
Testing the Lipschitz Property over Product
Distributions with Applications to Data Privacy�

Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta��

Pennsylvania State University, USA
{mxj201,kashyap,sofya,azg161}@cse.psu.edu

Abstract. In the past few years, the focus of research in the area of statistical
data privacy has been in designing algorithms for various problems which satisfy
some rigorous notions of privacy. However, not much effort has gone into de-
signing techniques to computationally verify if a given algorithm satisfies some
predefined notion of privacy. In this work, we address the following question:
Can we design algorithms which tests if a given algorithm satisfies some specific
rigorous notion of privacy (e.g., differential privacy)?

We design algorithms to test privacy guarantees of a given algorithm A when
run on a dataset x containing potentially sensitive information about the individ-
uals. More formally, we design a computationally efficient algorithm Tpriv that
verifies whether A satisfies differential privacy on typical datasets (DPTD) guar-
antee in time sublinear in the size of the domain of the datasets. DPTD, a similar
notion to generalized differential privacy first proposed by [3], is a distributional
relaxation of the popular notion of differential privacy [14].

To design algorithm Tpriv , we show a formal connection between the testing
of privacy guarantee for an algorithm and the testing of the Lipschitz property
of a related function. More specifically, we show that an efficient algorithm for
testing of Lipschitz property can be used as a subroutine in Tpriv that tests if an
algorithm satisfies differential privacy on typical datasets.

Apart from formalizing the connection between the testing of privacy guaran-
tee and testing of the Lipschitz property, we generalize the work of [21] to the
setting of property testing under product distribution. More precisely, we design
an efficient Lipschitz tester for the case where the domain points are drawn from
hypercube according to some fixed but unknown product distribution instead of
the uniform distribution.

1 Introduction

The trend towards data driven decision making has resulted in many commercial data
sharing platforms like BlueKai, TellApart or Criteo. These platforms extensively collect
and share user data with third-parties (e.g., advertisers) to enhance specific user expe-
rience (e.g., better behavioral targeting). Since the data which gets shared is extremely

� All omitted proofs appear in the full version [8].
�� K.D. is supported in part by NSF Grant CCF-0964655. M.J. and S.R. are supported by NSF

CAREER grant CCF-0845701 and NSF grant CDI-0941553. A.T. is supported in part by
NSF Awards CCF-0747294, CDI-0941553 and US National Institutes of Health Clinical and
Translational Science Award.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 418–436, 2013.
c© International Association for Cryptologic Research 2013

Privacy Testing via Distributional Lipschitz Testers 419

rich in user information, it poses serious privacy concerns about the users’ information
contained in the data [23,6]. A more cautious approach would be to require third-party
clients to submit their algorithms (e.g. as binary executables or as programs) and run
it “in-house” (i.e., within the data sharing platform itself) and only release the outputs
of their algorithms. But what if the output of the algorithm itself reveals some private
information? Fortunately, there are notions of privacy (e.g. differential privacy [14])
which impose strict privacy requirements on the algorithm computing on the data and
guarantee that the output of the algorithm does not disclose too much information (pro-
vided the algorithm satisfies these requirements). There still remains the nagging ques-
tion that these algorithms come from third-parties. How does one ensure that they have
implemented their algorithms in a way which meet the specifications of the privacy-
requirements?

One approach (e.g. [25,30,29]) that has been taken to address the above problem is
to require clients to write their programs using a specific set of trusted built-in functions
provided by the platform. The platform ensures (either statically or at run time) that the
implementation complies by the rules of using only the built-in functions while operat-
ing on the private data. Another approach [21] based on property reconstruction allows
arbitrary programs and uses the global sensitivity framework of [14] as the underlying
privacy mechanism. However, this approach provably [1] requires prohibitively huge
running time. Another approach [26] uses the algorithmic framework of [32,27] to al-
low arbitrary programs but the utility guarantees are limited by the guarantees of the
framework.

In this work, we propose a new approach to the above problem which we call privacy
testing. We do this by formulating the above problem in the well-studied framework
of property testing [31,17]. Property testing is concerned with approximately deciding
whether an input object (e.g. a graph or a function) satisfies a given property (e.g. con-
nectivity or monotonicity). In the same spirit, we treat algorithm A as an object (e.g.
as a family of functions) which is required to satisfy some fixed property, specifically,
the property of being private under some well-defined notion of privacy. The goal is
to design efficient algorithms which can test if A satisfies the privacy definition under
consideration.

In this work, we design an algorithm Tpriv to test if an untrusted algorithmA satisfies
a distributional relaxation of the popular notion of differential privacy [10,14,11,12].
Roughly speaking, differential privacy guarantees that the output of an algorithm A
does not depend “too much” on any particular record of the underlying dataset x. The
distributional relaxation we adhere to in our work is called differential privacy on typi-
cal datasets (DPTD). DPTD ensures a similar guarantee as differential privacy, except
that the guarantee is now only over typical data sets, namely, datasets with sufficiently
high probability mass under a fixed data generating distribution. DPTD is a special case
of generalized differential privacy from [3].

To test for DPTD, we show a new connection between differential privacy and the
problem of testing the Lipschitz property of functions first studied by [21]. Informally, a
function f(x1, . . . , xd) is Lipschitz if changing at most one input of f arbitrarily while
keeping the other inputs fixed does not change the value of f drastically. For testing
algorithm A for the property of being DPTD, we view A as a family of functions.

420 K. Dixit et al.

We show that testing DPTD reduces to testing the property that every function in the
family is simultaneously Lipschitz. We allow A to be an arbitrary randomized algorithm
(indeed, most privacy preserving algorithms are randomized) but, in this work, restrict it
to have finite domain and range. While property testing algorithms usually only require
black-box access to the object, in this exploratory work, we assume oracle access to
values Pr[A(x) = r] given arbitrary domain point x and range point r. (We discuss
these assumptions in more detail in Section 7.)

Going beyond privacy testing, we show how to convert an arbitrary algorithm A into
an algorithm which always satisfies DPTD. We test algorithm A for DPTD and only if
the tester accepts, we allow it to be run on the private data. Details appear in Section 4.2.

Property testing of functions deals with algorithms which can distinguish between
functions which satisfy a given property P (in our case, the Lipschitz property) from
those which are far from the property. A function f is far from propertyP if the distance
between f and every member of P (where we view P as the set of functions satisfying
P) is large under a suitable definition of distance between functions. In the standard
property testing, the distance between functions f and g is given by Pr[f(x) �= g(x)]
where x is chosen uniformly from the domain. We refer to this as property testing un-
der uniform distribution. While previous works [21,2,7] studied Lipschitz testing under
uniform distribution, in this work we focus on the setting when the distribution on the
underlying data set is an unknown product distribution. This is important to test the
notion of DPTD for a large class of distributions (and not merely the uniform distri-
bution). Property testing under unknown distribution is a well-studied area under the
name of distribution free testing [19] with many positive and negative results [19,20].
In this work, we give the first Lipschitz tester which works for arbitrary unknown prod-
uct distribution with nearly the same running time as the Lipschitz tester for the uniform
distribution from [21].

1.1 Summary of Our Contributions

Formulate testing of data privacy property as Lipschitz property testing. In this paper
we initiate the study of testing privacy properties of a given candidate algorithm A.
The specific privacy property that we test is differential privacy on typical datasets
(DPTD) (see Definition 3.2). In order to design a tester for DPTD property, we cast
the problem of testing DPTD property as a problem of testing the Lipschitz property.
(See Theorem 4.1.) The problem of testing the Lipschitz property was initially proposed
by [21].

Design a generic transformation to convert an algorithm A to its DPTD variant. We
design a generic transformation to convert a candidate algorithm A to its DPTD variant.
(See Theorem 4.2.)

Lipschitz testers over product distributions. In order to allow our privacy tester to be
effective for a large class of data generating distributions, we extend the existing Lips-
chitz testers to work with product distributions. We give the first efficient tester for the
Lipschitz property on the hypercube domain which works for arbitrary product distri-
bution. (See Theorem 5.1.) Previous works [21,2,7] on Lipschitz testing focuses on the
case of uniform distribution.

Privacy Testing via Distributional Lipschitz Testers 421

Concrete instantiation of privacy testers based on old and new Lipschitz testers. We
instantiate privacy tester with the Lipschitz tester described in the previous item to get a
concrete instantiation of the privacy tester. This also leads to a concrete instantiation of
Item 2 mentioned above. We also instantiate privacy testers based on the state-of-the-art
Lipschitz tester from [7] for the uniform distribution. This is summarized in Section 6.

1.2 Related Work

Recently, various notions of data privacy have been proposed such as k-anonymity [33],
�-diversity [24], differential privacy [14], noiseless privacy [4], generalized differential
privacy [3] and natural differential privacy [5]. With known attacks (e.g. [15]) on k-
anonymity and �-diversity, privacy community has pretty much converged to theoret-
ically sound notions of privacy like differential privacy. In this paper, we work with
the definition of differential privacy on typical datasets (DPTD) (Definition 3.2). DPTD
is a special case of generalized differential privacy (GDP), where we assume that the
auxiliary information Aux in the GDP definition is all but one entry in the underlying
dataset. The primary difference between GDP and the other related definitions is that
it incorporates both the randomness in the underlying dataset x and the randomness of
the algorithm A, where as other notions (like noiseless privacy and differential privacy)
consider either the randomness of the data or the algorithm.

[21] initiated the study of testing (and reconstruction) of the Lipschitz property. Sub-
sequently, [2,7] gave Lipschitz testers with [7] being the current state-of-the-art for the
Boolean hypercube domain. All these testers work for the uniform distribution on the
domain. In our work, we allow arbitrary product distribution on the underlying domain.
Thus, our work is closely related to the work done in the area of distribution free test-
ing introduced by Goldreich et al [17]. (See also [19].) They noted that many graph
properties have testers with query complexity independent of the input size when the
points are drawn from the uniform distribution (e.g. bipartiteness, k-colorability etc.),
but the distribution free testers for the same properties do not have query complexity
independent of the input size. In contrast, Halevi and Kushilevitz gave a series of posi-
tive results for distribution-free testing in [20] and [19]. In particular, they proved that
there are testers with time complexity independent of the domain size for the proper-
ties like sparse graph connectivity [19] and juntas, parities, low-degree polynomials and
Boolean literals [20].

1.3 Organization of the Paper

In Section 2, we review the concepts of general property testing and provide the defi-
nition of the Lipschitz property testers that we use in our work. In Section 3, we show
the connection between testing of differential privacy on typical datasets (DPTD) and
Lipschitz property testing. Section 4 is dedicated to our main result giving the pri-
vacy tester (Section 4.1) and application of privacy tester in obtaining DPTD-algorithms
(Section 4.2). In Section 5, we present our new Lipschitz property testers over product
distributions on the hypercube domain. In Section 6, we instantiate privacy testers with
Lipschitz testers. Lastly, in Section 7, we conclude with discussion about the limitations
of our current approach and some open problems.

422 K. Dixit et al.

2 Preliminaries for Lipschitz Property Testing

Property testing [17,31] is concerned with distinguishing objects which satisfy a given
property P from those which are far from satisfying it. When P is a property of func-
tions f : X d → R over a finite domain X d, distance to the property is usually measured
in terms of the fraction of points in the domain X d on which f must be modified in or-
der to satisfy the property. A more general notion of distance is defined with respect to
a probability distribution on the domain X d.

Definition 2.1 (Distance to a property). Let P be a property (i.e., a set) of functions
f : X d → R. Let Π be a distribution on X d. The distance distΠ(f, g) between func-
tions f, g : X d → R (with respect to the distribution Π) is Prx∼Π [f(x) �= g(x)]. The
distance distΠ(f,P) of a function f from the property P is ming∈P distΠ(f, g). We
say that f is ε-far from the property P if distΠ(f,P) ≥ ε.

In this work, we study the Lipschitz property of functions, first considered in the context
of property testing by [21].

Definition 2.2. A real-valued function f : X d → R is c-Lipschitz if |f(x) − f(y)| ≤
c · dH(x, y) where dH(x, y) is the Hamming distance between x and y, that is, the
number of coordinates in which x an y differ. We say f is Lipschitz if f is 1-Lipschitz.

Next we define a Lipschitz tester. Our definition differs from the standard definition of
a property tester (e.g., as used in [21]) in two aspects: (i) we only require a Lipschitz
tester to distinguish Lipschitz functions from functions which are ε-far from (1 + δ)-
Lipschitz for some fixed δ ≥ 0 and (ii) we measure the distance between functions with
respect to a fixed probability distribution Π on the domain. The relaxation of Condition
(i) has been considered earlier e.g. in [28] for the property of having small diameter and
in [21] for the Lipschitz property. The generalization of Condition (ii) is well-studied
in property testing under the name distribution free testing. See e.g. [19]. We remark
that setting (1 + δ) = 1, ρ = 1/3 and Π to be the uniform distribution on X d in
the definition below recovers the standard definition of property tester (in our case, the
Lipschitz tester as defined in [21]).

Definition 2.3 (Approximate Lipschitz Tester). A (1+δ)-approximate Lipschitz tester
TLip(ε, ρ, δ, d) is a randomized algorithm that gets as input: (i) oracle access to func-
tion f : X d → R; (ii) oracle access to independent samples from distribution Π on
X d and (iii) a few parameters, namely, the proximity parameter ε, the error probability
parameter ρ, the approximation parameter δ and the parameter d. The tester provides
the following guarantee. If f is Lipschitz, then the algorithm accepts. If f is ε-far from
the (1 + δ)-Lipschitz property with respect to distribution Π , then with probability at
least 1− ρ, the algorithm rejects.

We say the Lipschitz property can be tested with one-sided error if there exists a Lip-
schitz tester as defined above. Further, we say it can be tested nonadaptively if all the
queries made by TLip to its oracles are made in advance without the knowledge of
answers to the previous queries.

Privacy Testing via Distributional Lipschitz Testers 423

3 Differential Privacy and Its Connections to Testing the Lipschitz
Property

Intuitively, the output of a differentially private algorithm is almost the same whether
or not a specific person’s data is present in the dataset. Datasets are modeled as fixed-
length vectors from an arbitrary domain X d, where each coordinate represents one per-
son’s data. (For example, when X d is {0, 1}d, datasets consist of d-bit vectors and each
person’s data is a Boolean value.) An algorithm is differentially private if it has similar
distribution on outputs when run on datasets which are close in Hamming distance. The
Hamming distance between x and x′, denoted dH(x, x′), is the number of coordinates
on which x and x′ differ.

Definition 3.1 ((α, β)-Differential Privacy [14,13]). A randomized algorithm A is
(α, β)-differentially private if for any two datasets x and x′ in X d, and for all mea-
surable sets Z ⊆ Range(A), the following holds:

Pr[A(x) ∈ Z] ≤ eα·dH(x,x′) Pr[A(x′) ∈ Z] + β. (1)

If β = 0, algorithm A is called α-differentially private.

In this work, we focus on differentially private algorithms which output values in a
finite range space Z . Such algorithms have a clean characterization in terms of the
Lipschitz property. Specifically, define functions fz : x → R for every z ∈ Z by setting
fz(x) = log Pr[A(x) = z]. We make the following simple but important observation.

Observation 3.1 (Differential Privacy as a Lipschitz Condition). Algorithm A is α-
differentially private if and only if for every z ∈ Z , function fz is α-Lipschitz.

Therefore, one could check if an algorithm specified by functions fz is differentially pri-
vate, given oracle access to these functions, if one could design a procedure that decides
if an input function is Lipschitz. However, as noted in [21], deciding if a given function
is Lipschitz is NP-hard. Can we still efficiently check for some relaxation of differ-
ential privacy? Towards answering this question, we take motivation from relaxations
of differential privacy considered in the literature based on distributional assumptions.
Specifically, we adapt a particular relaxation from [3] and show that it can indeed be
tested using a connection to testing the Lipschitz property. The relaxation we consider
assumes that datasets come from some fixed distribution Π on the set of all datasets.
The notion of privacy is relaxed from the worst case guarantee over all pairs of datasets
(i.e., differential privacy) to a notion where the differential privacy condition is required
to hold only on datasets which are more likely to occur (i.e., have high-probability mass
under distribution Π). We refer to this notion as differential privacy on typical datasets
(DPTD) (Definition 3.2). As mentioned earlier, DPTD is an adaptation of more general
definition introduced in [3] under the name of generalized differential privacy (GDP).
GDP was defined in the context of a related distributional notion of privacy called noise-
less privacy, first introduced by [4]. A related notion called natural differential privacy
has also been recently proposed by [5]. Since we focus on DPTD in this work, we do not
discuss noiseless privacy (and its variants) further. Next we give a formal definition of

424 K. Dixit et al.

DPTD. The definition is parametrized by three parameters α, β and γ. The parameters
α and β play the same role as in the differential privacy definition, while the parame-
ter γ bounds the probability of the “bad” set B of databases on which the differential
privacy condition fails to hold.

Definition 3.2 ((α, β, γ)-Differential Privacy on Typical Datasets (DPTD)). Let Π
be a fixed distribution on the domain X d of datasets. A randomized algorithm A is
(α, β, γ)-differentially private on typical datasets, if there exists a subset B ⊆ X d

satisfying Prx∼Π [x ∈ B] ≤ γ such that condition (1) of Definition 3.1 holds for any
two datasets x, x′ ∈ X d \ B and all measurable sets Z ⊆ Range(A). The probability
in (1) is over the randomness of the algorithm A.

Our main observation is that for algorithms which output values in a finite range, test-
ing DPTD can be reduced to testing the Lipschitz property (of a family of functions).
Assume again that the output space of A is a finite set Z and define functions fz as
above.

Observation 3.2 (DPTD for Algorithms with Finite Range). AlgorithmA is (α, 0, γ)-
differentially private if and only if the following two conditions hold: (i) there exists a
subset B ⊆ X d such that Prx∼Π [x ∈ B] ≤ γ; and (ii) for every z ∈ Z , function fz is
α-Lipschitz on the set X d \B.

Recall that a function f is ε-close to property P with respect to distribution Π if there
is a function g which satisfies P and Prx∼Π [f(x) �= g(x)] ≤ ε. Observation 3.2, in
particular, implies the following. If algorithm A satisfies (α, 0, γ)-DPTD, then for every
z ∈ Z , function fz is γ-close to the α-Lipschitz property with respect to the distribution
Π . However, to apply a Lipschitz tester, we need a converse of this statement. The
following lemma gives the converse.

Lemma 3.1 (Connection between DPTD and Testing the Lipschitz Property). If
for every z ∈ R, function fz is εz-close to the α-Lipschitz property with respect to
the distribution Π , then A is (α, 0,

∑
z εz)-DPTD. In particular, if A is not (α, 0, γ)-

DPTD, then there exists z ∈ Z such that fz is γ/|Z|-far from the α-Lipschitz property.

Proof. Since every fz is εz-close to the α-Lipschitz property with respect to the distri-
bution Π , there exists Bz corresponding to each fz such that (i) fz is α-Lipschitz on
X d \ Bz ; and (ii) Prx∼Π [x ∈ Bz] ≤ εz . Let B be the union over all z of the sets Bz .
Applying the union bound, we get Prx∼Π [x ∈ B] ≤

∑
z εz . Then the first part of the

lemma follows from Observation 3.2 with B as the required set. The second part of the
lemma follows from an averaging argument. �	

3.1 Discussion of Differential Privacy on Typical Datasets

Differential privacy on typical datasets (DPTD) in Definition 3.2 is very similar to
the definition of differential privacy, except in DPTD there exists a set of datasets B
where the differential privacy condition (i.e., Equation 1 of Definition 3.1) does not
hold. Moreover, the probability mass of B under the data generating distribution Π is
at most γ. If we assume β = 0 for simplicity, then at a high-level DPTD implies that for

Privacy Testing via Distributional Lipschitz Testers 425

any two datasets x and x′ from the set X d \ B, which have sufficient probability mass
under Π and differ in k-entries, the distribution of A(x) and A(x′) have a statistical
distance of 2kα when kα is less than one.

In differential privacy, the scale of the parameters α and β are typically chosen as
follows: α is chosen to be some small constant and β is chosen to be O(1/d2). With
this choice of parameters, differential privacy ensures that even in the presence of any
auxiliary information, from the output of the algorithm A, an adversary draws the same
conclusions about any entry in the data set irrespective of its presence or absence. (See
[22] for more discussion.) Since α and β play the same role in DPTD, we think of α
and β of the same order as discussed for differential privacy. Additionally, throughout
this paper we think of γ and β to be of the same order.

In [3], a generalization of DPTD has been stated under the name of generalized
differential privacy (GDP). Under suitable choice of auxiliary information (i.e., the ran-
dom variable Aux), the definition of [3] reduces to Definition 3.2. More precisely, for
every data entry xi, the auxiliary information in the GDP condition (of the definition of
GDP) corresponds to all entries in the data set x except xi.

4 Testing and Reconstruction of Differential Privacy on Typical
Datasets

In this section we present an algorithm Tpriv (Algorithm 1) which “tests” whether a
given algorithm A is private. The guarantee of the testing algorithm Tpriv is “asym-
metric”, i.e., if algorithm A is α-differentially private, then the tester accepts, and if
the algorithm A is not (α, 0, γ)-DPTD, then the tester rejects with high probability. It
is worth highlighting that this style of utility guarantee deviates from the conventional
utility guarantees in property testing literature (where the utility guarantee is symmetric
over a particular property P).

Next we use Tpriv as a subroutine to design a “reconstruction” algorithm AprivGen

(Algorithm 2). The algorithm AprivGen is guaranteed to be differential private on typ-
ical datasets under the data generating distribution Π . Moreover, if A is differentially
private, then the output of AprivGen equals the output of A. (See Theorem 4.2 for the
exact parameters.)

4.1 Tester for Differential Privacy on Typical Datasets

In this section, we prove the following theorem.

Theorem 4.1 ((α, β, γ, δ)-Privacy testing). Let A be a randomized algorithm which
outputs values in the finite set Z . Let Π be a data generating distribution. Let TLip be
a δ-approximate Lipschitz tester. Suppose there is an oracle OA which for every value
z ∈ Z and for every x ∈ X d allows constant time access to the value Pr(A(x) = z)
(where the probability is only over the randomness of the algorithm A). Then algorithm
Tpriv (Algorithm 1), given access to OA, satisfies the following.

426 K. Dixit et al.

– If algorithm A is α-differentially private, then Tpriv accepts.
– If algorithm A is not (α(1+δ), 0, γ)-DPTD, then the tester rejects with probability

at least 1− β.

The algorithm Tpriv uses TLip as a subroutine and runs in time

O(|Z| · Run-time

(

TLip(
γ

|Z| , β, δ, d)
)

.

At high level, algorithm Tpriv (Algorithm 1) does the following. For each possible
output z ∈ Z , it defines a function fz (with the domain X d). It then invokes algorithm
TLip to test fz for the Lipschitz property. It accepts iff TLip accepts all fz .

Algorithm 1 Tpriv: Tester of Differential Privacy on Typical Data Sets

Require: Algorithm A, data generating distribution Π , data domain X d, output range Z, privacy
parameters α, γ ∈ (0, 1], failure probability β ∈ (0, 1] and approximation parameter δ.

1: Let TLip be a δ-approximate Lipschitz tester defined in Definition 2.3.
2: for all values z ∈ Z do
3: Define function fz : X d → R by setting fz(x) =

1
α
log Pr(A(x) = z).

4: Run TLip on fz with proximity parameter γ
|Z| and failure probability β.

5: If TLip rejects, then reject.
6: end for
7: Accept.

Proof. We use Lemma 3.1 and Observation 3.1 to prove the theorem. To prove the first
item, assume A is α-differentially private. Then Observation 3.1 implies that for every
z ∈ Z , function fz (in Line 4 of Algorithm 1) is Lipschitz. Since Tpriv always accepts a
Lipschitz function, we get that Tpriv accepts, as required. For the second item, assume
A is not (α, 0, γ)-DPTD. Then Lemma 3.1 implies that there exists z∗ such that fz∗ is
γ/|Z|-far from being (1 + δ)-Lipschitz. From definition of TLip, it follows that TLip

rejects fz∗ with probability at least 1 − β, and therefore, so does Tpriv . The running
time of Tpriv follows from the fact that the tester TLip is invoked at most |Z| times.

�	
The proof above used the second part of Lemma 3.1 and used an arbitrary Lipschitz
tester TLip. It is possible to obtain faster privacy testers using the (stronger) statement
given in the first part of Lemma 3.1. This requires making mild assumptions about the
guarantees of the Lipschitz tester. We defer this analysis to the full version.

4.2 Application of DPTD Tester to Ensure Privacy of a Given Candidate
Algorithm

In this section we will demonstrate how one can use algorithm Tpriv (Algorithm 1)
designed in the previous section to guarantee (α, β, γ)-differential privacy on typical
datasets to the output produced by a candidate algorithm A. The details are given in
Algorithm 2.

Privacy Testing via Distributional Lipschitz Testers 427

Algorithm 2 AprivGen: DPTD mechanism
Require: Dataset x, candidate algorithm A, testing algorithm Tpriv , data generating distribution

Π , data domain X d, output set Z, privacy parameters α, β, γ
1: Run Tpriv with parameters A,Π,X d,Z, privacy parameters α, γ, and failure parameter β
2: If Tpriv accepts, then output A(x). Otherwise, output FAIL.

The guarantees for Algorithm 2 are given below.

Theorem 4.2 (((1+δ), α, β, γ)-DPTD mechanism). Let TLip be a (1+δ)-approximate
Lipschitz tester (see Definition 2.3) used in the testing algorithm Tpriv (Algorithm 1).
Under the assumptions of Theorem 4.1, algorithm AprivGen (Algorithm 2) satisfies:

– (privacy) Algorithm AprivGen (Algorithm 2) is (α(1 + δ), β, γ)-DPTD.
– (utility) If the candidate algorithm A is α-differentially private, then the output

distributions of algorithm AprivGen (Algorithm 2) and A are identical.

We defer the proof of this theorem to the full version.

5 Lipschitz Property Testing on the Hypercube under Product
Distribution

In this section, we present a δ-approximate Lipschitz tester (see Definition 2.3) for
functions defined on X d = {0, 1}d when the underlying distribution on {0, 1}d is an
unknown product distribution. Specifically, the points in the dataset are distributed ac-
cording to the product distribution Π = Ber(p1) × Ber(p2) × ...,×Ber(pd) where
Ber(p) denotes the Bernoulli distribution with probability p. Namely, Ber(p) is 1 with
probability p and 0 with probability 1− p. Therefore, each vertex in x ∈ {0, 1}d has an

associated probability mass px =
∏

i∈[d]

pxi

i (1− pi)
1−xi .

In this section, we view the domain {0, 1}d as vertices of the hypercube graph Hd =

({0, 1}d, E). The edge set E consists of pairs {x, y} of vertices x, y ∈ {0, 1}d which
differ in exactly one coordinate (i.e., there exists i ∈ [d] such that xi = yi and for all
j �= i, xj = yj). Observe that f is Lipschitz on {0, 1}d if and only if for every edge
{x, y} ∈ E, the following holds: |f(x) − f(y)| ≤ 1. An edge which does not satisfy
this condition is called a violated edge.

5.1 Algorithm for Testing the Lipschitz Property on the Hypercube

In this section, we prove the following theorem which gives a 1-approximate Lipschitz
tester for δZ-valued functions. A function is δZ valued if it produces outputs in integral
multiples of δ. The running time of our tester is stated in terms of the image diameter
of the input function f .

428 K. Dixit et al.

Definition 5.1 (Image Diameter). The image diameter of a function f : X d → R,
denoted by ImD(f), is the difference between the maximum and the minimum values
attained by f , i.e., maxx∈X d f(x)−minx∈X d f(x).

Theorem 5.1. Let {0, 1}d be the domain from which the dataset are drawn according
to a product probability distribution Π = Ber(p1) × Ber(p2) × ...,×Ber(pd). The
Lipschitz property of functionsf : {0, 1}d → δZ on these datasets can be tested non-
adaptively and with one sided error probability ρ in O(d·min{d,ImD(f)}

δ(ε−d2δ) ln(2ρ)) time for
δ ∈ (0, ε

d2). Here ImD is the image diameter defined in Definition 5.1.

By discretizing, as in proof of Corollary 1.2 in [21], we obtain a (1 + δ)-approximate
Lipschitz tester for real-valued functions.

Corollary 5.1. Let {0, 1}d be the domain from which the dataset are drawn according
to a product probability distribution Π = Ber(p1)× Ber(p2)× ...,×Ber(pd). There
is an algorithm that on input parameters δ ∈ (0, ε

d2), ε ∈ (0, 1), d and oracle access to
a function f : {0, 1}d → R has the following behavior: It accepts if f is Lipschitz and
rejects with probability at least 1 − ρ if f is ε-far (with respect to the distribution Π)
from (1 + δ)-Lipschitz and runs in O(d·min{d,ImD(f)}

δ(ε−d2δ) ln(2ρ)) time. Here ImD is the
image diameter defined in Definition 5.1.

Theorem 5.1 is proved in Section 5.2. To state the proof we need the following technical
result stated in lemma 5.1.

We define a distribution DE on edges of the hypercube where the probability mass
of an edge {x, y} is given by px+py

d . Note that
∑

(x,y)∈E(Hd)
(px+py)

d = 1. Thus, DE

is well-defined. Our tester is based on detecting violated edges (that is, edges which vi-
olate the Lipschitz property) sampled from distribution DE . Our main technical lemma
(Lemma 5.1) gives a lower bound on the probability of sampling a violated edge ac-
cording to distribution DE for a function that is ε-far from Lipschitz. (Recall that ε-far
is measured with respect to the distribution Π .)

Lemma 5.1. Let function f : {0, 1}d → δZ be ε-far from Lipschitz. Let V (f) denote
the set of edges in Hd violated by f . Then

∑

(x,y)∈V (f)

(px + py)

d
≥ δ(ε− d2δ)

d · ImD(f)

Here ImD is the image diameter defined in Definition 5.1.

We prove the above lemma in section 5.3.

5.2 Lipschitz Tester

In this section we prove Theorem 5.1 and Corollary 5.1. We first present the algorithm
stated in Theorem 5.1.

Privacy Testing via Distributional Lipschitz Testers 429

Algorithm 3 Lipschitz Tester

Require: Data domain {0, 1}d, product distribution on dataset Π = Ber(p1)×Ber(p2)× ...×
Ber(pd), failure probability ρ, proximity parameter ε′, discretization parameter δ.

1: Set ε = ε′ − d2δ.
2: Sample t =

⌈
2
ε
ln(2

ρ
)
⌉

vertices z1, z2, ..., zt independently from Hd according to the distri-

bution Π .
3: Let r = maxt

i=1 f(zi)−mint
i=1 f(zi).

4: If r > d, reject.

5: Sample
⌈

dr
δε

ln(2
ρ
)
⌉

edges independently with each edge (x, y) picked with probability
(px+py)

d
from the hypercube Hd.

6: If any of the sampled edges is violated, then reject, else accept.

Proof (of Theorem 5.1). First observe that if input function f is Lipschitz then Algo-
rithm 3 always accepts. This is because a Lipschitz function f has image diameter (see
Definition 5.1) at most d and hence cannot be rejected in Step 4. Moreover, it does not
have any violated edges and hence cannot be rejected in Step 6. Next consider the case
when f is ε-far from Lipschitz. Towards this we first extend Claim 3.1 of [21] about
sample diameter r to our setting where the distance (in particular, the notion of ε-far) is
measured with respect to a product distribution.

Claim. Value r computed on Line 3 is at most ImD(f) and with probability at least
1− ρ

2 , f is ε-close to having diameter at most r.

Proof. Sort the points in {0, 1}d according to their function values in non-decreasing
order. Let L be the first �-points such that their probability mass sums up to ε

2 and R
be the set of last �′ points such that their probability mass sums up to ε

2 . The rest of the
proof is very similar to the proof of Claim 3.1 in [21], so we omit the details here. �	

Having established Claim 5.2, the rest of the proof of Theorem 5.1 is identical to [21].
We omit the details. �	

5.3 Repair Operator and Proof of Lemma 5.1

We show a transformation of an arbitrary function f : {0, 1}d → δZ into a Lips-
chitz function by changing f on certain points, whose probability mass is related to the
probability mass (with respect to DE) of the violated edges of Hd. This is achieved
by repairing one dimension of Hd at a time as explained henceforth. To achieve this,
we define an asymmetric version of the basic operator of [21]. The operator redefines
function values so that it reduces the gap asymmetrically according to the Hamming
weights (and probability masses in-turn) of the endpoints of the violated edge. This is
the main difference from previous approaches ([21], [2]) which do not work if applied
directly, because of the varying probability masses of the vertices with respect to the
Hamming weight, defined as |x| for a vertex x. We first define the building block of the
repair operator which is called the asymmetric basic operator.

430 K. Dixit et al.

Definition 5.2 (Asymmetric basic operator). Given f : {0, 1}d → δZ, for each vio-
lated edge {x, y} along dimension i, where f(x) < f(y)− 1, define Bi as follows.

1. If |x| > |y|, then Bi[f](x) = f(x) + (1− pi)δ and Bi[f](y) = f(y)− piδ
2. If |x| < |y|, then Bi[f](x) = f(x) + piδ and Bi[f](y) = f(y)− (1− pi)δ

Now we define the repair operator.

Definition 5.3 (Repair Operator). Given f : {0, 1}d → δZ, Ai[f](x) is obtained from
f by several applications of the asymmetric basic operator (see Definition 5.2) Bi along
dimension i followed by a single application of the rounding operator. Specifically, let
f ′ be the function obtained from f by applying Bi repeatedly until there are no violated
edges along the i-th dimension. Then, Ai[f] is defined to be R[f ′] where the rounding
operator R rounds the function values to the closest δZ-valued function.

In effect, we have the following picture for the repair operation.

f = f0
A1−−→ f1

A2−−→ f2 −→ · · · −→ fd−1
Ad−−→ fd.

Now we define a measure called violation score which will be used to show the progress
of repair operation. As shown later, the violation score is approximately preserved along
any dimension j �= i when we apply the repair operator to repair the edges along
dimension i. Note that the violation score closely resembles the violation score in [21]
except that it depends on the function value as well as the probability masses of the
end-points of the edge.

Definition 5.4. The violation score of an edge with respect to function f , denoted by
vs({x, y}), is max(0, (px+ py)(|f(x)− f(y)| − 1)). The violation score along dimen-
sion i, denoted by V Si(f), is the sum of violation scores of all edges along dimension i

The violation score of an edge {x, y} is positive iff it is violated and violation score of
a δZ valued function is contained in the interval [δ(px + py), ImD(f)(px + py)]. Let
V i(f) denote be the set of edges along dimension i violated by f . Then

δ ·
∑

{x,y}∈V i(f)

(px + py) ≤ V Si(f) ≤
∑

{x,y}∈V i(f)

(px + py) · ImD(f) (2)

Lemma 5.2 shows that Ai does not increase the violation score in dimensions other than
i more than the additive value of δ.

Lemma 5.2. For all i, j ∈ [d], where i �= j, and every function f : {0, 1}d → δZ, the
following holds.

– (progress) Applying the repair operatorAi does not introduce new violated edges in
dimension j if the dimension j is violation free, i.e. V Sj(f)=0 ⇒ V Sj(Ai[f])=0.

– (accounting) Applying the repair operator Ai does not increase the violation score
in dimension j by more than δ, i.e. V Sj(Ai[f]) ≤ V Sj(f) + δ.

Privacy Testing via Distributional Lipschitz Testers 431

Application of the repair operator Ai entails several applications of the basic operator
Bi followed by a single application of the rounding operatorR. In Lemma 5.3, we show
that the applications of Bi does not increase the violation score along the remaining
dimensions. In Claim 5.3, we show that the second step (rounding) is not too harmful
for the remaining dimensions either. Finally, we use Lemma 5.3 and Claim 5.3 to prove
Lemma 5.2.

Lemma 5.3. Suppose f : Hd → R is such that for every edge {x, y} in Hd, the
difference f(x) − f(y) ∈ δZ. Let f ′ be the function obtained from f by applying Bi

repeatedly until there are no violated edges along the i-th dimension. Then for every
dimension j �= i, V Sj(f

′) ≤ V Sj(f).

Proof. First observe that it is sufficient to prove the lemma for a single application
of the basic operator Bi. This is because for every edge {x, y}, the following holds:
f(x)− f(y) ∈ δZ ⇒ Bi[f](x)−Bi[f](y) ∈ δZ. To see this observe that, by definition
of the basic operator, Bi[f](x)−Bi[f](y) is either f(x)− f(y)+ δ or f(x)− f(y)− δ
and we already started with the assumption that f(x) − f(y) ∈ δZ. Note that before
the application of repair operations, the function f has range in δZ and the assumption
holds true. Also, it holds true for the further applications of Bi as shown above. Next
we prove the lemma for one step of the basic operator.

Following the proof outline of a similar proof in [21], we show that application of
the asymmetric basic operator in dimension i does not increase the violation score in
dimension j �= i. Standard arguments [16,9,21,2] show that it is enough to analyze
the effect of applying Bi on one fixed disjoint square formed by adjacent edges that
cross dimensions i and j. (This is because edges along dimensions i and j form disjoint
squares in the hypercube. So proving the statement for one fixed square of the hyper-
cube, the full claim follows by summing up the inequalities over all such squares.)

yt

ybxb

xt

i

j

Fig. 1. Image courtesy [21]

Consider the two dimensional function f : {xb, xt, yb, yt}→R where {xb, xt, yb, yt}
are as positioned in the figure. Assume that the basic operator is applied along the
dimension i. We show that the violation score along dimension j does not increase.
Assume that the violation score along edge {xb, xt} increases. First, assume that the
Bi[f](xt) > Bi[f](xb). (The other case is very similar and we will prove it later.) Then
Bi increases f(xt) and/or decreases f(xb). Assume that Bi increases f(xt). (The other
case is symmetrical.) This implies that {xt, yt} is violated and f(xt) < f(yt). Recall
that the repair operator is applied only if the edge is violated. Therefore f(yt)−f(xt) >
1. Since f(yt)− f(xt) ∈ δZ and 1

δ is an integer, we have

f(yt) ≥ f(xt) + 1 + δ

432 K. Dixit et al.

The above inequality is crucial for the remaining proof of the lemma 5.1. Now consider
the cases when either the bottom edge is also violated or is not violated.

If the bottom edge is not violated then we have f(xb) ≥ f(yb) − 1 and f(xb) and
f(yb) are not modified by the basic operator. Since vs({xt, xb}) increases, f(xt) >
f(xb) + 1 − piδ. Combining the above inequalities, we get f(yt) ≥ f(xt) + 1 + δ >
f(xb) + 2 + (1 − pi)δ ≥ f(yb) + 1 + (1 − pi)δ > f(yb) + 1. Thus the violation
score increases along {xt, xb} by (pxb

+pxt)piδ and decreases along {yb, yt} by (pyb
+

pyt)(1−pi)δ = (pxb
+pxt)

(
pi

1−pi

)
(1−pi)δ which is same as (pxb

+pxt)piδ, keeping

the violation score along the dimension j unchanged.
If the bottom edge is violated, then the increase in vs({xb, xt}) implies that f(xb)

must decrease (after application of Bi) by piδ (since |xb| < |yb|) implying f(yb)+ 1 <
f(xb)). Therefore f(xt)+piδ > f(xb)+1−piδ or f(xt) > f(yt)+1−2piδ. Therefore
f(yt) > f(xt) + 1 > f(xb) + 2 − 2piδ ≥ f(yb) + 3 − 2piδ + δ ≥ f(yb) + 1 + δ.
The last inequality is true since δ ≤ 1 and pi ≤ 1. Thus, vs({xt, xb}) increases by
at most (pxb

+ pxt)2piδ while vs({yt, yb}) decreases by (pyt + pyb
)2(1 − pi)δ =

(pxb
+ pxt)2piδ, ensuring that violation score along the vertical dimension does not

increase.
Now we turn to the case when Bi[f](xt) < Bi[f](xb). By the arguments very similar

to the first case, it can be proved that f(xt) ≥ f(yt)+1+ δ and the application of basic
operator decreases f(xt) by piδ and increases f(yt) by (1− pi)δ.

If the bottom edge is not violated then f(yb) ≥ f(xb)−1 and f(xb) and f(yb) are not
modified by the basic operator. Since vs({xt, xb}) increases, f(xb) > f(xt)+ 1− piδ.
Combining the above inequalities, we get f(yb) ≥ f(xb)− 1 > f(xt)−piδ ≥ f(yt)+
1 + δ(1− pi). Thus the violation score increases along {xt, xb} by (pxb

+ pxt)piδ and

decreases along {yb, yt} by (pyb
+pyt)(1−pi)δ = (pxb

+pxt)
(

pi

1−pi

)
(1−pi)δ which

is same as (pxb
+pxt)piδ, keeping the violation score along the dimension j unchanged.

If the bottom edge is violated, then the increase in vs({xb, xt}) implies that f(xb)
must increase implying f(yb) > f(xb) + 1. Therefore, the increase in vs{xb, xt}
implies that f(xb) + piδ > f(xt) − piδ + 1 or f(xb) > f(xt) − 2piδ + 1. Com-
bining the above inequalities, we get f(yb) > f(xb) + 1 > f(xt) − 2piδ + 2 ≥
f(yt)+3+δ−2piδ ≥ f(yt)+1+δ. The last inequality is true since δ ≤ 1 and pi ≤ 1.
Thus, vs({xt, xb}) increases by at most (pxb

+ pxt)2piδ while vs({yt, yb}) decreases
by (pyt + pyb

)2(1 − pi)δ = (pxb
+ pxt)2piδ, ensuring that violation score along the

vertical dimension does not increase. �	

Claim (Rounding is safe). Given a, b ∈ R satisfying |a − b| ≤ 1, let a′ (respectively,
b′) be the value obtained by rounding a (respectively, b) to the closest δZ integer. Then
|a′ − b′| ≤ 1.

Proof. Assume without loss of generality a ≤ b. For x ∈ R, let �x�δ be the largest
value in δZ not greater than x. Observe that a′ ∈ {�a�δ , �a�δ + δ}. Using the fact that
�a�δ ≤ b′ ≤ �a�δ + 1 + δ, we see that if a′ = �a�δ + δ then |b′ − a′| ≤ 1 always
holds. Therefore, assume a′ = �a�δ . This can happen only if a ≤ �a�δ+δ/2. The latter
implies b ≤ �a�δ + 1 + δ/2 (using the fact that b − a ≤ 1). That is b′ �= �a�δ + 1 + δ.
In other words, b′ ≤ �a�δ + 1 again implying b′ − a′ ≤ 1, as required. �	

Privacy Testing via Distributional Lipschitz Testers 433

Proof (of Lemma 5.2). Let f ′ be the function from the statement of Lemma 5.3. Then
function Ai[f] is obtained by rounding the values of f ′ to the closest δZ values. Since
rounding can never create new edge violations by Claim 5.3, we immediately get the
first part of the lemma. The second part follows from the observation that the rounding
step modifies each function value by at most δ/2. Correspondingly, the violation score
of an edge along the j-th dimension changes by at most 2·(δ/2)·(pu+pv) where the fac-
tor 2 comes because both endpoints of an edge may be rounded. Summing over all edges
in the j-th dimension, we get, increase in violation score ≤

∑
{u,v} δ · (pu + pv) = δ

where the last equality holds because edges along the j-th dimension form a perfect
matching and therefore the probabilities pu + pv sum to 1. �	

Proof of Lemma 5.1. Using the arguments very similar to [21] as given below, we can
get the following sequence of inequalities

Dist(fi−1, fi) = Dist(fi−1, Ai(fi−1)) ≤
∑

(x,y)∈Vi(fi−1)

(px + py)

≤ 1

δ
V Si(fi−1) ≤

1

δ
V Si(f) + (d− i)δ ≤ 1

δ

∑
(x,y)∈V i(f)

(px + py) · ImD(f) + (d− i)δ

Here functions {fi}i=d
i=0 are defined in the same way as [21]. The first inequality holds

because Ai modifies f only at the endpoints points x and y of violated edge (x, y)
along dimension i, thus paying px + py. The second and fourth inequalities follow
from Equation (2) and the third inequality holds because of Lemma 5.2. Therefore, by
triangle inequality, we have

Dist(f, fd) ≤
∑

i∈[d]

Dist(fi−1, fi)

≤
∑

i∈[d]

⎛

⎝
∑

(x,y)∈V if(H)

(px + py) ·
ImD(f)

δ

⎞

⎠+ (d− i)δ

≤

⎛

⎝
∑

(x,y)∈V (f))

(px + py) ·
ImD(f)

δ

⎞

⎠+ d2δ

For a function which is ε-far from Lipschitz, we have Dist(f, fd) ≥ ε. Therefore, from
the above inequality, we have

∑

(x,y)∈V (f)

(px + py)

d
≥ δ(ε− d2δ)

d · ImD(f)

6 Instantiation of Privacy Tester Using Lipschitz Testers

In this section, we instantiate the privacy tester of Section 4 with both known Lipschitz
testers as well as the Lipschitz tester developed in this work. The table below compares

434 K. Dixit et al.

the current state of art Lipschitz testers on the hypercube domain. The third column
gives the “approximation factor” as defined in Definition 2.3 for the various testers.
The last row gives the result of Lipschitz tester (Section 5) developed in this work. The
discussion about the instantiations follows.

Reference Functions Approx. Factor Distribution Tester running time
[7] {0, 1}d → R 1 Uniform O(dε)

This work {0, 1}d → R (1 + δ) Product O
(

d·ImD(f)
(ε−d2δ)δ

)

First we analyze the result for the case when points are sampled from {0, 1}d ac-
cording to the uniform distribution. In this case, the running time for for (α, β, γ, δ)-

privacy testing of Tpriv (defined in theorem 4.1) is O(|Z|2d
γ). Let us now analyze

the running time for the same when applied to the datasets coming from the hyper-
cube domain according to some (possibly unknown) product distribution. We use the
tester given in the algorithm 3. The running time in this case is given by O(|Z| ·
Run-time

(
TLip(

γ
|Z| , β, δ, d)

)
. Choosing δ = γ

4d2|Z| , one gets the running time of the

Tpriv to be O(d
4|Z|3
γ2). In general, δ can be made smaller at the cost of higher run-

ning time of tester. This clearly shows the trade off between the privacy guarantee and
running time of the tester.

7 Discussions and Open Problems

In this section we discuss some of the interesting implications of our current work and
some of the new avenues it opens up. Also we state some of the open problems that
remains unresolved in our work.

Privacy: In this work, we took the first step towards designing efficient testing algo-
rithm for statistical data privacy. Our work indicates that it is indeed possible to design
efficient testing algorithms for some existing notions of statistical data privacy (e.g.,
differential privacy on typical datasets). It is important that the current paper should be
treated as an initial study of the problem and in no way should be interpreted as con-
clusive. It is interesting (and also important) to explore other rigorous notions of data
privacy, their implications, and design testers for them.

In this paper, we test for differential privacy on typical datasets, which is a relaxation
of differential privacy. It remains an open problem to design a privacy tester for pure
(α, β)-differential privacy.

Lipschitz Testing: This work presents the first Lipschitz property tester for the setting
where the domain points are sampled from a distribution that is not uniform. Because
of possible applications to statistical data privacy, this work has motivated the design
of such Lipschitz testers for other domains, e.g. hypergrid. Also, this paper mainly
shows the tester for the product distribution over the hypercube domain, but it still
remains open to design testers for other distributions that may be correlated in some way

Privacy Testing via Distributional Lipschitz Testers 435

(e.g., pairwise correlation). In the current work, we have designed testers where the
domain of the dataset is finite. A natural question that arises is that if we can extend the
current results to design privacy testers when the datasets are drawn from continuous
domain.

Other Limitations of our Approach: The current work on testing of privacy properties
have several limitations which are worth highlighting. These limitations need to be ad-
dressed in order to allow our current testing algorithms to be used in practice. Firstly,
our current testing algorithm works on discrete range space S. This significantly limits
the applicability of our testing algorithm in various applications which are meaning-
ful over continuous range spaces (e.g., various machine learning problems). Also the
running time of our tester depends polynomially on the size of the range space S. Sec-
ondly, our testing algorithm needs oracle access to the probability measure induced on
the range space of the untrusted algorithm A. In general it is not clear how to come up
with a computationally efficient oracle given just the algorithm A. Thirdly, the current
results are only for discrete domain of datasets X d. This restricts the applicability of
our approach to many interesting applications (e.g., Gaussian process regression).

Acknowledgements. We would like to thank Adam Smith for suggesting the
name Differential Privacy on Typical Datasets and for various other suggestions and
comments.

References

1. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of lipschitz
and monotone functions. In: Gupta, et al.: [18], pp. 374–386

2. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Testing lipschitz functions on hyper-
grid domains. In: Gupta, et al.: [18], pp. 387–398

3. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy.
Cryptology ePrint Archive, Report 2011/487 (version: 20120524:110619) (2011),
http://eprint.iacr.org/

4. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless Database Pri-
vacy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232.
Springer, Heidelberg (2011)

5. Bhowmick, A., Dwork, C.: Natural differential privacy. Personal Communication (2012)
6. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “you might also

like: ” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy,
pp. 231–246 (2011)

7. Chakrabarty, D., Seshadhri, C.: Optimal bounds for monotonicity and lipschitz testing over
the hypercube. CoRR abs/1204.0849 (2012)

8. Dixit, K., Jha, M., Raskhodnikova, S., Thakurta, A.: Testing the lipschitz property over prod-
uct distributions with applications to data privacy (2013),
http://arxiv.org/abs/1209.4056

9. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Im-
proved Testing Algorithms for Monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P.,
Sinclair, A. (eds.) RANDOM-APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Hei-
delberg (1999)

http://eprint.iacr.org/
http://arxiv.org/abs/1209.4056

436 K. Dixit et al.

10. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

11. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z.,
Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

12. Dwork, C.: The Differential Privacy Frontier (Extended Abstract). In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Pri-
vacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private
Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006)

15. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary informa-
tion in data privacy. In: KDD, pp. 265–273 (2008)

16. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonic-
ity. Combinatorica 20(3), 301–337 (2000)

17. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653–750 (1998)

18. Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.): APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408. Springer, Cambridge (2012)

19. Halevy, S., Kushilevitz, E.: Distribution-free property-testing. SIAM J. Comput. 37(4),
1107–1138 (2007)

20. Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing for sparse graphs. Algorith-
mica 51(1), 24–48 (2008)

21. Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with applica-
tions to data privacy. In: Ostrovsky, R. (ed.) FOCS, pp. 433–442. IEEE (2011)

22. Kasiviswanathan, S.P., Smith, A.: A note on differential privacy: Defining resistance to arbi-
trary side information. CoRR abs/0803.3946 (2008)

23. Korolova, A.: Privacy violations using microtargeted ads: A case study. In: ICDMW, pp.
474–482 (2010)

24. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy
beyond k-anonymity. In: ICDE, p. 24 (2006)

25. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In: SIGMOD, pp. 19–30 (2009)

26. Mohan, P., Thakurta, A., Shi, E., Song, D., Culler, D.: Gupt: privacy preserving data analysis
made easy. In: SIGMOD, pp. 349–360 (2012)

27. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data
analysis. In: STOC, pp. 75–84 (2007)

28. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms 20(2), 165–
183 (2002)

29. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential
privacy. In: ICFP, pp. 157–168 (2010)

30. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and privacy for
mapreduce. In: NSDI, pp. 297–312 (2010)

31. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Comput. 25(2), 252–271 (1996)

32. Smith, A.: Privacy-preserving statistical estimation with optimal convergence rates. In:
STOC, pp. 813–822 (2011)

33. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

	Testing the Lipschitz Property over Product Distributions with Applications to Data Privacy

	Introduction
	Summary of Our Contributions
	Related Work
	Organization of the Paper

	Preliminaries for Lipschitz Property Testing
	Differential Privacy and Its Connections to Testing the Lipschitz Property
	Discussion of Differential Privacy on Typical Datasets

	Testing and Reconstruction of Differential Privacy on Typical Datasets
	Tester for Differential Privacy on Typical Datasets
	Application of DPTD Tester to Ensure Privacy of a Given Candidate Algorithm

	Lipschitz Property Testing on the Hypercube under Product Distribution
	Algorithm for Testing the Lipschitz Property on the Hypercube
	Lipschitz Tester
	Repair Operator and Proof of Lemma 5.1

	Instantiation of Privacy Tester Using Lipschitz Testers
	Discussions and Open Problems
	References

