to more than one field. Therefore, we confirmed
our classification with the authors in these cases. Moreover, as the studies are very
diverse, they address a variety of important topics related to domain engineering,
stressing the importance of this field, providing solutions, and further clarifying
existing related challenges.

We believe that the chapters in this book are of interest to researchers, practition-
ers, and students of domain engineering in general and of the fields of SPLE, DSLE,
and conceptual modeling in particular. Furthermore, given the exponential growth
of data on the Web and the growth of the “Internet of Things,” Domain Engineering
research may be relevant to other disciplines as well. For example, the emergence
of deep chains of Web services highlights that the service concept is relative. A
set of Web services developed and operated by one organization can be utilized as
part of a platform by another organization. This calls for appropriate conceptual
models as well as for DSLs that together facilitate the design of service-oriented
architectures. Furthermore, as services may be used in different contexts and hence
require different configurations, inspiration to their design as families of services
can be taken from the field of SPLE.

Another new opportunity for research is related to the Big Data domain. Big Data
is characterized by the “three Vs”: volume, variety, and velocity (rate of change).
The ability to process such data depends on understanding and manipulating
the information. Conceptual models can be of great help since they capture the
semantics of the information which is important for making matches in the presence
of incomplete and noisy input. Furthermore, meta-processing, such as dependency
analysis, model transformations, model merge, and slicing, can be used to address
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multiple data sources. DSLs can be used to develop languages that express
domain-specific data patterns and SPLE can be utilized to help address the need
to modify the patterns on a regular basis.

Lastly, we would like to thank the authors for their contribution to this book and
to wish the readers enjoyable and fruitful reading.
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Separating Concerns in Feature Models:
Retrospective and Support for Multi-Views

Arnaud Hubaux, Mathieu Acher, Thein Than Tun, Patrick Heymans,
Philippe Collet, and Philippe Lahire

Abstract Feature models (FMs) are a popular formalism to describe the com-
monality and variability of a set of assets in a software product line (SPL). SPLs
usually involve large and complex FMs that describe thousands of features whose
legal combinations are governed by many and often complex rules. The size and
complexity of these models is partly explained by the large number of concerns
considered by SPL practitioners when managing and configuring FMs. In this
chapter, we first survey concerns and their separation in FMs, highlighting the need
for more modular and scalable techniques. We then revisit the concept of view as
a simplified representation of an FM. We finally describe a set of techniques to
specify, visualise and verify the coverage of a set of views. These techniques are
implemented in complementary tools providing practical support for feature-based
configuration and large-scale management of FMs.
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1 Introduction

In many application domains, such as avionics, telecommunications or automotive,
organisations build software-intensive systems that are similar to each other. Rather
than re-developing each system from scratch, these organisations reuse common
software artefacts on a large scale.

The paradigm of software product line (SPL) engineering has emerged to
support the modelling and development of software system families rather than
individual systems. It aims at efficiently producing and maintaining multiple similar
software products. This is analogous to the automotive industry, where the focus
is on creating a single production line, out of which many customised but similar
variations of a car model are produced. The key principle is to institutionalise reuse
throughout the development process to obtain economies of scale and scope [53]. To
achieve reuse, SPL engineering is usually separated in two complementary phases:
domain engineering and application engineering. Domain engineering starts with
domain analysis, which documents commonality (i.e., common parts of products)
and variability (i.e., differences between products). Reusable assets that satisfy these
descriptions are then modelled and implemented. During application engineering,
the required assets are selected and possibly extended to derive, as quickly and
efficiently as possible, an appropriate product. To be successful, the investments
required to develop the reusable artefacts during domain engineering must be
outweighed by the benefits of deriving the individual products during application
engineering [25]. Domain analysis is therefore a crucial phase.

To date, feature modelling has been recognised as one of the most popular
domain analysis techniques. Introduced in the 1990s and now widely adopted,
feature models (FMs) are a simple formalism whose main purpose is to document
variability in terms of features, i.e., domain abstractions or functionalities relevant to
stakeholders [19]. The main concepts of the language are features and relationships
between features. FMs have been given a formal semantics [59] which opened the
way for safe and efficient automation of various, otherwise error-prone and tedious
tasks such as consistency checking, FM merging and product counting. A repertoire
of such automations can be found in [12].

A particular type of automation is feature-based configuration (FBC). FBC is
an interactive process during which one or more stakeholders select and discard
features to build a specific product. Traditionally, FBC systems support FM mod-
elling, analysis and configuration. Currently, FBC techniques and tools facilitate
the work of stakeholders in various ways, including: decision verification and
propagation [22, 38, 47]; auto-completion [21, 38]; scheduling of configuration
tasks [20, 23, 35] and alternative representations of FMs [15, 17].

FMs, and therefore FBC, are becoming increasingly large and complex. FMs
are not only used to describe variability in software designs but also variability in
different contexts, at different times in the development, and in different parts of the
system [20,32,41,50,57]. Consequently, the list of concerns that may be considered
in an FM is very comprehensive [9,34,64] ranging from hardware description [41],
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organizational structure [57], business to implementation details [50]. Concerns
are related in numerous ways and there can be thousands of features whose legal
combinations are governed by many and often complex rules.

Furthermore, it has been observed that maintaining a single large FM for the
entire system may not be feasible [26, 54]. With FMs being increasingly complex,
describing various concerns of an SPL and handled by several stakeholders (or even
different organizations), managing them with a large number of related features is
intuitively a problem of separation of concerns (SoC) [11, 61]. The sought benefits
are indeed similar to the ones of software engineering disciplines, i.e., reduced
complexity, improved reusability and simpler evolution [61]. A possible way to
achieve SoC is then to rely on views, i.e., simplified representations of an FM
tailored for a specific stakeholder, role, or task [36]. Views facilitate the decision-
making process in that they only focus on those parts of the FM that are relevant for
a given concern.

In this chapter, our goal is to give a clear overview of existing approaches in the
field and state-of-the-art techniques for separating concerns in FMs. The intended
audience is domain analysts or SPL practitioners working with FMs with an interest
for FBC. In the first part of this chapter, we present a review of SoC in FMs. SoC
has spawned much research on FM separation, composition and analysis. Here, we
reuse some material presented in [36] and focus on concerns and their separation
in FMs and FBC. We highlight the need for more modular and scalable techniques
and revisit the concept of views. In the second part of this chapter, we focus on
the creation of consistent views and the generation of alternative visualisations for
FBC. We present and compare two techniques to synthesise visualisations of an
FM. We also report on the progress made in developing tool support for SoC and
multi-view FBC.

The rest of this chapter is organised as follows. Section 2 re-examines the
basics of FMs and introduces our working example. Section 3 presents the general
problem of SoC in FM and reviews existing works in the field. Section 4 describes a
set of SoC techniques to specify, automatically generate and check multiple views.
Section 5 presents the tools supporting it.

2 Background

2.1 Feature-Based Configuration

Schobbens et al. [59] defined a generic formal semantics for a wide range of FM
dialects. In essence, an FM d is a hierarchy of features (typically a tree) topped by
a root feature. An FM is informally defined as follows.

Definition 1 (FM (adapted from [59])). An FM d is a tuple .N; r; �; DE; ˚/

where N denotes the set of features. r 2 N the root of the feature tree. � W N !N�N
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Table 1 FM decomposition operators

Concrete syntax

f

g
h

f

g
h

f

g
h

X

f

g
h

i..j
f

g
h

Decomposition
operator

and: ^ or: _ xor: ˚ Generalized
cardinality

Optional

Cardinality <n..n> <1..n> <1..1> <i..j> <0..1>

denotes the cardinality hi::j i attached to a feature, where i (resp. j ) is the minimum
(resp. maximum) number of children (i.e., features at the level below) required in a
product (aka configuration). For convenience, common cardinalities are denoted by
Boolean operators, as shown in Table 1. DE � N � N denotes the decomposition
edges, i.e., the parent–child relationship. Additional constraints that crosscut the
tree (˚ 2 B.N /) can also be added and are defined, without loss of generality, as a
conjunction of Boolean formulae.

The semantics of an FM is the set of configurations (also called products),
denoted �d �, where each configuration is a combination of selected features. The
full syntax and semantics as well as benefits, limitations and applications of FMs
are extensively discussed elsewhere [12, 59].

FBC tools use FMs to pilot the configuration of customisable products. These
tools usually render FMs in an explorer-view style [47, 55], as shown in the upper
part of Table 1. The tick boxes in front of features are used to capture decisions, i.e.,
whether the features are selected or not. We now illustrate the FM abstract syntax
more concretely on our working example.

2.2 Working Example

Audi is a German car manufacturer. Nowadays, Audi offers 12 different model lines,
each available in different body styles, each broken down in different models. This
paper will focus on the Audi A3, with the sportback body style. An example of its
configurator in action is shown in Fig. 1. The two FMs in Fig. 2 are samples reverse
engineered from the car configurator1 for the A3 and RS3 models.

Although similar, these models show very different options to customers. The
features hidden by the configurator appear in light grey. This, however, does not
indicate that the value of these features is not set. It rather means that customers

1Reverse engineered from http://configurator.audi.co.uk/ on January 20th, 2012. Some labels were
shortened for conciseness.

http://configurator.audi.co.uk/
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Fig. 1 Screenshot of Audi A3 configurator

cannot manually set their values. In Fig. 2a for instance, none of the Engine features
are available. Yet, the RS3 has a Quatro drive train and a Petrol engine. This practice
resembles the inactivation of features in operating systems configurators such as
those used for Linux and eCos [13]. The isolation of visible from hidden features is
thus a first possible criterion to separate concerns.

The second criterion is determined by the steps in the configuration process. As
Fig. 1 shows, the configuration follows a number of steps starting from 1. Model,
going through 5. Equipment, and ending at 6. Your Audi. This decomposition is
illustrated in Fig. 2 by the coloured areas. In contrast to the first criteria, these views
are used to progressively disclose the options.

The Audi configurator, like many others (e.g. Linux and eCos [66]), rely on ad
hoc solutions that usually do not come with a proof of completeness and correctness
and can hardly be reused from one domain to the other. A general and formal
foundation for separation of concerns in FBC is necessary. This paper proposes a
retrospective on this SoC in FBC and discusses the complementary combination
of views and slices to achieve flexible and reliable SoC. Without delving into
formal developments, it provides a frame of reference to specify, verify and visualise
concurrent concerns on an FM.
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Fig. 2 Two FMs of Audi A3 model line. (a) Sample FM for the Audi RS 3, (b) Sample FM for
the Audi A3

3 Concerns and Their Separation: Retrospective

A major limitation of current FM languages is that they are found not to scale well
when applied to realistic SPLs. In real projects it has been reported that maintaining
a single large FM for the entire system may not be feasible [26].

Firstly, FMs are increasingly larger with possibly thousands of features related by
numerous complex constraints. As an extreme case, the variability model of Linux
exhibits 6,000 C features [60]. Secondly, various concerns of an SPL, handled by
several stakeholders (or even different organizations), should be properly modelled
and managed. As a result, FMs quickly become too complex to be understood
and managed by practitioners. In FBC context, it is very hard for a practitioner
to consider thousands of configuration options as a whole.

The principle of SoC points to an effective way to manage the size and
complexity of FMs. On the one hand, several FMs may be originally separated
and combined, for instance, when engineers describe the variability of modular
systems (e.g., software components or services [5]), when independent suppliers
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describe the variability of their different products in software supply chains [22,33],
or when a multiplicity of SPLs must be combined [26, 32]. On the other hand, it
may be the intention of an SPL practitioner to modularise the variability description
of the system according to different criteria or concerns such as external vs.
internal variability [7,50,54], abstraction layers [41] or views tailored for a specific
stakeholder [36].

The problem of SoC in FMs has been extensively reported in the literature, but
there is no consensus on how best to separate and compose these concerns. In this
paper, we focus on the separation of concern problem. This section highlights key
achievements in this domain with a particular emphasis on views, which have been
repeatedly advocated as a means to solve scalability and configuration issues.

3.1 Variability Modelling

Dealing with real-world problems implies dealing with multiple stakeholders with
different and often inconsistent perspectives. Viewpoint-based approaches have
been around for nearly two decades and address exactly those issues. They mainly
support the identification, structuring, reconciliation and co-evolution of heteroge-
neous requirements [28, 51]. They have been studied mostly by the requirements
engineering (RE) community. They are more concerned with the identification and
reconciliation of viewpoints than with the specification and generation of viewpoint-
(or concern-) specific views on an artefact like the FM in our case. Viewpoint-based
RE techniques are not specific to SPLE. Still, viewpoint-based techniques can be
used upstream of variability modelling to help build a consistent FM from hetero-
geneous viewpoints. More specific to variability modelling, Grünbacher et al. [31]
outline the challenges that arise when heterogeneous stakeholders are involved in
the modelling of large FMs.

The identification of stakeholders is also a problem studied in RE [29]. We
refer the reader to [30] for a general introduction to stakeholder identification and
ways to structure and trace their contributions. Directly related to feature modelling,
Bidian et al. [14] identify stakeholder profiles through the tasks appearing in goal
models which are subsequently linked to the features realising them.

3.2 View Specification

Early attempts to manage the complexity of FMs [40, 41] were mainly concerned
with separating user-oriented from technical features. For this, simple techniques
were used, namely annotation and layering of the FM, but those remained informal
and were not used to generate views or for configuration. In OVM [53], a similar
distinction was proposed between internal and external variability, but had the same
limitations as the aforementioned approaches.
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Zhao et al. [67] group features according to stakeholder profiles and other typical
concerns. A major limitation is that they do not display decomposition operators
in views, which greatly simplifies the problem at the expense of completeness.
Features in views are physically duplicated and mapped to features of the FM. The
resulting links are represented as constraints between the views and the FM.

Researchers developed SoC techniques for FMs that reflect organisational
structures and tasks. Reiser et al. [56] address the problem of representing and
managing FMs in SPLs that are developed by several companies, as is common,
for example, in the automotive industry. They propose to use several FMs and
structure them hierarchically. This way, each of them can be managed separately
by one of the partner companies. Local changes are then propagated to other FMs
through the hierarchy. Hierarchical decomposition in SPLs was also studied by
Thompson et al. [62], although not in relation to FMs.

Clarke et al. [18] introduce a formal theory of views for FMs, where a view is
defined as a disjoint set of features and abstractions. An abstraction encapsulates a
set of features hidden behind a label meaningful to the user. They formally define
compatibility properties between views and their reconciliation, i.e., combination.
To preserve the genericity of their mathematical model, the authors reason exclu-
sively in terms of features independently of the structure and constraints imposed
by the FM. As a result, they do not discuss the concrete specification, rendering and
configuration of views on an FM.

3.3 Configuration

Reiser et al. [56] along with Mannion et al. [44] discuss how multiple views
affect the structure of the FM and configuration with a particular focus on decision
propagation and conflict resolution [44]. Unlike other approaches that only consider
the selection/deselection of features, they address changes to the structure of views
that are propagated back to the original FM. To resolve conflicts that can happen
during the merge of concurrent changes, they propose a list of conflict resolution
rules within views. They thus focus on resolving conflicts among changes to the
content of the FM rather than conflicts between configuration decisions.

Batory et al. [10] have worked on multi-dimensional SoC where a dimension
is a set of features addressing a particular concern. They use a so-called origami
matrix to describe the relationships between features across the dimensions. Their
approach does not aim to generate views but rather to compose features (described
separately) along each dimension.

Czarnecki et al. [23] have introduced multi-level staged configuration as a way
of organizing FBC as a sequence of stages. This idea was later formalised [20]
and extended [35] to deal with arbitrarily complex configuration processes (not
only purely sequential ones). Mendonça et al. [46, 48] suggest configuration spaces
(similar to views) as a means to support collaborative product configuration. They
also provide algorithms to automatically generate a configuration plan out of an FM
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and a set of configuration spaces. Although these and related [50,63] approaches are
automatable and readily applicable to configuration, they remain limited to a single
“tyrannical” decomposition scheme [61] (e.g., stages or workflow activities) which
must be decided in advance.

Over the years, various interactive FBC environments have been developed
(e.g., [8, 42, 45, 55]). Based on formal semantics, these tools use solvers (e.g., SAT,
BDD and CSP) to propagate decisions throughout the FM and ensure the global
consistency of the final product. Commercial FBC tools (e.g., [42, 55]) also offer
integration with popular modelling environments like IBM Rational or Simulink.
Traditionally, FBC tools assume that there exists a single monolithic FM and do not
account for configuration processes that are distributed among various stakeholders
who have specific concerns and who intervene at different moments [46, 48].
Without the appropriate support, FBC can become very cumbersome and error-
prone, e.g., if a single stakeholder has to make decisions on behalf of all others [48].

4 Separating Concerns in Feature Models

4.1 Views

4.1.1 Basic Definition

Separating concerns requires the ability to specify the parts of the FM that are of
interest and the person(s) who can configure it. In order to achieve this, the FM can
be augmented with a set V of views, each of which consists of a set of features.
Formally, a multi-view FM is defined as follows:

Definition 2 (Multi-view FM [36]). A multi-view FM m is a tuple .N; r; �; DE;

˚; V / where V D fv1; v2; : : : ; vng is the multiset of views such that:

• N; r; �; DE; ˚ conform to Definition 1;
• 8vi 2 V � vi � N ^ r 2 vi .

Therefore, for any concern that requires only partial knowledge of the FM, such
as a profile, a view can be defined. We also consider that the root is part of each
view. V is a multiset to account for duplicated sets of features.

4.1.2 View Specification

We distinguish between two ways of specifying views. With extensional definitions,
the features that appear in a view are enumerated, or tagged so as to indicate the view
to which each of the features belongs. A drawback is that the process of enumerating
and tagging can be time-consuming and error-prone without appropriate tool
support.
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With intensional definitions, the features in a view are defined according to a
query defined on the FM. For instance, the tree structure of the FM can be exploited
by languages like XPath to specify the views. A major drawback of intensional
definitions is that textual languages may not be as intuitive as graphical approaches
for casual users. Furthermore, it is harder to maintain consistency between the FM
and the textual expressions when the diagram evolves without proper tool support.

Having said that, extensional and intensional definitions can be used together
in practice. Textual expressions corresponding to intensional specifications could
be generated from a graphical view definition tool. Conversely, it is possible to
generate feature tags from textual expressions and link them to the features in the
expression. These links can then be used to trace changes from the FM back in
the expression. This allows us to overcome the limitations of both extensional and
intensional definitions. In the following discussions, we refer to features contained
in views irrespective of the specification method.

4.1.3 View Coverage

An important property that should be guaranteed by an FBC system is that all
configuration questions are eventually answered [20]. In a multi-view context, one
may consider enforcing the following condition.

Definition 3 (Sufficient coverage condition [36]). For a view v of a multi-view
FM m the sufficient coverage condition is:

[

v2V

v D N

Intuitively, this means that all the features appear in at least one view, hence no
feature can be left undecided.2 Although sufficient, this is not a necessary condition
because some decisions can usually be deduced from others.

A necessary condition can be defined in terms of propositional defineability [43].
It is necessary to ensure that the decisions on the features that do not appear in any
view can be inferred from (i.e., are propositionally defined by) the decisions made
on the features that are part of the view. In the following definition, defines.F; f /

denotes the propositional definably of f by F .

Definition 4 (Necessary coverage condition [36]). For a view v of a multi-view
FM m the necessary coverage condition is:

8f …
[

v2V

v � defines.
[

v2V

v ; f /

2Note that the complete view coverage is usually assumed by multi-view approaches (e.g. [48]).
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defines can be evaluated by translating the FM into an equivalent propositional
formula (done in linear time [58]) and by applying the SAT-based algorithm
described in [43]. Although this check is NP complete in theory, it is not expected
to be a problem in practice, since SAT solvers can handle FMs with thousands of
features.

Features in N n S
v2V v that do not satisfy the above condition will have to be

integrated in existing views, or extra constraints will have to be added to determine
their value.

In application domains such as operating systems, features such as those used for
calculating the boot entry to use are hidden from users [13] and may not be visible
in any view. In such cases, the verification of the necessary condition determines
whether the value of the hidden features can be derived from the features in the
views.

However, in cases such as the Audi configurator (Sect. 2.2), these two conditions
are too strict. Assuming that a view only contains the features relevant to a customer,
it will naturally not contain the hidden features. In this particular case, some hidden
features might not be decided upon. Some existing configurators, such as the one of
Linux, nullify these features. In this context, the necessary coverage condition has
to be adapted such that one only checks features that are neither in

S
v2V v nor in

the nullified features.

4.2 Visualisation

Although views are abstract, they have to be made concrete to be used during
FBC. A concrete view is called a visualisation. A visualisation strives to find a
compromise between not showing in a view features that do not belong to the view,
and showing features that do not belong to the view but indirectly provide context
for features that should be shown. In Fig. 2, for instance, feature Y is in the view
(darker area), but its parent feature A is not.

To tackle this problem of view rendering, we have observed the practice of
developers (see [37] for more details about the case study and our experience with
PloneMeeting) and discussed with them alternative visualisations. Our discussions
included the relative merits of the approaches suggested in [48,67], and the filtering
mechanisms provided by tools such as pure::variants [55], and kernel configurators
for operating systems (e.g., xconfig for Linux and configtool for eCos [27]).
These tools provide simple filtering or search mechanisms that are similar to views
on an FM. In these cases, a filter is a regular expression on the FM. Any feature
matching the regular expression is displayed typically without any control on the
location of the feature in the hierarchy. Interestingly, all these approaches produce
purely graphical modifications (e.g., by greying out irrelevant features) whereas
cardinalities are not recomputed.

The main outcome of our investigation is a set of four complementary visual-
isations offering different levels of details, as depicted in Fig. 3. The darker area
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Fig. 3 Three alternative visualisations of FM views: greyed, pruned and slice/collapsed [36]

defines a specific view of the FM, called v. These views were built to present
information on a need-to-know basis. The amount of information displayed can
be regulated, while providing enhanced control over access rights. For instance,
there is always a standardised configuration menu that can display the position of
the feature in the hierarchy and hide unavailable options. On the other hand, in a
critical application, features outside a view may have to be protected as trade secrets.
Therefore, visualisations not only can provide convenient representations of a view,
but they can also restrict the information a stakeholder can access.

Figure 3 illustrates the alternative visualisations of FM views we propose:

• The greyed visualisation is a mere copy of the whole FM except that the features
that do not belong to the view are greyed out (e.g., A, B , DO and DB). Greyed
features are only displayed but cannot be manually selected/deselected.

• In the pruned visualisation, features that are not in the view are pruned (e.g., B ,
DO and DB) unless they appear on a path between a feature in the view and the
root, in which case they are greyed out (e.g., A).

• In the collapsed visualisation, all the features that do not belong to the view are
pruned. A feature in the view whose parent or ancestors are pruned is connected
to the closest ancestor that is still in the view. If no ancestor is in the view, the
feature is directly connected to the root (e.g., Y and O).

• The slice visualisation is similar to the collapsed visualisation except that it takes
cross-tree constraints into consideration. Consequently, decomposition operators
might be altered to preserve the correctness of these constraints.

Generating visualisations, from an FM and a view, is a form of FM transfor-
mation.

Definition 5 (View visualisation). The visualisation of a view v is the transforma-
tion of the original FM into a new FM d t

v D .N t
v ; r; �t

v; DEt
v; ˚/, where t , the type

of visualisation, can take one of four values: g (greyed), p (pruned), c (collapsed)
and s (slice).

The greyed visualisation is the simplest case because there is no transformation
beyond the greying of each feature f 62 v (i.e., d

g
v D d ). The transformations
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for the pruned and collapsed visualisations, on the other hand, filter nodes, remove
dangling decomposition edges and adapt the cardinalities accordingly.

4.2.1 Pruned Visualisation

N
p
v , the set of features in this visualisation, is the subset of N limited to features that

are in v or have a descendant in v. The definition uses DEC, the transitive closure
of DE. Based on N

p
v , we remove all dangling edges, i.e., those not in N

p
v � N

p
v to

create DEp
v .

Transformation 1 (Pruned visualisation [36]).
The transformations applied to the FM to generate the pruned visualisation are:

N
p
v D fn 2 N jn 2 v _ 9f 2 v � .n; f / 2 DECg

DEp
v D fDE \ .N

p
v � N

p
v /g

�
p
v .f / D .mincardp

v .f /; maxcardp
v .f //

In order to compute the new cardinalities �
p
v .f /, mincardp

v .f / and maxcardp
v .f /

are defined as follows:

mincardp
v .f / D max.0; �.f /:min � jorphansp

v .f /j/
maxcardp

v .f / D min.�.f /:max; jchildren.f /j � jorphansp
v .f /j/

where orphansp
v .f / D children.f / n N

p
v i.e., the set of children of f that are

not in N
p
v . �.f /:min and �.f /:max represent the minimum and maximum values

of the original cardinality, respectively. For the minimum, the difference between
the cardinality and the number of orphans can be negative in some cases, hence the
necessity to take the maximum between this value and 0. The maximum value is
the maximum cardinality of f in d if the number of children in v is greater. If not,
the maximum cardinality is set to the number of children that are in v.

4.2.2 Collapsed Visualisation

The set of features N c
v of this visualisation is simply the set of features in v. The

consequence on DEc
v is that some features have to be connected to their closest

ancestor if their parent is not part of the view.

Transformation 2 (Collapsed visualisation [36]). The transformations applied to
the FM to generate the collapsed visualisation are:

N c
v D v

DEc
v D f.f; g/jf; g 2 v ^ .f; g/ 2 DEC ^ Àf 0 2 v � ..f; f 0/ 2 DEC ^ .f 0; g/ 2 DEC/g

�c
v.f / D .mincardc

v.f /; maxcardc
v.f //
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The computation of cardinalities �c
v.f / is slightly more complicated than in the

pruned case. Formally, mincardc
v.f / and maxcardc

v.f / are defined as follows:

mincardc
v.f / D P

min�.f /:min.ms minc
v.f //

maxcardc
v.f / D P

max�.f /:max.ms maxc
v.f //

where

ms minc
v.f / D fmincardc

v.g/jg 2 orphansc
v.f /g ] f1jg 2 children.f / n orphansc

v.f /g
ms maxc

v.f / D fmaxcardc
v.g/jg 2 orphansc

v.f /g ] f1jg 2 children.f / n orphansc
v.f /g

The multisets ms minc
v.f / and ms maxc

v.f / collect the cardinalities of the descen-
dants of f . The left part of the union3 recursively collects the cardinalities of the
collapsed descendants whereas the right side adds 1 for each child that is in the
view. The �.f /:min minimum values of the multiset are then summed to obtain
the minimum cardinality of f . The maximum value is computed similarly.

4.2.3 Slice Visualisation

We revisit here a technique called slicing that, given an FM (typically large),
produces a new, smaller FM containing only a subset of features of the input FM.
We show that the slicing can be used to synthesize visualisations.

The overall idea behind FM slicing is similar to program slicing [65]. Program
slicing has been successfully applied in computer programming and aims at
simplifying or abstracting programs by focusing on selected aspects of semantics.
Program slicing techniques usually proceed in two steps: the subset of elements
of interest (e.g., a set of variables of interest and a program location), called the
slicing criterion, is first identified; then, a slice (e.g., a subset of the source code) is
computed. In the context of FMs, we define the slicing criterion as a set of features
considered to be pertinent by an SPL practitioner while the slice is a new FM (see
Transformation 3).

Slicing Semantics. The major preoccupation for an SPL practitioner is the legal
combination of features (configurations) defined by an FM. The same observation
applies when decomposing the FM into smaller concerns. We want to guarantee
semantic properties of smaller parts, i.e., in terms of set of configurations. Nev-
ertheless, several FMs, yet with different hierarchies, can represent a given set of
configurations. Therefore, the semantics of the slicing operator is defined both in
terms of set of configurations and feature hierarchy (see Transformation 3).

Transformation 3 (Slice visualisation [4]). We define slicing as an operation on
FM, denoted ˘N s

v
.d/ D d s

v where N s
v is a set of features, called the slicing

criterion, and d s
v is a new FM, called the slice.

3] is the union on multisets.
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The result of the slicing operation is a new FM, d s
v , such that:

• Feature hierarchy: Features of the hierarchy include the slicing criterion of the
original FM while features are connected to their closest ancestor if their parent
feature is not part of the slice FM. It corresponds to the feature hierarchy defined
for the collapsed visualisation (see Transformation 2).

• Configuration semantics: The valid configurations, �d s
v �, one could infer from a

slice are actually the valid configurations of the original FM, when looking only
at the slicing criterion features N s

v . Formally, the projected4 set of configurations
is defined as �d s

v � D �d � jN s
v
.

It should be noted that the hierarchy of the slice FM corresponds to the
hierarchy defined for the collapsed visualisation (see the right hand side of Fig. 3).
In the following, we will describe an algorithm to synthetize automatically such
visualisations.

Automated Slice Synthesis. Our previous experience has shown that syntactic
strategies have severe limitations to accurately represent a given set of configura-
tions (as expected by Transformation 3), especially in the presence of cross-tree
constraints [2]. The same observation applies for the slicing operation so that we
reason directly at the semantic level. The key idea of the proposed algorithm is to (i)
compute the propositional formula representing the projected set of configurations,
and then to (ii) apply satisfiability techniques to construct a complete FM (including
variability information and cross-tree constraints) using the formula. A major
difference with previous works [24, 60] that propose to synthetize FMs from
propositional formulae is that the feature hierarchy of the resulting FM can be
determined and computed (see Transformation 3).

Formula Computation. Let d s
v D ˘N s

v
.d/. The propositional formula �s

corresponding to d s
v can be defined as follows:

�s � 9 f1; f2; : : : fm0 �

where f1; f2; : : : fm0 2 .N n N s
v / D Nremoved and � is the encoding of d as a propo-

sitional formula. The propositional formula �s is obtained from � by existentially
quantifying out variables in Nremoved. Intuitively, all occurrences of features that are
not present in any configuration of d s

v are removed by existential quantification5

in �.

From Formula to FM. From the propositional formula �s , several FMs can be
synthesised [60]. In our case, though, we already know what the resulting hierarchy

4For two given sets A and B , we note A jB the projection of A on B such that: A jB
4D fa0 j a 2

A ^ a0 D a \ Bg D fa \ Bj a 2 Ag
5Existential quantification is defined as the substitution of a Boolean variable ft to True and False
values. Formally: 9ft � Ddef � jft _ �

j Nf t where � jft (resp. �
j Nf t ) denotes the assignment of ft to

True (resp. False) value in �.
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is. Our algorithm exploits this information. We first compute the hierarchy, we then
set the variability information (mandatory/optional, Xor and Or-groups) and finally
the constraints (bi)-implies/excludes/others.

Mandatory and Feature Groups. At this step, all features, except root, are consid-
ered optional. We compute the binary implication graph, noted BIGs , of the formula
�s over N s

v .
BIGs is a directed graph G D .V; E/ formally defined as:

V D Ns E D f.fi ; fj / j �s ^ fi ) fj g

We use BIGs to identify biimplications and thus set mandatory features together
with their parents. For feature groups, we reuse the prime implications method
proposed in [24], so that we can identify Or- and Xor-groups. An important issue is
that a feature may be candidate to several feature groups (which is not allowed by
FMs). Therefore some feature groups are dismissed so that FMs are well formed.
We use the original FM to retrieve initial feature groups (see details in [1]).

Constraints. The set of implies constraints can be deduced by removing edges of
BIGs that are already expressed (e.g., parent–child relations). For the purpose of
conciseness, some implies constraints can be transformed into equivalence relations
(e.g., A ) B ^ B ) A can be transformed into A , B). Similarly, excludes
constraints are produced by computing the binary exclusion graph of �s over
N s

v . Excludes constraints that were not chosen to be represented as an Xor-group
are added. When adding constraints, we control that the constraint is not already
induced by the FM. At this end, it should be noted that the FM may still be an
over approximation of �s .6 Using standard propositional logics techniques, we can
calculate the complement between the current set of configurations represented by
the FM and the expected set of configurations of the slice FM. The complement can
be recovered, for instance, as a conjunction of propositional constraints.

4.2.4 Properties and Comparison

We now discuss properties of the slicing technique and the transformations
described above regarding their ability to produce visualisations.

Semantic Preservation. It is important to demonstrate that the visualisations
preserve a form of semantic equivalence with the original FM. We define the
semantic equivalence in terms of the set of configurations characterised by the
original FM and the projected set of configuration characterised by the collapsed
visualisation.

6In [24], the authors characterised the limited expressiveness of FMs compared to propositional
logic.



Separating Concerns in Feature Models: Retrospective and Support for Multi-Views 19

W

B

R

S

A

C

E

F

D

E  D 

R  E 

D 

S  (F 

Crosscutting constraints

X

W

B

R

S

A

C

E

F

X

D

E R
D  E
F  S 

Crosscutting constraints

W

R

F

X
W

R

F

X
W

R

S

a b

c d e

Fig. 4 Collapsed visualisations (transformation and slicing). (a) Original FM, (b) Corrected FM,
(c) Collapsed view (transformation), (d) Collapsed view (slicing), (e) Corrective capabilities
(slicing)

Accuracy of Visualisations. As demonstrated in [36] for FMs without constraints,
the greyed and pruned visualisations preserve the semantic equivalence. Using
the syntactical transformations though, the semantic equivalence in the collapsed
visualisation does not hold. Take the simple counter-example shown in Fig. 4a and
the collapsed visualisation of view v depicted in Fig. 4c. A valid configuration of the
collapsed visualisation would be fW; R; Sg. However, that configuration is not valid
in the FM since R and S must not appear together in a configuration. This shows
that the transformation that produces the collapsed visualisation does not preserve
the semantics of the FM: The collapsed visualisation is an under-constrained FM.
This is, however, not a limitation in practice. When FBC is assisted by a solver, the
solver preserves the global consistency of the FM. It thereby prevents possible errors
induced by the under-constrained model presented in the collapsed visualisation.
In the counter-example in Fig. 4c for instance, the selection of R in the view will
automatically entail the deselection of S , even though the recomputed cardinality
does not enforce that propagation.

Using the slicing technique, the collapsed visualisation respects by construction
of the semantic equivalence. It exactly corresponds to Transformation 3 that
specifies the relationship between the original FM and the slice FM. For example,
the slicing is able to enforce that R and F features are mutually exclusive (see
Fig. 4d).

Assumptions about Input FMs. In [36], the correctness of transformations for
the three kinds of visualisations has been shown for FMs without cross-tree
constraints. The reason is that arbitrary cross constraints can have an influence on
the visualisations. By reasoning directly at the semantic level, the slicing technique
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is applicable to any kind of FMs, including arbitrary propositional constraints.
However, the slicing technique does not support generic < i::j > cardinality.

Corrective Capabilities. Due to the presence of constraints, an input FM may
contain anomalies, for example, dead features, false optional features, or redun-
dancies (see [12]). The slicing algorithm ensures, by construction, that there is
no dead feature, correctly detect mandatory features and avoids redundancy of
constraints. Therefore the slicing operator can be used as an automated technique
to correct anomalies of FMs while preserving the original set of configurations and
feature hierarchy. Two examples are given in Fig. 4b, e. Moreover the corrective
modifications applied to the original FM can be detected and reported to SPL
practitioner so that they can understand the anomalies.

Impact on Other Kinds of Visualisation. Another application of the corrective
property is that the slicing technique can be used to produce more accurate greyed
and pruned visualisations (e.g., by correcting wrong cardinalities). For the greyed
visualisation, the slicing is first applied on the original FM, using the whole set of
features as slicing criterion (see Fig. 4e for a corrected FM) while some features
are then greyed out. For the pruned visualisation, the slicing is first applied on
the original FM, using the set of features N

p
v of Definition 1 as slicing criterion.

Features are then greyed out in line with the definition of pruned visualisation.

Performance. Synthesising views at the semantic level, though more powerful, has
a cost. Satisfiability techniques that reason over propositional formula are used and
can be realized using either satisfiability (SAT) solvers or binary decision diagrams
(BDDs) [24, 60].

BDD-Based Implementation. A BDD can be seen as a compact representation of
a propositional formula. BDDs are known to efficiently compute the existential
quantification of a propositional formula in at most polynomial time with respect
to the sizes of the BDDs involved. Moreover, as shown in [24], BDDs can be
used to synthesize an FM in polynomial time regarding the size of the BDD
representing the input propositional formula. The primary limitation of a BDD-
based implementation is related to the space complexity: (i) as shown in [21],
computing the BDD of an FM containing more than 2,000 features is intractable;
(ii) from our experiments, the synthesis of FMs has practical limits (up to 8007

features) mainly due to the cost of computing Or-groups.

SAT-Based Implementation. BDDs do not scale for very large FMs (e.g. Linux FM
that has more than 6,000 features). In [60], She et al. proposed to rely on SAT solvers
(rather than BDDs as in [24]) and reported that the use of SAT solvers is significantly
more scalable. As SAT solvers require the formula to be in conjunctive normal form
(CNF). To avoid the exponential explosion of disjunctive clauses, we developed

7Janota et al. reported that the BDD-based algorithm proposed in [24] scales up only for FMs with
300/400 features [39] but did not use the heuristics proposed in [21] that reduce the size of BDDs.
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specific techniques and some heuristics to determine the order in which existential
quantification should be applied [4]. Using the slicing technique on generated and
real-world FMs, we found that: (i) computing the propositional formula is almost
instantaneous for all FMs of SPLOT (less than one second, whatever the size of
the slicing criterion is); (ii) the SAT-based implementation scales for a number of
features (#features) lesser than 10,000 whatever the size of the slicing criterion is,
but not for the Linux FM; (iii) the order in which the features are existentially
quantified is of prior importance: We observe scalability issues when quantifying
first the features that are at the top of the feature hierarchy for #features � 2;000;
(iv) for very large FMs (#features � 5;000), the computation time is inadequate for
an interactive use of the slice operator (up to 20 min).

Summary and Comparison. On the one hand, the slicing technique is more
general (i.e., applicable to any kind of FMs and propositional constraints) and accu-
rate than the syntactical transformations. In particular the collapsed visualisation
is no longer an under-approximation of the projected set of configurations (see
example in Fig. 4). On the other hand, some limitations remain: Lack of support
for generalised cardinality and performance issues. As a result, a tradeoff should
be found when producing collapsed visualisations. In this case, the slicing or the
syntactical transformations can be chosen on demand, i.e., regarding the kind of
visualisations, the number of features, the presence of cross-tree constraints, etc.
For other kinds of visualisations (greyed, pruned), anomalies can be first corrected,
the syntactical transformations being applied afterwards. The consistency of the FM
for under-constrained collapsed views can be maintained by reasoning about the
complete FM in the back-end.

5 Tool Support

Armed with these definitions, we now present two complementary tools that support
view management. The first tool has been developed in the context of FBC while
the second tool targets the large-scale management of FMs through a dedicated
language. They both support view specification with two similar solutions (i.e.,
XPath and a specific textual notation) and can be connected together.

5.1 View Creation and Visualisation in SPLOT

The tool support developed for multiview FBC builds upon SPLOT [49]. To provide
efficient interactive configuration, SPLOT relies on a SAT solver (SAT4J) and
a BDD solver (JavaBDD). Their reasoning abilities enable error detection and
decision propagation. SPLOT was chosen because it offers robust support for FBC,
it is easy to extend, and the existing repository of FMs is an excellent testbed
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Fig. 5 Configuration view of the Engine with the greyed visualisation in SPLOT

for multiview FMs. All our extensions to SPLOT are available online.8 The three
extensions supporting multiview FBC are briefly introduced below.

The first extension enables view creation with XPath expressions. An online
evaluator checks that the XPath expression is correct and shows the results of its
evaluation. Moreover, the completeness of the views can be checked interactively
and the features that are not covered, if any, are returned.

The actual configuration of a view is provided by the second extension. The
extension allows stakeholders to select (1) the view to configure and (2) the visual-
isation. In Fig. 5, the view of the Engine is selected and the pruned visualisation is
activated. Note the greyed Exterior, Equipment and BlackStylingPackage features
that can neither be selected nor deselected. The stakeholder can switch freely
from one visualisation to another as he/she configures his/her view without losing
the decisions that were already made. This way, we dynamically combine the
advantages of the three visualisations and leave complete freedom to the stakeholder
to choose the one(s) that best fit(s) her preferences. The table on the right monitors
the status of the current configuration. Basically, it tells what features have been
selected or deselected, and which decisions were propagated. As explained in
Sect. 4.2, the solver reasons about the full FM and not only about an individual
view. Thereby, the decision to select or deselect a feature in the view is propagated
in the complete model—keeping the global configuration consistent.

8http://www.splot-research.org/extensions/fundp/fundp.html.

http://www.splot-research.org/extensions/fundp/fundp.html
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Fig. 6 Slicing example and interoperability in the FAMILIAR environment

The third extension provides basic support for multi-user concurrent configu-
ration. At the time being, it only enables synchronous configuration. To prevent
conflicting decisions, a configuration session manager is used. Its role is (1) to
maintain a mutual exclusion on the configuration engine so that only one user can
commit a decision at a time and (2) to notify all users about a decision and about
the results of the propagation.

5.2 Slicing and FAMILIAR

As seen in the previous sections, the slicing operator can be used to produce
collapsed visualisations. The operator is part of FAMILIAR (for FeAture Model scrIpt
Language for manIpulation and Automatic Reasoning) a domain-specific language
for large-scale management of FMs [3].

Examples of the syntax of the slicing operator are given in Fig. 6. The set of
features that constitutes the slicing criterion can be specified either by inclusion
(keyword: including) or exclusion (keyword: excluding). Intentional definitions
of views can be specified in the style of XPath. Off-the-shelf SAT solvers (i.e.,
SAT4J) and BDD library (i.e., JavaBDD) are internally used. The slicing operator
produces a new FM that can be manipulated using variables. FAMILIAR also includes
functions for composing FMs, editing FMs (e.g., renaming and removal of features),
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reasoning about FMs (e.g., validity, comparison of FMs) and their configurations
(e.g., counting or enumerating the configurations in an FM). FAMILIAR comes with
an Eclipse-based environment that is composed of textual editors, an interpreter that
executes FAMILIAR scripts, and an interactive front-end. The FMs can be serialised
in different formats (SPLOT, FeatureIDE, a subset of TVL, etc.).

Thanks to the integration with SPLOT, we can realise scenarios in which an FM
is first corrected using the slicing operator of FAMILIAR and then used in the FBC
web environment.

6 Conclusion

Feature models (FMs) are widely used to represent the valid combination of features
supported by a family of systems in a given domain. In real variability-intensive
systems, many concerns have to be considered. These concerns are related in a
variety of ways and there can be thousands of features whose legal combinations are
governed by many and often complex rules. It has been observed that configuring or
maintaining a single large FM may not be feasible [26, 54]. Views (as a simplified
representation of an FM tailored for a specific stakeholder, role or task) have been
repeatedly identified as a possible solution to the scalability and configuration issues
of FMs.

In this chapter, we reviewed concerns and their separation in FMs, revisiting the
concept of view, and discussing the major results in the literature. Then, we delved
into the three specific problems of multi-view FMs: The specification of a view, the
coverage of a set of views, and the visualisation of a view. Finally, we presented
two tools that provide support for these three problems.

Several avenues for future work can be envisaged. The three alternative visuali-
sations were developed to provide more flexibility to the configuration environment
and more precise contextual information to the user. That improvement is, however,
limited to tree-like representations of FMs. Recent advances deviate from the
traditional explorer-like representations [15,17], while others recommend dedicated
configuration interfaces [16, 52]. Understanding the most suitable interfaces for
multi-view will require qualitative user studies. More generally, we plan to study
further the practical usage and applicability of the proposed techniques in various
domains (e.g., operating systems [13, 66] and video surveillance [6]).
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Abstract Feature location techniques aim at locating software artifacts that
implement a specific program functionality, a.k.a. a feature. These techniques
support developers during various activities such as software maintenance, aspect-
or feature-oriented refactoring, and others. For example, detecting artifacts that
correspond to product line features can assist the transition from unstructured
to systematic reuse approaches promoted by software product line engineering
(SPLE). Managing features, as well as the traceability between these features
and the artifacts that implement them, is an essential task of the SPLE domain
engineering phase, during which the product line resources are specified, designed,
and implemented. In this chapter, we provide an overview of existing feature
location techniques. We describe their implementation strategies and exemplify the
techniques on a realistic use-case. We also discuss their properties, strengths, and
weaknesses and provide guidelines that can be used by practitioners when deciding
which feature location technique to choose. Our survey shows that none of the
existing feature location techniques are designed to consider families of related
products and only treat different products of a product line as individual, unrelated
entities. We thus discuss possible directions for leveraging SPLE architectures in
order to improve the feature location process.
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1 Introduction

Software product line engineering (SPLE) techniques [10, 25] capitalize on
identifying and managing common and variable product line features across a
product portfolio. SPLE promotes systematic software reuse by leveraging the
knowledge about the set of available features, relationships among the features
and relationships between the features and software artifacts that implement them.
However, in reality, software families—collections of related software products—
often emerge ad hoc, from experiences in successfully addressed markets with
similar, yet not identical needs. Since it is difficult to foresee these needs a priori
and hence to design a software product line upfront, software developers often
create new products by using one or more of the available technology-driven
software reuse techniques such as duplication (the “clone-and-own” approach),
source control branching, preprocessor directives, and more.

Essential steps for unfolding the complexity of existing implementations and
assisting their transformation to systematic SPLE reuse approaches include iden-
tification of implemented features and detection of software artifacts that realize
those features. While the set of available features in many cases is specified by
the product documentation and reports, the relationship between the features and
their corresponding implementation is rarely documented. Identification of such
relationships is the main goal of feature location techniques.

Rajlich and Chen [8] represent a feature (a.k.a. a concept) as a triple consisting
of a name, intension, and extension. The name is the label that identifies the feature;
intension explains the meaning of the feature; and extension is a set of artifacts that
realize the feature. Location: intension ! extension is identified by the authors as
one of the six fundamental program comprehension processes. Its application to
features is the subject of this survey.

In the remainder of the chapter, we illustrate the surveyed concepts using a
problem of locating the automatic save file feature, previously studied in [32], in
the code of the Freemind1 open source mind-mapping tool. A snippet of Freemind’s
call graph is shown in Fig. 1. Shaded elements in the graph contribute to the
implementation of the automatic save file feature—they are the feature extension
which we want to locate. Feature intension can be given, for example, by the natural
language query “automatic save file,” describing the feature.2

The feature is mainly implemented by two methods of the MindMapMapModel
subclass doAutomaticSave: the constructor and the method run (elements #1
and #2). doAutomaticSave class is initiated by the MindMapMapModel’s
constructor (element #4), as shown in Fig. 2. The constructor assigns values to
several configuration parameters related to the automatic save file function and then
registers the doAutomaticSave class on the scheduling queue. This initiates the

1http://freemind.sourceforge.net.
2We denote features by italic font, place natural language queries “in quotes,” and denote code
elements by a monospaced font.

http://freemind.sourceforge.net
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MindMapMapModel.
save(File)

MindMapMapModel.
doAutomaticSave.doAutomaticSave

(MindMapMapModel, int, boolean, File)

FreeMindNodeModel.
save(Writer, 

MindMapMapModel)

MindMapMapModel.
saveInternal

(File, boolean) 

MindMapMapModel.doAutomaticSave.run () 

MindMapController.
actionPerformed
(ActionEvent e)

MindMapMapModel.
MindMapMapModel()
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6 8

Fig. 1 The automatic save file call graph snippet

Fig. 2 The MindMapMapModel code snippet

class’s run method (element #1) which subsequently calls the saveInternal
method (element #3) responsible for performing the save operation.

Obviously, not all program methods contribute to the automatic save file
feature. For example, element #3 also initiates a call to FreeMindNodeModel’s
save( Writer, MindMapMapModel) method (element #5), which, in turn,
calls element #6–save(Writer, MindMapMapModel). Both of these
methods are irrelevant to the specifics of the automatic save file imple-
mentation. Element #3 itself is called by element #7 (MindMapMapMode’s
save(File)method), which is called by element #8 (MindMapController’s
actionPerformed(ActionEvent)). These methods are also not relevant to
the feature implementation because they handle a user-triggered save operation
instead of automatic save. In fact, element #8 initiates calls to an additional 24
methods, all of which are irrelevant to the implementation of the feature. In Fig. 1,
irrelevant methods are not shaded.
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While all feature location approaches share the same goal—establishing trace-
ability between a specific feature of interest specified by the user (feature inten-
sion) and the artifacts implementing that feature (feature extension), they differ
substantially in the underlying design principles, as well as in assumptions they
make on their input (representation of the intension). In this chapter, we provide an
in-depth description of 24 existing feature location techniques and their underlying
technologies. We exemplify them on a small but realistic program snippet of the
Freemind software introduced above and discuss criteria for choosing a feature
location technique based on the qualities of the input program. We also assess the
techniques by the amount of required user interaction.

Our specific interest is in applying feature location techniques in the context
of software families where a feature can be implemented by multiple products.
However, none of the existing techniques explicitly consider collections of related
products when performing feature location: the techniques are rather applied to
these products as if these are unrelated, singular entities. Thus, another contribution
of our work is a discussion of research directions towards a more efficient feature
location, taking advantage of existing families of related products (see Sect. 6).

A systematic literature survey of 89 articles related to feature location is available
in [11]. That survey provides a broad overview of existing feature definition
and location techniques, techniques for feature representation and visualization,
available tools and performed user studies. The purpose of that work is organizing,
classifying and structuring existing work in the field and discussing open issues
and future directions. Even though 22 out of the 24 techniques surveyed here are
covered by [11], our work has a complementary nature. We focus only on automated
feature location techniques while providing insights about the implementation
details, exemplifying the approaches and discussing how to select one in real-life
settings. The intended audience of our survey is practitioners aiming to apply a
feature location technique for establishing traceability between the features of their
products and the implementation of these features. As such, these practitioners have
to understand the implementation details and properties of the available approaches
in order to choose one that fits their needs.

The rest of the chapter is organized as follows. In Sect. 2, we start by introducing
basic technologies used by several feature location techniques. Section 3 introduces
the classification that we use for the surveyed feature location techniques. A detailed
description of the techniques themselves is provided in Sect. 4. We discuss criteria
used when selecting a feature location technique in Sect. 5. Section 6 concludes our
survey and presents directions for possible future work on feature location in the
context of SPLE.

2 Basic Underlying Technologies

In this section, we introduce basic technologies commonly used by feature location
techniques, describe each technology, and demonstrate it on the example in Sect. 1.
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Fig. 3 Formal context
for the example in Fig. 1.
Objects are method names,
attributes are tokens of the
names

2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [16] is a branch of mathematical lattice theory
that provides means to identify meaningful groupings of objects that share common
attributes. Groupings are identified by analyzing binary relations between the set
of all objects and all attributes. FCA also provides a theoretical model to analyze
hierarchies of these identified groupings.

The main goal of FCA is to define a concept as a unit of two parts: extension
and intension.3 The extension of a concept covers all the objects that belong to the
concept, while the intension comprises all the attributes, which are shared by all the
objects under consideration. In order to apply FCA, the formal context of objects
and their respective attributes is necessary. The formal context is an incidence table
indicating which attributes are possessed by each object. An example of such a
table is shown in Fig. 3, where objects are names of methods in Fig. 1 and attributes
are individual words obtained by tokenizing and lowercasing these names. For
example, object o1 corresponds to element #1 in Fig. 1 and is tokenized to attributes
automatic, do, map, mind, model, run, save, which are “checked” in Fig. 3.

From the formal context, FCA generates a set of concepts where every concept
is a maximal collection of objects that possess common attributes. Figure 3a shows
all concepts generated for the formal context in Fig. 3.

Formally, given a set of objects O , a set of attributes A, and a binary relationship
between objects and attributes R, the set of common attributes is defined as �.O/ D
fa 2 A j .o; a/ 2 R 8o 2 Og. Analogously, the set of common objects is defined as

3These are not to be confused with the extension and intension of a feature.
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a b

Fig. 4 Concepts and the corresponding concept lattice generated for the formal context in Fig. 3.
(a) Concept, (b) Concept lattice

�.O/ D fo 2 O j .o; a/ 2 R 8a 2 Ag. For example, for the relationship R encoded
in Fig. 3, �.o4/ D fmap;mind;modelg and �.automatic;do/ D fo1; o2g.

A concept is a pair of sets .O; A/ such that A D �.O/ and O D �.A/. O is
considered to be the extension of the concept and A is the intension of the concept.
The set of all concepts of a given formal context forms a partial order via the
superconcept-subconcept ordering �: .O1; A1/ � .O2; A2/ , O1 � O2, or, dually,
.O1; A1/ � .O2; A2/ , A2 � A1.

The set of all concepts of a given formal context and the partial order � form
a concept lattice, as shown in Fig. 4b. In our example, this lattice represents a
taxonomy of tokens used for naming the methods—from the most generic used by
all methods (the root element c1, which represents the term mind used in all names)
to the more specific names depicted as leaves (e.g., c6 which represents unique terms
action, controller and performed used in the name of element #8).

2.2 Latent Semantic Indexing

Latent semantic indexing (LSI) [21] is an automatic mathematical/statistical tech-
nique that analyzes the relationships between queries and passages in large bodies
of text. It constructs vector representations of both a user query and a corpus of
text documents by encoding them as a term-by-document co-occurrence matrix.
Each row in the matrix stands for a unique word, and each column stands for a text
passage or a query. Each cell contains the frequency with which the word of its row
appears in the passage denoted by its column.
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Fig. 5 Term-by-document
co-occurrence matrix
for the example in Fig. 1.
Documents are method
names, terms are tokens
of the names and the query
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Figure 5 shows such an encoding for the example in Fig. 1, where “documents”
are method names, the query “automatic save file” is given by the user, and the
set of all terms is obtained by tokenizing, lowercasing, and alphabetically ordering
strings of both the documents and the query. In Fig. 5, matrix A represents the
encoding of the documents and matrix q represents the encoding of the query.
Vector representations of the documents and the query are obtained by normalizing
and decomposing the term-by-document co-occurrence matrix using a matrix
factorization technique called singular value decomposition [21]. Figure 6 shows
the vector representation of the documents d1 : : : d8 and the query q in Fig. 5 in a
three-dimensional space.

The similarity between a document and a query is typically measured by the
cosine between their corresponding vectors. The similarity increases as the vectors
point “in the same general direction,” i.e., as more terms are shared between the
documents. For the example in Fig. 6, document d2 is the most similar to the query,
while d8 is the least similar. The exact similarity measures between the document
and the query, as calculated by LSI, are summarized in Table 1. It is common to
consider documents with positive similarity values as related to the query of interest
(i.e., d1, d2, d5 and d6 in our example), while those with negative similarity values
(i.e., d3, d4, d7 and d8)—as unrelated.
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Table 1 Similarity of the documents and the query in Fig. 5 as calculated by LSI

d1 d2 d3 d4 d5 d6 d7 d8

0.6319 0.8897 �0.2034 �0.5491 0.2099 0.2099 �0.1739 �0.6852

2.3 Term Frequency: Inverse Document Frequency Metric

Term frequency—inverse document frequency (tf-idf ) is a statistical measure often
used by IR techniques to evaluate how important a term is to a specific document in
the context of a set of documents (corpus). Intuitively, the more frequently a term
occurs in the document, the more relevant the document is to the term. That is, the
relevance of a specific document d to a term t is measured by document frequency
(tf .t; d /). For the example in Fig. 5 where “documents” are names of methods in
Fig. 1, the term save appears twice in d2, thus tf .save; d2/ D 2.

The drawback of term frequency is that uninformative terms appearing through-
out the set D of all documents can distract from less frequent, but relevant, terms.
Intuitively, the more documents include a term, the less this term discriminates
between documents. The inverse document frequency, idf(t), is then calculated as
follows: idf .t/ D log. jDj

jfd2D j t2dgj/. The tf-idf score of a term w.r.t. a document is
calculated by multiplying its tf and idf scores: tf-idf (t,d) D tf .t; d / � idf .t/. In our
example, idf .save/ D log. 8

6
/ D 0:12 and tf-idf .save; d2/ D 2 � 0:12 D 0:24.

Given a query which contains multiple terms, the tf-idf score of a document with
respect to the query is commonly calculated by adding tf-idf scores of all query
terms. For example, the tf-idf score of d2 with respect to the query “automatic save
file” is 1:44, while d3 score with respect to the same query is 0:12.

2.4 Hyper-link Induced Topic Search

Hyper-link Induced Topic Search (HITS) is a page ranking algorithm for Web mining
introduced by Kleinberg [19]. The algorithm considers two forms of web pages—
hubs (pages which act as resource lists) and authorities (pages with important
content). A good hub points to many authoritative pages whereas a good authority
page is pointed to by many good hub pages.

The HITS algorithm operates on a directed graph, whose nodes represent pages
and whose edges correspond to links. Authority and hub scores for each page p

(denoted by Ap and Hp , respectively) are defined in terms of each other: Ap DP
fq j q points to pg Hq and Hp D P

fq j p points to qg Aq . The algorithm initializes
hub and authority scores of each page to 1 and performs a series of iterations. Each
iteration calculates and normalizes the hub (authority) value of each page. It does so
by dividing the value by the square root of the sum of squares of all hub (authority)
values for the pages that it points to (pointed by). The algorithm stops when it
reaches a fixpoint or a maximum number of iterations.
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When applied to code, HITS scores methods in a program based on their
“strength” as hubs—aggregators of functionality, i.e., methods that call many others,
and authorities—those that implement some functionality without aggregation. For
the example in Fig. 1, elements #2 and #6 are authorities as they do not call any
other methods and thus their hub score is 0. Elements #1 and #8 are hubs as they are
not called by other methods. Thus, their authority score is 0. Elements #3 and #4
get a higher authority score than other elements as they are called by two methods
each, while elements #7 and #8 get a higher hub score than the rest as they call two
methods each.

3 Classification and Methodology

In this section, we discuss the classification of feature location techniques that we
use for organizing our survey. We also discuss main properties that we highlight for
each technique.

Primarily, feature location techniques can be divided into dynamic which collect
information about a program at runtime and static which do not involve program
execution. The techniques also differ in the way they assist the user in the process
of interpreting the produced results. Some only present an (unsorted) list of artifacts
considered relevant to the feature of interest; we refer to these as plain output
techniques. Others provide additional information about the output elements, such
as their relative ranking based on the perceived relevance to the feature of interest
or automated and guided output exploration process which suggests the order and
the number of output elements to consider; we refer to these as guided output
techniques. Figure 7 presents the surveyed techniques, dependencies between them
and their primary categorization.

Feature location approaches can rely on program dependence analysis (PDA)
that leverages static dependencies between program elements; information retrieval
(IR) techniques—in particular, LSI, tf-idf and others, that leverage information
embedded in program identifier names and comments; change set analysis that
leverages historical information and more. While dynamic approaches collect
precise information about the program execution, they are safe only with respect
to the input that was actually considered during runtime to gather the informa-
tion, and generalizing from this data may not be safe [20]. In addition, while
generally a feature is a realization of a system requirement—either functional
or non-functional—executable test-cases or scenarios can exhibit only functional
requirements of the system that are visible at the user level. Thus, dynamic feature
location techniques can detect only functional features. On the other hand, static
approaches can locate any type of feature and yield safe information, but because
many interesting properties of programs are statically undecidable in general,
static analysis is bound to approximate solutions which may be too imprecise in
practice. Dynamic analysis yields “under-approximation” and thus might suffer
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Fig. 7 Surveyed techniques and their categorization

from many false-negative results while static analysis yields “over-approximation”
and thus might have many false-positives. In order to find a middle ground, hybrid
approaches combine several techniques.

Based on the chosen implementation technique, the analyzed program can be
represented as a program dependence graph (PDG), a set of text documents
representing software elements, an instrumented executable that is used by dynamic
techniques and more. Figure 8 provides detailed information about each of the
surveyed techniques, listing its underlying technology, the chosen program repre-
sentation, the type of user input, as well as the amount of required user interaction,
ranging from low (denoted by “C”) to high (denoted by “C C C”).

4 Feature Location Techniques

In this section, we describe automated feature location techniques from the litera-
ture. As discussed in Sect. 1, we focus on those techniques that assist the user with
feature location rather than feature definition or visualization. Static approaches
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Fig. 8 Underlying technology, program representation, and input type of the surveyed techniques

(those that do no require program execution) are described in Sect. 4.1; dynamic
are in Sect. 4.2.

4.1 Static Feature Location Techniques

In this section, we describe techniques that rely on static program analysis for
locating features in the source code.
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4.1.1 Plain Output

Chen et al. [8] present one of the earliest static computer-assisted feature location
approaches based on PDA. The analyzed program is represented as a PDG whose
nodes are methods or global variables and edges are method invocations or data
access links (the paper refers to the PDG as the abstract system dependence graph).
Given an initial element of interest—either a function or a global variable—the
approach allows the user to explore the PDG interactively, node-by-node, while
storing visited nodes in a search graph. The user decides whether the visited node is
related to the feature and marks related nodes as such. The process stops when the
user is satisfied with the set of found nodes, and outputs the set of relevant nodes
aggregated in the search graph. For the example in Fig. 1, the system generates the
depicted call graph from the source code and interactively guides the user through its
explanation. The technique relies on extensive user interaction (denoted by “CCC”
in Fig. 8), and thus provides the user with “intelligent assistance” [6] rather than
being a heuristic-based technique aiming to determine relevant program elements
automatically.

Walkinshaw et al. [41] provide additional automation to the feature location
process based on PDA. The analyzed program is represented as a call graph—
a subgraph of PDG containing only methods and method invocations. As input,
the system accepts two sets of methods: landmark—thought to be essential for
the implementation of the feature, and barrier—thought to be irrelevant to the
implementation. For the example in Fig. 1, landmark methods could be elements #1
and #2, while barrier methods—#5 and #7. The system computes a hammock graph
which contains all of the direct paths between the landmarks. That is, a method
call belongs to the hammock graphs only if it is on a direct path between a pair of
landmark methods. Additional potentially relevant methods are added to the graph
using intra-procedural backward slicing [39] (with the call sites that spawn calls in
the hammock graph as slicing criteria). Since slicing tends to produce graphs that
are too large for practical purposes, barrier methods are used to eliminate irrelevant
sections of the graph: all incoming and outgoing call graph edges of barrier methods
are removed, and thus these are not traversed during the slice computation. The
approach outputs all elements of the resulting graph as relevant to the feature.

In our example in Fig. 1, no direct call paths exist between elements #1 and
#2; thus, the approach is unable to find additional relevant elements under the
given input. The technique is largely automated and does not require extensive user
interaction (denoted by “C” in Fig. 8) other than providing and possibly refining the
input sets of methods.

Shepherd et al. [38] attempt to locate action-oriented concepts in object-oriented
programs using domain knowledge embedded in the source code through identifier
names (methods and local variables) and comments. It relies on the assumption
that verbs in object-oriented programs correspond to methods, whereas nouns
correspond to objects.

The analyzed program is represented as an action-oriented identifier graph
model (AOIG) [37] where the actions (i.e., verbs) are supplemented with direct



A Survey of Feature Location Techniques 41

objects of each action (i.e., objects on which the verb acts). For example, the
verb save in Fig. 1 can act on different objects in a single program, such as
MindMapMapModel and MindMapNodeModel; these are the direct objects of
save. An AOIG representation of a program contains four kinds of nodes: verb
nodes, one for each distinct verb in the program; direct object (DO) nodes, one for
each unique direct object in the program; verb-DO nodes, one for each verb-DO
pair identified in the program (a verb or a direct object can be part of several verb-
DO pairs); and use nodes, one for each occurrence of a verb-DO pair in comments
or source code of the program. An AOIG has two kinds of edges: pairing edges
connecting each verb or DO node to verb-DO pairs that use them, and use edges
connecting each verb-DO pair to all of its use nodes.

As an input, the user formulates a query describing the feature of interest and
decomposes it into a set of pairs (verb, direct object). The technique helps the
user to refine the input query by collecting verbs and direct objects that are similar
(i.e., different forms of words, and synonyms) to the input verbs and direct objects,
respectively, as well as words collocated with those in the query, based on the verb-
DO pairs of the program AOIG. For example, MindMapMapModel is collocated
with MindMapNodeModel in verb-DO pairs for the verb save. The collected
terms are ranked by their “closeness” to the words in the query based on the
frequency of collocation with the words in the query and on configurable weight
given to synonyms. Ten best-ranked terms are presented to the user. The system
then recommends that the user augment the query with these terms as well as with
program methods that match the current query.

Once the user is satisfied with the query, the system searches the AOIG for all
verb-DO pairs that contain the words of the query. It extracts all methods where
the found pairs are used and applies PDA to detect call relationships between the
extracted methods. The system then generates the result graph in which nodes
represent detected methods and edges represent identified structural relationships
between them. The graph is returned to the user.

For our example in Fig. 1, the input query (doAutomaticSave,MindMapMap
Model) might get expanded by the user with the terms save andsaveInternal,
because they are collocated with MindMapMapModel. Then, the system outputs
elements #1 through #4 and #7, together with the corresponding call graph fragment.
The technique requires a fair amount of user interaction to construct and refine the
input query, and thus is marked with “CC” in Fig. 8.

Zhao et al. [44] accept a set of feature descriptions as input and focus on
locating the specific and the relevant functions of each feature using PDA and
IR technologies. The specific functions of a feature are those definitely used to
implement it but are not used by other features. The relevant functions of a feature
are those involved in the implementation of the feature. Obviously, the specific
function set is a subset of the relevant function set for every feature.

The analyzed program is represented as a Branch-Reserving Call Graph (BRCG)
[28]—an expansion of the call graph with branching and sequential information,
which is used to construct the pseudo execution traces for each feature. Each node
in the BRCG is a function, a branch, or a return statement. Loops are regarded as
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two branch statements: one going through the loop body and the other one exiting
immediately. The nodes are related either sequentially, for statements executed one
after another, or conditionally, for alternative outcomes of a branch.

The system receives a paragraph of text as a description of each feature. The text
can be obtained from the requirements documentation or be provided by a domain
expert. It transforms each feature description into a set of index terms (considering
only nouns and verbs and using their normalized form). These will be used as
documents. The system then extracts the names of each method and its parameters,
separating identifiers using known coding styles (e.g., using the underline “ ” to
separate words) and transforms them into index terms. These will be used as queries.

To reveal the connections between features and functions, documents (feature
descriptions) are ranked for each query (function) using the vector space models [3,
pp. 27–30]—a technique which, similar to LSI, treats queries and documents as
vectors constructed by the index terms. Unlike LSI, the weights of index term
in documents and queries are calculated using the tf-idf metric (see Sect. 2.3)
between the term and the document or query, respectively. For the example in Fig. 1,
automatic save file could be a document while “mind map model do automatic save”
could be a query corresponding to the element #2. For the vector space model, the
weight of the term save in the query is 0.24, as calculated in Sect. 2.3. Note that
LSI calculates this weight as being 2 (see the value of the term save in the column
that corresponds to d2 in Fig. 5).

Similarity between a document and a query is computed as a cosine of the angle
between their corresponding vectors, as for LSI. For each document (feature), the
system creates a sorted list of queries (functions), ranked by their similarity degrees
and identifies a pair of functions with the largest difference between scores. All
functions before this pair, called a division point, are considered initial specific
functions to the feature. In our example, these are elements #1 and #2.

Next, the system analyzes the program’s BRCG and filters out all branches that
do not contain any of the initial specific functions of the feature, because those
are likely not relevant; all remaining functions are marked as relevant. Functions
relevant to exactly one feature are marked as specific to that feature.

The system also builds pseudo-execution traces for each feature by traversing
the pruned BRCG and returns those to the user. For our example in Fig. 1, BRCG is
rooted in element #8. Since there is no direct call to element #1 (the call is performed
via an event queue—see the last statement in Fig. 2), the technique returns only those
branches that contain element #2, that is, elements #8, #7, and #4. The technique
requires no user interaction besides the definition and the refinement of the input
feature descriptions, as reflected by “C” in Fig. 8.

Robillard et al. [31] propose searching the change history (change transactions)
of a software system to identify clusters of program elements related to a task.
The analyzed program is represented as a set of program elements such as fields
and methods, as well as change history transactions that capture modifications of
these elements. The system considers all available transactions and filters out those
with more than 20 or fewer than four elements. The thresholds are set empirically:
experiments revealed that large transactions generate overly large clusters that
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would require developers to spend an unreasonable amount of effort to study,
while small transactions cannot be clustered efficiently. The system then clusters
the remaining transactions based on the number of overlapping elements using a
standard clustering algorithm.

Next, given a small set of elements related to a feature of interest (usually two or
three), the system extracts clusters containing all input elements and removes those
satisfying the following conditions:

1. An input element appears in at least 3% of the transactions of the cluster.
The rationale is that querying the change history for elements that are being
continuously modified (and thus are central or critical elements to the entire
system) returns too many recommendations to be useful.

2. The degree of overlap between elements that correspond to the transactions in
a cluster is lower than 0.6. The rationale is that these clusters do not represent
changes that are associated with a high-level concept.

3. The number of transactions in a cluster is less than 3. The rationale is to avoid
returning results that are single transactions or very small groups of transactions
which may have been spontaneously clustered. However, using a value higher
than three as a threshold produces too few recommendations to be useful.

All elements of the resulting clusters are returned to the user. The technique
requires no user interaction besides the definition and the refinement of the input
elements, as reflected by “C” in Fig. 8.

Unfortunately, the evaluation of the proposed technique which is included in
the paper shows that the benefits of using change clusters are relatively small: the
analysis of almost 12 years of software change data for a total of seven different
open-source systems showed that fewer than 12% of the studied changes could have
benefited from finding elements relevant to the change using change clusters.

Trifu [40] proposes an approach that uses static dataflow information to deter-
mine the concern skeleton—a data-oriented abstraction of a feature. The analyzed
program is represented as a concern graph whose nodes are variables found in
the source code and whose edges are either dataflow relationships that capture
value transfer between variables or inheritance relationships that insure consistent
handling of variables defined in polymorphic methods. A path between two
variables indicates that the start variable is used to derive the value of the end
variable.

The approach treats a feature as an implementation of functionality needed to
produce a given set of related values. It receives as input a set of variables that store
key results produced by the feature of interest—information sinks—and computes a
concern skeleton which contains all variables in the concern graph that have a path
to one of the information sinks. The approach can be optionally provided with an
additional set of input variables—information sources—that act as cutting points for
the incoming paths leading to an information sink. That is, the computed concern
skeleton includes only portions of the paths from the given information sources to
the given information sinks. The computed concern skeleton is returned to the user.
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The approach provides some help in identifying the input set of information sinks
by computing a reduced concern graph in which certain variables are filtered out
(e.g., those that have no incident edges in the concern graph). Still, identifying
information sinks is not a trivial task which involves semantic knowledge about
what the system does. Also, the user has to do the mapping from variables of the
resulting concern skeleton to program statements that use them. Thus, the technique
relies on extensive user interaction, as indicated by “C C C” in Fig. 8.

4.1.2 Guided Output

Robillard [30] leverages static program dependence analysis to find elements that
are related to an initial set of interest provided by the user. The analyzed program
is represented as a PDG whose nodes are functions or data fields and edges
are function calls or data access links. Given an input set of interest—a set of
functions and data fields that the user considers relevant to the feature of interest,
the system explores their neighbors in the dependency graph and scores them based
on their specificity—an element is specific if it relates to few other elements, and
reinforcement—an element is reinforced if it is related to other elements of interest.
For the example in Fig. 1, if the initial set of interest contains elements #3 and #4,
reinforcement of element number #7 is high as two of its three connections are
to elements of interest. Reinforcement of element #1 is even higher, as its sole
connection leads to an element of interest. Yet, specificity of element #7 is lower
than that of element #1 since the former is connected to three elements whereas the
latter—just to one.

The set of all elements related to those in the initial set of interest is scored and
returned to the user as a sorted suggestion set. The user browses the result, adds
additional elements to the set of interest and reiterates. The amount of the required
user interaction in this approach is moderate, as indicated by “CC” in Fig. 8: the
technique itself only browses the direct neighbors of the elements in the input set of
interest while the user is expected to extend this set interactively, using the results
generated by the previous step.

Saul et al. [35] build on Robillard’s technique [30]) and introduce additional
heuristics for scoring program methods. The proposed approach consists of two
phases: in the first, a set of potentially relevant methods is calculated for an input
method of interest. These are the union of caller and callee methods (“parents” and
“children”), methods called by the caller functions (“siblings”) and methods that call
the callee methods (“spouses”). For example, for the element #4 in Fig. 1, elements
#2, #3, #7, and #8 are potentially relevant.

The calculated set of potentially relevant methods is then scored using the HITS
web mining algorithm (see Sect. 2.4) based on their “strength” as hubs (methods
that aggregate functionality, i.e., call many other methods) or authorities (methods
that largely implement functionality without aggregating). The calculated authority
score is used to rank the results returned by the algorithm. That is, a method gets a
high score if it is called by many high-scored hub methods. In our example, element
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#7 has a lower score than #4, because the former is called only by method #8 which
is a low-scored hub method as it calls only one method. Element #4 has a higher
score because (1) it is called by both elements #7 and #8, and (2) element #7 has a
higher hub score as it calls two methods rather than one.

Similar to [30], the technique requires a moderate amount of user interaction, as
indicated by “CC” in Fig. 8.

Marcus et al. [23,24] introduce one of the first approaches for using IR techniques
for feature location. The approach is based on using domain knowledge embedded
in the source code through identifier names and internal comments.

The analyzed program is represented as a set of text documents describing
software elements such as methods or data type declarations. To create this set
of documents (corpus), the system extracts identifiers from the source code and
comments, and separates the identifiers using known code styles (e.g., the use of
underline “ ” to separate words). Each software element is described by a separate
document containing the extracted identifiers and translated to LSI space vectors
(see Sect. 2.2) using identifiers as terms.

Given a natural language query containing one or more words, identifiers from
the source code, a phrase or even short paragraphs formulated by the user to identify
a feature of interest,4 the system converts it into a document in LSI space, and uses
the similarity measure between the query and documents of the corpus in order to
identify the documents most relevant to the query.

In order to determine how many documents the user should inspect, the approach
partitions the search space based on the similarity measure: each partition at step
i C 1 is made up of documents that are closer than a given threshold ˛ to the
most relevant document found by the user in the previous step i . The user inspects
the suggested partition and decides which documents are part of the concept. The
algorithm terminates once the user finds no additional relevant documents in the
currently inspected partition and outputs a set of documents that were found relevant
by the user, ranked by the similarity measure to the input query.

For the example in Fig. 1, assume that similarities between documents and a
query are calculated as specified in Sect. 2.2 and summarized in Table 1. That is,
only terms from method names (and not from method bodies) are used. Under this
setting, if ˛ is set to 0.3, the first partition will contain only document d2 and the
second—only d1. No other document is within 0.3 of d1 and thus the algorithm will
terminate and output d1 and d2.

The technique requires no user interaction besides the definition and the refine-
ment of the input query, and thus is marked with “C” in Fig. 8.

Poshyvanyk et al. [26] extend the work of Markus et al. [23, 24] with formal
concept analysis (see Sect. 2.1) to select most relevant, descriptive terms from
the ranked list of documents describing source code elements. That is, after the

4Several approaches, e.g., [4, 9], address the problem of input query definition. They consider not
only the query but also related terms when evaluating the document models. As discussed earlier,
these approaches are out of the scope of this chapter.
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documents are ranked based on their similarity to the input query using LSI, as
in [23, 24], the system selects the first n documents and ranks all terms that appear
uniquely in these documents. The ranking is based on the similarity between each
term and the document of the corpus, such that the terms that are similar to those
in the selected n documents but not to the rest are ranked higher. Terms that are
similar to documents not in the selected n results are penalized because they might
be identifiers for data structures or utility classes which would pollute the top ranked
list of terms. For the example in Fig. 1, given the LSI ranking with respect to the
automatic save file query shown in Table 1, if n is set to 2, documents d1 and d2 are
selected. The unique terms in these are “automatic,” “do,” and “run,” all ranked high
as they are not similar to any of the terms in the rest of the documents.

After the unique terms are ranked, the system selects the top k terms (attributes)
from the first n documents (objects) and applies FCA (see Sect. 2.1) to build
the set of concepts. For the three terms in our example, the concepts are
(fd1; d2g, fautomatic, dog), and (fd1g, fautomatic, do, rung). The
terms describe the resulting documents. The user can inspect the generated
concepts—the description and links to actual documents in the source code—
and select those that are relevant. Similar to [23, 24], the technique requires a low
amount of user interaction, as indicated by “C” in Fig. 8.

Shao et al. [36] introduce another approach that extends the work of Marcus
et al. [23, 24] by completing the LSI ranking with static call graph analysis.
Each method of the analyzed program is represented by a document containing
its identifiers. After the LSI rank for each document with respect to the input
query is calculated, the system builds a set of methods corresponding to documents
ranked above a certain threshold and computes a set of all callers and callees of
these methods. The LSI score of the elements in the computed set is augmented
to represent their call graph proximity to one of the methods ranked high by LSI.
The algorithm outputs a list of all methods organized in a descending order by their
combined ranking. For the example in Fig. 1, element #3 is ranked low by LSI with
respect to the query “automatic save file” (�0.2034 in Table 1). However, it is called
by element #1 which has a high LSI rank (0.6319 in Table 1). Thus, the score of
element #3 will be augmented and it will be ranked higher.

The technique requires no user interaction except defining and refining the input
query describing the feature of interest, as indicated by “C” in Fig. 8.

Hill et al. [18] combine call graph traversal with the tf-idf -based ranking (see
Sect. 2.3). The analyzed program is represented as a call graph and a set of text
documents. Each document corresponds to a method of the program and includes
all identifiers used in the method. The user provides an initial query that describes
the feature, a seed method from which the exploration starts, and the exploration
depth which determines the neighborhood to be explored (i.e., a maximal distance
of explored methods from the seed).

Starting from the input seed method, the system traverses the program call
graph and calculates the relevance score of each explored method by combining
the following three parameters: (1) the tf-idf score of the identifiers in the method
name; (2) the tf-idf score of the identifiers in the method body; and (3) a binary
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parameter specifying whether the method is from a library or part of the user code.
If the score of a method is higher than a preset relevance threshold, the method is
marked as relevant. If the score is higher than a preset exploration threshold (which
is usually lower than the relevance threshold) and the distance of the element from
the seed is lower than the exploration depth, the system continues exploring the
neighborhood of this element. Otherwise, the element becomes a “dead-end,” and
its neighborhood is not explored. When there are no additional elements to explore
for the given exploration depth, the system outputs the call-graph neighborhood of
the seed method in which all elements are scored and relevant elements are marked.

For the example in Fig. 1, if the element #1 is used as a seed and the exploration
depth is set to 3, all elements other than #2 can be potentially explored. For the sake
of the example, we disregard the terms that appear in method bodies and assume that
the program does not use any binary methods. In such a case, the calculated score of
element #3 is based on the tf-idf similarity of the method name to the input query—
0.12 for the input query “automatic save file,” as shown in Sect. 2.3. Thus, setting
the exploration threshold above this value results in not exploring the part of the
graph starting with element #1, and thus no elements are returned to the user. The
exploration threshold of up to 0.12 results in further exploration of the call graph.

The relevance threshold specifies which of the explored elements are considered
relevant. Both relevance and exploration thresholds are set empirically, based on the
experience with programs under analysis. The technique requires no user interaction
besides the definition and the refinement of the input feature description and seed
method, and thus is marked with “C” in Fig. 8.

Chen et al. [7] present a technique for retrieving lines of code that are relevant
to an input query by performing textual search on the cvs comments associated
with these lines of code. The analyzed program is represented as a set of lines for
a newest revision of each file. The system examines changes between subsequent
versions of each file using the cvs diff command and associates the corresponding
comment with each changed line. It stores all associated cvs comments for each line
of a file in a database and retrieves all lines whose cvs comments contain at least
one of the input query’s words. The results are scored to indicate the quality of the
match: the more query words appear in the comment, the higher is the score. In
addition, the system searches the source code to find lines containing at least one
of the query’s words. It outputs a sorted list of files so that those with the highest
number of matches appear first. Within each file, a sorted list of all lines that either
match the query or are associated with a cvs comment that matches it is presented.

The technique is largely automated and requires no user interaction other than
providing and possibly refining the input query, as indicated by “C” in Fig. 8.

4.2 Dynamic Feature Location Techniques

In this section, we describe techniques that rely on program execution for locating
features in source code. The majority of such techniques address the feature
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location task for sequentially executed programs, thus we focus the section on those
techniques. We note that some of the described approaches have been extended, e.g.,
[1, 13], to handling distributed and multi-threaded systems as well.

4.2.1 Plain Output

Widle et al. [42] introduced one of the earliest feature location techniques taking
a fully dynamic approach. The main idea is to compare execution traces obtained
by exercising the feature of interest to those obtained when the feature of interest
is inactive. Towards this end, the program is instrumented so that the components
executed on a scenario/test case can be identified. The granularity of components,
e.g., methods or lines of code, is defined by the user. The user specifies a set of test
cases that invoke each feature. The system runs all input test cases and analyzes
their execution traces, identifying common components—executed by all test cases.
In addition, for each feature, it identifies (1) potentially involved components—
executed by at least one test case of the feature; (2) indispensably involved
components—executed by all test cases of the feature; and (3) uniquely involved
components—executed by at least one test case of the feature and not executed by
any test case of the other features. The system outputs sets of potentially involved,
indispensably involved and uniquely involved components for each feature, as well
as the set of all common components.

For the example in Fig. 1, the execution trace of the automatic save file feature
can be compared to that of the manual save file feature. In this case, elements #3,
#5, and #6 are considered common, since the automatic save file feature relies on
the execution of manual save file and, thus, these methods are executed in both
scenarios. Element #1 is considered uniquely involved as it is executed by the
automatic save file feature only.

Since the user is required to define two sets of scenarios for each feature—those
that exercise it and those that do not, the technique requires heavy user involvement
and we assess it as “C C C” in Fig. 8.

Wong et al. [43] present ideas similar to [42]. Its main contribution is in
analyzing data flow dependencies in addition to the control flow (method calls) and
in presenting a user-friendly graphical interface for visualizing features.

Eisenbarth et al. [14] attempts to address one of the most significant problems of
dynamic approaches discussed above—the difficulty of defining execution scenarios
that exercise exactly one feature. Their work relies on the assumption that execution
scenarios can implement more than one feature and a feature can be implemented by
more than one scenario. The work extends [42] with FCA (see Sect. 2.1) to obtain
both computation units for a feature as well as the jointly and distinctly required
computation units for a set of features.

The analyzed program is represented by an instrumented executable and a
static program dependence graph whose nodes are methods, data fields, classes,
etc. and whose edges are function calls, data access links, and other types of
relationships obtained by static analysis. While in general the technique is applicable
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to computation units on any level of granularity, the approach is implemented
and evaluated for method-level components. The system first executes all given
input scenarios, each of which can invoke multiple features. Optionally, users can
identify special start and end scenarios whose components correspond to startup
and shutdown operations and are excluded from all executions.

Users select a subset of execution scenarios they wish to investigate. Then, the
approach uses FCA (see Sect. 2.1), where computation units are objects, scenarios
are attributes and relationships specify whether a unit is executed when a particular
scenario is performed, to create a concept lattice. Based on the lattice, the following
information is derived: (1) a set of computation units specific to a feature—those
used in all scenarios invoking the feature, but not in other scenarios; (2) a set of
computation units relevant to a feature—used in all scenarios invoking the feature,
and possibly in other scenarios; (3) a set of computation units conditionally specific
to a feature—those used in some scenarios invoking the feature, but not in scenarios
that do not invoke the feature; (4) a set of computation units conditionally relevant to
a feature—those used in some scenarios invoking the feature, and possibly in other
scenarios that do not invoke the feature; and (5) a set of computation units irrelevant
to a feature—those used only in scenarios that do not invoke the feature. In addition,
for each feature, the system builds a starting set in which the collected computation
units are organized from more specific to less. It also builds a subset of the program
dependency graph containing all transitive control flow successor and predecessors
of computation units in the starting set (i.e., method callers and callees). The graph
is annotated with features and scenarios for which the computation units were
executed.

The user inspects the created program dependency graph and source code in
the order suggested by the starting set, in order to refine the set of identified
computation units for a feature by adding and removing computational units. During
the inspection, the system also performs two further analyses to assist with the call
graph inspection: strongly connected component analysis and dominance analysis.
The former is used for identifying cycles in the dependency graph. If there is one
computation unit in the cycle that contains feature-specific code, all computation
units of the cycle are related to the feature because of the cycle dependency. The
purpose of the latter is to identify computation units that must be executed in order
to reach one of the computation units containing feature-specific code. All such
computation units are related to the feature as well.

At the end of the process, a set of components deemed relevant for each feature
is generated. Even though the technique attempts to assist the user in defining input
scenarios, the required level of user interaction in defining the scenarios, selecting
the order in which the scenarios are processed, as well as interactively inspecting
and refining the produced result is still high, as indicated by “C C C” in Fig. 8.

Koschke et al. [20] extend the work of Eisenbarth et al. [14] by considering
statement-level rather than method-level computation units.

Asadi et al. [2] propose an approach which combines IR, dynamic-analysis, and
search-based optimization techniques to locate cohesive and decoupled fragments
of traces that correspond to features. The approach is based on the assumptions that
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methods responsible for implementing a feature are likely to share some linguistic
information and be called close to each other in an execution trace.

For an input set of scenarios that exercise the features of interest, the system
collects execution traces and prunes methods invoked in most scenarios (e.g., those
related to logging). In addition, it compresses traces to remove repetition of one
or more method invocations and keeps one occurrence of each method. Next, it
tokenizes each method’s source code and comments, removing special characters,
programming language keywords and terms belonging to a stop-word list for
the English language (e.g., “the”, “is”, “at”). The remaining terms are tokenized
separating identifiers using known coding styles. The terms belonging to each
method are then ranked using the tf-idf metric (see Sect. 2.3) with respect to the rest
of the corpus. For the example in Fig. 1, when considering only terms of the method
names, the term mind appears in all documents and thus is ranked 0, while the
term controller appears only in one document (that corresponds to element #8)
and thus gets a higher rank—0.9. The obtained term-by-document co-occurrence
matrix is transformed to vectors in the LSI space (see Sect. 2.2). A cosine similarity
between two vectors in LSI space is used as a similarity measure between the
corresponding documents (methods).

Next, the system uses genetic optimization algorithm [17]—an iterative proce-
dure that searches for the best solution to a given problem by evaluating various
possible alternatives using an objective function, in order to separate each execution
trace into conceptually cohesive segments that correspond to the features being
exercised in a trace. In this case, an optimal solution is defined by two objectives:
maximizing segment cohesion—the average similarity between any pair of methods
in a segment, and minimizing segment coupling—the average similarity between a
segment and all other segments in a trace, calculated as average similarity between
methods in the segment and those in different ones. That is, the algorithm favors
merging of consecutive segments containing methods with high average similarity.

The approach does not rely on comparing traces that exercise the feature of
interest to those that do not and does not assume that each trace corresponds to
one feature. Thus, the task of defining the execution scenarios is relatively simple.
However, the approach does not provide any assistance in helping the users to
understand the meaning of the produced segments and tracing those to the features
being exercised in the corresponding scenario; thus, this step requires a fair amount
of user interaction. In Fig. 8, we rate this approach as “CC”.

4.2.2 Guided Output

Eisenberg et al. [15], similar to Eisenbarth et al. [14], present an attempt to deal
with the complexity of scenario definition. The approach assumes that the user is
unfamiliar with the system and thus should use pre-existing test suites, such as those
typically available for systems developed with a test-driven development (TDD)
strategy. It accepts as input a test suite that has some correlation between features
and test cases (i.e., all features are exercised by at least one test case). Tests that
exhibit some part of a feature functionality are mapped to that feature and referred
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to as its exhibiting test set. Tests which are not part of any exhibiting test set are
grouped into sets based on similarity between them and are referred to as the non-
exhibiting test set.

For each feature, the system collects execution traces obtained by running all
tests of the feature’s exhibiting test set and generates a calls set which lists <caller,
callee> pairs for each method call specified in the collected traces. It then ranks
each method heuristically based on the following parameters: (1) multiplicity—a
relationship between the percentage of tests in the exhibiting test set of the feature
that execute the method and the percentage of tests in non-exhibiting test sets that
execute that method; (2) specialization—the percentage of test sets that exercise the
method. (If a method is exercised by many test sets, it is more likely to be a utility
method); and (3) depth—the call depth (the number of stack frames from the top)
of the method in the exhibiting test set compared to that in non-exhibiting test sets.
The rationale behind these heuristics is that the exhibiting test set focuses on the
feature in the most direct way. This is correlated with the call depth of the methods
that implement this feature—the more “directly” a method is exercised, the lower
its call depth.

For each feature, both the ranked list of methods and the generated call set are
returned to the user. The goal of the former is to rank methods by their relevance to
a feature, whereas the goal of the latter is to assist the user in understanding why a
method is relevant to a feature. With respect to the required level of user interaction,
we assess the technique as “CC” in Fig. 8 because of the effort involved in creating
test scenarios, if they are not available.

Poshyvanyk et al. [27] combine the techniques proposed in Marcus et al. [24] and
Antoniol et al. [1] to use LSI (see Sect. 2.2) and execution-trace analysis to assist
in feature location. The analyzed program is represented by a set of text documents
describing software methods and a runnable program instrumented so that methods
executed on any scenario can be identified.

Given a query that is formulated by the user to identify a given feature and two
sets of scenarios—those that exercise the feature of interest and those that do not,
the system first ranks input program methods using LSI. Then, it executes input
scenarios, collects execution profiles and ranks each executed method based on the
frequency of its appearance in the traces that exercise the feature of interest versus
traces that do not. The final rank of each method is calculated as a weighted sum
of the above two ranks. The system outputs a ranked list of methods for the input
feature.

For the example in Fig. 1, element #1 is executed only in scenarios that exercise
automatic save file. Thus, its LSI score (0.6319, as calculated in Table 1) will be
increased, while the score of element #5 (0.2099, as calculated in Table 1) will be
decreased to reflect the fact that it is executed in both scenarios that exercise the
automatic save file feature and those that do not.

Similar to other dynamic approaches, this approach requires an extensive user
involvement for defining scenarios that exercise the feature of interest and those
that do not and, therefore, we assess the level of the necessary user interaction for
this technique as “C C C” in Fig. 8.



52 J. Rubin and M. Chechik

Liu et al. [22], similar to Poshyvanyk et al. [27], combine the use of LSI and
execution-trace analysis. However, this work proposes operating on a single trace
rather than on multiple traces that exercise/do not exercise the feature of interest.

Given a query that is formulated by the user to identify a feature of interest and
a single scenario capturing that feature, the system executes the input scenario and
ranks methods executed in the scenario using LSI with respect to the input query as
in [24]. A ranked list of executed methods is returned to the user. For our example
in Fig. 1, a scenario that executes the automatic save file feature invokes elements
#1, #3, #6, and #7. These elements are returned to the user together with their LSI
ranking, shown in Table 1.

Since the user is only required to provide a single scenario that exercises each
feature of interest and a natural language description of that feature, we assess the
level of the necessary user interaction for this technique as “C” in Fig. 8.

Rohatgi et al. [33] present a technique that is based on dynamic program analysis
and static program dependence graph analysis. The technique operates on a class
level, where the analyzed program is represented by an instrumented executable
and a static program class dependency graph whose nodes are classes and whose
edges are dependency relationships among these classes such as method calls,
generalization, and realization.

As input, the system obtains a set of scenarios that invoke the features of interest.
It executes all input scenarios, collects execution profiles on a class level, and uses
impact analysis to score the relevance of the classes to the feature of interest: classes
that impact many others in the system are ranked low as these classes are likely
not feature-specific but rather “utility” classes implementing some core system
functionality. The technique outputs a set of classes produced by the dynamic trace
analysis, ranked by their relevance as calculated using impact analysis.

We assess the level of the necessary user interaction for this technique as “CC”
in Fig. 8 because it requires only a set of scenarios that invoke the features of interest
and not those that don’t.

Eaddy et al. [12] present the PDA technique called prune dependency analysis
which is based on the assumption that an element is relevant to a feature if it should
be removed or otherwise altered if the feature is removed from the program. The
program is represented as a program dependence graph whose nodes are classes
and methods, and whose edges are method invocations, containment relationships
between a class and its methods, or inheritance relationships between classes. The
system calculates the set of all elements affected by removing at least one element
from the seed input set. For the example in Fig. 1, removing element #2 requires
removing or altering element #4 that initiates a call to it in order to avoid compilation
errors. Thus, element #4 is related to the feature that involves execution of element
#2. Removing element #4 requires removing elements #7 and #8. The latter does
not trigger any additional removals.

Furthermore, the work suggests combining the proposed technique with existing
dynamic- and IR-based feature location approaches to achieve better accuracy. The
dynamic feature location can use the approaches proposed in [15, 42] or others.
These either produce a ranked set of methods, as in Eisenberg et al. [15] or an
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unsorted list of relevant elements, as in Wilde et al. [42]. In the latter case, an
element is assigned the score 1 if it is executed only by scenarios exercising the
feature of interest, or 0 otherwise. The IR-based feature location uses the approach
of Zhao et al. [44]: program elements are ranked with respect to feature descriptions
(extracted from requirements) using the vector space model. It calculates the cosine
of the distance between the corresponding vectors of terms, each of which first
weighted using the tf-idf metric.

For each software element, the resulting score is calculated by normalizing,
weighing and adding the similarity scores produced by the IR and the dynamic
techniques, as in Poshyvanyk et al. [27]. Then, similar to Zhao et al. [44], the
system applies a threshold to identify highly relevant elements. These are used as
input to the prune dependency analysis which produces the set of additional relevant
elements. The resulting set, ranked by the combination of scores produced by IR and
dynamic techniques, is returned to the user.

For our example in Fig. 1, elements #1 and #2 are ranked high by the vector
space model for the query “automatic save file.” Since element #1 is executed only
by scenarios that exercise the automatic save file feature, it is also ranked high by
a dynamic analysis-based technique. Prune dependency analysis uses these two as
the input seed set and adds elements #4, #7, and #8, so the result becomes f#1, #2,
#4, #7, #8g. Since the technique requires two sets of scenarios for each feature—
those that exercise it and those that do not, we assess the level of the necessary user
interaction for this technique as “C C C” (see Fig. 8).

Revelle et al. [29] propose improving the feature location accuracy by combining
Similar to Liu et al. [22], the proposed system obtains as input a single scenario that
exercises the feature of interest and a query that describes that feature. It runs the
scenario and constructs a call graph from the execution trace, which is a subgraph
of the static call graph and contains only the methods that were executed. Next,
the system assigns each method of the graph a score using one of the existing
web-mining algorithms—either HITS (see Sect. 2.4) or the PageRanked algorithm
developed by Brin and Page [5], which is also based on similar ideas of citation
analysis. The system then either filters out low-ranked methods (e.g., if the HITS
authority score was used, as in Saul et al. [35]) or high-ranked methods (e.g., if the
HITS hub score was used, as high-ranked methods represent common functions).
The remaining set of elements is scored using LSI (see Sect. 2.2) based on their
relevance to the input query describing the feature. The ranked list of these elements
is returned to the user.

For the example in Fig. 1, elements #1, #3, #5, and #6 are invoked when the
scenario exercising the automatic save file feature is executed. Assuming these
elements are scored using HITS authority values, filtering out low-scored methods
removes element #1 from the list of potentially relevant elements as its authority
score is 0, as shown in Sect. 2.4. The remaining elements, #3, #5 and #6, are scored
using LSI with respect to the query “automatic save file” (these scores are given in
Table 1) and are returned to the user.
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Similar to [22], since the user is only required to provide a single scenario for
each feature of interest and a natural language description of that feature, we assess
the level of the necessary user interaction for this technique as “C” in Fig. 8.

5 Which Technique to Prefer?

As the survey shows, there is large variety in existing approaches and implemen-
tation strategies for feature location. We believe that trying to identify a single
technique that is superior to the rest would be impractical. Clearly, there is no “silver
bullet,” and the performance of each technique largely depends on its applicability
to the analyzed input programs and the quality of the feature description (feature
intension) provided by the user. In this section, we discuss considerations and
provide explicit guidelines for practitioners who need to choose a particular feature
location technique to apply.

The chosen technique should first and foremost be suitable to the program being
analyzed: specifically, if the studied program contains no documentation and no
meaningful identifier names, IR-based feature location techniques will be unable
to achieve high-quality results. Similarly, if the implementation of a feature is
spread across several program modules or is hooked into numerous extension points
provided by the platform on which the program is built (e.g., invoking methods
via event queues), techniques based on program dependency analysis will either be
unable to find all elements that relate to the implementation of the feature or will find
too many unrelated elements. When program execution scenarios are unavailable or
it is cumbersome to produce scenarios that execute a specific set of features (e.g.,
because the feature of interest is not a functional feature that is “visible” at the user
level), dynamic feature location techniques will not be applicable. Figure 9 assesses
the surveyed feature location techniques based on the above selection criteria.

For our example in Figs. 1 and 2, program elements have meaningful names
(“file” vs. “f” or “property” vs. “prp”). Thus, it is reasonable to choose one of the
techniques that rely on that quality, as marked in the corresponding column of Fig. 9.
Since the implementation of the Freemind software is asynchronous and relies on
event queues to perform method invocation, techniques that analyze call graph
dependency might be less efficient. In addition, defining a scenario that triggers
the automatic save file feature might not be trivial—there is no user operation that
directly invokes the automatic save (as opposed to the manual save) functionality.
Therefore, techniques that do not require program execution are a better choice
which leads us to the approaches in Shepherd et al. [38], Marcus et al. [23, 24],
or Poshyvanyk et al. [26].

With respect to the quality of a feature intent provided by the user, IR-based
techniques are usually most sensitive to the quality of their input—the query that
describes the feature of interest. The results produced by these techniques are often
as good as the query that they use. Input query definition and the user assistance
during that process are further discussed by [4, 9] and others. Techniques based on
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Fig. 9 Criteria for selecting a feature location technique

comparing dynamic execution traces are also sensitive to the nature of their input—
if execution scenarios do not cover all aspects of the located feature, the accuracy of
the feature location will likely be low.

The approaches also differ in the required level of user interaction (see the last
column of Fig. 8). We assess the level of user interaction based on the effort that the
user has to invest in operating the technique. This includes the effort involved in
defining the input feature intension (e.g., a set of scenarios exercising the features
of interest), interactively following the location process (e.g., filtering intermediate
results produced by the technique) and interpreting the produced results (e.g.,
mapping retrieved variables to the code statements that use them).

Since more highly automated techniques are easier to execute, their “barrier to
entry”—the effort required to produce the initial approximation of the result—is
lower and thus their adoption is easier. On the other hand, the techniques that require
more user interaction are usually able to produce better results because they harvest
this “human intelligence” for the feature location process.

Furthermore, automated techniques could be a better choice for the users that
seek an “initial approximation” of the results and are able to complete them
manually since they are familiar with the analyzed code. On the other hand, users
that cannot rely on their understanding of the analyzed code should probably
choose a technique that is more effective at producing relevant results, even though
operating such a technique requires a more intensive investment of time and effort.
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6 Summary and Conclusions

In this chapter, we provided a detailed description of 24 feature location techniques
and discussed their properties. While all of the surveyed approaches share the
same goal—establishing traceability between a specific feature of interest that is
specified by the user and the artifacts that implement that feature, their underlying
design principles, their input, and the quality of the results which they produce
differ substantially. We discussed those in detail and identified criteria that can be
used when choosing a particular feature location technique in a practical setting.
We also illustrated the techniques on a common example in order to improve the
understandability of their underlying principles and implementation decisions.

Even though the area of feature location is mature, there is variety in existing
techniques, which is caused by the common desire to achieve high accuracy: auto-
matically find a high number of relevant elements (high recall) while maintaining a
low number of false-positive results (high precision). As discussed in Sect. 5, since
there is no optimal technique, each of the approaches proposes heuristics that are
applicable in a particular context, making the technique efficient in these settings.

Feature Location for SPLE. In the context of product line engineering, identi-
fying traceability between product line features and product artifacts that realize
those features is an essential step towards capturing, maintaining, and evolving well-
formed product line systems. Traceability reconstruction is also an important step
when identifying product line architectures in existing implementations.

Each of the existing feature location techniques can be used for detecting features
of products that belong to a product family. Feature location is done while treating
these products as singular independent entities. Yet, considering families of related
products can provide additional input to the feature location process and thus
improve the accuracy of the techniques by considering product line commonalities
and variations.

When considering a specific feature that exists only in some products of the
family, comparing the code of a product that contains the feature to the code of
the one that does not can partition the code into two parts: unique to the product and
shared. This partitioning can help detect relevant elements with higher accuracy
because it limits the results to the elements of the unique part where the feature
of interest is located. For example, it can be used to filter out irrelevant elements
(those that belong to the shared parts of the code) from the program execution trace
analyzed by Liu et al. [22].

The above partitioning can also improve scoring and traversal mechanisms
employed by existing feature location techniques when searching for these relevant
elements. For example, it can be used for augmenting the score calculation formula
used by Hill et al. [18] so that the score of elements belonging to the shared parts
of the code is decreased while the score of those in the unique parts is increased,
as shown in [34]. This affects the call graph traversal process and the ability of
the algorithm to reach the desired elements, while avoiding passes that lead to
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false-positive results. More complex partitioning, obtained by comparing multiple
products to each other, can provide even better solutions.

In addition, it might be interesting to develop methods for incremental analysis
of product lines, where the traceability links obtained for one variant may be carried
over to the next variant. This will prevent unnecessary re-analysis and leverage the
effort and human intelligence invested in one product for more efficient feature
location in others. We explore this and other directions in our ongoing work.
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Abstract The use of design patterns in the real-time (RT) domain could bring many
benefits. RT design patterns capture domain knowledge and design expertise. They
improve the quality of RT software. These patterns contain a set of common ele-
ments and a set of variable elements known as variation points. Yet one of the main
difficulties for representing RT design patterns is variability management. Thus,
many questions arise: how to express variations? How to ensure the consistency of
various views and avoid conflicts?

In order to express the variability in an RT design pattern and to reinforce its
comprehension, it is necessary to define a design language that aims to model RT
features and to distinguish the commonalities and differences between different
RT applications involving time-constrained data and time-constrained transactions.
Accordingly, we present in this chapter new UML extensions that take into account
the design of both RT-specific concepts and variability in patterns. The coherence
between the proposed extensions is then ensured by OCL (object constraint
language) constraints. Finally, the UML extensions are illustrated using an example
of a controller pattern.
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1 Introduction

Design patterns [1] are solutions to common problems in software design. Their use
can help software designers obtain software with enhanced quality. Design patterns
that are specific for a particular domain are called domain-specific patterns [2]. They
factorize parts of models, common to all systems in the same domain, and express
the differences through variable elements.

Real-time (RT) design patterns constitute an example of domain-specific patterns
that encapsulate the RT domain requirements. In fact, it is necessary to give
prominence to the modeling of RT applications which have to meet RT constraints,
i.e. they have to guarantee that each action (transaction) meets its deadline and
that data are used during their validity interval. We need to express RT design
patterns to reduce the complexity of RT application design and to provide a common
vocabulary for computer scientists across the RT domain.

In order to benefit from RT design pattern advantages, it is necessary to have an
expressive design language that establishes a relation between the different systems
needing similar facilities and that provides a good ground to build on in order to
create a design language for RT patterns. The design language should be complete
enough to deal with RT design pattern representation at the specification and the
instantiation levels.

At the specification level, the design language must (1) cope with pattern
variability, (2) ensure variation consistency in static and dynamic models, and
(3) take into account requirements and specificities of the RT domain itself. In fact,
RT domain has many details that must be taken into account by the design pattern
notation since it is crucial to reflect the current state of the controlled environment
and to meet constraints of RT data and RT transactions. For instance, in a freeway
traffic management application reusing design patterns, it is essential to distinguish
passive resources from RT active resources. Thus, the pattern design language
must specify RT features specific to this type of applications. It must, also, show
passive components (like vehicle speed, traffic volume, and segment occupancy)
which need to be set and controlled by active resources. The vehicle speed passive
component provides an RT service called updateSpeed. This operation carries the
concurrency kind (writer) and the execution kind (remoteImmediate) indicating that
the execution is performed immediately with the called active object (Controller).
Besides, the active controller resource creates dynamically schedulable resources to
handle the execution of its services needing to be achieved before a deadline. To
summarize a design language expressing RT patterns must express the specificities
of the RT domain, for example, it must provide extensions differentiating between
passive resources and RT active resources. It must, also, specify RT features such as
the concurrency kind, the relative deadline, and the acceptable deadline miss ratio.

At the instantiation level, the design language has to clearly identify the elements
belonging to each design pattern and to show the role played by each pattern element
in order to avoid ambiguity when composing patterns.
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This chapter proposes a new UML-profile, named UML-RTDP that extends
UML with concepts related to RT design patterns. It integrates, also, OCL con-
straints ensuring variation points consistency. The motivations behind the proposed
extensions are threefold. The first motivation is to have flexible patterns that
distinguish the fixed elements from variable elements in the pattern. The second
motivation is to facilitate the comprehension of design patterns. The third motivation
is to model RT applications constraints and their nonfunctional properties.

The remainder of this chapter is organized as follows. Section 2 overviews
and evaluates currently proposed design languages and their extensions. Section 3
presents our UML profile that models RT design patterns. Section 4 defines a set of
well-formedness rules written in OCL (object constraint language) [3], in order to
verify the RT design patterns correctness and consistency. Section 5 illustrates the
design language with an RT controller pattern and presents an example of a freeway
traffic management system reusing it. Section 6 describes the implementation of the
proposed profile. Section 7 concludes the chapter and outlines future work.

2 Overview of Current Work

This section provides an overview of current design languages for pattern represen-
tation. We define a set of criteria necessary for pattern notations and then we present
their advantages and limits. Second, we briefly present in Sect. 2.2 the RT profiles
and the UML extensions taking into account the real-time system requirements.

2.1 Overview of UML Extensions for Design Patterns
Representation

Design patterns are proposed in order to be reused. Therefore, their design must
be generic in order to be instantiated. Moreover, their design must show variations,
which will be adopted for a certain type of application and not adopted for others.
Thus, the expression of variability when representing patterns is very important. In
addition, patterns are proposed by pattern designers at the specification level and
they are reused by application designers at the instantiation level. This fact implies
that the expressivity of their design is essential. Finally, any pattern design consists
in a static and dynamic view and as a consequence the consistency and coherence
between these views is crucial to ensure a good comprehension of the pattern and
thus its correct reuse.

For all these reasons, two categories of criteria have to be taken into account to
evaluate the currently proposed languages for pattern representations: criteria for
the specification of design patterns and others for their instantiation.
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2.1.1 Criteria Definition for Design Pattern Representation

– Criteria for design pattern representation at the specification level
C1. Expressivity: Design patterns have mostly been described using natural
language, complex mathematical, or logic-based formalisms [4, 5] which are not
easily understood by an inexperienced designer. This leads to complications in
incorporating design patterns efficiently into the modeling of a new system. To
remediate to this difficulty, the solution is using an expressive visual notation
based on UML to specify patterns. In addition, it is essential to differentiate the
notations used for pattern representation at specification level from those used
for pattern instantiation in order to enhance the expressivity of design language.

This criterion highlights the usefulness of UML to improve the pattern
specification quality because UML allows ease in visualizing, defining, and
documenting the artifacts of the system under development.
C2. Variability: Variability in a model is the representation of items (e.g.,
classes, attributes, and associations) that can vary according to a specific context.
The design language has to express variability in order to guide the designer in
determining the variable elements that may differ when applying the patterns.
In fact, variability is classified into optional and alternative characteristics. So,
it is important to show the optional elements which can be omitted in a pattern
instance. It is also necessary to clarify the elements that can vary according to a
specific context.

This criterion implies that the design language has to show clearly the variable
items in a pattern, in order to help the designer in choosing the adapted variation
in a pattern instantiation and to reduce the probability of pattern misuse.
C3. Consistency: In accordance with the separation of concerns principle,
a design pattern is often described via several complementary views: class
diagrams, sequence diagrams, etc. Such views are dependent on each other. In
fact, when a pattern element becomes variable in one view, these variations may
have an impact on the other views. For example, a fundamental class in a class
diagram (i.e., a class representing the essence of the pattern and that must belong
to any application reusing the pattern) must have a corresponding fundamental
object in the sequence diagram. The correct specification of patterns depends on
respecting the rules inherent to the variability consistency management. These
rules are specified by constraints that are generally expressed in OCL.

In our case, the consistency criterion implies the definition of constraints
that maintain coherence between the structural view (class diagram) and the
behavioral view (sequence diagram).

– Criteria for design pattern representation at the instantiation level
C1. Traceability: The traceability criterion consists of ease in identifying design
patterns when they are applied and integrated with other patterns. In fact, we
not only need to identify each pattern in a design, but also we want to show
the methods and attributes that play important roles in the pattern. Explicit
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representation of the key methods and attributes can assist on the traceability
of a pattern since it allows us to trace back to the design pattern from a complex
design diagram [6].
C2. Composition: A design pattern may be composed or integrated with other
patterns to solve multiple design problems in a software application. Thus, when
several patterns are combined in a design, the pattern design language must
clearly distinguish among the elements belonging to each design pattern. This is
particularly important, when there are overlapping parts between the composed
patterns.

Note that the development of applications using design patterns requires
a careful look at composition techniques, which are categorized as: behav-
ioral composition techniques and structural composition techniques. Indeed,
the behavioral techniques show how dynamic specifications of patterns can
be composed using sequence diagram, whereas structural techniques show how
the static architectural specifications of instantiated patterns can be composed
using a class diagram [7].

2.1.2 Comparison of UML Notations

There are several UML notations that proposed extensions to present general design
patterns and domain models. Many of them can be used to express concepts relative
to domain-specific design patterns such as their flexibility. In the following, we
present a comparison of the most recent notations, using the specification and
instantiation criteria.

The UML profile proposed by Dong et al. [8] focuses more on the pattern
applicability context than on the pattern specification. It proposes new stereotypes
and tagged values for the explicit representation of design patterns in software
designs. These extensions display the pattern name, the role names of the classes, the
attributes and the operations in the pattern and show how many instances of a design
pattern are composed. That is, when two or more classes represent the overlapping
part of the composition, the proposed notation shows the roles that these classes play
in each pattern. However, the proposed profile does not deal with the behavioral
view: it does not provide support on how to keep track of the interactions when a
pattern is instantiated. In addition, it does not express the variability of patterns and
does not specify the constraints delimiting the pattern applicability.

Figure 1 shows an example instantiating the composite design pattern [1]
represented with the profile of Dong et al. [8]. The roles that the classes and
operations play in the pattern are described, respectively, with <<patternClass>>

and <<patternOperation>> stereotypes. Thus, this profile satisfies the traceability
and composition criteria but it fails to satisfy the criteria necessary to the pattern
specification level.
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Fig. 1 Example showing the instantiation of a composite design pattern [8]

Unlike the previous work, P-UML profile [6] proposes extensions showing
the pattern variation points only in a class diagram and guiding the designer in
instantiating a pattern. It defines two tagged values to express pattern variability:

– fvariableg Tagged value indicates that the method implementation varies accord-
ing to the pattern instantiation.

– fextensibleg Tagged value indicates that the class interface may be extended by
adding new attributes and/or methods.

The P-UML profile indicates also that new classes may be added during the pat-
tern instantiation through the fincompleteg constraint applied on the generalization
relationship. It provides support for traceability of pattern instantiation by using an
ellipse in the bottom of a class that indicates the pattern name and the role through
which this class participates in the pattern. However, the class diagram may seem to
be overloaded since the proposed notation presents an association between ellipses
to join the elements of the same pattern. To summarize, the P-UML profile does not
distinguish between the extensions used in a pattern instantiation from those used
in a pattern specification, this reduces the expressivity of the profile. In addition, the
variability criterion is partially expressed since P-UML does not propose extensions
to differentiate between the optional elements and the fundamental elements in a
pattern. Finally, the consistency criterion is not verified since this profile focuses
only on a structural view and does not define constraints to manage the impact of
variable elements in a behavioral view.

Figure 2 represents a combination of the composite and the observer patterns as
proposed by P-UML. As shown in this example, the class Figure is the overlapping
element between the composed patterns. It plays the role of a subject in the Observer
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{notify } Observer : Subject 
Composite : Component 

{composite operation} 
{Add(component)}

Observer : observer 

Observer : 
concreteSubject 

Observer : concreteObserver 

Composite : Composite 

Composite : leaf 

{attach (observer)} 
{detach(observer)}

{update } 

{update } 

{GetState ()} 
{SetState()}

{composite operation} {composite operation} 
{Add(component)}

Fig. 2 Example of combination of composite and observer patterns [6]

pattern and it plays the role of a component in the Composite pattern. Thus, the
traceability and composition criteria are verified by the P-UML profile.

Unlike all previous notations, the profile proposed by Arnaud et al. [9] focuses
on the variability expression in the functional, dynamic, and static views. The use
case diagram is the input model for the instantiation process, where the application
designer selects functionality variants. However, the use case diagram is too abstract
and cannot allow the designer to identify, for example, the optional attributes or
methods according to its needs. Therefore, this profile partially fulfills the variability
criterion, while it fails in covering the traceability and composition criteria. It
does not permit the visualization and preservation of pattern-related information
in a design model created through patterns instantiation. It also does not present
mechanisms to compose either static or dynamic specifications of patterns. Besides,
this profile is not very expressive since it proposes representation of the static view
of a pattern with very elementary separated packages. Each package refers to a
functionality variant.

While it is necessary to describe how the different roles of a pattern interact, the
above presented notations lack a way to capture the behavioral information of design
patterns. In order to fill these gaps, Loo and Lee [10] proposed an extension of the
UML sequence diagram to allow designers to define and visualize the pattern roles
and the different types of interaction groups for a design pattern. The authors pro-
posed four stereotypes which are named <<PatternRole>>, <<PatternEngage>>,
<<PatternDisengage>>, and <<PatternInteractionFragment>>. The first one is
used to define the pattern role of a Message and Lifeline in a particular design
pattern via the tag definition role. The three other stereotypes are used to specify,
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Table 1 UML profiles comparison
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only the
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structural
view is
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only the
composition
of patterns
structural
view is

considered

only the
composition

of
patterns

behavioral
view is
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respectively, that a new pattern role is added to a particular design pattern, a pattern
role is removed from a particular design pattern, or a pattern role exists in a
particular design pattern. Nevertheless, the proposed profile does not distinguish
between the extensions used in pattern instantiation from those used in pattern
specification, which reduces the expressivity of notations. Moreover, the variability
is partially expressed within this profile since it does not propose extensions to
represent variation points in the static view.

Similar to the proposed notations for design pattern representation, Reinhartz-
Berger et al. [11] have proposed an Application-based DOmain Modeling approach
(ADOM-UML) which provides new stereotypes to denote the multiplicity vari-
ability of the different domain model elements. The multiplicity stereotypes aim
to represent how many times a model element can appear in a specific context.
Particularly, the authors define four stereotypes: <<optional single>>, <<optional
many>>, <<mandatory single>>, and <<mandatory many>>. Each stereotype
has two associated tagged values, min and max, which define the lowest and the
uppermost multiplicity boundaries. These stereotypes can be used for expressing
variability in domain-specific design patterns.

Table 1 evaluates the different UML profiles with regard to the design pattern
specification and instantiation criteria.

The comparison study recapitulated in Table 1 shows that none of the proposed
UML profiles satisfies all the specification and instantiation criteria. Moreover,
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none of them proposes OCL rules to ensure variation point consistency. Therefore,
the validity of pattern models cannot be verified. The ADOM-UML approach is the
only one that enables the designer to verify that the domain constraints are satisfied
to validate the application model. However, it does not define constraints to deal
with the dependence of variable elements in a domain model.

Besides, the studied works mainly focus on the pattern structure modeling and
have limits in expressing variability and in representing pattern participant roles,
essentially in the behavioral view. Note that the unique profile interested in behavior
was proposed by Loo et al. [10]. It defines stereotypes to retrieve pattern behavioral
information and to represent pattern variants as interaction alternatives. In addition,
the studied profiles are not suitable for the RT design patterns representation since
they do not provide extensions to fulfill the RT applications requirements, such
as those necessary for the freeway traffic management example.

In summary, we consider that the definition of a UML profile focusing on RT
design patterns representation and taking into account the, already, presented criteria
as well as the specificities of the RT domain is necessary. This profile will allow us
to have expressive, understandable, and consistent patterns.

2.2 Overview of UML Extensions for RT Applications

Several works have proposed UML extensions to take into account the real-time
system requirements such as RT-UML [12] and ACCORD/UML [13]. The basic
concepts of RT-UML were integrated in the UML standard through the UML profile
for Schedulability, Performance, and Time (denoted SPT profile) [14]. Recently,
MARTE profile [15] for Modeling and Analysis of Real-Time Embedded systems
has been standardized by the OMG. It is intended to replace the existing UML
Profile for SPT profile. MARTE defines extensions that provide high-level modeling
concepts to deal with RT and embedded features modeling as well as specific
modeling artifacts to be able to support both software and hardware execution.

Another work proposed the UML-RTDB profile [16] to express real-time
database features in a structural model. Unlike the previous profiles, it supplies
concepts for real-time database modeling such as RT attributes, RT methods, and RT
classes. In addition, UML-RTDB specifies two kinds of real-time attributes, sensor
attributes and derived attributes, in order to satisfy the requirements of current real-
time applications. But some proposed stereotypes overlap with the UML extensions
presented by MARTE profile especially those relative to the RT methods. In fact, the
UML-RTDB stereotypes <<Periodic>>, <<Sporadic>>, and <<Aperiodic>>

that express, respectively, periodic, sporadic, and aperiodic methods in the class
diagrams, have the same meaning as the tagged value Occurrence Kind of the
<<rtFeature>> stereotype defined in MARTE. Therefore, we adapt some MARTE
stereotypes modeling RT aspects instead of the other UML extensions proposed for
the modeling of RT applications since MARTE is a standardized profile.
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Nevertheless, the use of UML extensions proposed for modeling RT application
characteristics remains insufficient to model RT design patterns. That is, RT patterns
must be generic designs intended to be specialized and reused by any application in
the RT domain. For this reason, in addition to the UML extensions representing RT
aspects, we need new notations distinguishing the commonalities and differences
between applications in the pattern domain. Moreover, we need new concepts for the
explicit representation of the pattern elements’ roles for the purpose of traceability.

In the next section, we describe the extensions that we propose to take into
account these new concepts.

3 UML Profile for RT Design Patterns

A design language specific for the representation of RT patterns has to support not
only the flexibility characteristic of patterns but also the specificities of the RT
domain itself. However, the UML standard only deals with the design of specific
applications and it does take into account the modeling of RT application features
in general and variations in particular. Therefore, different extensions to the original
language have been proposed as presented in the previous section.

In this section, we propose a new notation for patterns, which is an extension
of the “UML 2.1.2” [17]. The extensions put emphasis on the variability in a
pattern. In addition, they outline the roles played by each pattern element in
the application instantiating it and therefore allow the visual distinction between
patterns. Moreover, the extensions allow the easy specification of RT applications
constraints and their nonfunctional properties.

3.1 UML Extensions for Modeling RT Design Patterns

This subsection summarizes stereotypes showing the optional and fundamental
elements participating in a pattern and assisting the designer in pattern reuse. We
describe below the purpose of each stereotype:

• <<optional>> stereotype: It is inspired from <<optional single>> and
<<optional many>> stereotypes defined in [11]. In fact, the variety of
applications within the RT domain is quite large. For this reason, we cannot
specify exactly how many times a pattern element can appear in a specific RT
application. Thus, we use <<optional>> stereotype to represent the optional
features (i.e., attribute or method) that can be omitted in a pattern instance.

Each method or attribute which is not stereotyped <<optional>> in a
fundamental classifier (i.e., class, interface, etc.) means that it is an essential
element that plays an important role in the pattern.
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• <<mandatory>> stereotype: It is inspired from <<mandatory single>> and
<<mandatory many>> defined in [11]. We propose the <<mandatory>>

stereotype to specify a fundamental element (class, association, aggregation,
etc.) that must be instantiated at least once by the designer when he models
a specific application. Besides, each pattern element which is not stereotyped
<<mandatory>> means that it is an optional one, except the generalization
relation that permits representation of alternative elements. All the attributes and
methods of an optional class are implicitly optional.

In the sequence diagram, the <<mandatory>> stereotype is applied to the
Lifeline metaclass. It is used to model a fundamental object which is an instance
of a classifier stereotyped <<mandatory>> in the class diagram.

• <<extensible>> stereotype: It is inspired by fextensibleg tagged value proposed
in [6]. It indicates that the class interface may be extended by adding new
attributes and/or methods. Moreover, two properties related to the extensible
stereotype are proposed, in order to specify the type of features (attribute or
method) that may be added by the designer.

– extensibleAttribute tag: It takes the value false to indicate that the designer
cannot add new attributes when he instantiates the pattern. Otherwise, this tag
takes the value true.

– extensibleMethod tag: It indicates if the designer may add new methods when
he instantiates the pattern. The default value is true.

• <<variable>> stereotype: It has the same meaning with the fvariableg tagged
value proposed in [6]. It indicates that the method implementation varies
according to the pattern instantiation.

3.2 UML Extensions for Instantiating RT Design Patterns

Some of the existing notations (Dong & Yang UML profile [8] and P-UML profile
[6]) provide support on how to keep track of the pattern when instantiated. These
notations focus on the composition of generic design patterns (like GoF patterns
[1]) which are intended to be instantiated in many contexts. Each instantiation may
change the names of pattern classes, operations, and attributes according to the
application domain. Therefore, it is difficult to recognize the pattern instance when it
is composed with others in a particular design. For this type of pattern, it is essential
to show the pattern name and the role played by each element (class, attribute and
method) in the instantiation.

However, a domain-specific pattern is instantiated in the scope of a domain.
Therefore, it is easy to track the use of the pattern even after it is applied or
composed with other patterns. We assume that omitting both the name and the role
of pattern attributes and operations will not create any ambiguity. For this reason, we
propose to present only the pattern name and the role names of the classes in order to
avoid overloaded models. In fact, pattern-related information should be minimized
in the class and sequence diagrams for readability [8].
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We propose definition of three stereotypes for the explicit visualization of
patterns in an application class diagram and sequence diagram:

• <<patternClass>> stereotype: It is applied to the Class UML metaclass in order
to indicate that it is an instantiated pattern class and not originally defined by the
designer. We propose definition of two properties related to this stereotype:

– patternName tag : indicates the pattern name.
– participantRole tag : indicates the role played by the class in a pattern instance.

• <<patternLifeline>> stereotype: It is applied to the Lifeline metaclass in order
to distinguish between the objects instantiated from the pattern sequence diagram
and those defined by the designer. This stereotype has the same properties as
<<patternClass>> stereotype.

• <<patternInteraction>> stereotype: It is used to denote an interaction
instantiated from the pattern sequence diagram. It has the same properties as
<<patternClass>> stereotype.

These stereotypes allow elimination of any confusion when patterns are com-
posed. That is, when two or more classes represent the overlapping part of the
composition, the <<patternClass>> stereotype shows the roles that these classes
play in each pattern.

3.3 UML Extensions for Modeling RT Aspects

In addition to the above described stereotypes distinguishing the fixed parts from
the optional and variable parts in the pattern, the specification of RT design
patterns needs UML extensions supporting the modeling of RT aspects. Thus,
we import stereotypes from HLAM (high level application modeling) and NFP
(nonfunctional properties) sub-profiles of MARTE [15]. Note that MARTE provides
support required from specification to detailed design of RT embedded systems
characteristics. However, only the extensions describing RT application features at a
high level of abstraction are taken into account since RT patterns can be instantiated
to model many RT applications and not only the embedded systems. From HLAM
sub-profile, we import stereotypes modeling quantitative features, such as deadline
and period, as well as qualitative features related to behavior, communication, and
concurrency:

• <<rtFeature>> (real-time feature) stereotype: It allows modeling temporal
features. This stereotype extends the metaclasses: message, action, signal, and
behavioral features. It possesses nine tagged values among which are: utility
(i.e., specification of importance features), relD1 (i.e., specification of a relative
deadline), tRef (i.e., time reference used for relative timing properties), absD1
(i.e., specification of an absolute deadline), Miss (i.e., percentage of acceptance
for missing the deadline), occKind (i.e., specification of the type of event:
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periodic, aperiodic, or sporadic), priority (i.e., specification of priority), boundDl
(i.e., relative deadline) and rdTime (i.e., minimal ready time).

• <<ppUnit>> (protected passive Unit) stereotype: It is used to model the shared
data requiring the specification of concurrency policy. Protected passive units
specify their concurrency policy either globally for all their provided services
through their concPolicy attribute, or locally through the concPolicy attribute of
<<RtService>> stereotype.

• <<rtUnit>> (real-time Unit) stereotype: It models a real-time unit that may be
seen as an autonomous execution resource, able to handle different messages at
the same time. A real-time unit can manage concurrency and real-time constraints
attached to incoming messages.

• <<rtService>> (real-time service) stereotype: It is used to specify the services
concurrency policy (reader, writer, or parallel) provided by real-time units and
protected passive units. Besides, the exeKind attribute of the <<rtService>>

stereotype specifies how to handle the execution of these services. The exeKind
attribute may have the value deferred (i.e., the message is saved in a queue of
the unit), local immediate (i.e., the execution is done in the context of the unit
receiving the message), or remote immediate (i.e., the execution is done in the
context of the calling unit).

From the NFP Modeling sub-profile of MARTE, we import two stereotypes:
<<Nfp>> and <<NfpType>>. The first one extends the Property metaclass.
It shows the attributes that are used to satisfy nonfunctional requirements. The
second stereotype extends the DataType metaclass. There is a set of pre-declared
NFP Types which are useful for specifying NFP values, such as NFP Duration,
NFP DataSize, and NFP DataTxRate.

Figure 3 represents the meta-model of UML-RTDP profile. It shows the proposed
stereotypes and their base classes. It shows also the relations between the UML
meta-classes in order to facilitate the understanding of OCL rules. These rules
represent a powerful mechanism for constraining dependencies between pattern
variable elements. They are explained in the next section.

4 Definition of OCL Constraints

The introduction of variability using new stereotypes improves genericity but can
generate some inconsistencies (e.g., if a mandatory subclass specializes an optional
super class, the resulting model is incoherent). Thus, in order to ensure RT design
patterns consistency, we propose delimiting the impact of variable elements through
the definition of OCL constraints. These latter can be applied to structural and
behavioral views of design patterns.

C1: For each optional operation belonging to a pattern class, there must be a
corresponding event enclosed in a combined fragment having the “opt” interaction
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operator. The call of an operation in a sequence diagram is defined by two events: an
event generated when invoking an operation and an event generated when receiving
an operation.

Note that the method isStereotyped(S) used in the following rules is an auxiliary
operation indicating if an element is stereotyped by a string S. It is formalized in
[18] using OCL as follows:

Context Construct::Class::isStereotyped(s: string):Boolean
isStereotyped D self. extensions ->

exists(E jE. ownedEnd. type. name Ds)

Context operation inv: 
self. isStereotyped (‘optional’) or 
self. Class. isStereotyped (‘optional’) 

implies 

self. sendOperationEvent –> 
forall (e | e. occurrenceSpecification –> 
forall ( I | I.enclosingOperand.combinedFragment. 
InteractionOperator = InteractionOperatorKind::opt))

and 

self. receiveOperationEvent –> 
forall (e | e. occurrenceSpecification –> 
forall ( I | I.enclosingOperand.combinedFragment.
InteractionOperator = InteractionOperatorKind::opt))

Figure 4 shows an example of an optional operation in the Controller class. This
operation must be enclosed in a combined fragment having the “opt” interaction
operator in the sequence diagram.
C2: Each association, which is related to an optional class, must be stereotyped
<<optional>>.

Context class inv: 
self. isStereotyped (‘optional’) 

implies 

self. ownedAttribute –> forall(a | a.owingAssociation. 
isStereotyped ('optional')) 

C3: Each class, which inherits the feature of an optional super class, must be
stereotyped <<optional>>.

Context redefinableElement inv: 
self. isStereotyped (‘optional’) 

implies 

self. redefinedElement. isStereotyped ('optional') 
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implies 

Fig. 4 Example of an
optional operation

implies 
Fig. 5 Example of an
optional class

implies 

verifyValue() 

Fig. 6 Example of a
mandatory class

In Fig. 5, we present an example of an optional superclass Sensor. In this case,
the MobileSensor class must be stereotyped <<optional>> since it specializes the
Sensor class.
C4: Each class, which implements an optional interface, must be stereotyped
<<optional>>.

Context namedElement inv: 
Let realizationLink set (realization) = 
self. clientDependency –> 
select (c | c. oclIsKindOf (realization) 

in 

realizationLink. supplier –> 
forall (I | I. isStereotyped (‘optional’) 

implies 

self. isStereotyped ('optional') 

C5: Each class, which is stereotyped <<mandatory>>, must have a corresponding
object in a sequence diagram stereotyped <<mandatory>>.
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Context interactionFragment inv: 
self. oclIsKindOf (occurrenceSpecification) and 
self. event. oclIsKindOf (callEvent) and 
self.event.operation.class.isStereotyped (‘mandatory’)

implies 

self. lifeline. isStereotyped ('mandatory') 

To illustrate the C5 constraint, let us consider the example shown in Fig. 6
where the controller is a mandatory class, and as a consequence, it must have a
corresponding object stereotyped <<mandatory>> in the sequence diagram.

5 A Real-Time Design Pattern Example

In this section, we illustrate the UML-RTDP extensions through an example of a
reusable RT design pattern which is the controller pattern. This pattern aims to
model both the control of data acquired from the environment and the initialization
of corrective action(s) in case of constraint violation. The creation of the controller
pattern is based on the application of RT design pattern development process. This
process allows the generation of RT patterns from a set of concrete application
designs. It defines unification rules that apply a set of comparison criteria on various
applications in the RT domain. In addition, domain requirements and constraints are
extracted and then confronted to the generated patterns, in order to validate them.

5.1 RT Controller Pattern Specification

RT applications perform several RT processes among which are: the RT data
acquisition and the data control processes. We mainly focus in this chapter on
modeling the static as well as the dynamic view of the RT data control process
through the definition of the controller pattern.

– Interface:
Name: controller pattern
Context: This pattern is applicable in all RT applications which need to be
managed by real-time database (RTDB) systems. In fact, not only an RTDB has
all the requirements of traditional databases, but it also requires management of
time-constrained data and time-constrained transactions [20].
Intention: The pattern aims to model the control of the data acquired from the
environment and the initialization of corrective action(s) if a violation is found.

– Solution:
Static specification: Figure 7 presents the controller pattern structural view.
This pattern has three participants: the observed element, the controller, and the
operator.
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Fig. 7 RT controller pattern structural view

Participants
• Observed element: This class represents the description of a physical element

that is supervised by the controller. It can be an aircraft, a car, a road segment,
and so on. One or more measure types (i.e., temperature, pressure, etc.) of
each observed element could determinate its evolution. The ObservedElement
class has the ElmentID and Status fundamental attributes. In addition, it has the
SetStatus () method allowing the updating of the status of an observed element
according to the variation of the captured values.

• Controller: The controller has to monitor physical elements for responding
to conditions that might violate safety. It is the main class which coordi-
nates the other classes. It represents an active entity that has the capacity to
handle simultaneously different messages for the check of the system state.
Consequently, the controller class is stereotyped <<rtUnit>>.

There are two ways to update the state of observed elements: pull mechanism
and push mechanism. In the pull mechanism, the controller takes periodically
the values captured for each observed element. Then, it updates each measure’s
value and checks if it is between the minimum value and the maximum value that
define the interval for which the controller does not detect an anomaly. If a captured
value does not satisfy the boundary constraint, then the controller initiates some
corrective actions, such as a reset and a shutdown, or sends an alarm to notify an
operator.

In the push mechanism, the controller receives periodically a signal to be notified
about the data that must be updated for each observed element. In this case, the
controller is waiting for a signal. If this signal does not arrive on time, then the
controller performs appropriate recovery actions [21].

As illustrated in Fig. 7, the controller class has four methods. The only fundamen-
tal method is VerifyValue() since it is essential to check that the boundary constraints
are fulfilled for all RT applications. This method is performed periodically. In
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Fig. 8 RT controller pattern behavioral view

addition, it must be achieved before a deadline. Thus, the VerifyValue() method is
stereotyped <<rtFeature>>. The periodicity, the relative deadline and the absolute
deadlines of this method are defined, respectively, through period, relDl and absDl
attributes of the <<rtFeature>> stereotype. Similarly, the CalculateDerivedValue()
method is stereotyped <<rtFeature>> since it is sporadic and has to meet the
deadline defined by the designer. It is represented as an optional method since it
can be omitted when the designed application does not have derived measures (i.e.,
calculated from measure’s value captured by sensors). The methods notify() and
initiateCorrection() are optional since the choice of the appropriate recovery action
depends on the application instantiating the pattern.

Besides, the <<rtService>> stereotype is applied to all the methods of the
controller class because the concurrency policy must be specified for each method
having timing constraint and belonging to an RT unit.

• Operator: The operators supervise the alarm signals sent by the controller. They
provide decisions to validate reported incidents in case the controller only reports
errors and does not have the responsibility of initiating corrective actions; or in
case the confirmation of an operator is needed to achieve the correction.
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Dynamic specification: Figure 8 presents the controller pattern behavioral view.
It describes the interactions between objects to update each measure’s value and to
verify that each measured value is in the closed range [Minimum-Value, Maximum-
value]. If this constraint is violated or the update measure signal received by the
controller occurs too late, then the controller notifies the operator or initiates the
appropriate recovery actions.

The controller pattern behavioral view is composed into a set of combined
fragments using interaction operators. We use three fundamental operators: loop,
par, and opt. The loop operator specifies an iteration of interactions. The par
operator designates that the combined fragment represents a set of parallel
interactions that are performed simultaneously. Finally, the opt operator designates
that the combined fragment represents an optional behavior that can be either
performed or not performed. Note that the optional combined fragments shown in
Fig. 8 represent interactions that are relative to the optional methods of controller
pattern class diagram.

5.2 RT Controller Pattern Instantiation

As shown previously, an RT design pattern contains a set of variation points.
Therefore, to derive a specific RT application model through pattern instantiation,
some choices associated with these variation points are needed. The refinement of
a pattern model and the choice of the appropriate optional elements constitute the
first step of pattern instantiation. The second step is based on model transformation.
It automatically generates the application model deploying the instantiated pattern.

In this section, we illustrate the instantiation of the RT controller pattern to
design the COMPASS system [22], which represents an example of a freeway traffic
management system. We focus precisely on modeling the compass control data
subsystem and we explain how this design issue can be facilitated by the reuse of
the RT controller pattern.

First, the fundamental elements of the pattern are instantiated. Thus, the Con-
troller and Observed element classes are instantiated, respectively, by TrafficCon-
troller, Vehicle, and RoadSegment classes (cf. Fig. 9). The vehicles and road
segments represent the physical elements that are supervised by the controller.

Then, the controller pattern optional elements are instantiated. Figure 9 shows
that the Operator optional class is instantiated since it is essential to notify the
operators of any detected events in the COMPASS system.

Finally, the specific elements relative to the freeway traffic management appli-
cation are added: the Incident class and the attributes startPointLocation and
endPointLocation of RoadSegment Class.

The instantiation of the RT controller pattern behavioral view is represented
in Fig. 10. The figure shows that the optional combined fragment relative to the
initiation of corrective actions is omitted since the method initiateCorrection() is
not instantiated in the corresponding application class diagram.
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Fig. 9 Instantiation of a controller pattern (structural view)

6 Tool Support for UML-RTDP Profile

We have developed a toolset supporting our UML-RTDP profile using the Papyrus
plug-in [23] of Eclipse platform [24]. In fact, Papyrus provides extensive support for
UML profiles. It includes all the facilities for defining and applying UML profiles
in a very rich and efficient manner. It allows also OCL constraint specification and
checking.

When designing our profile, we have customized the UML2 class and sequence
diagrams by adding the relevant stereotypes defined in the UML-RTDP profile. We
have specified OCL constraints for UML element at the profile meta-model level
in order to verify variation points coherence. These constraints are checked against
pattern models.

Then, we have imported the Papyrus plug-in that implements the OMG spec-
ification of MARTE profile in order to use the appropriate stereotypes modeling
quantitative and qualitative features of RT systems.

Finally, we have embedded the UML-RTDP profile within an Eclipse plug-in in
order to simplify the manipulation of the stereotypes and their related properties and
to ensure better compatibility and extensibility.
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Fig. 10 Instantiation of a controller pattern (behavioral view)

7 Conclusion

RT applications design is a delicate task since these applications must take into
consideration RT constraints and also since it is an evolving domain. Thus, it
is necessary to benefit from developers’ previous experiences and to profit from
existing reuse techniques such as patterns.

In this chapter, we have proposed UML-based extensions for RT design patterns
representation. These extensions concern UML class diagrams and UML sequence
diagrams. They help the designer determine the variable elements that may differ
from one application to another and allow identifying, easily, design patterns when
they are applied to model a particular RT application. We have, also, proposed some
OCL constraints that may be seen as well-formedness rules for modeling RT design
patterns.

Besides, this chapter proposed guiding the designer in modeling features specific
to the RT domain through the use of stereotypes imported from MARTE profile.
Moreover, it illustrated the proposed notation through the specification of an RT
controller pattern and its instantiation to design a freeway traffic management
system.

In our future efforts, we will improve the UML-RTDP profile with the definition
of other constraints. We will also focalize on the implementation of RT design
patterns instantiation. For this purpose, we have defined a set of transformation
rules in order to add more assistance when generating application models by
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reusing patterns. This could bring new benefits and impetus for both the knowledge
capturing techniques and the software development process quality.
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When Aspect-Orientation Meets Software
Product Line Engineering

Iris Reinhartz-Berger

Abstract Aspect-oriented software development (AOSD) and software product
line engineering (SPLE) are two approaches for software reuse, which promote
model-driven development and variability management. While AOSD supports
developing crosscutting concerns separately from traditional units and weaving
them to different software products, software product line engineering (SPLE)
handles the development and maintenance of families of software products utilizing
different domain and application engineering techniques. In this chapter, we review
the existing points of synergy between these two approaches and, in particular, the
complementary and aggregative use of these approaches. Furthermore, we present
a method that uses aspect-oriented principles for horizontal reuse and domain
engineering guidelines for vertical reuse. We term this kind of use dimensional
synergy. The presented method supports defining families of aspects and their
weaving rules applied to families of software products, potentially increasing the
reuse throughout the entire development life cycle. We exemplify the method on a
Check-In check-Out product line and a family of security aspects, utilizing UML 2
class and sequence diagrams.

Keywords Aspect-orientation • Domain analysis • Domain engineering • Early
aspects • Software product line engineering • UML • Variability

1 Introduction

The significant increase in systems complexity and variety in the last decades
caused software engineering to develop different reuse approaches [17]. Some of
these approaches support division and decomposition of complex problems into
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smaller ones that may be solved one at a time with relatively simple means. They
further suggest how to gather and integrate these solutions into holistic ones that
solve the complex problems at hand. Aspect-oriented software development (AOSD)
[16, 31] is an example of an approach in this category. It aims to provide a way
of modularization according to which crosscutting concerns are separated from
traditional units during the entire software development life cycle. AOSD treats
these crosscutting concerns as aspects that can be woven into software systems
in order to fulfill the requirements at hand. AOSD originated in programming and
implementation [16, 52] and has been percolated to early development phases, i.e.,
requirements analysis, architecture design, and detailed design stages [9, 15]. In
early development stages, aspects cannot be localized and tend to be scattered over
multiple early life cycle modules. If early aspects are not effectively modularized, it
is not possible to reason about their effect on the system or on each other. Thus,
different methods that deal with aspects during the analysis and design phases
have been proposed (e.g., [23, 28, 34, 53, 59]). Nevertheless, despite a stable
notion of aspects at the programming level, aspects and their representation in early
development stages have not been consolidated yet and a standard has not emerged.

Other reuse approaches generalize possible solutions and enable their usage in
different contexts. An example of an approach in this category is software product
line engineering (SPLE) [13, 42]. SPLE handles the development and maintenance
of families of software products. For these purposes, core assets, also known as
domain artifacts, are defined as parts that are built to be used by more than one
product in the family, while product artifacts, or application artifacts, are specific
parts of the software products. Accordingly, SPLE activities are divided into domain
and application engineering: domain engineering supports the development and
maintenance of software product line artifacts, i.e., core assets, whereas application
engineering mainly deals with the adaptation and customization of core assets
in order to develop particular applications and software products. In order to be
reusable and suitable to a wide variety of products, the development of core assets
has to be based on commonality and variability analysis [6, 50, 56]: commonality
refers to the kernel of the software product line that is reused by all the members
of the family, and variability is the ability of a core asset to be efficiently extended,
changed, customized, or configured for use in a particular software product. The
main corpus of SPLE methods utilizes feature-oriented or UML-based notations
for specifying common and variable aspects [8]. Feature-orientation supports the
specification of core assets as sets of characteristics relevant to some stakeholders
and the relationships and dependencies among them [29]; UML-based methods
commonly suggest profiles for handling core assets specification and especially
variability-related issues [25].

Being both model-driven and tackling similar problems, points of synergy
between AOSD and SPLE have recently been explored. In particular, two main types
of synergy can be identified: (1) the two approaches are complementary—SPLE, and
especially feature-oriented methods, are used in early development stages, while
AOSD principles are utilized for designing architectures and for implementation
purposes, e.g., [4, 20, 36, 37]; (2) the two approaches are aggregative—AOSD
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principles are used for supporting different SPLE activities, such as requirements
engineering [38] and variability representations [39, 55]. Additional types of
relationships between the two approaches also exist in the literature, but these types
usually refer to AOSD and SPLE as two approaches that are meant to be utilized
for different purposes. Barth et al. [7], for example, claim that the two approaches
contribute to generative software development, but SPLE is the key to achieve
systematic software reuse, while AOSD provides “better separation of concerns and
composition mechanisms.”

In this chapter, we concentrate on complementary and aggregative combination
of AOSD and SPLE and review studies in these categories. We further introduce the
notion of dimensional synergy, according to which SPLE is used for vertical reuse
(from core assets to product artifacts) and AOSD is utilized for horizontal reuse
(namely introducing crosscutting concerns to core assets or product artifacts). This
chapter also presents a method that follows the dimensional synergy principles. This
method extends a domain engineering approach, called Application-based DOmain
Modeling (ADOM) [44, 45, 51], with the aim of representing domain aspects and
their weaving rules applied to software product lines. ADOM is used as a framework
for defining aspect, base, and woven models at different abstraction levels, i.e.,
product (or application) and product line (or domain) levels.

The remainder of this chapter is organized as follows. Section 2 reviews AOSD
and SPLE fields, as well as their existing types of synergy. Section 3 introduces the
principles of dimensional synergy, while Sect. 4 elaborates on the ADOM-based
method. For demonstrating the method, UML 2 class and sequence diagrams are
utilized on a Check-In Check-Out (CICO) product line and a family of security
aspects. Finally, Sect. 5 summarizes, discussing the expressiveness of the method
and its potential to increase reuse, and refers to future research directions.

2 Literature Review

2.1 Aspect-Oriented Software Development (AOSD)

As noted, much work has been done for percolating aspect-oriented programming
(AOP) notions to early development phases. These studies are mainly model-driven
and offer ways to specify and represent aspects and to guide their weaving into
particular systems or software products. Most studies utilize UML or its extensions
for these purposes and distinguish between base models and aspect models. Base
models represent software systems or applications and are the target of the weaving
process, while aspect models specify crosscutting concerns and are the objects on
which the weaving process is performed. Table 1 summarizes the characteristics
of different AOSD modeling methods, focusing on their specification means and
weaving capabilities (i.e., the weaving process and conditions). As can be seen,
most of the listed methods deal with aspects at a specific abstraction level, partially
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Table 1 A comparison of the reviewed aspect-oriented methods

Method name Declared goals
Specification
means Weaving process

Weaving
conditions

Theme/UML
[10]

Providing visual
representa-
tion to
Theme/Doc
outcomes

Template
arguments
and merging,
override and
binding
mechanisms

Weaving is done
through
merge and
override
relations
within the
aspect model

Katara and
Katz [30]

Dealing with
aspect
compositions
and
interactions

A set of
stereotypes
and tags for
defining
different
types of
binding

No separation
between the
concerns and
the weaving
rules is made

The aspect can
be woven
only to base
models that
fulfill its
required part

PCS [28] Providing means
for
implementing
concern-
oriented
software
architectures

AspectJ syntax No separation
between the
concerns and
the weaving
rules is made

Groher and
Voelter
[22]

Weaving models
and
meta-models

Models and
meta-models
in the Eclipse
Modeling
Framework

No separation
between the
concerns and
the weaving
rules is made

AODM [54] Modeling
AspectJ style
programs
with UML

AspectJ syntax No separation
between the
concerns and
the weaving
rules is made

Aldawud et al.
[1, 2]

Visualizing and
documenting
aspect-
oriented
software
artifacts

Stereotypes,
class
diagrams, and
statecharts

No separation
between the
concerns and
the weaving
rules is made

UFA [27] Designing
aspects
emphasizing
reuse issues

Callin and
callout
bindings

Connector
packages
“connects”
aspect and
base models

AML [23, 24] Modeling
AspectJ style
programs
with UML

AspectJ syntax Connector
packages
“connects”
aspect and
base models

(continued)
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Table 1 (continued)

Fuentes and
Pablo [18]

Executing
aspect-
oriented
models

A UML profile
and an XMI
weaver

Pointcut
packages are
defined; the
focus is on
weaving
behavioral
aspects

Klein et al.
[33]

Weaving
multiple
behavioral
aspects

Four types of
sequence
diagrams,
each of which
represent a
different type
of joint point

Weaving is
specified in
separate
sequence
diagrams

Reddy et al.
[43]

Composing
aspects based
on their
signature

Class diagram
element
signatures
and a
composition
meta-model

No separation
between the
concerns and
the weaving
rules is made

JPDD [53] Visualizing the
selection
criteria that
an aspect
requires from
a base model

Special kind of
diagrams,
called join
point
designation
diagrams
(JPDD)

Does not support
weaving

Query models
are defined in
the JPDD
notation

handling weaving guidelines (or completely neglecting them). Those methods
that present weaving guidelines do that very closely to the implementation and
programming level, falling short in considering the entire spectrum of modeling
concepts not present in programming languages [49]. They further refer to aspects
as particular concerns and, hence, suggest different ways to weave them to specific
systems. In particular, most of the listed methods do not specify the conditions and
the situations to which an aspect is appropriate and those that support this kind of
specification do not use them for guiding the weaving process.

2.2 Software Product Line Engineering (SPLE)

Many SPLE methods have been introduced for specifying common and variable
elements of software product lines. The main aids for specifying common elements
are: (1) multiplicity, which primarily differs between mandatory elements that
identify the product family and all products that belong to the family must include
them, and optional elements that may add some value to the product, when selected,
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but not all the products that belong to the family will include them; and (2) (inter-)
dependencies, which are restrictions for selecting groups of optional elements,
e.g., an element requires or excludes another element. The possible variability in
a product line is primarily specified in terms of: (1) variation points, which identify
locations at which variable parts may occur; (2) variants, which realize possible
ways to create particular product artifacts at certain variation points, (3) rules for
selecting variants, e.g., via specifying cardinalities which define the minimal and
the maximal numbers of variants that have to be selected in a given variation point;
and (4) guidelines for adding product-specific variants, e.g., via specifying open
vs. closed variation points that, respectively, allow or do not allow the addition of
product-specific variants.

As noted, the majority of SPLE methods can be classified as feature-oriented
or UML-based.1 The primary way for specifying core assets in feature-oriented
methods is via feature diagrams, which are basically trees of features [29]. Each
node in a feature diagram represents a feature, whereas the tree’s root represents
the main concept of the product line. Features can be decomposed into sub-features
and the edges represent dependencies between features, including mandatory vs.
optional features, alternatives, and OR features. Most feature-oriented methods are
based on or extend feature-oriented domain analysis (FODA) [29].

The second largest category of SPLE methods is based on UML [8]. These meth-
ods commonly define profiles for supporting variability-related issues. Sometimes
a variability model is introduced orthogonally to the UML models, for instance in
[42]. Since UML is utilized both in SPLE and in AOSD, we will elaborate a little
bit more on UML-based methods in this context.

Table 2 summarizes several such methods according to their ability to specify
common and variable elements. As can be seen, commonality-related issues are
usually specified using dedicated stereotypes for differentiating mandatory (some-
times called kernel) and optional elements, although these stereotypes are usually
only associated with variation points and variants and not with other elements in the
core assets. Several works explicitly refer to dependencies between elements in the
form of «alternative or», «alternative XOR», «requires», and «mutux» stereotypes.

All the surveyed studies refer to variability, usually using stereotypes such
as «variation», «variation point», or «V» for specifying variation points and
stereotypes such as «variant» or «variable» for modeling variants. Other methods
explicitly specify only one of these concepts and the other is implicitly specified
by its relationships with the modeled concept (commonly the relationship between
these concepts is specified via inheritance relations or dependencies).

Regarding variant selection rules, most methods that refer to this criterion support
only “OR” (0..*) and “XOR”(1..1) selections and do not support range selections.
Some methods allow wider representation of selection rules by using tagged values,
e.g., Clauß and ADOM in Table 2, and variation point attributes, e.g., SPLIT in

1A few methods can be classified as both, e.g., [21]. However, these methods usually focus on one
of these paradigms and extend the methods towards the other.
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Table 2. Only a few methods (e.g., SPLIT, VPM, and ADOM in Table 2) refer
to addition rules, i.e., enable specifying if new variants can be added to variation
points.

2.3 AOSD and SPLE: Points of Synergy

Different studies have researched the relationships between AOSD and SPLE,
introducing methods that rely on principles from both fields. These methods can
be roughly divided into methods that refer to the two fields as complementary and
methods which aggregately use AOSD and SPLE principles for the same purposes.

Methods in the first category mainly use SPLE for early development stages,
while AOSD is used for later phases of detailed design and implementation. Lopez-
Herrejon and Batory [37], for example, suggest emulating function composition in
AOP using a small set of advice, bounded quantification, and algebraic specification.
Lee et al. [36] offer combining feature-oriented analysis (FOA) and AOP in order to
benefit from the “essential design drivers” provided by FOA and the AOP’s “effec-
tive mechanisms for encapsulating crosscutting abstractions into modular units and
integrating the units without changing the rest of the system.” Griss [20] outlines
a practical development process that integrates feature-driven domain analysis and
design and aspect-oriented implementation techniques, in order to better structure
models, designs, and code. Anastasopoulos and Muthig [4] examine whether AOP
can serve as a product line implementation technology and to what extent. They
conclude that in this context AOP is especially suitable for supporting variability
across several components, whereas its suitability for supporting variability inside
of single components requires further investigation.

Methods in the second category, which support aggregative synergy, use both
AOSD and SPLE principles for various development tasks. Using ADORA, for
example, Stoiber et al. [55] propose visualizing and modeling variability using
aspect-orientation and table-based modeling of configuration possibilities and
constraints. Morin et al. [39] argue that aspect-oriented modeling can help users
design optional and variant parts of a model. They further claim that the ability
to weave aspects incrementally into base models enables constructing final products
step-by-step. Their generic approach supports generating target languages and some
weaving instructions to any given meta-model. After deriving an aspect by choosing
the most appropriate variants and options, aspect configurations can be woven
into base models, to integrate new features and propose different variants of the
system. Kulesza et al. [35] allow for improved customization and instantiation of
frameworks by using crosscutting feature models. The approach intends to provide
guidelines to modularize the implementation of framework features using aspects.
Loughran et al. [38] describe an approach for facilitating requirements analysis,
commonality and variability analysis, and concern identification, utilizing natural
language processing and aspect-oriented techniques.
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Reviewing the different studies and especially those mentioned in the current
section, we observed that while SPLE refers to two abstraction levels, application
and domain engineering, AOSD treats aspects as particular concerns that can be
woven in different ways to specific systems or software product lines. However,
analyzing the commonality and variability within families of aspects can be
beneficial for developing and maintaining aspects. Thus, we propose four weaving
possibilities, according to the levels of aspects and the levels of systems or software
products to which the aspects are woven. This type of synergy, which we call
dimensional synergy, is elaborated next

3 Dimensional Synergy of AOSD and SPLE

In order to explain and demonstrate our suggestion for dimensional synergy of
AOSD and SPLE, we will use a CICO product line [32] and a family of security
aspects. Applications or products in the CICO line manage operations for item
enrollment and signing-out. An item can be borrowed by one user at a time and
waiting lists for items may be (optionally) maintained. Library, video rental, hotel
management, and car rental systems are all CICO applications. These applications
may involve different security aspects. Security in the context of computer science
concerns risk management trade-offs in the areas of confidentiality, integrity, and
availability of electronic information that is processed by or stored on com-
puter systems [58]. Systems which contain fundamental flaws in their security
designs cannot be made secure without compromising their usability. However, in
many cases security techniques can be woven into (existing) system designs and,
hence, may be considered as aspects. Examples of particular security aspects are:
(1) authorization which deals with protecting computer resources by allowing those
resources to be used only by consumers that have been granted authority to use
them, (2) authentication which is the act of establishing or confirming something
(or someone) as authentic, that is, that claims made by or about the thing are true,
and (3) fraud protection which deals with protecting someone (or something) from
fraud activities, such as theft, false billing, and bait, by recording the history of
system activities and analyzing the collected data.

Table 3 summarized four types of weaving processes, according to the level
of aspects and systems they involve. In the first category, marked as (a) in the
table, both system and aspect are at the domain engineering level. This means,
for example, that the family of security aspects is woven to the CICO product line
in order to create a family of secured CICO applications. In the second category,
marked as (b), the family of aspects is woven to a particular system, helping develop,
for example, a secured car rental system that involves different security aspects,
including authorization, authentication, and fraud protection. The third and fourth
categories, respectively, marked as (c) and (d), support weaving specific aspects to
either a family of systems (a software product line) or to a particular system (a
software product). These ways, the development of authorized CICO applications
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Table 3 The meaning of weaving aspects to systems in different abstraction levels

Level of aspect Level of system The meaning of the weaving

a. Domain
engineering

Domain
engineering

The result resides at the domain engineering
layer. Both system and aspect models should
be specialized into a particular system that
includes specific aspects

b. Domain
engineering

Application
engineering

The result resides at the domain engineering
layer. The aspects that belong to the same
family and are included in the particular
system have to be specialized

c. Application
engineering

Domain
engineering

The result resides at the domain engineering
layer. A family of system models includes the
particular aspect. Each system in the family
similarly integrates the particular aspect into
its architecture

d. Application
engineering

Application
engineering

The result resides at the application engineering
layer. The particular system includes the
particular aspect. No specialization or further
treatments are required

Fig. 1 Possibilities for weaving aspects and systems at different abstraction levels

and the development of a particular authenticated library system are supported.
These examples are presented in Fig. 1, where circles represent systems or families
of systems and stars represent aspects or families of aspects. The arrows represent
weaving processes. This classification calls for utilizing AOSD for horizontal reuse
and SPLE, or more accurately domain engineering principles—for vertical reuse.

For supporting these kinds of weaving processes, we propose a method that
extends a domain engineering approach, called ADOM [44, 45, 51]. ADOM,
which stands for Application-based DOmain Modeling, comprises three layers of
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modeling: application, domain, and language. The application layer consists of
models of particular applications and systems, including their structure and behav-
ior. The language layer includes meta-models of modeling languages, such as UML.
The intermediate domain layer consists of specifications of various application fam-
ilies or product lines, including their common and variable elements. Furthermore,
constraints among the different layers are enforced; in particular, the domain layer
enforces constraints on the application layer, while the language layer enforces
constraints on both the domain and application layers.

Separating the application and domain layers from the language layer, ADOM
can be used in conjunction with different modeling languages, but when adopting
ADOM with a specific modeling language, this language is used in both application
and domain layers, easing the task of application creation (instantiation) and
validation by employing the same constructs and terminology in both layers.

ADOM was selected for this work due to the following main reasons: (1) it can be
used with UML [41], which is widely employed within both SPLE and AOSD fields;
(2) it supports the specification of models in the domain and application layers
with similar means; (3) its commonality and variability expressiveness exceeds
that of other UML-based SPLE or domain engineering methods (see Table 2). In
particular, it explicitly refers to the selection and addition of variants in certain
variation points, enables explicit specification of both variation points and variants,
and allows specifying ranges of multiplicity and not just mandatory and optional
elements.

Next, we elaborate and exemplify the extension of ADOM for increasing the
reuse of aspects in both application and domain layers. We call this extension—
aspect-oriented ADOM.

4 Aspect-Oriented Application-based DOmain Modeling

Aspect-oriented ADOM supports specification of base and aspect models. A base
model describes an application, a system, or a family of such (i.e., a software product
line). It intend to stand alone and exhibits both structure and behavior. An aspect
model describes the structure and behavior that characterize a particular concern.
It is not intended to stand alone but to be woven into base models. An aspect
model can be defined in the application or domain layer, respectively, specifying
a specific concern or a family of concerns. An aspect model is divided into concern
specification, match pattern, and merge guidance. The concern specification deals
only with issues that are relevant to the concern at hand. The match pattern
constrains the range of base models to which the aspect is applicable. It actually
defines a query on the base models to which the concern specification can be woven.
Finally, the merge guidance specifies guidelines for weaving the given aspect, or
more accurately its concern specification, to any applicable base model (according
to the match pattern). Note that although the same concern specification may have
several pairs of suitable match pattern and merge guidance models, we consider
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Fig. 2 A package diagram specifying the main model types and dependencies in the aspect-
oriented ADOM method

an aspect model as comprised of the three aforementioned parts. In other words,
several aspect models may share the same concern specification with different match
patterns (and consequently different merge guidelines).

For future usage, we define an additional type of models, called woven models,
which are achieved after applying the rules specified in the merge guidance of an
aspect model on a base model that satisfies the match pattern. Note that the resultant
woven models are not required to be manually generated, especially due to their
complexity. They are only used as a means for understanding the semantics of the
weaving process and the complete system structure and behavior.

Figure 2 summarizes the main model types in aspect-oriented ADOM and the
dependencies between them, while the rest of this section elaborates and exemplifies
each type of model.

4.1 ADOM Basic Concepts and Base Models

In the context of UML, ADOM is based on a profile, depicted in Fig. 3. This pro-
file includes five stereotypes, namely «multiplicity», «variation point», «variant»,
«requires», and «excludes».2 The «multiplicity» stereotype is used for specifying
the range of product elements that can be classified as the same domain, or product
line, element. Two tagged values, min and max, are used for defining the lowest
and uppermost boundaries of that range. For clarity purposes, four commonly

2ADOM actually includes a sixth stereotype, «reuse», which is out of the scope of this chapter.
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Fig. 3 The UML profile at the basis of ADOM

used multiplicity groups are defined on top of this stereotype: «optional many»,
where min D 0 and max D 1, «optional single», where min D 0 and max D 1,
«mandatory many», where min D 1 and max D 1, and «mandatory single», where
min D max D 1. Nevertheless, any multiplicity interval constraint can be specified
using the general stereotype «multiplicity min D m1 max D m2».

Each element in the domain layer may define a variation point. This is done
using the stereotype «variation point», in addition to the «multiplicity» stereotype.
A «variation point» stereotype has the following tagged values: (1) open, specifying
whether the variation point is open or closed, i.e., whether product-specific variants
that are not specified in the core asset can be added at this point or not, and
(2) card(inality), indicating the number of variant types need to be chosen for
this variation point; common cardinalities are “1..1” (XOR), “1..*” (OR), “0..1”
(optional XOR), and “0..*” (optional OR). Note that there are differences between
the «multiplicity» stereotype and the cardinality tagged values. A variation point, for
example, can be optional (e.g., «optional many») while its cardinality specification
is mandatory (e.g., “1..*”), indicating that this variation point may not be included
in a particular product, but if it is, then at least one of its variants (as specified in the
core asset) have to be selected. Similarly, an open variation point can be mandatory
(e.g., «mandatory many») while its cardinality specification is optional (e.g., “0..*”),
indicating that this variation point has to be included in a particular product, but
possibly use particular, product-specific variants (not specified in the core asset).

Each variant is specified using the «variant» stereotype, in addition to the
«multiplicity» stereotype. A variation point and its variants should be of the same
type (e.g., classes, attributes, and associations). A variant is associated with the
relevant variation point via inheritance relationships. When not applicable, i.e., for
variation points and variants that are not classifiers, such as attributes and operations,
the relationships between variants and variation points are specified using a tagged
value, vp, associated with the «variant» stereotype; vp specifies the name of the
corresponding variation point. Note that the same element can be stereotyped
by both «variation point» and «variant», enabling specification of hierarchies of
variants.
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Fig. 4 A class diagram describing the structure of the CICO product line

Finally, two stereotypes are defined for determining dependencies between
elements (and possibly between variation points and variants): «requires» and
«excludes». A «requires» B implies that if A appears in a particular product artifact,
then B should appear too. Similarly, A «excludes» B implies that if A is included in
a particular product artifact, then B should not.

As an example, consider the class diagrams in Figs. 4, 5. These diagrams specify
the structure of CICO applications and its possible variants. Any application in this
product line, for example, must have exactly one class of controllers with different
types of check-in and check-out operations and possible reserve operations; at least
one type of borrowers, each of which has one attribute identifying its id, zero or
more attributes denoting its status, at most one method for verifying the borrower’s
status, and at least one method for verifying different aspects of the borrower; and
at least one class that handles the lending information, including the loaning and
return dates, and optionally the requested return date and the lending id. The ability
to maintain a waiting list in case the item or items are borrowed is optional, as not
all the applications in the line support this functionality. However, if this ability is
supported, the CICO application must include different classes of item types, as the
reservation in this kind of applications is for item types rather than for individual
items. This constraint is specified via the «requires» dependency between the two
optional classes: Waiting List and Item Type.

Items in CICO applications must include unique identifiers and information
about their overdue periods and fees. They may further have attributes specifying
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Fig. 5 A class diagram describing the item variation point

their statuses and general details. Items are primarily divided into virtual and
physical items. Handling fees differ according to the item classification: based on
this model, physical items may require calculating delay, damage, and lost fees,
whereas virtual items may need to handle loan and reservation fees. In addition,
physical items, as opposed to virtual items, have location details. According to
the tagged values of the Item variation point (open D false and card D “1..2”), a
particular product in the line cannot include items which are neither physical nor
virtual. However, an item can be both virtual and physical. We could specify in the
domain model an «excludes» dependency between Physical Item and Virtual Item,
indicating that each product in the line may handle either physical or virtual items
(but not both). In this case, the cardinality value of the variation point has to be
changed to 1..1.

The sequence diagram in Fig. 6 denotes a typical check-out operation which
specifies the procedure of taking or borrowing an item (and reserving it if not
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Fig. 6 A sequence diagram specifying a check-out operation

available). After invoking the check-out operation, the item details are retrieved
and the borrower status may be checked. Then, the lending policy may be checked
(the way this check is done is not elaborated in this sequence). If the lending is
possible, the check-out operation is performed. As checking-out may differ from one
application to another, this operation, which is specified as a combined fragment, is
defined as a variation point. A possible variant of the operation may elaborate in
a separate diagram what should be done in case waiting lists are maintained (not
shown here). Finally, the item status may be updated and a lending object is created.

4.2 Concern Specification

For modeling purposes, concern specifications and base models are quite similar.
However, concerns can be viewed as parts which aim to complete other modules
or introduce new crosscutting functionality. Hence, they are usually smaller than
base models, focus on specific issues, and do not intend to stand alone. Concern
specifications (CS) can also be specified in the application or domain layers.
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Fig. 7 A domain class diagram of the security aspect family

The model depicted in Figs. 7, 8 describes the commonality and variability allowed
in a family of security aspects. Each aspect in this family must deal with performers,
secured items, and actions. The class diagram in Fig. 7 captures these concepts,
specifying their structure, expected behavior, and relationships. It also refers to
three additional (optional) classes: Policy that may refer to a specific performer,
a specific item, or a specific performer-item pair; History that may record security-
related activities; and Analyzer that may be used, for example, for detecting different
threats. Using UML sequence diagram notation, Fig. 8 describes how the allowance
of a secured action is checked. This sequence can be used in different contexts, as
is demonstrated later. An authorization aspect, for example, can adapt this model to
reflect the requirement that resources can be used only by consumers that have been
granted authority to use them.

4.3 Match Patterns

A match pattern is the part of an aspect model that specifies structural and behavioral
rules and constraints on base models to which the concern specification can be
woven. In other words, this part represents the minimal requirements from the base
models that can weave the concern specification into them. Furthermore, as will
be explained in the next section, a match pattern defines “anchors” to which the
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Fig. 8 A domain sequence diagram describing action activation in the security aspect family

Fig. 9 The addition to ADOM profile for specifying match patterns

merge guidance can refer. The least restricting match pattern is the empty model
implying that the aspect model in general and its concern specification in particular
are applicable and can be woven to any base model. Making the match pattern more
detailed reduces the number of base models to which the concern specification can
be woven, but enables specifying more reasonable and detailed weavings. The aim
of match patterns is similar to that of join point designation diagrams (JPDD) [53]:
to specify all properties that a model element must provide in order to represent
a join point. However, as opposed to JPDD that defines join points on particular
applications, our approach enables definitions of match patterns at the domain layer,
implying the specification of similar join points to all the applications (or software
products) in the product line.

For defining matching rules, we introduce the single stereotype profile depicted
in Fig. 9. According to this profile, each element can be stereotyped as «Match-
Cond», or «mc» for short. A match condition has a tagged value, named elName,
whose value is a regular expression on the element name. In case the match pattern
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Fig. 10 The match pattern for the security aspect: (a) the structural constraints and (b) the
behavioral constraints

is applied on a core asset (i.e., on models in the domain layer), it may have three
additional tagged values: (1) elMult which is a regular expression on the element’s
multiplicity stereotype, (2) elVP which is a regular expression on elements that are
defined as variation points, and (3) elVar which is a regular expression on elements
that are defined as variants. At the current stage, we have not extended the tagged
values of the «mc» stereotype to handle dependencies.

As an example, consider a match pattern for the family of security aspects that
includes the following four rules:

1. The model includes a mandatory class whose name contains “control” or
“system.” This element (or these elements) will be referred to as Controlling
Element.

2. The model includes a class whose name contains “item” or “product” and has
an operation which performs some modification (i.e., the class has a “set” or an
“update” operation). This element (or these elements) will be referred to as Item
and the relevant operations—as operation on item.

3. The model includes an association between Controlling Element and Item. This
association (or these associations) will be referred to as controlled items.

4. The model includes activation of operation on item by Controlling Element.

The first three rules are presented using the «mc» stereotype in the class diagram
in Fig. 10a, while the forth rule is depicted in Fig. 10b utilizing sequence diagram
notation. The CICO model, specified in Figs. 4, 5, and 6, satisfies the match pattern
of Fig. 10. In particular, Controller from the CICO model corresponds to Controlling
Element and Item, including its variants, namely Virtual Item and Physical Item,
from the CICO model, correspond to Item of the match pattern, while the operation
“update status” corresponds to operation on item. The other operations of the Item
hierarchy do not match to operation on item, since they do not update the value
of attributes. ItemType does not match Item (from the match pattern) since it does
not have update operations. Finally, the association Controller-Item corresponds to
controlled items.
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4.4 Merge Guidance

The merge guidance of an aspect model combines the concern specification and the
match pattern of the same aspect in order to guide the designer in how to weave the
concern specification into a base model that fulfills the match pattern rules. For this
purpose, the elements of the match pattern and the concern specification are used as
the elements of the merge guidance.3

We distinguish between four types of operations: combining, concern addition,
merge addition, and match only operations. A combining operation takes two
elements, one from the concern specification and the other from the match pattern,
and combines them into a third element that exhibits the features of the two
combined elements. A concern addition operation enables the addition of elements
that do not exist nor have counterparts in the base model. A merge addition
operation enables the addition of elements that appear neither in the concern
specification nor in the match pattern, but are required when merging or weaving
the concern specification into a base model that satisfies the match pattern. Finally,
a match only operation enables the specification of elements that are required only
for matching base models, but are not modified as a result of weaving the concern
specification into the base model.

For specifying all these merge operations the concern specification model is
treated as a profile for the match pattern (i.e., all the base models that satisfy the
match pattern). As an example consider the concern specification depicted in Figs. 7,
8 and the match pattern specified in Fig. 10. The elements class 1 (Analyzer), class
2 (History), and class 3 (Action) in the class diagram, as well as frame (is allowed)
in the sequence diagrams define concern addition operations—all these elements
appear in the concern specification, but are not required in the base models by the
match pattern; the associations between Analyzer and Controlling Element, between
History and Controlling Element, and between Action and Controlling Element are
merge addition operations—they do not appear in the concern specification nor are
they required in the base models by the match pattern; they are rather required due
to the merge of the aspect and the base models.

The specification of merge addition elements is similar to that of base models,
using, for example, ADOM profile for specifying domain or product line artifacts;
Controlling Element and controlled items define match only operations—they
are the anchors for defining merge addition operations. Finally, Item (which is
Secured Item) and perform (i.e., operationOnItem) define combining operations—
SecuredItem from the concern specification is combined with Item from the match
pattern, whereas perform is combined with operationOnItem.

All the aforementioned merge guidelines are specified in Fig. 11.

3We assume that the name spaces of the concern specification and the match pattern of the
same aspect are distinctive, otherwise adding the model (package) name to the element names
is required.
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Fig. 11 The merge guidance of the security aspect to domain base models: (a) the structural merge
and (b) the behavioral merge

Fig. 12 An activity diagram representing the weaving process

4.5 Weaving Aspect Models into Base Models

The result of weaving an aspect model into a base model is called a woven model.
The woven model is created by finding matches between a base model and a match
pattern and applying the merge guidance for each such occurrence. Only maximal
matches are used for this purpose, i.e., matches that any addition to them prevents
them from being matches. Note that there may be more than one maximal match
in a given base model that satisfies a single merge guidance, implying application
of the same merge guidance several times to the base model (with different model
portions). Figure 12 depicts the weaving process utilizing activity diagram notation.

As noted, there is a match between the CICO product line and the match pattern
of the security aspect family, namely Controller from the CICO model corresponds
to Controlling Element; Item, Virtual Item, and Physical Item from the CICO model
correspond to Item of the match pattern, and the operation “update status” of Item
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Fig. 13 The woven model resulted after weaving the security aspect into the CICO model. Part
A: the structural specification modeled as a class diagram (Note that Performer was not combined
with Borrower in this model, since this kind of merging was not explicitly specified in the merge
guidance.)

corresponds to operation on item. Figures 13, 14 in the appendix present the woven
model resulted after weaving the security (domain) aspect into the CICO (domain)
base model. As mentioned, the woven model was generated only for the purpose
of comprehending better the meanings of the aspect model parts and the weaving
process. In the resultant woven model, the terminology (i.e., element names) is first
taken from the base model and only afterwards (for additions) from the aspect model
(i.e., from the merge guidance).

Having the woven model, either explicitly or implicitly as base and aspect mod-
els, one can use it for developing an authorized library system for a university. This
system may contain two types of borrowers, Students and Staff Members;
two types of item types, Books and Multimedia; two types of items, Book
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Fig. 14 The woven model resulted after weaving the security aspect into the CICO model. Part B:
the behavioral specification modeled as a sequence diagram
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Copies which are physical elements and Multimedia Copies which are vir-
tual elements; one type of waiting lists, namely Book Reservations; and so on.
A particular authorization aspect may enable executing actions by authorized users.
For this purpose, each item, namely a Book Copy or a Multimedia Copy is
connected to the allowed users, i.e., Students and/or Staff Members through
Authorized Actions and Authorization Policies. No analyzer and
no history recording are needed in this case.

5 Summary and Future Work

AOSD and SPLE are two approaches that aim to increase reusability of software
products or artifacts. Instead of viewing these approaches as complementary or
aggregative, we propose their dimensional synergy: aspect-oriented principles are
used for horizontal reuse, while SPLE principles, and especially domain engineering
ones, are utilized for vertical reuse of both aspects and software products. We further
extend a domain engineering approach, called ADOM, to support the development
of families of aspects and their weaving to families of software products. The
extended method differs between three types of models, namely base, aspect, and
woven models. An aspect model is further divided into three parts: (1) concern
specification, which refers to issues of the aspect itself, (2) match pattern, which
includes conditions on the base models to which the aspect at hand can be woven,
and (3) merge guidance, which comprises guidelines and rules for weaving the
aspect to any base model that satisfies the match pattern conditions. The resultant
woven models define the semantics of the different models and their related
operations. Each model may reside at the domain or application layer of ADOM,
respectively, increasing or decreasing its level of generality.

Enabling the design and representation of families of aspects together, capturing
their commonality and variability, the proposed method, aspect-oriented ADOM,
increases reusability by defining weaving rules that can be applied on complete
families of aspects. Furthermore, aspects can be woven to families of applications
rather than to specific applications or generally to all the applications. Hence, the
weaving rules can be more specific to the domain at hand and yet applied to different
applications in that domain, enhancing once again the reusability of aspects. Finally,
domain level aspect and base models can be used for weaving particular aspects into
specific applications. This can be done by following the domain match pattern and
merge guidance models and adjusting them to the specific aspect and base models.

In the future, we plan to develop a supporting tool, which will handle and
manage the different model types and weaving activities. This tool, which will be
part of a UML CASE tool, will automatically generate resultant woven models,
check the correctness and completeness of specific base and aspect models (with
respect to their base and aspect domain models), check the consistency between the
different parts of an aspect model (namely, concern specification, match pattern,
and merge guidance), and so on. Furthermore, we plan to specify and implement a
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code generator from the suggested aspect-oriented ADOM method to different AOP
languages, such as AspectJ [5]. We also consider extending the suggested approach
to application engineering activities in order to support scenarios in which aspects
only apply to specific features or element selection.

Appendix: The Woven Model for Secured CICO Applications

Figures 13, 14 present the woven model resulted after weaving the security (domain)
aspect into the CICO (domain) base model. In these figures, the elements that belong
only to the base model appear in white, the base model elements that are combined
with aspect elements appear in bold and gray, and the elements that are added due
to the aspect model, or more accurately due to the merge guidance, appear in gray.
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Abstract Application frameworks aim to provide coherent code to be used and
reused. The primary benefits of application frameworks stem from the modularity,
reusability, extensibility, and inversion of control they provide to developers. Yet,
as these frameworks become more extensive and complex, their usage becomes a
burden and requires further effort. In this chapter we adopt the Application-based
DOmain Modeling (ADOM), a domain engineering approach offering guidance
and validation for developers when using existing knowledge, as in the case of
application frameworks. The approach is adopted in the context of a programming
language and demonstrated with the use of Java and is thus denoted as ADOM-
JAVA. The approach preserves the regular development environment and requires
minimal adaptation for using the proposed approach. We also demonstrate the use
of ADOM-JAVA as a vehicle for defining and using domain-specific languages.
Finally, we evaluate the use of ADOM when applied to a Java-based development.
Following the guidance and validation capabilities provided by the proposed
approach, the experiment shows that the productivity of the developers in terms
of time and quality is expected to increase.
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1 Introduction

Software development is a process that may involve the reuse of readymade and
tested artifacts, such as components, executables, libraries, and frameworks. The
formalization of these approaches has pervaded various application and research
areas, such as software product line engineering (SPLE) [5, 24]. In SPLE there
are two main phases: (1) the domain engineering phase in which the knowledge
encapsulated within a domain is specified with the aim of being reused and
(2) the application engineering phase in which the domain knowledge is reused and
adapted as required by specific applications. To specify the reusability of the various
artifacts, the software engineering community devised techniques that include
generic implementation techniques for increasing software artifacts (such as models,
components, and code) reuse. These techniques include generic programming
that enables reuse by parameterizations, design patterns that provide solutions for
specific situations, meta programming that enables programming at various levels
of abstraction, as well as utilizing reflection mechanisms, and frameworks [6].
Although the design for reuse is a key issue, one should also provide mechanisms to
better facilitate that reuse in an effective and productive manner. Indeed, existing
tools and approaches support reuse specification at the design level; however,
these mainly focus on instantiation and configuration. Moreover, when referring
to programming and code, it seems that the guidance provided by the various
techniques is limited and mainly provides a means for specifying reuse without
proper guidance on how it should actually be performed.

In this chapter we propose an approach that aims at guiding the reuse of
software frameworks (i.e., code) by adopting a domain engineering method called
Application-based DOmain Modeling (ADOM) [25, 26] as an infrastructure for
a new programming approach. In general, ADOM supports the reuse of many
software artifacts. Nevertheless, in this chapter we apply it to a specific type of
software artifact—code. We term the new approach ADOM-JAVA as we apply
ADOM in the context of the Java programming language. This approach offers
guidance and validation for application developers that better facilitates the domain
knowledge and code reusability. The uniqueness of the proposed approach lies in
the utilization of a standard programming language (including its supporting tools),
and thus keeps developers within their standard development environment and the
explicit reuse guidance provided within the domain knowledge.

The structure of the rest of the chapter is as follows. First, we discuss related work
concerning framework usage and the reuse types. The following section presents the
java agent development (JADE) framework, which is widely used for developing
multi-agent systems (MAS), as a case study and a demonstrator for the problems
and solutions of utilizing application frameworks. Next, we introduce ADOM—
the underlining framework of the proposed approach, followed by a description
of the actual application of the ADOM approach in the context of JADE and Java
as the used language. To further demonstrate the use of the proposed approach, we
discuss its utilization in the context of domain-specific languages. Having set the
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details of applying ADOM-JAVA, we report on an initial evaluation we performed.
Finally, we conclude and discuss future research directions.

2 Related Work

2.1 Software Frameworks

Software frameworks are “semi complete applications that can be specialized to
produce custom applications” [9]. These frameworks are widely used in software
development in general [22] and in domain-specific areas, in particular [10]. Fayad
and Schmidt classified the various frameworks by “the techniques used to extend
them, which range along a continuum from whitebox frameworks to blackbox
frameworks” [8]. Whitebox frameworks support the reuse of their functionality
by inheriting base classes and overriding predefined methods and require the
developers to be familiar with their internal structure. On the other hand, blackbox
frameworks support the reuse of their functionality by defining components, which
meet the interface requirements and integrating these components into the specific
framework and are mostly used by using object composition. Note that the whitebox
frameworks are more commonly used, as developing blackbox frameworks requires
much effort. Fayad and Schmidt further stress the importance of frameworks as a
means for code reuse. Following their analysis, it seems that frameworks capture
most of the principles provided by other approaches such as patterns, class libraries,
and components. However, when constructing frameworks one should address a
number of challenges, namely, development effort, learning curve, integratability,
maintainability, validation and defect removal, efficiency, and lack of standards [8].

As determined by [22], although it is widely agreed that framework-based devel-
opment improves productivity (in terms of development time and code quality),
many frameworks still suffer from limited or wrong usage. This indicates that there
is a need for further improvements in this kind of development. Polancic et al.
[22, 23] examined the causes for this situation. They found out that the acceptance
of frameworks is mainly dependent on two factors: continuous framework usage
intention and the perceived usefulness of the framework. Also, their results indicate
the understandability, which is “the capability of a software product to enable the
user to understand whether the software is suitable and how it can be used for
particular tasks and conditions of use” [14] is a major factor in using frameworks.
This finding is in line with the work of Ali et al. [1], which found that applications
developed by novice software developers based on provided frameworks resulted
in poor software quality. This was somewhat surprising as all developers (students)
seem to have abandoned the theory they were taught regarding design principles.

Summarizing the notion of framework usage, improvements are required in
providing further guidance for reusing whitebox frameworks. Next, we elaborate
on reuse mechanisms that can be used for guiding the aforementioned reusability.
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2.2 Reuse Mechanisms

The notion of reuse has evolved over many years. Becker et al. [2] classify the reuse
area into various approaches: Patterns, which define (general) templates to solve
commonly occurring problems; components, which can be used and composed as
is; modules, the abstract objects, which have to be instantiated to be of concrete
use; and reference models (RM), which comprise information that suits various
situations. In the context of this chapter, we refer to frameworks as reference
models, in the sense that they fit many situations (applications). Below we describe
various reuse mechanisms based on the studies of Becker et al. [2], vom Brocke
[3] and Jacobson et al. [15] (among others) and present these in the context of
reusing elements from the frameworks for developing applications. To demonstrate
these reuse mechanisms we use a control system framework consisting of abstract
concepts such as sensor, controlled element, controlled value, etc.

• Analogy Construction: An analogy means the transfer of information or imple-
mentation from the framework to the application, enabling the required adapta-
tion. For example, in the case of the control system framework one can make the
analogy from a sensor within the framework, to a thermometer within a climate
control system or to a smoke detector which is a part of an alarm system.

• Aggregation: Aggregation means that one can assemble parts from the framework
to construct a specific application. In the case of the control system framework,
the climate control system or the alarm control system can be assembled by
adopting only the relevant framework parts, such as sensors, and controlled
values, neglecting other parts of the framework.

• Configuration: Configuration means the modification of certain framework
elements following predefined rules. In the case of the control system framework,
one can configure the controller to record the various measurements for data
analysis or to discard this option due to performance issues.

• Specialization: Specialization means that application elements are derived from
the framework elements by extending and/or partially modifying the more
general one. In the case of the control system framework, one can specialize
a sensor into remote sensor, touch sensor, etc. Thus, these can be further used
within the specific application.

• Instantiation: Instantiation means the selection of specific values for elements
within the framework for specific applications. In the case of the control system
framework an object of type controlled value can be instantiated. For example in
the climate control system such instantiation include the element to be controlled
(e.g., room) and the thresholds for signaling.

• Realization: Realization means the implementation of non-implemented hooks
within a framework in the specific application. This mainly refers to abstract
concepts. For example, in the control system framework a controller may be
an abstract object that requires implementation as different applications require
different control flows.
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• Use: Use means that one should adopt the code as is. That means that no change
to the code should be done. It mainly refers to the internals of the frameworks
that should not be taken care of by application developers. For example,
the communication among the various components within the control system
framework is hidden from the developers and should not be changed.

3 The JADE Framework

The JADE agent platform [27] is a widely used framework for developing MAS.
It was developed during the last decade and is compliant with various agent
standardization communities, such as FIPA, IEEE, and OMG. JADE is a complete
middleware and a programming paradigm that supports the development of MAS.
It consists of the services required by MAS such as communication, security, agent
management, from the infrastructure point of view and a publicly available source
code that enables the implementation of MAS, from the programming point of view.

In this section, we provide a general overview of the JADE framework source
code via a partial model and demonstrate weaknesses in its code listing that
might cause problems in using the framework. The partial JADE model in Fig. 1
demonstrates the main concepts within JADE that comprise MAS (with respect to
its implementation). An agent within JADE executes various assigned behaviors
that are responsible for agent functionality and agent communication with the
environment (e.g., other agents). These include message passing and the scheduling
and execution of multiple concurrent activities. An agent consists of many behaviors
related to many types; several of these might be composite and include other
behaviors. Note that each agent might be related to some ontologies and behaviors,
as well as to ACL messages. Also, note that JADE code (classes) is used for two
purposes: the first is to enable the proper execution of the agents and the second is
to facilitate the creation of new applications through inheritance and composition.
Thus, the code has two parts, one of which should not be manipulated by the
application developers (although it might be stated as “public”), and the other part
that should or may be changed by the developers. However, developers may not
be aware of this classification, as this knowledge is partially specified within the
code and guidance may also appear in other documentation. For example, usually
the internal implementation part of the Agent class as appears in Listing 1 should
not be overridden by the developers. Also, the setup method should be overridden
as it should initialize the specific agent activities; in case the methods is not be
implemented, the agent functionality will not be executed. Furthermore, it is not
clear how developers should handle the doWait method. In the Behaviour class that
appears in Listing 2, the methods action and done should be overridden as directed
by the abstract keyword. However, note that, for example, in the OneShotBehaviour
class (not shown here), the done method is already implemented and should not be
handled by the developer, unless she wishes to change the semantics of the behavior.
It is not yet clear how to handle the onEnd method. Furthermore, it is not stated
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Fig. 1 A general and partial JADE model

Listing 1 An excerpt of the agent class code within JADE

Listing 2 An excerpt of the behaviour class code within JADE

which classes are allowed to be composed or inherited and which classes can serve
as a container for other classes. Furthermore, no specification of possible control
flow is provided.

Having enumerated above the missing guidelines, we call for systematic guid-
ance to enhance reusability. For this purpose, we adopted ADOM method, which is
further elaborated in the next section.

4 The ADOM Approach

ADOM [25, 26] is a method that facilitates the specification of reusable assets
and their reuse within specific application regardless of the specification language.
ADOM supports the representation of domain models, construction of application-
specific models, and validation of the application-specific models against the
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relevant domain models. ADOM is rooted in the domain engineering discipline
which is concerned with building reusable assets, on the one hand, and representing
and managing knowledge in specific domains, on the other.

ADOM has three layers: (1) The language layer, (2) the domain layer, and (3) the
application layer. The language layer comprises metamodels and specifications of
the languages that are used to specify the domains and application models. ADOM
can be implemented in any language; however, it requires a classification mech-
anism. That mechanism is used for specifying constraints (and guidance) within
the domain layer and for connecting application elements to their corresponding
domain elements. The domain layer holds the reusable elements of the domain and
the relations among them. It consists of specifications of various domains; these
specifications capture the knowledge gained in specific domains in the form of
concepts, features, and constraints that express the commonality and the variability
allowed among applications in the domain, as well as guidance in how to reuse
the elements within the domain. The structure and the behavior of the domain
layer are modeled using the language that was defined in the language layer. The
application layer consists of domain-specific applications, including their structure
and behavior. The application layer is specified using the knowledge and constraints
presented in the domain layer and the constructs specified in the language layer. An
application model uses a domain model as a validation template. All the static and
dynamic constraints enforced by the domain should be applied in any application of
that domain.

ADOM facilitates the specification of commonality, variability, and reusability
by a set of indicators which are defined as follows. The commonality specification
in ADOM is specified by the «multiplicity» indicator, which is used for specifying
the range of the number of elements within an application, i.e., the application
elements, which can be classified as the same domain element. Two tagged values,
min and max, are used for defining the lowest and uppermost boundaries of that
range.

For variability specification, ADOM provides two indicators. One is the
«variation point» indicator, which has the following tagged values: (1) open,
specifying whether the variation point is open or closed, i.e., whether application-
specific variants that are not specified in the domain can be added at this point or
not, and (2) card, which stands for “cardinality,” indicating a variant’s selection rule
in the form of the range of variant types needed to be chosen for this variation point.
The second indicator is «variant», which can be a realization of a variation point and
should be of the same type. A tagged value vp associated with the variant specifies
the name of the corresponding variation point.

To allow for the specification of reusability guidance, ADOM uses the «reuse»
indicator, which has the following tagged values: (1) mechanism, which can take
different values representing the different applicable mechanisms, that is, configura-
tion, aggregation, specialization, instantiation, realization, and use ; (2) base, which
determines whether the associated element can be used by the stated mechanism;
for example, whether the element can be specialized, can compose other elements,
can be configured, etc.; (3) used, which determines whether the element can be used
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Fig. 2 A UML profile of ADOM

when applying the stated mechanism. For example, can it be composed, can it be
passed as a parameter for configuration, etc.

In general, when an indicator in ADOM is associated with a domain element, its
specifications are required to be fulfilled within the applications. If the indicator is
not specified, then no constraints are imposed.

Summarizing ADOM indicators, Fig. 2 presents a UML profile of the various
indicators—using the stereotypes classification mechanism built-in UML.

As stated before, the relations between a domain element and its specific
application counterparts are maintained by a classification mechanism; each one
of the elements that appear in the domain can serve as a classifier of an application
element of the same type (e.g., a class that appears in a domain may serve as a
classifier of classes in an application). The application elements are required to
fulfill the structural and behavioral constraints introduced by their classifiers in
the domain. Some optional generic elements may be omitted and not included in
the application, while some new specific elements may be inserted in the specific
application; these are termed application-specific elements and are not classified in
the application.

ADOM also provides a validation mechanism that prevents application develop-
ers from violating domain constraints and reusability guidelines while (re)using the
domain elements in the context of a particular application. This mechanism also
handles application-specific elements that can be added in various places in the
application in order to fulfill particular application requirements.

To exemplify the ADOM method, consider a domain with one class called
Demo that consists of two attributes a and b and is equipped with the following
indicators: multiplicity: min D 1, max D 1; variation point: open D true; reuse:
mechanism D aggregation, base D false, used D true. That means that applications
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Table 1 Demonstrating the ADOM indicators

Multiplicity Variation point Reuse

Domain specification
Demo 1,1 open D true mechanism D aggregation,
a 1,1 base D false, used D true
b 0,1
Application specification
App1Class(Demo) x(a)

p p p
App2Class(Demo) x y(b) X

p p
App3Class(Demo)

App4Class x(a)

p p
X

in the domain have to include at least one class classified as Demo and that class
cannot aggregate other classes, yet, can be part of other classes. As it is also specified
as an open variation point it can be extended by various application-specific variants.

Table 1 demonstrates the relationship between the domain layer and the applica-
tion layer as well as the validation capabilities. Following the above example, the
specification of the domain appears on the first three rows. The classification of the
application elements is shown in brackets in the next three lines of the table. For the
first case all constraints hold. For the second case, an attribute which is classified as
“a” is missing. Since it is a mandatory attribute (see the multiplicity specification
on the domain specification), it is a violation of the domain specifications. In the
third case a violation occurs with respect to the reuse guidance as a “Demo” class
aggregates another class—App4Class.

5 The ADOM-JAVA Dialect

In this chapter we deal with frameworks at the code level. Thus, we adopt ADOM
along with Java as the underlying language. To fully apply the approach we use Java
annotation1 to satisfy the classification mechanism requirement, since it enables
the specification of meta data. Listing 3 synthetically demonstrates the usage of
the Java annotation in both the domain and application layers. In the domain
layer the multiplicity indicator is used to constrain the domain’s applications to
having classes classified as aDomainClass at least A times and no more than B
times. In the application layer the aApplicationClass class is classified by the
aDomainClass class. Furthermore, the aDomainClass must consist of other classes
and cannot be aggregated into other classes as indicated by the @reuse indicator. In
addition, the aDomainClass cannot be specialized by the application classes and
has to be used for configuration in one of the application classes. Note that no
constraints exist regarding the configuration of the aDomainClass. In addition, in

1In this work we use the Java Annotation called @Java [4].
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Listing 3 Demonstrating the ADOM-JAVA syntax

Listing 4 The JADE agent class with the ADOM indicators

the application layer code the aClassApplication class consists of the aggregation
of the bApplicationclass via a reference variable; this is in line with the reuse
specification, as it must consist of other classes. Nevertheless, even if this constraint
was not specified, then the insertion of additional elements to the class is allowed
and considered as application-specific elements.

As in this chapter we focus on reuse guidance, we emphasize the use of the reuse
indicator and demonstrate it over the JADE code. Listing 4 presents a part of the
original JADE Agent class along with the annotation suggested by ADOM-JAVA.

The annotations in the listing that appear before the class declaration have the
following semantics (in the order they appear in the listing):

• There should be at least one agent class (min D 1).
• The agent class should be specialized.
• The agent class should be composed with other classes (or types) via data

members but cannot participate in other containers.
• No configuration of the agent class is allowed.
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Listing 5 The use of the agent class (adopted from the PingAgent example of JADE)

Next, the annotations for the private class AssociationTB, which is an internal
implementation of the agent that refers to its management within the JADE
framework, are presented. Since the class is intended to be internal, no changes
or specializations to it are allowed. The annotations for the setup method state that
there should be only one such method and it has to be specialized (by overriding it).
Finally, the annotations for the doWait method state that there should be only
one such method; however, its uses are not dictated (as there is already an
implementation of that method).

Listing 5 presents an application that extends the class Agent of JADE. Following
the ADOM approach, the application elements (class, attributes, and methods) are
annotated with the framework element names. This facilitates the verification and
enforcements of the constraints introduced within the framework. As can be seen,
the PingAgent specializes the Agent class, and there are two application-specific
elements that are allowed, as stated by the @reuse(mechanism D aggregation,
base D true) statement. As the setup method has to be overridden, it also appears
in that listing. The doWait method did not require any changes and is reused as is.
This is also acceptable, as no constraint was specified.

To this end, we have shown the way that ADOM-JAVA supports the reusability
guidance related to the structural nature of the application.

Nevertheless, ADOM-JAVA is applied to the behavioral aspect as well. In the
following we present this notion. Listing 6 presents the implementation of the
checkInSequence method of the AchieveREInitiator class within JADE. This class
implements the FIPA-Request-like interaction protocols, in which the initiator sends
a single message within the scope of a specific interaction protocol in order to verify
if the RE (Rational Effect) of the communicative act has been achieved or not.
The structure of such a protocol is as follows. The initiator sends a message, the
responder can then reply by sending a not-understood or a refuse to achieve the
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Listing 6 The implementation of the checkInSequence method within the AchieveREInitiator
class—a generalized version

rational effect of the communicative act, or also an agree message to communicate
the agreement to perform the communicative act.

The implementation presented in Listing 6 is adjusted from the JADE imple-
mentation and is equipped with the ADOM-JAVA indicators. Note that in this case,
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Listing 7 The implementation of the checkInSequence method within the AchieveREInitiator
class—an implemented version

since the statements have no classifiers, we used the notion of labels to refer to these
statements.

In this listing the following constraints should be imposed. There should be only
one checkInSequence method with one parameter. The inReply variable should be
used as is. The same holds for the s (of type Session). Next, the ifStat1 should appear
once in any application but may consist of additional element (i.e., statements),
yet it cannot be composed into other blocks (used D false). Following the perf,
the ifStat2, the switchStat, should appear only once and should be used as is. The
caseStat1 refers to the cases within the switch statement. In this case there might
be several cases and these should be realized. Next, the other specifications of
the domain elements are similar in that they should appear only once and used
as is.

Listing 7 presents the application code of the checkInSequence method. The
domain classification also uses Java annotation. The code can run without these
annotations; yet, these are used for checking the compliance with respect to the
guidelines provided within the framework code.
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6 Other Applications of ADOM-JAVA

The idea of easing application development applies not only to the utilization of
frameworks but to general development processes as well. Many efforts have been
made in order to increase programming productivity (by reducing the development
efforts) [19, 20]. For example, according to Jones [16], the development of third
generation languages, which raised the level of abstraction and hide complexity,
improved programming languages’ productivity by 400 % compared to assembly
(measured by the average number of source statements per function points). Further-
more, the object-oriented paradigm, which supports reusability through inheritance,
improved programming productivity yet again. For instance, Java improved the
productivity of Basic (a structural programming language) by an additional 20 %
[16]. As stated in the introduction, many reuse techniques have been evolved, yet,
these are general techniques and do not refer to specific domains. Current belief
among the software engineering community advocates that future productivity
improvements will only be achieved through utilization of commonalties in different
domains [6, 7, 18, 28]. In order to assimilate this notion, domain-specific languages
(DSLs) were devised [18, 21]. In general, DSLs are divided into two distinct types,
external and internal DSLs, which we discuss next.

The basic premise of external DSLs is that the underlying principles of higher
abstraction levels and tailoring to specific domains necessitate the development of
the DSL from scratch. There is typically a domain expert with expertise in the
semantics of the domain and an expert programmer with expertise in developing
complicated and sophisticated software, both working on this process [18]. This
process can be further divided into two sub-processes: design and implementation.
The design process includes defining domain constructs and their relationships,
semantics, notations, and constraints. The implementation process includes building
a code generator, an optional domain-specific framework, and the DSL’s integrated
development environment (IDE), which consists of the DSL’s supporting tools. The
code generator takes the DSL specifications as input and validates them according to
the domain constraints, issues error reports if necessary and finally, transforms them
to low level source code as output, optionally using a domain-specific framework
for this transformation. As these tools were built by experts, the resultant code
reuses domain and programming expertise. The main two advantages of external
DSLs are improved productivity (mainly due to abstraction) and reuse of expert
knowledge. However, external DSLs still suffer from various limitations. The design
and implementation of external DSLs is complicated and time consuming. Even
if the work is done by experts and supporting tools are available, it might not be
enough to ensure a successful working DSL. According to [12], most DSL projects
are usually abandoned in the development process and the work is eventually done in
regular general purpose languages. Moreover, introducing the notion of DSL-based
development into an organization requires significant changes in the organization’s
development paradigm. These changes require both new tools and new processes.
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While some managers might be able to see the long-term advantages of DSLs, others
might be reluctant to introduce radical, expensive, and time-consuming changes to
their natural development process. All of these reasons indicate that the applicability
of external DSLs is limited. Another limitation of external DSLs is their limited
expressiveness. External DSLs confine the application developer to a pre-formulated
set of the language constructs. As the language is tailored to a specific domain, it
cannot be used to express semantics outside of the language’s boundaries, which
could have been wrongfully designed.

Internal DSLs draw their inspiration from the recognized drawbacks of external
DSLs. Their basic premise is that DSLs should not be developed from scratch but
rather they should be embedded in existing proven general purposed programming
languages (GPPLs). In this sense, internal DSLs are no different than regular
domain-specific application programming interfaces (APIs). However, they are
different in the sense that the APIs are designed to resemble natural languages. This
is achieved by advanced coding techniques such as method chaining, expression
builders, interface chaining, and generics. [11]. The main advantages of internal
DSLs is that they do not suffer from the above-mentioned drawbacks of external
DSLs. This improvement results from three main reasons: (1) the development
of internal DSLs is much easier with respect to external DSLs, mainly because
the GPPL facilities (i.e., advanced IDEs) already exist; (2) internal DSLs do not
necessitate a radical change in the organization’s natural development paradigm as
they permit using the same set of tools (such as a programming languages, IDEs, and
compilers) and processes; and (3) internal DSLs do not limit application developers’
expressiveness as they allow the use of GPPL regularly. These reasons indicate that
internal DSLs are more applicable than external DSLs. However, internal DSLs
introduce the following limitations. External DSLs achieve improved code quality
through pre-code generating validation algorithms and higher abstraction levels.
Current reports of internal DSLs focus on code readability and maintainability
[17]. Although these should have positive effects over productivity, it is hard to
see how sophisticated APIs raise the level of abstraction similar to external DSLs.
Also, although internal DSLs can exploit coding techniques in order to assure
some domain semantics, they cannot implement validation algorithms that examine
the specified code according to domain constraints. Ultimately, the application
programmer’s expressiveness is unconfined, thus she can use (or abuse) the
API in any way, and therefore, internal DSLs are less productive than external
DSLs.

To bridge the gaps between internal and external DSLs, we also apply ADOM-
JAVA to further guide the developers, reducing their development efforts and thus
increase their productivity and code quality. As we use two levels of abstraction,
we gain the advantages of external DSLs and integrate the approach with GPPL
we therefore gain the benefits of internal DSLs. Furthermore, the application
of ADOM-JAVA may also be used for dictating architectural and programming
styles.
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7 Evaluation

In order to evaluate the use of ADOM-JAVA, we performed an experiment with
undergraduate students to check whether the approach can lead to better code
quality and to development time reduction. The research questions were the
following: (1) Does the development of an application with ADOM-JAVA lead
to better code quality with respect to the development of application with Java?
(2) Does the development of application with ADOM-JAVA better address the
functional requirements with respect to the development of application with Java?
(3) Does the development of an application with ADOM-JAVA lead to a reduction
of the development time with respect to the development of application with
Java?

The subjects in the experiment were 50 undergraduate students in an Information
Systems Engineering program at the Ben-Gurion University of the Negev, who
participate in an “Object-Oriented Analysis and Design” course. During the course,
the students studied ADOM and its capabilities and, in particular, the application of
ADOM-JAVA. The study took place at the end of the course as a class assignment.
The experiment consisted of two groups. The students in both groups received a
requirement document of the application (a lab management system) and the group
that uses ADOM-JAVA received the domain code as well as the supported tool.
Note that the domain was familiar to all students, as it was part of the course
material. The experiment lasted 9 hours in which the students had to provide a
working application, which fits the requirements. The experiment took place in
various sessions, where each session consists of students programming with regular
Java and students programming with ADOM-JAVA. Their work was supervised to
ensure that each student perform the task independently of the others. During the
experiment the students were allowed to take breaks as the experiment duration
was long. To encourage the students’ performance, we motivated them by adding a
bonus to their final grades, in accordance with their achievements.

To check the outcome of the students, we measured the development time
(hours), ran a series of tests to verify the functionality (number of tests passed), and
examined the code structure in terms of layer separation and object responsibility
assignments. Table 2 presents the experiment results. It can be seen that the students
who used ADOM-JAVA achieved better results in all categories. This was very clear
with respect to the development time as the differences were statistically significant
(using Wilcoxon rank sum bidirectional test) and with respect to code quality.
The differences related to the functionality were a bit lower (and not statistically
significant) since the number of tests was low and the application was relatively
simple.

In addition to the empirical analysis we interviewed the subjects who used the
ADOM-JAVA. They mentioned that the approach indeed introduces development
guidance, yet further training and tool improvement is required.

Although further examination is required, following the results it can be observed
that although explicit domain knowledge may be cumbersome, it does have a
positive effect over the development process.
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Table 2 The experiment results

ADOM-JAVA Regular Java Sig.

# Participants 26 24
Development time (hours) Average 7.49 8.43 0.001

Std 1.22 0.93
# of pass tests Average 2 1.54 0.107

Std 1.02 0.98
# of problems concerning

layer separation
0 8

# of problems concerning
responsibility assignments

5 16

8 Summary

Reusability has long been discussed and addressed by both practitioners and
researchers. The main goal of reusability is to increase productivity in terms of
reduced development time and increased code quality. Many reuse techniques have
been devised, yet their usage might introduce difficulties. In this chapter we refer
to one of the common reuse techniques, namely, frameworks. It is well known that
frameworks provide a rich knowledge and implementation for the application that
uses them. Yet, due to the amount of knowledge (and implementation) encapsulated
in these frameworks, it is difficult to apply these effectively. To bridge this gap, in
this chapter we adopt a domain engineering approach, ADOM, adapt it to the context
of programming and frameworks, and demonstrate how that approach guides the
reusability of a given framework. We also evaluate the approach and find it useful
for the task at hand.

While ADOM-JAVA looks promising in increasing developers’ productivity with
respect to frameworks and domain-specific languages, it is clear that additional
examination is required. Currently, the meta model of ADOM consists of only
the reuse mechanism with two type of constraints. Thus, we plan to examine
the specification of the reuse indicators to further facilitate the reuse guidance.
In particular, we are interested in examining which other reuse mechanisms are
required to be supported and what are the parameters needed for their configuration.
In addition, the usage of ADOM-Java should be further explored and evaluated.
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Domain-Specific Modeling Languages:
Requirements Analysis and Design Guidelines

Ulrich Frank

Abstract In recent years, the development of domain-specific modeling languages
has gained remarkable attention. This is for good reasons. A domain-specific
modeling language incorporates concepts that represent domain-level knowledge.
Hence, systems analysts are not forced to reconstruct these concepts from scratch.
At the same time, domain-specific modeling languages contribute to model integrity,
because they include already constraints that would otherwise have to be added
manually. Even though there has been a considerable amount of research on
developing and using domain-specific modeling languages, there is still lack of
comprehensive methods to guide the design of these languages. With respect to
the complexity and risk related to developing a domain-specific modeling language,
this is a serious shortfall. This chapter is aimed at a contribution to filling the gap. At
first, it presents guidelines for selecting a metamodeling language. Its main focus is
on supporting the process from analyzing requirements to specifying and evaluating
a domain-specific modeling language.

Keywords Graphical notation of DSML • Quality of DSML • Design of DSML •
Design process of DSML • Requirements analysis of DSML

1 Introduction

In recent years, the idea of using modeling languages that were designed for more
specific purposes—so-called domain-specific modeling languages (DSML) —has
gained increasing popularity. This is for convincing reasons: DSML promise to
promote convenience and productivity of modeling, since users do not have to
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reconstruct technical terms on their own. At the same time, they contribute to model
quality, since the concepts that are provided by a DSML should be the result of
an especially thorough development process. The integrity of models, as a specific
aspect of their quality, is promoted, too, since the syntax and semantics of a DSML
allow for preventing nonsensical models to a certain degree. In addition to that, a
DSML will often feature a special graphical notation (concrete syntax ) that helps
to improve clearness and comprehensibility of models.

However, designing a DSML is not a trivial task. Against this background, it is
remarkable that there is hardly any method for guiding the development of modeling
languages in general, the design of DSML in particular. Work on the evaluation of
modeling languages, e.g., [4, 7, 12], provides language designers with criteria they
should account for. However, these approaches are restricted to a few aspects only—
and do not focus on guidelines for how to satisfy the suggested language features.
Formal quality criteria—see for instance [13]—are more concrete, but not sufficient
for guiding the design of a language because they fade out the relationship of a
language to the targeted domain and to the prospective users. In recent years, method
engineering, i.e., a methodical support for developing modeling methods, has gained
remarkable attention. Since a modeling method consists of at least one modeling
language and a corresponding process model, one would assume that work on
method engineering includes support for the development of modeling languages.
However, this is not the case. While there is a plethora of approaches to method engi-
neering (for an overview see [8]), they all focus on the configuration of process mod-
els and take the modeling language as given. In a comprehensive book on domain-
specific modeling, Kelly and Tolvanen describe the development and use of DSML
[9]. While they provide valuable advice that is based on a number of corresponding
projects, their focus is mainly on technical aspects, especially on code generation.

The current lack of support may be attributed to the fact that those who develop
modeling languages are usually highly specialized experts. However, that does not
mean that they are not in need for support, since the design of modeling languages
can be an extremely demanding task that faces serious obstacles:

Lack of support by users: Today, a DSML is still an artifact most prospective
users are not familiar with. At the beginning, they do not know sufficiently what
they may expect. Often, there will be no similar DSML available that could be
used as a demonstrator. The lack of knowledge about the targeted artifact will
most likely not promote the prospective users’ enthusiasm. But even those who
understand the basic idea do not have to appreciate it: The introduction of a new
language does not only imply the effort of learning it, it will also require giving
up the use of GPML users are familiar with. Hence, it comes with the threat of
challenging existing competence and reputation.
Amorphous requirements: As long as users lack a clear imagination of the
instrument they may expect, it will be difficult to get them involved in the
process of gathering and shaping requirements. On the other hand, language
designers will often be not sufficiently familiar with the targeted domain to
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define requirements on their own. This problem will be the more serious the
less experience designers of a DSML have gained in similar projects.
Economics hard to judge: Usually, an economic justification will be most
effective. That would require showing that the investment into a DSML produces
a satisfactory return. However, calculating the economics of a DSML in advance
is facing serious obstacles. As a consequence, it will be challenging to convince
managers who decide about respective budgets.

The difficulties in analyzing the economics of DSML in advance are also related
to a general design conflict. To take advantage of economies of scale, a DSML
should be reusable in a wide range of application scenarios. Hence, the language
concepts should not comprise too much domain-specific semantics. At the same
time, however, a DSML should be a tool that provides effective support. The
more domain-specific semantics a DSML includes the better its contribution to
productivity—in those cases it fits.

This chapter presents guidelines for designing DSML that account for these
challenges. The guidelines form the foundation of a corresponding method for
developing DSML. A metamodeling method consists of a metamodeling language
and a corresponding process model. Therefore, criteria for selecting a metamodeling
language will be proposed. The main focus of the chapter will be on supporting the
process from analyzing requirements to specifying and evaluating a DSML. The
peculiarities of requirements analysis are addressed by the introduction of a struc-
ture to build and analyze modeling scenarios. The approach originates from work on
DSML for enterprise modeling, e.g., for modeling business processes, resources, IT
infrastructure, strategies, etc. The guidelines are, however, not necessarily restricted
to this focus.

2 Domain-Specific Modeling Languages: Generic
Requirements

While the development of a DSML will always require a thorough analysis of
the targeted domain, there are also generic requirements that should be accounted
for by every DSML development. Formal requirements such as correctness and
completeness are certainly important, even though they may be relaxed in a
particular case depending on the purpose of a DSML. Ontological criteria seem to be
even more important, since they promise to guide the design of particular language
concepts. Weber suggests referring to the ontology introduced by Bunge [2]. Based
on Bunge’s work, he proposes “ontological completeness” and “ontological clarity”
as a core requirement [15, pp. 92] modeling languages should satisfy. The demand
for ontological completeness is satisfied, if a modeling language covers all basic
concepts proposed by the reference ontology, which was adapted from Bunge’s
work [14]. It includes basic concepts to describe static, (e.g., “things,” “properties
of things”) and dynamic (e.g., “events,” “states”) abstractions. Ontological clarity
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demands for avoiding concept overload, redundancy, or excess. A concept of a
modeling language is overloaded if it maps to more than one concept of the
ontology. It is redundant if there is already another language concept that maps
to the same concept of the ontology. If it maps to none, it is regarded as excessive.
While Weber’s approach was adopted by others—e.g., [3] and [12]—it suffers from
a severe misconception, which makes it especially useless for DSML. Usually, a
modeling language is focusing on a particular abstraction, e.g., static, functional, or
dynamic. Hence, it is not ontological complete on purpose—and for a good reason.
Concepts offered by a DSML may be overloaded on purpose, too. Take, for instance,
the concept “process” that may be part of a DSML for modeling business processes.
It will usually combine static features (e.g., average costs) and dynamic features.

The following generic requirements are related to the pragmatics of a DSML.
Hence, they account for prospective users and applications. The prospective users
of a DSML include domain experts, systems analysts, and software developers.
While it is likely that these groups will emphasize different specific requirements,
there are three generic requirements that make sense for all users: simplicity,
comprehensibility, and convenience of use. Note that these requirements are not
necessarily compatible.

Requirement P1: The concepts of a modeling language should correspond to
concepts prospective users are familiar with. That recommends reconstructing
existing terminology. Furthermore, it recommends using graphical symbols that
are suited to illustrate the corresponding concepts’ meaning. Rationale: The more
users are familiar with the concepts of a DSML and their representation, the
easier it will be for them to understand and use them properly.
Requirement P2: A modeling language should provide domain-specific concepts
as long as their semantics is invariant within the scope of the language’s
application. Rationale: Only if the semantics of a modeling concept is invariant
within the range of its intended use, it is possible to satisfy all prospective users.
Requirement P3: The concepts of a language should allow for modeling at a
level of detail that is sufficient for all foreseeable applications. To cover further
possible applications, it should provide extension mechanisms. Rationale: A
DSML is intended to cover a certain domain only. At the time of its specification,
there needs to be a clear idea of this domain and related applications. However,
it cannot be excluded that further aspects of the domain will be discovered that
should be represented by the DSML. Extension mechanisms provide support for
dealing with this change.
Requirement P4: A modeling language should provide concepts that allow for
clearly distinguishing different levels of abstraction within a model. Rationale:
Conceptual models may represent different levels of abstraction, e.g., types
and—in rare cases—instances. Overloading a model with different levels of
abstraction compromises an appropriate interpretation of a model.
Requirement P5: There should be a clear mapping of the language concepts to
the concepts of relevant target representations. In an ideal case, all information
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required by the target representations can be extracted from the model. Rationale:
A target representation may be characterized by various semantic peculiarities,
as it is, for instance, the case with object-oriented programming languages. It
will contribute to risk and excessive costs, if the mapping of DSML concepts to
target representation concepts is left to users.

3 Selecting a Metamodeling Language

The specification of a DSML depends chiefly on the corresponding metamodeling
language (MML). The following requirements serve to guide the selection of a
MML. For a more comprehensive analysis of requirements for MML, see [5].

Requirement MM 1: A metamodeling language should be supplemented by a
metamodeling environment that supports the realization of model editors. Ratio-
nale: A DSML will usually require the use of a corresponding model editor. The
development of a model editor is a major effort. Therefore, effective support from
a metamodeling environment can be crucial for the economics of developing a
DSML. A metamodeling environment can either support code generation from
metamodels or—more preferable—allow for instantiating metamodels directly
to the models used by a model editor.
Requirement MM 2: The language concepts used on different levels of abstrac-
tion, such M2 or M1, should be clearly separated. Rationale: If a metamodeling
language does not allow for distinguishing different levels of abstraction required
to specify a modeling language, this will not only cause confusion but also
require substantial effort for additional constraints and tools to dissolve ambi-
guity.
Requirement MM 3: The graphical notation of a metamodeling language should
correspond to prevalent graphical notations, e.g., of data or object modeling
languages. At the same time, the notation should include elements that allow for
distinguishing a metamodel from an object-level model at first sight. Rationale:
Many language designers will be familiar with the ERM paradigm of modeling.
However, representing metamodels in the same notation as models on the object
level will contribute to confusion (this corresponds to the previous requirement).
Requirement MM 4: The concepts of a metamodeling language should be
supplemented by a language for specifying constraints. Rationale: Metamodels
will often leave ambiguities, which may require additional constraints.
Requirement MM 5: The concepts offered by a metamodeling language should
allow for a clear mapping to concepts used for software development. Rationale:
The efficient use of a metamodeling language requires a corresponding meta-
modeling tool, the development of which is facilitated by a respective mapping.
In the ideal case, there is a common representation
Requirement MM 6: A metamodeling language should allow for distinguishing
between different levels of abstractions. This includes especially the distinction
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between characteristics of types and of corresponding instances. Rationale:
While a modeling language is usually focused on the description of concepts,
e.g., types or classes, instead of particular instances, it is sometimes required to
express characteristics that apply to all instances of a type. To give an example:
The concept “process” within a language for modelling business processes serves
to specify characteristics of a process type. While it is a well-known fact that any
process instance starts and terminates at a certain point in time, it is not possible
to express this as an attribute of a process type. There are various approaches to
address this requirement, such as “powertypes” [11], “clabjects” [1], or “intrinsic
features” [5].
Requirement MM 7: A metamodeling language should provide concepts that
allow for representing instances. Rationale: In rare but nevertheless important
cases, it may be required to model instances. Only if a metamodeling language
provides a corresponding concept, this aspect can be specified for a DSML.
For instance: A DSML for modeling logistic systems may require representing
particular cities.
Requirement MM 8: A metamodeling language should account for dissemination
and standardization. Rationale: The higher the dissemination of the language, the
more attractive economies of scale. Standardization contributes to protection of
investment.

4 Role Model and Macro Process

Developing a DSML will often be major effort that requires division of labor.
Therefore the skills and responsibilities that are needed should be accounted for
in time. Especially with larger projects an explicit role model is useful to support
project management. The profiles of two roles may partially overlap. A role may be
assigned to one or more actors. Also, an actor may hold many roles. Typical roles
include domain expert, user, business analyst, language designer, tool expert, and
graphic artist. The guidelines include an extensible structure for describing roles and
a corresponding set of prototypical role profiles. Table 1 illustrates the application of
this structure to the role “language designer.” Note that language designer, domain
expert, and business analyst are supposed to play a key role in analyzing language
requirements.

The specification of a DSML can be a task of remarkable complexity. It depends
on intellectual creativity, especially on the ability to discover (or create) abstractions
that are powerful with respect to a given purpose. The act of abstraction is a
matter of individual cognitive dispositions. While the impact of a process model
on cognitive dispositions is very limited, it may still help with reducing the overall
complexity—thus promoting productivity and quality. Hence, the proposed process
model is intended to provide an informed orientation—certainly not a cookbook.
The introduction of a process model is usually accompanied by the advice not to
interpret it as a strict sequence, but to allow for feedback loops.
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Table 1 Exemplary use of structure for specifying role

Language designer

Rationale This role is of pivotal relevance for the development of a DSML. Language 
designer is not an established profession yet, nor are the required skills 
entirely taught in prevalent academic programs. This makes staffing a 
critical success factor — and may require the need to first develop the 
required competence

Professional 
training 

Should have a formal education — at best in Information Systems or
Computer Science with additional studies in linguistics — that enables him
to design conceptual models on different levels of abstraction 
Should be trained in enterprise modeling which implies substantial 
knowledge about methods to analyze and design organizational action 
systems 
Should have advanced experience in the design and evaluation of DSML
and corresponding tools 
Should have advanced communication skills. This includes the ability to 
carefully listen to people with different backgrounds and to explain the 
consequences of design alternatives to prospective users 

Information 
technology 
skills

Should be familiar with common approaches to specify (semi-) formal 
languages 
Should have a background in Software Engineering. This is required to 
understand and overcome the semantic gap between metamodels and 
implementation languages

Mental
capabilities

Should have an advanced competence in developing ambitious 
abstractions 
Should be aware of the role of language as a core instrument for 
structuring and managing the targeted domain 
Should appreciate the use of methods (the targeted DSML would be part 
of)
Should be able and willing to think beyond current work practices 

Attitude Should appreciate cross-disciplinary collaboration 
Should combine a distinctive preference for language quality with an 
appreciation of business goals and constraints 
Should show respect and empathy towards users and domain experts 

For the development of a DSML, this advice is of crucial importance. The
contingent nature of the subject will often require stepping back to reconsider
previous assumptions. The process that is intended to guide the development of
DSML is divided into a macro process and a micro process. The macro process
shown in Fig. 1 is not meant as the only way to structure the overall process (a
proposition that could hardly be justified anyway), but as one approach that makes
sense. Subsequently, each phase of the macro process will be characterized by
further details including a micro process. The phase “development of modeling tool”
is included in the macro process, since it will often be necessary in order to make
the DSML usable. However, the corresponding micro process is left out, because
that would require to focus on software engineering aspects and thus to leave the
primary focus of this chapter. Also, the selection of an MML is not accounted for
in the description of the corresponding micro process because we have considered
it already.
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Fig. 1 Illustration of macro
process

5 The Micro Processes

Each phase within the macro process is described according to a certain structure.
Among other things it refers to a micro process that represents the suggested course
of action for each phase of the macro process and to a set of roles, which are
described in the corresponding role model.

5.1 Clarification of Scope and Purpose

The contingencies related to the conception and prospective use of DSML will
usually demand for a clarification of scope and purpose. This includes the outline of
a convincing motivation and rationale for the project.

Objectives: In the ideal case, the phase should produce a description of essential
design objectives and a definition of the budget. However, due to the unavoidable
contingencies, it may be required to first move on to subsequent phases before
this outcome can be realized.
Micro Process: The rationale of a DSML will usually be related to generic
prospects such as promoting productivity and quality. These need to be clarified
with respect to the specific purpose and scope of the DSML to be developed. For
this purpose, it is required to identify the modeling tasks that are to be addressed.
These may include explicit modeling tasks of the past or other tasks, such as
programming, which could be replaced by modeling tasks in a beneficial way.
To get a clearer picture it is important to look at previous projects that were
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Fig. 2 Micro process
“Clarification of Scope and
Purpose”

aimed at these modeling tasks asking what impact a DSML would have had on
performance and outcome. To outline the scope of the targeted DSML, modeling
projects can be categorized with respect to modeling subject, complexity, and
frequency. The higher the complexity and frequency of modeling a certain
subject, the higher the benefit to be expected from a respective DSML. Also,
the prospective users’ attitude and skills need to be accounted for. If they are
reluctant or even reject the idea of a DSML, a negative impact on economics can
be expected. Against this background, one can conduct a high-level assessment
of benefits with respect to certain classes of modeling tasks and corresponding
users. To evaluate the economics, costs and risks of introducing, using and
maintaining the DSML need to be addressed. This requires accounting for the
availability of development tools, the qualification of developers and users,
and changes of requirements to be expected in future times. Sometimes, the
availability of a DSML will enable additional options such as the integration
with other DSML or the use of models at run time. With respect to evaluating the
investment into the development of a DSML, these options should be taken into
account. Even if the economic perspective of a DSML seems to be promising, its
feasibility may still be a challenge—especially if no previous experiences with
similar projects exist. In these cases, it may be a good idea to start with a smaller
scale project.
Input: Profiles provided by developers and users, outline of modeling scenarios,
reports on previous modeling projects.
Participants: Manager, Business Analyst, User, Domain Expert, Language
De-signer
Risks: Lack of information and knowledge may contribute to an inappropriate
outline of the DSML’s intended scope and to a misleading assessment of its
benefits. To counter this risk, it is crucial to include respectively qualified experts.
Results: preliminary project plan, budget at least for first project phase, assign-
ment of personnel at least to first phase, including external service providers,
outline of long-term perspective
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Fig. 3 Micro process
“Analysis of Generic
Requirements”

5.2 Analysis of Generic Requirements

The conception of DSML should account for generic requirements. They apply to
every DSML, however, with different weight. Also, they may need to be adapted to
a particular DSML.

Objectives: Specify generic requirements and create corresponding documenta-
tion.
Micro Process: There are not many catalogues of generic requirements available.
Also, with respect to the fact that the field has not reached a mature state yet,
not all proposals need to be convincing. Therefore, the analysis of available
catalogues—like the one presented in Fig. 3—should pay special attention to the
rationale given for each requirement.
Input: Existing catalogue(s) of and publications on generic requirements for
DSML.
Participants: Domain Expert, User, Language Designer, Tool Expert
Risks: If no appropriate catalogue is available, the development of generic
requirements is a cumbersome activity that implies the risk to miss requirements.
Even if one can build on an existing catalogue, there is no guarantee that it is
comprehensive.
Results: Catalogue of generic requirements. Each requirement should be
described and justified with respect to the purpose of the DSML. Also, each
requirement should be characterized with respect to its relevance.

5.3 Analysis of Specific Requirements

As already elucidated above, it is probably the most challenging peculiarity of
developing a DSML that specific requirements can often not be analyzed in a
straightforward way. Therefore, there is need for an approach that does not rely on
merely analyzing existing modeling tasks and asking users for their expectations.

Objectives: Develop a comprehensive list of specific requirements.
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Fig. 4 Micro process
“Analysis of Specific
Requirements”

Micro Process: To analyze specific requirements, users, business analysts, and
language designers need to be supported with developing a clear idea of what
they may expect from the DSML. Our experience with developing DSML
suggests that one approach is especially suited for this purpose. Based on use
scenarios that are developed with respect to previous and future tasks, the
potential use of the DSML is illustrated through the design of preliminary
diagrams. These serve as a medium for further refining the use scenarios. To
support the derivation of specific requirements, it has proven successful for us to
describe the scenarios in a certain structure.

For developing use scenarios relevant modeling scenarios from the past should
be identified and described. In addition to that further possible use scenarios may
be developed. This can be promoted by presenting rudimentary scenarios which are
then further refined. Each scenario is related to a certain diagram type. To get an
idea what information should be represented in respective diagrams, one can start
with a rudimentary graphical representation and then develop a list of questions that
are related to the diagram. With respect to preparing for a corresponding modeling
tool, it is helpful to specify for each question whether it can be answered by a
machine (A), by a human only (H), or in a partially automated way (P). Note
that the stages “develop use scenarios,” “design exemplary diagrams,” and “refine
scenarios” are interweaved. Each diagram type should be clearly described with
respect to its purpose and its key concepts. Furthermore, it should be related to
other diagram types that might supplement it with respect to specific purposes.
The actual example diagrams have an important function especially for novice
users, since they provide an illustration of what they might expect from the
intended DSML. Therefore, designing exemplary diagrams should account for an
illustrative graphical representation—even though it will be replaced by a more
professional notation later on. The notation used in the exemplary diagrams should
be discussed and possibly further developed with prospective users to gather hints
for the design of the final graphical notation. Based on the example diagram and
the extensible list of questions, all participants—supported by domain experts and
language designers—are supposed to commonly develop specific requirements. If a
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requirement poses a substantial challenge to language design or the realization of a
corresponding tool, it should be marked as such. They need to be addressed at the
design stage at the latest and may result in relaxing corresponding requirements.

The following example illustrates this approach. It shows a use scenario for
a prospective DSML to model services, which serves the purpose to support
documenting, analyzing, and (re-) designing a system of services. A corresponding
example diagram would be designed through multiple refinements during the course
of asking questions such as:

• What is the share of services that are obtained from external suppliers? A
• How is the average level of service satisfaction? A
• Are there similar services that could be gainfully combined? P
• Which business processes are supported by a service? A
• Which services are potential subjects of outsourcing? H
• Are there service contracts that need improvement? P

Figure 5 shows a corresponding example diagram that serves to produce a common
understanding of the range of tasks to be supported by the DSML. It also contributes
to identifying specific requirements and particular design challenges—which are
illustrated in the following examples.

Specific Requirement SR1: It should be possible to specify different types of
services.
Specific Requirement SR2: There should be concepts that allow for defining
associations between services and between services and other relevant concepts
such as business processes, software systems, and organizational units.
Specific Requirement SR3: The language should provide concepts for specifying
service contracts on various levels of detail.
Challenge C1: In order to promote reuse, i.e., modeling efficiency, and model
integrity, it would be good to provide concepts that allow for expressing com-
monalities of a set of service types. For this purpose, specialization relationships
would be particularly useful. However, the specification of a specialization
relationship implies a remarkable challenge: In an ideal case, specialization does
not only mean that a specialized concept includes the features of its superordinate
concept. Furthermore it implies that an instance of the specialized concept can
substitute an instance of the superordinate concept. A possible solution could
be to relax the ideal concept of specialization—e.g., to give up the demand for
substitutability.
Input: Previous modeling scenarios; collections of complex analysis and decision
tasks, especially those that require accounting for multiple perspectives.
Participants: Business Analyst, Domain Expert, Language Designer, Manager,
Tool Expert, User; optional: Graphic Artist.
Risks: If all participants lack a background in modeling with DSML, it may be
difficult or even frustrating to develop appropriate scenarios and corresponding
diagrams. This, however, is crucial for the analysis of requirements. While the
scenarios and corresponding exemplary diagrams are an important instrument
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Fig. 5 Example diagram to illustrate a possible use scenario

to analyze requirements by illustrating the purpose of the prospective DSML,
they may also compromise the analysis of requirements by restricting the scope
to particular aspects. Therefore, selecting scenarios and creating exemplary
diagrams require experienced domain experts and language designers that have
an idea of how the targeted DSML could look like, but are open minded enough
to appreciate suggestions and requests made by other participants.
Results: Documentation of specific requirements and corresponding rationale;
documentation of specific challenges.

5.4 Language Specification

The specification of the abstract syntax and semantics is the pivotal part of designing
a DSML. It requires accounting for the range of potential applications. It will
usually include various design decisions, some of which are common in conceptual
modeling while others are specific for the design of metamodels.
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Fig. 6 Micro process:
“Language Specification”

Objectives: Specification and documentation of metamodel and corresponding
constraints.
Micro Process: The specification of a DSML is directed towards reconstructing
concepts of the respective domain of discourse. For this reason, it makes sense
to first develop a glossary with key terms. At its first development step that
we refer to as “basic,” the glossary is a dictionary of terms with corresponding
descriptions. The basic glossary serves as a collection of terms that are used
in the targeted domain of discourse. That does not mean, however, that each
of these terms is suited to be included in the DSML. Instead, it needs to be
decided whether a term should be reconstructed as part of the intended DSML or
whether it should rather be specified with the DSML. To support this decision, we
use an extended structure of the glossary that reflects key decision criteria. It is
documented in [6]. The conception of DSML that we favor is aimed at a covering
a wider range of (re-)use. In other words: Usually we do not develop a DSML
for just one project as it is suggested e.g., by [9]. Therefore, it is important that
the semantics of a language concept is invariant throughout the entire domain
and in time (Requirement P2). To promote comprehensibility and usability of
a DSML it should be avoided to include concepts that are not needed. Hence,
each collected term should be checked for its relevance. A language concept
is—usually—intended as an abstraction over types. These considerations result
in two demands: First, the semantics of the respective instances should vary—
otherwise it would literally not make much sense to bother with instantiations.
Second, it should be checked whether possible instances are perceived intuitively
as types. Table 2 shows an exemplary entry of a concept dictionary. The
suitability of a concept is judged by evaluating the above criteria, where “C”
indicates a good fit, “�” indicates that a concept is inappropriate with respect to
a certain criterion, and “c” is used to express that it is contingent.

Subsequent to assessing the collected terms, it is required to decide for each term
whether or not to include it in the DSML. This decision recommends reflecting upon
the intended scope, i.e., the targeted domain of the language. As a consequence,
one may decide to exclude a term from the language or to narrow the scope to an
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Table 2 Exemplary excerpt of concept dictionary

Organisational unit 

An organisational unit is a part of an organisation that reflects a permanent principle of the
division of labour. An organisational unit may contain other organisational units

Example 
instantiations

“Division Electronic Devices”, “Marketing Department”, “Car 
Manufacturing Plant”, “Human Resources Department” 

(a) invariant 
semantics

The term is used on a high level of abstraction. The 
essence of its semantics should not vary substantially +

(b) relevance This is a key term for describing organisation structures +
(c) variance of type 

semantics
The semantics of types of organisational units can vary 
significantly +

(d) instance as type 
intuitive 

At least some of the potential instances will be regarded as 
types almost intuitively, e.g., “Department”, “Division”. Other
potential instances, such as ‘Marketing Department’, 
“Consumer Electronics Division”, will probably not be 
regarded as types by many. Hence, the final assessment of 
this criterion depends on the recommended instantiation 

c

extent where a particular term is characterized by invariant semantics. This step
results in a revised version of the extended glossary. Finally, entries in the glossary
can be supplemented with respective designators in further languages to support
international use. Before specifying the language with a metamodel, a concept
dictionary can be created. It serves two purposes: On the one hand, it should
prepare for the construction of the metamodel; on the other hand, it serves as a
documentation of the terms specified in the metamodel. The structure of a concept
dictionary reflects specific design decisions to be made with the construction of
metamodels. For this purpose, it does not only represent the collection of attributes
and associations that are required for the specification of a concept. In addition
to that it proposes a structure to support a more elaborate description. Attributes
are separated into two groups. Attributes on the type level are supposed to describe
characteristic features of a type that are instantiated from the respective meta type—
independent from its own instances. This is different with the category “Attributes
with references to instance level.” It serves to group those attributes of a type that
can be initialized only by accounting for its instances. For example: an attribute such
as “averageNumberOfInstances” would require counting the number of instances of
a process type within a certain time period. A concept dictionary can grow to a
remarkable size. Creating—and maintaining—can therefore require a substantial
effort. It is a particular challenge to synchronize it with corresponding parts of
the glossary and the metamodel. Therefore, creating a concept dictionary will
usually make sense only if there is a tool that synchronizes corresponding parts
of the dictionary and the metamodel. The next step concerns the selection of a
metamodeling language and a corresponding metamodeling tool (see Sect. 3). It
is optional: Often, there will be no choice anymore because the use of a certain
metamodeling language is mandatory.
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Like with any other complex abstraction, the design of a metamodel will usually
require demanding decisions. Often, they relate to conflicting design goals. All
design decisions that do not seem to be trivial should be documented using a
common structure, e.g., “problem description,” “design alternatives,” “selected
alternative,” “rationale.” In addition to design decisions, the specification of a
metamodel is also based on principle attitudes and styles of the language designer.
For instance, some designers prefer to specify as much of a DSML’s semantics
through the abstract syntax as possible, while others tend to keep the abstract syntax
simple and represent semantics with additional constraints. Both styles have specific
advantages and shortcomings. By putting more emphasis on additional constraints,
a metamodel can be kept simpler. Also, representing semantic constraints on a
syntactical level will often require introducing artificial concepts. Therefore, aiming
at a lean metamodel with additional constraints may—at first sight—contribute
to improved comprehensibility. However, for many observers, a larger number of
formal constraints will not improve the readability of a metamodel. With respect to
implementation, this style delegates more responsibility to programmers. Usually,
the meta types of a metamodel will be represented as classes in a corresponding
model editor. In the case of emphasizing syntactical specification, the correctness
of larger parts of a model can be checked on the class level. In the other case,
constraints have to be implemented and checked against particular instance states.
Therefore, with respect to integrity, there is good reason to avoid specifying “types”
through instance states. However, at the same time, introducing additional meta
types to emphasize syntactical specification may threaten integrity: Certain changes
applied to a model are likely to require class migration—e.g., migrating an instance
representing an attribute from the class “SimpleAttribute” to the class “Attribute.”
Class migration is not only costly, but also risky. Due to conflicting requirements,
choosing a particular specification style is also a matter of subjective preferences.
To guide the reader of a metamodel with a better understanding, it is a good idea
to briefly comment on the preferred specification style. The examples in Fig. 7
illustrate the difference between specification styles that put more emphasis on
semantics or on syntax, respectively.

As soon as the specification of a metamodel is completed, an intensive and
thorough evaluation is mandatory. This is mainly for two reasons: First, a metamodel
usually includes specific pitfalls related to subtle differences in abstraction levels,
neglected modeling scenarios or inappropriate constraints. Second, a language
specification should be as stable as possible, because later changes will usually
result in costly adaptations of models and especially of related tools. Unfortunately,
the evaluation of a metamodel faces particular challenges. Even more than other
conceptual models, a metamodel cannot be tested directly against targeted domain
languages. This is for various reasons. In general, the concepts specified through
a metamodel are linguistic constructions that include a prescriptive element in
the sense that they propose how to structure the targeted domain. Therefore, the
concepts may intentionally differ from existing technical concepts, because they are
supposed to be superior with respect to certain purposes. However, at the same time,
they should correspond to terms prospective users are familiar with, in order to foster
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Assess Credibility Prepare Invoice

Assess Credibility Prepare Invoice

Fig. 7 Illustration of prototypical specification styles

comprehensibility and usability (Requirement P1). Conflicting goals like this are a
further reason why a simple comparison against an existing terminology will often
not be sufficient. It is certainly a good idea to involve prospective users. However, it
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Fig. 8 Micro process
“Design of Graphical
Notation”

may be asked too much of prospective users to judge a metamodel directly. Instead,
the concepts could be illustrated by showing how to use them for exemplary mod-
eling purposes. The revised metamodel needs to be documented comprehensibly.

Input: Examples of metamodels, previously developed conceptual models of the
targeted domain, guidelines for designing metamodels.
Participants: Language Designer, Domain Expert, User, optional: Tool Expert.
Risks: The specification of a DSML will usually face remarkable challenges.
Among other things, they relate to conflicting requirements and to the differenti-
ation of language and language application (see above). Language designers with
too little experience may overlook these challenges and produce metamodels that
are not satisfactory. On the other hand, language designers who are aware of the
specific problems may struggle for a long time without developing convincing
solutions.
Results: Metamodel, preferable specified with a metamodeling tool that allows
for further transformation; extensive documentation

5.5 Design of Graphical Notation

It seems reasonable to assume that the graphical notation is of considerable
relevance for the comprehensibility, usability, and productivity of a DSML. This
assumption is backed by various studies (for an overview, see [10, p. 758]).
Therefore, it will usually be no good idea to regard the graphical notation as a
meaningless (in the sense of formal semantics) and, hence, marginal feature of a
modeling language. Instead, it is recommended to design it with special care and
consideration.

Objectives: Design and document graphical notation.
Micro Process: The creation of a graphical notation is a special challenge
for at least two reasons. First, there is not much solid ground—in the sense
of a theoretical foundation—to build on. Moody proposes probably the most
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ambitious approach to address this problem [10]. However, as we shall see it is
still not sufficient to clearly guide the design of a graphical notation. Second,
those who are experts in the specification of a modeling language focus on
semantics and abstract syntax. Usually, they are no experts in the design of a
graphical notation. Sometimes, they will not even be interested in this aspect
of language design. Third, those who are trained in the design of iconographic
symbols will often lack knowledge about the use of DSML. Even though the
existing theoretical background is not satisfactory yet, there are a few guidelines
that are backed by theoretical considerations. Therefore, we suggest accounting
for existing guidelines—but not without carefully analyzing how to apply them
appropriately. The following guidelines reflect our own experience and also build
on suggestions in the respective literature.
Guideline 1: Build semantic categories of concepts. A category should be
characterized by clear features and be intuitively distinguishable from other
categories. Rationale: Semantic categories are an important prerequisite for
designing expressive and discriminating symbols. Example: In process modeling
one key category could comprise processes and a further category could comprise
events.
Guideline 2: Create generic symbols for each category. On the one hand, the
concepts covered by a category should be represented by variations of the respec-
tive generic symbol. On the other hand, generic symbols of different categories
should be distinguishable at first sight. Rationale: This guideline should foster
the appropriate perception and interpretation, hence, the comprehensibility of a
graphical notation. It is further refined in guideline 3.
Guideline 3: The bigger the semantic difference between two concepts, the
bigger the graphical difference of the corresponding symbols should be. Moody
speaks of “visual distance” [10, p. 763]. This principle applies both to the
semantic differences between categories and to the semantic differences between
concepts of a particular category. While there is lack of a convincing precise
definition of visual distance, notational differences can be created through
shape, color, or text (see guideline 5). Rationale: Using a modeling language
effectively requires discriminating quickly between concepts. The more different
two concepts look, the faster discrimination should be possible. At the same time,
a low visual distance should help with identifying and appropriately using similar
concepts.
Guideline 4: Prefer icons over shapes. This principle supplements the previous
one. While two geometric shapes can be clearly different, e.g., a circle and
a rectangle, they lack a reference to the represented concept. An icon is
characterized by creating such a reference. This can be realized by an iconic
representation of an object, e.g., a letter or a computer, or by the representation of
a certain characteristic feature, e.g., symbol depicting a lightning for representing
an exception. Rationale: Including a perceptual reference into a symbol will
contribute to a more intuitive understanding of a notation and, hence, improve
its usability and its suitability as a communication medium (see also Require-
ment P1).
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Guideline 5: Combine shape (including icons), color, and text effectively. There
are studies in cognitive psychology which suggest that shape is a more effective
instrument to accomplish visual discrimination [10, p. 763]. Nevertheless,
Moody’s resulting recommendation is not entirely convincing: “For this reason,
shape should be used as the primary visual variable for distinguishing between
different semantic constructs” (ibid). Instead, a more differentiated approach
seems to be better suited. In general, semantic categories should be represented
by shapes (or icons). This will usually involve the use of colors. The same
principle applies to concepts of a certain category, too. However, there are
exceptions to this rule. On the one hand, color can be used as an additional
discriminator. This makes sense, if a concept is very similar to others so that it
would be difficult and/or misleading to define a separate symbol for representing
it. In addition to that, color can be used as an instrument for users to express
additional meaning that is not part of the DSML. Text can be used similarly
to color. It is of particular importance if the variety of concept occurrences is
too large to be covered by symbols. For example: Expressing multiplicities can
be accomplished through a set of symbols as it is done in various flavors of
the ERM. Apart from the question how comprehensible these symbols are for
people who do not use them on a regular base, they are restricted to a given set
of multiplicities. If the concept of multiplicities should allow for defining any
specific upper and lower bound (as long as the upper bound is greater zero and
greater or equal to the lower bound), such an approach simply does not work
anymore. Text as an instantiation of a modeling concept is inevitable whenever it
is required to name concepts of a model. Rationale: Each representation type has
specific advantages that need to be evaluated against the requirements a DSML
is supposed to satisfy. Therefore, combining representation types appropriately
allows for improving a DSML’s usability.
Guideline 6: Avoid “symbol overload” [10, p. 763]. A symbol should be clearly
assigned to one particular modeling concept. Rationale: Overloading symbols
would contribute to ambiguity and confusion.
Guideline 7: Avoid redundant symbols [10, p. 762]. Rationale: If a concept can
be expressed by alternative symbols, both modellers and model observers are
stressed with additional cognitive effort without additional benefit.
Guideline 8: Represent monotonic semantic features of a concept through
compositions of symbols. Sometimes, concepts of a DSML need to be further
refined to allow for expressing a more specific meaning. If this is accomplished
by adding features in a monotonic fashion, each of these features can be
represented by a respective symbol. A particular occurrence of the concept will
then be represented by a composition of related symbols. Rationale: Combining
graphical elements contributes to a more systematic construction of a graphical
notation that is in line with the semantics of the related concepts. It also
helps avoiding overwhelming users with huge palettes of prefabricated symbols.
With respect to building tools, it implies a larger effort for implementing the
composition of more complex graphical symbols. At the same time, it improves
flexibility.
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In addition to principles which guide the design of graphical symbols that
represent certain modeling concepts, further notational elements may be required
to cope with the complexity created by large models.
Guideline 9: A graphical notation should include symbols that allow for reducing
diagram complexity. On the one hand, these are symbols that represent com-
positions of a set of other symbols. If required, they serve as a starting point
for decompositions. A typical example would be a symbol used to represent
aggregate processes. On the other hand, special symbols can be introduced that
allow for depicting a set of identical diagram parts by one common representa-
tion. Rationale: Lowering the visual complexity of a diagram can substantially
contribute to a better understanding and, hence, to increased productivity.

In order to apply the suggested guidelines appropriately, it is mandatory to
develop a clear idea of the prospective language users and the modes of use to be
covered. This recommends answering the following questions:

• Are prospective users already familiar with graphical modeling languages?
• Are they supposed to use the DSML on a regular base?
• What are typical use scenarios?
• What are the concepts of the DSML users are most interested in?
• What are aesthetic preferences of the DSML users?
• Is the group of prospective users homogeneous or rather heterogeneous with

respect to the above questions?

Depending on the answers to these questions, further refinements may be
required. If the prospective users do comprise not only experts but also novices
that will use the DSML only rarely, it may be an option to provide a simplified,
“light” version of the notation that covers only those concepts that are sufficient
for inexperienced users. Note, however, that this may require substantial effort with
respect to modifying/extending the syntax specification. If aesthetic preferences are
expected to vary, one could provide different flavors of a notation, e.g., one that
features artistic icons and a further one that emphasizes a more business-like style.

The design of an elaborate graphical notation recommends involving a
professional graphic designer, which implies to somehow specify the corresponding
assignment. Experience gained in previous projects indicates that example diagrams
featuring a preliminary notation serve as a useful illustration for communicating
concepts and modeling purposes to a graphic designer. Subsequently, the graphic
designer is supposed to develop a draft version of the notation, which will then
be—if required—repeatedly evaluated and revised until a satisfactory state is
accomplished.

Finally, a documentation of the graphical notation is created. It consists at least
of a comprehensive listing of all symbols and respective descriptions. Furthermore,
it helps to illustrate the notation with a few example diagrams.

Input: (Revised) exemplary diagrams from requirements analysis.
Participants: Domain Expert, User, Language Designer, Tool Expert, Graphic
Designer.
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Fig. 9 Micro process
“Evaluation and Revision”

Risks: Often, most of the participants will not have a specific expertise in
designing and judging a graphical notation. While graphic designers should be
familiar at least with the design of iconographic symbols, they may lack a clear
understanding of the very purpose a DSML should serve. As a consequence, there
is a clear risk that the graphical notation remains dissatisfactory. To reduce this
risk, special attention should be applied to the selection of the graphic designer
and to the execution of test procedures.
Results: Documentation of graphical notation, illustrated through exemplary
diagrams.

5.6 Evaluation and Refinement

In order to ensure a certain quality level, it is mandatory to finally evaluate and
possibly revise the DSML—in addition to the previous evaluation of the metamodel
and the notation. The evaluation needs to account for specific challenges.

Objectives: creation of systematic and comprehensible evaluation; if needed,
revision of tool.
Micro Process: First, the evaluation of a DSML and a corresponding modeling
tool recommends checking them against the requirements—both generic (see
Sect. 2) and specific. For some requirements it will be fairly easy to decide
whether or not they are fulfilled. For example: “There should be concepts that
allow for assigning probabilities to alternative paths of executing a business
process”. In these cases, it will be sufficient to determine and document
whether or not a respective requirement is satisfied. With other requirements, an
assessment may be harder. For example: “The modeling language should provide
domain-specific concepts as long as they are regularly used and their semantics
is invariant within the scope of the language’s application”. or: “The concepts
of the language should be easy to comprehend by different groups of users”.
There are various approaches to reduce the respective uncertainty. First, it will
usually be helpful to check language features against the background of a use
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case. Therefore, evaluation recommends building on the use scenarios created
for requirements analysis. Each use case serves to analyze whether and how
corresponding requirements are satisfied by the DSML. For this purpose, a dis-
cursive evaluation is of pivotal importance. It should include language designers,
domain experts, and prospective users. Users as the primary addressees of the
language play a key role. However, that does not mean to simply rely on users’
assessments. Instead, it is important to account for their respective background,
such as experience with similar or other modeling languages, their formal
education, the time they had to learn the language and/or the tool, their attitude
towards DSML in general, etc. Similar considerations apply to other participants,
too. However, language designers can be expected to have a different background
which should enable them to provide more elaborate assessments—which,
however, may also cause subtle bias in their judgment. Hence, the language we
know is a necessary instrument, but it also limits our reasoning powers because
we cannot entirely go beyond our language. Hence, it may well be that a different
language that lies beyond our imagination would provide for a more effective
and efficient structuring of the problem. At the same time the problem itself
might appear different, if it is described/constructed in a different language.
While these considerations seem to be of mainly philosophical nature, they are
nevertheless important for the reflective evaluation of a DSML. On the one hand,
they recommend being sensitive to the effect of existing languages skills. On the
other hand, they emphasize the contingency of the subject: Language skills as
well as language use are subject of change. Therefore a particular DSML is a
moving target. As a consequence, its assessment should not be restricted to a
certain point in time but rather be organized as a permanent process.
Input: Documentation of DSML, tool implementation, documentation, exem-
plary diagrams, use scenarios.
Participants: Domain Expert, User, Language Designer, Tool Expert.
Risks: The evaluation of languages may be jeopardized by various sources
of sometimes subtle bias. In addition to that, there may be political interests
involved that contribute to opportunistic assessments. Therefore, each assessment
should be supplemented by a justification. If it is not possible to give a convincing
justification, the assumptions an assessment is based on should be made explicit.
Results: evaluation report, revised and approved tool.

6 Conclusions

DSML seem as a logical evolution of GPML. Their emergence corresponds to the
evolution of elaborate technical languages which are a key instrument of promoting
industrial and post-industrial productivity. There would be no advanced craft, no
engineering and no medicine without specific technical languages—just to name
only a few fields. Against this background, it seems astonishing that complex
systems are still analyzed and designed with GPML that are restricted to a few
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generic concepts such as “class,” “attribute,” and “state”. DSML represent a clearly
more productive instrument for describing and analyzing problems as well as for
designing systems. However, the specification of a DSML is a remarkable challenge.
This is for various reasons. First, we are entering terra incognita to a certain degree,
because so far there is only little experience with designing and using DSML. This
results in the problem that it will often be difficult to ask the right questions.
Second, the design has to account for competing or conflicting goals. One specific
challenge is the quest for sustainability—even more than a model, a language
should be stable for a longer time—which is contrasted by the contingent evolution
of many domains. Third, the specification of a DSML requires a metamodeling
language. However, it is not trivial to assess the benefit of an instrument one has
little experience with for a complex task one is not too familiar with. The proposed
guidelines are aimed at providing a framework and guidelines to reduce complexity
and risk related to the development of DSML.

The guidelines have gradually evolved from our experience with designing
DSML. In their current state, they represent a major improvement compared to the
times when we did not have any methodical support. That does not mean, however,
that we would regard them as mature. Instead, we rather see them as a repository of
knowledge about developing DSML that should grow with the number of respective
projects. In other words: Prospective users should not take all guidelines for granted,
but reflect upon them and—if required—adapt them. This is especially the case for
researchers who pursue the design of a DSML as a scientific task: Any research
that either aims at analyzing a language and its use or at inventing new “language
games” (i.e., artificial languages and actions built upon them) has to face a subtle
challenge that is caused by the demand to justify prospective contributions to
scientific knowledge: Every researcher is trapped in a network of language, patterns
of thought and action he/she cannot completely transcend—leading to a paradox
that can hardly be resolved. Designing a language is not possible without using a
language. At the same time, any language we use for this purpose will bias our
perception and judgment.
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Domain-Specific Languages
and Standardization: Friends or Foes?

Øystein Haugen

Abstract Domain-specific languages (DSLs) capture the domain knowledge
through the constructs of the language, but making a good language takes more
than combining a set of domain concepts in some random fashion. Creating a
good language requires knowledge not only from the domain but also from the
domain of language design. Generic abstraction concepts turn out to be useful
for many different domains and thus for DSLs. In this chapter we discuss how
DSLs can benefit from standardized generic languages to cope with abstraction
needs. A successful combination will keep the DSL simple and its implementation
maintainable while the generic language will add expressiveness and structuring
means. We give examples of DSLs as well as general ones and use the examples
to illustrate our advice on how to make a good language. We share experiences of
language evolution and finally show an example of combining a generic language
for variability with a DSL for train signaling.

Keywords CVL • DSL • Language • Standardization • Variability

1 Introduction

We will introduce domain-specific languages (DSLs) and contrast them with the
general programming and modeling languages (GPMLs). We look at how some of
the GPMLs have evolved over years.
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1.1 Domain-Specific Languages

A DSL is a language that is confined to a specific area (or domain). Very often the
term is used to denote languages that are designed for well-defined, application-
related domains. We should realize that what constitutes a domain is not easily
defined. The domain may be company or project specific or it may be common to a
larger group of experts or larger group of companies. A domain may be technically
defined or dependent on market situations. The domains can be specific to one
organization or company, or to a broader industrial realm. There is some evidence
that success with DSL design is more often achieved if the domain is narrow and
well bounded [1].

The advocates of DSLs argue that a DSL is the best way to capture the conceptual
essence of a domain in a rather formal and manageable way. Some proponents will
state that it is easy and quick to make a DSL and that there are tools on the market
that generates tools directly from the language definition.

Skeptics of DSLs hold that creating languages is difficult, time consuming, and
must be performed iteratively. While there are tools to help, they cannot conceal
that when you make your own language you need to make all your supporting tools
yourself, too.

Having created a DSL you have full control yourself. Typically you would like
to make a code generator that can tailor exactly the low level code you need in your
development. Proponents say that the code generator will be easy to make since the
concepts are few and simple and you need not think in general terms neither on the
source side nor on the target side.

A DSL can serve as a well-defined bridge between the domain experts and the
IT-experts. The latter are software experts who know programming and modeling
languages but lack the knowledge of the domain that is being described. Even
other groups such as managers and customers may benefit from descriptions in a
good DSL. A good DSL can sometimes be created from legacy notations that the
domain experts have used for years. We show in this Chap. 1 such example by the
train control language. Creating a DSL based on legacy notation then serves as a
process of formalization as well as providing an iteration of the understanding of
the domain even for the domain experts. This may even lead to discovering that old
ways are obsolete and should be retired, or that old concepts need improvements,
enhancements, or even simplification in light of new technology.

1.2 General Programming and Modeling Languages

To create synthetic languages is not new. In the dawn of computers any scientist
with ambition would invent their own language with associated compiler. Just
as there was a plethora of computer brands, there were numerous computer
programming languages. They were domain specific and their domain was the

http://dx.doi.org/10.1007/978-3-642-36654-3_1


Domain-Specific Languages and Standardization: Friends or Foes? 161

computer itself. Today we see these languages as general as they did not limit
themselves to any application domain, but they had their specialties: COBOL [2]
was for administrative computing while FORTRAN [3] targeted technical systems,
LISP [4] should support artificial intelligence, and SIMULA [5] was made for
simulation.

In the 1980s and 1990s both computer brands and computer languages con-
solidated and it became out of fashion for companies that earned their money
from applications to make their own computer language as well. Standardization
came in fashion and most programmers would use only a handful of programming
languages. In the technical domain C and subsequently CCC provided what were
needed and in the latest part of the consolidation period Java became the hottest
language. In the same two decades computers found their way into all walks of
life and programmers became a fairly large group of workers. The complexity of
computer systems grew steadily and it was evident that computer systems could
not be made directly by programming on the top of your head. This opened up for
modeling languages and the consolidation of modeling languages resulted in UML
[6]. UML did not satisfy everybody. The systems that were made to support the
modeling and programming languages also grew like all other computer systems
and many users found that their complexity outgrew their usefulness.

1.3 The Process of Making and Evolving a Language

After the turn of the century language design again became kosher and the modern
DSLs started to appear supported by meta-tools such as MetaEditC [7]. Have these
DSLs been successful? There are successes and there are failures with DSLs as there
were among the early programming languages. We shall return to investigating what
makes a good DSL, but it is clear that making a good language is not easy and it
takes time and skill.

It takes time to make a general language, too. In fact languages need to evolve.
When there is no evolution in a language it is dead. This happened to Latin and
it has happened to programming language SIMULA and others. Some languages
have survived and prospered. The modeling language SDL came in its first non-
executable version in 1976 [8] and has followed a fairly steady pace with a new
version every 4 years and it still exists, but its telecom domain is now more
dominated by UML. UML itself came out of three ancestors and the conglomerate
UML 1 was created. In 1999 it became clear that even modeling languages needed
a precise definition and possibility to express executions. A major overhaul of the
UML language began and in 2003 UML 2.0 [9] appeared as a result of the OMG1

standardization process. Did UML 2.0 make all other languages obsolete? Some
would state that UML 2 made new languages necessary [10] and argue that UML 2

1www.omg.org

www.omg.org
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is a language monster hardly possible to support by a tool. However, UML tools
have appeared and they improve steadily proving that also standardized languages
can be productive. The OMG has supplied a suite of models that tool vendors try
to exchange and their efforts have been thoroughly walked through by the Model
Interchange Working Group.2

This chapter sets out to investigate whether combining the standardized with the
particular, the general with the special, could form an even better situation than
choosing one of the approaches.

First we investigate why one would like to standardize, and then we explore when
one would like to make a DSL. Finally we try to find how a harmony between the
general and the specific can be achieved.

2 Why Standardize?

We all know that standards are useful. Travelers of the world struggle daily with
a multitude of different sockets of electricity as well as differences in voltage as
illustrated in Fig. 1. We also know that standards can be a pain in the neck and that
there are more than one standard in a domain. A standard is often better for the user
than the producer. This is not only a technical issue, but just as much a political and
commercial issue. The business cases of adopting standards are different depending
on your own actual position in the marketplace.

2.1 The Advantages of Standards and Standardization

A standard defines terms and an initial set of agreed interpretations. Standards
therefore represent common grounds for people and machines. In this section we
describe the advantages of standards and standardization on individual persons,
teams, and on tooling.

2.1.1 Communication Between Human Beings

Referring to a standard easies the communication between persons who need
to collaborate or understand each other. With the globalized economy complex
products are made with pieces from all over the world and the pieces need to fit
together. A standardized language help to define such pieces and how they are meant
to fit together. In particular international companies need common grounds within

2http://www.omgwiki.org/model-interchange/doku.php
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Fig. 1 Standards of electrical sockets (http://users.telenet.be/worldstandards/electricity.htm#
plugs)

the company and standard languages for development is one way to minimize the
internal confusion inherent to differences in culture and tradition.

Focusing on a common modeling language may also facilitate building compe-
tence needed to cope with the future. In the SISU project [11] we made a decision to
focus on SDL [8] helping Norwegian companies in the embedded domain increase
their automation and improve their methodology. Our strategy was multifaceted
based on the following actions:

• Focus on one standard—SDL standardized by ITU in Z.100
• Take action to evolve the standard to meet needs discovered by the project—

and this resulted in object orientation being included in SDL 92 and structured
concepts in MSC 96 [12].

• Develop a methodology using the existing and upcoming standard—this resulted
in the textbook Engineering Real Time Systems [13] supported by intensive
3-day courses for Norwegian industry.

• Prototyping tooling—in this case the OST tool [14] of object-oriented SDL
showing that it can be implemented.

The SISU strategy was quite successful and in the end of the project a very large
software system was ported from one of the industry partner to another one through
the use of the SDL models. The commercial tools, however, took time to adapt to the
enhanced SDL standard and this made it difficult to achieve the full benefit of the
methodology.

The SISU methodology [13] is one example of another major benefit from
standards, namely that teaching material and courses can be offered to a much

http://users.telenet.be/worldstandards/electricity.htm#plugs
http://users.telenet.be/worldstandards/electricity.htm#plugs


164 Ø. Haugen

larger audience than if everyone was making their own language. This is clearly the
case with UML now. Martin Fowler has explicitly described himself as a parasite
on the UML standardization as he has made a series of popular books based on
UML like [15], but he has never taken part in its creation or its standardization.
This is of course welcome as the language designers may not be the best teachers
or the best methodologists. The textbooks are in turn supporting courses. Almost
all universities will present UML to their students, but the detail in which they
teach UML vary considerably. Still UML does serve as a common ground for
communication between system developers all around the globe.

2.1.2 Tooling and Portability

To transfer from one platform to another has been a challenge in systems engineer-
ing since the dawn of time. How different are the platforms? With the electrical
example of Fig. 1 it is necessary to have a gadget that lets the current run from
one plug to a compatible but different socket. Such a gadget may be only syntactical
meaning that it only takes into account the pure construction of the plugs and sockets
and makes sure that the electricity will flow through to the otherwise incompatible
device. A syntactical converter for electricity works well these days because most
portable devices can handle different voltage in their power supply. The voltage
represents the semantics. You may still need a transformer from American 110 V to
European 230 V if the power supply cannot do it.

The same overall picture holds for porting software. How different are the
platforms? A standard may define a platform, but for years the definition of software
platforms and languages has not been entirely precise, which is in fact quite difficult.

UML 2 had no formal definition and many scholars have tried to provide such a
formal definition of UML 2 [16], but mostly partial semantics have been established
and never has these semantics been used directly in the process of porting a UML
model from one environment to another. Still it is easier to port a UML model from
one place to another than porting a UML model into a Matlab environment. The
latter obviously means making a transformer or compiler if you like.

Modeling languages may be more precisely defined than UML. SDL has had a
formal definition for years [17] and porting SDL proved to be possible all the way to
executable models. This corresponds to porting of programs written in programming
languages. Porting of programs was not easy, either. FORTRAN programs behave
differently depending on the layout of the memory and so do C programs. As
a contrast Simula programs and Java [18] programs should behave consistently
regardless of the memory layout as these languages are closed meaning that all
reasoning can be done in terms of the language itself (and its runtime system).

Portability is one aspect of the more general tooling challenge. A potential
advantage of standards is that it will motivate more companies and projects to
create tools to support it. The motivation lies in the potential market as described
in the subsection above on communication between people. But there are obvious
challenges for the tool vendors that they persistently fail to meet. Tool makers
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are notoriously conservative caring more about their current customer’s short-term
needs rather than putting efforts into implementing a new or upcoming standard.
This has the risk that the tool makers miss the window of opportunity and the new
standard may suffer and die. This could have been the fate of UML 2 as the tool
vendors made their money from UML 1 tools (or SDL tools) and were reluctant to
supporting the extensive UML 2 standard. Still there is an open question whether
there are UML tools that support everything in UML 2. Lacking tool support
effectively limits the systems designer and gives indications that the new standard is
not good enough. This is one reason why the OMG has a process where there must
be a tool implementation before the technology is considered “available.”

It has also been an issue in the UML domain whether UML models could be
exchanged between tools, edited and returned. This is the question of interoperabil-
ity which goes slightly beyond portability. In reality it is very seldom that tools are
interoperable enough to support a cloud of models where any tool can be used at
any point in time. This is possible with simple textual descriptions, but hardly with
UML models, but great improvements have been done even here and at the OMG
standardization meetings sessions on tool interoperability take place regularly.

2.1.3 The Standardization Process

Sessions on interoperability are one example of how the standardization process and
the standardization organizations contribute to common benefits.

The most important benefit of the standardization process itself is the quality
assurance that it provides. While academic papers are reviewed but hardly discussed
more than 5 min after the presentation, standards are debated for weeks, months, and
years. This does not mean the end result is perfect, but it does mean that the drafts
are significantly improved and that more views are applied to assessing the standard
than what is common for academic papers.

While academic discussions are supposed to be exclusively about technical
matters, standardization debates have strong influence on commercial interests.
Often the tool vendors have a very clear opinion of what would be the easiest for
them to implement, or they have already implemented a prototype tool and they do
not want the standard to deviate too much from that. They want to be early in the
marketplace and influencing the standard is one way to get a head start.

2.2 The Business Case of Standards

We mentioned above that standardization has a commercial dimension as well as a
technical one. We shall take a closer look at what makes standards worthwhile for
big as well as smaller companies.

Small companies will make small contributions, but these small contributions
can be very important and serve as a seed that will grow and become something big.
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To continue this botanical metaphor it is clear that the small seed needs the
proper environment to prosper. Standards may form the proper environment for the
small company contributions. The small company provides its contribution into a
standardized environment and can thus benefit from whatever that environment can
offer.

In the SISU project [11] we had this as our explicit strategy that focusing on
SDL would give the small, Norwegian companies access to international tools,
international competence, and international markets.

Big companies have several reasons for adhering to standards. Big companies
do business with other big companies and following a supported standard makes
such big business deals less vulnerable. Standards are normally supported by more
than one tool vendor which means that if something goes terribly wrong there is an
alternative. With standards more companies are dedicated to the persistence of the
technology. Even when a standard does exist, the tool vendors will find means to
keep their customers and in practice the users will find that they are closer attached
to their tool vendor than they expected such that changing tool is a major endeavor.

Furthermore, big companies can apply an undergrowth of smaller companies that
provide solutions to specific parts of the big company’s portfolio of challenges, and
these smaller companies can also be replaced because they adhere to the standard.

Supporting a standard makes it possible for tool vendors to invest more since
they can count on the technology surviving for a longer time since more parties are
involved in its survival. More investment in the tools is good news for the tool users
regardless of whether they are big or small.

Finally, influencing or creating standards is an alternative way of dissemination
of innovation results. Large research projects, e.g., under the European Commission
have problems achieving impact that lasts beyond the end of the project. Fantastic
prototype tools and stacks of papers may disappear from the public scene the day the
project ends because there is no organization willing to support the results. Initiating
a standard or evolving a standard is one way to contribute to the prolonged life of
the project results.

3 Why Make a DSL?

The problem with adopting standards is that you need a way to distinguish yourself
from your competitors. This is a dilemma that we see all the time in the marketplace;
you need to have something that makes the customer buy your product and not your
competitor that supports the same standard. One way to be distinguished from the
common UML bunch is to create, support, and use a DSL. Why you would do that
is what this section is all about.

Let us take an example from mobile phones. For many years Nokia was the
market leader of mobile phones after having beaten (Sony) Ericsson by better
functionality, no antenna, and long battery life. All mobile phones looked alike
and basically worked alike. Even though both Ericsson and Nokia had used touch
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screens, the keyboard was the preferred way of input. Then enter iPhone by Apple.
The first iPhone was not the best phone as far as sound quality was concerned and
it lacked much of the Nokia functionality, but it was a wonderful handheld terminal
against the mobile Internet and the human interface distinguished it significantly
from the Nokia/Ericsson tradition. iPhone deviated from the de facto standard of
communicating with the device, but, on the other hand, iPhone decided to go along
with the GSM standard rather than the American phone standard. iPhone became
a winner and opened up a new niche in the market and the 3G network operators
applauded the innovation. iPhone did not standardize its solutions in any open way.
They patented their solutions and wanted to keep the monopoly of the new approach.
But alas, enter Android from Google and Android is made open to the public and
people are motivated to contribute and discuss it. Today (2012) Android terminals
have overtaken iPhone and dominate the market while Nokia is struggling and
trying to enter the Smartphone market3 through collaboration with another strong
monopolist, Microsoft. From this mobile phone historical scenario we can learn that
standards do not last forever, that everything needs to evolve and that commercial
success is partially connected with being special while still taking advantage of the
established standards.

Described in language terms, the Nokia/Ericsson look-and-feel was a de-facto
standard that the iPhone challenged. The iPhone look-and-feel with touch-screen,
finger pinching, etc. was a DSL and Apple wanted it to stay a DSL. Google
standardized it in Android and made it available to a larger group of vendors. Now
they fight over whether the patents of the iPhone are infringed by Android.

3.1 Advantages of DSLs

The earliest domain-specific languages are defined just as legends of illustrations.
Such notations were not only domain-specific, but in fact instance-specific as they
were made up especially for the one illustration. Then more illustrations were made
with the same legend and we can talk about a notation or a language.

One illustrative example of a synthetic language that has had considerable impact
and that is still used with the same principles is the subway maps (Fig. 2).

A plain map is also a DSL as it represents a notation evolved over years where
symbols are defined in the legend. Constructs like contour lines serve to convey
the precise message of the terrain. The subway map took this one step further
as it was recognized that there was no need for a close correspondence between
the actual station position under ground and its position on the subway map. The
important issue was the routes of travel that the network of lines represented. The
diagrammatic approach was first invented by Harry Beck in 1931.

3http://finance.yahoo.com/news/worldwide-market-share-smartphones-220747882--finance.html

http://finance.yahoo.com/news/worldwide-market-share-smartphones-220747882--finance.html
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Fig. 2 London subway map (http://www.tfl.gov.uk/)

The subway map language has the core properties that we would like DSL to
have:

• Concise: It captures the essence of a domain in a concise form
• Formal: It can be formalized such that automatic means can be used on it
• Transparent: The users find it intuitive and use it correctly

The language is concise when only the essence is defined and all that is in the
description is relevant. That a language is formal we define to mean that it lends
itself well to automation. The subway map can be formalized to support searches for
shortest or fastest routes, etc. That the language is transparent is equally important.
You do not need many years of schooling to read a subway map and act properly.
In our systems domain you may need more schooling, but nevertheless we would
like our languages to be readily available to its users. Very often a good DSL takes
already existing notations from the domain as its starting point which immediately
will let the domain experts recognize concepts.

A DSL defines the knowledge of a domain in a formal and concise way. It may
be one of the best ways to capture the knowledge of a domain and making the DSL
may be a good way to develop an understanding of the given domain. If the domain
is confined to one company only, making a DSL will thus represent defining the
technical knowledge of that company.

http://www.tfl.gov.uk/
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Fig. 3 TCL metamodel excerpts

Our three core properties are not the only way to categorize DSLs, but our intent
here is to give a simple yet expressive way to characterize languages and not to
capture all detailed aspects of a language or to compare languages. Please refer to
[19] for a more comprehensive evaluation of DSL quality.

3.2 An Example of a Good DSL

Here we will present the train control language (TCL) [20–22] briefly and explain
why we think this represents a good DSL. TCL is a domain-specific modeling
language for modeling train stations and generating train station configuration code
for train station signaling systems. TCL was created by ABB and SINTEF in the
MoSiS project.4 The purpose was to automate the development of signaling system
source code. TCL is defined by a metamodel (Fig. 3), and an Eclipse plug-in has
been developed constituting an editor and code generators.

As defined by the TCL metamodel, Station is the top concept, containing all the
other concepts. A TrainRoute is a route a train must obtain before it can move into or
out of a station. A TrainRoute is divided into TrackCircuits, which defines a certain
amount of Tracks where a train can be located. A Track can either be a LineSegment
or a Switch, which are connected by Endpoints. A TrainRoute starts and ends at a
Signal, which will only give green light if the requested TrainRoute is available for
the train. The concrete syntax of TCL is illustrated in Fig. 4 which also shows a
view of the TCL editor made on the Eclipse platform using EMF [23] and GMF
[24]. The code generators are described by MOFScript [25].

4http://mosis.reflector.os4os.org/modules/wikimod/

http://mosis.reflector.os4os.org/modules/wikimod/
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Fig. 4 TCL editor

The concrete syntax was based on the diagrams that ABB received from the
Norwegian authorities when they were commissioned to developing the signaling
for a new station.

3.2.1 Concise?

In assessing whether TCL is a good DSL we should investigate whether TCL is
concise defining a small set of concepts that is still covering everything that is
needed for its purpose, namely to define train signaling in a station.

The essential concepts are shown in Fig. 3 and it is evident that this is a rather
small language. Specialization (inheritance) has been used to make the metamodel
compact, and it also adds to a more concise understanding of the central concepts
of train signaling. We should note that our illustration does not show the whole
metamodel and that our language is not covering all concepts that would be needed
to define all stations in Norway. Still the concepts are sufficient to define real stations
and the code generation has been assessed against manually made code.
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3.2.2 Formal?

The abstract syntax of TCL has been defined by the metamodel shown in Fig. 3 and
this is clearly well defined.

The concrete syntax has been defined through GMF in our TCL tool. As it is
embedded in a tool there is no doubt that it is defined, but there is no separate
formalized definition of the concrete syntax.

The semantics of TCL are given by its code generators. There are three code
generators giving three different kinds of formats that are used for different purposes
in train signaling and the analysis of the train station. The code generators are made
in MOFScript and acknowledging that MOFScript is a well-defined language, the
TCL semantics is well defined.

3.2.3 Transparent?

The concrete syntax of TCL was based on existing diagrams produced by the
Norwegian authorities who have been applied to define station signaling for several
years. The TCL diagrams look extremely similar to the old diagrams but include
also a few additions to define some of the structuring mechanisms.

Train signaling experts have read TCL diagrams and have had no problems
understanding them. We have concluded that not much extra schooling is necessary
for TCL to be used by its target users.

Even the produced code can be fairly easily assessed. The produced code is again
very similar to the formats that have been developed manually before. This holds for
matrices as well as the formulas. Indeed the code has been assessed by the experts
and compared in detail with manually produced code.

3.3 The Business Case for Adopting DSLs

The main reason for deciding to go for making a DSL can be summarized by the
following quote attributed most often to Einstein “Make everything as simple as
possible, but not simpler.” This is exactly what a good DSL does. We mentioned
above that technically a good DSL should be concise, formal, and transparent. From
a pragmatic perspective we can say that a good DSL should be small and focused,
easy to generate code from and capture the essentials of the company domain.

That DSLs are closely related to generating executable code from it, is not
inherent to DSLs as such, but in practice this is a major reason for choosing to
create a DSL. Many companies find that the commercial modeling tools are too
complicated to configure or their code generation is not good enough for their
purpose. There are several reasons for this.

First, general languages need general solutions and therefore the code that is
produced may be more general than needed in any particular case. If the particular



172 Ø. Haugen

case needs very compact or fast code, the general code generation may not be
adequate.

Second, the particular system may have special interfaces to legacy code or
proprietary hardware devices. The developers may want to control this legacy in
detail and they want to describe this in transparent and concise ways.

Third, big tools are made by big vendors and big vendors are not always as
attentive to smaller companies and their needs. Since big and general tools are more
susceptible to errors and problems, it becomes attractive for a small company to
choose a solution that seems to offer full control and relying very little on large tool
vendors. (They must of course rely on the vendors of the meta-tool.)

4 Evolution of Languages

Natural languages evolve and artificial languages evolve for much the same reasons.

4.1 Evolution of Natural Languages

You need only read in a book from 50 years ago and you will realize that your
native tongue has developed. Natural languages evolve for several reasons. The
most obvious reason is that the actual world is changing. New concepts have
been added or modified because new technology has been created, some natural
phenomena have become more prevalent and new social patterns have emerged.
There are multiple examples: 50 years ago we hardly talked about mobile phones
or computers, we were not much concerned about the global warming or the
greenhouse gases, and AIDS or terrorism had not entered our everyday vocabulary.

Some old concepts evolve and get new meaning. Take, for example, the term
“boilerplate” which originated in the early 1900s to refer to the thick, tough steel
sheets used to build steam boilers. Now a “boilerplate” is used to mean a template
onto which we may add specifics having absolutely nothing to do with steel or steam
boilers.

Furthermore, we have developed special natural languages for special purposes,
almost like natural DSLs. One example of this is the language used in text messages
or tweets. These languages have appeared since the message space was limited and
the messages had special purposes and history.

4.2 Evolution of Synthetic (Artificial) Languages

Our synthetic and man-made languages for modeling and programming evolve for
the same reasons as natural languages. New technology and new understanding
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require new concepts in the description languages. Existing mechanisms can be
improved inspired by usage experiences.

We may, however, say more about how synthetic languages evolve because they
are made deliberately motivated by commercial or academic needs.

At first a DSL is simple and singular. The very inception of the DSL has been
motivated by the opportunity to create something which will solve the problem at
hand with a simpler language than offered by the general languages. The “infant”
DSL only offers the most essential concepts and sometimes appears mostly as a
proof of concept.

Then the DSL may be put into real use and we may call it the “youth” DSL.
More concepts are added as the domain experts know that what they do not get into
the language will not appear in the systems that are generated from the DSL. The
language grows in number of concepts, but remains singular. A singular language
means that it is intended to define one singular system, but possibly many times,
each of which it defines the system from scratch. The TCL language (Fig. 3) is like
this, there are enough concepts to define real systems, but each system needs to be
described from scratch.

The “adult” DSL represents a major change in development. The DSL has had
considerable success or else it would have died already. Unsuccessful DSLs are
killed instantly as not much effort has been put into it. Thus we know our DSL
is quite successful, it has users now who have not been part of the development
and the number of DSL models has increased considerably. This is when the fact
that the DSL is singular becomes a problem. Starting from scratch or from a pasted
copy is not such of a problem when the number of models can be counted with
your fingers, but if we are talking about 20 or 50 or 400, the need for mechanisms
of reuse becomes interesting. The important observation now is that mechanisms
of reuse very seldom is domain specific, and the decisions of what mechanisms to
apply for reuse is not something a domain expert should take.

This is why the adult DSL is so critical. The rise in language complexity is
often beyond the understanding of the language designers. They often continue
the simplistic approach and grab hold of mechanisms similar to the macro, but
fail to understand that macros have properties that do not make them well suited
for defining reuse and that concepts like “type”, “class,” and “inheritance” may be
much more sound.

The risk is that the language designers create something that they are not able to
handle in their proprietary tools. The editors grow in complexity, but more serious
is the rise in code generator complexity. Unfortunately, those mechanisms that have
a long history of supporting reuse are still not trivial to implement. This is probably
why so few DSLs have included well-established mechanisms such as inheritance
and overriding. For general languages this is typically when such mechanisms
are introduced after experiencing that the expressiveness of the language is not
sufficient.

For DSLs there is another effect. Suddenly concepts that are not domain specific
are introduced into the DSL. There are good reasons for doing so, but the improved
DSL no longer look exactly like the legacy notation and it becomes an added
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transparency challenge. Should we in TCL define inheritance of tracks? How should
this then be shown?

If the synthetic language survives its adulthood, this is quite an achievement
and most probably the language is now productive, but it is no longer very simple
and it may no longer be as transparent as its infant version. Typically the adult
DSL has more bugs in its code generation and more bugs in the supporting tools.
This is the time when some of the users and domain experts will voice two related
demands, namely a formal description of the language semantics and simplification.
The demand for formal definition stems from experiences that it is increasingly
difficult to get a common understanding of the models and the code generators are
so complicated that they do not easily lend themselves to inspection. The demand
for simplification has the same roots and would also make the desired formalization
easier and sometimes since the language now has been used for a while, it may
have been recognized that some mechanisms are not being used or are being used
wrongly or dangerously.

Very few languages live through a simplification without suffering fatal blows.
In fact this is typically when creating a new DSL (or general language for the same
purpose) becomes the better option and the cycle starts over again.

To summarize, we recognize that the DSL evolution will normally face chal-
lenges that jeopardize the language properties: concise, formal, and transparent.
In particular there is a critical stage in development when general concepts of
structuring and reuse are demanded and often the language designers are not fully up
to the challenge since implementing general languages is not a task for amateurs. We
shall continue to investigate whether there is a possibility to combine the specifics of
the young DSL with professional, standardized solutions of the general mechanisms.

4.3 The Evolution of Message Sequence Charts

Since company-specific DSLs are hard to document historically, I will share with
you the history of MSC—Message Sequence Charts which is standardized by the
International Telecommunication Union (ITU) in the Recommendation Z.120 [12,
26, 27]. I participated already before 1992, and from 1992 to 1996 I was the
“associated rapporteur” for “structured concepts,” and from 1996 to 2000 the main
Rapporteur, which means the one responsible for the standard and the work related
to it.

Sequence diagrams (or charts) had been in use informally in the development of
communication systems in many companies such as Siemens, Ericsson, and Alcatel
before 1990. The need for standardizing one such language came from a paper by
Grabowski and Rudolph in 1989 [28] and the first standard for MSC was decided in
1992 [26]. In this “infant MSC” or Basic MSC as its core was later termed, we find
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the domain-specific concepts Instance5 and Message and a notion of a diagram. The
most important semantic insight was that the messages were asynchronous which
meant that sending and receiving must be understood separately. MSC-92 became
quite popular and some reasonable editing tools were made.

The popularity of MSC-92 also meant that more institutions wanted to join in its
future evolution and up to the “young MSC” (MSC-96 [12]) we had a fairly large
working group consisting of a mix of academic scholars, tool vendors, and advanced
industrial users. I was the one pushing structural concepts such as being able to
define charts that could be referenced from other charts, and control structures
(“inline expressions”) such as alternatives and parallel composition. Furthermore,
the academics from Eindhoven, Sjouke Mauw, and Michel Reniers insisted that we
define a formal semantics (of MSC-92). We can say that MSC-96 represented a
young adult in the terms of our classification in the former section. The language
became more expressive through the inclusion of the general mechanisms, and the
tool vendors failed to cope with it. The tool vendors made shortcuts and simplifying
restrictions such that no tool really supported MSC-96 before MSC-2000.

Towards the MSC-2000 we achieved better understanding of the semantics of
the structuring mechanisms and added concepts of MSC Documents (the context of
several Message Sequence Charts) with object-orientation, as well as concepts for
time and duration constraints and precise data. The latter can be seen as examples
of domain-specific needs, while the former is an example of necessary general
structuring mechanism. MSC-2000 [29] was a grown-up language and the tool
vendors still did not quite live up to it. Possibly MSC-2000 was too advanced
and coincided with the telecom users were drifting away from SDL and MSC to
UML where another dialect of Sequence Diagrams had been included in its UML
1.x version. May be MSC-2000 was an old language and time was ripe for a new
iteration?

From 1999 I moved from ITU to OMG and started working to merge MSC into
UML. While MSC was a language in its own, Sequence Diagrams is a sub-language
of UML and the challenge was to integrate it with the other sub-languages. UML
2.0 saw the integration and the most central concepts of MSC is now in UML [30].
Even though Sequence Diagrams are the second most used diagram type in UML,
the more advanced mechanisms are more seldom used and opinioned designers have
voiced that they are too complicated. Finally, after almost a decade after UML 2.0
appeared tool vendors support most of Sequence Diagrams.

5 Harmonizing the General and the Specific

There are two related distinctions that we investigate in this chapter. One is between
the domain specific and the general purpose and the other is between the proprietary
and the standardized. These distinctions are related since it is not reasonable to

5MSC Instance corresponds to UML Lifeline
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standardize a proprietary language and general languages are often in some way
standardized either formally through a standardization organization or informally
ad hoc or through market dominance.

5.1 Standardizing DSLs?

One supposedly easy way out of the conflict between standard and domain specific
could be to standardize the DSL. This is being done all the time. Many would
argue that this is mostly what OMG is doing. There are language standards and
reference models for almost all corners of engineering and technical competence.
Of course when a language is standardized much of its versatility and dynamical
evolution disappears while, on the other hand, it becomes more widespread and will
probably be considered more serious and long-lasting.

5.2 Combining DSLs and General Purpose Languages

Realizing that our challenge lies in harmonizing the general with the specific such
that their respective advantages are maintained through evolution we discuss three
different ways to combine the general with the specific.

5.2.1 Ad Hoc Combination

Like natural languages evolve in an ad hoc way in the streets, one may incrementally
evolve a DSL with general as well as domain-specific concepts in some random
fashion. Chances are, however, that the resulting language will reflect this process
and be perceived as increasingly confusing and difficult to implement.

Still it worked for English as the world language. English is a potluck dish
of Norse, Anglo-Saxon, and Latin terms spelled in ways that have only slight
resemblance to how they are pronounced. Nevertheless, English serves as the
standardized natural language. The world never chose Esperanto [31] even though
it is cleaner and simpler. Many would say the same for UML as we just did for
English.

We mentioned earlier that DSLs do evolve from the definitely domain specific
to the more general concepts following their immediate success. Their success
may continue, but the competence of the language designers and implementers is
increasingly challenged. The challenges are not linear, for every new concept added
its relationship to every existing construct must be (in principle) considered and
unintentional inter-play between constructs are more and more likely to occur. This
is why DSLs that remain successful are often fairly simple. DSLs that go beyond
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the purely domain specific can be on their path to becoming a standardized language
(for a certain rather wide domain). We have seen DSLs originating from research
projects that aspire to becoming standards like EAST-ADL.6

As the complexity grows and the ratio of general terms grows, an alternative
approach to combining the domain specific with the general becomes more and
more attractive. This is what we shall describe next, namely to amalgamate the
domain-specific concepts into an existing general language. For EAST-ADL this is
shown by the fact that it exists also as a UML profile.

5.2.2 Amalgamate a Standard Language with a DSL

Amalgamation can be done systematically or ad hoc. UML profiles represent this
approach where the starting point is a standard language UML and more concepts
are added through “stereotypes” which are defined in profiles. The stereotypes are in
fact new concepts that in principle suck up properties and capabilities from general
mechanisms and extend these capabilities further.

It is not entirely clear from the definition of the profile mechanism how much
the stereotyped concepts need to suck up from the general concepts. Profiles often
appear as language extensions of UML but where the connection to UML is only
partially maintained. Furthermore, profiles often have a plethora of concepts that
are not properly combined with the UML base. The intention of profiles is clear. It
was intended to give the users a way to extend and enhance the (UML) language
such that the UML tools are still able to read and handle the profiled descriptions.
The syntactic extensions defined by profiles are easily handled by most UML
tools, but the semantics is a different story. Normally, profiles are used in special
contexts and there is no real need for complete generality in the language definition.
The stereotypes serve as programming language pragmas and the code generator
acknowledges them eagerly. It has been said that almost no real use of UML
exists without added profiles. At least this is probably true for UML used as a
programming language. A big problem of course is that of interoperability. As long
as the code generator is proprietary the exchange of profiled UML descriptions is
merely an exchange of syntactic elements.

Amalgamation can also be done by merging systematically metamodel packages
of the general notions and the domain-specific ones [32]. As with profiles such
amalgamated metamodels can be hard to overview and either their semantics is
clear, but not intuitive, or the syntax is clear and the semantics rather incomplete.
In short such approaches may suffer from transparency problems even when their
approach is systematic and formal.

6http://en.wikipedia.org/wiki/EAST-ADL

http://en.wikipedia.org/wiki/EAST-ADL
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5.2.3 Separate Descriptions

Finally, we can define an approach where the general and the specific components
are maintained entirely separate. The combination is well defined through the
definition of a small set of interfacing concepts. Typically the general description
will define transformations on the specific description representing a variant of
generative programming [33]. The approach may be summarized in these bullet
points:

• A complete description contains a pair of descriptions where one description is
in a generative language and the other is a domain-specific one.

• The generative description refers to elements in the domain-specific description
• When executing the generative description the result is a modified domain-

specific description.

The generative description is given in a generic and standardized language with
a clear semantics and we expect tools to exist that will support its use. The domain-
specific description, on the other hand, is dedicated to covering terms and concepts
defined by the domain experts. The DSL should be able to describe every singular
system in the designated domain. The execution of the generative language will
result in one or more new DSL descriptions.

5.3 Standardizing a Generative Language

In this section we present the challenges and opportunities of standardizing a generic
language which is intended to be used together with other languages and thus not
as a stand-alone language. Furthermore it is intended to be used with a number of
other languages and even languages that are not yet known.

We shall highlight the challenges and opportunities of using a general generative
language together with a domain-specific one through an example. The example is
the common variability language (CVL) as it was conceived in the MoSiS project
[34] and input to OMG standardization [35]. Here our focus is on the challenges
and benefits of standardizing a generative language and not to argue that CVL is the
only possible approach to defining variability.

5.3.1 Introducing CVL: The Common Variability Language

CVL is a generative language intended to describe variability. Thus, combining a
CVL description with a description in a base language would actually describe a
possibly infinite set of models in that base language. The combined description
is a description of a product line. In Fig. 5 we show how the OMG Request for
Proposals [35] show the combination of a CVL description and a base model.
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Fig. 5 The combined descriptions of CVL

The Variability model contains descriptions of how the base model can vary in
precise terms. It ends up with specifying how the base model is transformed into a
new model in the same language as the base model. The leaf nodes of the variability
model are substitutions that exchange some parts of the base model with other
parts. The Variability model also contains a version of feature models originating
from Kang [36] and enhanced by, e.g., Czarnecki [33] as shown in Fig. 6. The
resolution models define how the features are resolved, what choices that are made.
The resolution, variability, and base models are brought into a CVL execution and
resolved models come out as a result. In product line terms these resolved models
represent individual products of the line.

5.3.2 Challenges to Such Generative Language

The first challenge is that of defining a standard language that can relate to any
other language (that defines the base model). The solution to that challenge is to
step one meta level up and demand that the base language is defined in MOF such
that CVL can refer to the base model as MOF objects and their internal relationships
as MOF references. By applying MOF reflection we can still solicit properties
of the base model useful in our tooling. In our MoSiS CVL Tool we apply such
MOF reflection to match placements with replacements in the fragment substitution
operation. The tool checks the DSL-specific types of the MOF references through
reflection and make sure that these types match pairwise between the placement and
the replacement.

The second challenge is about concrete syntax. The solution to the first challenge
only provides a connection inside the computer. How can the users of CVL and the
base language see what is present in the models? Clearly the base language has
already its own concrete syntax and preferably the CVL concrete syntax should
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Fig. 6 MoSiS CVL concrete syntax example of the abstraction layer model

match that. This is not as simple as with the metamodels, there is no abstract level
of concrete syntax on which the CVL concrete syntax can be defined.

The combination of CVL and the other DSL is related only to those elements that
include references from CVL to the DSL objects. CVL also includes an abstraction
layer similar to the traditional feature diagrams and for that we may define a CVL
specific concrete syntax as shown in Fig. 6.

For the realization layer of CVL that represent the association between CVL
and the base DSL, it is quite clear that some kind of visual amalgamation must
be applied. One approach would be to introduce stereotypes in the concrete syntax
similar to what had been the case when using profiles. An extension to this approach
would be to provide special symbols to emphasize the stereotyping, or special visual
effects like colors or line styles or thickness of lines. This is feasible, but possibly
not always practical or visually pleasing. Traditionally, we think of such stereotypes
as being static since they only represent elements of a combined description which
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Fig. 7 CVL Tool interfacing to a TCL base model

is indeed static. This may quickly lead to descriptions that are rather overloaded
with effects and/or text.

We therefore suggest considering the combination of CVL with another language
as something dynamic. All syntactic effects overloaded on the base model at once
may become too much. Since we normally never print out complete descriptions
any more there is really no need for this complete concrete syntax. Our solution is
therefore to leave the CVL concrete syntax for the realization layer to the tooling,
but to provide a simple interface that tools should realize. MoSiS CVL has defined
four interface functions, two for selection of objects and two for highlighting of
objects.

In Fig. 7 we show how this works. There are three graphic panes on this screen.
The left part represents the CVL description and the right side represents the DSL
description. In our case the DSL is a TCL [20, 22] which represent the signaling of
a train station. In the lower right pane we show that some objects are selected. In the
CVL feature diagram on the left we have right-clicked on an object to get a context
sensitive menu. The screen shot shows when the user is creating a replacement
fragment from the selection. A “replacement fragment” is one of the elements of
CVL that represent the realization layer referring from CVL to the DSL description.
The CVL object will refer to the set of TCL objects. The upper right pane shows the
visualization of such a connection between a CVL object and the TCL description.
Objects of TCL are highlighted in red and orange.

When we combined the CVL Tool with the TCL tool we chose to realize the
highlighting functions by applying colors. We could have chosen differently if
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colors had already been applied within TCL. Then we could have applied blinking
or even dynamically added stereotypes. In this way we have converted pieces of the
concrete syntax into features of the tool.

From a standardization point of view we may ask how such combinations should
be standardized. The CVL Tool has four interface functions. Should they represent
the concrete syntax standard of the realization layer of CVL? Does this approach
mean one stop towards standardizing tools supporting a language rather than merely
the language? By standardizing these functions any language tool that realizes this
interface will work seamlessly with any CVL tool (that applies these functions).
Thus, this does serve one purpose of standardization since we achieve a higher
degree of interoperability between tools supporting the same standard.

The third challenge is to keep the generative language general, but still suffi-
ciently powerful and pragmatic. It is tempting to construct special functions of the
generative language that takes into account specific knowledge of the associated
language. In our example with the combination of CVL and TCL, it may be tempting
to introduce variability mechanisms that only apply to train station signaling. Such
mechanisms could be to take advantage of TCL dependencies such as that whenever
a track circuit is removed all signals associated with it will also be removed. The
benefit could be a more domain expert friendly variability language and a more
effective way to define product lines of train stations. The downside is that CVL is
no longer fully general. Either we get variants of CVL or we need to generalize the
domain-specific mechanism.

We may compromise by applying the same technique as for concrete syntax,
namely to specify an interface applied by CVL and realized by the DSL-specific
tools. Again, this interface could be standardized, but it is much more difficult than
standardizing functions of selection and highlighting. The latter concrete syntax
functions have little effect on the models as such. They represent visualizations.
Any function defining the cascading effects of a CVL operation on a DSL
model, however, will be interfering severely with the modeling. There may be
disagreement about the dependencies. In our example, maybe not all train signaling
engineers agree that the signals should be removed when the track is removed.
Since the definition of the interface must be fully general since it would be part
of the definition of the generative language, there would be a need for another
standardization process for defining the DSL-specific realizations of that interface
if full interoperability shall be achieved.

5.4 Opportunities of the Standardized Generative Language

We have seen that there are definitely some challenges to defining a standard
generative language such as what we are doing with the CVL. There must be some
opportunities and upsides to going down this path of two languages rather than one
amalgamated language.
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The first opportunity is related to separation of concern. The CVL concerns itself
with defining the variability and therefore the DSL may concern itself exclusively
with the domain-specific concepts. When the needs for reuse and variability occur,
this is left to the accompanying generative language CVL. The obvious effect of
this is that defining the DSL is simpler. The designers of the DSL can concentrate
on the domain specific which is their expertise. Defining the DSL often also implies
implementing the code generator representing the operational semantics of the DSL.
A simpler language is also simpler to code generate from. Again, the DSL designers
and implementers are trained in the code coming from the domain-specific terms,
but less trained in implementing general constructs of reuse and variability.

The second opportunity is related to the first one and related to standardization.
A standard language will also have supporting tools. Most often there will be several
tools supporting the standard and those using the DSL may choose freely between
those tools supporting the accompanying generative language (such as CVL). There
may even be an open-source or community tool that is free of charge on which you
can experiment while assessing whether the DSL approach is viable for your project
or company.

The third opportunity can be seen as a continuation of the two former opportuni-
ties. Separating out the variability (or any other functionality that can be solved by
a generative language) may help the DSL development to become more agile. Since
no successful DSL stays constant there will be demands for improved flexibility
from the DSL users. A standardized generative language may serve as an immediate
solution to the user demands and a reference for more elaborated solutions later. It
may be that the train signaling language should include module or type concepts
later which would take care of some of the functionality that the combination with
CVL takes care of today. Since general, generative languages (such as CVL) work
well with all languages, they would continue to work well with the augmented lan-
guage, too. Thus the DSL development using generative accompanying languages
and tools are fairly future (forwards) compatible. The intermediate solution with the
accompanying generative language gives high functionality with little effort since
the standard language is supported by an existing tool. Later assessment may even
conclude that the combined solution serves well enough.

6 Discussion and Conclusions

The general and the specific are not foes and not the beauty and the beast. In fact
DSLs may go well with generative languages that define aspects of reality in a
crosscutting way.

In this chapter we started by presenting a view on DSLs and synthetic languages
in general. We emphasized that all languages must evolve and that creating
languages is not trivial even when you know the domain well.
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We then presented advantages and challenges with standardization and hopefully
were able to convey that standardization have advantageous properties that may not
be obvious to everybody.

Recognizing the potential benefits of being particular and making a DSL as well
as going for standards, we investigated whether combinations and compromises
could be found.

We have presented the combination of the CVL with a DSL of train signaling
(TCL). Our experiences with this combination and of some other combinations that
we have attempted during the MoSiS project are that this works well. The DSL
designers are happy to focus on the purely domain specific and the end-users are
able to apply the CVL Tool after very moderate tutoring. We have also experienced
that the combination can serve as exploration of more language specific solutions to
variability. This holds for variability terms associated with SysML [37] and UML.

There are two questions that arise naturally: (1) is variability the only crosscutting
generative aspect that lends itself suitably for standardization? and (2) why not go
all the way and just apply a general transformation language such as QVT [38]?

Let us discuss the last question first. Is there any need for a new standard
generative language for (say) variability when there is already the standard QVT?
This is very similar to the discussion about general description languages versus
DSLs. QVT is general relative to the transformation domain which means it
is comprehensive and not directly available to those without background in the
transformation field. CVL is domain specific to modeling variability and there is
a set of dedicated mechanisms that should be comprehensible for those familiar
with product line concepts. This is the main reason, but we can also add that CVL is
general enough to describe a transformation into whatever target product you want.
In other words CVL can define the difference between any two descriptions in the
accompanying DSL [39] and as such is comparable with QVT expressiveness.

If we accept the desirability of designing DSLs, we could formulate the first
question above into whether it is possible to design a generative DSL for any general
crosscutting field. We do not have a list of such general crosscutting fields, but it
is quite clear that it would be possible to make a DSL for expressing debugging
instrumentation, or logging for that matter, to take two examples well known
from aspect-oriented approaches. As with transformations in general we will soon
enter into problems concerning the order of applying the generative descriptions.
Obviously there is a limit to how well this approach works if there are many
combined descriptions. Our experiences are limited to combining the variability
language CVL with different base languages.

We have shown that there are challenges to the combination of base languages
with CVL, but that there are also many challenges to making a complete DSL that
incorporates the variability constructs. Our combined approach is an agile solution
that keeps the general from the specific and makes it possible to standardize the
more complex general constructs.
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Domain Engineering for Software Tools

Tony Clark and Balbir S. Barn

Abstract General purpose software engineering tools are expensive to develop and
maintain, and often difficult to learn and use. Domain-specific tools tend to be
small, focussed and easier to learn; however, domain-specific tooling tends to be
technology specific and therefore introduces interoperability problems. This chapter
provides a contribution to DSL tool development by describing a language-driven
approach to domain engineering whereby a tool is modelled in terms of the syntax
and semantics of the language it supports. This chapter uses UML to define a simple
class modelling language and its tooling.

Keywords Domain specific language • Meta-modelling • Software tools

1 Introduction

The proliferation of methods in the 1980s and early 1990s yielded to the over-
whelming force brought about by the development of a unified language: UML
and its variants. The adoption of a single language provided the economic incentive
to produce supporting tools. A number of commercial tools emerged, but perhaps
because of the general purpose nature of the language, it rapidly became apparent
that development, support and marketing of such tools was no small task. Many
tools dropped away leaving a small number of commercial players trying to support
a very diverse market. The result is that tools to support UML-style development
are like Swiss-Army Knives: they aim to support all possible tasks with little
guidance.

Software tools and technologies fall into two broad categories: horizontal and
vertical. A horizontal technology can be applied across a wide range of application
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areas because it provides general purpose functionality. A vertical technology is
specific to a particular application domain. Perhaps as a reaction to the lowest-
common-denominator (LCD) flavour of UML, there has been a rise in interest in
Domain Specific Languages (DSL) and their associated tools. Unlike UML which
is a horizontal technology, a DSL aims to be a vertical technology by providing a
means to represent, analyse and manipulate concepts from a specific domain such
as real-time systems, telecomms and transport networks.

DSL tools can afford to be simpler than the UML equivalents because they
expose very specific functionality. However this simplicity comes at a price. Where
UML aims to support all aspects of the software development process and therefore
can guarantee interoperability, the DSL approach leads to tool chains that can have
interoperability problems [6]. In addition, because UML adopts LCD, it is possible
to use it in a wide range of diverse domains. Typically each software engineering
project is unique and therefore a DSL approach leads to a new toolset for each
project.

The problem to be addressed is how to gain the benefits of both approaches.
UML represents a universally applicable, interoperable, cost-effective technology
that suffers from complexity and insufficient support for project domains. While
attempts to use the stereotyping capability within the UML standard are numerous,
tool capability is limited. DSLs produce technologies that are simple and focussed
but suffer from complexity of development and interoperability issues. We would
like to be able to produce DSL tools in a standard way that is universally applicable,
leads to tool interoperability and therefore makes the development of DSL tools cost
effective without leading to huge one-size-fits-all platforms.

Our proposal is to apply domain engineering techniques at the tool level using a
standard tool meta-language. A tool model expressed in the tool meta-language can
take two forms: a specification of the required tool and a tool platform configuration
model. The former contains a model of the domain and specifies tool functionality
over the domain, the latter is consistent with the specification and can be uploaded
into any (proprietary or open-source) suitable framework that will configure itself
appropriately.

Domain Engineering of Tool Models, as envisioned by our proposal, would be a
phase of any new software engineering project. Tool models from similar projects
could be used as a starting point, and modelling techniques such as transformations,
slicing and merging can be brought to bear. Tool specifications would be useful
as a teaching aid, and model slicing could be used to produce minimal sub-sets
whose functionality could be gradually increased to produce an incremental training
programme.

Tool models must contain a variety of features in order to be effective. Each
domain can be considered as a language consisting of syntax and semantics. The
tool itself can also be considered as a language whose syntax involves menus,
editors, tree-browsers, etc., and whose semantics involves events that cause changes
to the application domain. A model will describe how the state of a tool is serialized
in order to guarantee interoperability. Models should also contain non-functional
aspects such as usability and efficiency.



Domain Engineering for Software Tools 189

Our claim is that it is possible to take a domain engineering approach to tool
modelling. A tool modelling standard would require a collaborative effort involving
experts from a wide variety of disciplines. This chapter validates the claim by
providing an overview of a simple meta-language for specifying tool models, using
the language to specify a simple tool, and finally analysing the model in terms of
the resulting benefits.

This chapter is organized as follows: Sect. 2 describes related approaches to
developing modelling tools; Sect. 3 describes our approach to applying language
engineering to tool development; Sect. 4 defines a class modelling language using
the proposed language-driven approach; Sect. 5 extends the language to produce
a tool definition using the approach; Sect. 6 discussed the approach and outlines
further work.

2 Related Work

Software engineering is still essentially a young discipline and while efforts to
compare it with other engineering disciplines invariably result in criticism of the
discipline, some of the characteristics of software engineering are really the result
of progress in trying to address the challenges of intense design. Young and Faulk
provide an account of how this intense design manifests itself [22]. For example,
unlike in other engineering areas, SE includes considerable activity in designing the
design processes (see Pedreira et al. for relatively recent systematic literature review
on tailoring software processes[18]). Closely related to the design process is the use
of abstractions and notational elements. While abstraction is an essential step in
any field of endeavour, in SE, the choice of abstraction is a defining characteristic
of a software design process and can have direct and practical consequence on the
output of a software design process as noted in the pioneering work of Parnas [17].
Similarly the use of notations to support abstractions is also a dominant field of
enquiry. Thus programming languages, requirements descriptions [12], test plans
[3] and so on have all been studied from a notational perspective.

Collectively, these activities have coalesced into ubiquitous approaches to soft-
ware development manifested as methods, concepts and their associated software
tools. There is no space to enumerate each and every one but examples include: The
Information Engineering Facility from Texas Instruments [11], Software through
Pictures [20] and of course the unification of modelling concepts, and notations
through the Unified Modeling Language (UML) and its leading proponent for
many years, Rational Rose and subsequent versions. As the use of UML grew, the
complexity of the availability of concepts, notations, and the rules of their usage
became much more of challenge and methods such as the Rational Unified Process
developed alongside UML to help manage the complexity.

Despite the expressive power of UML, activity, consistent with SE research for
designing the design processes, proceeded to extend UML or create variants of UML
to support particular niche needs. For example, Egyed and Kruchten modified UML
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and the Rational Rose toolset to support Architecture Modelling [7]. While such
extensions are popular, they are technology oriented and do not present themselves
at sufficient level of abstraction for end-users. As Kelly notes: “Simply put, UML
is not domain-specific, and UML tools were not designed to support changing
UML. Trying to build domain-specific models in a UML tool is—at best—like
trying to write English in a Spanish version of Word” [13]. However, this style
of modification that capitalized on the unique power of the conceptual structures
when modifications are applied to the structures themselves remains a key strategic
method in dealing with complex design requirements for producing software and so
we can observe “abstractions of abstractions” and even the design of processes for
design processes. Such a reflective approach or meta-engineering to modification
creates a unique view of software engineering that is distinct to engineering in
general as it is not constrained by material processes or laws of physics.

The idea of organizations designing processes to suit their software development
practice and to have these supported by toolsets led to the development of meta-
modelling toolsets. Although the original meta CASE (Computer aided Software
Engineering) tools such as Ipsys Tool Builder [1], have long gone there are still two
key toolsets widely used currently. These are MetaEditC [14] and GMF.1 Egbert and
Hainaut describe four necessary components that require modelisation in order to
support the generation of tools from a meta-engineering environment [8]: (1) meta
model (ontology and repository); (2) their interface (specification, representation
and control); (3) their functions/processes (transformations and evolutions) and
(4) their methodologies (the reasoning and activity guidelines). Both MetaEditC
and GMF provide modelisation of these components. But it could be argued
that the proprietary nature of the repository associated with MetaEditC prevents
transformations to external tools and therefore sharing and evolution outside of the
toolset. GMF and its dependence upon the Eclipse framework is simply too complex
and so prevents users from designing domain-specific tools.

Tool frameworks emerged in recent years including Visual Studio and Eclipse.
These frameworks allow the developer to tailor the platform to suit a particular
domain by supplying static descriptions (often in XML) of the tool functionality
and organization. However, they remain very platform specific, are incomplete, and
require detailed implementation knowledge to work effectively.

A problem with tool descriptions is that they often use an implementation-
specific or proprietary format. They often do not address semantics and where they
aim to be self-contained, they present a mechanism for constructing a visual editor
for a language such as MetaEditC2 and the Miarama toolset [9] (although see [4]
that discusses semantic interoperability of DSMLs).

Language engineering can be argued to be a key feature of software system
engineering and the underlying methods and technologies of meta-modelling [19]
and domain-specific language engineering [21] have matured over the last decade to

1http://www.eclipse.org/modeling/gmf/.
2http://www.metacase.com.

http://www.eclipse.org/modeling/gmf/
http://www.metacase.com
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the point where they can be applied in industrial situations. However, the application
of language engineering to tool development has not seen significant research. This
chapter represents a contribution to this field.

3 Language Engineering for Tools

Our proposal is that Software Engineering (SE) is a language-based discipline. The
underlying design of software artefacts arising from an SE project should be located
in the design of an appropriate language. Thus any SE project involves one or more
domains that should be identified and precisely defined as languages. Furthermore,
tools are required in order to engineer domain artefacts and tool definition should be
part of the domain engineering process. Once a precise requirement for a DSL tool
is available, a project is in a position to find the most appropriate way of providing
the tools and their associated languages.

This approach can lead to a specification for a project-specific tool suite that
supports domain-specific languages. As such it represents a lens through which all
concrete technologies can be viewed in order to achieve consistency and clarity
across a project. Taken further, the approach can lead to executable models in which
case, given the availability of a suitable meta-tool platform, the project-specific tool
suite can be automatically generated.

This chapter addresses the specification of languages and tools, and this section
describes an approach for engineering these domains. Section 3.1 describes potential
approaches to language description, Sect. 3.2 shows how one approach can be
implemented using standard modelling techniques and Sect. 3.3 shows how the
approach incorporates tooling.

3.1 Domains as Languages

Languages are the medium of communication between humans. Geographical
distance can explain the difference between Chinese and English, but other than that
we might initially be tempted to conclude that languages in geographical areas are
essentially the same. However, there is a rich diversity of special purpose languages
that have arisen, some of which cross-cut national boundaries, in order to support
meaningful communication in specialized areas, or domains. Most professional
disciplines constitute such domains, for example medicine (try interpreting your
doctor’s notes!) and programming (where bugs cannot fly but need to be exter-
minated). The importance of language and its relevance to computer system and
organizational interaction has been researched at depth by foundational work [5,15].

Computer systems are controlled by making demands on their behaviour and
requesting information about their state. The particular demands and requests for
any application constitute a language of discourse with the system. Like languages
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associated with nation states, there is a general purpose language for controlling
families of systems; in the early days of computing this was the mode of discourse.
However, like discourse in professional domains, such low-level communication
was seen to be error prone and verbose. This led to the development of high-level
languages.

Software engineering differs from other engineering disciplines, such as Civil,
Electrical and Chemical that are each based on a collection of fixed rules that are
the same for each new system. Software is capable of defining new execution rules
for each new system or family of systems through programming. The dichotomy of
program and data is not fixed and allows programs to be represented as data, and
data to be interpreted by programs. This recursive relationship can be extended as
far as required in order to shield the engineer from the low-level communication
medium. Therefore, what works for human-to-human communication (i.e., the
development of domain specific languages of discourse) can be applied to software
systems with the same benefits.

Given that software engineering can be viewed as a language-based activity, how
frequently should a language be developed and who should do it? Once for all
applications by hardware specialists? Once for each operating system? Once for
each development style (OO, logic)? Once for each type of application (real-time,
graphical, distributed)? Once for each application (booking system, share transac-
tion system)? Once per use by users? Clearly there is a spectrum and it will depend
on the range of variability required as to where the requirement to engineer and use
languages lies. In general, one could argue that a general application user would not
require the ability to specialize the medium of communication, although many sys-
tems allow a degree of control over system properties that can be viewed in this light.

Commercial software development is increasingly striving for application fam-
ilies, or product lines. Such an approach is attractive because it can abstract key
commonalities and isolate variation points. In order to succeed with this approach
it is necessary to be clear about what constitutes a language and what range of
variability is available to the engineer. A language for software engineering must
have a single definition that we will call a model of its abstract syntax. In software
terms, the abstract syntax is a computer-friendly data representation of the language
and provides the reference-point for all other definitions of the language; the exact
format of the data definition is a variation point for language definition. Typically,
humans find abstract syntax difficult to work with because it is verbose, therefore
a language has one or more concrete syntax definitions. A concrete syntax for a
language may take the form of strings of text or of graphical displays, or both
[2]; it provides a variation point and is often a matter of taste. A concrete syntax
definition may take the form of a grammar and there will be a relationship between
the concrete and abstract syntaxes.

A language should have a semantics. A semantics is typically defined as a model
of a semantic domain (separate from the abstract syntax model) and a relationship
between the abstract syntax and the semantic domain. Degenerately, there is nothing
special about the semantics of a language, it is composed from two models and a
relationship and is defined for a particular purpose. A semantics may be defined
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in order to deduce properties of language elements, or to provide a mechanism for
defining valid and invalid abstract syntax configurations. Often when people talk of
the semantics of a language, they really mean one of the possible relationships that
can usefully be defined.

Computer Science has defined a number of categories of language semantics
[16], including:

Denotational. Where each language element is to be viewed as directly repre-
senting a semantic domain element. In this case the semantic definition takes the
form of a predicate that holds between elements from each domain. For example,
a language for class modelling has models that denote sets of objects and links.
The objects are required to be well-formed instances of classes in the model and
links are instances of associations that must hold between appropriate objects
and must satisfy multiplicity constraints attached to the association ends.

Operational. Where each language element is to be viewed as representing a
sequence of steps in a calculation. In this case the semantic definition can take
the form of an algorithm that performs the steps, or the form of a relationship
between a syntax element and a state sequence. For example, an interpreter can
be defined that processes a state machine and a collection of externally generated
events in order to control an object.

Axiomatic. Where each language element takes part in a relationship with seman-
tic domain elements that represents facts that can be deduced and the semantics
takes the form of a theory. For example, a class model may include operations
with pre and post conditions written in OCL. From such a model, properties of
legal execution traces can be deduced.

The particular semantic category that is chosen will depend on the type of language
and its intended use. Two obvious cases exist in software engineering which
make a distinction between static and dynamic systems. Typically a static system
represents some information, such as a relational database or an XML document,
expressed using a convenient domain-specific language. A dynamic system executes
in some way, for example a business process that manages a collection of databases.
Static systems lend themselves to denotational semantics and dynamic systems
lend themselves to operational semantics. Both static and dynamic systems can be
expressed using axiomatic semantics.

3.2 A Language Based Method

The previous section has presented the case for languages-based software engineer-
ing and has outlined the components necessary to define these kinds of languages.
To use this approach on a particular project, a specific technology and language
definition method must be selected. There are many technologies that are suitable for
defining languages including BNF grammars, symbolic programming languages,
DSL tools, graph grammars, term rewriting systems. For the purposes of this chapter
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we will use UML class diagrams together with invariant constraints expressed using
OCL since these have been standardized and are widely used. In addition we will
limit ourselves to static languages and denotational semantics.

UML is to be used to specify DSL tools. Therefore models are used to express
the language features described in the previous section and predicates are used to
define relationships between the language features. As such the models are required
to express what needs to hold between the models, even when the models describe
dynamic features such as the actions performed by a tool when a user selects a menu
item. This is to be contrasted with DSL models that express how the relationships
are constructed; such models would be executable and are not considered further.

A specification in UML can be expressed using relationship models. A relation-
ship model consists of a collection of classes that hold between elements of two
or more domain models. The domain models are to be viewed as being imported
into the relationship model. Each class in the relationship model is linked to domain
model classes using associations and OCL invariants on the relationship classes are
used to specify when the relationships hold between domain instances. The choice
of UML leads to the following:

Abstract syntax. A domain model showing the concepts and relationships in
the language. OCL is used to define syntactic constraints between elements.
A typical syntactic constraint would require all names to be unique in a given
context.

Concrete syntax. A domain model for a collection of display elements. Typical
modelling examples would be a graphical display language consisting of boxes,
text and lines. In principle there may be more than one concrete syntax model.
The case study in Sect. 4 uses graphical elements such as box and text because
the language lends itself to a diagrammatic syntax. A general purpose concrete
syntax domain may be extended, for example class-boxes can be defined as
a collection of sub-boxes and text. Well-formedness constraints are expressed
using OCL.

Syntax relationship. A relationship model between abstract and concrete syntax
elements. This model defines the constraints on the legal concrete representations
of well-formed language constructs.

Semantic domain. A domain model whose elements are to be used as the
meaning of abstract syntax elements. It is not necessary to have the abstract
syntax and semantics elements to be in one-to-one correspondence. OCL is used
to express well-formedness constraints on configurations of semantic elements.

Semantic relationship. A relationship model between abstract syntax and seman-
tic domain. It is important to note that there may be more than one semantic
domain and therefore more than one semantic relationship. However, in practice
it is usual to have a single semantics and therefore the relationship model can be
viewed as defining the semantics of the language.

A language is rarely defined from scratch; it is usually based on existing
languages. If it is a textual language, then there is generally a fairly standard
expression sub-language, and if it is a graphical language, then it tends to be based
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Fig. 1 General concrete
syntax

on a graph or a tree. The language used in our case study is graphical and the
concrete syntax will be based on the general purpose graphical syntax defined in
Fig. 1. A diagram is a graph consisting of nodes with edges between them. Each
node occurs at a point on the diagram and has a display element that is used to draw
the node on the screen. A display element can be some text, a shape made up of
points with lines between them, or is a group of displays. Each edge has a source
and target node, and a collection of waypoints. An edge has a minimum of two way-
points that are the edge-ends. An edge has a collection of labels and each waypoint
of an edge has an option shape used to decorate the waypoint.

3.3 The Tooling Domain

Our proposal is that tooling should be included in any domain-specific approach
to software engineering. By providing a specification of the required tooling for a
language, a project documents the intended usage of a DSL and clearly expresses the
requirements for any concrete tools that are to be used. Where multiple languages
are to be used, it is possible to test concrete tool frameworks against the combined
tool requirement model.

Given this proposal, how are tools to be specified? This can be determined by
analysis of the key features of any tool. A tool exists in a collection of states that
can be changed by interaction with its environment; this is equivalent to the abstract
syntax of the language as defined above. Since the tool must manage instances of a
language, its states are linked to abstract syntax instances.

Most software tools have a user-interface that consists of tree browsers, text
editors, property editors, graphical editors etc. The user-interface is equivalent to
the concrete syntax of a language as described above and the same approach of a
relationship model between abstract and concrete syntaxes can be used.
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A tool performs tasks, often in response to user interaction through a collection of
input gestures via buttons, menus etc. Tool execution can be modelled as a collection
of state-transition traces, where each step in a trace contains before and after states,
and an event. Such executions constitute the semantics of a tool, defined in terms of
a semantic domain and a relationship model.

Therefore, a tool can be modelled in terms of the same features as a language
as described in the previous section. If the tool is to be used to manage a language,
then the two models can be linked via relationship models so that the language
specification restricts legal tool behaviour and the tool restricts the features of the
language that are available to the user.

This approach is attractive because it places no restrictions on how the tool is
realized. The behaviour can be left ambiguous where further detail is not required.
A typical ambiguity is diagram layout where any concrete tool would be free to use
any algorithm. Multiple tools that are specified in this way can be combined using
relationship models to produce a single unified tool model; each component tool
will place restrictions on the functionality and behaviour of the other.

4 Case Study

The previous section has argued the case for a language-based approach to tool-
based domain engineering. This section provides an overview of applying this
approach to a domain. We have chosen a domain that is widely understood in order
that the key steps of the process are clear. The case study uses class modelling
as the domain; the following sections address each major step in the approach:
the abstract syntax of class-based modelling is defined in Sect. 4.1; the language
for drawing class models is defined in Sect. 4.2; Sect. 4.3 defines a relationship
between the elements of the class models and the concrete syntax, the relationship
specifies when a drawing is a legal representation of a model. For the case study we
are taking a denotational approach to language engineering and therefore Sect. 4.4
defines a model of the semantic domain for class models: every class model denotes
a snapshot contain objects and links. Given an abstract syntax and a semantic
domain it is necessary to define when a semantics (i.e., a snapshot) is a well-formed
instance of a class model, this is done by defining a relationship between elements
of these two models in Sect. 4.5.

Note that this section aims to give the key features of all elements of the approach.
As such some of the models omit elements that would otherwise be necessary to
provide a complete definition where the inclusion of these elements simply repeats
key features that are exemplified elsewhere. In addition it should be noted that
association ends on models are labelled only when necessary and that the names of
association ends default to the names of the attached classes with a lowercase initial
letter and internalized capitalization. Multiplicities on association ends default to 1
unless otherwise indicated.
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Fig. 2 Class models abstract
syntax

4.1 Abstract Syntax Domain Model

The abstract syntax structure of class models is shown in Fig. 2. A package contains
a collection of classes that can be related using associations and generalizations.
Each class has a number of fields and a collection of constraints. Each constraint is
an OCL expression; it is beyond the scope of this chapter to define OCL abstract syn-
tax; however, the reader is assumed to be familiar with standard first-order predicate
calculus which OCL approximates. An association has two ends attached to classes,
each end has a name and a multiplicity. The syntax for class models has been chosen
so that it is the basis for the languages used in the case study. A full and complete
model for class modelling is of course available in the UML 2.x specification
available at: http://www.omg.org/spec/UML/2.0/. Our presentation is necessarily a
simpler version for the purposes of illustrating key concepts of our approach.

A domain has a collection of well-formedness constraints. it will not be possible
with the scope of the chapter to define all of the well-formedness constraints
for class diagram domain and relationship models. Therefore, we will give a
representative sample. For example, the following constraints requires that all
classes in a package have different names:
context Package inv:
classes->forAll(c1 c2 | c1.name = c2.name implies c1 = c2)

4.2 Concrete Syntax

In general, the concrete syntax of a language will be built from some basic elements.
The concrete syntax of class diagrams is defined as an extension to the domain
model given in Fig. 1. The extensions specialize the basic concrete elements so that
it is easy to define the mapping model between the abstract and concrete syntaxes.

http://www.omg.org/spec/UML/2.0/
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The specializations for classes are shown in Fig. 3 where the class ClassNode is
a specialization of Node that represents classes. Classes are displayed as rectangles
containing text, so Shape is specialized to produce Rectangle. ClassBox is a
specialization of Group that is required to contain the display elements for a class
name and its fields. OCL is used to require the elements to be correctly formed, for
example the following is a fragment that forces the nested rectangles in a class box
to be positioned correctly:
context ClassBox inv:
displays = Set{nameBox,fieldBox,name,fields} and
nameBox.x = x and nameBox.y = y and
fieldBox.x = x and
fieldBox.y = y + nameBox.height and
nameBox.width = nameBox.width

The domain model in Fig. 4 defines a specialization of edges that can be used
to represent associations and generalizations on a diagram. As before OCL can be
used to constrain the domain, for example the type and positioning of association
edge connections (where contains holds between a display and a point when the
display contains the point):
context AssociationEdge inv:
source.oclIsKindOf(ClassNode) and
target.oclIsKindOf(ClassNode) and
source.display.contains(end1) and
source.display.contains(end2)

4.3 Syntax Mapping

A syntax mapping is a model that links elements from the abstract syntax domain
to appropriate elements in the concrete syntax domain. In general the mapping
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describes the minimum constraints necessary to ensure that the rules for con-
structing and displaying elements of the language are correct. Typically the syntax
mapping will leave issues such as layout underspecified so that tools can implement
their own algorithms. In addition, a syntax mapping may leave features such as
colour and the use of icons unspecified where these are not important.

Figure 5 shows the mapping model for classes within packages. It shows a typical
pattern that occurs in mapping models between two domains X and Y whereby
mapping classes A x B are constructed for class A of domain X and class B of
domain Y.
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The root mapping class is Package x Graph that defines a relationship
between a package and a graph. The OCL constraints attached to a mapping class
define the conditions under which instances of the associated domain instances can
be related. For example, a graph is a correctly formed package when it has a class
node for each class in the package:
context Package_x_ClassNode inv:
package.classes = classNode_x_classes.class and
graph.nodes = classNode_x_classNodes.node

Each mapping class must have appropriate constraints. For example, the name of a
class must be associated with the text in the class node of a class node:
context Class_x_ClassNode inv:
class.name = classNode.classBox.name.text and
class.fields = field_x_texts.field and
classNode.classBox.fields.decs = field_x_texts.text

context Field_x_FieldText inv:
text.text = field.name + ":" + field.type.name

The mapping model for generalizations between classes is shown in Fig. 6. The
mapping constraints are not defined here, but are of a similar form to those defined
for Package x Graph.

4.4 Semantic Domain

The semantic domain of a language defines the meaning of the elements from
the abstract syntax domain. Class models defined in Fig. 2 are static since there
is no way of defining dynamic features such as operations. Class models are well
understood and therefore the semantic domain shown in Fig. 7 is perhaps obvious.
However, when working with a new domain, the semantics might be less obvious.
In these situations it is worth considering designing the semantic domain before the
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syntax domains. This can be done by constructing a model of the things that are to
be denoted and then designing the syntax domains in such a way as to provide a
convenient way of denoting the semantic domain elements.

As with the syntax domains, a semantic domain includes OCL constraints
that express well-formedness constraints. For example, snapshot constraints should
include a requirement that object fields must have unique names and links can only
hold between objects that are in the same snapshot.

4.5 Semantic Mapping

The semantic mapping associates abstract syntax elements with semantic domain
elements. In the case of packages, classes are associated with objects so that the
slots and fields match up as shown in Fig. 8. The following OCL constraint requires
that packages have snapshots as instances when the objects in the snapshot are all
instances of corresponding classes in the package:
context Package_x_Snapshot inv:
package.classes->includeAll(snapshot.objects) and
package.classes = class_x_objects.class and
snapshot.objects = class_x_objects.object

Each instance of a class must have slots that correspond to the fields of the class:
context Class_x_Object inv:
class.fields = field_x_slots.field and
object.slots = field_x_slots.slot

The names of fields and slots must match up:
context Field_x_Slot inv:
field.name = slot.name

The type of a field must correspond to the type of a slot value:
context Package_x_ClassNode inv:
class_x_objects.field__x_slots->forAll(r1 |
class_x_objects->exists(r2 |
r1.class = r1.field.type and
r1.object = r1.slot.value))
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If we assume that each OCL expression has a predicate satisfiedBy that returns
a boolean value when supplied with an object then the invariants on classes are
specified as:
context Class_x_Object inv:
class.constraints->forAll(c | c.satisfiedBy(object))

The semantic mapping for associations and links is defined in Fig. 9. The
multiplicity on association ends places a constraint on the number of links that can
occur in the snapshot. For example, suppose that A is an association between classes
X and Y with the multiplicity 1 on the end (end1) attached to X. In a snapshot we
equate a link source with end1 and a link target with end2. Therefore, for a
link to be a valid instance of A, the source must be a valid instance of X, the target
must be a valid instance of Y and, for each instance of Y there can be at most one
instance of A. The multiplicity constraint is expressed in OCL as follows:
context Package_x_Snapshot inv:
package.associations->forAll(a |
a.end1.mult = "1" implies
snapshot.objects->forAll(o |
association_x_links->select(r |
r.association = a and
r.link.target = o)->size >= 1

We omit the constraints relating to generalizations that require an object to have
slots for all the super-classes of a class.
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5 Tooling

Software tools are a huge investment in terms of development and maintenance.
Many tools tend to be large and complex to learn. The ability to specify the
requirements of a tool for a specific task makes it clear how any suitable tool
should be used and also makes the required functionality independent of any
specific technology platform. Once defined, a tool can be reused by transforming
its specification to a new language. This section provides an outline on how a tool
can be defined for the class modelling domain by using a language-based approach.

5.1 Abstract Syntax

Figure 10 defines an abstract syntax domain for a simple general-purpose modelling
tool. The tool consists of a browser and a diagram editor. The browser contains tree
structured data and the diagram editor contains a graph. Various elements of the tool
have menus associated with them.

Note that the tool model is abstract in the sense that it does not specify the format
of the tree structured data or the graph data. Therefore, OCL can be used to place
some requirements on the tool model, for example that menu items are all unique in
a menu, that will apply to any tool that is specified to be consistent with the model
via a mapping model.
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5.2 Concrete Syntax and Syntax Mapping

The concrete syntax of a tool is defined using a model of the required graphical
elements to be used for browser nodes, menus and diagrams. This can simply use
the class Display defined earlier:

The abstract and concrete syntax of a tool are combined using a mapping model:

The mapping class Tool x Window has constraints that require the window to
include suitable arranged display elements. For example, the tree nodes of a browser
node must be displayed as text elements with positions that are arranged as a tree,
and the edges of a diagram must be displayed as lines whose end positions match
the locations of the attached nodes. It is beyond the scope of the current chapter to
give the details of the Tool x Windowmapping class; however, it should be noted
that the approach allows the mapping to be underspecified with respect to the exact
display elements used for tool features such as menus, diagram nodes and waypoint
decorations. In addition, the mapping may also be used to allow certain usability
features of the required tools to be specified. For example, if colours are available in
the Window concrete syntax model, then certain mixtures of colours can be defined
as illegal.

5.3 Semantics

In general, a software tool is a reactive system that performs actions in response to
a stimulus provided by the user. Each action causes the tool to change state and then
wait for the next stimulus. Figure 11 shows a simple semantic domain for a tool as a
filmstrip consisting of ordered steps that perform tool actions. A simple tool for class
modelling will require actions that create, delete and move elements. More sophis-
ticated tools will include actions for drag-and-drop, save and load, user input etc.

5.4 Semantic Mapping

Our proposition is that a tool can be treated as a domain-specific language and
therefore should be specified using a semantic mapping. The semantic mapping
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Fig. 11 Tool semantics

Fig. 12 Tool step semantic
mapping

will associate elements of the tool abstract syntax with the tool semantic domain.
In the case of simple class modelling, the semantic mapping must define what
happens for the creation, deletion and movement actions. Figure 12 defines a
mapping model consisting of a pre and post tool state and a step. The constraints
attached to the mapping class must be carefully constructed in order to specify the
required state changes, although some of the details may be left under-specified in
order to allow tools the greatest amount of freedom in satisfying the specification.
For example, the following constraint requires that a browser node is created in
response to a create action. It assumes that a tool provides the query operation
hasSelectedBrowserNode() which is true when exactly one browser node
is selected and getSelectedBrowserNode() that gets the selected node. In
addition we assume that we can perform p - q for two tools p and q that will
produce the elements in p that are not elements in q.

context Tool2_x_CreateStep inv:
pre.hasSelectedBrowserNode() and
post.hasSlectedBrowserNode() and
let n = pre.getSelectedbrowserNode()

n’ = post.getSelectedBrowserNode()
in n.menuItems->exists(i | i.name = step.action.name) and

(post - pre) = n’.children - n.children and
n’.children->size = n.children->size + 1
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Fig. 13 Mapping abstract syntax

5.5 Mapping Languages and Tools

A tool is used to manage elements in a language. Therefore, the abstract syntax of
the language must be associated with the abstract syntax of the tool. In the case of
class modelling, packages and package elements are associated with the appropriate
tool elements such as browser nodes and diagram nodes. Figure 13 shows a
mapping model that defines the appropriate associations for classes (associations
and generalizations are omitted). OCL constraints are used to tie the elements
together, for example:

context Package_x_Tool inv:
package.classes = class_x_nodes.class and
tool.nodes = class_x_nodes.node and
package.classes = class_x_treeNodes.class and
tool.browser.topLevelTreeNodes() = class_x_treeNodes.treeNode

Having linked the abstract syntax of the tool and class modelling language, the
concrete syntax of both languages must be mapped onto each other. Although
verbose, this is a straightforward mapping model that involves point-wise con-
straints between the display elements used to construct class models and the display
elements that are drawn on a window. The mapping class P x G x T x W associates
the mappings Package x Graph and Tool x Window:

the following OCL constraint shows how the two mappings are associated:
context P_x_G_x_T_x_W inv:
t_x_w.displays->includesAll(p_x_g.graph.nodes.display) and
t_x_w.displays->includesAll(p_x_g.graph.edges.shapes) and
t_x_w.displays->includesAll(p_x_g.graph.edges.waypoints.shape) and
t_x_w.displays->includesAll(p_x_g.graph.edges.waypoints.labels) and
t_x_w.displays->select(t | t.oclIsKindOf(Text))->
includesAll(p_x_g.package.classes.name) and
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Fig. 14 The complete tool
specification

t_x_w.displays->select(t | t.oclIsKindOf(Text))->
includesAll(p_x_g.package.associations.name) and

t_x_w.displays->select(t | t.oclIsKindOf(Text))->
includesAll(p_x_g.package.associations.end1.name) and

t_x_w.displays->select(t | t.oclIsKindOf(Text))->
includesAll(p_x_g.package.associations.end2.name)

The mapping defined above requires the tool window to contain all the appropriate
display elements but does not place any restrictions on where the information is
displayed. The tool syntactic mappings defined above require that the information
is appropriately displayed via browser areas and diagram areas.

The tool for the case study in this chapter has been defined using a language-
based approach in terms of its abstract syntax, concrete syntax and its semantic
mapping. As such it is sufficiently underspecified and may be used to specify a
tool for any language that involves a browser and diagram elements. We have
then defined point-wise mappings between class model syntax and tool syntax
and between class model semantics and tool semantics. It remains to ensure
that all of the point-wise mappings hold simultaneously, thereby completing the
tool specification. Figure 14 shows the mapping Tool Model that maps all
the component mappings. The associated OCL constraint (not shown) on Tool
Model requires that the appropriate elements of each constituent mapping tie up
correctly. Therefore, both syntactically and semantically the tool will behave as
required for all steps in a filmstrip.

6 Analysis and Conclusion

This chapter has identified a problem with software engineering tools and modelling
tools in particular that the investment required to produce the tools leads to large
complex general purpose platforms that are expensive to use and difficult to learn.
A solution to this problem is to take a domain-specific approach to tooling, thereby
producing lean focussed tools that are appropriate to each new project. Whilst
domain-specific tools solve some problems, they introduce others since they are
often based on proprietary technologies that lead to interoperability issues.

Our proposal is to take a domain engineering approach to tooling so that the tools
required for a project are specified as models and are then mapped on to existing
general purpose technologies or on to domain-specific technologies as appropriate.
We have described a method for specifying domain-specific tools based on UML
and used the method to specify a simple tool for class modelling.
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The benefits of domain-specific tool models include a precise description of tools
and the languages they support. The models can be mapped to the functionality of
existing platforms and the tool semantics can be used to check that the platforms
satisfy the required semantics. In addition tool models can be reused. For example,
the class modelling tool defined in this chapter can be extended to include features
such as components and state machines. Furthermore, the tool models can be sliced
to restrict their functionality, for example a class modelling tool that does not
support generalization. Since the tool model contains both the language and its tool
functionality, any extension or restriction of the language must also indicate the
extra tool functionality or the tool functionality that can be hidden from the user.

The method and case study in this chapter has shown that it is possible to specify
a tool in terms of a domain and mapping models. The case study that has been
used is an example of a horizontal domain and it remains to show that the approach
works for a variety of vertical domains. In addition the horizontal domain, although
familiar, is self-referential in the sense that a class-modelling tool has been specified
using class models. It remains to apply the approach to another horizontal domain
that is not used in the definition of itself.

Our goal is to be able to construct executable models of tools and to provide
a standard meta-language for tools that can be consumed by a wide range of
tooling platforms. A number of approaches to this problem have been tried, but
most do not explicitly model all of the features of a model. A successful approach,
that unfortunately uses a non-standard representation but otherwise shows that the
approach could be generally applied, is the meta-modelling tool platform XMF that
is compared against similar software tools in [10].
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Abstract Domain-specific modeling techniques can reduce the gap between the
problem space and the solution space by using abstractions and notations that
represent domain concepts. The fact that only familiar concepts and notations are
used in the model allows domain experts to understand and be involved directly
in design. The resulting artifacts of this process are models and transformations.
There are well-known techniques for developing modeling languages (e.g., meta-
modeling and synthesis of modeling environments); however, there is currently no
well-defined technique for engineering model transformation languages (MTLs).
This chapter introduces a language engineering technique for building MTLs that
is based on treating each MTL as a domain-specific language, more specifically,
as languages for describing specific classes of transformations. In this approach,
all the components of an MTL are modeled explicitly at the proper level of
abstraction using the most appropriate formalisms. Consequently, this facilitates the
automatic synthesis of MTL development environments and supports the evolution
of model transformations, which assists domain experts in designing models and
transformations in an integrated and uniform manner.
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1 Introduction

Model-driven engineering (MDE) [34] is considered a well-established software
development approach that uses abstraction to bridge the gap between the problem
domain and the software implementation. The MDE approach supports systematic
transformations of problem-level abstractions into their implementations. To bridge
the gap between the application domain and the solution domain, MDE uses
models to describe complex systems at multiple levels of abstraction, as well as
automated support for transforming and analyzing models. This separation allows
the description of key intellectual assets in a way that is not coupled to specific
programming languages or target platforms.

MDE considers models and transformations as first-class entities. In MDE
parlance, a model represents an abstraction of a real system, capturing some of
its essential properties, to reduce accidental complexity present in the technical
space. A model conforms to a meta-model [22], which defines the abstract syntax
and static semantics of a modeling language, a (possibly infinite) set of models. A
meta-model specifies the permissible syntax of a modeling language, often in the
form of constraints. The developer can then manipulate models by means of model
transformation [33]. Transformations allow one to define the dynamic semantics,
execute, analyze, synthesize code, optimize, compose, synchronize, and evolve
models. Model transformations are at the very heart of MDE [33].

There are well-known techniques for developing modeling languages. A popular
approach uses meta-modeling [22] and synthesis of modeling environments [26]
from the meta-model. Meta-modeling environments, such as the GME [27], Meta-
EditC [18], and AToM3 [25], provide a language-development capability where the
syntax and static semantics of the language are defined. Another popular approach
for defining modeling languages is through extension, such as UML profiles [10].
In this chapter, we focus on graphical domain-specific languages (versus textual).
There is currently no well-defined technique for engineering model transformation
languages (MTLs). This chapter proposes to model both the syntax and semantics of
model transformation languages explicitly using well-known modeling principles.

The following subsections briefly introduce modeling and transformations. In
Sect. 2, we describe how to model an MTL at the syntactic level (abstract
and concrete). In Sect. 3, the semantics of such transformation models are also
modeled through the use of meta-modeling and model transformation. The aim is
to increase the developer’s productivity, by raising the level of abstraction at which
transformations can be specified and by lowering the mismatch between MTLs and
their application domain, i.e., minimizing accidental complexity. We illustrate the
applicability of the proposed approach by re-designing a recent MTL, MoTif [38],
following the MPM principles (defined in the next sub-section). Section 4 addresses
the deployment and utilization of the re-designed MoTif. Section 5 discusses related
work. We conclude in Sect. 6.
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1.1 Modeling Principles

Domain-specific modeling (DSM) [11] is a branch of MDE that allows models
to be manipulated at the level of abstraction of the application domain the model
is intended for, rather than at the level of computing. In DSM, domain experts
can create models that described some computational need using abstractions and
notations that match their own domain of expertise. Thus, end-users who do not
possess the skills needed to write computer programs using traditional languages
(like Java or CCC) can describe a task in a more familiar language.

Another fundamental pillar of MDE is Multi-Paradigm Modeling (MPM) [29].
MPM addresses complexity by explicitly modeling all aspects and parts of a
problem, in all phases of the development process. Models cover different levels
of abstraction (and the abstraction/refinement relationships between them) and
may combine models in different formalisms. The explicit modeling includes
model transformations and relationships as well as the development process. MPM
promotes modeling all parts of the system, at the most appropriate level(s) of
abstraction, using the most appropriate formalism(s), to reduce accidental complex-
ity. One key aspect of MPM is multi-abstraction. A model abstraction is a view of
a system exhibiting some of its properties while hiding others. Multi-abstraction is
thus the ability to express models at different levels of abstraction. MPM realizes
that systems can be represented in different modeling languages or formalisms.
MPM, in particular multi-abstraction and multi-formalism modeling, is enabled by
the use of meta-modeling and model transformation. Instead of describing system
behavior in terms of code, MPM principles state that transformations also should be
modeled explicitly.

1.2 Background on Model Transformation

A model transformation receives as input a source model and transforms it into
a target model, where both models conform to their respective meta-model. The
meta-model for the source and target may have the same meta-model, which leads
to an endogenous transformation; or, the meta-model for the source and target
may be different, which produces an exogenous transformation. A transformation
is defined at the meta-model level. Note that the meta-model of the languages
involved in the transformation is referred to as the transformation domain. From
a transformation definition, the transformation is automatically generated and is
executed on any source model that conforms to the source meta-model. Both source
and target meta-models, as well as the transformation specification, are themselves
models, and conform to their respective meta-models: for meta-models, this is the
classical notion of meta-meta-model; for transformations, a transformation language
(or meta-model) allows a sound specification of transformations. Notice here that
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Fig. 1 Model transformation terminology

a transformation can also act on several source and/or target models. Figure 1
illustrates this definition.

Czarnecki et al. [6] list some of the features that an MTL can support.
Lano et al. [24] compare some of the existing model transformation tools. A
transformation is specified in the form of patterns which define the locations in
the model where the transformation is applied. A pattern is the fundamental unit
of a transformation. The very general area of model transformation spans many
paradigms such as template-based, functional, imperative, and rule-based [6]. In
this chapter, we concentrate our efforts on rule-based transformations, i.e., where the
transformation units are rules. A rule is a declarative construct that dictates “what”
shall be transformed and not “how.” It consists of pre-condition and post-condition
patterns. The pre-condition pattern determines the applicability of a rule: it is usually
described with a left-hand side (LHS) and optional negative application conditions
(NACs). The LHS defines the pattern that must be found in the input model to
apply the rule. The NAC defines a pattern that shall not be present, inhibiting
the application of the rule. The right-hand side (RHS) imposes the post-condition
pattern to be found after the rule was applied. An advantage of using the rule-based
transformation paradigm is that it allows specifying the transformation as a set of
operational rewriting rules instead of using imperative programming languages.
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Fig. 2 Components of a modeling language

1.3 Modeling Language Engineering

As illustrated in Fig. 2, a software modeling language is defined by syntax and
semantics [14]. The abstract syntax defines all the main concepts, elements, and
their relationships. For example, these will be places, transitions, and arcs for a
Petri net modeling language. The meta-model of a language consists of the abstract
syntax and static semantics (e.g., places can hold a non-negative number of tokens in
a Petri net). Therefore, the meta-model constrains the problem space to the essence
of the domain it models. The concrete syntax defines the notations attached to
each element of the abstract syntax. For example, a circle may define the graphical
concrete syntax of a place in a Petri net. The syntax mapping thus plays the role of
a renderer (concrete to abstract syntax) and parser (abstract to concrete syntax). The
meaning of the modeling language is defined in a particular semantic domain. For
example, the semantics of the Petri net language is defined using the reachability
graph domain. The semantic mapping function assigns each element of the abstract
syntax with elements in the semantic domain. The syntax of a language defines
what constructs are allowed and its semantics define their meaning. Additionally,
pragmatics of the language must be supplied in order to define the common uses
and anti-patterns of the language. For example, a Petri net model consisting of only
one place is valid, but useless.

1.4 Applying Modeling Principles to Model Transformation

This chapter lays the foundation for the engineering of MTLs, following a language
engineering technique based on DSM concepts and MPM principles. There are
several advantages for modeling explicitly all aspects of an MTL, as suggested
in [19] for DSM. Another set of advantages can be found in [4], as summarized
below:

• If we model transformations explicitly, we can re-use the same execution,
generation and analysis techniques as for models. In this case, once the open
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issues of maintenance, evolution, and verification tasks of models are solved,
they can be applied on transformations for free.

• We can automatically synthesize code from transformation models to a target
programming language and platform. The serialization of a transformation model
can be used to load, save, and exchange transformation models seamlessly
regardless of the tool used. The generated code can also be used as an interpreter
of other models.

• If an appropriate meta-model is defined for an MTL, then one can automatically
generate transformation-specific development environments.

• It becomes easier to explore the language design space by making alterations
to the control flow, mapping, and pattern specification parts of the language.
Obviously, this requires modeling the respective semantics, but once available,
alterations to the syntax and semantic definitions of such transformation (meta-)
models should be easier to perform than the respective changes in a code base.

• When transformations are modeled explicitly, then transformations can be
transformed cleanly through higher-order transformation. This can automate the
optimization, analysis, and integration of MTLs.

2 Modeling the Syntax

The first step is to design the syntax of the MTL, which reveals the concepts,
components, and their relationships in an MTL, as well as visual notations adapted
to the domain on which the transformation shall be applied. We model the syntax
of an MTL with an explicit meta-model that is a best fit for domain-specific
transformations.

2.1 Models, Meta-Models and Transformations

The diagram in Fig. 3a depicts the relations between a transformation and the
artifacts associated with the transformation. T is the operation that transforms a
model M into a model M 0. Each model conforms to its respective meta-model
MM1 and MM2. MT models this transformation and, conversely, T executes MT .
In fact, MT is a model of a transformation that transforms any model of MM1 into
a model of MM2. MMT is a meta-model of all transformations that transform any
meta-model. Since everything is modeled explicitly, MMM is the meta-meta-model,
i.e., it is the meta-model of the language used to describe meta-models. Typically,
MMM conforms to itself in a sound bootstrapped environment. This explicit point of
view on models of transformations is compatible with the model-driven architecture
(MDA) meta-layers [21] depicted in Fig. 3b. It places a transformation at the level
of real systems (the M0 layer), a model transformation (or transformation model) at
the instance level (the M1 layer) and the MTL at the level of UML class diagrams
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a bFig. 3 (a) Meta-modeling of
model transformations and
(b) the MDA meta-layers

used to define a meta-model (the M2 layer). In MDA, the M3 layer would represent
the meta-model of UML, i.e., the meta-object facility (MOF) [12].

The contribution of what follows is an approach that provides transformation
development environments that are customized to the specific domain of application.
Therefore, the focus is on MMT , the meta-model of transformations, to provide
a general solution. The meta-model MMT of a model transformation can be
partitioned into three sub-models:

• The meta-model of the pattern language (MMPL) defines the language of
the patterns or model fragments specified in the pre- and post-conditions of
transformation rules. It highly depends on the input and output languages of a
transformation.

• The meta-model of the transformation units (MMTU) defines the language of the
individual building blocks of an MTL (e.g., rules, helper functions, relations, and
modules).

• The meta-model of the scheduling language (MMSC) defines the language of the
execution logic of a transformation (e.g., a programming language, a workflow
language, or a modeling language).

2.2 Pattern Language

Unlike the mapping and control aspects of an MTL, its pattern specification
sub-language depends on other languages that represent the domain of the transfor-
mation. The input and output languages of a transformation determine which pattern
specifications for the pre-condition and the post-condition can be considered well-
formed. The underlying assumption is that the pattern specification language should
not be generic to fit all possible input and output languages, but specifically tailored
to the input and output languages, involved.

A generic pattern specification language is the most economical solution because
it can be re-used to specify the patterns of a transformation applied on any
domain. However, this makes the concrete syntax of the patterns inadequate for the
domain. Most tools use a UML object diagram-inspired concrete syntax for generic
pattern languages as illustrated in Fig. 4a, which requires additional expertise and
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a

b

Fig. 4 In (a) a valid generic MOF-based pre-condition pattern of an invalid Petri net. In (b) a valid
domain-specific pre-condition pattern for a valid Petri net

Fig. 5 The meta-model of a rule

knowledge for the domain expert modeler. Furthermore, it allows the modeler
to specify patterns that may never occur. For example, two Petri net places are
connected with an arc in Fig. 4a. Although relating two classes with an association
is valid in UML, it is invalid in a Petri net, since places shall only be connected
to transitions and vice versa. In contrast, one can consider a pattern specification
language that is customized to the input/output languages involved, as in Fig. 4b. In
that case, it excludes patterns that do not have a chance of being matched from
those that can be expressed. It also provides a concrete syntax adapted to the
source/target languages, which is especially relevant for domain-specific languages.
However, this approach imposes more work for the tool builder because it requires
the definition of a new pattern language for each transformation involving different
domains.

The original language definitions (meta-models) cannot be used for defining the
well-formedness of pattern specifications. Instead, transformation pattern specifi-
cations represent fragments of models from that language. A distinct meta-model
for transformation rules and the patterns specified in them is required. Figure 5
introduces a meta-model of a rule-based transformation unit, which refers to pre-
and post-condition patterns, as well as the pattern elements they contain. When
adapting transformation languages to specific input and output languages, one
needs to tailor these pre- and post-condition patterns so that they are fit to be
used for the respective input and output languages. We obtain the required tailored
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pattern specification meta-models by starting with the original language meta-
models and then subjecting them to a number of changes. In previous work [23],
we have shown how to semi-automatically generate a domain-specific pattern
language from the input/output meta-models. This meta-model metamorphosis,
called the RAMification process, involves three steps: Relaxation, Augmentation,
and Modification. The process is specific to languages for which the meta-model is
defined by a UML class diagram.

Relaxation. This step relaxes the constraints imposed by the meta-model of the
domain. For example, it allows the instantiation of classes that were originally
abstract. This allows a single rule to match model elements of any of its sub-
types. It reduces the minimal multiplicity of every association end (e.g., a 1..2
multiplicity is relaxed to 0..2). This allows the presence of isolated association
elements in a pattern. Any additional constraint (possibly defined in OCL) needs
to be removed or preserved, depending on the static semantics of the pattern
language. This decision is not automated and requires manual filtering.

Augmentation. This step augments the resulting meta-model with additional
information. All the meta-model classes and associations are integrated in the
rule meta-model of Fig. 5 through inheritance. This results in two meta-models:
one for the pre-condition patterns and one for the post-condition patterns.
Transformation-specific properties and constraints are also added to the meta-
models such as labels of pattern elements, and parameter passing between
different rules.

Modification. This step performs some further modifications on the resulting
meta-model. Namespaces are updated accordingly. The types of the attributes
are modified as well. For pre-condition classes, all attributes are of the type of
the constraint language (e.g., OCL). For post-condition classes, all attributes are
of the type of the action language (that is not bound to a particular language,
e.g., imperative OCL or Kermeta [30]). The concrete syntax of the original
meta-model is preserved as much as possible. However, associations rendered
as topological constraints (overlap, positioning) and invisible associations are
replaced by visual arrows. This can later be altered by the modeler as desired.

The RAMification process generates two meta-models, one for the pre-condition
pattern language and the other for the post-condition pattern language. Each of these
pattern meta-models is based on all the meta-models of the languages involved in
the transformation.

We have integrated the RAMification process in the meta-modeling process
of our tool AToM3 [25]. After defining the meta-model of the source and target
domains of the transformation, the transformation developer can generate the
RAMified meta-models, one for the meta-model of the pre-condition patterns
and one for the meta-model of the post-condition patterns. The meta-model of the
transformation units can be loaded, consisting of LHS, RHS, and optionally NAC
components of a rule or query. Patterns can then be specified in each component
as illustrated in Fig. 6. This process illustrates how a modeling environment is
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Fig. 6 A transformation rule model in AToM3

automatically synthesized for the design of the transformation rules that are specific
to the problem domain.

2.3 Transformation Units

The typical transformation units of an MTL are rules, queries, their compositions
through modules/packages, and helper functions that are re-usable in different rules
or transformations. A query is similar to a rule in the sense that it binds part of
the input model to its pre-condition pattern. However, queries are side-effect free.
That is, the model remains identical after a query was executed. The output of a
query is an out-place view of the input model, which can be a snapshot of a sub-set
of the input model or an abstraction of some of its properties through aggregation.
Examples of queries can be found in the QVT specification [13] or attribute helpers
in ATL [17]. Helper functions are typically rules or queries with the purpose of
encapsulating parts of a transformation unit that appear in multiple locations of a
transformation. Examples of helper functions are operation helpers in ATL.

In previous work [37], we identified the primitive building blocks of transforma-
tion units. T-Core encapsulates this minimal collection of transformation primitives.
In [35], we showed how to re-construct the transformation units of a dozen existing
MTLs with T-Core. The primitives offer the following features:

• Pre- and post-condition patterns allow one to specify a rule declaratively in a
relational (QVT-Relation) or operational (graph transformation) paradigm.

• Matcher binds model elements that satisfy a pre-condition pattern.
• Rewriter transforms the host model to satisfy the post-condition of a rule.
• Resolver validates whether a rule has been consistently applied in order to detect

inter-rule conflicts and resolves them.
• Manipulation of matches to iterate through them and roll back to previous match

states.
• Control of the flow of rule applications by offering choices and concurrency.
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• Composition mechanisms to provide structure, re-use, and encapsulation of the
above primitives.

The data exchanged between T-Core operators are packets, which carry all the
necessary information required by every operator. T-Core also supports exception
handling. Exceptions are modeled explicitly as messages that the operators can
exchange. Each operator is customizable through pre-defined parameters. All prim-
itives conform to a common API making their interleaving independent from each
other. In addition, the composition mechanism allows transformation developers
to build custom transformation units. For example, a simple transformation rule
consists of a matcher that first computes a binding of the pre-condition pattern
over the input model. The iterator selects one of the possible matches. Finally,
the rewriter modifies the model (with the usual CRUD operations [20]) so that the
matched sub-models satisfy the post-condition pattern.

T-Core empowers the transformation developer to build transformation units
that are specific to the problem the transformation will solve. General-purpose
transformation languages, such as QVT or ATL, may encumber the developer with
unneeded features. This adds complexity to the design of the transformation that
may lead to design errors and even reduce productivity [19]. In contrast, MTLs
based on T-Core, using RAMification, enable the design of transformation models
that are tailored to the problem domain.

2.4 Scheduling Language Meta-Model

The third part of the meta-model of an MTL is the scheduling language. It can be a
programming language (e.g., Java [9]) or a modeling language (e.g., UML Activity
diagrams [28], or Colored Petri nets [40]). We now present MoTif, a DSL for the
scheduling of model transformation rules.

MoTif is a modeling language for designing model transformations based on
graph transformation [8]. This language is engineered following MPM principles
where everything is explicitly modeled at the most appropriate level of abstraction
using the most appropriate formalism. Therefore, its meta-model, depicted in Fig. 7,
consists of three parts: the pattern language, the scheduling language, and the
transformation units.

The pattern language is adapted automatically to the domain of application of
each transformation following the RAMification process described earlier. It is
integrated in the meta-model of MoTif by extending the Pre- and PostCondition-
Pattern classes through inheritance, as shown in Fig. 5. MoTif is a controlled, timed
graph transformation language. It offers a clean separation of the transformation
units from the structure and flow of execution of the transformation. Rules and
queries are the supported transformation units. Transformation units are embedded
in AtomicRuleBlocks that are part of the scheduling language. This language
mainly consists of RuleBlocks. A RuleBlock can be either atomic or composite
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Fig. 7 The meta-model of MoTif

(CompositeRuleBlock). In the atomic rule blocks, an ARule (“Atomic Rule”)
encodes a rule and a QRule (“Query Rule”) encodes a query. Composite rule
blocks are used to modularly encapsulate other RuleBlocks (atomic or composite).
Some composite blocks express advanced control flow structures, such as branching,
looping, and parallelism. RuleBlocks have ports that can be connected via channels.
Model is the only input port and Success, Fail, and Exception represent output
ports. Port channeling induces an ordered application sequence of rule blocks.

In the MoTif visual modeling language, the concrete syntax of an ARule is a
single rectangle frame as depicted in Fig. 8. The top triangle on a rule block is the
Model input port. The bottom-left tick symbol is the Success output port and the
bottom-right “X” symbol is the Fail output port. Conceptually, the input model is
received on the Model port and, if the application of the rule is successful, the
resulting model is output through the Success port. However, if the pre-condition
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Fig. 8 The different rule
blocks in MoTif

pattern is not satisfied, the original model is output from the Fail port. The QRule
has a similar graphical syntax with a question mark symbol on the top-right of the
rectangle. The transformation engineer can specify a time duration for the matching
phase for both atomic rule blocks. In the case of an ARule, the duration for the
rewriting phase can also be specified.

A MoTif sub-model encoding transformation units can be part of a CRule
(“Composite Rule”). CRules are visually depicted by a double rectangle frame.
The same ports appear on both atomic and composite rule blocks which implies
that they can be used interchangeably to build complex hierarchical transformation
models modularly.

Iterative rule application is possible with variants of an ARule. The FRule
(“For all Rule”) applies the transformation rule on all matches of the pre-condition
pattern (in an arbitrary, but deterministic and repeatable order). The maximum
number of iterations is parameterizable. The matches are assumed to be parallel
independent [8]. Two matches are parallel independent if no overlapping matched
element is modified (node deletion or attribute modification) by the rule when
applied. If they are not, the transformation designer can specify a resolution function
to resolve the conflicts. The FRule is represented using the same concrete visual
syntax as an ARule, annotated with an “F” in the top-right corner. If the maximum
number of iterations is not infinite, the positive integer appears in the top-left corner.

Another variant of the ARule is the SRule (“Star Rule”). It is applied sequen-
tially as long as the pre-condition pattern is satisfied in the model. That is, after the
model received is matched and transformed, the resulting model is then matched
again by the same rule. This continues until no more matches can be found in the
resulting model. Care should be taken when using this construct as it may result
in an infinite loop. When combined with pivot1 passing, the SRule applies itself
recursively. The SRule is represented using the same concrete visual syntax as an

1 A pivot acts like a parameter for transformation rules. It allows certain elements bound in one
rule to be passed to another rule.
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ARule, annotated with an asterisk in the top-right corner. If the maximum number
of iterations is not infinite, the positive integer appears in the top-left corner.

While iteration involves a single rule block, looping allows one to iterate over
multiple rule blocks. This is possible with the LRule (“Loop Rule”). It consists of
an atomic rule block as base and a CRule as loop body. The LRule applies the
rules of the loop body iteratively for every match found in the base rule (c.f. Fig. 7).
The LRule has different variants depending on the type of the base rule block and
whether pivots are used in the patterns, such as rule nesting and indirect recursion.
For example, if the base is an FRule, then all matches of the base are first found.
Then, at each iteration, the rewriting part of the base is applied. In that case, the rule
block is referred to as an LFRule. If the base is an SRule, the behavior is similar
except that the matches are re-evaluated at the end of each iteration. In that case,
the rule block is referred to as an LSRule. The concrete syntax of an LRule is the
same as a CRule, but a horizontal solid line separates the base compartment from
the loop compartment.

In graph transformation, it is sometimes desirable to have many rules match, but
let only one be applied. MoTif introduces the BRule (“Branch Rule”) block which
allows branching of rules. Its purpose is to receive a model, through its Model port,
and send it to each branch. However, only one branch—of those that successfully
found a match—is selected to continue executing the transformation. Visually, a
BRule is similar to a CRule, but the rectangle is partitioned by vertical filled lines
to separate the branches, each branch being a CRule in its own right.

MoTif allows rules to be applied in parallel with the PRule (“Parallel Rule”).
This leads to what we call “threads” of rule applications. Each thread is applied
concurrently, independently from each other. The output of a PRule is a single
model “merged” from the result of each thread. The threads are assumed to
be sequential independent [8]. The transformation designer can specify a merge
function to merge the graphs in the case of conflict. The PRule’s parallel execution
requires special care. Visually, a PRule is similar to a BRule, but vertical lines that
separate the threads are dashed. Each thread is also a CRule.

When the isTransactional flag of a rule block is activated, its behavior
is extended with memory capacity, which provides back-tracking. We denote
such a rule block by XRule (“Transactional Rule”). For composite rule blocks,
isTransactional is set to true if and only if the first sub-rule is transactional.
Through transactional rules, MoTif also allows to model recursion, as explained
in [38]. A transactional rule block has the same concrete visual syntax as the rule
block, with an “X” appended in the top-right corner.

Note how the meta-model of MoTif does not include any information about
the models processed. This is because MoTif is a language that constrains the
transformation modeler to only focus on describing the scheduling part of model
transformation.
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a

b

Fig. 9 (a) The original meta-model of Petri net rules and (b) its RAMified version

2.5 Example: Petri Net Simulator

We illustrate the use of MoTif by modeling a Petri net simulator. Figure 9a shows
the original meta-model of the language and Fig. 9b shows the pattern meta-model
derived from it following the RAMification process. The relaxation step reduced
the multiplicities of the associations between arcs, places, and transitions to be
minimally 0. It also removed the three original constraints. The augmentation step
added transformation-specific attributes such as labels. It also split the meta-model
into pre- and post-condition meta-models. The modification step renamed each class
to reflect whether it is to be considered as a pre- or a post-condition element.
Attributes are re-typed as constraints and actions, respectively.

We simulate the execution of a Petri net execution by using a small set of
transformation rules (see Fig. 10a), transforming Petri nets to Petri nets. We are able
to express the operational semantics of Petri nets in just four simple rules because
of the expressiveness of MoTif control structures. The control structure is shown in
Fig. 10b. The control structure makes it particularly easy to find an enabled Petri net
transition, i.e., one which can fire. Such a transition needs sufficiently many tokens
at each of its incoming transitions. One naive solution for finding enabled transitions
is to just specify all possible patterns to be found. Alternatively, this can be solved
provided that the pattern specification language uses intentional specifications to
allow referring to sub-graphs of arbitrary size. However, the most elegant solution
is to iterate through all transitions until one has been found that does not satisfy the
pattern of a non-firing transition.
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a

b

Fig. 10 The operational semantics for Petri nets: the rules in (a) and the control flow in (b)

The behavior of the transformation model is as follows. The outer-most rule
block is an LSRule called Simulation—since the base rule block of this LRule
is an SRule. Although the base is a query, it is nevertheless encapsulated in an
SRule (with no rewriting phase) to recursively execute the transformation. First,
1:FindTransition looks for one transition. The transition found is assigned to a pivot
called transition. In the loop part of the LSRule, an LFRule ensures that only
firing transitions will be processed. This is done by verifying if a given transition
(assigned to the pivot) cannot fire. If the NonFiringTransition rule is not applicable
on that transition, then it is firing. This interruption in the loop is represented by
the channel from the fail port of the NonFiringTransition QRule to the success
port of the enclosing LFRule. When a firing transition is found, it is assigned to
a pivot called transition, replacing the former transition, to be processed by the
subsequent rules. Then, tokens are transferred along this transition as depicted by
rules ConsumeTokens and ProduceTokens. After that, the base rule block of
Simulation is applied again recursively, by re-matching the new model looking for
a transition. This control flow continues until no more transitions are fire-able.

3 Modeling the Semantics

In the previous section, we showed how to model the complete syntax of an MTL
and then demonstrated the execution of a model transformation in that MTL. We
now describe precisely how to model the MTL’s semantics.
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3.1 Semantic Domain and Mapping

3.1.1 Semantic Domain

The semantic domain of an MTL is a language that is used to define the meaning of
its transformation models. The semantic domain is often confused with its imple-
mentation, in which case the semantic domain is a programming language (as is the
case for ATL). Transformations are operations performed on models. It is therefore
natural to opt for a language that can define operational semantics conveniently.
It should nevertheless be a formal, precise, and unambiguous language. Popular
candidates are programming languages, structured operational semantics [3], or
state-automata languages (e.g., Petri nets [40], abstract state machines [2]). We
claim that the semantics of an MTL should not be defined in terms of a programming
language, because this is implementation-specific, which is counter to the goals of
MDE.

In the case of MoTif, the semantic domain of its scheduling part is the Discrete
Event System Specification (DEVS) formalism [41] together with T-Core. A DEVS
model consists of atomic processes that are similar to timed automata. The behavior
of atomic processes is independent from each other. They exchange events through
channels between their ports and may generate new events or consume events.
The parallel composition of atomic processes is defined by coupled models, which
enables re-use of sub-models in a modular way.

DEVS is an attractive semantic domain for graph transformation languages
as explained in [36]. Since DEVS inherently allows one to build hierarchical
models, the transformation language becomes highly modular by re-using specific
components of a transformation. Another side effect of using DEVS is the explicit
introduction of the notion of time in model transformations. This allows one to
model a time-advance for every rule, as well as to interrupt (preempt) rule execution.
Another advantage is that the behavior of DEVS models is defined by a platform-
independent simulator for which several efficient implementations exist. Also,
the same DEVS model can be executed on a sequential, parallel, or distributed
environment.

3.1.2 Semantic Mapping

Mapping the meta-model of a modeling language to a particular semantic domain is
the most complex task in the design of the MTL. It is the core of the language as it
defines the meaning of every element that the modeler uses to build transformations.
The complexity of the semantic mapping function lies in the typical domain
mismatch between the syntactic domain and the semantic domain. Often—at least
in DSLs—the syntax is “high-level” and is as close to the domain abstraction
as possible. In contrast, the semantic domain is often a formal language with no
straightforward resemblance to the syntactic domain. Our solution is to divide the
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semantic mapping into several steps. At each step, a semantic concept is mapped
to an intermediate language until a mapping to the semantic domain can be “easily
defined.” We model these “smaller” semantic mapping functions by higher-order
transformations (HOTs) [39]: transformations transforming transformation models.
Note that this is only possible if the language of the semantic domain is also modeled
with an explicit meta-model.

Consider the MoTif language. From a syntactical point of view, it is a domain-
specific language for modeling transformations with T-Core primitives. However,
its semantics rely entirely on DEVS. Thus, the transformation engineer is required
to have expertise in the DEVS formalism, which is rarely the case. Designing
transformation models with DEVS is not a trivial task. To leverage this complexity,
we introduce MoTif-Core as an intermediate language to facilitate this mapping.
MoTif-Core is intended to offer a common platform for model transformation
languages that are at a more appropriate level of abstraction. MoTif is therefore
a transformation-specific language whose syntax abstracts away T-Core constructs
and whose semantics is defined in terms of MoTif-Core.

3.2 MoTif-Core as an Intermediate Semantic Domain

As an intermediate language, MoTif-Core is an extension of the DEVS formalism
combining it with T-Core primitives. MoTif-Core is also an MTL with a syntax and
a semantics. Its meta-model is described by the UML class diagram in Fig. 11. The
semantic domain of MoTif-Core is the DEVS formalism and the semantic mapping
function is described using set theory and mathematical functions. We refer readers
interested in the semantic mapping to DEVS to Chap. 7 of [35]. The following
focuses on the syntax of MoTif-Core and the semantics is explained informally.

The T-Core primitives can be found encapsulated in the state of different atomic
DEVS AtomicPrimitive elements. Those classes are prefixed by “TC,” depicting
that they are semantically identical to their T-Core counterparts (e.g., in MoTif-
Core, TCMatcher represents the Matcher from T-Core). They exchange packets,
modeled as DEVS events, which encapsulate the model to be transformed. When
a RulePrimitive element receives a packet from an inport, its external transition
function is triggered and invokes the appropriate method of its corresponding
T-Core primitive according to the activated inport. After the packet (or any
other event) is processed by the T-Core primitive, it is sent via an outport of
the RulePrimitive element: the output function ensures the conversion from a
T-Core message to a MoTif-Core event. As both functions modify the state of
the MoTif-Core element, the time advance function defines the delay for which
it shall remain in the new state. Each RulePrimitive element has a specific set
of in/outports. For example, the Matcher has APacketIn and ACancelIn inports
from which packets or cancel events are received, respectively. It also has a
ASuccessOut and AFailOut outports from which packets are output depending
on the semantics of whether the encapsulated T-Core primitive “was successfully
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Fig. 11 The meta-model of MoTif-Core

applied” on the packet. For instance, if a match of the pre-condition was found in the
packet, the T-Core matcher was successful and the resulting packet is output from
ASuccessOut. In MoTif-Core, the Composer is coupled to the DEVS model and
hence inherently composes other elements. It specifies the connection between the
different in/outports to ensure a proper flow of the transformation.
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Fig. 12 A Composer
representing a simple
transformation rule

To illustrate the concrete syntax and behavior of MoTif-Core, Fig. 12 describes
how a simple graph transformation rule is modeled. In graph transformation, a rule
behaves as follows. Given a transformation rule pattern, the rule first looks for an
occurrence of its LHS pattern to match in the input graph. If a match is found,
the rule transforms the graph by rewriting the matched sub-graph, resulting in the
RHS pattern. The graphical syntax of MoTif-Core primitives is a rounded rectangle
labeled on the top-right by its type (M for Matcher, I for Iterator, W for Rewriter).
Inside it, the optional alias is followed by a colon and then a name identifying the
T-Core primitive. A Composer is represented by a double-lined rounded rectangle.
A line depicts a channel connecting ports. The Composer has three inner models:
a Matcher, an Iterator, and a Rewriter. Its behavior is as follows. The packet the
SimpleRule receives via its CPacketIn inport is first sent to the Matcher. When
the Matcher receives the packet, any occurrence in the graph of its pre-condition
pattern is stored in the packet. After a certain delay specified by its time advance, if
a match is found, the Iterator receives the modified packet output from the Matcher
and selects one match (in this case the only one). Then, the Rewriter receives the
packet output from the Iterator and transforms the graph according to its post-
condition pattern applied on the selected match (specified in the packet). After a
certain delay, the resulting packet is sent to an outport of the Composer. In the case
of a successful application, the newly modified packet is sent through the success
outport CSuccessOut. If the Matcher was unable to find any matches, or if the
Iterator has exceeded the number of iterations (to select a match), the packet is sent
through the fail port CFailOut, depicting that the SimpleRule was not applied.
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a b

Fig. 13 The ARule (a) and FRule (b) in MoTif and their equivalent MoTif-Core models

3.3 Semantic Mapping Function as a Higher-Order
Transformation

We have described the abstract and concrete syntax of MoTif. We have also
described its semantics domain, MoTif-Core, with its concrete syntax and whose
semantics is defined by a mapping onto DEVS. What remains is the semantic
mapping of MoTif. It must be injective since every MoTif construct shall correspond
to a unique MoTif-Core model. We propose to describe this mapping as a
model transformation specified in MoTif. It is therefore a HOT transforming one
transformation language (MoTif) into another (MoTif-Core). The meta-model of
the patterns of this transformation consists of the RAMified meta-models of MoTif
and MoTif-Core. In this subsection, we outline the main transformation steps
of the semantic mapping, focusing on the ARule and the FRule. The complete
transformation can be found in [35].

Every RuleBlock in MoTif is mapped onto a Composer in MoTif-Core. The
alias and name parameters of the Composer are the same as those of its RuleBlock
counterpart. The Model port is mapped to the CPacketIn port of the Composer,
the Success port to the CSuccessOut port and the Fail port to the CFailOut
port.

The ARule is the simplest transformation unit with side effect. When an ARule
receives a model input from the Model port, it searches for one occurrence of its
LHS in the input model. If a match is found, it is transformed according to the
RHS of the rule. Figure 13a illustrates how an ARule is mapped onto a MoTif-
Core Composer. The rule in the figure describes the connection topology of the
Composer’s sub-models. An ARule behaves similarly to the simple rule described
above. However, a Resolver (rounded rectangle annotated with an R) is added
in case a pending match in the packet conflicts with the current rule application.
Visually, the zigzag on its right depicts the AExceptionOut port from which an
exception event encapsulating the packet is output if the Resolver cannot resolve
the conflicts. To ensure the atomicity of the graph transformation rule, a Rollbacker
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(rounded rectangle annotated with an B) is added to the MoTif-Core model. It
ensures that if the rule is not applied, the packet will be restored to the state it was
in before entering the Composer.

Recall that the FRule is an ARule that applies its transformation phase on all the
matches found before the new model is output. As shown in Fig. 13b, the matching
phase is performed only once and, after the match is rewritten and validated, the
packet is sent back to the Iterator that will select another match to process. Note that
the Iterator failing (i.e., outputs a packet from AFailOut) means that the Matcher
has successfully found all matches in the host graph and there are no more matches
left to process. In this case, the FRule will successfully output the new packet.
If, however, the Rewriter or the Resolver fails during one of the iterations, all
the modifications that were performed in this Composer are discarded through the
Rollbacker. The user can control the number of times the rule encoded in the FRule
is applied. If iterations D 1, it will be applied on all possible matches. The order
in which matches are processed is non-deterministic as it relies on the behavior of
T-Core’s TCIterator. Also, the TCResolver will by default fail if any two matches
overlap. This will result in discarding all previous transformations performed by
this FRule. This appears at first to be an excessive overhead because the confluence
of the matches could have been detected prior to the execution, e.g., through the
computation of critical pairs [16]. However, the latter approach, in addition to not
scaling well, may sometimes be too conservative leading to false positives (an
example is given in [15]). This is overcome in MoTif by letting the user override
the validation criteria customResolution of the FRule.

4 Deployment

MoTif is a completely modeled MTL. Its syntax is convenient to use for a
transformation engineer in the sense that it only contains artifacts specific to
transformations (unlike MoTif-Core). Its semantics is also modeled explicitly since
it is mapped onto the MoTif-Core modeling language and this mapping is modeled
as a transformation. Figure 14 illustrates the different language layers MoTif relies
on. MoTif is a “syntactic sugar” language of MoTif-Core, which consists of the
core elements of the language. The former simply defines a more user-friendly
syntax encapsulating the different transformation operators provided in the latter
language. MoTif-Core combines T-Core and DEVS, both running on a model-
aware virtual machine. They are expressed in a neutral target language as defined
by the AToM3 Redux Kernel (ARK) [7], which represents the meta-meta-modeling
layer in AToM3. The tool is implemented in Python. The DEVS virtual machine
allows executing MoTif transformations.

Figure 15 shows the framework in which MoTif transformation models are
executed. MoTif is a formalism defined in AToM3 as a domain-specific language.
To define a transformation, the transformation engineer generates a modeling
environment for designing rules by applying the RAMification process on the source
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Fig. 14 The architecture of the MoTif language

Fig. 15 The MoTif execution framework

and target languages. The result is automatically combined with the transformation
unit part of the meta-model of MoTif and produces a customized meta-model for
the patterns of the transformation. On the one hand, the transformation engineer
defines rules, queries, and their patterns in the modeling environment. They are then
automatically compiled into T-Core patterns. On the other hand, the transformation
engineer specifies the control flow of the transformation by designing a MoTif
model. Then, the MoTif model is transformed into an equivalent MoTif-Core model.
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The resulting model is further compiled into a PythonDEVS [5] model (a Python
implementation of DEVS). The generated T-Core patterns are integrated in the
DEVS model through package imports. A PythonDEVS simulation environment is
also generated from the MoTif-Core model. It allows one to interact with, execute,
and debug the PythonDEVS model.

5 Related Work

The first mention and motivation to treat transformations as models and not
as programs appeared in [4]. The idea of defining the semantics of a model
transformation language at a higher level of abstraction (such as MoTif) with respect
to another model transformation language at a lower level of abstraction (such as
MoTif-Core) has recently gained popularity. For example, the semantics of QVT-
Relations is defined in terms of QVT-Core [13]. This semantic mapping is defined
by a QVT-Relations transformation. In the case of MoTif, the mapping is defined as
a higher-order transformation which is, in turn, expressed in MoTif. Since MoTif is
formally defined in terms of DEVS, T-Core, and graph transformation, the semantic
mapping of MoTif to MoTif-Core is formally defined.2

MoTif was introduced in [38] as a new general-purpose transformation language
whose rule scheduling semantics is based on DEVS. The semantic mapping from
MoTif to DEVS was defined using set theory and morphisms, which the transforma-
tion developer may not have familiarity. In our current approach, we explicitly model
the mapping to DEVS instead. We believe this provides a more accurate and simpler
documentation. It also facilitates the evolution and maintenance of the language.
For example, when a new version of MoTif is deployed, all existing transformation
models conforming to the previous version can be migrated automatically by a HOT.
The proposed definition of the semantics allowed us to detect errors in the original
mapping to DEVS, which were hard to detect in their initial form.

Several approaches define transformations using concrete syntax. For example,
Baar and Whittle [1] show how the concrete syntax of visual modeling languages is
adapted for the specification of transformation rules. Rumpe and Weisemöller [32]
achieved a similar goal for transformations in textual syntax. However, in both cases,
the adaptation of the syntax is performed manually as opposed to the approach
presented in this chapter.

There have been previous efforts that have provided a means to describe a model
transformation using terms that are tied to domain concepts from a specific meta-
model, rather than abstract modeling concepts from the meta-meta-model. One of
the earliest examples of this type of work was on ANEMIC [31], which was a
specific approach for writing model interpreters for GME [27]. The typical way to
write a model transformation in the GME is to write a CCC program that accesses a

2The mapping can be executed after bootstraping.
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specific API that can obtain information about a model instance through abstractions
related to concepts from the GME meta-meta-model. ANEMIC provides an ability
to write model interpreters in CCC that use an API that has been generated as
a customized wrapper, where the interface that the programmer uses is specific
to the concepts in the domain and are mapped down to the native GME API
calls. Although this does help to write GME model interpreters in a more domain-
appropriate manner, ANEMIC generates CCC code rather than a more traditional
model transformation language.

6 Conclusion

In this chapter, we introduced a language engineering technique for building MTLs
that is based on treating each MTL as a domain-specific language, more specifically,
as transformation-specific languages. In this approach, all the components of an
MTL are modeled explicitly at the proper level of abstraction using the most
appropriate formalism. MoTif was used as an example to illustrate the approach.
Being a completely modeled language both at the syntax and at the semantics level,
the MoTif language allows one to easily design HOTs. In fact, the semantic mapping
of MoTif to its semantic domain is itself expressed in MoTif as a HOT from the
former to the latter.

The rationale behind domain-specific languages applies to the design of trans-
formation languages. The approach proposed in this chapter is an enabler for the
rapid and rigorous design and implementation of “custom” MTLs. On the one
hand, such languages reduce the “semantic gap” between the language and the
application domain. On the other hand, if those languages are sufficiently restricted
(e.g., non-Turing complete [3]), transformations modeled in them become amenable
to formal analysis which is computationally infeasible for general-purpose MTLs.
In this chapter, we do not give practical examples of domain-specific MTLs. Thus,
our approach is only recently gaining acceptance and hence very little empirical
evidence is available yet.

We are currently investigating how to model the pragmatics of MTLs. The prag-
matics of T-Core were defined in natural language and UML sequence diagrams.
In the future, we will investigate the representation of design patterns for MoTif as
well as anti-patterns to model the pragmatics of the language explicitly.
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A Reconciliation Framework to Support
Cooperative Work with DSM

Amanuel Alemayehu Koshima, Vincent Englebert, and Philippe Thiran

Abstract Despite the fact that domain specific models (DSM) tools become very
powerful and more frequently used, the support for their cooperation has not
reached its full strength and the demand for model management is growing.
In cooperative work, the decision agents are semi-autonomous and therefore a
solution for reconciliating DSM after a concurrent evolution is needed. Computer
supported cooperative work (CSCW) community proposes tools or techniques to
ensure collaboration among general purpose modeling languages, but they do not
usually give functionalities to support reconciliation and merging for asynchronous
modifications. In addition, management of communications among members of a
working group could also help to facilitate their collaboration. In this chapter, we
propose a communication framework called DiCoMEF to manage exchanges of
concurrently edited DSM models among a group of engineers. Besides, we present
a reconciliation framework to merge concurrently evolved DSM models along with
their metamodels.

Keywords Collaborative modeling • CSCW • DSML • EMF • Migration

1 Introduction

Domain specific modeling (DSM) languages have matured and been becoming
powerful over the past few years and are now used as an efficient alternative to
general purpose modeling languages (e.g., UML, Petri Nets) for modeling complex
systems [17]. For instance, DSM are adopted by the model-driven engineering
approach as a way to define the structure, behavior, and requirements of software
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applications in specific domains. The main idea of DSM is to describe a solution
directly by using domain concepts rather than generic modeling languages [36].
The benefits of this approach have been described in [18]. Domain specific
modeling language uses models, metamodels and meta-metamodels to describe
concepts at different abstraction levels. A model is an abstraction of a software
system. A metamodel is a DSL oriented towards the representation of software
development methodologies and endeavors [11]. Likewise, as models are described
by metamodels, metamodels are also described by a meta-metamodel (i.e., MOF
[28], MetaL [4], EMF/ECore [39]) that denotes a minimum set of concepts which
define the languages (including generally itself).

DSM requires ad hoc environment tools, called metaCASE, that enable method
engineers to edit and manage models as well as metamodels. Since 1990s, several
tools have been developed such as Atom3 [23], GME [24], MetaDone [9], or
MetaEditC [17]. However, most of these metaCASE tools consider the modeling
process as a single user task [4]. This hypothesis is too restrictive with regard
to how projects are managed. Modeling of software systems usually requires
collaboration among members of a group with different scope and skills (i.e.,
middleware engineers, human interface designers, database experts, and business
analysts). Hence, there is a need for group members to share modeling artifacts (i.e.,
model and metamodels) and synchronize their activities. Shared modeling artifacts
could be edited and evolve concurrently throughout the development life cycle of a
software application by different users. As a result, they might not seamlessly work
together or the final result may not be what users want. In other words, modeling
artifacts become inconsistent with each other.

DSM is tailored to a specific application domain so that it has to evolve in order
to meet new requirements of stakeholders [41]. DSMs evolve by modifying their
metamodel in order to satisfy new requirements [13]. Indeed, like other software
artifacts, metamodels could also evolve throughout software development life cycles
(i.e., analysis, design, testing, and maintenance) as a result of a better understanding
of the problem domain or error corrections [12]. Because of metamodel evolution,
the existing models might not conform to the new version of their metamodel.
Therefore, these models need to be co-evolved with their respective metamodel
so as to keep conformance. Hence, metaCASE tools need to support the evolution
of metamodels, the co-evolution of models, and the reconciliation and merging of
concurrently edited models and metamodels during the project life cycle.

Inconsistency of a shared work (i.e., models, and metamodels) is one of the main
challenges that hinder cooperative work. Hence, conflicts that cause inconsistencies
need to be identified and resolved: they could be textual, syntactic, or semantic
conflicts [26]. The most commonly adopted approach to ensure collaboration is a
central repository with merge mechanisms and lock techniques [27]. Unfortunately,
locking technique is inadequate for a large number of users who work in parallel
[1, 26]. Besides, in practice, this technique takes much time for users to resolve
conflicts [1, 29]. In addition, this approach restricts users to be dependent on one
repository. For example, tools such as MetaEditC [17] and EMFStore [19] provide
this mode of collaboration.
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Other modes of collaboration could consist in a group of people concerned
by a cooperative task that is large, transient, not stable or even nondeterministic
[37]. Besides, the interaction pattern among members of a group could be dynamic
and users are semi-autonomous in their partial work. This type of collaboration
allows each member to have his/her own copy of a shared work (i.e., (meta)model)
and carry on his/her activity in isolation with other users or a central authority.
A user later communicates his/her work by sending messages to other members
[27]. Implementing the exchange of method chunks [31] could serve as a basis for
this mode of collaboration. In this chapter, we consider a chunk as a cohesive and
autonomous model. Standard formats like GXL [15], PNML [30], or XMI [40] were
designed to facilitate the exchange of models among users. Even though these tools
define quite well the structure of data model, they vary in their semantics. This
results in a problem of interoperability among different CASE tools. But, it is still
possible to exchange models among the same family of CASE tools. This work
considers a (meta)model exchange between CASE tools of the same family. This
mode of collaboration gives users a better control over their data and addresses the
problem of being dependent on a single repository. But, it is challenging to keep all
copies of modeling artifacts consistent because they could be modified concurrently
by users.

Managing communication among members, detecting conflicts and reconcili-
ating conflicting modifications could ensure collaboration among DSM tools. In
this chapter, we propose a distributed collaborative model editing framework called
DiCoMEF to ensure collaboration among DSM tools [22]. In DiCoMEF, every
member of a group has his/her own local copy of shared work (i.e., (meta)model).
Members communicate their activities by exchanging messages. Specifically, they
exchange sequences of elementary change operations (i.e., create, delete, update)
that are used to adapt models and metamodels. The adaptation of models and meta-
models is captured by the history metamodel, which enriches change operations
with enough information to transfer activities from one node to the other. Moreover,
modifications of models and metamodels are controlled by human actors rather
than by software agents. DiCoMEF uses EMF/Ecore [39] as its meta-metamodel
definition.

This chapter is organized as follows: Sect. 2 describes collaborative model
editing. Section 3 gives a short overview about eclipse modeling framework.
Section 4 describes the architecture, communication, reconciliation framework of
DiCoMEF and the model migration. Section 5 summarizes the related works.
Finally, Sect. 6 describes the future work and conclusion.

2 Collaborative Modeling

Cooperative work is attributed to mutual interdependence of tasks among multiple
users to produce specific products or services [37]. Computer Supported Coopera-
tive Work (CSCW) is a cooperative work that employs computer systems to support
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mutually interdependent works. Following Schmidt et al. [37], CSCW is a broad dis-
cipline that deals with how people work in groups and the underlying technological
support. Groupware is a software system that is designed to support cooperative
work. Collaborative model editing is a groupware in which computer system are
used to ease users communication and reconciliation work of concurrently edited
(meta)models [22].

Cooperative work is inherently distributed, meaning that tasks are allocated
among members of a group [2]. Since multiple users are engaged in cooperative
work, interactions among members and applications could be unpredictable: mem-
bers could have their own goals, strategies, and experience levels that might lead
to chaotic environment. So, policies (guidelines) are required to define and restrict
mode of interactions among members and between members and applications so
as to avoid conflicts and confusions [8]. Moreover, assignment of access control
rights (roles) to members of cooperative ensembles helps to reduce chaos and
improve coordination. Uncontrolled communication lets every member of a group
propagates his/her local activity (i.e., modification of metamodel) to other members
directly. This could cause a continuous discussion among members to solve
conflicting proposals and it may even hamper collaborative work. On the contrary,
a controlled communication manages activities of members (i.e., modifications).
Specifically, a controller is assigned to supervise changes. Management of changes
could be more efficient and effective if a controller has a knowledge of business
domain and has a good modeling experience. Besides, s/he has authority to accept
or reject modifications.

Reconciliation is a process that constitutes activities such as detection of con-
flicting modifications and meshing so as to merge concurrently edited (meta)models
into a new version. A reconciliation process can be a priori or a posteriori
[3]. In a priori reconciliation mechanism, members agree on common terms and
communication protocols beforehand to avoid confusion and disorder. But, it is
practically impossible to anticipate all contingencies in advance so that the posteriori
reconciliation is also required to deal with such incidents in future. In order to
merge conflicting versions, differences between two versions of (meta)models need
to be identified, conflicts among two versions should be detected and resolved.
Differences between two versions of (meta)models are derived using either state-
based comparison or change-based comparison [1, 20, 26].

State-based comparison compares states of two versions of (meta)models with a
common ancestor as input and derive their differences. This process is commonly
referred to as differencing and it is computationally expensive [20]. Change-based
comparison keeps track of changes whenever they occur and stores them into a
repository. As a consequence, there is no need to calculate deltas (i.e., differences)
later. Operation-based comparison is a special type of change-based comparison
where deltas are represented as a sequence of change-operations [1, 20, 26].
Operation-based comparison captures the exact time sequences of changes that
could help to understand changes and detect conflicts [1, 20, 26]. Besides, it can
also express sets of operations that occurred in a common context as composite
operations (i.e. refactoring operations). According to Koegel et al. [20], time
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Fig. 1 A simplified subset of the Ecore metamodel

sequences of changes and composite operations help users to easily understand
changes in operation-based comparison than in state-based comparison.

3 Eclipse Modeling Framework

This research is carried out in the context of the eclipse modeling framework
(EMF). EMF is one of the most widely used modeling framework to build tools
and applications. EMF generates codes (i.e., classes for the metamodel1 and adapter
classes for viewing and editing models) based on the structured data model [39].
A model could be expressed using annotated Java interfaces, XML Schema, or UML
modeling tools. EMF provides a facility to generate one form of representation from
the other (using the EMF framework). EMF uses Ecore as a meta-metamodel to
define different DSL languages and itself.

The subset of Ecore model [39] is depicted in Fig. 1 that describes the Ecore
metamodel. In EMF, a model class is represented by using an EClass, which is
identified by a name and has zero or more attributes and references. A class can
have zero or more super types. Although it is not depicted in the diagram, an
EClass can have zero or more operations. Properties (attributes) of a class are
modeled using an EAttribute, which has a name and a type. Associations are
modeled by EReference(s). An EReference models an end of an association between
two classes; it has a name and a type (the EClass at the opposite end of the
association). A bi-directional navigable association is modeled using two references

1Ecore model.
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that are related to each other by eOpposite link. Besides, a composition association
is represented by setting a containment boolean property of an EReference to
true. The cardinality of a reference is modeled by setting lowerBound and
upperBound values. Like references, an attribute’s cardinality could be specified
using lowerBound and upperBound features. There are more model elements which
are not covered in this chapter and we invite interested readers to refer to [39].

4 DiCoMEF

DiCoMEF is a distributed collaborative model editing framework where each
member of a group has his/her own local copy of a (meta)model. DiCoMEF
provides three kinds of membership for a collaborative group: controllers who
manages (meta)model evolution; editors who have a read/write access on their
artifacts; and observers who have only read access. These membership types are
discussed in detail later in this chapter. Besides, members of a collaborative group
communicate their work to other members by exchanging messages. The proposed
architecture, communication, and reconciliation framework are presented in the
following subsections.

4.1 Architecture

Figure 2 describes a collaboration scenario with the DiCoMEF framework with
two groups of users, each one sharing a model—they each own a local copy of
the artifact. In each group, one unique controller is responsible for the consistency
of the model, hence, s/he owns the master copy.

Editors of Group 1 (Edward and Eric) and editors of Group 2 (Ephraim, Eden and
Evan) have their own local copies. They can even modify/edit them. Afterwards,
they have to send their modifications as a change request, respectively, to Group
1 controller (Caroline) and the Group 2 controller (Catherine) so as to propagate
their modifications to other members. The controller supervises the change requests
and propagates accepted changes to other members. As roles are not exclusive,
a member of one group is allowed to be involved in one or more other groups.
For example, an observer of one group might be a controller in another group
as shown in Fig. 2. We assume that (meta)models owned by one controller is
independent from (meta)models owned by other controllers meaning that there is
no any (meta)model element which has a reference to (meta)model elements owned
by other controllers. Moreover, only (meta)model are considered in this chapter, not
source codes. DiCoMEF allows a member to exchange his/her local modification
directly without supervision of a controller, but this type of communication has a
risk to become out of synchrony with other members.
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Fig. 2 Architecture of DiCoMEF

DiCoMEF metamodel expresses the main concepts used in DiCoMEF (see
Fig. 3). These concepts are person, role, role type, model, metamodel, copy model,
and master model. A master (meta)model is the main (meta)model which has
one or more copy (meta)models that are distributed among editors and observers.
DiCoMEF uses a universal unique identifier (UUID) to differentiate (meta)model
elements (i.e., classes, attributes, references) uniquely. Two (meta)model elements
are considered as identical if and only if they have the same UUID. Besides, a person
involved in collaborative modeling has a role, which is typed as a controller, editor,
or observer. In fact, there are two controller role types which are implemented in
DiCoMEF such as a model controller or a metamodel controller. A metamodel
control and a model-controller manages the evolution of a master metamodel,
respectively, a master model. A controller role type is flexible meaning that it can
be assigned (delegated) to other members of a group as long as there is one unique
coordinator per group. A person who has an editor role can write and read his/her
local copy (meta)models, whereas an observer role only has a read access to a local
copy (meta)models.

Main-line and branches are the two important concepts that DiCoMEF relies
on to store models and metamodels and ensures communication framework (see
Fig. 4).2 The main-line stores different versions of a copy (meta)model locally at

2Although these terms are also used by SCM programs, our framework does not rely on a central
SCM.
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Fig. 3 DiCoMEF metamodel

each editors site. An editor cannot modify copy (meta)models stored on the main-
line. Whenever s/he wants to modify copy (meta)models locally, s/he first creates
a branch from the main-line and does modifications there. Afterwards, s/he sends
her/his local modifications to a controller so as to commit those changes on the
main-line. For example, in Fig. 4, a copy (meta)model evolves from version V0 to
version V1 on the main-line based on changes propagated from a controller. It also
shows a branch that is created by an editor to modify a copy (meta)model locally
from version V0 to version V0:1; a branch was created before a copy (meta)model
evolves from version V0 to version V1.

We use an Entity-Relationship model (ER-M) and metamodel (ER-MM) to
demonstrate a collaboration scenario among a group of modelers and meta-
modelers. Suppose Caroline is metamodel controller of a group that has two
editors—Edward and Eric, whereas Miheret is a controller for a modeler group
which constitutes two editors such as Elvis and Eyan. Caroline distributes the
first version of the ER-MM (see Fig. 5) to editors Edward and Eric. Afterwards,
Edward creates a branch from the main-line and extends the metamodel by adding a
persistent field (techno:String) to the entity meta EClass and he renames the entity
meta EClass to “EntityType.” He could also annotate rationale of his modification
using multimedia files (see Fig. 6). Later, he sends his local modifications back to
Caroline so as to share his modifications with other members. Eric could also create
a branch on his local machine from the first version of the ER-MM metamodel and
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Fig. 4 Main-line and branch

modifies it by renaming the entity meta Eclass to “Entity.” Suppose that Caroline
accepts Bob’s modification and propagates as accepted change for all members
(i.e., Edward and Eric). These changes could result in conflicts with Eric’s local
modification (i.e., an entity meta EClass is assigned different names—“Entity”
and “EntityType”). Like metamodelers group, modelers could have conflicting
modifications. We will discuss the communication and reconciliation of conflicting
modifications in the following section.

4.2 Communication

The communication framework of DiCoMEF is organized around the controller
that acts as a central hub. When members of a group modify (meta)models locally,
elementary change operations (i.e., create, delete and updates) are stored locally in
a local repository. These elementary operations constitute a history that is used to
propagate local modifications to the controller and secondarily to other members.
Histories are defined by a history metamodel. Some works in the past have already
used history metamodels. In [10], authors have developed a history metamodel
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Fig. 5 The entity-relationship model M and its metamodel MM. The entity meta EClass owns one
meta EAttribute (name) whose type is string. Customer is an entity

Fig. 6 Cooperative scenario. This figure shows the exchange of information and the successive
evolutions of the (meta)models. Modifications are indicated with bold letters. Cross symbols denote
import and reconciliation processes
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called Hismo based on a FAMIX metamodel [5]. Hismo transforms a snapshot
model like UML or FAMIX into a history instead of recording elementary edit
operations while they occur. This type of transformation does not preserve time
sequences of operation that could be useful for reconciliation process. EDAPT
[13], previously called COPE, is a tool based on EMF/Ecore metamodel that
captures edit operations of metamodel adaptation whenever they occur. But, in
EDAPT, the history and the metamodel elements are highly coupled (i.e., each
primitive operations like create, set and add are linked with a model element via
elements reference). As a result, it is impossible to send the history (i.e., adaptation
operations) without shipping together the metamodel elements that are adapted.
Besides, EDAPT does not provide a facility to define compound operations from
other compound operations, which could give users more flexibility on how to
organize the history in a hierarchic way.

Like EDAPT, EMFStore [19] is developed based on the EMF/Ecore metamodel;
it captures histories of metamodel evolution but the history and the metamodel
elements are not coupled meaning that there is no any direct reference or link
from the history elements (i.e., set, add, create operations) to metamodel elements.
But, by the time this research was conducted, the history metamodel of EMFStore
was tightly coupled with other components of the EMFStore implementation.
As a result, EMFStore cannot be used/installed as an autonomous component for
capturing history of metamodel adaptation.3 Therefore, we developed a tool that
captures a history of metamodel adaptation by extending EDAPT (see Fig. 7). The
extension is inspired by the EMFStore history metamodel [19] that eliminates
coupling between metamodel elements and history elements. As shown in Fig. 7,
a primitive operation refers to a model element using a model element Id rather
than directly pointing out a model element. This avoids coupling between model
elements and history elements. Besides, a create and delete history elements have
direct containment references to a model element that are newly created and deleted,
respectively. This reference is used to create or populate a model element in other
nodes and it can also be used to identify a deleted model and its child element(s).

DiCoMEF implements two distinct history metamodels: a version for metamodel
adaptation (see Fig. 7) and another one for model adaptation. Both follow the same
goal but they, nevertheless, exhibit some differences. The main difference comes
from the semantics of multivalued attributes and references. They are considered as
sets at the metamodel level (the order of element does not matter) although they are
considered as lists at the model level. Hence, the history metamodel for metamodel
adaptation does not have an index field for operations like Add, Remove, Move. The
other difference is with the Move operation. For metamodel adaptation, the source
and the target metamodel element should be different, whereas the source and the
target model element should be the same in the case of model adaptation. Hence,

3Recently, EMFStore has had refactoring to reduce a coupling between parts of the implementation
that captures history with rest of implementation.
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Fig. 7 The history metamodel

these two references are merged into one reference. DiCoMEF history metamodels
are self-contained: links and references are replaced by a surrogate mechanism. As a
result, one can exchange the history without (meta)model elements.

In DiCoMEF, editors can use multimedia files (i.e., video, audio, text) to
annotate change operations with the rationale of their intent in order facilitate
the reconciliation process later. After editing (meta)models locally and annotating
change operations, editors send their change operations as a change request to a
controller so as to share their local modifications with other members. This work
assumes that modifications of (meta)model are supervised by a controller who has
a good modeling experience and a good knowledge of the business domain. We
also believe that giving him the authority to accept or reject modifications could
benefit collaborative work, specifically, in a deadlock situation where editors do not
agree on modifications. The controller inspects proposed changes by an editor and
applies accepted changes on a master (meta)model (when it evolves from version
Vn to VnC1). Indeed, s/he can consult multimedia files for a better understanding
of proposed changes or s/he can directly contact an editor who proposes changes;
the controller and editor could elaborate the (meta)model together. Eventually,
the controller propagates accepted changes to all members of a group so as to
automatically evolve copy (meta)models (i.e., stored on main-lines) from version
Vn to version VnC1. These modifications could lead to a new version of a copy
(meta)model that is inconsistent with local modifications. Hence, these conflicts
should be identified and reconciled locally by editors.
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While a model controller communicates only the model adaptations to his/her
users group, metamodel controllers have to inform the model controllers of the
model migration instructions. For example, as it is shown in Fig. 6, Edward modifies
the ER-MM metamodel and sends the sequence of modification operations (i.e.,
annotated operations) to the controller Caroline for examination—they can work
together on that task. Afterwards, she propagates the changes to all the members
(i.e., metamodelers) so as to evolve copy metamodels from version V0 to version
V1. She can also send a model migration strategy for a model controller (i.e.,
Miheret) to evolve models to be conformed with new definitions of metamodel.
Model migration will be discussed in detail later in this chapter. Miheret (model
controller) migrates instance models based on migration instructions and distributes
migration instructions to modelers such as Elvis and Eyan. Besides, Miheret also
manages which version of a metamodel editor is used in a modeler group.

4.3 Reconciliation

Our framework allows people to work on models in an asynchronous way and to
exchange their versions. This convenience can lead to conflicts that must be detected
and resolved during a reconciliation task. This includes activities like model
comparison, conflict detection, and reconciliation. DiCoMEF adopts an operation-
based model comparison to derive differences between two (meta)models. Every
modification operation a user makes is captured and stored. This information is
modeled by a history metamodel (see Fig. 7) and used next to compute the delta
between two successive versions of a (meta)model. DiCoMEF detects conflicts
by inspecting a list of sequences of elementary operations that have modified
a (meta)model [1, 21, 25, 26]. This approach could be regarded as a operation-
based conflict detection process [21]. Moreover, users can explicit the rationale of
modifications with multimedia files (i.e., text, images, images, audio), which could
be useful to resolve conflicts.

Reconciliation is done for pairs of changes. When they are not conflicting, no
reconciliation is required. This happens, for instance, if a pair of changes modifies
an element in the same way: both Edward and Eric rename a meta EClass as
“EntityType.” On the other hand, renaming a meta EClass differently (see Fig. 6)
must be considered as a conflict. In that case, the controller and editors consult
multimedia files so as to better understand rationale of modifications. Editors can
also contact (i.e., via video conferences, email, chat) a controller or another editor
who proposed changes in order to solve conflicts together.

An editor and a controller can also elaborate a change request together. Suppose
Caroline (controller) sends a first version of a model to Edward (editor). Edward
modifies the model and sends a change request to Caroline (see Fig. 8b). Caroline
examines proposed changes and suggests to add a new class called a WidgetType
because a same widget type (i.e., Button, TextField, Label) might be used by
different user interfaces. Caroline and Edward elaborate the model together by
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Fig. 8 Cooperative scenario: a controller and an editor elaborate model together

adding a class (WidgetType) and annotate change operations with rationale of
modification (see Fig. 8c). Later, Caroline sends changes that she and Edward
agreed up on as a change propagation to other members. As a general rule
of reconciliation, this work assumes that every editor must apply modifications
proposed by a controller whenever conflicts occur. But, an editor can propose her/his
local conflicting modifications as a change request later. For example, Eric renames
a meta EClass to “EntityType” first and he could send his modification later to
Caroline (see Fig. 6).

As it was discussed above in Sect. 4.1, newly created model elements are
assigned a new identifying UUID value. As a result, they are considered as
different whatever their characteristics are. Hence, if Edward and Eric create each
one a persistence attribute called techno:String in their respective local ER-MM
metamodel (see Fig. 6), they would be considered as distinct even if they represent
conceptually the same model element. Hence, these redundant model elements need
to be manually merged into one model element. The merging process cannot be
automatic since it could depend on the semantics that they are not aware of. As a
general rule, if a same model element (i.e., conceptually the same) is created locally
and in a change propagation (from a controller), a merged model element should be
assigned the UUID value of a model element in a change propagation.

Editors synchronize their local modifications with propagated changes (from a
controller) in two fashions. They either synchronize their local modifications with
propagated changes first and continue with their work or delay the synchronization
activity until they finish their work and do it later. In both cases, a copy (meta)model
firstly evolves from version Vn to version VnC1. Afterwards, operations that adapt a
copy (meta)model Vn locally are re-played on a new version, VnC1.



A Reconciliation Framework to Support Cooperative Work with DSM 253

Fig. 9 Example of model migration

4.4 Model Migration

Like other software artifacts, metamodels may evolve to meet new requirements
[13]. Hence, its instance models might not anymore satisfy the rules and constraints
specified by the new version. This would even forbid these models to be edited with
editors built for an old metamodel. Model migration consists in adapting models in
response to their metamodel evolution so as to keep them conform with their new
version of metamodels [14]. For example, as shown in (Fig. 9), a model version
Vm0 conforms with metamodel version V0, but it violates constraints defined by
metamodel version V1. Therefore, a model version Vm0 needs to be migrated to
version Vm1 so as to conform with evolved metamodel, Vm1.

In [34], authors have classified model migration as manual specification,
operator-based approach, and metamodel matching approach. Graph transfor-
mation languages could also be used to migrate models, but as shown in [32], they
are not easy to understand and results of migration could be incorrect. Metamodel
matching approach compares the source and target metamodels so as to derive a
difference model and generate migration instructions. Nevertheless, this approach
cannot always automatically generate correct migration instructions [34]. It is
thus not a suitable choice for domains that require completeness, correctness, and
predictability. The Operation-based approach uses the sequences of modification
operations to derive a migration strategy at the model level. Indeed, operation-based
approach needs an integration of a library of coupled operations with modeling
tools. A coupled operation brings together a metamodel adaptation operator and
a model migration strategy. This approach captures a user intention (i.e., keeps
operations, which are contained in a composite operation, in the same context)
while incrementally adapting metamodels [14].
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Collaborative modeling frameworks, which exchange sequences of modification
operations as a means of communication among members, mostly normalizes them
so as to speed up the transfer and to reduce the complexity of the merging process.
So, operations can be superseded by new ones and can thus be cleaned from the
history. For example, a create operation will be removed if it is followed by a
delete operation on the same object. Canonization could also be applied for a
library of coupled-operations defined. A coupled operation could be composed of
one or many primitive operations (i.e., create, delete, set, add, and remove) and
model migration instructions. For example, in EDAPT [7, 13], a Create Attribute
coupled-operation is composed of primitive operations that create an attribute
and set values for name, type, minimum and maximum cardinality, and default
value of a newly created attribute. For instance, if a Create Attribute coupled-
operation is followed by a Change Attribute Type coupled-operation, a primitive
operation that sets a type of an attribute in Create Attribute coupled-operation
needs to be deleted due to canonization. As a result, the Create Attribute coupled-
operation becomes invalid; the canonized set of primitive operations do not satisfy
constraints that state a Create Attribute coupled-operation must set a type value
of a newly created attribute. Hence, sets of canonized primitive operations that
are composed by coupled-operations need to be re-grouped into new sets of valid
coupled-operations. Primitive operations are re-grouped into a coupled-operation
in order to use model migration instructions defined by the coupled-operation.
For primitive operations that are not composed by coupled operations and make
instance models inconsistent, a model migration instruction should be written
manually. Manually incorporating model migration instructions is a tedious and
error prone task.

Re-grouping primitive operations into library of coupled operations manually is
a tedious and difficult task. Users need to know the structure and the constraints of
each coupled operation so as to compose it from primitive operations. Canonization
also makes re-grouping more complicated by removing some primitive operations.
This could invalidate constraints of a coupled operation, for example, a Create
Attribute coupled-operation becomes inconsistent if a Set Attribute Type operation
is removed from it. Hence, model migration cannot be applied.

Manual model migration [34] approach needs model migration instructions to be
specified manually. This approach does not require a library of coupled-operations
and it can be defined in anyway permitted by modeling tools so as to migrate
models. It gives a better control for users to manage model migration. But, manual
specification needs more effort from a user to encode migration instructions and to
integrate them with modeling tools. Besides, it does not use re-occurring patterns in
model migration and it could be error prone.

Manual model migration can be augmented with a history of metamodel changes
so as to write a correct and useful model migration instructions. The history can
be used to correctly identify deleted, created, and moved model elements. This
work adopts a manual model migration approaches and relies on Epsilon Flock
[33]. It is a domain-specific language used to specify model migration instructions.
Besides, it provides facilities to execute migration instructions. Epsilon Flock adopts
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a manual model migration approach, but it reduces manual efforts by employing
a conservative copying algorithm that automatically copies only model elements
that conform to a new metamodel. Epsilon Flock performed better in terms of cor-
rectness, conciseness, understandability, extensions, and appropriateness than other
model migration techniques that took part in transformation tool contest 2010 [32].

DiCoMEF uses the history of the metamodel adaptation to help user to encode
a useful model migration instructions, which might reflect the user’s intention.
Besides, DiCoMEF keeps all metamodel elements and model elements time-aware.
Each model version keeps information about a metamodel version(s) with whom it
comply and it could also be migrated on demand to respect constraints defined by
new metamodel.

It is also worth mentioning that due to model migration, a history of model
adaptation becomes inconsistent with an instance model. For example, if an existing
class is deleted from a metamodel, then instances of the same class type need to
be deleted from the migrated model. As a result, history elements (i.e., change
operations create, set and add) that manipulate instance model elements are referring
to classifiers that don’t exist anymore in the modeling language. Hence, that history
also needs to be migrated along with its instance model. A model migration
instruction used to migrate instance model can also be used to migrate a history
as well. A change operations that refer to a classifier or a feature that does not exist
should be removed.

5 Related Work

Many research has been already done to address challenges of collaborative
software development. In [16], Ignat et al. compared different approaches for
collaboratively editing a text or tree-based documents. Dewan and Hedge [6]
also proposed a collaboration model that lets users handle conflicts and merge
their intentions collaboratively. However, most of the previous work deal with
collaborative merging of software codes.

Saeki [35] introduced the use of versioning system to control and manage models
and metamodels, which evolve independently. The author did not consider collab-
oration in his work. In [4], Constantin et al. proposed a reconciliation framework
for collaborative model editing. In their work, they suggested a weakly coupled
mode of collaboration, where (meta)models are managed in distributed fashion. But,
they only provide a theoretical reconciliation framework to support collaborative
work without providing a solution. There are few frameworks available that support
collaboration among DSML tools. These frameworks commonly adopt approaches
like using central repository with merge mechanisms and locks [38] in order to
ensure collaboration and handle inconsistency problems. EMFStore is an operation-
based collaborative model editing framework for Eclipse Modeling Framework
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(EMF)-based models [19]. EMFStore uses a central repository with copy-merge
techniques to ensure collaboration. MetaEditC [17] implements Smart Mode Access
Restricting Technology (Smart Locks ©) to support concurrent access of shared
modeling artifacts that are stored centrally. Even though locking technique assumes
strict consistency model, it becomes inadequate when a number of users who
edit (meta)models in parallel reach a very low threshold [26]. Moreover, these
approaches constrain all members to be dependent on a central repository. In [27],
Mougenot et al. developed a peer-to-peer collaborative model editing framework
called D-Praxis. It lets users exchanging sequences of operations used to adapt
a model as a means of communication. This approach implemented automatic
conflict resolution based on delete semantics and Lamport clock. Nevertheless, this
approach suffers from similar problem of “lost-update.” We argue that final results
of automatic reconciliation process could not reflect the intention of users. So, we
propose a distributed collaborative framework called DiCoMEF which free users
being dependent on a central repository. Besides, modifications are controlled by
human agents (not automatic).

6 Future Works and Conclusion

To fully benefit from DSM tools, it is important to improve cooperation among
them. Approaches based on locking techniques and a central repository might
not meet the new requirements of new groupwares. This chapter has presented
a theoretical framework to ensure collaboration among DSM tools. Specifically,
managing communications among members of a collaborative work and recon-
ciliating concurrently evolved DSMs. DiCoMEF allows a group of modelers to
share the same domain-specific model and to work in isolation. Modelers are
organized as coordinators, editors, and observers. The framework allows them
to distribute models as well as their metamodel to let them work concurrently.
Modifications are managed by a controller (human agent). More importantly, a
controller role is flexible meaning that it could be easily assigned to another
member. This dynamic roles assignment could let people to implement more
elaborated strategies on top of DiCoMEF, i.e., a user can delegate his/her role
to another person. Although using a controller to manage collaborative modeling
has a limitation of scalability, it could be possible to implement different method
engineering techniques (e.g., delegation mechanisms, pooling) and strategies on top
of DiCoMEF to address the problem. DiCoMEF also provides facilities for editors to
annotate their rationale of changes with multimedia files. The proposed framework,
DiCoMEF, is under implementation for validating theoretical concepts presented in
this chapter.
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domain experts in any line of business or field of scientific endeavour and is not
limited to software development professionals. This broad target audience and
strong terminological conformance with model theory distinguish MODA & MODE
from classical software product line engineering approaches. Whilst the components
of the methodology that are concerned with domain analysis can be applied without
the help of any sophisticated software tools, the domain engineering components
of the methodology are best performed with the help of a dedicated software
tool. The MODA & MODE approaches have a track record in industrial practice
that extends back to 1994, with roots in software product line engineering and
conceptual modelling. The concepts and techniques of the approach have been
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1 Introduction

Translating the tacit knowledge, which often resides within the heads of domain
experts, or which is sometimes buried in difficult-to-maintain software code, into
explicit knowledge that does not decay over time is a major challenge for most
organizations. This chapter starts with a background section (Sect. 2) that provides
an overview of disciplines, approaches, and theories that have influenced the
conceptual foundation of the model oriented domain analysis and engineering
(MODA & MODE) approach. The objective is to highlight the range of perspectives
that are required when formalizing the knowledge and insights of domain experts
that collaborate in the context of a complex value chain [21] that may stretch
over multiple organizations. Section 3 of this chapter explores the way in which
semantics emerge and incrementally evolve as a result of goal-directed human
collaboration. Section 4 discusses the complexity resulting from the dynamic aspect
of semantics in terms of interacting agents, perspectives, and the jargons that
are used in the communication between agents. Section 5 describes the concepts
and principles employed by the MODA & MODE methodology to achieve a
modular and maintainable representation of formal knowledge. Section 6 outlines
how MODA & MODE uses category theory to provide a robust framework for
representing the structures encountered in any domain. Readers interested in further
details are pointed to complementary literature and presentations. Section 7 covers
the topic of domain analysis and describes specific techniques for eliciting and
validating expert domain knowledge. Section 8 shifts the focus towards the bigger
picture and the synthesis of the results of domain analysis in complementary or
overlapping disciplines, building on the observations on jargons and denotational
semantics made in Sect. 4. Given the increasing popularity of agile approaches in the
management of software development and the success of lean production techniques
in industrial manufacturing, Sect. 9 shows how MODA & MODE bridges the gap
between agile approaches and lean methodologies. The latter methodologies and
MODA & MODE share a common heritage in terms of W. Edward Deming’s system
of profound knowledge. Section 10 concludes with an outlook relating to future
work on tool support for MODA & MODE.

2 Background

Whilst the techniques used in MODA to record the results of domain analysis
have their roots in conceptual modelling, the process used to conduct variability
and commonality analysis in MODA can be traced back to software product line
engineering methodologies. The solution design and implementation techniques in
MODE build on the formal models delivered by the MODA part of the approach,
and apart from the emphasis on binding times, have little in common with the
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program code centric approaches to variability management encountered in some
software product line engineering methodologies [27].

Although the field of domain engineering has a long history, until recently
applications in industrial practice were largely confined to the development of very
large and expensive families of systems [10].

One challenge is to bridge the gap between theory and practice found in the
education of computer scientists, mathematicians, and engineers. It is easy to invent
hard problems for academic research, but it is hard to focus on those problems
that actually reflect the needs of software intensive businesses. The Web, social
networks, and mobile computing devices generate data in huge quantities, and
lead to highly interconnected digital value chains. The problem of transforming
the flood of raw data into actionable knowledge and valuable products is very
different from the problem of automating previously manual business processes,
which characterized the role of software in the last century. MODA & MODE are
designed from the ground up for conceptual modelling of complex systems and
make no distinction between models of “data” and models of “programs”.

Another, and possibly even bigger, challenge originates from the prevailing
approach to management and software development used by software intensive
businesses. The MODA approach takes into account the observations of W. Edwards
Deming on teamwork [12] and on the detrimental effects of classical management
techniques in the context of complex systems with emergent behaviour. It is no
longer useful or valid to think of a typical software system in isolation—every piece
of software must be considered within the context of a wider value chain that in
most cases extends beyond the boundary of a single organization.

The vast majority of artefacts that flow in a digital value chain are information
artefacts produced and consumed by software users, and only very few digital
artefacts that are exchanged between organizations have been produced by software
development professionals. This means that all software development methodolo-
gies underrate the role of software users and stakeholders beyond the organizational
boundary. Popular agile methodologies such as Scrum or Extreme Programming
(XP) [16] emphasize the need for working together with customers on a daily basis
but are mainly concerned about the quality and usability of the software programs
that get developed, rather than the semantic quality and value of the data that
users create, manipulate, and exchange. Complex networks of Web services result in
unforeseen emergent behaviour and outages, often with significant financial impact
on a large number of businesses and consumers.

Members of the S23M team have applied the MODA & MODE approaches
in the following industries: telecommunications, electricity, industrial automation,
mass customized industrial production, warehousing and logistics, news and media,
government services, insurance, banking, and software. The domain experts who
have been trained in or have been exposed to the methodology include: telecommu-
nications engineers, electrical engineers, pricing analysts, supply chain management
experts, Web content managers, actuaries, product managers, marketing experts,
software product line architects, software product configuration experts.
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2.1 Systems Theory

The Web that connects modern businesses does not have the neat tree structure of
a simple value chain; it contains numerous feedback loops. The reality of intensive
cross-disciplinary collaboration involves an increasing proliferation of open source
software [22] and open data, and a blurring of organizational boundaries. Social
networks and related technologies provide an excellent example of emergent system
behaviour that spills over into all aspects of human life and economic activity.
Furthermore each human individual is a complex system. The implication is that
systems theory must be an integral part of any methodology for understanding
and evolving modern organizational structures [13] as well as the software systems
used for decision-making and collaboration. MODA & MODE view organizational
structures as variabilities that are subject to a high rate of change and make use
of feedback loops to validate the level of shared understanding between domain
experts.

2.2 Deming’s System of Profound Knowledge

W. Edwards Deming was an American management consultant who played an
important role in the rebuilding of Japanese industry in the 1950s. He was ignored in
the USA and Europe until the 1980s, when his work led to a proliferation of quality
initiatives. Deming’s theory and method [12, 13] is based on a system of profound
knowledge that encompasses:

1. Appreciation for a system—A system consists of a set of interacting parts,
a boundary, and the context that lies beyond the boundary. Consistent with
systems thinking; Deming observes that a system generates emergent behaviour
that cannot be predicted by analysing the behaviour of the parts, leading to a
requirement to study the interactions of the parts in an experimental setting to
gain deeper insight. The implication for conceptual modelling is that semantics
are not inherent in a component but are generated incrementally, by new usage
scenarios that involve the component.

2. Knowledge about variation—Understanding the causes of variation in the
behaviour of a system is a prerequisite for making improvements. Deming’s
theory makes use of statistical observations to uncover the causes of variation, an
approach that complements the model theoretic approach for variability analysis
and validation that MODA applies in the realm of digital production.

3. Theory of knowledge—Deming emphasizes the critical role of domain-specific
knowledge for improving a system. Software product line engineering profes-
sionals have come to the same conclusion, which is reflected in the pivotal role
of domain-specific modelling languages in MODA & MODE for formalizing
knowledge.
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4. Psychology—Observations on intrinsic motivation lead Deming to conclusions
about teamwork and productivity that in many cases clash with the teachings
from mainstream business schools. MODA builds on Deming’s observations by
avoiding hierarchical representations of knowledge that obscure the observable
flows of knowledge in organizations. MODA also considers empirical results on
cognitive bias and collaboration [25, 26] from modern behavioural economics
[15].

2.3 Software Product Line Engineering

The most important influence of software product line engineering on MODA is
the concept of variability and commonality analysis [9, 27] and the strong and
explicit distinction between domain engineering and application engineering [10].
MODA goes further in emphasizing the binding times of decisions and the need
for synthesizing the different perspectives from complementary domain experts
than most software product line engineering methodologies. Specifically MODA &
MODE acknowledge that each individual domain expert has developed highly
valuable mental models that are worthwhile being formalized in order to facilitate
a shared understanding within the wider context of a value chain. MODA does not
permit any formal model to exist outside the context of a concrete perspective or
outside the context of a concrete binding time that relates to the role of a concrete
domain expert.

2.4 Denotational Semantics

The use of MODA in many different contexts, from the development of computer
aided software engineering (CASE) tools to organizational transformation in the
context of mergers and acquisitions, has highlighted the critical importance of
separating the activity of conceptual modelling from the activity of assigning names
to concepts. Rigorous application of denotational semantics [24] was instrumental
for the success of repository-based CASE tools, such as LANSA,1 and continues
to be a key differentiating factor between formal model-driven approaches to
system analysis and design, and the use of models-as-a-sketch or the use of textual
programming languages.

Emerging software tools that support MODA & MODE, such as the S23M
platform [20] follow in the footsteps of the experimental Gmodel prototype [4] and
completely de-couple the concern of modelling from the concern of identifying the
concepts of a semantic domain as illustrated in Fig. 1. In a first step concepts are

1Lansa Inc., http://www.lansa.com.

http://www.lansa.com
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Fig. 1 Separation of modelling from naming in the S23M platform

identified from the perspective of a specific viewpoint and are associated with a
semantic identity. In a second step concepts are referenced from multiple models to
create formal structures. The assignment of names to semantic identities occurs in
a third step, which is complexly independent of the model structures that have been
created.

2.5 Model Theory

The inevitability of language evolution leads to the use of denotational semantics
as well as to a need for powerful and simple tools for maintaining symbol sets and
formal language definitions.

The mathematical definitions from model theory [14] provide a solid basis for the
development of formal representations, which can range from the development of
visual domain-specific modelling languages to the development of general purpose
programming languages. MODA & MODE use model theoretic definitions and
terminology to simplify software product line engineering terminology and the
development of software tools that exploit mathematical theories such as category
theory and Bayesian probability theory.

MODA & MODE acknowledge that domain-specific notations and terminology
are subject to rapid evolution and take into account the social and commercial
context in which domain-specific knowledge is maintained and shared. Experience
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from the development of formal domain-specific languages in industrial settings
[5,8] disproves the assumption that scientific research and established engineering
jargon are the main source of terminology and symbol sets.

Terminological drift is the result of multiple unavoidable forces, ranging from
the incorporation of new insights into a domain to changes introduced as a result
of competitive marketing of products and services. Similarly, changes in domain-
specific symbols and graphical notations can also be the result of accommodating
new concepts or they can simply be an expression of artistic creativity of a product
designer. The limited uptake of methodologies that advocate the use of formal
models is at least partially due to naı̈ve assumptions about the stability of notations
and terminology.

2.6 Category Theory

Whilst model theory provides a comprehensive foundation for formal conceptual
modelling, category theory ignores the complications introduced by the need for
concrete notations and provides the substrate for abstract modelling [1], without
any references to symbols or notations.

In MODA & MODE category theory is applied to formalize the concepts inherent
in commonality and variability analysis. A powerful feature of commonality
and variability analysis in MODA is the ability to introduce new parameters of
variability from the viewpoint of a specific domain expert, without influencing the
model structures used by other domain experts in any way. This is made possible by
allowing every domain expert to create as many different perspectives and models as
are needed to fully describe the specific domain, and by creating conceptual bridges
between semantic domains rather than between models that pertain to different
viewpoints.

2.7 The Biological Concept of a Cell

MODA practitioners have come to the conclusion that software engineering
paradigms, programming languages, and current computer operating systems have
very little to offer in terms of supporting modular construction of information
artefacts. Apart from the digital codes that humans have developed, the only other
possible source of inspiration for construction of modular information artefacts is
found in biology, in the form of the biological cell and the genetic code.

The cell is a true semiotic system, and the genetic code has been the first of a long series of
organic codes that have shaped the whole history of life on our planet. [3]

Humans have only embarked down the road of significant dematerialization of
artefacts in the last few years. In terms of producing scalable and resilient systems
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biology is far ahead of any human attempts at modularizing the design of complex
systems.

Software tools such as the S23M platform that implements the MODE approach
use a module concept that is modelled on core characteristics of the biological cell,
including the following features:

1. Recursion—The biological code is highly recursive, and the same is true of the
encoding of the S23M Cell metalanguage.

2. Behaviour—The biological code uses recursion and proteins to encode cell
behaviour, and similarly the S23M Cell metalanguage uses recursion and
mathematical functions to encode the behaviour of a module.

3. Modularity—In biology the cell acts as a container for information and as a
universal module concept. In particular cells are capable of self-replication. The
Cell metalanguage also provides exactly one universal module concept, called
the cell, which is applicable to all artefacts encoded in the Cell paradigm. In
contrast many human designed modelling and programming languages provide
multiple concepts that compete for performing the role of a module, such as the
class and package concepts found in the unified modeling language (UML) and
in a number of object-oriented programming languages.

4. Remix—Besides self-replication the biological code enables sexual reproduction,
i.e., the combination of code from two separate individuals. The Cell metalan-
guage supports a concept of instantiation that emulates sexual reproduction.
Instantiation leads to a new artefact that is defined in the context of the structure
of a specific category artefact and the perspective2 of a specific container3

artefact.
5. Blueprint—In biology each cell contains the blueprint for the construction of a

specific individual. In the Cell metalanguage, the blueprint for construction of an
individual artefact is defined by the structure of the category of the artefact and is
constrained by the perspective defined in the container of the artefact. References
to category and container are an integral part of an artefact encoded in the Cell
paradigm.

These characteristics are inherent in the structural pattern that is used in the
implementation of the S23M Cell metalanguage and are available to users at all
levels of abstraction and at all binding times.

2.8 Bayesian Probability

The entrenched distinction between humans and computers is becoming less and
less useful. Humans are nondeterministic learning systems, but many software

2A perspective relates to the interpretation of an artefact by a user or a system.
3Every artefact (i.e., a MODE cell) has a container artefact.
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systems are designed to be deterministic, i.e., non-learning. However, Artificial
Intelligence software systems [23] are designed to be learning systems [19] just
like humans.

Whilst humans will remain nondeterministic, we have a choice of designing
highly deterministic or learning software components. Both kinds of components
can be constructed from the same substrate, making use of the same conceptual
foundation, for example the concepts encoded in the Cell metalanguage. The
difference between deterministic and learning systems can be described in precise
mathematical terms using graphs that contain feedback loops and Bayesian proba-
bilities [11].

Deterministic systems can become quite complex, but always have the charac-
teristic of a tool, whereas learning systems share characteristics with biological
entities, including the ability to learn and evolve. Throughout history humans and a
number of animal species have made use of tools, and tools continue to be extremely
useful. Going forward an increasing number of nonhuman learning systems will
join the ranks of tool users, and humans will have to learn to partner up with such
systems.

The MODE approach to value chain and system design assumes that the best
way to partner up with learning systems is to educate them and interact with them
in ways that are most familiar to us: ways in which we interact with humans [25],
determined by our sensorial capabilities and our cognitive limitations. In particular
the approach to model validation described in Sect. 7.3 of this chapter can be used
in conjunction with machine learning techniques and Bayesian probability.

3 Semantics

In order to improve the way in which humans collaborate and make decisions,
there is no need for an empirically validated model of the human brain. Instead,
it is sufficient to develop a mathematical model that allows the representation of
concepts and meaning in a way that allows humans to share and compare parts of
mental models.

MODE uses semantic domains as defined in denotational semantics for sharing
symbol systems and associated meanings amongst humans, significantly improving
the speed at which perceived meaning can be communicated, as well as the speed at
which shared understanding [26] can be created and validated.

For most scientists this represents an unfamiliar use of mathematics, as meaning
and understanding is not measured by an apparatus but is consciously decided by
humans: The level of shared understanding between two individuals with respect to
a specific model is quantified by the number of instances that conform to the model
based on the agreement between both individuals. At a practical level the meaning
of a concept can be defined as the usage context of the concept from the specific
viewpoint of an individual. An individual’s understanding of a concept can be
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defined as the set of use cases that the individual associates with the concept
(consciously and subconsciously).

These definitions are extremely helpful in practice. They explain why it is so hard
to communicate meaning, they highlight the unavoidable influence of perception
[15], and they encourage people to share use cases in the form of stories to increase
the level of shared understanding. Most importantly, these definitions do not leave
room for correct or incorrect meanings; they only leave room for different degrees
of shared understanding—and encourage a mind-set of collaboration4 rather than
competition for “The truth”.

3.1 Documenting Areas of Knowledge

In MODA domain knowledge is extracted by conducting workshops with a group
of complementary domain experts and by observing the language and interaction
patterns between the experts. In many cases simple tools such as whiteboards or
flipcharts turn out to be an essential element for successful communication of
knowledge between experts.

Whilst interactive workshops are commonly used for sharing insights and
facilitating decision-making in software intensive organizations, it usually requires
the presence of an experienced domain analyst to progress beyond conventional
transfer of tacit knowledge between human experts to the stage where domain
knowledge is formalized in a notation that is readily recognized and understood by
domain experts, and that is at the same time suitable for machine-based processing.

The first step of formalizing domain knowledge consists of recording the
concepts that are commonly used in expert discussions in relation to a particular
problem domain. This step provides an ideal opportunity to confirm the extent to
which a group of experts have already developed a shared terminology and to record
any differences in terminology or implied semantics as far as this is possible at this
early stage of analysis.

A frequent mistake made by even the most experienced software professionals
is active contribution of new terminology that is not inherent in the language used
by domain experts. Another frequently encountered mistake is the assumption that
all domain experts should agree on a shared terminology across an entire product
line or organization. This regularly leads to a simplistic official terminology that is
plagued by ambiguous semantics, as, for example, a component in the context of
software deployment is not the same as a component in the context of designing a
user interface or in the context of designing an integrated circuit.

In MODA concepts are uniquely identified by a semantic identity, which can
be either machine generated or assigned manually, and each concept can be
associated with as many names as needed to correctly reflect the terminology used

4See http://www.slideshare.net/jornbettin/sharpening-your-collaborative-edge.

http://www.slideshare.net/jornbettin/sharpening-your-collaborative-edge
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by different domain experts. Additionally, each concept can be associated with a
domain-specific symbol, which is especially useful in scenarios where terminology
is heavily overloaded, or where different experts use very different terminology.
Joint development of shared domain-specific symbols is much more constructive
than unrealistic attempts of standardizing terminology. Domain-specific symbols
serve a key role in disambiguating terminologies and in creating conceptual bridges
across disciplines.

3.2 Evolution of Semantics

It is important to realize that not only the terminology but also the semantics of
a concept evolve over time. For example in an insurance company, each time new
functionality that makes use of the “insurance policy” concept is developed, the
semantics of “insurance policy” within the organization are extended. Additionally,
the semantics of the concept “insurance policy” in company A differ from the
semantics of the same concept in company B. Company A may only sell car
insurance policies, and company B may have several lines of business. In the
context of the systems of company A, there are no semantics for policies that
relate to health insurance. Conversely, in the context of company B, the only
semantics for car insurance policies are those that relate to the specific products
offered by company B. These observations illustrate that semantic modelling in
the context of a given organization differs from modelling in the Semantic Web,5

which is an attempt to capture the common sense semantics that people associate
with vocabularies in the public domain. The Semantic Web can be viewed as
a lowest common denominator for semantic modelling in scenarios that involve
interoperability between different organizations.

4 Modelling Value Chains in Terms of Interacting Agents

Conceptually software systems as well as human software users can be modelled as
agents that interact in a value chain by producing and consuming digital artefacts.

The thin arrows in Fig. 2 represent semantic links embedded in digital artefacts.
For clarity of representation typically different symbols are used to distinguish
between human agents and software agents. Each agent in a value chain can play
the role of artefact producer and artefact consumer in relation to other agents.

A perspective is characterized by the domain-specific jargon used to support
communication between two agents. Jargon arises whenever the names assigned
to the concepts used in the communication differ depending on the viewpoint. In

5The Semantic Web, www.w3.org/2001/sw/.

www.w3.org/2001/sw/
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Fig. 2 Extract from a value
chain involving agents A, B,
X, and Z

Fig. 3 Perspectives,
viewpoints, and the origin of
jargons

software tools that separate naming from modelling, one and the same artefact
can easily be represented in as many different jargons as are required. In Fig. 3
the difference in the jargons between the two agents is represented by two distinct
semantic domains.

In practice the scope of a domain-specific jargon is limited to the collaboration
within a small team of peers that are working on a specific problem. Translations
between jargons are required as soon as communication and collaboration with
further teams or systems is required.

The concepts of agent, perspective, and jargon are explicit elements in all
representations of knowledge in the S23M Cell metalanguage and are available for
processing by software tools on demand.

Without reliance on denotational semantics, the communication challenges in
a software intensive business that consists of hundreds of agents quickly leads
to an explosion in complexity. The problem is familiar to anyone who has ever
needed to integrate more than two software systems and to accommodate the
terminological preferences of different groups of domain experts. When system
integration is performed with conventional software tools that rely on textual
specification and programming languages, the resulting code steadily but surely
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Fig. 4 Dependencies in a service-oriented architecture

takes on a form that is consistent with the Big Ball of Mud6 architecture pattern.
Figure 4 shows the result of a tool-assisted analysis of the dependencies between
the state-of-the-art services and applications in the service-oriented architecture
(SOA) operated by a large corporation. The pictures show heavy interdependencies
between services, which defeat the goal of loose coupling, and which largely prevent
independent deployment of individual services.

In contrast, systems that have been developed and integrated with CASE tools
that manage multiple jargons with the help of denotational semantics often remain
maintainable over periods of 10 years or more. Perhaps the strongest evidence
for the effectiveness of denotational semantics comes from the pervasive use of
automatically generated unique keys in relational databases and other storage tech-
nologies. Without the use of immutable semantic tokens, semantic links between
data simply cannot be maintained in a reliable way. The content of large operational
databases and data warehouses would be completely unmaintainable without the
assistance of unique semantic tokens.

The S23M metalanguage enforces the workflow illustrated in Fig. 1, ensur-
ing that all knowledge is accessible for processing in software tools in the

6Big Ball of Mud, http://www.laputan.org/mud/.

http://www.laputan.org/mud/
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form of unambiguous semantic identities, and ensuring that additional symbolic
representations of knowledge in a form that is intuitive for humans (e.g., text, icons,
spoken languages, and instructional videos) can be added at any point in time,
always taking into account the specific perspective and the language preferences
of users.

5 The Role of Containers and Visibilities

MODA & MODE assume that every model is conceptually part of a container
model, leading to a model containment tree structure. The top level of the con-
tainment tree consists of models that represent agents, i.e., individuals and systems.
Beyond the top level, the containment tree is used as a structure to organize models
(left side of Fig. 1) and to define the visibility of models in relation to other models
(Fig. 5), with agent representations acting as the root for all models produced by an
agent.

In order to extend the use of formal information models beyond the small
community of domain engineering professionals, it is useful to tap into the
vocabulary that is commonly used to describe workflows, business processes, and
deliverables. Hence, instead of continuously talking about formal mathematical
models, it is sensible to use the term artefact instead of model in the role of a
container. The notion of an artefact can be explained to non-mathematically inclined
domain experts as follows:

1. An artefact is a container of information.
2. An artefact is created by a specific agent (a human or a system).
3. An artefact is consumed by at least one agent (a human or a system).
4. An artefact represents a natural unit of work (for the creating and consuming

agents).
5. An artefact may contain links to other artefacts.
6. An artefact has a state and a lifecycle.

When implementing tools for manipulation and management of formal models,
the following technical considerations need to be added to the notion of artefact:

7. A formal artefact is created with the help of a software tool that enforces spe-
cific instantiation semantics, and it includes all the metadata and instantiation
semantics that were used to produce the artefact (quality constraints).

8. The information contained in a formal artefact can be easily processed by
software tools (in particular by transformation languages).

9. Referential integrity between formal artefacts is preserved at all times with
the help of a software tool (otherwise the necessary level of completeness
and consistency is adequate neither for automated processing nor for making
business decisions based on artefact content).
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Fig. 5 Artefact visibility declarations

10. No circular links between formal artefacts are allowed at any time (a prerequi-
site for true modularity and maintainability of artefacts).

11. The lifecycle of a formal artefact is described in a state machine (allowing
artefact completeness and quality assurance steps to be incorporated into the
artefact definition).

12. The events consumed and produced by the artefact state machine are available
for processing in software tools (allowing transformations to be triggered at
all necessary points in time to keep artefacts synchronized with all derived
artefacts).

It is important to note that the existence of a containment tree structure does
not imply a universally applicable rigid hierarchical representation of models.
Instead, the containment tree structure represents the organizational preferences
of an individual agent. If agent A references models produced by agent B, the
containment tree structure chosen by agent B has no impact on the organization
of the models produced by agent A.

Using agents as root containers for semantic domains and models has significant
practical benefits in terms of the stability of models over time. The average life
expectancy of an association between an agent and an organization is much less than
10 years, whereas the life expectancy of human careers and of software systems is
measured in decades.

Traditionally it is common practice to organize artefacts according to the
legal organizations that own them, but this can create massive problems when
organizations or business units are merged or divested. It often becomes practically
impossible to undo the encoding of obsolete organizational structures in software
source code and in database schemas.

It is much more appropriate to represent legal artefact ownership as a variable
that can easily be changed and to consistently apply this approach to all information
artefacts.
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Fig. 6 Graph structure of a model decorated with instantiation semantics

In MODE visibilities are used as the mechanism to manage the allowable
dependencies between models. Visibilities give designers of modelling languages
an unprecedented amount of control over the models that language users can
instantiate. In the experience of the author, such functionality is essential for
managing the dependencies in large-scale software intensive systems.

6 Categories

Every digital artefact is a model of a theory in the model theoretic sense. The
graph structure of the model is best represented in the form of visual diagrams.
The diamond symbols at line ends and the expressions in square brackets in Fig. 6
are representations of the instantiation semantics that pertain to the model, and the
names shown in grey are categories.

The model pattern known as the power type pattern in object orientation occurs
pervasively in highly configurable systems. Closer examination of the power type
pattern exposes it as a technical kludge7 that forces the fragmentation of semantic
identities and demonstrates the limits of the object-oriented paradigm, which is
currently still treated as dogma by many software engineers.

By allowing multi-level instantiation as shown in Fig. 7, MODA & MODE
eliminate the need for the power type pattern and avoid the fragmentation of

7Further details on the specific problems caused by the power type pattern are illustrated at www.
slideshare.net/jornbettin/from-muddling-to-modelling.

www.slideshare.net/jornbettin/from-muddling-to-modelling
www.slideshare.net/jornbettin/from-muddling-to-modelling
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semantic identities. The S23M Cell metalanguage provides a uniform instantiation
function that is available at all level of abstractions (binding times) to all users.

On the one hand, this leads to substantial simplifications in tool-based model
processing, as the same tools that are used at design time can be used at configura-
tion time, at run time, and at any other (fine grained) binding times that may apply
in a particular context. On the other hand, the ability to decorate any artefact with
instantiation semantics—an ability that is significantly required—reduces the need
for model changes or updates. For example, decoration with instantiation semantics
allows a model of a concrete product to evolve into a template structure for an entire
product line.

Usually a new technology product initially tends to provide a simple set of
functions that meet the demands of the first few customers. Over time, as the
adoption of the technology product increases, as feedback is received from users,
and as competitors start producing comparable offerings, the pressure grows to
understand the specific use cases of individual customers, and to differentiate the
product. Rather than polluting the formal specification of the original product with
new abstractions and new binding times, it is often preferable to use multi-level
instantiation to highlight the elements of the original model that need to become
variabilities in the future product line.

As can be seen in the example in Fig. 7, the availability of multi-level instantia-
tion does not eliminate the usefulness of the generalization/specialization construct
that is offered in the UML and in object-oriented programming languages. In the
MODE approach, the use of generalization/specialization is reserved for use within
a given binding time, allowing a domain expert to articulate commonalities at a
particular level of abstraction, without impacting any of the formal artefacts that
relate to earlier or later binding times. Specifically the MODE approach limits the
scope of object-oriented inheritance of functionality to the elements associated with
a particular binding time. Any tools that process a model artefact expressed in the
S23M Cell metalanguage can easily access functionality at different binding times
by navigating up or down the multi-level category tree.

Multi-level instantiation [2, 4, 7, 17, 18] is a very effective tool for representing
the results of variability and commonality analysis, as it simplifies the representation
of complex products, and leads to visual diagrams that are intuitive for humans to
understand.

7 Variability and Commonality Analysis

The success of domain engineering critically depends on two factors: firstly on the
availability and access to domain expertise, and secondly on the quality of variability
and commonality analysis. Whilst the first factor is very hard to influence in the short
term, the second factor is a function of the experience of the domain analyst and the
quality of the techniques used in domain analysis to uncover and validate domain
knowledge.
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Fig. 8 Value chain context
diagram

One of the best introductions to the reality of variability and commonality
analysis is found in [9]. Often the need for domain analysis is triggered by a
commercial imperative, such as the need to launch a specific product by a fixed
target date. The product in question can be an insurance product, an industrial
automation system, an automobile, or a commercial software product—in all
cases the domain analysis challenge is the same: finding the simplest possible
representation for all the different aspects of the product specification and subjecting
the specification to thorough validation by all relevant domain experts.

The term variability and commonality analysis is not well established beyond the
domain engineering community, and often it is more appropriate to talk about value
chain analysis, especially if senior business executives need to fund the activity and
perhaps even participate in the activity.

Ideally domain analysis does not lead to any need for participants to learn new
terminology, and ideally domain analysis techniques are tailored for unobtrusive
insertion into product or service design processes. MODA & MODE achieve this
goal by exploiting denotational semantics and by offering support for individual
viewpoints and as many jargons as required.

7.1 Value Chain Analysis

Value chain analysis should always start from the outside in, and the initial objective
is not to capture how a business operates but to identify what it delivers and what
external inputs are required in the process. Limiting the initial focus on deliverables
and input artefacts that cross the organizational boundary leads to a very concise
description of the purpose of the organization. A good way to record this description
is a diagram that shows the organization as a box that is surrounded by external
supplier and customer roles (agents), and arrows between the box and the various
agents that are annotated with the names of the artefacts that are being exchanged.
Such a diagram (Fig. 8) is often called a context diagram. It is immaterial what
notation or tool is used, what matters is the reliability of the information and the use
of unambiguous names for agents and artefacts.

If the number of artefacts gets too large, then perhaps some artefacts can be
grouped together to a set, and the set can be assigned an appropriate name, or
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perhaps some artefacts are simply variations of a common theme, and the context
diagram only needs to show the generalization. Similar rules apply if the number of
agents gets too large.

Once the context diagram has been established, the next steps of the analysis
follow the following pattern:

1. Identifying those artefact exchanges that warrant a closer investigation in terms
of the objective of the analysis, such as the need to deliver a new product or
the need to increase the speed of service delivery. If the biggest pain point is
not obvious, each artefact exchange can be annotated with further information
that illustrates the value and cost of the interaction (performance indicators such
as the frequency with which artefacts are exchanged, the cost of producing an
artefact, the time to produce an artefact, the percentage of artefacts that do not
meet quality expectations, etc.). Another issue that can surface at this stage in
the analysis is the realization that different business units use different names for
artefacts and agents, and that parts of the organization lack a clear vocabulary.
This is the opportunity for the domain analyst to immediately address the issue
and to facilitate the discussion between domain experts.

2. Recording the extract from the context diagram that contains the artefact
exchanges that need to be analysed in more detail. The resulting picture is
extremely important to provide clear objectives and guidance to those tasked with
further analysis. Otherwise the analysis may result in costly business process
wallpaper that offers no new insights.

3. Analysing the internal processes used to consume the input artefacts or to
produce the output artefacts that warrant further investigation. In the analysis,
the same guidelines are applied as for the initial context diagram—keeping the
picture simple, ideally to a single page (Fig. 2). Again it is a matter of carefully
selecting the most appropriate level of abstraction for the representation. The
result typically does not need to contain detailed workflow information such as
conditions and business rules. Instead the diagram should be annotated as needed
with the same kind of high-level meta information that was used to decide on the
focus of the analysis. Once the rationale for condensing workflow information
into a small set of performance indicators is understood, it is obvious how to
proceed with further analysis—by selectively drilling into areas that require
attention.

7.2 The Six Domain Analysis Questions

Variability and commonality analysis in MODA is guided by six questions that are
designed to elicit domain knowledge from the participating domain experts.

1. How often does the decision require revision?
2. Who makes the decision?
3. When is the decision made?
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4. Where, in which artefact is the decision made?
5. What are the possible choices for the decision?
6. What heuristics apply when implementing the decision?

The six MODA questions and the supporting explanations in Fig. 9 are designed
specifically with the intent of uncovering the information needed to translate the set
of variabilities associated with a domain or a series of connected domains into a
modular set of formal abstract syntax specifications for domain-specific modelling
languages.

The effectiveness of the MODA approach to modelling language design has been
shown in numerous organizations and in a range of industries.8 Typical results
include a reduction in specification artefact size by factors between 3 and 20,
largely due to significantly improved modularity and the use of better abstractions.
Uncovering the latter typically requires very little initiative by the domain analyst.
Often the “new” abstractions can be taken straight from the vocabulary of domain
experts—which says a lot about the quality of earlier system designs that have been
developed with traditional software development methodologies.

One of the main roles of the domain analyst in the formalization of knowledge
lies in the confirmation of domain boundaries and binding times. As observed by
W. Edwards Deming, improvements require a combination of domain knowledge
and external expertise in applied systems theory and complexity management.

7.3 Validation via Instantiation

When designing the formal structure of artefacts, it is essential that both the
artefact producers and a sufficient number of artefact consumers will be involved
in validating how well the models that have been developed meet the needs of all
the agents that work with the models.

In MODA & MODE a significant amount of validation can easily be performed
immediately after a model has been created, as MODE tools, such as the S23M
platform, enable users to instantiate any model and to visualize the instances created
in either a graphical or a tabular representation.

As already pointed out in Sect. 2.1, words such as “component” are often
associated with very different semantics by different domain experts, even within a
single organization. Validation via instantiation offers a very effective mechanism to
uncover misunderstandings and clarify whether a “car” refers to a specific product
line, a specific version of a product line, a partially specified car model within a
product line, or a representation of a concrete instance of a car with a specific serial
number.

8See case study summaries on pages accessible from http://www.s23m.com.

http://www.s23m.com
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By requiring domain experts to identity several example instances of each
concept in their domain, any mismatches in assumptions about the level of
abstraction are quickly resolved. The effectiveness of validation is further improved
when the software tool that is used is not only able to record the instances but also
able to connect instances of various categories into a cohesive model that domain
experts can relate to.

8 Domain Synthesis

Beyond model validation via instantiation MODA & MODE make use of a number
of further techniques to improve model quality, to facilitate cross-disciplinary
collaboration between domain experts, and to increase the degree of automation
across an end-to-end value chain.

8.1 System Integration and Reuse of Concepts

The separation of modelling from the identification and naming of concepts enables
reuse of concepts and semantic domains independently from reuse of models.
This kind of functionality has been available for a very long time in CASE tools
such as LANSA but is still missing from many modelling tools and programming
languages.

In addition to the reuse of semantic domains, the S23M platform provides
explicit support for different equivalence transformations that can be applied
when using tools to perform model-based computations. In particular the Cell
metalanguage allows users to declare concepts that have been defined independently
in different domains to be semantically equivalent, or if so desired, to define specific
equivalence classes of concepts that are only applicable from their specific view-
point. These techniques open new approaches for system integration and software
interoperability [6].

8.2 Collaborative Symbol Development

In all scenarios where domain vocabularies contain words that are heavily over-
loaded, or simply in all those scenarios where the objective is to represent domain
knowledge in a graphical user interface, it is necessary to make use of appropriate
visual symbols. Although widely used consumer software such as operating systems
generally make use of high quality symbols, it is not uncommon for enterprise soft-
ware to rely on poorly designed or overly generic symbols. The most problematic
cases are encountered in the context of custom business software systems developed
for use within a single organization.
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Based on these observations and based on experience in designing visual domain-
specific modelling languages in collaboration with domain experts, the author has
come to the conclusion that collaborative symbol development is a highly beneficial
technique that should be encouraged in all organizations that develop software. The
positive effects of collaborative symbol development include:

1. Domain experts are prompted to think about the core characteristics of a concept,
facilitating discussion about use cases that involve the concept and raising the
level of shared understanding between domain experts.

2. Involving domain experts in symbol set design immediately increases the level of
intuitiveness of all software solutions that make use of these symbol sets, which
leads to a whole range of positive downstream effects on software quality and
data quality.

3. Discussion about visual symbols can highlight characteristics and structures that
are associated with specific semantics, and which are hence worthwhile capturing
in a formal model.

4. Graphical designers can apply their creativity constructively, without needing to
make speculative assumptions about the essence of a concept.

5. All those cases where a concept represents a concrete item in the physical world
are quickly identified and confirmed, and symbol development can be short-
circuited by sourcing a simple photographic image.

8.3 Visual Modelling Language Design

Once the abstract syntax of the modelling languages required in the context of a
particular domain and organization has been confirmed, and once all the underlying
semantic domains include appropriate symbol sets, all the basic ingredients for
visual domain-specific modelling languages are in place.

Further steps to define concrete syntax are limited to the default arrangement
of symbols in relation to one another, and to the notation used to represent the
edges that connect the domain specific symbols. The finer details of concrete syntax
design are often best addressed via one or more small domain-specific languages for
concrete syntax design. The details of these concrete syntax design languages tend
to depend on the fundamental patterns that govern the user interface technology that
is being targeted.

9 The Connection to Agile and Lean Approaches

This chapter provides an overview of key concepts and techniques in MODA &
MODE, but it may leave readers with a background in computer science and
software engineering wondering how the approach relates to popular software
development methodologies.
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Fig. 10 Domain engineering in relation to agile approaches and lean production

Domain analysis and engineering provide a framework for exploiting deep
domain knowledge to achieve substantial gains in productivity and quality within
an end-to-end value chain. Whereas classical Enterprise Architecture frameworks
such as Zachman or TOGAF offer a standardized set of tools for architectural
design to address needs across all business support processes, MODA offers analysis
techniques for streamlining the core of a business, and MODE offers engineering
techniques for creating automation tools. Figure 10 shows how domain engineer-
ing addresses the conceptual gap between agile techniques and lean production
techniques.

Agile techniques and experimental solution development leads to prototypes
that can be refined and optimized by domain engineering. The resulting highly
automated production facility provides the basis for a lean approach to production.

The reason for the success of agile techniques lies in the full recognition of the
risks inherent in the development of solutions that involve unfamiliar implemen-
tation technologies or unfamiliar domains. Techniques such as time-boxing, short
iterations, and the validation of working software following each iteration minimize
the impact of misunderstandings between stakeholders and the project team. They
further provide excellent opportunities for gathering initial knowledge about a new
technology or an unfamiliar domain.
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Lean production techniques complement agile techniques by focusing on the
learning opportunities provided in a production environment that is characterized
by repeatable processes in a familiar domain—specifically by the availability of
performance metrics from processes that are under statistical control.

The MODA & MODE approach allows the deep domain knowledge that is
gained in a lean production environment to be formalized and to be used in the
context of further process automation and optimization.

As needed, especially when unfamiliar implementation technologies are intro-
duced into the picture, the MODE approach makes use of agile techniques to
develop and validate experimental prototypes before proceeding with the formal-
ization of heuristics and with advanced process automation.

The advantage gained by formalizing domain knowledge with MODA & MODE
lies in the quality attributes of the representations produced by the approach, in
particular in terms of modularity, a concept terminology that not distorted by
underlying implementation technologies, and in terms of improved maintainability.
Empirical results show that improved modularity and better abstractions typically
reduce the size of specification artefacts by a factor between 3 and 20. These factors
have been observed when comparing extant configuration artefacts or program code
with corresponding formal models that were developed with the MODA & MODE
approach.

As pointed out in Sect. 1, the primary target audience for MODA & MODE
consists of domain experts in any knowledge-intensive discipline, which has a
significant influence on the tools that are being developed. The vast majority of
software users, who are producing large amounts of informal and formal specifica-
tion data, have an increasing need to attach precise semantics to the artefacts they
are producing and consuming.

10 Conclusions and Future Work

The MODA & MODE methodology brings together elements from systems theory,
the foundations of mathematics, human psychology, and empirical knowledge
from software product line engineering. Industrial applications in several industries
demonstrate that these elements fit together extremely well and are capable of
delivering results that compare very favourably with the results achieved via other
methodologies, many of which require the use of a patchwork of software tools and
often do not make use of a formal mathematical foundation.

The methodology and related S23M tools are currently being extended to support
Bayesian probability models and the specific concerns of learning systems. This
work largely involves the creation of appropriate formal artefacts in the Cell
metalanguage rather than coding in traditional programming languages.

Significant further work lies ahead in refining the software tools, in particular
the development of a high quality Web-based graphical user interface. This work
involves binding traditional user interface technologies and programming languages
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to the abstract representations exposed by the S23M Cell Application Program
Interface, as well as a significant amount of graphical design.
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Abstract A domain-specific modelling language can be considered as a situation-
ally focussed conceptual modelling language. A modelling language is typically
underpinned by a meta-model that defines its abstract syntax, utilizes a notation
(a.k.a. concrete syntax) and possesses a well-defined semantics, sometimes with
an associated ontology. However, the relationships between models, meta-models,
modelling languages and ontologies are not well defined in the literature. In partic-
ular, the implications of the strict meta-modelling paradigm fostered by the OMG
in relation to the type/instance duality are often described in a vague and equivocal
fashion. This chapter provides a solid theoretical foundation for the construction
of domain-specific modelling languages that can help define both the abstract and
concrete syntax aspects. Two example languages are described: ISO/IEC 24744
(Software Engineering Meta-model for Development Methodologies), a language
that can be used to define software-intensive development methods; and FAML
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Model SUS

representation

interpretation

Fig. 1 Relationships
between a model and the SuS
(after [39])

1 Introduction

Domain engineering focusses on reuse within a specific business domain of interest
and is often stated to encompass topics such as reuse, e.g. [23, 36], product line
architectures and domain-specific languages, e.g. [10]. Domain-specific modelling
languages (DSMLs) allow users to work with a set of concepts closely related to
their domain-specific knowledge, concepts that may be encapsulated as a domain
ontology [23, 57]. In other words, DSMLs are used to describe and document
models that are constructed as part of software development for applications within
a highly specialized business or application domain, e.g. [25].

Modelling languages in general must be formally defined and these definitions
are often said to comprise the modelling language (ML) itself. This ML is often
expressed using a meta-model. In studying domain engineering, there is thus a need
to comprehend these elements: models, meta-models, ontologies, and modelling
languages—and how they all fit together.

Modelling is all about abstraction. It is often said that a model is a representation
of a (part of) reality, called here the SuS or system under study (Fig. 1). That reality
could be at one of a range of granularities including a specific software system or a
specific domain of interest (Fig. 2). In a software development context, the SuS is
often described using a general purpose software engineering modelling language—
a widely used example is the Unified Modeling Language, UML [70]. When the SuS
is a highly specific domain, such as banking or healthcare, the language that is used
to describe entities in this specialized domain is known as a DSML.

To understand DSMLs, we need to understand how they are related to more
general modelling languages (MLs) and also to the broader context of domain
ontologies. Figure 3 shows that, in the former case, we can simply state that a DSML
is a specialized type of ML—although it should not be overly specialized—nor
overly general [51]. A domain ontology is a description of the entities in a specific
domain and is therefore a kind of model—in this case one that is described not by
a general-purpose modelling language but by a DSML. Both DSMLs and general
purpose MLs are used to describe a model—or, conversely, that a model uses a
modelling language (Fig. 4) for its representation and, hence, its communication to
others. These models may refer to endeavours (e.g., specific projects), to the method
domain (of methodology and tools) or to the meta-model domain (Fig. 5). In each
case, the description of the model uses the modelling language specification, which
defines the ML—either in terms of a meta-model, BNF, a grammar, etc., e.g. [52].
Thus, to understand DSMLs in detail, we also need to discuss meta-modelling.

This chapter investigates the links between models, meta-models, DSMLs and
ontologies in the context of their mathematical underpinnings (cf. [39]). In Sect. 2,
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Fig. 2 Three areas of interest: a single system, a larger domain of interest (a specific technical
domain, for instance) and reality. Any of these could be called the system under study (SUS) (after
[39])

Fig. 3 The role of domain-specific modelling languages (modified from [39])

Fig. 4 Three domains defined by the category of users. For models created in any one of these
domains, a modelling language (ML) is used. That ML is often the same for the three layers and
can be defined in one of a number of ways
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Fig. 5 Three level metamodel architecture as used in [45]. This architecture is based on practice
rather than theory (cf. Fig. 6). People work on real projects using methodologies, tools etc., all of
which are defined in the so-called “meta-model domain” (after [38])

we present the elements of the “traditional” architecture for meta-modelling
followed by basic relevant mathematical structures in Sect. 3. Section 4 discusses
models and meta-models before utilizing these for DSMLs in Sect. 5. Section 6
introduces two DSML case studies: for software development methodologies and
for agent-oriented modelling.

2 Traditional Architecture

In software engineering and conceptual modelling, the traditional (at least over the
last two decades) architecture has been the OMG’s four layer strict meta-modelling
construction (Fig. 6). This argues for the four so-called abstraction levels connected
by instanceOf relationships. This choice of type-instance connections between pairs
of layers is known as strict meta-modelling [4, 5]—an approach that forbids use
of instanceOf within any single layer—seen by many authors as problematical, e.g.
[9, 81]. Although this works tolerably well for conventional modelling languages
(i.e., those that do not use either clabjects or powertypes—see below), when
applied to processes and methodologies several problems emerge (see discussion
in [32]). Of these, two main issues prevail. Firstly, the double/multiple instanceOf
relationship (as shown in Fig. 6) violates the language use and speech act theory
determination that a concept cannot be an instance of another concept (where
an instance is always part of a type-instance relationship and type is confounded
with concept), e.g. [22, 80]. Secondly, instanceOf is a highly specific form of the
more general “represents” relationship (Fig. 1). Furthermore, it is this “represents”
linkage between model and reality that forms much of the focus of ontological
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Fig. 6 OMG’s theoretical
four-layer hierarchy
(modified slightly from [41])
© Pearson Education Limited

Fig. 7 Ogden and Richards’
“meaning triangle” (a.k.a.
Ullman triangle) for reality
(or a specific reality domain
such as banking or
telecommunications, i.e., a
Universe of Discourse, UoD)

thinking, as summarized, for instance, in [34], where Guizzardi reminds us of the
Ullman triangle, originally conceived by Ogden and Richards [68].

Figure 7 depicts the Ullman triangle that expands on the single linkage of Fig. 1
(between model and SuS) by recognizing that the linkage between model (as a
representation) and reality (the SuS) is indirect—there is a mediating effect of
the human mind. This diagram also introduces the crucial mapping of “abstracts”,
which is discussed further in Sect. 3 below. Colloquially, it can be said that
abstraction maps between a detailed description and a less detailed description (i.e.,
some information is discarded in the mapping). This side of the triangle can lead
us to either token models or type models [54]—only the latter being of relevance to
our study of DSMLs. Finally, Fig. 7 can be applied to a range of scales pertinent to
the SuS; when the SuS has a specific domain focus, then the Language is a DSML,
as noted earlier.

3 Mathematical Considerations

Here, we draw attention to the utilization and applicability of mathematics to
models, meta-models and ontologies in software engineering with a specific focus
on DSMLs. The approach taken is to base our mathematics on logic, in particular
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Fig. 8 A set and its members

on propositional logic (by which means a given statement can be unequivocally
assessed as being either true (T) or false (F)) together with universal quantifiers,
predicates, variables and functions, i.e., first order predicate logic/calculus. Here,
we utilize set theory, noting that category theory may, in the future, provide a more
comprehensive mathematical underpinning.

A set is a collection of individuals, usually called members (of the set) (see
Fig. 8). Sets are often defined “by extension”—the standard mathematical defini-
tion, i.e., the explicit enumeration of each of its members.

If all the members of the set have a characteristic in common (defined by a predi-
cate), the set can be also defined “by intension”, the intension being a predicate that
unequivocally characterizes the set elements. In other words, intensionality defines
all possible members that legitimately belong to that set whereas extensionality
enumerates the actual members that do belong to that set.

Definition by intension is highly relevant to the construction of MLs since it
essentially defines the type, i.e., a type in software engineering has both an intension
and an extension. Types represent concepts in the SuS, wherein the extension and
intension are related by

" .C/ D fx j p .x/g ; where p D i .C/ (1)

([56], Eq. (2)).
Set theory also provides us with definitions of membership and set inclusion

([21], pp. 14–15), which underpin our modelling concepts of instantiation and
generalization, respectively, i.e.:

.instantiation/ ai 2 A for i D 1 to n (2)

such that ai represents the instances and A the class. When a predicate is added to
the class we get a statement for type conformance as:

8x; .x 2 A/ , p .x/ (3)
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where p(x) is a property (predicate) of the element.

.generalization/ A � B (4)

which can also be understood as meaning:

8x; .x 2 A/ ) .x 2 B/ (5)

(for more mathematical detail, see [39]).
Functions, or mappings, between a pair of sets are also highly relevant to

modelling. In particular, the abstraction mapping (for example, classification,
generalization, aggregation) is seen as important for the creation of models, e.g.
[60]. Roughly speaking [28], abstraction allows one to pay attention to the most
relevant properties of the problem whilst discarding those that are considered less
relevant1 (see also, for example, [50]). Abstraction can thus be described through
three complementary aspects:

1. Mapping: abstraction maps a representation2 of the problem to a new, simpler
representation. (This is the essence of modelling).

2. Simplification: by throwing away irrelevant details, the result of the abstraction
process provides a simpler problem to be solved than the original.

3. Application: by preserving relevant, desirable properties, the solution to the
simpler problem can be transferred and applied to the original problem.

Since, as noted above (property 2), an abstraction always discards detail, this may
result in several entities in the SuS being mapped to a single one in the model ([2],
p. 31). This loss of detail creates a simpler system from the SuS for the purposes of
understanding the original SuS, e.g. [27, 28].

Classification and generalization can both be considered as kinds of abstractions,
e.g. [56], since they both fit the three-aspect definition described above in terms
of mapping, simplification and application. Classification refers to the allocation
of members to a set defined by intension. Since Eq. (1) links the extensional and
intensional definitions of a set, we can answer the question regarding whether or not
a specific instance, e, belongs to the set C; in other words whether e is classified by
concept C. From an extensional viewpoint, we have:

e �C , e 2 " .C/ (6)

1Some authors use the term “generalize” to mean ignore details (see, for example, [2], p. 40). Here,
the term “generalize”, and particularly “generalization”, is used in the object-oriented sense of a
relationship between a type and its super-type (or, equally, between a subtype and a type).
2Thus confounding the abstraction and representation links depicted in the “meaning triangle”
(Fig. 7).
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representation of the
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(after [39])

where "(C) is given intensionally by Eq. (1) and � is the symbol for the classification
abstraction which is a non-transitive relationship. This parallels the set-member
relationship given in Fig. 8. Generalization, on the other hand, denotes the set-
theoretic relationship between a set B and a subset A (Eq. (4)) where we can write
(in terms of extensions):

" .A/ � " .B/ (7)

([56], Eq. (3)). We need to note that the generalization (subtyping) relation is
transitive, since it involves the subsetting notion of Fig. 9, such that a member of a
subset is also a member of each inclusion set.

The mapping between a set and a set member is the instantiation, or instanceOf,
relation. Its inverse maps several instances to one set; where the set is actually
a concept (Fig. 1) and thus Eq. (1) holds, this inverse being the classification
relationship of Eq. (6).

It is also self-evident that since properties p(x) are defined for a set, then
each member of the set must possess the property. A consequence of this is non-
transitivity for the instanceOf relation, which links type instances to the type.

Type-instance semantics are said to underpin much of current thinking in mod-
elling and meta-modelling, e.g., [9]. In a modelling language like UML, however,
this type-instance pattern is essentially applied twice: between M2 (as type) and M1
(as instance) and between M1 (as type) and M0 (as instance).3 The entities in the
M1 layer are thus sometimes viewed as types (classes in UML) (e.g., by modellers)
and at other times viewed as instances (e.g., by meta-modellers). Translating this
into a set representation has serious repercussions for the solidity and validity
of the OMG strict-meta-modelling four-layer architecture, e.g., [39, 43], since it
leads to M2-level sets, the members of which are themselves sets. Mathematical set
theory supplies the notion of a “family of sets”, known in software engineering as
a “powertype” [29, 65]. A “powertype” is defined as a class the instances of which

3We will not discuss here a third possible application between M3 and M2.
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Fig. 10 Powertype pattern
(after [39])

are subtypes of another class, itself related by means of a classification relationship
to the powertype. In mathematics, there is a similar construct, that of the powerset,
which is the set of all subsets (including the set itself and the empty set) and is
usually written as P(B) or 2B (since it has 2B elements):

P .B/ D fAjA � Bg (8)

The elements, Ai, of this powerset thus form a partition of the superset (B) (Fig. 10).
In addition, each set (class) Ai is an instance of the set P(B), which, in turn, provides
a partitioning rule for set B.

From a semantic perspective, a powertype of a type B (P(B) in Fig. 10, for
example) represents an entity that can be described as “type of B”, “kind of B”
or some other similar classification over B. For example, a textbook example of
powertype of the class Tree is the class TreeSpecies, since TreeSpecies classifies
Tree. According to the definition of powertype, instances of TreeSpecies (the
powertype) should be subtypes of Tree (the partitioned type): sample instances
(Ai in Fig. 10) such as OakTree, PineTree or MapleTree are, indeed, instances of
TreeSpecies (the oak tree species is a particular tree species) and also subtypes
of Tree (oak trees are a particular type of trees). Note that the concepts of “tree”
and “tree species”, albeit closely related, are very different, as are those of an oak
tree (one particular tree) and the oak tree species (corresponding to the biological
construction of species).

We should also note that the instantiation relationship is often written as is-a; but
this is ambiguous as many authors have pointed out, e.g., [7, 16]. Three meanings
were identified in [7]:

• Is an instance of
• Is a kind of

and, specifically in UML [70], the most commonly used modelling language in
software engineering

• A stereotype label used to “brand” a class in a model with another class [8].

This third interpretation is strictly a misuse of the UML’s modelling rules,
e.g., [40], and thus outside the scope of our current discussion. The second
interpretation is highly relevant here since it represents the abstraction relationship
more typically called generalization (or its inverse, specialization) which, in object-
oriented programming languages, is usually implemented using the inheritance
capability of the language.



300 B. Henderson-Sellers and C. Gonzalez-Perez

Instantiation and classification are clearly related, as noted above. Strictly,
classification provides a test regarding whether an individual satisfies the intension
of a class (set). Instantiation, on the other hand, selects an individual from a pre-
existing set or creates an individual by using the criteria given by the set’s intension
as a template and is therefore more relevant to the current discussion. Indeed, Abadi
and Cardelli ([1], Sects. 2.1 and 3.1) note that the difference between type and class
is that a type is simply about conformance to a signature (similar to defining a set by
intension), whereas a class provides a templating mechanism, a “creation machine”
capable of instantiation.

In summary, classification determines if an individual belongs to an intensionally
defined set, instantiation relates individuals to sets (types) and generalization
relates types to (super)types. A more detailed comparison of classification and
generalization has been undertaken recently in [56]. A highly relevant question is
which of these (if any) is useful in relating models to metamodels.

4 Models and Metamodels

As we have seen, a model is an abstraction of an SuS (Fig. 7). This modelling
abstraction can be written [54, 55] as:

� .S; M/ ! S G M (9)

(i.e., ¡ is a subset of C) where ¡ is the representational relationship between model
M and SuS S and C, the “modelled-by” (the representation relationship of Fig. 1)
relationship, indicates a relationship between model and SuS that may be many-to-
many. Seidewitz [81] states this as “a model is a representation of an SuS” and that
“interpretation” is the inverse of “representation” (Fig. 1). In mathematical logics,
interpretation is the assignment of semantic meaning (see also [47, 88]). Meaning is
embedded in the particular representational choice and therefore the language used,
e.g., [80]. Interpretation of a model is thus a mapping of the model’s elements to the
SuS elements that thus also permits model validation (with respect to the SuS) [81].
Interpretation is important as it is a mapping from the model elements to “reality”
(the SuS) and thus provides a means whereby to check the correctness of the model.

Although in much of contemporary software engineering, which is currently
heavily influenced by the OMG architecture of Fig. 6, modelling and meta-
modelling are regarded as absolutes (e.g. “meta-model” implies M2, always), it
should be noted that in fact the prefix “meta” is relative rather than absolute.
According to [15], a model conforms to its meta-model (labelled “sem” in Fig. 11
since the metamodel defines the semantics of the model) when all of its classes are
instances of classes in the meta-model (labelled “meta”). Relationships in the model
also need to be in compliance with the rules of the meta-model (see also [61]).
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Fig. 11 A model has a “sem”
relationship to its metamodel;
elements in that model are
related to elements in the
meta-model by “meta” (a
classification relationship)
(after [39])

Joualt and Bézivin [48] propose a mathematical definition for conformsTo based
on the notion of a so-called reference model.4 A model, M, is said to conform to its
reference model, ¨, where M is a triplet (G, ¨, �) in which:

• G D .NG; EG; �G/is a directed multi-graph consisting of a finite set of nodes,
NG, a finite set of edges, EG, and a function �G W EG ! NG � NG, i.e., mapping
each edge to its source and its target nodes.

• ¨ is associated with a graph G¨ D .N¨; E¨; �¨/

• There is a function � that associates nodes and edges of G with nodes of G¨

given by

� W NG [ EG ! N¨ (10)

Conformance is also addressed in [61] where a combination of category theory
and graph transformation called Diagram Predicate Framework is introduced.

Powertype conformance (Fig. 10) can then be defined by extending Bézivin’s
[14] definition by enforcing Method Domain clabjects to map to both a powertype
(an instance-of mapping) and a partitioned type (a generalization mapping).

Both interpretation and representational mappings as described in [81] relate
elements of the SuS to elements of a model. Consequently, we can here equate these
to the “meta” relationship of Bézivin (see Fig. 11). Since Seidewitz [81] notes that
when a model is a representation of an SuS, all statements in the representation
are true for the SuS under the interpretation mapping, we can conclude that the
representational mapping is a more general case of the conformsTo mapping. In
other words, the conformsTo mapping is a representational mapping in which the
SuS is a model and the model is a meta-model.

4Note that this is a very different meaning from the use of “reference model” in software
engineering standards published by ISO’s JTC1 SC7.
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5 DSMLs and Meta-Models

A modelling language is a means of expressing statements in the model ([81],
p. 28). It is generally defined to consist of an abstract syntax and semantics, e.g.
([2], p. 13) and (arguably) pragmatics and concrete syntax (a.k.a. notation), e.g. [25,
49, 78]. Many authors (as we do here) exclude the notation from being an intrinsic
part of a language, arguing that concepts are independent of any particular mode of
representation. However, Silva Parreiras et al. [83] in contrast break down the syntax
into (1) concrete, (2) abstract and (3) notation (graphical or lexical) and identify
semantics as being either (a) formal (e.g., denotational) or (b) informal (e.g., natural
language).

A DSML is then a modelling language that is constrained to the vocabulary of
a particular (business) domain. As noted earlier, the (abstract) syntax of a DSML
can be described in one of the several ways, e.g. by a meta-model ([33] Chap. 8,
[58, 77]) or as a grammar (Fig. 4). A grammar represents a set of rules to illustrate
how its basic elements, called the “alphabet”, work and how “sentences” may be
constructed from this alphabet. Others commonly use a meta-model to describe the
abstract syntax of a modelling language, e.g. [58, 77], including DSLs ([33], p. 289
and 457). In addition, the scope of a DSML can be defined in terms of a domain
ontology.

The semantics of a language give meaning to the symbols (i.e., alphabet) and
hence to sentences, etc. The vocabulary of the language may be supplied by
the ontology and/or the meta-model, e.g. ([3], p. 257). Guizzardi ([34], p. 36)
describes this in terms of the “ontological commitment” of a given language;
that is, a description of the specification of the conceptual model underpinning
the language. This represents the world view or Weltanshauung embodied in the
language. Without semantics, the appellation of “modelling language” is difficult to
justify.

Whether general-purpose or domain-specific, a modelling language typically
utilizes a meta-model to define the abstract syntax [25] plus separate semantics;
or sometimes it is assumed that the meta-model is the modelling language (see [22]
for a more detailed discussion of this apparent contradiction). Notation is sometimes
included in the definition of an ML and sometimes not. Although not exclusively the
case, meta-models do, however, figure prominently in any discussion of DSMLs.

A meta-model is an explicit specification of an abstraction, e.g. [15], expressed
in a specific language. This is similar to Seidewitz’s definition of a meta-model [81]
as a specification model for a class of SuSs where the system now refers to a model
(i.e., we apply Fig. 3 twice). In other words, each SuS is a valid model, i.e., “a meta-
model makes statements about what can be expressed in the valid models of a certain
modelling language” ([81], p. 28). It should be stressed that the abstraction needed
here is a type abstraction since token models are not used for DSML construction.

Seidewitz [81] states that the UML standard is a meta-model and that, altogether,
the (UML) meta-model includes notation, abstract syntax and semantics. Although
it is common to represent a meta-model by using a graphical notation such as UML,
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typically as a class diagram, there are other possibilities; for instance, Walter et al.
[88] use text. Here, we have purposefully omitted notation from our definition since,
for example, ISO/IEC 24744 [45] provides a meta-model without a notation5 (see
also [31, 33] Chap. 6]; or the meta-model may have several different alternative
notations, e.g. [25, 57]. Kühne [54] argues that the definition of a meta-model might
in the future be extended to include all these things.

While the definition, oft-quoted, of a meta-model as a “model of models” (or
“a model of models expressed in a given language” [58]) is useful, an additional
constraint is that all modelling activities must use type models rather than token
models since we need to exclude transitivity, e.g., ([54], p. 378). Kühne [53] offers
a useful heuristic to test the appropriateness of the appellation “meta-model”: “Are
the instances of their models not instances of them?”

Modelling and meta-modelling terminology can per se also be initially confus-
ing. In the OMG architecture, UML belongs to M2 whereas a UML model belongs
to M1 since “UML model” is short for “model that conforms to UML” or “model
expressed using the UML”. Similarly, while MOF belongs to M3, an MOF model is
an M2 meta-model conformant to MOF (M3)—Guizzardi and Wagner [35] use the
terms MOF model and also “MOF as a meta-modelling language” (to parallel the
statement that UML is a modelling language). However, other authors use different
and essentially contradictory terms to describe the M3-M2 connection. For example,
Colomb et al. [18] describe an M2 meta-model that is conformant to MOF as an
“MOF meta-model”. Care must therefore be taken in assigning Mx layers across
various papers in the literature. Here, we will use the terminology as utilized also
in [35], i.e., an M3 model is an M2 artefact; an M2 model is an M1 artefact; an M2
artefact is both a meta-model and a modelling language; etc.

Layered architectures require a relation or mapping between pairs of layers. As
noted in Sect. 2, the OMG’s use of instanceOf between layers is easily confused
with the intra-layer instantiation relationship. Bézivin [13] and Gašević et al. [26]
emphasize that the two basic relationships for meta-modelling (i.e., multilayer
modelling) are representedBy (as in Fig. 1) and conformsTo—paralleling the two
basic OO modelling relationships of instanceOf and inherits.

5.1 Notational Considerations

As noted earlier, it is easy to confuse a model (concepts/statements) with the visual
representation (or “visualization”) of that model (e.g., class diagrams, differential
equations, graph) [31]. Clarification can be gained by reconsidering Fig. 7 and
focussing on the “depicts” relationship. Figure 7 states that a conceptualization is
depicted by the use of a (modelling) language. Typically, the visualization of that

5A notation for ISO/IEC 24744 was added later [46]—see Sect. 6.1.
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language is graphical. We thus explore some of the advice in the literature on the
construction of symbols for use in a software-focussed modelling language.

A number of authors have offered advice on the key aspects of a good quality
modelling language. Rumbaugh [76] suggests that the language should have the
following characteristics:

1. Clear mapping of concepts to symbols
2. No overloading of symbols
3. Uniform mapping of concepts to symbols
4. Easy to draw by hand
5. Looks good when printed
6. Must fax and copy well using monochrome images
7. Consistent with past practice
8. Self-consistent
9. Distinctions not too subtle

10. Users can remember it
11. Common cases appear simple
12. Suppressible details.

Whilst this list is useful, it shows no influence from semiotics or usability studies.
Indeed, when it was argued during an OMG meeting in Austin that the embryonic
UML should be subject to pre-standardization usability tests, the proposal was not
permitted to be put to the committee. Consequently, several UML symbols and
annotations fail when subject to quality assessments, e.g. [63], and, furthermore,
that the lack of provision of any design rationale for UML suggests that “this is
acceptable practice even for the industry standard language” ([62], p. 757).

Constantine and Henderson-Sellers [19, 20] argue for the need to base symbols to
be used in a modelling language on semiotic principles [73], differentiating between
indexical signs (directly connected to the referent by physical association), iconic
signs (having a likeness to the referent) and symbolic signs (having a connection
by convention only). These ideas have been formalized more recently in [62],
where it is argued that, although there are many goals that a notation could aim
to encapsulate (e.g., simplicity, expressiveness, naturalness), the primary dependent
variable for evaluating and comparing visual notations is cognitive effectiveness.
Moody argues that cognitive effectiveness is not an emergent property but one that
must be designed into the notation [59]. He notes that the representational form
(i.e., the notational symbol) for a concept has equal, or even greater, influence on
cognitive effectiveness than its content (including the underlying semantics) (see
also [82])—as confirmed by empirical studies (as referenced in [63]).

Moody [62] provides nine principles for designing effective visual notations
(Table 1). Semiotic clarity (Principle 1) requires a one-to-one correspondence
between construct and symbol. If this is not achieved, “errors” such as symbol
redundancy (several symbols used for one concept), overload (maps to more than
one concept), excess (maps to no concept) or deficit (a concept has no symbolic
representation) can occur (see [71] for an analysis of UML from this viewpoint).
Symbol discriminability (Principle 2) is enhanced by ensuring that shapes likely to
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Table 1 Principles for designing effective visual notations

Name of principle Characteristics of principle

1. Semiotic clarity Ensure there is a 1:1 correspondence between semantic
constructs and graphical symbols

2. Perceptual discriminability Clearly distinguish between different symbols
3. Semantic transparency Use visual representations whose appearance suggests their

meaning
4. Complexity management Include explicit mechanisms for dealing with complexity
5. Cognitive integration Include explicit mechanisms to support integration of

information from different diagrams
6. Visual expressiveness Use the full range and capacities of visual variables
7. Dual coding Use text to complement graphics
8. Graphical economy Ensure the number of different graphical symbols is cognitively

manageable
9. Cognitive fit Use different visual dialects for different tasks and audiences

Table 2 Eight characteristics of symbols of Bertin [11] from which
an individual symbol can be constructed

Variable kind Variable

Planar Horizontal position; vertical position
Rational Shape; size; colour; brightness; texture; orientation

be juxtaposed are from different “families” (e.g., curvilinear, polygonal), possibly
also with additional use of colour or labels. Semantic transparency (Principle 3)
uses cues to meaning, especially iconic signs rather than symbolic ones [19] and/or
mnemonics. Good notational sets deal well with complexity (Principle 4) for which
there are several options, although often none are used [63]. Various forms of
decomposition are possible especially varying the abstraction levels by means
of generalization/specialization and meronymic structures. Principle 5 (Table 1)
encourages the use of systems of diagrams rather than one single diagram. Visual
expressiveness (Principle 6) recommends the use of the large number of visual
variables. Symbols can be differentiated in terms of eight variables [11, 62]—see
Table 2. Use of colour when possible (e.g., not for printouts on B/W printers) can
enhance the speed of recognition by a factor of three [85]. Text can also be useful as
a complement to graphics (Principle 7). Cognitive limits to the number of symbols
are recognized in Principle 8, especially problematical for novices [64]. Finally,
Principle 9 focusses on the application of cognitive fit theory, e.g. [87], to visual
software engineering notations. Cognitive differences exist between novices and
experts such that a notation should have different subsets or dialects for such widely
different user types.

Moody [63] notes that the application of the nine principles of Table 1 can lead
to some problems resulting from interactions between principles, possibly leading
to the need to make trade-offs or, conversely, to benefit by selecting identified
synergies.
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The symbols used in the notational package are thus clearly of primary impor-
tance. These symbols are sometimes called the “primary notation” in contrast to
the “secondary notation” that adds further visual clues that aid in comprehension
(in particular, differentiating between novices and experts [74]) whilst leaving the
semantics unchanged [79]. These clues, which are called aesthetic guidelines in
[85], include overall layout of model elements (investigated for ER diagrams
in [37]), particularly focussing on line crossings, visual distance and back pointers
[79]. Although clearly valuable, such concerns are outside the scope of our initial
design of a DSML (here for agent-oriented system design).

6 Case Studies

As illustration of the application of these mathematically underpinned modelling
and meta-modelling techniques, in this section we outline two DSMLs that we
have developed in this formal mathematical framework. Section 6.1 describes
the meta-model and notation developed as the ISO/IEC International Standard
24744 [45, 46]—also known as SEMDM (Software Engineering Meta-model for
Development Methodologies). The mathematics specifically utilized in this is that
of the powertype (mathematically a “family of sets”)—(8) and Fig. 10.

The second case study is of an agent-oriented modelling language presented as a
meta-model [12]. Although powertypes were not explicitly included, opportunities
to do so are currently being explored. Section 6.2 presents the existing four-element
meta-model together with elements of a proposed concrete syntax (notation).

6.1 Domain-Specific Modelling Language for Software
Development Methodologies

As noted earlier, the need to standardize some aspects of the methodology for
use in design and other aspects for process enactment cannot be satisfied with
the architecture of Fig. 6. Instead, three domains are defined (Endeavour, Method,
Meta-model as shown in Fig. 5) to reflect practice rather than the artificial
structure of Fig. 6. Figure 12 shows how the powertype pattern of Fig. 10 is
utilized in this new three-domain architecture. It should be noted that since the
RequirementsSpecificationDocument class (in the model domain) has not only an
instantiation relationship to a class in the meta-model (DocumentKind) but also
a specialization relationship to a second class in the meta-model (Document), this
architecture cannot be equated to the OMG four-layer architecture of Fig. 6 since the
latter’s use of strict meta-modelling forbids any relationship except instantiation to
cross inter-level boundaries. Furthermore, this newer architecture (Fig. 5) provides
a solution to a long-standing problem of enactment when discussing methodologies
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Fig. 12 The three domains used in ISO/IEC 24744 (after [38])

for software development. Strict meta-modelling is unable to transmit attribute
values to level M0 when they are defined at M2 (without using a work-around
such as potency, e.g., [6]). In contrast, in Fig. 12, attributes that refer to the method
domain (the process model or methodology) are defined in the xxxKind class in
the meta-model. Attributes that cannot be given a value until the endeavour domain
need to be allocated to the xxx class in the meta-model; these are then inherited
without change by the clabject in the method domain and then, in the endeavour
domain, given a value pertinent to that particular project/endeavour.

Figure 12 depicts just one of the powertype patterns (Document-DocumentKind).
The full ISO/IEC 24744 meta-model contains seven such patterns (known as
“templates”) as well as five regular meta-model classes (known as “resources”).
In fact, the SEMDM meta-model can also be regarded as an ontology in the domain
of methodology modelling [30].

Each of the templates and resources in Fig. 13 effectively defines a “family”
of elements defined not only by each pattern but also by any subtype. In creating
a notation for ISO/IEC 24744, semiotic principles were applied (as discussed
above), taking into account also the need to be able to hand-draw the symbols
(as opposed to the need to use a tool to draw a similarly-focussed notation like
that of SPEM [69]) and the need to create a set of culturally independent shapes.
Although colour is used by allocating a very specific hue to all members of a
family, all symbols are equally recognizable by means of the family-focussed shape
(e.g., rectilinear, curvilinear). Colour, when available, offers an added “clue” to
the visualization but is not vital to understanding [84]. The design of this notation
also takes into account all the semiotic advice discussed in Sect. 5.1. In particular,
we have embodied Principles 1, 2 and 8 and to some degree Principles 3 and 6.
Complexity management (Principle 4) and cognitive integration (Principle 5) only
apply when diagram types rather than single symbols are discussed (see also [84]).
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Fig. 13 The core of the ISO/IEC 24744 meta-model (after [84])
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Fig. 14 Symbols for members of the WorkUnitKind family in ISO/IEC 24744

Finally, whilst supporting the ideas of Principle 9, empirical evidence resulting
from extensive use of the proposed FAML notation (see Sect. 6.2 for details) is
a prerequisite for future improvements.

Figure 14 illustrates the application of these semiotic principles by examples
from the WorkUnitKind family of concepts in ISO/IEC 24744. There are three
subtypes in the SEMDM meta-model: ProcessKind, TaskKind and TechniqueKind.
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Stage family

WorkProduct family

Producer family

< N a m e >

<Name>

<Name>

Fig. 15 ISO/IEC 24744 symbols showing one example from each family group of StageKind,
WorkProductKind and ProducerKind

Hypothetical methodology
Construction

Construction Build

Mc

Definition

Requirements Engineering1

High-Level Modelling1

Technological Design1

Deployment Planning1

Construction Planning1

Low-Level Modelling1

Packaging1

Synchronisation1

Coding1 Generation1

User Documentation Authoring1

2 Requirements quality assurance

Fig. 16 Example lifecycle diagram drawn using the ISO/IEC 24744 notation (after [32])

All three are green and have a curvilinear shape. Their name is inside the shape as is
a label (in a circle) to show the minimum capability level at which this operates [44].
In contrast, members of the Stage family (Fig. 15) are rectilinear with more than four
sides (colour blue), members of the WorkProduct family are vertical, pink rectangle-
based and members of the Producer family use the “mask” shape (originally used
in the OPEN Modelling Language (OML) [24]) but with different orientations and
yellow in colour.

A final and important consideration is to ensure that, when necessary, symbols
can be superimposed or contained within each other—both in terms of shape, textual
content and colour. For example, Fig. 16 depicts an example lifecycle diagram in
which a time cycle kind (the “Hypothetical Methodology”) consists of a number of
process kinds that are shown inside the Definition phase kind. This is then followed
by the Construction phase kind, which itself consists of a single process kind and
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Fig. 17 Small part of the FAML metamodel

a build kind (labelled here as the Construction Build). This build kind consists of
a number of process kinds and a milestone kind (blue diamond shape). Analysis in
[84] confirms that the colours, when used, can be readily discriminated and that the
shapes sit well within each other.

6.2 Domain-Specific Modelling Language for Agents

In a second example, we examine a DSML designed specifically for use in agent-
oriented systems. FAML (FAME Agent-oriented Modelling Language) [12] is a
modelling language defined initially as a meta-model (Fig. 17) to express the
concepts required to construct an agent-oriented model, i.e., a work product in
the ISO/IEC 24744 sense. In the FAML meta-model, an agent belongs to an
organization (of agents), e.g., [66, 67], and, internally, has a so-called mental state,
which consists of beliefs [91] (these being the agent/AI counterparts to human
characteristics). Perhaps most importantly, agents play roles [67, 90]. Each role is
associated with a specific (agent) goal, where goals are subdivided into hard and
soft goals following Yu [92]. Hard goals model functional requirements and they
are formulated so that it is possible to determine whether or not they have been
satisfied; in contrast, soft goals are used to represent non-functional requirements,
which typically can only be satisfied (i.e., fulfilled to an acceptable threshold) since
they do not have well-defined binary achievement criteria [17].

As with SEMDM, we seek “families” of concepts to which we can ascribe similar
visualizations. However, unlike SEMDM, the concepts in FAML are not, in general,
related by generalization such that the creation of “families” by corralling types and
all their subtypes, as done for SEMDM, is not appropriate here. Instead we seek to
identify concepts that are focussed on a similar characteristic, e.g., work products
and behaviour.
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Fig. 18 Notation proposed for individual agents and groups of interacting agents (Groups are not
used directly in FAML but are included for consistency with other AOMLs such as the notation
used in INGENIAS) (after [42])

Fig. 19 Notation proposed for goals and beliefs (after [42])

We illustrate that ML notational design with two small examples—for full
details, see [42]. Figure 18 depicts agents and the roles they play. Agents are also
generally regarded as “social” and so we also need graphical support for more
extensive groupings of individual agents. In FAML, the concept of an organization
is supported (Fig. 17) but not the concept of “group”. However, much of this
notation is borrowed from INGENIAS [72] so we include a notation for group—
especially since FAML aims to provide a common, unified agent notation rather
than a methodologically singular one.

As noted above, agents have goals, which may be hard goals or soft goals.
They also have beliefs, especially when the BDI internal agent architecture [75]
is adopted. We choose symbols that are all curvilinear (Fig. 19) and of the same
colour and are aligned as far as possible with current usage—here soft goals from
Tropos [17].

7 Conclusions and Future Work

In the context of DSMLs, we have studied the relationships between models, meta-
models, modelling languages and ontologies, which are not well defined in the
literature. In particular, the implications of the strict meta-modelling paradigm
fostered by the OMG in relation to the type/instance duality are often described
in a vague and equivocal fashion. In this chapter we provide a solid theoretical
foundation for the construction of DSMLs that can help define both the abstract
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and concrete syntax aspects. Two example languages are described: the Software
Engineering Meta-model for Development Methodologies (ISO/IEC International
Standard 24744) and FAML (a language for the specification of agent-oriented
software systems).

We have also briefly considered the mathematics relevant to DSMLs. In particu-
lar, we have referenced set theory as one means by which to create a mathematical
underpinning that links together meta-models to DSMLs. Understanding and
appreciating these formal mathematical linkages and descriptions for a DSML will
help adopters and modellers to create good quality models. In particular, a DSML
(as any other ML) should have a firm meta-model and ontological (preferably a
foundational ontological) basis.

In particular, powertypes have been introduced as an alternative to the OMG
strict meta-modelling approach, which can be especially helpful when modelling
complex situations in domain-specific settings that require the representation of an
entity plus the kinds of that entity in the same model.

Secondly, we note that a formally defined DSML needs a means of communi-
cation, typically by means of the addition of a visualizing notation a.k.a. concrete
syntax. Here, we have presented some of the semiotic ideas in the literature.

We have illustrated some of these formal ideas with two case studies. We
have discussed briefly the meta-model and notation embodied in ISO/IEC 24744,
which uses powertypes to represent method-level (powertype) and endeavour-level
(partitioned type) entities in the same model. Secondly, we have illustrated the main
elements of the notation and its relation to the underpinning meta-model for a new
agent-oriented modelling language based on the FAML meta-model.

Further work is envisaged in the formal sense to consolidate and extend the
mathematical underpinning for DSMLs—and encouraging an appreciation of its
need amongst practitioners—together with testing and likely further refinement of
the notation for FAML.
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P-A. (eds.) The Unified Modeling Language. «UML» 1998: Beyond the Notation. LNCS, vol.
1618, pp. 21–36, Springer, Berlin (1998)

6. Atkinson, C., Kühne, T.: The essence of multilevel metamodelling. In: Gogolla, M., Kobryn,
C. (eds.) «UML»2001 – The Unified Modeling Language. Modeling Languages, Concepts and
Tools. LNCS, vol 2185, pp. 19–33, Springer, Berlin (2001)

7. Atkinson, C., Kuhne, T., Henderson-Sellers, B.: To meta or not to meta—that is the question.
JOOP/ROAD 13(8), 32–35 (2000)

8. Atkinson, C., Kuhne, T., Henderson-Sellers, B.: Systematic stereotype usage. Software. Syst.
Model. 2(3), 153–163 (2003)

9. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel language
engineering. IEEE Trans. Software. Eng. 35(6), 742–755 (2009)

10. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility through
product-lines and domain-specific languages: a case study. ACM Trans. Softw. Eng. Methodol.
11(2), 191–214 (2002)

11. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press,
Madison (1983)

12. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J., Pavon, J.,
Gonzalez-Perez, C.: FAML: a generic metamodel for MAS development. IEEE Trans. Softw.
Eng. 35(6), 841–863 (2009)
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modelling? The need for a paradigm shift. In: Cueva Lovelle, J.M., Pelayo Garcı́a-Bustelo,
C., Sanjuán Martı́nez, O. (eds.) Progressions and Innovations in Model-Driven Software
Engineering. IGI Global (2013, in press)

44. Henderson-Sellers, B., Serour, M., McBride, T., Gonzalez-Perez, C., Dagher, L.: Process
construction and customization. J. Universal. Comput. Sci. 10(4), 326–358 (2004)

45. ISO/IEC.: Software engineering—metamodel for software development. ISO/IEC 24744,
Geneva (2007)

46. ISO/IEC.: 24744 Software engineering—metamodel for development methodologies annex
A—notation. International Organization for Standardization/International Electrotechnical
Commission, Geneva (2010)

47. Jackson, M.: Some notes on models and modelling. In: Borgida, A.T et al. (eds.) Mylopoulos
Festschrift. LNCS, vol. 5600, pp. 68–81. Springer, Berlin (2009)
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Ontology-Based Evaluation and Design of Visual
Conceptual Modeling Languages

Giancarlo Guizzardi

Abstract In this chapter, we present a framework for the evaluation and (re)design
of modeling languages. In our approach, this property can be systematically
evaluated by comparing a concrete representation of the worldview underlying the
language (captured in the language’s meta-model), with an explicit and formal rep-
resentation of a conceptualization of that domain (a reference ontology). Moreover,
we elaborate on formal characterizations for the notions of reference ontology,
conceptualization and meta-model, as well as on the relations between them. By
doing this, we can also formally define the relation between the state of affairs
in reality deemed possible by an ontology and the grammatical models admitted
by a modeling language. The precise characterization of this relation allows for
a systematic improvement of a modeling language by incorporating ontological
axioms as grammatical constraints in the language’s meta-model. Furthermore, we
demonstrate how an approach based on visual simulation could be used to assess this
relation, i.e., to evaluate the distance between the valid models of a language and the
intended models according to the underlying conceptualization. Finally, we demon-
strate how the use of a system of formal ontological properties can be systematically
exploited in the design of pragmatically efficient domain-specific visual languages.

Keywords Ontology • Visual languages • Language engineering

1 Introduction

The objective of this chapter is to discuss the design and evaluation of modeling
languages for capturing phenomena in a given domain according to a conceptu-
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Fig. 1 Relations between conceptualization, abstraction, modeling language, and model

alization of that domain. In particular, we focus on two properties of a modeling
language with respect to a given real-world domain [1]: (i) domain appropriateness,
which refers to truthfulness of the language to the domain and (ii) comprehensibility
appropriateness, which refers to the pragmatic efficiency of the language to support
communication, understanding, and reasoning in the domain.

The elements constituting a conceptualization of a given domain are used to
articulate abstractions of certain state of affairs in reality. We name them here
domain abstractions. Domain conceptualizations and abstractions are intangible
entities that only exist in the mind of the user or a community of users of a language.
In order to be documented, communicated, and analyzed, these entities must be
captured in terms of some concrete artifact, namely a model. Moreover, in order to
represent a model, a modeling language is necessary. Figure 1 depicts the relation
between a conceptualization, domain abstraction, model, and modeling language.

In this chapter, we elaborate on a framework that can be used to evaluate the
suitability of a language to model a set of real-world phenomena in a given domain.
In our approach, domain and comprehensibility appropriateness can be system-
atically evaluated by comparing the level of homomorphism between a concrete
representation of the worldview underlying the language (captured in a meta-model
of the language), with an explicit and formal representation of a conceptualization
of that domain (a reference ontology [2]). Our framework comprises a number
of properties that must be reinforced for an isomorphism to take place between
these two entities. If an isomorphism can be guaranteed, the implication for the
human agent who interprets a diagram (model) is that his interpretation correlates
precisely and uniquely with an abstraction being represented. By contrast, in case
the correlation is not an isomorphism there may be multiple unintended abstractions
that match the interpretation.

The framework presented here builds on existing work in the literature. In
particular, it considers the frameworks proposed in [3, 4], which focus on evaluating
the match between individual diagrams and the state of affairs they represent, and
the pioneering approach of Wand and Weber presented in [5, 6], which focuses on
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the system of representations as a whole, i.e., a language. Although our approach
is also centered in the language level, we show that, by considering desirable
properties of the mapping of individual diagrams onto what they represent, we are
able to account for desirable properties of the diagrams’ modeling languages. In
this way, we extend the original proposal presented in [5]. We also build here on the
work of the philosopher of language H. P. Grice [7] and his notion of conversational
maxims that states that a speaker is assumed to make in dialog contributions
which are relevant, clear, unambiguous, and brief, not overly informative and true
according to the speaker’s knowledge. Furthermore, in comparison with [3, 4] and
[5], by presenting a formal elaboration of the nature of the entities depicted in Fig. 1
as well as their interrelationships, we manage to present a more general and precise
characterization of the characteristics that a language must have to be considered
truthful to a given domain.

The rest of this chapter is structured as follows. Section 2 introduces the
evaluation framework proposed here. Section 3 presents a formal characterization
of the notions of reference ontology, conceptualization, and meta-model, as well as
on the relations between these notions. By doing this, we can also formally define
the relation between the state of affairs in reality deemed possible by a reference
ontology and the grammatical models admitted by a modeling language. In Sect. 4,
we exemplify the approach proposed by reporting on the design of an ontologically
well-founded version of UML for the purpose of conceptual modeling and domain
ontology engineering. This language (now termed OntoUML), in addition to an
extensive case study of the approach discussed here, is itself a contribution to the
engineering of domain-specific languages. This is discussed in depth in Sect. 5.
Finally, Sect. 6 presents final considerations of the chapter.

It is important to highlight that this chapter can be considered as an extension
of [1]. In particular, Sects. 4 and 5 represent a substantial extension to the original
paper. Section 6 also contains a more systematic comparison with the works of Gurr
and Wand & Weber.

2 Language and Conceptualization

The purpose of the current chapter is to discuss the design and evaluation of artificial
modeling languages for capturing phenomena in a given material domain according
to a conceptualization of this domain. Before targeting this at a language level, i.e.,
at a level of a system of representations, we start discussing the simpler relation
between particular models and abstractions of portions of reality.

In [3, 4], Gurr presents a framework to formally evaluate the relation between the
properties of a representation system and the properties of the domain entities they
represent. According to him, representations are more or less effective depending on
the level of homomorphism between the algebras used to represent what he terms the
representing and the represented world, which correspond to the model and domain
abstraction in Fig. 1, respectively.
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Gurr argues at length that the stronger the match between a model and its
representing diagram, the easier it is to reason with the latter. The easiest case is
when these matches are isomorphisms. The implication of this for the human agent
who interprets the diagram is that his interpretation correlates precisely and uniquely
with an abstraction being represented. By contrast, where the correlation is not an
isomorphism then there may potentially be a number of different models that would
match the interpretation.

The evaluation framework proposed by Gurr focuses on evaluating the match
between individual diagrams and the state of affairs (abstractions) they represent.
In [5, 6], another framework is defined for evaluating expressiveness and clarity of
modeling grammars, i.e., with the focus on the system of representations as a whole.
In other words, in the latter proposal, the authors focus on the relation between
what is named Conceptualization and Modeling Language in Fig. 1. In this chapter,
these two proposals are merged into one single evaluation framework. We focus
our evaluation on the level of the system of representations. Nevertheless, as it will
be shown in the following subsections, by considering desirable properties of the
mapping of individual diagrams onto what they represent, we are able to account
for desirable properties of the modeling languages used to produce these diagrams,
extending in this way Wand & Weber’s original proposal.

It is important to highlight that in the proposal discussed here we want to
systematically evaluate the level of homomorphism between Conceptualization and
Language by comparing concrete representation of these entities: the notion of an
Ontology as a concrete representation of a conceptualization is discussed in depth
and formally characterized in Sect. 3; as a concrete representation of a language, we
take the language meta-model. It is important to clarify, nonetheless, that by meta-
model of the language we do not mean the actual description of the abstract syntax
of the language. Instead what is meant here is what is termed in [2] the Ontological
Meta-model of the Language or, simply, the Ontology of the Language. This meta-
model is meant to capture the worldview underlying the language represented by
the language modeling primitives. The definitive abstract syntax of the language
is a language engineering artifact derived from that by considering a number of
relevant nonfunctional requirements (e.g., to facilitate meta-model management or
mapping to a particular implementation technology, decidability, and complexity in
reasoning, etc.) [2].

In [3], four properties are defined, which are required to hold for a homomorphic
correlation between a represented world and a representation to be an isomorphism:
lucidity, soundness, laconicity, and completeness (Fig. 2). These properties are
discussed as follows.

2.1 Lucidity and Construct Overload

A model M is called lucid with respect to (w.r.t.) an abstraction A if a (representa-
tion) mapping from A to M is injective. A mapping between A and M is injective iff
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Fig. 2 Examples of lucid (a) and sound (b) representational mappings from Abstraction to Model;
examples of laconic (c) and complete (d) interpretation mappings from Model to Abstraction

every entity in the model M represents at most one (although perhaps none) entity
of the abstraction A. An example of an injective mapping is depicted in Fig. 2a.

The notion of lucidity at the level of individual diagrams is strongly related to the
notion of ontological clarity at the language level as discussed in [6]. In that article,
the author states that the ontological clarity of a modeling grammar is undermined
by what he calls construct overload: “construct overload occurs when a single
grammatical construct can stand for two or more ontological constructs. The gram-
matical construct is overloaded because it is being used to do more than one job”.

The notions of lucidity and ontological clarity albeit related are not identical.
A construct can be overloaded in the language level, i.e., it can be used to
represent different concepts, but every manifestation of this construct in individual
specifications is used to represent only one of the possible concepts. Nevertheless,
non-lucidity can also be manifested at a language level. We say that a language
(system of representation) is non-lucid according to a conceptualization if there is
a construct of the language which is non-lucid, i.e., a construct that when used in a
model it stands for more than one entity of the represented abstraction. Non-lucidity
at the language level is a special case of construct overload that does entail non-
lucidity at the level of individual specifications.

Construct overload is considered an undesirable property of a modeling language
since it causes ambiguity and, hence, undermines clarity. When it exists, users have
to bring additional knowledge not contained in the specification to understand the
phenomena that are being represented. In summary, a modeling language should not
contain construct overload and every instance of a modeling construct of this lan-
guage should represent only one individual of the represented domain abstraction.
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2.2 Soundness and Construct Excess

A model M is called sound w.r.t. an abstraction A if a (representation) mapping
from A to M is surjective. A representation mapping from A to M is surjective iff
the corresponding interpretation mapping from M and A is total, i.e., iff every entity
in the model M represents at least one entity of abstraction A (although perhaps
several). An example of a surjective representation mapping is depicted in Fig. 2b.

Unsoundness at the level of individual specifications is strongly related to
unsoundness at the language level, a property that is termed construct excess in
[6]: “construct excess occurs when a grammatical construct does not map onto
an ontological construct”. Although construct excess can result in the creation
of unsound specifications, soundness at the language level does not prohibit the
creation of unsound specifications. For instance, suppose a domain of natural
numbers and a language that uses arrows to represent the less-than relation between
natural numbers and labeled boxes to represent these numbers. Now, suppose we
use this language to build a specification in which we have a box labeled X arrow-
connected to the box representing the number 0. Although the language used is
sound, i.e., all construct types have an interpretation in terms of domain types, the
aforementioned specification produced using the language is unsound, given that
there is no referent to the box labeled X in the domain. Since no mapping is defined
for the exceeding construct, its meaning becomes uncertain, hence, undermining the
clarity of the specification.

According to [6], users of a modeling language must be able to make a clear
link between a modeling construct and its interpretation in terms of domain
concepts. Otherwise, they will be unable to articulate precisely the meaning of the
specifications they generate using the language. Therefore, a modeling language
should not contain construct excess and every instance of its modeling constructs
must represent an individual in the domain.

2.3 Laconicity and Construct Redundancy

A model M is called laconic w.r.t. an abstraction A if the interpretation mapping
from M to A is injective, i.e., iff every entity in the abstraction A is represented
by at most one (although perhaps none) entity in the model M. An example of an
injective interpretation mapping is depicted in Fig. 2c. The notion of laconicity in
the level of individual specifications is related to the notion of construct redundancy
in the language level in [6]: “construct redundancy occurs when more than one
grammatical construct can be used to represent the same ontological construct”.

Once again, despite being related, laconicity and construct redundancy are two
different (even opposite) notions. On the one hand, construct redundancy does not
entail non-laconicity. For example, a language can have two different constructs to
represent the same concept. However, in every situation the construct is used in
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particular specifications, it only represents a single domain element. On the other
hand, the lack of construct redundancy in a language does not prevent the creation
of non-laconic specifications in that language. For example, the arrow/labeled box
language for representing natural numbers in Sect. 2.2 is laconic, i.e., for each
domain type there is at most one construct type in the language. However, we can
still produce using this simple language a specification in which, for example, the
same natural number (e.g., 3) is represented by more than one labeled box.

Non-laconicity can also be manifested at the language level. We say that a
language is non-laconic if it has a non-laconic modeling construct, i.e., a construct
that when used in a specification of a model causes an entity of this model to be
represented more than once. Non-laconicity at the language level is a special case
of construct redundancy that does entail non-laconicity at the level of individual
diagrams.

In [6], the authors claim that construct redundancy “adds unnecessarily to
the complexity of the modeling language” and that “unless users have in-depth
knowledge of the grammar, they may be confused by the redundant construct. They
might assume, for example, that the construct somehow stands for some other
type of phenomenon”. Therefore, construct redundancy can also be considered to
undermine representation clarity. In summary, a modeling language should not
contain construct redundancy, and elements in the represented domain should be
represented by at most one instance of the language modeling constructs.

2.4 Completeness

A model M is called complete w.r.t. an abstraction A if an interpretation mapping
from M to A is surjective. An interpretation mapping from M to A is surjective
iff the corresponding representation mapping from A to M is total, i.e., iff every
entity in an abstraction A (instance of a domain conceptualization) is represented
by at least one (although perhaps many) entity in the model M. An example of a
surjective interpretation mapping is depicted in Fig. 2d.

The notion of completeness at the level of individual specifications is related to
the notion of ontological expressiveness and, more specifically, completeness at the
language level, which is perhaps the most important property that should hold for a
representation system. A modeling language is said to be complete if every concept
in a domain conceptualization is covered by at least one modeling construct of the
language. Language incompleteness (also termed Construct Deficit) entails lack of
expressivity, i.e., that there are phenomena in the considered domain (according to a
conceptualization) that cannot be represented by the language. Alternatively, users
of the language can choose to overload an existing construct, thus, undermining
clarity.

An incomplete modeling language is bound to produce incomplete specifications
unless some existing construct is overloaded. However, the converse is not true,
i.e., a complete language can still be used to produce incomplete specifications.
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Once more, we refer to the arrow/labeled box language of previous sections. This
language is complete, i.e., for each domain type there is at least one construct type
in the language. However, we can still produce using this language a specification
in which, for example, a relation instance is missing (e.g., the less-than relation
between the boxes representing numbers 2 and 3).

3 Conceptualization, Ontology, and Meta-Model

Let us now return our attention to Fig. 1. A modeling language can be seen
as delimiting all possible specifications1 which can be constructed using that
language, i.e., all grammatically valid specifications of that language. Likewise,
a conceptualization can be seen as delimiting all possible domain abstractions
(representing state of affairs) which are admissible in that domain [8]. Therefore,
for example, in a conceptualization of the domain of genealogy, there cannot be a
domain abstraction in which a person is his own biological parent, because such a
state of affairs cannot happen in reality. Accordingly, we can say that a modeling
language that is truthful to this domain is one that has as valid (i.e., grammatically
correct) specifications only those that represent state of affairs deemed admissible
by a conceptualization of that domain. In the sequel, we review a formalization of
this idea presented at [2], which is an extension of the original idea proposed in [8].
This formalization compares conceptualizations as intentional structures and meta-
models as represented by logical theories. Thus, in the sequel, we make use of the
terms possible world, domain of quantification, relation, and interpretation function
in their traditional established sense in model logics [9].

Let us first define a conceptualization C as an intensional structure hW,D,<i
such that W is a (non-empty) set of possible worlds, D is the domain of individuals
and < is the set of relations (concepts) that are considered in C. The elements
¡ 2 < are intensional (or conceptual) relations with signatures such as ¡n:W !
}(Dn), such that n is the arity of ¡, and so that each relation is a function from
possible worlds to sets of n-tuples of individuals in the domain. For instance, we
can have ¡ accounting for the meaning of the natural kind Apple. In this case,
the meaning of Apple is captured by the intentional function ¡, which refers to
all instances of Apple in every possible world. For every world w 2 W, according
to C we have an intended world structure SwC as a structure hD, RwCi such that
RwC D f¡(w) j ¡ 2 <g. More informally, we can say that every intended world
structure SwC is the characterization of some state of affairs in world w deemed
admissible by conceptualization C. From a complementary perspective, C defines

1We have so far used the term model instead of specification since it is the most common term in
conceptual modeling. In this session, exclusively, we adopt the latter in order to avoid confusion
with the term (logical) model as used in logics and Tarskian semantics. A specification here is a
syntactic notion; a logical model is a semantic one.
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all the admissible state of affairs in that domain, which are represented by the set
Sc D fSwC j w 2 Wg.

Let us consider now a language L with a vocabulary V that contains terms to
represent every concept in C. A logical model for L can be defined as a structure
hS,Ii: S is the structure hD,Ri, where D is the domain of individuals and R is a
set of extensional relations; I:V!D [ R is an interpretation function assigning
elements of D to constant symbols in V, and elements of R to predicate symbols
of V. A model, such as this one, fixes a particular extensional interpretation of
language L. Analogously, we can define an intensional interpretation by means of
the structure hC,=i, where C D hW,D,<i is a conceptualization and =:V ! D [
< is an intensional interpretation function which assigns elements of D to constant
symbols in V, and elements of < to predicate symbols in V. In [8], this intensional
structure is named the ontological commitment of language L to a conceptualization
C. We therefore consider this intensional relation as a formal characterization of the
represented by relation depicted in Fig. 1, or simply a formal characterization of the
Real-World Semantics of L [10].

Given a logical language L with vocabulary V, an ontological commitment K D
hC,=i, a model hS,Ii of L is said to be compatible with K if: (i) S 2 Sc; (ii) for each
constant c, I(c) D =(c); (iii) there exists a world w such that for every predicate
symbol p, I maps such a predicate to an admissible extension of =(p), i.e., there is a
conceptual relation ¡ such that =(p) D ¡ and ¡(w) D I(p). The set Ik(L) of all models
of L that are compatible with K is named the set of intended models of L according
to K.

Finally, given a specification X in a specification language L, we define as the
logical rendering of X, the logical theory T that is the first-order logic description
of that specification [11].

In order to exemplify these ideas let us take the example of a very simple
conceptualization C such that W D fw,w’g, D D fGordon, Andy, Stewartg and < D
fperson, fatherg. Moreover, we have that person(w) D fGordon, Andy, Stewartg,
father(w) D fGordong, person(w’) D fGordon, Andy, Stewartg and father(w’) D
fGordon, Stewartg. This conceptualization accepts two possible state of affairs,
which are represented by the world structures SwC D ffGordon, Andy, Stewartg,
ffGordon, Andy, Stewartg, fGordonggg and Sw’C D ffGordon, Andy, Stewartg,
ffGordon, Andy, Stewartg, fGordon, Stewartggg. Now, let us take a language L
whose vocabulary is comprised of the terms Person and Father with an underlying
meta-model that poses no restrictions on the use of these primitives. In other words,
the meta-model of L has the following logical rendering (T1): f9x Person(x),9x
Father(x)g. In this case, we can clearly produce a logical model of L (i.e., an
interpretation that validates the logical rendering of L) but that is not an intended
world structure of C. For instance, the model D’D fGordon, Andy, Stewartg, person
D fGordon, Andyg, father D fStewartg, and I(Person) D person and I(Father) D
father. This means that we can produce a specification using L which has a model
that is not an intended model according to C.

Now, let us update the meta-model of language L by adding one specific
constraint and, hence, producing the meta-model (T2): f9x Person(x), 9x Father(x),



326 G. Guizzardi

State of Affairs represented by 
the valid models of metamodel 

M1 of language L1

Admissible state of affairs 
according to  

conceptualization C 

State of Affairs represented by 
the valid models of Ontology 

O of C

State of Affairs represented by 
the valid models of metamodel 

M2 of language L2

Fig. 3 Measuring the degree of domain appropriateness of modeling languages via an ontology
of a conceptualization of that domain

8x Father(x) ! Person(x)g. Contrary to L, the resulting language L’ with the
amended meta-model T2 has the desirable property that all its valid specifications
have logical models that are intended world structures of C.

A domain conceptualization C can be understood as describing the set of all
possible state of affairs, which are considered admissible in a given universe
of discourse U. Let V be a vocabulary whose terms directly correspond to the
intensional relations in C. Now, let X be a conceptual specification (i.e., a concrete
representation) of universe of discourse U in terms of the vocabulary V and let
TX be a logical rendering of X, such that its formal constraints restricts the possible
interpretations of the members of V. We call X (and TX) an Ontology of U according
to C iff the logical models of TX describe all and only state of affairs which are
admitted by C. This use of the term ontology is strongly related to a definition
of Ontology put forth by the philosopher W.V.O. Quine, i.e., ontology as a theory
concerning the kinds of entities and specifically the kinds of abstract entities that
are to be admitted to a language system [2].

With an explicit representation of a conceptualization in terms of a suitable
ontology, one can measure the truthfulness (or domain appropriateness) of a
language L to domain D, by observing the difference between the set of logical
models of the (logical rendering of) meta-model M of L and the set of logical models
of the (logical rendering of) ontology O of D (see Fig. 3). In the ideal case, these
two specifications are isomorphic and, hence, share the same set of logical models.
Therefore, not only every entity in conceptualization C must have a representation
in the meta-model M of language L, but these representations must obey the same
axiomatization.

According to the language evaluation framework and the formal characterization
of the relation between ontology and language vocabulary defined here, we can
provide the following characterization for an ideal language to represent phenomena
in a given domain according to a given reference ontology:

A language is ideal to represent phenomena in a given domain if the metamodel of this
language is isomorphic to the reference ontology of that domain and the language only has
as valid specifications those whose logical models are exactly the logical models of that
reference ontology.
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The traditional account of ontological analysis of languages in the literature is
articulated in terms of isomorphism between language and ontology (such as in [5,
6]). The above definition relates this traditional account to a formal definition of
ontology as a formal and explicit specification of a conceptualization [8]. There
is one direct manner in which incompleteness (and hence, lack of isomorphism)
can impact the quality of language L, namely, when the meta-model M of L
does not contain constructs to fully characterize a state of affairs, and therefore
to produce the axiomatization necessary to exclude unintended logical models of
the conceptualization at hand. To give one example, in the genealogical domain,
without a gender differentiation for people, one cannot produce an axiomatization
which excludes models in which people have two individuals of the same gender as
their biological parents. Additionally, as exemplified in Sect. 2, without the proper
formal constraints in its meta-model, even lucid, sound, laconic, and complete
representation systems can be used to produce specifications lacking these desirable
characteristics.

4 Successful Cases of General Conceptual Modeling
Languages Evaluation and Re-design Using the Proposed
Approach

The definition of an ideal conceptual modeling language given in Sect. 3 provides
clear guidelines for the design of the ontological meta-models of these languages.
Given a reference ontology, the meta-model at hand should be isomorphic to
the ontology of the domain. Moreover, it should include formal constraints such
that the language would only accept as grammatically correct models those that
represent state of affairs deemed admissible by the ontology at hand. Finally,
this ontological meta-model should be further enriched with additional formal
constraints that guarantee lucidity, laconicity, completeness, and soundness for all
individual diagrams that can be produced using that language.

These guidelines as advocated here are agnostic regarding the type of language
which is being evaluated or (re)designed, meaning, this framework can be employed
both for the case of general conceptual modeling languages (e.g., UML, ER,
ORM, BPMN) and the case of Domain-Specific Languages. The type of language
considered, however, is directly related to the type of ontology which can be used as
a reference model. In the case of general (hence, domain-independent) conceptual
modeling languages, the required reference ontology is a Foundational Ontology,
i.e., a domain-independent system of categories and their ties which can be used
to articulate models of different material domains in reality. In contrast, for the
case of domain-specific languages, the required reference ontology is a Domain
Ontology [2].

Two examples of Foundational Ontologies which have been successfully used for
evaluating general conceptual modeling languages over the years are BWW [6, 12]
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and UFO [10, 13]: BWW has been used to analyze languages such as ARIS [14] and
OWL [15], among others. The application of BWW for this purpose has traditionally
been carried out by employing the original proposal put forth in [5]. However, none
of these analyses have considered the axiomatization of the ontology (in terms of
its admissible models) or the formal constraints incorporated in the language meta-
models.

For a number of years, we have been analyzing conceptual modeling languages
(including enterprise modeling languages), standards, environments, and domain
ontologies, by employing the method described above and the foundational ontology
UFO (Unified Foundational Ontology) as a reference model. The analyzed modeling
languages include: UML [10, 16–19], Archimate [20], RM-ODP [21], TROPOS/i*
and AORML [22, 23], ARIS [24], and BPMN [25]. Despite the successful applica-
tion of UFO in all these cases, it is important to highlight that the method discussed
here could, in principle, be applied by taking different foundational ontologies as
reference models. In fact, preliminary results on our ontological analysis of UML
have been carried out with the foundational ontology GFO [26].

One significant case of ontological analysis using the framework discussed here
and which deserves special attention is the case of UML. When considered as a
Conceptual Modeling language, UML alone includes cases of all the anomalies
discussed above. An example of Construct Excess in UML relates to the Interface
Construct. As discussed in [10], being merely a design and implementation con-
struct, there is no category in the reference ontology that serves as the ontological
interpretation for a UML interface. Moreover, construct excess in the language
level will cause unsoundness in all diagrams in which the exceeding construct
is employed. UML also presents at least one case of Non-Lucidity, namely, in
the Association Class construct. More than a case of Construct Overload, in
each and every occasions this construct is used, it will stand for two ontological
entities simultaneously, namely, a Relator Universal (e.g., Marriage, Enrollment,
Employment) whose instances are individual relators (e.g., the Marriage of Mary
and John, the Enrollment of Zoe to UFES) and a Factual Universal whose instance
are tuples (e.g., pairs such as <John,Mary> and <Mary,John>) [10].

Another case of Construct Overload is the construct of navigable ends in UML
which can be used to represent both Relational Image Functions (also known
as mappings) and Attribute Functions [10]. Actually, also related to Attribute
Functions, we have a case of Construct Redundancy, since attributes can be
represented both by: the traditional textual representation of attributes spatially
contained in the Class representation (Fig. 4a) and navigable ends (Fig. 4b).

Finally, cases of Construct Deficit (Ontological Incompleteness) in UML
abound. For example, there are several different sorts of object types and part-whole
relations in the conceptualizations proposed in [17] and [18], respectively, which are
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not directly represented by any construct of the language. In both cases, the distinct
concepts present in the conceptualization are overloaded by the language constructs
of class and aggregation/composition, respectively. To cite just one more example,
in [19], we have shown that the concept of Mode (an ontological counterpart to the
ER notion of Weak Entity) also finds no direct representation in the language.

In [10], a philosophically and cognitively motivated foundational ontology
(later identified as the type-fragment of UFO-A) has been used to redesign a
complete version of the class diagrams fragment of the UML 2.0 meta-model
giving rise to a well-founded version of UML for structural conceptual modeling
and domain ontology representation. This ontology representation language (later
dubbed OntoUML) has been successfully employed to create domain ontologies
in several different industrial case studies in domains such as Telecommunications
[27] and Energy (Petroleum and Gas) [28]. Moreover, it has been used to support
meaning negotiation and semantic interoperability in the integration of ECG
standards [29]. Furthermore, a version of this language has been employed over
the past years by a department of the DoD in a significant number of successful
applications in real-world engineering settings.2

Aside from the discussed cases of Construct Overload, Excess, Deficit,
Redundancy, and Non-Lucidity at the language level, the weakly constrained
original UML meta-model accepts a number of instances which represent
ontologically inadmissible ontological structures. All these problems have been
addressed in [10] as well as in follow-up publications such as [30, 33]. As a result,
the revised UML meta-model (i.e., the OntoUML meta-model) is isomorphic to
the ontological distinctions comprising the underlying foundational ontology and
includes as formal constraints representations of the ontological constraints. Due
to this strategy, these ontological distinctions and constraints could be directly
implemented using meta-modeling architectures such as the OMG’s MOF (Meta
Object Facility).3 In this line, [31] reports on an implementation of an OntoUML
graphical editor, which applies such an approach for assisting the user in creating
ontologically correct models.

5 Ontological Meta-Properties, Model Simulation,
and Domain-Specific Visual Languages

Aside from being an extensive and successful evaluation case of the framework
discussed here, OntoUML constitutes in itself a contribution to the application of
this framework in the level of material domains and, thus, in the evaluation and
design of Domain-Specific Languages. The most obvious reason is the following:

2http://www.omgwiki.org/architecture-ecosystem/lib/exe/fetch.php?media=dmg for enterprise
ldm v2 3.pdf
3http://www.omg.org/mof/

http://www.omgwiki.org/architecture-ecosystem/lib/exe/fetch.php?media=dmg_for_enterprise_ldm_v2_3.pdf
http://www.omg.org/mof/
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the only grammatically correct models in OntoUML are ontologically consistent
models; OntoUML can be used to represent structural conceptual models, in gen-
eral, and domain ontologies in particular; thus, the domain ontologies constructed in
OntoUML will be consistent with the axiomatization of the underlying foundational
ontology.

However, there are two other reasons for why this language plays an important
role in the design of domain ontologies that will, in turn, be used for the evaluation
and design of domain-specific visual modeling languages. Firstly, aside from its
model-theoretical semantics defined in [10], OntoUML has an operational semantics
defined as a mapping from this language to the lightweight formal language Alloy
[32]. Due to this mapping, we have configured the Alloy Analyzer tool4 so that it can
be used for supporting the modeler in assessing the gap between the intended models
(in the sense of Sect. 3) and the possible models of the domain ontology at hand
(and, hence, of a possible meta-model isomorphic to it). This topic is discussed and
illustrated in Sects. 5.2 and 5.3. Secondly, contrary to the merely formal (algebraic)
structures employed in [3], the domain ontologies represented in OntoUML capture
a number of subtle ontological meta-properties that are used to further qualify
the ontological status of the domain concepts. In Sect. 5.4, we illustrate how the
ontological meta-properties can be systematically exploited to improve the system
of concrete syntax of domain-specific visual modeling languages.

5.1 Ontological Meta-Properties

Due to space limitations, we concentrate here on a fragment of OntoUML, with
a focus on distinctions among Object Types and Part-Whole relations spawned by
variations in ontological meta-properties.

A fundamental modal meta-property used to distinguish among categories of
Object Types is Rigidity (and the associated notion of Anti-Rigidity). Formally, we
have that [17]: a type T is rigid iff every instance of T is necessarily an instance
of T (in the modal sense). In contrast, a type T’ is anti-rigid iff for every instance
x of T’ there is a possible situation in which x is not an instance of T’. In other
words, an instance of a rigid type T cannot cease to instantiate it without ceasing to
exist. Contrariwise, instances of T’ only instantiate it contingently and, hence, can
move in and out of the extension of T’ without altering their identity. A stereotypical
example that illustrates this distinction in most conceptualizations is marked by the
types Person and Student: instances of Person are necessarily so (thus, Person is
a rigid type); in opposition, instances of Student are merely contingently so (thus,
Student is an anti-rigid type).

Object types that are rigid are named Kinds and Subkinds [17]. These types define
a stable backbone, i.e., a taxonomy of rigid types instantiated by a given individual
(the kind being the unique top-most rigid type instantiated by an individual).

4http://www.alloy.mit.edu/

http://www.alloy.mit.edu/
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Within the category of anti-rigid object types, we have a further distinction
between Phases and Roles [17]. Both Phases and Roles are specializations of rigid
types (Kinds/subKinds). However, they are differentiated w.r.t. their specialization
conditions. For the case of Phases, the specialization condition is always an intrinsic
one. For instance, a Child is a Person whose age is within a certain range. In contrast,
the specialization condition for Roles is a relational one. For instance, a Student is
a Person who is enrolled in an Educational Institution.

Again, a modal meta-property used to distinguish among the categories of
Part-Whole relations is Existential Dependence [18]. We have that an entity x is
existentially dependent on another entity y iff in every situation that x exists then y
must exist. Associated with Existential Dependence we have the notion of Generic
Dependence. We have that an entity x is generically dependent on a type Y iff in
every situation where x exists an instance of Y must exist. These notions are used
in UFO (among many other things) to distinguish between part-whole relations
that imply existential dependence and those that only imply generic dependence.
A part-whole relation which implies only generic dependence from the part to the
whole is named parthood with mandatory wholes [18]. In contrast, a part-whole
relation that implies existential dependence from the part to the whole is termed
inseparable parthood [18]. A stereotypical example that illustrates this distinction
in most conceptualizations is marked by the types of the relation between a Heart
and a Person, on one side, and between a Brain and a particular Person, on the
other: while a Heart needs to be part of an instance of Person (which does not have
to be the same in every possible situation), a Brain needs to be part of a specific
Person in all situations in which it exists.

Another remark regarding part-whole relations worth mentioning here is the
following: contrary to purely formal mereological relations, part-whole relations
which appear in conceptual models and material domain ontologies are non-
transitive, i.e., they are transitive in certain situations and intransitive in others
[33]. As illustrated in Sect. 5.4, assessing the correct value of this additional meta-
property of part-whole relations has an important influence on the design of their
concrete visual representations.

Finally, part-whole relations can be distinguished according to a meta-property
named shareability. This meta-property wrongly defined in the original UML
specification has been refined in [10] with the following definition: (a) a (whole)
type X is characterized by an exclusive (non-shareable) parthood relation with a
(part) type Y iff every instance of X must have exactly one instance of Y as part; (b)
a type X is characterized by a shareable parthood relation with a type Y iff instances
of X can have more than one instance of Y as part.

5.2 Contrasting Possible and Intended Models with Visual
Model Simulation

A modeling language such as OntoUML, incorporating the ontological constraints
of a foundational theory prevents the representation of ontologically non-admissible
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Fig. 5 A fragment of a fictitious ontology in which unintended instances are admitted

states of affair in domain ontologies represented in that language. However, it cannot
guarantee that only intended states of affairs are represented by the domain model at
hand. This is because the admissibility of domain-specific states of affair is a matter
of factual knowledge (regarding the world being the way it happens to be), not a
matter of consistent possibility.

To illustrate this point, suppose a medical domain ontology representing the
procedure of a transplant. In this case, we have domain concepts such as Person,
Transplant Surgeon, Transplant, Transplanted Organ, Organ Donor, and Organ
Donee. The (obviously incomplete) model of Fig. 5, which models aspects of this
situation, does not violate any ontological rule. It would be the case, for example,
had we placed Organ Donor as a super-type of Person, or represented the possibility
of a Transplant without participants. These two cases can be easily detected and
proscribed by an editor such as the one just proposed in [31]. However, there are
still unintended states of affairs (according to a conceptualization assumed here) that
are represented by valid instances of this model. One example is a state of affairs
in which the Donor, the Donee and the Transplant Surgeon are one and the same
Person. Please note that this state of affairs is only considered inadmissible due to
domain-specific knowledge of social and natural laws. Consequently, it cannot be
ruled out a priori by a domain independent system of ontological categories.

Guaranteeing the exclusion of unintended states of affairs without a computa-
tional support is a practically impossible task for any relevant domain. In particular,
given that many fundamental ontological distinctions are modal in nature, in order
to validate a model, one would have to take into consideration the possible valid
instances of that model in all possible worlds.

In [34], we have proposed an approach for OntoUML which offers a contribution
to this problem by supporting conceptual model validation via visual simulation. On
the one hand, it aims at proving the satisfiability of a given ontology by presenting
a valid instance (logical model) of that ontology. On the other hand, it attempts
to exhaustively generate instances of the ontology in a branching-time temporal
structure, thus, serving as a visual simulator for the possible dynamics of entity
creation, classification, association, and destruction. The snapshots in this world
structure confront a modeler with states of affairs that are deemed admissible by
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the ontology’s current axiomatization. This enables modelers to detect unintended
states of affairs and to take the proper measures to rectify the model. The assumption
is that the example world structures support a modeler in this validation process,
especially since it reveals how states of affairs change in time and how they may
eventually evolve in counterfactual scenarios.

After running simulations of the model of Fig. 5, the model engineer would be
presented with the consequences of her specification. When faced with a situation
in which the Donor, Donee and Surgeon roles are played by the same person, she
could realize that the ontology at hand has been under-constrained and then include
a constraint in the model to exclude this unintended situation. Now, suppose the
situation in which the modeler tries to rectify this model by declaring the types
Transplant Surgeon, Organ Donor, and Organ Donee as mutually disjoint. In a
follow-up execution of simulating this ontology, she would then realize that it is
not possible, for example, for an Organ Donor to receive an organ in a different
transplant, and for a Transplant Surgeon to be either an Organ Donor or an Organ
Donee in different transplants. When facing this new simulation results, the modeler
could realize that now the ontology has been over-constrained, after all there is
no problem in having the same person as Organ Donor and Donee, or as Surgeon
and Donor (Donee), they only cannot play more than one of these roles in the
same transplant! In summary, the idea is that in this multi-step interaction with
the model simulator, the modeler can keep refining the domain constraints to
increasingly approximate the possible model instances of the ontology to those that
represent admissible states of affairs according to the underlying conceptualization.
In addition, in line with [35], we advocate that “simulation helps catch errors of
overconstraint, by reporting, contrary to the user’s intent, that no instance exists
within the finite bounds of a given “scope,” or errors of underconstraint, ‘by
showing instances that are acceptable to the specification but which violate an
intended property”.

5.3 From a Domain Ontology to the Design
of a Domain-Specific Conceptual Modeling
Language Meta-Model

In Fig. 6 below, we have a small ontology fragment in the domain of organizations
represented using OntoUML. In the underlying conceptualization, Employee is a
role played by people associated with one Department. People (instances of Person)
are either instances of Man or of Woman, i.e., Person is an abstract type in the
sense of object-oriented modeling, meaning there is no one who is a Person without
being either a Man or a Woman. Every Employee is part of exactly one Department
(represented by the non-shareable association end). However, since this is merely
a generic dependence relation, employees can in principle change to different
departments (even in different branches) in their life cycle in the organization. An
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Fig. 6 A domain ontology for an organizational domain used to create a meta-model for a domain-
specific language

Employee is subordinated to at least one other employee who is his/her superior.
In other words, the types Subordinate Employee and Superior are roles played
by employees in the scope of hierarchical relations. As roles, these types are
only contingently instantiated by their instances and the relational specialization
condition here is represented by the reports-to relation. In other words, an instance
of Subordinate Employee can cease to be one, and for her to instantiate this
role, there must exist another Employee instantiating the Superior Employee role.
Moreover, the same instance of Employee can simultaneously instantiate both roles
in the scope of different hierarchical relations (i.e., being the Superior of Employee
A and subordinated to Employee B).

Every Department is part of exactly one Organizational Branch. Here, again,
we have not only the case of a non-shareable parthood relation but also one
which implies existential dependency from the part to the whole (represented by
the finseparableg tag value), i.e., the Sales Department of one Organizational
Branch can only exist as part of that Branch. The relation between Employee and
Department, on the one hand, and Department and Organizational Branch, on the
other, matches one of the cases of transitive parthood identified in [33]. For this
reason, we have that: if an Employee E is part of a Department D and D is part of
the Organizational Branch O, then E is part of O.

Commissions are collectives that have particular Employees as members (accord-
ingly termed Commission Members). Commissions can be in two different phases
depending on the value of one of its intrinsic property (its amount of committed
work). Thus, a Work-Overloaded Commission is a Commission such that its amount
of committed work surpasses a certain threshold. Finally, a Normal Workload Com-
mission is the complement of Commission w.r.t. Work-Overloaded Commission, i.e.,
its instances are all instances of the former which are not instances of the latter.

Besides the representation of all relevant domain types, relations, and properties
of the underlying conceptualization, a domain ontology (and the meta-model
derived from it) must include a body of formal constraints. This axiomatization
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must restrict the states of affairs represented by valid models of this ontology/meta-
model to those which represent intended states of affairs according to the underlying
conceptualization. As discussed in Sect. 3, the quality of this ontology depends on
the distance between these two sets of states of affairs. Moreover, as discussed in the
previous section, for the case of OntoUML we can count on an approach for model
validation via visual simulation.

Figures 7a, b present results of a visual simulation of the ontology in Fig. 6. By
looking at these automatically generated models, the modeler can realize the lack of
the missing partial order constraints that should be defined for the relation reports
to. In Fig. 7a, an Employee plays the roles of Superior Employee and Subordinate
Employee in the same relation, i.e., the employee reports to herself. In Fig. 7b,
we can notice that Man0 is subordinate to both Woman2 and Woman0, who are
then subordinate to Woman1, who then is subordinate to Man0. In other words,
the model admits cycles in the reports to relation. Still on the model of Fig. 7b,
one can notice that although Man0 is subordinate to Woman2 and Woman0, both
who are subordinate to Woman1. However, Man0 is not subordinate to Woman1,
i.e., the reports to relation is not considered to be transitive. In Fig. 7c, one can
notice the possibility of an employee who falls outside the hierarchical structure
of the organization, i.e., who is neither subordinate nor superior to anyone. This is
due to a missing fcompleteg constraint in the generalization set from Employee to
Superior Employee and Subordinate Employee. Finally, in the model of Fig. 7d, one
can notice the situation in which an employee (Man1) reports to a superior (Man0)
of a different department. As previously discussed, these models cannot be deemed
undesirable due to general ontological rules but only due to domain-specific rules.
If we assume that in the conceptualization underlying the ontology of Fig. 6 these
are all unintended models, then when facing them as possible ones, the modeler can
improve the ontology (and corresponding Domain-Specific Language Meta-model)
at hand by including the constraints required for their exclusion.

5.4 From a Domain Ontology to the Design of Domain-Specific
Visual Modeling Language Concrete Syntax

In this section, we discuss the impact that the reference ontology also has in the
design of a concrete syntax for a visual conceptual modeling language. In order to
do that, we base our discussion in the framework for analysis and design of visual
languages put forth by Daniel Moody in [36, 37].

The most direct influence that an ontology has on the visual notation of a
language regards the quality that Moody terms Semiotic Clarity. By discussing
Semiotic Clarity, Moody conducts an analysis similar to the one put forth here,
but now relating ontology and visual concrete syntax. He draws from Nelson
Goodman’s Theory of Symbols when advocating for a notation to satisfy the require-
ments of a notational system, there should be a one-to-one correspondence between
symbols and their referent concepts [38]. Figure 8 below (from [37]) summarizes
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Fig. 7 Examples of possible but unintended instances of the ontology in Fig. 6: (a) the employee
that is his own superior; (b) cyclic hierarchies; (c) employee outside the organizational structure;
(d) employee with a superior in a different department
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Fig. 8 From ontological concepts to language primitives to visual syntax (from [37]). Source
© Springer-Verlag 2009, Moody, D.L., van Hillegersberg, J.: Evaluating the visual syntax of
UML: an analysis of the cognitive effectiveness of the UML family of diagrams. In: Gašević,
D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer, Heidelberg
(2009)

this correspondence between the Ontological Meta-model of the language and the
underlying domain ontology, on the one hand, and between the Ontological Meta-
model of the language and the description of the concrete syntax, on the other.

In classifying the anomalies that take places when the isomorphism between the
latter pair of models is broken, Moody builds explicitly on the vocabulary used in
the literature of ontological analysis: (a) Symbol redundancy exists when multiple
symbols are used to represent the same semantic construct; (b) Symbol overload
exists when the same graphical symbol is used to represent different semantic
constructs; (c) Symbol excess exists when graphical symbols are used that do not
represent any semantic construct; (d) Symbol deficit exists when semantic constructs
are not represented by any graphical symbol.

The problems caused by these anomalies are, as explained by Moody, also
analogous to those founded when the isomorphism between ontology and abstract
syntax is broken: symbol redundancy places a burden of choice on the language user
to decide which symbol to use and an additional load on the reader to remember
multiple representations of the same construct; Symbol overload leads to ambiguity
and the potential for misinterpretation [38]; symbol excess unnecessarily increases
graphic complexity, which has been found to reduce understanding of notations
[39]. Moreover, if symbol deficit exists, the visual notation is said to be semiotically
incomplete. If any of the other three anomalies exist, the notation is semiotically
unclear.

There is an obvious connection here with what we have been discussing so
far: the suitability of a visual notation is evaluated w.r.t. a system of modeling
primitives, which in turn is evaluated w.r.t. to a domain ontology. Hence, the
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Fig. 9 (a) A fragment of taxonomy for a geopolitical domain; (b) a taxonomy of geometric objects
isomorphic to the structure in (a); (c) a system of visual symbols from (b) to represent the domain
concepts in (a)

quality of a system of visual syntax w.r.t. semiotic clarity indirectly but essentially
depends on the characteristics of the underlying domain represented in that domain
ontology. One aspect, however, which is not evident in Moody’s model above, is the
following. As previously discussed, the graphical symbols which form the system
of concrete syntax often fall naturally into a hierarchical typing which informs
about the semantics of what is being represented. An analogous statement can be
made regarding certain relations between graphical symbols (e.g., spatial relations)
that can be systematically mapped onto semantic relations with equivalent logical
properties. This feature of graphical symbol systems and relations is illustrated by
the examples in the sequel.

We start with a first example illustrated in Fig. 9. As one can notice, the models
of Fig. 9a, b are isomorphic. The different concrete kinds of entities in the model
(Federal Capital, State and City) are represented by different kinds of geometrical
objects (Non-Squared Rectangle, Square and Circle). In particular, the taxonomic
structure of Geopolitical Units is isomorphic to the one of Geometric Figures. For
this reason, in a visual query one can immediately notice that Federal Capital is more
similar to a State than to a City and probably share a common super-type with the
former. Notice that had we produced a different taxonomic structure on the model
of Fig. 9a, then a different choice of representing graphical symbols would have
been made possibly creating undesired implicatures for the model reader. Given the
difficulties experienced by modelers in the design of domain taxonomic structures
[17], this illustrates the importance of having a well-designed ontology for the
design of semiotic clarity in the system of visual syntax.

There is another point worth mentioning about this example. As discussed in the
previous section, a phase represents a type that is instantiated by an individual only
contingently (in the modal sense) and changes of phases are motivated by changes
in intrinsic properties. In this example, the same city can be considered a town in
a world w and a metropolis in w’ while still maintaining its cross-world identity.
Likewise, in Fig. 9b, the size property of a geometric figure is considered one of
its contingent intrinsic properties. Thus, a particular circular form is assumed to be
able to change its size while maintaining a continuous visual percept. Furthermore,
the intrinsic property population size that motivates the phase changes of cities
is associated with a linearly ordered dimension. For this reason, we have decided
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Fig. 10 A model in the domain-specific language to represent organizational structures

to associate the intrinsic property of Circles that represent this phase variation by
employing also a linearly ordered dimension (size).

As a second example, we refer to the model of Fig. 6. In Fig. 10 below, we
present a model in a domain-specific visual language designed to represent valid
instances of the ontology of Fig. 6. There are a number of aspects in the concrete
syntax of this visual language that have been designed by systematically considering
logical and ontological meta-properties of the domain concepts in Fig. 6. Firstly,
this system of concrete syntax possesses Semiotic Clarity, i.e., there is a one-
to-one correspondence between its categories and the domain types and relations
represented in Fig. 6. Secondly, the mapping between the domain elements and the
elements in the visual notation takes full account of the ontological categories and
meta-properties of the former. In the sequel, we elaborate on this second point.

Kinds and Subkinds: In the model of Fig. 6, we have three kinds of elements,
namely, Person, Organizational Units and Commission. Since Person is an abstract
type, we have that all instances of this type in the domain are instances of either Man
or Woman. Likewise, all instances of Organizational Units are either Organizational
Branches or Departments. In summary, all the concrete substantial entities in
this domain are either instances of Man, Woman, Departments, Organizational
Branches, or Commissions.

As discussed in [40], shapes defined by closed contour are among the most
basic metaphorical representations for objects. This idea is in line with a number of
findings in cognitive science, including the one that shape plays a fundamental role
in kind classification [41] (infants will tend to classify things as being of the same
kind if they share a similar shape). Moreover, our most primitive notion of object
(in fact, our most primitive sortal type) is the notion of a maximally-topologically-
self-connected object which moves in a spatial temporal trajectory together with
all its parts [42]. This idea is directly represented by convex shapes with closed
boundaries.
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In the language used in Fig. 10, each distinct concrete (sub)kind of domain
objects is associated with a shape in the aforementioned sense. Moreover, the chosen
shapes are sufficiently dissimilar and are aligned with the taxonomic relations
between domain types as presented in Fig. 10. For example, the “four-sized” figures
used to represent Organizational Branches and Departments are similar, respecting
the fact that they are both direct subtypes of organizational units. On the other hand,
they are dissimilar from the blobs used to represent Commissions and the Icons used
to represent People. These features allow for another important quality characteristic
discussed by Moody [36], namely, Perceptual Discriminability. For this reason, by
looking at a model in this language one can immediately tell which domain element
is being represented by which graphical element.

A final aspect worth mentioning is the direct metaphorical resemblance between
the graphical elements used and their referents. The most obvious case is the iconic
representation for Man and Woman. However, the representation of Departments
as “pieces of an Organizational Branch” is adherent to the idea of “Organizational
Divisions” associated with Departments, Sectors, etc. In addition, while the straight
lines used in the contour of Organizational Units gives the idea of more formal
and rigid structure, the round boundaries of the blob representing Commissions
is more naturally associated with a flexible informal one. The systematic use of
these metaphorical resemblances brings to this notational system another important
quality characteristic according to Moody, namely, Perceptual Immediacy [36]. In
this example, by looking at the icons used to represent Man and Woman, one can
directly infer the type of referent which is being represented.

Phases: As previously discussed, phases represent contingent specializations of
kinds such that the specialization condition is related to the changes of value in the
intrinsic properties of the instances of that kind. Accordingly, here once more we
use an intrinsic property of visual percept used to represent the kind to represent
different phases associated with that kind, i.e., the entity can be seen as changing
phases but maintaining its identity due to the persistence of the visual percept. In
the example of the language used in Fig. 10 the changes in color of the Blob used to
represent Commissions represent different phases of a Commission. Moreover, we
use a high-saturation color to represent the Work-Overloaded Commission exploring
a metaphorical relation between “more quantity of color” (which is the definition of
saturation) and “more quantity of work.” Once more, this feature of the graphical
grammar increases its Perceptual Immediacy. Moreover, the difference in brightness
of the gray hue used to represent an overloaded commission, on the one side, and
the white one used to represent a regular load commission on the other creates
an efficient Perceptual Pop-Out [36], decreasing the cognitive cost of identifying
former types of commissions in visual queries [40]. Finally, given that identifying
overload commissions is an important task in this domain, the perceptual pop-out
at hand is increased by the increased perceptual discriminability between these two
phases. This is due to the use of a different in thickness of the blob boundaries. This
is a case of what is termed Dual Coding in Moody’s work [36] and it constitutes a
small deviation of Semiotic Clarity for the specific purpose of increasing efficiency
in particularly important visual queries.
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Relations: In the ontology of Fig. 6, we have three types of relations. Firstly,
we have the relations of component-of parthood between (1) Employee and
Department, and (2) Department and Organizational Branch. As discussed in [33],
componentOf is irreflexive and asymmetric. Moreover, transitivity holds across
(1) and (2). By using the relation of spatial inclusion in the plane to represent
these relations, we have a mapping to a visual relation that has exactly the same
formal properties of the represented one, since spatial inclusion is also a partial
order relation. This feature of the visual notation allows for a direct inferential
free ride [43]: when identifying some as being part of the Marketing Department
in Organizational Branch A, we immediately identify this person as being part of
Organizational Branch A.

A second aspect that we would like to point out is that the different departments
that comprise an Organizational Branch are represented by a tessellation of the
spatial region used to represent that Branch. The lack of overlap between these
regions allows for a perceptually immediate representation of the non-shareability
meta-property of these component-of relations. In other words, since Departments
are represented by tessellations (with non-overlapping regions), it becomes percep-
tually immediate to the user of the language that Employees are part of at most
one Department and that Departments are parts of at most one Organizational
Branch. This representation also contributes to perceptual immediacy due to yet
another reason, namely, that if Departments are represented as partitions of the
region representing its associated Branches, this also favors the interpretation of
existential dependence (inseparability) from the part to the whole. To put it in a
different way, it is much easier to visualize the icon for Man and Woman moving
in and out of the Branch region than to visualize a piece of the region moving to
another region.

Another type of parthood relation used in Fig. 6 is the one between Commission
Member and Commission. Once more, this relation is also represented as a
spatial containment relation between the icons representing People and the blob
representing the Commission. However, as one can notice in Fig. 10, these blob
forms can overlap with Branch and Department regions. This feature allows for the
direct inferential free ride on the identification of which departments and branches
commission members belong to. In addition, in line with the shareability meta-
property of this relation in the ontology, one can easily imagine overlapping blobs
allowing for a certain member to be simultaneously part of multiple commissions.

A third relation in this ontology is the reports to relation, defined between a
(superior) employee and its subordinates. As previously discussed, this relation also
defines a partial order relation between Employees. Here, we used a combination
of visual relations to represent this domain association, namely, we combined the
above relation in the plane (which is a total order relation) with the transitive closure
of the is-dashed-line-connected relation. The combined relation is also a partial
order relation. Additionally, the different texture of this line increases the Perceptual
Discriminability when contrasting it to the solid lines used to demarcate department
partitions. Finally, the spatial metaphor of using “higher in the plane” to represent
“higher in the hierarchy” favors Perceptual Immediacy in this representation.
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Roles and Relational Properties: roles represent contingent specializations of
kinds which, in contrast with phases, have a relational specialization condition, i.e.,
a role R1 is played by entities of type A when associated via a certain relation T
to entities of type B, typically playing a role R2 [17]. Accordingly, roles R1 and
R2 should be represented by a visual relation between the visual representations of
A and T, and B and T, respectively. This strategy has been employed consistently
for the representation of all roles in this visual notation. For example, the role of
Employee is represented by the contained in region relation between a People icon
and the region representing the Branches. Mutatis Mutandis, the same can be said
for the role of Commission Member. Finally, the complementary roles of Superior
and Subordinate are accordingly represented by the adjacency relation between
the People icons and the terminations of the dashed line representing the reports-
to relation. The otherwise symmetric feature of this line (possibly suggesting a
symmetric relation) is broken by the above relations between the icons in the plane.
This asymmetry could be highlighted by the use of an asymmetric connector line.
However, since asymmetry is already guaranteed by the combined relation, and our
visual cognition is particularly efficient to spot vertical misalignment, we advise
against such a design choice. Especially since this choice not only would hurt
Semiotic Clarity but also what Moody terms Graph Parsimony. This is captured
in the following quote from [36]: “Empirical studies show that increasing graphic
complexity significantly reduces understanding of software engineering diagrams
by naı̈ve users : : : It is also a major barrier to learning and use of a notation”.

In Table 1 below, we present a correspondence between the concrete elements
in the ontology of Fig. 6 and the system of graphical symbols comprising a visual
modeling language used in Fig. 10.

6 Final Considerations

In this chapter, we elaborate on the relation between a modeling language and a set
of real-world phenomena that this language is supposed to represent. We focus on
two aspects of this relation, namely, the domain appropriateness, i.e., the suitability
of a language to model phenomena in a given domain, and its comprehensibility
appropriateness, i.e., how easy it is for a user of the language to recognize what
that language’s constructs mean in terms of domain concepts and how easy it is
to understand, communicate, and reason with the specifications produced in that
language. We defend that both of these properties can be systematically evaluated
for a modeling language w.r.t. a given domain in reality by comparing a concrete
representation of the worldview underlying this language (captured in a meta-model
of the language), with an explicit and formal representation of a conceptualization
of that domain, or a reference ontology.

We therefore present a framework for language evaluation and (re)design
which aims, in a methodological way, to approximate or to increase the level of
homomorphism between a meta-model of a language and a reference ontology.
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Table 1 Visual concrete syntax for the organization structure ontology of Fig. 6

This framework comprises a number of properties (lucidity, soundness, laconicity,
completeness) that must be reinforced for an isomorphism to take place between
these two entities. The framework proposed combines two existing proposals in
the literature: (i) the one presented in [3, 4], which focuses on the evaluation of
individual representations and (ii) the one of [5, 6], which aims at the evaluation
of representation systems. In addition, our framework extends these two proposals
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in several ways and, compared to them, our framework possesses a number of
advantages discussed in the sequel.

The approach of Gurr uses regular algebraic structures to model a domain
conceptualization. We strongly defend the idea that the more we know about a
domain the better we can evaluate and (re)design a language for domain and
comprehensibility appropriateness. As we show in this chapter, there are important
meta-properties of domain entities (e.g., rigidity, relational dependency) that are
not captured by ontologically neutral mathematical languages (such as algebras or
standard set-theories) and that the failure to consider these meta-properties hinders
the possibility of accounting for important aspects in the design of efficient visual
pragmatics for visual modeling languages. By demonstrating how these ontological
meta-properties could be used for these purposes, this chapter also contributes
towards the construction of a systematic connection with the framework for the
evaluation and design of concrete visual syntaxes proposed by Moody in [36, 37].

The approach of Wand and Weber focuses solely on the design of general
conceptual modeling languages. The framework and the principles proposed here
instead can be applied to the design of conceptual modeling languages irrespective
to which generalization level they belong, i.e., it can be applied both at the
level of material domains and corresponding domain-specific modeling languages,
and at the (meta) level of a domain-independent (meta) conceptualization that
underpins a general conceptual (ontology) modeling language. For the case of
domain-independent meta-conceptualizations, the framework discussed here has
been applied to a number of prominent approaches (e.g., UML, Archimate, Tro-
pos/i*, AORML, BPMN, ARIS, RM-ODP) as mentioned in Sect. 4 of this chapter.
For the case of domain-specific conceptualizations, this ontology-based framework
amounts to an important contribution to the area of domain-specific languages
design methodologies (as acknowledged, for instance, in [44–46]).

As in the original proposal of Wand and Weber, the focus of our framework
is on the level of systems of representations, i.e., on the evaluation of modeling
languages, as opposed to a focus on individual diagrams produced using a language.
Nevertheless, as it is demonstrated here, by considering desirable properties of the
mapping of individual diagrams onto what they represent, we are able to account
for desirable properties of the modeling languages used to produce these diagrams,
extending in this aspect Wand and Weber’s work.

Finally, both the approaches of Gurr and Wand and Weber address solely
the relation between ontological categories and the modeling primitives of a
language, paying no explicit attention to the possible constraints governing the
relation between these categories. Moreover, they do not consider the necessary
mapping from these constraints to equivalent ones, to be established between the
language constructs representing these ontological categories. As demonstrated in
Sect. 3 of this chapter, the proposal presented here, in contrast, explicitly considers
the constraints governing the relations between the elements comprising a given
domain conceptualization, and how these constraints are taken into account in a
representation system. In particular, we demonstrate here how a strategy based on
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visual simulation can be used to validate this aspect of reference ontologies and the
language meta-models based on them.

In summary, as a contribution for Domain Engineering, we presented a frame-
work that can be used for the evaluation and (re)design of reference models, in
general, and Domain Models, in particular. This approach can be employed to
formally and systematically improve the quality of domain models that, in turn,
can be used to derive the meta-models of domain-specific conceptual modeling
Languages. However, the use of an ontology-based method for producing high-
quality domain models which encompass consistent, comprehensive, and truthful
domain axiomatizations is expected to have a significant impact on other domain
engineering enterprises such as the principled design of domain frameworks [47].
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44. Becker, J., Pfeiffer, D., Räckers, M.: PICTURE – A NEW APPROACH for Domain-Specific

Process Modelling, Proceedings of the CAiSE’07 Forum at the 19th International Conference
on Advanced Information Systems Engineering, Trondheim, 2007

45. McDermott, J., Allwein, G.: A formalism for visual security protocol modeling. J Vis Lang
Comput 19(2), 153–181 (2008)

46. McDermott, J.: Visual Security Protocol Modeling, Proceedings of the 2005 Workshop on New
security paradigms, New York, 2005

47. Falbo, F., Guizzardi G., Duarte, K.: An ontological approach to domain engineering. In:
Proceedings of 14th International Conference on Software and Knowledge Engineering
(SEKE). ACM, New York (2002)



Automating the Interoperability of Conceptual
Models in Specific Development Domains

Oscar Pastor, Giovanni Giachetti, Beatriz Marı́n, and Francisco Valverde

Abstract An increasing number of modeling approaches for representing con-
cepts related to a wide variety of domains can be clearly observed in software
engineering. In this context, the definition of sound interoperability mechanisms
to reuse knowledge and share ideas among existing conceptual models, and also
apply them into concrete development processes, is an important challenge to be
faced. Thus, different modeling approaches, tools, and standards can be integrated
and coordinated to reduce the implementation and learning time of development
processes as well as to improve the quality of the final software products. However,
there is a lack of approaches to support automatic interoperability among modeling
approaches. For tackling this situation, this chapter presents an interoperability
approach focused on the characterization of different modeling approaches in
a common software development domain. For putting in practice and automate
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standards are considered. All these elements comprise a reference interoperability
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1 Introduction

According to the IEEE Standard Computer Dictionary [44], interoperability is
defined as the ability of two or more systems or components to exchange information
and to use the information that has been exchanged.

Interoperability is a key aspect to be faced in many different areas where
interchange of information and knowledge is necessary to achieve the intended
objectives. This is a well-known fact in the electronic device world, where interop-
erability is critical for positioning and commercializing new technologies. Nobody
thinks of changing the DVD player depending on the DVD brand to play.

Other example can be found in the architecture field, where interoperability
is essential for communicating building information among the different actors
involved, i.e., among architects, engineers, and finally to the builders, which become
the charts specified into concrete and physical structures. This last situation is very
close to the software domain reality, where the correct representation of concepts
that must be implemented is essential to obtain (build) software products that fit
with customer’s needs. In the domain engineering world, the definition of suitable
conceptual elements related to a specific development domain is the Rosetta stone
for depicting and obtaining appropriate software models (software charts).

The necessity of counting with interoperability mechanisms in the current
software development context is a growing trend. For instance, we can observe
interoperability in web applications where different web services must be coor-
dinated to perform a specific operation. Also, interoperability becomes necessary
for geographically distributed software factories that are developing different
components of a same software product [16].

However, the interoperability of conceptual models presents different unsolved
challenges, such as the definition of concrete mechanisms for automation and veri-
fication of interoperability operations. Moreover, models defined, even with a same
modeling language, are not compatible among different modeling tools. UML is a
clear example of this situation. Probably, the large variety of modeling approaches
and related technologies is mainly responsible for the lack of interoperability among
conceptual models. Therefore, we need to deal with this model heterogeneity since
the modeling representations that can be defined in the conceptual modeling domain
are practically infinite.

Thus, in this chapter, we propose a conceptual model for the definition of
concrete interoperability solutions, which deals with model heterogeneity aspects
and faces automation issues. This interoperability model has been instantiated with
current standard and model-driven technologies to obtain a suitable solution for
concrete model-based development processes.

The rest of this chapter is organized as follows: Sect. 2 presents the related work
in the context of model-driven interoperability. Section 3 details the interoperability
model proposed. Section 4 presents the challenges that we have faced in the
definition of this interoperability model. Section 5 introduces the process to put
into practice the interoperability model. Finally, Sect. 6 presents a general analysis
of the interoperability proposal presented and main conclusions.
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2 Review of Model-Driven Interoperability

One of the main concerns of the domain engineering field is the definition of suitable
constructs and conceptual models for performing the analysis of specific application
domains [26]. In this context, the reuse of domain knowledge and its application into
concrete software production process is a relevant issue to be considered. The use
of conceptual models, domain-specific representations, and model reuse strategies
that are part of the domain engineering principles are also subject of interest in the
model-based software production context. For instance, the application of domain
analysis approaches, which come from the requirements engineering world, into
MDD processes [5, 53, 68].

In this chapter, we face the interoperability problem from the model-driven
perspective, thus proposing a Model-Driven Interoperability approach; i.e., the
information exchange involved in interoperability tasks is performed by means of
models and model management operations (such as model transformations).

In order to explore the existing evidence of model-driven interoperability, we
have reviewed relevant approaches related to different domains, such as conceptual
(including domain-specific) modeling, requirement engineering, and business pro-
cess modeling. [35].

In the revision, the following characteristics are considered:

• The proposal provides mechanisms for managing the heterogeneity that may
exist among the involved modeling approaches.

• The proposal considers the use of existing standards for the definition of models,
metamodels, or model transformations.

• The proposal has some kind of supporting technology that automates the
interoperability operations.

• The proposal provides a well-defined application process.
• The proposal defines mechanisms to verify the interoperability among the

modeling approaches involved.

The studies analyzed are briefly presented as follows. We have grouped the
studies according to their main features (some approaches provide more than one
relevant contribution), which correspond to the following:

• Model Weaving (MW): It considers the definition of mappings among the meta-
models of involved modeling approaches. These mapping are usually defined by
means of a weaving model (instance of a weaving metamodel) [25].

• Meta-Extensions (ME): This corresponds to the definition of new information
(extensions) in the modeling approaches involved to provide additional modeling
features that are necessary to perform interoperability operations [77].

• Interoperability Verification (IV): Models and interoperability operations may
have issues that produce an incomplete interchange of information. Thus, it is
important to analyze verification mechanisms for assuring the correct specifica-
tion of the artifacts that are involved in interoperability scenarios [34].
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• Pivot Artifact (PA): This feature is related to the use of an intermediate
artifact (metamodel or ontology) to manage structural differences and to identify
conceptual equivalences [42].

• Application Domain (AD): Indicates the domain that is related to the approach
analyzed. Despite this, the contributions of the proposal analyzed can be
generalized to different domains.

2.1 Model Weaving

The model weaving approach is very popular in model transformation and model
interchange contexts. Weaving models indicate semantic equivalences through
the definition of links among the metamodels’ constructs. These links are con-
sidered as semantic connection points because they indicate those constructs
(from the involved metamodels) that have an equivalent meaning (semantics)
in the application domain. The definition of these links can be extended with
additional information defined to manage structural differences among the linked
constructs.

Fabro and Valduriez in [25] propose the use of weaving models between two
metamodels to automatically infer model-to-model (M2M) transformations based
on the ATL tool [46]. These transformations automate the translation between
models defined with the involved metamodels.

The proposal presented in [49] by Kappel et al. is defined to support the inter-
operability among modeling tools. This proposal is based on a bridge metamodel
(weaving metamodel) for the definition of semantic metamodel links (bridges).
The defined bridges are used to transform the involved metamodels into equivalent
petri-net representations. The petri-net representation is used to operationalize
M2M transformations and to perform a formal verification of the structural dif-
ferences (heterogeneities) among metamodels, which may produce interoperability
conflicts.

The proposal presented by Klar et al. in [50] shows how the MDD interop-
erability can be used to support a complete development process. In particular,
this proposal is centered on the integration of requirements modeling into MDD
processes. However, it does not consider how to integrate specific aspects related to
a particular MDD process into the requirements approach. These MDD aspects are
necessary to obtain an appropriate requirement specification in the domain of the
reference MDD approach.

The proposal presented in [36] by Guerra et al. consists of a pattern-based
approach for defining bidirectional relations (a weaving model) among modeling
approaches. The main contributions of this proposal are the definition of specific
inter-modeling patterns, which allow interoperability conflicts to be automatically
identified. These patterns also facilitate the generation of model-to-model transfor-
mations, model matching, and traceability information.
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2.2 Meta-Extensions

Seifert et al. in [75] indicate the advantages of using metamodels and model-to-
model transformations to prevent the coupling among tools that must interoper-
ate. This approach analyzes the pros and cons of proactive and retroactive tool
integration alternatives. From this analysis, it suggests the use of a role-based
metamodeling approach, which involves the extension of the metamodels of tools
with specific role information (defined in a role metamodel) to improve the tool
interoperability.

The BIZYCLE framework applied by Milanovic et al. in [58] is defined to
achieve applications and data integration by means of semantic annotations. These
annotations are used to identify both semantic and structural conflicts that can be
solved in a semi-automatic way.

The work by Tran et al [79] suggests the extension of the modeling approaches
that must interoperate to specify the information related to an MDD process.

The proposal presented by Agostinho et al. in [4] introduces an interoperability
framework for business networks, which is based on UML for the definition of
the involved metamodels. An interesting feature of this approach is the use of
UML profiles to manage model heterogeneities and to obtain an appropriate model
mapping. This work refers to those transformations that imply a structural change
of the involved constructs as model altering morphisms.

2.3 Interoperability Verification

Radjenovic and Paige in [70] present an interoperability approach that is based on an
initial identification of the issues that may prevent an appropriate model integration.
This work considers both structural and behavioral interoperability conflicts. The
detection of interoperability issues is performed by means of the transformation of
the involved metamodels into a proprietary graph representation, which is called
SMILE-X.

The proposal presented by Polgár et al. [69] indicates the need for interoperability
in a common development process. In this approach, a reference ontology is used
to verify whether or not the involved modeling approaches are in conformance with
the target development process.

2.4 Pivot Metamodel

The differences between a pivot metamodel and a weaving metamodel are related
to their definition and use. A weaving metamodel is instantiated to represent links
among constructs of the involved metamodels. From these weaving models, specific
M2M transformation rules can be inferred according to a specific transformation
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approach, such as ATL [46], QVT [63], or ETL [51]. However, weaving models
do not participate in the execution of the transformation rules. By contrast, a pivot
metamodel can be a predefined representation of concepts (or constructs) for the
interoperability domain or can be generated from the metamodels of the modeling
approaches that must interoperate. Also, a pivot metamodel can be instantiated
during the transformation process generating an intermediate pivot model.

The proposal presented in [16] by Bruneliere et al. defines a pivot metamodel to
solve conflicts related to the heterogeneity among metamodels of modeling tools.
This proposal is also based on current metamodeling standards and modeling tools.

The DUALLY approach presented by Crnkovic et al. [19] shows that the use of
a pivot metamodel reduces the complexity of the necessary transformation rules.
These rules can be automatically inferred from the pivot metamodel definition.

The proposals presented by Ziemann et al. [86] and Jankovic et al. [45] are related
to enterprise modeling. They use the POP* metamodel [60] as pivot metamodel.
According to these proposals, the involved modeling approaches must be mapped to
the POP* metamodel to determine common interrelation points. Similar approaches
are presented by Baumgart [9] in the domain of embedded systems and by Mahé
[55] for visualization tools.

Berger in [10] considers the definition of a pivot metamodel that comprises all
the conceptual constructs related to the modeling approaches that must interoperate.
This pivot metamodel (defined as generic metamodel in the paper) is used as
an interface among the metamodels of the involved modeling languages, which
isolate the mappings from the metamodel heterogeneities. Later, by means of a
set of predefined patterns, a model weaving among the involved metamodels is
automatically generated to perform model-to-model transformations.

Vallecillo in [80] proposes the generation of a global model for the combination
of different modeling approaches. The generation of this global metamodel is based
on a viewpoint unification, which intends to comprise the benefits related to three
metamodel integration techniques: metamodel extension, metamodel merge, and
language embedding. The use of a common model obtained by the integration of
the involved modeling approaches is also presented in Coutinho et al. [18]. This
proposal is related to organizational modeling.

In [59], Moreno and Vallecillo propose a web development interoperability
framework, which is centered on a generic metamodel for web development
methods. Thus, by means of QVT transformations, the modeling approaches related
to the different development method must be mapped to the reference metamodel.
Evidently, due to the use of QVT, the proposal requires that the involved modeling
approaches be defined in Meta-object-Facility (MOF)-compliant metamodels.

Diskin et al. [20] propose the generation of a pivot metamodel, which only
indicates overlaps among different modeling approaches. This overlap metamodel
reduces the complexity related to the definition of a big metamodel that covers all the
modeling constructs of the involved modeling approaches. However, this proposal
is still theoretical and is not supported by tools or standards.

In the work presented by Biehl et al. [12], the relevance of defining a bridge
between technical spaces is clearly stated. This technical bridge is oriented to
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translating the metamodels of the involved modeling tools into equivalent rep-
resentations that are defined using a common metamodeling language, i.e., this
solves technical interoperability conflicts. Later, structural bridges are defined in
the common interoperability space to perform M2M transformations among the
metamodels generated by the technical bridges. A similar approach is defined
by Jouault and Guéguen in [47]. In this approach, concrete modeling tools are
translated into equivalent metamodeling representations, which are defined with a
common metamodeling language. The resultant metamodel is called virtual tool.
A similar view is presented by Brambilla et al. [14], whose work proposes the
translation of domain-specific languages (DSL) to equivalent MOF representations.

In addition, in a previous work presented by Lukácsy et al. in [54], the outputs
generated by different information sources are transformed into equivalent models
(called interface models) to perform interoperability among web services. These
interface models are expressed in a UML-like language. An improvement to this
kind of service-oriented works is presented by Tran et al. in [79]. In this paper,
the authors propose a reverse-engineering mechanism to automatically infer model
representation from services’ views. The inference models are integrated in a view-
based modeling framework to perform integration of services. These models are
also used to generate code in other implementation platforms by following an MDD
process.

The ModelBus approach presented by Hein et al. in [40] is oriented to tool
interoperability among nodes that participate in a common development scenario.
The interoperability is performed by means of a repository of models and modeling
services (such as model transformation and model verification services). This
approach is based on the original idea of model bus presented in [13], which
indicates two important aspects that must be considered to achieve the MDD
interoperability: the functional connectivity (related to metamodel heterogeneity)
and the protocol connectivity (related to technical heterogeneity).

2.5 Pivot Ontology

The main difference between pivot ontologies and pivot metamodels is related to
their application context and implementation aspects. While a pivot metamodel
directly links syntactic elements (abstract syntax), a pivot ontology is based on
semantic principles and requires a reference ontological standard, such as OWL and
RDFS [49]. These standards only have a partial correspondence with metamodeling
facilities (like MOF). Thus, a lifting process [48] is required to solve the gap between
semantic (ontologies) and syntactic (metamodel) specifications.

Höfferer in [42] presents an interesting analysis related to the use of ontologies
and metamodels to achieve the model-driven interoperability. Even though this work
is framed in the context of business-process modeling, the analysis and conclusions
obtained can be generalized to any model-interoperability approach.
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The Sunindyo et al.’s proposal [78] uses a common bus to perform the model-
driven interoperability (such as in [40]). This proposal uses ontology mappings
to identify common semantic links among different modeling approaches; the
definition of these links is guided by a process for automatic discovery of the
involved process models.

Roser and Bauer present in [71] an approach that uses an ontology specification
(based on OntoMT) as an intermediate model for managing the heterogeneities and
similarities among the metamodels of the involved modeling languages. It is also
used to reuse the information of already defined M2M transformations and to reduce
the complexity related to changes in the versions of the involved metamodels. This
approach distinguishes two kinds of model transformations: (1) mappings, which
are horizontal model transformations defined at the same abstraction level and
(2) refinement transformations, which imply a change from a higher (less detailed)
abstraction level to a lower (more detailed) abstraction level.

Berre et al. presents an ontology-based approach related to service interoperabil-
ity in [11]. Barnickel and Fluegge proposes the idea of sematic mediation at the
domain level to improve the efficiency and the effectiveness of the ontology-based
interoperability in [8]. The semantic mediation defines a pivot ontology for each
involved domain, which groups a set of conceptual schemas. According to these
authors, this approach provides a balanced interoperability solution, which is at a
middle point between defining ontologies and mappings for each conceptual schema
and the definition of a common pivot ontology.

Opdahl in [66] presents a modeling approach that is framed in the context of
business processes. It facilitates language interoperability by applying the unified
enterprise modeling language (UEML) [43]. This approach requires the translation
of the involved DSMLs into the equivalent UEML representation.

Also in the context of business processes, the proposal presented by Costa
et al. [17] provides a model-based platform for the enterprise interoperability. This
proposal uses a reference ontology to identify semantic equivalences among the
information (messages) that must interoperate. This information (defined in an
XML format) is extended with annotations to manage heterogeneities in relation
to the reference ontology, which are used to perform appropriate model-to-model
transformations.

Table 1 summarizes the works analyzed and the main characteristics that each
work presents, which correspond to the following: Management of heterogeneity
(MH), Use of Standards (US), Tool Support (TS), Application Process (AP),
Interoperability Verification (IV), Meta-Extensions (ME), Pivot Artifact (PA), and
Application Domain (AD). In the table, letters Y and N mean Yes and No,
respectively. In the PA column, the letter O means Ontology and the letter M means
Metamodel. According to the review results, the use of a common interoperability
space with a unique Metamodeling Specification (MS) is an aspect that is considered
by all the approaches analyzed. Furthermore 24 approaches, which correspond to
72.7 % of the total approaches analyzed, use Pivot Artifact (PA) for managing
structural heterogeneities. This pivot artifact can be defined through a metamodel
or an ontology. We recommend the use of pivot metamodels since the definition
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Table 1 Summary of reference model-driven interoperability works

Author Year
M
W

M
H

U
S

T
S

A
P

I
V

M
E

P
A

AD

Agostinho [4] 2011 Y Y Y N N N Y N Bussiness networks

Barnickel [8] 2010 Y Y N N N N N O Services

Baumgart [9] 2010 N Y N N N N N M Embedded systems

Berger [10] 2010 Y Y N Y N N N M Conceptual modeling

Berre [11] 2009 Y Y Y N N N N N Services

Biehl [37] 2010 Y Y Y Y N N N M Tool interoperability

Brambilla [14] 2008 Y N Y Y Y N N N Migration DSL to MOF 

Brunelière [16] 2010 Y Y Y Y Y N N M Modeling tools 

Costa [17] 2007 N Y N Y N N Y O Business processes

Coutinho [18] 2009 Y Y Y Y Y N N M Org. modeling

Crnkovic [19] 2009 Y N Y Y Y N N M Component models

Diskin [34] 2010 Y Y N N Y Y N M Conceptual modeling

Fabro [25] 2009 Y N N Y N N N N Conceptual modeling

Guerra [36] 2011 Y Y N Y Y Y N N Conceptual modeling

Hein [40] 2009 N Y Y Y Y N N M Tool interoperability

Höfferer [42] 2007 Y Y N N N N N O Business processes

Jankovic [45] 2007 N N N N Y N N M Enterprise modeling

Joualt [47] 2009 Y Y N N Y N N M Tool interoperability

Kappel [49] 2011 Y Y Y Y Y Y N N Conceptual modeling

Klar [50] 2008 Y N Y Y Y N N N Requirement engineering

Lukácsy [54] 2007 N Y N Y N N N M Services

Mahé [55] 2010 Y Y N Y N N N M Visualization tools

Milanovic [58] 2009 Y Y Y Y Y Y N O Conceptual modeling

Moreno [59] 2008 N Y Y Y N N N M Web development tools

Opdahl [66] 2010 Y Y N Y N N N O WebML and UML

Polgar [69] 2009 N Y Y Y Y Y N O Model-driven development

Radjenovic [70] 2010 N Y N Y Y Y N N Conceptual modeling

Roser [71] 2007 Y Y N Y N N N O Conceptual modeling

Seifert [75] 2010 Y N N N Y N Y N Tool interoperability

Sunindyo [78] 2010 N Y N Y Y N N O Signal engineering

Tran [79] 2008 N Y Y Y Y N Y N Services

Vallecillo [80] 2010 Y Y N N N N Y M Conceptual modeling

Ziemann [86] 2007 N Y N Y Y N N M Enterprise modeling

of weavings among metamodels and ontologies (also called lifting [51]) implies
additional complexity.

In relation to Interoperability Verification (IV) mechanisms, only six (6)
approaches (18.2 % of the approaches analyzed) consider some kind of verification
mechanisms. All these works are focused on verifying interoperability at speci-
fication level, which corresponds to appropriate specification of interoperability
artifacts (weavings, pivots, and model transformations). However, none of the
analyzed approaches consider the verification of the interoperability execution,



358 O. Pastor et al.

Interoperability Space

X
Metamodel

X
Model

InstanceOf

Pivot
Y

Metamodel
weavingweaving

Y 
Model

InstanceOf

Model-to-Model Transformation Execution

E
sp

ec
ifi

ca
tio

n
E

xe
cu

tio
n

Fig. 1 General model-driven interoperability schema

i.e., the proper instantiation of the involved metamodels, and execution of model
transformations.

Figure 1 provides a general model-driven interoperability schema obtained as
results of this analysis.

Next section shows an interoperability model and the challenges that we have
faced to achieve the automatic model-driven interoperability. This interoperability
model is based on the model-driven schema obtained from the literature review
results.

3 An MDD Interoperability Model

Model-based proposals related to the context of information systems and tool
interoperability state different levels [39] to achieve an appropriate interoperability
framework, such as [1, 67, 72, 83]. These proposals have several common aspects
and present similar interoperability levels. In particular, we have centered our
attention on the LISI (Levels of Information Systems Interoperability) [1] and LCIM
(Levels of Conceptual Interoperability Models) [83] since the conceptual basis
behind these two approaches covers the different features provided by previously
analyzed studies. Moreover, these approaches can be easily generalized to different
domains, have achieved a suitable maturity level, and their applicability has been
empirically demonstrated.

The LISI approach was created by the U.S.A. defense department as a solution
for defining, evaluating, measuring, and assessing information systems interoper-
ability [1]. In this context, the correct and secure flow of information among the
different systems is a critical concern. The LISI approach proposes an interoperabil-
ity model comprised of five levels (from 0 to 4). Level 0 (isolated interoperability)
corresponds to a manual interoperability, where the interoperation tasks must be
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Table 2 The LISI reference model

Interoperability Computing 
environment

Level P A I D

Enterprise Universal 4 Enterprise 

level

Interactive Multi-

dimensional 

topologies

Enterprise 

model

Domain Integrated 3
Domain 

level
Groupware

World-wide 

network

Domain 

model

Functional Distributed 2 Program 

level

Desktop 

automation

Local 

networks

Program 

model

Connected Peer-to-peer 1
Local/site 
level

Standard 

system 

drivers

Simple 
connection

Local

Isolated Manual 0 Access 
control

N/A Independent Private

performed manually by the system users. Level 4 (enterprise interoperability) indi-
cates that data and services are automatically interchanged by different applications
in a transparent way for the system users.

The levels defined in the LISI reference model are transversally divided into four
interoperability attributes called PAID, which correspond to Procedures, Applica-
tions, Infrastructure, and Data. Table 2 summarizes the LISI reference model.

The LCIM approach is related to modeling and simulation, and, hence, it is closer
to the model-driven development domain. Modeling aspects related to LCIM have a
direct correspondence to the modeling tasks involved in MDD processes. Simulation
corresponds to the execution of the modeled systems; therefore, it can be considered
equivalent to the model compilation tasks that are involved in MDD processes.

The LCIM proposal states seven interoperability levels (from 0 to 6). Level 0
corresponds to the non-interoperability level (the same as the LISI proposal).
Level 6 corresponds to the conceptual interoperability. In this level, interoperability
is achieved by means of the definition of mappings among the conceptual models
that describe the involved systems. In other words, conceptual interoperability is
achieved through the meta-specification of the software systems. Figure 2 shows
the levels defined for the LCIM model.

If we project the LCIM ideas to the model-driven context, we can state that to
achieve conceptual model-driven interoperability, it is necessary to define mappings
among the involved modeling languages. To perform these mappings it is necessary
to consider syntax, semantics, and technical aspects that are related to modeling
languages definition, which corresponds to the levels 1, 2, and 3 of the LCIM
approach.

The levels 4 and 5 (Pragmatic and Dynamic interoperability) of the LCIM
approach are related to operation of information systems and management of
systems’ data in time. In a specific model-driven context, such as model-driven
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Fig. 2 LCIM model

development, these levels would be related to the evolution of the MDD models
defined and their changes according to new system requirements. In the interoper-
ability model that we propose, these interoperability levels are not considered since
they are related to model synchronization and model evolution, which are topics
that are not part of the model-driven interoperability vision. However, these are two
interesting aspects that can be considered for future research in order to provide
supporting facilities to model-driven interoperability.

In order to automate the model-driven interoperability, we have adopted the
properties proposed by the LISI approach, which are the following:

• An appropriate interoperability Procedure, which indicates the elements that
must be defined, and the steps that must be performed to interchange the
modeling information.

• The Applications that manage the modeling information, which provide the
features to automate interchange of models.

• The interoperability Infrastructure, which is related to the communication
mechanisms among applications to assure the correct interchange of information
and to prevent the loss of modeling information when the interchange process is
performed.

• The Data (modeling information) must be specified in a standard format,
which can be interpreted by different modeling tools with independency of
implementation platforms and development contexts.

In summary, the interoperability model defined states model-driven interop-
erability in terms of technical, semantic, and syntactic interoperability. Also,
model-driven interoperability can be automated by providing a concrete solution
for procedure, application, infrastructure, and sata properties.

In relation to syntactic interoperability, different approaches have defined a
particular syntax (abstract and concrete) to represent their modeling elements
(conceptual constructs). The best example of this is UML [64]. This syntax is
focused on supporting the semantics [38] of the modeling languages involved.

For the specification of the abstract syntax, it is possible to find standardized
approaches, such as the MOF [62]. The MOF approach provides suitable support
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for the generation of model-oriented technologies, such as model editors, and model
transformation tools. This abstract syntax specification is performed by means
of a metamodel definition, which represents the conceptual constructs (with their
properties), the relationships that exist among the constructs, and a set of rules to
manage the constructs’ interaction.

From the metamodels that formalize the abstract syntax of modeling languages,
the concrete syntax can be specified by using tools such as the eclipse graphical
modeling framework (GMF) [23]. However, a standard for defining the concrete
syntax related to a modeling language has not yet been defined.

The semantics related to modeling approaches is usually specified by means
of textual representations, for instance, the UML specification [64] and the i*
framework [2]. In an MDD approach, we consider that the semantics is implicit
in the mappings defined between the conceptual constructs and the corresponding
software representations, which are used to perform the model-compilation process.
However, there is a lack of an appropriate standard for the definition of the semantics
related to modeling languages.

Thus, since only the abstract syntax of modeling languages is supported by
standards that can be computationally interpreted, we propose the metamodels
that formalize this abstract syntax as the starting point to support model-driven
interoperability processes. From these metamodels, specific mappings can be
defined (among the conceptual constructs of the involved modeling languages) to
obtain semantic interoperability.

Technical interoperability can be achieved by using the interchange format
defined for the open-source implementations of the metamodeling tools. For
instance, the interchange mechanism implemented for the Eclipse UML2 tools
is based on the XML specification [82]. This interchange mechanism is the
XML Metadata Interchange (XMI) [61], which has been defined for the UML
specification.

Thus, for automating model-driven interoperability it is necessary: (1) to estab-
lish an appropriate Procedure to generate the interoperability artifacts; (2) to
indicate or implement the Applications that are necessary to manipulate the models
and perform the model interchange; (3) to state the Infrastructure that will be used
to communicate the Applications; and (4) to define the format used for the modeling
Data representation.

We have chosen open-source applications to support automatic interoperability.
In particular, we have considered the modeling tools developed in the context of
the eclipse modeling project [22], such as the eclipse modeling framework (EMF)
[21] and the Eclipse UML2 Project [24]. For the infrastructure, we have considered
the XML implementation for the EMF tools, and the XMI specification related
to the Eclipse UML2 models. The EMOF (EMF) and UML (Eclipse UML2)
specifications provide the formats that are used to represent the modeling data.
Thus, the applications, infrastructure, and data format are supported by current
technologies, tools, and standards.

However, there is no standard procedure that can be used to perform automatic
model-driven interoperability. Therefore we have defined a particular process that
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Fig. 3 MDD interoperability
model instantiated

instantiates the proposed interoperability model to obtain an automatic model-driven
interoperability solution. Figure 3 shows the interoperability model instantiated
according to the analyzed standards, tools, and related works.

The process proposed for instantiating the interoperability model is mainly
focused on the automatic interchange of modeling information in the context of
an MDD process. In particular, it considers the integration of the modeling needs
related to a specific MDD approach into already existing modeling approaches.
For an appropriate representation of the specific MDD constructs, the constructs
of the target modeling languages are customized to fix differences or to adding
new properties in the context of the MDD approach. This is to define modeling
language extensions. For the implementation of the required modeling language
extensions, we use the UML profile extension mechanism since it is a standardized
extension mechanism that has been improved according to the UML experience,
and it is based on the MOF metamodeling standard. Therefore, the fundamentals
related to UML profile extensions can be generalized to any modeling language that
uses an MOF metamodel to formalize its abstract syntax. In addition, UML profile
is a lightweight extension mechanism that does not alter the target metamodel, and,
hence, the defined extensions do not affect the compatibility with the technologies
that are based on the original specification of the modeling language customized.

By analyzing the previous background and related work, three main challenges
must be faced to properly support model-driven interoperability. These challenges
and the solutions proposed to solve them are detailed in the next section.

4 Challenges for Achieving the Model-Driven
Interoperability

The first of the three challenges that must be solved for modeling language
integration is to indicate the modeling artifact that will be used as starting point for
this integration. The second challenge is related to define an appropriate mechanism
to indicate the semantic equivalences between the involved modeling languages,
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and the resolution of those interoperability issues that may prevent the correct
interchange of modeling information. Finally, the third challenge is to automate
the generation of the required metamodel extensions in order to reduce the potential
errors and complexity that a manual modeling language customization involves.

4.1 First Challenge: Establish the Starting Point

For solving this first challenge, we have considered the definition (or selection)
of the metamodels that are related to the involved modeling languages as starting
point. These metamodels are the artifacts where equivalences among the modeling
languages can be identified and the required extensions can be defined.

Metamodels provide good support to formalize the abstract syntax of modeling
languages, which is essential to perform an appropriate integration of modeling
languages. Also, in the current MDD context, metamodels are widely used for
development of technologies and modeling languages. Thus, it has sense to consider
an element that is commonly used by MDD-oriented approaches as starting point of
an MDD interoperability process.

The paper presented by Selic in [76] indicates a set of elements that must be
considered for an appropriate metamodel specification. These elements are the
following:

• The set of conceptual constructs related to the modeling language, which are
defined as classes (metaclasses) of the metamodel.

• The set of relationships that exist among the different conceptual constructs.
• The set constraints that manage the interaction among the different conceptual

constructs, which are necessary to define valid models (instances of the meta-
model).

• The notation related to each conceptual construct when corresponds.
• The meaning of the conceptual constructs defined.

For the specification of the involved metamodels we propose the use of the MOF
metamodeling standard [62]. The use of MOF facilitates the definition of UML
profiles for the implementation of modeling language extensions. Also, MOF is
a suitable alternative for the specification of the required metamodels due to the
following reasons:

• MOF is supported by a standardized interchange format (XMI [61]) .
• There exist different open-source metamodeling tools based on the MOF specifi-

cation such as the Eclipse projects EMF [21] and UML2 [24].
• MOF is used by current model-to-model transformation technologies such as

ATL [46] or QVT [63]
• There are many metamodel specifications based on MOF that can be used as

reference modeling approaches.



364 O. Pastor et al.

• The use of MOF as common metamodeling language prevents the notation incon-
sistencies (at metamodel level) and facilitates the identification of equivalences
between the different constructs.

However, there is an important lack in the MOF specification, which is the
impossibility of indicating the notation (concrete syntax) and meaning (semantics)
of the defined constructs [38]. The MOF metamodels only specify the abstract
syntax of the corresponding modeling languages. Therefore, the notation and
meaning of the constructs must be documented in a separated way. This information
is relevant for the correct metamodel specification and it is helpful to understand
the defined metamodels. Also, the notation and semantics are relevant for the
appropriate implementation of MDD tools, such as modeling tools and model
compilers.

The MOF specification provides two alternatives for metamodel definition, i.e.,
two metamodeling languages. The first of these languages is the complete set of
constructs of the MOF specification, which is called CMOF (Complete-MOF). The
second alternative corresponds to a subset of the MOF constructs, which provide
essential metamodeling facilities. This second metamodeling language is called
EMOF (Essential-MOF).

The metamodeling capabilities that are provided by EMOF are closer to the
extension capabilities provided by UML profiles. By contrast, CMOF provides a
set of metamodeling facilities that cannot be represented by means of UML profile
extensions, for instance, n-ary associations, or property redefinition. Therefore, we
consider the use of EMOF to specify the metamodels of the involved modeling
languages.

Once the corresponding EMOF metamodels are specified, or selected in the
case of already existing EMOF metamodels, the equivalences between metamodels
must be indicated. These equivalences are used to identify the necessary metamodel
extensions. At this point, the second challenge that must be faced arises.

4.2 Second Challenge: Identify Semantic Equivalences
and Solve Interoperability Issues

This challenge involves the appropriate identification of semantic equivalences
between the constructs related to a source and a target modeling language. In the
context of our interoperability model instantiation, the source modeling language
corresponds to the DSML that represent the constructs of the MDD approach
involved, and the target modeling language is the preexisting modeling language
that will be customized with the specific MDD syntax. This identification of
semantic equivalences can be performed by means of model mappings (weavings,
or semantic links) between the constructs of the source metamodel and the
target metamodel. Thus, these mappings guide the identification of the necessary
extensions to integrate into the target metamodel the abstract syntax of the source
metamodel. However, certain structural differences (heterogeneities) between the
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involved metamodels may prevent the appropriate mapping specification, and,
hence, they prevent the correct identification of the required metamodel extensions.
This situation is presented in works such as [76] and [85]. These works propose
systematic approaches for the generation of UML profiles starting from metamodel
mappings. However, due to structural differences that are present in the involved
metamodels, the final UML profile generation cannot be completely automated.
These structural differences also affect the completeness of the obtained UML
profile, which cannot customize the target modeling language with all the modeling
information required.

Therefore, to solve this challenge, we propose the definition of a pivot metamodel
that allows the structural differences to be fixed, and an appropriate mapping
specification to be obtained. This pivot metamodel that we have called Integration
Metamodel [28] provides the necessary information to perform the appropriate
integration of modeling languages.

4.3 Third Challenge: Automatic Generation of Metamodel
Extensions

Finally, the third challenge is related to how to automate the generation of the
required metamodel extensions from the defined metamodels and the metamodel
mappings. This is to automate the generation of the required UML profile. The
automatic generation of the required metamodel extensions prevents the potential
inconsistencies between the syntax of the source and target metamodel that a manual
specification may produce. In addition, the effort in the implementation of the UML
profiles is considerably reduced due to the automatic generation since it is not
necessary to know specific details related to the correct UML profile specification or
deal with complexity of large metamodels. The benefits obtained from the automatic
UML profile generation are very relevant since, according to Selic in [76], the lack
of knowledge about the features of the UML profile specification has produced that
many of the existing UML profiles definitions be invalid or of poor quality.

In general terms, the metamodel extensions that must be implemented in the
UML profile can be automatically identified by comparing the source and target
metamodels according to the semantic equivalences identified (defined in the
metamodel mappings). Thus, the extensions are the additional modeling information
that is necessary to fix the differences that exist between the target and source
metamodel. For instance, if in the source metamodel there is a property that cannot
be mapped to the target metamodel, then the UML profile extends the target
metamodel with this non-mapped property.

Thus, a UML profile can be automatically generated by considering all the
possible metamodel differences, and, for each one of these, to define specific rules
that generate the necessary UML profile extensions.

For the application of the proposed interoperability model a specific process
has been defined. The stages and artifacts involved in this interoperability process
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are defined by considering the solutions proposed to solve the three challenges
presented. This interoperability process is detailed in the next section.

5 The Model-Driven Interoperability Process

In this section, we introduce the process to achieve and automate interoperability
in model-driven developments, which is comprised by the following four steps:
(1) Definition of modeling anguage metamodels; (2) Definition of integration
metamodel; (3) Automatic UML profile generation; and (4) Generation of model-
interchange mechanisms. Steps 2–4 of the process are based on original contribu-
tions that were created to tackle the interoperability challenges identified.

The modeling language integration is the core of the model-driven interoper-
ability process proposed. It automates the generation of the necessary metamodel
extensions and guides the specification of appropriate mappings, which are the main
artifacts to perform the automatic model interchange. Thus, the first three steps of
the interoperability process are related to perform the integration of the modeling
languages involved. Figure 4 shows a BPMN [84] schema of the interoperability
process proposed.

In the definition of this interoperability process, different works have been
considered. Some of these works are: definition of UML profiles using DSML
metamodels [27, 52, 76, 85], correct use of metamodels in software engineering
[41], UML profile implementations,1 interchange between UML profiles and
DSMLs [3], and new UML profile features that are introduced in UML [65]. The
four steps that comprise the interoperability process are detailed below:

Step 1: Definition of Modeling Language Metamodels. The first step of the
process corresponds to the starting point proposed as solution of the first integration
challenge presented in the previous section, which is the specification or selection of
the EMOF metamodels of the involved modeling languages. As guidance to perform
this step, the paper presented in [32] shows an interesting case study related to the
UML association.

Step 2: Definition of Integration Metamodel. The second step is the definition
of an Integration Metamodel to identify the equivalences between the metamodels
involved and to fix the mapping issues that are produced by structural differences
that may exist. Detailed example of how defining an Integration Metamodel and its
application is presented in [28, 29].

Step 3: Automatic UML Profile Generation. This step considers the automatic
generation of the UML profile that implements the metamodel extensions that are
required to customize the abstract syntax of a target modeling language with the

1OMG: Catalog of UML Profile Specifications, http://www.omg.org/technology/documents/
profile catalog.htm

http://www.omg.org/technology/documents/profile_catalog.htm
http://www.omg.org/technology/documents/profile_catalog.htm
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Fig. 4 Model-driven interoperability process

modeling information of the MDD approach involved. A suite of transformation
rules and application example for this step has been presented in [30, 31]

Step 4: Generation of Model-Interchange Mechanisms. This step considers
the generation of the necessary model transformations rules to automatically
obtain from the models that are defined with the customized modeling language
appropriate inputs (models) for specific modeling management tools, such as
model compilers. The interchange mechanisms also transform source MDD models
into equivalent representation using the customized modeling language. This is a
bidirectional interchange of models. More details related to the development of this
step can be found in [31].

For implementing an interoperability solution according to these four steps,
existing open-source modeling tools can be used. For instance, the works presented
in [32] and [34] implement a complete interoperability processes by considering
the eclipse modeling tool facilities (UML profiles, eclipse metamodeling facilities
(EMF), and ATL transformations). However, specific implementations can be also
performed, for instance, in [29] we present a commercial tool that implements the
model interchange mechanisms based on XSLT transformations.

Furthermore, the different artifacts that are involved in the application of
the proposed interoperability process are defined to facilitate the validation and
verification in each step. Some of the validation and verification facilities that can
be obtained are the following:

• It is possible to verify the abstract syntax related to the modeling languages that
must interoperate by means of the metamodels that are involved in the inter-
operability process. Also, the definition of metamodels by means of a standard
metamodeling language (EMOF) facilitates the verification of the abstract syntax
specified in relation to the supported semantics of the corresponding modeling
languages.
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• The construction of an Integration Metamodel facilitates the definition of specific
rules for automatic UML profile generation. It allows the definition of verification
mechanism that assures the correct application of these rules, and, hence, the
correct generation of the resultant UML profile.

• The interchange of models is based on specific model-to-model transformation
rules, which are based on the generated metamodel extensions and mappings.
This allows the implementation of validation mechanisms to assure that the
metamodel extensions and the defined models are defined according to the
specification of the MDD approach involved.

6 Conclusions

In this chapter, we propose a conceptual model, which is used as reference to
identify the necessary tools, and artifacts for the definition of concrete model-driven
interoperability solutions.

The different elements considered in the proposed interoperability model have
been instantiated by using the current model-based technologies. To complete the
proposed interoperability model, we have defined a specific process, which indicates
how the different elements of the proposed model can be coordinated to support the
automatic interoperability in a model-driven context.

Thus, the interoperability process obtained is aligned with current modeling
standards and technologies, such as modeling language specifications using meta-
models, metamodel extension mechanisms that are implemented as UML profiles,
and interchange mechanisms that are implemented through model transformations.
Also, time and defects related to manual specification of metamodel extensions
and transformation rules are reduced by means of the automatic generation of the
interoperability artifacts involved.

The structure proposed for the interoperability process is also a suitable ref-
erence for other metamodel extension mechanisms or proposals for model inter-
change. This structure is easily adaptable to different model-based technologies.
For instance, the UML profile generation rules can be changed to implement the
required extensions with a different extension mechanism. The work presented by
Bruck et al. in [15] introduces different approaches for the definition of metamodel
extensions and provides a comparative summary about the approaches that are
presented.

The adaptation to potential changes that the involved modeling languages may
suffer is also improved by the proposed interoperability process. Changes in the
modeling languages directly impact the defined metamodels. With the application
of the proposed process, these changes are automatically propagated to the interop-
erability artifacts (metamodels extensions, and mappings). This is very important,
especially when the involved modeling languages are comprised by a big number of
conceptual constructs, which are permanently changing. In this context, the manual
identification of the impact that a change in the modeling languages has over the
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defined extensions and model transformation rules can be a titanic labor, which
demands a lot of time and usually is error prone.

The report presented in [34] and the paper presented in [32] show two empirical
evaluations of the proposal, which consider their industrial application in an
industrial MDD scenario, and the definition of verification mechanisms to assure
the completeness of the information exchanged.

Finally, the following works present the application of the interoperability model
and process proposed in different contexts:

• Linking of goal-oriented modeling and MDD [5–7, 33, 68].
• Integration of domain-specific modeling languages and general-purpose model-

ing languages [29–32].
• Application of verification model in MDD contexts [56, 57].
• Business Modeling for Service Engineering [73, 74].
• Application of Software Maturity models in MDD processes [81].
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54. Lukácsy, G., Szeredi, P., Benkő, T.: Towards automatic semantic integration. Paper Presented
at the 3rd International Conference on Interoperability of Enterprise Software and Applications
(I-ESA), Funchal - Madeira Island. I-ESA (2007)
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Relationship model or of Unified Modeling Language (UML). However, the lack
of consensus on which is the most suitable one for modeling applications in the
geographical domain brings up a number of problems for field advancement, mainly
problems of interoperability of database design and CASE tools. The Model Driven
Architecture (MDA) approach allows the development of systems from an abstract
view until the corresponding implementation code that can be automatized by
means of models transformation. A UML Profile is an extension mechanism of
UML which allows a structured and precise extension of its constructors, being a
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infrastructure. This chapter describes the use of MDA approach in the design of
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1 Introduction

The activity of software development is a task that requires increasing use of
standardized methodologies and techniques that are widely known. Currently, the
main concern of the designer is a good understanding of the problem domain in
order to generate solutions that suit the real necessities of the users.

In order to assist in this task of understanding the problem and reducing the
system complexity to be developed, the main technique that is used is modeling.
A model is a reality simplification [9]. In database design, the construction of
models in steps helps to design the database structure without having to worry about
implementation details.

In the last 20 years, research has aimed to create or adapt conceptual data models
for geographic applications. The existence of several models has brought a problem
to the area, which is the lack of a modeling standard. Tools have been created
for different models and it is difficult to obtain interoperability among the created
solutions.

For the standardization of these models, a Unified Modeling Language (UML)
profile called GeoProfile [21] was proposed. A profile is an extension mechanism
of the UML, which allows customizing the UML to a specific domain. The
GeoProfile was proposed for conceptual data modeling in the geographic domain,
which puts together the characteristics of the main existing spatial data conceptual
models. The construction process of the GeoProfile can be compared with a step
of the domain engineering, which is the domain analysis, in which the domain
knowledge is studied and analyzed. According to Falbo et al. [10], one of the
domain analysis goals is to make possible the reuse of the domain model generated
for a group of applications. One of the UML profile construction outcomes is a
domain metamodel. This metamodel contains reusable requirements, of the intended
domain, to build applications in that domain.

Furthermore, as an effort for the geographic information standardization, some
organizations, such as the International Organization for Standardization (ISO) and
the Open Geospatial Consortium (OGC), have published international standards to
help in the construction of standardized geographic applications.

The objective of this chapter is to describe the use of the Model Driven
Architecture (MDA) approach in the design of databases in geographical domain,
using the GeoProfile aligned with international standards of ISO 191xx series. The
chapter also shows that with the automatic transformation of models it is possible to
achieve the generation of scripts for spatial databases from a conceptual data schema
in a high level of abstraction.

Section 2 presents the main concepts related to modeling of geographic
databases, describes the main international standards for geographic information,
and summarizes the GeoProfile. Section 3 describes the steps and types of models
used in the MDA approach. Section 4 describes the process of designing geographic
databases based on the MDA approach. Section 5 illustrates the entire process of
designing a geographic database, based on a case study of a system in the field of
sugarcane crop for ethanol production. Some conclusions are presented in Sect. 6.
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2 Geographic Database Modeling

2.1 Basic Requirements

One of the main components of a Geographic Information System (GIS) is the
storage component denominated geographic database, whose function is to structure
and store the data in order to allow analysis operations involving spatial and
alphanumeric data [35].

Due to the complexity of GIS applications, a major challenge in developing these
systems has been designing the database, since this type of project requires the use
of different tools, as the activities required for their preparation vary according to the
complexity of the system, the type of personnel involved, the database management
system (DBMS) used, etc.

The database design is traditionally done in three stages: conceptual, logical,
and physical [8]. According to Borges et al. [4], for applications in the geographical
domain, the level of conceptual representation provides a set of concepts with which
the geographic phenomena, such as rivers, buildings, roads, and vegetation, can be
modeled at a high level of abstraction, as perceived by the user. Classes to be created
in the database are defined at this level, which are possibly associated with some
kind of spatial representation.

Parent et al. [27] highlight some advantages of using conceptual modeling in
applications that manipulate geospatial data. First, users can express their knowl-
edge of the system using concepts that are close to their reality and independent of
computing concepts. Moreover, as conceptual modeling is independent of system
implementation, the result of modeling remains valid in case of technological
changes. That is, the developed scheme can be reused regardless of the GIS chosen
for the system implementation. Finally, due to its readability, conceptual modeling
promotes the exchange of semantic information referring to the project.

Because of the particularities of the geographic information, several specific
solutions for the modeling of geographic data have emerged in recent years. Lisboa-
Filho and Iochpe [19] proposed a list of key requirements for modeling geographic
data as follows:

• Geographic phenomena and conventional objects: In a geographic database, in
addition to the data on geospatial phenomena, there are generally conventional
data, such as those contained in any information system. A farm, for example, can
be a geographical phenomenon if its spatial information is stored in the database,
such as its boundaries. On the other hand, the information about the owner of
the farm can be an example of a conventional object if it does not present spatial
features.

• Field and object views: The classification of geographic phenomena in these two
views is intended to represent properly the geographical reality observed. While
in the object view the real world consists of entities and individual well-defined
spatial boundaries (e.g., rivers, plots, and streets), in the field view, the real world
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is understood as a set of attributes that vary continuously in space (e.g., relief,
soil type, temperature).

• Spatial aspects: This requirement refers to the need of connecting fields and
geographic objects to an abstract spatial form for their representation. In the
object view the phenomena are represented by points, lines, polygons, or their
combinations. In the field view, a continuous surface can be represented by
numerical models, sets of isolines or grid of cells, for example. The type
of representation to be used depends on the purpose of the application, the
representation scale, and the shape of the phenomenon.

• Thematic aspects: In a GIS, geographic entities are not treated in isolation.
They are grouped according to the characteristics and relationships they have
in common. The division of a system by themes (e.g., hydrography, vegetation,
urban planning) allows modeling simplification and facilitates understanding of
the area by the designer.

• Multiple representations: Users can have different views of the same phe-
nomenon, which are probably represented in different scales or projections. For
example, a city can be represented as a point or a polygon depending of the data
scale.

• Spatial relationships: The identification of the types of relationships that must
be kept in the database is a complex problem, since the number of possible
relationships is large in the geographical area, because of the spatial interactions
that may occur among the phenomena. For example, a road can cross a river, but
this relationship can be or not be held in the database.

• Temporal aspects: The storage of the changes that occur in geographic features is
important for a better understanding of the phenomena and making predictions.
For example, the limits of a parcel can change over the years.

Other similar classifications were also proposed, for example, Friis-Christensen
et al. [11] divide the requirements for modeling geographic data into five groups as
follows: spatial-temporal properties, roles, associations, constraints and data quality.
In a deeper analysis, it is possible to confirm that both classifications are equivalent
in many aspects.

Pinet [28] lists a series of conceptual models of specific data for the geographical
domain. Among them we can highlight some models based on objects, such as
GeoOOA [17], OMT-G [4], MADS [27], UML-GeoFrame [20] and the PVL model
of the Perceptory tool [1]. Each model has particular characteristics and seeks to
meet the requirements for geographic application modeling. Based on these models
and in accordance with International Standards for Geographic Information shown
in the next section, the UML GeoProfile was proposed as described in the Sect. 2.3.

2.2 International Standards for Geographic Information

Standards are used in many fields of society and some of them are better known
as, for example, the series of standards ISO 9000, which is quite common in
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organizations, because it defines a set of rules and guidelines for quality manage-
ment in an organization. With respect to geographic information, some efforts to
standardize work have been undertaken by organizations like the ISO and the OGC.

These organizations are examples of the two types of groups that exist for
international standardization, which are the international organizations and inter-
national consortia. International organizations base their decisions on consensus
and are independent of the interests of individual industries or governments. Their
standards are known as de jure standards. An example of international organization
is the ISO. On the other hand, the international consortia are made up primarily
of members from industry, government agencies, and universities. The standards
developed by consortia are called industry standards or de facto standards. The OGC
can be considered the most important consortium in the geographic information
community [18]. According to Brodeur and Badard [5], the development of
standards for geographic information aims to reduce the inconsistency between de
jure and de facto standards.

2.2.1 The ISO 191xx Series of the ISO/TC 211 Technical Committee

The Technical Committee ISO/TC 211 is the one responsible for the preparation of
the ISO 191xx series, which defines the international standards regarding the geo-
graphic information field. These standards aim to promote the usage of geographic
information in an efficient, effective, and economical way, thus contributing to the
solution of global problems, such as the humanitarian and ecological problems [34].

The ISO 191xx series standards are divided into specific groups. As listed in the
ISO/TC 211 [34], there is the group of standards that specify the infrastructure for
the geospatial standardization, standards that describes data models for geographic
information, standards for geographic information management, standards for geo-
graphic information services, standards for encoding of geographic information, and
standards for specific thematic areas. These standards can contribute in several levels
of abstraction, since modeling up to the consideration of implementation aspects. In
this chapter some standards related to data models for geographic information, more
specifically the ISO 19107 Spatial Schema [32], ISO 19108 Temporal Schema [31]
and ISO 19123 Schema for Coverage Geometry and Functions [33] standards, are
analyzed.

The ISO 19107 Spatial Schema standard specifies a schema to describe and
manipulate the spatial characteristics of the geographic features. A feature is an
abstraction of a real world phenomenon. This abstraction is a geographic feature
if it is associated with a relative localization on the Earth [32]. The standard
consists of classes’ diagrams that can be used in application schema, profiles, and
implementation specifications. It also defines spatial operations, standards for use
in the access, query, management, processing, and data exchange of geographic
objects. The ISO 19107 standard defines in detail the geometric and topological
characteristics that are necessary to describe the geographic features.
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The ISO 19108 Temporal Schema standard defines the concepts regarding the
temporal characteristics of geographic information, showing how these characteris-
tics are abstracted from the real world. Jensen [14] considers two types of time: the
valid time and the transaction time. The first one is the time when a fact is true in
the observed reality and it is generated by the user. The second one is the time when
a fact is stored in a database and it can be recovered. This international standard
emphasizes the valid time instead of the transaction time. The standard consists of a
class hierarchy that considers the geometric and topological aspects of the temporal
characteristics [31].

The ISO 19123 Schema for Coverage Geometry and Function standard, on the
other hand, defines a schema for the spatial characteristics of coverage. Coverage
is a feature that has multiple values for each type of attribute and can represent a
simple feature or a set of features. They integrate discrete and continuous geographic
phenomena [33]. Examples of coverage include raster, TIN, point coverage, and
polygon coverage. They are used in several specific areas such as, remote sensing,
meteorology, soils, and vegetation.

Some related works have analyzed conceptual data models and their integration
with geographical standards. Belussi et al. [3] describe the conceptual data model
GEOUML in which a geographic database schema can be designed from the
specialization of ISO TC211 standards. However, this model does not use graphic
symbols for representing phenomena’s spatial representation, which is a feature
presented in various models proposed in the literature [1]. A study where the model
elements of the Perceptory tool are related to the ISO standards is presented in [6].

2.2.2 Open Geospatial Consortium Standards

The OGC is currently the main consortium responsible for developing industry
standards for Geographic Information Systems. Its development process is different
from the ISO approach. The OGC develops specifications mainly focused on
implementation, while ISO develops more abstract specifications.

Despite these minor differences, both ISO and OGC have developed cooperative
agreements to harmonize their work and to develop future work [6]. For example,
the document OpenGIS—Simple Feature Access is also recognized by the ISO
under the name ISO 19125. The document is divided into two parts. The first
(Common Architecture) describes a common architecture for simple geographical
features and the second part (SQL option) describes an SQL implementation of
the model described in the first part. Both parts deal with simple features, namely
features whose geometry is restricted to two dimensions. The OGC standard used
is the Simple Feature Access, as well as GeoProfile and projects using the MDA
approach, both described in this chapter; this will be handled as its corresponding
ISO 19125.
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2.3 GeoProfile: A UML Profile for GIS Databases

The UML is a visual modeling language used for documenting artifacts of software
systems. Despite being a general purpose language that can be used in various
application domains, there are situations in which the elements of the UML are
not able to effectively express some concepts of particular domains. Thus, the
language provides extension mechanisms that allow customizing it to suit a specific
application domain as follows:

• Stereotypes: A stereotype defines how an existing metaclass may be extended and
enables the use of specific terminology for a domain or different platform in place
of or in addition to the terminology used for the extended metaclass. Stereotypes
can also change the appearance of the elements of the extended model using
graphic icons.

• Tagged values: They are additional meta-attributes associated with a metaclass
of the metamodel extended by a profile and add information to elements of the
model.

• Constraints: These are restrictions associated with the corresponding elements of
the metamodel. They can be written using natural languages or in Object Con-
straint Language (OCL), which is also standardized by the Object Management
Group (OMG).

• Profile: A UML profile is a set of extension mechanisms grouped in an UML
package stereotyped as profile.

A well-specified UML profile will have direct support of Computer Aided
Software Engineering (CASE) tools. In other words, once the profile is defined,
there is no need to implement new CASE tools. Enterprise Architect [30] and
Rational Software Modeler [13] are examples of CASE tools with support for UML
profiles.

The UML profile denominated GeoProfile [21, 23] was proposed to integrate
the features of the major geographic data conceptual models. Thus, the GeoProfile
is not a new model, but rather a compilation and integration from the builders of
specific GIS applications present in the main models in the literature. With this, it is
possible to use all the elements and advantages of UML 2.0. In addition, a designer
familiarized with a particular model can customize GeoProfile, making it look
like that model. The GeoProfile comprises a metamodel and a set of stereotypes,
described in the following subsections.

2.3.1 The GeoProfile Metamodel

The GeoProfile metamodel, as defined in [21], is showed in Fig. 1. A geographic
database comprises a number of themes, each of presented as a Theme metaclass.
A theme can be formed by the aggregation of other themes or objects with or
without spatial representation, characterized by the classes GeoPhenomenon and
ConventionalObj, respectively.
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Fig. 1 Metamodel for the geographical domain

When one chooses to associate a spatial representation with objects of a class,
it is possible that the phenomenon is perceived in the geographic field view
(GeoField) or object view (GeoObject). Depending on the technique used in
geographic information acquisition in the field, its representation is selected from six
options as described in [12]:AdjPolygons,Isolines, TIN, GridOfPoints,
GridOfCells or IrregularPoints. Representation of geographic objects
can be of the types Point, Line, Polygon or ComplexSpatialObj (the
object geometry consists of other geometries). To specify multiple representations,
it is possible to use more than one stereotype in the same class of the conceptual
schema.

The metaclass Network is used to modeling a whole network structure and
contains only alphanumeric attributes which describes the general features of the
network. Since this metaclass does not have spatial information, it was defined as a
specialization of ConventionalObj. The networks are formed by NetObject
objects, which can be nodes (Node), unidirectional arcs (Unidirectional), or
bidirectional arcs (Bidirectional).

GeoProfile also indicates whether a class is considered temporary or not. In
this case, it is implied that both the attributes and spatial data of an object
can vary, and these changes must be maintained in the database. In this way,
the metaclass TemporalObject was added to the metamodel. This metaclass
has two attributes that characterize temporal information. One of these attributes
indicates the temporal type (validity time, transaction time or bitemporal time),
whereas the other defines the used temporal primitive type (instant or interval).
There are two enumerations (TemporalType and TemporalPrimitive) for
the possible values these attributes can assume.
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Fig. 2 GeoProfile’s stereotypes

2.3.2 GeoProfile’s Stereotypes

After creating the domain metamodel, the next step is to extend the UML meta-
classes to create the profile itself. Figure 2 illustrates the stereotypes that have been
defined for GeoProfile, which extend the metaclasses Class and Association
of the UML. The black arrows refer to an extension relation between a stereotype
and an UML element. This is the mechanism proposed by OMG to extend the UML
in the following way: a basic UML element can be used to represent an element of
a generic domain; in this case the UML elements Class and Relationship are
used to represent the GeoProfile elements.

The white arrows refer to a specialization relation between UML stereotypes.
This kind of relation is called Is A, where a stereotype subclass inherits all the
features and information from another stereotype superclass. New information and
features can be added to the stereotype subclass, differentiating it from the others.
The stereotypes Node and Arc, for example, are specializations of the stereotype
NetObject. Both stereotypes, Node and Arc, are subclasses of NetObject and
have common features inherited from NetObject, but each one of them can hold
its own distinct features and information.

The GeoObject and GeoField stereotypes represent the geographic phe-
nomena perceived in the objects and fields views, respectively. Since these stereo-
types were defined as abstracts, as well as the NetworkObj and Arc stereotypes,
they will not be included in the data schema during the modeling using the
GeoProfile, but their corresponding subclasses will.
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Fig. 3 Graphical notation for stereotypes

Fig. 4 An example of a conceptual schema using GeoProfile

To deal with temporal aspects, the TemporalObject stereotype, that also
extends the metaclass Class, was included. The two enumerations that were
included (TemporalPrimitive and TemporalType) are used to list the
possible values that the meta-attributes (tagged values) temporalPrimitive
and temporalType may assume, which are: instant and interval.

Besides the extensions to the metaclass Class, extensions to the metaclass
Association were included. These extensions are aimed to creating stereo-
types to serve the topological relationships [7], which are: Touch, In, Cross,
Overlap, and Disjoint. In addition, designers are allowed to indicate that an
association between two objects is only valid for one period and this history should
be kept in the database. This is done by simply assigning the stereotype Temporal.

An important requirement for the project of UML profiles described in [26] is the
definition of a graphical notation for the stereotypes. In the modeling of geographic
databases, the use of this feature to represent the spatial characteristics of geographic
objects is used in many models, for example, pictograms, initially developed by
Bédard and Paquette [2], which influenced many models that emerged later. They
help improve clarity and make the modeling more intuitive for the designer and
easily understood by users. Figure 3 shows a set of icons that can be added to
GeoProfile stereotypes. These icons were also based on the models mentioned
above (UML-GeoFrame, OMT-G, MADS, and GeoOOA Perceptory’s model), but
designers accustomed to using a particular model can customize these icons as they
wish.

Figures 4 and 5 illustrate some examples of classes modeled with GeoProfile
stereotypes in graphic and textual forms. Figure 4 illustrates an example of spatial
relationship between two classes (District and AdmRegion) with polygon
spatial representations, specified by the stereotype Polygon. The stereotype
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Fig. 5 Examples of classes using stereotypes for the field view

Overlap shows the spatial relationship that occurs between the classes. Figure 5
illustrates three examples of classes with spatial representation in the field view. The
SatImage class with the stereotype GridOfCells, the Humidity class with
the stereotype IrregularPoints and the Relief class with the stereotype
GridOfPoints.

Besides the stereotypes, some constraints were also added, which are useful for
the conceptual schema validation. Those constraints basically prevent the occur-
rence of three error types: addition of incompatible stereotypes with a same element,
poor network construction, and addition of impossible topological relationships
between two elements (e.g., cross relationship between two geographic objects with
point representation). These three constraints groups were analyzed and a set of
OCL expressions was specified. OCL has been frequently used to specify additional
integrity constraints to the UML diagrams [29].

The code below shows one of the GeoProfile’s OCL constraints, which is
applied to the stereotype GeoField. This constraint defines that each class
stereotyped as a geofield (context GeoField) must capture all stereotypes
applied to this class (getAppliedStereotypes). If the output is stereotyped
as a geographic object (Point, Line, Polygon, or ComplexSpatialObj)
through the method select, the result set must be empty (isEmpty). This con-
straint checks for incompatible stereotypes in a class which has been assigned the
stereotype GeoField in the schema. More details regarding all OCL constraints
and how to implement them in a UML profile can be accessed in the GeoProfile’s
Web page at www.dpi.ufv.br/projetos/geoprofile.

context GeoField
inv: self.getAppliedStereotypes() ->
select(s | s.name = ’Point’ or s.name = ’Line’ or
s.name = ’Polygon’ or s.name = ’ComplexSpatialObj’)
-> isEmpty()

Finally, although the GeoProfile is most commonly used to static data schema
designs, the class behavioral modeling, that is, the specification of the applicable
operations to instances of a class, can be done naturally within this class, using
methods specified in the UML.

www.dpi.ufv.br/projetos/geoprofile


386 J. Lisboa-Filho et al.

3 Model-Driven Architecture

To improve software development OMG has adopted the MDA approach, which
emphasizes the use of models. In this approach, the software development process
is directed by the modeling activity of the system. A system model is a description
using a specific notation. The artifacts produced in MDA are formal models, that is,
models that can be understood by computers [25].

In MDA, the system requirements are modeled using a Computation Independent
Model (CIM). This model is called domain model or business model and it uses a
familiar vocabulary to the domain experts. A CIM does not show details of the
systems structure, but of the environment in which the system will operate. This
kind of model provides a useful way to understand the problem itself [9, 25].

In the second level of abstraction we find the Platform Independent Model (PIM).
This is a model with an abstraction level relatively high and independent from any
implementation technology [9, 16, 25].

Later, the PIM is transformed into a Platform Specific Model (PSM). A PSM is
customized in order to specify the system in terms of implementation constructors
which are available in a specific implementation technology. For instance, a PSM
relational database include terms such as table, column, foreign key,
among others. A PIM can be transformed into one or more PSMs. For each
specific technology platform, a separate PSM is generated. The following step is
the transformation of each PSM to source code. This transformation is relatively
direct since the PSM is adjusted to the selected technology. Figure 6 illustrates the
different levels of abstraction of MDA approach, showing the CIM as the highest
level of abstraction model and the others, PIM and PSM, as inferior levels.

The CIM, PIM, and PSM are shown as artifacts in different steps in the
system development life cycle, and they represent different abstraction levels in
its specification as well. The ability of transforming a high level CIM into a PIM
and later, transforming a PIM into a PSM increases the abstraction level in which a
designer can work. This allows a designer to face more complex systems with fewer
struggles [9, 25].

The development process using MDA approach may be compared with the
process of domain engineering, which highlights three main steps: domain analysis,
domain design, and domain implementation [10]. At the domain analysis step, the
domain requirements are defined. These requirements are expected to be reusable,
such as the CIM in the MDA approach, which is used to understand the problem
itself. In the domain design step a generic and independent of platform architecture
is established, such as the PIM level. Finally, at the domain implementation step the
identification of reusable assets is done, as well as the architecture and components
implementation, such as in the PSM level of the MDA, which transforms the
considered PIM into a specific platform.

One of the aims of the MDA approach is to reduce the system development time.
For this purpose, models in different abstraction levels are used, starting with models
in high abstraction levels. Therefore, one of the challenges is transform high level
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Fig. 6 Levels of abstraction
of the MDA approach

models into lower level models. The transformation of models is the process of
converting a model into another model that represent the same system [25].

An important characteristic of the MDA is that the transformations are auto-
matically executed. Traditionally, the transformations from model to model or from
model to code are manual. In the MDA approach, on the other hand, transformations
are executed preferably by tools [16].

An automatic mapping is specified using a language to describe the transforma-
tion of a model into another. A desirable quality of a transformation language is
portability; this enables the use of a mapping with different tools [25].

Some tools, available in the market, for supporting the MDA approach, have
mechanisms for transforming predefined templates, but the ideal is to offer support
to a language that enables users to customize the transformation of models as
needed. An example of such language is the Atlas Transformation Language (ATL)
developed by the research group ATLAS INRIA & LINA [24].

This language allows the definition of transformation rules, in which, given a
schema created in a model of entry, along with transformation rules, generates a new
schema in the output model, according to those rules. Thus, this language allows
the transformation of a schema made from GeoProfile, for example, into another
specific conceptual model, allowing the exchange of information between models
and giving the designer flexibility in creating a schema. This approach can also be
used in the transformation of a schema in each of the three levels of MDA; in this
case, using the ATL language, it is necessary to define the transformation rules for
each level.

4 Modeling Geographic Databases Using MDA

The use of MDA is not specific to the geographical domain, but it was used in this
work to exemplify a domain engineering on the geographical field of study.
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The development of GeoProfile was mainly motivated by the fact that UML can
be used, along with all its available resources, for example, CASE tools, to model a
geographic database.

The development of GeoProfile based on international standards is in accordance
with the abstraction levels of the MDA approach. A major benefit of this approach
is the productivity gain through the emphasis on modeling and the transformation of
high-level models to lower-level models in an automated way [16]. Thus, the design
of geographic databases can also take advantage of these benefits. For example,
using tools that support the transformations will make it possible to generate,
from the GeoProfile, lower-level models and, later, the database scripts for specific
technologies, such as Oracle Spatial and PostGIS.

In related studies, Miralles and Libourel [22] propose a framework to design
and implement spatial-temporal databases following the MDA approach, but this
framework does not consider the CIM level, but suggests the use of the Perceptory
tool to specify the business model. Bérdard and Larrivée [1] also mention the MDA
approach as a key application for the use of the Perceptory model and consider the
three levels of abstraction, namely, CIM, PIM, and PSM.

4.1 CIM Level

At this level of abstraction, only aspects related to the problem’s domain are
addressed, without dealing with implementation details. For the conceptual model
of the database, the GeoProfile is used at this level, because it is designed to help
designers in the first steps of a database project. The concern is to represent which
are the spatial features of a particular geographic element and not how these features
will be implemented. The use of stereotypes helps in this direction, since they make
the model more intuitive for the user to understand the spatial features that are being
represented.

Figure 7 illustrates an example of a schema modeled with GeoProfile at this level
of abstraction. The schema shows four classes, three of them with spatial features
and thus are stereotyped considering the notation proposed in Fig. 3.

4.2 PIM Level

After constructing the initial model of the database using GeoProfile, this model
is transformed into a PIM model. At this level of abstraction, the elements of
international standards are taken into account. To make the transformation, the
GeoProfile stereotypes were mapped to specific classes of international standards.
Table 1 illustrates the mapping carried out with the standards ISO 19107, ISO
19108, and ISO 19123. However, similar mapping can also be made for OGC
standards. Due to lack of space, these will not be seen in this chapter.
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Fig. 7 Example of a conceptual schema at the CIM level of abstraction

Table 1 Correspondence between the GeoProfile elements and the ISO 191xx standards

Requirements of
GeoDB modeling GeoProfile Classes in the ISO standards Standard

Geographical objects Point GM Point ISO 19107
in the object view Line GM Curve ISO 19107

Polygon GM Surface ISO 19107
ComplexSpatialObj GM Complex ISO 19107

Geographical objects TIN CV TINCoverage ISO 19123
in the field view Isolines CV SegmentedCurveCoverage ISO 19123

AdjPolygons CV DiscreteSurfaceCoverage ISO 19123
GridOfPoints CV DiscreteGridPointCoverage ISO 19123
GridOfCells CV GridCell ISO 19123
IrregularPoints CV DiscretePointCoverage ISO 19123

Network elements Node TP Node ISO 19107
Arc TP Edge ISO 19107
UnidirectionalArc TP DirectedEdge ISO 19107
BidirectionalArc TP DirectedEdge ISO 19107

Temporal objects TemporalObject TM Object ISO 19108
Instant TM Instant ISO 19108
Interval TM Period ISO 19108

Figure 8 shows the PIM model resulting from performing transformation on
the model shown in Fig. 7. The spatial features were transformed into attributes
whose types are in accordance with the elements of ISO 191xx standards shown
in Table 1. For example, the City class, which was modeled with the stereotype
<<Polygon>>, takes on a geometry attribute, denominated geometry, of the type
GM Surface. The same was done with the other classes that have spatial features.
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Fig. 8 An example of a model at the PIM level of abstraction

Fig. 9 Example of modeling at the PSM level of abstraction

4.3 PSM Level

The next step is to transform the PIM model into a PSM model, which can be, for
example, an object-relational data model extended to manage spatial objects (e.g.,
Spatial or PostGIS). To illustrate this transformation, Fig. 9 shows an example of the
PSM model that corresponds to the platform Oracle Spatial, which was generated
from the PIM model shown in Fig. 8. This model already takes into account details
of the platform in question, for example, the data types of the platform. Some
attributes were also marked with the stereotype <<PK>> and <<FK>>, which
represent the primary and foreign keys, respectively. The purpose of this step is
to make the model as close as possible of the chosen platform to automate the
generation of the script database.

Listing 1 in the Appendix shows a small part of the transformation code from
the CIM model, shown in Fig. 7, to the PIM model presented in Fig. 8, using
the ATL models transformation language. The definition of transformations in
ATL starts with the transformation module statement as well as the source and
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target models. The module is defined using the keyword module followed by
the module name. The keyword create indicates the source and target models
[15]. After this step, the transformation rules are defined. Those rules are written
using ATL syntax, are saved in files with the extension .atl, and can use either
a declarative or an imperative style. The code presented in Listing 1 shows one
of the transformation rules. This rule is responsible for creating the classes that
have geographic information, that in this case are represented by the GeoProfile
stereotypes, and for creating the elements that were not contained in the CIM such
as, the geometry attribute, whose type need to conform with the ISO standard.

After the transformation of the PIM model, the output model is generated in
the XML Metadata Interchange (XMI) format [26], which is a standard format for
exchanging UML models among CASE tools.

5 Case Study

This section describes an example of using a customized GeoProfile in the Rational
Software Modeler (RSM) CASE tool by IBM®. The study addresses a hypothetical
system for managing a sugarcane crop, which has been widely used for biofuel
production. This case study was chosen because it could use a large number of
elements from the GeoProfile, giving to the reader a good understanding of the
profile and how it can be used for domain engineering. Besides, fuel and renewable
resources are subjects that are widely discussed nowadays. A brief description of the
case study on cultivation of sugarcane for ethanol production is presented below.

The investment in the production of cleaner fuels that can replace, with no
economic loss, traditional fuels (e.g., fossil) has been carried out with tax incentives
from the Brazilian government. These new fuels, or biofuels, pollute less because
the production process tends to be cleaner and have more balanced CO2 emissions.
The main biofuel currently used in Brazil is the ethanol produced from sugarcane.
However, its production requires a large amount of natural resources (e.g., areas
planted with monoculture) for cultivation and subsequent production of ethanol.
The planting, fertilizing, and harvesting (e.g., manual or mechanized), as well
as loading, transporting, weighing, unloading and cleaning operations, are crucial
for a good industrial performance. Many environmental problems can arise in the
production of ethanol, since most crops occupy wide contiguous areas, isolating
and/or suppressing forest reserves, as well as the likely deforestation of catchments,
siltation of streams, and others.

Based on the above description, one can realize that the problem involves
important geographic phenomena that require spatial analysis and therefore need
to be stored in a database. As an example, we can mention some natural resources
(e.g., soil, topography, vegetation, hydrography) and anthropogenic activities (e.g.
production, transport, labor force).

From the description of the problem, a CIM model was initially developed
(Fig. 10) using the UML GeoProfile. In that diagram, each class represents an entity
of the real world and shows how these can or should be linked. For example, in
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Fig. 10 Conceptual schema (partial) using GeoProfile (the CIM level)

the association element between the classes Farm and Plot, the specification of a
spatial restriction (stereotype <<In>>) indicates that the spatial component of each
Plot should be geometrically within the spatial component of a Farm.

Notice that the theme ReedPlantation deals with information related to
sugarcane farms, such as the location, the division of a farm into plots, varieties
that are grown in the farm, and the data on the farm’s owner.

Also, in this theme, the temporal association (1:1) between the classes Plot and
Planting indicates that each plot should have only one type of variety, in a given
period, but it can record temporal evolutions of the associations of this plot with
other types of variety. That is, there cannot be two different sugarcane crops on the
same plot in the same period of time.

Data about access roads and some natural phenomena such as topography,
vegetation, and hydrology are modeled in specific packages (themes). These
phenomena have spatial components, so that information can be retrieved through
spatial analysis operations, such as transport routes within a farm, calculation of
buffer zones next to water courses, and calculation of slope based on the relief and
queries on vegetation types that occur in the area of the farm.
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Fig. 11 Schema using the ISO 191xx standards (the PIM level)

The model in Fig. 10, however, is at a high level of abstraction; this is the
CIM level in the MDA approach; as seen previously, it is useful for the user and
the designer to understand the problem’s domain in question. The transformation
process of this initial model into a PIM model, the next level of the MDA, follows
the same way described in Sect. 4. Figure 11 shows the PIM model resulting from
this transformation.

Notice that in this step new specifications were added to the schema. For
example, the temporal association (1:1) was transformed into an association (1:*)
and one attribute was included in the class Planting to store the period in which
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Fig. 12 Customized schema for the object-relational model (the PSM level)

a sugarcane crop was grown in a plot. Attributes related to the geometry and the
object identifiers of the classes were also added.

In the next step the PIM is transformed into a PSM model, which is the lowest
MDA level. As stated in Sect. 4, a PIM can be transformed into many PSMs,
according to the platforms that will be used by the user. However, for this case
study, only one example of mapping is shown, namely an object-relational database
model. The PSM model resulting from this transformation is shown in Fig. 12.
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With the model at the PSM level of abstraction, it is already possible to extract all
the information needed to generate the database code. An example of the geographic
database script generated from the theme ReedPlantation of Fig. 12 using the
DBMS Oracle Spatial® is shown in Listing 2 of the appendix.

6 Concluding Remarks

The development of the GeoProfile was mainly motivated by the fact that UML
can be used, along with all its available resources, for example, CASE tools, to
conceptually model a geographic database. The GeoProfile has in its definition the
main requirements for geographic applications and has the features of the main
existing conceptual data models for GIS applications.

This chapter showed how GeoProfile meets the international standards for
geographic information, using the ISO 191xx standards. The use of standards is
essential in the geographic database project. The MDA approach made it possible
to show how the GeoProfile is linked to the international standards.

The graphical notation of GeoProfile was customized in the RSM CASE tool,
and some examples of conceptual schemes were modeled. The tendency is that
the CASE tools, in general, start supporting this mechanism of UML extension,
providing a greater number of options for the designer. Finally, a case study was
presented, showing how to design a geographic database step by step, using the
MDA approach with the aid of a CASE tool that supports a UML2.0. More
information about GeoProfile, with examples of how to customize different CASE
tools, can be obtained at www.dpi.ufv.br/projetos/geoprofile.
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Appendix

Listing 1 An example of an ATL transformation rule.

rule stereotypeClass
{

from
input : geoProfile!Class(

not thisModule.emptyGeometry(input.stereotype))
to

(continued)

www.dpi.ufv.br/projetos/geoprofile
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(continued)
output : ISO!Class(

name <- input.name, reference <- input.reference ->
collect(e | thisModule.getReferences(e)).asSet(),

attribute <- input.attribute ->
collect(e | thisModule.getAttributes(e) ).asSet(),

attribute <- id,attribute <- geometry
),
id : ISO!Attribute(

name <- ’id’ + input.name,
type <- thisModule.integerDataType()

),
Geometry : ISO!Attribute(

name <- input.name + ’Geometry’,
type <- if( thisModule.isPolygon( input.stereotype ))

then thisModule.polygonDataType()
else thisModule.pointDataType()
endif

)
}

Listing 2 Geographic database script generated from the theme ReedPlantation
using the DBMS Oracle Spatial® (the PSM level).

CREATE TABLE CITY (
NAME VARCHAR(30),
POPULATION NUMBER,
IDCITY NUMBER,
GEOMETRY SDO_GEOMETRY,

CONSTRAINT pk_City PRIMARY KEY (IDCITY));
CREATE TABLE OWNER (

NAME VARCHAR(30),
GENDER VARCHAR(1),
MARITALSTATUS VARCHAR(10),
HOUSENUMBER NUMBER,
DISTRICT VARCHAR(30),
CITY VARCHAR(30),
STATE VARCHAR(30),
IDOWNER NUMBER,

CONSTRAINT pk_Owner PRIMARY KEY (IDOWNER));
CREATE TABLE FARM (

NAME VARCHAR(30),
AREA NUMBER,
IDFARM NUMBER,
GEOMETRY SDO_GEOMETRY,
IDCITY NUMBER,

(continued)
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(continued)
IDOWNER NUMBER,

CONSTRAINT pk_Farm PRIMARY KEY (IDFARM),
CONSTRAINT fk_City FOREIGN KEY(IDCITY)

REFERENCES CITY(IDCITY),
CONSTRAINT fk_Owner FOREIGN KEY(IDOWNER)

REFERENCES OWNER(IDOWNER));
CREATE TABLE PLOT (

AREA NUMBER,
IDPLOT NUMBER,
GEOMETRY SDO_GEOMETRY,
IDFARM NUMBER,

CONSTRAINT pk_Plot PRIMARY KEY(IDPLOT),
CONSTRAINT fk_Farm FOREIGN KEY(IDFARM) REFERENCES FARM(IDFARM));
CREATE TABLE VARIETY (

KIND VARCHAR (30),
DESCRIPTION VARCHAR (30),
AVERAGEPRODUCTION NUMBER,
IDVARIETY NUMBER,

CONSTRAINT pk_Variety PRIMARY KEY (IDVARIETY));
CREATE TABLE PLANTING (

QUANTITYPRODUCED NUMBER,
GEOMETRY SDO_GEOMETRY,
IDPLOT NUMBER,
IDVARIETY NUMBER,

CONSTRAINT pk_Planting PRIMARY KEY (IDPLOT, IDVARIETY),
CONSTRAINT fk_Plot FOREIGN KEY(IDPLOT) REFERENCES PLOT(IDPLOT),
CONSTRAINT fk_Variety FOREIGN KEY (IDVARIETY)
REFERENCES VARIETY (IDVARIETY) );
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