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Abstract. We present a spectral-based sulcal curve labeling method by
considering geometrical information of neighboring curves in a multiple
atlases-based framework. Compared to the conventional method, we pro-
pose to use neighboring curves for avoiding ambiguity in curve-by-curve
labeling and to integrate the labeling results obtained from multiple at-
lases for consistent labeling. In particular, we compute a histogram of
points on the neighboring curves as a new feature descriptor for each
point on a sulcal curve under consideration. To better resolve ambigu-
ity in the curve labeling, we also employ the neighboring curves that
are parallel to major sulcal curves. Moreover, we further integrate all
the results from multiple atlases into a linear system, by solving which
our method ultimately gives accurate labels to the major curves in the
subjects. Experimental results on evaluation of 12 major sulcal curves
of 12 human cortical surfaces indicate that our method achieves higher
labeling accuracy 7.87% compared to the conventional method, while
reducing 4.41% of false positive labeling errors on average.
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1 Introduction

The sulcal folding patterns of human cortical fundic regions are used as key
features for analyzing brain function, monitoring brain growth, and discovering
diseases. Since sulcal curves can be defined along fundic regions, automatic la-
beling of sulcal curves is important for these studies. There have been recent
studies on automatic extraction of sulcal curves on human cortical surfaces [1,2].
However, these methods extract not only major curves but also many extraneous
minor curves, which should be further removed for sulcal curve labeling. Due to
the extremely complicated and variable sulcal folding patterns and extraneous
minor sulcal branches, even if sulcal curves can be perfectly extracted, it is still
challenging to identify major curves among the automatically extracted ones.

Atlas(es)-based sulcal curve labeling methods have been proposed for auto-
matic labeling of major curves [3,4,5]. Compared to the single atlas-based meth-
ods [3,4], the multiple atlases-based labeling method is thought to be able to

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 124–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Multiple Atlases-Based Joint Labeling of Human Cortical Sulcal Curves 125

give more accurate labels by considering individual sulcal variability. Recently,
a spectral-based sulcal curve labeling method using multiple atlases has been
reported [5]. In their method, they just picked the most matched sulcal curve
from the multiple atlases to label the corresponding curve in the subject. The
correspondence is established by solving an affinity matrix that stores all pos-
sible assignments based on the geometric features between two curves under
consideration. However, there are two main drawbacks in their method. First,
since only the best matched curve is considered as the candidate to label the
subject, large false positive errors can be introduced if there is no similar curve
in the atlases or the number of atlases is too small. Second, the labeling process
is done independently for each major curve without considering its neighboring
curves. This could reduce a chance for the major curves to be accurately labeled
due to the ambiguity in the curve matching.

In this paper, we present a sulcal curve labeling method for cortical surfaces,
which jointly exploits the geometric information of multiple atlases and neigh-
boring curves in the subject space. We focus on “finding correct assignments”,
which can be formulated as a linear system similarly as in [6]. Specifically, for the
feature description, each curve stores its neighboring curves’ information (i.e., a
histogram of position information of points on the neighboring curves), and in
the curve matching, a major curve finds the most similar curves in the subject,
guided by its neighboring curves. In addition, we incorporate all labeling results
obtained from multiple atlases since it is likely that major curves in the atlases
are only partially similar to those in the subject. To this end, we extend the affin-
ity matrix in [6] to integrate labeling results into a linear system. Experimental
results indicate that our method achieves 7.87% improvement of labeling accu-
racy as well as 4.41% reduction of false positive labeling errors on average for 12
major curves on 12 cortical surfaces, compared to the conventional method [5].

2 Method

Given a set of sulcal curves P in atlases and that of unlabeled sulcal curves Q in
the subject, our goal is to label major curves in Q while discarding minor ones
in Q. Note that the curves in P are pre-labeled major curves by following neu-
roanatomical conventions while Q contains (possibly disconnected) major curves
and many minor ones. For curve labeling, we first automatically extract sulcal
curves from the triangulated cortical surface using [1] and deform all curves
in each atlas to the subject space using a diffeomporphic surface registration
method [7]. It is worth noting that landmark-free surface registration methods
can only roughly align the sulcal folding patterns [8], thus still leaving a certain
amount of ambiguity in the curve labeling (see Fig. 1a). To better resolve am-
biguity in the labeling, unlike the “hard” matching strategy in the conventional
method, we use the geometric features of the major curve and its nearby curves
for measuring curve similarity. Moreover, the final label is jointly determined by
all atlases, which differs from the conventional method that directly retrieves
the label from the most similar curve in a selected atlas.
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2.1 Spectral-Based Curve Matching Using Neighboring Curves

To measure similarity for every possible pair of curves p ⊆ P and q ⊆ Q,
we basically measure the individual and pairwise affinities of an assignment
a = (pi, qj), where pi ∈ p and qj ∈ q. For an assignment a, we denote D(a) as
the displacement vector between geometric features of pi and qj , each element of
which is normalized with respect to its maximum value. Let w be a nonnegative
weight vector that gives the importance of every element in D(a). The individual
affinity is then defined as follows:

A(a) = exp(−‖D(a)‖2w
2σ2

) , (1)

where ‖D‖w denotes the weighted L2-norm of D with respect to the weight
vector w and σ is a user-provided regularization parameter. Similarly, for two
distinct assignments a and b, the pairwise affinity is given by

A(a, b) = exp(−‖D(a, b)‖2w
2σ2

) , (2)

where D(a, b) = D(a)−D(b).

Geometric Features Considering Neighboring Curves. Several geomet-
ric features are defined for each sulcal point, i.e., positions, curvatures, and unit
tangent vectors from the major curve under consideration. Besides, we further
incorporate the features from its neighboring curves. Basically, we calculate a
histogram based on the position information of the neighboring curves in the
Euclidean space. Given a major curve p = {p1, · · · , pi, · · · , pN} with N sulcal
points for p ⊆ P , let Sp be a set of its neighboring curves. To compute a his-
togram of the neighboring sulcal points around a point pi ∈ p, we first build a
spherical kernel K centered at pi with radius r. The size of r is automatically
determined by the maximum Hausdorff distance between p and s for ∀s ⊆ Sp.

r = max
s⊆Sp

dH(p, s) , (3)

where dH(·, ·) denotes the Hausdorff distance between two curves. The size of
K is identical for any point on p. Let F (·) be the position-information vector
of a sulcal point in the atlases, which stands for location information in the
Euclidean space. Once the size of spherical kernel K is determined, an initial set
of neighboring points Lpi within K is obtained as follows:

Lpi =

{
x | x ∈ s ⊆ Sp,

‖F (x)− F (pi)‖2
r2

≤ 1

}
. (4)

Our interest is to find sulcal points on the neighboring curves that are “parallel”
to curve p, referring to those with similar global shapes and orientations to p.
To emphasize such neighboring points in Lpi , we apply the principal component
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analysis (PCA) on Lpi since the principal direction u1 of Lpi stands for the
direction of the parallel curves. We then discard as many sulcal points on the
neighboring curves as possible that are not parallel to curve p within K, by
reducing spherical kernel K to an ellipsoid with its three axes aligned to the
three eigenvectors of PCA, un, n = 1, 2, 3. The eigenvalue λ1 is given along the
first major axis. We then have the following final set of neighboring points L′

pi

by letting l1 =
√
λ1 and l2 = l3 = r:

L′
pi

=

{
x | x ∈ Lpi ,

3∑
n=1

((F (x) − F (pi)) · un)
2

l2n
≤ 1

}
. (5)

Now, we build a bounding cube centered at pi that fully contains the neighboring
sulcal points in L′

pi
. Then, we uniformly divide the cube into m subvolumes. Let

hk be a ratio of points in L′
pi

that belong to a subvolume bk, 1 ≤ k ≤ m. We

finally have a histogram Hpi = [h1, h2, · · · , hm]T by the following equation.

hk =

∑
x∈L′

pi

I(x, bk)∣∣L′
pi

∣∣ , (6)

I(x, bk) =

{
1 if {x} ∩ bk � ∅,
0 otherwise.

(7)

For a sulcal point qj in the subject, it is difficult to compute its actual spherical
kernel because its neighboring major curves are unknown. Therefore, for an
assignment a = (pi, qj), we use the same kernel as pi in the atlas for computing
the histogram of qj .

Synchronized Curve Matching. To account for sulcal shape variability, we
generate the mean curve for each major curve [5]. We denote φ(·) as the corre-
sponding point on the mean curve to a given sulcal point in the atlas. For an
assignment a = (pi, qj), we now set a threshold of the distance between pi and
qj with respect to the covariance of φ(pi). Thus, the assignment a is rejected if

3∑
n=1

((F (qj)− F (pi)) · vn)2
(3τn)2

> 1 , (8)

where τ2n(n = 1, 2, 3) are the covariances along the corresponding principal axes
of the covariance matrix of φ(pi). This constrains assignments statistically valid
in terms of the sulcal shape variability.

Let s be a neighboring curve for a given major curve p as we defined above.
We first measure affinities for p and s, respectively. To incorporate affinities of
the neighboring curves into the affinity matrix M , we also measure all possible
pairwise affinities between p and s. For pi ∈ p and si′ ∈ s, suppose that assign-
ments are given by a = (pi, qj) and b = (si′ , qj′ ), where qj , qj′ ∈ q ⊆ Q. Since
a major curve is unable to share an identical label with its neighboring curves,
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in such a undesirable case of the coexistence of a and b, the pairwise affinity
between a and b is set to zero. Once M is built, we compute the principal eigen-
vector of M to find the highly confident assignments. Since s only helps find the
correspondences between p and q, the possibly remaining assignments in s will
be left out.

2.2 Joint Labeling Using Multiple Atlases

It is worth noting that major curves in the atlases could be only partially similar
to those in the subject. For all major sulcal curves in P , once the highly confident
assignments with the corresponding curves in Q are selected, we incorporate the
assignments to determine final labels based on their correspondences. Let pα

and pβ be the distinct major sulcal curves in P with an identical label. For two
distinct assignments a = (pαi , qj) and b = (pβi′ , qj′ ), it is highly desirable that

qj = qj′ if φ(pαi ) = φ(pβi′). To implement that idea, we construct a new affinity
matrix M that describes relationships of all possible assignments between pα

and pβ. The diagonal entries of M are filled with confidence values that are
obtained from the principal eigenvector of the affinity matrix in Sect. 2.1. For
two distinct assignments a = (pαi , qj) and b = (pβi′ , qj′), M(a, b) is set to A(a, b)
as defined in Eq. 2. Then, M(a, b) is updated as follows by letting c = (qj , qj′)

if φ(pαi ) = φ(pβi′):

M(a, b) = A(a, b) · A(c) . (9)

Finally, we compute the principal eigenvector of M to select the highly confident
assignments for the joint labeling.

3 Experimental Results

Since the dataset in [5] is not publicly available, we used the MRIs Surfaces
Curves dataset [8] for validation (total 12 subjects). However, in this dataset,
several major curves delineated by experts were still crossed gyral regions, which
slightly differ from the automatically extracted curves we used in the experiment.
Thus, we generated ground-truth curves by combining the manual delineation
results with the automatically extracted sulcal curves.

Given an automatically labeled curve q and its corresponding ground-truth
curve qg, the labeling accuracy acc(q, qg) and false positive labeling error err(q, qg)
were measured by the following equations:

acc(q, qg) =
l(q ∩ qg)

l(qg)
and err(q, qg) =

l(q − qg)

l(qg)
, (10)

where l(·) denotes the length of a curve.
In our experiment, we adapted a jackknife technique to validate the accuracy

and false positive errors: For each validation set, one subject was leaved out from
the subject set to be labeled, and other subjects were regarded as the atlases.
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Table 1. 12 Major curves and their neighboring curves

Curve Neighbors Curve Neighbors Curve Neighbors Curve Neighbors

STS ITS ITS STS, OTS CS preCS, postCS preCS CS
postCS CS SFS IFS IFS SFS CingS -
CalcS colS OcPS - OTS ITS, colS colS OTS, CalcS

12 out of major curves for both left and right hemispheres were used for valida-
tion: the superior temporal sulcus (STS), inferior temporal sulcus (ITS), central
sulcus (CS), precentral sulcus (preCS), postcentral sulcus (postCS), superior
frontal sulcus (SFS), inferior frontal sulcus (IFS), cingulate sulcus (CingS), cal-
carine sulcus (CalcS), occipito parietal sulcus (OcPS), occipito temporal sulcus
(OTS), and collateral sulcus (colS). We selected the neighboring curves for each
major sulcal curve based on neuroanatomical prior knowledge as summarized in
Table 1. For fair comparison of different methods in all experiments, we used the
same set of the deformed atlases obtained by the same registration method [7],
even for the conventional method.

(a) (b) (c)

Fig. 1. Poorly deformed atlases and labeling results for the central sulcus (blue) and
postcentral sulcus (red): (a) deformed atlases (thin curves) and the ground-truth curves
(bold curves), (b) the labeling results by the conventional method, and (c) the labeling
results with neighboring curves

3.1 Neighboring Curves

We employed neighboring curves and chose the most similar curve among mul-
tiple atlases for the final result. For the histogram computation, we subdivided
the bounding cube into 4 × 4 × 4 subvolumes, i.e., m = 64. For the affinity
matrix computation, we set the weight vector w = [0.75, 0.15, 0.05, 0.05]T and
the regularization parameter σ = 0.3. Each of the elements in w corresponds
to weight of the position, curvature, tangent vector, and histogram of neigh-
boring sulcal points, respectively. We rejected an assignment if the norm of the
difference between the two histograms is greater than 0.1. Note that the param-
eters were empirically set according to [5] and by our experiment. In Fig. 1, the
labeling results with neighboring curves are consistent although the atlases are
poorly deformed. The results with neighboring curves exhibited better agreement
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Table 2. Average labeling accuracy and false positive errors in the left (lh) and right
hemispheres (rh) (unit: %):

Conventional
method

Neighboring
curves (a)

Joint labeling
(b)

Our method
(a+b)

lh rh lh rh lh rh lh rh

Accuracy 68.65 69.19 71.22 72.27 74.53 74.87 77.12 76.47
False positives 20.22 19.85 25.06 23.41 16.82 15.53 15.79 15.46

with the ground-truth than the conventional spectral-based method as summa-
rized in Table 2. Interestingly, the average false positive errors also increased
because several false positive assignments that had a low confidence value in the
conventional method can gain a higher confidence, resulting from guidance of
neighboring curves.

3.2 Joint Labeling Using Multiple Atlases

We applied the joint labeling without guidance of neighboring curves. The re-
sults obtained from 12 atlases were incorporated to determine the final label to
each major sulcal curve. The same parameter setting as in Sect. 3.1 was used
here. Figure 2 shows that the the joint labeling also gives labels to a part of
major sulcal curves that is missed in the conventional spectral-based method.
Compared to the conventional method, the labeling accuracy increased while the
false positive errors decreased as summarized in Table 2.

(a) (b) (c)

Fig. 2. Comparison of results by the conventional spectral-based method and joint
labeling for the superior frontal sulcus: (a) deformed atlases (thin curves) and the
ground-truth curves (bold curves), (b) the labeling results by the conventional spectral-
based method, and (c) the labeling results by the joint labeling

3.3 Overall Performance

By incorporating two aspects, i.e., synchronized matching with neighboring curves
and joint labeling using multiple atlases, into the our framework, we obtained
the overall labeling accuracy and false positive errors as summarized in Table 2.
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The labeling performance by our method was highly achieved after incorporating
the two aspects. Also, our labeling results were comparable to the corresponding
ground-truth curves (see an example in Fig. 3). Figure 4 demonstrates the sta-
tistical comparison of the labeling results for 12 major sulcal curves. The results
show the average accuracy and false positive errors across subjects. This indi-
cates that our labeling results were consistent on most of the curves, compared
to the conventional method.

Fig. 3. A visual comparison of our automatic labeling results with the ground-truth
for the right hemisphere: the lateral and medial views of ground-truth labeled curves
(1st and 3rd columns) and the respective views of automatically labeled curves by our
method (2nd and 4th columns). Note that there are many extraneous minor curves in
the input (gray). For better visualization, a partially inflated surface model is used.

(a) left hemispheres (b) right hemispheres

Fig. 4. Performance comparisons: average labeling accuracy (top row) and false positive
errors (bottom row) for major sulcal curves in the left and right hemispheres
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4 Conclusion

We presented a method for multiple atlases-based labeling of major sulcal curves
on the cortical surface. Specifically, to resolve ambiguity in the labeling, we pro-
posed a histogram feature for each sulcal point and incorporated the geometric
information of neighboring curves into the affinity matrix for the curve match-
ing. Since major curves in the atlases are likely to be partially similar to those in
the subject, we incorporated the results obtained from all atlases into the linear
system for accurate labeling. We have shown in experiment that compared to
the conventional method, the performances were improved for 7.87% labeling
accuracy and reduced for 4.41% of false positive errors. In our future work, we
will employ a learning technique for optimizing parameters used in the curve
matching.
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