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Abstract. In positron emission tomography (PET) imaging, the seg-
mentation of organs is necessary for many quantitative image analysis
tasks, e.g., estimation of individual organ concentration or partial volume
correction. To this end we present a fully automated approach for whole-
body segmentation which enables large-scale and reproducible studies.
The approach is based on joint segmentation and atlas registration. The
classical active contour approach by Chan and Vese is modified to a
novel passive contour energy term with implicitly incorporated informa-
tion about shape and location of the organs. This new energy is added to
a registration functional which is based on both functional (PET) and
morphological (CT) data. The proposed method is applied to medical
data, given by 13 PET-CT data sets of mice, and quantitatively com-
pared to manually drawn VOIs. An average Dice coefficient of 0.73±0.10
for the left ventricle, 0.88± 0.05 for the bladder, and 0.76± 0.07 for the
kidneys shows the high accuracy of our method.

Keywords: Segmentation, Active Contour, Passive Contour, Registra-
tion, Atlas, PET-CT, Whole-Body.

1 Introduction

Positron emission tomography (PET) is widely used in medical imaging to as-
sess functional information in the body. However, quantitative evaluation of
PET images is challenging due to the rather limited spatial resolution and low
signal-to-noise ratio which makes the segmentation of organs necessary for var-
ious applications. Estimating organ concentration in biodistribution studies [6],
[9], or analyzing organ specific diseases such as myocardial infarction demands
for an adequate whole-body segmentation. In addition, organ segmentation is
mandatory for many partial volume correction techniques [15]. To this end we
developed a general approach for whole-body segmentation based on joint seg-
mentation and registration.
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1.1 Related Work

Many approaches originating from computer vision are transferred to medical
imaging as they are well understood and, at the same time, also efficiently ap-
plicable to volumetric (3D) medical images. A popular approach in computer
vision for automatic segmentation is active contours as introduced by Chan and
Vese [2]. The method was successfully applied to medical imaging based on brain
MRI data [3]. The main idea of active contours is also exploited in our work,
but in a reversed interpretation, cf. Sec. 2.

There is a large demand for automatic segmentation in medical imaging as
the manual segmentation of organs is time-consuming for 3D data sets. Further,
inter- and intra-observer variability can have a high impact. This is why manual
segmentation is inapplicable for large-scale and reproducible studies. We restrict
the following discussion to related literature on segmentation of PET and CT
and joint registration and segmentation.

An automated method for whole-body segmentation in Micro-CT data of
mice was introduced by Baiker et al. [1]. The approach consists of a model-
based registration with a subsequent intensity-based registration. They achieved
high accuracies for skin and skeleton. However, they did not report results for
inner organs which are the focus of this work. This might be due to the low
soft tissue contrast of the CT images which makes the localization of inner
organs challenging. We overcome this limitation (inter alia) by using functional
information in terms of PET images (and additional CT images).

Wang et al. presented a registration approach based on a statistical shape
model for small-animal PET segmentation [13]. High uptake organs guide the
registration using a conditional Gaussian model and allow good estimates for low
uptake organs as well. However, for the labeling of organs the method requires
user interaction.

Recently various techniques were published combining registration and seg-
mentation. A taxonomy on this topic is given in [8]. A method, which is basically
similar to our proceeding, was presented by Yezzi et al. [14]. They propose a
variational framework that uses active contours for segmentation with a simul-
taneous registration of features. The level-set based segmentation separates only
one object from the background which makes this method inapplicable for mul-
tiple organ segmentation tasks. Further, only rigid and affine transformations
were practically explored.

2 Methods

In this paper we present a novel atlas-based segmentation approach. The general
scheme is illustrated in Fig. 1. Given a pair of spatially aligned PET and CT
images (real data on the left of Fig. 1) of the same subject, we follow a two-
step strategy. After aligning the atlas (atlas data on the right of Fig. 1) and the
real data with an affine transformation, a tailored registration functional with
joint segmentation is minimized. Three distance terms drive the registration: 1.
Distance of the atlas CT and real CT, 2. Distance of the atlas PET and real PET,
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Fig. 1. General scheme: The inverse of the estimated transformation is applied to the
atlas to segment the real data

3. Segmentation distance motivated by Chan and Vese [2]. Instead of matching a
contour to the data, the novel segmentation distance is used to optimize for the
transformation that aligns the data best to the (passive) contours. This turns
around the interpretation of standard active contours models. Finally, the atlas
organ definitions are transformed with the inverse transformation and yield the
resulting segmentation of the real data, cf. bottom of Fig. 1.

In particular, we address the following points:

1. Transition of 2D active contours to 3D passive contours for medical image
segmentation

2. Fully automation to make large-scale studies possible (user interaction is
time-consuming)

3. Non-rigidity of atlas-based whole-body segmentation
4. Multimodality treatment (function and morphology)
5. Handling of multiple organs for joint registration and segmentation

2.1 Joint Passive Contour Segmentation and Registration

As a technical preprocessing step, a rough alignment of the atlas dataset and
the real dataset is performed by matching the atlas CT to the real CT with
an affine transformation to overcome differences in the orientation, scaling, and
translation. As both images are of the same modality we choose the sum of
squared differences (SSD) distance measure.

To overcome anatomical variations of organs, the information of the PET and
the CT images is used simultaneously in a joint registration functional. Hence,
anatomical and functional information is exploited at the same time. In addition,
we include a novel segmentation distance term into the functional, inspired by
Chan and Vese [2]. The Chan-Vese distance measures the in-class variance ac-
cording to the atlas organ definitions. We derive the complete registration model
by first looking at standard image registration for the CT images.

For the alignment of the CT images, the real data TCT : Ω → R (template
image) is registered to the atlas CT imageRCT : Ω → R (reference image), where
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Ω ⊂ R
3 is the image domain. The output of the registration is a transformation

y : R3 → R
3 representing point-to-point correspondences between TCT andRCT .

To find y, the following functional has to be minimized

min
y

{
DSSD(TCT ◦ y, RCT ) + αS · S(y)

}
. (1)

DSSD is the SSD distance functional and αS ∈ R
+ is a weighting factor of the

regularization functional S. By using regularized spline image interpolation we
reduce artifacts in the PET images which justifies the usage of the SSD measure.

We assume that the PET and corresponding CT measurement approximately
share the same geometry and hence y can be used to align both modalities.
In practice the images provide complementary information which motivates the
exploration of both modalities in a joint registration functional. The CT images
guide the registration whereas the PET images provide important information in
soft tissue regions. As the scanned mice are anesthetized the spatial variations are
kept to a minimum. However, changes due to, e.g., bladder filling, are possible.

Our joint registration functional is an extension of (1) by adding a term for
the PET data and an additional passive contour term DPC

min
y

{ αCT · DSSD(TCT ◦ y, RCT ) + αPET · DSSD(TPET ◦ y, RPET )

+αPC
PET · DPC(TPET ◦ y, A) + αS · S(y) } , (2)

where TPET ,RPET : Ω → R are the real PET image and the atlas PET image.
αCT , αPET , α

PC
PET , αS ∈ R

+ are weighting factors for the individual distance
functionals and are discussed later. DPC is the passive contour distance and A
denotes the delineation of the atlas organs.

Passive Contour Distance. Let us now derive the passive contour term DPC .
The classical Chan-Vese functional [2] is defined as follows

CV(C) =

∫

Cin

(T (x) − μ(T , Cin))2 dx+

∫

Cex

(T (x)− μ(T , Cex))2 dx . (3)

The function μ computes an average value of T (we omit the subscript for
simplicity) according to the interior (Cin) respectively the exterior (Cex) of the
contour C. The aim is to find the (active) contour C that minimizes the energy
CV(C). We can rewrite this formulation as a functional of the transformation y

CV(y) =
∫

y(Ω)

(T (x)− μ(T , A ◦ y; x))2 dx . (4)

μ(T , A ◦ y; · ) is constant inside each organ containing the average intensity of
T over the respective segment. A simple 2D example to illustrate the function
μ is given in Fig. 2.

The atlas definitions A in Fig. 2(b) exactly match the contours of the blurred
and noisy input image (a). By applying the segmentation function μ we result
in a recovered image without noise and blur (c).
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(a) Input image T (b) Atlas definitions A (c) µ(T , A; · )

Fig. 2. Illustration of µ (2D). Given the image T (left) and the atlas definitions A
(middle) we can apply the segmentation function µ(T , A; · ) (right).

By substitution x → y(x) in (4) we receive

CV(y) =
∫

Ω

(T (y(x)) − μ(T ◦ y, A; x))2 · | det(∇y(x))| dx . (5)

The term DPC is then defined as:

DPC(T ◦ y, A) := 1

2

∫

Ω

(T (y(x)) − μ(T ◦ y,A;x))2 · det(∇y(x))dx . (6)

Thus, by finding an adequate transformation y the in-class variance of T ◦ y
according to the atlas A is minimized. Note that we can drop the absolute value
bars for the Jacobian determinant, if the transformation is diffeomorphic, cf.
Sec. 2.2.

Instead of adjusting the contour to the data (active contour, analogously de-
formable templates), the data is adjusted to the contour (passive contour) in
our case. Hence we have an optimization problem in the transformation y and
not in the contour. This allows us directly to treat multiple segments at once
and not only to separate one foreground object from the background (note that
there exist also active contour approaches for multiple segments [12]). A fur-
ther advantage of passive contours compared to active contours is the implicitly
incorporated information about shape and location of the organs. In contrast
to active contours, contours can not split in multiple objects. Further, active
contour approaches require proper initialization. In our case the initialization of
the passive contours is directly given by the atlas definitions. Furthermore, the
fixed integration domain for segmentation simplifies computations compared to
exiting atlas-based segmentation methods.

2.2 Regularization

The non-rigid nature of whole-body segmentation poses challenges to the es-
timation of the transformation y. To guarantee diffeomorphic transformations
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and to be highly robust against noise, we utilize hyperelastic regularization [5].
The regularization functional S controls changes in length and volume of the
transformation y. The weighting factor αS in (2) is thus a compact notation for
the weighting of two regularization terms.

Local adaptive regularization prevents unphysiological contraction or expan-
sion of organs. The organ definitions are given by our atlas organ delineations
A. The areas inside organs get a higher volume regularization value (2 · 105)
compared to normal body tissue (1 · 105) which keeps volumetric changes inside
organs to a minimum.

2.3 Evaluation

The resulting segmentations are compared to manually drawn VOIs. The Dice
coefficient is used to quantitatively compare our segmentation to the ground-

truth. For two sets X and Y the Dice coefficient is defined as D(X,Y ) = 2|X∩Y |
|X|+|Y | .

To assess whether the registration algorithm performs successful or not we
analyze the Jacobian determinant. It specifies the volumetric change due to
the transformation. A value of 1 represents no volumetric change and a value
smaller (greater) than 1 indicates compression (expansion). For positive values
the transformations are diffeomorphic. Fig. 4 shows a distribution of the Jacobian
for all results.

2.4 Implementation

The implementation is based on the Fair registration toolbox [10] in MATLAB�.
In a first step the images are brought to the same resolution (voxel size of
0.35mm). We use a multi-level strategy with a scaling of 0.5 between two adja-
cent levels, starting with a resolution of 16× 10× 40 (voxel size of 2.77mm) and
going to a final resolution of 64× 40× 160 (voxel size of 0.69mm). Optimization
is performed with a Gauss-Newton scheme in combination with a PCG solver
for the linear system of equations, cf. [10]. Spline interpolation is used along
with a regularization of the moments. The parameter controlling the amount of
regularization is chosen to be 1 for the affine pre-registration and 0.5 for the
joint registration. The regularization for the affine pre-registration is higher to
reduce the amount of details in the images for the rough alignment.

3 Experimental Results

3.1 Data

This work is based on 18F-FDG-PET/CT data of 13 healthy adult C57/Bl6 mice
(without any intervention), representing the most widely used radiotracer and
mouse strain in preclinical PET studies.

PET experiments were carried out using a high resolution (0.7mm full width
at half maximum) small animal scanner (32 module quadHIDAC, Oxford Posi-
tron Systems Ltd., Oxford, UK) with uniform spatial resolution over a large
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cylindrical field-of-view (165mm diameter, 280 mm axial length). Mice were
anesthetized with oxygen/isoflurane inhalation (2% isoflurane, 0.4 l/min oxygen)
and body temperature was maintained at physiological values by a heating pad.
One hour after intravenous injection of 10MBq 18F-FDG in 100µl 0.9% saline
list-mode data were acquired for 15min. Subsequently, the scanning bed was
transferred to the CT scanner (Inveon, Siemens Medical Solutions, USA) and
a CT acquisition with a spatial resolution of ∼80µm was performed for each
mouse after intravenous injection of a contrast agent. The reconstructed image
data sets were aligned with a rigid transformation based on extrinsic markers
attached to the scanning bed and the image analysis software (Inveon Research
Workplace 3.0, Siemens Medical Solutions, USA).

3.2 Atlas

The Digimouse software phantom [4] serves as an atlas. The organ delineations of
the pixel atlas are filled with realistic values according to our scanning protocol
to construct a pseudo-PET and pseudo-CT phantom image. This has to be done
only once in advance. The resulting images are spatially aligned phantom images
with a known ground-truth segmentation. No blurring or noise is added to the
images.

For the heart, the used 18F-FDG tracer accumulates mainly in the left ven-
tricle. As Digimouse provides only a combined segment for the whole heart
(including left and right ventricle and the blood pool) we apply some minor
modifications, see Fig. 3. The heart region of the atlas is replaced by a manual
threshold segmentation of the left ventricle using the accompanied Digimouse
PET data. In addition, the bladder is slightly moved in posterior direction to
better fit our real data (this stabilizes the transformation estimation by mini-
mizing the local average deformation). The original image is shown in Fig. 3(a)
and the modified version in (b).

(a) Original atlas (b) Modified atlas

Fig. 3. The heart’s segmentation (green area) and the bladder (orange area) in the
original version of the Digimouse phantom (a) is replaced in the modified atlas (b) to
better match the real data

3.3 Results

For the non-parametric registration, the following approach is used to provide
meaningful values for the various parameters in (2). An exhaustive parameter
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Fig. 4. Summed histograms of the Jacobian determinant of all data set

Table 1. Dice coefficients of the 13 mice for the heart (left ventricle), bladder and
kidneys

Mouse 1 2 3 4 5 6 7 8 9 10 11 12 13 Avg. Std.

Heart 0.85 0.84 0.84 0.85 0.79 0.62 0.77 0.72 0.60 0.60 0.68 0.60 0.75 0.73 0.10

Bladder 0.90 0.88 0.78 0.91 0.92 0.88 0.93 0.92 0.93 0.79 0.86 0.82 0.87 0.88 0.05

Kidneys 0.83 0.63 0.80 0.82 0.73 0.65 0.66 0.83 0.80 0.73 0.80 0.78 0.84 0.76 0.07

Avg. 0.86 0.78 0.81 0.86 0.81 0.72 0.79 0.82 0.77 0.71 0.78 0.74 0.82

Std. 0.04 0.13 0.03 0.05 0.10 0.14 0.14 0.10 0.17 0.10 0.09 0.11 0.06

search is performed for a randomly selected mouse. For each parameter com-
bination the estimated segmentation is compared to the manual segmentation.
The estimation giving the best fit is declared as the optimal parameter set for all
experiments as they follow all the same protocol. We found the following optimal
parameter set: αCT = 10, αPET = 10, αPC

PET = 100. For the hyperelastic regu-
larization we found an optimal weighting for the length term of 1000 and for the
volumetric regularization we refer to the regularization paragraph in Sec. 2.2.

For all transformations, the Jacobian determinant is everywhere positive and
centered around 1, see Fig. 4. The global minimum is 0.26 and the global maxi-
mum is 2.66 which implicates diffeomorphisms. Note that the small shift of the
maximum peak to a value greater than 1 in Fig. 4 is due to the affine component
of the transformations indicating that the atlas is on average a little bit bigger
than the real mice.

For all datasets an average Dice coefficient of 0.73 ± 0.10 could be achieved
for the left ventricle, 0.88± 0.05 for the bladder, and 0.76± 0.07 for the kidneys.
The estimated segmentation for one mouse is exemplified in Fig. 5. The Dice
coefficients for all analyzed organs and mice can be found in Table 1.

The improvement due to our new passive contour distance can be assessed
by setting αPC

PET = 0 and thus disabling the segmentation input. The objective
is to analyze whether the additional passive contour distance can even improve
the high accuracy of our multimodal PET-CT registration functional alone. For
αPC
PET = 0, the Dice coefficient for the left ventricle was 0.61 ± 0.12, for the

bladder 0.80±0.07, and for the kidneys 0.76±0.08. This means an improvement



90 F. Gigengack et al.

(a) Slice 75 (b) Slice 53

(c) Slice 75 (d) Slice 53

(e) Slice 75 (f) Slice 53

Fig. 5. Visualization of 3D registration results for whole-body segmentation. Overlay of
2D projections of PET, CT and contours ((a) heart and bladder, (b) kidneys) and trans-
formation grid yopt ((c), (d)). The estimated segmentations are plotted with white con-
tours and the ground-truth segmentation is shown in green. The estimated contour of the
body is plotted for additional visual assessment of the registration accuracy. Slices of the
piecewise constant approximations µ(TPET ◦ yopt, A) are shown in (e) and (f).

of 16% for the left ventricle and 9% for the bladder. We found no improvement
for organs with relatively low uptake like the kidneys.

4 Conclusion and Future Work

A novel fully automated approach for whole-body segmentation of PET data is
presented in this work. The centerpiece of the proposed joint segmentation and
registration method is the introduction of a novel segmentation distance for reg-
istration inspired by Chan and Vese [2]. As the interpretation is reversed to active
contour models, we denote this as passive contours. Further, the registration is
performed based on functional and morphological data simultaneously.

A validation based on the Dice coefficient and the Jacobian determinant
demonstrates the high accuracy of our method. Further, the benefit of the
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additional Chan-Vese distance, in contrast to multimodal PET-CT registration
alone, was shown.

Compared to existing atlas-based segmentation methods the novelty of our
passive contours approach is given by implicitly incorporated information about
shape and location of the organs. The general shape of the contour can not de-
grade (e.g. split in multiple objects) as we control the spatial regularity of the
guaranteed diffeomorphic transformation by using hyperelastic regularization.
Local adaptive volume regularization additionally prevents unnatural contrac-
tion or expansion of organs.

We overcome the limitation of low soft tissue contrast in CT by using addi-
tional PET images. Although the spatial resolution of PET is magnitudes lower
compared to CT, the function information does not perturb the CT registration,
but provides important complementary information in some soft tissue regions.

The primary goal is to apply our method to human data in future work. In
addition, we will extend this work by analyzing a larger number of data sets
with a larger number of VOIs. In this context it is also planned to analyze the
applicability of the proposed method to subjects with tumors. It is planned to
extend our method to dynamic PET data as activity over time carries important
information for segmentation. An integration of our passive contour distance
into the intensity-based registration of [1] is particularly promising. In future
work we further plan to extend the data term to handle Poisson statistics and
inhomogeneous areas as in [11].
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M., Gangadharmath, U., Mocharla, V., Kolb, H., Walsh, J., Zhang, W., Kopka,
K., Wagner, S.: A new class of highly potent matrix metalloproteinase inhibitors
based on triazole-substituted hydroxamates (radio)synthesis, in vitro and first in
vivo evaluation. J. Med. Chem. 55(10), 4714–4727 (2012)
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