
Growing Hierarchical Self-organizing Maps
and Statistical Distribution Models for Online Detection

of Web Attacks

Mikhail Zolotukhin, Timo Hämäläinen, and Antti Juvonen
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Abstract. In modern networks, HTTP clients communicate with web servers
using request messages. By manipulating these messages attackers can collect
confidential information from servers or even corrupt them. In this study, the
approach based on anomaly detection is considered to find such attacks. For
HTTP queries, feature matrices are obtained by applying an n-gram model, and,
by learning on the basis of these matrices, growing hierarchical self-organizing
maps are constructed. For HTTP headers, we employ statistical distribution mod-
els based on the lengths of header values and relative frequency of symbols. New
requests received by the web-server are classified by using the maps and models
obtained in the training stage. The technique proposed allows detecting online
HTTP attacks in the case of continuous updated web-applications. The algorithm
proposed is tested using logs, which were acquired from a large real-life web ser-
vice and included normal and intrusive requests. As a result, almost all attacks
from these logs are detected, and the number of false alarms remains very low.

Keywords: Intrusion detection, Anomaly detection, n-Gram, Growing hierarchi-
cal self-organizing map, Single-linkage clustering.

1 Introduction

In modern society, the use of computer technologies, both for work and personal use, is
growing with time. Unfortunately, computer networks and systems are often vulnerable
to various forms of intrusions. Such intrusions are executed manually by a person or
automatically with engineered software and can use legitimate system features as well
as programming mistakes or system misconfigurations [1]. That is why computer secu-
rity becomes one of the most important issues when designing computer networks and
systems.

Some of the most popular attack targets are web-servers and web-based applications.
Since web-servers are usually accessible through corporate firewalls and web-based ap-
plications are often developed without following security rules, attacks which exploit
web-servers or server extensions give rise to a significant portion of the total number
of vulnerabilities. Usually, the users of web-servers and web-based applications request
and send information using queries, which in HTTP traffic are strings containing a set
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of parameters having some values. It is possible to manipulate these queries to create re-
quests which can corrupt the server or collect confidential information [2]. In addition,
a HTTP request message contains header fields, which define the operating parame-
ters of an HTTP transaction. Such fields usually contain information about user agent,
preferred response languages, connection type, referer, etc. The attacker can inject mali-
cious code to these fields to construct various kinds of attacks based on HTTP response
splitting or malicious redirecting [25].

One way to ensure the security of web-servers and web-based applications is to use
Intrusion Detection Systems (IDS). As a rule, IDS gathers data from the system under
inspection, stores this data to logfiles, analyzes the logfiles to detect suspicious activities
and determines suitable responses to these activities [3]. There are many different IDS
architectures, which continue to evolve with time [4,5]. IDSs can also differ in audit
source location, detection method, behaviour on detection, usage frequency, etc.

There are two basic approaches for detecting intrusions from the network data: mis-
use detection and anomaly detection [6,7]. In the misuse detection approach, the IDS
scans the computer system for predefined attack signatures. This approach is usually ac-
curate, which makes it successful in commercial intrusion detection [7]. However, the
misuse detection approach cannot detect attacks for which it has not been programmed,
and, therefore, it is likely to ignore all new types of attack if the system is not kept up
to date with the latest intrusions. The anomaly detection approach learns the features
of event patterns which form normal behaviour, and, by observing patterns that deviate
from the established norms (anomalies), detects when an intrusion has occurred. Thus,
systems which use the anomaly detection approach are modelled according to normal
behaviour and, therefore, are able to detect zero-day attacks. However, the number of
false alerts will probably be increased because not all anomalies are intrusions.

To solve the problem of anomaly detection, different kinds of machine learning based
techniques can be applied, for example Decision Trees (DTs), Artificial Neural Net-
works (ANNs), Support Vector Machines (SVMs). As a rule, anomaly detection IDSs
for web-servers are based on supervised learning, which trains the system by using a
set of normal queries. On the other hand, unsupervised anomaly detection techniques
do not need normal training data, and therefore such techniques are the most usable.

To find code injections in HTTP headers, we apply statistical distribution models
based on the length of header values and relative frequency of non-alphanumeric sym-
bols, whereas, to detect intrusive HTTP queries, the approach based on Growing Hier-
archical Self-Organizing Maps (GHSOMs) is employed. For analyzing and visualizing
high dimensional data, a regular Self-Organizing Map (SOM) based on the unsuper-
vised learning neural network model proposed by Kohonen can be used [9]. SOMs are
able to discover knowledge in a data base, extract relevant information, detect inherent
structures in high-dimensional data and map these data into a two-dimensional repre-
sentation space [8]. Despite the fact that the approach based on self-organizing maps
has shown effectiveness at detecting intrusions [10,11], it has two main drawbacks:
the static architecture and the lack of representation of hierarchical relations. A Grow-
ing Hierarchical SOM (GHSOM) can solve these difficulties [12]. This neural network
consists of several SOMs structured in layers, the number of neurons, maps and layers
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being determined during the unsupervised learning process. Thus, the structure of the
GHSOM is automatically adapted according to the structure of the data.

The GHSOM approach looks promising for solving the problem of detecting net-
work intrusions. In [13], a GHSOM model with a metric which combines both numer-
ical and symbolic data is proposed for detecting network intrusions. An IDS based on
this model detects anomalies by classifying IP connections into normal or anomalous
connection records, and, if they are anomalies, into the type of attack. An adaptive
GHSOM-based approach is proposed in [14]. The suggested GHSOM adapts online to
changes in the input data over time by using the following enhancements: enhanced
threshold-based training, dynamic input normalization, feedback-based quantization-
error threshold adaptation and prediction confidence filtering and forwarding. The study
in [15] investigates applying GHSOM for filtering intrusion detection alarms. GHSOM
clusters these alarms in a way that helps network administrators to make decisions about
true or false alarms.

In this research, we aim to detect anomalous HTTP request messages by applying an
approach that is based on adaptive growing hierarchical self-organizing maps and sta-
tistical distribution models. The remainder of this paper is organized as follows: Section
2 describes the process of data acquisition and feature extraction from network logs; in
Section 3 we show how to apply adaptive GHSOM and statistical distribution models
for detecting anomalies; experimental results are presented in Section 4; and Section 5
concludes this paper.

2 Data Model

Let us consider some network activity logs of a large web-service of some HTTP server.
Such log-files can include information about the user’s IP address, time and time zone,
the HTTP request, which includes the resource and parameters used, the server’s re-
sponse code, the amount of data sent to the user, and the web-page which was requested
and used by a browser software. Here is an example of a single line from an Apache
server log file. This information is stored in a combined log format [24]:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]
"GET /resource?parameter1=value1&parameter2=
value2 HTTP/1.0"
200 2326 "http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; I ;Nav)"

Here the focus is on analysis of HTTP header fields and HTTP queries, which are
strings containing a set of attributes having some values. We do not focus on static
HTTP queries because they do not contain any parameters. It is not possible to inject
code via static requests unless there are major deficiencies in the HTTP server itself.
Dynamic queries, which are handled by the web applications of the service, are more
interesting for this study, because all static queries are normal. Let us assume that most
request messages which are coming to the HTTP server are normal, i.e. they use le-
gitimate features of the service, but some obtained requests are intrusions. All HTTP
requests are analyzed to detect the anomalous ones.
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A HTTP query can be expressed as a composition of the path to the desired web re-
source and a string which is used to pass parameters to the referenced resource and iden-
tified by a leading ’?’ character. To extract features from each query, an n-gram model
is applied. N-gram models are widely used in statistical natural language processing
[16] and speech recognition [17]. An n-gram is a sub-sequence of n overlapping items
(characters, letters, words, etc) from a given sequence. For example, a 2-gram charac-
ter model for the string ’/resource?parameter1=value1&parameter2=value2’ is ’/r’, ’re’,
’es’, ’so’, ’ou’, ’ur’, . . . , ’lu’, ’ue’, ’e2’.

An n-gram character model is applied to transform each HTTP query to a sequence of
n characters. Such sequences are used to construct an n-gram frequency vector, which
expresses the frequency of every n-character in the analyzed request. To obtain this vec-
tor, ASCII codes of characters are used to represent the sequence of n-characters as a
sequence of arrays, each of which contains n decimal ASCII codes, and the frequency
vector is built by counting the number of occurrences of each such array in the analyzed
request. The length of the frequency vector is 256n because every byte can be repre-
sented by an ASCII value between 0 and 255. For example, in the previous example
the following sequence of decimal ASCII pairs can be obtained: [47, 114], [114, 101],
[101, 115], [115, 111], [111, 117], [117, 114], . . . , [108, 117], [117, 101], [101, 50]. The
corresponding 2562 vector is built by counting the number of occurrences of each such
pair. For example, the entry in location (256 × 61 + 118) in this vector contains a
value equal to 2 since the pair [61, 118], which corresponds to pair ’=v’ can be seen
twice. Thus, each HTTP query is transformed into a 256n numeric vector. The matrix
consisting of these vectors is called the feature matrix and it can be analyzed to find
anomalies.

To extract features from HTTP headers, the lengths of header values and all non al-
phanumeric symbols used are counted and stored separately for different HTTP header
types. These vectors of length and sets of non-alphanumeric symbols can be used to
train the system and find code injections in the header fields of HTTP request mes-
sages.

3 Method

The algorithm proposed can be considered as a set of two classifiers. The first of these
is based on transforming the query strings into numeric vectors by applying an n-gram
model, and constructing and training GHSOMs using the feature matrices obtained. The
second one analyzes HTTP headers and searches for code injections using statistical
distribution models based on the length of header values and relative frequency of non-
alphanumeric symbols. If a request is defined as anomalous at least by one of these
classifiers then this request is classified as an intrusion.

3.1 Detecting Anomalous HTTP Query Strings

In this study, adaptive growing hierarchical self-organizing maps are used to find anoma-
lous HTTP queries. A self-organizing map is an unsupervised, competitive learning al-
gorithm that reduces the dimensions of data by mapping these data onto a set of units
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set up in a much lower dimensional space. This algorithm allows not only to compress
high dimensional data but also to create a network that stores information in such a way
that any topological relationships within the data set are maintained. Due to this, SOMs
are widely applied for visualizing low-dimensional views of high-dimensional data.

SOM is formed from a regular grid of neurones, each of which is fully connected
to the input layer. The neurons are connected to adjacent neurons by a neighbourhood
relation dictating the structure of the map. Associated with the i-th neuron of the SOM
is a d-dimensional prototype (weight) vector wi = [wi1, wi2, . . . , wid], where d is equal
to the dimension of the input vectors. Each neuron has two positions: one in the input
space (the prototype vector) and the other one in the output space (on the map grid).
Thus, SOM is a vector-projection method defining a nonlinear projection from the input
space to a lower-dimensional output space. During the training, the prototype vectors
move so that they follow the probability density of the input data.

SOMs learn to classify data without supervision. At the beginning of learning, the
number of neurons, the dimensions of the map grid, the map lattice and the shape should
be determined. Before the training, initial values are given to the prototype vectors. A
SOM is very robust with respect to the initialization, but properly accomplished initial-
ization allows the algorithm to converge faster to a good solution. At each training step
t, one sample vector x(t) from the input data set is chosen randomly and a similarity
measure (distance) is calculated between it and all the weight vectors wi(t) of the map.
The unit having the shortest distance to the input vector is identified as the best matching
unit (BMU) for input x(t). The index c(t) of this best matching unit is identified. Next,
the input is mapped to the location of the best matching unit, and the prototype vectors
of the SOM are updated so that the vector of the BMU and its topological neighbours
are moved closer to the input vector in the input space:

wi(t+ 1) = wi(t) + δ(t)Ni,c(t)(r(t)) (x(t)− wi(t)) , (1)

where δ(t) is the learning rate function and Ni,c(t)(r(t)) is the neighbourhood kernel
around the winner unit, which depends on the neighbourhood radius r(t) and the dis-
tance between the BMU having index c(t) and the i-th neuron.

The most important feature of the Kohonen learning algorithm is that the area of the
neighbourhood shrinks over time. In addition, the effect of learning is proportional to
the distance of the node from the BMU. As a rule, the amount of learning fades over
distance, and, at the edges of the BMUs neighbourhood, the learning process has barely
any effect.

The SOM has shown to be successful for the analysis of high-dimensional data in
data mining applications such as those used for network security. However, the effec-
tiveness of using traditional SOM models is limited by the static nature of the model
architecture. The size and dimensionality of the SOM model is fixed prior to the train-
ing process, and there is no systematic method for identifying an optimal configuration.
Another disadvantage of the fixed grid in SOM is that traditional SOM can not represent
hierarchical relations that might be present in the data.

The limitations mentioned above can be resolved by applying growing hierarchical
self-organizing maps. GHSOM has been developed as a multi-layered hierarchical ar-
chitecture which adapts its structure to the input data. It is initialized with one SOM and
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grows in size until it achieves an improvement in the quality its representation of data.
In addition, each node in this map can be dynamically expanded down the hierarchy
by adding a new map at a lower layer for a further-detailed representation of data. The
procedure of growth can be repeated in these new maps. Thus, the GHSOM architecture
is adaptive and can represent data clearly by allocating extra space as well as uncover
the hierarchical structure in the data.

The GHSOM architecture starts with the main node at the zero layer and a 2 × 2
map at the first layer trained according to the SOM training algorithm. The main node
represents a complete data set X , and its weight vector w0 is calculated as the mean
value of all data inputs. This node controls the growth of the SOM at the first layer and
the hierarchical growth of the whole GHSOM. The growth of the map at the first layer
and the maps at the next layers are controlled with the help of quantization error. This
error for the i-th node is calculated as follows

ei =
∑

xj∈Ci

||wi − xj || , (2)

where Ci is the set of input vectors xj projected to the i-th node and wi is the weight
vector of the i-th node. The quantization error Em of map m is defined as

Em =
1

|Um|
∑

i∈Um

ei, (3)

where Um is the subset of the m-th map nodes onto which the data is mapped, and |Um|
is the number of these nodes of the m-th map.

When Em reaches certain fraction α1 of the eu of the corresponding parent unit u
in the upper layer, the growing process is stopped. The parent node of the SOM at the
first layer is the main node. The parameter α1 controls the breadth of maps, and its
value ranges from 0 to 1. After that, the most dissimilar neighbouring node s is selected
according to

s = max
j

(||we − wj ||), for wj ∈ Ne, (4)

where wj is the weight vector of the error node, Ne is the set of neighbouring nodes of
the e-th node, and wi is the weight vector of the neighbouring node in set Ne. A new
row or column of nodes is placed in between the nodes e and s. The weight vectors of
the newly added nodes are initialized with the mean of their corresponding neighbours.

After the growth process of the SOM is completed, every node of this SOM has to
be checked for satisfying of the global stopping criterion [12]:

ei < α2e0, (5)

where α2 ∈ (0, 1) is the parameter which controls the hierarchical growth of GHSOM,
and e0 is the quantization error of the main node, which can be found as follows:

e0 =
∑

xj∈X

||w0 − xj || . (6)

The nodes not satisfying this criterion (5), and therefore representing a set of too diverse
input vectors, are expanded to form a new map at the subsequent layer of the hierarchy.
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Similarly to the creation of the first layer SOM, a new map of initially 2 × 2 nodes is
created. This maps weight vectors are initialized to mirror the orientation of the neigh-
bouring units of its parent. For this reason, we can choose to set four new nodes to
the means of the parent and its neighbours in the respective directions [18]. The newly
added map is trained by using the input vectors which are mapped onto the node just
expanded, i.e., the subset of the data space mapped onto its parent. This new map will
again continue to grow, and the whole process is repeated for the subsequent layers
until the global stopping criterion given in (5) is met by all nodes. Thus, an ideal topol-
ogy of a GHSOM is formed unsupervised and based on the input data, and hierarchal
relationships in the data are discovered.

The anomaly detection algorithm which is proposed in this study is based on the
use of GHSOM. The algorithm consists of three main stages: training, detecting and
updating. In the training phase, server logs are used to obtain a training set. The logs
can contain several thousands of HTTP requests, which are gathered from various web-
resources during several days or weeks. These logs can include unknown anomalies
and real attacks. The only condition is that the quantity of normal requests in the logs
used must be significantly greater than the number of real intrusions and anomalous
requests. HTTP queries from these logs are transformed to a feature matrix by applying
an n-gram model.

When the feature matrix is obtained, a new GHSOM is constructed and trained based
on this matrix. The zero layer of this GHSOM is formed by several independent nodes,
the number of which corresponds to the number of different resources of the web-server.
For each such node, a SOM is created and initialized with four nodes. Requests to one
web-resource are mapped to the corresponding parent node on the zero layer and used
for training the corresponding SOM. These SOMs form the first layer, and each of these
maps can grow in size by adding new rows and columns or by adding a new map of four
nodes at a lower layer, thus providing a further detailed representation of data. For each
parent node on the zero layer, the quantization error which controls the growing process
of the maps on the first layer is calculated and the GHSOM is hierarchically grown.

The aim is not to find intrusions in the logs which were used as the training set but
to detect attacks among new requests received by the web-server. Each new query is
transformed to a frequency vector by applying the n-gram model. After that, this vector
goes to one of the parent node according to its resource and is mapped to one of the
nodes on the corresponding map by calculating the best matching unit for this query.
To determine whether the new request is an attack or not, the following two criteria are
used:

– If the distance between a new request and its BMU weight vector is greater than
the threshold value, then this request is an intrusion, otherwise it is classified as
normal;

– If the node which is the BMU for the new request is classified as an ”anomalous”
node, then this request is an intrusion, otherwise it is classified as normal.

The threshold for the first criterion is calculated based on the distances between the
weight vector of the node, which is the BMU for the new query, and other queries from
the server logs already mapped to this node at the training stage. Assume that the new
query is mapped to the node which already contains l other queries mapped to this node
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during the training phase. Denote the distances between the node and these l queries
as e1, e2, . . . , el. Let us assume that the values of these distances are distributed more
or less uniformly. In this case, we can estimate maximum τ of continuous uniformly
distributed variable as follows [19]:

τ =
l + 1

l
max

l
{e1, e2, . . . , el}. (7)

Obtained value τ can be used as the threshold value for the node considered, and a new
request message is classified as an intrusion if the distance between its query and the
node is greater than τ .

To find ”anomalous” nodes, a U∗-matrix [20] is calculated for each SOM. U∗-matrix
presents a combined visualization of the distance relationships and density structures
of a high dimensional data space. This matrix has the same size as the grid of the
corresponding SOM and can be calculated based on U-matrix and P-matrix.

U-matrix represents distance relationships of queries mapped to a SOM [21]. The
value of the i-th element of an U-matrix is the average distance of the i-th node weight
vector wi to the weight vectors of its immediate neighbours. Thus, the i-th element of
the U-matrix U(i) is calculated as follows:

U(i) =
1

ni

∑

j∈Ni

D(wi, wj), (8)

where ni = |Ni| is the number of nodes in the neighbourhood Ni of the i-th node,
and D is a distance function, which for example can be Euclidean distance. A single
element of U-matrix shows the local distance structure. If a global view of a U-matrix
is considered then the overall structure of densities can be analyzed.

P-matrix allows a visualization of density structures of the high dimensional data
space [22]. The i-th element of P-matrix is a measure of the density of data points in
the vicinity of the weight vector of the i-th node:

P (i) = |{x ∈ X |D(x,wi) < r}|, (9)

where X is the set of queries mapped to the SOM considered and radius r is some
positive real number. A display of all P-matrix elements on top of the SOM grid is called
a P-matrix. In fact, the value of P (i) is the number of data points within a hypersphere
of radius r. The radius r should be chosen such that P (i) approximates the probability
density function of the data points. This radius can be found as the Pareto radius [23]:

r =
1

2
χ2
d(pu), (10)

where χ2
d is the Chi-square cumulative distribution function for d degrees of freedom

and pu = 20.13% of the number of requests contained in the data set X . The only con-
dition is that all points in X must follow a multivariate mutual independent Gaussian
standard normal density distribution (MMI). It can be enforced by different prepro-
cessing methods such as the principal component analysis, standardization and other
transformations.
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The U∗-matrix which is the combination of a U-matrix and a P-matrix combines
distance relationships with density relationships and can give an appropriate clustering.
The i-th element of the U∗-matrix is equal to U(i) multiplied with the probability that
the local density, which is measured by P (i), is low. Thus U∗(i) can be calculated as
follows:

U∗(i) = U(i)
|p ∈ P |p > P (i)|

|p ∈ P | , (11)

i.e. if the local data density is low, U∗(i) ≈ U(i) (this happens at the presumed border
of clusters), and, if the data density is high, then U∗(i) ≈ 0 (this is in the central regions
of clusters). We can also adjust the multiplication factor such that U∗(i) = 0 for the
phigh percent of the P-matrix elements which have greatest values.

Since we assumed that most of the requests are normal, intrusions can not form
big clusters but will be mapped to nodes which are located on cluster borders. Thus,
”anomalous” nodes are those which correspond to high values of U∗-matrix elements.
In this research, the following criterion for finding anomalous nodes is used: if the
difference between U∗(i) and U∗

average(i) (average value of all elements of U∗-matrix)
is greater than difference between the U∗

average(i) and minimal value of U∗-matrix,
then the i-th neuron is classified as ”anomalous”, otherwise this neuron is classified as
”normal”. If a node of a GHSOM is classified as ”normal” but has a child SOM, then all
the nodes of this child SOM should also be also checked by calculating new U∗-matrix
for this SOM to find out whether they are ”normal” or ”anomalous”.

Web-applications are highly dynamic and change on a regular basis, which can cause
noticeable changes in the HTTP requests which are sent to the web-server. This can lead
to a situation where all new allowable requests will be classified as intrusions. For this
reason, the GHSOM should be retrained after a certain period of time T to be capable
of classifying new requests.

Let us assume that the number of requests sent to the web-server for this period T
is much less than number of requests in the training set. We update the training set by
replacing the first requests from this set by requests obtained during the period T . Af-
ter that, the GHSOM is retrained by using the resulting training set. During the update
phase the structure of the GHSOM can be modified. The update of the GHSOM struc-
ture starts from the current structure. Parameters τ and matrices U , P and U∗ should
be recalculated. The update phase can occur independently from the anomaly detection.
During retraining, requests obtained are classified using the old GHSOM, and, once the
GHSOM retraining is completed, the classification of new requests continues with the
updated GHSOM.

Countermeasures are necessary against attackers who try to affect the training set
by flooding the web-server with a large number of intrusions. It can be enforced for
example by allowing a client (one IP address) to replace a configurable number of HTTP
requests in the training set per time slot. In order to address the threat of botnets, it is
also possible to restrict the globally allowed replacements per time slot independent of
the IP addresses.
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3.2 Detecting Anomalous HTTP Headers

Usually header fields have a finite set of possible values, therefore to solve the problem
of finding anomalous headers it is reasonable to apply simple statistical distribution
models. In this research, we analyze the lengths of header fields and non-alphanumeric
symbols used in them [26]. All different header types are supposed to be analyzed
separately. Similarly to the previous scheme, for the second classifier we define three
stages: training, detecting and updating.

In the training stage, headers of the request messages which have been employed
for constructing GHSOMs are used. For each header type, we construct the vector of
its lengths (l1, l2, . . . , lM ). Since we assume that some HTTP requests from the train-
ing set can be attacks, some filtering can be applied to remove outliers and build the
pattern of normal user behaviour. As proposed in study [26], we define the following
distance function: d(li, lj) = p(li is normal)− p(lj is normal), where p(x is normal) is
the probability that length x is normal and can be found as follows:

p(x is normal) =

{
σ2

(x−μ)2 , if x ≥ μ+ σ,

1, if x < μ+ σ,
(12)

where μ and σ2 are the mean and the variance, respectively. In this case, the distance
d between a normal pattern and an outlier pattern is expected to be higher than the
distance d between two normal patterns or two outlier patterns. Thus, it is easy to divide
all the lengths into two clusters, i.e. normal lengths and outliers, by using a simple
clustering algorithm, e.g. a single-linkage clustering [27]. All outliers are removed from
the model and all normal lengths are used for detecting anomalies. For header type k
we denote the cluster of normal lengths as Ln

k and the number of entries contained in
this cluster as |Ln

k |.
In addition, during training all non-alphanumeric symbols are counted for each header

type. The distance function between the different symbols si and sj is defined as
d(si, sj) = p(si is normal) − p(sj is normal) where p(x is normal) is the probabil-
ity that symbol x is legitimate and can be found as the relative frequency of symbol x
in the training set:

p(x is normal) =
Nx

N
, (13)

where Nx is the number of appearances of non-alphanumeric symbol x in the training
set and N is the total number of non-alphanumeric symbols there. Similarly to the pre-
vious model, all outliers can be removed by applying a single-linkage clustering, where
the distance between two symbols is defined as d(si, sj) and the number of clusters is
two. All the remaining non-alphanumeric symbols are considered as legitimate to use.
Let us denote the set of legitimate symbols for header type k as Sl

k.
In the detecting stage, the following criterion is used to find anomalous requests. Let

a new request message received by the web server contain the following header fields
{h1, h2, . . .}. If for any header value hk of this request at least one of the following
conditions:

1. length of hk >
|Ln

k |+1
|Ln

k | ·max (Ln
k ), where max (Ln

k ) is maximal element of Ln
k ,
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2. ∃ non-alphanumeric symbol s ∈ hk : s /∈ Sl
k.

is satisfied, then this new request message is classified as an intrusion, otherwise it is
legitimate.

Similarly to the first part of the algorithm, all these criteria are supposed to be up-
dated with time. We update the training set by replacing the first requests from this set
by requests obtained during the period T . For the updated training set for each header
type we find a new cluster of normal lengths, recalculate the threshold value, and up-
date the set of legitimate non-alphanumeric symbols. Just as in the case for detecting
anomalous HTTP queries, countermeasures against attackers trying to affect the train-
ing set by flooding the web server with a large number of intrusions are supposed to be
applied here also.

4 Simulation Results

The proposed method is tested using logs acquired from a large real-life web service.
These logs contain mostly normal traffic, but they also include anomalies and actual
intrusions. The logfiles are acquired from several Apache servers and stored in a com-
bined log format. The logs contain requests from multiple web-resources. Since it is not
possible to inject code via static query strings unless there are major deficiencies in the
HTTP server, HTTP query strings without parameters are considered as normal.

In our simulation, request messages to twenty-five most popular web resources of the
server are analyzed. The training set is created at the beginning and it contains 20000
requests. By using this training set, twenty-five GHSOMs are trained (one for each
web resource) based on dynamic query strings and for each header type the cluster of
legitimate lengths as well as the set of legitimate non-alphanumeric symbols are formed.
New requests are chosen from logfiles and classified one by one to test the technique
proposed. The number of requests in the testing set is equal to 100000 and 9679 of
them are attacks. During the testing stage, the system is updated after each processing
of 5000 requests.

To evaluate the performance of the proposed technique, the following characteristics
are calculated in our test:

– True positive rate: the ratio of the number of correctly detected intrusions to the
total number of intrusions in the testing set;

– False positive rate: the ratio of the number of normal requests classified as intru-
sions to the total number of normal requests in the testing set;

– True negative rate: the ratio of the number of correctly detected normal requests to
the total number of normal requests in the testing set;

– False negative rate: the ratio of the number of intrusions classified as normal re-
quests to the total number of intrusions in the testing set;

– Accuracy: the ratio of the total number of correctly detected requests to the total
number of requests in the testing set;

– Precision: the ratio of the number of correctly detected intrusions to the number of
requests classified as intrusions.
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Fig. 1. U -matrix and P -matrix after the training stage

Let us consider one of the web resources, which allows users to search a project by
choosing the appropriate category of the projects or initial symbols of the project name.
Thus, query strings of all those HTTP requests have one of the two different attributes
which can be used by attackers to inject malignant code. When the GHSOM training is
completed, U -matrix, P -matrix and U∗-matrix are constructed. In Figure 1, U -matrix
and P -matrix are shown. As one can see, some nodes on one of the map edges are
distant from all others (Figure 1 (a)), and at the same time the density of data inputs
in these nodes is very low (Figure 1 (b)). These facts make these nodes candidates to
”anomalous” ones.

The U∗-matrix for this GHSOM is plotted in Figure 2. We can notice that there are
two big clusters corresponding to the queries in which different methods of searching
a required project are used: by specifying the project category or the initial symbols
of project name. The nodes on one of the map edges are classified as ”anomalous”.
The technique proposed does not allow us to define the intrusion types, but we can
check manually the nodes which have been classified as ”anomalous” and make sure
that requests mapped to those nodes are real intrusions: SQL injections, buffer overflow
attacks and directory traversal attacks, as shown in Figure 2.

After constructing the U∗-matrix and building statistical distribution models for each
header type, the detection process is started. Query strings of new requests are mapped
to the GHSOM one by one and classified as intrusions if the distance between a new
request and its BMU weight vector is greater than the threshold value or if the node
which is the BMU for this new request is anomalous. In addition, the lengths of header
fields and non-alphanumeric symbols used in them are checked according to the scheme
proposed.

During the detection phase, the system is retrained periodically when a certain num-
ber of requests are processed. After the system update, all threshold values, GHSOMs
and statistical distribution models are modified to allow detection of new request mes-
sages.

the results of the detection phase are shown in Table 1. As one can see, almost all
real attacks are correctly classified as intrusions by using the proposed technique. At
the same time, the false positive rate is about zero on average, which means that the
number of false alarms is very low. The accuracy of the method is close to one hundred
percent.
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Table 1. Performance metrics values

True positive
rate

False positive
rate

True negative
rate

False negative
rate

Accuracy Precision

99.56 % 0.00 % 100.00 % 0.44 % 99.96 % 100.00 %

Table 2. The simulation results for different types of attacks

Attack type Total number
of attacks

Number of de-
tected attacks

Proportion
of detected
attacks

SQL injection 484 484 100 %
Directory traversal 488 469 96.11 %
Buffer overflow 488 486 99.59 %
Cross-site scripting 1011 1011 100 %
Double encoding 471 471 100 %
Common gateway interface scripting 401 392 97.76 %
Shell scripting 114 112 98.25 %
XPath injection 510 510 100 %
HTTP response splitting 2530 2529 99.96 %
Cache poisoning 117 117 100 %
Eval injection 377 369 97.88 %
String formatting 238 238 100 %
Cross-User defacement 246 246 100 %
Session fixation 2204 2204 100 %
Total 9679 9638 99.57 %
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In our simulation, the testing set contains fourteen different types of attack. The
results for these attack types are presented in Table 2. We can see that the proposed
algorithm found 99.57% of all attacks. Thus, almost all intrusions are detected despite
the fact that some of them are not contained in the training set.

5 Conclusions and Discussion

The main advantage of IDSs based on anomaly detection is that they are able to detect
zero-day attacks. In this research, the approach based on anomaly detection is consid-
ered as suitable for finding intrusive HTTP request messages. The technique proposed
is self-adaptive and allows detection of HTTP attacks in online mode in the case of con-
tinuously updated web-applications. The method was tested using logs acquired from
a large real-life web-service. These logs include normal and intrusive requests. As a
result, almost all attacks from these logs are detected and at the same time the number
of false alarms is very low. Thus, the accuracy of the method proposed is about one
hundred percent. However, this method can be applied only if the number of HTTP re-
quests to a web-resource is large enough to allow the analysis of normal user behaviour.
Sometimes, attackers try to access the data stored on servers or to harm the system by
using holes in the security of less popular web-resources, for which it is difficult to de-
fine which requests are ”normal”. In the future, we are planning to develop an anomaly
detection based system which can solve this problem.
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