
Modeling and Verifying WS-CDL Using Event-B

Hong Anh Le and Ninh Thuan Truong

VNU - University of Engineering and Technology
144 Xuan Thuy, Cau Giay, Hanoi

{anhlh.di10,thuantn}@vnu.edu.vn

Abstract. TheWeb Services Choreography Description Language (WS-
CDL) is an XML-based language that describes web service composition
in the view point of choreography by defining their common and comple-
mentary observable behavior, where ordered message exchanges result
in accomplishing a common business goal [3]. However, WS-CDL does
not come with formal specification, nor with official vefication tools. In
this paper, we present an approach to formalize and verify choreogra-
phy composition described in WS-CDL. In the first phase, we propose to
use Event-B as a formal method to model choreography interactions by
transforming WS-CDL entities to Event-B elements. We use the Rodin
platform, in the next phase, to verify some properties of the translated
model. Finally, we run an example to illustrate our approach in detail.

Keywords: WS-CDL, composition, verification, Event-B.

1 Introduction

Building platform-independent and distributed software such as web services
is a growing trend in software architecture. A Web service is a software sys-
tem designed to support machine-to-machine interaction over a network. It is
mainly based upon WSDL, UDDI, and SOAP standards to describe data type’s
exchanges, make services discoverable and specify patterns to invoke specific ser-
vices respectively. In order to group a number of web services into a complex
one, we can use some approaches such as choreography and orchestration com-
position. Composition of web services is increasingly accepted as a paradigm for
integration of applications within and across organization boundaries.

The choreography view focuses on the composition in the global observation,
while the orchestration describes the interaction between one participant and the
others. There are some XML-based languages such as BPEL[13], WS-CDL [3]
which are used to describe the composition. WS-CDL focuses on describing the
business protocol among different participant roles and the participants perform
all the behaviors. Due to lacking of formal semantics and grounding, ambiguous
interpretation of a WS-CDL description possibly occurs. Therefore, research in
the verification of choreographies’ properties has been a recently emerging topic.

Event-B [2] is an evolution of the B method [1] that is more suitable for devel-
oping large reactive and distributed systems. Software development in Event-B

P.C. Vinh et al. (Eds.): ICCASA 2012, LNICST 109, pp. 290–299, 2013.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Modeling and Verifying WS-CDL Using Event-B 291

begins by abstractly specifying the requirements of the whole system and then
refining them through several steps to reach a description of the system in such
a detail that can be translated into code. The consistency of each model and
the relationship between an abstract model and its refinements are obtained by
formal proofs. Support tools have been provided for Event-B specification and
proof in the Rodin platform.

In this paper, we propose an approach to formalize a choreography model by
a formal method, e.g. Event-B. Specifically, we present some rules to transform
a WS-CDL package to an Event-B model. Some properties of the model can be
automatically (or interactively) proved through proof obligations generated from
Rodin platform [2] such as deadlock freeness, order of exchanged messages and
some business requirements. The advantage of our approach is that the use of
Event-B as a method to model choreography interactions since its strong point
is modeling multi-agents and reactive systems. Our main idea comes from the
similarity between some parts of WS-CDL and Event-B; hence we can formalize a
choreography scenario by an Event-B model naturally. Moreover, the approach
is such practical that we can implement a tool transforming a choreography
model to an Event-B model (semi-) automatically. It makes sense as we can
bring the formal verification to web service implementation. It also overcomes
one of disadvantages that make formal methods absent in the web service based
software because of the complexity of modeling.

The rest of the paper is structured as follows: Section 2 provides some back-
ground of WS-CDL and Event-B. Followed by Section 3, we propose an approach
to model a WS-CDL package by formalizing its elements using Event-B method.
Section 4 presents an example of Purchase order to illustrate our approach. Sec-
tion 5 summarizes some related works. We give some conclusion and present
future works in Section 6.

2 Backgrounds

As our approach focuses on modeling of web service choreography by using
Event-B method, in this section, we introduce briefly background of Event-B
and give an overview of WS-CDL.

2.1 Event-B

Event-B is a formal method for system-level modeling and analysis. Key features
of Event-B are the use of set theory as a modeling notation, the use of refinement
to represent systems at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels [2]. An Event B model
encodes a state transition system where the variables represent the state and
the events represent the transitions from one state to another. A basic structure
of an Event-B model consists of a MACHINE and a CONTEXT.

A MACHINE is defined by a set of clauses which is able to refine another
MACHINE. We briefly introduce main concepts in Event-B as follows:

292 H.A. Le and N.T. Truong

VARIABLES represent the state variables of the specification model.
INVARIANTS described by first order logic expressions, the properties of the

attributes defined in the VARIABLES clause. Typing information, functional
and safety properties are described in this clause. These properties are true
in the whole model. Invariants need to be preserved by events clauses.

THEOREMS define a set of logical expressions that can be deduced from the
invariants. Unlike invariants, they do not need to be preserved by events.

EVENTS define all the events that occur in a given model. Each event is charac-
terized by its guard (i.e. a first order logic expression involving variables). An
event is fired when its guard evaluates to true. If several guards evaluate to
true, only one is fired with a non deterministic choice. The events occurring
in an Event B model affect the state described in VARIABLES clause.

An Event B model may refer to a CONTEXT describing a static part where
all the relevant properties and hypotheses are defined. A CONTEXT consists of
the following items:

SETS describe a set of abstract and enumerated types.
CONSTANTS represent the constants used by the model.
AXIOMS describe with first order logic expressions, the properties of the at-

tributes defined in the CONSTANTS clause. Types and constraints are de-
scribed in this clause.

THEOREMS are logical expressions that can be deduced from the axioms.

2.2 WS-CDL

Web services composition integrates the existed available ones in order to form a
new functionality. Recall that, choreography composition describes the interac-
tions between collections of services without a central peer and all participants
are treated equally. WS-CDL is a mark-up language for choreography compo-
sition which is first proposed in 2004. A WS-CDL choreography description is
contained in a package which is essentially a container for a collection of activ-
ities performed the participants [6]. We introduce some elements of WS-CDL
shortly as follows:

InformationType: This element identifies the type of information used within a
choreography to avoid referencing directly to data types in an XML schema
or a WS-CDL document.

RoleTypes: A RoleType enumerates the potential observable behaviors that a
participant can exhibit in order to interact together.

RelationshipType: A Relationship Type describes the relationship between two
parties in order to collaborate successfully.

The Choregraphy-Notation part specifies interactions between parties of a chore-
ography. We address some concepts which are used frequently in a choreography:

Modeling and Verifying WS-CDL Using Event-B 293

Table 1. Translation from WSCDL static elements to Event-B

WS-CDL elements Event-B concepts

informationType, participantType, channelType Set

roleType Constant

relationshipType Axiom

Activities: There are three types of activity such as control-flow activities, Work-
unit activities and basic activities. The first ones consist of three types
namely sequence, choice and parallel activities. A work-unit activity de-
scribes the conditional and repeated execution of an activity. A basic activity
includes Interaction, NoAction, SilentAction, Assign, and Perform element.
Interaction is the most important element of WS-CDL.

Work-units: A work-unit describes constraints that need to be fulfilled to per-
form activities. It has guards and repeat conditions optionally. Enclosed
activities are performed when the guard condition is evaluated to be true.

Variables: The information sent or received during an interaction is described
by a named variable and an optional recordReference element in the ex-
change description. Variables contain values and have an informationType
represented as a type of variables.

3 Formalizing and Verifying WS-CDL

From the similarity between some parts of WS-CDL and Event-B, we propose
to use Event-B as a method to formalize a WS-CDL model. Since a WS-CDL
package is composed of static and dynamic parts, we translate them to Event-
B elements separately. After the transformation, we are able to verify some
properties based on achieved Event-B model.

3.1 Formalizing Static Part

Before formalizing choreography interactions, we introduce some definitions re-
lated to Event-B specification that are useful in the modeling process.
Definition 1. A choreography scenario is modeled by a pair ch = <S, In>
where S is a set of static information, In represents for the dynamic part. S is
stated as a 5-tuple: S = <It, C,Rl, P,R>, where It is a set of Information-
Type in a WS-CDL package, C and Rl indicate Channels and Relationship
parts respectively, Participants and Roles elements are represented by P and
R. The definition of In is discussed in Subsection 3.2.
Based on the formal definition, we translate WS-CDL elements in the static part
to Event-B concepts as in Table 1.

3.2 Formalizing Dynamic Part

The dynamic part is the most important part of a WS-CDL package as it de-
scribes how the participants interact with each other to form a web service

294 H.A. Le and N.T. Truong

composition. In order to make the approach more clear, we first model interac-
tions in the choreography by an Event-B model. After that, we translate elements
in the dynamic part of a WS-CDL package to an Event-B model.

Modeling Choreography Interactions: Interaction is the essential part of
the composition which shows how a new functionality is composed from existing
web services. We tranlsate the interaction among two colaboration parties to an
Event-B EVENT and formalize the exchanged message by a pair {n �→ MSG}
where n is the order of message MSG. The guard of the translated event is also
the order of the message as illustrated in Figure 1

Webservice A

WebserviceC

Webservice B

3:
 m

sg
_3

4: m
sg_4

1: msg_1

 2: msg_2

msg_1Event

WHEN

THEN

EVENT

END

msg_2Event
WHEN

END

THEN

dom(ac) = {0}

ac := {2 �→ msg 2}

dom(ac) = {1}

ac := {1 �→ msg 1}

Fig. 1. Transformation from choregraphy interactions to Event-B EVENTs

Formalizing Interaction Part of a WS-CDL Package: We divide the
choreography part of a WS-CDL file into two parts: variables and interactions
description. Hence, we model In as a tuple S = <V ar,Ac>, where V ar specifies
WS-CDL variables, Ac denotes WS-CDL interactions. We translate the former
into Event-B variables, while, followed the approach of modeling interactions
in the choreography, we formalize the later by Event-B events. In order to do
the translation, we present some rules to transform most important WS-CDL
entities involving in the dynamic part such as Work−unit, Activity to Event-B
concepts.

Activities: An activity entity comprises of several components including basic
and ordering activities and work-units.

– Basic activities: A basic activity represents the lowest actions performed in
a choreography such as an interaction, an assign, a silent, a noAction and
a finalize activity. We encode a basic activity by a Event-B Event, more
speficially, the syntax of translation is prensented in Table 2.

– Structured activities:
A structured activity can be a sequence, parallel or choice activity. We model
it by a set of Event-B events, for instance, a sequence activity is transformed
to a set of Event-B events. We use an Event-B VARIABLE for representing

Modeling and Verifying WS-CDL Using Event-B 295

Table 2. Translation of WS-CDL basic activities to Event-B

WS-CDL basic activity Event-B concepts

<assign roleType = “qname” > <copy name = “ncname” > WHERE Any THEN
<source variable = “var name1”/ > var name2 := var name1
<target variable = “var name2”/ > END

</copy> < /assign>

<exchange name = “exchange name” INVARIANTS
informationType = infoType var1 ∈ infoType and var2 ∈ infoType

action = “request” > EVENT
<send variable = var1/ > WHEN dom(msg) = {i} THEN

< receivevariable = var2/ > msg = {i+ 1 �→ exchange name}
</exchange> END

Table 3. Transformation of a Workunit to an Event-B Event

WS-CDL work-unit Event-B Event

<workunit name = ”unitname” EVENT unitname
guard = ”xsd : booleanXPath− expression”? WHEN guard and repeat
repeat = ”xsd : booleanXPath− expression”? THEN

Activity-Notation body
< /workunit> END

the order of each basic activity in the sequence and it is managed inside the
body of each event. A parallel activity is formalized by a combination of
events by means of parallel operator ‖.

Work-unit: Since a Work-unit acts similarly to an Event-B event, we transform
guard and repeatable conditions of a Work-unit to guard clauses of an Event-B
event. Activities inside a Work-unit are represented by operations in the body
part of an Event-B event. These operations will activate events corresponding
to each Activity. The transformation is illustrated in Table 3.

4 An Example

In this section, we describe a well-known example of Purchase order. We then
translate the WS-CDL package of this example to an Event-B model according
to the rules presented in Subsection 3

4.1 Purchase Order Scenario Description

The scenario involves four participants: Buyer, Seller, CreditCard and Store
services. The Buyer initiates the choreography by sending a purchase request to
the Buyer with product and credit card information. The Seller then request to
check product information with the Store service and the validity of the Buyer’s
credit card. If both results are positive then the Seller will reply a Purchase
Order confirmation, otherwise the Seller rejects the request.

296 H.A. Le and N.T. Truong

4.2 Mapping Purchase Order Model in WS-CDL to Event-B

In this Subsection, we describe the Purchase order scenario by a WS-CDL pack-
age. We then transform the description in the format of WS-CDL into Event-B
model following the rules we define in Section 3.

<informationType name="purchaseRequestType"

 type="tns:purchaseRequestMsg"/>

...

<roleType name="BuyerRole">

<roleType name="SellerRole">

<roleType name="CreditCardRole">

<roleType name="StoreRole">

...

<role type="BuyerRole" behavior="serviceRequester"/>

<role type="SellerRole" behavior="serviceProvider"/>

</relationshipType>

<relationshipType name="Buyer_Seller">

AXIOMS

CONSTANTS

SETS

CONTEXT

BuyerRole
SellerRole
CreditCardRole
StoreRole

Providers
Requesters

purchaseRequestType
Services

PurchaseOrder C0

Relationships = {BuyerRole �→ SellerRole, ..}
Providers = {SellerRole, CreditCardRole, StoreRole}
Requesters = {BuyerRole, SellerRole}

Fig. 2. Transformation from WS-CDL static part to an Event-B model

As illustrated in Figure 2, four participants in the choreography are de-
scribed by four WS-CDL RoleType elements which are modeled by a set of
CONSTANTS such as BuyerRole, SellerRole, CreditCardRole and StoreRole.
We define two Event-B SETS which are namely Requesters, Providers indicat-
ing fromRole and toRole properties of relationshipType items in this WS-CDL
package. Since InformationType elements are variable types, we model them as
clauses of Event-B SETs.

..

informationType="tns:purchaseRequestType" />

</variable>

<variable name="purchaseRequestMsg"

..

</variableDefinitions>

<variableDefinitions>

purchaseRequestMsg ∈ purchaseRequestType

VARIABLES

SEES

MACHINE

INVARIANTS

purchaseRequestMsg

PurchaseOrder C0

PurchaseOrder 0

Fig. 3. Transformation from VARIABLES of WS-CDL to an Event-B VARIABLES.

In Figure 3, we model variable PurchaseRequestMsg which has type of Pur-
chaseRequestType to an Event-B VARIABLE with the same name.

Modeling and Verifying WS-CDL Using Event-B 297

name="purchaseRequest" operation="purchaseOrder">

relationshipType="BuyerSeller" fromRole="BuyerRole"/>

<participate toRole="SellerRole"

informationType="purchaseRequestMsg">

<exchange action="request" name="purchaseRequest"

</exchange>

<send variable="cdl:getVariable("purchaseReq","",")""/>

VARIABLES

PurchaseRequest

EVENTS

when

then

PurchaseConfirm
end

when

end

</interaction>

<interaction channelVariable="Buyer2SellerC"

guard="creditCardValidity>0 and storeAmount>0 ">

<workunit name="Send purchase confirmation" repeat="false"

<exchange action="respond" name="purchaseConfirm">

</exchange>

</workunit>

<receive variable="cdl:getVariable("purchaseReq","",")"/>

purchaseReq

exchanged msg

channel
msg

act

INVARIANTS

grd1 : dom(exchanged msg) = {0}

channel := {BuyerRole �→ SellerRole}
exchanged msg := {1 �→ PurchaseRequest}
act := PurchaseRequest

msg := {PurchaseRequest �→

grd1: dom(exchanged msg) = {3}
grd2: storeAmount > 0 ∧ creditV alidity > 0

purchaseReq ∈ purchaseRequestMsg

msg ∈ Actions −→ Relationships

card(channel) = 1

channel ∈ Relationships

msg = {act �→ channel}
dom(msg)=ran(exchanged msg)

card(msg) = 1

{BuyerRole �→ SellerRole}}

then

.......................

.....................

.......................

exchanged msg ∈ OrderedMessages

Fig. 4. Transformation from WS-CDL activities to Event-B EVENTS

The choreography part is modeled as depicted in Figure 4, the variable ex-
changed msg represents messages exchanged between services which is ordered.
The variable channel present the relationship between services. The exchange
action PurchaseRequest and Work-unit PurchaseConfirmation modeled by two
Event-B Events. Guard of this Work-unit is transformed to one of guards of
PurchaseConfirmation Event-B event.

4.3 Verifying Purchase Order Model

Taking advantages of Event-B method and its support tool, after the transfor-
mation, we are able to verify some properties of the choreography interactions
model as follows:

– First, we can verify that if the order of messages exchanged between collabo-
ration parties are precise as choreography description . In our example, the or-
der of exchangedmessages is represented in the variable exchanged messages
and its preserving is showed by the following axiom:

exchanged messages ∈ {0 �→ Init, 1 �→ PurchaseRequest, 2 �→ CheckCreditCard,

3 �→ CheckStore, 4 �→ PurchaseConfirm, 4 �→ PurchaseReject}

298 H.A. Le and N.T. Truong

– Second, messages are needed to be proved that they are exchanged between
right source and destination web services. This property is modeled by two
axioms in our example:

dom(msg) = ran(exchanged msg)

msg = {act �→ channel}
– Third, the last message of a choreography usually is the result of the com-

position, hence it is needed to be verified. In our example, the last message
is either “PurchaseConfirm” or “PurchaseReject” but can not be both. This
property is described by the axiom such as:

ran(last msg) = {PurchaseConfirm} ∨ ran(last msg) = {PurchaseReject}
card(last msg) = 1

– Finally, live lock freeness and no deadlock properties are also proved through
this Event-B model since there is at least one event is triggered and is no
conflict between guards of the events.

These properties are proved to be preserved through all EVENTS of the model
by the Rodin tool.

5 Related Works

Many papers have been proposed for verifying web service composition. G.Salaun
et al. [15] developed a process algebra to derive the interactive behavior of a busi-
ness process out from a BPEL specification, while A. Brogi et al. [7] presented
the formalization of Web Service Choreography Interface (WSCI) using a process
algebra approach(CCS), and showed the benefits of the formalization.

More recently, Yahong Li et al. [16] introduced a small language CDL in order
to formalize WS-CDL. However, in order to verify the choreography composi-
tion, this formal model is translated into notations of SPIN and the general
transformation rules are not given yet.

Pengcheng Zhang et al. [14] introduced an approach to model and verify WS-
CDL using different UML diagrams. Gregorio Diaz et al. proposed a method to
analyze WS-CDL by translating it into timed automata [10].

Idir Ait-Sadoune et al. [4] presented the transformation rules from an orches-
tration language, namely BPEL to an Event-B model and a support tool called
BPEL2B. The structure of WS-CDL is clearly more complicated than the one
of BPEL as the collaboration between participants in the choreography model
is more complex without a central one.

6 Conclusion

In this paper, we have proposed an approach to formally model and verify web
services choreography using Event-B. Our contribution includes the definition
of rules to transform WS-CDL entities to Event-B elements and an example to

Modeling and Verifying WS-CDL Using Event-B 299

illustrate the approach. The aim of the transformation is automatically verifying
some properties such as order of messages, live lock freeness, deadlock, etc. in
WS-CDL model. However, our approach is just suitable for a simple collection
of interactions but not for complex position one. Our future work is focusing
on using Event-B refinement mechanism and handling time out case in choreog-
raphy. We are building a tool which allows a WS-CDL model to automatically
transform to an Event-B model according to our defined rules.

Acknowledgments. This work is partly supported by the research project No.
QG.11.32 granted by Vietnam National University, Hanoi.

References

1. B method web site, http://www.bmethod.com
2. Event-b and the rodin platform, http://www.event-b.org
3. Web services choreography description language version 1.0.,

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
4. Ait-Sadoune, I., Ait-Ameur, Y.: From bpel to event-b. In: IM FMT 2009, Dussel-

dorf, Germany (February 2009)
5. Ait-Sadoune, I., Ait-Ameur, Y.: Stepwise Design of BPEL Web Services Com-

positions: An Event B Refinement Based Approach. In: Lee, R., Ormandjieva, O.,
Abran, A., Constantinides, C. (eds.) SERA 2010. SCI, vol. 296, pp. 51–68. Springer,
Heidelberg (2010)

6. Dumas, M., Barros, A., Oaks, P.: A critical overview of web service choreography
description language, ws-cdl (2005)

7. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service chore-
ographies. Electron. Notes Theor. Comput. Sci. 105, 73–94 (2004)

8. Bryans, J.W., Wei, W.: Formal Analysis of BPMN Models Using Event-B. In:
Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 33–49.
Springer, Heidelberg (2010)

9. Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In: Dust-
dar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 414–419.
Springer, Heidelberg (2006)

10. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic
translation of ws-cdl choreographies to timed automata. In: EPEW 2005/WS-FM
2005, Berlin, Heidelberg, pp. 230–242 (2005)

11. Foster, H., Kramer, J., Magee, J., Uchitel, S.: Model-based verification of web ser-
vice compositions. In: 18th IEEE International Conference on Automated Software
Engineering (ASE), pp. 152–165 (2003)

12. Hoang, T.S., Iliasov, A., Silva, R., Wei, W.: A survey on event-b decomposition.
ECEASST 46 (2011)

13. Jordan, D.: Web services business process execution language (ws-bpel). standard
version 2.0

14. Zhang, Y.P., Muccini, H., Li, B.: Model and verification of ws-cdl based on uml
diagrams. International Journal of Software Engineering and Knowledge Engineer-
ing 20, 1119–1149 (2010)

15. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: ICWS 2004, Washington, DC, USA, p. 43 (2004)

16. Yang, H., Zhao, X., Qiu, Z., Pu, G., Wang, S.: A formal model forweb service
choreography description language (ws-cdl). In: ICWS 2006, pp. 893–894. IEEE
Computer Society, Washington, DC (2006)

 http://www.bmethod.com
 http://www.event-b.org
 http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

	Modeling and Verifying WS-CDL Using Event-B
	Introduction
	Backgrounds
	Event-B
	WS-CDL

	Formalizing and Verifying WS-CDL
	Formalizing Static Part
	Formalizing Dynamic Part

	An Example
	Purchase Order Scenario Description
	Mapping Purchase Order Model in WS-CDL to Event-B
	Verifying Purchase Order Model

	Related Works
	Conclusion
	References

