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Abstract. More and more overlapping functions on all kinds of mobile
devices with these on traditional computers have significantly expanded
the usage of mobile devices in our daily life. This also causes the demand
surge of pervasively and quickly accessing files across different personal
devices owned by a user. Most existing solutions, such as DropBox and
SkyDrive, rely on some centralized infrastructure (e.g., cloud storage)
to synchronize files across different devices. Therefore, these solutions
come with potential risks of user privacy and data secrecy. In addition,
continuously maintaining strong consistency among multiple replicas of
a file is very costly.

On the other hand, today a common user often owns sufficiently large
storage space across her personal home desktop, office computer, and mo-
bile devices. Therefore, in this paper, we aim to design and implement a
system to virtually Unify Personal Storage (vUPS) for fast and pervasive
accesses of personal data across different devices. vUPS provides similar
services as offered by existing cloud-based storage services, but (1) vUPS
consists of only personal computers without involving any third party,
thus it minimizes the risks of user privacy and data secrecy; (2) vUPS
organizes all storage in a distributed fashion so that it is not prone to the
single point of failure; (3) vUPS differentiates files and maintains differ-
ent consistency policies in order to reduce the consistency maintenance
cost. Having implemented vUPS with HTML5, we conduct extensive ex-
periments to evaluate its performance. The results show that vUPS offers
similar user performance when compared to DropBox.

1 Introduction

With the ever-increasing processing power and ever-decreasing prices, mobile
devices are getting more and more popular. According to International Data
Corporation, the total number of smartphones sold in 2010 was 305 millions [11],
which is a 76% increase from 2009, and there are already over 4.6 billion mobile
subscribers in the world and the number is still growing [12]. The prediction is
that there will be around 982 million smartphones in 2015 [11].

To some extent, today mobile devices are replacing their counterparts for
Internet accesses, such as emailing, web surfing, and Internet entertainment.
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For example, mobile video traffic is now over 50% of the mobile data traffic on
the Internet, and it is predicted to occupy 2/3 by 2015 according to Cisco [3].

Such a trend has also caused the demand surge of pervasive data accesses,
such as for photos, across a user’s different storage space, such as her iPhone
and desktop computer. To respond to such a fast increasing demand, the current
research and practice have provided many solutions, such as Dropbox [5], Google
Docs [8], Amazon s3 [2], Windows SkyDrive [14] and SME Storage [15]. They
mainly rely on cloud-based services or a server-based approach.

These centralized cloud or server-based approaches [2] [5] [14] typically require
a user to store all files on the storage owned by the service providers, which risks
data security, privacy, and availability. For example, it has been reported on the
news about Mark Zuckerberg’s pictures leak incident in Facebook [13], Drop-
Box account breach with wrong passwords [6], Amazon’s data center failure in
2011 [1], etc. Some modern file systems [15] [32] [41] have taken into account
user’s storage to avoid third party storage compromise. But they maintain a
strong consistency model for different types of files, resulting in unnecessary
and heavy performance overhead. For example, smartphones are often associ-
ated with consuming and producing data which are mostly non-editable (photo,
music, and video) and more than 27% pictures are taken by smartphones [4].
For these files, a strong consistency model is an overkill.

On the other hand, today an average user typically possesses multiple com-
puters, such as personal home computers, office computers, and mobile devices.
While the storage of one device at a time may not be sufficient for storing all
data files of the user, the total storage space is often large enough to store all
files owned by the user. Even when the total storage space of a user is not large
enough, it is relatively cheap to buy additional storage nowadays as one-time
cost.

Therefore, in this study, we aim to design and implement a system to virtually
Unify Personal Storage (vUPS) for fast and pervasive file accesses. With vUPS,
all participating devices of the user are transparently and seamlessly unified.
A file can be accessed through a web browser, considering that today the web
browser is the vehicle for end-user’s accesses. In vUPS, there is no central node
that maintains the file system states. Instead, any device can serve as the server
when it is actively used. To minimize data transferring, only meta-data is pro-
actively accessed while data files are accessed in an on-demand fashion. In vUPS,
different types of files are treated with different consistency policies in order to
balance the consistency and the maintenance overhead.

To evaluate vUPS, we have implemented a prototype based on HTML5 and
Javascript. The prototype provides a standard API for other web and desktop
applications to access and manipulate vUPS data. We have conducted experi-
ments with micro-benchmarks and also compared to DropBox. The results show
that vUPS can offer a similar user experience to DropBox.

In summary, we have made the following contributions in this paper.



188 M.A. Hassan, K. Bhattarai, and S. Chen

– vUPS provides an alternative solution to existing cloud-based or other cen-
tralized approaches for responding to the demand surge of quick and perva-
sive file accesses across multiple devices owned by a user.

– By differentiating and treating different types of files, vUPS strives to achieve
a balance between the file consistency and the maintenance overhead.

– With a web browser interface and a standard file access interface, vUPS
can be adopted by other applications to transparently and seamlessly access
personal files.

The rest of the paper is organized as follows. We discuss the design of vUPS
in section 2 and the consistency models in section 3. vUPS implementation is
presented in section 4, and we evaluate its performance in section 5. Some related
work is discussed in section 6 and we make concluding remarks in section 7.

2 vUPS Design

In this section, we first briefly overview the architecture of vUPS. Then we
discuss its components.

2.1 vUPS Overview

Instead of a centralized architecture, vUPS adapts a flexible P2P architecture.
Figure 1 illustrates the architecture of vUPS that runs across multiple devices,
such as a user’s home computer, an office computer, a laptop, and a smartphone.

In vUPS, the participating devices peer with each other to virtually form
a single and global storage space. Communications (e.g., to fetch data or to

Fig. 1. The Architecture of vUPS
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execute a user’s commands) between devices are based on RESTful web ser-
vices [25]. With such a P2P architecture, the device that the user is actively
using as the main device (i.e., on which the user initializes her request) is re-
sponsible for supporting the main functions of vUPS. For this reason, we refer
to this device as the main terminal of vUPS. Currently, at each time, there
is only one main terminal. As the principal component of the vUPS, the main
terminal is responsible for maintaining the vUPS namespace. In our design, the
vUPS namespace is stored in a logically separate site. Once the main terminal
is activated upon user accesses, the namespace will be loaded. In practice, this
namespace can always be stored on the user’s home desktop computer. All other
participating devices are referred to as passive terminals, as they are mainly
responsible for responding to the requests from the main terminal. In addition,
users and other applications can interact with vUPS via vUPS APIs. Currently,
we have designed a web-based user interface based on vUPS APIs.

Note that when a user actively uses her mobile device as the main terminal,
it can deplete the limited battery power soon, because we expect that the main
terminal could be relatively stable and stay on-line for a long time. Thus, in
vUPS, the main terminal functions can be delegated by the mobile device to a
more powerful computer, such as the home desktop (as shown in Figure 1) or
the office computer.

When an application or a user needs to access a file, vUPS first finds the real
device hosting the file based on the proper mapping in the vUPS namespace.
vUPS resolves this mapping via the user name, device ID, resource path and
operation type as: http://<usr>.vUPS.com/DeviceID/Path&Operation. Note
that in the case of a delegated main terminal, the actual file transferring happens
directly between the two involved devices without involving the main terminal.

2.2 vUPS Components

To support the desired functionalities, we design vUPS with the vUPS API, the
vUPS Controller, the vUPS Synchronizer, the vUPS Data Manager. Figure 2
depicts the design with these major components. Next we discuss each of these
components.

– vUPS API:
To provide an interface of vUPS for users and applications, we develop vUPS
API. These vUPS APIs support typical file operations, such as create, delete,
read, write, as well as typical directory operations. To provide an easy ac-
cess to users, we further develop a Web browser based user interface based
on vUPS APIs. It uses HTML5 and Javascript to make it accessible from
heterogeneous platforms such as smartphones, desktop and office computers
that may run different operating systems.

– vUPS Controller:
The vUPS controller consists of two modules. The first one is the bootstrap-
ping module or bootstrapper. Basically, when the main terminal is accessed
by the user, it first needs to load the vUPS namespace, which contains the
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Fig. 2. vUPS Components

metadata and the directory hierarchy of the vUPS file system. When a new
device wishes to join the system, it also provides the bootstrapping informa-
tion so that any device can be added or removed from the system.

The second module is the metadata manager and mapper (MMM). Meta-
data is crucial to vUPS and strong consistency is maintained for metadata.
MMM also maps files in the vUPS system to their physical locations in dif-
ferent devices. When a file is created by the user, a new entry is created
to the appropriated location in the namespace. Accordingly, a file deletion
removes the entry from the namespace.

– vUPS Synchronizer:
Maintaining consistency is essential to any distributed file system. vUPS Syn-
chronizer is responsible for consistency maintenance among multiple copies
of a file on different devices. As we shall discuss later, vUPS uses a non-
traditional consistency model based on the file types in order to balance the
overhead and the performance. Note that because the namespace is loaded
on each participating device, the vUPS is also responsible for maintaining
the consistency of namespace.

– vUPS Data Manager:
The data manager deals with the physical storage of the data in the local disk
via traditional filesystem APIs. A particular notable function of the vUPS
Data Manager is to manage cache for better user response time. As the core
of the cache management, a LRU (Least Recently Used) replacement policy
is used for cache management.
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These components work together in a collaborative manner. Basically, the
namespace of the vUPS is often stored in a reliable device or a web site if a
bootstrapping site is used. A participating device needs to contact this boot-
strapping storage to load the initial namespace as well as the main terminal
address.

When a file operation takes place (either by the user or by some application)
through vUPS API, vUPS API passes the request to the vUPS Controller, which
finds the appropriate file through the MMM.

The MMM then checks with the Synchronizer for cache validation. For read
operation, the Synchronizer checks the cache and validates the cache if it is found
in the cache. If it is not valid, then the Synchronizer finds the physical location
of the data from the MMM. Then the Synchronizer either contacts the local or
remote Data Manager to fetch the data. A remote Data Manager is invoked via
the web interface. Whenever a request is received from the web interface, the
Synchronizer enforces the operation via the local Data Manager. If the operation
is write, then the Synchronizer finds the devices that contain the replicas and/or
the cached copy of the data. Then the Synchronizer updates its local cache and
data (if any) through the Data Manager. It also propagates the update to all
the relevant devices via appropriate web service interfaces.

Note that vUPS relies on a storage place to store the initial namespace. This
single point of failure can be eliminated by replicating the namespace among all
the devices. This may however increase the maintenance overhead.

3 Consistency and Availability

Achieving availability and strong consistency at the same time is amajor challenge
in a distributed file system [30]. Traditional file systems replicate the data across
multiple devices to increase availability, which also increases the overhead for con-
sistency. Popular file systems have different policies to make the data consistent
among replicas. For example, Coda [39], Ficus [27], and Ivy [33] apply optimistic
concurrency control between the replicas. Coda resolves consistency conflict using
version controlling. Bayou [43] provides high availability with a weak consistency
model. Bayou was mainly designed for intermittently connected devices, which is
also suitable for mobile devices. With pervasive network connections today, it is
ideal to use continuous synchronization and have quick consistency. For example,
cloud storage like Google Drive [9] uses strong consistency, while DropBox [5]
applies continuous consistency between the replicas.

Both the optimistic and the continuous consistency models suffer from the
scalability issue. In addition, continuous consistency also suffers from the over-
head for continuous updates. That is, even a byte change in the data may result
in a lot of network traffic (several thousand more than the update itself). Such
network overhead is amplified by the number of devices in the system.

Observing the fact that strong consistency is not required for every type of
files, vUPS has different replication and consistency policies for different types
of files. Today a user often owns much more media data (e.g., audio, video, and
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image) files than before. For example, it has been shown that a typical Windows
user has 11.6% image files of the total storage [21]. This number is increas-
ing due to the vast use of smartphones and tablets, because they are generally
used to take pictures or videos. On the other hand, the documents and other
files only consist of a small portion of the storage (i.e. 2.5% of the total file
system [21]). Note that media files are not frequently changed. Only the corre-
sponding metadata (favorite, ratings, etc.) may be modified. Therefore, we may
relax the consistency model for media files as they are often non-editable, while
the replicas of other documents have to be consistent as they are frequently
edited. In addition to that, fetching the document files on demand is not expen-
sive compared to that for media files as the media files size [16] is often bigger
than that of documents files [21] on average.

Thus, in vUPS, files are divided into two categories: editable and non-editable.
The audio, video, image, and program files are considered as non-editable. On the
other hand, all other files, including doc, xml, and text files, etc., are categorized
as editable files. Note that these non-editable files can also be updated very
occasionally, but vUPS only maintains weak consistency among their replicas.
In the current implementation, vUPS differentiates different types of files based
on their filename extensions.

With two categories of files, vUPS has the following two different policies for
different types of files: (1) limited availability with strong consistency; (2) high
availability with weak consistency.

3.1 High Availability with Weak Consistency

Considering the different types of popular files [22], we categorize the popular
video, audio, and image files as non-editable files. Although in our current de-
sign these files are recognized solely based on file extensions, any self-learning
clustering algorithm can classify the files over time based on the modification
history. These non-editable files are seldom modified. Thus, the access to update
rate is often high for these files. Moreover, the size of these media files is often
larger than the editable files such as doc or xml [16] [21]. Caching and replicating
these files on every possible device improves the access time to those files and
results in less network traffic, but it also increases the overhead of maintaining
consistency between copies.

As these files are seldom modified, vUPS follows a weak consistency model
between the copies. A user can request the file from any device. The device may
contain the data locally or fetch it from other devices (through the main termi-
nal) and cache it. Whenever a modification takes place in a device, the change
is reflected on the local/cached copy. The user does not need to wait for the
update being propagated to other devices. Similar to Bayou, vUPS propagates
updates during pairwise contact. This epidemic approach ensures that as long
as the participating devices are not permanently disconnected, the writes will
eventually reach every copy [20].

For non-editable files, vUPS follows an invalidation protocol to notify the
changes to other copies. As an invalidation protocol only notifies the changes, it
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saves network traffic and latency as the real update is not sent. The application
in the devices may or may not pull the update for that file, depending on the
policy of that application. vUPS aims to support application-specific conflict res-
olution, and each application may provide specific dependency check for updates.
If the dependency check is valid, then the update takes place. Otherwise, conflict
arises and the updates are either merged or marked invalid. Unlike scheduling
or database transactions, media files may not have conflicting updates. Thus the
merging procedure for media files ensures the latest update to a particular file is
applied when any conflict arises. To detect the latest update, vUPS has vClock
(vUPS vector logical clock) for each file and each folder. Each file has a vector
of the Lamport logical clock [31], where each entry in the vector represents the
timestamp for each device associated with that file. Whenever a file is created,
a vector timestamp is created with entries for each device where the file is repli-
cated. In addition to that, whenever that file is cached, an additional timestamp
entry is added to that vector. If a cached copy is deleted or a replica is removed,
the corresponding entry is removed from the vector. For every update from any
device, the logical clock for that device in the vector is incremented. Whenever a
device joins vUPS, all the data are updated to the latest vector. Thus, the copies
are always up-to-date and synchronized if at least one copy of the data is always
online. If only one copy of a file is kept connected to the vUPS and all the other
copies are offline (that is, only one copy is mutual-exclusively online), then the
file is updated if the timestamps of all the vectors are greater than the previous
values. If all the entries in the vector are smaller than the new values, then it
is not updated. Otherwise, the file is marked as conflicted and both copies are
kept for the user to resolve manually. Thus, vUPS ensures the total ordering for
the updates between the devices provided at least one copy is always online.

Note that, for non-editable files, the metadata may be changed frequently (a
user may change the rating of movies, tag of pictures, etc.), but vUPS considers
metadata as editable data, for which strong consistency is maintained among
replicas.

Whenever a non-editable file is invoked by a device, the file is cached on
the device and in the main terminal according to the caching policy. As the
access-to-update ratio is higher, leaving a copy behind will improve the access
performance [42]. So, when that file is closed, it is synchronized (if necessary),
and a copy is left in the cache. The namespace contains a callback reference to
that address for providing response from that copy to other devices.

3.2 Limited Availability with Strong Consistency

For copies of the editable files, vUPS maintains strong consistency. As strong
consistency is not scalable, vUPS maintains a minimal number of copies to main-
tain the availability and consistency to get the best of both worlds.

Similar to non-editable files, whenever an editable files is accessed by a device,
the file is cached on the device and in the main terminal according to the caching
policy. All the modifications take place on the cached copy and are propagated to
remote copies (local read/remotewrite).When that file is closed, it is synchronized
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(if necessary), and the local cached copy is deleted. The callback reference is also
deleted from the namespace once the file is closed. That is, vUPS enforces a strong
consistency policy between the copies. It sends the update operation where data
should change (active replication).

As the access-to-update ratio is lower, keeping a local copy close to the device
may not be better [42] as it may send frequent updates to all the replicas while
these updates may not be accessed by the user. In this case, keeping sending
these updates can waste bandwidth and may not be scalable. So it deletes all
the cached copies once the read/write operation in the cached copy is completed.
This approach makes vUPS more scalable. As the average size of editable files
is smaller than that of non-editable files, bringing these files to the cache when
needed does not affect the performance too much. In addition, for these types
of files, a typical replication policy results in less network traffic.

Assume the failure probability of one machine is p and the number of repli-
cation is r. Then, the failure probability of all replicas is:

M(n, p, r) = (pr ×
n−r∑

i=0

pi × (1− p)(n−r)−i) (1)

Let the unavilability probability of one machine due to network is q and the
number of replication is r. Then, the unavailability probability of all replicas
due to network failure is:

N(n, q, r) = (qr ×
n−r∑

i=0

qi × (1− q)(n−r)−i) (2)

M(n, p, r) and N(n, q, r) are independent from each other. So, the availability
of the over all system is:

A(n, p, q, r) = 1− (M(n, p, r) +N(n, q, r)−M(n, p, r)×N(n, q, r)) (3)

The typical disk failure rate is 4% [7]. If we take this into account, the availability
of vUPS can be deduced to be more than 96% for a typical system with four
machines with no replication. We can get more than 99% availability by keeping
a backup (a replica) of each file, which is comparable to amazon services (with
a failing rate 0.1-0.5% [7]).

In case of a terminal failure, the active requests for that terminal is re-directed
to other terminals with replicated copies. When the device joins vUPS again,
the replica in that device is checked again (with SHA-1) with other replicas and
synchronized if necessary.

vUPS is also highly robust in the sense that any terminal can be initiated, al-
located, deleted or backed up without interrupting the system. vUPS also allows
adding or deleting a disk, allocating storage, moving data, or interrupting sys-
tem availability. This design allows all data to be remained online and available
to clients and other terminals.
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4 vUPS Implementation

We have implemented a prototype of vUPS with Java and HTML. The user may
add devices with any operating system and can browse, access, and store data in
the vUPS storage consisting of those devices. In addition to the user interface,
we have implemented the vUPS APIs in Java for applications. Figure 3 shows a
screen-shot of vUPS user interface.

Fig. 3. vUPS User Interface

The vUPS API s are built with Javascript and HTML5. A local web server is
used for bootstrapper right now where a user registers her devices. After login,
the user is provided with the main HTML page where they may select any de-
vices, access data, copy between devices, etc. These operations are implemented
by Javascript to call the web services in the devices. The Metadata Manager and
Mapper (MMM) manages the mapping between the vUPS files to their physical
locations that are saved in a SQLite database.

The vUPS Synchronizer communicates with the devices through the RESTful
architecture as mentioned earlier. The Data Manager gives an abstraction over
the local file system with the underlying physical storage in the local disk via
Java filesystem APIs.

For mobile devices, we also build a vUPS app to access the data. There is also
vUPS API for Android to access vUPS from other apps. The current prototype
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maintains minimal security over the RESTful architecture in HTTP. We use the
IP address of the device as the device ID in the current prototype implementa-
tion.

In the current implementations, files are simply differentiated based on their
name extensions. Extensions like .mpeg, .wmv, .dat, .mov are considered as the
popular movie filename extensions. vUPS includes the .mp3 and .mid as the
popular audio files, where the .jpeg, .jpg, .gif, .bmp, and .png are considered
as filename extensions of image files. Files with these name extensions are all
considered as non-editable files. By default, all other files are considered to go
under frequent modifications, and vUPS have different policies for them.

5 Performance Evaluation

In this section, we evaluate the performance of vUPS based on the prototype
we have implemented. In the experiments, we first use the micro-benchmarks to
evaluate vUPS. Then we compare the performance of vUPS with the popular
application Dropbox.

In these experiments, we configure vUPS with three commodity desktops, one
laptop, and one smartphone. To compare with the service provided by DropBox,
we have also set up a DropBox account.

All the desktop machines have 8 GB memory and 2.7 GHz CPU. The laptop
has 4 GB memory and 2.7 GHz CPU. The desktop machines run Windows 7,
Ubuntu 11 and Mac operating systems, respectively. We use a Google Nexus One
phone with 512 MB memory and 1 GHz CPU running Android 2.3 operating
system. The DropBox account has 2 GB of storage.

5.1 File I/O Performance

First, we study the performance of file reading. In vUPS, a desktop is designated
as the main terminal. Files of 1 KB, 10 KB, 50 KB, 100 KB, 200 KB, 500 KB, 1
MB, and 3 MB are read by the smartphone via the main terminal. To emulate
the realistic scenario, files are randomly distributed on these devices. When
a read request for a file is sent from the smartphone to the vUPS, the main
terminal receives the request from the smartphone. The main terminal searches
the namespace for the ID of the device that stores the file, and forwards the web
address of the resource to the smartphone. The smartphone then completes the
read operation by bypassing the main terminal. The results are compared against
when a direct/local read from the sdcard of the smartphone and when the file of
the same size is located on DropBox. We take the average of 100 runs for each
file size and the results are shown in Figure 4. The x-axis represents the file size.
The y-axis shows the response time. We set the network speed as 500 Kbps for
local accesses. The maximum and the minimum response time are within 2% of
the average with 95% confidence level. As expected, the read time increases with
the increase of the file size and neither vUPS nor DropBox is comparable to the
local read performance. However, vUPS constantly outperforms DropBox, for



vUPS: Virtually Unifying Personal Storage 197

0

5

10

15

20

25

1 
KB

10
 K

B

50
 K

B

10
0 

KB

20
0 

KB

50
0 

KB
1 

M
B

3 
M

B

T
im

e 
(S

ec
)

Local Read
vUPS Read
DropBox

Fig. 4. File Size vs. Response Time
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which the network speed is unconstrained with an average of 3 Mbps, although
the advantages tend to diminish along the increase of the file size.

To bridge the performance gap for the sequential read in vUPS read, in the
next experiment we use parallel threads for multiple file fetching. Figure 5 shows
the result when the number of parallel file fetching grows from one to four. The
x-axis represents the number of files fetched in parallel and the y-axis represents
the throughput of the system. For the counterpart of the local read, four files
are read by four parallel threads from the sdcard of the smartphone.

To read files in parallel from vUPS, the smartphone contacts the main ter-
minal and requests the files. Each file is stored on a random machine selected
arbitrarily. The main terminal returns to the smartphone with the web address
of the file resources and the smartphone then fetches those files in parallel.
Figure 5 shows that the throughput increases with the degree of parallelism.
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Fig. 6. Performance Gain by Bypassing the Main Terminal

The throughput also increases with the network bandwidth for vUPS when the
network bandwidth increases from 500 Kbps to 1 Mbps. When the available
network bandwidth is sufficiently large, the gap between the local read and the
vUPS read can be significantly reduced.

We have mentioned before that the file operations are handled directly be-
tween the requesting machine and the target machine without involving the main
terminal in order to relieve the communication bottleneck. To study the perfor-
mance gain, we compare it to the case when the main terminal fetches the file
and then serves it to the smartphone. Figure 6 shows the results averaged over
100 tests. The results confirm that it is beneficial for the user and the system to
bypass the main terminal whenever necessary.

5.2 Performance of Metadata Accesses

Metadata is crucial to vUPS to function properly. To measure metadata access
performance, we conduct experiments with the mdtest benchmark on vUPS.
mdtest is developed for large scale file systems with script and C, which is not
suitable for our RESTful applications. To fit our system, we modify the mdtest
and implement the simplified version in Java with threading. We replace the file
reading/write/edit with Java system calls. In the experiments, we measure the
throughput (the number of operations executed per second) for creating 1000
files per terminal from the smartphone.

Figure 7 shows the throughput for file creation. In the experiments, we com-
pare the time for creating files in our smartphone locally and in vUPS. For local
file creation in the smartphone, we create 1000, 2000, 3000, and 4000 files using
1, 2, 3, and 4 threads (a thousand files per thread) in the sdcard of the smart-
phone. To measure the time of file creation in vUPS, we again create 1000, 2000,
3000, and 4000 files using 1, 2, 3, and 4 threads (a thousand files per thread).
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Each thread selects one of the devices in the vUPS system. Each thread first
contacts the main terminal and requests to create 1000 files in the device.

The result shows that with an increasing number of local file creation requests,
the throughput decreases. This is expected because the smartphone thread over-
head and the limited file I/O slow down the local file operation, and thus reduce
the throughput. On the other hand, for remote devices the performance im-
proves, which is due to the parallel file creation feature in vUPS.

5.3 Network Impact

To study the impact of network bandwidth, we have also run the mdtest file cre-
ation of 1000 files with varying network speed. Figure 8 shows the response time
for 1000 file creation via the smartphone using one thread. The x-axis represents
the network speed, while the y-axis represents the system throughput. The fig-
ure shows that the network bandwidth does impact the file creation throughput,
but the improvement diminishes when the network speed is fast enough. For
example, when the network bandwidth is doubled from 5 Mbps to 10 Mbps, the
throughput for file creation operation only increases slightly.

To study the impact of network speed on file read operations, we vary the
network speed and observe the response time to read a 3 MB file in the smart-
phone fetched from the main terminal. As expected, Figure 9 shows that the
read throughput increases with the increase of bandwidth for vUPS while it
remains stable for local read and DropBox. Note that because Dropbox is ac-
cessed through the public network, we did not constrain the bandwidth of the
connection between the smartphone and the Dropbox.

Table 1 shows the response time for 5 trials with different network speed
and file read or creation operations. From ANOVA [29] tests, we may conclude
to reject the hypothesis that the operation type and network speed have no
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Fig. 8. Network Bandwidth vs File Creation
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Fig. 9. Network Bandwidth vs File Read

significance on the model. We can also conclude that the interaction between
the network speed and the file operation type does exist.

5.4 Comparison to Dropbox

To compare with the DropBox in a more realistic scenario, we have generated 50
files with lambda distribution [37] as discussed in [24] with the size ranging from
1 KB to 512 MB according to that distribution. For DropBox, we synchronize all
the files first, then access locally. In vUPS, in case of a cache miss, it downloads
the file, otherwise checks the cache and retrieves it unless it is stale. We access
these files in random order for 10 to 1000 times.

Figure 10 shows the result. The x-axis represents the number of files fetched
randomly from these 50 files. The y-axis represents the response time. In the
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Table 1. ANOVA Test for Network and Type of Operation

Operation 500 Kbps 1 Mbps

Read 186 120

Read 204 92

Read 222 164

Read 221 101

Read 228 180

Create 55 58

Create 17 40

Create 37 27

Create 43 32

Create 26 29
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Fig. 10. DropBox vs vUPS

experiment, the DropBox first downloads all the files, and then accesses them
randomly. On the other hand, vUPS does not download all the files at first.
It downloads the files when being accessed and then caches them for future
references. In this way, when the number of accessed file is small, the access
time for DropBox is much longer than vUPS as the DropBox first needs to
synchronize and download all the files. But when the number of accessed files is
larger, the performance of both vUPS and DropBox is similar to each other.

In addition to that, the strong consistency between the replicas introduces
synchronization overhead. For example, even a single byte update in dropbox
generates 37 KB of network traffic measured by wireshark, where vUPS generates
only 1KB of data for the same synchronization.
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6 Related Work

Distributed filesystems [38], [28] have been a focus in the field of distributed
systems and data replication and consistency have been a major concern for
these systems [19].

NFS [38] has been widely used. Coda [39] also proposes offline accesses and
replicated access control. Large scale distributed file systems, such as Goolge File
System (GFS) [26] and the Hadoop Distributed File System (HDFS) [18,44], have
also been well studied for distributed computing. Panache [23] also proposes
improvement for parallel accesses. These traditional and research-oriented file
systems are designed for local area network and desktop terminals, while in the
modern age various mobile devices (e.g., smartphones) play a crucial role for
users’ data generation and access over public network.

More recently, modern distributed file systems ZZFS [32],Eyo [41], and
BlueFS [34] consider the modern portable storage devices such as tablet and
smartphones. BlueFS has optimized the data placement policy whose data up-
date was improved by EnsemBlue [35] from a centralized server to peer to peer.
ZZFS [32] has specific data placement polices and the consistency policy to avoid
conflicts, while Eyo [41] does not guarantee any consistency. PersonalRAID [40]
provides device transparency for partial replication which is not suitable for
public network as it requires user to move a storage physically between the de-
vices. Cimbiosys [36] provides efficient synchronization with minimized overhead
which is not device transparent. But these systems usually have the same repli-
cation and consistency policy for all types of data, without distinguishing the
very difference between the natures of different types of files.

On the other hand, recent commercial products, such as iCloud [10], Google
Drive [9], and Dropbox [5] offer to synchronize data among multiple devices of
the same user. But storing users’ data on the third party storage potentially
risks with security and privacy concerns, while the study [17] shows that the
desktop and office computers possessed by an average user is enough to store
the data owned by the user.

vUPS has been developed to store the data on the user’s own devices without
storing data in the public cloud. The API’s of vUPS are developed with an aim
of the end users who access files from samrtphones and/or other terminals.

7 Conclusion

The pervasive adoption of mobile devices calls for an effective approach to access
user’s personal files across different devices from anywhere and anytime. While
commercial products have offered compelling solutions, users are risking their
data security and privacy. In addition, potentially, lots of unnecessary traffic
has been wasted during continuous file synchronization. In this work, we have
designed and implemented vUPS, a system to transparently and seamlessly in-
tegrate a user’s personal storage space. A web interface is provided to the user
with a global view of the files without involving any third party. Experiments
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based on the implemented prototype system show that vUPS can achieve similar
user performance when compared to commodity commercial solutions such as
DropBox.
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