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Abstract. Autonomous behavior and onboard decision making is the backbone 
of robotic space exploration. The enormous distance and communication 
latency make such missions hardly controllable from Earth and external 
decision making may overlap and often contradict with the onboard decision 
making. We propose a behavior model based on some sort of “laziness” that 
helps spacecraft evaluate external instructions and eventually postpone their 
execution, or even discard some, when those are considered inappropriate by 
the internal spacecraft decision making. 
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1 Introduction 

Robotic space exploration helps NASA perform unmanned missions to reach deep 
space where no human can go. The enormous distance and communication latency 
make such missions hardly controllable from Earth. Hence, autonomous behavior and 
onboard decision making is the “backbone” of robotic space exploration. 
Contemporary robotic spacecraft have onboard intelligence based on structured 
knowledge and reasoning capabilities. This artificial intelligence helps spacecraft 
make decisions driven by factors like mission goals, safety, performance, efficiency, 
resource consumption, etc. Similar to the human mind, such intelligence cannot exist 
isolated on its own and must cope with external control provided by other sources of 
intelligence – human pilots, mission ground stations, or other sources of artificial 
intelligence like spacecraft and unmanned space stations. Therefore, external 
decision-making processes may overlap and often contradict with the internal 
spacecraft decision making. “Blind” execution of all the external control instructions 
might be harmful and will often lead to insufficient performance, simply because the 
external decision making is not that well informed about all the spacecraft issues and 
parameters. We propose a behavior model for spacecraft based on some sort of 
“laziness” that helps spacecraft evaluate external instructions and eventually postpone 
their execution, or even discard some, when those are considered inappropriate by the 
internal spacecraft decision making. Discarded or postponed external instruction  
may require feedback sent to the initial instruction source. Moreover, high-priority 
external instructions should not be evaluated, but executed immediately to assure 
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high-authority control over the functionality of smart spacecraft. A postponed external 
instruction might be delayed by spacecraft just to reach a state where its execution 
might lead to the best possible performance.   

2 Model for Efficient Space Exploration through Laziness 

The basic idea behind this behavior model is to allow smart spacecraft act as “lazy 
workers” having their own interest and goals and often reluctant to perform external 
instructions if the latter do not conform to their goals. Instead of immediately 
performing any newly received external instruction, smart spacecraft will evaluate 
that instruction and decide whether to perform, postpone, or discard the same. 
Presuming that 1) the spacecraft goals are set by their mission objectives or driven by 
their safety policies; and 2) the external instructions might be obsolete due to 
communication delay (coming from Earth and thus travelling a long distance) and 
eventually incorrect, because the sender does not have complete and recent 
information about all the spacecraft parameters; the overall result of such behavior 
could be a significant performance gain.  The behavior model for such Efficient Space 
Exploration through Laziness (for short efficiency with laziness (EL)) can be 
presented as a function accepting two parameters – system knowledge and a set of 
external instructions, and determining the spacecraft behavior concerning the 
incoming set of external instructions.   

2.1 Formal Model for Efficiency with Laziness 

Formally, the behavior model for EL can be presented as following: 
 

REL: K × LI → BEL     (1) 
 

Here, REL is the EL function computing the possible behavior for each external set of 
instructions LI considering the system knowledge K. The knowledge K of smart 
spacecraft capable of reasoning and decision making can be formally presented as a 
tuple of three main knowledge components (knowledge models):  

 

K = ‹ KI , KC , KE ›     (2) 
 

where KI is internal knowledge, KC is control knowledge, and KE is external 
knowledge. The internal knowledge KI carries information about the internal structure 
and capabilities of the system and it can be presented as a tuple of three components:   

 

KI = ‹ C , F , R ›     (3) 
 

where C states for system components, F is system functionality, and R is system 
resources. There could be added more parameters to this tuple, such as 
interdependencies (if not present in the knowledge about the system components C), 
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system architecture, etc. Further, the control knowledge KC gives the system 
knowledge about its control parameters and mission and it can be presented as a tuple 
of a few parameters:   

 

KC = ‹ Π , M‹G , T› , S , A , HSi ‹SH , AH › , L ›   (4) 
 

where: 

• Π states for behavior policies (safety, performance, etc.) driving the system 
in particular situations. 

• M is the mission knowledge such as goals G (or objectives, e.g., service-
level objectives), time constraints T, etc.  

• S is a set of all known possible states the system can take.  

• A is a set of all possible actions the system can undertake (actions are 
functions over system’s functionality involving consumption of system 
resources).  

• HSi is a history of situations the system ended up in. A situation connects 
past states SH to past actions AH performed by the system to get out from 
those states. Note that HSi provide the necessary information for 
reinforcement learning.  

• L is alphabet of an interface language used to communicate with the system. 

Finally, the external knowledge KE is to provide the spacecraft with information about 
the surrounding environment (environmental factors), e.g., solar system, solar storms, 
planetary systems, asteroids, gravity force of the near space objects, etc. Considering 
all the knowledge elements, we further reveal Definition (2):  

 

K = ‹ KI ‹C, F, R› , KC ‹Π, M‹G, T›, S, A, HSi ‹SH, AH›, L› , KE ›  (5) 
 

Further, the set of external instructions in Definition (1) shall be expressed with the 
alphabet provided by the interface language L. The determined by the function REL 
(see Definition (1)) EL behavior BEL can be one of the following:  

• execute – all the external instructions are immediately executed with the 
highest possible priority; 

• postpone - the external instructions are scheduled for execution but after the 
execution of more important and locally decided instructions; 

• discard – the external instructions are discarded.  

When the spacecraft postpones or discards external instructions, it may notify the 
instructions’ sender about this behavior with the appropriate reasons. In order to 
decide on the behavior BEL, the function REL follows the following algorithm: 
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1) Check whether the external instructions LI are high priority instructions: 

• Yes – perform. 

• No - continue with 2). 
2) Check whether the external instructions LI are obsolete:  

• Yes – discard. 

• No – continue with 3). 

3) Check whether the external instructions LI  require the execution of actions A′⊂ A 
that will harm the mission goals G or contradict with the spacecraft policies Π (e.g., 
for safety). To do that, the spacecraft must compute the probability of the spacecraft 

occupying one of the undesired states S ′⊂ S (where some of the mission goals or 

spacecraft policies are violated) after the execution of actions A′. Here,  

N: S × A → P(S)                 (6) 
 

is a state-transition function giving for each state s ∈ S and action a ∈ A a probability 
distribution. Here, N (s; a; s′) computes the probability of ending in state s′, given that 
the start state is s and the spacecraft takes action a, p (s′ | s; a). Therefore, the 
spacecraft knows the probability of ending in one of the undesired states S ′ if actions 
A′ are executed from the current state s. The computed probability p is a scalar value 
in the range [0..1]. A special EL policy may decide on the two thresholds: 1) what  
probability  level  is  sufficient  a  set  of  external  instructions  LI   to  be  postponed, 
e.g., p∈ [0..0,5); and 2) what probability  level  is  sufficient  a  set  of  external  
instructions  LI   to  be  discarded, e.g.,  p∈ [0,5..1]. 

There could be different “levels of laziness” depending on the probability ranges, 
which determine those two thresholds. The theoretical foundation for the probability 
assessment is the so-called Markov Chains [1]. 

2.2 Probability Assessment 

The EL model requires computation of probability values for ending in possible 
undesired states when particular actions are executed. In this subsection, we present a 
model for assessing probability applicable to the computation of EL probability 
values. In our approach, the probability assessment is an indicator of the number of 
possible execution paths spacecraft may take, meaning the amount of certainty 
(excess entropy) in the spacecraft behavior. To assess that behavior prior to 
implementation, it is important to understand the interactions among the spacecraft 
components and also the complex interactions with the surrounding environment 
(space). This can be achieved by modeling the behavior of the individual reactive 
spacecraft components and the behavior of the environmental factors (e.g., solar 
storm, gravity of a planet, etc.), together with the global system behavior as Discrete 
Time Markov Chains [1], and by assessing the level of probability through calculating 
the probabilities of the state transitions in the corresponding models. We assume that 
the component interactions and the environment-system interaction are stochastic 
processes where the events are not controlled by the spacecraft and thus, their 
probabilities are considered equal.  
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The theoretical foundation for our Probability Assessment Model is the property of 
Markov chains, which states that, given the current state of the whole spacecraft 
system, its future evolution is independent of its history, which is also the main 
characteristic of a reactive and autonomic spacecraft [2, 3].  

An algebraic representation of a Markov chain is a matrix (called transition matrix) 
(see Table 1) where the rows and columns correspond to the states, and the entry pij in 
the ith row, jth column is the transition probability of being in state sj at the stage 
following state si. 

Table 1. Transition matrix P 

 s1 s2 … sj … sn 
s1 p11 p12 … p1j … p1n 

s2 p21 p22 … p2j … p2n 

… … … … … … … 

si pi1 pi2 … pij … pin 

… … … … … … … 

sn pn1 pn2 … pnj … pnn 

 
We need to build such a transition matrix taking into account both the system 

components and environmental factors influencing the system behavior. The 
following property holds for the calculated probabilities:  

 

Σ j  pij = 1      (7) 
 

We contend that probability should be calculated from the steady state of the Markov 
chain. A steady state (or equilibrium state) is one in which the probability of being in 
a state before and after a transition is the same as time progresses. Here, we define 
probability for a spacecraft system composed of k components and taking into 
account x environmental factors as the level of certainty quantified by the source 
excess entropy, as follows. 

 

P = Σ i=1,k Hi + Σ e=1,x He  - H     (8) 

Hi =  - Σ j  pij  log 2 ( pij )      (9) 

He =  - Σ j  pej  log 2 ( pej )     (10) 

H =  - ( Σ i  v i Σ j  pij  log 2 ( pij ) + Σ e  v e Σ j  pej  log 2 ( pej ) )  (11) 
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Here,  

 
• H is an entropy that quantifies the level of uncertainty in the Markov chain 

corresponding to the entire spacecraft system;  
• Hi is a level of uncertainty in a Markov chain corresponding to a spacecraft 

component; 
• He is a level of uncertainty in a Markov chain corresponding to an 

environmental  factor, e.g., distance to ground base, solar storm, gravity force 
of a planet, etc.; 

• v is a steady state distribution vector for the corresponding Markov chain; 
• pij values are transition probabilities in the extended state machines modeling 

the behavior of the ith component;  
• pej values are transition probabilities in the extended state machines modeling 

the behavior of the eth environmental factor.  

Note that for a transition matrix P, the steady state distribution vector v satisfies the 
property v*P = v, and the sum of its components vi is equal to 1.  

 
Interpretation. The level of uncertainty H is exponentially related to the number of 
statistically typical paths in the Markov chain. Having an entropy value of 0 means 
that there is no level of uncertainty in a Markov system for a specific unit’s behavior. 
A higher value of probability implies less uncertainty in the model.         

2.3 Modeling the Behavior Policies with Probability  

To allow for EL-driven behavior, we need to develop the behavior policies Π (see 
Definition 5) taking into consideration the probability distribution for the possible 
state transitions (see Section 2.2). Note that in another project of ours, we have 
developed a model for autonomic policies that uses probability distributions to rate 
the probability of policies being executed in specific situations and under specific 
conditions [4]. Because, each policy is associated with possible actions, the behavior 
realized by the actions executed in the environment will be guided by the policies 
with the highest probability where the probability rates are recomputed after every 
action execution.     

We can elaborate on this approach to adapt it to the EL model where policies 
should consider both the internal components and environmental factors.  

2.4 Awareness for EL  

In general, an EL-based system engages in interactions with the ground base on Earth 
and with its operational environment. When interacting with the environment, the EL 
spacecraft also perceive important structural and dynamic aspects of the same [3]. To 
become interaction-aware, such a system needs to be aware of its physical 
environment and whereabouts and its current internal status. This ability is defined as 
awareness and it helps intelligent computerized systems to sense, draw inferences for 
their own behavior and react. The notion of awareness should be generally related to 
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perception, recognition, thinking and eventually prediction [5]. Recall that the EL 
mechanism requires relevant knowledge (see Definitions 1 and 2) that helps the 
system autonomously determine states. For example, the EL approach requires the 
system to be aware about the environmental factors such as gravity, solar storms, etc. 
This can be achieved via a mechanism called “Pyramid of Awareness” [5] where a 
complex chain of functions shall be implemented to control the EL awareness process 
via monitoring, recognition, assessment, and learning.  

3 Example of Efficient Space Exploration through Laziness 

In this short example, we use as a case study the prospective NASA’s Autonomous 
Nano-Technology Swarm (ANTS) space exploration mission [6], which is a novel 
approach to asteroid-belt resource exploration (see Figure 1).  

 

Fig. 1. ANTS mission concept [6] 

An ANTS system is composed of individual spacecraft where each spacecraft is 
equipped with a solar sail and relies primarily on power from the sun, using only tiny 
thrusters to navigate independently.  Moreover, each spacecraft also has onboard 
computation, artificial intelligence, and heuristics systems for control at both the 
individual and system levels. To explore a new asteroid, ANTS needs to form a team 
of spacecraft units called workers and carrying special instruments. A team is formed 
and coordinated by a special spacecraft unit called ruler [6]. Special messengers are 
needed to connect the team members when they cannot connect directly, due to long 
distances or a barrier. To form a team, a ruler broadcasts instructions to workers.  

In our approach, the EL mechanism helps workers evaluate those instructions and 
make their decision how to proceed, so the overall ANTS goals are not harmed and 
the overall efficiency is the highest possible. For example, EL will help 1) only idle 
workers join the team; and 2) to complete the team with the sufficient number of 
workers. When the team is complete, the other idle workers will not join the team, 
because the EL mechanism will evaluate this as an act harming the overall ANTS 
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goals. Moreover, the EL mechanism will prevent workers from joining the team if the 
probability of having a solar storm is high which can jeopardize the overall mission. 

4 Conclusion 

In this paper, we proposed a behavior model for efficient space exploration through 
laziness. The basic idea is to allow smart spacecraft act as “lazy workers” having their 
own interest and goals and often be reluctant to perform external instructions if the 
latter do not conform to spacecraft goals and if the environment imposes considerable 
hazards. The approach requires the spacecraft to compute the probability of 
occupying an undesired state after following external instructions. Note that as 
undesired state is considered a situation where either mission goals or spacecraft 
behavior policies are violated. Based on the computed probability, the external 
instructions can be immediately executed, postponed for later execution or completely 
discarded. The probability assessment is an indicator of the number of possible 
execution paths spacecraft may take, meaning the amount of certainty in the 
spacecraft behavior. In our approach the probability assessment is based on Markov 
Chains. Finally, the EL approach requires an awareness mechanism to keep the EL 
knowledge relevant and up-to-date by taking into consideration internal, control and 
environmental factors. The proposed awareness mechanism is the so-called “Pyramid 
of Awareness”, which we are currently developing for another project of ours.      

Future work is concerned with further and complete development of the EL 
mechanism, including knowledge representation for modeling EL behavior, 
probability assessment and awareness for EL. 
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