
Bjoern H. Menze  Georg Langs
Le Lu  Albert Montillo  Zhuowen Tu
Antonio Criminisi (Eds.)

 123

LN
CS

 7
76

6

Second International MICCAI Workshop, MCV 2012
Nice, France, October 2012
Revised Selected Papers

Medical
Computer Vision
Recognition Techniques and Applications
in Medical Imaging



Lecture Notes in Computer Science 7766
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Bjoern H. Menze Georg Langs
Le Lu Albert Montillo Zhuowen Tu
Antonio Criminisi (Eds.)

Medical
Computer Vision
RecognitionTechniques andApplications
in Medical Imaging

Second International MICCAIWorkshop, MCV 2012
Nice, France, October 5, 2012
Revised Selected Papers

13



Volume Editors

Bjoern H. Menze
ETH Zurich, Sternwartstrasse 7, 8092 Zürich, Switzerland
E-mail: bjoern@ethz.ch

Georg Langs
Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
E-mail: georg.langs@meduniwien.ac.at

Le Lu
Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA
E-mail: le-lu@siemens.com

Albert Montillo
GE Global Research, 1 Research Circle, Niskayuna, NY 12309, USA
E-mail: montillo@ge.com

Zhuowen Tu
University of California, 635 Charles E. Young Drive South
Los Angeles, CA 90095-7334, USA
E-mail: zhuowen.tu@loni.ucla.edu

Antonio Criminisi
Microsoft Research, 7 JJ Thomson Avenue, Cambridge, CB3 0FB, UK
E-mail: antcrim@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36619-2 e-ISBN 978-3-642-36620-8
DOI 10.1007/978-3-642-36620-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931266

CR Subject Classification (1998): I.4.6-7, I.4.9, I.4.3, I.2.10, I.5.2-4, J.3

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The Second MICCAI Workshop on Medical Computer Vision (MICCAI-MCV
2012) was held in conjunction with the 15th International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI) on October
5, 2012 in Nice, France. It succeeded the First Workshop on Medical Computer
Vision that was held in September 2010 in conjunction with MICCAI 2010 in
Beijing.

The workshop aimed at exploring the use of modern computer vision tech-
nology in tasks such as automatic segmentation and registration, localization of
anatomical features and detection of anomalies, as well as 3D reconstruction and
biophysical model personalization. In this it focuses on principled approaches
that go beyond the limits of current model-driven image analysis, which are
provably efficient and scalable, and which generalize well to previously unseen
images.

The goal of the workshop was to foster discussions among researchers working
on novel computational approaches at the interface of computer vision, machine
learning, and medical image analysis, and who are interested in pushing the
boundaries of what current medical software applications can deliver in both
clinical and medical research settings. To this end we invited Nikos Paragios
from INRIA and Ecole Centrale Paris and Nassir Navab from TU Munich to
discuss challenges and opportunities lying at the interface of medical computer
vision and “classic” computer vision. The following panel discussion with the
invited speakers – in which Nicholas Ayache, INRIA Sophia-Antipolis, and Simon
Mercer, Microsoft Research, joined in – dealt with the following questions:

- How do we turn research into clinical use? How do we turn research into
products?

- How do we make data available to the broader research community?
- What makes medical imaging data special compared to classic computer

vision data and problems?
- How would we set up large data sets for training efficient computer vision

like algorithms? And is this a good idea at all?
- How do we solve the annotation problem? What are perspectives in times of

mechanical turk? What are effective incentives for clinical collaborators to
share knowledge and to annotate data image?

Central to the workshop were the contributions of the participants. Our call
for papers resulted in 42 submissions of up to 12 pages. Each paper received
at least three reviews. Based on these peer reviews, we selected 24 submissions
for presentation out of which 12 were presented as a poster and 12 as a poster
together with a plenary talk. Three talks were awarded the “MCV Best Paper
Award” based on the popular vote of the workshop attendees: Herve Lombaert
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et al. “Groupwise Spectral Log-Demons Framework for Atlas Construction,”To-
bias Gass et al. “Semi-supervised Segmentation Using Multiple Segmentation
Hypotheses from a Single Atlas,”and Rene Donner et al.“Fast Anatomical Struc-
ture Localization Using Top-down Image Patch Regression.”

The present volume contains the reworked papers of the MICCAI-MCV 2012
workshop. It also features four selected papers by Zhong et al., Li et al., Song
et al., and Wu et al. that were presented at the previous CVPR Medical Com-
puter Vision Workshop, which was co-organized by L. Lu, B. Menze, G. Langs,
Y. Zhan, and Z. Tu and was held in conjunction with the International Confer-
ence on Computer Vision and Pattern Recognition on June 21, 2012, in Provi-
dence, Rhode Island, USA.

December 2012 Bjoern H. Menze
Georg Langs

Le Lu
Albert Montillo

Zhuowen Tu
Antonio Criminisi
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Real-Time 2D/3D Deformable Registration

Using Metric Learning

Chen-Rui Chou1 and Stephen Pizer1,2

1 Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA

cchou@cs.unc.edu
2 Department of Radiation Oncology, University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599, USA

Abstract. We present a novel 2D/3D deformable registration method,
called Registration Efficiency and Accuracy through Learning Metric
on Shape (REALMS), that can support real-time Image-Guided Radia-
tion Therapy (IGRT ). The method consists of two stages: planning-time
learning and registration. In the planning-time learning, it firstly models
the patient’s 3D deformation space from the patient’s time-varying 3D
planning images using a low-dimensional parametrization. Secondly, it
samples deformation parameters within the deformation space and gen-
erates corresponding simulated projection images from the deformed 3D
image. Finally, it learns a Riemannian metric in the projection space
for each deformation parameter. The learned distance metric forms a
Gaussian kernel of a kernel regression that minimizes the leave-one-out
regression residual of the corresponding deformation parameter. In the
registration, REALMS interpolates the patient’s 3D deformation param-
eters using the kernel regression with the learned distance metrics. Our
test results showed that REALMS can localize the tumor in 10.89 ms
(91.82 fps) with 2.56 ± 1.11 mm errors using a single projection image.
These promising results show REALMS’s high potential to support real-
time, accurate, and low-dose IGRT.

1 Introduction

Tumor localization in 3D is the main goal of Image-guided Radiation Ther-
apy (IGRT ). It is usually accomplished by computing the patient’s treatment-
time 3D deformations based on an on-board imaging system, usually x-ray. The
treatment-time 3D deformations can be computed by doing image registration
between the treatment-time reconstructed 3D image and the treatment-planning
3D image (3D/3D registration) or between the treatment-time on-board projec-
tion images and the treatment-planning 3D image (2D/3D registration). Recent
advances of the IGRT registration methods emphasize real-time computation
and low-dose image acquisition. Russakoff et al. [1,2], Khamene et al. [3], Mun-
bodh et al. [4], Li et al. [5,6] rejected the time-consuming 3D/3D registration
and performed 2D/3D registration by optimizing similarity functions defined in

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 C.-R. Chou and S. Pizer

the projection domain. Other than the optimization-based methods, Chou et
al. [7,8] recently introduced a faster and low-dose 2D/3D image registration by
using a linear operator that approximates the deformation parameters. How-
ever, all of the above registration methods involve computationally demanding
production of Digitally-Reconstructed Radiographs (DRRs) in each registration
iteration (e.g., 15ms on a modern GPU to produce a 256 × 256 DRR from a
256× 256× 256 volume [9]), which makes them difficult to be extended to sup-
port real-time (> 30 fps) image registration.

We present a novel real-time 2D/3D registration method, called Registra-
tion Efficiency and Accuracy through Learning Metric on Shape (REALMS ),
that does not require DRR production in the registration. It calculates the pa-
tient’s treatment-time 3D deformations by kernel regression. Specifically, each of
the patient’s deformation parameters is interpolated using a weighting Gaussian
kernel on that parameter’s training case values. In each training case, its pa-
rameter value is associated with a corresponding training projection image. The
Gaussian kernel is formed from distances between training projection images.
This distance for the parameter in question involves a Riemannian metric on
projection image differences. At planning time, REALMS learns the parameter-
specific metrics from the set of training projection images using a Leave-One-Out
(LOO) training.

To the best of our knowledge, REALMS is the first 2D/3D deformable registra-
tion method that achieves real-time (> 30 fps) performance. REALMS uses the
metric learning idea firstly introduced in Weinberger and Tesauro [10] to tackle
the 2D/3D image registration problem. Particularly, in order to make the metric
learning work for the high dimensional (D � 103) projection space, REALMS
uses a specially-designed initialization approximated by linear regression. The
results have led to substantial error reduction when the special initialization is
applied.

The rest of the paper is organized as follows: In section 2, we describeREALMS’s
novel registration scheme that uses kernel regression. In section 3, we describe its
deformation spacemodeling approach for generating training samples in the defor-
mation space. In section 4, we describe the metric learning scheme and the special-
ized initialization in REALMS. We show our synthetic and real results in section
5. Finally, we discuss the results and conclude in section 6.

2 2D/3D Registration Framework

In this section, we describe REALMS’s 2D/3D registration framework. REALMS
uses kernel regression (eq. 1) to interpolate the patient’s n 3D deformation pa-
rameters c = (c1, c2, · · · , cn) separately from the on-board projection imageΨ(θ)
where θ is the projection angle. It uses a Gaussian kernel KMi,σi with the width
σi and a metric tensor Mi on projection intensity differences to interpolate the
patient’s ith deformation parameter ci from a set of N training projection images
{P(I ◦ T (cκ); θ) | κ = 1, 2, · · · , N} simulated at planning time. Specifically, the
training projection image, P(I ◦ T (cκ); θ), is the DRR of a 3D image deformed
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from the patient’s planning-time 3D mean image I with sampled deformation
parameters cκ = (c1κ, c

2
κ, · · · , cnκ). T and P are the warping and the DRR op-

erators, respectively. P simulates the DRRs according to the treatment-time
imaging geometry, e.g., the projection angle θ.

In the treatment-time registration, each deformation parameter ci in c can be
estimated with the following kernel regression:

ci =

N∑
κ=1

ciκ ·KMi,σi(Ψ(θ),P(I ◦ T (cκ); θ))

N∑
κ=1

KMi,σi(Ψ(θ),P(I ◦ T (cκ); θ))
, (1)

KMi,σi(Ψ(θ),P(I ◦ T (cκ); θ)) =
1√
2πσi

e
− d2

Mi (Ψ(θ),P(I◦T (cκ);θ))

2(σi)2 , (2)

d2Mi(Ψ(θ),P(I◦T (cκ); θ)) = (Ψ(θ)−P(I◦T (cκ); θ))ᵀMi(Ψ(θ)−P(I◦T (cκ); θ)),
(3)

where KMi,σi is a Gaussian kernel (kernel width= σi) that uses a Riemannian
metric Mi in the squared distance d2Mi and gives the weights for the parameter
interpolation in the regression. The minus signs in eq. 3 denote pixel-by-pixel
intensity subtraction.

We describe in section 3 how REALMS, at planning time, parameterizes the
deformation space and describe in section 4 how it learns the metric tensor Mi

and decides the kernel width σi.

3 Deformation Modeling at Planning Time

REALMS limits the deformation to a shape space. It models deformations as
a linear combination of a set of basis deformations calculated through PCA
analysis. In our target problem – lung IGRT, a set of Respiratory-Correlated
CTs (RCCTs, dimension: 512× 512× 120) {Jτ | τ = 1, 2, · · · , 10} are available
at planning time. From these a mean image I = J and a set of deformations φτ
between Jτ and J can be computed. The basis deformations can then be chosen
to be the primary eigenmodes of a PCA analysis on the φτ .

3.1 Deformation Shape Space and Mean Image Generation

REALMS computes a respiratory Fréchet mean image J from the RCCT dataset
via an LDDMM (Large Deformation Diffeomorphic Metric Mapping) framework
described in Lorenzen et al. [11]. The Fréchet mean J , as well as the diffeomorphic
deformations φ from the mean J to each image Jτ , are computed using a fluid-
flow distance metric:

J = arg
J
min

10∑
τ=1

ˆ 1

0

ˆ
Ω

||vτ,γ(x)||2dxdγ +
1

s2

ˆ
Ω

||J(φ−1
τ (x)) − Jτ (x)||2dx, (4)
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where Jτ (x) is the intensity of the pixel at position x in the image Jτ , vτ,γ is
the fluid-flow velocity field for the image Jτ in flow time γ , s is the weighting
variable on the image dissimilarity, and φτ (x) describes the deformation at the

pixel location x: φτ (x) = x+
´ 1
0 vτ,γ(x)dγ.

3.2 Statistical Analysis

With the diffeomorphic deformation set {φτ | τ = 1, 2, · · · , 10} calculated, our
method finds a set of linear deformation basis vectors φipc by PCA analysis. The

scores λiτ on each φipc yield φτ in terms of these basis vectors.

φτ = φ+

10∑
i=1

λiτ · φipc (5)

We choose a subset of n eigenmodes that captures more than 95% of the total vari-
ation. Then we let the n scores form the the n-dimensional parametrization c.

c = (c1, c2, · · · , cn) = (λ1, λ2, · · · , λn) (6)

For most of our target problems, n = 3 satisfies the requirement.

4 Metric Learning at Planning Time

4.1 Metric Learning and Kernel Width Selection

REALMS learns a metric tensor Mi with a corresponding kernel width σi for the
patient’s ith deformation parameter ci using a Leave-One-Out (LOO) training
strategy. At planning time, it samples a set of N deformation parameter tuples{
cκ = (c1κ, c

2
κ, · · · , cnκ) | κ = 1, 2, · · ·N

}
to generate training projection images

{P(I ◦ T (cκ); θ) | κ = 1, 2, · · · , N} where their associated deformation param-
eters are sampled uniformly within three standard deviations of the scores λ
observed in the RCCTs. For each deformation parameter ci in c, REALMS finds
the best pair of the metric tensor Mi† and the kernel width σi† that minimizes
the sum of squared LOO regression residuals Lci among the set of N training
projection images:

Mi†, σi† = arg
Mi,σi

minLci(M
i, σi), (7)

Lci(M
i, σi) =

N∑
κ=1

(
ciκ − ĉiκ(M

i, σi)
)2

, (8)

ĉiκ(M
i, σi) =

∑
χ�=κ

ciχ ·KMi,σi(P(I ◦ T (cκ); θ),P(I ◦ T (cχ); θ))∑
χ�=κ

KMi,σi(P(I ◦ T (cκ); θ),P(I ◦ T (cχ); θ))
, (9)
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where ĉiκ(M
i, σi) is the estimated value for parameter ciκ interpolated by the

metric tensor Mi and the kernel width σi from the training projection images
χ other than κ; Mi needs to be a positive semi-definite (p.s.d) matrix to fulfill
the pseudo-metric constraint; and the kernel width σi needs to be a positive real
number.

To avoid high-dimensional optimization over the constrained matrix Mi, we
structure the metric tensor Mi as a rank-1 matrix formed by a basis vector ai:
Mi = aiaiᵀ. Therefore, we can transform eq. 7 into a optimization over the unit
vector ai where

∥∥ai∥∥
2
= 1:

ai†, σi† = arg
ai,σi

minLci(a
iaiᵀ, σi) (10)

Then we can rewrite the squared distance d2Mi = d2aiaiᵀ used in the Gaussian
kernel KMi,σi as follows:

d2aiaiᵀ(P(I ◦ T (cκ); θ),P(I ◦ T (cχ); θ)) = (aiᵀ · rκ,χ)ᵀ(aiᵀ · rκ,χ), (11)

rκ,χ = P(I ◦ T (cκ); θ)−P(I ◦ T (cχ); θ), (12)

where rκ,χ is a vector of intensity differences between projection images gen-
erated by parameters cκ and cχ; and ai is a metric basis vector where the
magnitude of the inner product of ai and the intensity difference vector rκ,χ,
aiᵀ · rκ,χ gives the Riemannian distance for the parameter ci (eq. 11).

The learned metric basis vector ai† and the selected kernel width σi† form a
weighting kernel Kai†ai†ᵀ,σi† to interpolate the parameter ci in the registration
(see eq. 1).

4.2 Linear-Regression Implied Initial Metric

Since the residual functional L (see eq. 7) that we want to minimize is non-
convex, a good initial guess of the metric basis vector a is essential. Therefore,
REALMS uses a vector wi as an initial guess of the metric basis vector ai

for the parameter ci. Let W =
(
w1 w2 · · · wn

)
list these initial guesses. The

matrix W is approximated by a multivariate linear regression (eq. 13 and eq. 14)
between the projection difference matrix R = (r1r2 · · · rN )

ᵀ
and the parameter

differences matrix ΔC. In particular, the projection difference vector rκ = P(I ◦
T (cκ); θ)−P(I; θ) is the intensity differences between the DRRs calculated from
the deformed image I ◦ T (cκ) and the DRRs calculated from the mean image I
(where c = 0).

ΔC =

⎛⎜⎜⎜⎝
c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
. . .

...
c1N c2N · · · cnN

⎞⎟⎟⎟⎠− 0 ≈

⎛⎜⎜⎜⎝
rᵀ1
rᵀ2
...
rᵀN

⎞⎟⎟⎟⎠ ·
(
w1 w2 · · · wn

)
(13)
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W = (RᵀR)−1RᵀΔC (14)

The inner product of the matrix W, calculated by the pseudo-inverse in eq. 14,
and the projection intensity difference matrix R, WᵀR, gives the best linear
approximation of the parameter differences ΔC. Therefore, we use wi as the
initial guess of the metric basis vector ai for the parameter ci.

4.3 Optimization Scheme

REALMS uses a two-step scheme to optimize the metric basis vector ai and the
kernel width σi in eq. 10.

First, for each candidate kernel width σi, it optimizes the metric basis vector
ai using the quasi-Newton method (specifically, the BFGS method) with the
vector wi as the initialization. The gradient of the function Lci with respect to
ai can be stated as

∂Lci

∂ai
=

2
√
2

σi
ai

N∑
κ=1

(ĉiκ−ciκ)
N∑

χ=1

(ĉiχ−ciχ)Kaiaiᵀ,σi(P(I◦T (cκ); θ),P(I◦T (cχ); θ))rκ,χrᵀκ,χ

(15)
Second, REALMS selects a kernel width σi† among the candidate kernel widths
where its learned metric basis vector ai† yields minimum LOO regression resid-
uals Lci for parameter ci.

4.4 Projection Normalization

To account for variations caused by x-ray scatter that produces inconsistent
projection intensities, REALMS normalizes both the training projection images
P(I ◦ T (cκ); θ) and the on-board projection image Ψ(θ). In particular, it uses
the localized Gaussian normalization introduced in Chou et al. [8], which has
shown promise in removing the undesired scattering artifacts.

5 Results

5.1 Synthetic Tests

We used coronal DRRs (dimension: 64 × 48) of the target CTs as synthetic
on-board cone-beam projection images. The target CTs were deformed from
the patient’s Fréchet mean CT by normally distributed random samples of the
first three deformation parameters.1 We generated 600 synthetic test cases from
6 lung datasets and measured the registration quality by the average mTRE
(mean Target Registration Error) over all cases and all voxels at tumor sites.

1 In our lung datasets, the first three deformation parameters captured more than
95% lung variation observed in their RCCTs.
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(a) (b) (c)

Fig. 1. Average mTREs over 600 test cases projected onto the (a) first, (b) second, and
(c) third deformation basis vector versus the candidate kernel widths using N = 125
training projection images

(a) (b)

Fig. 2. (a) Time and (b) accuracy v.s. the number of training projection images N

With REALMS’s registrations, the averagemTRE and its standard deviation are
down from 6.89± 3.53 mm to 0.34± 0.24 mm using N = 125 training projection
images. The computation time for each registration is 11.39±0.73 ms (87.79 fps)
on Intel Core2 Quad CPU Q6700. As shown in figure 1, REALMS reduces the
minimum errors produced by kernel regressions that use the Euclidean metric
(Mi = I).

Figure 2 shows the computation time and registration accuracy tradeoff in
REALMS.

5.2 Real Tests

We tested REALMS on 6 lung datasets with an on-board CBCT system where
a single coronal on-board CB projection (dimension downsampled to 64× 48 for
efficient computation) at both EE (End-Expiration) and EI (End-Inspiration)
phases were used for the testing. See the top image of figure 4(b) for illustration.
For each dataset, we generated N = 125 training DRRs to learn the metrics
and select optimal interpolation kernel widths. The learned metrics and the
selected kernel widths were used to estimate deformation parameters for the
testing EE and EI on-board projections. The estimated CTs were deformed from
the Fréchet mean CT with the estimated deformation parameters. The results
were validated with reconstructed CBCTs at target phases.2 Table 1 shows the

2 The CBCTs were reconstructed by the retrospectively-sorted CB projections at tar-
get breathing phases.
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Table 1. Tumor Centroid Differences (TCD) after REALMS’s registration at EE and
EI phases of 6 lung datasets. Numbers inside the parentheses are the initial TCDs.

dataset# TCD at EE phase (mm) TCD at EI phase (mm) Time (ms)

1 2.42 (9.70) 4.06 (7.45) 10.40
2 3.60 (4.85) 3.60 (4.89) 10.92
3 2.30 (8.71) 3.60 (4.03) 10.91
4 1.27 (2.69) 2.80 (2.29) 10.91
5 0.70 (9.89) 3.28 (8.71) 11.15
6 1.98 (2.03) 1.12 (1.72) 11.08

(a) (b)

Fig. 3. (a) Image overlay of the reconstructed CBCT at EE phase (red) and the Fréchet
mean CT (green) (b) Image overlay of the reconstructed CBCT at EE phase (red) and
the REALMS-estimated CT (green) calculated from an on-board cone-beam projection
image at EE phase. The yellow areas are the overlapped region.

3D Tumor Centroid Differences (TCDs) between REALMS-estimated CTs and
the reconstructed CBCTs at the same respiratory phases. Tumor centroids were
computed via Snake active segmentations. As shown in table 1, REALMS reduces
the TCD from 5.58± 3.14 mm to 2.56± 1.11 mm in 10.89± 0.26 ms (91.82 fps).

Figure 3 illustrates an example REALMS registration on a lung dataset where
the tumor, the diaphragm, and most of the soft tissues are correctly aligned.

5.3 The Learned Metric Basis Vector

The learned metric basis vector ai† will emphasize projection pixels that are
significant for the distance calculation of the deformation parameter ci (e.g. give
high positive or high negative values). As shown in figure 4(a), the learned metric
basis vector a1† emphasized the diaphragm locations and the lung boundaries
as its corresponding deformation basis vector φ1pc covers the expansion and con-
traction motion of the lung. See the bottom image of figure 4(b) for illustration.



Real-Time 2D/3D Deformable Registration Using Metric Learning 9

(a) (b)

Fig. 4. (a) Initial guess of the metric basis vector a1 = w1 (top) and the optimized
metric basis vector a1† (bottom) of a lung dataset. They are re-shaped into projection
image domain for visualization. As shown in the figure, the diaphragm locations and
the lung boundaries (yellow boxes) were emphasized after metric learning. (b) Top:
a coronal on-board CB projection at EE phase of the lung dataset used in (a). The
yellow boxes in (a) and (b) correspond to the same 2D locations. Bottom: the first
deformation basis vector φ1

pc (the color arrows indicate heat maps of the deformation
magnitudes) overlaid with the volume rendering of the Fréchet mean CT of the lung
dataset used in (a). For this dataset, φ1

pc covers the expansion and contraction motion
of of the lung.

6 Conclusion and Discussion

This paper presents an accurate and real-time 2D/3D registration method,
REALMS, that estimates 3D deformation parameters from a single projection
image using kernel regressions with learned rank-1 projection distance metrics.
The learned distance metrics are optimized with an initialization approximated
by linear regression that we found, is essential to the success of this high di-
mensional metric learning. Without this special initialization, the optimization
would have easily converged to local minimum and thus produce wrong dis-
tance metrics. With this special initialization, the regression estimation on both
synthetic and real test cases showed its good promise in supporting real-time
and low-dose IGRT by using a single projection image. In this paper, we use
highly down-sampled projection images for efficient learning at planning time.
To support efficient learning for projection images of higher dimensions, the fu-
ture work of REALMS will incorporate neighborhood approximation methods in
the leave-one-out training such that the computation complexity will be reduced
from O(N2) to O(kN) if only k nearest training neighbors are considered for
the regression estimation.



10 C.-R. Chou and S. Pizer

References

1. Russakoff, D.B., Rohlfing, T., Maurer, C.: Fast intensity-based 2D-3D image reg-
istration of clinical data using light fields. In: Proceedings of the Ninth IEEE
International Conference on Computer Vision, vol. 1, pp. 416–422 (2003)

2. Russakoff, D.B., Rohlfing, T., Mori, K., Rueckert, D., Ho, A., Adler, J.R., Mau-
rer, C.R.: Fast generation of digitally reconstructed radiographs using attenuation
fields with application to 2d-3d image registration. IEEE Transactions on Medical
Imaging 24, 1441–1454 (2005)

3. Khamene, A., Bloch, P., Wein, W., Svatos, M., Sauer, F.: Automatic registration
of portal images and volumetric ct for patient positioning in radiation therapy.
Medical Image Analysis 10, 96–112 (2006)

4. Munbodh, R., Jaffray, D.A., Moseley, D.J., Chen, Z., Knisely, J.P.S., Cathier, P.,
Duncan, J.S.: Automated 2d-3d registration of a radiograph and a cone beam ct
using line-segment enhancement. Medical Physics 33, 1398–1411 (2006)

5. Li, R., Jia, X., Lewis, J.H., Gu, X., Folkerts, M., Men, C., Jiang, S.B.: Real-time
volumetric image reconstruction and 3d tumor localization based on a single x-
ray projection image for lung cancer radiotherapy. Medical Physics 37, 2822–2826
(2010)

6. Li, R., Lewis, J.H., Jia, X., Gu, X., Folkerts, M., Men, C., Song, W.Y., Jiang, S.B.:
3d tumor localization through real-time volumetric x-ray imaging for lung cancer
radiotherapy. Medical Physics 38, 2783–2794 (2011)

7. Chou, C.R., Frederick, B., Chang, S., Pizer, S.: A Learning-Based patient reposi-
tioning method from Limited-Angle projections. In: Angeles, J., Boulet, B., Clark,
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Abstract. We introduce a new framework to construct atlases from
images with very large and complex deformations. The atlas is build in
parallel with groupwise registrations by extending the symmetric Log-
Demons algorithm. We describe and evaluate two forms of our frame-
work: the Groupwise Log-Demons (GL-Demons) is faster but is limited
to local nonrigid deformations, and the Groupwise Spectral Log-Demons
(GSL-Demons) is slower but, due to isometry-invariant representations
of images, can construct atlases of organs with high shape variability.
We demonstrate our framework by constructing atlases from hearts with
high shape variability.

1 Introduction

Statistics on complex characteristics with high anatomical and functional vari-
ability require the normalization of measurements across subjects to establish
a population average and deviations from that average. The process of shape
averaging [22,5,27] becomes particularly complex, and still remains unsolved,
with organs undergoing large shape disparities. In the present state-of-the-art,
the concept of geodesic shape averaging allows unbiased constructions of atlases
through diffeomorphic methods [12,2,17], i.e., the transformation of a reference
shape toward an average (the geometry of the atlas) follows a geodesic path on
a Riemannian manifold (the space of diffeomorphic transformations). While the
LDDMM [4,3,6] or forward scheme approaches [1,8] provide elegant mathemati-
cal frameworks for averaging shapes, these methods could be slow and find their
limitations with high shape variability. Guimond et al. [10] proposed a fast and
efficient algorithm [19,16,26] with sequential (pairwise) registrations to a refer-
ence image. A new simultaneous (groupwise) registration approach would enable
the construction of an atlas in parallel, during the registration process (rather
than with a series of pairwise registrations). To do so, firstly, we extend the
symmetric Demons algorithm [25] to perform a groupwise registration of a set of
images in order to construct their atlas. However, as in most registration meth-
ods, transformation updates based on the image gradients are inherently limited
by their local scope. Secondly, we introduce a new update scheme for groupwise

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 11–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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registration based on the spectral decomposition of graph Laplacians [7,23,13],
that is invariant to shape isometry and is capable of capturing large deformations
during the construction of the atlas. We provide two forms of our groupwise reg-
istration framework that we name the Groupwise Log-Demons (GL-Demons,
faster and suited for local nonrigid deformations), and the Groupwise Spectral
Log-Demons (GSL-Demons, slower but capable of capturing very large de-
formations). We evaluate the two forms of our new framework by constructing
atlases of images with very large deformations.

2 Method

The atlas is defined as the set of N images {Ii}i=1..N nonrigidly aligned to their
average shape Ĩ. Our new shape averaging framework extends the symmetric
Log-Demons algorithm [25] and can use classical gradient-based updates (GL-
Demons) or an improved spectral matching for groupwise registration (GSL-
Demons). We begin by briefly reviewing each component.

2.1 Diffeomorphic Registration

A diffeomorphic transformation φ between two images (such that F (·) �→M(φ(·))
or simply F �→ M ◦ φ) guarantees a smooth one-to-one mapping (i.e., differen-
tiable and invertible, without creating foldings in space). From the theory of
Lie groups, the exponential map of a stationary velocity field v generates a
diffeomorphic transformation φ = exp(v) (approximated with the scaling-and-
squaring method [24]). The Log-Demons algorithm alternates the optimization
of a similarity term and a regularization term by decoupling them with a hidden
variable (the correspondence c). The algorithm is slightly modified from [25] to
converge toward an average shape by minimizing the following energy (controlled
with αi, αx, αT ):

E(F,M, c, v) = α2
i Sim(F ′,M ′) + α2

xdist(c, v)
2 + α2

TReg(v), where (1)

Sim(F ′,M ′) = (F ′ −M ′)2, dist(c, v) = ‖c− v|‖, and Reg(v) = ‖∇v‖|2

The similarity term incorporates diffeomorphism and symmetry with F ′=F ◦
exp(−c) and M ′ = M ◦ exp(+c). Both images F ′ and M ′ effectively converge
toward an average shape Ĩ = F ◦φ−1+M ◦φ (similar to the approaches in [2,6]).

2.2 Spectral Correspondence

The computation of the velocity field updates in the Log-Demons is inherently
limited by the local scope of the update forces derived from the image gradient,
i.e., it requires texture data which is generally local information. We now describe
a new update scheme based on spectral correspondence [21,11,18,14,13] that will
enable the construction of atlases with large deformations. Let us first consider
IΩ, the portion of an image I bounded by a contour Ω. We build a connected
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graph G = (V , E ) where the vertices V represent the pixels of IΩ and the edges
E define the neighborhood structure within IΩ . The corresponding adjacency
matrixW [9] represents the edge weights (Wij = wij if pixels (i, j) are neighbors,
0 otherwise), such that pixels with similar intensity and close in space would have
strong links in G (e.g., wij = exp(−β(I(i)− I(j))2) / ‖x(i)−x(j)‖2 where x are
Euclidean coordinates and β a parameter). The Laplacian operator on a graph
[9] is formulated as a |V | × |V | matrix with the form L = D−1 (D −W ), where
D is the (diagonal) degree matrix containing the node degrees Dii =

∑
j Wij .

SpectralCoordinates. Thedecompositionof theLaplacianmatrixL = X TΛX
reveals the graph spectrum [7] which comprises the eigenvalues Λ = diag
(λ0, λ1, ..., λ|V |) (in increasing order) and their associated eigenmodes

X =
(
X

(0),X (1), ...,X (|V |)) (a |V | × |V | matrix where columns X
(·) are eigen-

modes). The first eigenmode is trivial (λ0 = 0) and the following non-trivial eigen-
modes are the fundamental modes of vibrations of a shape depicted by IΩ . The
eigenmodes associated with the first k smallest non-zero eigenvalues (the lower
frequencies) represent the k-dimensional spectral coordinates (each point i ∈ IΩ
has the coordinates X (i) =

(
X

(1)(i),X (2)(i), ...,X (k)(i)
)
defined in a spectral do-

main). These lowest modes of vibration have the strong property of being smooth
and invariant to shape isometry (i.e., shapes in different poseswould share the same
spectral coordinates at each point, see below).

F 

M x(1) x(2) x(3) 

+1 

-1 

0 

Three lowest frequency
eigenmodes of two images

However, the eigenmodes need to be rear-
ranged as a result of sign ambiguity (X (·) and
−X

(·) are both valid eigenmodes), algebraic
multiplicity (many eigenmodes can share the
same eigenvalue), and imperfection in isom-
etry (changing the multiplicity and ordering
of the eigenvalues). Firstly, their values are
scaled to fit the range [−1;+1], i.e., for neg-
ative values: X

(·)− ← X
(·)−/min{X

(·)−} and for positive values: X
(·)+ ←

X
(·)+/max{X

(·)+}. Secondly, the eigenmodes of two images, X F and X M , are

reordered with the optimal permutation π (where X
(·)
F �→ X

π◦(·)
M ) which may be

found with the Hungarian algorithm that minimizes the following dissimilarity
matrix:

C(u, v) =

√
1

|IΩ|
∑
i∈IΩ

(
X

(u)
F (i)− X

(v)
M (i)

)2

+

√√√√∑
i,j

(
h

X
(u)
F

F (i, j)− h
X

(v)
M

M (i, j)

)2

(2)

The first term is the difference in spectral coordinates between the images.
The second term measures the dissimilarities between the joint histograms
h(i, j) (a 2D matrix where the element (i, j) is the joint probability of hav-
ing at the same time the intensity i and the eigenmodal value X

(·) = j). The
sign ambiguity can be removed by optimizing, instead, the dissimilarity matrix
Q(u, v) = min{C(u, v), C(u,−v)}. To keep the notation simple in the next sec-
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Algorithm 1. Spectral Correspon-
dence
Input: Images F , M .
Output: Correspondence c mapping F to

M
• Compute general Laplacians LF , LM .
L = D−1(D − W ), where
Wij = exp(−β(I(i)− I(j))2)/‖x(i) −

x(j)‖2

Dii =
∑

j Wij ,

• Compute first k eigenmodes of Lapla-
cians
• Reorder X M with respect to X F

(Eq. (2))
• Build embeddings:

F = (IF ,xF , X F ); M =
(IM ,xM , X M )
• Find c mapping nearest points F �→ M

Algorithm 2. Groupwise Demons Frame-
work
Input: N images with initial reference (e.g., Ĩ = I1)

Output: Transformations φi = exp(vi) mapping Ĩ to
Ii

Average shape is Ĩ = 1
N

∑N
i=1 Ii ◦ exp(vi)

repeat
for i = 1 → N do
• Find updates ui ← mapping(Ĩ, Ii ◦ exp(vi)).

(mapping() differs in GL and GSL-Demons)
• Smooth updates: ui ← Kfluid � ui.

(convolution of a Gaussian kernel on ui)
• Update velocity fields: vi ←
log (exp(vi) ◦ exp(ui))

(approximated with vi ← vi + ui).
• Smooth velocity fields: vi ← Kdiff � vi.
end for
• Get reference update: uref = − 1

N

∑N
i=1 vi

• Update velocity fields: vi ← vi + uref.
• Update reference: Ĩ ← 1

N

∑N
i=1 Ii ◦ exp(vi).

until convergence

tions, we assume the spectral coordinates have been appropriately signed, scaled
and reordered using this method.

Spectral Matching. The correspondence between two images F and M is es-
tablished (Alg. (1)) by finding the nearest neighbors in the spectral domain (e.g.,
with fast k-d trees). Put differently, if X F (i) is the closest point to X M (j) then
the pixel i corresponds with j. This simple nearest-neighbor scheme is extended
to add similarity constraints on intensity and space by adding image intensi-
ties and Euclidean coordinates to the spectral embedding: X = (αiI, αsx, αgX ).
Nearest points between XF and XM actually locate the best compromise among
three strong properties: points with similar isometric (or geometric) properties,
similar image intensities, and similar location (each weighted with αg,i,s). To be
more precise, this corresponds to minimizing the energy E(F,M, φ) = Sim(F,M)
where the regularization (similarly to [14]) is enforced with the smoothness of
the spectral and spatial components:

Sim(F,M) = (F −M ◦ φ)2 + α2
s

α2
i

(xF − xM◦φ)2 +
α2
g

α2
i

(X F − X M◦φ)2, (3)

where X F and X M◦φ are the spectral coordinates of corresponding points. This
matching technique that is invariant to isometry will enable the capture of large
deformations for our atlas construction.

2.3 Groupwise Demons Framework

Our framework is based on Guimond’s et al. approach [10] where they construct
the average image Ĩ sequentially by alternating between pairwise registrations
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I1 I2 

I3 I4 

Iref 

Iref 

I1 
(t+1)

I2 
(t+1)

I4 
(t+1)

I3 
(t+1)

Fig. 1. Groupwise Demons: Simul-
taneous registration of 4 images
(blue circles) toward a reference
image that evolves in the space
of diffeomorphisms (colored man-
ifold). The reference image is com-
puted in parallel and converges to
the average shape (middle red cir-
cle).

(fixing a reference image) and updates of the average image (transforming the
reference image). Our novelty is to directly compute Ĩ in parallel with simultane-
ous (groupwise) registrations (illustrated in Fig. 1). To do so, Eq. (1) is extended
to incorporate N velocity fields that warp all images {Ii ◦ exp(ci)} toward the
average image Ĩ. The new groupwise framework is summarized in Alg. (2) and
the underlying energy is:

E(Ĩ , {Ii, ci, vi}) =
1

N

N∑
i=1

(
α2
i Sim(Ĩ , Ii ◦ exp(ci)) + α2

xdist(ci, vi)
2 + α2

TReg(vi)
)

(4)
The reference image can be optionally generated with weighted contributions
from all images (e.g., weights different than 1/N in order to remove outliers).
The minimization of all similarity terms, {Sim(Ĩ , I ′i)}, causes all warped images
to become similar to the reference image and the sum of all velocity fields is
brought to a minimal value at convergence. Similar to the convergence of [10],
the Groupwise Demons framework effectively brings the reference image toward
the barycenter of all images. The average image is simply generated with Ĩ =
1
N

∑N
i=1 Ii ◦ exp(ci).

Groupwise Spectral Log-Demons. The update schemes based on image
gradients and on spectral correspondence can be used in the Groupwise Demons
framework. The Groupwise Log-Demons (GL-Demons) algorithm uses update
forces derived from the image gradient and is well suited for images with lo-
cal nonrigid deformations, while the Groupwise Spectral Log-Demons (GSL-
Demons) algorithm uses spectral correspondences as update forces (i.e., u is
found with Alg. (1)) and is better suited for large and highly non-local defor-
mations. GSL-Demons enables large jumps during the construction of the atlas
where points move toward their isometric equivalents even if they are far away
in space. The atlas construction can handle very large deformations and conver-
gences in fewer iterations (typically 5 iterations are sufficient). The energy has
the same form of Eq. (4) and uses the similarity term of Eq. (3).

Multilevel Scheme. Moreover, large and complex deformations can be captured
in a low resolution level with GSL-Demons, improving thus the processing
time, while the remaining small and local deformations can be recovered with
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GL-Demons in higher resolutions. This multilevel approach keeps the computa-
tion of the eigenmodes tractable.

3 Results

GL-Demons and GSL-Demons are evaluated by constructing atlases of images
with large deformations. In the synthetic experiment, we verify convergence to-
ward an average shape, and the handling of highly complex deformations (pa-
rameters: σfluid,diff = 1, αx = 1, k = 5, αg = 0.1, αs = 0.2, αi = 0.7 in 2D). In
a second experiment, we use both algorithms with real cardiac images that ex-
hibit high shape variability (parameters: σfluid,diff = 0.75, αx = 1, k = 5, αg =
0.25, αs = 0.35, αi = 0.4 in 3D).

Synthetic Deformations. Convergence and capture of large deformations are
now evaluated. N/2 velocity fields v are generated randomly using 15 control
points with random locations in the image and random displacements of at most
15 pixels (20% of the image size) that are diffused over the image. Their forward
and background transformations (exp(v) and exp(−v)) are applied to an initial
image I0, holding thus the average shape to I0 (establishing our ground truth).
Since we compare the convergence and its rate, and not the final performance,
the multi-level scheme (which should be used in real applications) is not ap-
plied. Fig. 2 shows the groupwise registrations of 10 random hearts (2D 75× 75
images) through 100 trials (a total of 1000 hearts). The average Dice metric
(measuring the overlap) between all computed average shapes and I0 as well as
the intensity errors (MSE) reveal that the reference shape (defined arbitrarily
as one of the 10 images) evolves toward the ground truth (i.e., Dice increases
and MSE decreases). Moveover, the N deformation fields become closer to the
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Fig. 2. Groupwise registration of 10 images deformed randomly (100 trials, 1 sample
on top row, with known ground truth) using GL-Demons and GSL-Demons, Left)
Best and worst atlases (based on Dice metric among 100 trials) demonstrating the
capability of the GSL-Demons to handle large deformations, a) Average Dice metric
with ground truth, b) Intensity difference between average shape and ground truth,
c) transformation error with ground truth. GSL-Demons converges faster toward the
average shape.
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Fig. 3. Atlas of ex vivo hearts (isosurfaces are shown) using a) GL-Demons (4 levels,
showing failure in the right ventricle), b) GSL-Demons (1 level), c) andGSL-Demons (4
levels,with correct right ventricle).GSL-Demons capture successfully largedeformations.
Jacobian determinants (axial planes) show that spectral matching capture smooth and
large deformations while gradient-based updates capture local deformations.

ground truth during registration. The striking difference in the convergence rates
shows the full power of GSL-Demons (less than 5 iterations are required) while
GL-Demons might not converge with such large deformations (we stopped the
algorithms after 200 iterations). Time-wise, 35 iterations takes 194 seconds with
GSL-Demons, and 53 seconds with GL-Demons (using unoptimized Matlab code
on a 2.53GHz Core 2 Duo). GSL-Demons shows a better performance with high
deformations than GL-Demons.

Cardiac Atlases. We now evaluate the construction of atlases with organs of
high shape variability. Ex vivo hearts are particularly challenging to register as
they present a high variability in fixture poses due to flabby ventricular walls.
The human ex vivo DTMRI dataset [20,16,15] provides good candidates to eval-
uate our algorithms. We use four hearts (b = 0 images of size 643) that were
excluded in the construction of the human atlas [15] due to their hypertrophy
and highly deformed shapes (see Fig. 3). GL-Demons (with 4 resolution levels)
fail in recovering the shapes of the right ventricles, while GSL-Demons success-
fully constructs the atlas even with 1 level of resolution (downsampled images at
size 283). As a comparison, 35 iterations takes 40 minutes in Matlab with GSL-
Demons and 9 minutes with GL-Demons. Using GSL-Demons with 4 resolution
levels reduce the intensity error (MSE) by half (from 10.8 to 5.08). Moreover,
the Jacobian determinants of the transformation fields show that the large and
highly non-local deformations are successfully captured with the spectral-based
update scheme (high and smooth Jacobian in Fig. 3 b) while local deforma-
tions are captured with the gradient-based update scheme in the higher levels
of GSL-Demons (Fig. 3 c).
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4 Conclusion

We addressed the problem of atlas construction that is limited by large deforma-
tions between images. We proposed a new framework with two forms to construct
an atlas in parallel with groupwise registrations: GL-Demons is faster but is lim-
ited by its gradient-based forces, whileGSL-Demons is slower but can capture very
large deformations due to its spectral components. We evaluated our framework
by constructing atlases from images with complex deformations. Results showed
convergence to an average shape and atlases were successfully created under large
deformations of 20% of the image size using 1000 random hearts. We additionally
showed thatGSL-Demons can construct an atlas for a challengingdataset of ex vivo
hearts with high shape variability. Future work will focus on implementation (con-
verting the Matlab code, also, the groupwise nature of our framework could highly
benefit from parallel computing, e.g., GPU) and improving the computation time
of the spectral decomposition (e.g., reuse of pre-computations, approximations).
Nevertheless, our current framework enables the construction of atlases from im-
ages with very large and complex deformations.
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Abstract. Graph matching is a robust correspondence detection approach which 
considers potential correspondences as graph nodes and uses graph links to 
measure the pairwise agreement between potential correspondences. In this 
paper, we propose a novel graph matching method to augment its power in 
establishing anatomical correspondences in medical images, especially for the 
cases with large inter-subject variations. Our contributions have twofold. First, 
we propose a robust measurement to characterize the pairwise agreement of 
appearance information on each graph link. In this way, our method is more 
robust to ambiguous matches than the conventional graph matching methods 
that generally consider only the simple geometric information. Second, 
although multiple correspondences are allowed for robust correspondence, we 
further introduce the sparsity constraint upon the possibilities of 
correspondences to suppress the distraction from misleading matches, which is 
very important for achieving accurate one-to-one correspondences in the end of 
the matching procedure. We finally incorporate these two improvements into a 
new objective function and solve it by quadratic programming. The proposed 
graph matching method has been evaluated in the public hand X-ray images 
with comparison to a conventional graph matching method. In all experiments, 
our method achieves the best matching performance in terms of matching 
accuracy and robustness. 

1 Introduction  

Robust anatomical correspondence detection is very important in many medical 
image applications, such as deformable image registration [1] and organ motion 
correction [2]. Although a lot of local image descriptors have been proposed with 
great success in computer vision area in the last decade, it remains a big challenge in 
establishing correspondences between subjects with large anatomical differences. 

Recently, graph matching has emerged as a robust correspondence detection 
approach by modeling not only the point-to-point correspondence [3] but also the pair-
to-pair matching consistency in a graph [4]. Specifically, each possible 
correspondence is considered as a node in the graph and the pairwise agreement 
between any two possible correspondences is described as a link in the graph. Then, 
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the problem of correspondence matching becomes an optimization problem for 
finding a cluster of these nodes that can produce the maximal pairwise agreement.  

In general, the advantages of graph matching over other pointwise correspondence 
detection methods lie in two aspects: (1) the matching coherence is explicitly modeled 
in the graph to leverage the problem of ambiguous matches; (2) multiple 
correspondences are allowed in correspondence detection while the final one-to-one 
correspondences are simultaneously solved on all correspondences by the spectral-
based optimization method [5]. However, there are two major issues in the current 
graph matching methods: (1) only simple geometric information is generally used for 
constructing the graph links; (2) its solution is usually suboptimal due to the lack of 
effective mechanism to control the quality of each possible correspondence 
established.  

To alleviate these two issues, we present a novel graph matching method to 
augment its power in establishing anatomical correspondences, especially for the 
cases with large inter-subject shape variations in the medical images. Our 
contributions have twofold. First, we propose a robust appearance measurement to 
characterize the pairwise agreement on each graph link. Specifically, for any two 
possible matches (with the two starting points in the template image and the two 
ending points in the subject image), a sequence of local intensity profiles (called line 
patch) along the line connecting two starting points in template image, or two ending 
points in the subject image, is constructed. Then the appearance discrepancy between 
these two line patches is computed to measure their pairwise agreement. Using this 
novel measurement, our method is more robust to ambiguous matches than the 
conventional graph matching methods that generally use only the simple geometric 
compatibility. Second, inspired by the discriminative power of sparse representation 
in machine learning and pattern recognition [6, 7], we apply a sparsity constraint on 
the possibilities of multiple correspondences, which requires to seek for only a small 
number of qualified correspondences for each feature point. Thus, the risk of 
ambiguous matches can be significantly avoided when determining one-to-one 
correspondences in the end of matching procedure. We finally construct a new 
objective function by integrating these two improvements. An efficient solution is 
further provided, via quadratic programming, to jointly estimate correspondences for 
all feature points. Our graph matching method has been evaluated in the public hand 
X-ray images and compared with the state-of-the-art graph matching method, namely 
Spectral Matching with Affine Constraint (SMAC) [4], which was reported with one 
of the best matching performances among the conventional graph matching methods. 
In all experiments, our method outperforms SMAC in terms of both matching 
accuracy and robustness. 

2 Methods 

Considering a feature point set | 1, … ,  in the template image and 
another feature point set | 1, … ,  in the subject image, our goal is to 
find an assignment matrix , , 0,1  between these two point 
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sets, where each assignment ,  indicates whether a feature point  in the template 
is matched to a feature point  in the subject with ‘1’ denoting correspondence and 
‘0’ denoting non-correspondence. Fig. 1 schematically illustrates the main idea of our 
method by using the hand X-ray images as example. Given the template feature point 
set  (Fig. 1(a)) and the subject feature point set  (Fig. 1(b)), all possible 
correspondences between  and  are established as shown by the white lines in Fig. 
1(c). Then, the  affinity matrix  (Fig. 1(d)) can be constructed to 
describe the confidence of all established correspondences as well as the pairwise 
agreement between any two possible matches. Specifically, each diagonal element 
(shown with boxes in Fig. 1(d)) in the affinity matrix  represents the pointwise 
similarity between two feature points  and . Each off-diagonal element 
(shown with pink triangle in Fig. 1(d)) measures the pairwise agreement between two 
possible matches ( ,  indicated by the red box and ,  indicated by the blue box 
in Fig. 1(d)), where we propose to use appearance-based line patch, combined with 
simple geometric relationship [4], to robustly characterize their coherence. The 
continuous relaxed assignment matrix , , 0,1  can be optimized 

by finding the cluster of correspondences among the diagonal elements of  while 
maximizing its pairwise agreements. To alleviate the potential ambiguity in 
determining one-to-one correspondences in Fig. 1(e) directly from the one-to-many 
assignment matrix , the sparsity constraint is applied to  to suppress the 
distraction of ambiguous matches during the correspondence detection procedure.  

 

Solving for one-to-one correspondences 

Constructing affinity matrix M 

 
Finding potential  
correspondences 
 

     (c) Potential correspondences 
 

(a) Template image and feature points  

(b) Subject image and feature points    (d) Affinity matrix M      (e) One-to-one correspondences

diagonal 

off-diagonal 

(i,i’) 

(j,j’) 

 

Fig. 1. The scheme of the proposed anatomical correspondence detection by graph matching 

2.1 Limitation of Conventional Graph Matching Method 

In the conventional graph matching method, such as the SMAC method, the 
coherence between possible matches ,  and ,  is usually measured by the 

geometric distance 
, , , , , , and the angle between two matches/ 

correspondences ,  and , . Here, . , .  denotes the Euclidian distance of 
two points. Then, the energy function is defined to maximize the following quadratic 
score function of : 
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                 . .    and    0 1| 1, … ,  (1) 

where assignment vector  is a  column vector after concatenating each row of 
. Thus, each element  ( 1, … , ) in the vector  is associated with a 

particular correspondence ( , ) in the assignment matrix , i.e., , . Since 
the optimization of  is NP-hard, each element in  is relaxed to be a continuous 
value between 0 and 1. Thus, the objective function  is subject to the affine 
constraint   (as in [3]) to enforce the one-to-one correspondences.  is a 

 selection matrix applied to vector  (vectorization of ) to 
represent the summation of each column or each row of  equals to 1, i.e.,  ∑ , 1  or ∑ , 1 . Spectral relaxation technique can be used to 
maximize the energy function in Eq. 1. 

Fig. 2(a) shows the optimized assignment matrix  by the SMAC method. It can 
be observed that the distribution of assignment in most rows (or columns) of  is not 
sharp (with an example of ,  values along the pink line shown in the top of Fig. 2 
(c)), indicating that it is still very difficult to determine the one-to-one correspondence 
for each feature point based on the one-to-many correspondences (each with similar 
likelihood). Thus, a good solution is to keep the large assignments only for the good 
matches while suppress the distractions from ambiguous matches. To achieve this, we 
propose to (1) utilize the appearance-based line patch to exclude the in-correct 
matches when constructing the affinity matrix  and (2) further apply sparsity to the 
assignment matrix  during the optimization procedure to suppress the influence 
from ambiguous matches, as will be presented below. 

 

     (c) The profiles along the pink lines (b) Assignment matrix X of our method (a) Assignment matrix X of SMAC 
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Fig. 2. The assignment matrix  optimized from the same affinity matrix by SMAC method 
(without sparsity constraint) and our method (with sparsity constraint)  

2.2 Improved Graph Matching Method 

Construction of Robust Affinity Matrix with Line Patch: It is clear that the 
matching performance is largely dependent on the established affinity matrix , 
especially the off-diagonal elements which characterize the pairwise agreement 
between two possible correspondences ,  and , . However, the conventional 
graph matching methods only consider the geometric coherence between ,  and , . Although local image descriptor can be used to measure the appearance 
similarities between feature point  and , as well as between  and  , it still 



24 Y. Guo et al. 

fails to discriminate the unreasonable matches as shown in Fig. 3. In this example, 
there are two template feature points and three subject feature points. Subject feature 
points  and  (blue circles) are the correct matches of template feature points  
and  (white circles) in the template image, while  (blue triangle) is the incorrect 
match to . However, neither the geometric coherence nor local descriptor based 
measurement is able to distinguish the incorrect correspondence 2, 3  from the 
correct one 2, 2  in the affinity matrix , which affects the optimization of 
assignment matrix  in Eq. 1.  

To solve this problem, we define the line patch by utilizing a sequence of intensity 
profiles along the line connecting the two feature points in the template or subject 
image. In Fig. 3, the image intensity profiles along the lines ,  and  
are displayed as blue, green, and white stripes, respectively. Thus, a collection of 
intensity profiles along the underlying stripe can be captured, which is referred to as 
the line patch in our method, to measure the pairwise agreement of two possible 
matches. Specifically, normalized cross correlation is used to measure the similarity 
between line patches. As shown in the right part of Fig. 3, the pairwise agreement 
measured by the line patches is able to distinguish between the correct and incorrect 
matches. Here we note that the radius of intensity profile is set to 5 pixel and we 
uniformly sample 60 local intensity profiles for each line patch. Thus, the number of 
intensity values included in the line patch of our method is 11 60.  

Normalized cross correlation between line patches 

 (s1’, s2’) (correct) (s1’, s3’) (incorrect) 

(t1, t2) 0.7616 0.1750 

         (c) Similarity between line patches (b) Line patches on subject S (a) Line patch on template T 

t1

t2

s1’ 

s2’ s3’

 

Fig. 3. Demonstration of using line patches in removing incorrect matches. Three possible 
correspondences are shown, i.e., ( , ) (correct), ( , ) (correct), ( , ) (incorrect). The 
pairwise agreement between correct matches ( , ) and ( , ) is measured by the similarity of 
blue and green line patches, while another pairwise agreement is measured by blue and white line 
patches for incorrect match. Since each line patch utilizes the intensity profiles between two 
feature points, it is able to suppress the incorrect matches in the affinity matrix, as quantitatively 
measured by the normalized cross correlation listed in the right part of this figure.  

Sparse Constraint on Assignment Vector: Although the one-to-many 
correspondence strategy ensures detection of all possible matches for each feature 
point, it also introduces many ambiguous matches, which could affect the final 
determination of one-to-one correspondences as shown in Fig. 2(a). Inspired by the 
discriminative power of sparse representation, we apply the -norm on the 
assignment vector  to require the number of non-zero elements in  to be as small 
as possible. Since the affine constraint  in Eq. 1 specifies each feature point 
to have at least one correspondence, the -norm regularization term on the entire 
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vector  eventually leads to the sparsity on the possible matches for each feature 
point.  

The advantage of using -norm regularization  is demonstrated in Fig. 2(b). 
Compared with the assignment matrix obtained by SMAC without -norm 
constraint, the distribution of assignments along each row and each column of matrix 

 is much sharper by our method. Thus, it is easier to finally apply the Hungarian 
algorithm to binarize  and obtain the one-to-one correspondences. It is worth noting 
that both methods are performed on the same affinity matrix, in order to evaluate only 
the effectiveness of including -norm regularization in correspondence detection.  

New Energy Function for Graph Matching: Incorporating the two improvements 
described above, our energy function for graph matching is given as:  

  ·      . .    and   0 1| 1, … ,   (2) 

Apparently, the first term is similar to SMAC method, except that the affinity matrix 
 is constructed by adding our newly-defined line patch to measure the pairwise 

agreement (i.e., off-diagonal elements in ). The second term  is called as 
sparsity constraint term, with its strength being controlled by the parameter .  

2.3 Optimization for the Improved Graph Matching 

We can incorporate the affine constraint  into the energy function in Eq. 2 
as: · ·      . .  0 1| 1, … ,  (3)     

Since each element  in  is non-negative, we can simplify  as ∑
. Then the energy function  becomes the quadratic function of . Finally the 

maximization of  falls into the constrained indefinite quadratic programming 
problem and can be efficiently solved by the trust region reflective algorithm [8].  

3 Experiments 

A publicly available USC hand atlas1 is used for evaluation of our method. The 
resolution for each image is 0.1 0.1  [9]. Thirty landmarks were manually 
placed for each of 43 left hand radiographs, randomly selected from the images of 11-
year-old children, and these manual landmarks are used as ground-truth in this paper. 
Correspondence results are evaluated by the matching errors computed as the 
Euclidean distances between the automatically detected correspondences and the 
ground-truth. 

In order to demonstrate the advantages of line patch and sparsity constraint 
separately, we compare the following four methods: (1) SMAC, (2) SMAC with line 
patch, (3) our method without line patch, and (4) our full method (equipped with both 

                                                           
1 http://www.ipilab.org/BAAweb/ 
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line patch and sparsity constraint). For the four methods, the normalized cross 
correlation between local intensity patches are used to measure the pointwise 
similarities in establishing possible correspondences (i.e., diagonal elements in 
affinity matrix ). The experiments are conducted by randomly selecting one image 
as the template image and the rest 42 images as the subject images. In each round of 
cross validation case, affine registration is performed for each subject image before 
detecting its correspondence with the selected template image. For the template 
image, 30 manually placed landmarks are used as its feature points, while, for each 
subject image, we follow the automatic landmark detection method in [10] to select 
around 450 feature points.  

Typical correspondence matching results by SMAC and our full method are shown 
in Fig. 4, where correct matches are displayed by solid cyan lines and incorrect 
matches are displayed by dashed pink lines. By visual inspection, it can be concluded 
that our full method is able to correctly identify all 30 correspondences, while SMAC 
method failed at two landmarks (#3 and #30). For the better illustration, we also zoom 
in the regions enclosing the landmarks #3 and #30 (see black rectangle in the original 
images), and show them in the right of Fig. 4(a) and Fig. 4(b), respectively. For 
matching two images of size about 1500 2000, the average runtimes for SMAC and 
our full method are 451seconds and 537 seconds by a Matlab implementation. 

Table 1 shows the mean and standard deviation of matching errors between the 
ground-truth and the estimated correspondences by the four methods, with respect to 
the two different templates. It can be seen that (1) our full method achieves the 
highest matching accuracy; and (2) each improvement strategy proposed in our 
method has significant effect in enhancing the performance of correspondence 
detection.  

 

(a) SMAC 

I. II. 

III. 

IV. 

I. II. 

III 

IV. 

I. II. 

III IV. 

I. II. 
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Fig. 4. Matching results by (a) SMAC and (b) our full method, with solid cyan lines showing 
correct matches and dashed pink lines showing incorrect matches. In the right of (a) and (b), 
regions I and III represent the enlarged views at landmarks 3 and 30 of the template image, and 
regions II and IV represent the corresponding enlarged views of the subject image. 

Table 1. Mean and standard deviation of matching errors between the manual ground-truth and 
the estimated correspondences by the four methods (mm)  

 SMAC SMAC + line patch 
Our method 

 (without line patch) 
Our method  

 (line patch + sparsity) 

Template 1 1.78  2.54 1.33  1.79 1.20  1.50 0.98 1.08 
Template 2 2.12  4.57 1.78 3.96 1.36  1.89 1.07 1.28 



Robust Anatomical Correspondence Detection by Graph Matching with Sparsity Constraint 27 

 

(a) Different shape differences to template (b) Different parts 
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Fig. 5. Mean matching errors of four methods (a) under different amounts of shape difference 
from the selected template, and (b) at different parts of hand images 

Furthermore, we demonstrate the robustness of the four methods under two 
different cases: (a) shape variation (such as difference between subject image and the 
template image), and (b) image contrast (such as in different parts of hand images). 
Specifically, for the first case, we classify all subject images into three groups (i.e., 
small, median, large) according to the total shape distance of their 30 manually 
labeled landmarks to the selected template image after affine alignment. Fig. 5(a) 
shows the mean distance errors by the four methods, which indicate that our full 
method achieves the lowest distance error. It is worth noting that, for the group with 
large shape difference, the matching error by our full method is almost 50% lower 
than that by SMAC method. This shows the great performance of our method in 
dealing with large inter-subject variations. For the second case, we separate 
landmarks into two different groups, i.e., located in the finger areas with high image 
contrast or in the palm areas with poor contrast. According to the results in Fig. 5(b), 
our method in difficult areas (i.e., palm areas) achieves even lower distance error than 
the SMAC method in the easy areas (i.e., finger areas). 

4 Conclusion 

In this paper, we have proposed a new graph matching method to improve the 
accuracy in establishing anatomical correspondences between two images. Our 
contributions have twofold: (1) a new concept of line patch is proposed to robustly 
characterize the pairwise agreement of two possible matches/correspondences; and (2) 
sparsity constraint is further introduced for the correspondence assignment, to 
suppress the influence from ambiguous matches. Promising results have been 
achieved by our method on the hand X-ray images, outperforming the state-of-the-art 
SMAC graph matching method. In the future, we will extend our method to other 
medical applications, e.g., deformable registration and motion correction for lung 4D-
CT images by extending our method to deal with large number of feature points under 
the framework of hierarchical correspondence matching. 
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Abstract. A semi-supervised segmentation method using a single atlas
is presented in this paper. Traditional atlas-based segmentation suffers
from either a strong bias towards the selected atlas or the need for manual
effort to create multiple atlas images. Similar to semi-supervised learn-
ing in computer vision, we study a method which exploits information
contained in a set of unlabelled images by mutually registering them non-
rigidly and propagating the single atlas segmentation over multiple such
registration paths to each target. These multiple segmentation hypothe-
ses are then fused by local weighting based on registration similarity.
Our results on two datasets of different anatomies and image modali-
ties, corpus callosum MR and mandible CT images, show a significant
improvement in segmentation accuracy compared to traditional single at-
las based segmentation. We also show that the bias towards the selected
atlas is minimized using our method. Additionally, we devise a method
for the selection of intermediate targets used for propagation, in order
to reduce the number of necessary inter-target registrations without loss
of final segmentation accuracy.

1 Introduction

Image segmentation is an essential problem in medical image processing. Among
automatic segmentation methods, the amount of prior information needed is
a major distinguishing characteristic of different approaches. It is desirable to
limit the constraints posed by prior knowledge both to retain generalizability
and to reduce the effort required to acquire the information needed. Arguably,
intensity-based approaches are among the methods that require the least amount
of prior information. However, these methods are often susceptible to imaging
artifacts, ambiguous intensities, and low contrast low signal-to-noise ratio imag-
ing modalities, since no prior knowledge of shape or pose is assumed. Examples
of such methods are active contours [1] and MRF-based segmentation [2, 3]. A
straight-forward method for incorporating anatomical knowledge into automatic
segmentation is the registration of an atlas image with known segmentation to a
target image, namely atlas based segmentation [4, 5]. Then, the resulting trans-
formation can be applied to the labelled atlas, yielding a segmentation of the
target image. As the registration is ill-posed due to ambiguous and non-convex
criteria [6], only approximate solutions can be achieved and these are influenced
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Fig. 1. Illustration of standard atlas based segmentation (left) and our proposed
method (right). In the latter, additional segmentation hypotheses are created by de-
forming the atlas segmentation multiple times along each path to each target. In a last
step, these hypotheses are then fused to create the final segmentations.

strongly by the choice of the atlas image [7]. To remedy this, the use of multiple
atlases is a common approach [7–12]: The information contained in such set of
atlases can be used to create an average atlas [11]; to train statistical models of
shape [8] or deformations [12]; or to register them individually to the target and
fuse these segmentations afterward [13]. While all these methods improve seg-
mentation accuracy compared to single atlas based segmentation, several studies
indicate that the latter fusion of multiple deformed atlas segmentations is supe-
rior to registering an average atlas [7, 9].

In contrast to increasing the amount of manual annotation, harnessing infor-
mation from unlabelled data has been a major research focus in computer vision.
To this end, semi-supervised learning [14] is an established framework which en-
ables tasks like image classification in large and diverse databases [15, 16]. For
medical image segmentation, the situation is similar: large amounts of raw data
are readily available while annotated data (atlases) are scarce.

In this paper, we study a method that propagates atlas segmentation labels
via a graph of inter-target registrations. This is inspired by label propagation in
semi-supervised learning [17] and similar to a method presented in [13], which
used indirect propagation of atlas labels to validate multi-atlas segmentation
results. In our framework, the traditional single atlas segmentation can be seen
as direct, or zero-hop propagation. Multiple segmentation hypotheses per target
can be obtained by allowing more hops via other target images, generating a
different segmentation hypothesis for each path from the atlas to the target (c.f.
Fig. 1b), which are then fused. In this paper, different strategies are studied for
fusing such propagated labels for the segmentation of each target. Experiments
with different anatomies and image modalities show significant improvement
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over the traditional atlas-based segmentation. In order for the method to scale
successfully to larger datasets, we also investigate methods to reduce the number
of propagation connections in the graph, which in turn reduces the computational
complexity by removing registrations that would otherwise be necessary.

2 Label Propagation

In this section, we present our method of generating and fusing multiple seg-
mentation hypotheses for each target image Xn in a set of N unlabelled images
using a single atlas A. An image is a function Ω → R, where Ω ∈ ND is the
discrete coordinate domain and D is the dimensionality of the image. We define
a binary segmentation as S(·)=Ω→{0, 1}. A transformation is denoted with T ,
e.g. T (A) is the transformed atlas A. While T can be an arbitrary transforma-
tion, we will assume non-rigid deformations represented by dense displacement
fields throughout this paper. Let Tsource,target denote a registration from Xm to
Xn. We first mutually register all images {A,X1, . . . , XN}, finding all possible
combinations of T , which are also connections in the graph. The traditional atlas
based segmentation for a target Xn is then given by a zero-hop segmentation
S0
n = TA,n(SA). Such segmentations can then be propagated to a target Xn over

other target images Xm �=n as secondary (one-hop) segmentation hypotheses:

S1
m,n = Tm,n(S

0
m). (1)

These hypotheses must then be fused : We use a function F to first generate a
spatial segmentation probability map Ŝn = Ω → [0, 1] and subsequently binarize
this using thresholding. The said probability map is generated as a weighted
average of the zero- and one-hop segmentation hypotheses:

Ŝn = F
(
S0
n, {S1

m,n|m �= n}
)
=

1∑
λ

⎛⎝λ0nS0
n +

∑
m �=n

λ1m,nS
1
m,n

⎞⎠ . (2)

We propose and evaluate two different strategies for the choice of weights λ:

Global Similarity Weighting (GSW): Assuming correlation between
segmentation accuracy and a normalized post-registration similarity fG, the
latter can be used as a scalar weight. Using the zero-hop deformed atlas im-
age A0

n=TA,n(A) , the zero-hop weight is then λ0n=fG(Xn, A
0
n) . The atlas im-

age is propagated analogously to the atlas segmentation along each path, i.e.
A1

m,n= Tm,n(A
0
m) , which leads to one-hop weights as follows:

λ1m,n = fG

(
Xn, A

1
m,n

)
. (3)

Locally Adaptive Weighting (LAW): In contrast to the constant weights
per hypothesis in GSW, a spatially-varying local weighting scheme is used:

λ1m,n(p) = fL

(
Xn(p), A

1
m,n(p)

)
, ∀p ∈ Ω . (4)
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In contrast to GSW, such locally adaptive weighting is expected to leverage
useful information even from partially mis-registered images.

3 Compact Graphs

To use all one-hop segmentation hypotheses, all graph connections should be
computed requiringN2 registrations. With large datasets this may easily become
computationally challenging. Below, different methods are proposed for selecting
a target image subset X, called support-samples, that will act as intermediate
nodes via which the atlas segmentation is propagated using (1). Reducing the
size K=|X| then decrease the number of edges in G and hence the number of
necessary inter-target registrations. A natural choice is to sort nodes by their
GSW-based zero-hop weights λ0n, as this corresponds to image similarity to de-
formed atlas, and to use the highest ranked images as support samples. We call
this GSW-based ranking. This scheme makes two assumptions: first, that it is
utmost important to propagate ‘good’ zero-hop segmentations; and second, that
the quality of these segmentations can be assessed reliably using the similarity
function f . Using our label propagation framework, we propose the following
two additional ranking criteria for selecting support samples.

In segmenting a target Xn, we wish to quantify how reliable a one-hop seg-
mentation hypotesis S1

m,n via an intermediate node Xm is. As we only know the
segmentation of the atlas, we define an atlas reconstruction error (ARE) for such
quantification. Exploiting the fact that most non-rigid registration algorithms
are not symmetric, we compute deformations Tm,A to obtain back-propagated
one-hop atlas segmentation hypotheses S1

m,A=Tm,A(S
0
m) via each graph node.

Then, ARE for each node is defined based on Dice’s similarity coefficient:

ARE (m) = 1−Dice
(
SA, S

1
m,A

)
, (5)

and support samples are selected from the smallest error nodes. While such
ranking is expected to perform superior to GSW-based ranking, it cannot ensure
that complementary information is contained in the set. For example, a subset
X might have individually low AREs, however, their one-hop hypotheses may
all contain similar errors which are then amplified when they are fused to create
a target segmentation. It is thus desirable to find a complementary basis, where
each support sample is likely to contain information that other samples do not
provide. We therefore propose a groupwise error criterion (ARE-G) to score a
set of K graph nodes:

ARE-G(SA, {m1, . . . ,mK}) = 1−Dice
(
SA, F

(
S1
m1,A, . . . , S

1
mK ,A

))
, (6)

where F is the fusion function in (2). As it is not feasible to evaluate all
(
N
K

)
K-sized sets of support samples, we rely on a greedy scheme where we pick the
first support sample based on its individual ARE, and iteratively add support
samples that reduce ARE-G the most.
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Δprop

SX
Ŝtrad
X Ŝprop

X

Fig. 2. Sample results for both datasets. For the MR dataset, the atlas, a target image
and the difference of both the traditional single-atlas based segmentation Δtrad

SX
and

our proposed method Δprop

SX
from the ground-truth are shown. False positives and false

negatives are shown in black and white, respectively. For the CT dataset, the traditional
atlas based segmentation and our method are shown for the same atlas/target, and the
surface is colored with the distance error to the ground-truth.

4 Results and Discussion

We evaluated our method using a set of 70 mid-saggital slices of MR brain scans
containing the corpus callosum and a set of 15 3D CT scans of the head. Both
datasets were rigidly pre-aligned. In the MR dataset a fixed region of inter-
est containing the corpus callosum was cropped out in all images. The images
are 120x200 pixels with 0.3mm spacing in the MR dataset and 160x160x129
voxels with 1mm spacing in the CT dataset. We used the Dice coefficient to
measure volume overlap, the Hausdorff distance (HD) for estimating maximum
surface-to-surface distance, and the mean surface distance (MSD) as an addi-
tional distance based metric. In both datasets we performed a leave-one-out (l1o)
evaluation scheme, using each image as atlas in turn to segment all remaining
images. We used our own implementation of the MRF-based registration in [4]
as the registration method of choice in our experiments. We used normalized
cross correlation (NCC) as the registration similarity criterion throughout our
experiments, and accordingly defined GSW weights using fG=

1−NCC

2 . Since NCC
is not suitable as a point-wise metric for LAW, we used the following intensity

difference based radial basis function λ1m,n(p) = exp
(
− |Xn(p)−A1

m,n(p)|
σ2

)
where

σ2 is the intensity variance over all images. Sample results are given in Fig. 2.

Quantitative results can be found in Tab. 1. For both datasets, the improve-
ment over traditional atlas based segmentation is significant, especially consid-
ering the distance based metrics which are outperformed by ≈ 35%(HD) and
≈ 60%(MSD). The CT images also show a strong improvement in Dice sim-
ilarity metric, and LAW expectedly performed superior to GSW. GSW only
slightly outperforms an uniform weighting, which results in a simple max-voting
scheme. We also compared our method to a recent group-wise registration ap-
proach (ABSORB [11]) a 3D implementation of which is publicly available. This
method uses the atlas as a reference image, on which all test images are aligned
iteratively to improve a mean image. Similarly to ours, this method also utilizes
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Table 1. Mean segmentation accuracy from leave-one-out evaluation on the MR(2D)
and CT(3D) datasets

Corpus Callosum in MR Mandibles in CT

DICE HD MSD DICE HD MSD

single-atlas [4] 0.926 2.45 0.088 0.828 12.37 0.50
Propagation-maxvote 0.944 1.50 0.027 0.852 9.24 0.32
Propagation-GSW 0.944 1.49 0.027 0.859 9.32 0.27
Propagation-LAW 0.946 1.46 0.025 0.886 8.42 0.18

ABSORB [11] - - - 0.698 14.74 0.86
multi-atlas-LAW 0.965 1.06 0.014 0.917 5.77 0.13

MR - corpus callosum CT - mandibles

Fig. 3. Segmentation accuracy (Dice) of traditional single atlas based segmentation
and our proposed method with LAW fusion for each atlas (x-axis) and target (y-axis)
image combination. (The diagonal values were not computed.)

image information contained in the entire dataset. However, unlike the probab-
listic map in our method, ABSORB generates a single binary segmentation per
target and thus suffers from a bias towards the atlas similarly to the traditional
atlas based segmentation. This is seen in the results as it is outperformed by our
proposed method. In order to estimate an upper bound for the expected perfor-
mance of our method, we also computed multi-atlas segmentation of each target
by using all remaining images and their ground-truth segmentations as multiple
atlases. We used the same registration method and LAW weighting to achieve
comparable results. As seen in Tab. 1, even though our method did not reach the
performance of such multi-atlas segmentation, it performed remarkably close to
it while using orders of magnitude less prior knowledge.

In Fig. 3, the Dice measure is plotted for each atlas/target pair of our l1o-
experiments. For both datasets, it is seen that using traditional atlas based seg-
mentation some atlases lead to sub-optimal segmentations. Using our method,
however, these sub-optimal pairs seen as ‘speckles’ disappear, indicating an im-
proved performance for arbitrary atlas selection.
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Fig. 4. Dice metric for support sample selection for a single atlas using random selec-
tion, GSW-based, individual ARE, and ARE-G ranking criteria (left). The progression
of error as more support samples are added.

Support Sample Reduction: We first evaluated a random selection of K
support samples for each target and repeated this 10 times each. As shown
in Fig. 4(left), Dice metric improves rapidly until reaching 20 support samples,
which is also the point at which the standard deviation becomes negligible. We
then used the GSW-based ranking, which did not provide any improvement over
random draws. Individual ARE based ranking expectedly outperformed random
draws, and the group-wise ARE ranking was superior to all other support sam-
ple selection methods. Interestingly, the results indicate the presense of support
sample subsets that can perform better in comparison to using all the samples
(the full graph). We also analyzed the progression of error during the expansion
of the support-sample subset. As seen in Fig. 4(right), error using ARE-G based
ranking starts deteriorating beyond a certain number of subset size. This num-
ber is also near the optimal Dice metric shown in Fig. 4(left) as the posterior
target segmentation accuracy. Based on this observation, we propose to use the
deflecting point (minimum value) of ARE-G to determine optimal graph size.
Note that individual ARE does not exhibit such a behaviour. Accordingly, we
have repeated the l1o-experiments on the MR dataset using only 20 support
samples selected by ARE-G ranking. This yielded mean Dice of 94% and mean
HD of 1.56mm, which are nearly identical to the results using all target images
while requiring less than three times the number of intermediate target images
and their registrations.

Discussion: Our method was shown to increase segmentation accuracy substan-
tially compared to the standard atlas based segmentation. This can be attributed
to the boosting nature of the approach, which can be seen as creating and fusing
multiple weak classifiers in a semi-supervised manner. Our results being close
to that of multi-atlas segmentation, we conclude that a substantial amount of
the information contained in a set of atlas images is indeed available in the sup-
port (target) images, and that is the information leveraged by our method. Note
that this contradicts partially with the findings of [13], which concludes that the
major benefit of multi-atlas segmentation is due to the increase in anatomical
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variation in the available ground-truth. We believe that this difference in find-
ings might be due to different registration algorithms and datasets, which will
be important to explore in the future work. Additionally, it will be interesting
to explore whether a principled, probabilistic approach can be employed to also
take into account the improved segmentations in an iterative manner. A similar
method was proposed in [18] for images aligned to a single template, whereas
we aim to include information from inter-target registrations as well. For the
CT images, we used the probabilistic segmentation output as shape prior in an
MRF-based segmentation [2]. This led to a considerable improvement in results
with a mean Dice of 93%. As this relies on strong edges to find bone boundaries,
it does not yield a significant improvement in the MR images.

5 Conclusions

We presented a novel method that augments single-atlas based segmentation
using multiple segmentation hypotheses for each target obtained by propagating
atlas segmentation along different paths. This outperforms both the traditional
single-atlas based registration and group-wise registration.We also demonstrated
that a smaller set of support samples providing complementary information can
be found automatically. Using such reduced set of support samples both de-
creases the computational complexity of the method and improves the results as
redundant and possibly detrimental information is then discarded.
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Abstract. We present a three-dimensional coupled surface graph cut al-
gorithm for carotid wall segmentation from Magnetic Resonance Imaging
(MRI). Using cost functions that highlight both inner and outer vessel
wall borders, the method combines the search for both borders into a sin-
gle graph cut optimization. Our approach requires little user interaction
and can robustly segment the carotid artery bifurcation. Experiments on
32 carotid arteries from 16 patients show good agreement between man-
ual segmentation performed by an expert and our method. The mean
relative area of overlap is more than 85% for both lumen and outer ves-
sel wall. In addition, differences in measured wall thickness with respect
to the manual annotations were smaller than the in-plane pixel size.

Keywords: Carotid artery, flow lines, graph, segmentation.

1 Introduction

Atherosclerosis is one of the primary causes of death in the world [11]. Atheroscle-
rotic plaques in the carotid arteries cause lumen narrowing. This may lead to
plaque rupture, which can cause a stroke or Transient Ischemic Attack (TIA).
Therefore, the early detection of plaque and accurate quantification of lumen
narrowing and plaque volume are important. In order to determine these pa-
rameters, segmentation of both the vessel lumen and the outer vessel wall are
required. As manual segmentation is highly time consuming and subject to
observer variability, automated techniques are needed.

Although most work on automated segmentation of blood vessels has focused
on segmenting the vessel lumen only, several automatic and semi-automatic
methods have been proposed in the past for segmenting the outer vessel wall.
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Active Shape Models (ASMs) have been used for detecting the outer vessel
wall of the abdominal aorta in CTA scans [3]. These ASMs utilize a statistical
model of shape and boundary grey level appearance to restrict the search space
to anatomically reasonable solutions. To segment the carotid arteries in MRI,
gradient-based ellipse fitting combined with fuzzy clustering [1] and Closed Con-
tour Snakes (CCS) [14] have been proposed. A drawback of both these methods
is that user interaction is required for each image slice. More recently, van ’t
Klooster et al. [8] proposed a three-dimensional (3D) deformable vessel model,
in which a vessel is modeled using a 3D cylindrical surface that can be modi-
fied by moving control points located on the model surface. Good results were
achieved on Black-Blood MRI images of the carotids. This method can however
segment only a single, non-bifurcating vessel and will therefore not give reliable
results in the bifurcation region. Furthermore, it uses a local optimization pro-
cedure with the lumen segmentation as initialization, which may get stuck in
a local optimum in diseased vessels where the distance between the inner and
outer wall can be large. Better segmentation results may be achieved if both
walls are estimated jointly across the bifurcation and if local image information
is combined with a globally optimal solution.

Global optimality can be guaranteed with graph based methods, and recently
these have been used for vessel segmentation with promising results [9,5,13].
Surface based graph methods such as [9,10,13] as opposed to voxel based [5]
make it possible to enforce topology constraints as well to encourage smoothness
without biasing the solution towards smaller surfaces. To use these methods the
problem has to be transformed from image space to a discretized graph space
defined by a set of columns. Each column is associated with a point on the sought
surface and represents the set of possible positions it can take. The suitability of
the graph space depends on how well the graph columns cross the sought surface
[10]. Xu et al. [13] oriented the graph columns in the normal direction of the
centerline of the vessels, but this leads to long columns and thus in-efficiency if
the sought surface is far from the centerline. Moreover, straight columns intersect
in regions with curvature leading to possibly self-intersecting surfaces [10].

We propose to use a 3D coupled surface graph cut algorithm for carotid artery
wall segmentation from MRI images. Similar to Petersen et al. [10] who applied
such a technique for segmenting airway trees, we define the graph columns based
on flow lines traced from a coarse initial segmentation. As such flow lines are
non-intersecting this enables accurate segmentation across high curvature areas
such as the carotid bifurcation. Moreover, as the inner and outer surfaces are
estimated jointly, the proposed method can use information from both surfaces
locally and globally to reach an optimal solution.

2 Method

2.1 Initial Segmentation

An initial segmentation of the lumen was obtained using the method proposed
by Tang et al. [12]. In this method first the lumen centerlines are determined
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by finding a minimum cost path between three user-defined seed points in the
common, internal, and external carotid arteries. To improve accuracy in high
curvature regions, this path is refined iteratively by computing a new minimum
cost path in a curved multi-planar reformatting based on the current center line
estimate. Subsequently, the lumen is segmented using a levelset method, which
is initialized by the extracted centerlines and steered by the MR intensities.

2.2 Graph Construction

First, to obtain the graph columns the initial segmentation is converted to a
mesh. We located graph vertices at the center of each surface face. This set of
vertices is denoted by VB.

Flow Lines. The graph columns are traced from VB, and follow the direction of
flow lines of the gradient vector field of the smoothed segmentation. An example
of columns traced along flow lines is depicted in figure 1. If this gradient vector
field is defined in terms of a scalar potential field φ, the flow lines will follow the
direction of largest change of this potential. We define the scalar field φ by the
convolution of the initial segmentation with a Gaussian kernel Gσ as:

φ(x ) =

∫
Q (x̂ )Gσ (x̂ − x ) dx̂ , (1)

whereQ : R3 → Z is the initial lumen segmentation represented by a binary scalar
field. Flow lines traced along the gradient of φ are smooth and non-intersecting
and the surfaces are thus non-self-intersecting [10], see figure 1.

The parametric flow lines f : R → R3 that cross each vertex of the initial
surface mesh i0 ∈ VB can be computed by solving the following differential
equation:

∂f

∂t
(t) = ∇φ(f (t)), (2)

with initial value given by f (0) = i0. Solving equation (2) for all vertices on
the initial surface mesh VB leads to all graph columns, where inner and outer
graph columns are represented by the same flow lines. We use the Runge-Kutta-
Fehlberg method to approximate the solution of these differential equations [4].
The solution of f (t) is approximated at regular intervals δ along the flow line.
This defines the positions of the other graph vertices. The columns vary in length
depending on the point where the gradient of the scalar field φ flattens.

Graph Construction and Optimization. To construct the coupled surface
graph G = (V,E) with vertices V and edges E, we define the set of vertices in a
column by Vi with i ∈ VB . Therefore, the complete set of vertices V is defined
by:

V =
⋃

i∈VB ,m∈M

V m
i ∪ {s, t}. (3)
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Fig. 1. Graph columns based on flow lines (green) traced from an initial segmentation
(black), which are crossing the sought surface (blue)

Here M represents the surfaces to find and s and t denote the source and sink
vertices respectively. In our case there are two surfaces, lumen and outer vessel
wall surface. Moreover, given that the inner and outer columns are the same, we
have ∀m∈MV

m
iii = Viii.

The edge set E of the coupled surface graph G consists of intra-column edges
Eintra and edges between columns Einter . For the intra-column edges Eintra,
we define directed edges connecting each vertex to the next vertex in outward
direction in the same column. We assign edges from the source vertex s to all
innermost vertices in the graph, and from the outermost vertices to the sink
vertex t. Topology preserving edges in the opposite direction with infinite capac-
ity ensure that a minimum cut can cut each column only once. In addition, we
assign a cost function wm (imk ) > 0 to these edges, mapping a vertex with index
k in column Viii to the inverse likelihood representation that it is part of surface
m. An example of the intra-column edges and their respective costs is shown in
figure 2(a) (for simplicity we do not show the infinity capacity edges).

Selecting a vertex for each column indicates a possible solution for all M
surfaces. Therefore, a cut that separates the graph in two parts: sink and source,
represents a solution to the segmentation problem. The main aim is then to find
a cut that minimizes the cost of the edges that are being cut as depicted in figure
2(b). There are several approaches to solve this optimization problem. We used
a min-cut/max-flow algorithm described in [2] to find the minimum cut.

Computing the minimum cut without considering any interaction between
columns may lead to irregular surfaces and/or un-realistic relations between
surfaces such as borders that are too far from each other, or an outer surface
that is inside the inner surface. In order to deal with these problems, we include
smoothing penalty edges connecting vertices in columns belonging to the same
surface, separation penalty edges and separation constraint edges that connect
vertices from columns of different surfaces. These represent the edges between
columns Einter .

To ensure smooth surfaces, we linearly penalize the distance in a cut between
consecutive columns of the same surface. To do this, we assign edges with the
same capacity p between vertices at the same column level. When the length of
two consecutive columns are different, the remaining vertices at the inner most
part of the column are connected to the source vertex, and the remaining vertices
at the outer most part of the column are connected to the sink. If these edges



42 A. Arias et al.

(a) (b) (c) (d)

Fig. 2. Examples of intra and inter column edges and a graph cut. In figure 2(a) the
intra-column edges, the initial segmentation (green), and the associated cost to each
edge are depicted. An example of a graph cut is depicted in figure 2(b), indicating
which edges are part of the cut. Figure 2(c) shows the smooth penalty edges which
connect vertices from neighbor columns of the same surface. Finally, the separation
penalty edges and separation constraint edges are depicted in figure 2(d). These edges
connect vertices from columns of different surfaces lying at the same flow line (green:
inner column, blue: outer column).

coincide with the intra-column edges, only one edge is assigned and the capacities
are added. An example of these smoothing penalty edges is shown in figure 2(c).
Using these edges we obtain a linear penalty function of the form ψ(x) = px,
where x represents the vertex index difference. In a similar way, the separation
between surfaces is penalized by assigning capacity q to edges between vertices
of columns lying at the same flow line but belonging to different surfaces. In
addition, to avoid solutions where parts of the outer surfaces are inside the inner
surface, we assign constraint edges with infinite capacity at the same location of
the separation edges but pointing from the inner column to the outer column.
An example of these separation penalty edges and separation constraint edges
is shown in figure 2(d).

2.3 Cost Functions

For the intra-column edges, we define a cost function wm (imk ) > 0, which repre-
sents the inverse likelihood that the vertex imk is associated to the edge imk →imk+1

is part of surface m. In the case of the carotid walls in our MR images, the graph
columns will start inside the lumen area, which looks dark in the image, move
through the carotid wall where the voxels are normally brighter, and finally end
up out of the carotid wall where the image is darker compared to the wall in-
tensity. We therefore define a cost function for the inner wall wi which is low
for strong dark-to-bright edges, and a cost function for the outer wall wo which
is low for strong bright-to-dark edges. We use a similar approach to Petersen et
al. [10] to define the cost functions. First, we define the functions Ci : R → R
and Co : R → R that highlight the inner and outer walls. These use a linear
combination of the first and second order derivatives of the intensity along the
columns:
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Ci(t) = γi
∂P

∂t
(t) +

(
1−

∣∣γi∣∣)P (t), (4)

Co(t) = γo
∂N

∂t
(t) + (1− |γo|) (−N(t)), (5)

where γi, γo ∈ [−1, 1] are weighting parameters that can be tuned to adjust
the position of the edge slightly inwards or outwards, and P and N the positive
and negative parts of the first order derivative respectively. These derivatives are
computed using central differences from cubic interpolated values. Subsequently,
we invert and normalize Ci and Co in order to get a representation of the wall
inverse likelihood given by wi and wo.

3 Experiments and Results

3.1 Data

Proton Density Weighted Black-Blood MRI (BBMRI) and Proton Density
Weighted Echo Planar MRI (EPIMRI) images were obtained from 26 sub-
jects that were randomly selected from the Rotterdam study [6]. BBMRI im-
ages were acquired using an in-plane pixel size of 1.105mm × 0.8125mm, and
0.9 mm slice thickness. The EPIMRI images have an in-plane pixel size of
0.43mm × 0.8125mm, and a slice thickness of 1.2 mm. BBMRI and EPIMRI
images were interpolated on the scanner to a pixel size of 0.507mm× 0.507mm.
B-spline registration from EPIMRI to BBMRI using mutual information was
performed using with Elastix [7]. To train and evaluate our method, we used
manually annotated cross-sectional images with a resolution of 0.05mm×0.05mm
extracted at random positions perpendicular to center-lines of both carotid ar-
teries. The manual annotations of the inner and outer carotid walls were drawn
by an expert on the BBMRI images. Six manually annotated cross sections were
extracted from each carotid artery.

3.2 Graph Parameters Tuning

The proposed method has several parameters: inner and outer smoothness penal-
ties pi and po, separation penalties q, inner and outer cost function derivative
weightings γi and γo, the intervals for sampling the flow lines to define the posi-
tions of the vertices δ, and the standard deviation of the Gaussian kernel σ. We
used the carotid arteries of ten patients randomly selected to search for the opti-
mal values for these parameters on each image sequence (BBMRI and EPIMRI).
The optimal values were obtained by searching the parameter space on the train-
ing data-set using an iterative binary search algorithm [10]. In this algorithm,
manually annotated cross-sections and automatically segmented cross-sections
are compared based on the relative area of overlap. The set of parameters that
generated the highest overlap was selected. To reduce the searching time of the
parameter optimization algorithm, we fixed the column sampling interval δ to
0.35 mm.
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Table 1. Relative area of overlap, WTD, LAD, and OVAD for both sequences (mean
absolute and P -values in parentheses)

BBMRI EPIMRI

ϕi 85.2% ± 1.6% 83.9% ± 5%

ϕo 85.6% ± 2.7% 84.1% ± 6%

WTD(mm) −0.25± 0.24(0.28 ± 0.19; p < 0.001) 0.04 ± 0.23(0.17 ± 0.15; p = 0.5)

LAD(mm2) 2.7± 2.1(3.0 ± 1.7; p < 0.001) −0.07 ± 3.29(2.3 ± 2.21; p = 0.9)

OVAD(mm2) −0.3± 1.1(0.92 ± 0.8; p = 0.3) −0.3± 1.05(0.76 ± 0.75; p = 0.25)

(a) (b) (c)

Fig. 3. Automatic segmentation results using the proposed method. In figure 3(a), two
example of automated segmented cross-section in BBMRI and EPIMRI are depicted
(top). The automatic segmentation is represented by green (inner wall) and blue (outer
wall) lines. The overlay of the automatic segmentation to the manual annotations
(yellow: lumen, red: vessel wall) is also depicted in figure 3(a) (bottom). Figure 3(b)
shows two examples of automatic segmentations obtained in the bifurcation section.
Finally, figure 3(c) shows a 3D representation of the automatic segmentation of the
complete carotid artery in an image (darker gray: lumen, bright gray: outer wall).

3.3 Segmentation Results

Thirty two carotid arteries of 16 patients not included in the training set were
used for the evaluation. Table 1 gives the average relative area of overlap (Dice
coefficient) for inner ϕi and outer vessel surface ϕo on this testing data set. In
addition, table 1 describes the mean signed and mean absolute difference be-
tween wall thickness (WTD) measured by the manual annotation and by the
automatic segmentations in BBMRI and EPIMRI. Notice that these values are
smaller than the image in-plane pixel size (0.51 mm). We observed good seg-
mentation overlap for both sequences with a slightly higher overlap for BBMRI
images. Using EPIMRI images we obtained lower WTD. The table shows also
the mean cross-sectional lumen area difference (LAD), and mean cross-sectional
outer vessel area difference (OVAD). P -values of the paired t -test including 95%
of confidence intervals are also given in the table. Figure 3(a) shows examples
of the automatic segmentation results using BBMRI and EPIMRI images to-
gether with the overlay to the manual annotations. Results in the bifurcation
section, for which no manual annotations were available, are depicted in figure
3(b). Figure 3(c) shows a 3D representation of the automatic segmentation.
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(a) (b)

(c)

Fig. 4. Bland-Altman plots comparing manual annotations and automatic segmenta-
tion for both sequences BBMRI and EPIMRI. Figure 4(a) depicts the comparison of
the mean wall thickness. Figure 4(b) and figure 4(c) show a comparison of the mean
lumen area and outer vessel area respectively.

Bland-Altman analyses for the mean wall thickness, mean cross-section lumen
area, and mean cross-section outer vessel area for the 16 patient data sets are
shown in figure 4. From the figure a good agreement between automatic and
manual area measurements for lumen and outer vessel wall is observed. Pearson
correlation coefficients were 0.95 and 0.98 respectively for BBMRI, and 0.87 and
0.99 for EPIMRI.

4 Discussion and Conclusion

In this paper, we presented a new 3D method for carotid wall segmentation in
MRI. Results show a good agreement between manual segmentation performed
by an expert and our method. The mean relative area of overlap was about 84%
and 85% for EPIMRI and BBMRI respectively. Our results are comparable to
or slightly better than those reported in the literature. Van ’t Klooster et al. [8]
reported a WTD of 0.12mm±0.21mm. Their method only analyzes the common
carotid artery and not the bifurcation. This section may represent the most
difficult section to segment. In contrast, we analyze the complete carotid artery.
We found a somewhat lower mean WTD with a similar variance (0.04mm ±
0.23mm) using the EPIMRI sequence.

Adame et al. [1] use similar in-plane resolution images of 17 patients. They re-
ported a LAD of −2.19mm2±5.21mm2 and an OVAD of −5.56mm2±19.55mm2
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with correlation coefficients of 0.92 and 0.91 respectively. Yuan et al. [14] re-
ported a LAD of 1.05mm2 ± 2.26mm2 and an OVAD of 1.36mm2 ± 3.46mm2

on five patients, and focus on the internal carotid artery. We reported in gen-
eral better results on our data compared to these two methods (see table 1).
Furthermore, these two methods require a large amount of user interaction. In
contrast, our method only requires the location of three seed points for obtaining
the initial segmentation.

A potential drawback of our approach is that it relies on an initial lumen
segmentation. Although this segmentation does not need to be very accurate, the
smoothness constraints are most effective if the shape of the initial segmentation
is similar to shape of the true vessel surfaces. Another potential source of errors
in our method is related to registration errors of the EPIMRI images. Overall,
segmentation results were best for the sequence in which the manual annotations
were performed, the BBMRI. However, the EPIMRI images have better wall
contrast, which generates better results in some images compared to the results
obtained by BBMRI. Therefore, we expect that combining information from both
image types in the cost function can still improve upon the results presented here.

To conclude, we propose a graph-based method for segmenting the carotid
artery wall that shows good agreement with manual segmentations. In contrast to
previous approaches, our method jointly optimizes both surfaces, finds a globally
optimal solution, and can reliably segment the bifurcation section which may
represent the most clinically relevant area to assess.
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Abstract. This paper proposes a novel segmentation method combin-
ing shape knowledge obtained from a constrained Statistical Model (SM)
into the well known Markov Random Field (MRF) segmentation frame-
work. The employed SM based on Probabilistic Principal Component
Analysis (PPCA) allows to compute local information about the remain-
ing variance i.e. uncertainty about the correct segmentation boundary.
This knowledge about the local segmentation uncertainty is then used
to construct a prior with a non-linear shape update mechanism, where a
high cost is incurred in locations with little uncertainty and a low cost for
shifting the segmentation boundary in locations with high uncertainty.

Experimental results for segmenting the masseter muscle from CT
data are presented showing the advantage of including the knowledge
about local segmentation uncertainties into the segmentation framework.

Keywords: Graph-Cut, MRF, Statistical Model, Shape Prior, PCA,
Segmentaion, Facial, Muscles, Medical Image.

1 Introduction

Most of human’s sense organs are located in the head and face area, which makes
it one of the most important parts of the human body. The shape and the unique
features of a face are largely determined by the musculoskeletal system under-
neath the facial skin. The importance of the face for socio-ecological interaction
increases the demand on any surgical intervention on the facial musculoskele-
tal system. This explains the widespread need for pre-operative planning and
simulations based on segmented patient specific data.

The goal of image segmentation is to partition the imaging data into multiple
segments that will then be used for example patient specific simulations. At a
lower level, the objective is to assign a label to each pixel in an image in a
way that pixels with the same label share certain visual characteristics. Image
segmentation is, however, an ill-posed problem that has been often casted in the
Markov Random Field (MRF) framework in the literature. The recent advances
in Graph-cut theory [2,3], that guarantee to globally optimize the MRF for a
certain class of energy functions, made this approach even more attractive.
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Graph-cuts are very successful at segmenting objects that can be distinguished
from their background producing globally optimal results, but they fail when
the object is similar in appearance to its adjacent structures [8]. To alleviate the
problem, people suggested incorporating prior shape knowledge into the graph-
cuts. Since shape knowledge is used as a prior, this knowledge is incorporated in
the smoothness term of the energy function by Veksler [15], Freedman and Zhang
[8] and Das et al. [5]. Others do not consider the shape knowledge as a prior but
more as likelihood information, therefore, they proposed to incorporate it in the
data term of the energy function such as El-Zehiry and Elmaghraby [7], Freiman
et al. [9], Ali et al. [1], Slabaugh and Unal [14] and Malcolm et al. [13]. Slabaugh
and Unal [14] describe a class of representable shapes and add a constant factor
to the data term, while El-Zehiry and Elmaghraby [7], Freiman et al. [9] and
Ali et al. [1] proposed a more elaborated factor in the data term. Common to
all solutions is the creation of a probability map by registering the shapes in
the training datasets. They all propose an iterative scheme to refine their initial
estimates and shape probabilities. These methods are prone to generating invalid
shapes as there is no statistical dependence between the shapes. Malcolm et al.
[13] use non-linear shape priors learned through Kernel PCA which does not
suffer from statistical non-dependence. They then iteratively refine the shape
prior and the segmentation by fitting the shape prior in the high dimensional
space to the segmentation. The pre-image of the fitted shape prior in the input
space is computed and then the updated shape prior is used to obtain better
segmentation in the next iteration.

This paper bases on the earlier work of Majeed et al. [12] but extends it in
several ways. In particular we introduce a non-linear cost function together with
L1 regularization [17] to provide bolder and more accurate shape update than
that of [12] which uses a linear cost function. The shape knowledge is provided
by the variability constrained SM as explained in the earlier work [12]. The
main advantages of the proposed method is that non-linear cost function and
L1 regularization provides better shape update and guard against the SM from
degenerating and collapsing onto itself.

The paper is organized as follows: Sec. 2 lays out the segmentation framework
and how shape knowledge is extracted from the variability constrained SM. The
creation of the non-linear cost function over which the SM is optimized to get
a better shape fitting to the segmentation is detailed in Sec. 3. The complete
algorithm is given in Sec. 4. Sec. 5 provides the results of applying the proposed
method to segment masseter muscle and finally Sec. 6 provides the conclusion.

2 Segmentation Framework

The segmentation problem is cast as a binary labeling problem in the MRF
framework. Let L = {0, 1} be the set of binary labels, “1” for object and “0”
for background, P be the set of voxels of the volume dataset and z = {zp : p ∈
P , zp ∈ L} be the set of labeling which defines the segmentation. The goal of
our segmentation is to find a labeling z, which is a mapping from P �−→ L by
minimizing the energy functional
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E(z|I,x∗) =
∑
p∈P

{
Vp(zp|I) + μVp(zp|x∗)

}
+ λ

∑
p∈P

∑
q∈Np

Vp,q(zp, zq|I) , (1)

where N = {Np|∀p ∈ P} is an unordered 26 neighborhood system over P , I is
the observed intensity data, x∗ is the shape prior, λ is the smoothness parameter
and μ is the shape parameter. Vp(zp|I) and Vp,q(zp, zq|I) are the data and the
smoothness terms respectively, based on the image intensity information. The
data term encodes how likely a voxel is to belong to object and background given
its intensity while the smoothness term encodes our prior assumption about the
target object that it consists of a homogeneous region, therefore, the smoothness
term assigns a penalty whenever adjacent voxels p, q are assigned different labels
zp and zq. The data and the smoothness terms are based on the traditional
graph-cut intensity based energy functional of Boykov and Jolly [2].
Vp(zp|x∗) is the shape data term which encodes how likely a particular voxel p

is to belong to the object “1” and the background “0”, given the shape prior x∗

obtained from a SM explained below. Shape knowledge is encoded by creating
a probability map both for the object and the background from the unsigned
distance map of the shape prior’s contour and it is similar to that of Majeed et al.
[12]. Based on the closeness to the shape’s contour; the object probability map is
created for the voxels enclosed by the contour while the background probability
map is created for the voxels not enclosed by the contour.

2.1 Statistical Model

This section summarizes the method of Lüthi et al. [11]. The same anatomi-
cal structures show considerable shape variability among the population which
cannot be represented by a fixed shape template. Statistical shape models have
been extensively used as a mathematical framework to capture this shape vari-
ability [4,10,16]. A set of shapes in the training dataset are used to capture the
shape variability of the particular structure. The shapes in the training dataset
are assumed to be Independent and Identically Distributed (i.i.d) having an un-
derlying unknown multivariate Gaussian distribution with probability density
function p ∼ N (x̄,Σ) with mean x̄ and covariance Σ. The shapes in the train-
ing dataset {xi ∈ R3m|i = 1, . . . , n}, where n represents the number of training
shapes each having m number of vertices, are brought into correspondence using
the method of Dedner et al. [6], which results in all shapes having the same
number of vertices. Singular Value Decomposition (SVD) is then applied to de-
compose Σ = UD2UT , where U are the eigenvectors while D2 represents the
eigenvalues of Σ.

Reconstruction from Partial Information. The shape is represented by
a surface mesh x which can be partitioned into x := (xa,xb)

T , based on the
available l-landmark information xb ∈ R3l and unknown xa ∈ R3m−3l. The
landmarks (l = 6), which are manually labelled, provide the location of the
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muscle attachments at the facial bones. xb is then used to estimate xa. Using
the PPCA based approach of Lüthi et al. [11] a probability distribution over the
shape x can be defined as

p(x) = p(xa,xb) = N
([

x̄a

x̄b

]
,

[
WaW

T
a WaW

T
b

WbW
T
a WbW

T
b

]
+ σ2

mI3l

)
, (2)

where I3l is a 3l × 3l identity matrix, W = UD = [WaWb]
T ∈ R3m×d is

the d-largest scaled eigenvectors and σ2
m is a parameter that controls the re-

maining variance of the SM. If σm > 0 then xb is allowed to move. Since x
has a multivariate normal distribution, the conditional distribution p(xa|xb) ∼
N (x̄xa|xb

,Σxa|xb
) is also a multivariate normal distribution with mean x̄xa|xb

and covariance Σxa|xb
. p(xa|xb) needs to be computed to reconstruct the shape

x̄xa|xb
from partial information xb. Since coefficients of the modes of variation

α = N (0, In) of the SM defines a shape x = Wα + x̄, therefore, first the co-
efficients are determined from the partial information xb as p(α|xb) and then
x̄xa|xb

can be reconstructed using

x̄xa|xb
= arg max

x
p(x|α) = Wα+ x̄ . (3)

(a) (b)

Fig. 1. Normalized variance of the SM. (a) Original variance, (b) Remaining variance
(color online)

Remaining Variance. The known l-landmark information can be further uti-
lized to constrain the variability of the SM. Since xb provides additional in-
formation, therefore, in a probabilistic setting it is natural to assume that the
uncertainty of the SM will reduce as further evidence is obtained. The covariance
matrix Σxa|xb

can be decomposed by applying SVD into its eigenvectors Uxa|xb

and eigenvalues D2
xa|xb

. Uxa|xb
, D2

xa|xb
and x̄xa|xb

can now be used to generate
an optimal shape x∗ with the remaining flexibility of the model using

x∗ = Uxa|xb
Dxa|xb

α+ x̄xa|xb
. (4)
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As an illustration of the concept of remaining variability, we show in Fig. 1
the original variance of the model (a) and the remaining variance of the model
after being fit to the muscle attachments (b). It is however, not possible to
compute Σxa|xb

directly since it is potentially huge. For an in-depth analysis
of the reconstruction of the shape given partial information and calculating the
remaining variance see Lüthi et al. [11].

3 Adaptive Shape Optimization

For updating the shape prior with respect to the segmentation, we propose to use
a shape optimization based on adaptive weights with respect to the remaining
variances of the SM and sparse shape optimization.

3.1 Shape Cost Function

Creating the cost function for shape optimization is the second major step of
our algorithm after the segmentation corresponding to the energy function E Eq.
1. Since the surface mesh is very dense consisting of 39156 vertices, therefore,
adjacent vertices are close enough to occupy adjacent voxels. We have used the
morphable model of Blanz and Vetter [16] which is very dense (around 76000
vertices) as compared to the active shape model of Cootes et al. [4] which are
not dense (only 72 vertices). On average for all datasets there are 1.75 vertices
per voxel with a density of 7.66 vertices per mm2. Once a vertex is in a voxel,
the cost of the vertex can be directly read out of the voxel, defined by

C(v) = βCobj(v) + ηCedge(v) + Cseg(v), (5)

Fig. 2. Generating non-linear cost function C̄(v)
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(a) Illustration of the adaptive cost. (b) Penalty exp(−θσv) for the normalized stan-
dard deviation.

Fig. 3. Normalized standard deviations and their corresponding penalty

where η and β are weighting parameters, v = (vx, vy, vz) represents the x, y, z
coordinates of a vertex of x. The object intensity negative log-likelihood map
(Cobj) is calculated using the parzen window estimation that has already been
estimated during the graph-cut segmentation. An inverse edge map Cedge pro-
vides low values where there is an edge. The third term in Eq. 5 is the unsigned
distance map (Cseg) which is calculated from the segmentation boundary. All
the maps are then linearly combined as in Eq. 5 and shown in Fig. 2 to generate
the linear cost function C(v) which is then weighted with non-linear variance
penalties exp(−θσv) to generate non-linear cost function C̄(v) as shown in Fig. 2
over which the SM is optimized.

3.2 Shape Optimization

Once the non-linear cost function has been created, the next step is to optimize
the SM over the generated cost function. We propose to use an adaptive cost
instead of linear cost employed by Majeed et al. [12] in order to make the SM
robust to local minima encountered during the shape update. The cost is adapted
with respect to the remaining variance of the vertex σv. The sum of the cost of
all the vertices for a particular setting of shape coefficients α gives the cost of
the shape as follows

C̄(x) = C(UDα+ x̄) exp(−θσv) =
∑
v

C(v) exp(−θσv), (6)

where σv is the remaining variance of vertex v and θ is a weight parameter.
Here vertices with higher variance incur lower cost in comparison to vertices

with lower variance. As a consequence, a vertex with higher remaining variance
(color coded in light golden in Fig. 3(a)) as given by the SM is allowed to move
further with less cost (cost 1) while a vertex with lower remaining variance (color
coded in black) incurs higher cost (cost 9) when it moves the same distance. With
linear cost, vertices irrespective of their remaining variance in the SM would incur
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equal cost when they move equal distances. The adaptive weights with respect
to the variances are shown by the graph in Fig. 3(b).

The SM is optimized by minimizing the sum of the cost of vertices over the
non-linear cost function C̄(v). The coefficients α corresponding to the main
modes of variation are obtained by solving the minimization problem

min
α

{
C̄(x) + ξ|α|L1

}
, (7)

where ξ is a weight parameter. Since the adaptive cost is used, the SM has more
flexibility, therefore, it is required that the model be regularized to constrain
the solutions space and generate smoother shape priors. Note that we use L1

regularization [17] to constrain the solution space and generate sparse and more
accurate solutions. Once the optimal α are found, the optimized shape is then
constructed using Eq. 4 and used as a shape prior for the next iteration.

4 Algorithm

Figure 4 outlines the algorithm. The algorithm starts with the initial shape prior
obtained from the shape reconstruction from partial information (see Sec. 2.1),
therefore, x̄xa|xb

which is the mean shape of the constrained variability SM is the
initial shape prior used for the first iteration. The shape prior is used to generate
the probability maps for the object and the background which is similar to the
one used by Majeed et al. [12] and encodes the shape knowledge. These maps

Fig. 4. Segmentation Process (color online)
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are then used to create graph corresponding to the energy function E given by
Eq. 1 and then the graph-cut algorithm of Boykov and Kolmogorov [3] is used
to obtain the muscle segmentation. If the segmentation has not converged then
a non-linear cost function C̄(x) outlined in Sec. 3.1 is created over which the
shape prior is updated. Once the SM has been fitted to the current segmentation
(see Sec. 3.2), the fitted SM provides better and more accurate shape knowledge
for the next iteration. This process is repeated until segmentation converges.

The update of the shape prior is required as the initial estimate of the shape is
not perfect, therefore, previous segmentation is used to update shape knowledge
and get a better fitting of the SM to the specific patients muscle anatomy.

5 Experimental Results

The proposed segmentation method was tested on 20 CT datasets - the ground
truth was provided by a medical expert - using a Leave-One-Out approach.
The dataset dimensions were 79-156×148-214×125-384 voxels and spacing 0.3-
0.5×0.3-0.5×0.3-1mm3. All datasets possessed high-density artifacts caused by
dental fillings and dental implants. The parameters σm = 10, λ = 0.016 and
μ = 0.0037 were optimized on three different datasets and used throughout
the entire segmentation experiments. The parameters β = 0.01, η = 0.07, θ = 4
were used to generate the non-linear cost function while ξ = 600000 was used for
sparse shape optimization. The dice coefficient, sensitivity and specificity of the
segmentation were calculated as similarity measures to ascertain the accuracy
of the proposed method.

Shape convergence was achieved within 5 − 11 iterations. The algorithm is
computationally quite fast; it takes on average 4.1 ± 1.5 minutes. 4 min. is not
real time but on the other hand it takes around an hour and a medical expert
to segment the muscle. It should be noted that although the mesh employed
is very dense, the algorithm itself is independent of the density of the mesh.

(a) (b) (c) (d)

Fig. 5. (a,b) Qualitative segmentation result in 2D where red is the ground truth and
green is the segmentation boundary. (c,d) Qualitative segmentation result in 3D where
ground truth is in gray and segmentation is in blue (color online).
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The cost function is evaluated where the vertices end up and that gives the total
cost of the shape. The algorithm will work equally well with a less dense mesh.

Figure 5(a+b) shows qualitative results of our technique in 2D, while the
qualitative results in 3D are shown in Fig. 5(c+d). The experimental results
obtained using the proposed method is clinically acceptable as validated by the
medical expert.

The graphs in Fig. 6 show the results of the method of [12] using a linear cost
function (black curve) and the proposed method with non-linear cost function
(red curve). The gray curve shows the results of using the method of Freedman
et al. [8]. The proposed method is statistically significantly better than both
the methods [8] with p-value p < 0.01 and [12] with p-value p < 0.01. The
improvemnt over [12] is mainly due to the use of the non-linear cost function
using L1 regularization. The dice coefficient (see Fig. 6(a)) and specificity (see
Fig. 6(c)) for the proposed method is better for all datasets except for a few.
Table 1 lists the mean, median, standard deviation and the smallest and the
largest dice coefficient values for the methods.

We show that our novel approach shows a further improvement in the seg-
mentation accuracy. In this paper we showed that SM models can not only be
used to restrict the shape variability during segmentation but also how to make
use of the remaining shape variability in the SMs to even further improve the
segmentation.

Table 1. The table list the mean, median and the standard deviation of the dice
coefficient of the proposed method, method with linear cost [12] and Freedman [8]

DC (Mean ± Std) DC (Median) DC (Smallest - Largest)

Proposed 0.895 ± 0.022 0.900 (0.857 - 0.930)

Linear [12] 0.884 ± 0.029 0.890 (0.822 - 0.922)

Freedman [8] 0.861 ± 0.054 0.877 (0.751 - 0.923)

(a) Dice Coefficient (b) Sensitivity (c) Specificity

Fig. 6. Quantitative segmentation result: (a) Dice coefficient. (b) Sensitivity. (c) Speci-
ficity; for all the methods (color online).
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6 Conclusion

In this paper we have proposed an improved segmentation approach that com-
bines a constrained SM with an MRF-based segmentation approach. As com-
pared to the state-of-the-art methods we employ a non-linear cost function when
fitting the SM. This new cost function has shown to be superior as it generates
more consistent shape updates. The method’s performance has been evaluated
on 20 masseter CT dataset and quantitatively compared to state-of-the-art seg-
mentation approaches. Although the method has been shown and evaluated on
the masseter muscle it is of general use and can be applied whenever SM is
available.
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been supported by the NCCR/CO-ME research network of the Swiss National
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Abstract. This work addresses the challenging problem of segmenting the 
myocardium in 3D LV echocardiograms by Random Forests (RF). While the 
RF framework has proven to be a good discriminative classifier for 
segmentation of 3D echocardiography [1], our hypothesis is that richer features 
than those traditionally used (Haar etc) need to be employed for accurate 
segmentation to tackle artifacts in ultrasound images such as missing 
anatomical boundaries. To address this, we propose two new context rich and 
shape invariant features, called LoCo and GloCo. The new features impose a 
local and global constraint on the coupled endocardial and epicardial shape of 
the left ventricle and use barycentric coordinates to uniquely identify the 
position of a voxel with respect to a number of landmarks on the epicardial and 
endocardial border. The landmarks are found using a new measure (COFA) to 
separate the two boundaries. Experimental results show that the new features 
provide a smoother segmentation and improve the accuracy compared with a 
classic RF implementation. 

Keywords: Random forests, 3D echocardiographic segmentation, the 
monogenic signal, feature asymmetry, barycentric coordinates. 

1 Introduction 

Accurate automatic segmentation of the myocardium of the left ventricle (LV) 
provides quantitative data from 3D echocardiographic images that helps in the 
assessment of heart abnormalities and diseases. However, automatic segmentation of 
3D echocardiography is challenging due to ultrasound artifacts such as shadowing, 
attenuation, signal drop-out, speckle, missing boundaries and similarity in appearance 
of different tissues, for instance of the left and right ventricles. 

The accuracy of image-based classification techniques reported in the literature to 
segment and/or detect structures in medical images varies depending on, for example, 
the classification model, chosen feature set or the complexity of the structure of 
interest. Segmentation of the LV is challenging. Therefore, the classification model 
and features need to be chosen and developed carefully. Random Forests (RF) have 
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proven to show good performance in recent publications [1-6] and was adopted in this 
work on 3D echocardiography segmentation. In the RF framework, segmentation is 
formalized as a voxel classification problem. Although the choice of the classifier is 
important, the accuracy of the model is pre-dominantly determined by the features 
used within the classifier. In our approach, first a novel image alignment method is 
proposed to make the widely used position features stronger. Second, a novel set of 
context rich features is introduced to improve automated segmentation of 3D 
echocardiography. 

The contributions of this work are twofold. Firstly, as a pre-segmentation step, we 
propose a new method for left ventricular long axis detection in 3D echocardiography. 
The robust detection of the mid line is an important step in alignment of 
echocardiography volumes which is done prior to segmentation. Our method is based 
on a Feature Asymmetry measure (FA), Local Orientation (LO) and a modified 
Hough transform. Secondly, we introduce a set of new context rich features that 
utilize the relevant position of a voxel with respect to a specific landmark or 
landmarks at the epicardial and/or endocardial boundaries of the left ventricle. The 
landmarks are detected using the new Centrally Oriented Feature Asymmetry measure 
(COFA) to highlight and separate the epicardial and endocardial boundaries in an 
image. 

1.1 Random Forests 

Random Forests [2] is a learning-based technique gaining popularity in medical 
imaging, in which training using a gold standard segmentation is done by building 
multiple decision trees. Each node in the tree, except the leaves, is a decision node 
and contains a feature and a threshold. Each leaf node contains a class distribution for 
the voxels that reached the node. Testing is performed by traversing voxels over the 
trees starting from the root of each tree to a leaf node. The voxels are split at a given 
node based on the learned feature and the threshold value at that node. The mean class 
distribution from all trees is considered the final probabilistic class distribution of the 
test case. For more information see [1-6]. 

1.2 The Monogenic Signal and Feature Asymmetry Images 

In echocardiography, low-level feature extraction is an important step before the 
segmentation of the LV is performed. For LV segmentation, the goal is to detect 
endocardial and epicardial boundaries. It is usually assumed that they have step-like 
edge characteristics. It has been shown that intensity based methods do not perform 
well due to the low-contrast nature of echocardiographic images, whereas local-phase 
based techniques have been shown to be intensity-invariant and less sensitive to 
speckle [7]. In [7], the original Phase Congruency measure [8] was adapted to the 
Feature Asymmetry (FA) measure, and outperformed the intensity based methods for 
detecting step-like edges in echocardiographic images. It has since been modified in 
[9] using the monogenic signal [10]. 
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The monogenic signal is a high dimensional generalization of the analytic signal. It 
is based on the Riesz transform, which is used instead of the Hilbert transform. The 
monogenic signal is formed by combining the original band-pass image with its Riesz 
components:      IM x, y, z  I x, y, z g x, y, z , I x, y, z g x, y, z h x, y, z , I x, y, z g x, y, z                                           h x, y, z , I x, y, z g x, y, z h x, y, z ,      (1) 

where , ,  is the spatial domain representation of a bandpass filter and , ,  are the Riesz filter components. 
The odd and even filter responses are then defined as follows: 
 even x, y, z IM, x, y, z        (2) odd x, y, z IM, x, y, z IM, x, y, z IM, x, y, z  

In computing the monogenic signal, aside from choosing how to combine the results 
from different scales, the selection of a bandpass filter has to be made. In our case we 
used the log-Gabor filter though other filters could have been used.  

The feature asymmetry (FA) measure is defined as: FA D x, y, z ∑ , , , , T, , , ,      (3) 

where ε is a small constant to avoid division by zero and  is a scale specific 
threshold that suppresses any response due to noise or symmetric points of the image: 

 T exp mean log even x, y, z odd x, y, z    (4) 

2 Method 

In this section, we describe the procedure for myocardium segmentation using the RF 
with the new LoCo and GloCo features, see Fig. 1. We first describe the pre-
segmentation steps for the LoCo and GloCo features extraction.  

 

 

Fig. 1. Algorithm flowchart 
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(a) Original image (b) Circle detection on FA (c) FA·sign( ,   (d) FA·sign( , · 
  sign y c  

Fig. 2. Circle detection on a short-axis slice from the 3D echocardiogram. (a) The original 
image. (b) The FA image and the detected circles by the original Hough transform for circles 
(in red, failed) and by the proposed modified Hough transform for circles (in blue) defined by 
(5). (c) and (d) The intermediate measures used by the modified Hough transform (5). In (d) the 
clear separation of epicardial and endocardial borders makes it feasible for the modified Hough 
transform not to confuse between the two borders. 

2.1 Detection of the Long Axis  

We propose a novel method for long axis detection from 3D echocardiographic 
images utilizing a modified Hough transform for circles, the 3D monogenic signal and 
the FA images as edge maps.  

Specifically, a local-phased based version of the Hough transform for circle 
detection can be defined as follow:  H c , c , r  ∑ ∑ sign x c · sign IM, · FA x, y sign y c · sign IM, · FA x, y ;  (5) 

where  
x  c  r cosθy  c r sinθ       (6) 

cx, cy, r parameterize the circle, and IM,  and IM,  are the x and y monogenic signal 
components respectively, as defined in (1). See also Fig. 2. 

In our implementation the summation is performed over multiple scales s of the 
band-pass filter. Notice that the Hough transform can be fairly accurately computed 
using only one of the summands in (5). However, we have found in our application 
that employing both terms leads to better accuracy and robustness.  

In our application we use the local-phase based Hough transform on each short-
axis slice z, to give the endocardial and epicardial center points, x , , y , ) and x , , y , ), and the endocardial and epicardial radii, r  and r , as: 

 x , , y , , r argmax , , H c , c , r ;
(7) x , , y , , r argmin , , H c , c , r ;

Having detected the center points, the long axis is then fitted as the first principal 
component of the detected endocardial centers. The long axis is utilized to align the 
3D LV images, to facilitate the extraction of a new set of features as described next. 
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(a) Original Image (b)  (c)  (d)  

Fig. 3. Visualisation of the COFA measure. (a-b) The original image and COFA measure 
defined in (9). (c-d) The COFA measures for the endocardial and epicardial borders defined in 
(10) and (11). 

2.2 Centrally Oriented Feature Asymmetry (COFA) Measure for Separating 
and Highlighting the Epicardial and Endocardial Boundary 

The Centrally Oriented Feature Asymmetry (COFA) measure is defined in terms of 
the detected epicardial and endocardial points for each of the short-axis slices z, as 
follows:  COFA x, y  ∑ ∑ sign x x , · sign IM, · FA x, y sign y y , · sign IM, ·,         FA x, y   (8) 

See also Fig. 3 (b). The epicardial and endocardial boundaries can be separated in the 
following way: COFA , x, y  ∑ ∑ sign x x , · sign IM, · FA x, y sign y y , · sign IM, ·,FA x, y  (9) 
 COFA , x, y ∑ ∑ sign x x , · sign IM,ys · FAzs x, y sign y y , · sign IM,xs ·i epic,endc        FAzs x, y  (10) 

where x , , y ,  is either epicardial or endocardial center point in the slice z, 
determined by (7),   and   are the operators that zero the negative and positive 
values correspondingly. See also Fig. 3 (c) and (d). 

2.3 Feature Sets 

Having estimated the center lines, each volume is rotated to a common co-ordinate 
system so that the long axis is positioned vertically and centered in the aligned image. 
This corresponds to two translations and two rotations. The remaining five parameters 
(1 translation, 1 rotation and 3 scaling) are found using a standard rigid registration 
technique (in our work we used the FLIRT registration tool, 
http://www.fmrib.ox.ac.uk/fsl/flirt/), fixing the determined four parameters. The 
process of long axis detection and image alignment is repeated in an iterative manner 
until no further improvement is achieved. By aligning the images, features extracted 
from different images correspond, which improves the testing accuracy. 
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(a) Original Image (b) Detection of 
landmarks 

(c) LoCo feature (d) GloCo feature 

Fig. 4. Visualisation of the LoCo and GloCo features. The landmark detection is illustrated in 
(b): randomly chosen z and  define the slice and the direction of the search (red line) for the 
endocardial landmark (minimum along the line) or the epicardial landmark (maximum along 
the line). (c) An example of the LoCo feature using the epicardial landmark. (d) An example of 
the GloCo feature (shown in 2D for illustration purposes). Four randomly selected landmarks 
form a simplex in 3D, the GloCo features are Barycentric coordinates of this voxel with respect 
to the simplex. 

Conventional Local Appearance Features. In this work we adopted several classic 
low level features. We used rectangle3D, Haar3D and Difference3D features [4-6]. 
These features capture local appearance information, but in practice can be sub-
optimal for analysis of low quality images. 

Absolute Voxel Position Features. Following the work of [1], we employ a 
position3D feature to capture the absolute position of the voxels in the image. The 
alignment procedure boosts the strength of such features. However, due to the global 
and local geometric variability of the myocardium, position features only provide a 
weak geometric constraint. 

Local Shape Constraint Contextual Features (LoCo). Here, we introduce a novel 
set of context rich features F(z ,  that capture geometric variability of the 
myocardium and can be regarded as a shape constraint. This type of feature is 
determined by the relative position of a considered voxel  = ( , , ) to a pre-
chosen landmark  = ( , , ) on the endocardial or epicardial boundary shape 
in image k. The LoCo feature set is thus defined as: ;     ;    ;     (11) ;      ;  | |  

 

Landmark selection and detection. With all the images globally aligned endo- and 
epicardial points can be corresponded in different images. Two randomly chosen 
parameters, the short-axis slice z and the polar angle , define in which slice and in 
what direction from the center of the cavity area the (aligned) epicardial or endocardial 
landmark will be detected, Fig. 4 (b). To find the epicardial and endocardial landmarks 
along the chosen direction, COFA images, described in sect. 3.2, are utilized. The 
maximum COFA detected feature along the  direction defines the epicardial 
landmark, whereas the minimum defines the endocardial landmark, Fig. 4 (b).  
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Thus, a detected landmark is defined by the two parameters z and , and is 
detected in each image independently as follows:  , , ,  argmax ,  COFA , x, y,         subject to 

x  x ,  r cosθy  y , r sinθ     (12)   

          where  r  shift < r < r  shift  

Here the endocardial/epicardial centers , , , ) and radii  in the slice z are 
found by (7). 

Global Shape Constraint Contextual Features (GloCo). Unlike LoCo features, 
GloCo features use the relative position of a voxel to a number of structures on the 
epicardial and endocardial boundary shapes. Barycentric coordinates are utilized to 
uniquely specify the location of the voxel with respect to the specified structures on 
the boundary shapes. To calculate the barycentric coordinates in 3D space, the 3D 
simplex, a tetrahedron, is constructed by randomly selecting four structure points on 
endo- and epicardial boundaries. Mathematically, the scalars , , ,  are the 
barycentric coordinates of an arbitrary voxel v = (   ) with respect to the four 
nonplanar structure points , , ,  if 

                        (13) 

subject to   1                     (14) 

where v and  denote the Euclidean coordinates. The four structure points are 
defined by randomly selecting a short-axis slice z and a directional angle  for each 
of the points. The four landmarks are further detected separately in each image using 
(12). To ensure invariance to arbitrary pose of the epicardial and endocardial shape 
the coefficients are constrained to sum to one (14). 

The proposed GloCo features are barycentric coordinates and computed as follows:  
   ; , , ,  1 ; , , , 2

(15) ; , , ,  3 ; , , , 4
where   T  ,   1   (16)                              , , ,  are the coordinates of landmark  

Comparison of position and LoCo and GloCo features. A position feature does not 
exploit image intensity information and considers only the absolute position of the 
voxel in the image. Thus, it provides a weak constraint on geometric variability of  
the myocardium. On the contrary, the GloCo feature quantifies the relative position of 
the voxel with respect to four landmarks detected using intensity information from the 
COFA images. The detected landmarks are the tetrahedron vertices used in 
calculation of the barycentric coordinates and have different spatial locations across 
the images. Thus, the tetrahedron captures the coupled endo- and epicardial shape 
variability enforcing a strong constraint on the geometry of the myocardium. 
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3 Experimental Results 

3.1 Dataset 

25 3D end-diastolic echocardiograms from health subjects were used in this study. A 
Philips iE33 ultrasound system was used to acquire the images. Volume dimensions 
are (224×208×208) with an average of 0.88mm3 spatial resolution. The myocardium 
and the blood pool of all volumes were manually segmented by an expert. 

3.2 Validation Methodology 

20 volumes were chosen randomly to train the RFs and the remaining 5 volumes were 
used in testing to report the results. To understand the impact of the new LoCo and 
GloCo features, two RF classifiers were trained: 1) using the previously reported local 
appearance and position features on the original images and 2) using the conventional 
local appearance, position features and also the new LoCo and GloCo features on the 
aligned images. The two RF were trained with 15 trees. The stopping criteria for 
growing the tree were the maximum depth - 16, no information gain of splitting and 
the minimum number of points at a node - 50. For the classic RF, 100 conventional 
features were randomly chosen at a node and further investigated to find the one that 
gives the highest information gain. For the RF with the new LoCo and GloCo 
features, 100 randomly chosen conventional features and 150 randomly chosen LoCo 
and GloCo features were used. 

The RF was implemented in C++. Testing volumes were segmented in 20 seconds 
per volume using Intel Xeon 2.8GHz computer with 12 cores and 48GB RAM 
running Win7. With a parallel tree implementation, training required about 3 hours 
and only needed to be done once. 

Fig. 5 shows a visual comparison of the segmentation from the classic RF and from 
the RF using the new features.  

For quantitative analysis, the mean and standard deviation of the Dice and Jaccard 
similarity coefficients for both the myocardium and the blood pool are reported in 

Table 1. The Dice similarity coefficient is defined as Dice  |GT  A ||GT|  |A | , while the 

Jaccard is defined as Jaccard = 
|GT  A ||GT  A |, where GT is the ground truth represented as 

manual segmentation and Auto is the automatic segmentation, |.| is the cardinality of a 
set. 
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Table 1. Mean (µ) ± standard deviation (σ) of the dice and Jaccard coefficients for the 
myocardium and the blood pool 

  Classic RF RF with LoCo and GloCo 

Myocardium 
Dice 0.77 ± 0.06 0.77 ± 0.05 

Jaccard 0.63 ± 0.08 0.63 ± 0.06 

Blood pool 
Dice 0.88 ± 0.04 0.90 ± 0.02 

Jaccard 0.79 ± 0.06 0.82 ± 0.04 

(a) 

 

(b) 

 
(c)  

 

(d) 

 
(e)  

 

(f) 

 
(g)  

 

(h) 

 

Fig. 5. (a) and (e) Short-axis slice of the original images ((e) is vertically aligned). (b) and (f) 
Manual segmentations of (a) and (e). (c) Automatic segmentation by the RF with the classic 
features (g) Automatic segmentation by the RF with the new LoCo and GloCo features. (d) and 
(h) 3D mesh of the automatically segmented volumes (a) and (e). 
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(a) Acceptance of conventional features 

within the RF 
(b) Acceptance of conventional features and the 

new LoCo and GloCo features within the RF 

Fig. 6. Feature acceptance at different depth with (a) the RF using the classic features and (b)
the RF using the classic and the new LoCo and GloCo features 

3.3 Discussion on the Conventional and the New LoCo and GloCo Features 

The frequency of each type of feature selected during the training stage for different 
tree depths is shown in Fig. 6. 

Position and appearance features. Recall that a position feature looks only at the 
absolute position of a voxel. The position features are pre-dominantly selected by 
both RFs at depths 1-4 when the complexity of the data is the highest, see Fig. 6. At 
this stage, the appearance features poorly distinguish the classes well due to the 
similar appearance of different tissues or the different appearance of the same tissue.  

LoCo and GloCo features. Both the position and the LoCo and GloCo features 
divide the image domain spatially. In the case of the classic RF, the position features 
tend to split the data spatially until the depth 4, after which, as seen in Fig. 6 (a), the 
appearance features prove to separate the classes better within each of the spatial 
regions in the image. In the case of the RF with the new features the behavior is 
different. After depth 4, the GloCo features are shown to dominate. They continue 
splitting the image spatially into regions until the depth 11. This suggests that the 
GloCo features carry more detailed contextual information than the position or the 
LoCo features. Fig. 6 (b) suggests that after the depth 11, the separation is mainly 
done using the appearance information within each of the regions in the image. Note 
that by splitting the image spatially, the LoCo and GloCo features also encode a 
constraint on local and global shape variability. 

We caveat our findings with two comments related to the dataset we used. The 
current training set consists of 20 3D volumes which is relatively small to capture the 
complexity of coupled variability of the epicardial and endocardial shapes. Thus 
firstly one would hypothesise an improvement of the Jaccard/Dice measures for the 
myocardial segmentation with an increase of training dataset size. Secondly one 
cannot guarantee that the small testing dataset used fairly captures the variability seen 
in the training dataset. Having said this, the results are encouraging and convincingly 
demonstrate the usefulness of the new proposed features for 3D echocardiography 
segmentation. 
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4 Conclusions 

This paper proposes new context rich LoCo and GloCo features for medical imaging 
machine learning based segmentation that embed local and global shape constraints 
respectively. Our first contribution is the detection of the ventricular long axis based 
on image intensity information. This enables a) accurate alignment of all the volumes, 
which decreases the variability of LV position and thus, improves the quality of 
classic features; and b) detection of corresponding landmarks throughout the images, 
which are needed for the proposed features. Our second contribution is the new LoCo 
and GloCo features that encode local and global variability of coupled endo- and 
epicardial shapes. 

We demonstrated improvement of 3D echocardiography segmentation over classic 
RF segmentation. The proposed features need to be tested on a larger training set to 
draw strong conclusions on the accuracy for myocardial segmentation which will be 
the subject of future work.  
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Abstract. In this work we propose a novel SSIM (Structural Similarity
Index Measure)-guided brain tissue classification approach, implement-
ing Kernel Fisher Discriminant Analysis (KFDA). In Computer Vision,
KFDA has been shown to be competitive with other state-of-the-art tech-
niques. In the KFDA-based framework, we exploit the complex structure
of grey matter, white matter and cerebro-spinal fluid intensity clusters
to find an optimal classification. We illustrate our novel technique using
a dataset of early normal brain development in the age range from 10
days to 4.5 years. The SSIM metric, an objective measure of an image
quality as perceived by the Human Visual System, is used to evaluate the
quality of brain segmentation. SSIM comparison of the quality of classifi-
cation obtained by the KFDA-based and the Expectation-Maximization
algorithms shows the superior performance of the proposed technique.

Keywords: Kernel Fisher Discriminant Analysis, classification, testing
set, partial volume effect, feature space, brain tissue classes.

1 Introduction

Motivation. This paper addresses the problem of automatic classification of
brain tissue into white matter (WM), grey matter (GM) and cerebrospinal fluid
(CSF) for an MR pediatric dataset of early brain development from birth through
4.5 years of age [1].
This dataset exhibits dramatic qualitative changes in GM/WM contrast during
early brain maturation. The MRI signal is affected by myelinated axons of the
major pathways (white matter and the corpus callosum). As a result of poor
and highly variable GM/WM contrast and tight sulcal packing, automatic clas-
sification via INSECT [2] was difficult to implement.
We set out to achieve high quality classification of this dataset as this is funda-
mental for the accuracy of cortical surface extraction and the following assess-
ment of normal surface variability in children before 4.5 years of age.

Classification Techniques in NeuroImaging. Many brain tissue classifica-
tion techniques have been proposed, e.g. a k Nearest Neighbour classifier [3], an
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Artificial Neural Network classifier [4], an Expectation-Maximization (EM) algo-
rithm [5], a modified EM-based algorithm using a Markov Random Field model
[6] and a watershed-based segmentation [7], being among the most popular.

Different methods for the evaluation of classifier performance show that exist-
ing automatic classification algorithms do not fully capture expert tracings [8].
The major drawback is incorrect classification of the CSF into either background
or GM.

The MR brain tissue labeling process is complicated by the presence of a
partial volume (PV) effect due to the limited spatial resolution of the scanner,
which leads to the presence of multiple tissue types within a single voxel. PV
estimation (PVE) or computation of the mixing proportions of tissue classes
per voxel is essential for an accurate quantification of tissue volumes and cor-
tical surface extraction [9]. Among the proposed PVE techniques, a Trimmed
Minimum Covariance Determinant (TMCD) approach [9] provides a generalized
segmentation framework since it uses Gaussian distributions with different co-
variance matrices for modeling tissue intensity histograms and it can be applied
to multi-channel data.

The disadvantage of the TMCD method is its computational complexity. We
seek a simpler approach that would classify brain image data with high accuracy.

Why KFDA? We introduce the first of its kind KFDA-based brain tissue clas-
sification algorithm to the NeuroImaging field that explores the structure of
GM, WM and CSF clusters, reveals their non-linearity in the original space and
exploits this non-linearity for improved classification [10]. KFDA [11] is partic-
ularly useful for the separation of input data into classes when their histogram
distributions overlap as is the case with the MR pediatric dataset. KFDA at-
tempts to make the image data more separable by non-linearly mapping them
from the original space to an abstract feature space and classify them via optimal
discriminant hyperplanes.

The KFDA-based approach is natural for the identification of PV voxels that
lie near the boundaries between tissue types. Since KFDA finds complex decision
surfaces that best separate the data into GM, WM and CSF in the original space
then overlapping subsets (e.g., WM voxels trapped in the intensity range of GM)
and class cluster outliers located near these separating surfaces identify the voxels
with significant PV effect. KFDA is related to kernel-based classifiers such as
the Support Vector Machine (SVM) approach [13]. The superior performance
of KFDA over SVM as shown in [11] can be explained by the fact that KFDA
uses all training samples to compute the discriminant function, not only the ones
that lie closest to the decision surface, i.e. the Support Vectors. The appealing
features of KFDA include:

– KFDA is vector-valued, i.e. applied to multi-channel data

– Non-linear generalization of LDA (Linear Discriminant Analysis) that im-
plies a higher prediction accuracy.

– Precision; algebraic formulation of the maximization of the discriminant cri-
terion provides an exact solution.



72 N. Portman and A. Evans

– Minimal dependency on parameters (unlike SVM whose performance de-
pends also on the number of support vectors and training samples). The
parameters that are used in KFDA define kernel functions.

Dataset. The pediatric dataset (NIHPD) collected by the National Institutes
of Health (NIH) [15] consists of 72 healthy subjects aged 10 days to 4.5 years
scanned repeatedly at quarterly intervals. Imaging data includes structural MRI
(T1w, T2w, PDw). Data were acquired on a 1.5 T Siemens Sonata scanner with
a 1 × 1 × 3 mm spatial resolution. MR brain scans were corrected for image
intensity non-uniformity [16] and registered to the MNI stereotaxic space using
spatial normalization [17]. The data were resampled to 1 mm3 grid using tri-
cubic interpolation. T1w, T2w and PDw average atlases have been created for
important developmental age ranges for the NIHPD data1 [12].

2 KFDA-Based Algorithm

1. Initialization. We started with a template for the oldest age range (44-60
months) and transferred GM, WM and CSF probability maps known for the age
range 4.5 to 8.5 years [12] 2 onto the oldest pediatric template via registration
mni autoreg [17] of the T1w template (4.5 to 8.5 years) (see Fig. 1.a) with
the T1w template (44-60 months) (see Fig. 1.b). The mni autoreg procedure
estimates a 3D non-linear deformation field iteratively in a multiscale hierarchy,
i.e. by matching blurred template volumes and subsequent refining of a resulting
displacement field. Hard labeling of the template for the age range of 44 to 60
months is then used as the best guess for initialization (see Fig. 1.c).

(a) (b) (c)

Fig. 1. (a) T1w pediatric template (4.5-8.5 years), (b) T1w pediatric template (44-60
months), (c) Hard labels of the template (b) obtained from tissue probability maps of
older brains registered with (b).

2. Preliminary Quantile Analysis. In the posterior brain, the MRI signal in
WM tends to weaken towards the occipital lobe introducing more uncertainty to

1 The age-dependent pediatric atlas is available for download at
http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2

2 This probabilistic brain atlas was obtained from 82 normal subjects within the age
range 4.5 to 8.5 years using an unsupervised genetic tissue classification algorithm.

http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2
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(a) (b) (c)

Fig. 2. T1w, T2w and PDw intensity histograms in (a) the anterior and (b) posterior
parts of the 3D template (44-60 months), (c) quantile-quantile plots of the anterior
(X-axis) versus posterior (Y-axis) intensity samples in 3D (from top to bottom) T1w,
T2w and PDw templates

GM/WM boundary location. This results in a greater overlap of GM and WM
intensity histograms as shown in Fig. 2.a-b. Scatter plots of quantiles computed
from samples of grey levels in the anterior and posterior parts of the 3D template
brain suggest that they come from different probability distributions (see Fig.
2.c). Therefore, we explore tissue cluster structures in each of the brain halves.

3. 3D Brain partitioning. To proceed with KFDA implementation in MAT-
LAB, namely, to solve an eigen-value problem in a high-dimensional feature space
the brain partitioning into subvolumes is needed. Due to MATLAB limitations
on the maximum matrix size and available system memory it is not possible
to carry out computations for each interior brain half (containing ≈ 300, 000
voxels). Therefore, given a vector-valued image function

I(i, j, k) = (T 1w(i, j, k), T 2w(i, j, k), PDw(i, j, k)),
where 1 � i � M, 1 � j � N, 1 � k � L are voxel coordinates of the interior
brain, we partition each brain half into subsets of K slices in the axial direction.
Due to insufficient system memory we have chosen K = 3. That is, we have

[
L
2

]
subvolumes

{I}k = {(T 1w(i, j, k + l − 1), T 2w(i, j, k + l − 1), PDw(i, j, k + l − 1))}3l=1,

where k = 1, 3, 5, ..., L− 2.

4. Kernel transformation of the data and optimal projection in the
feature space. We partition the non-binary brain tissue classification problem
into two two-class problems, namely, separation of the image data into G+W
matter and CSF and then separation of G+Wmatter into GM andWM. We con-
sider each vector-valued intensity at the interior brain voxel as a training sample.
Given the brain subvolume {I}k with M1 labeled training samples we implicitly
transform them to the M1-dimensional feature space F with a non-linear map
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Φ. We then calculate the direction w of maximal information discrimination in
F [11] and project the mapped data Φ(I) onto the vector w

w ·Φ(I) =

M1∑
m=1

αmk(Im, I) + β, (1)

where β is an offset and k(Im, I) = Φ(Im) · Φ(I) is the kernel function that
computes a dot product in F . Experimental work with various kernel functions
shows that a sigmoid kernel function k(Im, I) = tanh(a(Im

T · I) + b) yields
the best separation into G+W matter and CSF, and a polynomial of a degree 3
k(Im, I) = (Im

T · I + b)3 or higher best separates GM and WM.
Figures 3.b and 4.b show optimal projections of G+W matter (in red) and CSF
(in blue) classes and GM (in blue) and WM (in red) classes correspondingly
(according to their initial classifications). In both Figures, X-axis represents
column-wise enumeration of the interior brain voxels from 1 to M1 and Y-axis
represents the projected values w · Φ(Ii), 1 � i � M1. When calculated with
the offset β they are positive for one class and negative for another.

Classification into G+W Matter and CSF. For the anterior subvolume
displayed in Fig. 3 KFDA identified 22 CSF and 384 G+Wmatter outliers shown
in cyan and green, respectively in Fig. 3.c. Their spatial positions in stereotaxic
space (see Fig. 3.a) suggest that they are likely to be PV voxels. To determine
the dominant tissue type for each of these outliers we split the projected data
into testing and training sets. Namely, the outliers form the testing set and the
rest of the projected data forms the training set.

Using Mahalanobis distance, KFDA predicted CSF membership for all 384
G+W matter outliers from the classified training set (see Fig. 3.c). As a result,
a new classification detects more CSF (see Fig. 3.d).

A separating surface corresponding to this new classification is shown in Fig.
4.e with G+W matter and CSF intensities depicted in red and blue, respectively.
The template decision surface is used for the subject classification into G+W
matter and CSF shown in cyan and magenta, respectively in Fig. 4.e. Notice the
complexity of the separating surfaces displayed in Fig. 4.e-f due to the fact that
all training samples are used to compute them.

Classification into GM and WM. Unlike the case with G+W matter and
CSF clusters, both GM and WM distributions of the projected data contain only
a few if any outliers. There is a significant number of GM voxels trapped in the
negative range of WM distribution as seen from Fig. 4.b. More precisely, KFDA
has identified 1647 overlapping GM voxels and 74 overlapping WM voxels shown
in cyan and green correspondingly in Fig. 4.b. Fig. 4.a suggests that these voxels
are likely to contain a significant PV effect. Treating them as testing samples we
predict their labels via a kNN classifier (k = 8 neighbours) from a training set
comprised of the rest of the projected subvolume in F (see Fig. 4.c).

The separating polynomial surface corresponding to the KFDA classification
of the posterior subject subvolume into GM (in magenta) and WM (in cyan) is
shown in Fig. 4.g.
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(a) (b) (c) (d)

Fig. 3. (a) top: Labeled input data (one of the three anterior slices is shown) from
the template (44-60 months), bottom: spatial location of outliers in stereotaxic space,
(b) data projection onto w in F : G+W (in red) and CSF (in blue), (c) Mahalanobis
classification of the outliers, (d) KFDA classification into G+W matter and CSF

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. (a) top: Initial GM and WM labels of G+W matter (one of the three ante-
rior slices is shown) in the template subvolume (44-60 months), bottom: overlapping
voxels in the stereotaxic space, (b) optimal projection in the feature space, (c) kNN
classification of GM and WM overlapping voxels, WM (in red), GM (in blue), (d) top:
KFDA classification into GM and WM, bottom: An image display of projected anterior
subvolume (one slice out of K = 3 is shown) in F contained in a rectangular area (c).
Red peaks in (c) correspond to interior WM voxels. Optimal decision surfaces for the
CSF and G+W matter (e) in the anterior part, (f) in the posterior part, (g) optimal
separation of the posterior subject data into GM and WM.
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3 Spatial Regularization

To increase robustness to misclassification, we introduce a spatial regularization
term that penalizes local kernel projected intensity differences in F . We define
matrix H that describes local relationships between the interior brain voxels as
follows

Hij =

⎧⎪⎨⎪⎩
1, if voxels i and j are neighbours ((i, j) is an edge);

−dij , if i = j, the degree of vertex (voxel) i;

0, otherwise.

Then for ∀V ∈ RM1 V THV = −
∑

(i,j)∈E

(Vi − Vj)
2, (2)

where E is an edge set comprised of edges {Vi, Vj}.
Let V = w · Φ(I) be the kernel projection of the input data I onto the opti-

mal direction w in F . V can be rewritten as V =
∑M1

i=1 αik(Ii, I) due to the

expansion of w =
∑M1

i=1 αiΦ(I i) in F spanned by the mapped training samples
Φ(Ii). We modify the KFDA optimality criterion by adding the penalty term of
the form V THV = αTKHKTα, where K is the kernel matrix of size M1 ×M1

α̂ = argmax
α

(
αTMα+ λαTKHKTα

αTNα

)
. (3)

Here, M is a between-class covariance matrix and N is a within-class covariance
matrix in F (see [11], [14] for details). In this setup the penalty function forces
misclassified voxels closer to another class cluster centroid. The problem (3) can
be solved by computing a leading eigen-vector of N−1(M + λKHKT ).

λ=0 λ=2.5e−05 λ=5e−05 λ=7.5e−05 λ=0.0001
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Fig. 5. Upper panel: anterior template brain classified into G+W M and CSF for
λi = 0.000025 · i, i = 0, ..., 4; Lower panel: MSSIM between T1w template and each of
the classified anterior brains shown in the upper panel
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A modified version of the KFDA criterion (3) depends on the value of the
regularization coefficient λ. The upper panel in Fig. 5 shows the influence of λ-
coefficient on the quality of segmentation into G+W M and CSF as it increases
by an increment of 0.000025 from 0 to 0.0001. By a visual inspection, the clas-
sification corresponding to λ = 0.000025 is most plausible as the CSF pattern
appears to be most connected compared to that with other λ-values. This choice
was operationalized with the SSIM metric described below.

4 Objective Quality Evaluation via SSIM

For the automatic control of λ-parameter we need a quantitative assessment of
segmentation quality. Such measures to MR brain segmentation as the Jaccard
coefficient and the Dice coefficient are commonly used, however, they rely on
knowledge of a reference segmentation. We seek a similarity measure to eval-
uate λ-dependent classifications in the absence of a ground truth and use the
Structural Similarity Index Measure (SSIM) [18], [19]. The SSIM is an objective
similarity metric that quantifies the degree of structural similarity between ideal
and distorted images. It is based on the assumption that the Human Visual
System (HVS) is an optimal extractor of structural information from images.

We evaluated the performance of our classification algorithm relying on the
Computer Vision hypothesis that the HVS focuses on image components with
high information content [20]. In our case, these image components are WM/GM
and G+W matter and CSF boundaries. We evaluated how well these boundaries
are captured by our algorithm versus the boundaries that we can visually extract
from T1w data (we use one imaging modality for simplicity).

We created classified brain subvolumes in the form of mean T1w intensity
values for the two tissue types. We computed the SSIM between each classified
and T1w brain slices and the mean SSIM (MSSIM) defined by

MSSIM =
1

M1

M1∑
i=1

SSIM(xi, yi), SSIM(xi, yi) = l(xi, yi) · c(xi, yi) · s(xi, yi),

xi and yi are local image patches3 and l(xi, yi), c(xi, yi), s(xi, yi) are the lumi-
nance, contrast and structure comparison measures defined by

l(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1
; c(x, y) =

2σxσy + C2

σ2
x + σ2

y + C2
; s(x, y) =

σxy + C3

σxσy + C3
.

Here, μx(μy), σx(σy) and σxy represent the local mean, standard deviation and
cross-correlation estimates, respectively, and C1, C2, C3 are small constants [18].

Shown in the lower panel of Fig. 5 is the MSSIM computed between the T1w
and classified anterior template subvolumes and plotted against the values of
λ. It achieves its maximum at λ = 0.000025 as expected. Thus, by choosing
λ-value corresponding to the largest MSSIM we are able to automatically guide
the classification procedure.

3 a sliding window that moves across the entire brain slice pixel by pixel. For the
MSSIM the background patches have been excluded.
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5 Results

We compared classification results obtained by prior hard labeling, KFDA-based
and EM approaches using MSSIM. Figures 7 and 8 show single slices from the
classified template (44-60 months) and subject brain subvolumes obtained by
joining overlapping anterior and posterior parts. Namely, if I1(i, j, k), i ∈
{1, 2, 3, ...,

[
N
2

]
+ 2} is an anterior brain, and I2(i, j, k), i ∈ {

[
N
2

]
− 1, ..., N}

is a posterior brain, where y =
[
N
2

]
is the middle plane, then the whole brain

image function I(i, j, k) is defined as follows

I(i, j, k) =

{
I1(i, j, k), for i ∈ {1, 2, 3, ...,

[
N
2

]
},

I2(i, j, k), for i ∈ {
[
N
2

]
+ 1, ..., N}.

Note that in order to preserve neighbourhood relations of the middle plane vox-
els in anterior and posterior parts, we defined I1 and I2 as subsets with an
overlapping region R(i, j, k), i ∈ {

[
N
2

]
− 1, ..,

[
N
2

]
+ 2}.

Remark. In order to better accommodate grey level intensity inhomogeneities
present in brain tissues, we intend to optimally partition the brain into regions
that differ significantly in average intensity values. Shown in Fig. 6 are transverse
and coronal slices of the template brain subdivided into parallelepipeds using a
binary space partition. Having created and classified overlapping parallelepipeds,
3D image stitching can then be performed via simulated annealing.

(a) (b)

Fig. 6. 3D template brain partitioning based on mutual information maximization
between the intensity histogram bins and the regions of the subdivided image: (a)
transverse slice 37 (out of 105), (b) coronal slice 110 (out of 235). The total number of
the brain regions is 32.

Fig. 7.a-c show that the CSF structure captured by KFDA is more similar to
the one seen in T1w. The comparison of MSSIMs given in Fig. 7.b-c suggests
that our proposed algorithm improves CSF detection.

The comparison of the classified WM patterns (see Fig. 7.d-e) with the one
seen in T1w (see Fig. 7.a) and of their respective MSSIMs for the template shows
that the proposed algorithm also improves classification into GM and WM. EM
algorithm with a prior seen in Fig. 7.f yields a reasonable estimate of CSF and a
significant underestimate of WM. MSSIM comparison of the GM/WM classified
results demonstrates a superior performance of KFDA over EM algorithm. Seen
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MSSIMs: 0.6978 0.7185 0.8001 0.8307 0.8048

(a) (b) (c) (d) (e) (f)

Fig. 7. (a) T1w template (44-60 months) and its classification into G+W matter and
CSF: (b) prior, (c) KFDA; into GM andWM: (d) prior, (e) KFDA, (f) EM classification
into GM, WM and CSF with a prior

MSSIMs: 0.7478 0.8231 0.6036

(a) (b) (c) (d) (e)

Fig. 8. (a) T1w image of a 4.5 year old subject and its classification into G+W matter
and CSF: (b) KFDA; into GM and WM: (c) prior, (d) KFDA, (e) EM with a prior.

in Fig. 8.a is a T1w scan of a 4.5 year old subject. We generated classification
into G+W matter and CSF by treating the entire subject data as a testing set
and by its kernel projection onto w in F spanned by the template samples Φ(I i).
The resulting classification is displayed in Fig. 8.b.
The comparison of a WM pattern seen in Fig. 8.a with the classified WM seen in
Fig. 8.c-e demonstrates the remarkable capability of KFDA to reveal a complex
WM structure given a poor GM/WM contrast. The EM algorithm with a prior
applied to the vector-valued subject subvolume tends to overestimate WM and
CSF (see Fig. 8.e). The comparison of MSSIMs given in Fig. 8.c-e shows that
KFDA yields the most similar WM pattern to the one extracted by our visual
system.

6 Conclusion

We have developed a novel and elegant KFDA-based algorithm for automatic
brain tissue classification. It is a vector-valued non-parametric approach that
relies on prior hard labels of tissue types for initialization. The proposed algo-
rithm takes into account spatial correlations between interior brain intensities,
identifies voxels with PV effect, predicts the dominating tissue types in the PV
set and constructs complex optimal decision surfaces precisely.

In this work, we classified the oldest template (44-60 months) of this dataset
and showed how a subject chosen from the same age range can be labeled us-
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ing KFDA-classified template. SSIM comparison of GM, WM and CSF patterns
detected by KFDA and EM approaches showed a superior performance of the
latter. Our next incentive is to apply the KFDA-based technique for the classi-
fication of age-dependent templates for earlier age ranges.
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Abstract. In positron emission tomography (PET) imaging, the seg-
mentation of organs is necessary for many quantitative image analysis
tasks, e.g., estimation of individual organ concentration or partial volume
correction. To this end we present a fully automated approach for whole-
body segmentation which enables large-scale and reproducible studies.
The approach is based on joint segmentation and atlas registration. The
classical active contour approach by Chan and Vese is modified to a
novel passive contour energy term with implicitly incorporated informa-
tion about shape and location of the organs. This new energy is added to
a registration functional which is based on both functional (PET) and
morphological (CT) data. The proposed method is applied to medical
data, given by 13 PET-CT data sets of mice, and quantitatively com-
pared to manually drawn VOIs. An average Dice coefficient of 0.73±0.10
for the left ventricle, 0.88± 0.05 for the bladder, and 0.76± 0.07 for the
kidneys shows the high accuracy of our method.

Keywords: Segmentation, Active Contour, Passive Contour, Registra-
tion, Atlas, PET-CT, Whole-Body.

1 Introduction

Positron emission tomography (PET) is widely used in medical imaging to as-
sess functional information in the body. However, quantitative evaluation of
PET images is challenging due to the rather limited spatial resolution and low
signal-to-noise ratio which makes the segmentation of organs necessary for var-
ious applications. Estimating organ concentration in biodistribution studies [6],
[9], or analyzing organ specific diseases such as myocardial infarction demands
for an adequate whole-body segmentation. In addition, organ segmentation is
mandatory for many partial volume correction techniques [15]. To this end we
developed a general approach for whole-body segmentation based on joint seg-
mentation and registration.

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 82–92, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1.1 Related Work

Many approaches originating from computer vision are transferred to medical
imaging as they are well understood and, at the same time, also efficiently ap-
plicable to volumetric (3D) medical images. A popular approach in computer
vision for automatic segmentation is active contours as introduced by Chan and
Vese [2]. The method was successfully applied to medical imaging based on brain
MRI data [3]. The main idea of active contours is also exploited in our work,
but in a reversed interpretation, cf. Sec. 2.

There is a large demand for automatic segmentation in medical imaging as
the manual segmentation of organs is time-consuming for 3D data sets. Further,
inter- and intra-observer variability can have a high impact. This is why manual
segmentation is inapplicable for large-scale and reproducible studies. We restrict
the following discussion to related literature on segmentation of PET and CT
and joint registration and segmentation.

An automated method for whole-body segmentation in Micro-CT data of
mice was introduced by Baiker et al. [1]. The approach consists of a model-
based registration with a subsequent intensity-based registration. They achieved
high accuracies for skin and skeleton. However, they did not report results for
inner organs which are the focus of this work. This might be due to the low
soft tissue contrast of the CT images which makes the localization of inner
organs challenging. We overcome this limitation (inter alia) by using functional
information in terms of PET images (and additional CT images).

Wang et al. presented a registration approach based on a statistical shape
model for small-animal PET segmentation [13]. High uptake organs guide the
registration using a conditional Gaussian model and allow good estimates for low
uptake organs as well. However, for the labeling of organs the method requires
user interaction.

Recently various techniques were published combining registration and seg-
mentation. A taxonomy on this topic is given in [8]. A method, which is basically
similar to our proceeding, was presented by Yezzi et al. [14]. They propose a
variational framework that uses active contours for segmentation with a simul-
taneous registration of features. The level-set based segmentation separates only
one object from the background which makes this method inapplicable for mul-
tiple organ segmentation tasks. Further, only rigid and affine transformations
were practically explored.

2 Methods

In this paper we present a novel atlas-based segmentation approach. The general
scheme is illustrated in Fig. 1. Given a pair of spatially aligned PET and CT
images (real data on the left of Fig. 1) of the same subject, we follow a two-
step strategy. After aligning the atlas (atlas data on the right of Fig. 1) and the
real data with an affine transformation, a tailored registration functional with
joint segmentation is minimized. Three distance terms drive the registration: 1.
Distance of the atlas CT and real CT, 2. Distance of the atlas PET and real PET,
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PET PET 
CT CT 

Atlas 

Registration 

Result. 
Seg. 

Transformation of Atlas 

Real Data Atlas Data 

Fig. 1. General scheme: The inverse of the estimated transformation is applied to the
atlas to segment the real data

3. Segmentation distance motivated by Chan and Vese [2]. Instead of matching a
contour to the data, the novel segmentation distance is used to optimize for the
transformation that aligns the data best to the (passive) contours. This turns
around the interpretation of standard active contours models. Finally, the atlas
organ definitions are transformed with the inverse transformation and yield the
resulting segmentation of the real data, cf. bottom of Fig. 1.

In particular, we address the following points:

1. Transition of 2D active contours to 3D passive contours for medical image
segmentation

2. Fully automation to make large-scale studies possible (user interaction is
time-consuming)

3. Non-rigidity of atlas-based whole-body segmentation
4. Multimodality treatment (function and morphology)
5. Handling of multiple organs for joint registration and segmentation

2.1 Joint Passive Contour Segmentation and Registration

As a technical preprocessing step, a rough alignment of the atlas dataset and
the real dataset is performed by matching the atlas CT to the real CT with
an affine transformation to overcome differences in the orientation, scaling, and
translation. As both images are of the same modality we choose the sum of
squared differences (SSD) distance measure.

To overcome anatomical variations of organs, the information of the PET and
the CT images is used simultaneously in a joint registration functional. Hence,
anatomical and functional information is exploited at the same time. In addition,
we include a novel segmentation distance term into the functional, inspired by
Chan and Vese [2]. The Chan-Vese distance measures the in-class variance ac-
cording to the atlas organ definitions. We derive the complete registration model
by first looking at standard image registration for the CT images.

For the alignment of the CT images, the real data TCT : Ω → R (template
image) is registered to the atlas CT imageRCT : Ω → R (reference image), where
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Ω ⊂ R3 is the image domain. The output of the registration is a transformation
y : R3 → R3 representing point-to-point correspondences between TCT andRCT .
To find y, the following functional has to be minimized

min
y

{
DSSD(TCT ◦ y, RCT ) + αS · S(y)

}
. (1)

DSSD is the SSD distance functional and αS ∈ R+ is a weighting factor of the
regularization functional S. By using regularized spline image interpolation we
reduce artifacts in the PET images which justifies the usage of the SSD measure.

We assume that the PET and corresponding CT measurement approximately
share the same geometry and hence y can be used to align both modalities.
In practice the images provide complementary information which motivates the
exploration of both modalities in a joint registration functional. The CT images
guide the registration whereas the PET images provide important information in
soft tissue regions. As the scanned mice are anesthetized the spatial variations are
kept to a minimum. However, changes due to, e.g., bladder filling, are possible.

Our joint registration functional is an extension of (1) by adding a term for
the PET data and an additional passive contour term DPC

min
y

{ αCT · DSSD(TCT ◦ y, RCT ) + αPET · DSSD(TPET ◦ y, RPET )

+αPC
PET · DPC(TPET ◦ y, A) + αS · S(y) } , (2)

where TPET ,RPET : Ω → R are the real PET image and the atlas PET image.
αCT , αPET , α

PC
PET , αS ∈ R+ are weighting factors for the individual distance

functionals and are discussed later. DPC is the passive contour distance and A
denotes the delineation of the atlas organs.

Passive Contour Distance. Let us now derive the passive contour term DPC .
The classical Chan-Vese functional [2] is defined as follows

CV(C) =
∫
Cin

(T (x) − μ(T , Cin))2 dx+

∫
Cex

(T (x)− μ(T , Cex))2 dx . (3)

The function μ computes an average value of T (we omit the subscript for
simplicity) according to the interior (Cin) respectively the exterior (Cex) of the
contour C. The aim is to find the (active) contour C that minimizes the energy
CV(C). We can rewrite this formulation as a functional of the transformation y

CV(y) =
∫
y(Ω)

(T (x)− μ(T , A ◦ y; x))2 dx . (4)

μ(T , A ◦ y; · ) is constant inside each organ containing the average intensity of
T over the respective segment. A simple 2D example to illustrate the function
μ is given in Fig. 2.

The atlas definitions A in Fig. 2(b) exactly match the contours of the blurred
and noisy input image (a). By applying the segmentation function μ we result
in a recovered image without noise and blur (c).
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(a) Input image T (b) Atlas definitions A (c) μ(T , A; · )

Fig. 2. Illustration of μ (2D). Given the image T (left) and the atlas definitions A
(middle) we can apply the segmentation function μ(T , A; · ) (right).

By substitution x→ y(x) in (4) we receive

CV(y) =
∫
Ω

(T (y(x)) − μ(T ◦ y, A; x))2 · | det(∇y(x))| dx . (5)

The term DPC is then defined as:

DPC(T ◦ y, A) := 1

2

∫
Ω

(T (y(x)) − μ(T ◦ y,A;x))2 · det(∇y(x))dx . (6)

Thus, by finding an adequate transformation y the in-class variance of T ◦ y
according to the atlas A is minimized. Note that we can drop the absolute value
bars for the Jacobian determinant, if the transformation is diffeomorphic, cf.
Sec. 2.2.

Instead of adjusting the contour to the data (active contour, analogously de-
formable templates), the data is adjusted to the contour (passive contour) in
our case. Hence we have an optimization problem in the transformation y and
not in the contour. This allows us directly to treat multiple segments at once
and not only to separate one foreground object from the background (note that
there exist also active contour approaches for multiple segments [12]). A fur-
ther advantage of passive contours compared to active contours is the implicitly
incorporated information about shape and location of the organs. In contrast
to active contours, contours can not split in multiple objects. Further, active
contour approaches require proper initialization. In our case the initialization of
the passive contours is directly given by the atlas definitions. Furthermore, the
fixed integration domain for segmentation simplifies computations compared to
exiting atlas-based segmentation methods.

2.2 Regularization

The non-rigid nature of whole-body segmentation poses challenges to the es-
timation of the transformation y. To guarantee diffeomorphic transformations
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and to be highly robust against noise, we utilize hyperelastic regularization [5].
The regularization functional S controls changes in length and volume of the
transformation y. The weighting factor αS in (2) is thus a compact notation for
the weighting of two regularization terms.

Local adaptive regularization prevents unphysiological contraction or expan-
sion of organs. The organ definitions are given by our atlas organ delineations
A. The areas inside organs get a higher volume regularization value (2 · 105)
compared to normal body tissue (1 · 105) which keeps volumetric changes inside
organs to a minimum.

2.3 Evaluation

The resulting segmentations are compared to manually drawn VOIs. The Dice
coefficient is used to quantitatively compare our segmentation to the ground-

truth. For two sets X and Y the Dice coefficient is defined as D(X,Y ) = 2|X∩Y |
|X|+|Y | .

To assess whether the registration algorithm performs successful or not we
analyze the Jacobian determinant. It specifies the volumetric change due to
the transformation. A value of 1 represents no volumetric change and a value
smaller (greater) than 1 indicates compression (expansion). For positive values
the transformations are diffeomorphic. Fig. 4 shows a distribution of the Jacobian
for all results.

2.4 Implementation

The implementation is based on the Fair registration toolbox [10] in MATLAB�.
In a first step the images are brought to the same resolution (voxel size of
0.35mm). We use a multi-level strategy with a scaling of 0.5 between two adja-
cent levels, starting with a resolution of 16× 10× 40 (voxel size of 2.77mm) and
going to a final resolution of 64× 40× 160 (voxel size of 0.69mm). Optimization
is performed with a Gauss-Newton scheme in combination with a PCG solver
for the linear system of equations, cf. [10]. Spline interpolation is used along
with a regularization of the moments. The parameter controlling the amount of
regularization is chosen to be 1 for the affine pre-registration and 0.5 for the
joint registration. The regularization for the affine pre-registration is higher to
reduce the amount of details in the images for the rough alignment.

3 Experimental Results

3.1 Data

This work is based on 18F-FDG-PET/CT data of 13 healthy adult C57/Bl6 mice
(without any intervention), representing the most widely used radiotracer and
mouse strain in preclinical PET studies.

PET experiments were carried out using a high resolution (0.7mm full width
at half maximum) small animal scanner (32 module quadHIDAC, Oxford Posi-
tron Systems Ltd., Oxford, UK) with uniform spatial resolution over a large
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cylindrical field-of-view (165mm diameter, 280 mm axial length). Mice were
anesthetized with oxygen/isoflurane inhalation (2% isoflurane, 0.4 l/min oxygen)
and body temperature was maintained at physiological values by a heating pad.
One hour after intravenous injection of 10MBq 18F-FDG in 100µl 0.9% saline
list-mode data were acquired for 15min. Subsequently, the scanning bed was
transferred to the CT scanner (Inveon, Siemens Medical Solutions, USA) and
a CT acquisition with a spatial resolution of ∼80µm was performed for each
mouse after intravenous injection of a contrast agent. The reconstructed image
data sets were aligned with a rigid transformation based on extrinsic markers
attached to the scanning bed and the image analysis software (Inveon Research
Workplace 3.0, Siemens Medical Solutions, USA).

3.2 Atlas

The Digimouse software phantom [4] serves as an atlas. The organ delineations of
the pixel atlas are filled with realistic values according to our scanning protocol
to construct a pseudo-PET and pseudo-CT phantom image. This has to be done
only once in advance. The resulting images are spatially aligned phantom images
with a known ground-truth segmentation. No blurring or noise is added to the
images.

For the heart, the used 18F-FDG tracer accumulates mainly in the left ven-
tricle. As Digimouse provides only a combined segment for the whole heart
(including left and right ventricle and the blood pool) we apply some minor
modifications, see Fig. 3. The heart region of the atlas is replaced by a manual
threshold segmentation of the left ventricle using the accompanied Digimouse
PET data. In addition, the bladder is slightly moved in posterior direction to
better fit our real data (this stabilizes the transformation estimation by mini-
mizing the local average deformation). The original image is shown in Fig. 3(a)
and the modified version in (b).

(a) Original atlas (b) Modified atlas

Fig. 3. The heart’s segmentation (green area) and the bladder (orange area) in the
original version of the Digimouse phantom (a) is replaced in the modified atlas (b) to
better match the real data

3.3 Results

For the non-parametric registration, the following approach is used to provide
meaningful values for the various parameters in (2). An exhaustive parameter
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Fig. 4. Summed histograms of the Jacobian determinant of all data set

Table 1. Dice coefficients of the 13 mice for the heart (left ventricle), bladder and
kidneys

Mouse 1 2 3 4 5 6 7 8 9 10 11 12 13 Avg. Std.

Heart 0.85 0.84 0.84 0.85 0.79 0.62 0.77 0.72 0.60 0.60 0.68 0.60 0.75 0.73 0.10

Bladder 0.90 0.88 0.78 0.91 0.92 0.88 0.93 0.92 0.93 0.79 0.86 0.82 0.87 0.88 0.05

Kidneys 0.83 0.63 0.80 0.82 0.73 0.65 0.66 0.83 0.80 0.73 0.80 0.78 0.84 0.76 0.07

Avg. 0.86 0.78 0.81 0.86 0.81 0.72 0.79 0.82 0.77 0.71 0.78 0.74 0.82

Std. 0.04 0.13 0.03 0.05 0.10 0.14 0.14 0.10 0.17 0.10 0.09 0.11 0.06

search is performed for a randomly selected mouse. For each parameter com-
bination the estimated segmentation is compared to the manual segmentation.
The estimation giving the best fit is declared as the optimal parameter set for all
experiments as they follow all the same protocol. We found the following optimal
parameter set: αCT = 10, αPET = 10, αPC

PET = 100. For the hyperelastic regu-
larization we found an optimal weighting for the length term of 1000 and for the
volumetric regularization we refer to the regularization paragraph in Sec. 2.2.

For all transformations, the Jacobian determinant is everywhere positive and
centered around 1, see Fig. 4. The global minimum is 0.26 and the global maxi-
mum is 2.66 which implicates diffeomorphisms. Note that the small shift of the
maximum peak to a value greater than 1 in Fig. 4 is due to the affine component
of the transformations indicating that the atlas is on average a little bit bigger
than the real mice.

For all datasets an average Dice coefficient of 0.73 ± 0.10 could be achieved
for the left ventricle, 0.88± 0.05 for the bladder, and 0.76± 0.07 for the kidneys.
The estimated segmentation for one mouse is exemplified in Fig. 5. The Dice
coefficients for all analyzed organs and mice can be found in Table 1.

The improvement due to our new passive contour distance can be assessed
by setting αPC

PET = 0 and thus disabling the segmentation input. The objective
is to analyze whether the additional passive contour distance can even improve
the high accuracy of our multimodal PET-CT registration functional alone. For
αPC
PET = 0, the Dice coefficient for the left ventricle was 0.61 ± 0.12, for the

bladder 0.80±0.07, and for the kidneys 0.76±0.08. This means an improvement
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(a) Slice 75 (b) Slice 53

(c) Slice 75 (d) Slice 53

(e) Slice 75 (f) Slice 53

Fig. 5. Visualization of 3D registration results for whole-body segmentation. Overlay of
2D projections of PET, CT and contours ((a) heart and bladder, (b) kidneys) and trans-
formation grid yopt ((c), (d)). The estimated segmentations are plotted with white con-
tours and the ground-truth segmentation is shown in green. The estimated contour of the
body is plotted for additional visual assessment of the registration accuracy. Slices of the
piecewise constant approximations μ(TPET ◦ yopt, A) are shown in (e) and (f).

of 16% for the left ventricle and 9% for the bladder. We found no improvement
for organs with relatively low uptake like the kidneys.

4 Conclusion and Future Work

A novel fully automated approach for whole-body segmentation of PET data is
presented in this work. The centerpiece of the proposed joint segmentation and
registration method is the introduction of a novel segmentation distance for reg-
istration inspired by Chan and Vese [2]. As the interpretation is reversed to active
contour models, we denote this as passive contours. Further, the registration is
performed based on functional and morphological data simultaneously.

A validation based on the Dice coefficient and the Jacobian determinant
demonstrates the high accuracy of our method. Further, the benefit of the
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additional Chan-Vese distance, in contrast to multimodal PET-CT registration
alone, was shown.

Compared to existing atlas-based segmentation methods the novelty of our
passive contours approach is given by implicitly incorporated information about
shape and location of the organs. The general shape of the contour can not de-
grade (e.g. split in multiple objects) as we control the spatial regularity of the
guaranteed diffeomorphic transformation by using hyperelastic regularization.
Local adaptive volume regularization additionally prevents unnatural contrac-
tion or expansion of organs.

We overcome the limitation of low soft tissue contrast in CT by using addi-
tional PET images. Although the spatial resolution of PET is magnitudes lower
compared to CT, the function information does not perturb the CT registration,
but provides important complementary information in some soft tissue regions.

The primary goal is to apply our method to human data in future work. In
addition, we will extend this work by analyzing a larger number of data sets
with a larger number of VOIs. In this context it is also planned to analyze the
applicability of the proposed method to subjects with tumors. It is planned to
extend our method to dynamic PET data as activity over time carries important
information for segmentation. An integration of our passive contour distance
into the intensity-based registration of [1] is particularly promising. In future
work we further plan to extend the data term to handle Poisson statistics and
inhomogeneous areas as in [11].
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Abstract. Patch-based segmentation has been shown to be successful
in a range of label propagation applications. Performing patch-based seg-
mentation can be seen as a k-nearest neighbour problem as the labelling
of each voxel is determined according to the distances to its most sim-
ilar patches. However, the reliance on a good affine registration given
the use of limited search windows is a potential weakness. This paper
presents a novel alternative framework which combines the use of kNN
search structures such as ball trees and a spatially weighted label fu-
sion scheme to search patches in large regional areas to overcome the
problem of limited search windows. Our proposed framework (SAPS)
provides an improvement in the Dice metric of the results compared to
that of existing patch-based segmentation frameworks.

Keywords: patch-based segmentation, label propagation, multi-atlas,
nearest neighbour search, spatial.

1 Introduction

Accurate segmentations in medical imaging form a crucial role in many applica-
tions from patient diagnosis to clinical research. The amount of data generated
from medical images can take a substantial amount of time for clinicians to
manually segment, often becoming prohibitive as a regular task. Consequently,
automatic methods for performing these tasks are becoming more important for
image analysis. However, obtaining accurate results is highly important and still
poses a challenge in many medical imaging applications.

Patch-based approaches for label propagation [1], [2] have been shown to be a
robust and effective solution for applications in medical images. These methods
label each voxel of a target image by comparing the image patch centred on the
voxel with patches from an atlas library and choosing the most probable label
according to the closest matches.

In this paper, we propose an alternative framework for patch-based segmen-
tation which uses efficient k nearest neighbour structures, such as ball trees
and a spatially weighted label fusion method which is loosely based on a non-
local means approach [3] to allow segmentation of data with greater variability
in alignment after affine registration. We validate this approach on 202 images
from the ADNI database and compare the results with an existing method.

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 93–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Methods

2.1 Pre-processing

Atlases are all registered to a common template space using affine registration
and intensities are normalised using the method proposed by Nyúl and Udupa
[4]. A general mask is then created for each label of interest in the atlas by taking
the union of the labels from all the training data and dilating the result. This
mask is used to narrow the search space and restrict search to valid areas where
a label might appear. The mask needs to be large enough to allow for possible
variations in anatomical variability, but not too large as this would make the
search process less efficient.

The training data is also denoised to improve robustness. We used Total Vari-
ation denoising as a quick and easy to apply method which is effective in regu-
larizing images without smoothing boundaries and edges [5].

2.2 kNN Data Structure Construction

Performing patch-based segmentation can be seen as a k-nearest neighbour prob-
lem as the labelling of each voxel is determined according to the distances to its
most similar patches. An exhaustive search would have a computational com-
plexity that is linearly proportional to the size of the dataset and can be quite
prohibitive in large datasets, especially given the number of voxels that require
this process in an image. This is one reason why existing methods use a small
search volume size, such as in the region of 11× 11× 11 = 1331 voxels, and why
a good alignment of images is required.

To increase the search volume size without a detrimental impact to the search
speed, an efficient kNN search data structure is required. Any exact kNN data
structure could be used in this framework, but in our implementation, a ball tree
[6] was used. Ball trees provide much better search performance than kd trees
or brute force searches for high dimensional data [7]. Ball trees are metric trees
which use a given distance metric to partition the data so that only a small part
of the data need to be queried. The distance metric used must obey the triangle
inequality for metric trees to work correctly. Since Euclidean distances are used
in both patch based comparisons and atlas selection, and this obeys the triangle
inequality, ball trees can then be used to provide the results to kNN queries.

In principle all patches could be stored in a single tree, however, the memory
requirements would grow prohibitively large as the number of atlases increases
as well as giving decremental search performances. So instead, a ball tree is con-
structed offline for each label in each atlas region of every atlas in the training
set. Each patch stored in the ball tree also has its spatial coordinates within the
template space stored with it. This information is used in a soft-weighting scheme
when performing patch selection as spatial correspondence can help distinguish
between patches with homogeneous intensities which provide very little struc-
tural information. This is particularly the case in brain images where patches
from different structures of the brain can be very similar when only voxel inten-
sities are compared.
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Fig. 1. Example: ball tree construction from patches. Split the brain into 2 regions
centred around the left and right hippocampus and create a tree in each region for
each label, including the background label.

2.3 Search Strategy

Target images undergo the same pre-processing steps as the training images
prior to segmentation as some degree of spatial correspondence is required for
an effective segmentation.

Atlas Selection by Region. For each of the regions of interest that requires
labelling, the nearest N atlases are found for each region by comparing their
Euclidean distance. Using a limited selection of the best subjects from the atlas
library has been shown to provide more effective segmentation results [8]. An-
other kNN data structure such as the ball tree can be built offline to allow fast
atlas selection in the case of a large atlas library. The corresponding kNN data
structure for those atlas regions are then used for segmentation. By performing
atlas selection on the regional level, more appropriate atlases can be chosen for
each region rather than selecting a single set of atlases to use for the whole im-
age. This can be improve the accuracy of segmentations in cases where images
differ in their similarity from region to region. For example, for performing a
hippocampus segmentations, the set of atlases selected for the left hippocampus
can differ to those selected for the right hippocampus.

Patch Search and Label Fusion. The corresponding kNN data structures
for the nearest N regions are then used for finding the nearest k patches for each
voxel location i in target image x. The Euclidean distance between the patch,
P (xi), in the target image and the nearest k patches, {P (yj)}, from the atlas
library are weighted with the Euclidean distance on their spatial location to
provide an overall weighting for each label. An additional weighting, α, can be
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applied to control the influence of spatial correspondence. The resulting weight-
ing for label l at voxel i is then determined by the sum of weights between patch
P (xi) and the k nearest patches, {P (yj)} as follows:

wli(x) =

k∑
j=1

wl(xi, yj) (1)

coordinate where

wl(xi, yj) = e
−{||P (xi)− P (yj)||22 + α||xi − yj ||22}

h2
(2)

h is a decay parameter which controls the level of influence of patches as the
distance increases, an automatic estimation of this parameter is used for each
voxel based on the minimum distance between patch P (xi) and the nearest k
patches, weighted by their spatial coordinates:

h2(xi) = min{||P (xi)− P (yj)||22 + α||xi − yj ||22} (3)

An overall weight for each label at each voxel i is then calculated from the sum
of the distances of these patches and the resulting label is decided based on
majority voting of the labels according to these weights:

L(xi) = argmax
l

wli(x) (4)

3 Experiments and Results

3.1 Dataset

Images from the Alzheimers Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI) were used for validation. These images consists of
202 subjects (68 normal, 93 with mild cognitive impairment, 41 with Alzheimer’s
disease) imaged using different scanners. Reference segmentations were obtained
semi-automatically using a commercially available high dimensional brain map-
ping tool (Medtronic Surgical Navitgation Technologies, Louisville, CO) by prop-
agating 60 manually labelled images. Images were pre-processed by the ADNI
pipeline [9] and were linearly registered to the MNI152 template space using
affine registration.

To test the proposed framework, a leave-one-out validation strategy was ap-
plied where each image was segmented in turn, using the remaining dataset as
the atlas database. A patch size of 7 × 7 × 7 was used whilst we experimented
with the number of atlases used, N , the spatial weights, α, and the number
of nearest neighbours for each patch, k. All image intensities were normalised
and scaled to the same range and TV denoising [5] was applied to the training
data.
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3.2 Implementation

The main framework was implemented in Python using open source modules
such as NumPy, SciPy and SciKit-learn. The computation time is around 10
minutes for each image using 8 cores clocked at 2.67GHz each when using 20
atlases and using the 100 nearst neighbours. Given that Python is an interpreted
language, further speed ups can be achieved if the framework was implemented
in C/C++.

Reference Segmentation Best Subject - Dice: 0.910

Reference Segmentation Median Subject - Dice: 0.867

Reference Segmentation Worst Subject - Dice: 0.701

Fig. 2. Segmentations of the right hippocampus with parameters N = 40, k = 79,
α = 13

3.3 Effect of the Number of Nearest Patches and Atlases Used

With the spatial weight fixed at α = 13, we experimented using a range of values
for the number of patches, k, as well as the number of atlases, N . k is dependent
on N as using more atlases would present a bigger selection of patches to choose
from and we see in figure 3 that the optimal k value differs for the different N
values.

Generally, we find that accuracy increases as k increases, but reaches a limit
after k > 60. There is an increase in computational cost as k increases as more
comparisons must be made in the kNN data structures, so it is most computa-
tionally optimal to select the lowest k value that provides the desired segmenta-
tion accuracy.
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Fig. 3. Median Dice coefficients for the whole hippocampus whilst using a range of k
values with different N values

Fig. 4. Beanplot showing overall Dice coefficients distributions for a range of N values
with k = 64. Large thick lines indicate medians, dotted line indicates median across all
k values. The shape of the “bean” shows the distribution of the results and individual
data points are shown as small lines on the bean.
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Table 1. Dice Coefficients for the hippocampus (HC) when using different number of
atlases, N , with k = 64. Highest values are show in bold.

N
Left HC Right HC Overall

Best Worst Median Best Worst Median Best Worst Median

5 0.887 0.691 0.839 0.895 0.707 0.849 0.886 0.719 0.842
10 0.902 0.724 0.860 0.902 0.700 0.859 0.898 0.719 0.860
20 0.898 0.740 0.864 0.904 0.708 0.865 0.899 0.724 0.864
30 0.901 0.737 0.866 0.904 0.700 0.868 0.899 0.719 0.866
40 0.900 0.738 0.867 0.910 0.700 0.868 0.902 0.719 0.867

An increase in the number of atlases used generally increases segmentation
accuracy, but the gain accuracy after N > 20 is marginal. Given that the com-
putational cost increases linearly with the number atlases used, this suggests
that using more than 30 atlases would not provide a sufficient trade-off between
the extra time spent and the accuracy gained. Our findings on here agree with
those presented in [1] on the number of training subjects used, with proportional
gains in accuracy as N increases.

3.4 Effect of the Spatial Weight, α

Experiments using several values for spatial weights, α, showed that using spatial
information to provide a soft-weighting has significant impact on the

Fig. 5. Beanplot showing Dice coefficients distributions for a range of spatial weighting
values, α with N = 20, k = 64. Large thick lines indicate medians, dotted line indicates
median across all α values. The shape of the “bean” shows the distribution of the results
and individual data points are shown as small lines on the bean.
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Table 2. Dice Coefficients for the hippocampus (HC) when using different spatial
weights, α, with k = 64 and N = 20. Highest values are show in bold.

α
Left HC Right HC Overall

Best Worst Median Best Worst Median Best Worst Median

0 0.892 0.669 0.842 0.889 0.674 0.848 0.884 0.702 0.844
5 0.899 0.736 0.862 0.902 0.700 0.862 0.897 0.718 0.862
10 0.900 0.744 0.865 0.906 0.692 0.864 0.899 0.723 0.863
13 0.898 0.740 0.864 0.904 0.708 0.865 0.899 0.724 0.864
15 0.898 0.736 0.864 0.905 0.704 0.864 0.900 0.720 0.863
20 0.860 0.729 0.862 0.909 0.710 0.863 0.900 0.724 0.862

segmentation accuracy (see figure 5 and table 2). The distribution of the re-
sults as seen in the beanplots shows that the consistency of the results increases
significantly when we use spatial information. The values attempted suggests
that segmentation accuracy peaks between α = 12 and α = 13. If the spatial
weighting is too high, there is a detrimental effect on the segmentation accuracy
as this soft-weighting becomes too restrictive when comparing patch intensities.

3.5 Effect of Denoising

Fig. 6. Dice coefficients distributions for results using denoised and non-denoised train-
ing data with N = 20, k = 64, α = 13. Large thick lines indicate medians, dotted line
indicates median across both datasets. The shape of the “bean” shows the distribution
of the results and individual data points are shown as small lines on the bean.
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Comparing results from using non-denoised training data to those from using
denoised training data, it can be seen that using denoised training data provides
an improvement to the median segmentation accuracy (see figure 6). Further
to this, the range of the results is significantly smaller with a more favourable
distribution when using denoised training data, suggesting that this does indeed
improve the generality and robustness of the framework.

3.6 Comparison of Results to an Existing Method

Finally, with the same dataset of ADNI images, we compared the results obtained
by our proposed method to that using the method described in [1] (see figure
7 and table 3), with 10 training atlases in both cases. It can be seen that our

Table 3. Median Dice coefficients for the hippocampus (HC) comparing with the
existing method in [1] with the number of atlases, N = 10 (and N = 40 for reference).
Proposed method uses k = 64, α = 13 as its other parameters.

Method
Left HC Right HC Overall

Best Worst Median Best Worst Median Best Worst Median

Existing[1] 0.894 0.696 0.842 0.910 0.644 0.848 0.901 0.709 0.844
Proposed, N = 10 0.902 0.724 0.860 0.902 0.700 0.859 0.898 0.719 0.860

Proposed, N = 40 0.900 0.738 0.867 0.910 0.700 0.868 0.902 0.719 0.867

Fig. 7. Dice coefficients distributions for results comparing SAPS with an existing
method [1]. Other parameters for SAPS are k = 64, α = 13. Large thick lines indicate
medians, dotted line indicates median across both datasets. The shape of the “bean”
shows the distribution of the results and individual data points are shown as small
lines on the bean.
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method generally outperforms the existing method and is more robust. The two
methods performs quite similarly when no spatial information is used (see table
2). This is because the label fusion would be equivalent to the non-local means
method if the spatial weight, α, is 0.

Employing Welch’s two sample t-test on these results gave p-values of 0.00003,
0.007 and 0.004 for the left, right and overall hippocampus respectively. Addi-
tionally, our proposed method has a 0.05 decrease in the standard deviation of
the results.

4 Conclusion

We have presented a new generalized framework for applying patch based seg-
mentation which is able to robustly segment data in conditions where images can
have large variations in alignment by looking at a much larger search windows
in addition to applying a spatial location weighting to each patch. We validated
the proposed framework against 202 ADNI images of patients at various stages
of Alzheimer’s disease and achieved an overall median dice coefficient of 0.867
using patches from the 40 most similar atlases. The framework allows a trade-off
between segmentation accuracy and speed. If we use patches from half as many
atlases, we can complete the segmentation in half as much time and are still
able to attain a median dice coefficient of 0.864. At the lowest limit tested, using
5 atlases is still able to yield a median Dice coefficient of 0.842 for the whole
hippocampus whilst taking around 2-3 minutes on a machine with 8 cores.

In future work, we plan on further validating our proposed framework using
a multi-scale extension against different anatomical structures and image types.
We are currently working on a multi-scale extension to speed up segmentation
of large structures such as bones in knee images or when performing brain ex-
traction.
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Abstract. Segmentation in high dimensional space, e.g. 4D, often re-
quires decomposition of the space and sequential data process, for in-
stance space followed by time. In [1], the authors presented a deformable
model that can be generalized into arbitrary dimensions. However, its
direct implementation is computationally prohibitive. The more efficient
method proposed by the same authors has significant overhead on com-
puter memory, which is not desirable for high dimensional data process-
ing. In this work, we propose a novel approach to formulate the compu-
tation to achieve memory efficiency, as well as improving computational
efficiency. Numerical studies on synthetic data and preliminary results
on real world data suggest that the proposed method has a great po-
tential in biomedical applications where data is often inherently high
dimensional.

1 Introduction

Among many others, deformable modeling is a popular approach to image seg-
mentation, e.g. [2–4]. Conventional techniques suffer from weak edge, image noise
and convergence issues. For instance, in [2] a constant pressure force is neces-
sary in order to improve its capture range, resulting in monotonic expanding
or shrinking of the mode that is problematic. There have been numerous work
reported in the literature to improve the performance of both image gradient
based methods, such as [5–7], and region based approaches, e.g. [8]. In [1], Yeo
et al. proposed a 3D deformable model that is based on a hypothesised geo-
metrical interactions between image gradient vectors and embedding level set
surface normal vectors. It is shown that the geometrical potential force (GPF)
is robust towards noise interference, weak edges, and exhibits invariant conver-
gence capabilities such that the model can be initialized across object boundary
and converge to deep concavities and propagate through narrow passages to re-
cover complex geometries, that are conventionally difficult for image gradient
based deformable modeling techniques. The authors also showed its theoretical
relationship to the 2D Magnetostatic Active Contour (MAC) model [7] , which

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 104–113, 2013.
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is inspired by a physical analogy. The MAC model can be considered a special
case of GPF in 2D, whereas GPF can be more conveniently extended to higher
dimensional applications.

The computation of the GPF comprises two stages. At the first stage, the so-
called geometrical potential (GP) G(x, y, z) is computed through the convolution
of the image gradient and the kernel K:

G(x) =
∑
x′∈Ω

∇I(x′) ·K(x− x′), K(x) =

{
x/ ‖x‖n+1

, x = 0
0, x = 0

(1)

where x = [x, y, z]T is the vector of coordinates of the image grid-points (voxel
centres), I(x) is the greyscale image, ∇I is its gradient, Ω is the image domain,
dot denotes the scalar product of two vector functions (∇I and kernel K(x)),
and n is the image dimension (n = 3 for 3D images).

At the second stage, the derived geometrical potential is then integrated into
the deformable surface evolution under the level set framework. The active sur-
face, S(t), is embedded in the level set function, Φ(t,x): S(t) = {x, Φ(t,x) = 0},
and its deformation is achieved by solving the following PDE proposed and de-
veloped in [9–11] and related to the energy minimization approach:

∂Φ/∂t = α gκ‖∇Φ‖ − (1−α)F∇Φ (2)

where α is a weighting parameter, g(x) = 1/(1+‖∇I‖2) is the stopping function,
κ(t,x) = ∇n̂ denotes the curvature of isosurfaces of Φ, n̂(t,x) is the unit vector
normal to isosurfaces of Φ, and F(t,x) = G n̂ is the GPF that acts as the external
force.

Direct calculation of the geometrical potentialG is computationally expensive,
particularly in 3D. However, Eq. (1) can be computed as a convolution of two
functions. Hence a natural approach is to apply the fast Fourier transform (FFT)
to compute the convolution, which is described in [1].

However, a significant drawback of using the FFT based computation as pro-
posed in [1] is that it requires lots of computer memory for a large number of
intermediate arrays of the same size as the initial image I. That is, it needs to
compute and store 3 components of the image gradient ∇I = [Ix, Iy, Iz ]

T and
twice more for the real and imaginary part of their Fourier image, also 3 com-
ponents of the kernel K and twice more for the Fourier image. Thus, it requires
about 20 times more than the direct method, which can be problematic when
dealing with volumetric data or extending this method to 4D, i.e. dynamic vol-
umetric data. Dedicated memory management may become necessary and even
crucial. Memory economic and computationally efficient method to evaluate the
GP is thus desirable.

In this paper, we propose to compute spectrum of the kernel by an analytical
formula so that there is no need to store components of the vector kernel and
the real or imaginary part of its spectrum. We also change the vector form of the
integrand into a scalar form to achieve further efficiency. The proposed methods
are valuated on both numerical examples and real world 3D data.
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2 Analytical Formula for Kernel’s Spectrum

One of the possible approaches to reduce memory usage is to use an analytical
formula for the kernel spatial spectrum rather than kernel’s formula (1) in the x-
space. To derive an analytical formula for the kernel Fourier image, it is useful to
consider the computation of G in the continuous infinite 3D Euclidian space. In
this case the kernel should be described by a generalized function (distribution)
(see, e.g. [12]):

G(x) =

∫
x′∈R3

∇I(x′) ·K(x− x′) d3x, K(x) = P.V.
x

‖x‖n+1 (3)

where P.V. denotes principal value, i.e. integral in (3) diverging when x′ → x,
should be treated as the limit

G(x) = lim
ε→0+

∫
‖x′−x‖>ε

∇I(x′) · x− x′

‖x− x′‖n+1 d3x′ (4)

Performing the Fourier transform

K̃(k) = F [K](k) =

∫
K(x)eikx d3x, i =

√
−1 (5)

we can show that that the spectrum depends only on direction of wavevector k
and is independent of its magnitude

K̃(k) = −iπ2 k

‖k‖ . (6)

Comparing spectrum K̃(k) computed analytically via Eq. (6) and that com-
puted by performing FFT for the kernel calculated in the x-space by (1) (see
Figure 1(left)), we see that near the origin they have close values. However, the
spectrum computed via the FFT decays when any component of the wavevec-
tor grows. Moreover, it vanishes when any component of the wavevector reaches
its maximum value which is determined by the grid size in the correspondent
direction: ki,max = π/hi where h1, h2, h3 are voxel sizes in x,y,z direction, respec-
tively. Therefore, to obtain the G-function close to that computed by FFT based
method, spectrum (6) should be multiplied by a function f(k) which equals 1
in the origin and smoothly decays when ki → ki,max. As numerical computation
shown later, a good approximation of a 3D spectrum can be formulated as

K̃(k) = iπ2 k

‖k‖ f(k), f(k) = (1− ‖k′‖+ V (k)) (7)

where

V =
(ξ ‖k′‖ − 1)2

(ξ + ξ ‖k′‖ − 2) ξ
, k′ =

[
k1
k1,max

,
k2
k2,max

,
k3
k3,max

]T
, ξ = max

i=1,2,3
|k′i|.

This makes the computation much more memory economic; however, we still
have to compute the FFT for components of∇I and then multiply every element
of the arrays of the kernel spectrum computed directly for every element.
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Fig. 1. Left: Absolute value of spectrum ‖Im K̃‖ in the 128× 128 2D domain (only
first 16 positive wave components are shown) computed via Eq. (6) (black), computed
by FFT from kernel evaluated in the x-space (blue) and approximated by Eq. (7)
(red). Right: Function I(x) (black), its exact derivative (green, on the top only), its
derivative computed by central-difference (red), the same—through FFT (blue). Top:
I(x) = exp{−(x− 7)2}, bottom: I(x) = δ(x− 7).

3 Use of a Scalar Kernel

Alternatively, we may rearrange the intergrand shown in Eqn. (3) as a product
of scalar function and a scalar kernel, instead of a dot product between vectors.
To derive the correspondent formula in x-space, we again temporally consider
continuous infinite space in which initial integral takes the form given in (3). We
then reforumate (3) as

G(x) =

∫
x′∈R3

I(x′) · ∇K(x− x′) d3x (8)

Thus, we only have to deal with the scalar kernel which is the divergence of the
vector kernelK. In the discretized finite domain Eqn. (8) can be approximated as

G(x) =
∑
x′∈Ω

I(x′) ·K(x− x′), K(x) = ∇K(x) (9)

where the best way to calculate ∇K is to compute vector kernel K and compute
the spatial derivatives by central differences.

4 Combined Approach

However, we may combine the above two methods together to achieve even more
efficient computation. In the k-space, the calculation of the geometrical potential
spectrum, G̃(k), is read as
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G̃ =
(
ikĨ

)
· K̃ = Ĩ

(
ik · K̃

)
= ĨK̃ (10)

where K̃(k) is spectrum of the scalar kernel (K = ∇K), factor ik in the k-
space corresponds to the nabla (∇) operator in the infinite continuous x-space.
Because we are dealing with discretized images with noise, the computation of
the gradient through multiplication by ik in the k-space can result in unde-
sired sensitivity to noise. Derivative of a function on a finite uniform grid can
be approximated by forward, backward or central differences, but also can be
computed through the direct and inverse FFT. The latter method gives very
high accuracy for smooth functions (periodic or decaying fast toward the grid
borders).

For example, for a 1D function I(x)= exp{−(x−7)2} set on x = {0, 1, . . . , 15}
the error of derivative computed by the central differences is 0.24 whereas the
error of derivative computed trough FFT is only 0.08 as seen in Figure 1(right-
top). But if the function is not smooth (for example, contains delta-correlated
noise) the situation is quite opposite. Consider, as an example, a discrete im-
plementation of Dirac’s delta δ(x − 7). Then the derivative computed by the
central differences gives a reasonable approximation of δ′(x − 7) with a three
point support, whereas the FFT method gives an oscillating result, as depicted
in Figure 1(bottom right).

Thus, for image segmentation when noise is common in presence it is more
appropriate to use central differences approximation than the FFT method. For-
tunately though, the Fourier transform can be used to compute the central dif-
ferences as well. Recall that in a continuous infinite space the derivative can be
expressed as a convolution with δ′(x)

∂I/∂x = I ∗ (δ′(x)) =
∫ +∞

−∞
I(x′) δ′(x− x′) dx′, (11)

Computing this derivative by use of the Fourier transform, we should recall its
spectrum F [δ′(x)] = ik. The central differences can be computed analogously as
a convolution with the function 1

2h

(
δ(x+h)− δ(x−h)

)
having spectrum

F
[ 1

2h

(
δ(x+h)− δ(x−h)

)]
=

i

h
sin(kh). (12)

which tends to ik when h→ 0.
In 3D case, spectrum of the gradient operator, ik, should be substituted by

vector

g(k,h) =

[
i sin k1h1

h1
,
i sin k2h2

h2
,
i sin k3h3

h3

]T
(13)

Then Eqn. (10) should be transformed to

G̃ = Ĩ ×
(
g(k,h) · K̃

)
. (14)

Thus, for this combined approach we perform FFT on the image I(x); then for
every element of the obtained arrays we calculate the scalar kernel spectrum by
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employing Eqn. (7) for the vector kernel and Eqn. (13) for the modified nabla
operator in the k-space; finally we carry out the inverse Fourier transform. It
requires memory space 4 times less than that for the initial image I(x): I, Re Ĩ,
Im Ĩ, G.

5 3D Numerical Examples

To compare different methods for computation of the geometrical potential, an
artificial 3D star-like gray-scale image is created shown in Figure 2(right). Its di-
mension is 64×64×32 pixel: this relatively small size image is chosen for the sake
of convenience in visualizing the results. To understand the noise interference,
the 3D data is then added with 5% Gaussian noise.

Fig. 2. Left: Isosurface of the 3D image (without added Gaussian noise). Right: an
example of 3D scan of a human aorta.

Figure 3(left) shows the mid-slice along the z-axis. Note, the zero-crossings
in the geometrical potential are in effect indicating the locations where the
deformable model will converge, since on either side of the zero crossing the
deformable model will converge towards zero-crossings. Hence, in the numeri-
cal studies, we examine the accuracy of the zero-crossings of different methods
compared to the object boundary (groundtruth). The colored contours in Fig-
ure 3(left) indicate the results from different methods. Also the black curve
shows the isoline for I(x, y, zm) = Im, i.e. result of segmentation performed by
thresholding [13]: the middle value Im = 1

2 (Imax+ Imin) is used as the threshold.
All the lines are very close to each other, which suggests that the proposed

methods are close approximation to the direct method. Plots of geometrical
potential G(x, ym, zm) along the x-coordinates is shown in Figure 3(right), where
ym = 1

2 (ymin+ymax). The curve Im−I(x, ym) is plotted in black. It shows that the
difference zero crossing is small. The rectangular region indicated by the dotted
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Fig. 3. Top: A slice of the 3D image; the colored curved indicate isolines of G = 0.
Bottom: The G variation along the x direction through the center of the 3D image
computed by the different methods explained in the legend. Method 0 is direct com-
putation of the geometric potential; method 1 is the FFT based implementation of
method 0; method 2 is using analytical formula for kernel’s spectrum; method 3 using
the scalar kernel alone; and method 4 is combining methods 2 and 3. Left: methods 2–4
without corrections, right: methods 2–4 with corrections (7) and (14).

line is zoomed and depicted at the right border of the plot. The difference is in
sub-pixel level.

The direct computation is less susceptible to noise, but it is too slow to be
practical. The proposed methods produce very similar result to that using FFT
computation as proposed in [7, 1]. However, the proposed methods, particularly
the combined approach, are far more memory efficient.

The CPU time of all the methods can be found in Table 1. Note, the combined
approach (method 4) uses 4 times less memory than the FFT based computation
used in [1]. The experiment was carried out on Linux, Intel(R) Xeon 3.00GHz,
RAM 4G. A typical 3D scan of 5123 voxels can only be pratically processed by
method 4 and it requires 8 min of the CPU time and 3G of memory.

To demonstrate the effectiveness of the proposed combined approach, we show
an example of segmenting a human aorta from a 3D CT dataset. The testing data
and the results are shown in Figures 2(left) and 4. The initial surface is a sphere
placed inside the lower part of the aorta and the model is able to propagate
efficiently and converge accurately.
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Table 1. CPU time and memory comparison for a 2563 image. Method 0 is direct
computation of the geometric potential; method 1 is the FFT based implementation of
method 0; method 2 is using analytical formula for kernel’s spectrum; method 3 using
the scalar kernel alone; and method 4 is combining methods 2 and 3.

method 0 method 1 method 2 method 3 method 4

CPU time ∼ 7days 91s 55s 42s 30s
Memory required 0.6G 1.8G 1.0G 0.6G 0.4G

Fig. 4. An example of segmenting human aorta in 3D CT shown in Fig. 2(right)
using the combined approach. From left: initial surface, intermediate stages, and final
converged result.

6 4D Numerical Examples

Note that all the equations derived for the proposed methods can be readily
generalised to 4D medical scans (dynamic volumetric data). We should treat the
coordinate vector as x = {x, y, z, t}, use the 4D wavenumber vector k with k4-
component treated as the frequency, and substitute n = 4 into the correspondent
formulae for the kernel in Eqns. (1) and (3).

Here, we present a numerical study that is similar to that in the 3D case,
but using a dynamic 3D shape. We vary the ray length shape parameters of
the 3D star-like harmonic object periodically in time with the maximum near
the middle of the cycle. The ray length parameter evolution is given as [ 12 (1 +
cos(2π(t− tm − 1

3 )/Nt))]
1.5 where Nt = 16, tm = Nt/2. The image dimension is

64 × 64 × 32 × 16. Thus the image contains 16 3D images, some of which are
shown in Figure 5. Similarly, Gaussian noise is also added to the dynamic shape.

Figure 6(left) shows a slice of the image at instant t = tm = 7 (the max-
imal length of the star-rays) and z = zm. Here one can find colored contours
G(x, y, zm, tm) = 0 with the geometrical potential computed by the different
methods implemented in 4D. Spatial zero-crossings of geometrical potential:
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Fig. 5. Object shape at instances of 7 to12
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Fig. 6. Left: A slice of the 4D image; the colored curved indicate isolines of G = 0.
Right: The G variation along the x direction through the center of the 3D image
computed by the different methods explained in the legend. Method 1 is the FFT
based implementation of direct computation; method 2 is using analytical formula for
kernel’s spectrum; method 3 using the scalar kernel alone; and method 4 is combining
methods 2 and 3.

G(x, ym, zm, tm) where ym, zm, tm are plotted in Figure 6(right). Note, the di-
rect method is not shown as it takes prohibitive amount of time to compute the
geometrical potential. There is no discernible difference among methods with
improved computational efficiency. However, the proposed combined approach
requires significantly less memory. This is particularly advantageous in dealing
with 4D dataset.
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7 Conclusion

We proposed several computationally efficient and memory economic meth-
ods to evaluate the geometrical potential in the GPF model [1]. The approach
which combines analytical kernel spectrum and scalar kernel conversion provides
most satisfactory results. The methods were evaluated on 3D and 4D synthetic
datasets, as well as 3D real world data. This preliminary work provided promis-
ing results which suggest that the proposed method has a great potential in
efficient deformable modelling in high dimensional space without decomposing
the space into a sequential order.

References

1. Yeo, S.Y., Xie, X., Sazonov, I., Nithiarasu, P.: Geometrically induced force in-
teraction for three-dimensional deformable models. IEEE T-IP 20(5), 1373–1387
(2011)

2. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modelling with front propagation:
A level set approach. IEEE T-PAMI 17(2), 158–175 (1995)

3. Whitaker, R.: Modeling deformable surfaces with level sets. IEEE Computer
Graphics and App. 24(5), 6–9 (2004)

4. Xie, X.: Active contouring based on gradient vector interaction and constrained
level set diffusion. IEEE T-IP 19(1), 154–164 (2010)

5. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE T-IP 7(3),
359–369 (1998)

6. Xiang, Y., Chung, A., Ye, J.: A new active contour method based on elastic inter-
action. In: IEEE CVPR, pp. 452–457 (2005)

7. Xie, X., Mirmehdi, M.: MAC: Magnetostatic active contour model. IEEE T-
PAMI 30(4), 632–647 (2008)

8. Chan, T., Vese, L.: Active contours without edges. IEEE T-IP 10(2), 266–277
(2001)

9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contour. IJCV 22(1), 61–79
(1997)

10. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for super-
vised texture segmentation. IJCV 46(3), 223–247 (2002)

11. Parigios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow geometric
active contours. IEEE T-PAMI 26(3), 402–407 (2004)

12. Vladimirov, V.S.: Methods of the Theory of Generalized Functions. Taylor & Fran-
cis (2002)

13. Smith, C.M., Smith, J., Williams, S.K., Rodriguez, J.J., Hoying, J.B.: Auto-
matic thresholding of three-dimensional microvascular structures from confocal
microscopy images. J. Microscopy 225(3), 244–257 (2007)



Shape Prior Model for Media-Adventitia Border

Segmentation in IVUS Using Graph Cut

Ehab Essa1, Xianghua Xie1, Igor Sazonov2, Perumal Nithiarasu2,
and Dave Smith3

1 Department of Computer Science, Swansea University, Singleton Park, Swansea,
UK SA2 8PP

2 College of Engineering, Swansea University, Singleton Park, Swansea, UK SA2 8PP
3 ABM University NHS Trust, Swansea, UK

{csehab,x.xie,i.sazonov,p.nithiarasu}@swansea.ac.uk

Abstract. We present a shape prior based graph cut method which
does not require user initialisation. The shape prior is generalised from
multiple training shapes, rather than using singular templates as priors.
Weighted directed graph construction is used to impose geometrical and
smooth constraints learned from priors. The proposed cost function is
built upon combining selective feature extractors. A SVM classifier is
used to determine an optimal combination of features in presence of cal-
cification, fibrotic tissues, soft plaques, and metallic stent, each of which
has its own characteristics in ultrasound images. Comparative analysis
on manually labelled ground-truth shows superior performance of the
proposed method compared to conventional graph cut methods.

Keywords: IVUS, graph cut, image segmentation, shape prior.

1 Introduction

Intra-vascular Ultrasound (IVUS) imaging is a catheter-based technology, which
shows 2D cross-sectional images of the coronary artery. A typical IVUS image
consists of lumen, vessel that includes intima and media layers, and adventitia
that surrounds the vessel wall. The media-adventitia border represents the outer
coronary arterial wall located between the media and adventitia. The media layer
exhibits as a thin dark layer in ultrasound and has no distinctive feature. It is
surrounded by fibrous connective tissues called adventitia. The appearance of the
media-adventitia border in IVUS is affected by various forms of artifact, such
as acoustic shadow which can be caused by catheter guide wire, dense fibrous
tissue or calcification. Fig. 1 gives an example of IVUS image.

Segmentation in IVUS images has shown to be an intricate process and often
requires user initialisation to achieve meaningful results. Among many others,
graph based segmentation has shown to be a promising approach to IVUS seg-
mentation. In [1], dynamic programming is used to search a minimum path in a
cost function, which incorporates edge information with a simplistic prior based
on echo pattern and border thickness. Manual initialisation is necessary. In [2],

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 114–123, 2013.
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Fig. 1. Pre-Processing steps. (a) Original IVUS image. (b) Polar transformed image.
(c) After removing the catheter region.

the authors applied spatio-temporal filters to enhance the lumen region based on
the assumption that the blood speckles have higher spatial and temporal varia-
tions than arterial wall. However, image features introduced by acoustic shadow
or metallic stent would seriously undermine this assumption when searching for
media-adventitia border. The s-t cut method [3] is employed in [4] to segment
3D IVUS data. Intensity distribution in the radial directions from catheter origin
and regional features based on piecewise constant assumption are used to design
the cost function. However, intensity based features are susceptible to artifacts.

Learning a priori using a set of representative shapes is an effective approach
to impose a general constraint in searching global minimum using graph cut.
Freedman and Zhang [5] defined the shape template as a distance function and
embedded the average distance between every pair of pixels into the neighbour-
hood edges in the graph. However, this method effectively requires the user to
place landmarks to define the initial shape. In [6], the authors proposed an it-
erative graph cut method. Kernel PCA was used to build the shape model. The
method ignores the affine transformation, and needs a rectangle window initial-
isation of the location of the objects. Iterative graph cut framework was also
adopted in [7]. The method penalises the terminal edges of the graph according
to the similarity between the previous segmentation and the shape template.

In this paper, we propose an efficient graph cut algorithm to segment media-
adventitia border in IVUS images without user initialisation. Its objective func-
tional consists of boundary based cost and shape penalties that are generalised
from multiple training shapes. The boundary based features are dynamically
selected to optimise the cost function based on trained classifier. The gener-
alised shape prior is incorporated in the cost function, as well as embedded in
graph construction. The method is evaluated on a large set of real data with
groundtruth.

2 Proposed Method

The images are first transformed from Cartesian coordinates to polar coordinates
and the catheter regions are removed (see Fig. 1). This transformation not only
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facilitates our feature extraction and classification but also transfers a closed
contour segmentation to a “height-field” segmentation (see Fig. 1(c)). The border
to be extracted intersects once and once only with each column of pixels. This
particular form of segmentation allows us to construct a node-weighted directed
graph, on which a minimum path can be found without any user initialisation.

2.1 Graph Construction without Shape Prior

We first present our basic graph construction, following [8], which does not re-
quire user initialisation. Our extended version with incorporated shape prior
will be discussed later in Section 2.5. Let G = 〈V,E〉 denote the graph, where
each node V (x, y) corresponds to a pixel in the transformed IVUS image I(x, y)
in polar coordinates. The graph G consists of two arc types: intra-column arcs
and inter-column arcs. For intra-column, along each column every node V (x, y),
where y > 0, has a directed arc to the node V (x, y−1) with +∞ weight assigned
to the arc to ensure that the desired interface intersects with each column ex-
actly once. In the case of inter-column, for each node V (x, y) a directed arc with
+∞ weight is established to link with node V (x+1, y−Δp,q), where Δp,q is the
maximum difference between two neighbouring columns p and q and acts as a
smoothness constraint. Similarly, node V (x+1, y) is connected to V (x, y−Δp,q).
For IVUS segmentation, the first and the last columns are connected by inter-
column arcs to enforce connectivity. Finally, the nodes in the last row of the
graph are connected to each other with +∞ weight to maintain a closed graph.
Inter-columns and intra-columns arcs are illustrated in Figure 2 (a).

p q

p,q 

p q

p,q 

p,q 

(a) (b)

Fig. 2. Graph construction. (a) without shape prior where shape constraint is a global
constant. (b) shape prior model (refer to Section 2.5 for details).
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2.2 Feature Extraction and Classification

The media layer is usually thin and generally dark, and the adventitia layer
tends to be brighter, see Fig. 1 as an example. Hence, edge based features are
appropriate to extract the media-adventitia border. However, calcification and
other interfering image features commonly exist above the media-adventitia bor-
der and cast acoustic shadows over the border, disrupting its continuity. Those
imaging artifacts generally have large responses to image gradient based feature
extraction. In this work, we propose to detect those artifacts and treat them
differently when incorporating into the cost function.

To highlight the media-adventitia border, we use a combination of derivative
of Gaussian (DoG) features and local phase features. A set of first and second
order DoG filters are applied to capture the intensity difference between media
and adventitia.

Local phase [9] has shown to be effective in suppressing speckles in ultrasound
images. We use the dark symmetry feature [9] to highlight bar-like image pat-
terns, which are useful to detect the thin media layer. This feature extraction
operates at a coarser scale and complements to the edge features extracted using
DoG filters.

For those parts of media-adventitia border that are beneath various forms of
image artifacts, such as calcification, their image features are suppressed by those
artifacts. Hence, it is desirable to detect those artifacts and treat those columns of
pixels differently to others. However, instead of a usual attempt of localising those
image artifacts based on intensity profile, e.g. [10,11], which is problematic, we
classify entire columns of pixels that contain those image artifacts. The detection
result will then have an influence on the formulation of the cost function. To this
end, we train a SVM classifier to classify individual columns of pixels in the polar
coordinates into one of the following five categories: calcification, fibrous plaque,
stent, guide-wire artifact, and normal tissue or soft plaque. Each of those has
their characteristics; however, the difference between some categories may be
small, e.g. calcification and fibrous plaque. To achieve efficient classification, the
matching pursuit algorithm is used to reduce the number of support vectors.

2.3 Boundary Based Cost Function

The boundary based energy term can be expressed as EB =
∑

V ∈S ĉB(x, y),
where ĉB denotes the normalised cost function (ĉB(x, y) ∈ [0, 1]) and S is a path
in the directed graph. The formulation of the pre-normalisation cost function,
cB, is determined by the SVM classification result as presented below.

For normal tissue (or soft plaque), the media layer has a good contrast to
adventitia. Hence, cB is defined as cB(x, y) = D1(x, y) − D2(x, y) where D1 is
a summation of raw filtering response of the first order DoG at four different
orientations and D2 denotes maximum response of second order DoG filtering
from different orientations across three scales. That is D1 measures total edge
strength and D2 is rotational invariant measurement of bar-like feature. Note,
the media layer is generally darker than the lower layer, adventitia. The first
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order DoG filters are designed so that the stronger the media-adventitia border
the lower the raw filtering response, i.e. negative values.

Calcified plaque exhibits strong edge features and casts varying degree of
acoustic shadow on the media-adventitia border.

Thus, we use the second order DoG responses to suppress calcification and
enhance possible media layer. Fibrous tissue behaves similarly to calcification,
except in majority cases media-adventitia border is still discernible. Hence, bar
feature detection is more appropriate and to enhance the effect we combine it
with phase symmetry feature, i.e. cB(x, y) = −D2(x, y)− FS(x, y) where FS is
the local phase feature.

The presence of stent causes scattering of ultrasound signals, leading to very
bright pixels. Once stent is detected by SVM, it is straight forward to localise the
stent region which should not be part of media or adventitia. The cost for stent
region is assigned a positive constant. Second order DoG responses are used to
assign cost value for non-stent region. As for guide-wire artifact, there are also
very bright pixels but it casts complete shadow over entire column. Hence, we
do not extract any feature and a positive constant is used as their cost value.

2.4 Shape Prior Based Cost Function

The shape prior is defined as a likelihood term of each node in the graph, which
is based on the similarity between the initial shape (obtained through finding
the minimum closed set of our basic graph) and a set of templates from the
training set. The graph construction is then modified so that inter-column arcs
change dynamically according to the prior. The energy term for shape prior can
be expressed as:

ES =
∑

x,y∈S

cP (x, y) +
∑

(p,q)∈N
fp,q(S(p)− S(q)), (1)

where cP denotes the cost function associated to prior and f is a convex func-
tion penalising abrupt changes in S between neighbouring columns p and q in
the set N of neighbouring columns in the graph. The second term is realised
through graph construction, detailed in the following Section 2.5. Notably in [7]
the authors also used multiple templates in the graph cut. The terminal edge
connection is determined by comparing the initial labelling with the template,
e.g. if the node is in the template but not in the initial labelling, it connects to
the source.

Each shape in the training set is treated as a binary template, ψ where the
area inside shape is one and the outside area is zero. The distance between two
templates ψa and ψb is defined using a discrete version of Zhu and Chan distance
[12]:

d2(ψa, ψb) =
∑
P

(ψa − ψb)2. (2)

where P denotes the image domain. This distance measure is a true metric and is
not influenced by image size. Let Ψ = ψ1, ..., ψN denote the N number of aligned
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shapes from the training set. Given a possible cut in the graph which produces
an aligned binary shape f , its similarity to a shape template ψn in the training
set is computed as α(f, ψn) = exp(− 1

2σ2 d
2(f, ψn)). Thus, the likelihood of this

particular cut can be evaluated by taking into account of all training shapes:

cR0 =

∑N
n=1 α(f, ψ

n)ψn∑N
n=1 α(f, ψ

n)
. (3)

In our case, an initial cut can be conveniently obtained by minimising the bound-
ary based cost function alone. Note, it is fully automatic and there is no need
for user initialisation. The labelling of the shape likelihood and initial cut needs
to be compared in order to assign appropriate terminal arcs. The shape prior
cost is defined as:

cP (x, y) = λ1|cR0(x, y)− cR1(x, y)|, (4)

where cR0 and cR1 denote the cost associated to prior for the inferior region (the
region under the border) and superior region (the region above the border) re-
spectively, and λ1 is the weight for the shape prior cost. The normalised weighted
templates cR0 is in effect the inferior-region cost and is inversely proportional to
the likelihood of a pixel belong to the region underneath the media-adventitia
border. To define the superior-region prior cost cR1 , we simply compute the com-
plement of cR0 , i.e. cR1 = maxx,y cR0(x, y)− cR0(x, y). As shown in Section 2.6,
the shape prior cost cP (x, y) is used to assign weights for each pixel according
to its position from the border. By assigning the shape prior cost in this way,
we eliminate the need to identify the terminal connection type.

2.5 Graph Construction Using Shape Prior

In non-prior graph construction the inter-column maximum distance Δ is set as
a constant. For our prior model, inter-column change should be influenced by
the derived shape prior. In calculating the shape prior cost function, the training
shapes are aligned to our initial graph cut. The inter-column changes are then
generalised using mean mp,q and standard deviation σp,q at individual column.
These statistics are then used in determining maximum and minimum distances
when connecting neighbouring columns in graph construction, i.e. Δ̄p,q = mp,q+
c · σp,q, Δp,q = mp,q − c · σp,q, and c is a real constant. Note, these inter-column
arcs alone will impose a hard constraint on shape regularisation.

Hence, additional inter-column arcs are necessary in order to allow smooth
transition (see dashed arcs in Fig. 2 (b)), that is intermediate values, h ∈
[Δp,q, Δ̄p,q], are used to construct inter-column arcs. The direction of these arcs
is based on the first order derivative of the function fp,q(h) as in (1). Here, we
employ a quadratic function, fp,q = λ2(x−mp,q)

2 where λ2 is a weighting factor
for smoothness constraint. If f ′

p,q(h) ≥ 0 an arc from V (x, y) to V (x + 1, y − h)
is established; otherwise, the arc is connected from V (x + 1, y) to V (x, y + h) .
The weight for these arcs is assigned as the second order derivative of fp,q. Note,
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when f ′
p,q(h) = 0, only single arc is defined to reduce the shape prior influence

in presence of strong boundary features, instead of using bi-directional arcs on
the mean difference mp,q.

2.6 Compute the Minimum Closed Set

The cost function C(x, y) = cB(x, y) + cP (x, y) is inversely correlated to the
likelihood that the border of interest passes through pixel (x, y). The weight for
each node on the directed graph can be assigned as:

w(x, y) =

{
C(x, y) if y = 0,

C(x, y)− C(x, y − 1) otherwise.
(5)

For a feasible path P in the graph, the subset of nodes on or below P form a
closed set and it can be shown that the cost of P is equivalent to the cost of nodes
in the corresponding subset (differ by a constant) [8]. Hence, segmenting the
media-adventitia is equivalent to finding the minimum closed set in the directed
graph. The s-t cut algorithm [3] can then be used to find the minimum closed set,
based on the fact that the weight can be used as the base for dividing the nodes
into nonnegative and negative sets. The source s is connected to each negative
node and every nonnegative node is connected to the sink t, both through a
directed arc that carries the absolute value of the cost node itself.

The smoothing parameter in graph construction prevents sudden drastic
changes in the extracted interfaces. However, the segmented media-adventitia
may still contain local oscillations. Here, efficient 1D RBF interpolation using
thin plate base function is used to obtain the final interface.

3 Experimental Results

A total of 1197 IVUS images of 240× 1507 pixels in the polar coordinates from
4 sequences are used to evaluate the proposed method. These images contain
various forms of fibrous plaque, calcification, stent, and acoustic shadow. Manual
labelling was carried out on every 10 frames, i.e. 1197 frames in total, to establish
groundtruth for quantitative analysis. The training set contains 278 images.

First, we compared our method against the s − t cut algorithm [13]. The
boundary cost function was kept the same, and careful manual initialisations
were carried out for s − t cut. The proposed method does not need user inter-
vention. The first column in Fig. 3 shows typical results achieved using s− t cut.
Manual initialisations are shown in blue and green, and segmentation results are
shown in red. Despite reasonable care in initialisation, the s − t cut result was
not satisfactory. The corresponding results of the proposed method are shown
in the second column. The bottom of the each image shows the classification
result of detecting different types of tissue. The proposed method achieved bet-
ter accuracy and consistency. The quantitative comparison was carried out on
a randomly selected subset of 50 images, since manual initialisation of 1197 im-
ages is too labour intensive. Table 1 shows that the proposed method clearly
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outperformed s− t cut in both area difference measure (AD) and absolute mean
difference measure (AMD) based on groundtruth.

Next, the proposed method was tested on the full dataset (1197 images) and
its performance based on 1197 labelled groundtruth can be summarised as: 9.00
% mean AD with standard deviation of 6.35 and 9.16 pixel mean AMD with
standard deviation of 6.20. This is marginally better than the first subset. Fig.
4 shows example comparisons to groundtruth. It is evident that the proposed
method can handle various forms of ultrasound artifacts. Overall, the quantita-
tive results suggest that the proposed method is an effective method in segmen-
tation media-adventitia border in IVUS.

Table 1. Quantitative comparison to s − t cut. AD: area difference in percentage;
AMD: absolute mean difference in pixel in comparison to groundtruth.

s− t cut proposed method
AD AMD AD AMD

Mean 22.54 23.91 9.286 10.05

Std. 8.87 7.49 5.03 5.41

(a) (b)

Fig. 3. (a) s − t cut result (red) with user initialization (object: blue, background:
green). (b) proposed method result; the bottom of each image also shows the classi-
fication result: calcified plaque (blue), fibrotic plaque (dark green), stent (dark red),
guide-wire shadowing (cyan), and soft plaque/normal tissue (light green).
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Fig. 4. Comparison between groundtruth (green) and the proposed method (red)
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4 Conclusions

We presented an automatic graph based segmentation method for delineating the
media-adventitia border in IVUS images. Boundary based features were dynam-
ically selected to optimise the cost function. The use of multiple training shapes
proved to be beneficial. The generalised shape prior was used in both incorpo-
rating the cost function but also graph construction. Smoothness constraint was
intrinsically imposed in graph construction. Qualitative and quantitative results
on a large number of IVUS images showed superior performance of the method.

Acknowledgement. We would like to thank Welsh Government NISCHR for
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Abstract. We present a spectral-based sulcal curve labeling method by
considering geometrical information of neighboring curves in a multiple
atlases-based framework. Compared to the conventional method, we pro-
pose to use neighboring curves for avoiding ambiguity in curve-by-curve
labeling and to integrate the labeling results obtained from multiple at-
lases for consistent labeling. In particular, we compute a histogram of
points on the neighboring curves as a new feature descriptor for each
point on a sulcal curve under consideration. To better resolve ambigu-
ity in the curve labeling, we also employ the neighboring curves that
are parallel to major sulcal curves. Moreover, we further integrate all
the results from multiple atlases into a linear system, by solving which
our method ultimately gives accurate labels to the major curves in the
subjects. Experimental results on evaluation of 12 major sulcal curves
of 12 human cortical surfaces indicate that our method achieves higher
labeling accuracy 7.87% compared to the conventional method, while
reducing 4.41% of false positive labeling errors on average.

Keywords: sulcal curve labeling, multiple atlases, spectral matching.

1 Introduction

The sulcal folding patterns of human cortical fundic regions are used as key
features for analyzing brain function, monitoring brain growth, and discovering
diseases. Since sulcal curves can be defined along fundic regions, automatic la-
beling of sulcal curves is important for these studies. There have been recent
studies on automatic extraction of sulcal curves on human cortical surfaces [1,2].
However, these methods extract not only major curves but also many extraneous
minor curves, which should be further removed for sulcal curve labeling. Due to
the extremely complicated and variable sulcal folding patterns and extraneous
minor sulcal branches, even if sulcal curves can be perfectly extracted, it is still
challenging to identify major curves among the automatically extracted ones.

Atlas(es)-based sulcal curve labeling methods have been proposed for auto-
matic labeling of major curves [3,4,5]. Compared to the single atlas-based meth-
ods [3,4], the multiple atlases-based labeling method is thought to be able to
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give more accurate labels by considering individual sulcal variability. Recently,
a spectral-based sulcal curve labeling method using multiple atlases has been
reported [5]. In their method, they just picked the most matched sulcal curve
from the multiple atlases to label the corresponding curve in the subject. The
correspondence is established by solving an affinity matrix that stores all pos-
sible assignments based on the geometric features between two curves under
consideration. However, there are two main drawbacks in their method. First,
since only the best matched curve is considered as the candidate to label the
subject, large false positive errors can be introduced if there is no similar curve
in the atlases or the number of atlases is too small. Second, the labeling process
is done independently for each major curve without considering its neighboring
curves. This could reduce a chance for the major curves to be accurately labeled
due to the ambiguity in the curve matching.

In this paper, we present a sulcal curve labeling method for cortical surfaces,
which jointly exploits the geometric information of multiple atlases and neigh-
boring curves in the subject space. We focus on “finding correct assignments”,
which can be formulated as a linear system similarly as in [6]. Specifically, for the
feature description, each curve stores its neighboring curves’ information (i.e., a
histogram of position information of points on the neighboring curves), and in
the curve matching, a major curve finds the most similar curves in the subject,
guided by its neighboring curves. In addition, we incorporate all labeling results
obtained from multiple atlases since it is likely that major curves in the atlases
are only partially similar to those in the subject. To this end, we extend the affin-
ity matrix in [6] to integrate labeling results into a linear system. Experimental
results indicate that our method achieves 7.87% improvement of labeling accu-
racy as well as 4.41% reduction of false positive labeling errors on average for 12
major curves on 12 cortical surfaces, compared to the conventional method [5].

2 Method

Given a set of sulcal curves P in atlases and that of unlabeled sulcal curves Q in
the subject, our goal is to label major curves in Q while discarding minor ones
in Q. Note that the curves in P are pre-labeled major curves by following neu-
roanatomical conventions while Q contains (possibly disconnected) major curves
and many minor ones. For curve labeling, we first automatically extract sulcal
curves from the triangulated cortical surface using [1] and deform all curves
in each atlas to the subject space using a diffeomporphic surface registration
method [7]. It is worth noting that landmark-free surface registration methods
can only roughly align the sulcal folding patterns [8], thus still leaving a certain
amount of ambiguity in the curve labeling (see Fig. 1a). To better resolve am-
biguity in the labeling, unlike the “hard” matching strategy in the conventional
method, we use the geometric features of the major curve and its nearby curves
for measuring curve similarity. Moreover, the final label is jointly determined by
all atlases, which differs from the conventional method that directly retrieves
the label from the most similar curve in a selected atlas.
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2.1 Spectral-Based Curve Matching Using Neighboring Curves

To measure similarity for every possible pair of curves p ⊆ P and q ⊆ Q,
we basically measure the individual and pairwise affinities of an assignment
a = (pi, qj), where pi ∈ p and qj ∈ q. For an assignment a, we denote D(a) as
the displacement vector between geometric features of pi and qj , each element of
which is normalized with respect to its maximum value. Let w be a nonnegative
weight vector that gives the importance of every element in D(a). The individual
affinity is then defined as follows:

A(a) = exp(−‖D(a)‖2w
2σ2

) , (1)

where ‖D‖w denotes the weighted L2-norm of D with respect to the weight
vector w and σ is a user-provided regularization parameter. Similarly, for two
distinct assignments a and b, the pairwise affinity is given by

A(a, b) = exp(−‖D(a, b)‖2w
2σ2

) , (2)

where D(a, b) = D(a)−D(b).

Geometric Features Considering Neighboring Curves. Several geomet-
ric features are defined for each sulcal point, i.e., positions, curvatures, and unit
tangent vectors from the major curve under consideration. Besides, we further
incorporate the features from its neighboring curves. Basically, we calculate a
histogram based on the position information of the neighboring curves in the
Euclidean space. Given a major curve p = {p1, · · · , pi, · · · , pN} with N sulcal
points for p ⊆ P , let Sp be a set of its neighboring curves. To compute a his-
togram of the neighboring sulcal points around a point pi ∈ p, we first build a
spherical kernel K centered at pi with radius r. The size of r is automatically
determined by the maximum Hausdorff distance between p and s for ∀s ⊆ Sp.

r = max
s⊆Sp

dH(p, s) , (3)

where dH(·, ·) denotes the Hausdorff distance between two curves. The size of
K is identical for any point on p. Let F (·) be the position-information vector
of a sulcal point in the atlases, which stands for location information in the
Euclidean space. Once the size of spherical kernel K is determined, an initial set
of neighboring points Lpi within K is obtained as follows:

Lpi =

{
x | x ∈ s ⊆ Sp,

‖F (x)− F (pi)‖2
r2

≤ 1

}
. (4)

Our interest is to find sulcal points on the neighboring curves that are “parallel”
to curve p, referring to those with similar global shapes and orientations to p.
To emphasize such neighboring points in Lpi , we apply the principal component
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analysis (PCA) on Lpi since the principal direction u1 of Lpi stands for the
direction of the parallel curves. We then discard as many sulcal points on the
neighboring curves as possible that are not parallel to curve p within K, by
reducing spherical kernel K to an ellipsoid with its three axes aligned to the
three eigenvectors of PCA, un, n = 1, 2, 3. The eigenvalue λ1 is given along the
first major axis. We then have the following final set of neighboring points L′

pi

by letting l1 =
√
λ1 and l2 = l3 = r:

L′
pi

=

{
x | x ∈ Lpi ,

3∑
n=1

((F (x) − F (pi)) · un)2
l2n

≤ 1

}
. (5)

Now, we build a bounding cube centered at pi that fully contains the neighboring
sulcal points in L′

pi
. Then, we uniformly divide the cube into m subvolumes. Let

hk be a ratio of points in L′
pi

that belong to a subvolume bk, 1 ≤ k ≤ m. We

finally have a histogram Hpi = [h1, h2, · · · , hm]T by the following equation.

hk =

∑
x∈L′

pi

I(x, bk)∣∣L′
pi

∣∣ , (6)

I(x, bk) =

{
1 if {x} ∩ bk � ∅,
0 otherwise.

(7)

For a sulcal point qj in the subject, it is difficult to compute its actual spherical
kernel because its neighboring major curves are unknown. Therefore, for an
assignment a = (pi, qj), we use the same kernel as pi in the atlas for computing
the histogram of qj .

Synchronized Curve Matching. To account for sulcal shape variability, we
generate the mean curve for each major curve [5]. We denote φ(·) as the corre-
sponding point on the mean curve to a given sulcal point in the atlas. For an
assignment a = (pi, qj), we now set a threshold of the distance between pi and
qj with respect to the covariance of φ(pi). Thus, the assignment a is rejected if

3∑
n=1

((F (qj)− F (pi)) · vn)2
(3τn)2

> 1 , (8)

where τ2n(n = 1, 2, 3) are the covariances along the corresponding principal axes
of the covariance matrix of φ(pi). This constrains assignments statistically valid
in terms of the sulcal shape variability.

Let s be a neighboring curve for a given major curve p as we defined above.
We first measure affinities for p and s, respectively. To incorporate affinities of
the neighboring curves into the affinity matrix M , we also measure all possible
pairwise affinities between p and s. For pi ∈ p and si′ ∈ s, suppose that assign-
ments are given by a = (pi, qj) and b = (si′ , qj′ ), where qj , qj′ ∈ q ⊆ Q. Since
a major curve is unable to share an identical label with its neighboring curves,
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in such a undesirable case of the coexistence of a and b, the pairwise affinity
between a and b is set to zero. Once M is built, we compute the principal eigen-
vector of M to find the highly confident assignments. Since s only helps find the
correspondences between p and q, the possibly remaining assignments in s will
be left out.

2.2 Joint Labeling Using Multiple Atlases

It is worth noting that major curves in the atlases could be only partially similar
to those in the subject. For all major sulcal curves in P , once the highly confident
assignments with the corresponding curves in Q are selected, we incorporate the
assignments to determine final labels based on their correspondences. Let pα

and pβ be the distinct major sulcal curves in P with an identical label. For two
distinct assignments a = (pαi , qj) and b = (pβi′ , qj′ ), it is highly desirable that

qj = qj′ if φ(pαi ) = φ(pβi′). To implement that idea, we construct a new affinity
matrix M that describes relationships of all possible assignments between pα

and pβ. The diagonal entries of M are filled with confidence values that are
obtained from the principal eigenvector of the affinity matrix in Sect. 2.1. For
two distinct assignments a = (pαi , qj) and b = (pβi′ , qj′), M(a, b) is set to A(a, b)
as defined in Eq. 2. Then, M(a, b) is updated as follows by letting c = (qj , qj′)

if φ(pαi ) = φ(pβi′):

M(a, b) = A(a, b) · A(c) . (9)

Finally, we compute the principal eigenvector ofM to select the highly confident
assignments for the joint labeling.

3 Experimental Results

Since the dataset in [5] is not publicly available, we used the MRIs Surfaces
Curves dataset [8] for validation (total 12 subjects). However, in this dataset,
several major curves delineated by experts were still crossed gyral regions, which
slightly differ from the automatically extracted curves we used in the experiment.
Thus, we generated ground-truth curves by combining the manual delineation
results with the automatically extracted sulcal curves.

Given an automatically labeled curve q and its corresponding ground-truth
curve qg, the labeling accuracy acc(q, qg) and false positive labeling error err(q, qg)
were measured by the following equations:

acc(q, qg) =
l(q ∩ qg)
l(qg)

and err(q, qg) =
l(q − qg)

l(qg)
, (10)

where l(·) denotes the length of a curve.
In our experiment, we adapted a jackknife technique to validate the accuracy

and false positive errors: For each validation set, one subject was leaved out from
the subject set to be labeled, and other subjects were regarded as the atlases.
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Table 1. 12 Major curves and their neighboring curves

Curve Neighbors Curve Neighbors Curve Neighbors Curve Neighbors

STS ITS ITS STS, OTS CS preCS, postCS preCS CS
postCS CS SFS IFS IFS SFS CingS -
CalcS colS OcPS - OTS ITS, colS colS OTS, CalcS

12 out of major curves for both left and right hemispheres were used for valida-
tion: the superior temporal sulcus (STS), inferior temporal sulcus (ITS), central
sulcus (CS), precentral sulcus (preCS), postcentral sulcus (postCS), superior
frontal sulcus (SFS), inferior frontal sulcus (IFS), cingulate sulcus (CingS), cal-
carine sulcus (CalcS), occipito parietal sulcus (OcPS), occipito temporal sulcus
(OTS), and collateral sulcus (colS). We selected the neighboring curves for each
major sulcal curve based on neuroanatomical prior knowledge as summarized in
Table 1. For fair comparison of different methods in all experiments, we used the
same set of the deformed atlases obtained by the same registration method [7],
even for the conventional method.

(a) (b) (c)

Fig. 1. Poorly deformed atlases and labeling results for the central sulcus (blue) and
postcentral sulcus (red): (a) deformed atlases (thin curves) and the ground-truth curves
(bold curves), (b) the labeling results by the conventional method, and (c) the labeling
results with neighboring curves

3.1 Neighboring Curves

We employed neighboring curves and chose the most similar curve among mul-
tiple atlases for the final result. For the histogram computation, we subdivided
the bounding cube into 4 × 4 × 4 subvolumes, i.e., m = 64. For the affinity
matrix computation, we set the weight vector w = [0.75, 0.15, 0.05, 0.05]T and
the regularization parameter σ = 0.3. Each of the elements in w corresponds
to weight of the position, curvature, tangent vector, and histogram of neigh-
boring sulcal points, respectively. We rejected an assignment if the norm of the
difference between the two histograms is greater than 0.1. Note that the param-
eters were empirically set according to [5] and by our experiment. In Fig. 1, the
labeling results with neighboring curves are consistent although the atlases are
poorly deformed. The results with neighboring curves exhibited better agreement
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Table 2. Average labeling accuracy and false positive errors in the left (lh) and right
hemispheres (rh) (unit: %):

Conventional
method

Neighboring
curves (a)

Joint labeling
(b)

Our method
(a+b)

lh rh lh rh lh rh lh rh

Accuracy 68.65 69.19 71.22 72.27 74.53 74.87 77.12 76.47
False positives 20.22 19.85 25.06 23.41 16.82 15.53 15.79 15.46

with the ground-truth than the conventional spectral-based method as summa-
rized in Table 2. Interestingly, the average false positive errors also increased
because several false positive assignments that had a low confidence value in the
conventional method can gain a higher confidence, resulting from guidance of
neighboring curves.

3.2 Joint Labeling Using Multiple Atlases

We applied the joint labeling without guidance of neighboring curves. The re-
sults obtained from 12 atlases were incorporated to determine the final label to
each major sulcal curve. The same parameter setting as in Sect. 3.1 was used
here. Figure 2 shows that the the joint labeling also gives labels to a part of
major sulcal curves that is missed in the conventional spectral-based method.
Compared to the conventional method, the labeling accuracy increased while the
false positive errors decreased as summarized in Table 2.

(a) (b) (c)

Fig. 2. Comparison of results by the conventional spectral-based method and joint
labeling for the superior frontal sulcus: (a) deformed atlases (thin curves) and the
ground-truth curves (bold curves), (b) the labeling results by the conventional spectral-
based method, and (c) the labeling results by the joint labeling

3.3 Overall Performance

By incorporating two aspects, i.e., synchronized matching with neighboring curves
and joint labeling using multiple atlases, into the our framework, we obtained
the overall labeling accuracy and false positive errors as summarized in Table 2.
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The labeling performance by our method was highly achieved after incorporating
the two aspects. Also, our labeling results were comparable to the corresponding
ground-truth curves (see an example in Fig. 3). Figure 4 demonstrates the sta-
tistical comparison of the labeling results for 12 major sulcal curves. The results
show the average accuracy and false positive errors across subjects. This indi-
cates that our labeling results were consistent on most of the curves, compared
to the conventional method.

Fig. 3. A visual comparison of our automatic labeling results with the ground-truth
for the right hemisphere: the lateral and medial views of ground-truth labeled curves
(1st and 3rd columns) and the respective views of automatically labeled curves by our
method (2nd and 4th columns). Note that there are many extraneous minor curves in
the input (gray). For better visualization, a partially inflated surface model is used.

(a) left hemispheres (b) right hemispheres

Fig. 4. Performance comparisons: average labeling accuracy (top row) and false positive
errors (bottom row) for major sulcal curves in the left and right hemispheres
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4 Conclusion

We presented a method for multiple atlases-based labeling of major sulcal curves
on the cortical surface. Specifically, to resolve ambiguity in the labeling, we pro-
posed a histogram feature for each sulcal point and incorporated the geometric
information of neighboring curves into the affinity matrix for the curve match-
ing. Since major curves in the atlases are likely to be partially similar to those in
the subject, we incorporated the results obtained from all atlases into the linear
system for accurate labeling. We have shown in experiment that compared to
the conventional method, the performances were improved for 7.87% labeling
accuracy and reduced for 4.41% of false positive errors. In our future work, we
will employ a learning technique for optimizing parameters used in the curve
matching.
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Abstract. Fully automatic localization of anatomical structures in 2D
and 3D radiological data sets is important in both computer aided di-
agnosis, and the rapid automatic processing of large amounts of data.
We present a simple, accurate and fast approach with low computa-
tional complexity to find anatomical landmarks, based on a multi-scale
regression codebook of informative image patches and encoded landmark
contexts.

From a set of annotated training volumes the method captures the
appearance of landmarks over several scales together with relative posi-
tions of neighboring landmarks and a spatial distribution model. During
multi-scale search in a target volume, starting from the coarsest level,
each landmark model predicts all landmark positions it has encoded,
with the median of all predictions yielding the final prediction for each
scale.

We present results on two challenging data sets (hand radiographs
and hand CTs), where our method achieves comparable accuracy to the
state of the art with substantially improved run-time.

Keywords: Anatomical structure localization, nearest neighbor regres-
sion, image patch codebooks.

1 Introduction

The accurate localization of anatomical landmarks in medical imaging data is
a challenging problem, due to rich variability and frequent ambiguity of their
appearance. Among the reasons for the difficulties are noise (including local
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(a) (b)

Fig. 1. Examples from the two data sets employed in this paper. a) Hand radiographs
and b) high resolution hand CTs. The objective of the proposed method is to localize
the depicted anatomical landmarks in an unseen target image or volume.

and global intensity changes), cluttered image data (overlapping structures in
2D projections, highly structured background in 3D organ segmentation), and
anatomical structures that exhibit a high degree of similarity (e.g., fingers or
vertebrae). We propose an algorithm that copes with these challenges and offers
a general approach to accurately localize landmarks without initialization or
subsequent refinement. The method constructs a multi-level regression codebook
which associates image patches with the corresponding positions of anatomical
landmarks depicted in the patch. During search the scale-pyramid is traversed,
finding the most similar patch for each landmark using k-nearest neighbor search.

The localization of anatomical structures is crucial for several areas of medical
imaging analysis: Segmentation approaches such as Level-Sets [4] and Appear-
ance Models [3], typically require at least a coarse initial localization, while
registration approaches can exploit spatial initialization to avoid local minima.
The automatic localization of anatomical structures is fundamental for the field
of Computer Aided Diagnosis [7] and for structuring image information in image
retrieval, since it allows the algorithms to focus on target regions in the data and
subsequently invoke more specialized analysis stages. Landmark localization can
also be regarded as a form of semantic parsing [13] when point-wise rather than
regional information is required.

State of the art. Several approaches to anatomical structure localization exist in
recent literature. They mainly differ in the type of semantic representation that
is obtained to describe the image data. We thus distinguish between approaches



Anatomical Localization Using Top-Down Image Patch Regression 135

that either 1) indicate the positions of individual landmarks, 2) provide bounding
boxes for entire organs, 3) result in model parameters which describe the position
and shape of the object or 4) provide voxel-wise labels for different organs.

Localizing anatomical landmarks using the positions of selected interest points
has been the objective of [8,1]. The methods learn interest point detectors on
training data, estimate positions of landmark candidates in the target volume
and finally disambiguate these candidates through a model matching step. Both
methods rely on the classification of the entire volume. [9] reduces this compu-
tational burden by performing a low-resolution step and a refinement step using
Hough regressors. Reducing the complexity by working on axial slices, [13] parse
whole body CT data in a hierarchical fashion, but are concerned with finding
larger organs. While substantially speeding up the localization this only works
for objects which are rather large in respect to the overall volume size, since the
objects have to be visible in at least one of the three central orthogonal slices.
Using Random Forests for the localization of organs in thorax CTs through
bounding boxes has been been proposed in [5]. An extension using Hough ferns
was presented in [12] to predict the bounding boxes of multiple organs at once
in full-body MR data. Relying on stochastic optimization instead of ensemble
classification or regression, Marginal Space Learning [15] tries to find the pa-
rameters of a bounding box or a parametric and data-driven shape model [2] to
localize and segment anatomical structures. This allows for fast localization, but
instead of representing a global search algorithm, iterative approaches have to
be used to cope with repetitive structures [10]. The task of assigning voxel-wise
labels to segment entire organs or organ structures has been approached by [6]
and [11] using Random Forest classification.

Contribution. We present a simple, fast method for the global, accurate local-
ization of anatomical structures in 2D/3D data based on an appearance code-
book, and location predictors that capture sub-configurations of a landmark set.
It demonstrates that a top-down nearest neighbor matching strategy of image
patches drastically reduces the number of required feature computations and
yields localization results comparable to the state of the art.

Paper structure. The paper is structured as follows: Sec. 2.1 details the con-
struction of the codebook, with the localization on a target volume described in
Sec. 2.2. Sec. 3 introduces the experiments, with the results presented in Sec. 3.3.
A discussion and an outlook can be found in Sec. 3.4 and Sec. 4.

2 Methods

The approach is divided into a training phase and a localization phase as shown
in Fig. 2 and Fig. 3. During localization a multi-scale codebook of image patches
and landmark positions is constructed, which is traversed during the localization
phase to obtain increasingly accurate landmark estimates at each scale.
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I1

Training for Landmark

Ii

s=1
… … … … … … …

s=2 s=3 s=4 s=5 s=6 s=7

Fig. 2. Construction of the regression codebooks during training. For each landmark
and scale patches at various offsets and the corresponding relative landmark positions
are recorded, using all training images/volumes.

2.1 Training – Constructing the Landmark Regression Codebook

The training phase requires a set of N training images or volumes Ii with cor-
responding annotations. The annotations represent the coordinates xi

x of the
x ∈ {1, . . . , L} landmarks of the anatomical structure in question. Each land-
mark is present in each of the training volumes.

Codebook Construction to Connect Local Appearance and Landmark Informa-
tion. Our aim is to build multi-scale regression codebooks C of image patches and
corresponding relative landmark positions – one codebook per scale s ∈ 1, . . . , S
and landmark x. The patches stored in the codebook are extracted around the
landmarks with varying offsets and scaling, capturing the typical visual appear-
ance around each landmark. For each patch the positions of all landmarks visible
in the patch are recorded, relative to the patch’s center. Each of the PN entries
in the codebook Cs,x consists of the tuple 〈Pp,Lp〉 of the patch Pp and the corre-
sponding relative D×L landmark coordinates Lp which are visible in the patch.
Lp specifies the coordinates of the landmarks x ∈ 1 . . . L relative to the center
of the given patch1. Landmarks which are outside of the patch are denoted as
not visible.

The construction of the codebook proceeds as follows: At the top-most scale
s = 1 each image or volume is represented by an an-isotropically downscaled
miniature of size m×m×m (similarly m×m for images). At each scale s the
volume is considered to possess an edge length of

√
2(s− 1)m. This re-sampling

of the entire image is never actually computed, it simply forms the reference
frame for each scale of the codebook generation.

1 The necessary transformations between image coordinates and patch coordinates are
omitted for clarity throughout the text.
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At each scale s, patches P are extracted from the image or volume data
using linear interpolation for each landmark x from all training volumes N . The
patches are of size m×m×m, i. e. at scale s = 1 they correspond to the entire
image, and for scales s > 1 the patches zoom in on the landmark, as illustrated
in Fig. 2. Parts of patches which would be sampled from outside of the volume
are set equal to the closest voxel on the volume’s border. The gray values of each
patch is normalized to zero mean and unit variance.

To explore the image information in the vicinity of a landmark the entries
in the codebook Cs,x at a certain scale s and landmark x, are constructed by
extracting several patches around the landmark with, empirically chosen, 7 off-
sets in the range of [−6, 6] voxels for each dimension, along with scaling fac-
tors of {0.9, 1, 1.1}, resulting in P = 1029 patches for one landmark in one
training volume at one scale (P = 147 for images). To considerably reduce the
memory requirements and computational complexity for the codebook lookup,
dimensionality reduction of each codebook is performed using PCA, retaining
90% of variance, resulting in PCA coefficients PPCA and final codebook tuples
〈Pp

PCA,L
p〉. This training scheme results in the S×L regression codebooks Cs,x.

Shape model to regularize the localization. To be able to regularize the interme-
diate solutions during the prediction phase, a model of the spatial distribution
of the landmarks s = 〈xi

1, . . . ,x
i
L〉 in the training data is learned. We compute

a point distribution model S = 〈s̄,S〉 using an eigen-decomposition of the co-
variance matrix of the training landmarks xx as proposed in [2], retaining all
eigenvectors and thus the entire shape variance observable in the training set,
where the shapes s in the model can be constructed through a parameter vector
b such that:

s = s̄+ Sb

2.2 Localization – Regularized Top-Down Matching

Similar to the training phase the localization is performed in a multi-scale fash-
ion, shown in Fig. 3. The D×L landmark localization matrix L∗

s=1 is initialized
with all landmarks starting at the center of the test volume Itarget. Starting with
scale s = 1, a patch Px for each landmark x is extracted (without additional
offsets or scaling variations). The patch is normalized and projected onto the
patch PCA model of Cs,x, resulting in Px

PCA. The most similar patch px∗ in
the codebook is found using euclidean nearest neighbor search – leading to the
tuple 〈Px∗

PCA,L
x∗
p 〉 and thus the landmark coordinate predictions Lx∗

p as esti-
mated by landmark x. Repeating this codebook lookup for all landmarks yields
the D × L× L prediction tensor Md,i,j with position estimates from each land-
mark i to all landmarks that are visible in the same patch. The median over all
predictions j which are not marked as not-visible yields the updated landmark
localization matrix L∗

s . This procedure is repeated through all scales, resulting
in the final localization result L∗

S .
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Localization on Test Image

s=1 s=2 s=3 s=4 s=5 s=6 s=7

Fig. 3. The localization of three landmarks on a test image/volume descends the scale
pyramid. At each level regression based on the image patch generates not only a position
estimate for the primary landmak, but also for other landmarks visible in the patch.
When progressing to a finer scale, for each landmark these estimates vote for the next
estimate and center of the finer patch.

Shape regularization. The position estimates L∗
s are regularized by projecting

them onto the shape PCA model S and reconstructing them again thereafter.
This enforces landmark positions which can be modeled by a linear combination
of the shapes observed in the training data. This regularization is performed for
scales s ≤ S − 3, to allow for landmark positions which can not be modeled
though the shape model at scales s > S − 3.

3 Experiments

3.1 Data Sets

We evaluated the proposed approach on the two separate data sets shown in
Fig. 1: 20 hand radiographs and 12 high resolution hand CTs.

Data set 1: Hand Radiographs N = 20 hand radiographs with an average size of
460×260 pixels with a resolution of 0.423mm/pixel were annotated with L = 24
landmarks. The landmarks include the five finger tips, as well as the distal inter-
phalangeal (DIP), proximal interphalangeal (PIP), metacarpophalangeal (MCP)
and carpometacarpal (CMC) joints for each finger.

Data set 2: Hand CTs The 3D hand CTs have a voxel size of 0.5mm×0.5mm×
0.66mm resulting in an average size of 256×384×330 voxels. They are annotated
with the same 24 landmarks as the hand radiographs, with three additional land-
marks placed around the carpus at the radiocarpal, radioulnar, and ulnocarpal
joints, totaling in L = 27.



Anatomical Localization Using Top-Down Image Patch Regression 139

Table 1. Experimental results, localization accuracy in mm: Residual distances of
the localization result to the ground truth annotation for the proposed method, in
comparison with a state of the art approach

Residual in mm MRF-based graph-matching Proposed Patch-Regression Method
Median Mean Std Median Mean Std

Hand Radiographs 0.80 0.99 0.82 0.63 0.77 0.64
Hand CTs 1.19 1.45 1.13 1.43 1.96 1.80

3.2 Setup

The experiments were run using four-fold cross validation, learning the landmark
regression codebook on 75% of the N images / volumes and performing the
localization on the remaining images / volumes. The main measure of interest
for each landmark is the residual distance between the position of the predicted
landmark position and the corresponding ground truth. The parameter settings
are identical for the experiments on the two data sets, except for the size of
the patches: 32 × 32 in the 2D case and 32 × 32 × 32 for the 3D data. The
results are compared with the recently proposed pre-filtered Hough regression
Random forests [9], which in turn showed to outperform alternative approaches
such as classification-based landmark candidate estimation with graph-based
optimization [1] and classification + mean-shift based approaches [14].

3.3 Results

The results of the evaluation of the landmark localization are presented in Tab. 1,
which shows the aggregated localization performance for the two data sets. The
accuracy on the 2D radiograph data set is very high with a median residual of
0.63 mm and a mean/std of 0.77/0.64 mm. This result compares favorably with
the results reported and methods tested on the same data in [9]. The result on
the 3D hand CT data set show a median residual of 1.43 mm and a mean/std
of 1.96/1.80 mm. It can be seen that despite a similar median residual, the
proportion of localizations with higher error is slighty larger in this case. The
run-times of the proposed approach were in the order of 0.6sec for the 2D data
set and 4.5sec for the 3D data set on a single core of a 2009 Xeon MacPro. The
method was entirely implemented in Matlab - we expect a potential speed-up
by a factor of 10 to 100 through a more optimized implementation.

3.4 Discussion - Feature Computation Complexity

The main contribution of this work is the demonstration of a feature computation
scheme which requires significantly less memory accesses then existing methods.

Voxel-wise classification / prediction approaches such as those proposed in [1,11]
scale with the number of voxels, while pre-filtered Hough regression [9] reduces
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Hands 2D Hands 3D

Voxel-wise Classification / Prediction Pre-Filtered Hough Regression Proposed Approach

Fig. 4. Number of image/volume accesses necessary to compute the features required
during the localization phase. Voxel-wise classification / prediction approaches [1,11]
scale with the number of voxels, while pre-filtered Hough regression [9] works on
strongly downsampled volumes. In constrast to this, the proposed approach is indepe-
dent of the number of voxels and scales with the number of landmarks.

computational complexity by working on strongly down-sampled volumes. A typ-
ical number of 400 memory accesses to compute the classification for a single voxel
was assumed in the calculation, corresponding to e. g. 20 individual features in an
ensemble of 20 individual classifiers.

In contrast to this, the proposed approach is independent of the number of
voxels and only depends on the number of landmarks, with m ×m ×m voxels
sampled for the patch at each landmark and scale. The proposed approach thus
requires one to four orders of magnitude less image/volume accesses, allowing
for fast localization even in unoptimized implementations or cheap commodity
hardware.

4 Conclusion and Outlook

We present an approach for localizing complex, partly repetitive anatomical
structures in 2D and 3D data. We demonstrate that a top-down nearest neighbor
matching strategy of image patches drastically reduces the number of required
feature computations and that the prediction of relative landmark positions using
codebook regression is feasible.

The results on the two data sets clearly demonstrate the ability of the proposed
approach to find the landmark positions in the target volume with accuracy
comparable to the state of the art, with the consistent localization of detailed
anatomical structures with a median residual of 1.7 to 2.7 pixels/voxels.

We consider the results to be very promising for such a simple method, and will
focus on several topics in upcoming work: A detailed analysis of the parameters
involved, namely the patch size and the perturbation strategy during codebook
generation, as well as approximations of the nearest neighbor search through
random subspaces.
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N.: Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon
Sequences. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III.
LNCS, vol. 6893, pp. 239–247. Springer, Heidelberg (2011)

13. Seifert, S., Barbu, A., Zhou, S., Liu, D., Feulner, J., Huber, M., Suehling, M.,
Cavallaro, A., Comaniciu, D.: Hierarchical Parsing and Semantic Navigation of
Full Body CT Data. In: SPIE Medical Imaging (2009)

14. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moorea, R.,
Kipman, A., Blake, A.: Real-Time Human Pose Recognition in Parts from a Single
Depth Image. In: Proc. CVPR (2011)

15. Zheng, Y., Georgescu, B., Comaniciu, D.: Marginal Space Learning for Efficient
Detection of 2D/3D Anatomical Structures in Medical Images. In: Prince, J.L.,
Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 411–422. Springer,
Heidelberg (2009)



Oblique Random Forests for 3-D Vessel Detection Using
Steerable Filters and Orthogonal Subspace Filtering�

Matthias Schneider1, Sven Hirsch1, Gábor Székely1, Bruno Weber2,
and Bjoern H. Menze1

1 Computer Vision Laboratory, ETH Zurich, Switzerland
2 Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland

Abstract. We propose a machine learning-based framework using oblique ran-
dom forests for 3-D vessel segmentation. Two different kinds of features are
compared. One is based on orthogonal subspace filtering where we learn 3-D
eigenspace filters from local image patches that return task optimal feature re-
sponses. The other uses a specific set of steerable filters that show, qualitatively,
similarities to the learned eigenspace filters, but also allow for explicit parame-
trization of scale and orientation that we formally generalize to the 3-D spatial
context. In this way, steerable filters allow to efficiently compute oriented fea-
tures along arbitrary directions in 3-D. The segmentation performance is evalu-
ated on four 3-D imaging datasets of the murine visual cortex at a spatial resolu-
tion of 0.7 µm. Our experiments show that the learning-based approach is able to
significantly improve the segmentation compared to conventional Hessian-based
methods. Features computed based on steerable filters prove to be superior to
eigenfilter-based features for the considered datasets. We further demonstrate that
random forests using oblique split directions outperform decision tree ensembles
with univariate orthogonal splits.

Keywords: vessel segmentation, orthogonal subspace filtering, steerable filters,
oblique random forest.

1 Introduction

Blood vessel enhancement and segmentation play a crucial role for numerous medi-
cally oriented applications and has attracted a lot of attention in the field of medical
image processing. The multiscale nature of vessels, image noise and contrast inhomo-
geneities make it a challenging task. In this context, a large variety of methods have
been developed exploiting photometric and structural properties of tubular structures.
Extensive reviews on various state-of-the-art vessel segmentation techniques can be
found in the literature [14,15]. Rather simple methods, e.g., absolute or locally adaptive
thresholding, are in fact regularly used in practice due to their conceptual simplicity
and computational efficiency but they are a serious source of error and require careful
parameter selection [20,22]. More sophisticated segmentation techniques such as op-
timal filtering and Hessian-based approaches commonly rely on idealized appearance

� Supplementary material for this article is available at
http://www.vision.ee.ethz.ch/ReCoVa

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 142–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and noise models. The former includes optimal edge detection [2], and steerable filters
providing an elegant theory for computationally efficient ridge detection at arbitrary
orientations [12,9]. The latter is based on the eigenanalysis of the Hessian capturing the
second order structure of local intensity variations [4,24]. The Hessian is commonly
computed by convolving the image patch with the partial second order derivatives of a
Gaussian kernel as the method of choice for noise reduction and to tune the filter re-
sponse to a specific vessel scale. This basic principle has already been used by Canny for
edge and line detection [2]. The differential operators involved in the computation of the
Hessian are well-posed concepts of linear scale-space theory [16]. Modeling vessels as
elongated elliptical structures, the eigendecomposition of the Hessian has a geometric
interpretation, which can be used to define a “vesselness” measure as a function of the
eigenvalues [4,24]. Due to the multi-scale nature of vascular structures, Hessian-based
filters are commonly applied at different scales. Besides, the eigenvector correspond-
ing to the largest eigenvalue of the Hessian computed at the most discriminative scale
is a good estimate for the local vessel direction. In practice, vesselness filters tend to
be prone to noise and have difficulty in detecting vessel parts such as bifurcations not
complying with the intrinsic idealized appearance model. Vesselness filters have also
been successfully applied for global vessel segmentation in X-ray angiography using
ridge tracking [26] and graph cut theory [10].

In this paper, we devise a machine learning approach for vessel segmentation based
on the 2-D filament detection framework proposed by Gonzalez et al. [9] using steerable
filters [5,12]. In our application, we aim at efficient classification of 3-D high-resolution
imaging datasets (> 1010 voxels) of the murine visual cortex (see Figure 1), which is
of great interest for the analysis of the cerebrovascular system [22,11]. Due to the con-
siderable computational challenge that comes with our application, we focus on a fast
classification approach using local linear filters rather than complex non-local spatial
models incorporating prior knowledge and regularization [26,10]. We compare different
features computed from, respectively, orthogonal subspace filtering [17,23] and steer-
able filters using Gaussian derivatives [5,8]. In contrast to the framework proposed by
Gonzalez et al. [9,8], we use oblique random forests (RF) for efficient classification We
test “elastic net” node models that combine �1 and �2 regularization leading to sparser
node models than the �2 regularized oblique splits proposed in [18].

2 Methods

In this section, we first introduce two different sets of features based on (1) orthogonal
subspace filtering and (2) steerable filters computed at different scales and orientations
in order to achieve rotational invariance. These features are then used to train an oblique
random forest (RF) classifier that is well adapted to correlated feature responses from
local image filters [18]. Different from standard discriminative learning algorithms such
as support vector machines, RF classifiers return continuous probabilities when predict-
ing vessel locations, which allows to choose an operating point by adapting the decision
threshold. Moreover, RF is capable of coping with high dimensional feature vectors and
tolerate false training labels. It is fast to train with only very few parameters to be op-
timized and even faster to apply. Efficient prediction becomes particularly important in
view of our specific application using high-resolution image data at µm resolution.
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Fig. 1. Visualization of segmented cerebrovascular network for single axial slice (top) and whole
3-D test ROI (bottom) using different segmentation techniques. (a) Ground truth. (b) Frangi [4].
(c) RF-OSF (d = 102). (d) RF-SFT (M = 4). The binary segmentation maps are computed at
the corresponding F1-optimal operating points marked in Figure 4(b). The results are rendered
in 3-D (bottom) and outlined in red (top) along with the ground-truth contours in blue for three
subregions within the axial slice (A-C). Red contours in (a) mark the Otsu labels [20] used for
RF training. Black circles in the 3-D plots highlight prominent differences in the segmentation.
More results for the other datasets are provided in the supplementary material.

2.1 Orthogonal Subspace Filters (OSF)

Matched filters (MF) have widely been used in signal processing. They allow to detect
a signal of known shape (template) by cross-correlation and perform provably opti-
mal under additive Gaussian white noise conditions [19]. In terms of image processing,
this corresponds to the convolution of the image with the MF. From a learning and
classification perspective, matched filtering (signal detection) is closely related to lin-
ear regression for binary classification between background and pattern (vessel) [17].
Considering the image as a composition of local image patches with each pixel in the
patch representing a feature, MF defines a 1-D linear subspace (regression coefficients)
of this feature space which allows for separation of the pattern from background. In-
stead of an optimal 1-D subspace assuming linear separability in the feature space as
implied by using a single matched filter, we use a less restrictive dimensionality re-
duction similar to [17], namely (linear) principal component analysis (PCA), in order
to define a subspace of higher dimensionality. More formally, let pi ∈ RP 3

denote a
(cubic) image patch of size P ×P ×P . A d-dimensional subspace (d ≤ P 3) capturing
the most important modes of variation in the image patches can then be defined using
PCA [13]:
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∀1 ≤ k ≤ d ≤ P 3 : αk = argmax
α∈R

P3
, ‖α‖=1,

∀1≤i<k: cov(αi,α)=0

var(αTPOSF) , (1)

where POSF = [pi]1≤i≤NP ∈ RP 3×NP is the data matrix assembling NP patches la-
beled as vessel. The principal axes αk form an orthonormal basis of the d-dimensional
subspace and are ordered according to their preserved variance. They can be computed
efficiently as the d eigenvectors corresponding to the largest eigenvalues of the covari-
ance matrix of POSF after mean centering using singular value decomposition. Pro-
jecting an arbitrary image patch p ∈ RP 3

onto the PCA subspace yields its d principal
components (PC). The PCs of the image patches centered at pixelsx in image I can thus
be computed by d independent convolution operations of the image with each (properly
reshaped) principal axis α̃k ∈ RP×P×P :

fOSF(I,x) =
[
(α̃k ∗ I)(x)−αT

k

1

NP

NP∑
i=1

pi

]
1≤k≤d

∈ Rd . (2)

The (reshaped) principal axes will also be referred to as orthogonal subspace filters (OSF).
The PCs, i.e., the OSF response of an image patch, are used as features along with a non-
linear decision rule for vessel segmentation as described in Section 2.3.

2.2 Steerable Filter Templates (SFT)

The OSF eigenfilters learned from image patches as described in the previous section
turn out to be highly structured (see Figure 2(a)). Instead of learning the structured filter
kernels, we hence attempt to explicitly parametrize them. For this, we choose a steer-
able filter model based on Gaussian derivatives, which allows for efficient directional
filtering at different scales and, most importantly, implicates rotational invariance [12].
Similar to [8], we define the filter templates as normalized derivatives of Gaussians up
to order M [16]:

∀ m ≥ 1 ∧ 0 ≤ b ≤ a ≤ m ≤M : Gσ
m,a,b(x) = σm ∂

m−a∂a−b∂b

∂m−a
x ∂a−b

y ∂bz
Gσ(x) , (3)

where Gσ(x) = 1

(
√
2πσ)3

exp(− ‖x‖
2σ2 ) denotes the 3-D symmetric Gaussian kernel with

variance σ and zero mean. As in Equation (2), each template induces a single feature
by convolution with image I . They can be assembled to a feature vector of dimen-
sion dM = 1/6(M3 + 6M2 + 11M) at a fixed scale σ:

fσ(I,x) =
(
(Gσ

1,0,0, G
σ
1,1,0, G

σ
1,1,1, . . . , G

σ
M,M,M )T ∗ I

)
(x) ∈ RdM . (4)

We enhance the features by concatenating feature vectors at different scales σ1, . . . , σS:

fSFT(I,x) =
(
fσ1(I,x), . . . ,fσS(I,x)

)T ∈ RdMS . (5)

The steerability of Gaussian derivatives has been derived for the 2-D case in [12] and
can readily be extended to 3-D [5,8]. Steerability refers to the property that the con-
volution of an image with a rotated version of the steerable filter template (SFT) can
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be expressed by a linear combination of the filter response of the image with the SFT
without rotation:

I ∗Gσ
m,a,b(Rx) =

m∑
i=0

i∑
j=0

ωi,j
m,a,b

(
I ∗Gσ

m,i,j

)
(x)︸ ︷︷ ︸

fσ
m,i,j(I,x)

, (6)

where R ∈ SO(3) denotes a 3-D rotation matrix and ωi,j
m,a,b the uniquely defined co-

efficients that can be computed in closed form [12].1 This formalism allows to effi-
ciently evaluate the feature vector fSFT for an arbitrary rotation without any additional
costly convolution. We use a restricted set of rotations in our application considering
the tubular structure of vessels. The local vessel direction d = (dx, dy, dz)

T ∈ R3,
‖d‖ = 1 can be parametrized using spherical coordinates (θ, φ) with unit radius, eleva-

tion θ = arctan
(
dz/

√
d2x + d2y

)
, and azimuth φ = arctan(dy/dx) relative to the x-y

plane (z = 0). It is sufficient to restrict the parametrization to the positive hemisphere
(z > 0), i.e., 0 ≤ θ ≤ π/2 and −π < φ ≤ π. The vessel can then be transformed to the
normalized pose d0 = (1, 0, 0)T by applying the rotation matrix

Rθ,φ =

⎛⎝ cos θ cosφ cos θ sinφ sin θ
− sinφ cosφ 0

− sin θ cosφ − sin θ sinφ cos θ

⎞⎠ . (7)

The SFT features evaluated for this rotation according to Equation (6) hence describe
the intensity variation characteristics of different order along the vascular structure as
well as in the orthogonal plane. Assuming a symmetric vessel (intensity) profile per-
pendicular to the local vessel direction d, restricting the set of rotations is reasonable as
the vessel appearance is (locally) invariant under rotation about d.

2.3 Vessel Classification - Shape Learning and Prediction

The OSF and SFT features as defined in Equations (2) and (5), respectively, are each
used along with a non-linear decision rule for vessel segmentation. We train sepa-
rate classifiers for the different feature types as follows: A representative set S of
2NS tuples (image Ik , location xk, vessel orientation dk, class label yk) is randomly
sampled from a labeled set of images corresponding to NS foreground (yk = 1) and
background (yk = −1) samples, respectively: S = {(Ik,xk,dk, yk) | 1 ≤ k ≤ 2NS}.
For these samples, the features f (I,x) can be extracted as defined in Equations (2)
and (5). The SFT features are additionally rotated to the normalized orientation accord-
ing to Equations (6) and (7) w.r.t. the local vessel direction d. This defines the train-
ing set T =

{(
fk = f(Ik,xk), yk

)
| 1 ≤ k ≤ 2NS

}
that is ultimately used to train a

random forest (RF) classifier [1]. RF consists of an ensemble of decision trees used to
model the posterior probability of each class (vessel/background). During training, each
tree is fully grown from bootstrapped datasets using stochastic discrimination. For this,
the data is split at each tree node by a hyperplane in the feature (sub-)space. In con-
trast to traditional bagging, the split is based on a small number of randomly selected

1 Further details are provided in the supplementary material.
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features only. We investigated both “orthogonal” and “oblique” trees. As proposed in
Breiman’s original paper [1], the former is based on optimal thresholds for randomly
selected single features in every split, i.e., mutually orthogonal 1-D hyperplanes. The
latter uses multidimensional hyperplanes to separate the feature space, e.g., by choos-
ing randomly oriented hyperplanes [1] or applying linear discriminative models [18].
For the oblique RFs in this work, we employ a linear regression with an elastic net
penalty [6] in order to learn multivariate (optimal) split directions w at each node:

ŵ = argmin
w∈R

NF

1

2|T |

|T |∑
k=1

(
yk −wTf̃k

)2

+ λPα(w) , (8)

where f̃k ∈ RNF are randomly selected (but fixed) features and λ > 0 is the regular-
ization parameter for the elastic net penalty Pα(w) = (1 − α)12‖w‖2�2 + α‖w‖�1 as a
compromise between the ridge regression (α = 0) and the lasso penalty (α = 1), where
‖·‖�1 and ‖·‖�2 denote the �1 and �2-norm, respectively. The advantage is joint regular-
ization of the coefficients and sparsity — coefficients are both encouraged to be small,
and to be zero if they are very small. The latter lasso property reduces the dimension-
ality of the split space, which is desirable for memory and robustness purposes. With
α = 1 (and λ � 0) we will get a single non-zero coefficient, i.e., RF with univariate
splits, whereas choosing α = 0 we have ridge regression as in [18].

The decision trees are grown separately as follows:

1. For each tree, a new set of samples is randomly drawn from the training data T
with replacement, i.e., 2

3 |T | bootstrapped samples.
2. For every node, NF features are randomly sampled without replacement from the

feature pool of size N0
F = d for OSF features and N0

F = dMS for SFT features,
respectively (see Equations (2) and (4)).

3. The selected features of the bootstrapped samples are normalized to zero mean and
unit variance at every split in order to enhance the stability of the linear model.

4. Finding optimal split
a) Orthogonal split (NF = 1): The feature values of all samples are tested as

threshold to split the data w.r.t. the selected feature.

b) Oblique split (NF =
⌈√

N0
F

⌉
): The optimal split direction is computed ac-

cording to Equation (8) for α = 0.5 using covariance updates [6].

5. Steps 2 – 4 are repeated
⌈√

N0
F

⌉
times. The optimal split and threshold are ulti-

mately selected w.r.t. the information gain as a result of the split. The samples are
split accordingly and passed on to the child nodes.

6. For each of the NT trees, steps 2 – 5 are repeated until (1) all samples in a (leaf)
node belong to the same class, (2) the maximum tree depth has been reached, or
(3) there are too few samples to further split the data (avoid excessive overfitting).

7. Each leaf node is assigned a class label according to the majority vote of the training
samples ending up in the considered leaf.

Previously unseen samples (images) can be classified by pushing the extracted fea-
tures down all NT decision trees of the ensemble. Thus, each tree assigns a class label
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ŷi ∈ {0, 1} associated with the leaf node in which the tested sample ends up. The
ensemble confidence can then be defined as 1

NT

∑NT

i=1 ŷi as an estimate of the poste-
rior. The binary class label ŷ can finally be assigned using a majority vote or any other
decision threshold.

In the case of OSF features, a single RF is trained for all vessel orientations. There-
fore, the intrinsic orientation-induced structure in the OSF feature space has to be cap-
tured in the training set both for RF training and learning the OSF eigenfilters. In con-
trast, SFT features allow for explicit parametrization of the orientation. The expected
filter response for an arbitrary orientation can efficiently be computed from the set of
stationary base features fSFT as defined in Equations (5) and (6). As the correspond-
ing RF classifiers are trained on SFT features extracted from vessels with normalized
orientation only, we sample the space of possible vessel orientations (half sphere) and
compute the corresponding (rotated) SFT features in order to build an orientation inde-
pendent predictor. The classification result with the maximum confidence is ultimately
assigned as proposed in [9]. In contrast to OSF features, this allows to not only estimate
the class posteriors but also a probability distribution on the vessel orientation.

3 Experiments

We have evaluated the performance of our method on four 3-D datasets D1−4 obtained
from synchrotron radiation X-ray tomographic microscopy (srXTM) of cylindrical sam-
ples of the murine somatosensory cortex (volume size 2048px× 2048px× 4000px,
isotropic voxel spacing 0.7 µm, grayscale 16bit) [22]. In a preprocessing step we ap-
plied anisotropic diffusion filtering in order to reduce image noise while preserving
edge contrast [21]. From each (preprocessed) dataset we extracted two disjoint regions
of interest (ROI) of size (256px)3 for training and testing, respectively. In the follow-
ing, we will refer to these non-overlapping ROIs as test and train data/ROI, respectively
(see Figure 1(a)). For each test ROI, ground truth labels were manually generated by
an expert assisted by a semi-automatic segmentation tool [27] on 15 evenly distributed
slices along each reference direction (axial, coronal, sagittal). Thus, 125 slices have
been labeled containing 7.3× 104 foreground and 2.7× 106 background labels in av-
erage (±3.9× 104) corresponding to a vascular volume fraction of 2.6± 1.4% .

In a first baseline experiment, all ROIs were segmented using both Otsu’s method [20]
and multiscale vessel enhancement filtering [4,24]. For the latter, we have performed an
exhaustive grid search to optimize the vesselness scale on the test ROIs w.r.t. maximum
area under the ROC curve using the ground-truth labels of the test ROIs. In the major-
ity of the cases five logarithmically spaced scales performed best for both Frangi’s and
Sato’s vesselness: σ ∈ {2.00, 3.09, 4.76, 7.35, 11.33}[px].

In a next step, we computed the OSF eigenfilters introduced in Section 2.1 from 3000
randomly sampled patches centered at voxels labeled as vessel in the Otsu label map.
In particular, background patches were not considered during OSF learning. Besides
the original vessel patches, five randomly rotated versions of each patch have been
added to the set of patches POSF used in Equation (1) in order to account for rotational
symmetry of vessel structures while keeping the total number of patches at a moderate
level (NP = 1.8× 104). As in [17], the OSF patch size P was assessed from the random
forest feature importance and set to P = 19.
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Fig. 2. (a) Visualization of the mean pattern and the most significant (reshaped) eigenfilters α̃k

along centered sagittal, coronal, and axial slices as learned from dataset D2 (P = 19). (b) Nor-
malized Gaussian derivatives Gσ

m,a,b at a fixed scale σ up to order M = 2 as defined in Equa-
tion (3). (c) Normalized PCA spectrum λk/λ1 and variance preservation as measured by the

cumulative spectrum
∑d

k=1 λk/
∑P3

k=1 λk for different datasets, where λk denotes the k-th
eigenvalue of the data covariance matrix.

As for the SFT model, we performed a small parameter study to optimize the SFT
scales similar to the multiscale vesselness parameters. In order to avoid overfitting,
however, we used the train ROIs for the parameter optimization along with the Otsu la-
bels considered as ground truth in this case. We ultimately select S = 3 logarithmically
spaced scales σ ∈ {2.00, 3.65, 6.67}. The SFT model hence defines dMS = 9 (27, 57,
102) features for maximum Gaussian derivative orderM = 1 (2, 3, 4), respectively (see
Equations (4) and (5)). For a fair comparison of the SFT and OSF feature models, the
PCA subspace dimension d of the OSF models, i.e., the number of OSF features, was
chosen accordingly.

Different RF classifiers consisting of NT = 256 decision trees have been trained
separately on the train ROI of a single dataset using OSF and SFT features along with
orthogonal and oblique splits, respectively, as explained in Section 2.3. The training was
repeated for each dataset using NS = 4000 foreground (vessel) and background sam-
ples, respectively, randomly drawn from the Otsu label map. The local vessel direction
was estimated from the eigenanalysis of the Hessian computed at the most discrimina-
tive scale as defined by Frangi’s multiscale vesselness [4]. Note that the training labels
were computed fully automatically without any user interaction. The manually anno-
tated ground-truth labels have been used for RF validation only.

Finally, the different RF models were applied to the test ROIs of each dataset. The
classification performance was evaluated on the uniformly aligned slices with ground-
truth labels available (see above). In this way, the generalization of the individual
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Fig. 3. Variable importance [1] of the (a) RF-OSF model (P = 19, d = 57) and (b) RF-SFT
model (M = 2, dM = 9, S = 8 scales σ ∈ {1, . . . , 8}) on a logarithmic scale (oblique splits).
The prominent peaks in (b) correspond to the Gaussian derivatives Gσ

2,0,0, Gσ
2,2,0, and Gσ

2,2,2.

classifiers is investigated (test ROIs of datasets not used for training) as well as the
prediction quality for unseen samples from the dataset used for training (train ROI) but
from a different subvolume (test ROI).

4 Results and Discussion

The learned OSF filter templates are highly structured (see Figure 2(a)). The ball-
shaped mean shows a Gaussian-like pattern. The most significant principal axis captures
the average image intensity in the vicinity of the sample. Patches α2, . . . ,α4 capture
first order derivatives along the right-left (R-L), superior-inferior (S-I), and anterior-
posterior (A-P) direction, respectively. Similar first-order patterns at a smaller scale
appear in α10, . . . ,α13. Differently oriented second order derivatives are described by
α5, . . . ,α9. The corresponding PCA spectra show a sharp profile as indicated in Fig-
ure 2(c). These observations can be made for all OSF models regardless of the consid-
ered patch size. For comparison of the structural similarities, the parameterized Gaus-
sian derivatives up to order M = 2 as used for the SFT feature extraction are shown in
Figure 2(b).

The normalized RF feature relevance score, i.e., the permutation importance from [1],
for the RF-OSF and RF-SFT model using oblique splits are shown in Figure 3. The
OSF patches describing the average image intensity in the local neighborhood (α1,
α14) show high variable importance as compared to the patches capturing higher order
derivatives α2, . . . ,α13. It also becomes clear that the OSF feature importance (dis-
crimination capability) is not correlated to the PCA spectrum (variance preservation).
This makes it difficult to choose a proper cutoff for the PCA subspace dimension. The
variable importance of the SFT features indicates that the second order derivatives par-
allel and orthogonal to the vessel direction (Gσ

2,0,0, Gσ
2,2,0, Gσ

2,2,2) are most significant
for the classification. Note that the Hessian-based segmentation approaches also rely on
these features [4,24]. For larger scales σ, the importance values tend to decline.
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Fig. 4. Comparison of the classification performance. (a) Out of bag (OOB) error of the RF-OSF
(d = 102) and RF-SFT (M = 4, dM = 34) classifiers trained on dataset Dk for varying number
of trees NT (oblique splits). The average error is plotted in black with error bars indicating the
standard deviation. (b) Precision-recall curves (PRC) and optimal operating points w.r.t. F1 mea-
sure for RF-OSF and RF-SFT models (NT = 256, oblique splits, trained on D2) with varying
parameters d and M , respectively, in comparison to (optimized) Frangi’s/Sato’s vesselness, and
Otsu thresholding [20] evaluated on test ROI of D2.

Figure 4(a) visualizes the out of bag (OOB) error of the RF-OSF and RF-SFT clas-
sifiers for different number of decision trees NT. In both cases the OOB error declines
rapidly for increasing NT. The SFT model consistently shows smaller error rates com-
pared to the OSF features. Moreover, the RF-SFT classifier is more robust across differ-
ent datasets as indicated by the smaller standard deviation. Also note that the absolute
values of the OOB error estimates may be somewhat overoptimistic due to the spatial
correlation between the training samples.

Comparing the overall classification performance of the proposed learning-based
approaches with different model parameters to standard segmentation approaches re-
veals the superior performance of the SFT features as indicated by the precision-recall
curves (PRC) in Figure 4(b). The RF-based segmentation outperforms Frangi’s/Sato’s
vesselness filters even for a small number of features (d = 27, M = 2). Note that
the reported results for the vesselness-based segmentation have to be considered as up-
per bound as the scale parameters have been optimized on the test data (overfitting).
The analysis also shows that for M > 1 the performance of the RF-SFT model hardly
changes anymore, which is consistent with the observation of the second order deriva-
tives being the most discriminative features (see Figure 3(d)).

A more detailed numerical analysis of the classification performance of the differ-
ent approaches is summarized in Table 1 and confirms the superior performance of
the RF-SFT model over the OSF features and the multiscale vesselness filters. Otsu’s
method [20] tends to underestimate the global threshold and hence results in an inac-
curate segmentation of the vessel boundaries as indicated by the increased balanced
error rate [3]. In order to assess the robustness of the learning-based segmentation
approaches, we apply “intra-dataset” and “inter-dataset” cross-validation, i.e., choos-
ing the (non-overlapping) train and test ROIs from the same (intra) or different (inter)
datasets, respectively. The average segmentation performance for “totally” unseen data



152 M. Schneider et al.

Table 1. Detailed evaluation of classification performance of different RF-OSF (d = 102) and
RF-SFT (M = 4, dM = 34) classifiers (NT = 256) using orthogonal and oblique splits, respec-
tively. The performance is evaluated using “intra-dataset” and “inter-dataset” cross-validation
(see text). The operating point was selected at the 95% recall level (see Figure 4(b)). The partial
area under the precision-recall curve (AUC-PR) has been computed on the recall interval [0.5, 1].

Method Validation Precision [%] Specificity [%] Error Rate [%] AUC-PR [×10−2] OOB Error [%] Tree Depth

o
rt
h
o
g
o
n
a
l

RF-OSF
intra-data 74.32± 7.26 99.20± 0.13 2.92± 0.06 45.29± 1.74

2.02± 0.44 9.02± 0.45
inter-data 70.99± 7.55 98.97± 0.62 3.06± 0.33 44.35± 2.09

RF-SFT
intra-data 89.43± 1.19 99.70± 0.14 2.70± 0.09 48.35± 0.20

1.35± 0.22 7.42± 0.38
inter-data 88.25± 2.05 99.67± 0.14 2.70± 0.07 48.13± 0.41

o
b
li
q
u
e RF-OSF

intra-data 78.96± 5.81 99.37± 0.16 2.84± 0.07 46.38± 1.19
1.82± 0.25 6.26± 0.21

inter-data 78.35± 4.39 99.33± 0.26 2.87± 0.15 45.95± 1.15

RF-SFT
intra-data 93.53± 1.47 99.83± 0.07 2.62± 0.05 48.96± 0.22

0.96± 0.19 5.85± 0.24
inter-data 92.80± 1.94 99.82± 0.06 2.62± 0.03 48.84± 0.31

Sato average 62.15± 2.71 98.46± 0.75 3.27± 0.37 42.34± 0.64 n/a n/a
Frangi average 59.61± 2.09 98.26± 0.90 3.37± 0.45 41.66± 0.53 n/a n/a
Otsu average 99.96± 0.03 100.00± 0.00 14.59± 1.38 n/a n/a n/a

(inter-dataset) slightly decreases compared to the (still unseen) test data in the case of
intra-dataset validation. The figures also reveal that oblique splits, as compared to or-
thogonal splits, yield both better classification performance and smaller (average) tree
depth. The advantage of oblique over orthogonal splits may result from the highly cor-
related features [18]. Further experiments would be required to investigate the influence
of the elastic net penalty of Equation (8) in more detail.

Figure 1 compares the binary segmentation of the cerebrovascular networks for the
different approaches applied to the test data D2 using the F1-optimal operating points
marked in Figure 4(b). Visually, the Frangi filter and partly also the RF-OSF model
generate very smooth networks missing some of the details on the vessel surface. The
ideal elliptical appearance model underlying the Hessian-based vesselness filters pro-
duces many false negatives at bifurcations, in particular, where the model assumptions
do not hold. Here the classification approach is able to consider more complex geome-
tries, that are in accordance with higher order filter responses in the training data. As
already indicated by the precision-recall analysis, the axial views reveal that the Frangi
segmentation varies significantly from the ground-truth labels in many cases, whereas
the RF-OSF and especially the RF-SFT results are in much better agreement to the
reference segmentation.

5 Conclusions and Future Work

We have compared two kinds of features for 3-D vessel segmentation using a machine
learning approach. Starting from orthogonal subspace filtering, we learn an orthogonal
basis from vessel patches to describe the local vessel appearance in a low-dimensional
feature space. In a second step, we parametrize and approximate the highly structured
base filters by Gaussian derivatives, which allows to efficiently decompose the image
into a multiscale rotational basis using steerable filter theory [12,8]. Both kinds of fea-
tures are used to train random forest classifiers for vessel segmentation. The steerable
filters in fact allow to train a single classifier on normalized (canonically oriented) vessel
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samples as proposed in [9] for 2-D filament detection. Our experiments on 3-D high-
resolution srXTM imaging data of the murine visual cortex demonstrate that the steer-
able filter features outperform the orthogonal subspace features. Moreover, the machine
learning approach proves to be superior to Hessian-based segmentation approaches, es-
pecially for vessel structures, such as bifurcations, that cannot easily be modeled ex-
plicitly and violate the common cylindrical appearance assumption. The RF classifiers
show excellent classification performance on the 3-D datasets even for imperfect and
incomplete training data as obtained by Otsu’s method in our experiments. The pro-
posed segmentation framework hence allows to fully automatically learn RF models
for 3-D vessel segmentation on new datasets.

The choice of the type of splits to be used in the decision tree ensembles of the RF
classifier turned out to have a major impact on the classification performance. For our
task, oblique splits using linear regression are clearly favorable over univariate orthog-
onal splits. Besides a more comprehensive study on the choice of the elastic net penalty,
it would be interesting to investigate if more complex information such as vessel caliber
or centerline can be learned and predicted in a general and computationally cheap fash-
ion on different types of 3-D angiographic datasets by extending the framework using
Hough forests [7]. These additional data on the vessel morphology and topology may
allow to ultimately reconstruct physiologically consistent full-fledged cerebrovascular
networks possibly in combination with proper methods to replace or extend missing or
faulty regions by synthetic vasculatures [25] in order to overcome shortcomings of the
reconstruction technique or limitations of the imaging modality.
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Abstract. Automated methods for neural stem cell lineage construction
become increasingly important due to the large amount of data produced
from time lapse imagery of in vitro cell growth experiments. Segmenta-
tion algorithms with the ability to adapt to the problem at hand and
robust tracking methods play a key role in constructing these lineages.
We present here a tracking pipeline based on learning a dictionary of dis-
criminative image patches for segmentation and a graph formulation of
the cell matching problem incorporating topology changes and acknowl-
edging the fact that segmentation errors do occur. A matched filter for
detection of mitotic candidates is constructed to ensure that cell division
is only allowed in the model when relevant. Potentially the combina-
tion of these robust methods can simplify the initiation of cell lineage
construction and extraction of statistics.

1 Introduction

Tracking of neural stem cells (NSCs) is fundamental in understanding the causes
for cell fate outcomes in in vitro cell growth experiments. Previous studies of
stem cells have used manually constructed cell lineages of a limited population
to analyze, e.g., the developmental potential [7] or the morphological proper-
ties during cell division [5] and clearly show the benefit and importance of cell
lineage construction. The development of automated methods for cell lineage
construction is a key ingredient in processing large amounts of time lapse im-
agery and extracting meaningful statistics, previously not possible due to the
need for extensive manual interaction.

We present a data driven pipeline for tracking pig neural progenitor cells in
phase microscopy time lapse imagery using a supervised segmentation method,
accommodating for small imprecisions in the manual annotation, and a com-
pletely data driven approach to tracking cells between time points. This pipeline
enables for segmentation and tracking thousands of cells from a manual anno-
tation of only 288 cells. The contribution includes novel approaches to mitosis
detection, automatic correction of segmentation errors and data driven param-
eter estimation for the cell matching cost function.

The proposed mitosis detector is based on the observation that a NSC about to
undergo mitosis becomes circular and moves out of focus of the imaging device,
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making it easily detectable. A similar behavior is observed by [5] for human
neural progenitor cells.

Previously, systems aiming to accomplish the same have been proposed, in-
cluding LEVER [8] incorporating published methods for segmentation and lin-
eaging [1,2]. A limitation by this and other systems is the sensitivity to image
data with a slightly different appearance. We explore the possibilities of over-
coming this limitation by driving the analysis by simple manual annotation of
the image data. This allows the segmentation algorithm to adapt to the problem
at hand.

Manual annotation of neural progenitor cells are tedious and difficult even for
an expert. A single image cannot be annotated without preceding and following
images from the time series. The inherent inaccuracy in these annotations are
accommodated for by the choice of segmentation algorithm, namely dictionary
learning from image patches. This method exploits the property that the textural
appearance of neural progenitor cells can be condensed to a number of typical
image patches.

Tracking of the cells during the time lapse image sequence is reduced to match
the cells between two time frames. This is accomplished by a modification of the
bipartite graph formulation of the matching problem proposed by [6]. The mod-
ifications introduced are 1) restricting topology changes to ensure cell division
occur during cell mitosis and 2) acknowledging that segmentation errors are
present and minimizing their disruptions to the cell lineage construction.

The methods applied have been chosen based on the problems arising from
analysis of an approximately 83 hours time lapse image sequence with 5 minutes
between acquisitions. This sequence consists of 1000 phase contrast microscopy
images of neural progenitor cells with very irregular shapes and movement pat-
terns. An example of such an image can be seen in Figure 1a. In the following
sections the methodology embedded in the proposed pipeline is outlined and
results are reported.

2 Dictionary Learning for Robust Segmentation

The cell segmentation is based on a trained dictionary of image and label patches
[3]. Each intensity patch in the dictionary has a corresponding label patch. The
dictionary is build from manually annotated image exemplars by randomly sam-
pling a set of intensity patches with corresponding label patches. In the training
phase the aim is to find a dictionary that well represents the image texture
and simultaneously have unique label patches. The label patches have the same
spatial resolution as the intensity patches and in each pixel they store the prob-
ability of the labels in the training set. A label patch that has high probability
for one class and low for other classes in each pixel is considered unique. To op-
timize the dictionary a weighted k-means procedure is employed where weights
are updated in each step based on the uniqueness criterion.
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(a) (b)

Fig. 1. a) Phase contrast microscopy image approximately 17 hours into the timeseries.
b) Manual annotation (red) together with learned dictionary segmentation (blue) over-
laid image.

Segmentation of an unknown image is computed using the trained dictionary.
For each pixel an image patch is extracted and the label patch corresponding
to the closest match in the intensity dictionary is assigned. The patches are
overlapping, so the obtained probabilities are averaged.

In this experiment we chose the parameters for the segmentation based on
a training and a test set. We had 15 manually annotated image where 8 were
used for training and 7 were used for test. Our initial experiments suggested
that we needed relatively large image patches, so we chose to downscale the
images to half the size giving a spatial resolution of 300 × 400. The results of
our experiments are shown in Table 1. Dice’s coefficient denotes how well the
segmentation captures the area and the ratio reported is the number of cells
detected versus the number manually annotated. Thus a value above one is over
segmentation and below one is under segmentation. The performance improves
slightly going from a patch size of 7 to 9 but only little improvement is obtained
by going from 9 to 11. We chose 9 as a good tradeoff between segmentation
performance and computation time. It should be noted that it is a difficult task
to manually annotate these images, so the results should be seen together with
visual inspection of the segmentations as shown in Figure 1.

Table 1. Segmentation results obtained by varying patch sizes

Training Test
Patch size 7 9 11 7 9 11

Dice’s coefficient 0.80 0.81 0.81 0.78 0.79 0.80
Ndetected/Ntrue 1.13 1.05 0.96 1.25 1.12 1.02
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3 Mitosis Detection

Visual inspection of the time lapse imagery revealed that when a neural progen-
itor cell is about to undergo mitosis, it separates itself from the gel in the petri
dish, floating up a bit and out of focus. When a cell is out of focus it has a very
distinct pattern due to the imaging process.

This pattern can be derived analytically [10], but requires knowledge of the in-
ternal microscope parameters, which have not been available in this case. There-
fore a model has been constructed from an image containing the pattern of
interest. The image and extracted sample is shown in Figures 2a–b.

(a) Image

(b) Sample

(c) Model

Fig. 2. a) Phase contrast microscopy image with cell in pre-mitotic stage. b) Sample
of out-of-focus cell extracted from phase contrast image. Intensity values are extracted
from the marked points to transfer the contrast between the halo, center and back-
ground to the model. c) Constructed model.

The model is constructed by initializing an image of size 27 × 27, which is
approximately the same size as the sample. The donut-like center of the sample
is modeled by a 27× 27 disk filter, where the hole in the donut is a 7× 7 disk.
The intensity values in these three regions are extracted from the sample as
marked in Figure 2b. The resulting filter h, shown in Figure 2c is normalized
by the maximum response from a convolution of the constructed model ĥ with

the sample S , such that hi =
ĥi

max{ĥ∗S} , i ∈ {1, . . . , 272} whereby subsequent

filtering can be interpreted as “percentage of perfect response”.
The constructed model is used for matched filtering of every phase contrast

image. Connected components with a response above 0.9 and an eccentricity
below 0.6 is marked as a mitotic candidate. The eccentricity is here the ratio of
the distance between the foci of the ellipse and its major axis length. Examples
of these detections can be seen in Figure 3.

This detector enables the tracking pipeline to detect and handle cell mitosis,
which will be described in Section 4.
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Fig. 3. 20 examples of detected mitotic candidates using the constructed model

4 Tracking

Finding the best match for each cell between two time points is needed to con-
struct cell lineages. Here we employ a tracking method based on initially seg-
menting the cells, as described above, and subsequently matching the cells be-
tween two frames. This is opposed to integrating segmentation and tracking in
a single scheme, such as the model evolution approach [4,9,11] where level sets
are leveraged as a framework.

The goal is to match N cells {Ct−1
i }Ni=1 detected at the t − 1’th time point

to the M cells {Ct
j}Mj=1 at the t’th time point. Each of these cells are described

with a feature vector f of length K, such that the feature vector for the j’th cell
at time t will be denoted f tj . Specifically we choose to describe each cell with its
x- and y-coordinates and area, whereby K = 3.

To match the cells in a way that accounts for all cell features, the matching of
cells between two time points can be formulated as a minimum cost problem. We
adopt the formulation of the matching problem suggested by [6] where a bipartite
graph with coupled edges is set up to accommodate for topology changes.

Tracking by acknowledging segmentation errors. Given the difficulty of the seg-
mentation problem the tracking algorithm needs to accommodate for segmenta-
tion errors. The possible four types of segmentation errors are:

1. Undetected cell (false negative).

2. Two cells are mistakenly segmented as a single cell.
3. One cell is mistakenly segmented as two cells.
4. Cell detected where none is present (false positive).

It is assumed that any of these segmentation errors are only temporary, i.e., a
cell is only undetected or mistakenly segmented for one or a few consecutive time
points.

The model by [6] is modified to honor only the biologically possible topology
changes, namely that a cell can only split into two if it is undergoing mitosis.
A cell is marked as a mitotic candidate if it in the near-past (15 time points
= 75 minutes) has been detected as in the pre-mitotic stage using the detector
described in Section 3. The graph illustrating the possible topology changes
between two time points is shown in Figure 4.
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Fig. 4. Graph formulation of the matching problem. In this example there is one cell
M detected as undergoing mitosis, wherefore allowed to split. The other cell L1 can
only move to cells R1, R2, R3 or disappear.

Cell merging has not been included in the model as it is not possible for neural
progenitor cells to merge with each other. Thereby the possibilities remaining
for a cell – not marked as a mitotic candidate – are to move, appear or disappear
between frames. The “appear” and “disappear” events include the cases where a
cell enters or leaves the image frame, as suggested originally, but also covers the
option for a cell to disappear or appear anywhere in the image. This is necessary
to accommodate for the segmentation errors listed above.

In the case where a cell from time point t− 1 is found to disappear, without
being near the image border, a phantom (a copy) of the cell is included in the
set of cells at time point t and these are coupled as an ordinary “move” event.
If no match is found for the phantom for a few time steps (here we choose 2 as
the limit), the cell is finally marked as disappeared. For the first two cases listed
above, the effect is obviously that the gap between detections is filled with the
phantom. For the third and fourth cases, the spurious detection of a new cell in
a few images will result in a very short cell track which can easily be detected
during post-processing of the lineages. This approach effectively accommodates
for the segmentation errors and allows for a robust tracking.

Edge costs. Calculation of the edge costs in the graph problem is inspired by
[1]. The assigned cost a(Ct−1

i , Ct
j) for matching the i’th cell at time point t − 1

to the j’th cell at time point t is the Mahalanobis distance

a(Ct−1
i , Ct

j) =
√
(dij − μ)TΣ(dij − μ) where dij = f tj − f t−1

i (1)

from the proposed change feature difference vector dij to a reference distribution
described by the mean μ and covariance matrix Σ.

In [1] this reference distribution is estimated by manually supervising and
correcting the tracks from a number of time points. Here we employ a purely data
driven approach for estimating this distribution. Specifically, cells are matched
over a period of 100 time points with a matching criterion specified as the nearest
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Fig. 5. Illustration of the FWHM principle when estimating parameters for the distri-
bution describing change in area from a one-to-one nearest neighbor tracking

neighbor, with the constraint that only one-to-one correspondences are accepted,
i.e., the nearest neighbor for cell i at time point t − 1 must also have this cell
as its own nearest neighbor. Thereby only the very most obvious matches are
included. The feature differences for these P matches are extracted and collected
in the P ×K matrix from which the mean μ and covariance Σ of the reference
distribution are estimated.

However, with this approach a few erroneous matches are inevitably still in-
cluded, whereby the parameter estimates are corrupted. To ensure that this does
not happen, the principle of full-width-at-half-maximum (FWHM) is used to ex-
tract the dominant distribution for each feature difference. Figure 5 illustrates
the difference in parameter estimates for the reference Gaussian distribution. It
is clear that this is approach is necessary in order to extract viable parameters
in a data driven context.

The cost for a cell to appear or disappear is set as the cost of moving from or
to a cell with 1) a position of 10 standard deviations of the change in coordinates
away and 2) its area set to the mode of the manually annotated cells’ area. This
forces the model to only let a cell appear or disappear if no suitable match is
found in its proximity.

Splitting a cell into two has the cost of moving the cell to the convex hull of
the resulting two cells. While there exist

(
M
2

)
pairs of potential split candidates,

this number can be heavily reduced by selecting only the top β percent pairs
sorted according to mutual distance as proposed by [6].

5 Results

The methodology outlined above is applied to the entire time lapse image se-
quence of 1000 phase contrast microscopy images with 5 minutes between acqui-
sitions. The images were captured using a Nikon BioStation IMQ with a mag-
nification level of 10, an exposure time of 1/125s and a resolution of 600× 800
pixels. The microscope acquires images in a 4× 4 grid, but the images analyzed
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here are only from a single data point and therefore only 1/16 of the available
scene. Thus this analysis should be seen as a proof-of-concept rather than a full
analysis.

The mitosis detector described in Section 3 only allows cell division when
cells undergo mitosis. Examples of the automatically detected mitotic cells can
be seen in Figure 6. From these sequences it is seen that the detector successfully
detects the out-of-focus shape characterizing the mitotic candidates, allowing the
cell to divide within the near-future (chosen as 15 time points). The examples
illustrate how the mitoses can be detected even in highly confluent areas. A
total of 29 mitoses were detected during the entire time lapse sequence using
this method. For completeness it should be mentioned that only 62% were true
positive detections.

Fig. 6. Two examples of detected mitotic events. Each sequence shows the area of
interest from −10 to +3 time points around the detected cell division. The dots indicate
the centroids of the detected cells.

While the pipeline enables us to follow cells over time, direct interpretation
of the cell trajectories is of limited value compared to statistics derived from
these. In Figure 7 cell count and step lengths are documented as a function of
time. The time series has been divided into ten equally sized periods, wherefore
each statistic can be visualized as ten boxes. It is seen that the number of cells
increase slightly in the beginning of the period followed by a decrease. Over the
entire time period a definite increase in cell count is seen, which is expected
given that mitosis occur.



Pipeline for Tracking Neural Progenitor Cells 163

25

30

35

40

45

 4 13 21 29 38 46 54 63 71 79
Time [hr]

C
el

l c
ou

nt

(a) Cell count

−2

0

2

4

6

8

10

12

14

 4 13 21 29 38 46 54 63 71 79
Time [hr]

S
te

p 
si

ze
 [p

x]

(b) Step lengths

Fig. 7. Simple statistics for the segmented and tracked time series. Each box represents
1/10 of the 83 hour period. The red line indicates the median, the edges of the box the
25th and 75th percentiles and the whiskers extend to the most extreme data points
not considered outliers. Outliers are omitted. a) Cell count as a function of time. b)
Cell step length between frames as a function of time.

The step length is reasonably constant over the period, except for a reduction
in the last 16 hours. Visual inspection of the time lapse imagery confirms that
the cells are less mobile towards the end of the time series.

Statistics concerning individual cells’ tendency to undergomitosis, i.e., whether
it is the daughters of the same cell that continuously divides, are interesting, but
the number of of mitotic events are too few to state anything with regards to this.
To answer this question and similar, a large scale study using the proposed pipeline
will be carried out in the near future.

6 Conclusions

A tracking pipeline based on a few manual annotations has been proposed. The
pipeline accommodates for imprecisions in the manual annotation, by choice of
segmentation method, and segmentation errors in the tracking model. Param-
eters for the tracking model were chosen using the principle of full-width-at-
half-maximum to ensure meaningful extraction of parameters in a data driven
context. A detector for mitotic candidate cells enables the model to restrict
topology changes to those valid for a neural progenitor cell.

Validation of the segmentation algorithm was performed using a division into
training and test set of 8 and 7 fully annotated images respectively. It was shown
that a Dice’s coefficient of 0.79 could be achieved while preserving a slight over-
segmentation using a dictionary atom size of 9 × 9 in an image down sampled
to 50% of the original size.

The pipeline was applied to a sequence of 1000 phase contrast microscopy im-
ages of moving and proliferating neural progenitor cells of very irregular shapes
and movement patterns and varying confluence. A total of 30 mitotic events were
detected and simple statistics were extracted from the cell lineages. While leaving
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room for improvements, this work shows that dictionary learning of discrimina-
tive image patches combined with a topology change enabling graph formulation
is a flexible pipeline that can be applied even to very difficult tracking problems.
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Abstract. In this chapter, we present an automatic heart segmentation
algorithm for the diagnosis of coronary artery diseases (CAD). The goal
is to visualize the heart from a cardiac CT image with irrelevant tissues
such as the lungs, rib cage, pulmonary veins, pulmonary arteries and
left atrial appendage hidden so that doctors can clearly see the major
coronary artery trees, aorta and bypass arteries if they exist. The al-
gorithm combines a model-based detection framework with data-driven
post-refinements to create a mask for a given cardiac CT image that
contains only the relevant part of the heart. The marginal space learn-
ing [1] technique is used to localize mesh model or landmark points of
different cardiovascular structures in the CT volume. Guided by such
detected models, local data-driven voxel-based refinements are employed
to produce precise boundaries of the heart mask. The algorithm is fully
automatic and can process a 3D cardiac CT volume within a few seconds.

1 Introduction

Coronary Artery Disease (CAD) or Coronary Heart Disease (CHD) is the lead-
ing cause of death in the world [2]. Computed tomography (CT) is often used
for diagnosis and treatment planing of CAD/CHD. Usually, 2D images from the
stack of acquired axial images are used for diagnosis. However, only a small por-
tion of a coronary artery is visible in a single 2D axial image. A 3D visualization
provides a global and intuitive view for physicians to identify suspicious coro-
nary segments (which are then verified on 2D slices). However, in cardiac CT
images, the whole chest is imaged: both the heart and surrounding anatomical
structures, which usually block the direct view of the heart in a 3D visualization.
Figure 1 (a) shows an image from a CT scan. Ribs, sternum, and other structures
block any direct view of the heart. Manual segmentation of the heart is tedious
and error-prone. Here, we introduce a fully automatic system based on machine
learning algorithms to reliably isolate the heart from 3D CT images. Figure 1 (b)
presents a 3D visualization of the heart after segmenting it from the surround-
ing non-cardiac tissues. With this result, physicians can easily see detailed heart
structures. However, the left atrial appendage (LAA), the pulmonary arteries
(PA) and pulmonary veins (PV) still block the left coronary artery (LCA) tree.
Figure 1 (c) is the improved result with the LAA, PA and PV being removed.
Now, the left coronary artery tree can be clearly seen without any occlusion.
Such a 3D view can greatly help physicians to perform CAD/CHD diagnosis.

B.H. Menze et al. (Eds.): MCV 2012, LNCS 7766, pp. 165–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(a) (b) (c)

Fig. 1. Heart isolation visualization. (a) The original CT scan. Note that bones blocked
any direct view of the heart. (b) The result of the pericardial isolation which only
isolates the whole heart. Still, the pulmonary artery (PA), the pulmonary veins (PV)
and the left atrial appendage (LAA) occlude the left coronary artery (LCA). (c) The
result of final heart isolation. The PA, PV and LAA are removed automatically and
the LCA (green arrow) is easily seen. After heart isolation, the plaques that block the
left coronary artery tree can be easily identified. Note that in this case, there are two
bypass arteries (white and blue arrows). The algorithm reliably keeps them intact.

There are a couple of other applications of heart isolation, e.g., radiotherapy
planning and calcium scoring. In radiotherapy planning for the treatment of
lung or liver tumors, the heart needs to be identified as part of the effort to
reduce the radiation to it. Normally, a non-contrasted volume, as shown in the
bottom row of Figure 2, is used for radiotherapy planning. A non-contrasted
scan is used for calcium scoring as well. A calcium score is a well-established
biomarker to predict future cardiac events [3]. To calculate a calcium score, the
calcified coronary artery plaques (appearing as bright voxels in CT) need to be
segmented. However, other bright tissues (e.g., the rib cage and sternum) need
to be excluded. Heart isolation can provide a region of interest for detecting
coronary calcifications.

Heart isolation is a hard problem due to the following challenges.

1. The boundary between the heart and some of the neighboring tissues (e.g.,
liver and diaphragm) is quite weak in a CT volume.

2. The heart is connected to other organs by several major vessel trunks (e.g.
aorta, vena cava, pulmonary veins, and pulmonary arteries). We must cut
those trunks somewhere (normally at the position where the vessels connect
to the heart), though there is no visible boundary.

3. The deformation of the whole heart in a cardiac cycle is more complicated
than each individual chamber. This brings a large variation in the heart
shape. Furthermore, there are quite a few scans with a part of the heart
missing in the captured volume, especially at the top or bottom of the heart,
which introduces extra shape variation.
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Fig. 2. Cardiac pericardium segmentation for a contrasted scan (top row) and a non-
contrasted scan (bottom row). The first three columns show orthogonal cuts of the
volume with green contours showing the automatically segmented heart surface mesh.
The last column is 3D visualization of the segmented heart.

4. We are targeting both contrasted and non-contrasted data (as shown in
Figure 2), instead of just one homogeneous set (e.g., [4] for contrasted data
and [5] for non-contrasted data). This presents an additional challenge.

While most previous work on heart segmentation focuses on segmenting heart
chambers [1], there are only a limited number of papers on heart isolation. Atlas
based methods are often used to segment the heart. For example, Rikxoort et
al. [6] presented an adaptive, local multi-atlas based approach. It took about
30 minutes to segment a scan. Lelieveldt et al. [7] proposed another atlas based
approach, segmenting several organs (e.g., lung, heart, and liver) in a thoracic
scan using a hierarchical organ model. Their approach only provided a rough
segmentation and an error as large as 10 mm was regarded as a correct segmen-
tation. It took 5 to 20 minutes to process one volume. Gregson et al. [8] proposed
to segment the lungs first and the heart was approximated as a sphere between
the left and right lungs. Moreno et al. [5] presented a more thorough model for
the geometric relationship between lungs and the heart. Funka-Lea et al. [4] pro-
posed an automatic approach based on a graph cut segmentation. They used the
volumetric barycenter weighted by intensity as an initial estimate of the heart
center. A small ellipsoid was put at the estimated heart center and progressively
grown until it touched the transition between heart and lung (which was easy to
detect in a CT volume). Graph cut was then applied to achieve the final detailed
boundary delineation. It took about 20 seconds to process one volume, which
was still slow for a clinical application.

In this chapter, we present an efficient and fully automatic approach for heart
isolation. It contains two steps:
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1. Pericardial Isolation. In this step, the whole heart (including the PA, PV and
LAA) is isolated from surrounding structures. Most of the right coronary
artery (RCA) tree can be seen after this step.

2. Removal of the PA, PV and LAA. Based on the pericardial isolation result,
the PA, PV and LAA are automatically segmented and removed from the
image. After that, the left coronary artery (LCA) tree is clearly visible. This
step is not necessary for the radiotherapy planning and calcium scoring using
non-contrasted scans.

We describe the two steps in details in the following sections. However, it is worth
noting that all the algorithms used in both steps heavily rely on machine learning
algorithms to reliably estimate the heart or the heart components’ location,
orientation and size. Because of this, the machine learning based component
segmentation algorithm is briefly described first, followed by detailed description
of the two steps of the heart isolation algorithm.

2 Marginal Space Learning Based Object Segmentation

Marginal space learning (MSL) [1] has been proposed as an efficient and robust
method for 3D anatomical structure detection/segmentation in medical images.
In MSL, object detection or localization is formulated as a binary classification
problem: whether an image block contains the target object or not. For detec-
tion, an object can be found by testing exhaustively all possible combinations of
locations, orientations, and scales using a trained classifier. However, exhaustive
searching is very time consuming. The idea of MSL is not to learn a monolithic
classifier, but split the estimation into three steps: position estimation, position-
orientation estimation, and position-orientation-scale estimation. Each step can
significantly prune the search space, therefore resulting in an efficient object
detection algorithm. Please refer to [1] for more details of MSL.

After MSL based object pose estimation, a mean shape (which is trained
on a set of example shapes of the object to be segmented) is aligned with the
estimated translation, rotation, and scale as an initial shape. The mean shape
is generally calculated as the average of the normalized shapes in an object-
centered coordinate system. Therefore, the mean shape depends on the definition
of the object-centered coordinate system, which is often set heuristically [1]. After
initialization, we deform the shape for more accurate boundary delineation under
the guidance of shape prior and a learning based boundary detector.

The MSL based object segmentation algorithm is extensively used by the
heart isolation algorithm to segment the pericardial surface, the left atrium, the
pulmonary artery trunk, the aortic root, and many landmark points as described
in the following sections. Each object has its own trained pose detector, mean
shape and boundary detector. With a reasonable amount of training data, these
objects can be reliably segmented within a fraction of a second. In the following
sections we will describe the two-step heart isolation algorithm in details.
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3 Cardiac Pericardium Segmentation

The segmentation of the pericardial surface is based on the MSL algorithm. How-
ever, the mean shape generation process is modified to better fit the requirement
for an accurate initialization for hearts. The MSL segmentation result is a smooth
3D mesh. However, such smooth meshes cannot capture the details of the heart
surface around the rib cage or sternum. We introduce a post-processing step to
fix this.

3.1 Optimal Mean Shape for Accurate Shape Initialization

In MSL segmentation, after the initial pose of the object is estimated, a mean
shape based on training data is fit to the image as an initial shape for later
boundary delineation. In [1], the orientation of a heart chamber is defined by
its long axis; the position and scale are determined by the bounding box of the
chamber surface mesh. Although working well in applications with relatively
small shape variations, the mean shape derived using the previous methods is
not optimal for this application.

Here, we present an approach to searching for an optimal mean shape m̄ that
represent the whole population well. A group of shapes, M1,M2, . . . ,MN are
supposed to be given and each shape is represented by J pointsM j

i , j = 1, . . . , J .
The optimal mean shape m̄ should minimizes the residual errors after alignment,

m̄ = argmin
m

N∑
i=1

‖Ti(m)− Mi‖2 . (1)

Here, Ti is the corresponding transformation from the mean shape m̄ to each
individual shape Mi. This procedure is called generalized Procrustes analysis [9]
in the literature. An iterative approach can be used to search for the optimal
solution. We first randomly pick an example shape as a mean shape. We then
align each shape to the current mean shape. The average of the aligned shapes
(the simple average of the corresponding points) is calculated as a new mean
shape. The iterative procedure converges to an optimal solution after a few
iterations.

Previously, the similarity transformation (with isotropic scaling) has often
used as the transformation T . MSL can estimate the anisotropic scales of an
object efficiently. By removing more deformations, the shape space after align-
ment is more compact and the mean shape can represent the whole population
more accurately. Therefore, we use an anisotropic similarity transformation to
represent the transformation between two shapes,

T̂ , R̂, Ŝ = arg min
T,R,S

J∑
j=1

∥∥∥∥∥∥

⎛
⎝R

⎡
⎣
Sx 0 0
0 Sy 0
0 0 Sz

⎤
⎦Mj

1 + T

⎞
⎠ − Mj

2

∥∥∥∥∥∥

2

. (2)

To the best of our knowledge, there are no closed-form solutions for estimating
the anisotropic similarity transformation. In this work, we propose a two-step
iterative approach to searching for the optimal transformation. Suppose there is
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Fig. 3. Post-processing to exclude the rib cage from the heart mask. Left: Cross-section
and 3D visualization of the result before post-processing. Right: After post-processing.

a common scale s = (Sx+Sy+Sz)/3, let S
′
x = Sx/s, S

′
y = Sy/s, and S

′
z = Sz/s.

Equation (2) can be re-written as

T̂ , R̂, Ŝ = arg min
T,R,S

J∑
j=1

∥∥∥∥∥∥

⎛
⎝Rs

⎡
⎣
S′
x 0 0
0 S′

y 0

0 0 S′
z

⎤
⎦Mj

1 + T

⎞
⎠ − Mj

2

∥∥∥∥∥∥

2

. (3)

In the first step, suppose the anisotropic scales S′
x, S

′
y, and S

′
z are known. (At the

beginning, we can assume the scaling is isotropic, S′
x = 1, S′

y = 1, and S′
z = 1.)

We can calculate the isotropic similarity transformation using a closed-form so-
lution [9]. In the second step, assuming that the isotropic similarity transforma-
tion (T,R, s) is given, we estimate the optimal anisotropic scales S′

x, S
′
y, and S

′
z.

Simple mathematic derivation gives us the following closed-form solution,

Ŝ′
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∑J
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1 (z)

2
, (4)

where
P j

2 =
1

s
R−1(Mj

2 − T ). (5)

The above two steps iterate a few times until they converge.
With a module solving the anisotropic similarity transformation between two

shapes, we can plug it into the generalized Procrustes analysis method to search
for the optimal mean shape m̄. Besides the optimal mean shape, the optimal
alignment Ti from the mean shape to each example shape is also obtained as
a by-product. The transformation parameters of the optimal alignment provide
the pose ground truth that MSL can learn to estimate.

3.2 Excluding Rib Cage from Heart Mask

For most cases, good segmentation results can be achieved after 3D heart pose
detection and boundary delineation. However, for a few cases, a part of the rib
cage (sternum and ribs) may be included in the heart mask (left columns of
Figure 3) since the heart boundary is quite weak around that region. A post-
processing step is further applied to explicitly segment the sternum and ribs
based on adaptive thresholding and connected component analysis. We first de-
tect three landmarks, namely the sternum (red dot), the left (yellow dot) and
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right (cyan dot) lung tips on each slice, as shown in the left columns of Fig-
ure 3. These landmarks determine a region of interest (ROI) (indicated by a
blue polygon in Figure 3). A machine learning based technique is used to de-
tect the landmarks on each slice. To be specific, 2D Haar wavelet features and
the probabilistic boosting tree (PBT) [10] are used to train a detector for each
landmark.

After landmark detection, we extract the ROI on each slice. Stacking the ROIs
on all slices, we get a volume of interest (VOI). Normally, bones are brighter than
the soft tissues in a CT volume, therefore, we can use intensity thresholding to
extract the rib cage. However, due to the variations in the scanners, patients,
and scanning protocols, a predefined threshold does not work for all cases. An
adaptive optimal threshold [11] is automatically determined by analyzing the
intensity histogram of the VOI. For some cases, a part of a chamber may be
included in the VOI, however this is rare. Three dimensional connected compo-
nent analysis of the bright voxels is performed and only the large components are
preserved as the rib cage. We then adjust the heart mesh to make sure the rib
cage is completely excluded from the mask (see the right columns of Figure 3).

3.3 Pericardium Segmentation Results

The method has been tested on 589 volumes (including both contrasted and non-
contrasted scans) from 288 patients. The scanning protocols are heterogeneous
with different capture ranges and resolutions. Each volume contains 80 to 350
slices and the slice size is 512×512 pixels. The resolution inside a slice is isotropic
and varied from 0.28 mm to 0.74 mm, while slice thickness is generally larger
than the in-slice resolution and varied from 0.4 mm to 2.0 mm.

For training and evaluation purposes, the pericardium surface of the heart was
annotated, using a semi-automatic tool, with a triangulated mesh of 514 points
and 1024 triangles. The cross-volume point correspondence was established using
the rotation-axis based resampling method [1]. The point-to-mesh error, Ep2m,
was used to evaluate the segmentation accuracy. For each point in a mesh, we
search for the closest point in the other mesh to calculate the minimum distance.
We calculate the point-to-mesh distance from the detected mesh to the ground-
truth mesh and vice versa to make the measurement symmetric. A four-fold
cross-validation was used to evaluate the performance of the algorithm.

First, we evaluate the shape initialization error of the optimal mean shape and
the heuristic bounding-box based mean shape [1]. After MSL based heart pose es-
timation, we align the mean shape with the estimated position, orientation, and
anisotropic scales.We then calculate the errorEp2m of the aligedmean shape w.r.t.
the ground truthmesh. As shown in Table 1, the optimal mean shape is more accu-
rate than the heuristic bounding-box based mean shape. It reduces the mean ini-
tialization error from4.35mmto 3.60mm(a 17%reduction).After shape initializa-
tion,wedeformthemeshunder the guidance of a learningbasedboundarydetector,
which further improves the boundary delineation accuracy. As shown in Table 1,
the mean error is 2.12 mm if we start from the bounding-box based mean shape.
Using the proposed optimal shape initialization, we can reduce the finalmean error



172 H. Zhong et al.

Table 1. Comparison of the proposed optimal mean shape and the heuristic bounding-
box based mean shape [1] on shape initialization and final heart isolation errors. The
point-to-mesh error (in millimeters) is used to measure the accuracy in the boundary
delineation.

Shape Initialization Final Segmentation

Bounding-Box

Mean Shape

Optimal

Mean Shape

Bounding-Box

Mean Shape

Optimal

Mean Shape

Mean Error 4.35 3.60 2.12 1.91
Std Deviation 1.43 1.05 0.89 0.71
Median Error 4.11 3.52 1.89 1.77

(a) (b) (c)

Fig. 4. Directly applying the model-based machine-learning algorithm from [1] on the
PA root usually result in a thin layer of the PA (green arrow) remaining in the image
(b), even though the mesh looks accurate in (a). That’s because the mesh model’s
resolution cannot capture the voxel-level details of the shape. For comparison, our
algorithm can create a clean mask with the PA removed (c).

further to 1.91 mm (a 10% reduction). Our method works well on both contrasted
and non-contrasted scans. Themean andmedian errors on the contrasted data are
1.85mm and 1.71mm, respectively. The corresponding errors increasemoderately
on the non-contrasted data to 2.22 mm and 2.11 mm, respectively.

We also compared our approach with the graph cut based approach proposed
by Funka-Lea et el. [4], which was used for 3D visualization of the heart. Tissues
darker than the myocardium (e.g., lung) included in the heart mask does not
effect the visualization since the intensity window can be tuned to hide these
extra tissues. Consequently the outputs of the two methods are not likely to
be identical and whe should expect more accuracy in our proposed method.
Keeping this in mind, the mean and median errors achieved by the graph-cut
based method are 4.60 mm and 4.00 mm, respectively (our method is 1.85 mm
and 1.71 mm). Furthermore, our method is about 10-20 times faster than the
graph-cut based method.

4 Removal of the PA, PV and LAA

The pericardial isolation can separate the heart from surrounding non-cardiac
structures such as the lungs and ribs. However, it is not sufficient for the 3D
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visualization of coronary arteries since some heart structures such as the PA,
PV and LAA still remain and cover the proximal left coronary artery (LCA)
tree in many cases. In this step, we segment and remove these heart structures
to reveal the LCA.

Since the PA, PV and LAA are very close to the coronary artery tree and they
are all connected to heart chambers we want to keep, pure data-driven algorithms
such as region growing cannot segment them cleanly without leaking into nearby
chambers or the aorta. Though the model-based segmentation algorithm[1] can
reliably detect the anatomies based on mesh models, it has some limitations.
First, it works well for anatomies with relatively smaller variations, like the four
chambers, but not highly variable structures like the LAA and PV, which can
hardly be represented by a single-part mesh model. Second, note that standard
local refinements based on a statistical shape model [12] and mesh smoothing
algorithms [13] are used by the algorithm to generate a smoothed mesh. However,
such a smoothed mesh, when converted to a voxel mask, may not cover all the
voxels of the detected anatomy and consequently will generate visible artifacts
(Figure 4).

To overcome these problems, we combine a local region growing algorithm
with the global shape model to solve the PA, PV and LAA segmentation prob-
lems. We use slightly different segmentation algorithms for each of the PA, PV
and LAA. However, the frameworks of all these algorithms are similar: a global
shape-model detected by the MSL [1] and local refinement based on the statis-
tics of voxel intensities. After global shape model (either mesh based or fiducial
control point based) based detection/segmentation, we use constrained local in-
tensity based region growing algorithms to refine the shapes and generate a
detailed voxel mask of the objects. In order to avoid any removal of the aorta
and LA which we want to keep for context, we also use a model-based algorithm
to explicitly segment them and the segmented mask is used as a “protection”
zone where no removal is allowed. Using the proposed method, we can achieve
a fully-automatic, efficient and clean removal of the PA, PV, and LAA for 3D
visualization of the LCA.

4.1 Globe Shape Segmentation

Pulmonary Artery Model: The PA trunk root, the portion of the PA from
the pulmonary valve to the bifurcation, is modeled as a tubular mesh. From the
bifurcation, it is difficult to approximate the shape with a tube. In this case, we
use five fiducial control points: one at the bifurcation, two at the left PA branch
and two at the right PA branch as shown in Figure 5 (a). We first describe how
the PA trunk mesh is detected.

For the PA trunk mesh, we use the MSL algorithm [1]. The shape model, the
bounding box detector and the boundary detector were trained with 320 man-
ually annotated volume data. After the the PA trunk is detected, the detection
of the five fiducial points from the PA bifurcation is a mixture of a statistical
shape model and individual fiducial point detectors using the MSL algorithm [1]
trained on 120 manually labeled volumes. The reason for this mixture is that in
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(a) (b)

Fig. 5. PA model: (a) the mesh and five fiducial point model. (b) the statistical shape
model for detecting the fiducial points (bifurcation, left 1 and 2, right 1 and 2). Based
on 120 manually labeled data, we select nine points from the PA trunk mesh and
combine them together with the five PA fiducial points to create a statistical shape
model.

(a) (b) (c) (d)

Fig. 6. Voxel-based refinement for the PA, PV, and LAA. (a) Before removal, the
bypass arteries are highlighted by the red circle. (b) the PA and the vena cava are
removed by region growing while bypass right adjacent to PA is kept intact. (c) before
removal, we can see the small isolated chambers of the LAA very close to the coronary
arteries highlighted by the red circle. (d) the LAA, PA and PV are removed cleanly
while the coronary arteries are intact.

many cases, the PA fiducial points are not inside the image, or are very close to
the image borders. Thus, the MSL-based bounding box detector may fail since
it relies on image features which are not available outside an image. However,
the statistical shape model method can handle this out-of-boundary situations
well. In our method, we build a statistical shape model [12] containing nine PA
trunk points selected from the PA trunk mesh and the five PA fiducial points:
bifurcation, left 1 and 2, right 1 and 2 as shown in Figure 5 (b). When the PA
trunk is detected, we extract the nine PA trunk points from the detected mesh.
We then use the statistical shape model to estimate the optimal location of the
five PA fiducial points given the nine PA trunk points’ locations. The statistical
shape model can estimate the location of a fiducial point even if it is outside
the volume. We select only nine PA trunk points instead of all the mesh points
because we want the statistical shape model to capture variations for both the
PA trunk and the left/right PA branches in a balanced way. If all the PA trunk
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(a) (b) (c)

Fig. 7. LAA removal: (a) With LAA mesh model only: some LCA is cut (blue arrow)
while some LAA is not removed (red arrow). (b) First pass of connected component
analysis: only the largest connected region in the bounding box of LAA mesh is re-
moved. LCA is intact (blue arrow) however still some small isolated regions of LAA
remain (red arrow). (c) Second pass of connected component analysis: run in the whole
image and any isolated pieces that are entirely within the LAA bounding box are
removed. The result is a clean removal of all LAA voxels.

mesh points are included, the statistical shape model will be dominated by the
shape variations of the PA trunk, and makes the estimation of the left and right
PA less accurate. We found that with nine PA trunk mesh points the algorithm
works very well for our purpose. Next, we use the learned MSL detectors to
refine each of the five estimated PA fiducial points. The MSL detectors will only
search a small neighborhood around the current estimated locations thus it is
reliable and fast. If MSL detectors failed because a fiducial point is close to or
out of the image border, the statistical shape model result will be used as the
final detection result. Otherwise the MSL detector’s result will be used.

Pulmonary Vein Model: The PV’s shape varies too much to be represented
by a single mesh model. Instead, we use two fiducial points defined on the de-
tected left atrium (LA) mesh model to locate the root of the left and the right
pulmonary veins. In practice, they are defined as two specified vertices on the
LA mesh. The detailed mask for the PV is handled by a region growing method
described in the next section.

Left Atrial Appendage Model: We model the LAA using the same mesh
model as a heart chamber. The mesh is designed to capture the outer boundary
of LAA. However, the LAA’s shape varies much more than any heart chambers
both for its topology and size. This mesh model usually cannot capture the
exact boundary of the LAA. Instead, we only use this model to locate the LAA’s
bounding box so that the exact boundary can be segmented using the intensity
based refinement described in the next section.

4.2 Local Voxel-Based Refinement

As we have stated before, the global shape model usually cannot generate the
exact voxel mask for the PA, PV and LAA. A local refinement is necessary
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(a) (b) (c)

Fig. 8. Protection of vessels while removing the PA. (a) One case where bypass is deeply
embedded in the PA as shown with the red circles. (b) Region growing constrained by
vesselness classification can reliably remove any voxels belong to the PA while keep
the bypass arteries untouched. Also the aorta is protected by segmentation. (c) 3D
visualization of the case, the bypass arteries are intact and clearly visible.

for our heart isolation application. For the PA, PV and LAA, we use different
refinement strategies. However, the goals are the same: to find clear boundaries
without cutting into any of the CA or bypass.

Pulmonary Artery: For the PA, the global shape model contains two parts:
the PA trunk mesh and the five fiducial points. For the mesh, we first close its
openings and then mask out any voxels inside the mesh. As shown in Figure 4,
usually a thin layer of the PA trunk still remains due to the mesh smoothing.
We then use the region growing algorithm to dilate the mask out-ward for 2-3
millimeters. The region growing algorithm’s threshold is determined by the mean
and standard deviation of the voxels which are already in the mask. With an
adaptive threshold, region growing can work for images with or without contrast
agent in the PA to successfully remove the thin layer left by the PA trunk mesh.
For the left PA, right PA and the PA bifurcation regions, we start region growing
from each of the five fiducial points. In this step, the range for region growing
is limited to 15 mm since the PA fiducial points are defined as less than 15 mm
apart from each other. The region growing from the fiducial points thus can cover
all the voxels of the PA bifurcation and the two branches. However, it tends to
leak into surrounding objects, especially to nearby bypass arteries or the LCA
as it only relies on local information. To prevent such “leaks” and protect the
coronary arteries, we use a learning-based vesselness measurement to create a
forbidden zone, which will be described later.

Pulmonary Vein: For the PV, we apply the same region growing algorithm
from the two root fiducial points of left and right PV as for the PA fiducial points.
The intensity threshold is based on the statistics of voxel intensities within the
detected LA mesh model. To prevent leakage into nearby structures, we limit
the growing range to 25 mm.

Left Atrial Appendage: The LAA is more complex. First, the LAA mesh
model only gives an approximate boundary: it may not cover the whole LAA
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and it may include some LCA segment or other structures. This is due to the high
variation of the LAA’s shape. Second, there usually are many small chambers
in the LAA which make the LAA not look like a single connected region in the
image. To deal with these challenges, we design an algorithm composed with
model-based mesh detection and connected component analysis (CCA). The
algorithm consists of three steps (as illustrated in Figure 7):

1. The LAA mesh is detected. It gives us an initial estimation of the LAA’s
location and shape. We then create a bounding box slightly larger than the
mesh to make sure we cover the whole LAA regions as the LAA mesh may
be smaller than the exact LAA region.

2. The first CCA pass is run within the bounding box and the largest connected
region is removed. We assume it is the largest chamber of the LAA. However,
smaller isolated chambers still remain and they are difficult to be separated
from LCA pieces within the bounding box.

3. The second CCA pass is run on the whole image. The LCA pieces in the LAA
bounding box in this pass should be connected to the whole LCA tree and
eventually to the aorta and LV. Thus, they should form a large connected
region spanning across the LAA bounding box. The remaining LAA pieces
form smaller isolated regions that are entirely within the bounding box. We
remove all such small regions.

4.3 Chamber and Vessel Protection

Sometimes pieces of the important structures such as the aorta, LA or CA are
removed by the leakage of the region growing process because of similar voxel
intensities of them to the PA, PV or LAA. To prevent this, we introduce several
measures to protect these structures. First, we use the segmentation results of the
aorta and the LA to mask them as “not possible to grow.” The region growing
algorithms for the PV and PA and the connected component analysis for the
LAA then will ignore any such regions.

It is more difficult to protect the CA and the bypass arteries since they are
small and usually very close to the PA, PV and LAA. Furthermore, we do not
have a clean mask of the CA tree as we have for the aorta and the LA. Here,
we use a machine-learning based vesselness protection algorithm. As described
in [14], the idea is to train a voxel classifier based on image context to tell the
probability of the voxel being in a vessel. This algorithm is capable of quickly
classifying a voxel to be vessel or not by applying a threshold to the returned
vesselness probability. We found that a threshold equal to 75% works well for our
purpose. However, there would be a waste of computation power if we classify
all voxels in an image. Instead, we confine the classification to only those voxels
around the PA trunk, LAA and PV where cutting of the CA or bypass arteries
by the region-growing or CCA algorithms could happen.

For arteries around the PA trunk, any voxels within 3 mm to the PA trunk
mesh will be classified for vesselness. For regions around the LAA and PV, usu-
ally only the LCA may be cut. In order to efficiently identify the LCA region
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Fig. 9. Heart isolation results on normal (top row) and bypass (bottom row) cases. It
shows that our algorithm can reliably remove the PA, PV and LAA while keeping coro-
nary arteries and bypass intact. Such 3D visualization provides a global and intuitive
view for physicians to identify suspicious coronary segments.

around LAA and PV, we build a similar fiducial point model as the PA trunk:
it contains the left coronary ostium point, the point where left main (LM) coro-
nary artery bifurcated into the left anterior descending artery (LAD) and left
circumflex artery (LCX), 20 control points along LCX and 20 selected points
from the LA mesh. We then train a statistical shape model for these 42 points
based on a manually labeled training database. During the detection, the 20 LA
points from the detected LA mesh, the detected left coronary ostium and the
bifurcation point (using [15]) are used to estimate the positions of the 20 LCX
points based on the learned statistical model. We then run vesselness classifica-
tion around the region of this estimated LCA control points.

In our test, the vesselness classification in the regions described above takes
only 0.02 seconds on a 4-core Xeon 2.53 GHz CPU. After the vesselness classifica-
tion, we can create a vessel protection mask. This vesselness protection method



Automatic Heart Isolation in 3D CT Images 179

Table 2. Subjective score of the heart isolation quality on the test dataset. Score 1 is
failed, 2 is acceptable, 3 is good, 4 is very good and 5 is perfect. Our algorithm achieves
an average score of 3.73.

Score 1 2 3 4 5

Percentage 0.00% 13.33% 13.33% 60.00% 13.33%

can preserve LCA, RCA and bypass very well in our application, as shown in
Figure 8.

5 Evaluation

The goal of the algorithm is to remove most of the LAA, PA and PV so that
the coronary arteries and bypass can be clearly seen in 3D visualization. The
removal should not touch any coronary arteries or bypass arteries. The algorithm
is tested on a database containing 120 cardiac CT images and most of them are
bypass cases. The result is then visually examined by experienced testers and a
score of 1-5 is given for each case:

1. Fail: Major CA cut or bypass cut, important structures removed.
2. Acceptable: Large pieces of un-wanted structures are not removed, some

minor shave or cut on the CA or the bypass arteries.
3. Good: Un-wanted structures are largely removed, no cut on CA or bypass.
4. Very good: Only very little of un-wanted structures remained, no cut on

CA or bypass.
5. Perfect: Clean mask of the heart, no CA or bypass cut.

A score of 3 is thought to be useful, a score of 4 is very good and 5 is perfect.
Score 1 is not useful and regarded as failed. Our algorithm’s average score is
3.73 and there are no failed cases. The distribution of scores is shown in Table 2.
Some examples of our result images are shown in Figure 9. We tested the speed
on 80 cardiac CT scans. The size of the scans varies from 512 × 512 × 419 to
512×512×667 voxels. Resolution of the scans is around 0.4mm×0.4mm×0.4mm.
The longest processing time is less than 5 seconds on a 2.53 GHz Xeon E5630
CPU.

6 Conclustion

In this chapter, we presented an algorithm that can reliably remove both non-
cardiac structures and pulmonary artery, the pulmonary veins and the left atrial
appendage for 3D visualization of the coronary arteries from CT. The approach
combines global shape models recovered through machine learning techniques
with local intensity-based region growing to segment the important anatomical
structures. The approach also provides important structural preservation mech-
anisms to ensure that native or bypass coronary arteries are not cut. The test
results demonstrate that this approach can achieve the goal well and this is
useful for an efficient CAD/CHD daignosis and treatment planning.
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Abstract. Codebook learning is one of the central research topics in
computer vision and machine learning. In this paper, we propose a new
codebook learning algorithm, Randomized Forest Sparse Coding (RFSC),
by harvesting the following three concepts: (1) ensemble learning, (2)
divide-and-conquer, and (3) sparse coding. Given a set of training data,
a randomized tree can be used to perform data partition (divide-and-
conquer); after a tree is built, a number of bases are learned from the
data within each leaf node for a sparse representation (subspace learning
via sparse coding); multiple trees with diversities are trained (ensem-
ble), and the collection of bases of these trees constitute the codebook.
These three concepts in our codebook learning algorithm have the same
target but with different emphasis: subspace learning via sparse coding
makes a compact representation, and reduces the information loss; the
divide-and-conquer process efficiently obtains the local data clusters; an
ensemble of diverse trees provides additional robustness. We have con-
ducted classification experiments on cancer images as well as a variety
of natural image datasets and the experiment results demonstrate the
efficiency and effectiveness of the proposed method.

Keywords: Sparsity, Randomness, Codebook Learning, Cancer Image
Classification.

1 Introduction

A large number of applications in machine learning, medical image classifica-
tion, and computer vision deals with the fundamental representation problem
where the data are high-dimensional and live in complex manifolds. With their
intrinsic and mathematical properties gradually unfolded, research in three gen-
eral directions has led to significant progress on classification, recognition, and
compression: (1) ensemble learning, (2) divide-and-conquer, and (3) sparse cod-
ing. More specifically, four concepts have emerged as being essential to the three
directions: (1) voting, (2) randomizing, (3) partitioning, and (4) sparsity.
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Ensemble learning approaches such as bagging [2], boosting [11], and ran-
dom forests [3] have shown to be among the best choices for classifiers [6,5]. The
randomness in the data and feature selection stage leads to robustness in classifi-
cation, as shown in the random forests [3] where trees are learned from randomly
drawn subsets with the splitting criterion being locally optimal on some features
randomly chosen. In Extremely Randomized Trees [14] and Random Projection
Trees [7], the full data sets are used as the randomization in both feature/basis
and threshold selection can provide sufficient diversities.

As real data are of high dimension and they typically do not live in a well-
regularized space, the Gaussian type distribution leads to limited representa-
tional power [26] and a divide-and-conquer strategy is more appropriate. In
machine learning, decision tree [23] is a standard approach where training data
are recursively partitioned into subsets. The random projection tree [7] also has
recursive data partition based on randomly generated bases.

More recently, sparse representations such as compressed sensing [4] and
LASSO [25] have gained a great deal of popularity. One message emerging from
sparse representation is that high-dimensional data within intrinsic lower dimen-
sion can be well represented by sparse samples of high dimension. The robustness
of the sparse representation often assumes a subspace of certain regularity, e.g.
well-aligned data [29].

In this paper, we tackle the problem of codebook learning for high dimen-
sional visual data. Inspired by the above observations, we propose a randomized
forest sparse coding (RFSC) method. Given a large set of visual data, we train
an ensemble of random splitting/projection trees (when we are not sure about
the form of the whole data population, it is desirable to perform random par-
tition with certain local optimality); for each leaf node in the tree, we learn a
set of bases to best represent the data with sparse coefficients. The overall code-
book is a collection of all the bases from all the tree leaves. RFSC carries the
ideas of voting, randomizing, partitioning, and sparse coding in a natural way.
Its applicable to applications such as Modern cancer diagnosis, which largely
benefits from high resolution histopathology images providing distinctive and
reliable cues for discriminating abnormal tissues from normal ones.

2 Related Works

As we have discussed, our approach is inspired by the literature in ensemble
learning [2,11,3], divide-and conquer approaches [23,14,7], and sparse represen-
tation [4,25,29,19]. Two types of work are particularly related to our approach:
tree based splitting/projection methods, e.g., Extremely Randomized Trees [14]
and Random Projection Trees [7], and sparse coding based codebook learning
techniques [30,15,13].

Extremely Randomized Tree (ERT) [14] is a variant of random forest. ERTs
randomize both the feature selection and the quantization threshold searching
process, making the trees less correlated. When used for visual codebook learning
(ERC-Forest) in [20], the generated trees are not treated as an ensemble of
decision trees, instead, they are referred to as an ensemble of hierarchical spatial
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partitioners. The samples (image patches) in each leaf node are assumed to form
a small cluster in the feature space. The leaves in the forest are uniquely indexed
and serve as the codes for the codebook. When a query sample reaches a leaf
node, the index of that leaf is assigned to the query sample. A histogram is
formed by accumulating the indices of the leaf nodes, which serves as a Bag of
Words (BOA) representation. Similar to ERC-Forest, [24] introduces a semantic
texton forest using ERT to perform image classification and segmentation.

Random Projection Tree [7] is a variant of k-d tree. The k-d tree splits the data
set along one coordinate at the median and recursively builds the tree. Though
widely used for spatial partitioning, it suffers from the curse of dimensionality
problem. Based on the realization that, high dimensional data often lies on low-
dimensional manifold, RPT splits the samples into two roughly balanced sets
according to a randomly generated direction. This randomly generated direction
approximates the principal component direction, and can adapt to the low di-
mensional manifold. The RPT naturally leads to tree-based vector quantization
and an ensemble of RPTrees can be used as a codebook.

We use Extremely Randomized Trees/Random Projection Trees to partition
the samples. But instead of splitting the samples till we cannot split any more,
we stop early according to certain criterion and find some bases that can best
reconstruct all the samples in that node. These bases serve as codes of the
codebook.

There are already some methods using sparse coding for codebook learning. In
[30], the authors generalize vector quantization to sparse coding, and construct
the histogram using multi-scale spatial max pooling. Each patch can be assigned
to several (sparse) codes, and thus the reconstruction error can be reduced. Also,
this method extends the Spatial Pyramid Matching method [15] to a linear SPM
kernel. In [13], Laplace sparse coding preserves the consistency in the sparse
representation and alleviates the problem in [30] that similar patches may be
assigned to different codes. In [28], a locality-constrained linear coding scheme
is proposed that utilizes the locality constraints to project descriptors to their
local-coordinate system. This scheme can preserve the property of local smooth
sparsity. Compared with these methods, the advantages of RFSC is obvious. One
advantage is the efficiency. Utilizing techniques such as ERT and RPT, the sparse
coding is performed only in subspaces and the computational burden is greatly
reduced. The second advantage is the potential promotion of the discriminative
ability. The label information can easily be used into the tree splitting process
(ERT) and the codebook created could have more discriminative power.

3 Randomized Forest Sparse Coding

3.1 Problem Formulation

Suppose we are given a set of training data S = {xi}ni=1 and xi ∈ RD (in a
supervised setting, each xi is also associate with a label yi ∈ Y = {0, ...,K}
and thus S = {(xi, yi)}ni=1), our goal is to learn a codebook (a set of bases)
B = {bi}mi=1 and bi ∈ RD such that
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minB,w

∑n
i=1

∥∥∥xi −
∑m

j=1 wijbj

∥∥∥2

2

s.t. ∀i,
∑

j |wij | ≤ τ (1)

The first term in Eqn. (1) minimizes the reconstruction error and the second term
gives the sparsity constraints on the reconstruction coefficients. Eqn. (1) actu-
ally includes two coupled optimization problems: (1) given w, find the optimal
codebook B; (2) given a codebook B, find the best reconstruction coefficients
w. A similar formulation appears in [30]. After an optimal basis set B∗ is found,
for a new sample x, we can compute its reconstruction coefficients w via:

minw

∥∥∥x−
∑m

j=1 wjbj

∥∥∥2

2

s.t.
∑

j |wj | ≤ τ (2)

The vector w can be used to characterize the sample x. In codebook learning,
each bj serves as a code, and the reconstruction coefficients with respect to the
codes are pooled to form a histogram.

In Eqn. (1), the norm of bj can be arbitrarily large, making wij arbitrarily
small. Further constraints should be made on bj . In our paper, we make a
reasonable constraint that all the bases in the codebook should be from the
training set S, i.e., B ⊂ S. With this constraint, Eqn. (1) can be transformed
into

minv,w

∑n
i=1

∥∥∥xi −
∑n

j=1 wijvjxj

∥∥∥2

2
(3)

s.t.
∑

j vj ≤ m, vj ∈ {0, 1}
∀i,

∑
j |wij | ≤ τ (4)

Here, vj serves as an indicator value ∈ {0, 1} and B = {xj : xj ∈ S, vj = 1}.
Eqn. (3) is seemingly more complex than Eqn. (1) with the introduction of v.
However, it can be solved more efficiently since the search space for the bases is
greatly reduced.

Learning a codebook of size greater than e.g. 5, 000 from tens of thousands of
samples is computationally demanding. As motivated before, we could perform a
divide-and-conquer strategy to partition the data space with complex manifolds
into local subspaces. Within a subspace, it is then much more efficient to learn
bases for a sparse representation.

3.2 Randomized Forest Data Partition

In this section, we take the Extremely Randomized Tree (ERT) [14] and Random
Projection Trees (RPT) as examples to illustrate the data projection process.
Both ERT and RPT partition the samples recursively in a top-down manner.
ERT adopts the label information and uses normalized Shannon entropy as the
criterion to select features. RPT is unsupervised and it does not need any label
information; it splits the data via hyper-planes normal to the randomly generated
projection bases.
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Discriminative Partition via Extremely Randomized Tree. Given a la-
beled sample set S = {(xi, yi)}ni=1, ERT proceeds by randomly selecting a subset
of features from the feature pool {fi, 1 ≤ i ≤ D}. For each selected feature fi,
a threshold θi is sampled according to a uniform distribution. Based on the fea-
tures selected and thresholds sampled, boolean tests {Ti : x(i) < θi} can be used
to split the set S. If Ti = true, x goes to the left branch S1; otherwise, x goes
to the right branch S2.

To select the best boolean test for splitting, the normalized Shannon entropy
was used:

Score(S, Ti) =
2 · IY,Ti(S)

HY(S) +HTi(S)
(5)

where, IY,Ti(S) = HY(S) −
∑2

p=1
np

n HY(Sp). IY,Ti(S) is the information gain;

HY(S) = −
∑

y∈Y
ny

n log2(
ny

n ) denoting the entropy of class distribution of the

original set S. HTi(S) = −
∑2

p=1
np

n log2(
np

n ) denotes the entropy for the test Ti
that splits the data into two branches. The Ti with the largest Score(S, Ti) is
selected.

The use of HTi(S) as a normalization term in Eqn. (5) will favor uneven
splitting, making the forest more unbalanced. In our randomized forest sparse
coding scheme (RFSC), it is desirable to have balanced trees, so we use a slightly
modified form of Eqn. (5):

Score(S, Ti) =
2 · IY,Ti(S)

HY(S) + 1−HTi(S)
(6)

Since HTi(S) is a concave function and it achieves the maximum value 1 when
the numbers of samples in S1 and S2 are the same, this criterion can make the
trees more balanced.

Unsupervised Splitting via Random Projection Tree (RPT). At each
node, RPT chooses a random unit projection direction b ∈ RD, and splits the
samples into two roughly equal-sized sets. The random projection and thresh-
olding also serve as a type of boolean test. We use the splitting criterion as

T := xTb ≤
(
median(zTb : z ∈ S) + δ

)
.

Here δ is a random perturbation that adapts to the structure of S. Splitting
around the median value makes the splitting balanced while the perturbation δ
introduces certain randomness [7].

Since RPTs can automatically adapt to the low dimensional manifold of the
dataset S, the samples in the leaf nodes observe local subspaces. The local struc-
tures of all the leaf nodes thus collectively comprise the global structure of the
data set S (Fig. 1 (b)).

Basis Pursuit at the Leaf Nodes. Both ERT and RPT build the trees to the
fine scale and use the leaf nodes as the codes. Instead of building the trees of very
deep level, RFSC stops at some relatively higher level (e.g., when the number of
samples is less than M). At such nodes, the local manifold structure is assumed
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Fig. 1. Illustration of the idea of RFSC using Random Projection Tree (best viewed in
color). (a) The forest consists of ensemble of random projection trees; (b) The spatial
partition of the dataset by one tree (A copy from [10]). A cell stands for a leaf node.
The width of the separation line indicates the level of the tree. (c) For RFSC, it does
not build the tree to fine level. At certain level when local manifold structures are
found, bases (indicated by the red stars) are learned for the local structure in each cell.
(d) For the samples in each cell, their reconstruction coefficients with respect to the
bases are different.

to be relatively simple and regularized. RFSC seeks a set of bases to sparsely
represent the subspaces at those nodes. This process can be illustrated using
Random Projection Tree in Fig. 1 in which a visualization is displayed and RPT
tends to split the data along the principal component direction (Fig. 1 (b)). For
RFSC, when the local structure is relatively regularized, it seeks some bases (the
red stars) to sparsely represent the local subspace. Different from RPT or ERT
that use the mean of the local subspace or a single index to represent the cell,
the information conveyed via the reconstruction coefficients with respect to each
basis (Fig. 1 (d)) is richer and more informative. Note that the bases in different
clusters could be spatially close to each other. As an illustration, see the two
bases on the bottom right in Fig. 1(c). From this point of view, the number of
bases and the redundancy would increase. However, according to Theorem 1 in
the justification part, the total number of bases in all the leaf nodes is bounded.
Since at each node when the splitting process stops, there are generally 80 ∼ 200
samples (depending on the codebook size) and 3 ∼ 10 bases, the computational
overhead of subspace learning is not significant compared with directly pursuing
bases from the entire sample set.

3.3 Optimization Scheme

The constraint that vj ∈ {0, 1} makes Eqn. (3) a hard problem. In this subsec-
tion, we present two schemes to solve this optimization problem. The first one
is to relax vj to a real value and use coordinate descent algorithm to optimize
on w and v iteratively. The second one is a greedy pursuit approach that selects
the bases one by one.

Convex Relaxation. The first optimization scheme is to relax the values of vj
to real numbers and use �1 constraint

∑
j |vj | ≤ m instead of �0 like constraint

in Eqn. (3). Putting this constraint as a regularization term, we can transform
this problem into an equivalent form:
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1

2

n∑
i=1

∥∥∥∥∥∥xi −
n∑

j=1

wijvjxj
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2

2

+ λ1
∑
i,j

|wij |+ λ2
∑
j

|vj | (7)

Here, vj ∈ R. λ1 and λ2 are regularization parameters that make the trade-offs
between the residue and the norms of the weight vectors.

There are two sets of variables w and v in Eqn. (7). To optimize Eqn. (7),
we adopt an EM-like algorithm that iterates by fixing one set of variables and
optimize on the other set using coordinate descent algorithm [12].

Greedy Pursuit Approach. Starting from an empty basis collection, the
greedy pursuit approach selects the bases one by one. Suppose some l sam-
ples Bl = {xsi , 0 ≤ i ≤ l, 1 ≤ si ≤ n} have been selected from the n samples,
i.e., vsi = 1. To select the (l + 1)th basis, we optimize the following function:

sl+1 = min
k/∈{si}

1

2

n∑

i=1

∥∥∥∥∥∥
xi −

∑

j∈{si}
wijxj − wikxk
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2

2

+λ1

n∑

i=1

∑

j∈{si}
|wij |+ λ1

n∑

i=1

|wik| (8)

According to Eqn. (8), the sample that reconstructs all the n patches together
with the first l selected bases is selected as the (l + 1)th basis.

The greedy approach finds suboptimal solution to Eqn. (3). But it’s more
efficient than the convex relaxation approach, and in practice, we find that its
performance is comparable with the convex relaxed solution. Thus in some of
our experiments, we only use this greedy approach.

3.4 Theoretical Justification

In this section, we give some theoretical justification to our approach. Our in-
tuition is to show that the three steps in randomized forest sparse coding: (1)
ensemble of trees, (2) randomized projection tree, and (3) sparse coding leads
to the same complexity level in the number of bases as to the original data.

Given S = {xi, i = 1..n} with xi ∈ RD, assume that xi lives in the intrinsic
lower dimension d � D. It can be seen that the number of bases needed to
reconstruct S is bounded. Following the definition of Assouad dimension [1] [7]:

Definition: For any point x ∈ RD and r > 0, let B(x, r) = {||x−z|| ≤ r} denote
the closed ball of radius r centered at x. The Assouad dimension of S ∈ RD is
the smallest integer d such that for any ball B(x, r) ∈ RD, the set B(x, r) ∩ S
can be covered by 2d balls of radius r/2.

Theorem 1. The number of bases needed to reconstruct S by Randomized Forest
Sparse Coding (RFSC) is O(2d log d).
Proof:

Fixing radius r, suppose we want to create a codebook such that each basis
function covers r/2, a size of O(2d) codebook is required to cover the entire
dataset S, according to the definition of Assouad dimension.
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The main result in [7] shows that O(d log d) levels of a random projec-
tion/partition tree would reach cells with radius r/2. Therefore, the number
of cells is O(2d log d). Suppose there are k trees in the forest, and in each leaf
node, l bases are found, then the number of the bases becomes O(kl2d log d). As
k and l are generally small and can be kept constant, the bound still reduces to:

O(2d log d).

Although RFSC slightly increases the size of the codebook compared to O(2d),
since d is generally small (d� D), this is reasonably bounded.

4 Experiments

To evaluate the effectiveness of the proposed codebook learning algorithm, we
conducted extensive classification experiments on a collection of cancer images
and a variety of natural image datasets: Graz-02 image set, and the PASCAL
2005 image set.

As the baselines, we obtained the source code for ERC-Forest from the authors
of [20] and implemented the RPTs according to [7]. In our experiments, the
feature vectors are used without any normalization, which is sometimes done in
subspace learning and sparse coding (we found that performing normalization
does not affect the overall performance in the experiments reported here). For
each leaf node, 5 bases are learned. For the Graz-02 image set, λ1 = 2 and
λ2 = 6, while for the PASCAL 2005 image set, λ1 = 15 and λ2 = 6. To solve the
subspace learning problem via sparse coding defined in Eqn. (3), 10 iterations
between w and v are enough to find a good sparse solution.

In the following, we use RFSC to denote subspace learning via sparse cod-
ing under Extremely Randomized Trees; RPT-SC denotes subspace learning on
Random Projection Trees. For RFSC and RPT-SC, the postfix “-Cvx” refers to
using the convex relaxation version and “-Gdy” regards to using the greedy basis
pursuit version. For the classification task of Cancer Images, the performance is
measured using the Area under the curve of the ROC curve, while for natural
image classification, the performance is measured using the classification accu-
racy at the equal error rate and the reported accuracies are the averages of 10
rounds of execution.

4.1 Experiments on Cancer Images

Dataset:We used a histopathology image data set with 60 colon images (30 can-
cer images and 30 non-cancer images). Sample images are shown in Fig. 2. The
images are labeled as cancer or non-cancer by two pathologists independently. If
disagreement happens for a certain image, these two pathologists together with a
third senior pathologist will carefully examine and discuss until final agreement.

Experimental Setup: Before feature extraction, the original images are down-
sampled with a factor of 2. As no obvious spatial regularities are observed from
the images (Fig. 2), instead of using the Bag-of-Features (BOF) vectors, we
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Fig. 2. Cancer image examples. The images in the green box are normal samples. i.e.
there are no cancerous cells. The images in the red box are abnormal samples, i.e. there
are cancerous cells.

randomly sample N = 200 local patches (32× 32) for each image. Each patch is
represented by Lab color histogram, Local Binary Pattern [21], and SIFT [18].
For the proposed method, each patch is encoded by the proposed coding schemes
RFSC or RPT-SC; for the baseline, we use the raw feature. Random Forests [3]
is adopted as the strong classifier for its simplicity and high performance. The
overall classification score of an image is the mean of the scores of all the patches.
Half of the images in the dataset are chosen randomly for training and the rest
for testing. We run the experiments 5 times for each method and report the
averaged performance. For RFSC and RPT-SC, the convex relaxation versions
are used. The Area Under Curve (AUC) for the methods are RPT-SC 0.98,
RFSC 0.987, RPT 0.927, ERC-Forest 0.95, and raw feature 0.967 respectively;
our method performs better than the alternatives.

4.2 Experiments on Natural Images

The reconstruction coefficients are pooled in the natural image classification task.
To pool the reconstruction coefficients, unless otherwise stated, max-pooling
is used as in [30]. The reconstruction coefficients of the trees are pooled and
concatenated to form a histogram leaving the voting process till the classification
step; Linear SVM is used in the image classification stage. In all the following
image classification experiments, we do not include the adaptive saliency map
process. This makes the image classification performance of ERC-Forest slightly
worse than that reported in [20]. However, this performance degeneration is
reasonable and in accordance with the case illustration in [20].

GRAZ-02 Dataset [22]. GRAZ-02 image set consists of three object cate-
gories and one counter-category. For each category, the categorization task is to
distinguish the object category from the counter-category, None. Similar to [20],
we also pick the two hardest cases: Cars vs. None and Bikes vs. None.

To make a direct comparison with [20] and [22], we conduct the experiment
according to the setting in [20] using the first 300 images of each category for
training. We use the greedy version of RFSC and vary the codebook size from
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5000 to 9000. From Table 1 and Table 2, we observe that, RFSC-Gdy performs
better than ERC-Forest and the method in [22]. Though without the adaptive
saliency map process, the accuracy (83.9%) of RFSC-Gdy on the case of Bikes
vs. None approaches that reported in [20] (84.4%).

Table 1. Comparison of the accuracy on the case of Cars vs. None in the GRAZ-02
images [22]

size of codebook 5000 6000 7000 8000 9000

[22] 70.5%

ERC-Forest 71.3% 73.5% 74.5% 74.7% 74.8%

RPT 66.5% 66.6% 65.3% 67.7% 66.9%

RFSC-Gdy 73.4% 74.3% 75.7% 74.9% 74.3%

RPT-SC-Gdy 68% 69.8% 69% 69.5% 68.2%

Table 2. Comparison of the accuracy for Bikes vs. None in the GRAZ-02 images [22]

size of codebook 5000 6000 7000 8000 9000

[22] 77.8%

ERC-Forest 78.8% 78% 78.5% 78.5% 78.5%

RPT 73.3% 74.3% 74.1% 75.1% 74.4%

RFSC-Gdy 80.7% 83.9% 80.8% 81.3% 80%

RPT-SC-Gdy 76.5% 76.8% 76.1% 76.7% 76%

We also conduct the experiments using all the images instead of the first 300
images. Average-pooling is adopted here and the results are reported in Table
3 and Table 4. The performance of the two optimization schemes is similar.
RFSC-Cvx-1tree refers to using one randomized tree instead of the forest, an
ensemble of trees. It performs worse than RFSC. This justifies the benefit of
using ensembles.

Table 3. Comparison of the accuracy using all the images for Cars vs. None in the
GRAZ-02 images [22]

size of codebook 5000 6000 7000 8000 9000

ERC-Forest 67.2% 67% 68.6% 68.8% 71.3%

Leaf-Kmeans 68.2% 70.9% 73% 72.6% 73.2%

RFSC-Cvx-1tree 72.6% 72.2% 71.4% 75% 75%

RFSC-Cvx 75% 75% 73.7% 73.1% 75.2%

RFSC-Gdy 74.3% 75.5% 74.5% 74.8% 75.5%

We do not compare RFSC and RPT-SC with directly performing dictionary
learning on the image classification task since solving Eqn. (1) directly when
m = 5, 000 or 9, 000 is time consuming. However, benefiting from the divide-
and-conquer process, it takes less than 1 hour for RFSC and RPT-SC to build a
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Table 4. Comparison of the accuracy using all the images for Bikes vs. None in the
GRAZ-02 images [22]

size of codebook 5000 6000 7000 8000 9000

ERC-Forest 77.8% 78.3% 78.3% 79.1% 78.8%

Leaf-Kmeans 75.1% 74.4% 79.7% 78.7% 79.5%

RFSC-Cvx-1tree 77.8% 78.2% 78.6% 79.5% 79.5%

RFSC-Cvx 80% 82.2% 82.6% 81.4% 81.8%

RFSC-Gdy 81.5% 80.3% 81.5% 80.8% 80.9%

forest with 5 trees and 9, 000 codes. This improvement in efficiency stems from
seeking a small amount of bases from hundreds of patches instead of seeking
thousands of bases from tens of thousands of training patches. Other efficient
algorithms such as [16] can be used to solve Eqn. (1), but the conclusion of the
improvement in efficiency induced by the divide-and-conquer process still holds.
RFSC and RPT-SC are also very efficient at the testing stage. It takes about
0.5 second to process an image and pooling the reconstruction coefficients. As
a comparison, it would take around 30 seconds for K-Means to assign patches
to the codes for an image when the feature vector is of dimension 768 and the
codebook size K is 5, 000.

PASCAL 2005 Image Set [8]. We also compare our method with ERC-
Forest on PASCAL 2005 image set. The results are shown in Table 5. RFSC-Gdy
achieves better results on all of the 4 categories than ERC-Forest.

Table 5. Comparison of the accuracy on PASCAL 2005 image set [8]

method motobikes cars bikes person

ERC-Forest 96% 95% 89% 90.9%

RFSC-Gdy 96.4% 95.3% 90.6% 91.4%

5 Conclusion

In this paper, we have introduced a codebook learning method called random-
ized forest sparse coding that integrates three concepts: ensemble, divide-and-
conquer and sparse coding. Justifications for the effectiveness and efficiency of
our method are also provided. The proposed scheme is applied to both the Can-
cer Image Classification and natural image classification and observes significant
improvement in performance.
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Abstract. Object localization is an important step common to many
different medical applications. In this Chapter, we will review the chal-
lenges and recent approaches tackling this problem, and focus on the
work by Song et.al. [20]. In [20], a new graphical model with additional
contrast and interest-region potentials is designed, encoding the higher-
order contextual information between regions, on the global and struc-
tural levels. A discriminative sparse-coding based interest-region detector
is also integrated as one of the context prior in the graphical model. This
object localization method is generally applicable to different medical
imaging applications, in which the objects can be distinguished from the
background mainly based on feature differences. Successful applications
on two different medical imaging applications – lesion dissimilarity on
thoracic PET-CT images and cell segmentation on microscopic images –
are demonstrated in the experimental results.

1 Introduction

A wide variety of medical applications comprise object localization as an impor-
tant step for discovering the anatomical or pathological information from images.
For example, region-of-interest (ROI) detection is helpful for early screening of
diseases; and lesion segmentation is useful for treatment planning. We consider
object localization as a generalization of both detection and segmentation, with
both automatic identification of ROI, and a good delineation of its boundary.

We focus on medical imaging problems in which objects can be localized
based on local-level features and feature differences between the objects and
background. For example, in positron emission tomography – computed tomog-
raphy (PET-CT) images, abnormalities typically show higher uptakes than nor-
mal tissues. In fluorescence microscopic images, the cell nuclei normally depict
darker colors then the other cell structures and the background. In brain mag-
netic resonance imaging (MRI), the white and gray matter display quite different
intensities and spatial patterns.

Local features are usually not sufficient for a good localization, because of
large inter-subject variations causing same anatomical structures appearing quite
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differently across images. The problem is further complicated due to low feature
differences between different tissue types and especially for the boundary areas
between the objects and background. In addition, pathologies often lead to larger
imaging variations, and an accurate object localization is thus more challenging.

For such imaging problems, while lots of work have been reported
[25,16,19,5,18,4,21,15], they are mostly designed to be domain specific; and often
rely on sophisticated feature sets, which can be computational-intensive and dif-
ficult to adapt to other imaging problems. Furthermore, because such features
are usually designed based on domain knowledge and empirical studies, their
effectiveness may be restricted to the limited scenarios available in the datasets.

Therefore, in [20], we proposed an object localization method that can be
generally applicable, requires simpler feature sets, and addresses low feature
differences and large inter-subject variations. With region-based labeling, each
image region is classified as the object or background to produce the localization
output. In summary, our main contributions are the following: (i) the discrimi-
native capability of the basic conditional random field (CRF) is enhanced with
two contextual priors, namely the contrast and interest-region potentials, to en-
code the global contrast information and region-based feature similarities, for
improving the boundary delineations; (ii) a sparse-coding classification method
is proposed for interest-region detection, with improved discriminative power of
the learned dictionaries; and (iii) the design is kept general with simple feature
sets configurable for the specific application, and has been successfully applied
to both lesion dissimilarity on thoracic PET-CT images and cell segmentation
on microscopic images.

Related Work. We focus our review on CRF-based localization methods in
both medical and general imaging domains. As an undirected graphical model,
CRF is now one of the most successful trends in object class image segmentation
[6]. The basic and most commonly used formulation is to have local features rep-
resented as graph nodes and consistency constraints between neighboring regions
as edge connections [17]. However, comparing to the non-graphical discrimina-
tive approach, generally such models add advantages little more than spatial
smoothing of labelings [25].

Higher-level features, i.e. contexts in images, are often acknowledged as im-
portant discriminative factors [6,4]. In particular, relationship information on a
larger scale, such as those across image slices [8], relating to reference objects
[2], or between distant image regions [7], can be modeled as pairwise connec-
tions to encourage labeling consistency or enhance the discriminative power of
local features. Such ideas of connecting beyond immediate neighbors are inspir-
ing; however, choosing the related pairs and describing their interactions are
rather application specific. To explore multi-scale region interactions, hierarchi-
cal models have been proposed [11,3]; however, they are normally created based
on region clustering, without considering the actual object structures. At a more
structural level, object detectors with bounding box outputs have been incorpo-
rated into CRFs as consistency constraints [12,6]. Although the idea is sound,
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such methods are normally built based on well-established object detectors and
thus require only simple interaction modeling; but both assumptions are not
suitable for our problem domain.

2 Object Localization

Given an image I, we first oversegment it into a set of regions {rp}, using quick-
shift clustering [24], to incorporate superpixel-level information around the pix-
els. The objective of object localization is then to derive a binary mask L = {lp},
with each lp ∈ {0, 1} indicating whether the region rp belongs to the object.

2.1 The Proposed CRF Model

We formulate the object localization problem as a binary labeling task using a
new CRF model, with the following energy function:

E(L|I) =
∑
p

φL(lp)︸ ︷︷ ︸
local

+
∑

(p,q)∈NS

ψS(lp, lq)︸ ︷︷ ︸
smooth

+

∑
(p,c)∈NC

ψC(lp, lc)︸ ︷︷ ︸
contrast

+
∑

(p,i)∈NR

ψR(lp, li)︸ ︷︷ ︸
interest-region

(1)

where the set of random variables or nodes of the graph is denoted by L =
{{lp} ∪ {lc} ∪ {li}}, including the new auxiliary nodes from the contrast (lc)
and interest-region (li) potentials. The probability of a certain configuration is a
conditional distribution on the energy function E(L|I), and the optimal labeling
is derived by minimizing the total energy using the graph cut [10].

The local potential φL(lp) describes the cost of rp labeled as 0 or 1:

φL(lp) = 1− P (rp = lp|fp) (2)

where fp is the local feature vector of rp, and P (.) is the probability estimate of
labeling obtained using a binary support vector machine (SVM).

The smooth potential ψS(rp, rq) penalizes the differences in labeling of the
neighboring regions rp and rq based on their feature distances with a Potts
model:

ψS(lp, lq) = exp(−‖ fp − fq ‖2
2βS

)1(lp = lq) (3)

where βS is the normalization factor as the average of all L2 distances between
neighboring feature vectors in I. The regions rp and rq are considered neighbors
if they share some common border in I, and the set of all neighboring pairs is
denoted by NS .

While the first two potentials follow the standard CRF constructs (Figure 1a),
we describe the contrast and interest-region potentials (ψC , ψR, NC and NR) in
the following.
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Fig. 1. The proposed CRF model. (a) The standard CRF construct, with nodes rep-
resenting the image regions and edges linking the neighboring regions. (b) Introducing
two auxiliary nodes (object and background) for the contrast potential, with edges
linking the image regions and the auxiliary nodes (showing only one set of edges for
easier viewing). (c) Based on the detected interest region (purple circle), an auxiliary
node for the interest-region potential is added, with edges linking all image regions in
the interest-region and the added node.

2.2 Contrast Potential

To improve the labeling accuracy, we want to explore the contrast information
in the image I, with the following motivations. Across different images, there
are often large inter-subject variations, causing overlaps between the feature
ranges and hence misclassifications. Nevertheless, within one image, there is
always a certain degree of contrast between the objects and background; and
the contrast information helps to discriminate between the two types. To encode
the contrast information, two additional nodes corresponding to the object and
background, namely the contrast nodes loc and lbc, are then added to the graph.
A pairwise connection between the image region lp and each of the two nodes
is also established (Figure 1b), and NC denotes the set of all such pairwise
connections. With such a construct, we expect to encourage the same labelings
between the image region and contrast nodes if they exhibit similar features,
and also different labelings otherwise.

To do this, we first define the unary potentials of the two contrast nodes:

φC(l
o/b
c ) =

{
0 if l

o/b
c = 1/0

C otherwise

}
(4)

where C is a large constant, so that large costs are assigned to loc = 1 and lbc = 0
and 0 costs otherwise, to effectively fix the labelings of the two nodes in the
inference results.

We then define the pairwise potentials for the edges (lp, lc) with the following.
First, based on the labeling outputs with local features only (Eq. (2)), we ob-
tain the initial estimation of the objects and background areas, and two feature
vectors fo

c and f b
c are then derived for the estimated objects and background

(details of feature derivation in Sec 4). Next, we compute the contrast features
between rp and the objects and background as gp = {fp, fp/fo

c , fp/f
b
c}, and
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classify the feature gp to two classes – likely or unlikely to represent the object,
denoted as likely(1) and unlikely(1) – using a binary SVM. Then, based on the
probability estimates γp of class likely(1), the pairwise costs are computed as:

ψC(lp, l
o
c) =

⎧⎪⎨⎪⎩
0 if lp = 1, and likely(1)

1− γp if lp = 1, and unlikely(1)

γp if lp = 0

⎫⎪⎬⎪⎭ (5)

ψC(lp, l
b
c) =

⎧⎪⎨⎪⎩
0 if lp = 0, and unlikely(1)

γp if lp = 0, and likely(1)

1− γp if lp = 1

⎫⎪⎬⎪⎭ (6)

Note that because of the likely and unlikely terms, the above pairwise poten-
tials no longer follow the Potts model, and penalize labeling consistency if the
features of the image regions and the contrast nodes are actually dissimilar. The
total energy of the contrast potential can however, be rewritten in the follow-
ing format, to keep it submodular (binary and with pairwise term encouraging
consistency) for efficient graph-cut energy minimization:∑

(p,c)∈NC
ψC(lp, lc) =

∑
c φC(lc)+∑

p αp1(unlikely(lp)) +
∑

(p,c)∈NC
αp1(lp = lc)

(7)

where αp = γp if lp = 0, and αp = 1− γp otherwise.

2.3 Interest Region Potential

Although the contrast nodes represent the object and background regions of
an image I on a global scale, the structural information between image regions
is not explored. An obviously important structural information is that, regions
that are likely parts of the same anatomical or pathological structure should
take the same labelings. In our formulation, the hypothesis is that, if we can
detect a set of structures, i.e. interest regions Ri, the comprising regions rp ∈ Ri

should preferably be assigned to the same category, but also depending on their
individual suitability of such an labeling. The advantage of such an approach
is that, we can employ a totally different method to detect the interest regions
(e.g. non-CRF and different features), so the generated regions can serve as a
second opinion to refine the object localization.

Assume a set of interest regions Ri are detected from an image I (details in
Sec 3), and each interest region is characterized by its feature fi, most probable
label l∗i ∈ {0, 1} and a set of image regions rp covered. Note that rp might
partially overlap with Ri especially around the boundary areas of Ri, and hence
not all rp covered by Ri should have the same label as l∗i . To determine the the
probability of lp = l∗i , we first compute the following feature vector:

vp = {∩(rp, Ri)/rp, ‖ fp − fi ‖, fi−p/fi} (8)
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which represents the degrees of area overlap and feature homogeneity between
rp and Ri, with fi−p denoting the feature of Ri excluding rp. Then a binary
SVM is trained to classify vp into same or diff categories, indicating if lp = l∗i
or otherwise, and the probability estimate of lp = l∗i is denoted by θp,i.

Next, to integrate the interest-region detection hypothesis into the CRF for-
mulation, for each Ri detected, a node li is added to the graph, with the unary
potential φR(li) defined similarly to Eq. (4). An edge is then connected between
each pair of (lp, li) for all rp ∈ Ri (Figure 1c) with NR denoting all such edges
for image I, and we define the pairwise potential as:

ψR(lp, li) = θp,i1(lp = li) (9)

Since rp ∈ Ri is quite likely to exhibit the same labeling as Ri, we choose to use
the Potts model to encourage such consistency. The cost of different labelings
is directly related to the probability of lp = l∗i , and hence we use θp,i as the
pairwise cost. If rp is less likely to be labeled as l∗i , the use of θp,i is also able to
lessen the consistency constraint.

With the above definitions, the total energy term of the interest-region po-
tential is thus rewritten as the following:∑

(p,i)∈NR

ψR(lp, li) =
∑
i

φR(li) +
∑

(p,i)∈NR

θp,i1(lp = li) (10)

2.4 Graph Inference

All energy terms are given equal weights (based on our empirical evaluation),
and piecewise learnings of the probability estimates used in the local, contrast
and interest-region potentials are conducted first. The binary inference problem
L∗ = argmin E(L|I) is then solved efficiently using the graph cut.

3 Detection for Interest Region Potential

Due to our motivation of detecting the interest regions in a totally different
way from the graph-based approach to support the interest-region potential (Sec
2.3), we choose to design a sparse-coding based classification method for interest-
region detection. Besides its popularity and widely demonstrated effectiveness
[14], we believe sparse coding can be particularly suitable for our problem be-
cause of the large variations in the dataset.

3.1 Sparse Coding for Classification

Let Y be a set of n-dimensional data samples Y = {yj : j = 1, ..., J} and Y ∈
Rn×J . A representative dictionary for Y with K atoms is denoted as D = {dk :
k = 1, ...,K} ∈ Rn×K . Each yj can then be represented as a linear combination
of a few (i.e. ≤ T ) atoms in D with minimum reconstruction error, and the
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corresponding coefficient vector xj is the sparse code. Denoting the set of sparse
codes of the data samples Y as X = {xj : j = 1, ..., J} ∈ RK×J , both the
dictionary D and sparse coding X can be learned with K-SVD [1] by solving the
following problem:

〈D,X〉 = argmin
D,X

‖Y −DX‖22 s.t.∀j, ‖xj‖0 ≤ T (11)

where ‖Y −DX‖22 represents the reconstruction error.
Once the dictionary D is learned, a given data sample y can then be repre-

sented as a sparse code x by solving the following using the OMP algorithm [23]:

x = argmin
x

‖y −Dx‖22 s.t. ‖x‖0 ≤ T (12)

A classifier (e.g. SVM) can then be trained based on a set of such sparse codes,
so that x and hence y can be classified.

In our context, an image I is divided into grid-based patches, and each image
patch is represented by its feature descriptor y. The dictionary D is generated
with a training set Y , and each image patch is then classified as interest region
or otherwise (h ∈ {1, 0}) based on its sparse code x.

3.2 Discriminative Sparse Learning

A shortcoming with the above approach is the separation of the dictionary learn-
ing and classifier training, hence the learned dictionary might not produce dis-
criminative sparse codes for the classification. Several approaches have thus been
proposed to integrate the two steps of learning [9]. However, it is observed that
such an integrated approach is still largely optimized for the reconstruction term,
which may affect the discriminative power of W . Therefore, we suggest that the
integrated learning for dictionary D should not totally replace the separate clas-
sifier training, and propose a different method as follows.

First, for the data samples Y ∈ Rn×J , we create a corresponding labeling
vector H = {hj} ∈ {−1, 1}1×J , with 1 for interest region. Based on linear-kernel
SVM, the optimization objective of the weight vector w ∈ R1×K is:

argminw,ξ,b
1
2‖w‖2 + C

∑
j ξj

s.t. ∀j, hj(w ∗ xj + b) ≥ 1− ξj , ξj ≥ 0
(13)

Combining Eq. (11) and (13), and by simplifying the complexities caused by the
inequality constraints on ξj and the signed hj, we relax the formulation based
on least squares SVM (LS-SVM) [22] as:

〈D,X,w〉 = argminD,X,w ‖Y −DX‖22 + ‖w‖2 +
∑

j ξ
2
j

s.t. ∀j, ‖xj‖0 ≤ T, hj(w ∗ xj + b) = 1− ξj

(14)
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By combining w and b, and substituting ξj , the problem is then equivalent to
the following:

〈D′, X ′, w′〉 = argminD′,X′,w′ ‖Y −D′X ′‖22 + ‖w′‖2+

‖H − w′X ′‖22 s.t. ∀j, ‖x′j‖0 ≤ T
(15)

where w′ = [w, b] ∈ R1×(K+1) and X ′ ∈ R(K+1)×J appended an addition dimen-
sion with constant value 1 to absorb b, and D′ ∈ Rn×(K+1) with an additional
atom to be dimensionally compatible with X ′. To solve Eq. (15), an alternative
approach is used, as detailed in [20].

4 Experimental Results

4.1 Results on Lesion Dissimilarity

Measuring lesion similarity is important in many medical applications, such as
content-based image retrieval for diagnosis referencing. In our approach, first,
lesions (i.e. lung tumors and abnormal lymph nodes) in thoracic PET-CT im-
ages are localized in each image slice with the proposed method. Second, their
textural and spatial features are extracted in 3D. Lastly, a weighted histogram-
intersection is used to compute the feature distance. The actual implementation
details are referred to [20]. The datasets comprise of 40 thoracic PET-CT 3D
image sets from non-small cell lung cancer studies. A total of 64 lesions includ-
ing lung tumors and abnormal lymph nodes are annotated, and the similar-
ity/dissimilarity relationships between each pair of 3D image sets are marked as
the ground truth. Three image sets showing typical thoracic characteristics are
selected for training, and testing is performed on all image sets.

(a) (b) (c) (d)

Fig. 2. Two example localization outputs. (a) Transaxial CT image slices (showing
the thorax after preprocessing). (b) Co-registered PET image slices. (c) The labeling
outputs using standard CRF, with dark gray for lung field, light gray for mediastinum
and white for lesion. (d) Our localization outputs with the two additional potentials,
with lesions highlighted in orange.
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Figure 2 shows examples of the lesion localization. The first example illustrates
the benefits of the contrast potential, in which the lesion is initially not detected
with standard CRF, due to the relatively low PET intensities. The interest-region
potential is particularly useful in refining the lesion boundaries, which tend to
be underestimated with the standard CRF, as shown in the second example. It
is observed that, the standard CRF tends to produce a large number of either
totally undetected or underestimated lesions. Based on the measured 3D object-
level localization results, we summarize the localization recall, precision and
F-score in Table 1.

The localized lesions are then used to retrieval images with similar lesions.
The retrieval tests are performed by using each 3D image set as a query image,
and the remaining 39 images are ranked accordingly. We compare the retrieval
performance with three other approaches: (i) state-of-the-art of thoracic PET-
CT image retrieval [18]; (ii) spatial pyramid matching (SPM) with local intensity
features extracted from grid-based image patches; and (iii) bag-of-words with
SIFT descriptor. As shown in Figure 3, our proposed method exhibits the highest
retrieval precisions for all recall levels.

Table 1. The localization performances comparing our proposed method with standard
CRF

Recall (%) Precision (%) F-score (%)

Ours 97.0 95.4 96.2

CRF 76.6 94.2 84.5

4.2 Results on Cell Segmentation

Cell nucleus segmentation is one of the most important tasks in analyzing and
quantifying fluorescence microscopic images. In our approach, the cell nucleus is
localized using the proposed method; and since the localization results also tend
to delineate the nucleus boundaries closely, such an approach can be directly
used for segmentation. The actual implementation details are referred to [20].
The serous database [13] is used to evaluate the cell segmentation. The database
contains 10 microscopic images. A total of 254 cell nuclei are present in the
images, with ground truth of cell nuclei segmentation provided. Same as [4], half
of the images are used for training and the others for testing.

To evaluate the segmentation performance, we compute the PASCAL VOC
criteria of pixel- and object-level accuracies, both as TP/(TP+FN+FP). We
also compare our results with three approaches: (i) L+S, the standard CRF with
local and smooth potentials; (ii) L+S+C, with additional contrast potential; (iii)
L+S+R, with additional interest-region potential; and (iv) the state-of-the-art
discriminative labeling method [4] reported for the same database. As listed
in Table 2, our method achieves the highest pixel- and object-level accuracies.
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Fig. 3. The retrieval precision and recall

Table 2. The segmentation results comparing various methods

Ours L+S L+S+C L+S+R [4]

Pixel Acc (%) 85.6 82.0 83.1 84.6 85.1

Obj Acc (%) 89.3 84.5 86.2 88.7 84.0

(a) (b) (c)

Fig. 4. Two example segmentation results. (a) Cropped microscopic images, with or-
ange circles delineating the segmentation ground truth. (b) The segmentation results
with L+S. (c) The segmentation results of our proposed method.

The improvements of having the contrast and potential terms are evident. The
performance difference between L+S and [4] suggests that if we incorporate the
feature set of [4], the segmentation accuracies would be further improved. By
replacing the interest-region detection with standard sparse-coding classification,
it is found that our proposed method exhibits on average 1.1% improvement for
both pixel- and object-level measurements with the new approach.

The first example shown in Figure 4 indicates that our method is quite
effective in removing the cytoplasm areas that connect the cell nuclei. As shown
in the second example, lighter intensities of the cell nuclei cause many false
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negatives with the standard CRF approach; and our result shows more accurate
delineations of the actual contours.

5 Summary

In this Chapter, we describe a new method for object localization in medical
images [20]. A new CRF model with additional contrast and interest-region po-
tentials is proposed for effective object localization, addressing large inter-subject
variations and low feature differences between the objects and background. A
new sparse-coding classification approach is also designed for the interest-region
detection, with enhanced discriminative power of the learned dictionaries. The
proposed method is applied to lesion dissimilarity on thoracic PET-CT images,
and cell segmentation on microscopic images, and shows higher performance
compared to the state-of-the-art techniques.
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Abstract. The automatic detection and segmentation of liver lesion
is useful in many clinical application, whereas it remains a challenging
task due to the largely varied shape, size and texture of the diseased
masses. In this paper, we present a cascade learning approach comprising
multiple classifiers for the detection of two different types of solid liver
lesions, hypodense and hyperdense lesions. In particular, we propose an
efficient gradient based locally adaptive segmentation method for the
solid lesions, where the segmentation results are used to extract shape
features to boost up the detection performance. The proposed method
is validated on a total of 660 volumes with 1,302 hypodense lesions,
and 234 volumes with 328 hyperdense lesions. The experimental results
show a resulting 90% detection rate at 1.01 false positives per volume
for hypodense lesion and 1.58 false positives per volume for hyperdense
lesion, respectively, using three fold cross validation.

1 Introduction

Detection and segmentation of abnormal hepatic masses is important to liver
disease diagnosis, treatment planning and follow-up monitoring. As a significant
part of clinical practice in radiology, liver tumors are usually examined and
tracked every several weeks or months to assess the cancer staging and therapy
response based on 3D Computed Tomography (CT) data. However, manually
finding these lesions is tedious and time consuming, and highly dependent on
the observer’s experiences. Hence, a system of automatic lesion detection and
measurement is desirable.

There is a limited amount of previous work directed to automatic liver lesion
detection, compared with lesion segmentation. Ye et al. proposed the use of gray-
level statistical features and temporal enhancement pattern of different contrast
phases to classify the liver tissues with SVM, however, it required experienced
radiologists to draw region of interest in advance and multi-phase enhanced CT
images [1]. Moltz et al. presented a simple threshold filtering method followed by
circular structure detection with Hugh transform to locate matching lesions in
follow-up CT examinations [2]. It assumes that the lesion mask of the baseline
scan is available, hence the tumor location is known coarsely and detection can be
restricted to a local area in the follow up scans. A multi-level Otsu’s method with
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level set algorithm was used in [3] to segment complicated liver lesion but the user
has to first manually select several points covering the whole lesion inside the liver
area. Other lesion segmentation methods dependent on user interactions include
random walker [4], graph cut and watershed [5], and seeded region growing [6].

In this work, we present a fully automated method to detect two most com-
mon types of hepatic lesions, hypodense (darker) and hyperdense (brighter) le-
sions, from single 3D CT image of any contrast phase. It generates lesion can-
didates with a learning based approach as opposed to simplistic thresholding
or painstaking local minimum point clustering [7,8]. Because lesion detection is
usually a highly unbalanced classification problem where negative samples, i.e.,
healthy tissues or other structures such as vessels, are many more than positive
samples, a cascade learning framework [9] is employed to speed up the detec-
tion and improve the classification result for unbalanced data problems [10].
This differentiates our method from other learning based liver lesion segmenta-
tion approaches such as ensemble segmentation using AdaBoost [11] or iterative
Bayesian approach [12]. In addition, we propose a new gradient based locally
adaptive lesion segmentation method. The aim of the segmentation is not to
perfectly locate the lesion boundaries, but provide fast and reasonable segmen-
tation results from which geometric and statistical features can be extracted to
improve detections. The idea of coupling segmentation and detection was pro-
posed in [13] and later applied in lymph node detection problem [14]. Our work
uses a much simpler segmentation method than the Gaussian MRF and gradient
descent in [14] and extracts different segmentation based features.

The rest of the paper is organized as follows. Section 2 describes this cas-
cade learning system for liver lesion detection and outlines the gradient based
locally adaptive segmentation method. It will be explained how the unsupervised
constructed segmentation can be used to improve the supervised detection per-
formance. In Section 3, experimental validation results on two particular types
of liver lesions, hypodense and hyperdense lesions, are presented. We conclude
with a review of our contribution and potential extensions in Section 4.

2 Liver Lesion Detection and Segmentation

2.1 Liver Segmentation and Liver Lesion Annotation

To constrain the search, the liver is first automatically segmented using a hi-
erarchical learning based method described in [15]; the liver subvolume is then
cropped and resampled to 1.5 mm isotropic resolution. Each liver lesion of size
at least 10 mm in the dataset is annotated by placing a bounding box around
it as shown in Fig.1. The voxels within a predefined distance from the bound-
ing box centers are used as positive samples and voxels out of the boxes as
negative samples in training. The lesions are labeled as hypodense (darker) or
hyperdense (brighter) depending on the enhancement pattern difference between
normal liver parenchyma and lesions.
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2.2 Detection and Segmentation

Fig. 1. The liver lesions are annotated with
bounding boxes. The segmented liver is
overlaid on the original volume in light red.

Like many other Computer Aided Di-
agnosis (CAD) problems, lesion detec-
tion data sets are large and extremely
unbalanced between positive and neg-
ative classes, given the fact that liver
lesions are generally a few and small
compared with the whole liver vol-
ume. Therefore, we use a cascade
classification framework for lesion
detection as shown in Fig.2. The
coarse-to-fine cascade structure has
been shown effective in speeding up
the detection process by discarding
many negative samples with fewer
simple features before more complex
classifiers are called upon to further
reduce the false positives [9]. The cas-
cade framework can also be used to
simplify the difficult unbalanced clas-
sification problem into a sequence of linear programs, each of which separates
only a subset of negative samples from the positives [10].

Fig. 2. Liver lesion detection system

As shown in Fig.2, the proposed
liver lesion detection system com-
prises four classifiers from simple to
complex. First, we use a Haar based
detector to generate lesion candidates
followed by bootstrapping to prune
these candidates also with Haar fea-
tures. Then lesion segmentation is
performed and the resulting segmen-
tation is used to obtain geometric and
statistical features to verify the candi-
dates and reject the negative ones. Fi-
nally, a more informative set of steer-
able features [16] are extracted from
the segmentation to further reduce
false positives.

Lesion Candidate Generation.
Liver lesion center candidates are de-
tected from all voxels in the liver sub-
volume in two stages. The initial set of candidates are generated using a fast
Haar-based detector. It is a cascade of two AdaBoost classifiers [17], the first
classifier has 100 weak learners and the second has 200. They are trained using
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138,464 3D Haar features [18] with all positive voxels and 1% negative voxels
randomly sampled. This stage achieves 100% detection rate with an average false
positive rate about 0.4% on training data.

A second Haar detector is trained for bootstrapping, using the same set of
features and classifier configuration but with all positives and all negatives pass-
ing through the first stage. This stage achieves about 25% false positive rate
on the average at 100% detection rate on training data. The significantly in-
creased false positive rate suggests that Haar features are not enough to further
reduce the false detections. More complicated features such as texture features
or shape features are often used to distinguish various lesions, e.g., gray-level co-
occurrence matrix [1], local binary pattern [19] or Hessian eigen-system based
filters [20]. However, these features are computationally expensive. In this work,
we employ geometric and statistical features which embed the shape and tex-
ture information and can be efficiently computed from the lesion segmentation.
From the perspective of marginal space learning [16], segmentation provides ex-
tra information about object size and orientation that improves the detection
performance.

Lesion Segmentation. Many liver lesion segmentation methods have been
proposed as mentioned in Section 1. We choose adaptive thresholding because
it is fully automatic, very simple and precise segmentation is not our target.
However, all previous works use single threshold for filtering the lesions, which
is selected with different methods such as histogram analysis [2,21], or cross-
entropy minimization [22]. However, single threshold is subject to the constraint
of inhomogeneous lesions in one liver. To solve this problem, we present a multi-
thresholding method based on local surface gradients as given in Algorithm
1. This method presents a connected component tree structure which is simi-
lar to maximally stable extremal regions (MSER) [23] approach used in stereo
matching and object recognition. But we select the optimal threshold based on
maximum gradient response rather than area stability criterion in [23]. The ex-
ample segmentation results of the proposed multi-threshold method are given
and compared with single threshold [2] in Fig.3. It is clear that the proposed

(a) (b) (c) (d)

Fig. 3. (a) (c) single threshold segmentation; (b) (d) proposed multi-threshold segmen-
tation. Note that for hyperdense lesion, the original volume should be inverted before
applying algorithm 1.
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Algorithm 1. Gradient based locally adaptive segmentation method

Input: Liver volume I(x, y, z) and number of thresholds n.
Output: Threshold Ω(x, y, z), binary segmentation S(x, y, z) = 1 if I(x, y, z) <
Ω(x, y, z) and 0 otherwise.

1. Run liver intensity histogram analysis and obtain the peak value τ and standard
deviation σ. Set τmin = τ − nσ,τmax = τ and Δτ = σ.
2. Start from single threshold ω = τmax and obtain initial binary segmentation S.
3. Run 3D connected component labeling on S. Each connected component is denoted
as Ci and its surface as Ri.
4. Calculate the mean surface gradient norm of Ci:Gi = Σ(x,y,z)∈Ri

|∇I(x, y, z)|/|Ri|.
5. For Ci, use threshold ω′ = ω − Δτ to obtain new segmentation and connected
components C′

i, R
′
i and G′

i.
6. Ω(x, y, z) = ω if Gi ≥ G′

i and ω′ otherwise, ∀(x, y, z) ∈ Ci, then update S.
7. Set ω = ω′ and ω′ = ω′ −Δτ and repeat step 3 to 7 until ω = τmin.

method achieves better segmentation results. Finally, watershed transform [24]
is performed on the segmentation results to separate closely connected lesions.

Lesion Candidate Verification. The segmentation is used to derive more
informative features for further evaluation of the liver lesion candidates. The
candidate verification consists of two coarse-to-fine detectors as shown in Fig.2.
The first detector calculates 28 geometric features and 6 statistical features of
each connected component obtained in the segmentation. The geometric fea-
tures include diameter, volume size, surface area, compactness, rectangularity,
elongation, central moments and so on; the statistical features comprise min,
max, mean, variance, skewness and kurtosis of intensities. Because some struc-
tures in the liver show similar intensities to the lesions, for instance, vessels and
hyperdense lesions are both enhanced in the arterial phase, many segmented
objects are not lesions. Therefore, we use these shape and statistical descriptors
to identify and reject the obvious non-lesion segmentations.

The second candidate verification detector uses much more dense steerable
features [14,16] computed from the segmentation to further remove difficult false
positives. The features are calculated by casting rays in 162 directions in 3D space
from each candidate location as shown in Fig.4. In each direction, the following
features are calculated at the boundary of the segmentation:

Fig. 4. Triangulation
of a sphere using 162
vertices and 320 tri-
angles

Intensity Based Features: Assume the intensity and
gradient at boundary (x, y, z) is I and g = (gx, gy, gz),
respectively. For each of the 162 directions, we com-
pute 24 feature types, including I,

√
(I), I2, I3, log I,

gx, gy, gz, ||g||,
√
(||g||), ||g||2, ||g||3, log ||g||. To in-

corporate invariance into the detector, the 162 val-
ues for each feature type are sorted by value. This
not only ensures rotational invariance, but invariance
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to all permutations, including mirroring. Additionally, for each of the 24 feature
types, the 81 sums of feature values at the pairs of opposite vertices are computed
and sorted by value.

Geometry Features: The 81 diameters (distances between opposite vertices
relative to the segmentation center) are sorted. For each diameter the following
features are computed: (a) The value of each diameter. (b) Asymmetry of each
diameter, i.e. the ratio of the larger radius over the smaller radius. (c) The ratio
of the i-th sorted diameter and the j-th diameter for all 1 ≤ i < j ≤ 81. (d)
For each of the 24 feature types, the max or min of the feature values at the
two diameter ends. (e) For each of the 24 feature types, the max or min of the
feature values half way to the diameter ends.

In total there are about 17,000 features. Using these features, a cascade of
two AdaBoost classifiers with 70 and 140 weak learners each is trained. Because
multiple candidates can be detected in a single lesion, all the remaining can-
didates at the final stage are clustered using non-maximal suppression [14]. To
accommodate to lesions of vastly different sizes, the above process is repeated
with different resolutions in a pyramid manner.

3 Experimental Results and Discussion

Data Collection. In the experiment, we collected 661 liver CT subvolumes from
564 subjects with 1,302 hypodense lesions, and 234 volumes from 198 subjects
with 328 hyperdense lesions. The annotations were obtained as described in
Section 2.1 by two radiologists based on visual assessment and consensus review.
In this work, we target tumors of moderate size with diameter between 10 mm
to 100 mm, therefore all the annotated lesions are of size in this range. Data
were collected from multiple hospitals.

Evaluation Methodology. A lesion is considered as detected if there exists a
detection with its center inside this lesion bounding box, whereas a detection is
considered as false positive if its center outside any annotated lesion bounding
boxes.

Fig. 5. False positive
of hyperdense lesion
detection

Results. The liver subvolumes are split into training and
testing data via three-fold cross validation which is re-
peated for 5 times and all results presented here are the
averages over 5 runs. The volumes of the same patient
are always put into the same folder. The resulting ROC
curves are given in Fig.6. The proposed detection system
reaches 1.01 false positives per volume and 1.58 false posi-
tives per volume at 90% sensitivity for hypodense and hy-
perdense lesion, respectively. The detection performance
based on single threshold segmentation method [2] and
without watershed transform is also compared in Fig.6.
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The hypodense lesion detection is better than hyperdense detection because we
have less annotations of hyperdense lesions and more importantly, hyperdense
lesions detection is more easily confused with other bright structures especially
the vessels as shown in Fig.5. In this example, the aorta is falsely truncated and
segmented as a part of liver, which is then misclassified as a hyperdense lesion.

Fig. 6. Lesion detection ROC curves

Examples of detected true positives are shown in Fig.7. The bounding box of
a detected lesion is obtained from the segmentation. Note that not all segmented
objects are lesions. For hyperdense lesion, the liver segmentation is also given.
As shown in Fig.7, the proposed system can detect lesions of highly different
sizes, shapes, intensities and positions in the liver. The average running time is
20-30 seconds per volume.

Fig. 7. Example detection and segmentation results. Top row: hypodense lesions. Bot-
tom row: hyperdense lesion.

4 Conclusion

In this paper, we presented a cascade learning system for automated liver lesion
detection based on a novel multi-threshold segmentation method. We discussed
how the segmentation results can be used to extract shape and intensity features
to improve the detection performance. Ongoing work will include improvement
of hyperdense lesion detection, particularly separation from the vessels. As liver
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lesions exhibit various appearances in different contrast phases, the prior knowl-
edge of the contrast phase can also potentially benefit the detection performance.
Also, because both hyperdense and hypodense lesions possess similar shapes and
structures, they might be used in training together to improve each other’s de-
tection with techniques such as transfer learning.
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Abstract. After a blood vessel injury, blood platelets progressively ag-
gregate on the damaged site to stop the resulting blood loss. This natural
mechanism called thrombosis can however be prone to malfunctions and
lead to the complete obstruction of the blood vessel. Thrombosis disor-
ders play a crucial role in coronary artery diseases and the identification
of genetic risk predispositions would therefore considerably help their di-
agnosis and therapy. In vitro experiments are conducted in this purpose
by perfusing blood from several donors over a surface of collagen fibres,
which results in the progressive attachment of platelets. Based on the
segmentation over time of these aggregates called thrombi, we propose
in this paper an automatic method combining tracking and event de-
tection which allows the extraction of characteristics of interest for each
thrombus growth individually, in order to find a potential correlation
between these growth features and blood donors genetic disorders. We
demonstrate the benefits of our approach and the accuracy of its results
through an experimental validation.

Keywords: Microscopy image analysis, thrombus segmentation, multi-
target tracking, event detection.

1 Introduction

Thrombosis denotes the abnormal coagulation of platelets that may occur after
a blood vessel injury and eventually leads to the complete obstruction of the
blood circulation. In addition to the identification of environmental risk factors
such as smoking, obesity, and physical inactivity, the study of possible genetic
predispositions to thrombosis is becoming increasingly important to improve the
diagnosis and the therapy of coronary artery diseases. Genome-wide association
studies identified some potential novel genes as being correlated with thrombosis.
Experimental analyses are conducted to confirm their involvement in thrombosis
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malfunction, either in vivo on zebrafish larvae [1] or in vitro by perfusing freshly
collected human blood through a chamber filled with collagen fibres. In the latter
case, the progressive attachment of platelets leads to the formation of individual
thrombi observed through a phase-contrast microscopic system. The growth rate
of each individual thrombus over time is a measure of interest as well as the time
to attachment of their first platelet. The high number of required experiments
raises the need of a tool able to automatically segment and track the different
thrombus areas over time to derive their individual growth characteristics.

The tracking of multiple objects within microscopic videos is a challenging
problem for which many methods exist in the litterature. It often follows a first
step where objects of interest are detected. Based on these detections, objects
are matched from frame to frame using optimisation methods as for example the
Hungarian algorithm for linear assignment [2] or the branch and bound algo-
rithm for binary integer programming [3]. Other approaches are based on model
evolution like particle filtering generalised for the tracking of several objects
[4]. Most of the tracking methods follow one of these two kinds of approaches,
or try to combine them [5]. A first attempt has been presented in [6] for the
segmentation and tracking of thrombi in a similar experimental setup. Authors
introduced three complementary gradient-based features that were learned on
a video of reference. Then, by feeding these features into a decision tree, they
could demonstrate promising segmentation results. Each thrombus was defined
by the first platelet and tracked over the whole video to ultimately obtain the
growth curve of each thrombus over time. However, the fact that thrombi grow at
many different locations often results in merging events. The blood flow regularly
causes the detachment of platelets, which can also result in splitting of thrombi.
Several tracking methods able to follow objects along videos despite split and
merge conditions emerged from the computer vision community [7,8,9]. They
assume however that each object is well defined all along the scene. In our case,
the integrity of each thrombus vanishes as soon as it exchanges platelets with
other thrombi, e.g during merging or splitting. Moreover, such events disrupt
the measured growth by inducing artificial changes of size without any biologi-
cal meaning. Being able to identify such events is a major requirement since it
permits to compute reliable growth rates to perform a meaningful comparison
between blood donors. We introduce in this paper a new method which is able,
from a segmented video, to match objects between two consecutive frames to
identify appearance, disappearance, splitting and merging events. Thereby we
can extract the relevant information to our application.

2 Methods

In this section, we first introduce our method for the thrombus segmentation
(Section 2.1). We describe afterwards our automatic method to identify special
events by assigning objects between two consecutive frames (Section 2.2).
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2.1 Thrombus Segmentation

We propose to formulate the thrombus segmentation problem as a binary clas-
sification task in which each pixel of a given frame is assigned to one of these
two classes of objects: background (B) or thrombus (T). The segmentation is
performed independently within each frame. More formally, let us consider a
frame represented by the intensity function I : Ω → R, where Ω ⊂ N2 rep-
resents the pixel lattice in the image domain. We denote by x = (x, y) a
pixel of coordinates (x, y) ∈ Ω in the frame I. Our goal is to assign a la-
bel c ∈ {background(B), thrombus(T )} to each pixel x of the frame I. In a
probabilistic fashion, this could be done by modeling the posterior distribution
P (c|x, I) and using maximum a posteriori:

ĉ = argmax
c∈{B,T}

P (c|x, I) (1)

The posterior P (c|x, I) quantifies the probability of observing the class c at the
pixel x given the information available over the frame. To model this posterior,
we propose to use a classification forest as described in [10]. Therefore, we gener-
ate a training set from a set of pixels extracted at different frames. Each training
instance is a pair (X(n), c(n)), where n = {1, · · · , Ntrain}, that represents a pixel
x(n) from a given frame described by a feature vector X(n) and its correspond-
ing class label c(n). To characterize the visual context of a pixel, we extract
at different scales a set of gradient-based features [6]. Following a “divide and

conquer” strategy, each tree of a forest {Ti}Ntrees
i=1 provides a piece-wise approxi-

mation Pi(c|x, I) by: (1) creating a partition over the feature space using simple
decision functions and (2), estimating the posterior in each cell of this partition.
Tree posteriors can be aggregated over the whole forest using averaging:

P (c|x, I) = 1

Ntrees

Ntrees∑
i=1

Pi(c|x, I) (2)

The final segmentation is obtained by thresholding this posterior, with a thresh-
old chosen to maximise the performance with respect to manually delineated
videos. Each connected component of the segmented image is called object. We
also apply some post-processing operations (morphological opening to discard
objects whose shape is too elongated and we remove the objects or holes smaller
than the size of a platelet).

2.2 Event Detections

Given the segmentation at frames t and t + 1, we want to identify the events
that occur between these two frames. The segmentation at frame t is a collection
of binary objects (Ot,k)1≤k≤Nt . Between t and t+ 1, the possible events are the
following:
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– Appearance: A new object (generally a single platelet) appears in the frame
t+ 1. Such appearances can occur anywhere within the field of view.

– Disappearance: An object of the frame t cannot be seen anymore in the
frame t+ 1. It often corresponds to isolated platelets that detach.

– Merge: Several objects of the frame t merge into an object of the frame
t+ 1.

– Split: An object of the frame t splits in several objects in the frame t+ 1.
– Normal growth: A thrombus grows undisrupted between the two frames.

The identification of these events is seen as an assignment problem. Similarly
as for a multi-target tracking problem, each object in a frame must be associated
to one, several or no objects in the next (or previous) one. The possibility to
assign an object to several objects (resp. none) allows us to identify splitting and
merging (resp. appearance and disappearance). Assignments are found globally
through the resolution of a binary integer programming problem minimising a
cost function especially designed for this application. We start the description
of our method by the definition of two types of distances we will use. We then
identify candidate regions for splitting and merging events by clustering thrombi
that are close to each other. Finally, we explain in details our formalism with
the help of a concrete example and the associated optimisation problem.

Distances between Two Objects. Distances between objects are an essential
quantity to estimate the cost of each association of objects. In the following, we
define two types of distances : the static and dynamic distances between two
objects.

Static distance: Within a same frame, we define the static distance between two
objects Ot,i and Ot,j by

dS(Ot,i,Ot,j) = min
(xi,xj)∈Ot,i×Ot,j

d(xi,xj) (3)

where d is the classical Euclidean distance between two points.

Dynamic distance: To define a distance between an object Ot,i at frame t and
an object Ot+1,j at frame t+ 1, we could use the distance we have just defined.
However, we propose to introduce some additional knowledge. In our controlled
experiment, we assume the blood flow to be laminar and constant through the
chamber, i.e horizontally from left to right in our images. Therefore, objects can
physically only move towards the right of the field of view with a significantly
low vertical component. Anticipating the fact that the distance between objects
Ot,i and Ot+1,j will be used as a cost to link Ot,i and Ot+1,j, we propose to for-
bide physically impossible motions by assigning an infinite distance between the
two objects if Ot+1,j is located “behind” Ot,i. More precisely, the (asymmetric)
dynamic distance is defined as

dD(Ot,i,Ot+1,j) = min
(xi,xj)∈Ot,i×Ot+1,j

d′θ(xi,xj) (4)



Automatic Event Detection within Thrombus Formation 219

Fig. 1. Two consecutive frames from a video. The frames have been spatially cropped
to reduce the number of objects and facilitate the visualisation. Please note that the
labels of the objects are arbitrarily generated within each frame and do not symbolise
any tracking.

where d′θ(xi,xj) is the classical Euclidean distance between two points if xj

is located in the cone whose apex is xi, whose aperture is θ and horizontally
oriented towards the right. If not, d′θ(xi,xj) is set to infinity (a very high number
in practice).

Potential Splitting and Merging Regions. Let us assume that Nt objects
are segmented in the frame t, where Nt rarely goes above 30 in such experiments.
We start our analysis by clustering objects that are close to each other in order
to identify candidate regions where merging or splitting might occur. We define
a maximum distance dSMmax stating the maximum possible static distance between
two objects at frame t that are susceptible to merge. For each object Ot,i, we
define its candidate objects for splitting and merging as the objects Ot,j verify-
ing dS(Ot,i,Ot,j) ≤ dSMmax. The identification of these candidate regions reduces
thereby the number of events we consider in our assignment problem and makes
it more tractable (the theoretical number of all possible combinations would be
exponential with respect to Nt).

Assignment Using Binary Representation. Let us denote Nm and Ns

respectively the number of possible merges and the number of possible splits
computed as we just described. Our goal is to assign to each object the type of
event it is involved in and to link it to the right object(s) in the other frame. We
represent the assignment of all objects by a binary matrix X of size Kt ×Kt+1

with Kt = Nt + Nm + 1 and Kt+1 = Nt+1 + Ns + 1. The optimal assignment
matrix X is found as the solution of a minimisation binary integer programming
problem under equality constraint.

Before going in details into the construction of this minimisation problem,
we illustrate on an example how a matrix X encodes the assignments. Let us
consider the situation shown in Figure 1, taken from a real video but cropped
to reduce the number of objects and increase the readability. 4 objects are seen
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in the frame t and 5 objects in the frame t+ 1. By constructing the equivalent
classes of thrombi in the frame t, we find the mergeM {1, 2} as the only possible
one. Similarly, looking at the equivalence classes in the frame t + 1 informs us
about the possible splits: only S {1, 2} and S {3, 4}. The expected assignment
matrix is the following:

Ot+1,1 Ot+1,2 Ot+1,3 Ot+1,4 Ot+1,5 S {1, 2} S {3, 4} Disappearance

Ot,1 1 0 0 0 0 0 0 0
Ot,2 0 1 0 0 0 0 0 0
Ot,3 0 0 0 0 0 0 1 0
Ot,4 0 0 0 0 0 0 0 1

M {1, 2} 0 0 0 0 0 0 0 0
Appearance 0 0 0 0 1 0 0 0

We can reformulate the information included in this matrix as follows. The
objects 1 and 2 of the frame t are normally growing without being involved in any
particular event. They are respectively linked to the objects 1 and 2 in the frame
t+1. Although the labelling number of these objects remains the same between
the two frames in this case, please note that labels are independently assigned
at each frame. The object 3 in the frame t splits into two objects labelled 3 and
4 in the frame t + 1. Finally, the object 4 of the frame t is disappearing, while
an object labelled 5 appears in the frame t+1. These two objects are not linked
to each other since the trajectory which this link would form is unrealistic from
a physical point of view (the vertical component is too high).

We can see with this example how X summarises in the general case all the
assignments. The rows correspond to the frame t and the columns to the frame
t+ 1. More precisely, the Nt first rows correspond to the objects of the frame t,
the Nm following rows correspond to the possible merge events and the last one
corresponds to appearances. Similarly, the columns correspond to objects in the
frame t + 1, splits and disapperances. We propose to estimate the assignment
matrix X as the solution of this optimisation problem:

min
X∈MKt,Kt+1

({0,1})
‖C.X‖1 (5)

where C is a cost matrix and . denotes the pointwise product. C summarizes
the cost associated to each possible assignment and the way it is computed is
described later in the paper. We add a linear equality constraint on X stating
that there is one and only one positive assignment for every object. This can be
formalised as

∀k ∈ {1, . . . , Nt}
∑

i∈φ(k)

Kt+1∑
j=1

X(i, j) = 1 (6)

and

∀k ∈ {1, . . . , Nt+1}
∑

j∈ψ(k)

Kt∑
i=1

X(i, j) = 1 (7)
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where φ(k) (resp. ψ(k)) denotes the set of the indices of the rows (resp. columns)
where the object Ot,k (resp. Ot+1,k) is involved. Our minimisation problem be-
longs to the class of binary integer programming problems. We classically propose
to solve it with the branch and bound algorithm [11].

Cost Matrix. We define the cost of each assignment as follows:

– The cost of disappearance of an object Ot,i is set to γ size(Ot,i)
– The cost of appearance of an object Ot+1,j is set to γ size(Ot+1,j)
– The cost of linking an objectOt,i to an objectOt+1,j is set to dD(Ot,i,Ot+1,j)

+ α |size(Ot,i)− size(Ot+1,j)|
– The cost of merging several objects (Ot,ik)k into an object Ot+1,j is set to
β maxk dD(Ot,ik ,Ot+1,j) + α |size(

∑
k Ot,ik)− size(Ot+1,j)|

– The cost of splitting an object Ot,i into several objects (Ot+1,jk)k is set to
β maxk dD(Ot,i,Ot+1,jk) + α |size(

∑
k Ot+1,jk)− size(Ot,i)|

All the other costs of the matrix are set to infinity. Let us give some intuitions
about these choices of costs. Appearance and disappearance events concern only
small objects (mostly single platelets) since bigger objects are more robustly
attached. We thus set the cost of appearance or disappearance as proportional
to the size of the object. The cost of matching two objects, in the case of normal
growth, is set as the dynamic distance between them (which takes into account
the direction of the flow). Since the growth between two frames is always low,
an additional cost comparing the sizes of the two objects is added to prevent
unrealistic matchings. To compute the cost of several objects to merge into a
single one, we compute for each of them the dynamic distance to this object and
take the biggest of them as cost. If an object within a set of merging objects is
unrelevant, the whole merging event is thus penalised and ultimately a merging
set involving only relevant objects will be preferred. We also assume that there
is not any motion of the objects involved in a merging event. The coefficient β
is therefore taken high to penalise the distance term. Finally, the consistency in
size is also checked. The cost for splitting events is similar than for merging. α,
β and γ are coefficients balancing the relative weight of each term.

3 Experiments and Results

Random Forest Training. 7 videos were available to both learning and eval-
uating steps. One frame every 10 seconds, giving approximately 15 test frames
for each video, was manually delineated to provide a reference for the learning
and the evaluation. We trained the random forest using a “leave-one-video-out”
approach: each video is segmented by learning the random forest on the 6 oth-
ers. For each frame, we draw randomly points within background and thrombus.
A subset of the points representing the background is purposely constrained to
the neighbourhood of thrombi to perform a better robustness around thrombus
edges. The number of trees in the forest is fixed at 50 and the optimal depth 20
has been tuned experimentally. The gradient-based features are computed at 13
different scales (r ∈ {8, . . . , 20}).
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Table 1. Evaluation of the segmentation performance

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7

F-measure 0.89 0.90 0.89 0.895 0.89 0.86 0.85

Table 2. Evaluation of the performance of our event detection method

Normal growth Merging Splitting Disappearance Appearance

TP 4159 164 138 188 253
FP 2 7 11 5 4
FN 12 0 0 3 9

Precision 0.9995 0.96 0.93 0.97 0.98
Recall 0.997 1.00 1.00 0.98 0.97

F-measure 0.998 0.98 0.96 0.98 0.975

Fig. 2. The identification of normal growth events, i.e where no splitting and merging
occurs, permits a reliable measurement of growth rates. We can then plot them as an
histogram for each video. It is expected that the histograms are correlated with the
genetic disorders of the blood donors.

Segmentation. We choose the F-measure to quantify the performance of the
thrombus segmentation. The results for each video are briefly summarised in
Table 1. These results show that our segmentation method is accurate enough
to build our event analysis upon it.
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Fig. 3. Example of results of event detection between two consecutive frames. A code
based on colour has been chosen for a better visualisation. A thrombus in yellow (resp.
green) merges (resp. splits) between the two frames. A thrombus in white (resp. blue)
disappears (resp. appears) between t and t+ 1. Thrombi that do not have any colour
are evolving between the two frames without any interaction with other thrombi.

Event Detection. The parameters in the cost function are experimentally set
to α = 0.1, β = 3 and γ = 0.2. We test our event detection method on 2 videos
entirely labeled. Please note that although the number of videos on which we
test is very low, this represents within each video at least 100 pairs of frames
for which the assignments are independant. We count for each kind of event
how many times this event has been correctly identified (TP), how many times
it has been by mistake detected (FP) and how many times it has not been
identified (FN). We also compute for each event the precision, recall and F-
measure. The results are summarised in Table 2 and demonstrate the accuracy of
our method. In particular, the precision is extremely high for the normal growth
events. This allows us to reliably measure growth rates by excluding splitting and
merging events. Resulting growth rates can be plotted as histograms (Figure 2)
to visualise the thrombotic characteristics of a given blood donor.

4 Conclusion

In this paper, we tackled the problem of measuring growth rates and time to
attachment of thrombi under splitting, merging, appearance and disappearance
conditions. We proposed a matching method between each pair of consecutive
frames which is able to recognise such undesired events in order to measure
growth rates only in normal conditions of growth. We modeled this situation
as a binary integer programming problem which is tractable and solvable with
the branch and bound algorithm. We showed through a quantification of per-
formance the efficiency of the approach. The extracted characteristics of growth
could be compared between blood donors and potentially allow to identify pos-
sible genetic risk predispositions of thrombosis.
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Automatic Extraction of the Curved Midsagittal

Brain Surface on MR Images

Hugo J. Kuijf, Max A. Viergever, and Koen L. Vincken

Image Sciences Institute, University Medical Center Utrecht, The Netherlands

Abstract. Many methods exist for the automatic extraction of the mid-
sagittal plane from neuroimages, assuming bilateral symmetry. However,
this assumption is incorrect owing to brain torque and the possible pres-
ence of pathology. In this paper, a method for extracting the curved
midsagittal surface from brain images is presented.

First, the method localizes the interhemispheric fissure with an exist-
ing technique for midsagittal plane extraction. Next, the plane is mod-
elled as a bicubic spline and the configuration of the control points is
optimized to obtain the midsagittal surface.

The midsagittal surface results in a better segmentation of the cerebral
hemispheres. Not only is the result visually more appealing, the absolute
volume of misclassified tissue decreases significantly.

1 Introduction

Bilateral symmetry is an important concept in biology and many animal species,
including humans. Our appearance exhibits bilateral symmetry and some organs
in our body come in symmetrical pairs, for example our brain. The cerebrum is
divided into two hemispheres, separated by the interhemispheric fissure (IF).
Comparison of the two hemispheres and detection of differences has been a
topic of discussion for many years. Besides the lateralization of brain function,
anatomical differences can suggest the presence of pathology (like a brain mass
or tumour), indicate schizophrenia [1], or various other diseases.

The midsagittal plane is a geometric plane that separates the two hemispheres
and coincides with the IF. In the past years, multiple methods have been pub-
lished to extract the midsagittal plane from neuroimages. Assuming bilateral
symmetry, most of the methods work by optimizing a symmetry metric between
the neuroimage and a reflected version of itself.

However, the human brain has no perfect bilateral symmetry. The left occipital
and right frontal lobe are larger than their counterparts in the other hemisphere
are, which is known as brain torque. Besides brain torque, the presence of brain
masses could induce asymmetries in the cerebrum. Existing techniques to extract
the midsagittal plane from neuroimages do not take these asymmetries into
account and might therefore fail to correctly segment the two hemispheres.

The midsagittal surface is a curved surface following the IF. In the presence
of asymmetries, either owing to natural variation or pathology, the midsagittal
surface will correctly segment the two hemispheres, whereas a midsagittal plane
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would intersect or misclassify some brain tissue. It is therefore likely that the
midsagittal surface will result in more accurate analysis of interhemispherical
differences.

In the present study, a novel method for extracting the curved midsagittal
surface will be presented, based on an existing method for extracting the mid-
sagittal plane.

2 Methods and Materials

2.1 Participants and MRI

A total of 50 consecutive participants (mean age: 59 years, sd: 10 years) from
the SMART study [2] have been included for evaluation of the method. The
SMART study was approved by the Medical Ethics Committee and written
informed consent was given by all participants.

MRI acquisition was performed on a 1.5T whole-body system (Gyroscan ACS-
NT, Philips Medical Systems, Best, the Netherlands). The protocol included,
among others, a transversal T1-weighted gradient-echo sequence (repetition time
(TR)/echo time (TE): 235/2 ms); a transversal T2-weighted fluid-attenuated
inversion recovery (FLAIR) (TR/TE/inversion time (TI): 6000/100/2000 ms),
and a transversal inversion recovery (IR) (TR/TE/TI: 2900/22/410ms), all with
a reconstructed voxel size of 0.9× 0.9× 4.0 mm.

For extraction of the midsagittal plane and surface, the T1-weighted sequence
was used.

2.2 Midsagittal Plane

Many methods exist for the automatic extraction of the midsagittal plane, which
can be roughly divided into two categories: symmetry-based methods (e.g. [3–
10]) and fissure-based methods ([11–13]). Symmetry-based methods work with
the implicit assumption that the brain possesses bilateral symmetry. These meth-
ods try to align the image with a reflected version of itself, while optimizing a
symmetry-metric. However, due to the asymmetric nature of the brain, these
techniques sometimes fail.

Fissure-based methods try to detect the IF, based on its distinctive char-
acteristics visible in the image. With imaging modalities as CT and MRI, the
cerebrospinal fluid (CSF) located in the IF gives a high visual contrast with
the surrounding gray and white matter of both hemispheres. This contrast is
clearly visible in Figures 1(a), (d), and (g), and can be used to extract the mid-
sagittal plane and surface. A fissure-based method for extracting the midsagittal
plane is described by Volkau et al. [12] and Nowinski et al. [13] and was used in
the present study. The approach of this method, as will be explained below,
allows for extension to extract the midsagittal surface and thus formed an ideal
candidate for the present study.

First, two reference planes were taken 2 cm apart from the central sagittal slice
of the image. As the method assumes that the brain is approximately located in
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the centre of the image, these reference planes consist mostly of gray and white
matter. A single probability distribution of the gray values present in the two
references slices was created.

Next, all slices in-between the two reference slices were inspected. For each
slice, a probability distribution of the gray values was created. The Kullback-
Leibler (KL) divergence was computed using the reference probability distri-
bution and the probability distribution of the current slice. This resulted in a
measure of the difference between the two probability distributions (the KL-
value). As the reference slices contains mostly gray and white matter and the IF
contains mostly CSF, the slice containing (a large part of) the IF would result
in a relatively large KL-value.

The sagittal slice with the largest KL-value was taken as an initial guess for
the MSP. As the brain can be rotated, the IF will not always perfectly align
with a sagittal slice in the image. Therefore, three random corner points of the
MSP were taken and shifted along the left/right axis of the scan. The location
of these three corner points could be optimized in terms of the KL-value. For
each new location, the KL-value was computed and the rotated slice with the
largest difference to the reference distribution was taken as the final MSP. This
process is summarized in Figure 1.

2.3 Midsagittal Surface

The midsagittal plane computed in the previous section was used to initialize
the method for extracting the midsagittal surface. The surface was represented
as a bicubic spline, as implemented in ALGLIB [14]. Control points for the spline
were placed in a regular m × n grid on the computed MSP, having m be the
number of control points in the anterior-posterior direction and n in the head-
feet direction. The values of m and n were user-defined. An example is shown in
Figure 2(a)

An optimization method was used to determine the optimal configuration of
the control points. The control points could only be moved along the left/right
axis of the scan during optimization. The Kullback-Leibler’s divergence was used
as a cost function that needed to be maximized. It used the previously computed
reference probability distribution and generated a probability distribution of the
bicubic spline during optimization.

A limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-newton method
(L-BFGS), as implemented in the dlib C++ library [15], was used to determine
the direction of the search. This method required gradient information of the
cost function to be optimized, which was numerically approximated. The step
size of each control point in each iteration was scaled with the gradient at each
control point, allowing subvoxel accuracy in the configuration. The optimization
method was terminated when the cost function converged: two consecutive op-
timization steps had a difference in KL-value of 1× 10−5 or less. An example of
this procedure can be seen in Figure 2.



228 H.J. Kuijf, M.A. Viergever, and K.L. Vincken

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Extraction of the midsagittal plane shown on three slices taken from one scan.
Left: lines indicate the two initial reference planes. Middle: line indicates the sagittal
slice with the largest KL-value. Right: line indicates the midsagittal plane.

2.4 Experiments and Validation

The quality of the midsagittal plane and surface extraction was evaluated visu-
ally and quantitatively in the cerebrum, ignoring the cerebellum. The cerebellum
was ignored, since a left/right segmentation is ambiguous and ill-defined. This
is commonly done in segmentation algorithms. [16] For the quantitative valida-
tion, the brain tissue volume in the cerebrum that was classified as either left or
right was assessed automatically and compared to a ground truth. First, reason-
able settings for m and n were determined heuristically on a smaller subset of
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(a) (b)

Fig. 2. Left: Figure 1(f) is shown with the control points for the optimization. The
arrows indicate the direction in which the control points could move. Right: Optimal
configuration according to the KL-divergence is shown. The error that the midsagittal
plane made at the left occipital lobe was corrected by the computed surface.

participants. The influence of these parameters was assessed visually and fixed
for the quantitative analysis.

Second, a gray and white matter segmentation was obtained with a probabilis-
tic k-Nearest Neighbour classification segmentation method. This method used
the T1-weighted, IR, and FLAIR sequences, as described by Anbeek et al. [17]

Using the MNI152 template [18, 19], a ground truth left/right segmentation
was created. For this template, a true left/right atlas of the cerebrum is avail-
able. By computing a deformable registration of the MNI152 template to the
T1-weighted scan, the left/right atlas could be propagated to the gray and white
matter segmentation. Registrations were computed with elastix [20], with reg-
istration parameters taken from Van der Lijn et al. [21] The quality of the reg-
istration was assessed visually by an experienced observer and all registrations
were considered accurate.

3 Results

Values for m and n were set at 10 and 5. Lower values were unable to capture
the curvature of the IF and higher values resulted in overfitting of the spline.

The results of the extraction of the midsagittal plane were visually inspected
for correctness. In all cases, the midsagittal plane was found correctly and aligned
with the IF, as was also previously reported by Volkau and Nowinski. [12, 13]
However, small errors were made by the method, mostly at the left occipital
lobe (as visible in Figure 1) and the right frontal lobe. This was to be expected,
owing to the possible presence of brain torque.

The midsagittal surface showed a visually more appealing result than the
midsagittal plane. The surface followed the interhemispheric fissure at locations



230 H.J. Kuijf, M.A. Viergever, and K.L. Vincken

(a) (b) (c)

Fig. 3. Example results of the method. (b) The midsagittal surface was sometimes
fitted through the lateral ventricles. (c) Asymmetries in the brain do not influence the
results, as would be the case for symmetry-based methods.

where the midsagittal plane would cut through tissue. An example of this was
shown in Figure 2(b) and more results are shown in Figure 3.

For the quantitative validation, the absolute volume of tissue in the cerebrum
that was misclassified (i.e. classified as left where it should be right, or vice
versa) was assessed automatically. In the ideal case, this error would be zero.
The average error (mean ± sd) of the midsagittal plane was 1.06±0.89ml and the
average error of the midsagittal surface was 0.59±0.63ml. The difference between
the midsagittal plane and the midsagittal surface was statistically significant,
using a one-sided, paired, Student’s t-test, with a p-value of 1.0× 10−6.

Computation time of the midsagittal plane was approximately 2 seconds. De-
pending on the number of iterations required, the computation of the midsagittal
surface was 2 to 10 seconds.

4 Discussion

The implementation of the midsagittal surface shows a clear improvement over
the midsagittal plane. Not only does the midsagittal surface show a visually
more correct and appealing result, the improvement in the absolute volume of
misclassified tissue is statistically significant. Besides the statistical significance,
the absolute reduction in the error with 0.5 ml on average is relevant in many
applications. Although a volume 0.5 ml is relatively small compared to the whole
brain volume, it is a considerable amount of tissue in the vicinity of the IF. Next
to the average reduction in error, the standard deviation of the error also de-
creases. This indicates that the midsagittal surface gives a more robust estimate
of the left-right segmentation than the midsagittal plane does.

An error sometimes made by the midsagittal surface is found at the location of
the lateral ventricles. During optimization, the cost function will try to avoid the
septum pellucidum, the membrane separating the lateral ventricles, and fit the
spline through the CSF-filled ventricles. This will give a more optimal solution in
terms of KL-value, although it is not the most logical separation at that location.
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However, it has no influence on the left/right segmentation of the tissue in the
cerebrum. An example was shown in Figure 3(b).

The quantitative validation of the method required an atlas-registration of
the MNI152 template to each individual image. By doing this, the quality of the
ground truth depends on the quality of the registration. Thorough inspection of
the registration results by an experienced observer did not reveal any errors in
the left-right segmentation of the cerebrum generated by the registration.

Of course, one could argue that having a left-right segmentation available
by means of registration with the MNI152 template already solves the problem
of extracting the midsagittal surface. However, the registration of the MNI152
template to the scans required 7 minutes per scan. The computation of the
midsagittal surface required, at most, 12 seconds, making an expensive atlas
registration superfluous.

The method works without adaptation on other image contrasts, such as
FLAIR and IR, and higher field strengths, such as 3.0T or 7.0T. The only pre-
requisite for the method is a visible contrast between the interhemispheric fissure
and surrounding tissue. The method can be applied to other imaging modalities,
such as CT, as well. [22]

Besides segmentation of the cerebrum into the left and right hemispheres,
there is a possibility to use this method for the detection of midline shift. Tech-
niques for this application have been published before [23], using the midsagittal
plane and a Bézier curve. The midsagittal surface could be used instead, without
the limited degrees of freedom of a Bézier curve.
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of Conventional Ultrasound Images
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Abstract. Although breast cancer imaging techniques continue to im-
prove rapidly, about 75% of all breast biopsies turn out to be benign.
These unnecessary biopsies are expensive and very stressful for the pa-
tients. In this paper we propose a new method for reducing the number of
unnecessary biopsies. Our approach consists of transforming conventional
ultrasonic images into corresponding attenuation maps. These maps are
then analyzed, yielding automatic classification of malignant tumors. We
provide a proof of concept for this approach by testing it on a bench-
mark of clinical images from three different image acquisition systems.
Our tests show excellent sensitivity and specificity, indicating that up to
four-fold reduction in the number of unnecessary biopsies may be possi-
ble. Moreover, we demonstrate the system robustness by working on all
the images without any system-specific tuning.

Keywords: Acoustic Attenuation, Breast Cancer, Computer-Aided Di-
agnosis, Ultrasound Imaging.

1 Introduction

Worldwide, breast cancer comprises just under 30% of all diagnosed cancers in
women. Mammography is currently the most common modality for screening
and detecting breast cancer. However, a large portion of the breast lesions found
in mammograms are benign. In order to improve the specificity, doctors often
examine the suspicious lesions using ultrasound (US) imaging. Nevertheless, even
when using both mammography and US, about 80% of the biopsies turn out to be
benign. Clearly, the unnecessary biopsies cause both physical pain and emotional
stress. They also result in a significant waste of health-care resources.

Accordingly, a great deal of effort has been devoted to improving breast cancer
diagnostic tools. A technological review of commonly used methods and new
experimental techniques was conducted in [1]. Many of the newly developed
techniques are based on US due to its non-ionizing nature, low cost, and mobility.
US is often used for guidance during the biopsy itself, so it is only natural to use
it as a final diagnostic tool before inserting the needle. A review of US techniques
was compiled in [2].

The improvements to diagnostic tools can be divided into two categories:
enhancements to the imaging equipment and the introduction of computerized
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image analytics. The first category includes solutions such as Elastography [3],
which produces images of the breast stiffness or strain by applying compression or
vibration using US waves. Another approach is to introduce tomographic 3D US
images, which provide a more comprehensive view of the tumor in question [4]. In
the second category, there are several computer-aided diagnosis (CAD) systems.
A survey of CAD systems for breast US was conducted in [5]. These systems
typically compute a variety of breast image features and use a variety of classi-
fication techniques to distinguish between malignant and benign tumors. These
features include the shape of the tumor, its texture, and sometimes acoustic
properties. Unfortunately, in many cases, the efficacy of US CAD systems tends
to be limited due to high dependency on the specific image acquisition system.

Our work focuses on a specific acoustic feature, namely the acoustic tissue
attenuation. Studies, such as [6,7], show that acoustic attenuation measurements
can distinguish between malignant and benign tissues, and can therefore be used
as an effective basis for a CAD system. Tissue attenuation can be calculated
using transmission US in a tomographic manner [4]. However, clinical US systems
produce B-scans, which are based on backscattering rather than transmission.
Consequently, the authors of [8] developed a system for attenuation estimation
that uses B-scans but with an additional metal plate. Other methods that use
only B-scans with no alteration of the hardware setting are available [7, 9, 10].
These techniques produce one global attenuation measure either for the entire
breast or for a pre-specified region of interest (ROI).

In this paper we propose a new technique for the estimation of local acoustic
attenuation. This method uses conventional B-scan images so there is no need to
modify the image acquisition process or hardware. Moreover, we have no depen-
dency on a specific US system. Rather than computing the average attenuation
for the entire ROI, as described in [7,9], we calculate the local attenuation of each
pixel in the region and create an attenuation map. This map is more informa-
tive than a global measurement and is therefore more effective for differentiating
between malignant and benign lesions. The attenuation map can be presented
as is to the doctor, similar to what is usually done with Elastography images.
However, to reduce the burden on the examining doctor, we also introduce an
automatic analysis of the attenuation map to classify the breast tumors. This
analysis can be used either as a stand-alone CAD system or in combination with
other CAD systems.

Testing the algorithm on a benchmark of clinical images showed excellent
sensitivity and specificity. Moreover, it demonstrated the system robustness by
working on images from three deferent image acquisition systems without any
system-specific tuning. Although promising, these are only preliminary results
on a moderate benchmark that provide only a proof of concept for our approach.
Our future work will focus on more extensive testing and clinical trials of this
method.

Our method for attenuation estimation draws on earlier techniques for at-
tenuation mapping of the liver [11]. However, we introduce significant changes
to the method in order to enable reliable estimation of attenuation in breast
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tissue, which is highly inhomogeneous. In Section 2, we present both the attenu-
ation estimation algorithm and the subsequent module for tumor classification.
Section 3 presents the results of our tests on clinical data. Finally, Section 4
concludes this work.

2 The Method

In this section we describe our proposed system for classifying breast tumors
based on local acoustic attenuation estimation. We apply our processing on the
same B-scan images that are displayed on the physician’s screen. This renders
our technique transparent to the image acquisition hardware, making it very
convenient for the users. Unfortunately, this also means that we work with in-
herently distorted images. One of the major sources of such distortions is the
Time Gain Compensation (TGC). All state-of-the-art US systems use TGC to
compensate for the loss of echo amplitude with depth [12]. Images produced us-
ing TGC are more uniform and have an effective attenuation of zero. Although
these images are easier for doctors to interpret, the TGC distorts our attenuation
maps and prevents reliable quantitative analysis. Nevertheless, the attenuation
maps are still useful as they show the relative attenuation difference between
healthy and malignant tissue areas.

Since the proposed method is aimed at assisting doctors in the evaluation of
suspicious lesions, the segmentation of the lesion is preformed manually by the
doctor. This approach is very common in US CAD systems; see for instance [13].

Accordingly, we propose the following process:

1. The doctor marks the suspicious area (ROI) on the image.
2. The attenuation map is estimated inside and around the ROI.
3. The attenuation map is analyzed by the CAD algorithm to determine whether

the marked tissue is benign or malignant.
4. The results are superimposed on the original US image.

To accommodate the above process, our system consists of two main comple-
mentary modules, which are described in the following sections. The first module
computes the attenuation map and the second one provides classification of the
attenuation results.

2.1 Acoustic Attenuation Map Estimation

Our proposed algorithm for attenuation mapping is a modification of the algo-
rithm proposed in [11] for attenuation mapping of the liver. In [11], the atten-
uation is estimated for each pixel by looking at a small surrounding block. The
attenuation in this block is assumed to be uniform, except for outliers (i.e., pixels
that significantly differ from the central one), which are removed. Accordingly,
the block average attenuation is computed using the least squares method. This
approach works quite well for relatively uniform tissues such as liver. For highly
heterogeneous tissues, such as breast, the uniformity assumption no longer holds.
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Therefore, our modified algorithm identifies for each block a uniform subregion
(mask) with properties similar to that of the central pixel. The modified algo-
rithm is presented in Table 1. Below is an elaboration of its steps.

Table 1. Creating the attenuation map

For each pixel in and around the ROI:

1. Define a block of size L× P around the pixel.
2. Define a mask (a subregion) of the block.
3. Estimate the attenuation in the block using only the pixels in the mask.
4. Assign the block’s attenuation value to the central pixel.

Following [12], we express the intensity of the pixel in the nth column and
mth row of the US image as follows:

Em,n = E0σm,n exp
(
− 2Δ

m−1∑
k=1

αk,n

)
, (1)

where E0 is the initial amplitude, Δ is the size of the pixels, and σm,n, αk,n

are the backscattering and attenuation coefficients, respectively. Without loss of
generality we assume that Δ = 1. This is equivalent to simply changing the unit
of measure of the attenuation.

We are interested in estimating αk,n for each pixel in and around the ROI.
To that end we assume that in a small vicinity of each pixel the attenuation
and backscatter coefficients are constant. In order to define this vicinity, first we
define a small block of constant size L × P around each pixel. For example, we
use 65 × 17 pixels. If the attenuation was uniform in this block, then (1) would
reduce to:

Ej,i = Ei exp
(
− 2

j−1∑
k=1

α
)
= Eie

−2(j−1)α, (2)

where Ej,i is the intensity in the j, i pixel in the block, and α is the block’s
constant attenuation, which we are looking for. However, since the breast tissue
is not homogeneous enough, the block’s attenuation is not necessarily uniform.
Therefore, instead of using all of its pixels, in the second step of the algorithm we
identify a subregion (mask) of the block where the constant attenuation assump-
tion is reasonable. Then, equation (2) is applied only to pixels on this mask.

We identify thismask in two stages. First,we find themask for all in-range pixels,
i.e., pixels in the block with intensity within 3dB proximity to the central pixel.
Then, we remove peripheral blobs (connected nonzero pixels) from themask. That
is, any blob whose distance from the main blob exceeds 4 is removed. Note that
we refer to 2D blobs in contrast to [11], where each column is processed separately.
In case the remaining mask contains too few pixels, we can not rely on it for the
estimation. Thus, we assign an attenuation value of zero, and move on to the next
pixel. Fig. 1 presents an example for a block and its mask. As can be seen the mask
indicates all pixels of the same tissue type as the central pixel.
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(a) (b) (c)

Fig. 1. Block masking. (a) is the block defined for the central pixel (marked in red).
(b) is the initial in-range mask. (c) is the final mask, after removing peripheral blobs.

Since the mask indicates a subregion with homogeneous attenuation, the
model in (2) holds for all pixels indicated by the mask. Therefore, we define
our cost function to be the sum over all those pixels of the squared differences
between the actual and the theoretical intensities. That is:

C(Ei, α) =

P∑
i=1

∑
j∈Ωi

(
Ej,i − Eie

−2(j−1)α
)2

, (3)

where Ωi is the ith column of the mask. The goal is to find Ei and α that
minimize this cost function. Algorithms for solving similar least-squares prob-
lems exist in the literature, for example [14,15]. However, since this is a nonlinear
problem, those algorithms tend to be iterative. To avoid the computational com-
plexity involved, instead of using those methods we limit the solution to its first
order approximation. This way the problem becomes linear and its solution can
be expressed in a closed form. This limitation is appropriate under the assump-
tion that α << 1 such that the exponential in (3) is small. Since the attenuation
value of most biological tissues is rarely above 0.01 nepers/pixel, in our case this
assumption is quite valid. The first order approximation of (3) is:

C(Ei, α) =

P∑
i=1

∑
j∈Ωi

(
Ej,i − Ei(1− 2(j − 1)α)

)2

. (4)

Let ki denote the number of nonzero pixels on the ith column of the mask, and
define:

ai =
2

ki

∑
j∈Ωi

(j − 1) , bi =
1

ki

∑
j∈Ωi

Ej,i , ci =
1

ki

∑
j∈Ωi

(j − 1)Ej,i − aibi

Using this notation it is easy to see that setting to zero the derivative of C(Ei, α)
according to Ei, and using fist order approximation yields:

Êi = bi − 2ciα. (5)
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(a) (b) (c)

Fig. 2. Mapping example. (a) is the original US image. (b) presents the doctor’s anno-
tation of the ROI, as a green line. (c) is the attenuation map of the ROI and its vicinity.

Substituting (5) into (4) and keeping only first order of α yields a simple
square function of α, whose single global minimum is in:

α̂ =

∑P
i=1D

T
i Bi∑P

i=1 B
T
i Bi

, (6)

where Ωj,i is the j, i pixel in the mask and

Di = (bi−E1,i , . . . , bi−EL,i)
T , Bi = 2(Ω1,ici , . . . , ΩL,i(ci−(L−1)bi) . . .)

T

The estimated attenuation value α̂ is assigned only to the central pixel and not
to the entire block. Performing this calculation for each pixel in and around the
ROI yields the attenuation map. Fig. 2 presents an example of an US image and
its associated attenuation map, estimated by the proposed method.

2.2 Attenuation Analysis

As discussed above, due to the TGC, attenuation maps are relative rather than
absolute. In general, we expect zero attenuation for healthy tissue and higher
attenuation values for malignant tumors. Fig. 3 presents some examples of at-
tenuation maps of benign and malignant tumors. As can be observed in Fig. 3,
malignant tumors have relatively large patches of high attenuation, while the
overall structure is inhomogeneous. This fact fits well with our expectations
based on the known morphology of cancerous tumors. Based on this insight
we developed several features for classification between malignant and benign
tumors, which are described in Table 2.

In order to quantify features number 1 and 2 in Table 2 we first smooth the
attenuation map using the H-maxima transform, which suppresses mild maxima.
For feature number 1, the regions of relatively high attenuation are identified
by applying a fixed threshold (say of 10−3 nepers/pixel) on the smoothed map,
while dismissing blobs with too small area. For feature number 2 we look for two
regions with uniform attention in the smoothed map. The first region consists of
all the pixels whose value equals the median value of the smoothed attenuation
map. The second region is defined similarly as all the pixels whose value equals
the median of the pixels that are not in the first region. Figure 4 presents an
example for such uniform attenuation regions.
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Table 2. Features of the attenuation map

The Feature Description

1 The portion of the tumor that is covered A small portion may indicate a benign
by regions of relatively high attenuation. tumor.

2 The portion of the tumor that is covered A large portion may indicate a benign
by uniform attenuation regions. tumor, since malignant tumors usually

have inhomogeneous structure.

3 The maximal attenuation in the tumor. Malignant tumors tend to have higher
attenuation.

4 The portion of the tumor with attenuation A small portion may indicate a benign
close to the maximum from feature 3. tumor.

5 The portion of the tumor with negative A large portion may indicate a benign
attenuation. tumor.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Examples of attenuation maps. (a)-(d) are maps of benign tumors, (e)-(g) are
maps of malignant ones. The gray-levels in the images correspond to the attenuation
values. ROI marked in cyan.

In some benign cases the maximal attenuation value (feature number 3) is high
due to artifacts. However, in those cases, this maximum value occurs only for
small number of isolated pixels. Accordingly, we have introduced feature number
4 which examines the area where the attenuation is close to the maximum.

Another important feature is the size of the tumor, which can influence the
assessment of the remaining features. For instance, our tests showed that the
minimal acceptable intensity for feature number 3 and the parameter of the H-
maxima transform should be smaller when dealing with smaller tumors. This is
due the fact that for small tumors the attenuation estimation accuracy is lower.

Since the purpose of this work is to provide a proof of concept, in order to
use these features for classification we had manually set thresholds and relation
between them. Our future work will focus on using these features in a more so-
phisticated machine learning method, such as support vector machine classifier,
on a much larger benchmark.
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(a) (b) (c) (d)

Fig. 4. Example for uniform attenuation regions. (a) is an US image of a benign tumor.
(b) is the attenuation map. The green line marks the tumor’s boundaries. (c) and (d)
are the smoothed attenuation map, where the colored regions on (d) mark two uniform
attenuation regions.

Special care should be taken of dark regions in the US image. Some doctors set
the dynamic range such that those dark regions are saturated (i.e. the intensity
level equals zero). Clearly, such regions yield false zero attenuation estimate. In
order to mitigate this artifact we estimate the tumor attenuation and preform
the classification based on non-saturated pixels only.

To facilitate the diagnostic process, we adopted a display combining the at-
tenuation map and the original US image. If the given tumor is classified as
benign, its attenuation map is discarded. Otherwise, the attenuation map is su-
perimposed on the original US image with attenuation being proportional to the
yellow-red color intensity. Fig. 5 presents display examples for both malignant
and benign cases.

3 Results

To evaluate the efficacy of the above approach, we applied it to a diverse clinical
benchmark including a total of 233 images of 80 different lesions. In all cases,
the examining physician performed standard diagnostic procedure and decided
to send the patient for a biopsy. We used the results of the biopsy as a gold
standard to classify the benchmark into 46 benign and 34 malignant tumors.
Most of the malignant tumors in our benchmark are IDC, while few are DCIS
and ILC. Most of the benign lesions are fibroadnoma or fibrotic tissue, while the
rest are: fat necrosis, PSH, cyst, tubular adenoma, hematoma, and abscess. The
size of the tumors in the benchmark ranges from 3 to 40mm.

In should be noted that our database does not include mucinous (colloid)
carcinoma which is a rare type of tumor that is, by nature, softer and has lower
attenuation. Therefore, mucinous tumors are not likely to be detected by the
proposed method. In order to detect such tumors our method should be applied
together with a CAD system that processes the original US image, as apposed
to the attenuation map.

We tested the robustness of our approach by acquiring the images using three
different US systems, with no system-dependent tuning. All the images were
processed using the aforementioned technique. Clearly, attenuation mapping
provided additional information that, presently, is invisible to the examining
physician. However, for the sake of objective quantitative testing, we limited our
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(a) (b) (c) (d)

Fig. 5. Display examples. (a) is an US image of a malignant tumor. (b) is the output
image. The green line marks the ROI. The color indicates attenuation intensity ranging
from yellow (mild) to dark red (high). (c) is an US image of a benign tumor. (d) is the
output image; no attenuation map is visible, only the ROI is marked.

evaluation to the correctness of our malignant/benign classification. We per-
formed our analysis on a per-case basis, which is crucial from the clinical point
of view. In other words, the tumor was deemed to be benign only if the algorithm
classified all its images as benign.

The summary of the results is presented in Table 3. As indicated by the results
in the table, our algorithm identified all the malignant tumors - without excep-
tion. This corresponds to 100% sensitivity. Moreover, only 12 benign tumors
were misdiagnosed yielding specificity of 74%. Thus, our results indicate that it
may be possible to drastically cut down the number of unnecessary biopsies by
a factor of 4 without any significant deterioration in the system sensitivity.

Table 3. Performance evaluation

Images Tumors Marked as Malignant Marked as Benign

Malignant 113 34 34 0

Benign 120 46 12 34

4 Discussion and Conclusions

We presented an algorithm for transforming conventional B-scan images into
their corresponding attenuation maps. The algorithm is valid for inhomogeneous
tissue such as breast and does not require any modifications in the US image
acquisition hardware or software. The attenuation map can help physicians dis-
tinguish between benign and malignant tumors and thus reduce the number of
redundant biopsies currently being carried out. The proposed scheme also in-
cludes an automatic classification algorithm, whose preliminary results indicate
that the number of unnecessary biopsies may be rapidly reduced.

As future work, it is important to substantiate the results by significantly
increasing the tested benchmark. A larger benchmark will allow us to replace
the current CAD algorithm with a machine learning algorithm (for instance sup-
port vector machines), that will automatically find the best classification using
our features. Moreover, we believe that our results can be further enhanced by
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additional CAD features. One such example could be features aimed at detect-
ing fibrotic cases, which are benign but highly attenuating. Accordingly, fibrotic
cases cause quite a few false detections in our benchmark. Additional improve-
ment would be the introduction of an automatic or semi-automatic tumor seg-
mentation. This addition would make attenuation CAD fully automatic.

5 Patent Disclosure

The method described in this paper is the subject of two pending patent appli-
cations: 13/151303 and 13/558372.

Acknowledgments. The images used for this work were produced by Dr. Scott
Fields from HadassahMedical Organization in Jerusalem, and Dr. Ora Moskovitz
from Or Breast Center in Haifa.
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Abstract. Predicting phenotypes based on genotypes is generally hard,
but has shown good results for prediction of iris color. We propose to
correlate the appearance of iris with DNA. Six single-nucleotide polymor-
phisms (SNPs) have previously been shown to correlate with human iris
color, and we demonstrate that especially one of the six SNPs are corre-
lated with iris appearance. To perform this analysis we need a method to
model the iris appearance, and we suggest an iris characterization based
on a bag of visual words, which gives us a similarity measure between
images of eyes. We have a dataset of 215 eye images with corresponding
SNP types, where the image of the iris has been segmented. We perform
two experiments based on the iris characterization. An agglomerative
clustering is performed and the result is that one SNP – rs12913832
(HERC2) is highly correlated with the image clustering. Furthermore
subspace projections are performed supporting that this SNP is very
important for eye color expression. With the suggested image characteri-
zations we are able to investigate the correlation between the phenotypic
iris appearance and specific SNPs. This has potential for further investi-
gation of the relation between DNA and iris appearance, especially with
focus on iris texture.

Keywords: Iris color, Iris texture, Image analysis, Image clustering,
Canonical discriminant analysis, DNA.

1 Introduction

Predicting complex human phenotypes from genotypes has great potentials in
application areas like personalized medicine [2, 6] or forensic genetics [7]. Person-
alized medicine does already exist for monogenetic disorders such as Huntington
disease [6], but finding the etiology of more complex diseases is not an easy task.
Liu et al. [11] did however demonstrate that genetic prediction of complex pheno-
types is possible. Liu et al. [11] investigated 37 SNPs, representing all currently
known genetic variants with statistically significant eye color association, and
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found that six SNPs were the major predictors. The six SNPs are rs12913832
(HERC2), rs1800407 (OCA2), rs12896399 (SLC24A4), rs16891982 (SLC45A2),
rs1393350 (TYR), and rs12203592 (IRF4). Prediction of human phenotypes from
genotypes is of large interest in forensic genetics, where externally visible char-
acteristics (EVCs) could be used as a “biological witness” in forensic cases. The
cases of interest are e.g. when a DNA profile from a crime scene does not match
either the possible suspects or DNA profiles in the criminal database. Then it
would be a great advantage to be able to predict the appearance of the suspect.

The six SNPs found by Liu et al. [11] have also been used by Walsh et al.
[15] to build a tool, called IrisPlex, for iris color prediction. Their investigations
also revealed that rs12913832 is the main determinant for blue or brown colored
eyes. This SNP is however not a vey precise predictor for the human iris color,
because it varies continuously from the darkest brown to the lightest blue and is
not clearly separable into the discrete expressions of the investigated SNPs. Our
work is a step towards a more precise prediction of the human eye appearance
based on DNA by investigating the correlation between our proposed image
characterisations and the six SNPs found by Liu et al. [11]. This approach avoids
subjective evaluation of iris color, partitioning of iris color into classes and it
enables us to investigate overall iris appearance including iris structures.

2 Data

The study was approved by the Danish Ethical Committee of the Capital Region
(H-4-2009-125) for samples conducted at Section of Forensic Genetics, Depart-
ment of Forensic Medicine, Faculty of Health and Medical Sciences, University of
Copenhagen, or as part of the Danish Blood Donor Study for samples conducted
at the Blood Bank, Glostrup Hospital. The data consist of 215 high resolution
eye images and corresponding DNA types. The images were subsampled to a
spatial resolution of 639× 426 pixels in RGB color.

The camera was equipped with a Twin flash, which ensured precise and re-
peatable acquisition and uniform illumination. The Twin flash gave two over-
exposed square regions in the iris and pupil area, which were removed in our
segmentation procedure. Image examples are shown in Fig. 1.

From the DNA sample the SNPs [11]: rs12913832, rs1800407, rs12896399,
rs16891982, rs1393350 and 12203592 were typed. The SNPs have three expres-
sions or layers, i.e. there are three types of each SNP, however not all combina-
tions were identified.

Fig. 1. Eye image examples
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3 Iris Characterization

To construct an image characterization based on the iris we first need to segment
the image. After the segmentation we preform a radial image transformation
giving us the iris as a square image. We represent this image both by its color
as a histogram of RGB values and as a combined histogram of color and image
descriptors – a bag of visual words (BOW), which also contains information
about the iris texture.

Iris segmentation. The iris segmentation is performed by fitting a circle to the
inner and outer boundaries of the iris and fitting a spline to the upper and lower
eyelid boundaries, similar to the method proposed by Daugman [4].

The eye images have a large gradient from the pupil to the iris and also
from the iris to the sclera. Utilizing this we propose an optimization scheme
where we look for a circle with maximum radial gradient. For a circle with
center at x = [x, y]T and radius r, the image intensity of a point is given by
fθ(x, r) = I([x+ r cos(θ), y + r sin(θ)]T ), where I is the image intensity and θ is
an angle. We estimate the radial gradient dfθ

dr using finite differences. We wish
to find the parameters of the circle that maximizes the gradient along the circle

argmax
x,r

∫ 2π

0

∣∣∣∣dfθdr
∣∣∣∣ dθ ≈ argmax

x,r

n−1∑
i=0

∣∣∣∣dfiΔθ

dr

∣∣∣∣ , (1)

where Δθ = 2π
n . The solution to Eq. 1 is found using a coarse to fine sampling

strategy. The search for the center coordinate is performed by sampling in a
regular grid and choosing a finer sample grid around the position with the highest
gradient sum. This is repeated until single pixel accuracy is obtained. The radial
search is performed by calculating the gradient sum for a number of equally
spaced radii and then limiting the search area to a region around the radius
with the highest gradient sum. The search for radius and center coordinate is
performed simultaneously and the process is continued until single pixel accuracy
is obtained. To avoid detection of fine structures such as eyelashes we initially
smooth the image using a Gaussian kernel with a standard deviation of σ = 3
and we use n = 36 sample points.

While the optimization works well for the pupil, it has problems with the iris
since the eyelids often covers part of the iris. To avoid this we choose only to
sum the gradient in the intervals θ ∈ [−π/4, π/4]∪ [3π/4, 5π/4], which is similar
to the approach in [3]. Therefore n = 20 for the iris. The small square spots from
the flash are removed using a simple threshold.

Eyelid Boundaries. The eyelid boundaries are located using a Markov Random
Field (MRF) based segmentation [10]. The segmentation is performed on the
second HSV component of the eye images, since this color component shows the
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largest difference in pixel value between skin and inner eye regions. The chosen
labels are sclera, eyelashes, skin and iris, and the iris label is divided into blue
and brown. The statistics used in the MRF segmentation is calculated from
manually annotated exemplars.

Let g be a label configuration and I the image. We estimate the posterior
energy, E(g|I), as

E(g|I) =
∑
i

⎛⎝ ∑
j∈Ni

δ(gi, gj) +
1

2
log(σ2

l ) +
(Ii − μl)

2

2σ2
l

⎞⎠ (−log(Q(gi)), (2)

where i is a site (pixel position) in the image. The neighborhood Ni is the
four nearest sites. We assume the pixel intensities of the different labels to be
normally distributed with N(μl, σl). Q is a probability matrix modeling the prior
knowledge of position of the different classes based on 50 manually annotated
images. The prior, δ(gi, gj), is modeled by

δ(gi, gj) =

{
β, if gi = gj

0, if gi = gj
. (3)

The segmentation problem using MRF is solved using Graph Cut with α-expan-
sion [8]. The three parameters in Eq. 2 are chosen experimentally. The final
eyelid boundaries are found by fitting splines to the segmentation of the upper
and lower eyelid boundaries.

The final iris image (the iris map) is obtained by radially sampling the seg-
mented iris along lines going through the center of the pupil. The samples are
chosen equidistantly along these lines from the circle fitted to the inner boundary
of the iris to the circle on the outer boundary. The lines are sampled tangentially
at equal angle steps. The number of angular steps is 720 and the number of radial
steps is 120. The resulting image is therefore 120 × 720. We employ a mask to
avoid the eyelid and highlight regions in our analysis. A result of the entire iris
extraction procedure can be seen in Fig. 2. A few eye images was not precisely
segmented, so for these samples we adjusted the segmentation manually.

Fig. 2. Left: Final result for the detection of the eyelid boundaries, Right top: mask
for iris map, Right bottom: iris map
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Color characterization. The first image characterization is purely based on color.
From a representative set of training images containing both blue and brown
irises, we partition the three dimensional RGB color space into 852 color bins.
This is done using a hierarchical binary separation of color channels based on the
same principle as building a balanced kd-tree [1]. Hereby we ensure that each
color bin contains approximately the same number of samples. The 852 color
bins are used for constructing iris histograms, which are normalized using the
L1 norm.

BOW iris characterization. The second iris characterization is based on a bag of
visual words (BOW) [13] in addition to color. We chose to use DAISY features
[14] to represent the texture appearance because these features are computed in
all pixels very efficiently and have shown similar performance as SIFT [12]. The
resulting DAISY feature is a 100 dimensional vector dd = [d1, ..., d100]

T and we
represent the RGB value as the vector dc = [R,G,B]T . These two vectors are L2

normalized and concatenated to obtain a 103 dimensional descriptor vector d =√
1
2 [dd,dc]

T . We obtain a dictionary of visual words using k-means clustering

into 400 clusters with cluster centers as visual words from 40000 randomly chosen
training samples. Each image feature is labeled by assigning it to the nearest
visual word using the L2 norm. An overview of the process can be seen in Fig. 3.
To include spatial information in the image characterization we perform a spatial
weighting of the visual words using Gaussians distributed at 12 positions as
illustrated in Fig. 4. Based on this representation we can estimate the similarity
of iris maps as histogram differences.

Fig. 3. Illustration of the bag of words model for images along with the images clus-
tering procedure
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Fig. 4. Spatial Gaussian weighting used for building the explanatory histograms

4 Analysis and Results

Based on the color and combined color and texture characterization our aim is to
compare the genotypes with the visual appearance. We perform two explorative
experiments – the first based on hierarchical agglomerative clustering [9] of the
image characterizations and compare this to the genetic expression, and the
second is subspace projection based on canonical discriminant analysis [5].

Agglomerative Clustering. The image characterizations based on respectively
color and combined color and texture are used to generate an agglomerative
clustering. The agglomerative clustering is based on the L2 distance between
the histograms, and similar histograms are clustered together. The result is a
dendrogram for respectively color and combined color and texture, as seen in Fig.
5. The lower part of the figures show the six SNPs defined in Sec. 2. Each bin
in a dendrogram, corresponding to an eye image, has the six SNPs represented
with color below. The different layers of the SNPs are colored with respectively
red, green or blue. It is clear that the image clustering results for both color and
a combination of color and texture corresponds very well with the genotypes of
rs12913832.

Subspace projections. We have performed a subspace projection of the iris de-
scriptor histograms shown in Fig. 6 using principal component analysis (PCA)
and canonical discriminant analysis (CDA). The first principal or canonical di-
rection is horizontal and the second is vertical. We treat the three genetic ex-
pressions of rs12913832 as classes. To account for the rank deficiency of the
estimated covariance matrices we initially perform a data projection using PCA
where we keep the first 100 principal components. This corresponds to 98.8% of
the variance of the color descriptor and 86.2% of the variance of the combined
color and texture descriptor.

The iris maps are overlapping and in the overlapping regions their color is
averaged. This gives a blurring effect where the iris maps are overlapping. Using
PCA the iris maps are mainly sorted according to color, whereas the CDA clearly
separates the iris maps into the three distinct groups according to the three
expressions of the rs12913832 SNP.
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(a) Color descriptor

(b) Color and texture descriptor

Fig. 5. Top part shows a dendrogram obtained using agglomerative clustering based on
(a) the color descriptor and (b) the combined color and texture descriptor histograms.
The dendrograms are based on the L2 distance between the histograms explained in
Sec. 3. Below each bin in a dendrogram the expressions of the six SNPs are represented
by a color.
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(a) Color descriptor – PCA (b) Color and texture descriptor – PCA

(c) Color and texture descriptor – CDA (d) Color descriptor – CDA

Fig. 6. Iris maps projected to the first two (a,b) principal components and (c,d) the first
two canonical dimensions based on (a,c) the color descriptor histograms and (b,d) the
combined color and texture descriptor histograms. Classes in the canonical discriminant
analysis are based on the genetic expression of rs12913832.

5 Discussion

The agglomerative clustering based on the image characterization for respec-
tively color and a combination of color and texture showes a large correlation
with rs12913832. rs12913832 seems to be the major explanation for iris appear-
ance and the contribution from the remaining five SNPs seem to be minor. The
dendrograms obtained for color and combined color and texture reveal very sim-
ilar results. This indicates that iris color is the main contributor to the image
characterization and that the texture is not expressed in the analysed SNPs.
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We only present the subspace projection analysis based on rs12913832 as
class labels. The other SNPs also separate nicely using CDA, but with PCA
only rs12913832 was sorted according to its expression. This further underlines
the observation from the clustering experiment, that rs12913832 is very impor-
tant for the iris color, but there is only little influence on the iris texture. Our
investigations so far do not support that any of the included SNPs influence iris
texture, but the texture is an important element in the iris appearance. However
with the suggested image descriptors we are able to analyze this further.

The radial transformation performed after the iris extraction consist of a radial
sampling, where the inner part of the iris is sampled more densely than the outer
part. The sampling procedure entail that the features close to the pupil will have
a greater impact than features located in the periphery of the iris. This property
is similar for all eye images and the distance measure is therefore not affected.
A great advantage with the sampling method is that the new coordinate system
becomes invariant to the size of the iris and to pupil dilation as explained by
Daugman [4].

6 Conclusion

We have analyzed the genetic expression of six SNPs in relation to iris appear-
ance. To perform this investigation, we have suggested a representation of the
iris appearance based on color and texture from a radial warped eye image. The
image representation is a histogram of image features. We perform an explorative
analysis in the form of an image based clustering and a subspace projection. Our
investigations show that especially rs12913832 is closely correlated with the iris
color, whereas the other SNPs show a less clear pattern. We do not see a rela-
tion between iris texture and the investigated SNPs, but our descriptors clearly
show that texture is an important part of the iris appearance. The proposed
methodology enables us to investigate this further.
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Abstract. Robotic assistance in minimally invasive surgical interven-
tions has gained substantial popularity over the past decade. Surgeons
perform such operations by remotely manipulating laparoscopic tools
whose motion is executed by the surgical robot. One of the main tools
deployed is an endoscopic binocular camera that provides stereoscopic
vision of the operated scene. Such surgeries have notably garnered wide
interest in renal surgeries such as partial nephrectomy, which is the focus
of our work. This operation consists of the localization and removal of
tumorous tissue in the kidney. During this procedure, the surgeon would
greatly benefit from an augmented reality view that would display addi-
tional information from the different imaging modalities available, such
as pre-operational CT and intra-operational ultrasound. In order to fuse
and visualize these complementary data inputs in a pertinent way, they
need to be accurately registered to a 3D reconstruction of the imaged
surgical scene topology captured by the binocular camera. In this paper
we propose a simple yet powerful approach for dense matching between
the two stereoscopic camera views and for reconstruction of the 3D scene.
Our method adaptively and accurately finds the optimal correspondence
between each pair of images according to three strict confidence crite-
ria that efficiently discard the majority of outliers. Using experiments on
clinical in-vivo stereo data, including comparisons to two state-of-the-art
3D reconstruction techniques in minimally invasive surgery, our results
illustrate superior robustness and better suitability of our approach to
realistic surgical applications.

Keywords: stereovision, rectification, dense matching, 3D reconstruc-
tion, stereo camera, stereo vision, partial nephrectomy, augmented real-
ity, robotic assisted surgery.

1 Introduction

The past decade witnessed an ever-increasing number of reports on robot-assisted
surgical interventions where the surgeon remotely controls a robot that repro-
duces the motion of his/her hands on laparoscopic tools. Medical robots, such
as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA),
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have for example been widely used in renal surgery due to similar or even better
clinical outcomes than those of standard procedures [1].

The fact that the surgeon’s view of the operated scene is digitized via a stereo
camera has made augmented reality (AR) in minimally invasive surgery (MIS)
an very active research area since the early 2000s [2][3]. The aim is to grant
the surgeon the ability to see “beyond” the visible surface by overlaying visual
information from other available intra-operative and pre-operative data onto the
endoscopic camera feed. However, registration of such data with the 3D scene
remains a difficult problem since, particularly in abdominal MIS, the environ-
ment is mostly composed of soft tissue and organs that significantly deform due
to the surgeon’s actions as well as patient breathing and cardiovascular activ-
ity. One approach to solving this problem is to use the stereo stream from the
camera to perform dense matching and provide a 3D model of the surgical scene
that can then serve as a registration base for the other imaging data, e.g. as in
[4]. Many methods for dense stereo matching have been proposed over the last
decades [8][9], however, there are two main distinctions between the kind of data
typical in MIS and the traditional reference datasets for dense stereo matching,
such as the Middlebury images [10]. The first is that our binocular camera pro-
vides a video output, i.e. sequences of images with very little differences between
two successive frames. Therefore, temporal smoothness gains more importance
and can be enforced. Furthermore, since the MIS scenes are generally not static
when captured, a significant amount of motion blur is typically introduced, which
makes the stereo matching problem more difficult.

The second main difference is related to the content of the images. Datasets
traditionally used in computer vision studies represent static scenes with a va-
riety of rather simply shaped objects laid out at different depths. Moreover, the
surfaces are most of time matte and the lighting is uniform, which does not
induce complex lighting artifacts. On the other hand, intra-abdominal tissue is
soft and presents complex reflections, due to the non-Lambertian nature of the
surfaces, as well as irregular shapes, highly variable textures and various distor-
tion . Additionally, there is a constant presence of surgical tools that severely
occludes the scene with textureless plastic or highly reflective metallic parts (see
figure 1). Overall, image sequences in MIS are very challenging to reconstruct
and defy the robustness of current stereo matching techniques.

Few methods at dense reconstruction of stereo endoscopic images have been
proposed. In [2], a method was presented for detecting and virtually removing the
tools from the reconstructed scene. Later [12], Vagvolgyi et al proposed a method
to overlay a kidney model onto the stereo display by registering the model to
the kidney surface reconstructed from stereo data. More recently [5], Stoyanov
et al presented a method to perform near real-time stereo reconstruction in MIS
based on belief propagation. A similar work has been recently proposed in [6]
where hybrid recursive matching was used.

All these previous methods are based on existing stereo matching algorithms
that have not been designed for MIS data. For example, they all try to en-
force spatial smoothness constraints, which is supposed to ensure homogeneous
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Fig. 1. Example image depicting a scene captured during a partial nephrectomy pro-
cedure. Commonly encountered artifacts are highlighted in orange.

disparities in regular areas. However, practical MIS images are more challeng-
ing, therefore mismatches are more prone to happen. If spatial smoothness is
enforced, this will tend to spread errors into little clusters of homogeneous out-
liers, which are harder to discard than isolated ones. Also, the risk of getting
rid of actual inliers is greater if they are in a group since a single pixel standing
out from the rest of the depth map does not represent a realistic scene in world
space. The work presented in this paper aims to address such issue by providing
a 3D model of the surgical scene with emphasis on accuracy and robustness. The
primary goal is to discard outliers and yet provide enough information across all
frames of the video stream such that registration is still possible. To achieve this,
we first detect only the most reliable matches by enforcing a series of strict crite-
ria reflecting certainty of matching. We then enforce limited spatial smoothness
to handle the few isolated outliers that still survive.

2 Methodology

2.1 Pre-processing

The output from our surgical binocular camera is an interlaced high definition
video (1080i). To alleviate the problem of jagged edges in the de-interlaced im-
ages, each extracted frame is downsampled by a factor 2 down to 960 × 540
pixels. For each pair of frames, we then perform a sparse matching using the
SIFT descriptor [13]. Occasional mismatches are discarded during the robust
calculation of the fundamental matrix F using RANSAC as in [7]. The epipoles
are calculated from F and used to rectify the images. This process aligns the
two images into the same plane in the world space (see figure 2a-b). Then, ac-
cording to the laws of epipolar geometry, every feature or pixel in one frame
has its correspondence on the same row in the other frame, which greatly fa-
cilitates the matching (see figure 2b). We use polar rectification, as it is simple
and guarantees minimal distortion of the images [14]. The matching of a feature
yields the disparity d which is inversely proportional to the feature depth Z in
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Fig. 2. Rectification and relation between depth and disparity. (a) shows the projection
of a point P in world space onto the two image planes in pL and pR. In (b), the vertical
alignment of this point in the rectified images gives the disparity d between its left and
right locations, respectively xL and xR. The disparity d is also inversely proportional
to the depth, as shown in (c) the top view of (b).

the world space (see figure 2c and equation 1, where f is the focal length and B
the baseline between the two optical centers).

Z = −Bf
d

(1)

Finally, the images are converted to grayscale by averaging the three color chan-
nels with different weights as recommended in [15] where it was shown that the
use of color in dense stereo matching is not beneficial.

2.2 Robust Matching via Confidence Criteria

Our dense matching is based on calculating similarity between patches from
the left and right images using normalized-cross correlation (NCC) as a metric,
which is efficient even in the presence of brightness change. For a given point
and window in the left image, the similarity profile is calculated across the same
row in the right image, bounded by a range centered at the same position. The
local maxima represent the location of candidates for matching with the best
candidate chosen as the one with the highest similarity value. As robustness is
paramount in our application, we ensure that each point pair matching satisfies
strict confidence criteria that reflect three metrics of uncertainty in the matching
in our approach:

First, blurry, unlit and textureless parts of the image present very little struc-
tural information, which makes the matching difficult if not impossible. To
mitigate this problem, a simple and effective gradient dispersion metric γ is
considered, in order to estimate the spatial structure. Let γL be its value for the
considered patch Ip and γR the one for the best candidate patch Ic. Our first
criterion is that both of these values have to be greater than a certain threshold
γmin (see equation 2). If this condition is not met, the matching is declared too
risky.

γL = stdev(∇2Ip) > γmin and γR = stdev(∇2Ic) > γmin (2)
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Second, the quality of a matching also appears in the difference of similarity
score in the NCC profile between the two highest peaks, as illustrated by figure
3. The blue curve represents the matching from the left to right images, and the
green one from right to left. The graph (a) of the figure reflects a patch of size of
7x7 pixels. As can be easily seen, the profile presents many peaks of approxima-
tively the same score, which means the content of the patch is not discriminative
enough and hence the window may be too small. On the graph (b) of the figure,
the window size is 13x13 pixels, which allows the patch to contain more complex
patterns. As a result, the correct solution stands out in the profile since the gap
between the best and other peaks is significant. Our second criterion is thus
that this difference δ has to be beyond a threshold δmin. If this condition is not
satisfied, the matching is declared not discriminative enough.

Fig. 3. Two example NCC profiles for the same point but with two different window
sizes. The blue curve represents the matching from the left to right images, and the
green one from right to left. On the y-axis is the similarity score and on the x-axis the
disparity. The best peak is designated by a vertical line and its score difference with
the second best peak is δ. The disparities of the best candidates from left to right and
right to left are also displayed as dL→R and dR→L, respectively. (b) here shows better
discrimination.

Third, let us consider dL→R and dR→L. If this correspondence is correct, then
the inverse matching (from right to left) should yield the dual result: dR→L =
−dL→R. Therefore, if both previous criteria are satisfied, then inverse matching
is performed starting from the best candidate in the right image. Our third
criterion is thus that dR→L and dL→R should cancel out within a threshold ε
(see equation 3). If this is not true, the matching is then considered incorrect.

|dL→R + dR→L| < ε (3)

In case of failure in satisfying the above third criterion, the window is increased
by a step dw in hope of providing a more discriminative matching. If the window
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Fig. 4. Block diagram of our proposed dense matching method

size reaches a threshold wmax and still none of the criteria are satisfied, then this
particular point in the image is discarded (see figure 4). This matching method
is iterated through the image until completion.

2.3 Post-processing and Temporal Smoothness

Even though the previous criteria are very restrictive, it is still possible to have
outliers slipping through. Fortunately, since spatial smoothness has not been
enforced, the few surviving outliers are most of the time isolated and easy to
identify. Therefore, our post-processing step consists of finding isolated pixels
that are significantly different from their neighborhood. More specifically, in a
window of size Δw around each point that has been matched, we consider the
number N of disparities whose difference with the actual point disparity is less
than a threshold Δd. If the ratio N/Δw2 is smaller than a threshold μ, then
the matching for this point is discarded. Once outliers are weeded out, one or
two-pixel wide holes are filled with the median of their surrounding values. It is
important to note that no other attempt at filling larger empty areas is needed,
as subsequent frames will fill larger gaps (i.e. uncertain matching areas) locally
across time. For computational considerations and due to the highly reliable
matches, the disparities found for one image pair are used as priors for the next
pair of frames by reducing the search range of a point matching around its
previous disparity value, thus enforcing the temporal smoothness of the depth
evaluations.

3 Results and Discussion

All experiments were carried on frames extracted from in-vivo videos recorded
by our own high definition endoscopic stereo camera during four different partial
nephrectomies assisted by a da Vinci robot. The sequences have a resolution of
1920×1080 pixels at a frame rate of 25 fps and the images color space is YCbCR.
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Our experiments have shown that γmin = 0.5, δmin = 0.1, ε = 5, Δd = 4,
Δw = 5, μ = 0.4, a square window of initial width wmin = 7, maximum width
wmax = 30 and step dw = 4, for frames of size 960× 540, yield good results for
a wide range of MIS scenes.

We compared our algorithm to the two latest methods in dense reconstruction
from stereo in MIS – [5] and [6] – over various pair of frames from our data.
Although their techniques often yielded accurate results, they would still present
significant outliers in difficult areas as in figure 1. In contrast, our method has
successfully discarded the vast majority of difficult areas (see figure 5), while
still matching the easier parts of the image.

Fig. 5. Comparison with other methods. (a) Original image; (b) Depth map from
[5]; (c) Depth map from [6] and (d) our method. Our method successfully dismisses
error-prone areas while the two other methods present outliers (highlighted in red). In
the depth maps, whiter is shallower.

Given that certain difficult areas may be discarded in our robust matching
process which may result in occasional localized loss of reconstruction informa-
tion, the temporal nature of our matching ensures that successful reconstruction
is attained within a few frames. For example, in the central parts of the frame,
most pixel reconstructions are updated within 10 frames which represent less
than 0.5 seconds, as illustrated in figure 6. Therefore, the region of interest can
always be successfully reconstructed locally in time.
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Fig. 6. Depth update with respect to image region. This figure presents four
different sequences. For each graph, the pixel value represents the largest number of
successive frames for the corresponding pixel reconstruction to be updated again in
the sequence. The colormap scales from 0 to the total number of frames. Pixels with
the maximum value (red) are those which have never been matched, either for being
out of the rectified image or because of difficult regions. However, in all four example
sequences shown, the central parts of the image is always blue i.e. these pixels are
matched very regularly.

4 Conclusions

The purpose of this work was to provide an accurate and robust stereo dense
matching method that is suited to surgical scene reconstruction. By enforcing
strict matching confidence criteria and relaxing spatial smoothness, we have
shown that our method is capable of discarding most outliers in frame pairs
from real in-vivo clinical data where current state-of-the-art techniques fail.
Since all matchings are independent of each other, our method is highly paral-
lelizable and will reach its full potential once implemented on GPU, which is our
plan for the near future.
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Abstract. Several existing 3D systems for dental applications rely on obtain-
ing an intermediate solid model of the jaw (cast or teeth imprints) from which
the 3D information can be captured. In this paper, we propose a model-based
shape-from-shading (SFS) approach which allows for the construction of plau-
sible human jaw models in vivo, without ionizing radiation, using fewer sample
points in order to reduce the cost and intrusiveness of acquiring models of patients
teeth/jaws over time. The inherent relation between the photometric information
and the underlying 3D shape is formulated as a statistical model where the effect
of illumination is modeled using Spherical Harmonics (SH) and the partial least
square (PLS) approach is deployed to carry out the estimation of dense 3D shapes.
Moreover, shape and texture alignment is accomplished using a proposed defini-
tion of anatomical jaw landmarks which can be automatically detected. Vis-à-vis
dental applications, the results demonstrate a significant increase in accuracy in
favor of the proposed approach. In particular, our approach is able to recover ge-
ometrical details of tooth occlusal surface as well as mouth floor and ceiling as
compared to SFS-based approaches.

1 Introduction

Object modeling from a single image, augmented with prior information, facilitates var-
ious studies and applications in art, design, reverse engineering, rapid prototyping and
basic analysis of deformations and uncertainties. Without the use of ionizing radiation
(e.g. X-ray and Computer Tomography - CT), object modeling involves constructing a
3D representation for the information conveyed in the given 2D images. This problem
has been studied in the past four decades resulting in many solutions bundled under
the name shape-from-X. In particular, techniques, such as shape-from-shading provide
promise of image-based 3D reconstruction when the imaging environment is somewhat
precise.

To motivate the contribution of this work, we consider a dental application; 3D re-
construction of the visible part of the human jaw. Dentistry usually require accurate 3D
representation of the teeth and jaw for diagnostic and treatment purposes. For instance,
orthodontic treatment involves the application, over time, of force systems to teeth for
malocclusion correction. Several existing 3D systems for dental applications found in
literature rely on obtaining an intermediate solid model of the jaw (cast or teeth im-
prints) and then capturing the 3D information from that model, e.g. [1]. There may
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Fig. 1. Block diagram of the proposed model-based human jaw shape recovery: (a) An aligned
ensemble of the shapes and textures (oral cavity images) of human jaws is used to build the 3D
shape model. (b) Given the texture and surface normals (defining the shape) of a certain jaw in the
ensemble, harmonic basis images are constructed. Given an input oral cavity image under general
unknown illumination and a set of human jaw anatomical landmark points: (c) Dense correspon-
dence is established between the input image and each jaw sample in the ensemble, where each
pixel position within the convex hull of a reference jaw shape corresponds to a certain point on
a sample jaw (shape and texture) and in the same time to a certain point on the input image. (d)
The input image, in the reference frame, is projected onto the subspace spanned by the harmonic
basis of each sample in the ensemble which are scaled (using the projection coefficients) and
summed-up to construct the harmonic projection (HP) images which encodes the illumination
conditions of the input image. Such images are then used to construct an HP model of the input
image. (e) The inherit relation between the HP images and the corresponding shape is cast as a
regression framework where partial least squares is used to solve for shape coefficients to recover
the shape of the input image.

therefore be a demand for intraoral measurement that could be fulfilled by photogram-
metry, which has been applied to the measurement of many small objects, even the
measurement of dental replicas. Thus photogrammetry seems to offer a reduced cost
technique while avoiding the need for castings.

Our argument of image-based approach for 3D reconstruction as an alternative to CT-
scanning is based on the following. During the exposure to diagnostic imaging using
x-ray (ionizing/ electromagnetic radiation), the patient body is penetrated by millions
of x-ray photons whose ionization can damage the body’s molecules especially DNA
in chromosomes. Most DNA damage is repaired immediately, but rarely a portion of a
chromosome may be permanently altered (a mutation) leading ultimately to the forma-
tion of a tumor [2]. While doses and risks for dental radiology are small, a number of
epidemiological studies have provided evidence of an increased risk of brain [3], sali-
vary gland [4] and thyroid tumors [5] for dental radiography. Also, pregnant mothers
undergoing diagnostic or therapeutic procedures involving ionizing radiation, or who
may be exposed to environmental radiation, there is a great potential for damage to the
early embryo [6]. These effects are believed to have no threshold radiation dose below
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which they will not occur [7]. On the other hand, CT-scanning is considered expensive
and not paid by insurance companies unless disease oriented. Meanwhile, dental offices
in rural areas do not have such a luxury. Thus our intent is to develop a purely image-
based reconstruction mechanism as a cost-effective information tool for the dentist.

In this paper we aim at making it easy and feasible for doctors, dentists, and re-
searchers to obtain models of a person’s jaw in vivo, without ionizing radiation, using
fewer sample points in order to reduce the cost and intrusiveness of acquiring models
of patients teeth/jaws over time. This is a challenging problem due to the ”unfriendly”
environment of taking measurements inside a person’s mouth [8]. Further assumptions
of the presence of distinct features or texture regions on the object in stereo images and
the photo consistency in space carving are rarely valid in practice.

Due to the lack of surface texture, shape-from-shading (SFS) algorithms have been
used to reconstruct the 3D shape of human teeth/jaw due to the significant shading
cue presented in an intra-oral image, e.g. [9]. Nonetheless, in principle, SFS is an ill-
posed problem, Prados and Faugeras [10] showed that constraining the SFS problem
to a specific class of objects can improve the accuracy of the recovered shape. Thus
the main objective of the presented work is to develop and validate a holistic approach
for image-based 3D reconstruction of the human jaw based on statistical shape-from-
shading (SSFS), covering regions which the classical SFS approach does not handle,
using scanned molds and images of the oral cavity to estimate the shape of a human
jaw in order to create a more accurate jaw 3D model. In specific, the structure of human
jaw reveals what can be acquired in terms of prior information to enhance the SFS pro-
cess where the upper and lower jaws are symmetric and lined up according to specific
anatomical features and landmarks. We believe that this approach has the potential to
greatly improve plausibility of the resulting shape from shading models.

2 Related Work

There has been a substantial amount of work regarding statistical shape recovery for hu-
man face modeling and biomedical structures with distinct shapes - e.g., modeling the
corpus callosum, the kidney and spinal cord; it is an active research area under shape
and appearance modeling (e.g., [11, 12]). Atick et al. [13] proposed the first statisti-
cal SFS method where principal component analysis (PCA) was used to parameterize
the set of all possible facial surfaces. Scene parameters such as pose and illumination
were estimated in the process of a morphable model fitting using a stochastic gradi-
ent descent-based optimization. By considering the statistical constraint of [13] and
the geometric constraint of symmetry in [14], Dovgard and Basri [15] introduced a
statistical symmetric SFS method. Smith and Hancock [11] modeled surface normals
within the framework of statistical SFS. Based on active appearance models (AAM)
concept of Cootes et al. [16], Castelan et al. [17] developed a coupled statistical model
to recover the 3D shape from intensity images with frontal light source, where the 2D
shape model in [16] is replaced with a 3D shape model composed of height maps. The
main advantage of the Castelan approach over the 3D morphable model framework
[18] is the straightforward recovery of the 3D face shape, without undergoing a costly
optimization process.
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One of the main challenges that confront SFS algorithms is dealing with arbitrary
illumination. Basri and Jacobs [19] proved that images of convex Lambertian object
taken under arbitrary distant illumination conditions can be approximated accurately
using low-dimensional linear subspace based on spherical harmonics. This has also
been validated for near illumination conditions [20]. Since then, SH was incorporated
in SFS framework to tackle the problem of illumination [21–23, 12].

3 Contributions

In this paper, we propose to investigate the SSFS approach on the human jaw where
face and jaw modeling carry similarities and differences. Facial images can be easily
obtained and databases of various imaging conditions are already in place, along with
a significant body of algorithmic development. Human faces are easy to annotate and
automate the process of face cropping and feature extraction. On the other hand, the hu-
man jaw is not a friendly environment to image, as indicated before, while no databases
exist to carry out a SSFS methodology.

Fig. 1 illustrates the SSFS problem for reconstruction of the human jaw using a series
of textures and shapes (obtained from CT scans of molds) for a group of subjects. The
process starts with annotating the jaw at the known anatomical landmarks, in order to
co-register the shapes and textures needed to construct the corresponding models. We
use spherical harmonics to provide the optimal basis for illumination representation,
and the partial least square (PLS) approach to carry out the estimation of dense 3D
shapes. Key requirements for successful SSFS are the availability of a comprehensive
database that describe the teeth/jaw variability per age, gender and ethnic factors. Our
work aims to undertake such a task and make the databases available for researchers
worldwide.

Vis-à-vis dental applications, the results demonstrate a significant increase in accu-
racy in favor of the proposed approach. In particular, our approach is able to recover
geometrical details of tooth occlusal surface as well as mouth floor and ceiling as com-
pared to shape-from-shading based approaches.

4 Proposed Definition of Anatomical Jaw Landmarks

4.1 Landmarks Definition

In this work, we mainly focus on the reconstruction of the clinical crowns which are
defined to be the portion of the teeth that is visible in the mouth. As such, we limit
the jaw’s anatomical landmarks to such a space as follows according to their location,
i.e. on the tooth surface or on the interface between the tooth and the gum. Typically
a landmark represents a distinguishable point which is present in most of the images
under consideration, for example, the location of central grooves of each tooth. Fig. 2
illustrates the location of 72 landmark points for a fourteen-teeth jaw.

In case of posterior teeth (i.e. cuspids, premolars and molars) which are responsible
for chewing food, we are interested in the coalescence of the crown lobes. In particular,
a central pit or groove can be considered as a landmark which is the deepest portion of
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a tooth fossa. While anterior teeth (i.e. incisors) whose job is to rip food apart is identifi-
able by a convex elevation of the crown surface which forms the biting edge. Hence we
consider the midpoint of the incisal edge or ridge as a landmark for an anterior tooth.

The fibrous tissue covering the alveolar bone and surrounds the necks of the teeth, i.e.
the gum, forms what is denoted as gingival line. This line marks the level of termination
of the non-attached soft tissue surrounding the tooth. It separates the clinical crown and
the root. We define the gingival line midpoint to be the minimum or maximum point on
the gingival line formed by a single tooth. On the other hand, gingival embrasure is the
respective point in the open space between the proximal surfaces of two adjacent teeth
in the same dental arch.

Fig. 2. Illustration of the proposed human jaw anatomical landmarks

4.2 Landmark Localization in Optical Images

In the online stage of our approach, a single image of the visible crowns is given from
which the defined landmarks should be identified. This guides the alignment of the
input image to the prior model, e.g. [24]. Hence, it is essential to automate the detection
of such landmarks. In the training set, we manually annotate an ensemble of human
jaws surfaces (based on CT-scanning of molds) in order to construct a sparse version of
the jaw shape. These landmarks serve as a correspondence operator between individual
training samples where we use the generalized Procrustes analysis [25] to filter out
translation, scale and rotation. We deployed the Active Shape Model (ASM) by Cootes
[26] to search for the landmarks in the given image. The ASM repeats the following two
steps until convergence: (i) suggest a tentative shape by adjusting the locations of shape
points by template matching of the image texture around each point (ii) conform the
tentative shape to a global shape model. The individual template matches are unreliable
and the shape model pools the results of the weak template matchers to form a stronger
overall classifier. The entire search is repeated at each level in an image pyramid, from
coarse to fine resolution. The initialization of the mean shape onto the given image is
accomplished by segmenting the teeth region based on fitting a Gaussian mixture to the
image intensity with two dominant classes; jaw and background.
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5 Illumination-Invariant Statistical Shape from Shading

When the light source and the viewer are far from the object, the image intensity I at a
pixel x can be obtained from the image irradiance of the corresponding surface point,
which is defined as the surface radiance being modulated by the surface texture a(x),
i.e. I(x) = a(x)R(n(x)). The classical brightness constraint in SFS measures the total
brightness of the reconstructed image compared to the input image, it can be defined as;

ε =

∫ ∫
(I(x)− a(x)R(n(x)))2 dx (1)

where a(.) is the surface texture at point x while R(.) is the radiance of the surface
patch with unit normal n(x), also known as surface reflectance function.

The brightness constraint in (1) can be rewritten in the discrete domain as a linear
combination of harmonic basis images resulted from the 2nd order SH approximation
to the reflectance function [19]. Thus the image intensity I can be expressed as; I(x) =∑n−1

i=0 αibi(x) where bi(x) = fi (a(x),n(x)) are the harmonic basis images which
are functions of surface texture a(x) and surface normals n(x) at pixel x (refer to [19]
for their definition). The coefficient αi denotes the ith coefficient in the illumination
spectrum being modulated by the Lambertian kernel spectrum.

In matrix notation, let I ∈ Rd×1 be an image vector with d pixels, B =
[b0(x), ..., bn−1(x)] ∈ Rd×n be the matrix of harmonic basis images as its columns,
where n is the number of basis images, typically n = 9, and α ∈ Rn×1 vector of SH
coefficients1. Hence the discrete version of the brightness constraint becomes,

ε =
∑
x

(I(x)−B(x)α)2 = ‖I −Bα‖ (2)

Representing the surface reflectance function in terms of SH allow us to infer the illumi-
nation of a given image; given an input image I , the harmonic basis images B of a 3D
object (a human jaw in particular), defined by its shape s = [n(x0), ...,n(xd−1)]

T and
texture a = [a(x0), ..., a(xd−1)]

T ), are obtained to deduce the coefficients α̂ that best
matches the input image. This results in an over-determined linear system of equations
I = Bα which can be solved for α̂ using singular value decomposition (SVD).

If the input image and the basis images used to compute the coefficients α̂ belong
to the same object, we can reconstruct the input image from these coefficients, i.e.
h = B�̂ = I , where h denotes what we call harmonics projection (HP) image. However
in the general case, the basis images B would belong to an object which is different
from the one in the input image I , nonetheless they belong to the same object class e.g.
different realizations of a human jaw. Thus the reconstructed image h provide a mean
of encoding the illumination of the input image while maintaining the identity of the
object whose basis images are used in the reconstruction process.

While (1) can be solved in an iterative manner to infer the underlying shape as in [22],
the inherit relation between the HP images h and the corresponding shape s can be cast

1 Since the information of this harmonic expansion mainly lies in the analytic form of the SH
basis, we denote its coefficients as SH coefficients.
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into a regression framework resulting into the HP-to-shape model. In this case, the shape
is solved for using a series of matrix operations guaranteeing faster shape recovery
when compared to its iterative counterpart. This was proven to yield comparable results
in terms of reconstruction accuracy [12].

Dimensionality reduction is performed using PCA to construct 3D shape model (of-
fline step) and HP model (online step) where the coefficients are used to build the re-
gression model rather than the original shape and HP instances. In particular, the 3D
shape model can be constructed by performing PCA on a set of aligned samples of 3D
shapes, the resulting shape model is s = s̄ + Psbs where s̄ is the mean shape, Ps are
the shape eigenvectors and bs is the set of shape coefficients. On the other hand, the
HP model is trained online which incorporate the illumination conditions of the input
image; given an image I and the basis images Bk of object instance k, the HP image
hk is obtained, where hk = Bkα̂k with α̂k obtained by solving the linear system of
equations I = Bkαk. After reconstructing the projection images of all the instances in
the jaw database, we can model the HP images using PCA as h = h̄ + Phbh where
h̄ is the mean HP image, Ph are the HP images eigenvectors and bh is the set of HP
coefficients. Thus, instead of using the high dimensional vectors sk and hk into the
regression, they are replaced by their respective coefficients bsk and bhk, where the
HP coefficients are considered the independent variable while the shape coefficients are
the dependent variables. We use partial least squares regression (PLS) instead of the
classical least squares to avoid random noise which might exist in the dependent and
independent variables. Fig. 1 shows a block diagram of the offline/online processes for
the proposed shape recovery approach.

6 Experimental Results

In this section, we show experiments to evaluate the performance of the proposed frame-
work in recovery 3D models for human jaws. Upper and lower jaw models are con-
structed from eight young-aged subjects using their oral cavity images and the CT-scan
of their respective molds. There are two samples per subject, one pre-repair jaw and
another post-repair jaw. The original 3D scans are converted into a Monge patch format
which represents the surface as (x, y, f(x, y)). We use a landmark-based approach to
establish the dense correspondence between database samples, where a set of sparse
anatomical landmark points are manually annotated (refer to Fig. 1 for their illustra-
tion). Generalized Procrustes Analysis (GPA) is first performed to align the set of shapes
to a common reference frame. The average of the aligned shapes define the reference
shape which is crucial in establishing dense correspondence between the jaw samples,
see Fig. 1. Each pixel within the convex hull of the reference shape corresponds to a
certain point on each jaw sample scan through a physically motivated thin-plate splines
warping function.

To evaluate the proposed approach, out-of-training jaw samples are reconstructed
and compared against the ground truth CT-scan. Four types of samples are considered:
(a) pre-repair and (b) post-repair lower jaw, (c) pre-repair and (d) post-repair upper jaw.

Fig. 3(c) shows a sample reconstruction of a human jaw based on the proposed
approach. Notice that it is close to its ground truth shape, as illustrated in Fig. 3(b).
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Fig. 3. Sample reconstruction result of a single subject: (first row) upper, pre-repair jaw, (sec-
ond row) upper, post-repair jaw, (third row) lower, pre-repair jaw, and (fourth row) lower, post-
repair jaw. (a) Input image being masked using the convex hull of the jaw landmarks. (b) Ground
truth shape from the CT-scanner. (c) Reconstructed shape based on our approach. (d) root-mean-
squared error map with average error shown in mm. (e) Reconstructed shape based on SFS of
[9]. (f) root-mean-squared error map of (e) with average error shown in mm.

While Fig. 3(e) shows inaccurate reconstructions based on SFS of [9] which was re-
cently proposed for jaw shape recovery. This emphasizes the role of incorporating prior-
information for shape recovery as well as illumination modeling.

Table 1 reports the root-mean-square error in mm between the 3D points from the
CT scan and the corresponding reconstructed surface points. Notice that the error values
are minimal when compared to SFS-based reconstruction. Post-repair error values are
also smaller than pre-repair values in most of the samples, indicating that it is more
difficult to reconstruct human jaws with irregular tooth shapes and locations. One can
observe higher errors in case of SFS for the lower jaw when compared to the upper one
where there is no occlusion due to the tongue.

A natural question to be asked is how to make use of SFS results and SSFS? Of
course, SFS is based on the visible surface of the jaw; at best the crown would be

Table 1. Average surface reconstruction accuracy (RMS) in mm

Jaw type SSFS SFS

Upper, pre-repair 2.08999 8.80572

Upper, post-repair 2.02334 8.96832

Lower, pre-repair 3.11911 10.02804

Lower, post-repair 2.57112 11.42853
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possibly constructed, while SSFS constructs the entire jaw. On the other hand, SFS pro-
vides the object-specific constructions. A logical thing would be to enhance the SSFS
with SFS, by morphing the upper part of the model with the crown portion generated
from SFS. With a good database of objects, credible SSFS models would be possible,
which when morphed to the crown reconstructions would produce a more realistic jaw.

7 Conclusion and Future Work

In this paper, we presented an affordable, flexible, automatic dental tool for the re-
construction of the clinically visible part of the human jaw. It was based on a single
captured optical image and a statistical shape recovery approach which makes use of a
small number of measured points to construct a plausible 3D model through a learned
correspondence based on a measured human jaw dataset. We expressed the surface
reflectance function in terms of spherical harmonics to provide the optimal basis for
illumination representation. The brightness constraint was then cast as a Partial Least
Squares (PLS) regression problem, which allows for the rapid computation of the so-
lution. The PLS algorithm is composed of a sequence of matrix operations; the ap-
proach in this work can recover 3D shapes much faster than its iterative counterpart,
without compromising the integrity of the results. The results demonstrated the effect
of adding statistical prior as well as illumination modeling on the accuracy of the re-
covered shape. The next step is to investigate the fusion of SFS and SSFS where SFS
provides the object-specific constructions while SSFS is perform shape recovery based
on partial information. This will lend benefits to tasks such as teeth restoration in dental
applications.
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Abstract. This paper proposes to employ a detailed tumor growth
model to synthesize labelled images which can then be used to train
an efficient data-driven machine learning tumor predictor. Our MR im-
age synthesis step generates images with both healthy tissues as well as
various tumoral tissue types. Subsequently, a discriminative algorithm
based on random regression forests is trained on the simulated ground
truth to predict the continuous latent tumor cell density, and the discrete
tissue class associated with each voxel. The presented method makes use
of a large synthetic dataset of 740 simulated cases for training and evalu-
ation. A quantitative evaluation on 14 real clinical cases diagnosed with
low-grade gliomas demonstrates tissue class accuracy comparable with
state of the art, with added benefit in terms of computational efficiency
and the ability to estimate tumor cell density as a latent variable un-
derlying the multimodal image observations. The idea of synthesizing
training data to train data-driven learning algorithms can be extended
to other applications where expert annotation is lacking or expensive.

1 Introduction

Brain tumors are complex patho-physiological processes representing a series of
pathological changes to brain tissue [1]. Increasing effort is invested in mod-
elling the underlying biological processes involved in brain tumor growth [2, 3].
As brain tumors show a large variety of different appearances in multi-modal
clinical images, the accurate diagnosis and analysis of these images remains a
significant challenge. We show in the example of gliomas, the most frequent
brain tumor [4], how a generative patho-physiological model of tumor growth
can be used in conjunction with a discriminative tumor recognition algorithm,
based on random regression forests. Applied to real data the random forest is
capable of predicting the precise location of the tumor and its substructures.
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In addition, our model can also infer the spatial distribution of (unobservable)
latent physiological features such as tumor cell densities, thus avoiding the need
for expensive patho-physiological model inversion [5].

Generative probabilistic segmentation models of spatial tissue distribution
and appearance proved to generalize well to previously unseen images [6–9].
In [6], tumors are modeled as outliers relative to the expected appearance of
healthy tissue following a related approach for MS lesion detection [10]. Other
methods [7, 8] provide explicit models for the tumor class. For instance, [8] builds
a tumor appearance model for channel specific segmentation of the tumor, com-
bining a tissue appearance model with a latent tumor class prior from [9]. Tumor
growth models (e.g. reaction-diffusion models) have been used repeatedly to im-
prove image registration [11] and, hence, atlas-based tissue segmentation [12].
Similarly, [13] relies on a bio-mechanical tumor growth model to estimate brain
tissue loss and displacement. Generative approaches require a detailed formal
description of the image generation process and may need considerable modifi-
cations when applied to slightly different tasks. These approaches also tend to
be computationally inefficient.

In contrast, discriminative techniques focus on modeling the difference be-
tween e.g. a lesion and healthy tissues, directly [14–16]. A number of recent
techniques based on decision tree ensembles have shown strong generalization
capabilities and computational efficiency, even when applied to large data sets
[17–19]. In [20], for example, a classification forest is used for segmenting multiple
sclerosis lesions using long-range spatial features. In [15], the authors derived a
constrained minimization problem suitable for min-cut optimization that incor-
porates an observation model provided by a discriminative Probabilistic Boosting
Trees classifier into the process of segmentation. For multi-modal brain lesion
segmentation, [16] propose a hierarchical segmentation framework by weighted
aggregation with generic local image features. Unfortunately, fully supervised
discriminative approaches may require large expert-annotated training sets. Ob-
taining such data is often prohibitive in many clinical applications.

This paper proposes a new way of combining the best of the generative and
discriminative world. We use a generative model of glioma [21] to synthesize
a large set of heterogeneous MR images complete with their ground truth an-
notations. Such images are then used to train a multi-variate regression forest
tumor predictor [20, 22]. Thus given a previously unseen image the forest can
perform an efficient, per-voxel estimation of both tumor infiltration density and
tissue type. The general idea of training a discriminative predictor (a classifier
or a regressor) on a large collection of synthetic training data is inspired by the
recent success of the Microsoft Kinect for XBox 360 system [23]. This approach
has great potential in different domains and especially for medical applications
where obtaining extensive expert-labelled is nearly impossible.
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2 Learning to Estimate Tissue Cell Density from
Synthetic Training Data

This section describes the two basic steps of our algorithm: i) synthesizing het-
erogeneous MR images showing tumors, and ii) training a tumor detector which
works on real patient images.

2.1 Generative Tumor Simulation Model

The automatic generation of our synthetic training dataset relies on the publicly
available brain tumor simulator presented in [21]. It builds on an anisotropic
glioma growth model [24] with extensions to model the induced mass-effect and
the accumulation of the contrast agents in both blood vessels and active tumor
regions. Then, multi-sequence MR images are synthesized using characteristic
image textures for healthy and pathological tissue classes.

We generate synthetic pathological cases with varying tumor location, tumor
count, levels of tumor expansion and extent of edema. The resulting synthetic
cases successfully reproduce mass-effect, contrast enhancement and infiltration
patterns similar to what observed in the real cases. The synthetic dataset con-
tains 740 synthetic cases. It includes a large variability of brain tumors ranging
from very diffusive tumors, showing a large edema-infiltration pattern without
necrotic core, to bulky tumors with a large necrotic core surrounded by an en-
hanced vascularization pattern. For each case, the simulation provides four MR
sequences (cf. Fig. 1) which offer different views of the same underlying tumor
density distribution.

This synthetic ground truth provides a diverse view of the pathological pro-
cess including mass-effect and infiltration, but also very detailed annotations
for the healthy structures of the brain. The ground truth consists of voxel-wise
annotations on the data that are: white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF), edema, necrotic tumor core, active tumor rim and blood
vessels. Unlike binary annotations which provide a mask for each tissue class,
the ground truth consists of a continuous scalar map for each tissue class. Each
scalar map provides, for every voxel in the volume, the density of every tissue
class.

2.2 Regression Forests for Estimating Tissue Cell Density

Problem setting. We adapt a regression forests similar to the one of [17] to train
an estimator of tissue cell densities from visual cues in the multi-channel MR
images. For each voxel v, the ground truth provides the density Rc(v) ∈ [0, 1]
of each tissue class c ∈ C. The density distribution R is normalized so that it
satisfies

∑
c∈C Rc(v) = 1 in every voxel v.
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Fig. 1. Synthetic MR images. From left to right: T1, T1+Gad, T2, and FLAIR
MR images. Top row: bulky tumor characterized by a large necrotic and a surround-
ing vascularization pattern. Bottom row: very infiltrating tumor characterized by the
extended of the edema.

Feature representation. To calculate the local image features – both during train-
ing and for predictions – we sub-sample or interpolate all images to 1 × 1 × 2
mm3 resolution. We perform a skull-stripping and an intensity normalization
[25] so that real MR images match the intensity distribution of synthetic MR
sequences. Then image features are calculated for each voxel v. Features include
local multi-channel intensity (T1, T1+Gad, T2, Flair) as well as long-range dis-
placed box features such as in [20]. In addition we also incorporate symmetry
features, calculated after estimating the mid-sagittal plane [26]. In total, every
voxel is associated with a 213−long vector of feature responses.

Regression forest training. The forest consists of T trees indexed by t. During
training observations of all voxels v are pushed through each of the trees. Each
internal node p applies a binary test tp = τlow ≤ θ(v) < τup implementing a
double thresholding (τlow, τup) of the visual feature θ(v) evaluated at voxel v.
The voxel v is then sent to one of the two child nodes based on the outcome of
this test. As a result, each node p receives a partition of the input training data
Tp = {v, R(v)}p, composed of a voxel v and a vector R(v) ∈ [0, 1]|C| storing
the cell density value for each tissue class. We model the resulting distribution
via a multi-variate Gaussian Np(μp, Γp) where μp and Γp are the mean and
covariance matrix of all R(v) ∈ Tp, respectively. During training, the parame-
ters (τlow, τup) of the node test function and the employed visual feature θ are
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optimized to maximize the information gain. We define the information gain
IG(tp) to measure the quality of the test function tp which splits Tp into T left

p and

T right
p . The information gain is defined as IG(tp) = −

∑
k∈{left,right} ωklogρk

with ω = |T k
p |/|Tp| and ρk = max|eig(Γk)| where eig denotes all matrix eigen-

values. In contrast to the more conventional information gain used in [17], our
formulation gives a robust estimate of the dispersion. Indeed, the information
gain presented in [17] models the dispersions as |Γk| which evaluates to 0 in the
case a tissue class is missing from the input partition Tp. Our definition of the
information gain focuses on the direction showing maximum dispersion, i.e. ρk,
and ignores the missing information on tissue classes.

At each node p, the optimal test t∗p = argmaxΛ IG(tp) is found by exhaustive
search over a random subset of the feature space Λ = {τlow, τup, θ}. Maximizing
the information gain encourages minimizing ρp, thus decreasing the prediction
error when approximating Tp with Np. The trees are grown to a maximum depth
D, as long as |Tp| > 100.

After training, the random forest embeds a hierarchical piece-wise Gaussian
model which captures the multi-modality of the training data. In fact, each leaf
node lt of every tree t stores the Gaussian distribution Nlt associated with the
partition of the training data arrived at that leaf Tlt .

The employed random regression forest approximates the multi-variate distri-
bution R by a piece-wise Gaussian distribution R̂.

Regression forest prediction. When applied to a previously unseen test volume
Ttest = {v}, each voxel v is propagated through all the trained trees by successive
application of the relevant binary tests. When reaching the leaf node lt in all trees
t ∈ [1..T ], estimated cell densities rt(v) = μlt are averaged together to compute
the forest tissue cell density estimation r(v) = (

∑
t∈[1..T ] rt(v))/T . Note that in

each leaf lt we maintain an estimate of the confidence Γlt associated to the cell
density estimation μlt .

3 Experiments

We conducted two main experiments. First, as a proof of concept, we tested
how well the learned forest reproduces the tissue cell densities in the synthetic
model. In a second experiment we applied our method to real, previously unseen,
clinical images and measured accuracy by comparing the detected and ground
truth tumor outlines.

We evaluate the predictions for every test case using two complementary
metrics: a segmentation metric and a robust regression metric. The segmen-
tation metric compares binary versions of the physiological maps, independently
normalized for each tissue class. The binary masks are obtained by threshold-
ing the prediction and the ground truth at the same value. Then, we evaluate
the true postive rate TPR = TP/(TP + FN), the false positive rate FPR =
TP/(TP+FP ) and the positive predictive value PPV = TP/(TP+FP ), where



278 E. Geremia et al.

TP , FP , and FN are the number of true positives, false positives, and false neg-
atives, respectively. Finally, we compute the area under the ROC and the one
precision-recall curves to measure how well the prediction fits the ground truth.

The robust regression metric evaluates the estimation error between the pre-
dicted continuous map and the ground truth. For every tissue class c, we com-
pute the mean over the voxels v of the estimation error, defined as Ec(v) =
|Rc(v)− rc(v)|. In order to avoid artificial decrease of the mean error, we make
this metric robust by only considering regions of the physiological map showing
at least 10% signal in either the prediction or the ground truth.

In both experiments, we used the same forest containing T = 160 trees
of depth D = 20 trained on 500 synthetic cases. The values of these meta-
parameters were tuned by training and testing on a different synthetic set.

3.1 Experiment 1: Estimating Cell Density in Synthetic Cases

We tested the random forest on a previously unseen synthetic dataset with 240
cases. Results (Fig. 2) show a good qualitative match between predicted and
ground truth physiological maps. As a segmentation metric we calculate the true
and false positive rates as well as the positive predictive value for each possible
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Fig. 2. Estimation of tissue cell densities. From left to right: T1+Gadolinium,
FLAIR image, the ground truth provided by the simulator, the estimation of our ran-
dom regression forest. Each voxel of the ground truth maps displays the mixed density
between predefined tissue classes: WM (dark blue), GM (light blue), CSF (cyan), edema
(green), blood vessels (orange), and necrotic core (yellow).
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Fig. 3. Evaluation of the predictions on the synthetic dataset for each cell
density map. Each label in the x-axis represents a tissue class: WM, GM, CSF,
edema, necrotic core, blood vessels, respectively. We show from left to right: the area
under the precision-recall curve, the area under the ROC curve, the estimation of the
mean prediction error, and the dice score Each point of the ROC and precision-recall
curves is built by thresholding the prediction and the ground truth at the same value.
The ground truth and the prediction density maps were thresholded at the same value,
i.e. 0.3.

Fig. 4. Evaluation of the predictions on the clinical dataset. Box plots of the
area under the ROC curve (left), under the precision-recall curve (right), and the dice
score. Comparison of the proposed method (G-RF) with the method presented in [8].

threshold jointly on r and R and summarize it through ROC and precision-recall
curves. For every tissue class c, we also compute the mean approximation error,
defined as Ec(v) = |Rc(v) − rc(v)| (integrating over voxels with > .001 tumor
cell density for tumor classes). Results in Fig. 3 show excellent results for WM,
GM, CSF. The predicted tumor cell density is in good agreement with ground
truth. A systematic bias leads to a slightly larger variance in the error metric
due to the small size of the tumor classes compared to the healthy tissue classes.

3.2 Experiment 2: Segmenting Tumors in Clinical Images

We tested the same random forest on 14 clinical cases showing low and high
grade glioma (Fig. 5) with T1, T1+Gad, T2 and FLAIR images. None of the
clinical cases was used during training. Training was done exclusively on syn-
thetic images. The manually-obtained ground truth consists of a binary tumor
mask delineating the tumor+edema region. We calculated the same tumor out-
line from the predicted continuous physiological masks as done for the syn-
thetic model [21]. Segmentation results (Fig. 4) are in excellent agreement with a
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Fig. 5. Segmentation and tumor cell distribution. From left to right: prepro-
cessed Flair MR image, FLAIR MR image overlayed with the segmentation of an
expert, the normalized tumor cell density, and the predicted tumor segmentation
(threshold at 0.3).

state-of-the-art unsupervised multimodal brain tumor segmentation method that
also outperformed standard EM segmentation in an earlier study [8]. Note that
the method presented in [8] significantly outperformed [6]. Interestingly, in a
qualitative evaluation (cf. Fig. 5), the tumor cell density map shows smooth
transition between the active rim of the tumor (red) and the edema (green).

4 Conclusions

This paper presented a new generative-discriminative algorithm for the auto-
matic detection of glioma tumors in multi-modal MR brain images. A regression
forest model was trained on multiple synthetically-generated labelled images.
Then the system demonstrated to work accurately on previously unseen syn-
thetic cases. It showed promising results on real patient images which led to
state of the art tumor segmentation results. Our algorithm can estimate contin-
uous tissue cell densities both for healthy tissues (WM, GM, CSF) as well as
tumoral ones.
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Abstract. Patient-specific models of the heart may lead to better understanding
of cardiovascular diseases and better planning of therapy. A machine-learning ap-
proach to the personalization of an electro-mechanical model of the heart, from
the kinematics of the endo- and epicardium, is presented in this paper. We use
4D mathematical currents to encapsulate information about the shape and defor-
mation of the heart. The method is largely insensitive to initialization and does
not require on-line simulation of the cardiac function. In this work, we demon-
strate the performance of our approach for the joint estimation of three parame-
ters on one heart geometry. We manage to retrieve parameters such that the model
matches the 4D observations with an accuracy below the voxel size, in less than
three minutes of computation.

Keywords: patient-specific heart model, mechanical personalization, currents,
machine-learning.

1 Introduction

Patient-specific models may help better understand the role of biomechanical and elec-
trophysiological factors in cardiovascular pathologies. They may also prove to be useful
in predicting the outcome of potential therapeutic interventions for individual patients.
In this paper we focus on the mechanical personalization of the Bestel-Clement-Sorine
(BCS) model, as described in [2][4].

Model personalization aims at optimizing model parameters so that the behaviour of
the personalized model matches the acquired patient-specific data (e.g. cine-MR im-
ages). Several approaches to the problem of cardiac model personalization have been
suggested in the recent years, often formulating the inverse problem via the frame-
work of variational data assimilation[6] or that of optimal filtering theory[14][13][3].
The output of these methods is dependent on the set of parameters used to initialize
the algorithm; for this reason calibration procedures are introduced as a preprocess-
ing stage, such as the one developed in [16]. Furthermore these approaches rely on
on-line simulations, as an accurate estimation of the effect of parameter changes along
several directions in the parameter space is required to drive the parameter estimation.
Due to the complexity of the direct simulation these approaches are costly in time and
computations.

In this paper, we explore a novel machine-learning approach, in which the need for
initialization and on-line simulation is removed, by moving the analysis of the parame-
ter effects on the kinematics of the model (and thus the bulk of the computations) to an
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off-line learning phase. In this work we assume the tracking of the heart motion from
images to be given (e.g. via [15]) and focus on the mechanical personalization of the
cardiac function from meshes. Our work makes use of currents, a mathematical tool
which was originally introduced to the medical imaging community in the context of
shape registration[18][8] and offers a unified, correspondence-free statistical represen-
tation of geometrical objects. Our main contributions include the construction of 4D
currents to represent, and perform statistics on 3D + t beating hearts and the proposal
of a machine-learning framework to personalize electromechanical cardiac models.

The remaining of this article is organized as follows. In the first part we introduce
the background on currents necessary to present the rest of our work. We develop our
method in the following section, then present and discuss experimental results in the
final sections.

2 Currents for Shape Representation

2.1 A Statistical Shape Representation Framework

Currents provide a unified representation of geometrical objects of any dimension, em-
bedded in the Euclidean space Rn, that is fit for statistical analysis. The framework
of currents makes use of geometrically rich and well-behaved data spaces allowing for
the proper definition of classical statistical concepts. Typically the existence of an in-
ner product structure provides a straightforward way to define the mean and principal
modes of a data set for instance, as in the Principal Component Analysis (PCA). These
comments motivate an approach of currents from the perspective of kernel theory in this
section, although currents are formally introduced in a more general way via the field of
differential topology. The connection to differential topology is particularly relevant to
outline the desirable properties of currents when dealing with discrete approximations
of continuous shapes, in terms of convergence and consistence of the representation [7].

A well-known theorem due to Moore and Aronszajn[1] states that for any symmetric,
positive definite (p.d.) kernel on a set X , there exists a unique Hilbert space HK ⊂ RX

for which K is a reproducing kernel. This result suggests a straightforward way of doing
statistics on X as long as a p.d. kernel K can be engineered on this set, by mapping
any point x ∈ X to a functionK(x, ·) ∈ HK and exploiting the Hilbert space structure
in HK . Furthermore, practical computations can be efficiently tracted thanks to the
reproducing kernel property - namely, for any x, y ∈ X , we have

(K(x, ·) |K(y, ·) )HK
= K(x, y) , (1)

and more generally yet, for any f ∈ HK , (K(x, ·)|f)HK
= f(x). Expanding on this,

one can compute statistics on pairs of points and m-vectors (x, η) ∈ Rn × ΛmRn by
mapping them to functionsK(x, ·)η and making use of the reproducing property

(K(x, ·)η|K(y, ·)ν) = η�νK(x, y) . (2)

Eq. 2 simply extends Eq. 1 to vector-valued functions, making use of the fact that the
tensor product of two kernels is again a kernel over the product space. Expanding the
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framework even further, we can regard a discrete shape as a finite set {(xi, ηi)}1≤i≤p,
where ηi describes the tangent space at xi, and associate to it a signature function∑

1≤i≤pK(xi, ·)ηi. The correlation between two discrete shapes {(xi, ηi)}1≤i≤p and
{(yj, νj)}1≤j≤q can then be measured by the inner product

(
∑
i

K(xi, ·)ηi |
∑
j

K(yj , ·)νj ) =
∑
i,j

η�i νjK(xi, yj) . (3)

This construction may in fact be acknowledged as a special case of the convolution kernel
on discrete structures described in [11] and [10]. The above defines a correspondence-
free way to measure proximity between shapes, trading hard correspondences for an
aggregation of the measures of proximity between each simplex of one shape with every
simplex of the other shape in the sense of a kernelK(·, ·). We have yet to specify a choice
of kernel K . In the following, we will consider the multivariate Gaussian kernel with
variance Σ:

KΣ(x, y) =
1

{(2π)n|Σ|}1/2
exp−1

2
(x− y)�Σ−1(x− y) .

The choice of kernel widthΣ can be interpreted as a choice of scale at which the shape of
interest is observed: shape variations occurring at a lower scale are likely to be smoothed
by the convolution and go unnoticed. This mechanism naturally introduces some level
of noise insensitivity in the analysis. This parameter should thus be decided with regard
to the mesh resolution and the level of noise in the data.

Finally, the linear pointwise-evaluation functional δηx : ω �→ ω(x)(η) is continuous
and dual to K(x, ·)η by the reproducing kernel property. In the following we will re-
fer to δηx as a delta-current or a moment. To summarize, the discretized m-manifold
{(xi, ηi)}1≤i≤p admits equivalent representations as the current

∑
i δ

ηi
xi

, its dual differ-
ential m-form

∑
1≤i≤pK(xi, ·)η�i or its dual vector field

∑
1≤i≤pK(xi, ·)ηi.

2.2 Computational Efficiency and Compact Approximate Representations

This framework lends itself to an efficient implementation. Firstly, the inner product be-
tween two discrete shapes can be computed in linear time with respect to the number of
momenta through the use of a translation invariant kernel. Indeed γ(·) =

∑
iK(xi, ·)ηi

may then be precomputed at any desired accuracy on a discrete grid by convolution, and
rewriting

∑
i,j η

�
i νjK(xi, yj) as

∑
j γ(yj)

�νj demonstrates the claim.
Secondly, if the mesh diameter is small with respect to the scale Σ, the initial delta-

current representation will be highly redundant. Durrleman et al.[9] introduced an it-
erative method to obtain compact approximations of currents at a chosen scale and
with any desired accuracy. We rely on this procedure at training time to fasten com-
putations and reduce the memory load. This algorithm is inspired from the Matching
Pursuit method[5]. A compact current is built from the current S to approximate (of
dual field γ) by iteratively adding a single delta current δηn

xn
to the previous approxima-

tion Sn−1, in such a way that the difference ‖S − Sn‖H′
Σ

steadily decreases. This is
achieved by greedily placing the moment at the maximum (in ‖ · ‖2 norm) xn of the
residual field γ(·) − γn−1(·), then choosing the optimal η, i.e. the one that minimizes
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‖γ−{γn−1+K(xn, ·)η}‖2HΣ
. It is shown in [9] that this algorithm is greedy in ‖ ·‖HΣ

norm, and converges both in ‖ · ‖HΣ norm and ‖ · ‖∞ norm. The stopping criterion
is on the residual norm ‖γ(·) − γn(·)‖2HΣ

. Our implementation uses a discrete kernel
approximation of the Gaussian kernel, rather than an FFT based scheme, for fast local
updates of the residual field.

3 Method

The workflow for the proposed machine-learning based parameter estimation method
couples three successive processing steps: the first one aims at generating a current from
an input sequence of meshes, so as to obtain a statistically relevant representation; the
second one consists in a dimensionality reduction step, so as to derive a reduced shape
representation in Rk, which leads to computationally efficient statistical learning; the
third step tackles the matter of finding a relationship between the reduced shape space
and the (biophysical) model parameters. The three modules are mostly independent and
can easily be adjusted in their own respect. As a machine learning based method, our
work involves an off-line learning stage and an on-line testing stage: all three modules
of the pipeline are involved during each stage. Fig. 1 gives a visual overview of our
approach. The rest of this section describes the three afore-mentioned processing steps
and their use during learning and testing stages.

(a) Step-by-step process

(b) Learning phase

(c) Testing phase

Fig. 1. Overview of the learning and testing phases
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3.1 Current Generation from Mesh Sequences

Let us briefly describe the way we build a current from a time sequence of 3D meshes.
We first extract surface meshes from the volumetric meshes. This choice derives from
the assumption that the displacement of surface points can be recovered more easily
than the displacement of all points within the myocardium, given a sequence of images;
thus learning from surface meshes may be more relevant for real applications. In this
work we assume the trajectory of surface points to be entirely known, as opposed to the
displacement in the direction normal to the contour only (aperture problem). Several
variants to derive currents for 4D object representation can be discussed (e.g. [7]), but
their relevance largely depends on the application and complete processing work flow
from the original data.

In this work, we rely on the remark that the concatenation of smoothly deformed
surface meshes can be visualized as a (3D) hyper-surface in 4D (Fig. 2). The ith
simplex of this hyper-surface generates a current δηi

xi
, where xi is its barycenter and

ηi is the vector of R4 normal to its support and of length the volume of the simplex.
The current associated to the series of meshes is the aggregation of such delta currents,∑

i δ
ηi
xi

. This construction captures both the geometry of the heart and its motion.

t

x

y

•

•

•

•

P(t)

Q(t)

P(t+ δt)

Q(t+ δt)

×

×

x1

x2

η1

η2

Fig. 2. Current generation from a mesh element, illustrated on an element of contour in 2D de-
formed in time. The simplex PQ is followed over two consecutive timesteps, which gives a quad
embedded in 3D. The quad is divided into two triangles, from which we get two current deltas,
applied at each triangle barycenter, orthogonal to the support of their corresponding triangles and
of norm the area of the triangle. For a surface in 3D deformed over time, each element of the
triangulation followed over two consecutive timesteps generates a hyper-prism embedded in 4D,
which is in turn decomposed in three tetrahedra from which we obtain three momenta.

3.2 Shape Space Reduction

Since learning a direct mapping between the space of model parameters and the space
of 3D+t currents is a cumbersome task, we introduce an intermediate step of dimen-
sionality reduction via PCA. During the learning stage, we compute the mean current
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and principal modes of variation from the learning database of N currents {Si}1≤i≤N

generated from the N training mesh sequences {Mi}1≤i≤N as described in §3.1. This
is achieved efficiently by computing the Gram matrix of the data Gij = (Si|Sj) col-
umn by column and using the ”kernel trick”[17]. Each column of G is computed in
O(N · P ), where P is the maximum number of momenta among all currents Sj (cf.
§2.1). Finally, we compute an approximate compact representation at the scale Σ of
the mean current T̄ and of the K first modes of variation {Tk}1≤k≤K to accelerate
computations of inner products involving these currents[9].

At testing time and given a new currentS, we derive its coordinates v =
(
v1, · · · , vK

)
in the reduced shape space by projection on the principal modes of variation, vk =
(S − T̄ |Tk).

3.3 Regression Problem for Model Parameter Learning

It remains to link the physiological (model) parameters to the reduced shape space. Al-
though we are ultimately interested in finding an optimal set of parameters p ∈ Rd

from an observation v ∈ RK we will actually learn a mapping in the other direction,
f : p ∈ Rd �→ v ∈ RK . We motivate this choice by three arguments. Firstly, the obser-
vation v is a deterministic output of the cardiac model given a parameter set p and thus
the mapping f is well-defined; however there may be several parameter sets resulting
in the same observable shape and deformation, as parameter identifiability is not a pri-
ori ensured. Secondly, the parameter space is expected to be of smaller dimensionality
than the reduced shape space and therefore easier to sample for combinatorial reasons.
Finally, we can also expect that the set of biologically admissible model parameters be
relatively well-behaved; on the other hand few points in the shape space may actually
relate to anatomically reasonable hearts: thus mapping every v ∈ Rk to a parameter set
could be impractical.

The regression function f is learned by kernel ridge regression using a Gaussian
kernel[12], and admits a straightforward close-form expression. During the testing
phase, given a new observation v, we solve the optimization problem argminp ‖f(p)−
v‖2 by Simulated Annealing[19]. This optimization problem involves an analytical
mapping between low-dimensional spaces, as opposed to optimizing directly over the
4D meshes or currents. Thus it will not constitute a computational bottleneck regardless
of the chosen optimization scheme. Naturally, if a prior on the likelihood of a given pa-
rameter set p ∈ Rd were known (e.g. via a biophysical argument), it could be integrated
in the cost function in the form of a prior energy term λ ·R(p).

4 Experimental Results

In our first experiment we focus on the prediction of the maximum contractility param-
eter σ0 of the BCS model, defined globally for the whole cardiac muscle. Building on
the sensitivity analysis from [16], we consider that σ0 covers the range of values from
106 to 2 107 in an anatomically plausible way. We form a training base of ten cases
{pi,Mi} by sampling this range deterministically and launching simulations with the
corresponding parameter sets, for a single heart geometry from the STACOM’2011
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Fig. 3. PCA results for the first experiment. The projection of the first mode of variation on
a plane orthogonal to the z-axis at a fixed time step is shown in (c), and can be interpreted as
capturing the variability in the extent of the contraction of the muscle.

dataset. Following the PCA, the first principal mode of variation is found to explain
81% of the variance, thus we set the reduced shape space to be of dimension 1 (K = 1);
the regression function (σ = 0.3, λ = 10−5) bijectively maps the model parame-
ter space and the reduced shape space. In all experiments, the model parameters are
affinely mapped to [−1, 1] for convenience, for the regression and optimization stages.
We use an isotropic Gaussian kernel of width 1cm in space and 50ms in time.

In the spirit of cross-validation procedures, we evaluate the performance of our ap-
proach on an independent test set {pj ,Mj}0≤j<N ′ by randomly choosing parameter
sets in the admissible range of parameters and launching the corresponding simula-
tions. We thereafter refer to pj as the real parameter (value) and to the output of our
approach p∗j as the optimal parameter (value). Our test set is of size N ′ = 100 samples.
The whole personalization pipeline, from the current generation to the parameter opti-
mization phase, takes roughly 2 minutes per sample on a regular laptop. We define the
relative error on the parameter value for a given test sample j as εrpj = |p∗j − pj |/pj .
In addition to the relative error, we consider the absolute error over the range of admis-
sible parameters, εapj = |p∗j − pj |/|pmax − pmin|. We refer to εap as an absolute error
but express it for convenience as a percentage of the admissible parameter variation.
Over the test set, we found a mean relative (resp. absolute) error of 9.2% (resp. 4.5%)
and a median relative (resp. absolute) error of 6.8% (resp. 2.3%).

We are also interested in a preliminary evaluation of the robustness of our approach
with respect to geometry changes. Ten samples are generated following the same proce-
dure as before, but using another heart geometry of the STACOM dataset. The 10 mesh
sequences are manually registered (via a similarity transform) to the training geometry
based on the end-diastole mesh before applying the normal pipeline, as described in
Section 3. The mean relative (resp. absolute) error on the contractility parameter over
our sample is 25% (9.3%), with 15% (resp. 7.5%) median relative (absolute) error.

The second experiment proceeds similarly to the first one, but we simultaneously
estimate the contractility σ0, the relaxation rate krs and the viscosity μ. For the train-
ing phase, the parameter space is sampled on a 7 × 7 × 7 grid with σ0 in the range
[106, 2 107], krs in [5, 50] and μ in [105, 8 105]. The explained variance with
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1 eigenmode of the PCA (resp. 2 to 5) out of the N = 343 modes equals 63.2%
of the total variance (resp. 80.3%, 89.5%, 94.1%, 96.7%). We set the dimension
of the reduced shape space to K = 3. The performance is tested on N ′ = 100
random samples. Because we can no longer assume the parameter set to be identi-
fiable a priori, we introduce another measure of the goodness of fit of our personal-
ization by directly evaluating the error on the observations. Given two surface mesh
sequences M = {Mi}1≤i≤T and M′ = {M′

i}1≤i≤T , we define the pseudo-distance
dsur(M,M′) = maxi ds(Mi,M′

i) where ds(Mi,M′
i)

2 is the mean square distance
of the points of the surface Mi to the surface M′

i. Additionally given one-to-one
correspondences between M and M′, we can define the distance dnod(M,M′) =
maxi dp(Mi,M′

i), where dp(Mi,M′
i) is the mean distance between corresponding

nodes of Mi and M′
i. While dsur intuitively relates to an upper bound for the match-

ing between surface meshes at any time step, dnod conveys more information about the
quality of the matching of point trajectories. The results for this experiment are reported
in Table 1. As a comparison, two mesh sequences corresponding to extreme values in
the parameter set will yield a value for dsur(M,M′) (resp. dnod(M,M′)) of the order
of 6mm (resp. 8mm).

Table 1. Experiment 2 - results

εrσ0 (εaσ0) εrkrs (εakrs) εrμ (εaμ) dsur (mm) dnod (mm)
Mean 15.2% (8.0%) 48.8% (26.4%) 40.5% (20.0%) 0.92mm 1.42mm

Median 13.2% (6.3%) 44.7% (19.6%) 32.1% (17.5%) 0.80mm 1.32mm

In addition we compute the optimal parameters and performance indicators for a dif-
ferent choice of the reduced space dimensionK , obtaining quasi-identical statistics for
K = 4. Finally, we test here again the robustness with respect to changes of the heart
geometry. Using the same procedure as before on 10 test samples on a different geome-
try, we find a mean error of 1.4mm and a median value at 1.3mm for dsur (respectively,
1.8mm and 1.6mm for dnod).

5 Discussion

Despite working around the bias and error introduced by the model and image process-
ing in real applications, our synthetic experiments show promising performance for our
framework in terms of accuracy, tolerance to non-linear effects of parameters, robust-
ness and computational efficiency. The accuracy of our approach was found to be below
the typical voxel dimension (1mm), while a priori optimizing among a very wide range
of parameter values at test time, and using a reasonable number of training samples at
learning time. Although a single geometry is used for the training phase, the accuracy
was of the same order on similar (non-pathological) heart geometries. Naturally, fur-
ther work should handle geometry variability in a proper way, taking it into account at
the training stage, and adding ”shape factors” to the model parameter space capturing
3D shape variability. Moreover the addition in the pipeline of a pre-clustering stage
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with respect to the heart geometry, so as to distinguish very different geometries and
treat them separately, should reduce the number of samples required to cover the whole
parameter space while achieving better model personalization.

The proposed framework also brings an interesting perspective on the issue of param-
eter identifiability. It should be noticed that we achieve good results in terms of spatial
distance between the matched model and observations while significant differences in
the parameter space may still be observed. Parameter identifiability encompasses two
distinct aspects. Firstly, small variations of the parameter values may result in changes
that are not noticeable at the scale of reference. This sensitivity to parameters partially
explains the error on the retrieved set of parameters. In our approach, the kernel width
for currents impacts the ability of the algorithm to discern shape differences. In the
future we will experiment with smaller kernel widths and improve algorithms to handle
increased computational cost. Secondly in joint parameter estimation, a whole subset
in the parameter space may result in identical observations, which also affects param-
eter identifiability. Such considerations can be analyzed in depth at the regression or
optimization steps: several parameter sets with similar costs along with a measure of
local sensitivity around these values may be additionally output by the Simulated An-
nealing algorithm. Biophysical priors may also be introduced at the optimization step
by penalizing unlikely parameter sets without adding significant computational cost.

Finally more efficient machine learning algorithms should be tested in lieu of PCA,
so as to capture non-linear 4D shapes variation, and to obtain and exploit precise in-
formation about the manifold structure of 4D heart shapes. Not only will this be of
help with parameter identifiability and to derive efficient representations in the reduced
shape space, but it could also provide valuable feedback for ”smart” sampling of the
parameter space.

6 Conclusion

A machine-learning current-based method has been proposed in this paper for the per-
sonalization of electromechanical models of the heart from patient-specific kinematics.
A framework to encapsulate information regarding shape and motion in a way that al-
lows the efficient computation of statistics via 4D currents has been described. This
approach has been evaluated on synthetic data using the BCS model, with the joint es-
timation of the maximum contraction, relaxation rate and viscosity. It is found that the
proposed method is accurate, computationally efficient and robust.
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