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Preface

These are the proceedings of TCC 2013, the 10th Theory of Cryptography Con-
ference, held at the University of Tokyo, Japan, during March 3–6, 2013. The
conference was sponsored by the International Association for Cryptologic Re-
search (IACR). The General Chairs were Masayuki Abe and Tatsuaki Okamoto.

The Program Committee accepted 36 papers out of 98 submissions. The
program included papers on a wide variety of topics, from secure computation
to zero-knowledge PCPs, by authors from many different backgrounds: one pa-
per, “On the Circular Security of Bit-Encryption,” is solely authored by a PhD
student, Ron D. Rothblum; another paper, “Characterizing the Cryptographic
Properties of Reactive 2-Party Functionalities,” is co-authored by R. Amzi Jeffs,
who was a high-school student at the time the paper was written.

On behalf of the Program Committee (PC), I thank the authors of all submis-
sions for contributing excellent manuscripts. These contributions are of course
the lifeblood of TCC, providing the most essential ingredient for the conference.
The high quality of the submissions made the PC’s job both rewarding and
challenging. Conflicts of interest were taken seriously by the PC. In particular,
no PC member (including the PC chair) played any role in deciding the fate of
submissions by authors that were current students, postdoctoral researchers, or
colleagues in the same institution. The program also included three invited talks:
by Craig Gentry, titled “Encrypted Messages from the Heights of Cryptomania”;
by Tal Malkin, titled “Secure Computation for Big Data”; and by Benny Apple-
baum, titled “Cryptographic Hardness of Random Local Functions – A Survey.”
The conference featured a rump session for informal short presentations and
announcements, chaired by abhi shelat.

There are many individuals to whom I am grateful in connection with this
conference. But I begin by thanking Dan Boneh and Shai Halevi, who went
above and beyond the call of duty in providing assistance to the success of the
conference, despite having no official role in the organization of TCC 2013.

This year, to increase the quality of the reviewing process, I wanted to add an
automated way for PC members to have ongoing anonymous interactive commu-
nication with authors throughout the review period: this would enable reviewers
to obtain clarifications on any aspects of submissions in a timely manner – at
the time when they are most engaged with any particular paper. (This is in con-
trast to a single response phase, where often the author responses arrive too late
to help with crucial PC discussions.) However, no currently available software
package for conference management supports such a feature, and communication
via the PC Chair is too cumbersome to encourage such interactions. Dan Boneh
volunteered to write a Web-based software system to enable such interactions,
and was very responsive to my requests for additional features and changes. Shai
Halevi generously agreed to incorporate Dan’s system into his existing confer-
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ence management software, and provided me with very helpful assistance for
using his software throughout the review process. The PC used this new system
throughout the TCC review process, and it greatly helped in clarifying issues
about submissions. Despite this being a new experimental process, the PC used
the new system to engage in interactions with over a quarter of submitted pa-
pers. This would not have been possible without the generous contributions of
time and effort by Dan Boneh and Shai Halevi, and I am deeply grateful to them
for their work.

The PC, which consisted of 20 top researchers in our field, worked very hard
and I thank them for their dedication and effort. Special thanks are in order
to Allison Lewko, Thomas Holenstien, and Mohammad Mahmoody, who agreed
to serve as shepherds for certain accepted papers. I also thank all the exter-
nal reviewers (listed in the following pages) for providing thoughtful reviews of
submissions. For running the conference itself, I am very grateful to the Gen-
eral Chairs Masayuki Abe and Tatsuaki Okamoto, and all the members of the
local Organizing Committee for their hard work: Takeshi Chikazawa, Masami
Hagiya (Organizing Committee Chair), Noboru Kunihiro, Hirofumi Muratani,
Ryo Nishimaki, Miyako Ohkubo, Yuji Suga, Koutarou Suzuki, Keisuke Tanaka,
Shigenori Uchiyama, and Saho Uchida. I also wish to thank the two volunteers
who managed the conference website: Shinichiro Matsuo and Hirokazu Hiruma.
All of these individuals gave their time on a voluntary basis and their work was
essential to the organization of the conference.

Finally, I am indebted to Oded Goldreich, the Chair of the TCC Steering
Committee, and all the members of the TCC Steering Committee, Mihir Bellare,
Ivan D̊amgard, Shafi Goldwasser, Shai Halevi, Russell Impagliazzo, Ueli Maurer,
Silvio Micali, Moni Naor, and Tatsuaki Okamoto, for their advice and trust. I
am also grateful to previous TCC Chairs Tal Rabin, Shai Halevi, Ran Canetti,
Yuval Ishai, and Ronald Cramer for their generous advice.

January 2013 Amit Sahai
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On the (In)security of Fischlin’s Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Prabhanjan Ananth, Raghav Bhaskar, Vipul Goyal, and
Vanishree Rao

Signatures of Correct Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia



X Table of Contents

A Full Characterization of Functions that Imply Fair Coin Tossing
and Ramifications to Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Gilad Asharov, Yehuda Lindell, and Tal Rabin

Characterizing the Cryptographic Properties of Reactive 2-Party
Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

R. Amzi Jeffs and Mike Rosulek

Feasibility and Completeness of Cryptographic Tasks in the Quantum
World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and
Vassilis Zikas

Languages with Efficient Zero-Knowledge PCPs are in SZK . . . . . . . . . . . 297
Mohammad Mahmoody and David Xiao

Succinct Non-interactive Arguments via Linear Interactive Proofs . . . . . . 315
Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and
Rafail Ostrovsky

Unprovable Security of Perfect NIZK and Non-interactive Non-malleable
Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Rafael Pass

Secure Computation for Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Tal Malkin

Communication Locality in Secure Multi-party Computation:
How to Run Sublinear Algorithms in a Distributed Setting . . . . . . . . . . . . 356

Elette Boyle, Shafi Goldwasser, and Stefano Tessaro

Distributed Oblivious RAM for Secure Two-Party Computation . . . . . . . 377
Steve Lu and Rafail Ostrovsky

Black-Box Proof of Knowledge of Plaintext and Multiparty
Computation with Low Communication Overhead . . . . . . . . . . . . . . . . . . . . 397

Steven Myers, Mona Sergi, and abhi shelat

Testing the Lipschitz Property over Product Distributions with
Applications to Data Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and
Abhradeep Thakurta

Limits on the Usefulness of Random Oracles . . . . . . . . . . . . . . . . . . . . . . . . . 437
Iftach Haitner, Eran Omri, and Hila Zarosim

Analyzing Graphs with Node Differential Privacy . . . . . . . . . . . . . . . . . . . . 457
Shiva Prasad Kasiviswanathan, Kobbi Nissim,
Sofya Raskhodnikova, and Adam Smith



Table of Contents XI

Universally Composable Synchronous Computation . . . . . . . . . . . . . . . . . . . 477
Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas

Multi-Client Non-interactive Verifiable Computation . . . . . . . . . . . . . . . . . 499
Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid

On the Feasibility of Extending Oblivious Transfer . . . . . . . . . . . . . . . . . . . 519
Yehuda Lindell and Hila Zarosim

Computational Soundness of Coinductive Symbolic Security under
Active Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Mohammad Hajiabadi and Bruce M. Kapron

Revisiting Lower and Upper Bounds for Selective Decommitments . . . . . . 559
Rafail Ostrovsky, Vanishree Rao, Alessandra Scafuro, and
Ivan Visconti

On the Circular Security of Bit-Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Ron D. Rothblum

Cryptographic Hardness of Random Local Functions – Survey . . . . . . . . . 599
Benny Applebaum

On the Power of Correlated Randomness in Secure Computation . . . . . . . 600
Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard,
Claudio Orlandi, and Anat Paskin-Cherniavsky

Constant-Overhead Secure Computation of Boolean Circuits using
Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Ivan Damg̊ard and Sarah Zakarias

Implementing Resettable UC-Functionalities with Untrusted
Tamper-Proof Hardware-Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
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Overcoming Weak Expectations

Yevgeniy Dodis1 and Yu Yu2

1 New York University
dodis@cs.nyu.edu

2 Institute for Interdisciplinary Information Sciences,
Tsinghua University

yuyu@yuyu.hk

Abstract. Recently, there has been renewed interest in basing crypto-
graphic primitives on weak secrets, where the only information about
the secret is some non-trivial amount of (min-) entropy. From a formal
point of view, such results require to upper bound the expectation of
some function f(X), where X is a weak source in question. We show an
elementary inequality which essentially upper bounds such ‘weak expec-
tation’ by two terms, the first of which is independent of f , while the
second only depends on the ‘variance’ of f under uniform distribution.
Quite remarkably, as relatively simple corollaries of this elementary in-
equality, we obtain some ‘unexpected’ results, in several cases noticeably
simplifying/improving prior techniques for the same problem.

Examples include non-malleable extractors, leakage-resilient symmet-
ric encryption, alternative to the dense model theorem, seed-dependent
condensers and improved entropy loss for the leftover hash lemma.

1 Introduction

Formal cryptographic models take for granted the availability of perfect random-
ness. However, in reality we may only obtain ‘weak’ random sources that are far
from uniform but only guaranteed with high unpredictability (formalized with
min-entropy), such as biometric data [11,4], physical sources [3,2], secrets with
partial leakage, and group elements from Diffie-Hellman key exchange [18,20].
We refer to the former as ideal model and the latter as real model.

From a formal point of view, the standard (T, ε)-security (in the ideal model)
of a cryptographic application P essentially requires that for any adversary A
with resource1 T , the expectation of f(Um) is upper bounded by ε, where func-
tion f(r) denotes A’s advantage conditioned on secret key being r, and Um

denotes uniform distribution over {0, 1}m. In the real model, keys are sampled
from some non-uniform distribution R and thus the resulting security is the ex-
pected value of f(R), which we call ‘weak expectation’. We would hope that if
P is (T, ε)-secure in the ideal setting, then P is also (T ′, ε′) in the real setting
by replacing Um with R of sufficiently high min-entropy, where T ′ and ε′ are not
much worse than T and ε respectively.

1 We use the word “resource” to include all the efficiency measures we might care
about, such as running time, circuit size, number of oracle queries, etc.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 1–22, 2013.
c© International Association for Cryptologic Research 2013



2 Y. Dodis and Y. Yu

In this paper, we present an elementary inequality that upper bounds the weak
expectation of f(R) by two terms: the first term only depends on the entropy
deficiency (i.e. the difference between m = length(R) and the amount of entropy
it has), and the second is essentially the ‘variance’ of f under uniform distribution
Um. Quite surprisingly, some ‘unexpected’ results follow as simple corollaries
of this inequality, such as non-malleable extractors [14,10,7,21], leakage-resilient
symmetric encryptions [24], alternative to the dense model theorem [28,27,16,17],
seed-dependent condensers [12] and improved entropy loss for the Leftover Hash
Lemma (LHL) [1]. We provide a unified proof for these diversified problems and
in many cases significantly simply and/or improve known techniques for the
same problems.

Our Technique. Our main technique is heavily based on several tools intro-
duced by Barak et al. [1] in the context of improving the “entropy loss” of the
Leftover Hash Lemma [19]. This work concentrated on the setting of deriving
(or extracting) a cryptographic key R from a weak source X , using public ran-
domness S. The main observation of [1] in this context was the fact that, for a
certain class of so called “square-friendly” applications P , — an informal notion
later made more explicit by [12], and which we explain later — one can reduce
the minimal entropy requirement on X by “borrowing” the security from P .
The main insight of this work comes from “lifting” this important observation
one level higher. Namely, “square-friendly” applications have the property of
directly tolerating weak keys R. Informally, if P is “square-friendly” and (T, ε)-
secure with uniform key Um, then P is (T ′, ε′)-secure with any weak key R
having entropy deficiency (see above) d, where T ′ ∼ T and ε′ ∼ 2d · ε.2

Direct Applications. As mentioned above, this “obvious-in-retrospect” ob-
servation leads to several interesting (and sometimes unexpected!) consequences.
First, by considering simple applications, such as information-theoretic one-time
MACs [22,9], we immediately obtain results which used to be proven directly,
occasionally with elaborate analyses (essentially re-doing the elaborate analy-
ses for the uniform case). Second, for some applications, such as weak pseudo-
random functions and leakage-resilient symmetric-encryption, we obtain greatly
improved results as compared to state-of-the-art [24] (and, again, with much
simpler proofs). Third, we carefully design new “square-friendly” applications
P , generally not studied in ‘ideal’ (uniform-key) setting — either because of
their elementary analyses, or the lack of direct applications. However, by me-
chanically translating such ‘uninteresting’ applications P to the ‘real’ (weak-key)
setting, we obtain natural and much more ‘interesting’ applications P ′. More-
over, by ‘blindly’ applying our machinery, we get surprisingly non-trivial results
about the ‘real’ security of such applications P ′. For example, starting from a
(carefully crafted) variant of pairwise independent hash functions, we get the
definition of so called non-malleable extractors [14]! Using our machinery, we
obtain an elementary construction of such non-malleable extractors from 4-wise
independent hash functions, which beats a much more elaborate construction

2 Precisely, ε · 2d for unpredictability and
√
ε · 2d for indistinguishability applications.
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recently found by [10].3 Using a simpler P , — essentially a “one-wise” indepen-
dent hash function, — we also get a cute variant of the Leftover Hash Lemma.

Applications to Key Derivation. Finally, we apply our improved under-
standing of ‘real’ security of “square-friendly” applications to the setting of key
derivation, which was the original motivation of [1]. First, consider the case when
the application P is “square-friendly”. In this case, since P can directly tolerate
keys R with small entropy deficiency d, our key derivation function h only needs
to be a good condenser [25,26] instead of being an extractor. Namely, instead of
guaranteeing that R = h(X ;S) is nearly uniform (i.e., has 0 entropy deficiency),
we only require that R has small entropy deficiency. This observation was re-
cently made by [12] in a (somewhat advanced) “seed-dependent” setting for
key derivation, where the distribution of X could depend on the “seed” S used
to derive the final key R, and where non-trivial extraction is impossible [12,29].
However, we observe that the same observation is true even in a more traditional
“seed-independent” setting, where randomness extraction is possible (e.g., using
LHL). In particular, since universal hash functions are good condensers for a
wider range of parameters than extractors, we immediately get the same LHL
improvements as [1]. Although this does not directly lead to further improve-
ments, we believe our modular analysis better explains the results of [1], and also
elegantly unifies the seed-independent [1] and the seed-dependent [12] settings.
Indeed, the seed-dependent condenser from [12] is obtained from our construc-
tion by replacing a universal hash function by a collision-resistant hash function,
and (literally!) changing one line in the proof (see Lemma 6 vs. Lemma 8).

More interestingly, we also look at the question of deriving keys for all (possi-
bly “non-square-friendly”) applications P . As follows from our results on seed-
independent condensers (see Corollary 5), the question is the most challenging
when the length of the source X is also m.4 In this case, we use (appropri-
ately long) public randomness S and a length-doubling pseudorandom generator
(PRG) G on m-bit seed, to derive the following “square-friendly” key derivation
function for P : compute X ′ = G(X) and interpret the 2m-bit value X ′ as the
description of a pairwise independent hash function h from |S| to m bits; then
interpret S as the input to h; finally, set the final key R = h(S) = hX′(S).5

Interestingly, this method is not only useful for “non-square-friendly” applica-
tions, but even for “square-friendly” applications with security ε � εprg (where
εprg is the security of G against the same resources T as P ).

PRGs with Weak Seeds. However, the above result is especially interesting
when applied to PRGs themselves (i.e., P = G)! Namely, instead of using G(X)

3 The same final construction, with a direct proof, was independently discovered by
Li [21]. As we explain later, our approach might have some advantages.

4 Otherwise, one can apply a universal hash function to X with an m-bit output
without affecting the “effective” entropy of the source.

5 We mention that our result is similar in spirit to the works of [13,8], who showed
that public pairwise independent hash functions can save on the amount of secret
randomness in some applications.
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directly as a pseudorandom string, which is not secure with weak seeds,6 we
evaluate a ‘hash function’ hG(X) on a public (random) input S, after which it is
suddenly “safer” to start expanding the derived key R using G.

Prior to our work, the only alternative method of tolerating weak PRG
seeds came from the “dense model theorem” [28,27,16,17], which roughly states
that the 2m-bit output X ′ = G(X) of a (T, εprg)-secure PRG G is (T ′, ε′)-
computationally close to having the same entropy deficiency d � m as X (de-
spite being twice as long). This means, for example, that one can now apply an
m-bit extractor (e.g., LHL) h′ to X ′ to derive the final m-bit key R = h′(G(X)).
Unfortunately, a closer look shows that not only ε′ degrades by at least the (ex-
pected) factor 2d as compared to εprg, but also the time T ′ is much less than T :
the most recent variant due to [17] has T ′ � T 1/3, while previous versions [16,27]
had T ′ = T ·poly(ε). In contrast, by replacing any extractor h′ by a “special” ex-
tractor — a pairwise independent hash function h — and also swapping the roles
of the key and the input, we can maintain nearly the same resources T ′ ≈ T , but
at the cost of potentially7 increasing ε′ from roughly εprg ·2d+T−1/3 to

√
εprg · 2d.

We believe such a tradeoff is quite favorable for many natural settings. Addition-
ally, our approach is likely to use fewer public random bits S: log(1/εprg) bits vs.
the seed length for an extractor extracting a constant fraction of min-entropy.

2 Preliminaries

Notations and Definitions. We use s← S to denote sampling an element s
according to distribution S. The min-entropy of a random variable X is defined

as H∞(X)
def
= − log(maxx Pr[X = x]). We use Col(X) to denote the collision

probability of X , i.e., Col(X)
def
=
∑

x Pr[X = x]2 ≤ 2−H∞(X), and collision

entropy H2(X)
def
= − logCol(X) ≥ H∞(X). For c ∈ {2,∞}, we say that a

distribution X over {0, 1}m has entropy deficiency d (for a given entropy Hc) if

Hc(X) ≥ m− d. We also refer to the value D
def
= 2d as security deficiency of X

(the reason for the name will be clear from our results).
We denote with ΔC(X,Y ) the advantage of a circuit C in distinguishing the

random variables X,Y : ΔC(X,Y )
def
= | Pr[C(X) = 1] − Pr[C(Y ) = 1] |. The

statistical distance between two random variables X,Y , denoted by SD(X,Y ),
is defined by

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
C

ΔC(X,Y )

We write SD(X,Y |Z) (resp. ΔC(X,Y |Z)) as shorthand for SD((X,Z), (Y, Z))
(resp. ΔC((X,Z), (Y, Z))).

6 E.g., if 1st bit of source X is constant, and 1st bit of G(X) = 1st bit of X.
7 Our security is slightly worse only when T−2/3 � εprg ·2d, and is never worse by more
than T 1/6 factor irrespective of εprg and d, since εprg ·2d +T−1/3 ≥

√
εprg · 2d ·T−1/6.
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Abstract security games. We first define the general type of applications
where our technique applies. The security of an application P can be defined
via an interactive game between a probabilistic attacker A and a probabilistic
challenger C(r), where C is fixed by the definition of P , and where the particular
secret key r used by C is derived from Um in the ‘ideal’ setting, and from some
distribution R in the ‘real’ setting. The game can have an arbitrary structure,
but at the end C(r) should output a bit, with output 1 indicating that A ‘won’
the game and 0 otherwise.

Given a particular key r, we define the advantage fA(r) of A on r (against C
fixed by P ) as follows. For unpredictability games, fA(r) is the expected value
of C(r) taken over the internal coins of A and C, so that fA(r) ∈ [0; 1]; and
for indistinguishability games, fA(r) is the expectation of C(r) − 1/2, so that
fA(r) ∈ [−1/2; 1/2]. When A is clear from the context, we simply write f(r).

We will refer to |E(fA(Um))| as the advantage of A (in the ideal model).
Similarly, for c ∈ {2,∞}, we will refer to maxR |E(fA(R))|, taken over all R with
Hc(R) ≥ m− d, as the advantage of A in the (m− d)-realc model.

Definition 1 (Security). An application P is (T, ε)-secure (in the ideal model)
if the advantage of any T -bounded A is at most ε.

An application P is (T ′, ε′)-secure in the (m−d)-realc model if the advantage
of any T ′-bounded A in the (m− d)-realc model is at most ε′.

We note that a security result in the real2 model is more desirable than (and
implies) that in the real∞ model.

3 Overcoming Weak Expectations

Unpredictability applications. For unpredictability applications (with non-
negative f), the following inequality implies that the security degrades at most
by a factor of D = 2d compared with the ideal model (which is stated as
Corollary 1), where d is the entropy deficiency.

Lemma 1. For any (deterministic) real-valued function f : {0, 1}m → R+∪{0}
and any random variable R with H∞(R) ≥ m− d, we have

E[f(R)] ≤ 2d · E[f(Um)] (1)

Proof. E[f(R)] =
∑

r Pr[R = r] · f(r) ≤ 2d ·
∑

r
1
2m · f(r). �

Corollary 1. If an unpredictability application P is (T, ε)-secure in the ideal
model, then P is (T, 2d · ε)-secure in the (m− d)-real∞ model.

The above only applies to all “unpredictability” applications such as one-way
functions, MACs and digital signatures. In the full version [15] we give a simple
concrete example, by applying this technique to one-time (information-theoretic)
message authentication codes, and re-deriving the results of [22,9] in a simpler,
more modular manner.
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Indistinguishability applications. Unfortunately, Corollary 1 critically de-
pends on the non-negativity of f , and is generally false when f can be negative,
which happens for indistinguishability applications. In fact, for certain indistin-
guishability applications, such as one-time pad, pseudo-random- generators and
functions (PRGs and PRFs), there exists R with d = 1 such that E[f(Um)] is
negligible (or even zero!) but E[f(R)] = 1/2. For example, consider one-time
pad encryption e = x ⊕ r of the message x using a key r, which has perfect
security ε = 0 in the ideal model, when r ← Um. However, imagine an im-
perfect key R, whose first bit is 0 and the remaining bits are uniform. Clearly,
H∞(R) = m − 1, but one can perfectly distinguish the encryptions of any two
messages differing in the first bit, implying (m − 1)-real∞ security ε′ = 1/2.
Fortunately, below we give another inequality for general f , which will be useful
for other indistinguishability applications.

Lemma 2. For any (deterministic) real-valued function f : {0, 1}m → R and
any random variable R with H2(R) ≥ m− d, we have

| E[f(R)] | ≤
√
2d ·
√
E[f(Um)2] (2)

Proof. Denote p(r) = Pr[R = r], and also recall the Cauchy-Schwartz inequality
|
∑

aibi| ≤
√
(
∑

a2i ) · (
∑

b2i ). We have

| E[f(R)] | =
∣∣∣∣∣ ∑

r

p(r) · f(r)
∣∣∣∣∣ ≤
√
2m ·

∑
r

p(r)2 ·
√

1

2m

∑
r

f(r)2

=
√
2d · E[f(Um)2]

�

Lemma 2 upper bounds the (squared) weak expectation by the product of “se-
curity deficiency” D = 2d of R and E[f(Um)2]. As with unpredictability applica-
tions, the value D comes to play due to the entropy deficiency of R, independent
of f . Also, the second term E[f(Um)2] only depends on the uniform distribution
(and not on R). However, it no longer bounds the ideal model security E[f(Um)]
of our application in consideration, but rather the expected square of the at-
tacker’s advantage. This leads us to the notion of square security, which was
implicitly introduced by [1] and later made explicit by [12] in a more restricted
context of key derivation.

Definition 2 (Square Security). An application P is (T, σ)-square secure if
for any T -bounded adversary A we have E[f(Um)2] ≤ σ, where f(r) denotes A’s
advantage conditioned on key being r.

Applying this definition to Lemma 2, we get the following general result.

Corollary 2 (Square security implies real model security). If P is (T, σ)-

square secure, then P is (T,
√
2d · σ)-secure in the (m− d)-real2 model.
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What applications have square security? More precisely, for which appli-
cations P does a good bound on standard security ε also imply a good bound on
their square security? Let us call such applications square-friendly. We start with
a few simple observations. First, all (T, ε)-secure unpredictability applications P
are (T, ε)-square secure, since for non-negative f we have E[f(Um)2] ≤ E[f(Um)].

Hence, we immediately get
√
2d · ε-security in (m−d)-real2 model for such appli-

cations. Notice, this bound is weaker than the 2dε bound in Corollary 1, although
it applies wheneverH2(R) ≥ m−d (instead of only when H∞(R) ≥ m−d, which
is more restrictive). Still, we will find the seemingly weaker bound from Lemma 2
useful even for unpredictability applications, when we talk about key derivation
functions in Section 4. This will precisely use the fact that Renyi entropy is a
weaker restriction than min-entropy, making it easier to construct an appropriate
key derivation function.

Moving to indistinguishability applications, it is known that PRGs, PRFs
and one-time pads cannot have good square security (see [1]). Indeed, given our
earlier counter-example for the one-time pad, a different result would contradict
the bound in Corollary 2. To see this explicitly, consider a 1-bit one time pad
encryption e = x ⊕ r, where x, r, e ∈ {0, 1} are the message, the key and the
ciphertext, respectively. Consider also the attacker A who guesses that x = e.
When the key r = 0, A is right and f(0) = 1 − 1

2 = 1
2 . Similarly, when the key

r = 1, A is wrong and f(1) = 0 − 1
2 = − 1

2 . This gives perfect ε = E[f(U1)] = 0,
but σ = E[f(U1)

2] = 1
4 .

Fortunately, there are still many interesting indistinguishability applications
which are square-friendly, such as stateless chosen plaintext attack (CPA) secure
encryption and weak pseudo-random functions (weak PRFs), as shown by [1].
These examples are shown using an elegant “double run” technique from [1]. In
the following we give a slightly cleaner exposition of this technique, by decom-
posing (until Section 4) the core of this technique from the specifics of the key
derivation setting. We also mention the “multi-run” extension of this technique,
and then derive several new, somewhat unexpected examples, using several vari-
ants of q-wise independent hash functions.

3.1 Square-Friendly Applications via the Double-Run Trick

To make the exposition more intuitive, we start with a nice example of CPA-
secure symmetric-key encryption schemes from [1], and later abstract and gen-
eralize the resulting technique.

Illustrating Example. Recall, for this application P the attacker “resources”
T = (t, q), where t is the running time of A and q is the total number of encryp-
tion queries made by A. More specifically, A is allowed to (adaptively) ask the
challenger C(r) to produce (randomly generated) encryptions of (q−1) arbitrary
messages s1, . . . , sq−1 under the secret key r, and (at any moment) one special
“challenge” query (s∗0, s

∗
1). In response to this latter query, C(r) picks a random

bit b ∈ {0, 1} and returns the encryption of s∗b . Eventually, A outputs a bit b′ and
‘wins’ if b′ = b. As with other indistinguishability applications, the advantage
f(r) of A on key r is Pr[b = b′]− 1/2.
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Lemma 3 ([1]). Assume P is a symmetric-key encryption scheme which is
((2t, 2q), 2ε)-CPA-secure (in the ideal model). Then P is ((t, q), ε)-square secure.
Hence, standard CPA-security implies essentially the same level “CPA-square-
security” (formally, with all parameters halved).

Proof. It suffices to show that for any r and any attacker A with running time
t and q queries, there exists another attacker B with running time 2t and 2q
queries, such that B’s advantage on r is twice the squared advantage of A on r.

The strategy of B is to initialize two independent copies of A (with fresh
randomness) — call them A1 and A2 — and run them one after another as
follows. First, it first simulates a run of A1 against the ‘imaginary’ challenger
C1(r), using q regular encryption queries to its own ‘real’ challenger C(r), to
simulate both (q−1) regular and 1 challenge queries of A1 to C1(r). In particular,
the knowledge of the first challenge bit b1 (which B chose himself) allows B to
know whether or not A1 succeeded in this simulated run. After the first simulated
run is over, B now runs a second fresh copy A2 of A “for real”, now using A2’s
challenge query (s∗0, s

∗
1) to C2 as its own challenge query with C. This uses a

total of 2q queries for B to complete both runs. Finally, if A1 wins the game in
its first run (against simulated C1), then B returns A2’s answer in the second
run unmodified; otherwise, B reverses the answer of A2, interpreting the mistake
of A1 in the first run as an indication of a likely mistake of A2 in the second run
as well. In particular, irrespective of the sign of A’s advantage ε below, we have

Pr[B wins] = Pr[A wins twice] + Pr[A loses twice]

=

(
1

2
± ε

)2

+

(
1

2
∓ ε

)2

=
1

2
+ 2ε2

�

The following theorem immediately follows from Corollary 2 and Lemma 3.

Theorem 1. Assume P is a ((2t, 2q), 2ε)-CPA secure symmetric-key encryption

scheme in the ideal model. Then P is also ((t, q),
√
2d · ε)-secure in the (m− d)-

real2 model.

Double-run trick. We now generalize this technique to any indistinguishabil-
ity application P which we call (T ′, T, γ)-simulatable, slightly generalizing (and,
in our opinion, simplifying) the related notion introduced by [1]. For syntactic
convenience (and without loss of generality), we assume that in the security
game for P the challenger C(r) chooses a random bit b, and the attacker A wins
by outputting a bit b′ = b without violating some failure predicate F , where F
is efficiently checkable by both A and C. For example, for the CPA encryption
example from above, this failure predicate F is empty. In contrast, for the re-
lated notion of chosen ciphertext (CCA) security, F will be true if A asked C
to decrypt the actual challenge ciphertext. Notice, since any A can efficiently
check F , we could have assumed that no such A will violate F (we call such A
legal). However, we will find our small convention slightly more convenient in
the future, including the following definition.



Overcoming Weak Expectations 9

Definition 3. We say that an indistinguishability application P is (T ′, T, γ)-
simulatable, if for any secret key r and any legal, T -bounded attacker A, there
exists a (possibly illegal!) T ′-bounded attacker B (for some T ′ ≥ T ) such that:

(1) The execution between B and ‘real’ C(r) defines two independent executions
between a copy Ai of A and a ‘simulated’ challenger Ci(r), for i = 1, 2.
In particular, except reusing the same r, A1,C1(r),A2,C2(r) use fresh and
independent randomness, including independent challenge bits b1 and b2.

(2) The challenge b used by ‘real’ C(r) is equal to the challenge b2 used by ’sim-
ulated’ C2.

(3) Before making its guess b′ of the challenge bit b, B learns the values b1, b
′
1

and b′2.
(4) The probability of B violating the failure predicate F is at most γ.

For example, the proof of Theorem 1 showed that any CPA-secure encryption
is (T ′ = (2t, 2q), T = (t, q), γ = 0)-simulatable, since B indeed simulated two
runs of A satisfying conditions (1)-(4) above. In particular, a straightforward
abstraction of our proof shows the following:

Lemma 4. Assume P is a (T ′, ε)-secure and (T ′, T, γ)-simulatable, then P is
(T, σ)-square secure, where σ ≤ (ε + γ)/2. In particular, by Corollary 2 P is
(T,
√
2d−1(ε+ γ))-secure in the (m− d)-real2 model.

Multi-Run Extension. In the double-run game we use a test-run to estimate
the sign of the advantage (whether it is positive or not), which advises attacker
B whether or not to reverse A’s answer in the real run. We can generalize this
to a multi-run setting: the attacker B test-runs A for some odd (2i + 1) times,
and takes a majority vote before the actual run, which gives B more accurate
estimate on the sign of the advantage of A. Interestingly, with a different moti-
vation in mind, this precise question was studied by Brakerski and Goldreich [5].
Translated to our vocabulary, to gain a factor α > 1 in the square security (i.e.,
to show that σ ≤ ε/α), one needs to run the original distinguisher A for Θ(α2)

times. Going back to Corollary 2, to get ‘real’ security ε′ = 1
α ·
√
2d · ε, one needs

to run A for O(α4) times, therefore losing this factor in the allowed resources T .
Although theoretically interesting, it appears that the best practical tradeoff is
already achieved using the “double-run” trick itself, a conclusion shared by [5].

3.2 Applications to Weak Pseudorandom Functions and Extractors

Recall, weak PRFs [23] are close relatives of CPA-secure symmetric encryption,
and relax the notion of (regular) PRFs. For future applications, we give a precise
definition below.

Definition 4 (((t, q), δ))-weak PRFs). A family H of functions {hr : {0, 1}n
→ {0, 1}l | r ∈ {0, 1}m} is ((t, q), δ)-secure weak PRF, if for any t-bounded
attacker A, and random s, s1, . . . , sq−1 ← Un and r ← Um, we have

ΔA( hr(s), Ul | s , s1 , hr(s1), · · · , sq−1, hr(sq−1) ) ≤ δ
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Notice, it is impossible to achieve δ = 0 in this definition for q > 1, as there
is always a small chance that s ∈ {s1, . . . , sq−1}. Also, just like CPA-secure
encryption, weak PRFs are easily seen to be ((2t, 2q), (t, q), 0)-simulatable, since
the ‘outer’ attacker B can choose its own bit b1, and set the challenge value of
the first run to be hr(sq) if b1 = 0, and uniform Ul otherwise. By Lemma 4, this
means that

Theorem 2. Assume P is a ((2t, 2q), δ)-secure weak PRF in the ideal model.

Then P is ((t, q), δ/2)-square secure, as well as ((t, q),
√
2d−1 · δ)-secure in the

(m− d)-real2 model.

Moreover, by applying the multi-run extension, if P is a ((O(α4 · t), O(α4 ·q)), δ)-
secure, then P is also ((t, q), 1

α ·
√
2d · δ)-secure in the (m− d)-real2 model. This

results nicely improves (and simplifies!) a result of Pietrzak [24], who achieved
security δ′ ∼ δ ·2d, but at a price of reducing the allowed running time t′ and the
number of queries q′ by a huge factor poly(1/δ′) = poly(2d, 1/δ). A comparable
(actually, slightly better) result follows from our multi-run derivation above, by

taking a very large value of α ∼ 1/
√
2dδ. Of course, such large α makes the

resulting values t and q really low compared to the original t′ and q′. Indeed, we
believe the region of ‘small’ α, and especially the result of Theorem 2, is much
more relevant for practical use.

While the security of weak PRFs with weak keys was already studied by [24,1]
with large q in mind, we obtain some expected results by concentrating on the
most basic case of q = 1.

Application to Extractors. By looking at the k-real2 security (where k =
m − d) of weak PRFs for q = 1 and t = ∞, we essentially obtain the notion of
extractors for Renyi entropy!

Definition 5 (Extractors). We say that an efficient function Ext : {0, 1}m ×
{0, 1}n → {0, 1}l is a strong (k, ε)-extractor, if for all R (over {0, 1}m) with
H2(R) ≥ k and for random S (uniform over {0, 1}n), we get

SD( Ext(R;S) , Ul | S) ≤ ε

where coins S ← Un is the random seed of Ext. The value L = k− l is called the
entropy loss of Ext.

To apply Theorem 2 (with q = 1, t = ∞ and k = m − d) and obtain such
extractors, all that remains is to build an ((∞, 2), δ)-secure weak PRFs for a
low value of δ, which is essentially a pairwise independent hash function on two
random inputs:

SD( hr(s), Ul | s, s′, hr(s
′) ) ≤ δ (3)

where r ← Um and s, s′ ← Un. For example, using any traditional pairwise
independent hash function, which has the property that

Pr
r←Um

[hr(s) = a ∧ hr(s
′) = a′] = 2−2l (4)
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for any s �= s′ and any a, a′ ∈ {0, 1}l, we achieve that the only case when one
can distinguish hr(s) and hr(s

′) is when s = s′, which happens with probability
2−n. In other words, pairwise independent hashing gives δ = 2−n, which, in turn,
gives (by Theorem 2, with q = 1, t =∞, k = m− d and δ = 2−n):

Corollary 3 (Alternative LHL). If H def
= {hr : {0, 1}n → {0, 1}l | r ∈

{0, 1}m} is pairwise independent (i.e., satisfies Equation (4)), then Ext(r; s)
def
=

hr(s) is a strong (k,
√
2m−k−n)-extractor.

To compare this result with the standard LHL [19], the optimal key length m for
a family of pairwise independent hash functions from n to l bits (where l ≤ m/2)
is known to be m = n + l (e.g., using Toeplitz matrices). Plugging this to our

bound in ε above, we get the same bound ε =
√
2l−k = 2−L/2 as the leftover

hash lemma, where in both cases l is output size and k is the entropy of the
source. More detailed comparison can be found in the full version [15].

Computational Pairwise Independence. Continuing our exploration of
q = 1 (whose square security follows from regular security of q = 2), information-
theoretic pairwise independence requires that the length m of the key r is at
least twice the length l of the function output hr(s). Looking ahead at the key
derivation setting in Section 4.3, m will be equal to the security parameter, and
we will need to achieve output length l ≥ m, which is impossible information-
theoretically. Instead, we observe that the result can be easily achieved com-
putationally, by applying a length-doubling pseudorandom generator (PRG)
G : {0, 1}m → {0, 1}2m first. Namely, a weak computationally pairwise inde-
pendent hash function with an m-bit key and output can be obtained by first
expanding the key r to r′ = G(r), and then using r′ as the 2m-bit key of (no
longer impossible) pairwise independent hash function hr′ with an m-bit output.
We postpone further exploration of this computationally ((t, 2), δ)-secure weak
PRF, and its application to key derivation, till Section 4.3.

3.3 Application to Non-malleable Extractors

Having obtained randomness extractors for q = 1, we now continue our explo-
ration for q = 2 (and larger values). First, however, we strengthen the security
experiment for weak PRFs in order to obtain much stronger results. Indeed,
while the “double-run” trick seems to require that the challenge input s is ran-
domly chosen,8 there seems to be no reason not to allow the attacker A to choose
the input values s1, . . . , sq−1, as long as all of them are different from the actual
challenge s. In fact, we will even allow A to select s1, . . . , sq−1 based on the
challenge input s.9

The resulting notion, which we (for simplicity) only state for the information-
theoretic case of t = ∞, is given below. Here the phrase that “s1 . . . sn can be

8 Otherwise, we arrive at the notion of of PRFs, which we know are not square-friendly.
9 As mentioned later, we could even allow A to see the challenge hr(s)/Ul and s before
selecting s1, . . . , sq−1, although we do not formally pursue this direction.
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arbitrarily correlated to s” means that the unbounded attacker A (implicit in
the definition below) chooses s1 . . . sq−1 as a function of s.

Definition 6 (weak (q, δ)-wise independence). A family H of functions
{hr : {0, 1}n → {0, 1}l | r ∈ {0, 1}m} is weakly (q, δ)-wise independent, if
for r←Um, s ← Un, and for s1, · · · , sq−1 ∈ {0, 1}n that are distinct from and
arbitrarily correlated to s, we have

SD( hr(s), Ul | s, hr(s1), · · · , hr(sq−1) ) ≤ δ

The failure event F happens when one of the points si = s.

Notice that, unlike weak with PRFs, here ideal security δ = 0 is possible, since we
explicitly require that s �∈ {s1 . . . sq−1}. In fact, a (perfectly) q-wise independent
hash function (where the analog of Equation (4) holds for larger q) is also weakly
(q, 0)-wise independent.

Also observe that we can naturally view the above definition as a game be-
tween a challenger C and the attacker A, where (q− 1) measures the “resources”
of A (distinct from s points where he learns the true value of hr), and δ is the
advantage of distinguishing hr(s) from random. In particular, we can naturally
define the (q, σq)-square security of H (with random key r ← Um) and then
use Corollary 2 to bound the security of H in the (m − d)-real2 model, when
using a weak key R with H2(R) ≥ m − d. In fact, we can successfully apply
the double-run trick above to show that H is (2q, q, γ)-simulatable, where, for
the first time we have a non-zero failure probability γ = q/2n. Indeed, to sim-
ulate the first virtual run of A, B simply chooses its own random point s and
asks its value hr(s). The subtlety comes from the fact that both s and the the
(q − 1)-correlated values s1 . . . sq−1 might accidentally collide with the second
(fortunately) random challenge s′, making the resulting ‘outer’ attacker B illegal.
Luckily, the probability that a random s′ collides with any of these q values is
at most γ ≤ q/2n, indeed.

Theorem 3. If function family H is weakly (2q, δ)-wise independent, then H is
(q, (δ + q/2n)/2)-square secure, as well as weakly (q, ε)-wise independent in the

(m− d)-real2 model, where ε =
√
(δ + q

2n ) · 2d−1.

Non-malleable Extractors. Next, we consider the case of q = 2, where
the notion of (2, ε)-wise independence in the k = (m− d)-real2 model becomes a
non-malleable extractor [14] (for Renyi entropy; the case q = 1 collapses to the
setting of weak PRF considered in the previous section).

Definition 7 (Non-Malleable Extractors). We say that an efficient func-
tion nmExt : {0, 1}m × {0, 1}n → {0, 1}l is a (k, ε)-non-malleable extractor, if
for all R (over {0, 1}m) with H2(R) ≥ k, for random S (uniform over {0, 1}n),
and for all functions g : {0, 1}n → {0, 1}n, s.t. g(s) �= s for all s, we get

SD( nmExt(R;S) , Ul | S, nmExt(R; g(S)) ) ≤ ε
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Applying Theorem 3 to (perfectly) 4-wise independent hash functions (i.e., 2q =
4, δ = 0, k = m− d), we get:

Corollary 4 (Non-Malleable Extractors). If H def
= {hr : {0, 1}n → {0, 1}l |

r ∈ {0, 1}m} is 4-wise independent, then nmExt(r; s)
def
= hr(s) is a (k,

√
2m−k−n)-

non-malleable extractor.

For a simple instantiation, let H be the following (optimal) 4-wise independent
hash function with known parameters n = m/2 and l = m/4 (using BCH codes;
see [21]). The key r ∈ {0, 1}m is viewed as a tuple of 4 elements (r1, r2, r3, r4) in
GF [2m/4] = GF [2l], and a seed s ∈ {0, 1}n\0n is viewed as a non-zero point in
GF [2n]. Then, the m-bit value of (s‖s3) is viewed as 4 elements (s1, s2, s3, s4)
in GF [2l], and the l-bit output of the function is set to hr(s) = r1 ·s1+. . .+r4 ·s4.
Using Corollary 4, this simple function is a (k,

√
2m/2−k)-non-malleable extrac-

tor with an output of size l = m/4. Quite surprisingly, this noticeably improves
a much more complicated initial construction of non-malleable extractors of [10].
That result could only extract l = k/2−m/4−Ω(logm)− log (1/ε)� m/4 bits,
and relied on an unproved conjecture in number theory. In particular, even for
one-bit output, it achieved slightly worse security ε′ = O(poly(n)) ·

√
2m/2−k.

As mentioned earlier, the same final construction was independently discov-
ered by Li [21] with a different, more direct proof. We believe that our modular
approach might have some advantages (beyond simplicity). For example, in ad-
dition to generalizing to larger values of q (an observation also made by Li [21]),
it appears that our approach seamlessly tolerates more elaborate variants of non-
malleable extractors, such as when the points s1, . . . , sq−1 could also depend on
the challenge hr(Um)/Ul. It is not immediately clear if the same easily holds for
the proof of [21].

3.4 Side Information

So far we presented our results assuming Hc(R) ≥ m − d from the perspec-
tive of our attacker A. In some settings, such as the key derivation setting
in Section 4 below, R itself is derived using some procedure, at the end of
which the attacker A gets some side information S about R. To deal with
this natural generalization, we define average-case (aka conditional) collision

entropy H2(R|S)
def
= − log

(
Es←S

[ ∑
r Pr[R = r|S = s]2

] )
and average-case

min-entropy H∞(R|S) def
= − log ( Es←S [ maxr Pr[R = r|S = s] ] ), which then

allows one to define the average-case (m − d)-realc model, after which one can
easily generalize our basic Lemma 1 and Lemma 2 to the average-case setting.
We defer these (rather straightforward) details to the full version [15], here only
stating the required generalization of Lemma 1 and Lemma 2.

Lemma 5. For any real-valued function f(r, s) and any random variables (R,S),
where |R| = m:
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(a) If H∞(R | S) ≥ m− d and f ≥ 0, then E[f(R,S)] ≤ 2d ·maxs E[f(Um, s)].
(b) If H2(R | S) ≥ m− d, then

|E[f(R,S)]| ≤
√
2d · E[f(Um, S)2] ≤

√
2d ·maxs E[f(Um, s)2].

4 Key Derivation Functions

So far we studied the security of various applications when their m-bit secret key
is weak (i.e., has some entropy deficiency d). In many situations, one is given a
source of randomness X of some, possibly different, length n and having some
entropy k, and we need to first map it to the m-bit key R by means of some
key derivation function (KDF) h : {0, 1}n → {0, 1}m. As we will see, the source
entropy k and the output length m play the most important role in this scenario,
which leads to the following definition.

Definition 8. We define (k,m)-realc model (for c ∈ {2,∞}) as the key deriva-
tion setting, where a given KDF h with range {0, 1}m is applied to any source
X with Hc(X) ≥ k, to get a secret key R = h(X) (for some application in
question).

As it turns out, in this level of generality deterministic key derivation is (essen-
tially)10 impossible for all sources of entropy k (see [12] for related discussion),
so we will assume (and critically capitalize on) the existence of public random-
ness S. Depending on context, we will view such S either as a seed for h(X ;S),
or as the description of h itself.

Having clarified the setting, we now turn to the question of designing such
KDFs h for a given application P . First, when the source entropy k ≥ m +
2 log (1/ε), where ε is the desired security level for P , we can apply a good
strong randomness extractor (e.g., by using LHL) to derive a key R which is
(statistically) ε-close to Um (even conditioned on the seed S). In practice, how-
ever, many sources do not have this much entropy, so we will consider the more
challenging (and, often, more realistic) case when k is (noticeably) less than
m+2 log (1/ε). We will divide our study intro three complementary approaches.

First, in Section 4.1 we will leverage the rich body results we obtained in
Section 3 for dealing with “square-friendly” applications, and show that ran-
domness condensers (instead of more demanding extractors) are precisely the
right primitives to obtain improved key derivation results for all square-friendly
applications. This will lead to the improved variant of LHL discovered by Barak
et al. [1], but in a more modular and, arguably, intuitive manner. Interestingly,
the parameters of standard extractors (i.e., standard LHL) will also “pop-up”
to cover all (even non-square-friendly) applications when k ≥ m+ 2 log (1/ε).

Second, in Section 4.2 we turn to a more challenging seed-dependent setting,
considered by Dodis et al. [12], where the distribution on the source X could de-
pend on the public seed S. This more or less follows the presentation of [12], and
is included in this work mainly for completeness and modularity of exposition.

10 Except maybe in the model of uniform adversaries, not considered here.
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Finally, while the results of the previous subsections were interesting mainly
from the perspective of the presentation, in Section 4.3 we consider the (“seed-
independent”) setting where the results of Section 4.1 lead to poor parameters.
Namely, when the application P is either non-square-friendly, or has poor exact
security ε to withstand the multiplicative 2d loss incurred by our prior tech-
niques. This will be done by capitalizing on our setting of public randomness to
design a square-friendly key derivation function h. This has the advantage that
the security of this key derivation step only needs to be analyzed with uniform
X (i.e., in the ideal model), and our prior results will immediately imply the
security of h in the real model. Moreover, instead of using the security of our
final application P (which, as we said, leads to poor parameters), we will view
the process of key derivation as a new application P ′ of its own! In particular, if
the resulting key R = h(X) will be pseudorandom, we can use it for any ‘outer’
P , irrespective of P ’s security or ”square-friendliness”.

We notice that a less optimized variant of this idea was already proposed
by [1], who noticed that a weak PRF hX— with public randomness S viewed as
the input to hX — is precisely the square-friendly primitive we are looking for.
In this work we take this observation one step further, by capitalizing on the fact
that h only needs to be secure for two queries in the ideal model (and, hence,
one query in the real model). This leads to a simple (computationally-secure)
construction of such a KDF h using length-doubling PRGs, already mentioned
at the end of Section 3.2. As an unexpected consequence, also mentioned in the
Introduction, our new KDF will give us an interesting (and often more favorable)
alternative to the dense model theorem [28,27,16,17].

4.1 Condensers and Improved Leftover Hash Lemma

Recall, in the (k,m)-realc model we have an n-bit source X having Hc(X) ≥
k, and we wish to derive an m-bit key R from X . Moreover, the results on
Section 3 — in particular Corollary 1 (for c = ∞) and Corollary 2 (for c = 2)
— show that all we need from our KDF h is to ensure that Hc(R) ≥ m− d to
ensure security degradation of the order 2d. Remembering the fact that our key
derivation has a public seed S, which means that R should have entropy even
given S. Fortunately, by the results of Section 3.4 all our results in Section 3
hold with respect to the side information S. Thus, we naturally arrive at the
following definition.

Definition 9 (Condensers). Let c ∈ {2,∞}. We say that an efficient function
Cond : {0, 1}n×{0, 1}v → {0, 1}m is a ( kn →

m−d
m )c-condenser if for Hc(X) ≥ k

and uniformly random S we have Hc( Cond(X ;S) | S ) ≥ m− d.

Both H∞- and H2- condensers are useful in cryptography. The former connects
well with Lemma 1 (formally, its extension Lemma 5(a)) and Corollary 1, and
the latter is more in line with Lemma 2 (formally, its extension Lemma 5(b))
and Corollary 2. In the sequel, though, we will only use H2 (and let c = 2
hereafter) since it seems to give stronger final bounds (even for unpredictability
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applications!), and applies to more cases (e.g. square-friendly indistinguishability
applications). See [12] for more discussion.

We now recall the notion of universal hashing [6] and explicitly prove a well-
known folklore11 that universal hashing gives very good randomness condensers.

Definition 10 (Universal Hashing). A family of functions G def
= {gs : {0, 1}n

→ {0, 1}m | s ∈ {0, 1}v} is universal, if for any distinct x1, x2 ∈ {0, 1}n we
have

Pr
s←Uv

[gs(x1) = gs(x2)] = 2−m

Lemma 6. Universal hash function family G def
= {gs : {0, 1}n → {0, 1}m | s ∈

{0, 1}v} defines a ( kn → m−d
m )2-condenser Cond(x; s)

def
= gs(x), where 2d = 1 +

2m−k.

Proof. We directly analyze the collision probability by estimating the probability
that two independent samples X1 and X2 of X collide under gS . The latter is
done by conditioning on whether X1 and X2 collide among themselves, and using
the universality of G to tackle the case of no collision:

Pr[gS(X1) = gS(X2)] ≤ Pr[X1 = X2] + Pr[ gS(X1) = gS(X2) ∧ X1 �=X2]

≤ 2−k + 2−m = 2−m · (2m−k + 1) = 2d−m

Instead of composing this result with Lemma 2/Lemma 5(b), we use a slightly
different version of these lemmas (whose proof is very similar as well, and is
omitted) leading to improved final results.

Lemma 7 ([1]). For any (deterministic) real-valued function f : {0, 1}m → R

and any random variable R with H2(R) ≥ m− d, we have

| E[f(R)]− E[f(Um)] | ≤
√
2d − 1 ·

√
E[f(Um)2] (5)

More generally, when side information S is present, and H2(R | S) ≥ m−d, we
have:

| E[f(R,S)]− E[f(Um, S)] | ≤
√
2d − 1 ·

√
E[f(Um, S)2] (6)

Corollary 5 (Using Universal Hashing as KDF). If P is (T, ε)-secure and
(T, σ)-square secure (in the ideal model), then using R = gs(X) makes P (T, ε′)-

secure in the (k,m)-real2 model, where ε′ ≤ ε+
√
σ·2m−k.

Reduced entropy loss for leftover hash lemma. Recalling the notion

of entropy loss L
def
= k −m, used in the earlier study of extractors, the bound

of Corollary 5 can be rewritten as ε′ ≤ ε +
√
σ · 2−L. In particular, since any

application has square-security σ ≤ 1, we get ε′ ≤ ε +
√
2−L. This implicitly

recovers the traditional application of the LHL, which argues that entropy loss

11 This argument is usually hidden inside the proof of the standard LHL, but here we
find it worthy on its own.
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L ≥ 2 log (1/ε) is enough to ensure comparable security ε′ ≤ 2ε for any appli-
cation P . More interestingly, we saw in Section 3 that many “square-friendly”
applications, including all unpredictability applications and many indistinguisha-
bility applications, achieve σ ≈ ε, in which case we get a bound ε′ ≤ ε+

√
ε·2−L.

Thus, to achieve ε′ ≈ ε, we only need to set L = log (1/ε) for such applications,
saving log (1/ε) in the entropy requirement on X . More surprisingly, the result-
ing bound is meaningful even for negative L, in which case we are extracting
more bits than the entropy k we have.

Finally, one can interpret Corollary 5 as the indication that the most chal-
lenging setting for key derivation occurs when the source X has length n = m,
a result we will use in Section 4.3. Indeed, when n = m, the value m − k is
simply the entropy deficiency d of our source X . In particular, applying any of
the results in Section 3 directly to X (without doing the key derivation) would
incur a factor 2d = 2m−k loss in security. Using Corollary 5, we see that by ap-
plying an m-bit universal hash to any n-bit source X , we get the same security
degradation 2m−k as if the derived m-bit key R had the same entropy k as the
original n-bit source X !

4.2 Seed-Dependent Key Derivation

We now generalize the notion of a condenser to the seed-dependent setting,
where the adversarial sampler A can depend on the seed S but is computation-
ally bounded. This challenging setting was considered by [29] in the context of
seed-dependent extractors, where the authors made a pessimistic conclusion that
the complexity of the seed-dependent extractor must be larger than that of the
sampler A, making this notion not very useful for key derivation in practical ap-
plications. In contrast, we follow the result work of [12] who showed that (strong
enough) collision-resistant hash functions (CRHFs) must be seed-dependent con-
densers, and thus can be used as KDFs for all square secure applications, despite
having much smaller complexity than the complexity of the sampler A. This par-
tially explains the use of CRHFs as KDFs in practical applications.

Definition 11 (Seed-Dependent Condensers). An efficient function Cond:
{0, 1}n × {0, 1}v → {0, 1}m is a ( kn →

m−d
m , t)2-seed-dependent condenser if for

all probabilistic adversaries A of size t who take a random seed s ← Uv and
output (using more coins) a sample X ← A(s) of entropy H2(X |S) ≥ k, we
have H2( Cond(X ;S) | S ) ≥ m− d.

Definition 12 (CRHF). A family of hash functions G def
= {gs : {0, 1}n →

{0, 1}m | s ∈ {0, 1}v} is (t, δ)-collision-resistant if for any (non-uniform)
attacker B of size t, we have

Pr[gs(x1) = gs(x2) ∧ x1 �= x2] ≤ δ

where s← Uv and (x1, x2) ← B(s).
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Lemma 8 (CRHFs are seed-dependent condensers). A family of (2t,
D(t)
2m )-collision-resistant hash functions G def

= {gs : {0, 1}n → {0, 1}m | s ∈
{0, 1}v} defines a seed-dependent ( kn → m−d

m , t)2-condenser Cond(x; s) = gs(x),
where 2d = 2m−k +D(t).

Proof. We estimate the collision probability of A(S) given S, but letting A(S)
sample X1, X2 ← A(S), and bounding the probability of collision as follows:

Pr[gS(X1) = gS(X2)] ≤ Pr[X1 = X2] + Pr[ gS(X1) = gS(X2) ∧ X1 �=X2 ]

≤ 2−k +D(t)·2−m = 2−m · (2m−k +D(t)) = 2d−m

where Pr[ gS(X1) = gS(X2) ∧ X1 �=X2 ] ≤ D(t)/2m, since otherwise we can
define an efficient collision-finding adversary B(S), who simply runs the sampler
A(S) twice to get the collision (X1, X2).

In the above, the entropy deficiency d is essentially the logarithm ofD(t), which is
a function on the sampler’s complexity t. We note D(t) = Ω(t2) due to birthday
attacks, and this bound can be achieved in the random oracle model. In general,
it is reasonable to assume D(t) = poly(t) for strong enough CRHFs. Then, using
the definition of condensers and Corollary 2, we get the following surprising
result, which partially explains the prevalent use of CRHFs (which do not appear
to have any extraction properties based on their definition) for key derivation:

Corollary 6 (Using CRHFs as KDFs). If P is (T, σ)-square secure, {gs} is

a family of (2t, poly(t)
2m )-CRHFs, and X is a source produced by a sampler A(s)

of complexity at most t and having H2(X |S) ≥ k ≥ m − O(log t), then using
R = gs(X) makes P (T, ε′)-secure, where ε′ ≤ O(

√
σ·poly(t)).

From an asymptotic point of view, for square-friendly applications (e.g. CPA-
secure encryptions, weak PRFs, unpredictability primitives) with negligible ideal
ε (and hence negligible σ ≈ ε), and all source samplers running in polynomial
time t (all in the “security parameter”), we get negligible security
ε′=O(

√
ε·poly(t)) in the real model.

4.3 Generic, Square-Friendly Key Derivation

Finally, we return to the “seed-independent” setting and turn to the ques-
tion of generic key derivation for all applications P , by viewing the process
of key derivation with public randomness as an application in itself! Indeed,
we can imagine a game between the challenger C(x) and an attacker A, where
C(x) sends the public randomness s in the first round, and then challenges
A to distinguish the value r = h(x; s) from uniform. In fact, this is nothing
more than the weak PRF game for q = 1 considered in Section 3.2,12 except
we (confusingly) “renamed” our secret r by x, and the derived key hr(s) by

12 Alternatively, one can view this game as a computational extractor, where the ex-
tracted string r is only required to be pseudorandom.
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r = h(x; s) (the input s kept its letter)! In particular, we saw that the weak
PRFs are square-friendly, which means that all we need to do (not counting
letter translation) in order to apply Theorem 2 is to design a “good enough”
((t, 2), δ)-secure weak PRF in the ideal model.

To do so, let us examine the parameters we need. First, as explained at the end
of Section 4.1, we will assume that our source length n = m (since we can always
apply Corollary 5 to more or less reduce to this case). Thus, we need a ((t, 2), δ)-
secure weak PRF where both the key (now called x) and the output (now called
r) are m-bit long. As explained at the end of Section 3.2, we cannot achieve
this result information-theoretically. Instead, we return to the “computational
pairwise independent” construction sketched at the end of Section 3.2, starting
with a formal definition of a PRG.

Definition 13 (PRG). We say that a function G : {0, 1}m → {0, 1}2m is a
(2t, εprg)-secure PRG if for any 2t-bounded attacker A, ΔA(G(Um), U2m) ≤ εprg.

We now compose such a PRG G with any pairwise independent hash function
(see Equation (4)) hy : {0, 1}p → {0, 1}m, where key length |y| = 2m (we will
set the input length p ≤ m shortly). For example, viewing y = (a, b), where
a, b ∈ GF [2m] and s ∈ {0, 1}p ⊆ GF [2m], we could set ha,b(s) = a · s+ b. Recall,
as discussed in Section 3.2, the resulting family H is clearly a ((∞, 2), 2−p)-
secure weak PRF, except its key y is too long (2m bits instead of m). Therefore,
we define the composed function h′x : {0, 1}p → {0, 1}m, with key x ∈ {0, 1}m,
by h′x(s) = hG(x)(s). A simple hybrid argument shows that the resulting hash
family H′ is a ((2t, 2), εprg + 2−p)-secure weak PRF. Combining this result with
Theorem 2, we finally get our key derivation function from m-to-m bits:

Theorem 4. If G is (2t, εprg)-secure and H is pairwise independent, then the
m-to-m-bit key derivation function h′x(s) = hG(x)(s) uses p bits of public ran-

domness s and achieves (t,
√
2d−1 · (εprg + 2−p))-security in the (m−d,m)-real2-

model.
In particular, if p = log(1/εprg), then H′ is (t,

√
2d · εprg)-secure in the (m−

d,m)-real2-model, and the derived key R can be used in any (even non-square-
friendly) (t, ε)-secure application P needing an m-bit key, giving (t, ε+

√
2d · εprg)-

security for P in the (m− d,m)-real2-model.

Notice, the latter bound might be beneficial not only for non-square-friendly
applications, where no other options are available, but also for square-friendly
applications where ε � εprg. Also, the assumption p ≥ log(1/εprg) is easy to
achieve, since the standard “a·s+b” pairwise independent hash function achieves
p = m, and m � log(1/εprg) for any m-to-2m-bit PRG. Hence, we never need
to use more than m bits of public randomness.

Generic Key Derivation. We now combine Theorem 4 and Corollary 5 to
tackle the case of a general n-to-m-bit key derivation function. As before, we
take a (2t, εprg)-secure PRG G : {0, 1}m → {0, 1}2m and a pairwise independent
family H = {hy : {0, 1}p → {0, 1}m | y ∈ {0, 1}2m} with p ≥ log(1/εprg), but
now also use a universal family G = {gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v}. Define
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the new hash family H′ = {h′s,s′ : {0, 1}n → {0, 1}m | s ∈ {0, 1}v, s′ ∈ {0, 1}p}
by h′s,s′(x) = hG(gs(x))(s

′).
Before stating our final bound, we claim that we can instantiate H′ so that

the amount of public randomness p+ v it is at most max(m,n). Indeed, the size
of s′ can be made p = log(1/εprg) ≤ m bits. When n ≤ m, G can be keyless and
simply have the “never-colliding” identity function, so m = m+ 0 = max(m,n)
total bits is enough. When n ≥ m, the optimal key size of a universal hash family
from n bits to m bits is v = n−m (by Toeplitz matrices construction, or, when
n is a multiple of m, the “augmented” inner product construction discussed
in Section 3.2). This gives total number of bits at most m + (n − m) = n =
max(m,n).

Using Corollary 5 to analyze the ‘inner’ n-to-m-bit KDF with parameters of
the ‘outer’ m-to-m-bit KDF given by Theorem 4, we get:

Corollary 7. If G is (2t, εprg)-secure PRG, H is pairwise independent and G is
universal, then the function family H′ above defines an n-to-m-bit key deriva-
tion function that uses p + v bits of public randomness and achieves (t, εprg +√
2m−k · εprg)-security in the (k, n)-real2-model.
In particular, the derived key R can be used in any (even non-square-friendly)

(t, ε)-secure application P needing an m-bit key, giving (t, ε+εprg+
√
2m−k · εprg)-

security for P in the (k, n)-real2-model.
Moreover, H and G can be instantiated so that the amount of public random-

ness p+ v ≤ max(m,n).

As before, the generic bound for P might be beneficial not only for non-square-
friendly applications P , where no other options are available, but also for square-
friendly applications where ε� εprg.

Alternative to Dense Model Theorem. Finally, as mentioned in the
Introduction, the most unexpected consequence occurs when we apply it to P =
G itself! In this case, while the initial value Y = G(X) need not be pseudorandom
at all when H2(X) ≥ m− d, our result in Theorem 4 implies that G(hG(X)(S))

is (t, εprg +
√
2d · εprg)-pseudorandom, even conditioned on S.

Theorem 5 (Alternative to Dense Model Theorem). Assume G : {0, 1}m
→ {0, 1}2m is a (2t, εprg)-secure PRG, H = {hy : {0, 1}p → {0, 1}m | y ∈
{0, 1}2m} is a pairwise independent family with p ≥ log(1/εprg), X is any seed
distribution over {0, 1}m with H2(X) ≥ m− d, and S ← Up is a public random
string (independent of X). Then, for any t-bounded distinguishers A and B, we
have

ΔA( hG(X)(S) , Um | S ) ≤
√
2d · εprg

ΔB( G(hG(X)(S)) , U2m | S ) ≤ εprg +
√
2d · εprg

Thus, G(hG(X)(S)) is (t, εprg +
√
2d · εprg)-pseudorandom conditioned on S.

We defer the detailed comparison with the results obtained via the standard
dense model theorem [28,27,16,17] to the full version [15] (but see the end of the
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Introduction for some highlights), where we also give a simple concrete instan-
tiation of our approach.
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Abstract. A chain rule for an entropy notion H(·) states that the en-
tropy H(X) of a variable X decreases by at most � if conditioned on an
�-bit string A, i.e., H(X|A) ≥ H(X) − �. More generally, it satisfies a
chain rule for conditional entropy if H(X|Y,A) ≥ H(X|Y )− �.

All natural information theoretic entropy notions we are aware of (like
Shannon or min-entropy) satisfy some kind of chain rule for conditional
entropy. Moreover, many computational entropy notions (like Yao en-
tropy, unpredictability entropy and several variants of HILL entropy)
satisfy the chain rule for conditional entropy, though here not only the
quantity decreases by �, but also the quality of the entropy decreases
exponentially in �. However, for the standard notion of conditional HILL
entropy (the computational equivalent of min-entropy) the existence of
such a rule was unknown so far.

In this paper, we prove that for conditional HILL entropy no mean-
ingful chain rule exists, assuming the existence of one-way permutations:
there exist distributions X,Y,A, where A is a distribution over a single
bit, but HHILL(X|Y ) � HHILL(X|Y,A), even if we simultaneously allow
for a massive degradation in the quality of the entropy.

The idea underlying our construction is based on a surprising connec-
tion between the chain rule for HILL entropy and deniable encryption.

Keywords: Computational entropy, HILL entropy, Conditional chain
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entropy, which measures the incompressibility of a distribution. In cryptographic
settings the notion of min-entropy, measuring the unpredictability of a random
variable, is often more convenient to work with.

One of the most useful tools for manipulating and arguing about entropies are
chain rules, which come in many different flavors for different entropy notions.
Roughly, a chain rule captures the fact that the entropy of a variableX decreases
by at most the entropy of another variable A if conditioned on A. For Shannon
entropy, we have a particularly simple chain rule

H(X |A) = H(X,A)−H(A)

More generally, one can give chain rules for conditional entropies by considering
the case where X has some entropy conditioned on Y , and bound by how much
the entropy drops when given A. The chain rule for Shannon entropy naturally
extends to this case

H(X |Y,A) = H(X |Y )−H(A)

For min-entropy (cf. Definition 2.1) an elegant chain rule holds if one uses the
right notion of conditional min-entropy. The worst case definition H∞(X |Y ) =
miny H∞(X |Y = y) is often too pessimistic. An average-case notion has been
defined by [5] (cf. Definition 2.2), and they show it satisfies the following chain
rules (H0(A) is the logarithm of the size of the support of A):

H̃∞(X |A) ≥ H∞(X)−H0(A) and H̃∞(X |Y,A) ≥ H̃∞(X |Y )−H0(A) .

1.1 Computational Entropy

The classical information theoretic notions anticipate computationally unbound-
ed parties, e.g. no algorithm can compress a distribution below its Shannon
entropy and no algorithm can predict it better than exponentially in its min-
entropy. Under computational assumptions, in particular in cryptographic set-
tings, one can talk about distribution that appear to have high entropy only for
computationally bounded parties. The most basic example are pseudorandom
distributions, where X ∈ {0, 1}n is said to be pseudorandom if it cannot be dis-
tinguished from the uniform distribution Un by polynomial size distinguishers.
So X appears to have n bits of Shannon and n bits of min-entropy.

Pseudorandomness is a very elegant and tremendously useful notion, but
sometimes one has to deal with distributions which do not look uniform, but
only seem to have some kind high entropy. Some of the most prominent such
notions are HILL, Yao and unpredictability entropy. Informally, a distribution
X has k bits of HILL-pseudoentropy [13] (conditioned on Z), if cannot be dis-
tinguished from some variable Y with k bits of min-entropy (given Z). X has k
bits of Yao entropy [1,20] (conditioned on Z) if it cannot be compressed below k
bits (given Z), and X has k bits of unpredictability entropy [14] conditioned on
Z if no efficient adversary can guess X better than with probability 2−k given
Z.1 When we talk about, say the HILL entropy of X , not only its quantity k is of

1 Unlike HILL and Yao, unpredictability entropy is only interesting if the conditional
part Z is not empty, otherwise it coincides with min-entropy.
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interest, but also its quality which specifies against what kind of distinguishers
X looks like having k bits of min-entropy. This is specified by giving two addi-
tional parameters (ε, s), and the meaning of HHILL

ε,s (X) = k is that X cannot be
distinguished from some Y with min-entropy k by distinguishers of size s with
advantage greater than ε.

Chain rules for (conditional) entropy are easily seen to hold for some computa-
tional entropy notions (in particular for (conditional) Yao and unpredictability),
albeit there are two caveats. First, one must typically assume that the part A
we condition on comes from an efficiently samplable distribution, we will always
set A ∈ {0, 1}�. Second, the quality of the entropy (the distinguishing advan-
tage, circuit size, or both) typically degrades exponentially in 
. The chain rules
for (conditional) computational entropy notions H we know state that for any
distribution (X,Y,A) where A ∈ {0, 1}� (X,Y,A) where A ∈ {0, 1}�

Hε′,s′(X |Y,A) ≥ Hε,s(X |Y )− 
 (1)

where ε′ = μ(ε, 2�) , s′ = s/ν(2�, ε) for some polynomial functions μ, ν. For HILL
entropy such a chain rule has only recently been found [7,15] (cf. Lemma 2.6),
but only holds for the unconditional case, i.e., when Y in (1) is empty (or at least
very short, cf. Theorem 3.7 [9]). Whether or not a chain rule holds for conditional
HILL has been open up to now. In this paper we give a counterexample showing
that the chain rule for conditional HILL entropy does not hold in a very strong
sense.

We will not try to formally define what constitutes a chain rule for a computa-
tional entropy notion, not even for the special case of HILL entropy we consider
here, as this would seem arbitrary. Instead, we will specify what it means that
conditional HILL entropy does not satisfy a chain rule. This requirement is so de-
manding that it leaves little room for any kind of meaningful positive statement
that could be considered as a chain rule.

We will say that an ensemble of distributions {(Xn, Yn, An)}n∈N forms a coun-
terexample to the chain rule for conditional HILL entropy if

– Xn has a lot of high quality HILL entropy conditioned on Yn : that is,
HHILL

ε,s (Xn|Yn) = zn where (high quantity) zn = nα for some α > 0 (we will
achieve any α < 1) and (high quality) for every polynomial s = s(n) we can
set ε = ε(n) to be negligible.

– The HILL entropy of Xn drops by a constant fraction conditioned addition-
ally on a single bit An ∈ {0, 1}, even if we only ask for very low quality
entropy: (large quantitative gap) HHILL

ε′,s′ (Xn|Yn, An) < β ·HHILL
ε,s (Xn|Yn) for

β < 1 (we achieve β < 0.6) and (low quality) ε′ > 0 is constant (we achieve
any ε′ < 1) and s′ = s′(n) is a fixed polynomial.

Assuming the existence of one-way permutations, we construct such an ensemble
of distributions {(Xn, Yn, An)}n∈N over {0, 1}1.5n2 × {0, 1}3n2 × {0, 1}.

HHILL
ε′,s′ (Xn|Yn, An) < HHILL

ε,s (Xn|Yn)− 1.25n
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Moreover HHILL
ε,s (X |Y ) ≈ 3n, which gives a multiplicative gap of (3n − 1.25n)

/3n < 0.6
HHILL

ε′,s′ (Xn|Yn, An) < 0.6 ·HHILL
ε,s (Xn|Yn) ,

where HHILL
ε,s is high-quality cryptographic-strength pseudoentropy (i.e., for any

polynomial s = s(n) we can choose ε = ε(n) to be negligible) and (ε′, s′) is
extremely low end where ε′ can be any constant < 1 and s is a fixed polyno-
mial (depending only the complexity of evaluating the one-way permutation).
The entropy gap 1.25n we achieve is constant factor of entire HILL entropy
HHILL

ε,s (Xn|Yn) ≈ 3n in X . The gap is roughly the square root of the length

m = 4.5n2 of the variables (Xn, Yn). This can be easily increased from n ≈ m1/2

to n ≈ m1−γ for any γ > 0.
Interestingly, for several variants of conditional HILL entropy, chain rules in

the conditional case do hold. In particular, this is the case for the so called decom-
posable, relaxed and simulatable versions of HILL entropy (cf. [9] and references
therein).

1.2 Counterexamples from Deniable Encryption and One-Way
Permutations

Deniable encryption has been proposed in 1997 by Canetti et al. [3], if such
schemes actually exists has been an intriguing open problem ever since. The only
known negative result is due to Bendlin et al. [2] who show that receiver deni-
able non-interactive public-key encryption is impossible. Informally, a sender
deniable public-key encryption scheme (we will just consider bit-encryption)
is a semantically secure public-key encryption scheme, which additionally pro-
vides some efficient way for the sender of a ciphertext C computed as C :=
enc(pk,B,R) to come up with some fake randomness R′ which explains C as a
ciphertext for the opposite message 1−B. That is C = enc(pk, 1−B,R′), and
for a random B, (C,B,R) and (C, 1−B,R′) are indistinguishable.

We show a close connection between deniable encryption and HILL entropy:
any deniable encryption scheme provides a counterexample to the chain rule for
conditional HILL entropy. This connection has been the starting point for the
counterexample constructed in this paper. Unfortunately, this connection does
not immediately prove the impossibility of a chain rule, as deniable encryption
is not known to exist. Yet, a closer look shows that we do not need all the func-
tionalities of deniable encryption to construct a counterexample. In particular,
neither the faking algorithm nor decryption must be efficient. We will exploit
this to get a counterexample from any one-way permutation.

1.3 Related Work

The concept of HILL entropy has first been introduced by H̊astad et al. [13],
and the conditional variant was suggested by Hsiao et al. [14]. Other notions of
computational entropy include Yao entropy [1,20], unpredictability entropy [14],
and metric entropy [1].
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Chain rules for these entropy notions are known, e.g., Fuller et al. [8] for
metric entropy, where they also show a connection between metric entropy and
deterministic encryption. A chain rule for HILL entropy was proved indepen-
dently by Reingold et al. [15] (it is a corollary of the more general dense model
theorem proven in this work) and Dziembowski and Pietrzak [7] (as a tool for
proving security of leakage-resilient cryptosystems). This chain rule only applies
in the unconditional setting, but for some variants of HILL entropy, chain rules
are known in the conditional setting as well. Chung et al. [4] proved a chain rule
for samplable HILL entropy, a variant of HILL entropy where one requires the
high min-entropy distribution Y as in Definition 2.5 to be efficiently samplable.
Fuller et al. [8] give a chain rule for decomposable metric entropy (which implies
HILL entropy). Reyzin [16] (cf. Theorem 2 and the paragraph following it in [16])
gives a chain rule for conditional relaxed HILL entropy, such a rule is implicit in
the work of Gentry and Wichs [10].

A chain rule for normal conditional HILL entropy (citing [8]) “remains an
interesting open problem”. The intuition underlying the counterexample we con-
struct (giving a negative answer to this open problem) borrows ideas from the
deniable encryption scheme of Dürmuth and Freeman [6] presented at Euro-
crypt 2011, which unfortunately later turned out to have a subtle flaw. In their
protocol, after receiving the ciphertext, the receiver (knowing the secret key)
helps the sender to evaluate a faking algorithm by sending some information
the sender could not compute efficiently on its own. It is this interactive phase
that is flawed. However, it turns out that for our counterexample to work, the
faking algorithm does not need to be efficiently computable, and thus we can
already use the first part of their protocol as a counterexample. Moreover, as we
don’t require an efficient decryption algorithm either, we can further weaken our
assumptions and base our construction on any one-way permutation instead of
trapdoor permutations.

1.4 Roadmap

This document in structured as follows: in Section 2 we recap the basic definitions
required for paper. In Section 3 we then give the intuition underlying our results
by deriving a counterexample to the chain rule for conditional HILL entropy
from any sender-deniable bit-encryption scheme. The counterexample based on
one-way permutations is then formally presented in Section 4.

2 Preliminaries

In this section we recap the basic definitions required for this document. We
start by defining some standard notation, and then recapitulate the required
background of entropy measures, hardcore predicates, and Stirling’s formula.

We say that f(n) = O(g(n)), if f(n) is asymptotically bounded above by
g(n), i.e., there exists a k ∈ N such that |f(n)| ≤ k|g(n)| for all n > k. Similarly,
f(n) = ω(g(n)), if f(n) asymptotically dominates g(n), i.e., for every k ∈ N,
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there exists nk ∈ N, such that for all n > nk we have that kg(n) < f(n). A
function ν(n) is called negligible, if it vanishes faster than every polynomial,
i.e., for every integer k, there exists an integer nk such that ν(n) < n−k for all
n > nk, or alternatively, if n

−k = ω(ν(n)) for all k.

By |S| we denote the cardinality of some set S. We further write s
$← S to

denote that s is drawn uniformly at random from S. The support of a probability
distribution X , denoted by supp(X), is the set of elements to which X assigns
non-zero probability mass, i.e., supp(X) = {x | Pr [X = x] > 0}. A distribution
X is called flat, if it is uniform on its support, i.e., ∀x ∈ supp(X),Pr [X = x] =
1/| supp(X)|. Finally, we use the notation Pr [E : Ω] to denote the probability of

event E over the probability space Ω. For example, Pr
[
f(x) = 1 : x

$← {0, 1}n
]

is the probability that f(x) = 1 for a uniformly drawn x in {0, 1}n.

2.1 Entropy Measures

Informally, the entropy of a random variable X is a measure of the uncertainty
of X . In the following we define those notions of entropy required for the rest of
the paper.

Min-Entropy. Min-entropy is often useful in cryptography, as it ensures that
the success probability of even a computationally unbounded adversary guessing
the value of a sample from X is bounded above by 2−H∞(X):

Definition 2.1 (Min-Entropy). A random variable X has min-entropy k, de-
noted by H∞(X) = k, if

max
x

Pr [X = x] = 2−k .

While a conditional version of min-entropy is straightforward to formulate, Dodis
et al. [5] introduced the notion of average min-entropy, which is useful, if the
adversary does not have control over the variable one is conditioning on.

Definition 2.2 (Average min-Entropy). For a pair (X,Z) of random vari-
ables, the average min-entropy of X conditioned on Z is

H̃∞(X |Z) = − log E
z←Z

max
x

Pr [X = x|Z = z] = − log E
z←Z

2−H∞(X|Z=z) ,

where the expectation is over all z with non-zero probability.

Similarly to min-entropy, an adversary learning Z can only predict X with prob-

ability 2−H̃∞(X|Z).
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HILL Entropy. While min-entropy guarantees an information-theoretic bound
on the probability of an adversary guessing a random variable, this bound might
not be reached by any adversary of a limited size. For instance, this is the case
for pseudorandom distributions. This fact is taken into account in computational
variants of entropy.

Before formally defining HILL entropy, the computational equivalent of min-
entropy, we recap what it means for two probability distributions to be close in
a computational sense:

Definition 2.3 (Closeness of Distributions). Two probability distributions
X and Y are (ε, s)-close, denoted by X ∼ε,s Y , if for every circuit D of size at
most s the following holds:

|Pr [D(X) = 1]− Pr [D(Y ) = 1] | ≤ ε .

We further say that two ensembles of distributions {Xn}n∈N and {Yn}n∈N are
ε(n)-computationally-indistinguishable if for every positive polynomial poly(n)
there exists n0 ∈ N such that for all n > n0, it holds that Xn ∼ε(n),poly(n) Yn.

Informally, a random variableX has a high HILL entropy, if it is computationally
indistinguishable from a random variable with high min-entropy, cf. H̊astad et
al. [13]:

Definition 2.4 (HILL Entropy). A distribution X has HILL entropy k, de-
noted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y satisfying H∞(Y ) ≥ k
and X ∼ε,s Y .

Intuitively, in the above definition, k can be thought of as the quantity of entropy
in X , whereas ε and s specify its quality: the larger s and the smaller ε, the
closer X is to a random variable Y with information-theoretic min-entropy k in
a computational sense.

A conditional version of HILL entropy can be defined similarly as a compu-
tational analogue to average min-entropy [14]:

Definition 2.5 (Conditional HILL Entropy). Let X,Z be random variables.
X has conditional HILL entropy HHILL

ε,s (X |Z) ≥ k conditioned on Z, if there
exists a collection of distributions {Yz}z∈Z giving rise to a joint distribution

(Y, Z) such that H̃∞(Y |Z) ≥ k, and (X,Z) ∼ε,s (Y, Z).

It has been shown that conditioning X on a random variable of length at most

 reduces the HILL entropy by at most 
 bits, if the quality may decrease expo-
nentially in 
 [7,15,8]:

Lemma 2.6 (Chain Rule for HILL Entropy). For a random variable X
and A ∈ {0, 1}� it holds that

HHILL
ε′,s′ (X |A) ≥ HHILL

ε,s (X)− 
 ,

where ε′ ≈ 2�ε and s′ ≈ sε′2.
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2.2 Hardcore Predicates

The counterexample we present in Section 4 is based on the existence of one-way
permutations, which we define next. Intuitively, a permutation is one-way, if it is
easy to compute but hard to invert. For an extensive discussion, see [11, Chapter
2]. The following definition is from [19]:

Definition 2.7 (One-Way Permutation). A length-preserving function π :
{0, 1}∗ → {0, 1}∗ is called a one-way permutation, if π is computable in poly-
nomial time, if for every n, π restricted to {0, 1}n is a permutation, and if for
every probabilistic polynomial-time algorithm A there is a negligible function ν
such that the following holds:

Pr
[
A(π(x)) = x : x

$← {0, 1}n
]
< ν(n) .

While for a one-way permutation, given π(x) it is hard to compute x in its
entirety, it may be easy to efficiently compute a large fraction of x. However, for
our construction we will need that some parts of x cannot be computed with
better probability than by guessing. This is captured by the notion of a hardcore
predicate [12]. We use the formalization from [18]:

Definition 2.8 (Hardcore Predicate). We call p : {0, 1}∗ → {0, 1} a (σ(n),
ν(n))-hardcore predicate for a one-way permutation π, if it is efficiently com-
putable, and if for every adversary running in at most σ(n) steps, the following
holds:

Pr
[
A(π(x)) = p(x) : x

$← {0, 1}n
]
<

1

2
+ ν(n) .

It is well known that a one-way permutation π with a hardcore predicate p can
be derived from any one-way permutation π′ as follows [12]: for r of the same
length as x, define π(x, r) := (π′(x), r) and p(x, r) := 〈x, r〉, where 〈·, ·〉 denotes
the inner product modulo 2.

2.3 Stirling’s Formula

Stirling’s approximation [17] states that for any integer n it holds that:

logn! = n logn− n

ln 2
+O(log n) .

In our results we will make use of the following lemma, which directly follows
from Stirling’s formula.

Lemma 2.9. For every integer a > 1 we have that

log

(
an

n

)
= an log a− (a− 1)n log(a− 1) +O(log n) . (2)
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3 A Counterexample from Sender Deniable Encryption

We start this section by defining sender deniable encryption schemes, and then
show how such a scheme leads to a counterexample to the chain rule for condi-
tional HILL entropy.

As the existence of sender deniable public key encryption schemes is an open
problem, this implication does not directly falsify the chain rule. However, it
shows up an interesting connection, and gives the idea underlying our result, as
the proof given in Section 4 was strongly inspired by deniable encryption. We
stress that the main purpose of this section is to give the reader some intuition,
and thus we do not fully formalize all steps here.

3.1 Sender Deniable PKE

Deniable encryption, first introduced by Canetti et al. [3], is a cryptographic
primitive offering protection against coercion. Consider therefore the following
scenario: a sender sends an encrypted message to a receiver over a public chan-
nel. After the transmission, an adversary who wishes to learn the message sent,
coerces one of the parties into revealing the secret information that was used
to run the protocol (i.e., the secret message, the random tape used to generate
keys, etc.). If the parties used a semantically secure but non-deniable encryp-
tion scheme, the adversary can check the consistency of the protocol transcript
(which was carried over a public channel) and the secret information of the
party, in particular learning whether the provided message was indeed the one
being encrypted. A deniable encryption scheme tackles this problem by provid-
ing a faking algorithm. The faking algorithm allows a coerced party to come up
with fake keys and random tapes that, while being consistent with the public
transcript, correspond to an arbitrary message different from the real one. De-
niable encryption schemes are classified as sender deniable, receiver deniable or
bi-deniable, depending on which party can withstand coercion. For our purposes,
we will focus only on sender deniable encryption schemes.

We will think of an encryption scheme as a two-party protocol between a
sender S and a receiver R. The sender’s input as well as the receiver’s output
are messages m from a message space M . For an encryption protocol ψ, we will
denote by trψ(m, rS , rR) the (public) transcript of the protocol, where m is the
sender’s input, and rS and rR are the sender’s and the receiver’s random tapes,
respectively. Let trψ(m) be the random variable distributed as trψ(m, rS , rR)
where rS and rR are uniformly picked in their supports. A sender deniable en-
cryption scheme is then defines as follows [3]:

Definition 3.1 (Sender Deniable PKE). A protocol ψ with sender S and re-
ceiver R, and security parameter n, is a δ(n)-sender-deniable encryption protocol
if:

Correctness: The probability that R’s output is different from S’s input is neg-
ligible (as a function of n).
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Security: For every m1,m2 ∈ M , the distributions trψ(m1) and trψ(m2) are
computationally indistinguishable.

Deniability: There exists an efficient faking algorithm φ having the following
property with respect to any m1,m2 ∈ M . Let rS , rR be uniformly chosen
random tapes for S and R, respectively, let c = trψ(m1, rS , rR), and let
r̄S = φ(m1, rS , c,m2). Then the random variables

(m2, r̄S , c) and (m2, r
′
S , trψ(m2, r

′
S , r
′
R))

are δ(n)-computationally-indistinguishable, where r′S and r′R are indepen-
dent, uniformly chosen random tapes for S and R.

For notational convenience, when considering bit-encryption schemes (i.e.,
M = {0, 1}), we will ignore the last argument of the algorithm φ. Further,
we will call a scheme negl-sender-deniable if δ(n) is some negligible function
in n.

Canetti et al. [3] give a construction of sender deniable encryption with
δ(n) = 1/poly(n) for some polynomial poly(n). However, the problem of con-
structing a sender deniable scheme with a negligible δ(n) has remained open
since (recently, Dürmuth and Freeman [6] proposed a construction of negl-sender-
deniable encryption scheme, but their proof was found to be flawed, cf. the fore-
word of the full version of their paper).

3.2 A Counterexample from Deniable Encryption

In the following we explain how a non-interactive negl-sender-deniable encryption
scheme for message space M = {0, 1} would lead to a counterexample to the
chain rule for conditional HILL entropy. Let ψ be the encryption algorithm of
this scheme.

Let B be a uniformly random bit, and let RS be the uniform distribution
of appropriate length that serves as the random tape of the sender. Over this
space, we now define the following random variables:

– Let C be a ciphertext, i.e., C := ψ(B,RS).
– Let R′S be the fake random tapes for the sender, i.e.,

R′S := φ(B,RS , C)

Fix now a transcript c, and let bc be the bit that the receiver outputs for c. We
then define the sets Rc and R′c as follows:

Rc := {rS | c = ψ(bc, rS)},
R′c := {φ(bc, rS , c) | rS ∈ Rc}.

Note that for every r′S ∈ R′c, we have that c = ψ(1− bc, r
′
S).

In the following we will make two simplifying assumptions about the encryp-
tion scheme. We note that we make these assumptions only for the sake of
presentation. The subsequent arguments can still be adapted to work without
them:
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(i) Firstly, for all public keys and all ciphertexts c1, c2, we have that |Rc1 | =
|Rc2 | and |R′c1 | = |R′c2 |. We will call these cardinalities |R| and |R′|, re-
spectively. Put differently, we assume that |R| and |R′| only depend on the
security parameter n.

(ii) Secondly, we assume that φ induces a flat distribution on R′c, i.e., if Z is the
conditional distribution on Rc given c, then φ(bc, Z) is flat on R′c.

We now argue that the gap between HHILL
ε,s (R′S |C) and HHILL

ε′,s′ (R
′
S |C,B) is very

large.2

1. The deniability property implies that no PPT adversary can distinguish
between real and fake random tapes for the sender. Thus, the distributions
(RS , C) ad (R′S , C) are computationally indistinguishable. Therefore,

HHILL
ε,s (R′S |C) ≥ H̃∞(RS |C) = log(|R|).

2. Now consider HHILL
ε′,s′ (R

′
S |C,B). We argue that this value is bounded above

by (roughly) H̃∞(R′S |C,B). This is because given ciphertext c and bit b,
there exists an efficient test to check if r ∈ supp(R′S) or not. Indeed, given a
random tape r, a transcript c and bit b, we can check if r is in the support of
R′S or not as follows: run the sender in ψ with input 1− b and random tape
r. The resulting ciphertext is equal to c, if and only if r lies in the support
of R′S . Thus, for any distribution Z such that (R′S , C,B) and (Z,C,B) are
computationally indistinguishable, it must be the case that the support of
Z is (almost) a subset of the support of R′S . Using further that R′S is flat,
we get that:

HHILL
ε′,s′ (R

′
S |C,B) ≈ H̃∞(R′S |C) = log(|R′|) .

3. To complete the argument, we need to show that the difference between
log(|R|) and log(|R′|) is large. We do so by relating this difference to the
decryption error of the encryption scheme. Consider a ciphertext c that
decrypts to bit b. Consider the set of all random tapes that produce this
ciphertext c. Out of these, |Rc| of them encrypt bit b to c, while |R′c| of them
encrypt bit 1 − b to c. Thus, an error will be made in decrypting c when
the sender wanted to encrypt bit 1− b, but picked its random tape from the
set R′c. Combining this observation with the simplifying assumptions made
earlier, we get that the decryption error of the encryption scheme is given

by |R′|
|R|+|R′| . As the decryption error is negligible by Definition 3.1, we obtain

that:
log(|R|)− log(|R′|) = ω(log(n)) .

Combining the above arguments yields that the difference between HHILL
ε,s (RS |C)

and HHILL
ε′,s′ (R

′
S |C,B) is at least super-logarithmic in the security parameter of

the encryption scheme.

2 For clarity of exposition, we will not detail the relation of the parameters ε, s and
ε′, s′ in this section. The counterexample in Section 4 gives a formal treatment of
all parameters, though. Furthermore, we do not make the public key explicit in the
conditional entropies in the following.
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4 Disproving the Conditional Chain Rule

In the previous section we showed that the existence of sender-deniable bit en-
cryption schemes would disprove the chain rule for conditional HILL entropy.
However, the existence of such schemes is currently unknown. Thus, in this sec-
tion we give a counterexample which only relies on the existence of one-way
permutations.

In the following we let π : {0, 1}∗ → {0, 1}∗ be a one-way permutation with
hardcore predicate p : {0, 1}∗ → {0, 1}. Furthermore, we define the probabilistic
algorithm C, taking a bit b and a parameter n in unary as inputs, as follows:

– C draws 3n distinct elements x1, . . . , x3n
$← {0, 1}n such that p(xi) = b for

1 ≤ i ≤ 2n and p(xj) = 1− b for 2n < j ≤ 3n.
– C outputs π(x1), . . . , π(x3n) in lexicographical order.

We now define two random variablesR andR′ conditioned on a value c = C(1n, b)
as 1.5n-tuple in {0, 1}n as follows:

R consists of

– a uniformly random subset of
x1, . . . , x2n of cardinality n,
and

– a uniformly random subset of
x2n+1, . . . , x3n of cardinality
n/2,

in lexicographical order.

R′ consists of

– a uniformly random subset of
x1, . . . , x2n of cardinality n/2,
and

– x2n+1, . . . , x3n,

in lexicographical order.

Having said this, we can now state the main result of this paper. Informally,
it says that R′ conditioned on C has high HILL entropy of high quality, while
additionally conditioning on the single bit B decreases both, quantity and quality
of the entropy by factors polynomial in n:

Theorem 4.1 (Counterexample for a Conditional Chain Rule). Let p be

a (σ(n), ν(n))-hardcore predicate for π, and let B
$← {0, 1} and C = C(1n, B).

Then for all sufficiently large n it holds that:

HHILL
ε,s (R′|C)−HHILL

ε′,s′ (R
′|C,B) >

5

4
n ,

where

ε(n) = nν(n), ε′(n) = 0.99,
s(n) = σ(n) −O(n(σp(n) + σπ(n)), s′(n) = 1.5n(σp(n) + σπ(n)),

where σp(n) and σπ(n) denote the required running times to evaluate p and π,
respectively, on n-bit inputs.

We now briefly want to discuss what the theorem means for the potential loss
of quality and quantity of conditional HILL entropy.
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Loss in Quality of Entropy. Note that ε and s are roughly of the same size
as the security parameters of p, while ε′ and s′ are completely independent
thereof. This means that even if we have (σ(n), ν(n)) = (poly1(n), 1/poly2(n))
for some polynomials polyi(n), i = 1, 2, as is the case for cryptographic hardcore
predicates, the loss of neither of the parameters can be bounded above by a
constant, but is polynomial in n.

Loss in Quantity of Entropy. Despite this large tolerated loss in the quality of
the entropy, Theorem 4.1 says that conditioning on a single bit of extra informa-
tion can still decrease the conditional HILL entropy by arbitrarily large additive
factors by choosing n sufficiently large.

Together this implies that in order to formulate a chain rule for conditional
HILL entropy, neither the loss in quality nor in quantity could be bounded by a
constant, as would be desirable for a reasonable such rule, but must also depend
on the size of the random variable R′ whose entropy one wants to compute.

4.1 Proof of Theorem 4.1

Before moving to the proof of the theorem, we prove that (R,C) and (R′, C) are
computationally indistinguishable.

Lemma 4.2. Let p : {0, 1}∗ → {0, 1} be a (σ(n), ν(n))-hardcore predicate for π.
Then, for R,R′ and C as defined above it holds that:

(R,C) ∼ε(n),s(n) (R
′, C) ,

where ε(n) = nν(n) and s(n) = σ(n)−O(n(σp(n) + σπ(n)).

Proof. Assume that there exists an algorithm D running in s(n) steps, for which

|Pr [D(R,C) = 1]− Pr [D(R′, C) = 1] | > ε(n) .

Consider the following series of hybrids. The distribution of H0 is given by
(R′, C0) = (R′, C). Now, when moving from Hi to Hi+1, C is modified as follows:
one element π(xj) of Ci satisfying p(xj) = b, for which xj is not part of R′, is
substituted by a random π(x̄j) satisfying p(x̄j) = 1 − b, and Ci+1 is reordered
lexicographically.

Then, by definition, we have that (R′, C0) = (R′, C). Furthermore, it can be

seen that over the random choices of B
$← {0, 1}, it holds that (R′, Cn) = (R,C).

Furthermore, there exists an i such D can distinguish (R′, Ci) and (R′, Ci+1) with
advantage at least ε(n)/n.

We now show how D (outputting either i or i + 1 for simplicity) can be
turned into an algorithm A of roughly the same running time, which predicts

p(x) given π(x) for a uniformly chosen x with probability at least 1
2 + ε(n)

n . On
input y = π(x), A proceeds as follows:

– A uniformly guesses a bit b′
$← {0, 1};
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– it then computes x1, . . . , x2n−i−1
$← {0, 1}n satisfying p(xj) = b′, as well as

x2n+1−i, . . . , x3n
$← {0, 1} for which p(xj) = 1− b′;

– A then calls D on π(x1), . . . , π(x2n−i−1), y, π(x2n+1−i), . . . , π(x3n), sorted
lexicographically;

– finally, A outputs b′ if D returned i, and 1− b′ otherwise.

It can be seen that A’s input to D is a sample of (R′, Ci), if the secret p(x) = b′,
and a sample of (R′, Ci+1) otherwise for a random b′. It thus follows that A
guesses p(x) correctly with the same probability as D is able to distinguish
(R′, Ci) and (R′, Ci+1) for random bit b. The complexity of A is essentially that
of D, plus that for drawing, on average, 6n random elements in {0, 1}n and
evaluating π and p on those, yielding a contradiction to p being a (σ(n), ν(n))-
hardcore predicate. �

Proof (of Theorem 4.1). The claim is proved in two steps.

A Lower Bound for HHILL
ε,s (R′|C). By Lemma 4.2 we have that (R,C) ∼ε,s

(R′, C). We thus get that

HHILL
ε,s (R′|C) ≥ H̃∞(R|C) = − log

((
2n

n

)(
n

n/2

))−1
= log

(
2n

n

)
+ log

(
2n
2
n
2

)
= 3n+O(logn) ,

where the first equality holds because R is uniformly distributed in its domain
and |R| does not depend on C, and the last one holds by (2). For sufficiently
large n, this expression is lower bounded by 2.95n.

An Upper Bound for HHILL
ε′,s′ (R

′|C,B). Recap that HHILL
ε′,s′ (R

′|C,B) ≥ k if there ex-

ists a distribution X such that (X,C,B) ∼ε′,s′ (R
′, C,B), and H̃∞(X |C,B) ≥ k.

To prove our theorem we will now prove an upper bound on HHILL
ε′,s′ (R

′|C,B)
by showing that the conditional average min-entropy of every X satisfying
(X,C,B) ∼ε′,s′ (R′, C,B), is not significantly larger than the conditional av-
erage min-entropy of R′.

Let now X be such that the joint distribution (R′, C,B) and (X,C,B) are
close. We then observe that:

Pr
[
X /∈ supp(R′(c, b)) : b

$← {0, 1}, c $← C(1n, b)
]
< ε′ .

This holds because given (x, c, b), we can efficiently verify if x ∈ supp(R′) or
not: simply check that for exactly n components of x, their hardcore predicate
evaluates to 1 − b, and secondly, that all components of x occur in c. Thus, if
the probability X falling in the support of R′ is more than ε′, there exists an
efficient distinguisher that tells the two distributions apart with advantage more
than ε′.
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Now, call a pair (c, b) bad if the above probability is larger than 1
1.01 , else, call

it good. Then, by Markov’s inequality, the fraction of bad (c, b) is at most 1.01ε′.
We then get that:

H̃∞(X |C,B) = − log E
c,b

max
x

Pr [X = x|C = c ∧B = b]

= − log

⎛⎝∑
c,b

Pr [C = c ∧B = b]max
x

Pr [X = x|C = c ∧B = b]

⎞⎠
≤ − log

⎛⎝ ∑
good (c,b)

Pr [C = c ∧B = b] max
x

Pr [X = x|C = c ∧B = b]

+
∑

bad (c,b)

Pr [C = c ∧B = b]max
x

Pr [X = x|C = c ∧B = b]

⎞⎠
≤ − log

⎛⎝ ∑
good (c,b)

Pr [C = c ∧B = b] max
x

Pr [X = x|C = c ∧B = b]

⎞⎠
Using that for each (c, b), R′ is uniformly distributed in its support, and that
for good pairs we have that Pr [X ∈ supp(R′(c, b))] > 1− 1

1.01 = 1
101 , we get that

maxx Pr [X = x|C = c ∧B = b] is upper bounded by

1

101
max

r
Pr [R′ = r|C = c ∧B = b] =

1

101

(
2n

n/2

)−1
,

which follows directly from the definition of R′. Using further that a fraction of
at least 1 − 1.01ε′ of all (b, c) is good, this now allows us to continue the above
inequality chain by:

≤ − log

⎛⎝ ∑
good(c,b)

Pr [C = c ∧B = b]

101
max

r
Pr [R′ = r|C = c ∧B = b]

⎞⎠
≤ − log

(
(1− 1.01ε′)

1

101

(
2n

n/2

)−1)

= 4
n

2
log 4− 3

n

2
log 3 +O(log n)− log

(
1− 1.01ε′

101

)
< 1.65n+O(logn) + 20,

where the last two inequality follow from (2) and our choice of ε′.
Now, for sufficiently large n, we get that this term is upper bounded by 1.7n,

and the claim of the theorem follows. �

5 Conclusion

Computational notions of entropy have found many applications in cryptogra-
phy, and chain rules are a central tool in many security proofs. We showed that
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the chain rule for one (arguably the most) important such notion, namely HILL
entropy, does not hold.

Given that the chain rule holds and has been used for several variants (like re-
laxed, decomposable or simulatable) of HILL entropy, the question arises whether
the current standard notion of conditional HILL entropy is the natural one to
work with. We don’t have an answer to this, but our results indicate that it is
the only right notion in at least one natural setting, namely when talking about
deniable encryption.

We hope the connection between chain rules for HILL entropy and deniable
encryption we show will open new venues towards constructing the first deniable
encryption scheme.

Acknowledgment. The authors want to thank Sasha Rubin for insightful com-
ments and discussions while working on this paper.
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Abstract. A common method for increasing the usability and uplifting
the security of pseudorandom function families (PRFs) is to “hash” the
inputs into a smaller domain before applying the PRF. This approach,
known as “Levin’s trick”, is used to achieve “PRF domain extension”
(using a short, e.g., fixed, input length PRF to get a variable-length
PRF), and more recently to transform non-adaptive PRFs to adaptive
ones. Such reductions, however, are vulnerable to a “birthday attack”:
after

√
|U| queries to the resulting PRF, where U being the hash function

range, a collision (i.e., two distinct inputs have the same hash value)
happens with high probability. As a consequence, the resulting PRF is
insecure against an attacker making this number of queries.

In this work we show how to go beyond the birthday attack barrier,
by replacing the above simple hashing approach with a variant of cuckoo
hashing — a hashing paradigm typically used for resolving hash collisions
in a table, by using two hash functions and two tables, and cleverly
assigning each element into one of the two tables. We use this approach
to obtain: (i) A domain extension method that requires just two calls to
the original PRF, can withstand as many queries as the original domain
size and has a distinguishing probability that is exponentially small in
the non cryptographic work. (ii) A security-preserving reduction from
non-adaptive to adaptive PRFs.

1 Introduction

We study methods for strengthening pseudorandom functions; such methods
transform functions that are somewhat weak (e.g., with a small domain, or with-
stands only non-adaptive (also known as static) attacks: the attacker choose its
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query ahead of time, before seeing any of the answers) into ‘stronger’ functions,
e.g., with a large domain, or secure against adaptive (dynamic) attacks: the
attacker queries may be chosen as a function of all previous answers.

A common paradigm, first suggested by Levin [18, §5.4], for increasing the
usability and uplifting the security of pseudorandom function families (PRFs),
is to “hash” the inputs into a smaller domain before applying the PRF. This
approach is used to achieve “PRF domain extension” (using a short, e.g., fixed,
input length PRF to get a variable-length PRF), and more recently to transform
non-adaptive PRFs to adaptive ones [6]. Such reductions, however, are vulnerable
to the following “birthday attack”: after

√
|U| queries to the resulting PRF,

where U being the hash function range, a collision (i.e., two distinct inputs
have the same hash value) happens with high probability. Such collisions are an
obstacle for the indistinguishability of the PRF, since in a random function we
either do not expect to see a collision at all (in case the range is large enough)
or expect to see fewer collisions. Hence, the resulting PRF is insecure against an
attacker making this number of queries.

In this work we study variants of the above hashing approach to go beyond the
birthday attack barrier. Specifically, we consider constructions based on cuckoo
hashing: a hashing paradigm typically used for resolving hash collisions in a table
by using two hash functions and two tables, and assigning each element to one
of the two tables (see Section 1.2). We use this paradigm to present a new PRF
domain extension method that requires just two calls to the original PRF, can
withstand as many queries as the original domain size and has a distinguishing
probability that is exponentially small in the amount of non cryptographic work.
A second implication is a security-preserving reduction from non-adaptive to
adaptive PRFs, an improvement upon the recent result of [6].

Before stating our results, we discuss in more details the notions of pseudo-
random functions and cuckoo hashing.

1.1 Pseudorandom Functions

Pseudorandom function families (PRFs), introduced by Goldreich, Goldwasser,
and Micali [14], are function families that cannot be distinguished from a family
of truly random functions, by an efficient distinguisher who is given an oracle
access to a random member of the family. PRFs have an extremely important
role in cryptography, allowing parties, which share a common secret key, to
send secure messages, identify themselves and to authenticate messages [13, 19].
In addition, they have many other applications, essentially in any setting that
requires random function provided as black-box [4, 7, 10, 12, 20, 26]. Different
PRF constructions are known in the literature, whose security are based on
different hardness assumptions. The construction that is most relevant to this
work is the one of [14], hereafter the GGM construction, that uses a length-
doubling pseudorandom generator (and thus can be based on the existence of
one-way functions [15]).

We use the following definitions: an efficiently computable function family
ensemble F = {Fn}n∈N is a (q, t, ε)-PRF, if (for large enough n) a q(n)-query
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oracle-aided algorithm (distinguisher) of running time t(n), getting access to a
random function from the family, distinguishes between Fn and the family of
all functions (with the same input/output domains), with probability at most
ε(n). F is non-adaptive (q, t, ε)-PRF, if it is only required to be secure against
non-adaptive distinguishers (i.e., ones that prepare all their queries in advance).
Finally, F is a t-PRF, in case q is only limited by t and ε = 1/t.

We note that the information-theoretic analog of a t-PRF is known as a t-wise
independent family and is formally defined in Definition 5.

1.2 Cuckoo Hashing and Many-Wise Independent Hash Function

Cuckoo hashing, introduced by Pagh and Rodler [28], is an efficient technique
for constructing dynamic dictionaries. Such data structures are used to maintain
a set of elements, while supporting membership queries as well as insertions and
deletions of elements. Cuckoo hashing maintains such a dynamic dictionary by
keeping two tables of size only slightly larger than the number of elements to be
inserted and two hash functions mapping the elements into cells of those tables,
and applying a clever algorithm for placing at most a single element in each cell.
Since its introduction, many variants of cuckoo hashing have been proposed and
an extensive literature is devoted to its analysis.

Pagh and Pagh [27] used ideas in the spirit of cuckoo hashing to construct
efficient many-wise independent hash functions. For that they introduce the
following paradigm. Let H, G and F be function families from D to S, from D
to R and from S to R respectively. Define the function family PP(H,G,F) from
D to R as

PP(H,G,F) = (F ◦ H)⊕ (F ◦ H)⊕ G, (1)

where F1 ◦ F2, for function families F1 and F2, is the function family whose
members are the elements of F1 × F2 and (f1, f2)(x) is defined by f1(f2(x))
(F1 ⊕ F2 is analogously defined). In other words, given f1, f2 ∈ F , h1, h2 ∈ H
and g ∈ G, design a function PPf1,f2,h1,h2,g(x) = f1(h1(x))⊕ f2(h2(x))⊕ g(x).

Pagh and Pagh [27] showed that when the families H and G are of “high
enough” independence, roughly, both families are (c · log |S|)-wise independent,
then the family PP(H,G, Π) is O(|S|−c)-indistinguishable from random by a
|S|-query, non-adaptive distinguisher, where Π being the set of all functions
from S to R. Note that the security of the resulting family goes well beyond
the birthday attack barrier: it is indistinguishable from random by an attacker
making |S| >>

√
|S| queries.

Aumüller et al. [3] (building on the work of Dietzfelbinger and Woelfel [11])
were able to strengthen the result of Pagh and Pagh [27] by using more sophisti-
cated hash functions H and G (rather than the O(log |S|)-wise independent that
[27] used). Specifically, for a given s ≥ 0, Aumüller et al. [3] constructed a func-

tion family ADW(H,G, Π) such that the family ADW(H,G, Π) is O(|S|−(s+1))-
indistinguishable from random by a |S|-query , non-adaptive distinguisher, where
Π being the set of all functions from S to R, as above. The idea to use more
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sophisticated hash functions, in the sense that they require less combinatorial
work, has already appeared in previous works, e.g., the work of Arbitman et al.
[2, §5.4].

In Section 3 we take the above results a step further, showing that they
hold also for adaptive distinguishers. Furthermore, it turns out that by using
the above function family with a pseudorandom function F , namely the family
PP(H,G,F) (or ADW(H,G,F)), we get a pseudorandom function that is supe-
rior over F (the actual properties of PP(H,G,F) are determined by the choice
of F and the choice of H and G). This understanding is the main conceptual
contribution of this paper, and the basis for the results presented below.

We note that the works of Pagh and Pagh [27], Dietzfelbinger and Woelfel [11]
and Aumüller et al. [3] went almost unnoticed in the cryptography literature so
far.1 In this work we apply, in a black-box manner, the analysis of [27] and of
[3] in cryptographic settings.

1.3 Our Results

We use a construction inspired by cuckoo hashing to improve upon two PRF
reductions: PRF domain extension and non-adaptive to adaptive PRF.

PRF Domain Extension. PRF domain extensions use PRFs with “small”
domain size, to construct PRFs with larger (or even unlimited) domain size.
These extensions are used for reducing the cost of a single invocation of the PRF
and increasing its usability. Domain extension methods are typically measured
by the security of the resulting PRFs, and the amount of calls the resulting PRF
makes to the underlying PRF.

A known domain extension technique is the MAC-based constructions, like
CBC-MAC and PMAC (a survey on their security can be found in [24]). The
number of calls made by these constructions to the underlying (small domain)
PRF can be as small as two (for doubling the domain length). Assuming that the
underlying PRF is a random function over {0, 1}n,2 then the resulting family
is (q,∞, O(q2/2n))-PRF (i.e., the ∞ in the second parameter means that the
distinguisher running time is unlimited). A second technique is using the Feistel
or Benes transformations (e.g., [1, 29, 30], where a complete survey on can be
found in [31]). The Benes based construction makes 8 calls to the underlying
PRF and is (q,∞, O(q/2n))-PRF, where a 5-round Feistel based construction
(that makes 5 calls to the underlying PRF) is (q,∞, O(q/2n))-PRF. Once you
have a length doubling extension one can get any extension at the appropriate
cost.

1 Pagh and Pagh [27] did notice this connection, and in particular mentioned the con-
nection of their work to that of Bellare et al. [5].

2 Measuring the security of the resulting under this unrealistic random function as-
sumption is a useful, and common, method for understanding the quality of the
domain extension reduction itself.



44 I. Berman et al.

Our cuckoo hashing based function family (see below) is (q,∞, O(q/2n))-PRF,
makes only two calls to the underlying PRF and can extend the domain size to
any poly(n) length.

Theorem 1 (informal). Let k ≤ n, let H and G be efficient k-wise independent
function families mapping strings of length 
(n) to strings of length n, and let
Π be the functions family of all functions from {0, 1}n to {0, 1}n. Then the
family PP(H,G, Π), mapping strings of length 
(n) to strings of length n, is a
(q,∞, q/2Ω(k))-PRF, for q ≤ 2n−2.

Specifically, for k = Θ(n) Theorem 1 yields a domain extension that is
(q,∞, q/2n)-PRF. The resulting PRF makes only two calls to the underlying
PRF. Using larger k (i.e. higher independence in terms of combinatorial work)
we can decrease the error to be arbitrary small. We note that we actually get
stronger result using the function family ADW(H,G, Π) (for different H and G.
See Theorem 7).

From PRG to PRF. Another application of the above technique is a hard-
ness preserving construction of PRFs from pseudorandom generators (PRG).
An efficiently computable function G : {0, 1}n �→ {0, 1}2n is t-PRG, if any dis-
tinguisher of running time t(n) can distinguish a random output of G from a
truly random 2n-bit string, with probability at most 1/t(n). We are interested
in constructions of PRF using this PRG that preserve the security of G, more
specifically, constructions that are (2c

′n)-PRF for some 0 < c′ < c, assuming
that G is a (2cn)-PRG.3 The efficiency of such constructions is measured by the
number of calls made to the underlying PRG as well as other parameters such
as representation size.

The construction of Goldreich et al. [14] (i.e., GGM) is in fact such hardness
preserving according to the above criterion. Their construction, however, makes
n calls to the underlying PRG, which might be too expensive is some settings. In
order to reduce the number of calls to the underlying PRG, Levin [18] suggested
to first hash the input to a smaller domain, and only then apply GGM. The
resulting construction, however, is not hardness preserving.

While the GGM construction seems optimal for the security it achieves (as
shown in [16]), in some settings the number of queries the distinguisher can
make is strictly less than its running time; for instance consider a distinguisher
of running time 2cn who can only make 2

√
n � 2cn queries. In such settings the

security of the GGM seems like an overkill, and raises the question whether there
exist more efficient reductions. Jain et al. [16] (who raised the above questions)
gave the following partial answer, by designing a domain extension method tai-
lored to the PRG to PRF reduction.

Theorem 2 ([16], informal). Let c > 0 and 1/2 ≤ α < 1. There exists an
efficient oracle-aided function family JPT such that the following holds: assume

3 Considering this range of parameters is only for the sake of concreteness. Our actual
result (see Section 4) handles a larger range of parameters.
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that G is a length-doubling (2cn)-PRG, then JPTG is a (2n
α

, 2c
′n, 2c

′n)-PRF, for
every 0 < c′ < c. A function f ∈ JPTG makes O(nα) queries to G.

A restriction of Theorem 2 is that it dictates the resulting PRF family to use
at least Ω(

√
n) queries to the underlying PRG (since 1/2 ≤ α < 1). Here we

use cuckoo hashing to give a more versatile version of their theorem, allowing α
to be arbitrary, that also improves some of their parameters. Thus, our result
implies hardness-preserving PRF reduction, which is useful to construct PRFs
of low query complexity.

In the following we let GGMm to be the variant of the GGM construction that
on input of length m(n), makes m(n) calls to a length-doubling PRG on inputs
of length n, and outputs a string of length n.4

Corollary 1 (informal). Let c > 0 and 0 < α < 1, let H = {Hn : {0, 1}n �→
{0, 1}m(n)}n∈N and G = {G : {0, 1}n �→ {0, 1}n}n∈N be efficient Θ(nα + cn)-wise
independent function families. Assume that G is a length-doubling (2cn)-PRG,
then PP(H,G,GGMG

m) is a (2Ω(nα), 2c
′n, 2c

′n)-PRF, for every 0 < c′ < c, and
m(n) = O(nα).

Note that f ∈ PP(H,G,GGMG
m) makes O(nα) queries to G. Again, using

ADW(H,G,GGMG
m) (with different H and G), we actually get stronger result

(see Corollary 4). We refer to Corollary 4 for a more elaborate comparison be-
tween the construction of [16] and our construction.

Independently and concurrently with this work, Chandran and Garg [9]
showed that a variant of the construction of [16] achieves similar security param-
eters to [16] and also works for 2n

α

queries for any 0 < α < 1/2. The construction
of [9], however, outputs only n2α bits, as opposed to n bits as in the construction
of [16] and as in our construction.

From Non-adaptive to Adaptive PRF. Constructing adaptive PRFs from
non-adaptive ones can be done using general techniques; for instance, using
the PRG-based construction of Goldreich et al. [14] or the synthesizers based
construction of Naor and Reingold [25]. These constructions, however, make
(roughly) n calls to the underlying non-adaptive PRF (where n is the input
length). Recently, Berman and Haitner [6] showed how to perform this security
uplifting at a much lower price: the adaptive PRF makes only a single call to the
non-adaptive PRF. The drawback of their construction, however, is a significant
degradation in the security: assuming the underlying function is a non-adaptive
t-PRF, then the resulting function is an (adaptive) O(t1/3)-PRF. The reason for
this significant degradation in the security is the birthday attack we mentioned
earlier.

We present a reduction from non-adaptive to adaptive PRFs that preserves
the security of the non-adaptive PRF. The resulting adaptive PRF makes only
two calls to the underlying non-adaptive PRF.

4 GGMm is a variant of the standard GGM function family, that on input of length
m(n) uses seed of length n for the underlying generator, rather than seed of length
m(n) (see Proposition 1 for the formal definition).
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Theorem 3 (informal). Let t be a polynomial-time computable integer func-
tion, let H = {Hn : {0, 1}n �→ [4t(n)]{0,1}n}n∈N (where [4t(n)]{0,1}n are the first
4t(n) elements of {0, 1}n) and G = {Gn : {0, 1}n �→ {0, 1}n}n∈N be efficient
O(log t(n))-wise independent function families, and let F be a length-preserving
non-adaptive t(n)-PRF. Then PP(H,G,F) is a length-preserving (t(n)/4)-PRF.

As before, we actually get stronger result using ADW(H,G,F) (with different
H and G. See Theorem 9).

1.4 More Related Work

Bellare et al. [5] introduced a paradigm for using PRFs in the symmetric-key
settings that, in retrospect, is similar to cuckoo hashing. Assume two parties,
who share a secret function f , would like to use it for (shared-key) encryption.
The ‘textbook’ (stateless) solution calls for the sender to choose r at random and
send (r, f(r)⊕M) to the receiver, where M is the message to be encrypted. This
proposal breaks down in case the sender chooses the same r twice (in two different
sessions with different messages). Thus, the scheme is subject to the birthday
attack and the length parameters should be chosen accordingly. This requires the
underlying function to have large domain. Instead, [5] suggested choosing t > 1
values at random, and sending (r1, . . . , rt, f(r1) ⊕ · · · ⊕ f(rt) ⊕M). They were
able to show a much better security then the single r case. They also showed
a similar result for message authentication. Our domain extension results (see
Section 4) improve upon the results of [5].

The issue of transforming a scheme that is only resilient to non-adaptive
attack into one that is resilient to adaptive attacks has received quite a lot of
attention in the context of pseudorandom permutations (or block ciphers). Mau-
rer and Pietrzak [22] showed that starting from a family of permutations that is
information-theoretic secure against non-adaptive attacks,5 if two independently
chosen members of the family are composed, then the result is a permutation
secure against adaptive attacks (see [22] for the exact formulation). On the other
hand, Pietrzak [32] showed that this is not necessarily the case for permutations
that are randomly looking under a computational assumption (see also [23, 33])
(reminding us that translating information theoretic results to the computational
realm is a tricky business).

Paper Organization

Basic notations and formal definitions are given in Section 2. Section 3 is where
we formally define the hashing paradigm of [27] and of [3], and show how to
extend their results to hold against adaptive adversaries. Our domain extension
is described in Section 4, and the improved non-adaptive to adaptive reduction
is described in Section 5.

5 That is, secure against (non-adaptive) unbounded attackers.
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2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We use calligraphic letters to
denote sets, uppercase for random variables, and lowercase for values. Let ‘||’
denote string concatenation. For an integer t, let [t] = {1, . . . , t}. For a set S and
integer t, let S≤t = {s ∈ S∗ : |s| ≤ t ∧ s[i] �= s[j] ∀1 ≤ i < j ≤ |s|}, and let
[t]S be the first t elements (in increasing lexicographic order) of S (equal to S
in case |S| < t). For integers n and 
, let Πn,� stands for the set of all functions
from {0, 1}n to {0, 1}�, and let Πn = Πn,n.

We let poly denote the set all polynomials, and let pptm denote the set of
probabilistic algorithms (i.e., Turing machines) that run in strictly polynomial
time. Given a random variable X , we write X(x) to denote Pr[X = x], and
write x ← X to indicate that x is selected according to X . Similarly, given a
finite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. The statistical distance of two distributions P and Q over
a finite set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| =
1
2

∑
u∈U |P (u)−Q(u)|.

2.2 Pseudorandom Generators

Definition 1 (Pseudorandom Generators). A polynomial-time function
G : {0, 1}n �→ {0, 1}�(n) is (t(n), ε(n))-PRG, if 
(n) > n for every n ∈ N (G
stretches the input), and∣∣Prx←{0,1}n [D(G(x)) = 1]− Pry←{0,1}�(n) [D(y) = 1]

∣∣ ≤ ε(n)

for every algorithm (distinguisher) D of running time t(n) and large enough n.

2.3 Function Families

Operating on Function Families. We consider two natural operation on
function families.

Definition 2 (composition of function families). Let F1 : D1 �→ R1 and
F2 : D2 �→ R2 be two function families with R1 ⊆ D2. The composition of F1

with F2, denoted F2 ◦ F1, is the function family {(f2, f1) ∈ F2 × F1}, where
(f2, f1)(x) := f2(f1(x)).

Definition 3 (XOR of function families). Let F1 : D �→ R1 and F2 : D �→
R2 be two function families with R1,R2 ⊆ {0, 1}�. The XOR of F1 with
F2, denoted F2

⊕
F1, is the function family {(f2, f1) ∈ F2 × F1}, where

(f2, f1)(x) := f2(x)⊕ f1(x).
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Function Family Ensembles. A function family ensemble is an infinite set
of function families, whose elements (families) are typically indexed by the set
of integers. Let F = {Fn : Dn �→ Rn}n∈N stands for an ensemble of function
families, where each f ∈ Fn has domain Dn and its range contained in Rn. Such
ensemble is length preserving, if Dn = Rn = {0, 1}n for every n. We naturally
extend Definitions 2 and 3 to function family ensembles.

For function family ensemble to be useful, it has to have an efficient sampling
and evaluation algorithms.

Definition 4 (efficient function family ensembles). A function family en-
semble F = {Fn : Dn �→ Rn}n∈N is efficient, if the following hold:

Efficient sampling. F is samplable in polynomial-time: there exists a pptm

that given 1n, outputs (the description of) a uniform element in Fn.
Efficient evaluation. There exists a deterministic algorithm that given x ∈ Dn

and (a description of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).

Many-Wise Independent Hashing

Definition 5 (k-wise independent families). A function family H =
{h : D �→ R} is k-wise independent (with respect to D and R), if

Prh←H[h(x1) = y1 ∧ h(x2) = y2 ∧ . . . ∧ h(xk) = yk] =
1

|R|k
,

for every distinct x1, x2, . . . , xk ∈ D and every y1, y2, . . . , yk ∈ R.

For every 
, k ∈ poly, the existence of efficient k(n)-wise independent family
ensembles mapping strings of length 
(n) to strings of length n is well known
([8, 35]). A simple and well known example of k-wise independent functions
is the collection of all polynomials of degree (k − 1) over a finite field. This
construction has small size, and each evaluation of a function at a given point
requires k operations in the field. Starting with Siegel [34], there has been quite
a lot of attention devoted to the question of whether it is possible to come up
with constructions that require much less than k operations per evaluation (see
Section 1.2).

As a side remark we mention that a k-wise independent families (as defined
in Definition 5) look random for k-query distinguishers, both non-adaptive and
adaptive ones. On the other hand, almost k-wise independent families6 are only
granted to be resistant against non-adaptive distinguishers. Yet, the result pre-
sented in Section 3 yields that, in some cases, the adaptive security of the latter
families follows from their non-adaptive security.

6 Formally, a function family H = {h : D �→ R} is (ε, k)-wise indepen-
dent if for any x1, . . . , xk ∈ D and for any y1, . . . , yk ∈ R it holds that∣∣∣Prh←H[h(x1) = y1 ∧ · · · ∧ h(xk) = yk]− |R|−k

∣∣∣ ≤ ε. We call a family of functions

an almost k-wise independent family, if it is (ε, k)-wise independent for some small
ε > 0.
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2.4 Pseudorandom Functions

Definition 6 (Pseudorandom Functions). An efficient function family en-
semble F = {Fn : {0, 1}n �→ {0, 1}�(n)}n∈N is an (adaptive) (q(n), t(n), ε(n))-
PRF, if ∣∣Prf←Fn [D

f (1n) = 1]− Prπ←Πn,�(n)
[Dπ(1n) = 1]

∣∣ ≤ ε(n)

for every q(n)-query oracle-aided algorithm (distinguisher) D of running time
t(n) and large enough n. If q(n) is only bounded by t(n), then F is called
(t(n), ε(n))-PRF. In addition, if we limit D above to be non-adaptive (i.e., it
has to write all his oracle calls before making the first call), then F is called
non-adaptive (t(n), ε(n))-PRF. Finally, The ensemble F is a t-PRF, if it is a
(t, 1/t)-PRF according to the above definition (where the same conventions are
also used for non-adaptive PRFs).

3 From Non-adaptive to Adaptive Hashing

In this section we describe a general transformation of non-adaptive secure func-
tion families with a certain combinatorial property into adaptive secure ones. We
note that the transformations defined in this section cannot be applied directly
to (non-adaptive) PRFs, since we have no reason to assume that such families
posses this property (alternatively, see Section 5 for the transformation from
non-adaptive to adaptive PRFs).

Our framework can be used to prove that for certain function families, adap-
tive distinguishers are subject to the same distinguishing bound of non-adaptive
ones. Specifically, it deals with constructions where the randomness can be parti-
tioned into two (non empty) parts U and V and there exists some bad event that
is defined only over the U part for a given subset of the domain (the queries).
In addition, if the bad event does not happen, we require that the resulting
output will be uniform over the subset of queries. We begin with a definition of
monotone sets.

Definition 7 (monotone sets). A set M ⊆ S∗ × T is left-monotone, if for
every (s1, t) ∈ M and every s2 ∈ S∗ that has s1 as a prefix, it holds that
(s2, t) ∈M.

Next, we formally state the lemma that is the basis of our framework. The
lemma deals with a construction of a function family F that can be defined
as F = F(U ,V) where U and V are arbitrary non-empty sets. Intuitively, it
states that assuming there exists a bad event BAD that can be defined over the
inputs and the U part (i.e, independently of the V part) that happens with small
probability, and conditioning on that BAD does not happen, we know that F is
uniform over subsets of the range of size that is the number of queries, then we
can say that the function family F is resistant against adaptive adversaries.
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Lemma 1. Let F = F(U ,V) be a function family of the form {fu,v : D �→
R}(u,v)∈U×V , where U and V are arbitrary non-empty sets, let t ∈ N and let
BAD ⊆ D≤t ×U be a left-monotone set. Assume that for every q ∈ D≤t it holds
that

1.
(
f(q1), . . . , f(q|q|)

)
f←{fu,v : v∈V}

is uniform over R|q| for every u ∈ U such

that (q, u) �∈ BAD, and

2. Pru←U [(q, u) ∈ BAD] ≤ ε,

then for any t-query adaptive algorithm D, it holds that∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π [Dπ = 1]
∣∣∣ ≤ ε

where Π is the set of all functions from D to R.

Lemma 1 is a special case of a result given in [17, Theorem 12] (which closes a
gap in the work of [21]), and its direct proof can be found in the full version of
this paper.

3.1 Instantiation with the Pagh and Pagh [27] Function Family

In this section we instantiate the framework with the function family of Pagh
and Pagh [27]. One advantage of this construction is the relative simplicity of
description. We begin by describing their method of combining function families.

Definition 8 (The Pagh and Pagh [27] function family). Let H be a func-
tion family from D to S, let G be a function family from D to R and let F be
a function family from S to R. Define the function family PP(H,G,F) from D
to R as

PP(H,G,F) := (F ◦ H)⊕ (F ◦ H)⊕ G.

For h1, h2 ∈ H, let PPh1,h2(G,F) := (F ◦ h1)⊕ (F ◦ h2)⊕ G.

Pagh and Pagh [27] showed that when instantiated with the proper function
families, the above function family has the following properties:

Theorem 4 ([27]). Let t be an integer, let H = {h : D �→ [4t]D} and G =
{g : D �→ R} be function families, and let Π be the all function family from D
to R. Then for every k, t ∈ N there exists left-monotone set BAD ⊆ D≤t ×H2,
such that the following holds for every q ∈ D≤t:

1. Assuming that G is k-wise independent over the elements of q, then(
f(q1), . . . , f(q|q|)

)
f←PPh1,h2

(G,Π)
is uniform over R|q| for every u ∈ U

such that (q, u) �∈ BAD.
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2. Assuming that H is k-wise independent over the elements of q, then
Pru←H2 [(q, u) ∈ BAD] ≤ t/2Ω(k).7

What Pagh and Pagh [27] concluded is that for (the many) applications where
the analysis is applied to a static set it is safe to use this family. However, as we
can see, the function family PP(H,G, Π) is not only closed to being uniform in
the eyes of a non-adaptive distinguisher, but also allows us to apply Lemma 1
to deduce its security in the eyes of adaptive distinguishers. By plugging in
Theorem 4 into the general framework lemma (Lemma 1), we get the following
result:

Lemma 2. Let H, G and Π be as in Theorem 4, and let D be an adaptive,
t-query oracle-aided algorithm. Then∣∣Prf←PP(H,G,Π)[D

f = 1]− Prπ←Π [Dπ = 1]
∣∣ ≤ t/2Ω(k).

Proof. Let U = H×H, V = Π ×Π ×G. For (h1, h2) ∈ U and (π1, π2, g) ∈ V , let
F(h1,h2),(π1,π2,g) = π1 ◦ h1 ⊕ π2 ◦ h2 ⊕ g, and let F = {Fu,v : D �→ R}(u,v)∈U×V .
Finally, let BAD be the set BAD of Theorem 4. We prove the lemma showing
that the above sets meet the requirements stated in Lemma 1.

Item 1 of Theorem 4 assures that the first property of Lemma 1 is satisfied,
and according to Item 2 of Theorem 4 we set ε of Lemma 1 to be t/2Ω(k), and
thus the second property is also satisfied. Hence, applying Lemma 1 with respect
to the above sets, concludes the proof of the lemma. �

3.2 Instantiation with the Aumüller et al. [3] Function Family

We now explore instantiating the framework with the function families of
Aumüller et al. [3]. The resulting families enjoy shorter description length and
invoking them require less combinatorial work than [27] based families discussed
above. On the other hand, describing them on paper is a bit more complicated.
The function family of Aumüller et al. [3] (building upon Dietzfelbinger and
Woelfel [11]) follows the same basic outline as the [27] function family, but uses
more complex hash functions. Recall that the members of the Pagh and Pagh
[27] function family PP(H,G,F) are of the form (f1 ◦ h1) ⊕ (f2 ◦ h2) ⊕ g, for
f1, f2 ∈ F , h1, h1,∈ H and g ∈ G. In the family ADW(H,G,F) described below,
the role of h1, h2 and g is taken by some variant of tabulation hashing (and not
taken from a relatively high k-wise independent family as in [27]). Specifically,
at the heart of these functions lies a function of the form:

ah,g,M (x) :=

⎛⎝h(x) +
∑

1≤j≤z
M [gj(x), j]

⎞⎠ mod m

7 The function family we consider above (i.e., PP) is slightly different than the one
given in [27]. Their construction maps element x ∈ D to F1[h1(x)]⊕F2[h2(x)]⊕ g(x),
where F1 and F2 are uniformly chosen vectors from Rt, h1, h2 : D �→ [t] are uniformly
chosen from a function family H and g : D �→ R is chosen uniformly from a function
family G. Yet, the correctness of Theorem 4 follows in a straightforward manner from
[27] original proof (specifically from Lemma 3.3 and 3.4).
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where M ∈ (Zm)�×z is a 
× z matrix, g = (g1, · · · , gz) is a list of z functions
where gj : D �→ Z� and h : D �→ Zm. The matrix M will be chosen at random
(sometimes actually pseudorandomly) and the gj ’s and h from a relatively low
independence family. In addition, unlike in Pagh and Pagh [27], the functions
are chosen in a correlated manner (i.e., , sharing the same function vector g).

In the rest of this section, we formally define the hash function family of
Aumüller et al. [3], state their (non-adaptive) result, and apply Lemma 1 to get
an adaptive variant of their result.

Definition 9 (The Aumüller et al. [3] function family). For z ∈ N,
for functions h1, h2, h3 : D �→ Zm and f1, f2 : D �→ R, a function vector
g = (g1, · · · , gz), where gj : D �→ Z� for each 1 ≤ j ≤ z, and matrices
M1,M2,M3 ∈ (Zm)�×z, define the function adwM1,M2,M3,h1,h2,h3,g,f1,f2 from D
to R as

adwM1,M2,M3,h1,h2,h3,g,f1,f2 := (f1 ◦ aDh1,g,M1
)⊕ (f2 ◦ aDh2,g,M2

)⊕ aRh3,g,M3
, (2)

where aSh,g,M (x), for a set S, is the (ah,g,M (x))th element of S (in lexicographic

order), where ah,g,M (x) :=
(
h(x) +

∑
1≤j≤z M [gj(x), j]

)
mod m.

For function families H = {h : D �→ Zm} and F = {f : D �→ R}, and
M1,M2, h1, h2, g as above, let

ADWM1,M2,h1,h2,g(H,F) := {adwM1,M2,M3,h1,h2,h3,g,f1,f2 : (3)

M3 ∈ (Zm)�×z, h3 ∈ H, f1, f2 ∈ F}

Finally, for function family G = {g : D �→ Z�}, and H,F as above, let

ADWz(H,G,F) := {adwM1,M2,M3,h1,h2,h3,g,f1,f2 : (4)

M1,M2,M3 ∈ (Zm)�×z, h1, h2, h3 ∈ H, g ∈ Gz , f1, f2 ∈ F}.

Aumüller et al. [3] proved the following result with respect to the above function
family.

Theorem 5 ([3]). The following holds for any t, s ∈ N and ζ, c1, c2 > 0: let
m = (1 + ζ)t, δ = c1/ log t, 
 = tδ, k = c2 · s · log t and z = �(s+ 2)/(c1 · c2 · s)�.
Let H = {h : D �→ Zm} and G : {g : D �→ Z�} be 2k-wise independent hash
families, and let Π be the all function family from D to R.

Then for t ∈ N there exists a left-monotone set BAD ⊆ D≤t ×(
(Zm)2�×z ×H2 × Gz

)
, such that the following holds for every q ∈ D≤t:

1.
(
f(q1), . . . , f(q|q|)

)
f←ADWu(H,Π)

is uniform over R|q| for every u ∈
(Zm)2�×z ×H2 × Gz such that (q, u) �∈ BAD, and

2. Pru←(Zm)2�×z×H2×Gz [(q, u) ∈ BAD] ≤ 1/ts+1.

That is, for the right choice of parameters, the function family ADWz(H,G,F) is
not only closed to being uniform in the eyes of a non-adaptive distinguisher, but
also allows us to apply Lemma 1 to deduce its security in the eyes of adaptive
distinguishers. Indeed, by plugging in Theorem 5 into the general framework
lemma (Lemma 1), we get the following result:
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Lemma 3. Let s, z, H, G and Π be as in Theorem 5 and let D be an adaptive,
t-query oracle-aided algorithm. Then∣∣Prf←ADWz(H,G,Π)[D

f = 1]− Prπ←Π [Dπ = 1]
∣∣ ≤ 1/ts+1.

Proof. Let U = (Zm)�×z×(Zm)�×z×H×H×Gz, V = (Zm)�×z×Π×Π×H. For
(M1,M2, h1, h2, g) ∈ U and (M3, π1, π2, h) ∈ V , let F(M1,M2,h1,h2,g),(M3,π1,π2,h) =
(π1 ◦ ah1,g,M1)⊕ (π2 ◦ ah2,g,M2)⊕ ah,g,M3 , and let F = {Fu,v : D �→ R}(u,v)∈U×V .
Finally, let BAD be the set BAD of Theorem 5. We prove the lemma showing
that the above sets meet the requirements stated in Lemma 1.

Item 1 of Theorem 5 assures that the first property of Lemma 1 is satisfied,
and according to Item 2 of Theorem 5 we set ε of Lemma 1 to be 1/ts+1, and
thus the second property is also satisfied. Hence, applying Lemma 1 concludes
the proof of the lemma. �

We note that for large enough t, in contrast to the function family using PP, us-
ing ADW we get meaningful results even when using an underlying k = O(log t)-
wise independent family.

Remark 1. In the rest of the paper we mostly apply Lemma 3 with the param-
eters stated in Theorem 5. Different choice of parameters can be used to get
different results. For example, using larger “random tables” (e.g., δ = 1/2), we
improve the result of Jain et al. [16] (see Section 4.1).

4 Extending the Domain of a PRF

In this section we show how to apply the constructions of Section 3, inspired by
cuckoo hashing, in order to extend a domain of a given PRF F to an arbitrary
size one.

Let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families
{Pu,v : Dn �→ Rn}(u,v)∈Un×Vn , where Un and Vn are some non-empty sets as
described in Section 3. We begin by showing that P(U ,VF) is computationally
indistinguishable from P(U ,VΠ), where VF denotes that V is implemented us-
ing pseudorandom functions and VΠ denotes that V is implemented using truly
random functions.8 In the sequel, we assume that V is implemented using 2 calls
to the underlying functions (as this is the case in the actual constructions we
work with).

Lemma 4. Let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function fami-
lies {Pu,v : Dn �→ Rn}(u,v)∈Un×Vn, where Un and Vn are arbitrary sets, Π =
{Πn : Sn �→ Rn}n∈N, where Πn is the set of all functions from Sn to Rn, and

8 Namely, in case the implementation of PP is used, then U = H × H, VF = F ×
F × G and VΠ = Π × Π × G. In case the implementation of ADWz is used, then
U = (Zm)�×z × (Zm)�×z × H × H × Gz, VF = (Zm)�×z × F × F × H and VΠ =
(Zm)�×z ×Π ×Π ×H.
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F = {Fn : Sn �→ Rn}n∈N be an efficient function family. Then for every q(n)-
query oracle-aided distinguisher D of running time t(n), there exists p ∈ poly

and a q(n)-query distinguisher D̂ of running time t(n) + p(n)q(n), with∣∣Prf←Fn [D̂
f (1n) = 1]− Prπ←Πn [D̂

π(1n) = 1]
∣∣

≥ 1

2
·
∣∣Prf←P(Un,VFn

n )[D
f (1n) = 1]− Prf←P(Un,VΠn

n )[D
f (1n) = 1]

∣∣,
for every n ∈ N.

The proof of this lemma can be found in the full version of this paper.
Plugging in a specific function family P (e.g., PP or ADW), we get domain

extension for a PRF. Specifically, using Lemma 2 we get the following theorem.

Theorem 6 (Restating Theorem 1). Let H = {Hn : {0, 1}�(n) �→
{0, 1}m(n)}n∈N and G = {Gn : {0, 1}�(n) �→ {0, 1}s(n)}n∈N be ef-
ficient k(n)-wise independent function family ensembles, and let
F = {Fn : {0, 1}m(n) �→ {0, 1}s(n)}n∈N be a (q(n), t(n), ε(n))-PRF.
Then PP(H,G,F) = {PP(Hn,Gn,Fn) : {0, 1}�(n) �→ {0, 1}s(n)}n∈N is a
(q(n), t(n)−p(n)q(n), 2ε(n)+q(n)/2Ω(k(n)))-PRF, where p ∈ poly is determined
by the evaluation and sampling time of H, G and F and q(n) ≤ 2m(n)−2.9

Notice that in order for Theorem 6 to be useful, we have to set k(n) =
Ω(log q(n)). Plugging in Lemma 3 we get the following theorem.

Theorem 7. Let s ≥ 0, z, H = {Hn : {0, 1}�(n) �→ {0, 1}m(n)}n∈N,
G = {Gn : {0, 1}n �→ {0, 1}�(n)}n∈N be as defined in Theorem 5, and let
F = {Fn : {0, 1}m(n) �→ {0, 1}s(n)}n∈N be a (q(n), t(n), ε(n))-PRF. Then
ADWz(H,G,F) = {ADWz(Hn,Gn,Fn) : {0, 1}�(n) �→ {0, 1}s(n)}n∈N is a
(q(n), t(n) − p(n)q(n), 2ε(n) + 1/q(n)s+1)-PRF, where p ∈ poly is determined
by the evaluation and sampling time of H, G and F and q(n) ≤ 2m(n)/(1 + ζ)
where ζ is from Theorem 5.

Notice that we used the setting of parameters of Theorem 5. In particular, since
the matrices that are sampled in the definition of ADWz are of constant size,
they can be embedded in the key of the PRF.

4.1 Hardness Preserving PRG to PRF Reductions

An important corollary of Theorem 6 is a security preserving reduction from
pseudorandom generators to pseudorandom functions.

Definition 10 (PRG to PRF reductions). An oracle-aided function family
ensemble F is a (v, q, t, ε)-PRG-to-PRF reduction, if the following holds:

1. For any oracle G and n ∈ N, a function f ∈ FG
n makes at most v(n) oracle

calls per invocation.

9 The -2 factor is due to the definition of H is Theorem 4.
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2. Assuming that G is a length-doubling (tG, εG)-PRG of evaluation time eG,
then FG is a (q(tG, εG, eG), t(tG, εG, eG), ε(tG, εG, eG))-PRF.

The following fact easily follows from [14].

Proposition 1 ([14]). For any integer function m, there exists an efficient
oracle-aided function family ensemble, denoted GGMm, that maps strings of
length m(n) to strings of length n, and is a (m(n), q(n), tG(n) − m(n) · q(n) ·
eG(n),m(n) · q(n) · εG(n))-PRG-to-PRF reduction for any integer function q.10

Combining Proposition 1 with Theorem 6 yields the following result.

Corollary 2. Let H = {Hn : {0, 1}n �→ {0, 1}m(n)}n∈N and G = {Gn : {0, 1}n �→
{0, 1}n}n∈N be efficient k(n)-wise independent function family ensembles, then
the oracle-aided function ensemble PP(H,G,GGMG

m) is a (m(n), q(n), tG(n) −
p(n) ·m(n) · q(n), 2m(n) · q(n) · εG(n) + q(n)/2Ω(k(n)))-PRG-to-PRF reduction,
where p ∈ poly is determined by the evaluation and sampling time of H, G and
G, and q(n) ≤ 2m(n)−2.

For settings of interest, Corollary 2 yields the following result.

Corollary 3 (Restating Corollary 1). Let c > 0, 0 < δ < 1 and 0 <
α < δ, and let H and G be as in Corollary 2, with respect to k(n) =
Θ(nα + cnδ) (the hidden constant is universal). Then PP(H,G,GGMG

m) is an

(O(nα), 2n
α

, 2c
′nδ

, 2−c
′nδ

)-PRG-to-PRF reduction, for every 0 < c′ < c.

Proof. Let t(n) = tG(n) − p(n) ·m(n) · q(n) and ε(n) = 2m(n) · q(n) · εG(n) +
q(n)/2Ω(k(n)). Set k(n) = Θ(nα + cnδ), with an appropriate constant, such that

q
2Ω(k) < 2−cn

δ

, and thus ε(n) < 21+log(nα+2)+nα−cnδ

+ 2−cn
δ

. Let c′′ ∈ N such

that nc′′ > p(n) for large enough n (where p is of Corollary 2), and thus it holds

that t(n) > 2cn
δ−nc′′2n

α

(nα+2). Hence, for every c′ < c, we have ε(n) < 2−c
′nδ

and t(n) > 2c
′nδ

for large enough n. �

Combining Proposition 1 with Theorem 7 yields the following result.

Corollary 4. Let s ≥ 0, z, H = {Hn : {0, 1}n �→ {0, 1}m(n)}n∈N, G =
{Gn : {0, 1}n �→ {0, 1}�(n)}n∈N be as defined in Theorem 5, then the oracle-
aided function ensemble ADWz(H,G,GGMG

m) is a (m(n), q(n), tG(n) − p(n) ·
m(n) · q(n), 2m(n) · q(n) · εG(n) + 1/q(n)s+1)-PRG-to-PRF reduction, where
p ∈ poly is determined by the evaluation and sampling time of H, G and G,
and q(n) ≤ 2m(n)/(1 + ζ) where ζ is from Theorem 5.

10 GGMm is a variant of the standard GGM function family, that on input of lengthm(n)
uses seed of length n for the underlying generator, rather than seed of length m(n).
Formally, GGMm is the function family ensemble {GGMm(n)}n∈N, where GGMm(n) =

{fr}r∈{0,1}n , and for r ∈ {0, 1}n, the oracle-aided function fr : {0, 1}m(n) �→ {0, 1}n
is defined as follows: given oracle access to a length-doubling function G and input
x ∈ {0, 1}m(n), fG

r (x) = rx, where rx is recursively defined by rε = r, and, for a
string w, rw||0||rw||1 = G(rw).



56 I. Berman et al.

Settling the Parameters. In the construction given in Corollary 3, assuming

2n
1/2 ≤ q < 2n, we need to set k to be Θ(n). Higher independence means that

we need to use a longer key and the evaluation time is larger. More accurately,
the evaluation time of our construction is lower bounded by the evaluation time
of the Θ(n)-wise independent hash function (that may or may not be larger
than Θ(log(q) · eG)). Moreover, the key length must be Θ(n2), but this can be
circumvented by extending a short key to a long one using GGM. This costs
additional Θ(n · eG) time. As we have stated in Corollary 3, our construction

gives a (O(nα), 2n
α

, 2c
′nδ

, 2c
′nδ

)-PRG-to-PRF reduction for every 0 < c′ < c,
and works for any 0 < α < δ, while the construction of JPT only works for
δ/2 ≤ α < δ.

In the construction given in Corollary 4, assuming 2n
1/2 ≤ q < 2n, we can get

better results (that also improve upon Jain et al. [16]). Assume for simplicity

of the exposition that q = 2n
1/2

. As opposed to the specification of parameters
in Theorem 5, we can use long random tables of size Θ(

√
q) (i.e., δ = 1/2 in

Theorem 5), s = n/ log q and get that setting k = Θ(n1/2) is enough to get
error O(1/2n). The point is that the creation of the (long) tables that we need
in Theorem 5 (which so far were part of the key) can be done by applying
GGM on a short input key. This only increases the evaluation time by an addi-
tional Θ(log(q) · eG) term. In total, the evaluation time of our construction is
Θ(log(q) · eG).

5 From Non-adaptive to Adaptive PRF

In this section we show how to apply the Cuckoo Hashing based constructions
of Section 3 in order to come up with a construction of an adaptive PRF
from non-adaptive one in a security preserving manner. As in Section 4, let
P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families {Pu,v : Dn �→
Rn}(u,v)∈Un×Vn , where Un and Vn are some non-empty sets as described in Sec-
tion 3. We begin by showing that P(U ,VF) is computationally indistinguishable
from P(U ,VΠ), where VF denotes that V is implemented using non-adaptive
pseudorandom functions and VΠ denotes that V is implemented using truly ran-
dom functions (see also Footnote 8). In the sequel, we assume that V is imple-
mented using 2 calls to the underlying functions (as this is the case in the actual
constructions we work with).

For ease of notation, in the following we assume 
(n) = n (i.e., F is length
preserving).

Lemma 5. Let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families
{Pu,v : Dn �→ Rn}(u,v)∈Un×Vn , that is implementation of PP or ADW , where
Un and Vn are arbitrary sets, Π = {Πn : Dn �→ Rn}n∈N, where Πn is the set
of all functions from Dn to Rn, and F = {Fn : Dn �→ Rn} be an efficient
function family. Let ζ > 0 that depends on the instantiation of P.11 Then for

11 In case we use PP function family (Definition 8) then ζ = 3, and in case we use
ADW function family (Definition 9) then ζ is of Theorem 5.
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every q = q(n)-query, oracle-aided, adaptive distinguisher D of running time
t = t(n), there exists a (1 + ζ)q-query, non-adaptive, oracle-aided distinguisher

D̂ of running time p(n)t(n), with∣∣∣Prf←Fn [D̂
f (1n) = 1]− Prf←Πn [D̂

f (1n) = 1]
∣∣∣

≥ 1

2
·
∣∣∣Prf←P(Un,VFn

n )[D
f (1n) = 1]− Prf←P(Un,VΠn

n )[D
f (1n) = 1]

∣∣∣ ,
for every n ∈ N.

The proof of this lemma can be found in the full version of this paper.
Using Lemma 2 we immediately get the following theorem.

Theorem 8. Let q be a polynomial-time computable integer function, let H =
{Hn : {0, 1}n �→ [4q(n)]{0,1}n}n∈N and G = {Gn : {0, 1}n �→ {0, 1}n}n∈N be ef-
ficient (c log(q(n)))-wise independent function family ensembles, where c > 0
is universal, and let F = {Fn : {0, 1}n �→ {0, 1}�(n)}n∈N be a non-adaptive
(4q(n), p(n)t(n), ε(n))-PRF, where p ∈ poly is determined by the evaluation time
of q,H,G and F . Then PP(H,G,F) is an adaptive (q(n), t(n), 2ε(n) + 1/q(n))-
PRF.

Proof. Recall that in this case ε′(n) = q(n)/2Ω(c log(q(n))). Setting c such that
q(n)/2Ω(c log(q(n))) = 1/q(n) complete the proof. �

Theorem 8 yields the following simpler corollary.

Corollary 5 (Restatement of Theorem 3). Let q, H, G and p be as in
Theorem 8. Assuming F is a non-adaptive (p(n)t(n))-PRF, then PP(H,G,F)
is an adaptive (t(n)/4)-PRF.

Plugging in Lemma 3 we immediately get the following (similarly to Theorem 8):

Theorem 9. Let q be a polynomial-time computable integer function, let s ≥ 0,
z, H = {Hn : {0, 1}n �→ [(1 + ζ)q(n)]}, G = {Gn : {0, 1}n �→ {0, 1}�(n)}n∈N
be as defined in Theorem 5, and let F = {Fn : {0, 1}n �→ {0, 1}�(n)}n∈N be a
non-adaptive ((1 + ζ)q(n), p(n)t(n), ε(n))-PRF, where p ∈ poly is determined
by the evaluation time of q,H,G and F . Then ADWz(H,G,F) is an adaptive
(q(n), t(n), 2ε(n) + 1/q(n)s+1)-PRF.

Notice that in Theorem 9 we used the setting of parameters of Theorem 5. In
particular, since the matrices that are sampled in the definition of ADWz are
of constant size, we can embed them into the key of the PRF.
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Abstract. In this paper we put forward theBounded Player Model for se-
cure computation. In this new model, the number of players that will ever
be involved in secure computations is bounded, but the number of com-
putations is not a priori bounded. Indeed, while the number of devices and
people on this planet can be realistically estimated and bounded, the num-
ber of computations these deviceswill run can not be realistically bounded.
Further, we note that in the bounded player model, in addition to no a pri-
ori bound on the number of sessions, there is no synchronization barrier,
no trusted party, and simulation must be performed in polynomial time.

In this setting, we achieve concurrent Zero Knowledge (cZK) with
sub-logarithmic round complexity. Our security proof is (necessarily)
non-black-box, our simulator is “straight-line” and works as long as the
number of rounds is ω(1).

We further show that unlike previously studied relaxations of the
standard model (e.g., bounded number of sessions, timing assumptions,
super-polynomial simulation), concurrent-secure computation is still im-
possible to achieve in the Bounded Player model. This gives evidence
that our model is “closer” to the standard model than previously stud-
ied models, and study of this model might shed light on constructing
round efficient concurrent zero-knowledge in the standard model as well.

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [21], are a fundamental building block in cryptography. Loosely speaking,
a zero-knowledge proof is an interactive proof between two parties — a prover
and a verifier — with the seemingly magical property that the verifier does not
learn anything beyond the validity of the statement being proved. Subsequent to
their introduction, zero-knowledge proofs have been the subject of a great deal
of research, and have found numerous applications in cryptography.
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Concurrent Zero Knowledge. The original definition of zero knowledge is only
relevant to the “stand-alone” setting where security holds only if the protocol
runs in isolation. As such, unfortunately, it does not suffice if one wishes to run a
zero-knowledge proof over a modern network environment, such as the Internet.
Towards that end, Dwork, Naor and Sahai [16] initiated the study of cZK proofs
that remain secure even if several instances of the protocol are executed concur-
rently under the control of an adversarial verifier. Subsequent to their work, cZK
has been the subject of extensive research, with a large body of work devoted
to studying its round-complexity. In the standard model, the round-complexity
of cZK was improved from polynomial to slightly super-logarithmic [34,25,33].
In particular, the Õ(log k)-round construction of [33] nearly matches the lower
bound of Ω̃(log k) w.r.t. black-box simulation [11].

Despite a decade of research, the Õ(log k)-round construction of [33] is still
the most round-efficient cZK protocol known. Indeed, the lower bound of [11]
suggests that a breakthrough in non-black-box simulation techniques is required
to achieve cZK with sub-logarithmic round complexity.1

Round-efficient cZK in Relaxed Models: Bounded Concurrency. While the round-
complexity of cZK in the standard model still remains an intriguing open ques-
tion, a long line of work has been dedicated towards constructing round-efficient
cZK in various relaxations of the standard model.

An interesting relaxation of the standard model (and related to our setting)
that has been previously studied is the bounded-concurrency model [2], where an
a priori bound is assumed over the number of sessions that will ever take place
(in particular, this bound is known to the protocol designer). It is known how
to realize constant-round bounded cZK [2], and also constant-round bounded-
concurrent secure two-party and multi-party computation [31].

Even though our model can be seen as related to (and a generalization of)
the bounded concurrency model, the techniques used in designing round efficient
bounded concurrent zero-knowledge do not seem to carry over to our setting.
In particular, if there is even a single player that runs an unbounded number
of sessions, the simulation strategies in [2,31] breakdown completely. This seems
inherent because of the crucial difference this model has from our setting (which
can understood by observing that general concurrent secure computation is pos-
sible in the bounded concurrent setting but impossible in our setting).

Bare Public Key and Other Preprocessing Models. The zero-knowledge pre-
processing model was proposed in [24] in the stand-alone setting and in [13]
in the context of cZK. In [13], interaction is needed between all the involved
players in a preprocessing phase. Then, after a synchronization-barrier is passed,
the preprocessing is over and actual proofs start. Interactions in each phase can
take place concurrently, but the two phases can not overlap in time. An im-
proved model was later proposed in [10] where the preprocessing is required to

1 In this paper we only consider results based on standard complexity-theoretic and
number-theoretic assumptions; in particular, we not consider “non-falsifiable” as-
sumptions such as the knowledge of exponent assumption.



62 V. Goyal et al.

be non-interactive, and the model is called “Bare Public-Key” (BPK) model,
since the non-interactive messages played in the preprocessing can be consid-
ered as public announcements of public keys. In this model it is known how
to obtain constant-round concurrent zero knowledge with concurrent soundness
under standard assumptions [14,15,37,36].

The crucial restriction of the BPK model is that all players who wish to ever
participate in protocol executions must be fixed during the preprocessing phase,
and new players cannot be added “on-the-fly” during the proof phase. We do
not make such a restriction in our work and as such, the techniques useful in
constructing secure protocols in the BPK model have limited relevance in our
setting. In particular, constant round cZK is known to exist in the BPK model
using only black-box simulation, while in our setting, non-black-box techniques
are necessary to achieve sublogarithmic-round cZK.

Other Models. Round efficient concurrent zero-knowledge is known in a number
of other models as well (which do not seem to be directly relevant to our setting).
In the SPS model [30], the zero-knowledge simulator is allowed to run in super-
polynomial time, as opposed to running in polynomial time (as per the standard
definition of [21]). Indeed, this relaxation has yielded not only constant-round
cZK [30], but also concurrent-secure computation [26,12,18]. This stands in con-
trast to the standard model, where concurrent-secure computation is known to
be impossible to achieve [27] even with static input [5,1,19]. Other models where
constant round cZK (as well as concurrently secure computation) is known in-
clude the timing model [16], the common reference string [7,8] model, etc.

Our Question. While the above relaxations of the standard model have their
individual appeal, each of these models suffers from various drawbacks, either
w.r.t. the security guarantees provided (e.g., as in the case of the SPS model), or
w.r.t. the actual degree of concurrency tolerated (e.g., as in the case of the timing
model). Indeed, despite extensive amount of research over the last decade, the
round-complexity of cZK still remains open. In this work, we ask the question
whether it is possible to construct cZK protocols with sub-logarithmic round-
complexity in a natural model that does not suffer from the drawbacks of the
previously studied models; namely, it does not require any preprocessing, as-
sumes no trusted party or timing assumptions or an a priori bound on the
number of protocol sessions, and requires standard polynomial-time simulation
and standard complexity assumptions.

1.1 Our Results

In our work, we construct a concurrent (perfect) zero-knowledge argument sys-
tem with sub-logarithmic round-complexity in a mild relaxation of the standard
model; we refer to this as the Bounded Player model. In this model we only as-
sume that there is an a priori (polynomial) upper-bound on the total number of
players that may ever participate in protocol executions. We do not assume any
synchronization barrier, or trusted party, and the simulation must be performed
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in polynomial time. In particular, we do not assume any a priori bound on the
number of sessions, and achieve security under unbounded concurrency. As such,
our model can be viewed as a strengthening of the bounded-concurrency model.2

Below, we give an informal statement of our main result.

Theorem 1. Assuming dense crypto systems and claw-free permutations, there
exists an ω(1)-round concurrent perfect zero-knowledge argument system with
concurrent soundness in the Bounded Player model.3

Our security proof is (necessarily) non-black-box, and the simulator of our pro-
tocol works in a “straight-line” manner. Our result is actually stronger since we
only require a bound on the number of possible verifiers, while there is no restric-
tion on the number of provers. We prove concurrent soundness since sequential
and concurrent soundness are distinct notions in the Bounded Player model for
the same reasons as shown by [29] in the context of the BPK model.

We stress that while our model bears some resemblance to the BPK model,
known techniques from the BPK model are not applicable to our setting. In-
deed, these techniques crucially rely upon the presence of the synchronization
barrier between the pre-processing phase and the protocol phase, while such a
barrier is not present in our model. As such, achieving full concurrency in our
model is much harder and involves significantly different challenges. An impor-
tant problem left open by our work is the existence of a constant round con-
current zero-knowledge protocol in the bounded player model. Our techniques
(necessarily) require a super-constant number of rounds to keep the simulation
time polynomial.

We further show that the impossibility results of Lindell for concurrent-secure
computation [27] also hold in the Bounded Player model. This gives evidence
that the Bounded Player model is much closer to the standard model than
the previously studied models, and the study of this model might shed light
towards the goal of constructing round efficient concurrent zero-knowledge in
the standard model as well.

1.2 Our Techniques

Recall that in the Bounded Player model, the only assumption is that the total
number of players that will ever be present in the system is a priori bounded.
Then, an initial observation towards our goal of constructing sub-logarithmic
round cZK protocols is that the black-box lower-bound of Canetti et al. [11] is
applicable to our setting as well. Indeed, the impossibility result of [11] relies on

2 Note that an upper-bound on the total number of concurrent executions implies an
upper-bound on the total number of players as well.

3 We note that if one only requires statistical (as opposed to perfect) zero knowledge,
then the assumption on claw-free permutations can be replaced by collision-resistant
hash functions. We further note that our assumption on dense cryptosystems can
be further relaxed to trapdoor permutations by modifying our protocol to use the
coin-tossing protocol of Barak and Lindell [4].
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an adversarial verifier that opens a polynomial number 
(k) of sessions and plays
adaptively at any point of time, depending upon the transcript generated “so
far”. The same analysis works in the Bounded Player model, by assuming that
the adversarial verifier registers a new key each time a new session is played.
In particular, consider an adversarial verifier that schedules a session si to be
contained inside another session sj . In this case, a black-box simulator does not
gain any advantage in the Bounded Player model over the standard model. The
reason is that since the adversarial verifier of [11] behaves adaptively on the
transcript at any point, after a rewind the same session will be played with a
fresh new key, thus rendering essentially useless the fact that the session was
already solved before. Note that this is the same problem that occurs in the
standard model, and stands in contrast to what happens in the BPK model
(where identities are fixed in the preprocessing and therefore do not change over
rewinds).

From the above observation, it is clear that we must resort to non-black-box
techniques. Now, a natural approach to leverage the bound on the number of
players is to associate with each verifier Vi a public key pki and then design an
FLS-style protocol [17] that allows the ZK simulator to extract, in a non-black-
box manner, the secret key ski of the verifier and then use it as a “trapdoor”
for “easy” simulation. The key intuition is that once the simulator extracts
the secret key ski of a verifier Vi, it can perform easy simulation of all the
sessions associated with Vi. Then, since the total number of verifiers is bounded,
the simulator will need to perform non-black-box extraction only an a priori
bounded number of times (once for each verifier), which can be handled in a
manner similar to the setting of bounded-concurrency [2].

Unfortunately, the above intuition is misleading. In order to understand the
problem with the above approach, let us first consider a candidate protocol
more concretely. In fact, it suffices to focus on a preamble phase that enables
non-black-box extraction (by the simulator) of a verifier’s secret key since the
remainder of the protocol can be constructed in a straightforward manner fol-
lowing the FLS approach. Now, consider the following candidate preamble phase
(using the non-black-box extraction technique of [4]): first, the prover and veri-
fier engage in a coin-tossing protocol where the prover proves “honest behavior”
using a Barak-style non-black-box ZK protocol [2]. Then, the verifier sends an
encryption of its secret key under the public key that is determined from the
output of the coin-tossing protocol.

In order to analyze this protocol, we will restrict our discussion to the simpli-
fied case where only one verifier is present in the system (but the total number
of concurrent sessions are unbounded). At this point, one may immediately ob-
ject that in the case of a single verifier identity, the problem is not interesting
since the Bounded Player model is identical to the bare-public key model, where
one can construct four-round cZK protocols using rewinding based techniques.
However, simulation techniques involving rewinding do not “scale” well to the
case of polynomially many identities (unless we use a large number of rounds)
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and fail4. Moreover the use of Barak’s [2] straight-line simulation technique is
also insufficient since it works only when the number of concurrent sessions is
bounded (even when there is a single identity), but instead our goal is to obtain
unbounded concurrent zero knowledge. In contrast, our simulation approach is
“straight-line” for an unbounded number of sessions and scales well to a large
bounded number of identities. Therefore, in the forthcoming discussion, we will
restrict our analysis to straight-line simulation. In this case, we find it instructive
to focus on the case of a single identity to explain our key ideas.

We now turn to analyze the candidate protocol. Now, following the intuition
described earlier, one may think that the simulator can simply cheat in the
coin-tossing protocol in the “inner-most” session in order to extract the secret
key, following which all the sessions can be simulated in a straight-line manner,
without performing any additional non-black-box simulation. Consider, however,
the following adversarial verifier strategy: the verifier schedules an unbounded
number of sessions in such a manner that the coin-tossing protocols in all of these
sessions are executed in a “nested” manner. Furthermore, the verifier sends the
ciphertext (containing its secret key) in each session only after all the coin-tossing
protocols across all sessions are completed. Note that in such a scenario, the
simulator would be forced to perform non-black-box simulation in an unbounded
number of sessions. Unfortunately, this is a non-trivial problem that we do not
know how to solve. More concretely, note that we cannot rely on techniques
from the bounded-concurrency model since we cannot bound the total number
of sessions (and thus, the total number of messages across all sessions). Further,
all other natural approaches lead to a “blow-up” in the running time of the
simulator. Indeed, if we were to solve this problem, then we would essentially
construct a cZK protocol in the standard model, which remains an important
open problem that we do not solve here.

In an effort to bypass the above problem, our first idea is to use multiple (ω(1),
to be precise) preamble phases (instead of only one), such that the simulator is
required to “cheat” in only one of these preambles. This, however, immediately
raises a question: in which of the ω(1) preambles should the simulator cheat?
This is a delicate question since if, for example, we let the simulator pick one of
preambles uniformly at random, then with non-negligible probability, the simu-
lator will end up choosing the first preamble phase. In this case, the adversary
can simply perform the same attack as it did earlier playing only the first pream-
ble phase, but for many different sessions so that the simulator will still have
to cheat in many of them. Indeed, it would seem that any randomized oblivious
simulation strategy can be attacked in a similar manner by simply identifying
the first preamble phase where the simulator would cheat with a non-negligible
probability.

Towards that end, our key idea is to use a specific probability distribution
such that the simulator cheats in the first preamble phase with only negligible

4 Indeed when the simulator rewinds the adversarial verifier, there is a different view
and therefore the adversary will ask to play with new identities, making useless the
work done with the old ones, as it happens in the standard model.
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probability, while the probability of cheating in the later preambles increases
gradually such that the “overall” probability of cheating is 1 (as required). Fur-
ther, the distribution is such that the probability of cheating in the ith preamble
is less than a fixed polynomial factor of the total probability of cheating in
one of the previous i − 1 blocks. Very roughly speaking, this allows us to pre-
vent the adversary from attacking the first preamble where the simulator cheats
with non-negligible probability. More specifically, for any session, let us call the
preamble where the simulator cheats the “special” preamble. Further, let us
say that the adversary “wins” a session if he “stops” that session in the spe-
cial preamble before sending the ciphertext containing the verifier’s secret key.
Otherwise, the adversary “loses” that session. Then, by using the properties of
our probability distribution, we are able to show that the adversary’s proba-
bility of losing a session is less than 1/n times the probability of winning. As
a consequence, by careful choice of parameters, we are able to show that the
probability of the adversary winning more than a given polynomially bounded
number of sessions without losing any sessions w.r.t. any given verifier is negli-
gible. Once we obtain this fixed bound, we are then able to rely on techniques
from the bounded-concurrency model [2] to handle the bounded number of non-
black-box simulations. For the sake of brevity, the above discussion is somewhat
oversimplified. We refer the reader to the later sections for more details.

Impossibility of Concurrent-secure Computation. Once we have a cZK protocol
(as discussed above) in the Bounded Player model, it may seem that it should
be possible to obtain concurrent-secure computation as well by using techniques
from [31]. Unfortunately, this turns out not to be the case, as we discuss below.

The key technical problem that arises in the setting of secure computation
w.r.t. unbounded concurrency is the following. We cannot a priori bound the
total number of “output delivery messages” (across all sessions) to the adver-
sary; further, the session outputs cannot be “predicted” by the simulator before
knowing the adversary’s input. As such, known non-black-box simulation tech-
niques cannot handle these unbounded number of messages and they inherently
fail.5 We remark that the same technical issue, in fact, arises in the standard
model as well.

While the above argument only explains why known techniques fail, we can
also obtain a formal impossibility result. Indeed, it is not difficult to see that
the impossibility result of Lindell [27] also holds for the Bounded Player model.
(See the full version [22] for details.)

2 Preliminaries and Definitions

2.1 Bounded Player Model

In this paper, we consider a new model of concurrent security, namely, the
bounded player model, where we assume that there is an a priori (polynomial)

5 We note that this problem does not occur in the case of zero knowledge because the
adversary does not have any input, and the session outputs are fixed to be 1.
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upper bound on the total number of player that will ever be present in the sys-
tem. Specifically, let n denote the security parameter. Then, we will consider an
upper bound N = poly(n) on the total number of players that can engage in
concurrent executions of a protocol at any time. We assume that each player Pi

(i ∈ N) has an associated unique identity idi, and that there is an established
mechanism to enforce that party Pi uses the same identity idi in each protocol
execution that it participates in. We stress that such identities, do not have to
be established in advance. New players can join the system with their own (new)
identities, as long as the number of players does not exceed N .

We note that this requirement is somewhat similar in spirit to the bounded-
concurrency model [2,31], where it is assumed that the adversary cannot start
more than an a priori fixed number of concurrent executions of a protocol. We
stress, however, that in our model, there is no a priori bound on the total number
of protocol sessions that may be executed concurrently. In this respect, one can
view the Bounded Player model as a strengthening of the bounded-concurrency
model. Indeed, one can argue that while the number of devices and people on
this planet can be realistically estimated and bounded, the number of concurrent
protocol executions on these devices can not.

Implementing the Bounded Player model. We formalize the Bounded Player
model by means of a functionality FN

bp that registers the identities of the player
in the system. Specifically, a player Pi that wishes to participate in protocol
executions can, at any time, register an identity idi with the functionality FN

bp .
The registration functionality does not perform any checks on the identities that
are registered, except that each party Pi can register at most one identity idi,
and that the total number of identity registrations are bounded by N . In other
words, FN

bp refuses to register any new identities once N number of identities have

already been registered. The functionality FN
bp is formally defined in Figure 1.

Functionality FN
bp

FN
bp initializes a variable count to 0 and proceeds as follows.

– Register commands: Upon receiving a message (register, sid, idi) from
some party Pi, the functionality checks that no pair (Pi, id

′
i) is already recorded

and that count < N . If this is the case, it records the pair (Pi, idi) and sets
count = count+ 1. Other wise, it ignores the received message.

– Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some
party Pj or the adversary A, the functionality checks if some pair (Pi, idi)
is recorded. If this the case, it sends (sid, Pi, idi) to Pj (or A). Otherwise, it
returns (sid, Pi,⊥).

Fig. 1. The Bounded Player Functionality FN
bp
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In our constructions we will only require that the identities correspond to
values in the range of a one-way function. We note that in this particular case,
the functionality FN

bp bears much resemblance to the bulletin-board certificate
authority functionality [23], which suffices for obtaining authenticated channels
[9]. We finally remark that our model is also closely related to the Bare Public-
Key model, introduced by Canetti et al. [10]. However, we stress that unlike the
Bare Public-Key model, we do not assume any synchronization barrier between
the registration phase and the protocol computation phase. In particular, we
allow parties to register their identities even after the computation begins.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the Bounded
Player model. Our definition, given below, is an adaptation of the one of [33] to
the Bounded Player model, by also considering non-black-box simulation. Some
of the text below is taken verbatim from [33].

Let ppt denote probabilistic-polynomial time. Let 〈P, V 〉 be an interactive
argument for a language L. Consider a concurrent adversarial verifier V ∗ that,
given input x ∈ L, interacts with an unbounded number of independent copies
of P (all on the same common input x and moreover equipped with a proper
witness w), without any restriction over the scheduling of the messages in the
different interactions with P . In particular, V ∗ has control over the scheduling
of the messages in these interactions. Further, we say that V ∗ is an N -bounded
concurrent adversary if it assumes at most N verifier identities during its (un-
bounded) interactions with P .6

The transcript of a concurrent interaction consists of the common input x,
followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by viewP

V ∗(x, z,N) the random variable describing the
content of the random tape of the N -bounded concurrent adversary V ∗ with
auxiliary input z and the transcript of the concurrent interaction between P
and V ∗ on common input x.

Definition 1 (cZK in Bounded Player model). Let 〈P, V 〉 be an interac-
tive argument system for a language L. We say that 〈P, V 〉 is concurrent zero
knowledge in the Bounded Player model if for every N -bounded concurrent non-
uniform ppt adversary V ∗, there exists a ppt algorithm S, such that the fol-
lowing ensembles are computationally indistinguishable,
{viewP

V ∗(x, z,N)}x∈L,z∈{0,1}∗,N∈poly(n) and {S(x, z,N)}x∈L,z∈{0,1}∗,N∈poly(n).

2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our cZK
construction.

6 Thus, V ∗ can open multiple sessions with P for every unique verifier identity.
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Perfectly Hiding Commitment Scheme. In our constructions, we will make use of
a perfectly hiding string commitment scheme, denotedCom. For simplicity of ex-
position, we will make the simplifying assumption that Com is a non-interactive
perfectly hiding commitment scheme (even though such a scheme cannot exist).
In reality, Com would be taken to be a 2-round commitment scheme, which can
be based on collections of claw-free permutations [20]. Unless stated otherwise,
we will simply use the notation Com(x) to denote a commitment to a string x,
and assume that the randomness (used to create the commitment) is implicit.

Perfect Witness Indistinguishable Argument of Knowledge. We will also make
use of a perfect witness-indistinguishable argument of knowledge system for all
of NP in our construction. Such a scheme can be constructed, for example, by
parallel repetition of the 3-round Blum’s protocol for Graph Hamiltonicity [6]
instantiated with a perfectly hiding commitment scheme. We will denote such
an argument system by 〈PpWI, VpWI〉.

Perfect Witness Indistinguishable Universal Argument. In our construction, we
will use a perfect witness-indistinguishable universal argument system, denoted
〈PpUA, VpUA〉. Such an argument system can be constructed generically from
a (computational) witness-indistinguishable universal argument pUA by using
techniques of [32]. Specifically, in protocol 〈PpUA, VpUA〉, the prover P and veri-
fier V first engage in an execution of pUA, where instead of sending its messages
in the clear, P commits to each message using a perfectly hiding commitment
scheme. Finally, P and V engage in an execution of a perfect zero knowledge ar-
gument of knowledge where P proves that the “decommitted” transcript of pUA
is “accepting”. The resulting protocol is still a “weak” argument of knowledge.

Perfect (Bounded-Concurrent) Zero-Knowledge. Our cZK argument crucially
uses as a building block, a variant of the bounded cZK argument of Barak
[2]. Similarly to [32], we modify the protocol appropriately such that it is per-
fect bounded cZK. Specifically, instead of a statistically binding commitment
scheme, we will use a perfectly hiding commitment scheme. Instead of a com-
putationally witness-indistinguishable universal argument (UARG), we will use
a perfect witness indistinguishable UARG, denoted 〈PpUA, VpUA〉. Further, the
length parameter 
(N) used in the modified protocol is a function of N , where
N is the bound on the number of verifiers in the system. Protocol 〈PpB, VpB〉N
is described in Figure 3 and can be based on claw-free permutations.

Resettable Witness Indistinguishable Proof System. We will further use a re-
settable witness-indistinguishable proof system [10] for all of NP. Informally
speaking, a proof system is resettable witness indistinguishable if it remains
witness indistinguishable even against an adversarial verifier who can reset the
prover and receive multiple proofs such that the prover uses the same random
tape in each of the interactions. While the focus of this work is not on achiev-
ing security against reset attacks, such a proof system turns out to be useful
when arguing concurrent soundness of our protocol (where our proof relies on a
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rewinding based argument). We will denote such a proof system by 〈PrWI, VrWI〉.
It follows from [10] that such a proof system can be based on perfectly hiding
commitments.

Dense Cryptosystems [35]. We will use a semantically secure public-key encryp-
tion scheme, denoted as (Gen,Enc,Dec) that supports oblivious key gener-
ation (i.e., it should be possible to sample a public key without knowing the
corresponding secret key). More precisely, there exists a deterministic algorithm
OGen that takes as input the security parameter 1n and a sufficiently long
random string σ and outputs a public key pk ← OGen(1n, σ), where pk is per-
fectly indistinguishable from a public key chosen by the normal key generation
algorithm Gen. For simplicity of exposition, we will assume that the OGen al-
gorithm simply outputs the input randomness σ as the public key. Such schemes
can be based on a variety of number-theoretic assumptions such as DDH [35].

3 Concurrent Zero Knowledge in Bounded Player Model

In this section, we describe our concurrent zero-knowledge protocol in the
bounded player model.

Relation Rsim. We first recall a slight variant of Barak’s [2] NTIME(T (n))
relation Rsim, as used previously in [32]. Let T : N → N be a “nice” function
that satisfies T (n) = nω(1). Let {Hn}n be a family of collision-resistant hash
functions where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be
a perfectly hiding commitment scheme for strings of length n, where for any
α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. The relation Rsim

is described in Figure 2.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).
Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈
{0, 1}poly(n).
Relation: Rsim(〈h, c, r〉, 〈Π,y, s〉) = 1 if and only if: |y| ≤ |r| − n, c =
Com(h(Π); s) and Π(y) = r within T (n) steps.

Fig. 2. Rsim - A variant of Barak’s relation [32]

Remark 1. The relation presented in Figure 2 is slightly oversimplified and
will make Barak’s protocol work only when {Hn}n is collision-resistant against
“slightly” super-polynomial sized circuits. For simplicity of exposition, in this
manuscript, we will work with this assumption. We stress, however, that as dis-
cussed in prior works [3,31], this assumption can be relaxed by using a “good”
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error-correcting code ECC (with constant distance and polynomial-time encoding
and decoding procedures), and replacing the condition c = Com(h(Π); s) with
c = Com(ECC(h(Π)); s).

Parameters: Security parameter n, length parameter �(N).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w such that RL(x,w) = 1.

Stage 1 (Preamble Phase):

V → P : Send h
R← Hn.

P → V : Send c = Com(0n).

V → P : Send r
R← {0, 1}�(N).

Stage 2 (Proof Phase):
P ↔ V : A perfect WI UARG 〈PpUA, VpUA〉 proving the OR of the following

statements:
1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈Π,y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π,y, s〉) = 1.

Fig. 3. Protocol 〈PpB, VpB〉N

3.1 Our Protocol

We are now ready to present our concurrent zero knowledge protocol, denoted
〈P, V 〉. Let P and V denote the prover and verifier respectively. Let N denote
the bound on the number of verifiers present in the system. Let fowf denote a
one-way function, and (Gen,Enc,Dec) denote a dense public key encryption
scheme. Let 〈PpB, VpB〉N denote the perfect zero-knowledge argument system as
described above. Further, let 〈PpWI, VpWI〉 denote a perfect witness indistinguish-
able argument of knowledge, and let 〈PrWI, VrWI〉 denote a resettable witness
indistinguishable proof system.

The protocol 〈P, V 〉 is described in Figure 4. For our purposes, we set the
length parameter 
(N) = n3 ·N ·P (n), where P (n) is a polynomial upper bound
on the total length of the prover messages in the protocol plus the length of the
secret key of the verifier.

The completeness property of 〈P, V 〉 follows immediately from the construc-
tion. Due to lack of space, we defer the proof of soundness to the full ver-
sion [22]. We remark that, in fact, we prove concurrent soundness of 〈P, V 〉,
i.e., we show that a computationally-bounded adversarial prover who engages in
multiple concurrent executions of 〈P, V 〉 (where the scheduling across the ses-
sions is controlled by the adversary) cannot prove a false statement in any of
the executions, except with negligible probability. We note that similarly to the
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Parameters: Security parameter n, N = N(n), t = ω(1).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.
Private Input to V : A public key pk = (y0, y1) and secret key sk = (b, xb) s.t.

b
R← {0, 1}, yb = fowf(xb).

Stage 1 (Preamble Phase): Repeat the following steps t times.
V → P : Send pk = (y0, y1).

P → V : Choose σp
R← {0, 1}n and send cp = Com(σp).

V → P : Send σv
R← {0, 1}n.

P → V : Send σp. Let σ = σp ⊕ σv.
P ↔ V : An execution of 〈PpB, VpB〉N to prove the following statement: ∃s s.t.

c = Com(σp; s).
V → P : Send e1 = Encσ(xb), e2 = Encσ(xb).
V ↔ P : An execution of resettable WI 〈PrWI, VrWI〉 to prove the following

statement: ∃〈i, b, xb, s〉 s.t. ei = Encσ(xb; s) and yb = fowf(xb).
Stage 2 (Proof Phase):

P ↔ V : An execution of perfect WIAOK 〈PpWI, VpWI〉 to prove the OR of the
following statements:
1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈b, xb〉 s.t. yb = fowf(xb).

Fig. 4. Protocol 〈P, V 〉

Bare Public-Key model [10], “stand-alone” soundness does not imply concur-
rent soundness in our model. Informally speaking, this is because the standard
approach of reducing concurrent soundness to stand-alone soundness by “inter-
nally” emulating all but one verifier does not work since the verifier’s secret keys
are private. Indeed, Micali and Reyzin [29] gave concrete counter-examples to
show that stand-alone soundness does not imply concurrent soundness in the
BPK model. We note that their results immediately extend to our model.

We now turn to prove that protocol 〈P, V 〉 is concurrent zero-knowledge in
the Bounded Player model.

3.2 Proof of Concurrent Zero Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Section 3 is con-
current zero-knowledge in the bounded player model. Towards this end, we will
construct a non-black-box (polynomial-time) simulator and then prove that the
concurrent adversary’s view output by the simulator is indistinguishable from
the real view. We start by giving an overview of the proof and then proceed to
give details.
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Overview. Barak’s argument system [2] is zero-knowledge in the bounded con-
currency model where the concurrent adversary is allowed to open at most
m = m(n) concurrent sessions for a fixed polynomial m. Loosely speaking,
Barak’s simulator takes advantage of the fact that the total number of prover
messages across all sessions is bounded; thus it can commit to a machine that
takes only a bounded-length input y that is smaller than the challenge string r,
and outputs the next message of the verifier, in any session. In our model, there
is no bound on the total number of sessions, thus we cannot directly employ
the same strategy. Towards this, an important observation in our setting is that
once we are able to “solve” a verifier identity (i.e., learn secret key of a verifier),
then the simulator does not need to do Barak-style simulation anymore for that
identity. But what of the number of Barak-style simulations that the simulator
needs to perform before it can learn any secret key? Indeed, if this number were
unbounded, then we would run into the same problems that one encounters when
trying to construct non-black-box cZK in the standard model. Fortunately, we
are able to show that the simulator only needs to perform a bounded number
of Barak-style simulations before it can learn a secret key. Thus, we obtain the
following strategy: the simulator commits to an “augmented machine” that is
able to simulate almost all of the simulator messages by itself; the remaining
simulator messages are given as input to this machine. As discussed above, we
are able to bound the total number of these messages, and thus by setting the
challenge string r to be more than this bound, we ensure that the simulation
is correct. More specifically, the input passed by the simulator to the machine
consists of transcripts of concurrent sessions where again the simulator had to
use Barak-style simulation7 and the (discovered) secret keys of the verifiers to
be used by the machine to carry on the simulation by itself (without performing
Barak-style simulation).

The Simulator. We now proceed to describe our simulator. The simulator SIM
consists of two main parts, namely, SIMeasy and SIMextract. Loosely speaking,
SIMextract is only used to cheat in a “special” preamble block of a session in
order to learn the secret key of a verifier, while SIMeasy is used for the remainder
of the simulation, which includes following honest prover strategy in preamble
blocks and simulating the proof phase of each session using the verifier’s secret
key as the trapdoor witness. Specifically, SIMextract cheats in the 〈PpB, VpB〉N
protocol by committing to an augmented verifier machine Π that contains the
code of SIMeasy, allowing it to simulate all of the simulator messages except
those generated by SIMextract (in different sessions). As we show below, these
messages can be bounded to a fixed value. We now describe the simulator in
more detail.

Setup and Inputs. Our simulator SIM interacts with an adversary V ∗ = (V ∗1 , . . . ,
V ∗N ) who controls verifiers V1, . . . , VN . V ∗ interacts with SIM in m sessions, and

7 The reason we pass this transcript as input is that in this way we can avoid the
blow up of the running time of the simulator when nested Barak-style simulations
are performed.
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controls the scheduling of the messages. We give SIM non-black-box access to
V ∗. Throughout the interaction, SIM keeps track of a tuple β = (β1, . . . , βN)
representing the secret keys SIM has learned so far. At any point during the
interaction either βi = ski (more precisely, βi is one of the coordinates of ski) or
βi is the symbol ⊥. Initially, SIM sets each βi to ⊥, but it updates β through-
out the interaction as it extracts secret keys. Additionally, SIM keeps a counter
vector a = (a1, . . . , aN ), incrementing ai each time it executes a preamble block
using SIMextract against V ∗i . We have SIM halt and output FAIL if any ai
ever surpasses n3. Our technical lemma shows that this happens with negligible
probability. Finally, we have SIM keep track of a set of tuples

Ψ =
{(

(i, j, k)γ ;φγ

)
: γ = 1, . . . , n3N}

where each (i, j, k)γ ∈ [N ]×[m]×[t] and φγ is a string. The tuples (i, j, k)γ repre-
sent the preamble blocks played by SIMextract; specifically, (i, j, k) corresponds
to the k−th block of the j−th session against V ∗i . The string φγ is the collection
of simulator messages sent in block (i, j, k)γ . This set of tuples Ψ (along with β)
will be the extra input given to the augmented machine. As we show below, the
total size of Ψ will be a priori bounded by a polynomial in n.

Consider the interaction of SIM with some V ∗ impersonating Vi. Each time
V ∗ opens a session on behalf of Vi, SIM chooses a random k ∈ {1, . . . , t} accord-
ing to a distribution Dt which we define later. This will be the only preamble
block of the session played by SIMextract provided that βi =⊥ when the block
begins. If SIM has already learned the secret key ski, it does not need to call
SIMextract. We now describe the parts of SIM beginning with SIMeasy.

The sub-simulator SIMeasy. Recall that SIMeasy is run on input β and Ψ . When
SIMeasy is called to execute the next message of a preamble block, it checks if the
message is already in Ψ . If this is the case, SIMeasy just plays the message. Oth-
erwise, SIMeasy plays fairly, choosing a random σp and sending cp = Com(σp; s)
for some s. Upon receiving σv, it returns σp and completes 〈PpB, VpB〉 using s as
its witness. Its receipt of encryptions (e1, e2) and acceptance of 〈PrWI, VrWI〉 ends
the preamble block. If SIMeasy does not accept V ∗’s execution of 〈PrWI, VrWI〉
it aborts the interaction, as would an honest prover.

When SIMeasy is called to execute 〈PpWI, VpWI〉 then it checks if the secret
key of the verifier is in β. If yes, SIMeasy completes 〈PpWI, VpWI〉 using ski as its
witness. Otherwise, βi =⊥ and SIMeasy halts outputting FAIL. Our technical
lemma shows that the latter does not happen, except with negligible probability.

The sub-simulator SIMextract. When SIMextract is called to execute preamble
block k of session j with verifier V ∗i , it receives Ψ , β and a as input. We assume
βi =⊥ since otherwise, SIM would not have called SIMextract. Immediately
upon being called, SIMextract increments ai and adds the tuple

(
(i, j, k);φ

)
to

Ψ . Initially, φ is the empty string, but each time SIMextract sends a message, it
appends the message to φ. By the end of the block, φ is a complete transcript
of the simulator messages in preamble block (i, j, k).
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The preamble block begins normally, with SIMextract choosing a random
string and sending cp, a commitment to it. Upon receiving σv, however, SIMextract

runs Gen obtaining key pair (σ, τ) for the encryption scheme and returns σp =
σ ⊕ σv. Next, SIMextract enters 〈PpB, VpB〉 which it completes using the al-
ready extracted secret key. Formally, when V ∗ sends h, beginning 〈PpB, VpB〉,
SIMextract chooses a random s and sends Com

(
h(Π); s

)
, where Π is the next

message function of V ∗, augmented with the ability to compute all the inter-
mediate messages sent by SIMeasy. The machine Π takes input y = (Ψ, β) and
outputs the next verifier message in an interaction between V ∗ and a machine
M who plays exactly like SIMeasy with the following exception. For each tuple(
(i, j, k);φ

)
∈ Ψ , M reads its messages of block (i, j, k) from the string y. In

order to simulate SIMeasy in the subprotocols 〈PpWI, VpWI〉, M also uses the
tuple β = (β1, . . . , βN ) received as input, where each βi is the secret key of the
i′-th verifier (if available), and ⊥ otherwise.

After committing to Π , and receiving r, SIMextract completes 〈PpUA, VpUA〉
using witness (Π,Ψ‖β, s) where Ψ and β might have been updated by other exe-
cutions of SIMextract occurring between the time SIMextract sent Com

(
h(Π); s

)
and received r. Our counter ensures that |Ψ | is a priori bounded, while |β| is
bounded by definition. By construction,Π correctly predicts V ∗’s message r, and
so (Π,Ψ‖β, s) is a valid witness for 〈PsUA, VsUA〉. Finally, SIMextract receives en-
cryptions e1, e2 and the proof of correctness in 〈PrWI, VrWI〉. It now decrypts the
ciphertexts using τ thereby learning secret key ski of V

∗
i . If the decrypted value

is a valid secret key ski, then it updates β by setting βi = ski. Otherwise, it
outputs the abort symbol ⊥ and stops. (It is easy to see that since the proof
system 〈PrWI, VrWI〉 is sound, the probability of simulator outputting ⊥ at this
step is negligible.)

Analysis. There are two situations in which SIM outputs fail: if some counter
ai exceeds n3, or if SIMeasy enters an execution 〈PpWI, VpWI〉 without knowl-
edge of sk. Note that the latter will not happen, as to enter an execution of
〈PpWI, VpWI〉, all preamble blocks, in particular the one played by SIMextract,
must be complete, ensuring that SIMextract will have learned sk. In our main
technical lemma, we show that no counter will surpass n3 by proving that after
SIM has run SIMextract n

3 times against each Vi controlled by V ∗ it has, with
overwhelming probability, learned sk. Before stating the lemma, we introduce
some terminology.

Now, focusing on a given verifier, we say that V ∗ has stopped session j in block
k if the k−th preamble block of session j has begun, but the (k+1)−th has not.
We say that V ∗ is playing strategy k′ = (k′1, . . . , k

′
m) if session j is stopped in

block k′j for all j = 1, . . . ,m. As the interaction takes polynomial time, V ∗ only
gets to play polynomially many strategies over the course of the interaction. Let
kj ∈ {1, . . . , t} be the random number chosen by SIM at the beginning of session
j as per distribution Dt. This gives us a tuple k = (k1, . . . , km) where the kj are
chosen independently according to the distribution Dt (defined below). At any
time during the interaction, we say that V ∗ has won (resp. lost, tied) session j if
k′j = kj (resp. k′j > kj , k

′
j < kj). A win for V ∗ corresponds to SIM having run
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SIMextract, but not yet having learned sk. As SIM only gets to call SIMextract

n3 times, a win for V ∗ means that SIM has used up one of its budget of n3

without any payoff. A loss for V ∗ corresponds to SIM running SIMextract and
learning sk, thereby allowing SIM to call SIMeasy in all remaining sessions. A
tie means that SIM has not yet called SIMextract in the session, and therefore
has not used any of its budget, but has not learned sk.

Notice that these wins and ties are “temporary” events. Indeed, by the end
of each session, V ∗ will have lost, as he will have completed the preamble block
run by SIMextract. However, we choose to use this terminology to better convey
the key intuition of our analysis: for SIM to output FAIL, it must be that at
some point during the interaction, for some identity, V ∗ has won at least n3

sessions and has not lost any. We will therefore focus precisely on proving that
the probability that a PPT adversary V ∗ runs in the experiment m sessions so
that the counter for one identity reaches the value n3 is negligible.

For a verifier strategy k′ and a polynomial m, let P(k′,m)(W,L) be the prob-
ability that in an m−session interaction between V ∗ and SIM that V ∗ wins for
some identity exactly W sessions and loses exactly L, given that V ∗ plays strat-
egy k′. The probability is over SIM ’s choice of k with kj ∈ {1, . . . , t} chosen
independently according to Dt (defined below) for all j = 1, . . . ,m.

The Distribution Dt and the Main Technical Lemma. Define Dt to be the distri-
bution on {1, . . . , t} such that pk′ = Probk∈Dt

(
k = k′

)
= εnk′

, where ε is such
that

∑
pk′ = 1. Note that ε is negligible in n.

Lemma 1 (Main Technical Lemma). Let k′ be a verifier strategy and m =
m(n) a polynomial. Then we have P(k′,m)(n

3, 0) is negligible in n.

The above proves that any verifier strategy has a negligible chance of having n3

wins and no losses. As V ∗ plays polynomially many (i.e., N) strategies through-
out the course of the interaction, the union bound proves that V ∗ has a negligible
chance of ever achieving n3 wins and 0 losses. From this it follows that, with
overwhelming probability, V ∗ will never have at least n3 wins and no losses,
which implies that SIM outputs FAIL with negligible probability as desired.
The main idea of the proof is similar to the random tape switching technique
of [33] and [28].

Proof. We fix a verifier strategy k′ and a polynomial m and write P (W,L)
instead of P(k′,m)(W,L). Let pk′ (resp. qk′) be the probability that V ∗ wins
(resp. loses) a session given that he stops the session in block k′. We chose
the distribution Dt carefully to have the following two properties. First, since
p1 = εn is negligible, we may assume that V ∗ never stops in the first block of a
session. And secondly, for k′ ≥ 2 we have,

qk′ =
k′−1∑
i=1

pk′ = ε
nk′ − 1

n− 1
≥ εnk′

2n
=

pk′

2n
.

It follows that no matter which block V ∗ stops a session in, it will hold that
the probability he wins in that session is less then 2n times the probability that
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he looses that session. We will use this upper bound on the probability of V ∗

winning a single session to show that P (n3, 0) is negligible.
Let A be the event, (W,L) = (n3, 0), B be the event W +L = n3 and ¬B the

event W + L �= n3. Since, A ⊂ B, and since P (A|¬B) = 0, we have that

P (n3, 0) = P (A) = P (A|B)P (B) + P (A|¬B)P (¬B) = P (A|B)P (B) ≤ P (A|B),

and so it suffices to prove that P (A|B) is negligible. We continue the proof for
the case W + L = n3 (and thus m ≥ n3).

If W+L = n3 then V ∗ ties all but n3 of the sessions. Let C = {C ⊂ [m] : |C| =
n3}. Then C is the set of possible positions for the sessions which are not ties.
We are looking to bound P

(
(W,L) = (n3, 0)

∣∣W + L = n3
)
and so we condition

on the C ∈ C. Once a fixed C is chosen, the position of each session which is not
a tie is determined. Each such session must either be a win or a loss for V ∗. Let
p be the probability that some such session is a win. Since we proved already
that the probability that V ∗ wins in a given session is less then 2n times the
probability that V ∗ looses in that session, we have that p ≤ 2n(1 − p). Solving
gives p ≤

(
1 − 1

2n+1

)
. It follows that for any C ∈ C, the probability that all

sessions in C are wins is(
1− 1

2n+ 1

)n3

≤
[(

1− 1

2n+ 1

)2n+1]n
≤ e−n.

From the viewpoint of random tape switching, we have shown that for every
random tape causing every session of C to be a win, there are exponentially
many which cause a different outcome, we therefore have: P (n3, 0) ≤ P

(
(W,L) =

(n3, 0)
∣∣W + L = n3

)
=
∑

C∈C P
(
(W,L) = (n3, 0)

∣∣C)P (C) ≤ e−n
∑

C∈C P (C) =
e−n as desired.

Bounding the length parameter 
(N). From the above lemma, it follows that the
total length of the auxiliary input y to the machine Π committed by SIMextract

(at any time) is bounded by n3 ·N ·P (n), where P (n) is a polynomial upper bound
on the total length of prover messages in one protocol session plus the length of a
secret. Thus, when 
(N) ≥ n3 ·N · P (n), we have that |y| ≤ |r| − n, as required.

In the full version [22] we show through a series of hybrid experiments that
the simulation is perfectly indistinguishable from the real game.
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Abstract. Public-coin zero-knowledge and concurrent zero-knowledge
(cZK) are two classes of zero knowledge protocols that guarantee some
additional desirable properties. Still, to this date no protocol is known
that is both public-coin and cZK for a language outside BPP. Further-
more, it is known that no such protocol can be black-box ZK [Pass et.al,
Crypto 09].

We present a public-coin concurrent ZK protocol for any NP language.
The protocol assumes that all verifiers have access to a globally specified
function, drawn from a collision resistant hash function family. (This
model, which we call the Global Hash Function, or GHF model, can
be seen as a restricted case of the non-programmable reference string
model.) We also show that the impossibility of black-box public-coin
cZK extends also to the GHF model.

Our protocol assumes CRH functions against quasi-polynomial adver-
saries and takes O(log1+ε n) rounds for any ε > 0, where n is the security
parameter. Our techniques combine those for (non-public-coin) black-
box cZK with Barak’s non-black-box technique for public-coin constant-
round ZK. As a corollary we obtain the first simultaneously resettable
zero-knowledge protocol with O(log1+ε n) rounds, in the GHF model.

1 Introduction

Zero-knowledge (ZK) proofs and arguments are protocols that enable a prover
to convince a verifier in the verity of a statement without revealing any informa-
tion other than the fact that the statement is true. This is captured by requiring
that for any efficient adversarial verifier there exists an efficient simulator that,
knowing only whether the statement is correct, essentially recreates the adver-
sary’s view of the entire execution. ZK protocols are a fundamental building
block in cryptographic protocols and applications; furthermore, the techniques
used to construct ZK protocols often evolve and percolate to protocols for other
cryptographic tasks.
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The first ZK protocols by [16, 15] and others have a very simple form, where
the verifier’s messages consist only of random strings with no additional struc-
ture. In the end of the protocol the verifier evaluates a deterministic predicate of
the communication. The simplicity of this public-coin, or Arthur-Merlin struc-
ture is indeed attractive in of itself; in addition it has been shown over the years
to have many other advantages, such as public verifiability, amenability to dele-
gation, and better resilience to leakage [12, 4]. (In fact, we make use of some of
these advantages in this work.)

However, it also soon became clear that obtaining stronger efficiency and secu-
rity properties for ZK protocol while preserving the simple public-coin structure
is challenging. One such parameter is the number of rounds: The basic pro-
tocols of [16, 15] take take super-logarithmic number of rounds — essentially,
via sequential repetition of a basic building block that gives soundness error of
one half. The first protocols that obtain a constant number of rounds have the
verifier commit to its randomness ahead of time, thus losing the PC property
[13]. Furthermore, [14] show that no constant rounds public-coin ZK protocol
with negligible error probability can be proven secure via black-box simulation.
A protocol public-coin ZK protocol with constant number of rounds came only
years later and uses a completely new proof technique, which indeed involved
non-black-box simulation [1].

Another security property that appears to stand at odds with public-coin ZK
is parallel and concurrent ZK (cZK). Here we want the protocol to remain ZK
even when the prover participates in many independent sessions for proving the
same statement, and these sessions are scheduled in an adversarially controlled
concurrent way. Also here known protocols are not public-coin ZK [23, 17, 22],
and for a similar reason: an essential ingredient in these protocols is having the
verifier commit to its randomness ahead of time. Furthermore, also here we know
that no PC protocol can be proven to be concurrent (or even parallel) ZK via
black-box simulation [21]. However, here we do not currently know of any way
to get around this black-box impossibility result. In particular, the technique of
[1] fails, at least in of itself. We are thus left with the question:

Do there exist public-coin concurrent zero-knowledge protocols?

A first indication that the answer might be positive was given by Pass, Rosen
and Tseng [20], who construct a public-coin parallel ZK protocol. That is, their
protocol (which is a relatively simple adapration of the [1] protocol) remains ZK
even under parallel composition. However, their security analysis falls apart in
the general concurrent setting.

We provide a positive answer to this question in the general concurrent set-
ting, albeit with a caveat: We consider a setting where all verifiers have access
to a single hash function h. In that setting, we design a public-coin protocol and
show that this protocol is cZK, unless it is possible to efficiently find collisions
in h. That is, we show how to efficiently construct a simulator, given an ad-
versary, and then provide an explicit efficient reduction that turns an adversary
that breaks the cZK property of the protocol w.r.t. the constructed simulator
into an algorithm that finds collisions in h. We call this model the global hash
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function (GHF) model. See further discussion on the GHF model at the end of
the Introduction. That is, we show:

Theorem (Informal): Assuming existence of collision resistant hash function
families against quasipolynomial adversaries, there exist public-coin cZK proto-
cols in the GHF model. In contrast, there exist no black-box public-coin cZK
protocols in the GHF model.

Round Complexity. We present two public-coin cZK protocols. The first one
has a polynomial number of rounds. The second one, which is considerably more
involved, takes only O(log1+ε n) rounds for any ε > 0, where n is the security
parameter. This almost matches the best known round complexity for cZK, re-
gardless of the public-coin property [22]. Recall that for black-box simulation
this is the best possible [7]

Simultaneously Resettable ZK in Logarithmic Rounds. A question that
is very related to public-coin cZK is the question of simultaneously resettable ZK.
Such ZK protocols remain secure even if a cheating party (playing the role of
either the prover or the verifier) has the ability to repeatedly reset the honest
party to its initial state and random tape, and interact with it several times. The
only known simultaneously resettable ZK protocol [10] in the plain model has
polynomial number of rounds. (In the bare public key model, a protocol with
constant number of rounds is known [9].)

As a corollary of our main result we get a new simultaneously resettable ZK
protocol in the GHF model with only logarithmic number of rounds. The simul-
taneously resettable ZK protocol is obtained from our public-coin cZK protocol
by applying two generic transformations: first we apply the transformation of
[21] to go from a public-coin cZK to a resettably-sound cZK protocol that is also
sound against resetting provers. Then we can apply the transformation of [10]
to get simultaneously resettable ZK. Both transformations do not increase the
round complexity of the protocol.

Our Techniques. In a nutshell, our protocols use the multiple-opportunity-
slots simulation technique of the cZK protocols of [23, 17, 22] (which are inher-
ently not public-coin) to make the public-coin protocol of [1] fully concurrent.
In particular, in the context of the non-black-box simulator of [1], we generalize
the concept of rewinding to re-running of certain portions of the simulation of
the adversary’s code.

The global hash function is used in the universal argument (UA) portion of
the protocol of [1], allowing all instances of the UA in all concurrent sessions to
the use the same hash function. This allows our simulator to amortize the work
spent on preparing the universal arguments across multiple concurrent sessions.

On the Global Hash Function Model. We design and analyze our protocols
in the global hash function (GHF) model, where all parties have access to a
public hash function h, and the security of the protocol is argued by way of an



Public-Coin Concurrent Zero-Knowledge in the Global Hash Model 83

efficient and explicit reduction from an adversary that breaks the security of the
protocol to an adversary that finds collisions in h. Results in this model can be
interpreted in several alternative ways. One interpretation, in the spirit of [24], is
that the protocol indeed uses a single and fixed hash function h (say, SHA2) and
the security (in our case, cZK) property “in practice” is based on the inability
of Mankind to find explicit collisions in h — although such collisions exist in
principle and can be found “in polynomial time”. Note that this interpretation
makes sense both when security is formalized in an asymptotic way and in terms
of concrete, non-asymptotic security guarantees.

Another interpretation of results in this model is that they guarantee se-
curity against uniform-complexity polytime adversaries, as long as the (single)
global hash function used by the protocol is collision resistant in an asymp-
totic way against such adversaries. We note however that this interpretation is
relatively weak. In particular, it is not clear how to translate it into concrete,
non-asymptotic security guarantees.

Yet another interpretation of results in this model is that they guarantee
security in the “global reference string model”, where the reference string is
randomly chosen and consists of the description of a hash function h drawn from
a collision resistant hash function family. Here the zero-knowledge simulator has
to work with a given h rather than making up its own one. In fact, the simulation
should succeed even when the function h is chosen adversarially.

The GHF model for zero knowledge protocols should be contrasted with the
common reference string (CRS) model used elsewhere in cryptography (e.g. for
non-interactive and universally composable zero knowledge [5, 6]). Indeed, the
models are quite different: In the CRS model the public reference string is chosen
as part of the protocol execution, and a distinguisher between a real execution
and an ideal has no a-priori information on that string. In particular, the CRS
model provides no guarantees whatsoever when the reference string is chosen
adversarially, or even when the adversary is allowed to see trapdoor information
related to the reference string.

Furthermore, the impossibility of public-coin black-box cZK protocols extends
to the GHF model, whereas in the CRS model such protocols are known to exist
(in fact, any NIZK protocol is such).

Organization. This extended abstract contains only high level descriptions of
our results as well as our protocols and it’s proof. Detailed definitions, construc-
tions and analysis are given in the full version of this paper [8].

2 Overview of Our Public-Coin cZK Protocol

In the black-box simulation world, there has been a rich set of constructions [23,
17, 22] of fully concurrent ZK protocols; however, these constructions are not
public-coin. In fact, as shown in [21], this is inherent: only languages in BPP
have public-coin black-box parallel ZK protocols (that is, protocols that remain
ZK under parallel composition). In contrast, in the non-black-box simulation
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world, known constructions [1, 20] are indeed public-coin; however, they are
only ZK under composition with restricted concurrency (e.g., bounded concur-
rent composition, and parallel composition). Our construction can be viewed as
“upgrading” the existing non-black-box simulation techniques to be fully con-
current, using the recursive the rewinding strategies from black-box cZK while
remaining public-coin. We first a give quick overview of the current techniques
and their limitations. Next, we present high-level ideas behind our construction.

2.1 Current Techniques

Public-coin ZK Protocols

Barak’s Protocol. We briefly recall the idea behind Barak’s protocol.
Roughly speaking, for language L and common input x ∈ {0, 1}n, the prover
P and verifier V proceed in three stages.

– Stage 1: V starts by sending P a function h chosen randomly from a family
of collision-resistant hash functions.

– Stage 2: P sends a commitment c ∈ {0, 1}n to 0; V follows by sending a
uniformly random “challenge” r ← {0, 1}n; we informally refer to the pair
of messages (c, r) as a slot, for reasons that will become clear later.

– Stage 3: P proves that either x ∈ L or c is a commitment to a hash of a
program Π such that Π(c) = r.

The proof of Stage 3 proceeds via a public-coin witness indistinguishable uni-
versal argument (UA) [2]. This is the crux of the protocol, and where all the
Difficulties lie. A UA system has the crucial property that the verification time
and communication complexity are independent of the length of the witness.
Still, the prover’s complexity grows with the length of the witness.

Soundness follows from the fact that even if a malicious prover P tries to
commit to some program Π (instead of committing to 0), with high probability,
the V ’s challenge r will be different from Π(c). To prove ZK, consider the non-
black-box simulator that sets c to be a commitment to the hash of the code of
the malicious verifier V ∗; note that by definition it holds that Π(c) = V ∗(c) = r,
and the simulator can use Π as a “fake” witness in the final proof.

Bounded Concurrency. Barak’s protocol can be extended to a bounded
concurrent ZK protocol by slightly changing the UA statement proven in State
3, and allowing Π to receive, other than c, some additional auxiliary input.
Soundness holds as long as the length of the auxiliary input is significantly
shorter than |r|. Now, the simulator can complete the UA by proving that V ∗ on
input c, and having received all messages from other sessions before generating
its second message, outputs r. As long as the total number of concurrent sessions
is bounded, r can be chosen to be longer than the total length of messages V ∗

might receive inside any slot. Therefore, the simulation goes through. However,
this approach is inherently limited to the bounded concurrency setting. In the
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unbounded concurrent setting, there is no a priori bound on the length of the
messages that V ∗ receives. However, the protocol cannot allow the committed
program Π to receive an arbitrarily long input, as otherwise soundness falls
apart.

Committing to the Simulator’s Code. One potential approach to circum-
vent the above limitation is having the simulator S commit to the code of itself
(i.e., S) instead of commiting to the code of V ∗. The intuition behind this idea is
that, although in the unbounded concurrent setting the length of the messages
that V ∗ receives is unbounded, these messages are generated by the simulator S,
and thus can be shortly represented by the code of S. Therefore, if the simulator
S commits to a machine Π that emulates its own execution until the message r
is simulated, it can again prove in the UA argument that Π() = r, since all the
messages V ∗ receives will be generated by Π in emulation of S. (Note that here
we treat the simulator code as already including the code of V ∗ in some form.)
Indeed, this idea is the main enabler in the public-coin parallel ZK protocol of
Pass, Rosen and Tseng [20].

However, when moving to the concurrent setting, this technique runs into
the problem that the running time of S grows exponentially with the number of
“nested concurrent sessions”. This problem is similar to the problem encountered
by black-box simulation in the general, non-public-coin settings. In particular,
this blow-up in simulation running time is demonstrated by the example of
Dwork et. al [11]. To see the problem, consider a concurrent verifier V∗ that
starts two nested sessions, where session 1 is completely “enclosed” in the slot
of session 2. In session 1, the simulator commits to a program Π1 that emulates
S until the challenge message in the first session r1 is sent. S then completes
the simulation of session 1 by proving that Π1 outputs r1. Similarly, in session
2, the simulator commits to a program Π2 that emulates S until it simulates
r2. If Π1 takes T steps to output r1, then it takes S at least another T steps to
give a UA argument that this is true. Therefore, in the second session, Π2 takes
at least 2T steps to output r2 (since Π is emulating S, it needs to simulate the
entire first session including its UA proof before V ∗ outputs r2) and the time
for giving the UA argument in session 2 is at least 2T . Overall, the simulation
time is at least 4T . As in the case of [11], it is not hard to see that with d levels
of nesting (i.e., d sessions, with session i entirely enclosed in the slot of session
i+ 1), the simulation time grows to at least 2dT . (In fact, the situation is even
worse since the prover complexity in the best UAs is at least O(T logT ).)

We remark that the idea described above, as well as the problem of exponential
time simulation, were already described by Deng,Goyal and Sahai [10] in the
context of simultaneously resettable ZK. In their protocol, the simulator commits
to the code of the adversarial verifier together with some parts of the code
and state of the simulator. The exponential time simulation problem is resolved
using a combination of new black-box and non-black-box simulation techniques.
However, the resulting concurrent ZK protocol is not public-coin.
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cZK Protocols. The design of all existing cZK protocols follow the Feige-
Lapidot-Shamir (FLS) paradigm: at the beginning of the protocol, the verifier
sets up a “trapdoor” (e.g., by sending a commitment to a secret random value),
followed by many invocations of a sub-protocol that hides the trapdoor, but
allows a simulator to extract the trapdoor by rewinding some messages in the
sub-protocol, referred to as a slot. Then, the prover proves, using a witness-
indistinguishable proof, that either the statement is true or it knows the trap-
door. Roughly speaking, the protocol is ZK, since the simulator can extract the
trapdoor via rewinding of any slot in the session and use it as a “fake” witness
to “cheat” in simulation. The simulator will use a rewinding strategy to decide
which slots to rewind in order to guarantee successful extraction of a trapdoor
for each session in the concurrent setting.

The “Recursive Rewinding” Problem. A good rewinding strategy of a cZK
protocol needs to also guarantee that the time spent on rewinding is bounded.
As observed already by [11], this turns out to be non-trivial and encounters a
similar difficulty as the exponential-time simulation problem in the context of
non-black-box simulation. To demonstrate the difficulty, consider a simplified
protocol that has the structure describe above, but contains only one slot for
rewinding, and a cheating verifier V ∗ that starts two nested sessions, where the
first session is entirely enclosed in the slot of the second session. To simulate the
second session, the simulator needs to rewind the slot in this session to extract
a trapdoor; however, before V ∗ completes this slot, the simulator needs to first
simulate messages in the first session for V ∗, which requires it to recursively
rewind the slot in the first session. This quickly leads to an exponential number
of rewindings and the simulation time explodes.

Known black-box cZK protocols resolve this problem by having many sequen-
tial slots in the protocol, so that there are many extraction opportunities for the
simulator. It is shown that when the number of slots is large enough, there are
recursive rewinding strategies [23, 17, 22] that, by carefully choosing which parts
of the execution to rewind, guarantee that the depth of nesting (i.e., the depth
of recursive rewinding) is bounded and thus the simulation time is bounded.
Below we recall the KP-PRS rewinding strategy, which will be useful for our
construction later.

The KP-PRS Rewiding Strategy. The simulator of [17, 22] simulates the
view of the cheating verifier in a “main thread”, using the trapdoors extracted
via many recursive rewindings also called “lookahead threads”. The KP-PRS
rewinding strategy tells the simulator which parts of the execution to rewind
based on the transcript simulated so far. The simulation strategy is recursive
since rewindings are also used during the simulation of lookahead threads.

In KP-PRS, the rewinding strategy decides when to rewind the verifier obliv-
iously of the content of the simulated messages, depending only on the number
of simulated messages. More specifically, it divides messages in the main thread
(resp. lookahead threads) into blocks of 2i messages. Then, at the end of each
block, it recursively rewinds the verifier from the beginning of the block once;
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by rewinding an entire block, the simulator rewinds all the slots contained in
that block “in one shot”. It has been shown in [18] that the KP-PRS rewinding
strategy can be generalized to consider blocks of length bi for b > 2. Intuitively,
the KP-PRS rewinding strategy is efficient since rewindings are performed only
at selected points (i.e., the end of blocks) and the depth of nesting is bounded
by O(logb n). Furthermore, as long as the number of slots is ω(b logb n), it is
guaranteed that at the end of every session, a trapdoor would be extracted
successfully.

2.2 Our Approach

At a very high-level, the recursive rewinding problem in the context of black-
box simulation and the exponential time simulation problem in the context of
non-black-box simulation are similar: both are caused by the recursive execution
of the simulator’s code. In the context of black-box simulation the problem
can be solved by providing more slots. We show how to solve the exponential
time simulation problem in the context of public-coin non-black-box simulation.
Towards this, we introduce a non-black-box analog of “rewinding slots” and use
these slots to manage the complexity of the simulation. To illustrate the idea,
consider the following overly simplified protocol (P0, V0) which is a k-slot variant
of Barak’s protocol. Our solution will require to replace the UA in State 3 of the
protocol with a new type of interactive argument we call a “special proof”. The
properties of the special proof and its construction is the focus of the rest of this
section.

An Overly Simplified Protocol (P0, V0):
– Stage 1 (Hash Function Selection): V sends P a randomly chose collision-

resistant hash function h← H.
– Stage 2 (k Slots): This stage contains k sequential slots, where in the ith slot

the prover sends a commitment ci and the verifier replies with a challenge ri.
– Stage 3 (Proof Stage): The prover proves using a special proof that either

x ∈ L, or there is a slot i, in which ci is a commitment to a hash of a program
Π that outputs ri.

The idea of committing to the simulator’s code can be adapted to work with
this protocol as follows: on the main thread, the simulator simulates the view
of V ∗ in a straight line. In every slot, the simulator commits to a program Π
that mimics the simulation of the main thread. When the simulation of a session
reaches Stage 3, the simulator proves that there is a slot i with transcript (ci, ri)
such that ci is a commitment to a program that “predicts” the challenge ri.

With many slots, the simulator now gains the freedom to choose which slot
to use as a witness for the special proof in each session. Similarly to the case of
black-box simulation, the simulator will use a proving strategy to choose which
slot to use in the proof of every session. The simulation might still recursively
prove statements about its own computation, however, the proving strategy will
control the recursion depth and thus also the complexity of the simulation. To do
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that, the proving strategy will reuse ideas from the black-box recursive rewinding
strategies.

We start by spelling out the analogy between our situation and the case of
black-box rewinding. At every slot, the simulator will commit to a program Π
that mimics the execution of the main thread from the point in the simulation
where the slot starts to the point where the slot ends. Now, the execution of Π
can be thought of as analogous to the rewinding of the simulation in the slot.
However, the non-black-box simulator does not directly execute Π . Instead, it
generates a special proof about the execution of Π . Thus, the running time
that is spent on the rewinding by the black-box simulator is spent by the non-
black-box simulator on constructing a proof about the execution of Π . Similarly,
constructing a UA proof for a program that recursively constructs proofs for other
programs is analogous to recursive rewindings. Following this observation we will
design a proving strategy based on the KP-PRS rewinding strategy.

A KP-PRS-Style Proving Strategy. Roughly speaking, the simulator di-
vides the messages in the main thread into blocks of length bi (where b is a
parameter of the simulation); at the end of every block, the simulator constructs
special proofs for slots contained in the block, this corresponds to rewinding the
block1. After constructing the special proof at the end of the block, the simulator
can use it to simulate the proof stage (Stage 3) of the corresponding session.

To turn the overly simplified version above into a working protocol we need
to overcome a number of obstacles, mostly related to the special proof in use.
Below, we proceed in two steps: first we construct a relatively simple public-
coin cZK protocol with O(nε) rounds (for any constant ε), and then improve the
round complexity to O(log1+ε n) to obtain our final protocol.

2.3 An O(nε)-Round Protocol

To realize the proposed KP-PRS-style proving strategy, we need to construct a
“special proof” as described above. In this section, we describe the challenges
in constructing such a proof and how to resolve them to get a O(nε)-round
public-coin cZK protocol.

Using UA as a Special Proof. The KP-PRS rewinding strategy crucially
relies on the fact that rewindings are only performed at the end of blocks to
show that the depth of nesting and the simulation time are bounded. Similarly,
we will require that the time spent by the simulator on constructing special
proofs will be spent only in the end of blocks. This rules out using standard
UA as special proofs, since constructing a UA requires the simulator to interact
with the verifier and get its random challenges. However, the concurrent verifier
might schedule the UA that corresponds to a session within a block only long
after the end of the block.

1 In fact, the simulator only constructs proofs for sessions that haven’t been “solved”,
that is, sessions for which no previous proof was constructed.
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Online/Offline UA. To resolve this problem, we observe that the construction
of UA in [2] can be separated into an expensive offline stage and an efficient online
stage as follows. Let x be a statement that can be proven by a UA where the
prover runs in time t. The first verifier message specifies a hash function h and
is independent of the statement x. After the first message is sent, the prover’s
work can be separated into an expensive offline stage that runs in time at most
t, and an efficient online stage that runs in a fixed polynomial time in |x|. More
precisely, we separate the prover in the construction of [2] into an “offline prover”
PUA−OFF and an “online prover” PUA as follows: in the offline stage the verifier
specifies a hash function h. Then, the offline prover PUA−OFF on input x, witness
w and the hash h, constructs a PCP proof σ and a Merkle hash tree HT of σ
using h. Finally, PUA−OFF outputs the string π = σ‖HT which we refer to as
the offline UA proof. In the online stage, the online prover PUA is given x and
oracle access to π. PUA first sends the root of the hash tree to “commit” to the
PCP proof. Then, the verifier sends its PCP queries and PUA produces answers
by querying π. PUA obtains the relevant bits of the PCP proof from σ and the
corresponding authentication paths from HT . See Protocol 1 for a description
of the offline and online stages of the UA.

Pubic Coin Online/Offline UA Argument System

Building Blocks: A family of collision-resistant hash functions H. A PCP proof
system (PPCP,VPCP) with properties as defined in [2]).

Inputs: Common input x ∈ L, and auxiliary input w ∈ RL(x) to PUA−OFF.

Offline Stage

1st Message: The verifier VUA sends a random hash function h ← H.

The offline prover PUA−OFF runs PPCP on input (x,w) to construct a PCP proof σ,
and computes the Merkle hash tree HT of σ using h; let δ be the root of HT . We
call π = σ‖HT an offline UA proof string .

Online Stage: The online prover PUA with oracle access to π and input x, inter-
acts with VUA as follows:

2nd Message: The prover PUA
π sends δ.

3rd Message: The verifier VUA sends a sufficiently long random string r.

4th Message: The prover PUA
π runs VPCP on input (x, r) to generate a set of

queries Q; for each query q ∈ Q, it sends σq and an authentication path in the
Merkle hash tree HT that leads to σq .

VUA’s decision: VUA accepts if all the authentication paths verify, and VPCP on
input (x, r, {σq}q∈Q) accepts.

Fig. 1. The UA construction of [2] as an online/offline UA
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Using the Online/Offline UA in our Protocol. In our cZK protocol,
the verifier specifies a hash function in Stage 1, which will be used as the offline
verifier’s message in the UA. Now the simulator can apply the KP-PRS-style
proving strategy: at the end of a block, the simulator constructs an offline UA
proof for each slot contained in that block. When a session enters the proof stage
(Stage 3), the simulator uses a previously constructed offline proofs to generate
messages in the online stage of the UA arguments.

However, the proof given in Stage 3 of the protocol cannot simply be the
online stage of the UA. To see way, recall that following the FLS paradigm, the
proof stage should consist of a witness-indistinguishable proof that x ∈ L or that
the prover obtained a trapdoor for one of the slots in the session. The problem is
that the proving the above statement (or even stating it) requires knowing the
messages sent in all the slots of the session. However, it might be that at the end
of the block, when to simulator needs to construct a proof, some of the slots of
the session were not simulated yet. To fix the problem we use the online/offline
UA to construct a “special-purpose” witness-indistinguishable UA similar to the
one constructed in [19, 2]. Recall that at the end of the block the simulator
constructs an (expensive) offline UA proof for some slot. We change the proof
stage of the protocol as follows: the prover first provides an online proof that
it has a trapdoor for some slot in the session (note that this statement involves
only a single slot). To keep the proof witness-indistinguishable, the proof must
not reveal which slot is used. Therefore, the online stage of this UA is executed in
the following “oblivious” manner: the prover commits to the statement it proves
as well as to all of its online UA messages instead of sending them in the clear,
while the verifier simply sends random coins (here we use the fact that the online
UA is public-coin). The honest prover (that does not have any trapdoor) will just
commit to the all-zero string in every round. We refer to this as an oblivious UA
execution. Then, the prover will provide a standard witness-indistinguishable
proof of knowledge (for NP) to prove that x ∈ L or that the committed online
UA messages form an accepting proof transcript for the statement defined by
one of the slots.

The Problem of Exponential Size State. By separating the work of the UA
prover into offline and online stages, the simulator has the freedom to construct
a proof for a slot at any time and thus the KP-PRS-style proving strategy can be
applied. However, here we encounter yet another difference between black-box
and non-black-box simulation. In the former, after rewinding a slot successfully,
the simulator extracts a short trapdoor of a fixed polynomial length, and thus
can afford to remember all the trapdoors extracted so far and use them to com-
plete the simulation of corresponding sessions in both the main and lookahead
threads. In contrast, the non-black-box simulator does not obtain a short trap-
door; instead, it obtains long offline UA proofs (the length of which is not a priory
bounded by some polynomial), of length proportional to the running time of the
simulator when simulating the execution in a slot. Still, the simulator needs to
remember all previously constructed offline proofs in order to simulate the on-
line stage of the corresponding UAs in the main thread. This means that in each
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slot, when the simulator commits to its own code and state, it commits also to a
record of all the offline proofs constructed so far. Thus, the offline proof arguing
about the execution of the slot will be at least as long as all previously generated
offline proofs. Again we encounter the problem of exponential blowup in the size
of the proof. This time, however, it is due to the size of the state kept by the
simulator rather than due to the computation time.2 To resolve this problem,
we first observe that though an offline proof can be arbitrarily long, only a few
(fixed polynomial number of) bits of this proof are accessed when simulating
the online stage of the UA. If the simulator knew which bits in an offline proof
would be accessed later, it could have committed to a program Π containing
only these bits instead of the whole offline proof. Then the space complexity of
Π would have been bounded by a fixed polynomial (depending only on the size
of the cheating verifier), and the size of the offline proofs would not have grown
exponentially. However, this wishful thinking seems doomed, since at the time
when the simulator needs to commit to Π (i.e., when a slot opens), it does not
know which bits of the proof would be accessed, since these bits depend on the
verifier’s queries sent in the proof stage.

A potential alternative strategy is the following: when a slot opens, the sim-
ulator simply commits to a program Π that does not contain any information
about previously constructed offline proofs. Only later, when the simulator needs
to prove that Π predicts the verifier’s random challenge, it does so by providing
the appropriate bits of the proof as an auxiliary input to Π . The simulator can
do so because at the time of constructing an offline proof about Π , the slot
in which Π is committed to is already completely simulated and the simulator
knows which bits of previous offline proofs are accessed during the simulation of
that slot. However, this strategy fails again. This is because the number of bits
accessed in a slot can be an arbitrary polynomial that depends on the number of
concurrent sessions started by the cheating verifier. However, for soundness to
hold, it is crucial that the committed program only receives auxiliary input much
shorter than the length of the verifier’s random challenge, which is bounded by
an a priori fixed polynomial.

A “Hash-Inverting” Oracle. We finally resolve this problem by combining
the ideas behind the above two failed approaches: when a slot opens, the simulator
commits to a program Π containing a root of a Merkle hash of each offline proof;
later, the simulator proves thatΠ , when given appropriate proof bits that are con-
sistent with the roots, predicts the verifier’s challenge in the slot. For soundness to
hold, the proof bits must be given to the program via a carefully defined interface.
The interface we describe next is inspired by the non-black-box simulation tech-
nique of [10]. The programΠ will be given access to a “hash-inversion” oracle that
can “invert” the hash tree. That is, when the program Π wants to access the bit
j of the offline proof P , it will query the oracle with the root δP of the hash tree
of P and the index j. The oracle will answer with the bit P [j] together with the

2 In fact, the time complexity for constructing a UA offline proof and the length of the
proof is at least quasi-linear in the space complexity of the computation.
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authentication path certifying that P [j] is consistent with δP . The oracle will only
respond to the query if the value of the root δP is contained in the initial state ofΠ
committed in the beginning of the slot.

Giving the committed programΠ access to such an oracle is different than just
giving it the proof bit as auxiliary input. Even though the number of answer bits
Π can obtain from its oracle is not bounded by any fixed polynomial, soundness
still holds. The intuition is that all the oracle’s answers are “computationally
determined” by the starting state of Π . A bit more formally, we prove that no
computationally bounded algorithm can produce two valid oracles that answer
differently to one of Π ’s queries. This guarantees that the information that Π
learns from its oracle is independent of the verifier’s challenge r that is chosen
after Π ’s code and the hash tree roots are committed to.

We modify the protocol correspondingly: in the proof stage (Stage 3), the
prover proves that either the statement is true, or that, in one of the slots, it has
committed to a program Π that predicts the verifier’s challenge, given access to
a valid hash-inverting oracle as described. When the simulation reaches the end
of a block where the simulator needs to construct a proof for the computation of
a committed program of some slot, the simulator has all the information about
what proof bits were accessed during the simulation of the slot. Therefore, the
simulator can construct the appropriate oracle that Π expects to access. The
main difference between the oracle described above and the oracle used in [10]
is that in [10], the oracle’s answers are information-theoretically determined by
the queries, whereas here, answers of the hash-inverting oracle are only com-
putationally determined. However, as we show, in our settings this suffices for
achieving soundness.

The Global Hash Model. In the description of the modified protocol above,
the committed program is given access to a “hash-inverting” oracle. However,
we did not specify how to choose the hash function inverted by the oracle. For
soundness to hold, the hash function must not be specified by the prover, as
otherwise, a cheating prover may specify a hash function with respect to which
the hash tree roots are not binding. However, letting the verifier choose the hash
function results in a problem with concurrent simulation: let hi be the hash
function specified by the cheating verifier in the ith session. Now, when the sim-
ulation commits to a program Π in a slot of the ith session, Π must contain the
roots of Merkle hash trees using hash hi for all previously constructed offline
proofs. Otherwise, Π will not be able to query its oracle for bits of these proofs.
It follows that whenever the cheating verifier starts a new session and sends a
new hash function hi, the simulator must recompute the hash tree on all pre-
viously constructed offline proofs using hi. This operation may be as expensive
as constructing all these offline proofs from scratch. Since we cannot guarantee
that this expensive hash computations are performed only at the end block, we
can no longer bound the running time of the simulation.

We resolve this problem by considering a global hash function h shared by all
protocol executions. In this case, the simulator can construct Merkle hash trees
of every offline proof using the same shared function h, and use the same hash
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tree roots in commitments given in all sessions. Now there is never a need to
recompute a hash tree on a previously constructed proof and simulation running
time is bounded. As explained above, soundness holds only if a cheating prover is
unable to find collisions in h. Therefore we can prove the security of our protocol
in the global hash model where the prover and all concurrent verifiers are given a
single hash function that is assumed to be collision-resistent. The meaningfulness
of this model is discussed in the introduction.

Tackling the Number of Rewindings per Block. To complete the descrip-
tion of the “special proofs” we need to address one more problem: unlike the
KP-PRS rewinding strategy where the black-box simulator can rewind all slots
contained in a block all at once, our non-black-box simulator creates a separate
offline UA proof for each slot contained in the block. The result is that the time
spent by the simulator on constructing proofs at the end of the block grows with
the number of slots contained in the block. One consequence of this approach is
that the running time of the simulation grows much faster as a function of the
recursion depth. Unlike the case in [22] where the simulation can accommodate a
logarithmic level of nesting, we can only tolerate a constant level of nesting. This
can be ensured at the price of increasing the round-complexity of the protocol:
if the simulator uses blocks of size bi for a b = nε (ε is a constant), the level of
nesting O(logb n) becomes constant. However, to guarantee successful extraction
of the trapdoor, the protocol must use ω(b logb n) = ω(nε) slots.

The Simulator’s Randomness. So far we described how to construct “special
proofs” that will allow realizing the KP-PRS-style proving strategy. Our starting
point was the analogy between a simulator that commits to it own code and a
rewinding black-box simulator. However, before we can implement this high-level
idea, we need to introduce a final modification to the protocol that will enable
the simulator to commit to its own code. The difficulty has to do with the way
that the simulator generates its randomness. As described above, the simulator
needs to use randomness to simulate the prover’s messages. In particular, in every
slot the simulator uses randomness to commit to a program Π that emulates
the execution of the simulator itself, and in every session the simulator uses
randomness to generate messages in the special proofs. Since the program Π
must precisely emulate the simulation, it must use the same randomness as
the simulator. This could be done, for example, by using a PRF: the simulator
will choose a PRF seed s and use it to generate all the randomness needed. The
committed programΠ will use the same seed s to generate identical randomness.
The problem is that the simulator commits to (a hash of) the code of Π that
contains the seed s using randomness generated from s. Since the committed
program is correlated with the randomness of the commitment, we cannot rely
on the hiding property of the commitment.

This problem can be circumvented, as pointed out in [20], by committing
to a program Π that does not contain s and instead receives s as a (short)
auxiliary input. This allows us to use the hiding property of the commitment.
However, we still encounter a similar problem when generating special proofs. In
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the special proof, the simulator proves that Π on input s (and given access to
some oracle) predicts the verifier’s random challenge. Thus, the witness of the
special proof includes s and it is therefore correlated with the randomness used
to generate the special proof. When this is the case we cannot rely on the witness-
indistinguishability property of the special proof. We finally resolve this problem
by letting the simulator use a list of PRF seeds s0, . . . , sm, all generated from the
last seed sm in a “reverse chain” fashion, that is, si = PRFsi+1(“NEXT”) (where
“NEXT” is an arbitrary fixed value in the domain of the PRF). In simulation,
the simulator orders all the special proofs simulated in the concurrent execution
according to the order in which their first message is sent. The simulator starts
by using the first seed s0, and when the ith special proof starts, it switches to
using seed si. Therefore, all the randomness used in the simulation before the
ith special proof starts can be recovered using si−1. Let Π be the program used
as a witness in the ith special proof. Since Π only emulates the main simulation
until a point prior to the beginning of the ith special proof, Π only needs to
receive the seed si−1 in order to run correctly. Now, both the witness si−1 for
the ith special proof and the randomness used to generate the ith special proof
are generated using PRF from seed si. In this setting, we can prove that the
special proofs are witness-indistinguishable based on the properties of the PRF.

Putting All the Elements Together. We obtain a O(nε)-round public-
coin cZK protocol (P1, V1) as informally described below. As this protocol only
serves as an intermediate step towards our final protocol, we omit the formal
description.

An O(nε)-round public-coin cZK protocol (P1, V1):
– Stage 1 (Global Hash): P and V obtain the global hash function h.
– Stage 2 (k Slots): P and V run k slots. In the ith slot the prover sends a

commitment ci and the verifier responds with a random challenge ri.
– Stage 3 (Proof Stage): the prover proves using a “special purpose” witness-

indistinguishable UA that either x ∈ L, or there is a slot i, in which ci is a
commitment to a hash of a program Π containing a set of hash tree roots,
such that, Π on a short input s, and with access to some valid hash-inverting
oracle, outputs ri.

2.4 Improving the Round Complexity

In this section, we describe at a high-level how to improve the round complexity
of the protocol (P1, V1) to obtain our final protocol with O(log1+ε n) rounds, for
any constant ε. Towards this, recall that as discussed in Section 2.3, the reason
that we set the number of slots in (P ,V) to nε is to guarantee a constant nesting
depth. This is required, since the simulation running time increases too fast as a
function of the nesting depth. Thus, the key to improving the round complexity
is to better control the growth of the simulation running time as a function of
the nesting depth.

Let us first review the contributions to the simulation running time in the
protocol (P1, V1). Recall that at the end of a block, the simulator needs to
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generate an offline UA proof for each slot that it contains. The time spent by
the simulation on constructing proofs at the end of the block can therefore be
attributed to two factors: first, if the simulation of a slot takes time T , the time
for constructing an offline UA proof about that slot is poly(T ), where the specific
polynomial depends on the underlying UA system. Second, since the simulator
may potentially construct an offline UA proof for each slot contained in it, the
number of offline proofs that needs to be constructed can be m, the number of
concurrent sessions started by the verifier. Overall, the time spent at the end
of a block can be m · poly(T ). This implies a polynomial factor increase in the
simulation running time for every level of nesting. To decrease the simulation
time, we address both factors mentioned above:

– To improve the time complexity for constructing a single offline proof, we
make use of a UA system where the offline prover’s time complexity is quasi-
linear; we can get such system by instantiating the construction of [2] with
an underlying PCP system that has quasi-linear prover complexity [3].

– To decrease the number of proofs constructed at the end of each block, we
modify the protocol and the simulation strategy so that essentially, only one
offline proof needs to be constructed at the end of each block. This is harder
to achieve and we describe the ideas in more details below.

As a result of the above modifications, the time spent by the simulation at
the end of a block improves to Õ(T ), allowing the nesting depth to grow up to
O( log n

log logn ) and leading to a protocol with log1+ε n slots, and O(log1+ε n) rounds.
The main idea behind achieving the second improvement described above is

that instead of constructing an offline proof about the simulation of each slot,
the simulator constructs a single “block-proof” arguing about the simulation of
the whole block and then reuses the block-proof for the slots contained in the
block. In the block-proof, the simulator proves that the committed program Π
that mimics the execution of the main thread in the block outputs a transcript
τ of the block (which includes the verifier’s challenge messages of all the slots
contained in this block). In order to use a block-proof to argue about one slot
(c, r) contained in the block, the simulator creates, in addition to the block-proof,
a second offline UA proof that r is contained in τ—we call this a “session-proof”
(note that a UA is used since the transcript τ may be long). Informally speaking,
putting the block-proof and the session-proof together, the simulator can now
“cheat” by proving that c is a commitment to the hash of a program that outputs
a transcript containing the random challenge. Intuitively, soundness still holds,
as it is hard for a cheating prover to find a program that outputs any transcript
of polynomial length that will contain the random challenge. To implement this
idea, we need to make a few changes to the protocol as highlighted below.

– Let (ci, ri) be the ith slot in a session j, and let B be the block of minimal
size that contains (ci, ri). As described above, at the end of block B, the
simulator constructs a “block-proof” about the execution of Π that mimics
the execution of the main thread in this block. For the simulator to be able to
reuse this block-proof in the ith slot of session j, ci must be a commitment to
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Π . However, at the time the commitment ci is generated, the simulator does
not know when the message ri will be scheduled and which block will be the
minimal block containing this slot. Thus, the simulator does not know which
program to commit to. To resolve this problem, we modify a slot to consist of
n commitments ci,1, . . . , ci,n from the prover (and still one random challenge
ri from the verifier). Now, when a slot opens, the simulator can commit to all
the programs that emulate the execution of the simulation in all the blocks
that are currently open (that is, all blocks that may potentially contain this
slot), and later generate a proof with respect to one of these commitments.

– We modify the special proof to consist of both the session-proof and the
corresponding block-proof. The special proof will consist of two separate
oblivious executions of the online stage of the UA standing for both proofs.
Then, a witness-indistinguishable proof is given that either the statement is
true or that the transcripts of UA hidden in the two oblivious executions are
both accepting, and together form a trapdoor for one slot in the session.

Finally, we remark that now indeed only one block-proof is created after each
block. However, it seems that we haven’t gained anything as the simulator still
needs to create a session-proof for each slot contained in it. However, since
the length of τ is bounded by the running time of V∗, the time complexity
for constructing the session-proof is always bounded by a fixed polynomial in
the running time of V∗. Therefore, only the time complexity for constructing
the block-proof grows with the nesting depth. This suffices for the purpose of
controlling the simulation time from growing too fast.

3 The Final Protocol

In this section we give an informal description of our public-coin concurrent ZK
protocol in the global hash model (Protocol 3). The number of rounds of the
protocol depends on the parameter k. Next, we describe the notations used to
describe Protocol 3.

Primitives. Protocol 3 makes use of a statistically binding commitment Com
(described for simplicity as a non-interactive commitment), a witness indistin-
guishable argument of knowledge (WIAOK), and a hash function h sampled
randomly from a family of collision-resistant hash functions and given to both
parties as a common input. In the description of the language Λ1 below we abuse
notation and use h as a hash tree rather then a simple hash function. That is,
δ = h(P ) represents a root of a Merkle hash tree applied to a long string P . For
an index j, we can compute the authentication path from δ to P [j], certifying
that the value of δ is consistent with P [j].

Oblivious UA. Our protocol uses the online/offline public-coin UA protocol as
given by Protocol 1, where the verifier’s hash function sent in the offline stage is
replaced by the global hash h. In Protocol 3 the online part of the online/offline
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UA is executed twice in an oblivious way. That is, the online UA prover com-
mits to the statement it wants to prove, and to all UA messages. The online UA
verifier is only given the length of the proven statement (recall that the verifier
messages in online UA are simply its random coins and therefore it can compute
these messages without knowing the statement). For example, when proving any
statement of the form (h, hΠ , hτ , c, r) ∈ Λ2 (the language Λ2 is described be-
low) using an oblivious UA, the verifier is only given the length of the canonical
statement |“(h, 0n, 0n, c1,1, r1) ∈ Λ2”|. After the two oblivious executions of the
online UA are completed, a WIAOK is used to prove that the transcript of each
oblivious UA execution is consistent with valid online UA proof for the appro-
priate statements. That is, there exist openings for all the commitments sent by
the prover in the oblivious UA executions into messages, such that these mes-
sages (together with the random messages sent by the verifier) form an accepting
online UA proof for the statement of interest.

Block-Proofs and Session-Proofs. We refer to the first oblivious UA as a
block-proof and the second as session-proof. Block-proofs are proofs of mem-
bership in the language Λ1 defined as follows: (h, hΠ , hτ ) ∈ Λ1 if (hΠ , hτ ) are
hashes of a program Π and a transcript τ respectively, such that program Π ,
given access to some valid oracle, and some short auxiliary input, produces the
transcript τ . Session-proofs are proofs of membership in the language Λ2 defined
as follows: (h, hΠ , hτ , c, r) ∈ Λ2 if c is a commitment to the hash hΠ and hτ is
the hash of a transcript τ that contains the message r. More formally, for the
super-polynomial function T (n) = nlog log n the languages Λ1, Λ2 are defined in
Figure 2:

Block-proof: (h, hΠ , hτ ) ∈ Λ1 iff there exist:

– Π - description of a program such that |Π| < T (n).
– τ - a transcript such that |τ | < T (n).
– O - description of an oracle such that |O| < T (n).
– β - Auxiliary input Π such that |β| < |r| − n.

And the following conditions hold:

– hΠ = h(Π), hτ = h(τ) and ΠO(β) generates τ within T (n) steps.
– O contains an answer to every query Π makes and only contains query-answer

pairs of the form ((j, q), (b, a)) such that:
• The description of Π contains the variable δj .
• There is a string Pj such that δj = h(Pj), b = Pj [q] and a is the corre-

sponding authentication path.

Session-proof: (h, hΠ , hτ , c, r) ∈ Λ2 iff there exists randomness ρ for Com and a
transcript τ, |τ | < T (n) such that c = Com(hΠ ; ρ) ,hτ = h(τ), and τ contains r.

Fig. 2. Block-proof and session-proof
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Common Input: x ∈ L.
Auxiliary Input to P: w ∈ RL(x).
Common Reference String: A hash function h.

1. P and V repeat the following for every i ∈ [k]:
(a) P computes ci,j ← Com(h(0n), Un) for j ∈ [n] and sends {ci,j}j∈[n] to V.
(b) V samples a random string ri ← U2n and sends ri to P.

2. P and V run an oblivious UA for a statement of the same length as
“(h, 0n, 0n) ∈ Λ1”. All commitments sent by P are to the all-zero string.

3. P and V run an oblivious UA for a statement of the same length as
“(h, 0n, 0n, c1,1, r1) ∈ Λ2”. All commitments sent by P are to the all zero
string.

4. P proves to V using a public-coin WIAOK that either x ∈ L or there exists
i ∈ [k], j ∈ [n] and a hash values hΠ , hτ such that both of the following hold:
(a) The transcript of the first oblivious UA is consistent with an accepting

proof for the statement: “(h, hΠ , hτ ) ∈ Λ1”.
(b) The transcript of the second oblivious UA is consistent with an accepting

proof for the statement: “(h, hΠ , hτ , ci,j , ri) ∈ Λ2”.

Fig. 3. Pubic Coin cZK Protocol (Protocol 3)
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Abstract. Depending on the application, malleability in cryptography
can be viewed as either a flaw or—especially if sufficiently understood
and restricted—a feature. In this vein, Chase, Kohlweiss, Lysyanskaya,
and Meiklejohn recently defined malleable zero-knowledge proofs, and
showed how to control the set of allowable transformations on proofs.
As an application, they construct the first compact verifiable shuffle, in
which one such controlled-malleable proof suffices to prove the correct-
ness of an entire multi-step shuffle.

Despite these initial steps, a number of natural problems remained:
(1) their construction of controlled-malleable proofs relies on the inher-
ent malleability of Groth-Sahai proofs and is thus not based on generic
primitives; (2) the classes of allowable transformations they can support
are somewhat restrictive.

In this paper, we address these issues by providing a generic con-
struction of controlled-malleable proofs using succinct non-interactive
arguments of knowledge, or SNARGs for short. Our construction can
support very general classes of transformations, as we no longer rely on
the transformations that Groth-Sahai proofs can support.

1 Introduction

Recently, malleability is increasingly being viewed more as a feature than as a
bug [27,28,18,1,13,16,6]. In this vein, we (called CKLM in the sequel to disam-
biguate between our current and prior work) [7] introduced controlled-malleable
non-interactive zero-knowledge proof systems (cm-NIZKs for short). At a high
level, a cm-NIZK allows one, given a proof π for an instance x ∈ L, to compute
a proof π′ for the related instance T (x) ∈ L for transformations T under which
the language is closed. This malleability property can be additionally controlled,
meaning there is some specified class of allowable transformations T such that,
given the proof π for x ∈ L, a new proof π′ for T (x) ∈ L may be obtained only
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for T ∈ T . The notion of a cm-NIZK is non-trivial when the proof system also
needs to be concise or derivation-private; i.e., in addition to π′ being the same
size as π, it should be impossible to tell whether π′ was obtained using a witness
or by mauling a proof for a previous statement.

The notion of a derivation-private cm-NIZK is well motivated: as one appli-
cation, CKLM showed that it allows for the modular design of schemes that
satisfy randomizable and homomorphic chosen-ciphertext security. Another ap-
plication they presented is a compactly verifiable shuffle for an election, wherein
a set of encrypted votes, submitted by N different voters, is shuffled (i.e. re-
randomized and permuted), in turn, by L voting authorities. To ensure that
the authorities are behaving honestly, each authority provides a non-interactive
zero-knowledge proof that it has correctly shuffled the votes; if this is done using
standard NIZKs, then in order to verify that the overall shuffling process was
correct a verifier would need to access L separate proofs, each proving that an
authority correctly performed the shuffling process. If each proof is of size s(N),
this means that the verifier’s work is Θ(Ls(N)) (here we ignore the security
parameter). Using derivation-private cm-NIZKs, the verifier’s workload can be
reduced: each authority can, instead of producing a brand new proof, “maul”
the proof of the previous authority; the proof produced by the last authority
should then convince the verifier that the ciphertexts output at the end are a
valid shuffling of the input ciphertexts. This makes vote shuffling a factor of L
more efficient, as the verifier needs to verify a proof of size only Θ(s(N) + L).
(The size of the proof is still dependent on L because each authority needs to,
intuitively, add a “stamp of participation” in order for a verifier to ascertain that
the shuffling process was performed correctly.)

CKLM then showed how to construct derivation-private cm-NIZK proof sys-
tems for a limited, but nevertheless expressive, class of transformations. Specif-
ically, their approach builds heavily on the Groth-Sahai proof system [24]; this
means that they can consider only relations on group elements in groups that
admit bilinear pairings, and it might therefore seem as though controlled mal-
leability were just a property of the Groth-Sahai proof system and not necessarily
something that could be realized using more general building blocks. Interest-
ingly, as a consequence of this limitation, CKLM did not fully deliver on the
promise of a compactly verifiable shuffle: in order to prove that a given set of
ciphertexts is a shuffle, they needed to represent everything, including the trans-
formations applied to the set of ciphertexts, as a set of elements in the underlying
group. The way they chose to do this was using a permutation matrix; since this
permutation matrix needs to be extractable from the proof, the size of each proof
in their construction was Θ(N2+L). For the usual voting scenario, in which the
number of voters far exceeds the number of mix authorities, a vote shuffling
scheme wherein each authority produces its own proof but the proofs are only
of size Θ(N) (such as the verifiable shuffle of Groth and Lu [23]), therefore has
a shorter proof overall.

Thus, the two important, and somewhat related open problems were: first,
can a derivation-private controlled-malleable NIZK be realized in a modular
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fashion from general building blocks, without requiring the specific number-
theoretic assumptions underlying the Groth-Sahai proof system? Second, can
it be realized for general classes of languages and transformations, and not just
those languages whose membership is expressible using pairing product equations
over group elements as needed to invoke the Groth-Sahai proof system? In this
paper, we give a positive answer to both.

Our Contributions. We first investigate how to construct a derivation-private
cm-NIZK from succinct non-interactive arguments (SNARGs) [22,6]. We limit
our attention to t-tiered languages and transformations; briefly, a language is
t-tiered if each instance x can be efficiently labeled with an integer i = tier(x),
1 ≤ i ≤ t, and a transformation T for a t-tiered language L is t-tiered if
tier(T (x)) > tier(x) for all x ∈ L where tier(x) < t, and T (x) = ⊥ if tier(x) = t.
Some transformations are naturally t-tiered: for example, a vote shuffling trans-
formation carried out by authority i should output a set of ciphertexts and
stamps of approval from each authority up to i; furthermore, all transformations
can be made t-tiered if one is willing to reveal how many times a transformation
has been applied.

Intuitively, our construction works as follows: given a proof π for an instance
x ∈ L, to provide a proof for a new instance x′ = T (x) ∈ L, a user can form
a “proof of a proof;” i.e., prove knowledge of this previous instance x and its
proof π, as well as the transformation T from x to x′, and call this proof π′. By
the succinctness property of SNARGs, this new proof π′ can in fact be the same
size as the previous proof π, and thus this “proof of a proof” approach can be
continued without incurring any blowup in size.

Although the intuition is relatively simple, going from SNARGs to cm-NIZKs
is in fact quite challenging. While the outline above describes how to build
malleability into SNARGs, it is still the case that SNARGs satisfy only the non-
black-box notion of adaptive knowledge extraction, whereas cm-NIZKs require
a much stronger (black-box) version of extractability. (This stronger notion is
crucially used in the CCA encryption and the shuffle applications in CKLM.)
To therefore break all these requirements up into smaller pieces, we begin with
SNARGs and then slowly work our way up to cm-NIZKs in three separate con-
structions, with each construction incorporating an additional requirement.

We begin in Section 3.1 with a construction of a malleable SNARG. This
construction closely follows the intuition above (which is itself inspired by the
“targeted malleability” construction of Boneh et al. [6]): malleability is achieved
by proving knowledge of either a fresh witness or a previous instance and proof,
and a transformation from that instance to the current one. As observed by Bi-
tansky et al. [3,4], care must be taken with this kind of recursive composition
of SNARGs, as the size of the extractor can quickly blow up as we continue
to extract proofs from other proofs; we can therefore construct t-tiered mal-
leable SNARGs (i.e., SNARGs malleable with respect to the class of all t-tiered
transformations) for only constant t. Furthermore, a formal treatment of our
particular recursive technique reveals that a stronger notion of extraction, in
which the extractor gets to see not only the random tape but also the code for
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the adversary, is necessary for both our construction and the original one of
Boneh et al.

With our construction in Section 3.1, we therefore added malleability to the
SNARG while preserving succinctness. In Section 3.2, we next tackle the issue of
extractability; in particular, we want to boost from the non-black-box notion of
extractability supported by SNARGs to the standard black-box notion of a proof
of knowledge (NIZKPoK). To do this, we in fact rely only on the soundness of the
SNARG, and do not attempt to use the (non-black-box) extractor at all. Instead,
we perform a sort of verifiable encryption, in which we encrypt the witness and
then prove knowledge (using the malleable SNARG) of the value inside the
ciphertext; in this our approach is perhaps most similar to that of Damg̊ard
et al. [11]. A black-box extractor is then simple to construct: it just decrypts
the ciphertext and thus, provided the proof is sound, recovers the witness. In
addition, to preserve the full generality of our t-tiered transformations one would
instantiate the encryption scheme using fully homomorphic encryption, although
we will also see in Section 4 that interesting classes of transformations can still
be supported by more limited schemes (such as ones that are multiplicatively
homomorphic).

With our construction in Section 3.2, we therefore achieved the same prop-
erties that the Groth-Sahai proof system already provided (namely, a malleable
NIWIPoK), but with respect to a more general class of transformations. As such,
to now construct cm-NIZKs in Section 3.3, we can follow approximately the same
construction as CKLM, who also used malleable NIWIPoKs to construct their
cm-NIZK. Once again, however, care must be taken in this step, as we would
like to preserve the generality in the class of transformations that we supported
in the previous two sections. We therefore modify the CKLM construction to
allow for this, and thus achieve cm-NIZKs for all t-tiered transformations.

In summary, we show that if zero-knowledge SNARGs exist for all languages
in NP and fully homomorphic encryption exists, then derivation-private cm-
NIZK proof systems exist for all t-tiered classes of transformations, where t is a
constant. We do this by constructing three distinct types of proofs, each of which
may be of independent interest: first, a malleable SNARG, then a malleable
NIZKPoK, and finally a cm-NIZK. While each of our constructions builds from
the previous one, we stress that our constructions are all fully generic; e.g., any
malleable SNARG can be used to construct a malleable NIZKPoK, not just the
specific one we construct.

Finally, in Section 4, we show how to use our SNARG-based proofs for t-
tiered transformation classes (using just multiplicatively homomorphic encryp-
tion rather than the heavyweight requirement of fully homomorphic encryption)
to construct a compact verifiable shuffle with proof size Θ(N + L) under gen-
eral assumptions. This enhances CKLM in two ways: (1) CKLM had proof size
Θ(N2+L); (2) CKLM required Groth-Sahai proofs, rather than general assump-
tions. In a separate paper [9], we showed that, by making additional assumptions
about groups that admit bilinear pairings (similar to those made by Groth and
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Lu [23]), we can also obtain a compact verifiable shuffle with proofs of size
Θ(N + L) using the Groth-Sahai proof system.

2 Definitions and Notation

We recall the main security notions we use. We begin with the recent defini-
tions for malleability due to CKLM [7], as well as their definition for compactly
verifiable shuffles; we then define succinct non-interactive zero-knowledge argu-
ments (SNARGs), which form the basis for our construction of malleable proofs
in Section 3.

2.1 Malleable Proofs

Let R(·, ·) be a relation such that the corresponding language LR = {x |
∃w such that (x,w) ∈ R} is in NP. As defined by CKLM, the relation is closed
with respect to a transformation T = (Tinst, Twit) if, for every (x,w) ∈ R,
(Tinst(x), Twit(w)) ∈ R as well. We define zero knowledge and related notions
formally in the full version of the paper [8], but recall briefly here that a non-
interactive zero-knowledge (NIZK) proof system [5,14,20] is a set of algorithms
(CRSSetup,P ,V) for which there exists an efficient simulator (S1, S2) such that
no adversary can distinguish between proofs formed by the prover and proofs
formed by the simulator, and an efficient extractor (E1, E2) that can produce a
witness w such that (x,w) ∈ R from any valid proof π for x. For zero knowledge,
we discuss here two additional variants: the first, composable zero knowledge,
says that the adversary should still be unable to distinguish even give the simu-
lation trapdoor, and the second, statistical zero knowledge, says that the distri-
bution of proofs formed by the simulator and prover are indistinguishable even
to an unbounded adversary; composable zero knowledge is thus implied by sta-
tistical zero knowledge, as an unbounded adversary could produce the simulator
trapdoor itself.

To incorporate malleability, CKLM extend a NIZK (CRSSetup,P ,V) to add an
additional algorithm, ZKEval, that given a transformation T , a previous instance
x, and a previous proof π such that V(crs, x, π) = 1, computes a valid proof for
Tinst(x); i.e., a proof π′ such that V(crs, Tinst(x), π

′) = 1. They then say that the
proof system is malleable with respect to a set of transformations T if for every
T ∈ T , this computation can be performed efficiently. In terms of controlling
malleability, the main definition of CKLM reconciles simulation soundness [29,12]
and simulation-sound extractability [21] with malleability by requiring that, for
a set of transformations T , if an adversary can produce a proof π that x ∈ LR

then the extractor can extract from π either a witness w or a transformation
T ∈ T and previously proved instance x′ such that x = Tinst(x

′). This is defined
more formally as:

Definition 2.1. [7] Let (CRSSetup,P ,V ,ZKEval) be a NIZKPoK system for an
efficient relation R, with a simulator (S1, S2) and an extractor (E1, E2). Let
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T be a set of unary transformations for the relation R such that membership
in T is efficiently testable. Let SE1 be an algorithm that, on input 1k, outputs
(crs, τs, τe) such that (crs, τs) is distributed identically to the output of S1. Let A
be given, let Q := Qinst × Qproof be a table for storing the instances queried to
S2 and the proofs given in response, and consider the following game:

– Step 1. (crs, τs, τe)
$←− SE1(1

k).

– Step 2. (x, π)
$←− AS2(crs,τs,·)(crs, τe).

– Step 3. (w, x′, T )← E2(crs, τe, x, π).
– Step 4. b← ((w �= ⊥ ∧ (x,w) /∈ R) ∨

((x′, T ) �= (⊥,⊥) ∧ (x′ /∈ Qinst ∨ x �= Tinst(x
′) ∨ T /∈ T )) ∨

(w, x′, T ) = (⊥,⊥,⊥))

The NIZKPoK satisfies controlled-malleable simulation-sound extractability
(CM-SSE, for short) with respect to T if for all PPT algorithms A there ex-
ists a negligible function ν(·) such that the probability (over the choices of SE1,
A, and S2) that V(crs, x, π) = 1 and (x, π) �∈ Q but b = 1 is at most ν(k).

CKLM also defined the notion of derivation privacy for malleable proofs, which
says that proofs should not reveal whether they were formed fresh or via trans-
formation.

Definition 2.2. [7] For a non-interactive proof (CRSSetup,P ,V ,ZKEval), an
efficient relation R malleable with respect to T , an adversary A, and a bit b, let
pAb (k) be the probability of the event that b′ = 0 in the following game:

– Step 1. crs
$←− CRSSetup(1k).

– Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T )
$←− A(crs).

– Step 3. If V(crs, xi, πi) = 0 for some i, (xi, wi) /∈ R for some i, or T /∈ T ,
abort and output ⊥. Otherwise, form

π
$←−
{
P(crs, Tinst(x1, . . . , xq), Twit(w1, . . . , wq)) if b = 0
ZKEval(crs, T, {xi, πi}qi=1) if b = 1.

– Step 4. b′
$←− A(state, π).

Then the proof system is derivation private if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

CKLM give a zero-knowledge variant of this definition called strong derivation
privacy, in which proofs output by ZKEval should be indistinguishable from those
output by the simulator. The security experiment is almost the same, with the
only differences being that A is given the simulation trapdoor, A is not required
to output any witnesses, and S2 is used in place of P . Putting these all together,
if a proof system is zero knowledge, strongly derivation private, and CM-SSE,
then CKLM call it a cm-NIZK.
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2.2 Succinct Non-Interactive Arguments of Knowledge

Our cm-NIZK construction in Section 3 builds on succinct non-interactive argu-
ments of knowledge, or SNARGs (also called SNARKs) for short. Proofs of this
kind were first shown to exist by Micali in 2000 [26], who used the Fiat-Shamir
heuristic [15] to eliminate the interaction in previous succinct arguments. More
recently, Groth provided a construction using pairings [22] which was improved
by Lipmaa [25], Bitansky et al. [3] constructed designated-verifier SNARGs us-
ing the new notion of extractable collision-resistant hash functions, and Gennaro
et al. [17] constructed constant-sized SNARGs with a relatively short common
reference string.

Our definition is based primarily on that of Boneh et al. [6], although for the
succinctness property we incorporate the definition of Gentry and Wichs [19] as
well. In addition, to perform our recursive composition in Section 3.1, we require
a stronger notion of extraction than the original definition provided; essentially,
we consider adversaries that take in advice strings as input. Although we present
two formulations below, strong and generative adaptive knowledge extraction,
we note that these notions are in fact equivalent; a more in-depth discussion can
be found in the full version.

Definition 2.3. Let 0 < γ < 1 be a constant. A (strong) γ-succinct non-
interactive argument of knowledge for a relation R is a tuple of probabilistic
polynomial-time algorithms (CRSSetup,P ,V) with the following properties:

1. Perfect completeness. For all k ∈ N, (x,w) ∈ R, crs
$←− CRSSetup(1k), and

π
$←− P(crs, x, w), the probability that V(crs, x, π) = 1 is 1.

2. Strong/generative adaptive knowledge extraction. For a PPT algorithm A,
let EA be an associated PPT algorithm, and let z be a string whose size is
polynomial in the security parameter. Then consider the following game:

– Step 1. crs
$←− CRSSetup(1k); r

$←− {0, 1}∗.
– Step 2. (x, π) ← A(crs, z; r).
– Step 3. w ← EA(crs, z; r).

We say the argument system satisfies strong adaptive knowledge extraction if
for all PPT A there exists an EA and a negligible function ν(·) such that for
all z the probability (over the choices of CRSSetup and r) that V(crs, x, π) = 1
but (x,w) �∈ R is at most ν(k). This corresponds to previous definitions of
adaptive knowledge extraction if we consider only z = ⊥.
In addition, it satisfies generative adaptive knowledge extraction if there ex-
ists a PPT algorithm E such that for all PPT A there exists a negligible
function ν(·) such that, on input the code of A, E produces an extractor EA,
running in time polynomial in that of A, such that for all z the probability
(over the choices of CRSSetup and r) that V(crs, x, π) = 1 but (x,w) /∈ R is
at most ν(k).

3. φ-succinct arguments. For all k ∈ N, (x,w) ∈ R, and crs
$←− CRSSetup(1k), it

holds that P(crs, x, w) produces a distribution over strings of length at most
φ(k, |x|, |w|), where φ(k, |x|, |w|) is bounded by poly(k)polylog(|x|) + γ|w| for
some constant 0 < γ < 1.
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While the succinctness property of SNARGs is quite attractive for applications,
it comes with a price: all known SNARG constructions are based on so-called
“knowledge of exponent” assumptions [10,2]; furthermore, a recent result due to
Gentry and Wichs [19] that separates SNARGS from all falsifiable assumptions
suggests that this dependence is perhaps inherent. In addition, to satisfy our
stronger version of adaptive knowledge extraction (either strong or generative;
again, they are equivalent), the knowledge of exponent assumption used to prove
the security of existing SNARG constructions [22,17] would have to be poten-
tially strengthened to consider an extractor that has access to the code of A; for
more details, we defer to the full version.

The final observation we make about SNARGs is that the definition of adap-
tive knowledge extraction requires the extractor to have non-black-box access
to the malicious prover; as we will see in Section 3.2, this can make SNARGs
difficult to integrate into protocol design. Fortunately, we can easily see that
this notion relates to the standard notion of soundness for proofs [14] (as used
implicitly in Groth’s SNARG construction [22]):

Theorem 2.1. If a proof system (CRSSetup,P ,V) satisfies adaptive knowledge
extraction then it also satisfies adaptive computational soundness.

Proof. To show this, we take an adversary A that can break the soundness
of the proof system with non-negligible probability ε and use it to construct an
adversaryB that breaks adaptive knowledge extraction with the same probability
ε. The code for B is simple: on input (crs; r), it gives crs to A (and implicitly runs
it on a random tape r′ ⊆ r), and when A outputs a pair (x, π) B outputs the
same. By the definition of soundness, A will win if V(crs, x, π) = 1 but x /∈ LR;
this implies that, for any w output by EB, it must be the case that (x,w) /∈ R, as
otherwise x ∈ LR. B will therefore succeed whenever A does and thus succeeds
with probability ε.

3 A Construction of cm-NIZKs from SNARGs

In this section, we construct cm-NIZK proofs from zero-knowledge SNARGs that
are malleable with respect to a wide range of transformations, namely all t-tiered
transformation classes. Intuitively, a relation is t-tiered if each instance x lives
in some tier i. We would like transformations to move up through the tiers, and
we would also like ensure that at most t transformations are applied. Formally,
we say that a relation R(t) is t-tiered if there exists an efficiently computable

function tier : L
(t)
R → [0, t] and (⊥,⊥) ∈ R(t), and that a transformation class

T (t) is t-tiered for R(t) if for all T = (Tinst, Twit) ∈ T the following two conditions
hold: (1) if (x,w) ∈ R(t) and tier(x) < t, then (Tinst(x), Twit(w)) ∈ R(t) and
tier(Tinst(x)) > tier(x); and (2) if tier(x) = t then Tinst(x) = ⊥.

We summarize the contributions in this section in Figure 1. As discussed in
the introduction, the construction in each subsection is used as a component
in the next subsection’s construction, with the end goal of constructing a cm-
NIZK. In Section 3.1 we construct a SNARG, malleable with respect to a t-
tiered transformation class, that we then use in Section 3.2 in combination with
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ZK SNARG t-tiered Enc+NIZK signature-binding: our cm-NIZK

SAKE
Thm 3.3�� SAKE
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Thm 3.2
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� ZK
Thm 3.7

+IND-CPA
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Thm 3.8
+fxn priv

����
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��

� ZK
Thm 3.11 �� ZK

SDP
Thm 3.8 �� DP

Thm 3.13 �� SDP

Fig. 1. The various relations among our constructions in this section. The arrows indi-
cate which properties of the previous construction are used to obtain which properties
of the next one, and are labeled on the top with the theorem number that proves the
relation; the labels on the bottom indicate properties of additional primitives that are
used as well. For example, we prove in Theorem 3.12 that our signature-binding con-
struction of a cm-NIZK satisfies CM-SSE if our Enc+NIZK construction is a proof of
knowledge, and the additional signature and one-time signature schemes we use are,
respectively, unforgeable and strongly unforgeable; this is captured by the top right-
most arrow in the diagram. Strong adaptive knowledge extraction is written as SAKE,
zero knowledge as ZK, proof of knowledge as PoK, and (strong) derivation privacy as
(S)DP.

encryption to obtain a full NIZKPoK; this step seems necessary because SNARGs
satisfy only the weak notion of adaptive knowledge extraction, which seems
insufficient for constructing cm-NIZKs. Finally, using this NIZKPoK and a one-
time and regular signature scheme, we construct in Section 3.3 a cm-NIZK that
is malleable with respect to a broader class of transformations than could be
supported by the construction of CKLM [7].

3.1 From SNARGs to Malleable but Weakly Extractable Proofs

We begin by constructing a derivation-private NIZK for a relationR(t), malleable
with respect to a t-tiered transformation class T (t), that achieves some degree
of knowledge extraction. Our approach in this endeavor is inspired by that of
Boneh et al. [6], who use SNARGs to construct a “targeted malleable” encryption
scheme. To form a proof for an instance x0 at the bottom level, one can use the
SNARG directly to obtain a proof π0. Now, suppose we would like to further form
a proof for an instance x1 = Tinst(x0); one option is to use the witness Twit(w0)
and form a fresh proof just as we did for x0. Another option, however, is to
“maul” the proof π0: this can be accomplished by forming a new proof π1 that
proves knowledge of the old proof π0 and instance x0, as well as a transformation
T such that x1 = Tinst(x0).

The reason why SNARGs are attractive for this application is that, because
the extraction procedure is non-black-box and therefore the proofs can be suc-
cinct, the proof π1 can in fact be the same size as the proof π0. Continuing in
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this fashion, we can see that at the i-th level, a proof for xi can be proved using
either knowledge of a witness wi for the relation R(t), or knowledge of a proof
πi−1 for xi−1 and a transformation T such that xi = Tinst(xi−1).

It turns out that, if the SNARG proof system used is zero knowledge (or
even just witness indistinguishable), then the resulting proof system is derivation
private. As mentioned above, however, the notion of extractability we can satisfy
is still only the weak notion of adaptive knowledge extraction that SNARGs
provide. In the next section, we show how to bootstrap this construction to
obtain a proof system that satisfies the standard notion of extractability for
proofs of knowledge (and still satisfies all the malleability and derivation privacy
requirements).

To begin our construction, we first formalize the intuition developed above
by defining the languages we use: at the bottom level at i = 0 we have L0 :={
x | ∃ w s.t. (x,w) ∈ R(t)

}
, and for i such that 1 ≤ i ≤ t, we have

Li :=

⎧⎨⎩(x, crsi−1, . . . , crs0)

∣∣∣∣∣ ∃ (w, x′, π′, T ) s.t (x,w) ∈ R(t) or
Vi−1(crsi−1, (x

′, crsi−2, . . . , crs0), π
′) = 1,

Tinst(x
′) = x, and T ∈ T (t)

⎫⎬⎭
Using these languages and t + 1 SNARG systems (CRSSetupi,Pi,Vi), we now
define our malleable t-tiered construction for R(t).

– CRSSetup(1k): Generate crsi
$←− CRSSetupi(1

k) for all i, 0 ≤ i ≤ t. Output
crs := (crs0, . . . , crst).

– P(crs, x, w): Compute i := tier(x); output π
$←− Pi(crsi, (x, crsi−1, . . . , crs0),

(w,⊥,⊥,⊥)).
– V(crs, x, π): Compute i := tier(x) and output Vi(crsi, (x, crsi−1, . . . , crs0), π).
– ZKEval(crs, T, x, π): Compute i := tier(x), define x′ := Tinst(x), and output

π
$←− Pi+1(crsi+1, (x

′, crsi, . . . , crs0), (⊥, x, π, T )).

Recall that there are three properties we would like this proof system to satisfy:
(1) zero knowledge, (2) derivation privacy, and (3) strong adaptive knowledge
extraction; we deal with each of these in turn. For the first, zero knowledge, if
we assume that our underlying proof systems are zero knowledge then we get a
proof of the following theorem for free:

Theorem 3.1. If the SNARG systems (CRSSetupi,Pi,Vi) are zero knowledge
for all i, 0 ≤ i ≤ t, then the t-tiered construction is zero knowledge.

We next turn to derivation privacy. At first glance, it would seem impossible
that our construction could meet derivation privacy: after all, tier(x) openly
reveals exactly how many times a transformation has been applied! Looking at
the definition of the prover P , however, we see that for x such that tier(x) = i it
does in fact output a proof that “looks like” i transformations have been applied,
even though it is using a fresh witness; as this is what the definition of derivation
privacy requires (i.e., that the proof, rather than the instance, not reveal the
transformation), we therefore use the witness indistinguishability of the SNARGs
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(which trivially follows from zero knowledge) to show that derivation privacy
does hold. In addition, to show that strong derivation privacy holds, we require
our SNARGs to be composable zero knowledge (as the adversary in the strong
derivation privacy game gets to see the simulation trapdoor, and thus the zero
knowledge adversary needs to as well); this requirement is met, for example, by
the SNARG constructions of Groth [22] and Gennaro et al. [17], both of which
actually satisfy the significantly stronger property of statistical zero knowledge.
Due to space constraints, a proof of the following theorem can be found in the
full version [8].

Theorem 3.2. If the SNARG systems (CRSSetupi,Pi,Vi) satisfy witness indis-
tinguishability for all i, then the t-tiered construction satisfies derivation privacy
for transformations in T (t). Furthermore, if (CRSSetupi,Pi,Vi) satisfy compos-
able zero-knowledge for all i, then the t-tiered construction satisfies both deriva-
tion privacy and strong derivation privacy for transformations in T (t).

Next, we turn to adaptive knowledge extraction; here, we can show that if the
number of times the “proof of a proof” method has been applied is constant,
then the t-tiered construction is strongly adaptive knowledge extractable. As do
Boneh et al. [6], we require t be constant so the runtime of the extractor does not
blow up: if A runs in time τ , and we require the runtime of the extractor to be
only polynomial in the runtime of A, then the extraction of the t-th nested proof
(i.e., if A has formed a proof of a proof t times) might take time atτ+tb for some
constants a and b, which for arbitrary t could be exponential. To ensure that the
time taken to extract from these nested proofs instead remains polynomial, we
therefore require that t be constant. Furthermore, as we will see in the proof we
rely on strong adaptive knowledge extraction to perform our recursive extraction
(again, as do Boneh et al.). A proof of the following theorem can be found in
the full version.

Theorem 3.3. If the SNARG systems (CRSSetupi,Pi,Vi) satisfy strong adap-
tive knowledge extraction (as defined in Definition 2.3) for all i, then the t-tiered
construction satisfies strong adaptive knowledge extraction for constant t.

Finally, we discuss the size of the proofs. Looking at the language Li for some
level, we see that an instance for the next language Li+1 consists of the same
elements as an instance of Li, with the addition of the CRS crsi. If we consider,
for example, the SNARG construction of Groth [22], then the size of crsi is
O(|x(i)|2) for x(i) ∈ Li. Let f be the function that computes the size of the
instance at level i+1 given the size of the instance x at level i. Then, because an
element of size |x|2 is added to obtain the instance for the next level up, we have

that f(f(|x|)) = |x|4, and, after t transformations, that f t(|x0|) > |x0|2
t

. If t is
constant, the fact that we require SNARGs to be of size polylog(|x|) accounts
for every such polynomial factor. Considering next the witness, we observe that
the size of the witness w(i) for i > 0 is |wi| + |xi−1| + |πi−1| + |Ti|. In order
for our proofs to be succinct, we require that |πi| ≤ |πi−1|. If we assume that
|wi| ≤ |wi−1|, |xi| ≤ |xi−1|, and |Ti| ≤ |Ti−1| and that w(i) = |wi| + |xi−1| +
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|πi−1|+ |Ti| ≤ 4|πi−1|, then a poly(k)polylog(|x|) + γ|w| succinct SNARG with
γ = 1/4 is sufficient for our construction.

3.2 From Weak Malleable Proofs to Malleable Proofs of Knowledge

With our malleable NIZK in place, we might now try to use it to directly con-
struct a cm-NIZK or, because we can satisfy only adaptive knowledge extrac-
tion, a weakened notion of cm-NIZK that accomodates this weaker extractability
property. Looking back at the definition of controlled malleability (CM-SSE) in
Definition 2.1, however, we can see that A is given access to a simulation ora-
cle S2. This oracle access seems to be fundamental to the definition: to achieve
any kind of simulation soundness, in which we want A to be unable to produce
its own proofs of false statements even after seeing many such proofs, we must
give it an oracle that can produce false proofs. If we attempt to then use any
non-black-box notion of extractability in conjunction with such an oracle, it is
not clear how such an extractor would even be defined, as it cannot simply run
the code for A (in particular, because the oracle’s ability to produce false proofs
must be presumably unavailable to A and therefore EA).

To avoid this obstacle altogether, we instead augment the construction from
the previous section to achieve full extractability. To do this, our proofs consist
of a ciphertext encrypting the witness, and a malleable zero-knowledge SNARG
proving knowledge of the value inside of this ciphertext. Now, rather than require
the use of the non-black-box extractor to prove any kind of extractability, we
can instead give an extractor the secret key, and it can extract by decrypting
the ciphertext. As we will see in our proof of Theorem 3.6, this means that all
is required of the SNARG is soundness (which, we recall by Theorem 2.1, is
implied by adaptive knowledge extraction).

In more detail, to construct a malleable NIZKPoK for a relation R(pok) and
transformation class T (pok), we use an encryption scheme and a proof system
for the relation R(t) such that

((pk , x, c), (w, r)) ∈ R(t) ⇐⇒ c = Enc(pk , w; r) ∧ (x,w) ∈ R(pok).

As for malleability, suppose we want to be able to transform the proofs for R(pok)

with respect to some transformation class T (pok). In order to implement ZKEval
for a transformation T = (Tinst, Twit) ∈ T (pok), we will need to be able to trans-
form the proof for R(t) and the ciphertext c. For the latter, this means we need
to be able to apply a transformation Tc on the ciphertext that produces an en-
cryption of Twit(w); i.e., the homomorphic property of the encryption scheme
must be robust enough to allow us to apply Twit to the encrypted message. For
the proof, we also require a transformation Tr on the randomness r of the cipher-
text, as we require a transformation that maps (pk , x, c) to (pk , Tinst(x), Tc(c))
and (w, r) to (Twit(w), Tr(r)).

A bit more formally, for every T = (Tinst, Twit) ∈ T (pok) and r′ from the
randomness space R, let Tc be the transformation that maps c = Enc(w; r)
to Eval(c, Twit; r

′) = Enc(Twit(w); r ◦ r′) (where ◦ denotes the operation that
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composes the randomness, and Eval denotes the homomorphic operation on
ciphertexts), let Tr be the resulting transformation on the randomness, and
let τ(T, r′) be the transformation that maps instances (x, c) to new instances
(Tinst(x), Tc(c)), and witnesses (w, r) to new witnesses (Twit(w), Tr(r)) (i.e., the
exact transformation we need for the proof). Finally, let T (t) be the set of trans-
formations that includes τ(T, r′) for all T ∈ T (pok), r′ ∈ R, and let T (E) be the
set of all Twit.

To give our Enc+NIZK construction for R(pok), let (KeyGen,Enc,Dec,Eval)
be a function-private homomorphic encryption schemewith randomness space R
and let (CRSSetup′,P ′,V ′,ZKEval′) be a malleable zero-knowledge SNARG for
the relation R(t) with transformation set T (t). Our construction of a NIZKPoK
is as follows:

– CRSSetup(1k): Generate crs′
$←− CRSSetup′(1k) and (pk , sk)

$←− KeyGen(1k)
and output crs := (crs′, pk ).

– P(crs, x, w): Parse crs = (crs′, pk ) and pick randomness r
$←− R. Then

compute c ← Enc(pk , w; r) and π′
$←− P ′(crs′, (pk , x, c), (w, r)) and output

π := (π′, c).
– V(crs, x, π): Parse crs = (crs′, pk ) and π = (π′, c), and output V ′(crs′, (pk , x,

c), π′).
– ZKEval(crs, T, x, π): Parse crs = (crs′, pk ), π = (π′, c), and T = (Tinst, Twit).

Then choose random r′
$←− R, compute T ′ := τ(T, r′), and compute πT

$←−
ZKEval′(crs′, T ′, (pk , x, c), π′) and cT := Eval(pk , Twit, c; r

′). Output (πT , cT ).

We make the following requirements on the underlying SNARG to obtain the
completeness and malleability properties; both of them follow directly from the
Enc+NIZK construction:

Theorem 3.4. Let W(E+N) be the witness space for R(pok). If the SNARG is
complete for R(t) and the encryption scheme has message space M such that
W(E+N) ⊆M, then the Enc+NIZK construction is complete.

Theorem 3.5. The Enc+NIZK construction is malleable with respect to T (pok)

whenever the SNARG is malleable with respect to the corresponding set T (t) =
τ(T (pok),R) and the encryption scheme is malleable with respect to T (E) (as
defined above).

If T (pok) is a t-tiered class of transformations on R(pok), then τ(T (pok)) will also
be t-tiered on R(t). Thus, if we instantiate (KeyGen,Enc,Dec,Eval) using a fully
homomorphic encryption scheme and we use the SNARGs constructed in the pre-
vious section, we can obtain a malleable proof system for any t-tiered T (pok) with
constant t. (On the other hand, we will see in Section 4 that there are interesting
relations and transformation classes we can obtain without fully homomorphic
encryption as well.) As for size efficiency, we know by the succinctness property
of SNARGs that the size of π′ will not grow through transformation. For the
ciphertext c, if we assume that Twit does not increase the size of the witness, then
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the size of c will stay the same as well and thus the proof will remain compact
even as it is transformed.

We would now like to show that if the SNARG satisfies adaptive knowl-
edge extraction then the Enc+NIZK construction satisfies extractability; i.e.,
is an argument of knowledge. We also must show that the construction retains
the original zero knowledge and derivation privacy properties as well. Due to
space constraints, proofs of the following three theorems can be found in the full
version.

Theorem 3.6. If the SNARG satisfies adaptive knowledge extraction with re-
spect to R(t) then the Enc+NIZK construction is a proof of knowledge with respect
to R(pok).

Theorem 3.7. If the SNARG is zero knowledge and the encryption scheme is
IND-CPA secure, then the Enc+NIZK construction is zero knowledge.

Theorem 3.8. If the SNARG is zero knowledge and strongly derivation private
with respect to the class of transformations T (t) and the encryption scheme is
function private with respect to T (E) then the Enc+NIZK construction is deriva-
tion private with respect to T (pok).

3.3 From Malleable NIWIPoKs to cm-NIZKs

With our malleable NIZKPoK in place, we are finally ready to construct cm-
NIZKs (although, as we will see, we require only witness indistinguishability
rather than full zero knowledge). We first recall the construction of CKLM,
who used a relation R′ such that ((x, vk ), (w, x′, T, σ)) ∈ R′ if (x,w) ∈ R or
Verify(vk , σ, x′) = 1, x = Tinst(x

′), and T ∈ T , where σ was a signature for a
secure signature scheme. We use the CKLM construction as a rough guideline for
our own; the crucial alteration we make, however, is that CKLM were willing to
retain the natural re-randomizability of Groth-Sahai proofs, whereas we want to
consider classes of transformations that do not contain the identity (for example,
the t-tiered transformation classes).

Suppose we want to construct a cm-NIZK for relation R(cm) and trans-
formation class T (cm). We use a NIWIPoK for an augmented relation R(pok)

such that ((x, vk , vkot), (w, x′, vk ′ot, T, σ)) ∈ R(pok) if (1) (x,w) ∈ R(cm) or (2)
Verify(vk , σ, (x′, vk ′ot)) = 1 and either (2a) x = Tinst(x

′) for T = (Tinst, Twit) ∈
T (cm), or (2b) x′ = x and vk ′ot = vk ot, where vk ot is a verification key for a
one-time signature scheme.

Intuitively, to simulate proofs, we can use this last type of witness; i.e., on a
query x, the simulator can use sk as a trapdoor to sign (x, vk ot) and produce
a signature σ, and then form a proof using (⊥, x, vkot,⊥, σ) as a witness. To
ensure that an adversary cannot simply reuse this proof and claim it as its own
(i.e., apply the identity transformation), proofs are accompanied by a one-time
signature, on both the instance and the proof, to indicate that the proof was
formed fresh for this instance. Because the one-time signature thus binds together
the instance and the proof, we call this construction “signature binding.”
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Now, if we want to allow transformations (T̂inst, T̂wit) ∈ T (cm) for our cm-
NIZK, we will have to be able to transform the underlying NIWIPoK accord-

ingly. To do this for any T̂ = (T̂inst, T̂wit) ∈ T (cm), and any v̂kot ∈ VK ot

(where VK ot is the set of all possible verification keys), let ρ(T̂ , v̂kot) be a trans-

formation that maps (x, vk , vkot) to (T̂inst(x), vk , v̂kot) and (w, x′, vk ′ot, T, σ) to

(T̂wit(w), x
′, vk ′ot, T̂ ◦T, σ). We require the underlying NIWIPoK to be malleable

with respect to this class T (pok).
More formally, let (KeyGen, Sign,Verify) be an unforgeable signature scheme,

(KeyGenot, Signot,Verifyot) be a strongly unforgeable one-time signature scheme,
and let (CRSSetupWI,PWI,VWI) be a malleable derivation-private NIWIPoK for
R(pok). We give our construction of a cm-NIZK using these primitives as follows:

– CRSSetup(1k): Generate crsWI
$←− CRSSetupWI(1

k); (vk , sk)
$←− KeyGen(1k).

Output crs := (crsWI, vk).

– P(crs, x, w): Parse crs = (crsWI, vk) and compute π′
$←− PWI(crsWI, (x, vk ,

vkot), (w,⊥,⊥,⊥,⊥)). Generate (vkot, skot)
$←− KeyGenot(1

k), compute σot
$←−

Signot(skot, (x, π
′)), and output π := (π′, σot, vkot).

– V(crs, x, π): Parse π = (π′, σot, vkot) and check that Verifyot(vk ot, σot, (x,
π′)) = 1; if this fails then output 0. Otherwise, parse crs = (crsWI, vk) and
output VWI(crsWI, (x, vk , vk ot), π

′).
– ZKEval(crs, T, x, π): Parse crs = (crsWI, vk) and π = (π′, σot, vk ot). Generate

(v̂k ot, ŝkot)
$←− KeyGenot(1

k) and compute π′′
$←− ZKEvalWI(crsWI, ρ(T, v̂kot),

(x, vk , vkot), π
′) and σ′ot

$←− Signot(ŝk ot, (x, π
′′)). Output (π′′, σ′ot, v̂k ot).

Although in using T̂ ◦ T we require that T (cm) be closed under composition, we
note that this is not a strong restriction. Indeed, if T (cm) is not closed under
composition, then we can define the closure of T (cm) to be the class of trans-

formations T (cm)′ such that T ∈ T (cm)′ if and only if T = T1 ◦ . . . ◦ Tj for
j < t and T1, . . . , Tj ∈ T (cm). In this case, if we construct the NIWIPoK using
our Enc+NIZK construction, our proofs have to increase in size by a factor of t.
(The encryption scheme used will have to have message space large enough to
represent T1 ◦ . . . ◦ Tt as (T1, . . . , Tt).) On the other hand, this size increase is
unavoidable for general transformations if we want to obtain a definition (like
CM-SSE) in which a non-interactive black-box extractor must be able to extract
the entire transformation performed.

By construction, we directly obtain the following theorems:

Theorem 3.9. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is com-
plete for relation R(pok), and the one-time signature is correct, then the signature-
binding construction is complete for relation R(cm).

Theorem 3.10. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is mal-
leable with respect to the transformation class T (pok) = ρ(T (cm),VK ot) (as de-
fined above), then the signature-binding construction is malleable for transfor-
mation class T (cm).
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Now, if we want to instantiate the NIWIPoK using our Enc+NIZK construction
from the previous section, we must first ensure that R(pok) and T (pok) satisfy the
constraints discussed therein. In particular, we required that T (pok) be a t-tiered
transformation class for R(pok), and that there is an encryption scheme whose
message space contains the witness space for R(pok) that is homomorphic with
respect to the class of transformations {Twit} for all (Tinst, Twit) ∈ T (pok).

Expanding on this last requirement, as our witnesses for R(pok) are of the
form (w, x′, vk ′ot, T, σ), we need to use an encryption scheme in which the mes-
sage space subsumes the space of all of these values; i.e., the witness, instance,
and transformation spaces, as well as the space of possible one-time verifica-
tion keys and signatures. We also need the encryption scheme to be homomor-
phic with respect to the set of transformations that map (w, x′, vk ′ot, T, σ) to

(T̂wit(w), x
′, vk ′ot, T̂ ◦ T, σ) for any (T̂inst, T̂wit) ∈ T (cm). Finally, we require that

T (cm) is t-tiered for R(cm), as this will guarantee that T (pok) is t-tiered for R(pok).
If we assume SNARGs for general languages and fully homomorphic encryption,
then we can obtain a cm-NIZK for any t-tiered transformation class as long as
t is constant; in Section 4, we will also see that we can construct cm-NIZKs for
interesting relations using only multiplicatively homomorphic encryption. More-
over, if we continue our assumption from the previous section that T̂wit does not
increase the size of w, then the size of proofs will not grow by transformation
here either.

Finally, in order to show that this is a cm-NIZK, we need to show that it
satisfies zero knowledge, CM-SSE, and strong derivation privacy. Due to space
constraints, proofs of the following three theorems can be found in the full ver-
sion.

Theorem 3.11. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is wit-
ness indistinguishable then the signature-binding construction is zero knowledge.

Theorem 3.12. If the signature scheme (KeyGen, Sign,Verify) is unforgeable
(i.e., EUF-CMA secure), the one-time signature (KeyGenot, Signot,Verifyot) is
strongly unforgeable (SUF-CMA secure), and the proof system (CRSSetupWI,PWI,
VWI,ZKEvalWI) is an argument of knowledge, the signature-binding construction
satisfies the CM-SSE property.

Theorem 3.13. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is deriva-
tion private for T (pok) then the signature-binding construction is strongly deriva-
tion private for T (cm).

4 A Compactly Verifiable Shuffle Using SNARGs

Now that we have just constructed our SNARG-based cm-NIZK, we consider
how to use it to construct a compactly verifiable shuffle.

We start by defining formally the relation and transformations we want to use
for shuffles. Abstractly, instances for the correctness of a shuffle are of the form
x = (pk , {ci}i, {c′i}i), where pk is a public key for a re-randomizable encryption
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scheme, {ci}i are the original ciphertexts, and {c′i}i are the shuffled ciphertexts.
In addition, to allow each mix authority to prove that it participated in the
shuffle, instances also contain a set {pk j}j that consists of the public keys of the
authorities that have participated thus far. Similarly, witnesses are of the form
w = (ϕ, {Ri}i, {sk j}j), where ϕ is a permutation, {Ri}i are the re-randomization
factors, and {sk j}j are the secret keys corresponding to {pk j}j . The relation R
is such that

((pk , {ci}i,{c′i}i, {pk j}j), (ϕ, {Ri}i, {sk j}j)) ∈ R

⇔ {c′i}i = {ReRand(pk , ϕ(ci);Ri)}i ∧ (pk j , sk j) ∈ Rpk ∀j.

Briefly, valid transformations in T should be shuffles. Ignoring the authority keys
for now (details can be found in the original CKLM paper and the full version
of this paper), we define transformations on instances as

Tinst(x) = T(ϕ′,{R′
i}i)(pk , {ci}i, {c

′
i}i) := (pk , {ci}i, {ReRand(pk , ϕ′(ci);R′i)}i)

and on witnesses as

Twit(w) = T(ϕ′,{R′
i}i)(ϕ, {Ri}i) := (ϕ′ ◦ ϕ, {ϕ′(Ri) ∗R′i}i),

where ∗ is the operation used to compose the randomness (i.e., ReRand(pk ,
ReRand(pk , c;R), R′) = ReRand(pk , c;R ∗R′)).

4.1 Our Construction

The shuffle construction of CKLM [7] used four building blocks: a hard relation
Rpk , a re-randomizable encryption scheme (KeyGen,Enc,Dec,ReRand), a proof
of knowledge (CRSSetup,P ,V), and a cm-NIZK (CRSSetup′,P ′,V ′,ZKEval′). As
we just constructed a cm-NIZK, we can simply plug it into this generic construc-
tion, which CKLM already proved secure. What it remains to show is that the
requirements placed on transformations in Sections 3.2 and Section 3.3 are met
by the shuffle transformations.

Recall the general requirement for transformations from Section 3.3: because
we must encrypt values of the form (w, x′, vk ′ot, T, σ), we need an encryption
scheme (KeyGen,Enc,Dec,Eval) that is homomorphic with respect to the set of

transformations that map (w, x′, vk ′ot, T, σ) to (T̂wit(w), x
′, vk ′ot, T̂ ◦T, σ) for any

(T̂inst, T̂wit) ∈ T (cm).
In order to meet this requirement for shuffles, we must therefore consider how

to encrypt and appropriately transform all of these values. For all of the values
except w and T , however, they are unchanged by the transformation; our only
requirement here is therefore that they can be encrypted, meaning the spaces
they live in are subsumed by the message space. As for the values that do get
transformed, w and T , as they are defined for the shuffle we must consider how to
transform the permutation ϕ, the re-randomization values {Ri}i, and the secret
keys {skj}j . We deal with each of these in turn.
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To encrypt a permutation ϕ ∈ Sn, we represent it as its component-wise
action on indices. Formally, we first consider the collection (c1, . . . , cn) in which

ci
$←− Enc(pk , i) for all i; i.e., the collection of ciphertexts encrypting their own

index within the set. Now, to represent ϕ, we compute c
(ϕ)
i

$←− Enc(pk , ϕ(i)) for

all i, 1 ≤ i ≤ n; the set {c(ϕ)
i }ni=1 is then equal to ϕ({ci})ni=1. When we need to

compose this ϕ with a new permutation ϕ′ (e.g., to compute Twit(w)), we can

compute {c(ϕ
′◦ϕ)

i }ni=1 = ϕ′({c(ϕ)
i }ni=1) = ϕ′(ϕ({ci}ni=1)), which does represent

the composed permutation ϕ′ ◦ ϕ as desired.
Moving on to the re-randomization values {Ri}i, we start in the same vein as

with the permutations: for all i, we compute c
(r)
i

$←− Enc(pk , Ri). We now place
our only requirement on the encryption scheme (KeyGen,Enc,Dec,Eval), which is
that it must be homomorphic with respect to the ∗ operation (i.e., the operation
used to compose randomness); namely that there exist a corresponding operation
� on ciphertexts such that if c1 is an encryption of m1 and c2 is an encryption
of m2 then c1� c2 is an encryption of m1 ∗m2. With such an operation in place,
when we want to permute using ϕ and add in new randomness {R′i}i, we can

compute c
(r∗r′)
i := ϕ(c

(r)
i ) � Enc(pk , R′i). By the homomorphic properties of �,

c
(r∗r′)
i will then be an encryption of ϕ(Ri) ∗R′i.
Finally, for the keys, we note that as long as all values of sk j lie in the message

space then we are fine, as these values are simply appended to a list and thus
do not need to be transformed.

As for the size of the resulting shuffle, we know that the CRS for the con-
struction in Section 3.1 consists of t common references strings for the underlying
SNARG. If we use the SNARG due to Gennaro et al. [17], in which the size of
the CRS is linear in the circuit size, then the total size of the CRS is O(
n). At
the next level, in the Enc+NIZK construction, we add a public key pk , and at
the next level, in the signature-binding construction, we add a verification key
vk . If the size of each of these values is constant with respect to n (or even of
size O(n)), then we obtain an overall shuffle parameter size of O(
n). For the
proofs, we know from our discussion in Section 3 that their size will depend on
the representation of the witnesses w, instances x, and transformations T . As
we’ve defined things here, the representations of ϕ and {Ri}i require n cipher-
texts each, which means the representations of w and T are O(n + 
), as they
each also contain 
 secret keys. Similarly, the size of the instance x is O(n + 
),
as it contains two sets of n ciphertexts and a set of 
 public keys. The overall
size of the proof is therefore O(n+ 
).

Although the proof size is therefore smaller, having parameters of size O(
n)
means that the total number of bits read by the verifier is still O(
n) and thus
there is no benefit over previous shuffles. To get a parameter size of only O(k
)
(for the security parameter k), we assume we have a SNARG with a CRS of
length O(n) and proofs of length O(n), and a collision-resistant hash function
H(·) that produces k-bit strings. Then a straightforward transformation gives
a SNARG where the verifier needs a CRS of length k and proofs are of length
O(n) as follows: first, CRSSetup generates a CRS crs for the underlying scheme,
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and outputs both crs and H(crs). Then, the prover produces not only a proof π
but also a CRS crs′ such that H(crs′) = H(crs); the proof must then verify under
crs′. In order to verify such a proof, the verifier need only take as CRS input
the value H(crs). Knowledge extraction of this SNARG follows from collision
resistance and knowledge extraction of the underlying SNARG: if the adversary
produces a crs′ different from crs but such that H(crs′) = H(crs) then it breaks
the collision resistance of the hash function, and if it produces a proof under crs
then the underlying extractor will work. If we then use this modified SNARG in
our construction in Section 3.1, we get a malleable SNARG where the verifier
takes as input a CRS of length O(k
) and proofs of length O(n), meaning the
elections monitor in our shuffle takes in parameters of size O(k
) and proofs of
size O(n+ 
).
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Encrypted Messages from the Heights

of Cryptomania

Craig Gentry

IBM T.J. Watson Research Center,
Yorktown Heights, New York, USA

How flexible can encryption be? This question motivated the invention of public
key encryption that began modern cryptography. A lot has happened since then.
I will focus on two lines of research that I find especially interesting (mainly the
second) and the mysterious gap between them.

The first line of research asks: how flexibly can encryption handle computa-
tion? The answer seems to be “very flexibly”. We have fully homomorphic en-
cryption (FHE) schemes [RAD78, Gen09, DGHV10, BV11b, GH11, BV11a] that
allow a worker (non-interactively) to do arbitrary blind processing of encrypted
data without obtaining access to the data. However, current FHE schemes do
not handle access control flexibly; there is only one keyholder, and only it can
decrypt.

The second line of research asks: how flexibly can encryption handle access
control? Again, the answer seems to be “very flexibly”. Building on Garg et
al.’s [GGH12b] approximate multilinear maps, we now have attribute-based en-
cryption (ABE) schemes for arbitrary circuits [SW12, GGH12a] that allow an
encrypter (non-interactively) to embed an arbitrarily complex access policy into
its ciphertext, such that only users whose keys are associated to a satisfying set of
attributes can (non-interactively) decrypt. We can be even more flexible: Garg et
al. [GGSW12] describe a “witness encryption” scheme where a user’s decryption
key is not really a key at all, but rather a witness for some arbitrary NP relation
specified by the encrypter (the encrypter itself may not know a witness). How-
ever, current ABE and witness encryption schemes do not handle computation
flexibly; the decrypter recovers the encrypter’s message, unmodified.

In between, we have concepts like obfuscation and functional encryption that
attempt to handle computation and access control simultaneously – in particular,
by allowing the user to learn a prescribed function only of the user’s input
(similar to ABE), while hiding all intermediate values of the computation (similar
to FHE). Here, it seems that we finally have reached the edge of Cryptomania,
as we bump against impossibility results [BGI+01, vDJ10, BSW11, AGVW12].
However, the precise contours of the boundary between possible and impossible
remain unknown.

In this talk, I will focus mostly on the recent positive results in the second
line of research, showing how a somewhat homomorphic variant of the NTRU
encryption scheme leads quite naturally to Garg et al.’s approximate multilinear
maps, and describing how to usemultilinearmaps to constructwitness encryption.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 120–121, 2013.
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Regarding obfuscation, functional encryption, and the boundary between possible
and impossible, I only promise to leave you with intriguing questions.
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Attribute-Based Functional Encryption
on Lattices

Xavier Boyen

Abstract. We introduce a broad lattice manipulation technique for ex-
pressive cryptography, and use it to realize functional encryption for
access structures from post-quantum hardness assumptions.

Specifically, we build an efficient key-policy attribute-based encryp-
tion scheme, and prove its security in the selective sense from learning-
with-errors intractability in the standard model.

1 Introduction

Attribute-Based Encryption (ABE) is a very powerful notion of encryption,
where ciphertexts are not decipherable according to the ownership of a spe-
cific key (as in public-key encryption), or a specific name (as in identity-based
encryption), but according to the fulfillment of a functional condition expressed
as a predicate that takes multiple attributes as input.

Attribute-based encryption was first coined in a paper by Goyal et al. [22], al-
though the idea was already implicit in the Fuzzy IBE of Sahai and Waters [32],
which for the first time permitted ciphertexts to be addressed on the basis of
a condition that was strictly richer than a mere equality (of keys or identities).
Since then, the notion of ABE has blossomed into an entire research program
known as Functional Encryption [23,11], whereby rich functions driven by in-
puts from both the ciphertext and the key attempting to decrypt it, determine
whether the message, or some function thereof, can be accessed. As an illustra-
tive example of recent developments in this area, Waters very recently built a
functional cryptosystem whose predicates are deterministic finite automata [33].

As impressive as these results may be, almost all of them appear to require
the machinery of bilinear maps [27]—which leaves them completely vulnerable
to quantum cryptanalysis, by virtue of hinging on the classically hard but quan-
tumly easy Discrete Log problem. (Limited instances of construction from yet
other techniques [16,10] do exist, but, with assumptions that hinge on Factor-
ing, they are equally vulnerable to quantum attacks.) With quantum comput-
ers rapidly moving from a scientific to an engineering problem, it behooves us
to have safe cryptographic alternatives ready before they become a reality—
possibly with nary an advance warning. Lattices appear to be our best defense,
for not only are they increasingly conjectured to thwart the quantum threat in a
fundamental way, they also have a rich mathematical structure that makes them
well suited for building “complex” and expressive cryptographic systems.

Lattices have made their apparition in cryptography with the work Ajtai [5],
and have since been used to construct a vast variety of primitives, including one-
way and collision-resistant hash functions [5,26], signatures [12,25], public-key
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encryption [7,30,31], identity-based encryption schemes [21,15,1,2], lossy trap-
door functions [29], and even a couple instances of functional encryption for
inner-product [4] and threshold [3] functions. Lattices have also been very in-
strumental in cracking the long-standing question of realizing fully homomorphic
encryption [19,20,14].

Lattices are indeed rapidly emerging as a mathematical platform of choice for
building increasingly powerful and efficient cryptographic primitives. In addition
to lattice problems being generally conjectured to withstand quantum attacks,
the mathematical properties of these objects make them both relatively efficient
and flexible to enable the construction of powerful cryptosystems. Research in
lattice-based cryptosystems that reduce from the “Learning With Errors” (LWE)
hardness assumption has been particularly active, in no small part because the
average-case LWE problem is itself reducible [31,28] from a slew of worst-case
lattice problems, for a sound foundation.

Despite all of those incentives and successes, the reality is that functional en-
cryption so far remains largely confined to the world of bilinear maps. In recent
years, only a handful of such systems have been successfully realized using lat-
tices, such as the already cited constructions of IBE [21,1], HIBE [15,2], IPE [4],
and FuzzyIBE [3]. Further advances have remained elusive, despite the “pull” ex-
erted by the faster pace of progress in that other world of bilinear maps. Rather
disconcertingly indeed, as attempts are made to translate high-level principles
of bilinear-map functional encryption into lattice analogues, serious difficulties
tend to crop up in the most unexpected places when one tries to prove security.
A pointed example, documented in [3], relates to the unresolved difficulties faced
by those authors when trying to build ABE from LWE.

If anything, this brief history of functional encryption from lattices suggests
that new ideas are in order for progress, beyond the field’s classic paradigms.

1.1 Main Motivations

“Attribute-Based Encryption using Lattices” is by many authors’ account an im-
portant research question, having been posed and left unanswered in an number
of recent works including [15,1,4,3]. Perhaps the best evidence of the problem’s
popularity is none other than a recent attempt by a large corporation to lay
claim on its solution, in an eponymous patent application [17], even though the
problem explicitly remained open to this day. 1 Why such eager enthusiasm?

First and foremost, functional encryption in general and ABE in particu-
lar are extremely powerful cryptographic constructs that would seem almost
incredible—e.g., by the standards of circa 2000. FE and ABE primarily give us
unprecedented flexibility and expressiveness with which recipients can be desig-
nated in a wholesale manner. Not only do there exist direct use cases for such

1 The US patent application [17] appears to refer to a precursor of the “Fuzzy IBE
using Lattices” subsequently published in [3], wherein a superset of the authors
explicitly acknolwedge that it did not extend to a proper ABE. We further opine on
mathematical but not legal grounds that our ABE falls outside of the claims of [17].



124 X. Boyen

power (we refer to the early literature on the subject for examples), but the
prospects that it opens for protocol building are highly intriguing.

As already alluded to, such rewards would be for naught if the looming threat
of a catastrophic quantum cryptanalysis kept relegating it to where damage
would be contained. It would be foolish to believe that because quantum registers
have only grown from 5 to 7 qubits during the last decade, that their size could
not suddenly become cryptographically devastating during the next one. This is
where lattices come into play.

Compounding their conjectured quantum robustness, lattices also have a num-
ber of rather unique efficiency and implementation advantages. For instance,
while bilinear-map cryptosystems tend to be convenient to work with on paper
thanks to the availability of clean abstractions, this view hides a rather complex
elliptic-curve machinery that must be securely implemented in any physical im-
plementation. In lattice-based cryptography, the situation is reversed: schemes
and proofs tend to be more complex and mirred in details, but implementations
require only small-number arithmetic and basic linear algebra.

Those are the reasons—from quantum peace of mind, to the sheer challenge of
solving compelling theory with practical applications—why it is far from wasted
effort to “reinvent” Attibute-Based Encryption, not from bilinear maps but from
lattices. (And as a bonus, we introduce a new technique whose power likely
reaches into FE far beyond mere ABE.)

1.2 Our Contributions

Our main result is the construction of a functional encryption scheme for mono-
tone access structures, also known as (key-policy) attribute-based encryption,
and reduce its security from LWE.

We achieve this result by way of a new lattice manipulation framework suited
to the handling of complex access policies. Compared to earlier works on lattice-
based IBE and FE, our framework has two distinguishing characteristics: the
reliance on ephemeral lattices for all private-key extractions, and the subsequent
application of a basis splicing technique which allows a recipient to convert an
ephemeral lattice’s basis into a basis for any lattice in a given family, as needed.

We introduce our framework in relation to a number of observations we make
in our attempt to shed some light on the difficulties previously faced. This leads
us to a (rather informal) discussion of FE with uniform and non-uniform policies,
and how the latter appeared hard to tackle based on previous lattice techniques.

Here we focus solely on introducing our framework and building “key-policy”
KP-ABE from it. We defer to future work the study of “ciphertext-policy” CP-
ABE and even more ambitious FE.

2 Preliminaries

We refer to the Appendix—available in the eprint version of the paper [13]—for
background on lattices in cryptography.
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2.1 Attribute-Based Encryption

We follow the definition of the ABE functionality as given by Goyal et al. [22],
albeit for security we consider the notion of ciphertext privacy which implies
both semantic security and recipient anonymity.

Definition 1 (Key-Policy Attribute-Based Encryption). A Key-Policy Attribute-
Based Encryption scheme consists of the following four algorithms:

Setup(λ, �)→ (Pub, Msk): This algorithm is input a security parameter λ and
an attribute number �. It outputs a public key Pub and a master key Msk.

Extract(Pub, Msk, Policy)→ Key: This algorithm takes a public key Pub, a mas-
ter key Msk, and an access policy Policy. It outputs a decryption key Key.

Encrypt(Pub, Attrib, Msg)→ Ctx: This algorithm is input a public key Pub, a
list of attributes Attrib, and a message bit Msg. It outputs a ciphertext Ctx.

Decrypt(Pub, Key, Ctx)→ b: This algorithm takes a public key Pub, a decryp-
tion key Key, and a ciphertext Ctx. It outputs the bit b if the attributes Attrib
used to create Ctx satisfy the policy Policy used in the creation of Key.

Definition 2 (Selective-Model KP-ABE Security). A KP-ABE scheme is cipher-
text-private in the selective-attribute model of security if all probabilistic poly-
nomial time (PPT) adversaries have at most a negligible advantage in this game:

Target: The adversary declares the challenge attributes, Attrib†, that it wishes
to be challenged upon.

Setup: The challenger runs the Setup algorithm and gives the public key to the
adversary.

Queries: The adversary is allowed to issue adaptive queries for private keys
corresponding to policies Policy of its choice, as long as Attrib† does not
satisfy Policy.

Challenge: The adversary signals its readiness to accept a challenge, and pro-
poses a message to encrypt. The challenger encrypts the message for the
challenge attributes Attrib†, and then flips a random coin r. If r = 1, the
ciphertext is given to the adversary; if r = 0, a random element of the
ciphertext space is returned.

Queries: This is a continuation of the earlier query phase.
Guess: The adversary outputs a guess r′ of r. The advantage of an adversary

A in this game is defined as |Pr[r′ = r] − 1
2 |

One also defines an adaptive-attribute version of the above game, where the
adversary may defer the choice of target attributes until requesting the challenge.

2.2 Linear Secret Sharing

Definition 3 (LSSS over Zq). An LSSS Π over a set of parties P consists of
an “index map” ρ and a “share-generating matrix” L ∈ Z�×θ

q with � rows and θ
columns, where � is the number of shares specified by Π , and θ depends on the
structure of Π . For all i = 1, . . . , �, the function ρ maps the i-th row of L to its
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corresponding party. The matrix L maps an input θ-vector v = (s, r2, . . . , rθ),
where s ∈ Zq is the secret to be shared, and r2, . . . , rθ ∈ Zq are random, into an
output �-vector Lv = (s1, . . . , s�) containing the shares of the secret s according
to Π . The share si = (Lv)i is assigned to party ρ(i).

Every LSSS according to the above definition enjoys the linear reconstruction
property. This means that if Π is an LSSS for the access structure A, then the
following is true. Let S ∈ A be any authorized set, and let I ⊂ {1, 2, . . . , �} be
defined as I = {i : ρ(i) ∈ S}. Then, there exist constants {κi ∈ Zq} for i ∈ I,
such that, if the {λi = (Lv)i} are valid shares of any secret s according to Π ,
then

∑
i∈I κiλi = s. It was shown by Beimel [9], that these constants {κi} can

be found in time polynomial in the size of the share-generating matrix L.

Vector Secrets and Reconstruction over Z. For the purpose of this paper, we
will need a slightly modified notion of LSSS, where secrets and shares are �-
dimensional integer vectors in Z�, and share-generating matrices are defined
over Z rather than over Zq. This creates a few issues:

1. Since secrets and shares are themselves vectors, the vector v of all such shares
should be viewed as a tensor, and the product (L ·v) interpreted accordingly.

2. There is no notion of uniform share distribution over Z: a benign issue here.
3. Reconstruction in Z may require fractional interpolation coefficients κi ∈ Q.

We alleviate this difficulty by relaxing our notion of reconstruction, allowing
the reconstructed vector to be a non-zero multiple of the original vector
(which is non-trivial only if the vector has dimension greater than one).
Such reconstruction is possible using only integer coefficients κi ∈ Z.

Low-Norm Share Generation. We will use the generic construction mechanism
described in Appendix G of [24, eprint] to convert a monotone access structure
into a deterministic LSSS matrix. For access formulas with AND (∧) and OR (∨)
gates only, it has the further advantage to build share-generating matrices L ∈
{0,±1}�×θ with ternary elements in {0,±1}. For such formulas, the (unrelaxed)
reconstruction coefficients κi will be binary in {0, 1} by construction, even when
working in Z, hence already integer and low-norm without further relaxation.

Duplicated Attributes. For ease of exposition, we first restrict our attention to
formulas where each attribute appears exactly once. Since ρ is then the identity
function, we omit it from the notation altogether—until Section 4.5 and the
Example Appendix of [13] where we handle missing and duplicated attributes.

3 Framework

3.1 Functional Encryption from Lattices

The Regev Cryptosystem. Recall that the Regev PKE scheme [31] makes use of
an Ajtai lattice [5], defined as Λ⊥

q (A) = {x : Ax = 0 (mod q)} ⊆ Zm, where
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q ∈ Z+ and A ∈ Zn×m
q together specify the lattice (though not necessarily in a

unique way). In Regev’s PKE scheme, one assumes q fixed and m > n log q. The
private key is a vector d ∈ Zm with low euclidean norm ‖d‖ 	 q

√
m. The public

key is a pair (A,u) such that Ad = u (mod q). To encrypt a bit m ∈ {0, 1},
one selects a random ephemeral vector s ∈ Zn

q , and output a pair (c0, c1), where
c0 = s� u + �q/2�m + ν0 and c1 = s� A + ν1, and where the additive terms ν0

and ν1 are low-norm independent discrete gaussian noise terms. To decrypt, the
private-key holder computes the difference Δ = c0 − c1 d in Zq, and interprets
it as “m = 1” if (the smallest non-negative representative of the coset) Δ lies in
{�q/4�, �3 q/4�}, and as “m = 0” otherwise.

Preimage Sampling. The Regev system has served as a starting point for many
“expressive” functional generalizations of public-key cryptography. The key turn-
ing point in this generalization has been the development, in [21], of a “preimage
sampling” technique that, given A and u, allow one to obtain a preimage d such
that Ad = u (mod q) and such that d has the same conditional distribution
given u as if it had been sampled first and its image computed from it. What
makes the preimage-sampling approach cryptographically interesting, is that in
order to sample a preimage of good quality (where the “quality” of a sample is
an inverse measure of its norm), it is (conjectured) necessary to possess a good
quality or low-norm basis B for the lattice Λ⊥

q (A). Furthermore, Ajtai’s original
result [5] does give us an efficient way to co-generate both a uniformly random
matrix A and an associated short basis B for the lattice it induces; whereas
it is a conjectured hard problem to find even a single short vector “after the
fact” for a given random A. Together, these methods provide an effective way to
obtain provably secure trapdoors from lattice hardness assumptions, that have
been used in interesting ways to construct increasingly “expressive” functional
cryptosystems: IBE [21,1], HIBE [15,2], IPE [4], FuzzyIBE [3], and now ABE.

More Expressive Predicates. The combination of the lattice/basis co-generation
algorithm of [5], the basic public-key framework of [31], and the preimage sam-
pling approach of [21], has led to the invention of several functional encryption
schemes for various classes of functions, starting with the identity-based encryp-
tion scheme in the original paper [21]. A handful of other functional encryption
schemes from lattices were later devised, including IBE in the standard model
[15,1], hierarchical IBE [15,2], inner-product encryption [4], and fuzzy IBE [3].
At a high level, all of those schemes find their roots in the Regev PKE system,
which they generalize in various ways following a common principle. The com-
mon principle is to extend Regev so that either or both the matrix A and/or
the syndrome u depend on the functional decryption criterion, rather than be-
ing constant. In IBE, the decryption criterion is a match of identities, so we let
A and/or u be function of the identity. In IPE and FuzzyIBE, the decryption
criterion is an inner product equality or a threshold of equalities, obtained by
splitting A and/or u into multiple shares Ai and/or ui, each of which depending
on one of the attributes of the decryption predicate.
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3.2 Complex Policies and Non-uniformity

In our quest to understand what differentiates successes from failures in earlier
lattice-based FE construction attempts, we are drawn to observe the emergence
of a pattern that we shall attempt to characterize informally (based on inductive
rather than deductive reasoning).

Uniform Policies. The “successes” share a crucial simplifying characteristic: all
attributes taken as formal arguments in the decryption policy are of equal im-
portance; they play symmetrical roles.

– IBE and HIBE use trivial examples of uniform policies, because the decryp-
tion predicate is a mere equality test that treats a full identity string as a
single atomic input (of variable length in the case of HIBE), comparing that
of the ciphertext with that of the private key.

– IPE uses uniform policies, because none of the multiple attributes taken as
inputs to the decryption predicate, plays a different role or is more important
than the others. Indeed, the predicate is of the form, “〈k, c〉 = 0 (mod q) ?”
(where k and c are the key’s and the ciphertext’s attribute vectors). Now let
us consider a permutation π. If we apply it to the components of k and also
to the components of c, one obtains the new predicate, “〈π(k), π(c)〉 = 0
(mod q) ?”, which is in fact unchanged and evaluates to the same value.

– FuzzyIBE uses uniform policies by same reasoning. The only difference is
that here the predicate is a θ-out-of-� threshold equality test between key
and ciphertext attributes.

Non-Uniform Policies. To contrast, consider the following basic ABE decryption
predicate: “(Ak = Ac)∨((Bk = Bc)∧(Ck = Cc)) ?” It falls within the scope of the
ABE model; yet it is non-uniform since the atomic clause that takes attribute A
as input, (Ak = Ac), can by itself truthify the entire predicate, whereas neither
the clause in B nor in C can do the same. The attributes are not symmetrical,
since A carries more weight than either B or C. Per our earlier criterion, some
permutations π of the attributes would not leave the predicate invariant.

Leakage from Non-Uniformity. The authors of [3] observe that the difficulty with
extending existing lattice techniques into ABE stems from the conjunction of two
risk factors: the necessity to prevent short-vector private keys from spilling a full
basis; and the propensity of keys with asymmetrical components to do just that.

To be sure, there are examples of earlier “FE successes” that allow full-bases
to be used as keys: all the HIBE schemes [15,1,2] fall in that category, since full
bases are needed for key delegation. However, we contend that passing out full
bases is not damaging in this case, because HIBE policies are trivially uniform,
involving only a single attribute, so that either there is a full match or there is
no match at all—no need to finesse the power of the decryption key in any way.

The other past “FE success” with multi-vector keys is the FuzzyIBE from [3].
There, a private key is a Regev key randomly secret-shared into a number of
vectors function of the threshold—definitely not a full basis which would give
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too much power. Such sharing finesse led to an attack when one attempted to
extend the scheme to ABE with non-uniform policies, because of dicrepancies in
the relative importance of the private key components. E.g., a key for A∨(B∧C)
would be “heavier” at attribute A. In this situation, an adversary could, by
making multiple key queries for related but distinct policies, obtain a collection
of short vectors whose “heavy” coordinates together leak enough information to
allow the adversary to reconstitute a “rogue” (sub-)basis. The uneven weight of
the coordinates made it difficult to randomize the keys to prevent the “heavy”
coordinates from leaking, without necessarily drowning the “light” coordinates
in noise and render them useless.

3.3 Robust Embedding of Policies

Instead of trying to prevent the reconstitution of rogue bases from private-key
vectors (which was the direction of future research envisioned in [3]), we shall
make our private keys into full bases outright—albeit, bases of ephemeral random
lattices that vary with every invocation of key extraction.

Ephemeral Lattices. Making keys from constantly changing, ephemeral lattices
seems great for security—but how can such keys be useful for decryption in
a Regev-like system, if the lattices used for encryption and key extraction are
different? In a nutshell, the ephemeral lattices (or, rather, the Ajtai matrices
defining them) will have a known structure, featuring both deterministic and
randomized subcomponents. The ephemeral lattice is rather high-dimensional
and its structure will encode the private-key policy attributes. The structure will
allow the recipient to transform this “useless” random-lattice basis, into a basis
for any target lattice, typically of a lower dimension, that belongs in a certain
authorized set that corresponds to the policy encoded into the initial structure.
Thus, if a private key is valid for a given ciphertext, meaning that the attributes
of one satisfy the policy of the other, then the recipient is able to transform it
into a basis for the lattice used in the ciphertext construction, and from there
decryption à la Regev can proceed. Conversely, if a private key is invalid for a
given ciphertext, the encryption lattice will be outside the authorized set, and
the private key will be useless to derive a (short) basis for that lattice.

Basis Splicing. We refer as basis splicing the internal operations that let the
recipient transform the given high-dimensional ephemeral-lattice basis, into a
basis for any desired lower-dimensional lattice in the authorized set. In the case
of ABE, the structure embedded in the ephemeral lattice will be obtained from
an LSSS, and the basis splicing operations will amount to taking linear combina-
tions of the basis vectors. Certain linear combinations will cause all the blinding
randomness to vanish, transforming the initial unknown ephemeral lattice into
a smaller known target lattice in the authorized set.

Security versus Functionality. At an intuitive level, the security benefits that we
derive from our approach are twofold:
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– Private keys as full bases are more robust than single vectors. In a system
where private keys are mere vectors, there is an incentive to obtain more
than one such vector, in a bid to reconctruct a rogue basis. If the key is a
full basis, there is nothing to be gained in trying to obtain another, which
can be generated from the first.

– Ephemeral lattices make a very potent blinding and firewalling mechanism.
This is perhaps the most important aspect of the framework we propose:
since the key-extraction mechanism involves an independently rerandomized
lattice that changes upon each invocation, the private keys are in a very
strong sense firewalled from one another and from the master secret.

These two properties should intuitively make it easy to construct a secure system,
which should translate into easy-to-construct reductionist simulations.

4 Scheme

4.1 Intuition

Setup. The system setup is very straightforward. To each (binary) attribute
Attribi named in the system, is associated a random Ajtai matrix Ai and a
matching trapdoor Bi such that Ai Bi = 0 for small ‖Bi‖. The matrices Ai form
the global public key. The trapdoors Bi form the keying authority’s master key.

In KP-ABE, ciphertexts are created for sets of (binary) attributes, while pri-
vate keys embed the decryption policies. To make it possible to encrypt for a
set of attributes, a natural idea is, for each (binary) attribute in the system, to
create an Ajtai matrix Ai and an associated trapdoor Ti. The matrices Ai will
form the public key; the trapdoors Ti form the master key.

Encryption. To encrypt for an attribute set {Attribi}, one creates a matrix F by
concatenating the public matrices Ai designated by the Attribi, filling the gaps
with the zero matrix 0; one then uses F as an “encryption matrix” à la Regev.2

Key Extraction. To create a private key for a given decryption policy repre-
sented as an LSSS, the key-extraction authority starts by constructing a (high-
dimensional) ephemeral matrix M = [Mdiag|Mlsss], where Mdiag is a block-diagonal
assembly of all the Ai, and Mlsss is a tensor product of the LSSS matrix and a
secret ephemeral randomization matrix. Using its knowledge of the master-key
bases Bi, the authority creates a short basis W for the lattice Λ⊥

q (M), randomizes
it into a structure-less short basis K, and returns K as the private key. Notice
that the basis K is that of a fresh random lattice whose defining Ajtai matrix M
is not even revealed to the recipient.

2 A Regev ciphertext (c0, c1) is created in reference to an Ajtai lattice Λ⊥
q (F) defined

by a known matrix F. We call the matrix F, the Regev encryption matrix. (It is
usually denoted A but we use F to emphasize that it is a function of the encryption
attributes; we reserve the notation Ai for the constant matrices in the public key.)
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Decryption. Given a Regev ciphertext created from some encryption matrix F,
the first step is to transform the private key K into a basis T for the lattice
Λ⊥

q (F), using the basis-splicing technique.
The transformation requires the encryption matrix F to lie in the “span” of

the (undisclosed!) ephemeral matrix M, i.e., that there be a linear combination
of the rows of M that yields M ↪→ [F|0]. By the structure of M = [Mdiag|Mlsss], it
follows that the i-th block-column of F is a multiple of the i-th block of Mdiag, or,
in other words, that F is the concatenation of gi Ai with computable coefficients
gi. Though K was orthogonal to M, it is not orthogonal to [F|0]. We can obtain
orthogonality to [F|0] by multiplying each row of K by an integer coefficient
ḡi ∝ 1/gi (mod q) inversely proportional modulo q to the coefficient gi of the
corresponding column of [F|0] (taking ḡi = 0 when corresponding to the columns
of 0 or those of F associated with a coefficient gi = 0).

The basis K thus transformed is a matrix [T�|0�]� where T has full rank
and is orthogonal to F. The final observation is to take ḡi = (

∏
j:gj �=0 gj)/gi.

Because those ḡi are already in Z, no modular reduction is necessary to ensure
that ḡi ∝ 1/gi (mod q). Hence the norm ‖T‖ remains small when the gi are
binary or small enough. This makes of T a low-norm full-rank set, convertible
into a basis suitable as a trapdoor for sampling low-norm vectors in Λ⊥

q (F).
We see that, by properly constructing M, it is possible for the recipient to

know how its trapdoor K can be transformed into the desired trapdoor T, even
though M itself is not revealed. Once the trapdoor T is obtained, it can be used
to decrypt the ciphertext, e.g., by finding a short preimage d of the encryption
syndrome u, i.e., such that Fd = u (mod q), and applying Regev.3

Issues. For this approach to work, it is necessary that the norm of the recon-
structed trapdoor T be small in order to apply Regev. The only operation that
can cause the norm of T to grow out of hand, is the LSSS-based derivation of
T from K. In general, for circuits containing “proper” threshold gates—not just
∧ nor ∨—with large fan-in, the coefficients gi can become exponentially large,
which would overwhelm the noise tolerance of the Regev decryption scheme un-
less the modulus q is itself chosen to be exponentially large.

The first good news is that, even in the pessimal case, the issue of the LSSS
coefficients is somewhat mitigated by the fact that we only perform LSSS recon-
struction “half-way”, eschewing full-fledged Lagrange interpolation. Indeed, the
worst way in which LSSS coefficients intervene in T is through simple products∏

j gj—and not as ratios of products that would further require denominator
elimination as, say, in the Fuzzy IBE of [3]. Intuitively, the reason why we do
not need to account for—and then eliminate—the common denominator in LSSS
reconstruction, is because what needs to be reconstructed is not the secret de-
cryption itself (such as a short pre image or basis), but merely a multiple of the
(public) encryption matrix F; only a multiple is needed because F induces the
same Ajtai lattice as all its multiples relatively prime to q.

3 Because the private key is a full basis, it allows the recipient to find a preimage for
any syndrome; hence the encryption syndrome u may change with each ciphertext.
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The second and main good news is that, as long as the only gates present are
∧ and ∨, regardless of their size or circuit complexity, the coefficients gi can be
made binary ∈ {0, 1}, thereby ensuring that ‖T‖ ≤ ‖K‖. This restriction is not
as severe as it looks, as it should be emphasized that circuits of ∧ and ∨ gates
already capture most cases of practical interest for (monotone) access policies.
Until now, it was not known how to realize ABE involving even the simplest
non-uniform policies, e.g., involving only one ∧ and one ∨ gate.

4.2 Construction

We assume the existence of the following PPT algorithms for certain lattice
sampling operations. See the Appendix in [13] for some background, and the
rapidly evolving literature for the fastest and tightest instantiations, e.g., [18].

– TrapGen for co-sampling a uniform Ajtai lattice and a short basis for it [5,6];
– SampleGaussian for discrete Gaussian sampling a point on a given Ajtai lattice;
– SamplePreimage for sampling a preimage of a given Ajtai syndrome, with a
discrete Gaussian conditional density [21,8].
– ExtendRight for extending a trapdoor of an Ajtai matrix A into a trapdoor of
any Ajtai matrix of the form [A|Z], as long as A has full rank [15,1].

Remark. (Black-Box Sampling and Algorithm Parameters)
In the scheme description, we view all of the above sampling algorithms as (com-
modity, interchangeable) black boxes, without concern for their precise parameter
requirements. For now, it suffices to know that the available sampling algorithms
are both sufficiently fast and sufficiently tight, to make the entire system security
reducible from the learning-with-error (LWE) hardness assumption with poly-
nomially bounded parameters, so that is can in turn be further (quantumly [31],
or for large moduli classically [28]) reduced from worst-case lattice assumptions.

The KP-ABE scheme consists of four algorithms specified as follows.

kpABE.Setup(1λ, 1�): Given a security parameter λ, and an attribute bound �:
1. Select a security dimension n > Ω(λ) and a base lattice dimension m >

2 n log q, together with a prime modulus q > 2. (See the Appendix for
the constraints on q in function of the desired tightness α of LWE—the
larger the modulus, the weaker the assumption.)

2. Use algorithm TrapGen(1λ) to select, for each i ∈ [�], a uniformly random
n×m-matrix Ai ∈ Zn×m

q with a full-rank m-vector set Bi ⊆ Λ⊥
q (Ai) that

satisfies a low-norm condition.
3. Select a uniformly random n×m-matrix A0 ∈ Zn×m

q .
4. Select a uniform random n-vector u ∈ Zn

q .
5. Output the public key and master key,

Pub =
(
{Ai}i∈[�], A0, u

)
; Msk =

(
{Bi}i∈[�]

)
kpABE.Extract(Pub, Msk, Policy): On input a public key denoted Pub, a master

key denoted Msk, and an access structure denoted Policy, do:
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1. Convert Policy into a (low-norm, and preferably deterministic) Linear
Span Program matrix L ∈ Z�×(1+θ), assigning the i-th row of L to the
binary attribute of index i ∈ [�]. The columns j ∈ [0, θ] are numbered
from 0 to θ, with θ ≤ � being a function of Policy. The linear encoding
rule we adopt for L is that, for a binary attribute list represented as
Attrib ∈ {0, 1}� or Attrib ⊆ [�], the (monotone) access policy is satisfied
iff the rows of L selected by Attrib contain in their span the row-vector[
1, 0, . . . , 0

]
∈ Z1+θ.

2. Select θ ephemeral uniform random n×m-matrices Zj ∈ Zn×m
q for j ∈ [θ].

3. Construct a “virtual encryption matrix” M ∈ Z
� n×(�+1+θ)m
q , consisting

of �×(�+1+θ) blocks of n×m-“sub-matrices”, by translating the sharing
matrix L =

(
li,j
)
i∈[�],j∈[1+θ]

as follows,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

. . .
A�︸ ︷︷ ︸

Public, constant, from Pub

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1,0 A0

l2,0 A0

...
l�,0 A0︸ ︷︷ ︸
From Pub

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1,1 Z1 . . . l1,θ Zθ

l2,1 Z1 . . . l2,θ Zθ

...
...

l�,1 Z1 . . . l�,θ Zθ︸ ︷︷ ︸
Secret, random, ephemerals

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
mod q

Each row of L maps to a particular attribute according to the map ρ as-
sociated with the secret-sharing scheme. In this section, we are assuming
for simplicity that each attribute (of index #i) appears exactly once (on
the i-th row), making ρ the identity function. This restriction is lifted in
Section 4.5, to handle missing and duplicated attributes.

4. Build a “structureless” random trapdoor K for Λ⊥
q (M), thus satisfying

M · K = 0 (mod q). This can be done using ExtendRight, based on the
fact that M = [Mtrapdoor|Mextension], where Mtrapdoor = Diag(A1, . . . , A�)
has full rank and a trivial trapdoor Diag(B1, . . . , B�).
Unless ExtendRight is already guaranteed to produce an extended basis
W whose vectors are idenpendently and identically distributed, it is nec-
essary to rerandomize it to achieve this condition. Let K be the resulting
“structureless” trapdoor for M.

5. A redundant form of the policy-based private key may be output, as,

Key =
(

K, L
)

However, two optimizations can be made:
(a) If the sharing matrix L is deterministic in Policy, it may be omitted.
(b) It is not necessary to transmit all of K since the decryptor will only

ever need the upper-left quadrant of dimension (�+1)m× (�+1)m,
which we denote by K′ ∈ Z(�+1) m×(�+1)m.

Hence, the private key for Policy may be given in compressed form, as,

Key = K′
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kpABE.Encrypt(Pub, Attrib, Msg): On input a public key Pub, an attribute list
Attrib ⊆ [�], and a message bit Msg ∈ {0, 1}, do:
1. Assemble an “encryption matrix” F ∈ Z

n×(�+1) m
q , obtained as the con-

catenation of, for each i ∈ [�], either Ai if i ∈ Attrib, or 0 if i �∈ Attrib,
and A0, as follows,

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
F1

.=

A1

or 0

∣∣∣∣∣∣∣∣ . . .

∣∣∣∣∣∣∣∣
F�

.=

A�

or 0︸ ︷︷ ︸
Ai included iff i ∈ Attrib

∣∣∣∣∣∣∣∣∣∣∣∣∣

F0
.=

A0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2. Select a uniform random n-vector s ∈ Zn

q .
3. Select a low-norm Gaussian noise scalar ν0 ∈ Z according to some para-

metric distribution Ψα (see Appendix), and compute the scalar,

c0 =
(

s� · u + ν0 + � q
2
� ·Msg

)
mod q

4. Select a low-norm Gaussian noise vector ν1 ∈ Z(�+1) m whose components
are identically and independently distributed from Ψα, and compute the
vector,

c1 =
(

s� · F + ν1

)
mod q

5. Output the ciphertext,

Ctx =
(

c0, c1

)
(It is not necessary to transmit the components of c1 that contain only
added ν1-noise, i.e., we only need to transmit the components of c1 at
coordinates where Fi �= 0.)

kpABE.Decrypt(Pub, Key, Ctx): Given a public key Pub, a policy-based key Key
(for known policy Policy), and a ciphertext Ctx (for known attributes Attrib):
1. Find an as-short-as-feasible �-vector g ∈ Z� satisfying the two conditions:

g� ·L = [d, 0, . . . , 0] ∝ [1, 0, . . . , 0] ; ∀i ∈ [�] : (gi = 0)∨ (i ∈ Attrib)

Namely, one finds a linear combination of the rows of L that yields some
small d-multiple of [1, 0, . . . , 0] with d ∈ Z \ {0}, using only rows corre-
sponding to attributes in Attrib. This is possible iff Attrib satisfies Policy.

2. Notionally apply the linear combination g to the “block-rows” of M, to
transform the “virtual” encryption matrix M into a “real” encryption
matrix M′ that matches the encryption matrix F of the given ciphertext
(up to constant factors):

M′ =

⎡⎢⎣ g1 A1

or 0

∣∣∣∣ g2 A2

or 0

∣∣∣∣ . . .

∣∣∣∣ g� A�

or 0

∣∣∣∣∣ d · A0

∣∣∣∣∣ 0 · Z1

∣∣ . . .
∣∣ 0 · Zθ︸ ︷︷ ︸

0

⎤⎥⎦ mod q
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This is defined, even though the decryptor does not know the Zi, for
they all cancel out.

3. Let M′′ be the matrix containing only the |Attrib| + 1 non-zero “block-
columns” of M′ as shown above. Let K′′ be the matrix obtained by re-
moving from K the matching rows and columns—i.e., rows and columns
with the same indices as the columns removed from M′. (Dimension-wise,
we obtain M′′ ∈ Z

n×(|Attrib|+1) m
q and K′′ ∈ Z(|Attrib|+1) m×(|Attrib|+1) m.) We

have M′ ·K = 0; therefore M′′ ·K′′ = 0, and K′′ is a short basis of Λ⊥
q (M′′).

4. Likewise, let F′′ be the matrix retaining the |Attrib|+ 1 non-zero “block-
columns” of F; and let c′′1 be the ciphertext vector from which only the
matching components of c1 remain.

5. We now build a trapdoor for the encryption matrix F, or, rather, its
reduced form F′′. Let 1 be the m × m identity matrix, and define the
diagonal matrices,

G =

⎡⎢⎢⎢⎢⎣
g1 · 1

. . .
g� · 1

d · 1

⎤⎥⎥⎥⎥⎦ ; G′′ =

⎡⎢⎢⎣
non-zero
diagonal
blocks
of G

⎤⎥⎥⎦ ∈ Z

(|Attrib|+1) m×
(|Attrib|+1) m

Notice F′′ · G′′ = M′′ (mod q). Since M′′ · K′′ = 0 (mod q), we have
F′′ ·G′′ ·K′′ = 0 (mod q). Compute T′′ = G′′ ·K′′, whose norm is bounded
as ‖T′′‖ ≤ ‖G′′‖ ‖K′′‖ ≤ max{gi, d} ‖K‖. The result T′′ is our desired
trapdoor for sampling short vectors in Λ⊥

q (F′′).
6. Using SamplePreimage with trapdoor T′′, find a short solution f ′′ of F′′ ·

f ′′ = u (mod q).
7. Compute v = c0− (f ′′)� · c′′1 mod q, and represent its coset as an integer

v ∈ [−� q
2�, �

q
2�].

8. Output the decrypted message bit as,

b =

{
0 if ‖v‖ ≤ � q

4�
1 if ‖v‖ ≥ � q

4�

4.3 Correctness

Theorem 4. For usual values of the lattice parameters in Regev-like encryption
systems, the key-policy attribute-based encryption scheme of the previous section
will correctly decrypt authorized ciphertexts with overwhelming probability.

Proof. To see this, suppose that the “independent” initial bases and short vectors
(namely, Bi, Yi, ei,j , di,j) are sampled with a suitable Gaussian parameter σ,
for instance using the tools from [21,8]. Then, the norm of all “dependent” bases
and vectors that are supposed to be short, will be bounded by multiples of σ to
which certain “growth coefficients” will have applied. To bound those, we note
that the only processes in the whole system that will induce “growth”, are:
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– in Extract: the randomized invocation of ExtendRight to obtain K, which
merely multiplies the norm of the master-key trapdoors by a constant factor
independent of the data;

– in Decrypt: the calculation of the trapdoor T′′ from K′′, which as we already
noted multiplies the norm of K′′ by a factor ≤ max{gi, d} that only depends
on the linear-sharing reconstruction vector g, itself function of the function
Policy and its inputs Attrib.

Bounding max{gi, d} for access-structure circuits with many gates can be te-
dious, but we note that max{gi, d} will be dominated by the presence of large
threshold gates. On the contrary, ∧ and ∨ gates are essentially harmless, as
shown below.
Claim. For a circuit consisting only of ∧ and ∨ gates, max{gi, d} = 1.

Proof. There exists a deterministic construction of a linear sharing matrix L that
guarantees binary reconstruction coefficients in this case (see Preliminaries).

We defer to the full paper the exact quantification of the various norm and
noise parameters. Of course, while the growing norm of supposedly short vectors
can be compensated by commensurately increasing the modulus q, this is best
avoided for efficiency reasons.

4.4 Security

Theorem 5. If there exists a probabilistic polynomial-time algorithm A with ad-
vantage ε > 0 in a selective-security key-policy attack against the above scheme,
then there exists a probabilistic polynomial-time algorithm B that decides the
(Zq, n, Ψ̄α)-LWE problem with advantage ε/2, where α = O(poly(n)).

Proof. In the LWE problem, the decision algorithm is given access to a sampling
oracle, O, which is either a pseudo-random sampler Os with embedded secret
s ∈ Zn

q , or a truly random sampler O$. Our decider algorithm B will simulate an
attack environment for, and exploit the prowesses of A, to decide which oracle
it is given. The reduction proceeds as follows.

Instance. B requests from O and obtains ((1+ �)m+1) LWE samples that we
denote as, [

(w−1, v−1)
]
∈ (Zn

q × Zq)[
(w1

0, v
1
0), . . . , (w

m
0 , vm

0 )
]
∈ (Zn

q × Zq)m[
(w1

1, v
1
1), . . . , (w

m
1 , vm

1 )
]
∈ (Zn

q × Zq)m

...[
(w1

� , v
1
� ), . . . , (w

m
� , vm

� )
]
∈ (Zn

q × Zq)m

Target. A announces a target attribute vector, denoted Attrib†, on which it
wishes to be challenged.

Setup. B constructs the public key Pub as follows:
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1. The vector u ∈ Zn
q is constructed from the LWE samples of index −1:

simply set u = w.
2. The matrix A0 ∈ Zn×m

q is built from the LWE samples of index 0: set
A0 = [w1

0| . . . |wm
0 ].

3. For each i ∈ [�] such that attribute i ∈ Attrib†, the matrix Ai is con-
structed from the LWE samples of index i in a similar way as above: for
i ∈ Attrib†, set Ai = [w1

i | . . . |wm
i ].

4. For each i ∈ [�] such that attribute i �∈ Attrib†, the matrix Ai is con-
structed as in the real scheme using TrapGen, which provides an asso-
ciated low-norm full-rank matrix Bi such that Ai · Bi = 0. (The LWE
samples of all indices i �∈ Attrib† will remain unused.)

The resulting public key Pub is given to A.
Queries. A is allowed to make adaptive queries for keys Key for policies Policy

that the target attribute list Attrib† does not satisfy. B constructs and returns
a key Key for each query Policy, as follows.
1. As in the real scheme, derive from Policy a (low-norm) linear sharing

matrix L ∈ Z�×(1+θ).
2. Let φ = |Attrib†|. Make L′ from L, keeping only the rows of index i such

that i ∈ Attrib†. Make L′′ from L′ by dropping the leftmost column of
index j = 0 (keeping j = 1, . . . , θ).

3. W.l.o.g., suppose that Attrib† = {i1, i2, . . . , iφ} = {1, 2, . . . , φ}; i.e., the
first φ attributes, from 1 to φ, are arbitrarily assumed to be the attacker’s
targets.

4. W.l.o.g., suppose that the φ left-most columns of L′′ form a φ-dimensional
square matrix of full rank. The columns of L from which L′′ is derived can
always be reordered to achieve this, since the order of its columns (other
than that of index j = 0) is arbitrary. Notice that this step requires
that the challenge Attrib† do not satisfy the query Policy. If it did, by
definition some non-zero [d, 0, . . . , 0]� would be in the span of L, and thus
[0, . . . , 0]� non-trivially in that of L′′; therefore the φ left-most columns
of L′′ would not be full-rank.

5. Invoking TrapGen, sample φ random matrices Zi ∈ Zn×m
q with short

bases Yi ∈ Zm×m, for all i ∈ Attrib† (i.e., w.l.o.g., i = 1, . . . , φ are the
indices of the Zi with trapdoor Yi).

6. Build a “virtual encryption matrix” M exactly as in the real scheme (see
below about the boxes), as,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1

. . .
Aφ

. . .
A�

∣∣∣∣∣∣∣∣∣∣∣∣

l1,0 A0

...
lφ,0 A0

...
l�,0 A0

∣∣∣∣∣∣∣∣∣∣∣∣

l1,1 Z1 . . . l1,φ Zφ

...
...

lφ,1 Z1 . . . lφ,φ Zφ

. . . l1,θ Zθ

...
. . . lφ,θ Zθ

...
...

l�,1 Z1 . . . l�,φ Zφ
. . . l�,θ Zθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
mod q

7. Denote by Z the (φn × φm)-submatrix of M made of the blocks lj,i Zi

whose i, j ∈ [φ]. Per Lemma 6, we can build (from the Yi) a single
trapdoor Y for Z as a whole.
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Lemma 6. For i = 1, . . . , φ, let Zi ∈ Zn×m
q and Yi ∈ Zm×m such that

Zi Yi = 0 (mod q). Suppose also that each Yi is a basis of Λ⊥
q (Zi) and

has low norm ‖Yi‖ ≤ β ∈ R. Define,

Z =

⎡⎢⎣l1,1 Z1 · · · l1,φ Zφ

...
. . .

...
lφ,1 Z1 · · · lφ,φ Zφ

⎤⎥⎦ mod q

Then, for any full-rank integer matrix
(
li,j
)

with i, j ∈ [φ], the Ajtai
lattice induced by Z ∈ Zφn×φm

q admits an efficiently computable (in fact
constant) trapdoor Y ∈ Zφm×φm i.e., such that Y is a basis of Λ⊥

q (Z)
with bounded norm ‖Y‖ ≤ β.

Proof. Take,

Y =

⎡⎢⎣Y1 0
. . .

0 Yφ

⎤⎥⎦
We have that Z · Y = 0 (mod q), that Y is a basis for Λ⊥

q (Z), and that
‖Y‖ ≤ maxi ‖Yi‖.

8. Observe that we now have a trapdoor for every lattice defined by a
submatrix of M encased in one of the boxes shown in Step 6. Let us
notionally reorder the columns of M by swapping the φ left-most Ai-
block-columns with the φ left-most Zi-block-columns. We get a matrix
M′ = [M′

trapdoor|M′
extension], where M′

trapdoor is full-rank, block-diagonal,
and each of its blocks has an associated trapdoor. We can thus trivially
build a trapdoor for all of M′

trapdoor. By invoking ExtendRight, we extend
this into a trapdoor W′ for all of M′. Reordering the rows of W′ yields a
trapdoor for the original M above: call it W.

9. Randomize W into a structure-less basis K whose norm matches that of
the real scheme. (This step is only necessary if ExtendRight does not al-
ready produce a basis whose vectors all have the target discrete Gaussian
distribution already; if they do, let K = W.)

This concludes the simulation of the private-key extraction. The adversary
A is given the resulting Key =

(
K, L
)
. Notice that it has exactly the same

distribution as in the real scheme.
Challenge. A signals that it is ready to accept a challenge, and chooses a

message bit Msg† ∈ {0, 1}. B responds with a ciphertext Ctx† =
(
c†0, c

†
1

)
assembled from the LWE instance, as follows:
1. Let c†0 = v−1 + � q

2� ·Msg†.
2. Let c†1 =

[
v1
1, . . .v

m
1︸ ︷︷ ︸

if 1∈Attrib†

, . . . , v1
� , . . .v

m
�︸ ︷︷ ︸

if �∈Attrib†

, v1
0, . . .v

m
0︸ ︷︷ ︸

always

]
Observe that when the vi come from a genuine LWE oracle, the foregoing
is a well-formed Regev-like encryption of Msg† for the encryption matrix F
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indicated by the challenge Attrib†. On the contrary, when the vi come from
a random fake LWE oracle, the ciphertext is independent of the message bit
since c†0 in particular is uniformly and independently distributed.

Continuation. A is allowed to continue making further private-key extraction
queries, after having obtained the challenge ciphertext.

Decision. A eventually emits a guess, whether Ctx† was actually a valid en-
cryption of Msg ∈ {0, 1} as requested. B uses the guess to decide whether
the LWE oracle O was genuine. If A says “valid”, then B says “genuine”; if
A says “invalid”, then B says “fake”.

If the adversary succeeds in guessing Msg† with probability at least 1
2 + ε, then

our decision algorithm B will correctly guess the nature of the LWE oracle with
probability at least 1

2 + ε
2 . This concludes the proof of the security reduction.

4.5 Extensions

So far we have assumed, merely for simplicity of notation, that policies will
only encode monotone access structures given as formulas where each attribute
appears as argument exactly once. We now show how to list such limitations.

Duplicated Attributes. Arbitrary monotone policies will generally be ex-
pressed as formulas where various attributes appear zero, once, or even multiple
times. Accordingly, we show how to handle policies that can comport arbitrarily
many ∧ and ∨ gates, and an arbitrary wiring of the attribute inputs to feed
them, including duplication.4 The idea is very simple:

kpABE.Setup’ is unchanged from the original version: to each attribute one
continues to associate one Ajtai matrix Ai and its trapdoor Bi.

kpABE.Setup’ also remains the same: the ciphertext is constructed as before,
around a Regev encryption matrix F that either includes or excludes each
submatrix Ai depending on whether or not the respective attribute i ∈ Attrib.

kpABE.Extract’ must be modified to allow for duplicate occurrences of the same
attribute in the Boolean expression of Policy. This is done as follows:
1. Give each occurrence of some attribute #i in Policy a unique label, say

#i.1 and #i.2, and accordingly rewrite the policy Policy into Policy′ as
a function of the augmented attributes. Policy′ has the same topology
(structure and size) as Policy, but its input literals are now unique. Keep
track of the mapping from the augmented attributes i′ to the original
attributes i by means of a surjective map ρ : i′ �→ i.

2. Construct the sharing matrix L in the regular way from the augmented-
attribute formula Policy′. For each original attribute #i, there will be as
many rows in L as the number of occurrences of #i in the original Policy.

4 We must however continue to caution on the use of t-out-of-n threshold gates ≥t,
because unless t = 1 or t = n we cannot guarantee in general that the LSSS matrix
L and the reconstruction coefficients will be small. Fortunately, as long as repeated
attribute inputs are allowed, every possible monotone access structure can be ex-
pressed using only ∨ and ∧ gates, in such a way that L is a binary or ternary matrix.
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3. Construct the “virtual encryption matrix” M from L as before. Since the
augmented attributes that emanate from the same original attribute, all
refer to the same public matrix Ai, the key-extraction matrix M will thus
contain multiple copies of Ai, albeit on different columns.

Once M has been constructed with possibly duplicated Ai on its left-side
block-diagonal, key extraction both in the real scheme and in the simula-
tion will proceed as usual. The only effect of the duplication is that, in the
simulation, knowledge of trapdoors Bi will be linked to the presence of the
original attributes—not the augmented ones—in Attrib†.

kpABE.Decrypt’ requires a small adjustment to cope with duplicated attributes
in the Policy encoded in the decryption key. Essentially, before applying the
decryption algorithm, the decryptor needs to avail himself as many copies
of the attribute as he will need. This is done by duplicating the various
fragments of c1 that correspond to the attributes that need to be duplicated,
before using the result in the normal decryption process.

This construction is very efficient as the ciphertext size remains unchanged in
|Attrib|, and the private key size has the same dependency on |Policy| as it did
without attribute duplication (of course, |Policy| can now grow arbitrarily).

5 Conclusion

In this paper, we have introduced a new cryptographic framework for perform-
ing complex lattice basis manipulations, of the kind that seemingly can unlock
the construction of very powerful and expressive cryptosystems such as func-
tional encryption. We demonstrated its power and flexibility by building the
first known attribute-based cryptosystem from “learning with errors”, a (conjec-
tured) quantum-resistant hardness assumption tied to many lattice problems.

Acknowledgments. The author would like to thank Dan Boneh for suggesting
a simplification of the scheme and its proof by way of the ExtendRight abstrac-
tion, and to thank the TCC 2013 program committee for what appears to be a
very thorough review.
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Abstract. We show that an encryption scheme cannot have a simple
decryption function and be homomorphic at the same time, even with
added noise. Specifically, if a scheme can homomorphically evaluate the
majority function, then its decryption cannot be weakly-learnable (in
particular, linear), even if the probability of decryption error is high.
(In contrast, without homomorphism, such schemes do exist and are
presumed secure, e.g. based on LPN.)

An immediate corollary is that known schemes that are based on the
hardness of decoding in the presence of low hamming-weight noise cannot
be fully homomorphic. This applies to known schemes such as LPN-based
symmetric or public key encryption.

Using these techniques, we show that the recent candidate fully homo-
morphic encryption, suggested by Bogdanov and Lee (ePrint ’11, hence-
forth BL), is insecure. In fact, we show two attacks on the BL scheme:
One that uses homomorphism, and another that directly attacks a com-
ponent of the scheme.

1 Introduction

An encryption scheme is called homomorphic if there is an efficient transfor-
mation that given Enc(m) for some message m, and a function f , produces
Enc(f(m)) using only public information. A scheme that is homomorphic w.r.t
all efficient f is called fully homomorphic (FHE). Homomorphic encryption is
a useful tool in both theory and practice and is extensively researched in re-
cent years (see [20] for survey), and a few candidates for full homomorphism are
known.

Most of these candidates [9, 10, 19, 6, 7, 11, 5, 12, 4] are based (either ex-
plicitly or implicitly) on lattice assumptions (the hardness of approximating
short vectors in certain lattices). In particular, the learning with errors (LWE)
assumption proved to be very useful in the design of such schemes. The one
notable exception is [22], but even that could be thought of as working over an
appropriately defined lattice over the integers.

An important open problem is, therefore, to diversify and base fully homo-
morphic encryption on different assumptions (so as to not put all the eggs in
one basket). One appealing direction is to try to use the learning parity with
noise (LPN) problem, which is very similar in syntax to LWE: Making a vast

� Supported by a Simons Postdoctoral Fellowship and by DARPA.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 143–161, 2013.
c© International Association for Cryptologic Research 2013
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generalization, LWE can be interpreted as a decoding problem for a linear code,
where the noise comes from a family of low norm vectors. Namely, each co-
ordinate in the code suffers from noise, but this noise is relatively small (this
requires that the code is defined over a large alphabet). The LPN assumption
works over the binary alphabet and requires that the noise has low hamming
weight, namely that only a small number of coordinates are noisy, but in these
coordinates the noise amplitude can be large. While similar in syntax, a direct
connection between these two types of assumptions is not known.

While an LPN-based construction is not known, recently Bogdanov and Lee [3]
presented a candidate, denoted by BL throughout this manuscript, that is based
on a different low hamming-weight decoding problem: They consider a carefully
crafted code over a large alphabet and assume that decoding in the presence of
low-hamming-weight noise is hard.

In this work, we show that not only that BL’s construction is insecure, but
rather the entire approach of constructing code based homomorphic encryption
analogously to the LWE construction cannot work. We stress that we don’t show
that FHE cannot be based on LPN (or other code based assumptions), but rather
that the decryption algorithm of such scheme cannot take the näıve form. (In
particular this applies to the attempt to add homomorphism to schemes such as
[1, 13, 2].)

1.1 Our Results

Our main result shows that encryption schemes with learnable decryption func-
tions cannot be homomorphic, even if a high probability of decryption error is
allowed. In particular, such schemes cannot evaluate the majority function. This
extends the result of Kearns and Valiant [15] (slightly extended by Klivans and
Sherstov [16]) that learnability breaks security for schemes with negligible de-
cryption error. In other words, homomorphic capabilities can sometimes make
noisy learning become no harder than noiseless learning.

We use a simplified notion of learning, which essentially requires that given
polynomially many labeled samples (from an arbitrary distribution), the learner’s
hypothesis correctly computes the label for the next sample with probability,
say, 0.9. We show that this notion, that we call sc-learning, is equivalent to
weak learning defined in [15]. This allows us to prove the following theorem (in
Section 3).

Theorem A. An encryption scheme whose decryption function is sc- or weakly-
learnable, and whose decryption error is 1/2− 1/poly(n), cannot homomorphi-
cally evaluate the majority function.

Since it is straightforward to show that linear functions are learnable (as well as,
e.g., low degree polynomials), the theorem applies to known LPN based schemes
such as [1, 13, 2]. This may not seem obvious at first: The decryption circuit
of the aforementioned schemes is (commonly assumed to be) hard to learn, and
their decryption error is negligible, so they seem to be out of the scope of our
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theorem. However, looking more closely, the decryption circuits consist of an
inner product computation with the secret key, followed by additional post-
processing. One can verify that if the post processing is not performed, then
correct decryption is still achieved with probability > 1/2+1/poly. Thus we can
apply our theorem and rule out majority-homomorphism.

Similar logic rules out the homomorphism of the BL candidate-FHE. While
Theorem A does not apply directly (since the decryption of BL is not learnable
out of the box), we show that it contains a sub-scheme which is linear (and thus
learnable) and has sufficient homomorphic properties to render it insecure.

Theorem B. There is a successful polynomial time CPA attack on the BL
scheme.

We further present a different attack on the BL scheme, targeting one of its
building blocks. This allows us to not only distinguish between two messages
like the successful CPA attack above, but rather decrypt any ciphertext with
probability 1− o(1).

Theorem C. There is a polynomial time algorithm that decrypts the BL scheme.

The BL scheme and the two breaking algorithms are presented in Section 4.

1.2 Our Techniques

Consider a simplified case of Theorem A, where the scheme’s decryption function
is learnable given t labeled samples, and the decryption error is (say) 1/(10(t+
1)). The proof in this case is straightforward: Generate t labeled samples by
just encrypting random messages, and feed them to the learner. Then use the
learner’s output hypothesis to decrypt the challenge ciphertext. We can only
fail if either the learner fails (which happens with probability 0.1) or if one of
the samples we draw (including the challenge) are not correctly decryptable, in
which case our labeling is wrong and therefore the learner provides no guarantee
(which again happens with at most 0.1 probability). The union bound implies
that we can decrypt a random ciphertext with probability 0.8, which immediately
breaks the scheme. Note that we did not use the homomorphism of the scheme
at all, indeed this simplified version is universally true even without assuming
homomorphism, and is very similar to the arguments in [15, 16]. (Some subtleties
arise since we allow a non-negligible fraction of “dysfunctional” keys that induce
a much higher error rate than others.)

The next step is to allow decryption error 1/2 − ε, which requires use of
homomorphism. The idea is to use the homomorphism in order to reduce the
decryption error and get back to the previous case (in other words, reducing the
noise in a noisy learning problem). Consider a scheme that encrypts a message by
generating many encryptions (say k) of that message, and then applying homo-
morphic majority on those ciphertexts and outputting the result. The security
of this scheme directly reduces from that of the original scheme, and it has the
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same decryption function. However, now the decryption error drops exponen-
tially with k. This is because in order to get an error in the new scheme, at least
k/2 out of the k encryptions need to have errors. Since the expected number is
(1/2− ε)k, the Chernoff bound implies the result by choosing k appropriately.

To derive Theorem B, we need to show that linear functions are learnable:1

Assume that the decryption function is an inner product between the ciphertext
and the secret key (both being n-dimensional vectors over a field F). We will
learn these functions by taking O(n) labeled samples. Then, given the challenge,
we will try to represent it as a linear combination of the samples we have. If we
succeed, then the appropriate linear combination of the labels will be the value
of the function on the challenge. We show that this process fails only with small
constant probability (intuitively, since we take O(n) sample vectors from a space
of dimension at most n).

We then show that BL uses a sub-structure that is both linearly decryptable
and allows for homomorphism of (some sort of) majority. Theorem B thus follows
similarly to Theorem A.

For Theorem C, we need to dive into the guts of the BL scheme. We notice
that BL use homomorphic majority evaluation in one of the lower abstraction
levels of their scheme. This allows us to break this abstraction level using only
linear algebra (in a sense, the homomorphic evaluation is already “built in”). A
complete break of BL follows.

1.3 Other Related Work

An independent work by Gauthier, Otmani and Tillich [8] shows an interesting
direct attack on BL’s hardness assumption (we refer to it as the “GOT attack”).
Their attack is very different from ours and takes advantage of the resemblance
of BL’s codes and Reed-Solomon codes as we explain below.

BL’s construction relies on a special type of error correcting code. Essentially,
they start with a Reed-Solomon code, and replace a small fraction of the rows
of the generating matrix with a special structure. The homomorphic properties
are only due to this small fraction of “significant” rows, and the secret key is
chosen so as to nullify the effect of the other rows.

The GOT attack uses the fact that under some transformation (component-
wise multiplication), the dimension of Reed-Solomon codes can grow by at most a
factor of two. However, if a code contains “significant” rows, then the dimension
can grow further. This allows to measure the number of significant rows in a
given code. One can thus identify the significant rows by trying to remove one
row at a time from the code and checking if the dimension drops. If yes then
that row is significant. Once all significant rows have been identified, the secret
key can be retrieved in a straightforward manner.

However, it is fairly easy to immunize BL’s scheme against the GOT attack.
As we explained above, the neutral rows do not change the properties of the

1 We believe this was known before, but since we could not find an appropriate refer-
ence, we provide a proof.



When Homomorphism Becomes a Liability 147

encryption scheme, so they may as well be replaced by random rows. Since the
dimension of random codes grows very rapidly under the GOT transformation,
their attack will not work in such case.

Our attack, on the other hand, relies on certain functional properties that
BL use to make their scheme homomorphic. Thus a change in the scheme that
preserves these homomorphic properties cannot help to overcome our attack. In
light of our attack, it is interesting to investigate whether the GOT attack can
be extended to the more general case.

2 Preliminaries

We denote scalars using plain lowercase (x), vectors using bold lowercase (x for
column vector, xT for row vector), and matrices using bold uppercase (X). We
let 1 denote the all-one vector (the dimension will be clear from the context).
We let Fq denote a finite field of cardinality q ∈ N, with efficient operations (we
usually don’t care about any other property of the field).

2.1 Properties of Encryption Schemes

A public key encryption scheme is a tuple of algorithms (Gen,Enc,Dec), such
that: Gen(1n) is the key generation algorithm that produces a pair of public and
secret keys (pk, sk); Encpk(m) is a randomized encryption function that takes a
message m and produces a ciphertext. In the context of this work, messages will
only come from some predefined field F; Decsk(c) is the decryption function that
decrypts a ciphertext c and produces the message. Optimally, Decsk(Encpk(·)) is
the identity function, but in some schemes there are decryption errors.

The probability of decryption error is taken over the randomness used to
generate the keys for the scheme, and over the randomness used in the encryption
function (we assume the decryption is deterministic). Since in our case the error
rates are high (approaching 1/2), the effect of bad keys is different from that of
bad encryption randomness, and we thus measure the two separately. We allow
a small fraction of the keys (one percent, for the sake of convenience) to have
arbitrarily large decryption error, and define the decryption error ε to be the
maximal error over the 99% best keys. While the constant 1% is arbitrary and
chosen so as to not over-clutter notation, we will discuss after presenting our
results how they generalize to other values. The formal definition follows.

Definition 2.1. An encryption scheme is said to have decryption error < ε if
with probability at least 0.99 over the key generation it holds that

max
m

{Pr[Decsk(Encpk(m)) �= m]} < ε ,

where the probability is taken over the random coins of the encryption function.

We use the standard definition of security against chosen plaintext attacks
(CPA): The attacker receives a public key and chooses two values m0,m1. The



148 Z. Brakerski

attacker then receives a ciphertext c = Encpk(mb), where b ∈ {0, 1} is a random
bit that is unknown to the attacker. The attacker needs to decide on a guess
b′ ∈ {0, 1} as to the value of b. We say that the scheme is broken if there is a
polynomial time attacker for which Pr[b′ = b] ≥ 1/2 + 1/poly(n) (where n is
the security parameter). Recall that this notion is equivalent to the notion of
semantic security [14].

In addition, we will say that a scheme is completely broken if there exists an
adversary that upon receiving the public key and Encpk(m) for arbitrary value
of m, returns m with probability 1− o(1).

While we discuss homomorphic properties of encryption schemes, we will
only use homomorphism w.r.t the majority function. We define the notion of
k-majority-homomorphism below.

Definition 2.2. A public-key encryption scheme is k-majority-homomorphic
(where k is a function of the security parameter) if there exists a function MajEval
such that with probability 0.99 over the key generation, for any sequence of ci-
phertexts output by Encpk(·): c1, . . . , ck, it holds that

Decsk(MajEvalpk(c1, . . . , ck)) = Majority(Decsk(c1), . . . ,Decsk(ck)) .

Again we allow some “slackness” by allowing some of the keys to not abide the
homomorphism.

We note that Definition 2.2 above is a fairly strong notion of homomorphism
in two aspects: First, it requires that homomorphism holds even for ciphertexts
with decryption error. Second, we do not allow MajEval to introduce error for
“good” key pairs. Indeed, known homomorphic encryption schemes have these
properties, but it is interesting to try to bypass our negative results by finding
schemes that do not have them.

Schemes with linear decryption, as defined below, have a special role in our
attack on BL.

Definition 2.3. An encryption scheme is n-linearly decryptable if its secret key
is of the form sk = s ∈ Fn, for some field F, and its decryption function is

Decsk(c) = 〈s, c〉 .

2.2 Spanning Distributions over Low Dimensional Spaces

We will use a lemma that shows that any distribution over a low dimensional
space is easy to span in the following sense: Given sufficiently many samples
from the distribution (a little more than the dimension of the support), we
are guaranteed that any new vector falls in the span of previous samples. This
lemma will allow us to derive a (distribution-free) learner for linear functions
(see Section 2.3).

We speculate that this lemma is already known, since it is fairly general and
very robust to the definition of dimension (e.g. it also applies to non-linear
spaces).
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Lemma 2.4. Let S be a distribution over a linear space S of dimension s. For
all k, define

δk � Pr
v1,...,vk

$←S
[vk �∈ Span {v1, . . . ,vk−1}] .

Then δk ≤ s/k.

Proof. Notice that by symmetry δi ≥ δi+1 for all i. Let Di denote the (random
variable) dimension of Span {v1, . . . ,vi}. Note that always Di ≤ s.

Let Ei denote the event vi �∈ Span {v1, . . . ,vi−1} and let �Ei denote the indi-
cator random variable for this event. Then δi = Pr[Ei] = E[�Ei ]. By definition,

Dk =

k∑
i=1

�Ei .

Therefore

s ≥ E[Dk] = E

[
k∑

i=1

�Ei

]
=

k∑
i=1

Pr[Ei] =
k∑

i=1

δi ≥ k · δk ,

and the lemma follows.

2.3 Learning

In this work we use two equivalent notions of learning: weak-learning as defined
in [15], and an equivalent simplified notion that we call single-challenge-learning
(sc-learning for short). The latter will be more convenient for our proofs, but
we show that the two are equivalent. We will also show that linear functions are
sc-learnable.

Notions of Learning. We start by introducing the notion of weak-learnability.

Definition 2.5 (weak-learning [15]). Let F = {Fn}n∈N be an ensemble of
binary functions. A weak learner for F with parameters (t, ε, δ) is a polynomial
time algorithm A such that for any function f ∈ Fn and for any distribution D
over the inputs to f , the following holds. Let x1, . . . , xt+1

$← D, and let h (“the
hypothesis”) be the output of A(1n, (x1, f(x1)), . . . , (xt, f(xt))). Then

Pr
x1,...,xt

[
Pr
xt+1

[h(xt+1) �= f(xt+1)] > ε

]
≤ δ .

We say that F is weakly learnable if there exists a weak learner for F with
parameters t = poly(n), ε ≤ 1/2 − 1/poly(n), δ ≤ 1 − 1/poly(n). (We also
require that the output hypothesis h is polynomial time computable.)

We next define our notion of (t, η)-sc-learning, which essentially corresponds to
the ability to launch a t-query CPA attack on an (errorless) encryption scheme,
and succeed with probability η. (The initials “sc” stand for “single challenge”,
reflecting the fact that a CPA attacker only receives a single challenge cipher-
text.)
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Definition 2.6 (sc-learning). Let F = {Fn}n∈N be an ensemble of functions.
A (t, η)-sc-learner for F is a polynomial time algorithm A such that for any
function f ∈ Fn and for any distribution D over the inputs to f , the follow-

ing holds. Let x1, . . . , xt+1
$← D, and let h (“the hypothesis”) be the output of

A(1n, (x1, f(x1)), . . . , (xt, f(xt))). Then Pr[h(xt+1) �= f(xt+1)] ≤ η, where the
probability is taken over the entire experiment.

We say that F is (t, η)-sc-learnable if it has a polynomial time (t, η)-sc-learner
for it. We say that a binary F is sc-learnable if t = poly(n) and η ≤ 1/2 −
1/poly(n). (We also require that the output hypothesis h is polynomial time
computable.)

Since sc-learning only involves one challenge, we do not define the “confidence”
and “accuracy” parameters (δ, ε) separately as in the definition of weak-learning.

We note that both definitions allow for improper learning (namely, the hy-
pothesis h does not need to “look like” an actual decryption function).

Equivalence Between Notions. The equivalence of the two notions is fairly straight-
forward. Applying boosting [18] shows that sc-learning, like weak-learning, can
be amplified.

Claim 1. If F is sc-learnable then it is weak-learnable.

Proof. This follows by a Markov argument: Consider a (t, η)-sc-learner for F
(recall that η ≤ 1/2− 1/poly(n)) and let δ = 1− 1/poly(n) be such that η/δ ≤
1/2− poly(n) (such δ must exist). Then letting ε � η/δ finishes the argument.

The opposite direction will give us very strong amplification of learning by ap-
plying boosting [18]. The boosting algorithm can amplify the ε, δ values of a
weak learner to arbitrarily small values, at the cost of increasing the number of
required samples.

Claim 2. If F is weak-learnable then it is (poly(n, 1/η), η)-sc-learnable for all η.

Proof. Let F be weak-learnable. Then by boosting [18] it is also PAC learn-
able [21]. Namely there is a learner with parameters (poly(n, 1/ε, 1/δ), ε, δ) for
any inversely polynomial ε, δ. Setting ε = δ = η/2, the claim follows.

Learning Linear Functions. The following corollary (of Lemma 2.4) shows a
simple direct construction of an sc-learner for the class of linear functions.2

Corollary 2.7. Let Fn be a class of n-dimensional linear functions over a field
F. Then F = {Fn}n is (10n, 1/10)-sc-learnable.

2 The learner works even when the function class is not binary, which is only an
advantage. The binary case follows by considering distributions supported only over
the pre-images of 0, 1.
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Proof. We note that for any linear function f : Fn → F, the set {(x, f(x))}x∈Fn

is an n-dimensional linear subspace of Fn+1.
The learner A works as follows. It is given t = 10n samples vi � (xi, f(xi)) ∈

Fn+1. Using Gaussian elimination, A will find s ∈ Fn such that (−s, 1) ∈
Ker{vi}i∈[t] (note that such must exist). Finally A will output the hypothesis
h(x) = 〈s,x〉.

Correctness follows using Lemma 2.4. We let the distribution S be the dis-

tribution (x, f(x)) where x
$← D, and let k = t+ 1. It follows that with proba-

bility 1− 1/10, it holds that (xt+1, f(xt+1)) ∈ Span{vi}i∈[t] which implies that
〈(−s, 1), (xt+1, f(xt+1))〉 = 0, or in other words f(xt+1) = 〈s,xt+1〉 = h(xt+1).

3 Homomorphism Is a Liability When Decryption Is
Learnable

This section features our main result. We show that schemes with learnable
decryption circuits are very limited in terms of their homomorphic properties,
regardless of decryption error. This extends the previous results of [15, 16] show-
ing that the decryption function cannot be learnable if the decryption error is
negligible.

We start by showing that a scheme with (t, 1/10)-sc-learnable decryption
function (i.e. efficient learning with probability 1/10 using t samples, see Def-
inition 2.6) cannot have decryption error smaller than Ω(1/t) and be secure
(regardless of homomorphism). We proceed to show that if the scheme can ho-
momorphically evaluate the majority function, then the above amplifies dramat-
ically and security cannot be guaranteed for any reasonable decryption error
(1/2− ε error for any noticeable ε). Using Claim 2 (boosting), this implies that
the above hold for any scheme with weakly-learnable (or sc-learnable) decryp-
tion. We then discuss the role of key generation error compared to encryption
error.

For the sake of simplicity, we focus on the public key setting. However, our
proofs easily extend also to symmetric encryption, since our attacks only use the
public key in order to generate ciphertexts for known messages.

Learnable Decryption without Homomorphism. We start by showing that a
scheme whose decryption circuit is (t, 1/10)-sc-learnable has to have decryption
error ε = Ω(1/t), otherwise it is insecure. This is a parameterized and slightly
generalized version of the claims of [15, 16], geared towards schemes with high
decryption error and possibly bad keys. The basic idea is straightforward: We
use the public key to generate t ciphertexts to be used as labeled samples for our
learner, and then use its output hypothesis to decrypt the challenge ciphertext.
The above succeeds so long as all samples in the experiment decrypt correctly,
which by the union bound is at least 1 − t · ε. A formal statement and proof
follows.
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Lemma 3.1. An encryption scheme whose decryption function is (t, 1/10)-sc-
learnable for a polynomial t and whose decryption error < 1/(10(t + 1)) is
insecure.

Proof. Consider a key pair (pk, sk) for the scheme, and consider the follow-
ing CPA adversary. The adversary first generates t labeled samples of the form

(Encpk(m),m), for random messages m
$← {0, 1} (where 0, 1 serve as generic

names for an arbitrary pair of elements in the scheme’s message space). These
samples are fed into the aforementioned learner, let h denote the learner’s out-
put hypothesis. The adversary lets m0 = 0, m1 = 1, and given the challenge
ciphertext c = Encpk(mb), it outputs b′ = h(c).

To analyze, we consider the (inefficient) distribution D that first samples

m
$← {0, 1}, and then outputs a random correctly decryptable encryption of

m. More formally, D is the distribution c = Encpk(m)|(Decsk(c) = m) for a

randomly chosen m
$← {0, 1}. By Definition 2.6, if the learner gets t samples

from this distribution, it outputs a hypothesis that correctly labels the (t + 1)
sample, with all but 1/10 probability.

While we cannot efficiently sample from D (without the secret key), we show
that the samples (and challenge) that we feed to our learner are in fact statis-
tically close to samples from D. Consider a case where (pk, sk) are such that
the decryption error is indeed smaller than ε = 1/(10(t+ 1)). In such case, our
adversary samples from a distribution of statistical distance at most ε from D,
and the challenge ciphertext is drawn from the same distribution. It follows that
the set of (t+1) samples that we consider during the experiment (containing the
labeled samples and the challenge), agree with D with all but (t+ 1) · ε = 1/10
probability.

Using the union bound on all aforementioned “bad” events (the key pair not
conforming with decryption error as per Definition 2.1, the samples not agreeing
with D, and the learner failing), we get that Pr[b′ = b] ≥ 1−0.01−1/10−1/10>
0.7 and the lemma follows.

Using Claim 2, we derive the following corollary.

Corollary 3.2. An encryption scheme whose decryption function is
weakly-learnable must have decryption error 1/poly(n) for some polynomial.

We note that this corollary does not immediately follow from [15, 16] if a no-
ticeable fraction of the keys can be “bad” (since they do not use boosting).

Plugging our learner for linear functions (Corollary 2.7) into Lemma 3.1 im-
plies the following, which will be useful for the next section.

Corollary 3.3. There exists a constant α > 0 such that any n-linearly decrypt-
able scheme with decryption error < α/n is insecure.

Learnable Decryption with Majority Homomorphism. Lemma 3.1 and Corol-
lary 3.2 by themselves are not very restrictive. Specifically, they are not directly
applicable to attacking any known scheme. Indeed, known schemes with linear
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decryption (e.g. LPN based) have sufficiently high decryption error (or, viewed
differently, adding the error makes the underlying decryption hard to learn). We
now show that if homomorphism is required as a property of the scheme, then
decryption error cannot save us.

The following theorem states that majority-homomorphic schemes (see Defi-
nition 2.2) cannot have learnable decryption for any reasonable decryption error.

Theorem 3.4. An encryption scheme whose decryption circuit is (t, 1/10)-sc-
learnable for a polynomial t and whose decryption error < (1/2 − ε) cannot be
O(log t/ε2)-majority-homomorphic.

Let us first outline the proof of Theorem 3.4 before formalizing it. Our goal is the
same as in the proof of Lemma 3.1, to generate t labeled samples, which will en-
able to break security. However, unlike above, taking t random encryptions will
surely introduce decryption errors. We thus use the majority homomorphism:
We generate a good encryption of m, i.e. one that is decryptable with high prob-
ability, by generating O(log t/ε2) random encryptions of m, and apply majority
homomorphically. Chernoff’s bound guarantees that with high probability, more
than half of the ciphertexts are properly decryptable, and therefore the output
of the majority evaluation is with high probability a decryptable encryption of
m. At this point, we can apply the same argument as in the proof of Lemma 3.1.
The formal proof follows.

Proof. Consider an encryption scheme (Gen,Enc,Dec) as in the theorem state-
ment. We will construct a new scheme (Gen′ = Gen,Enc′,Dec′ = Dec) (with
the same key generation and decryption algorithms) whose security relates to
that of (Gen,Enc,Dec). Then we will use Lemma 3.1 to render the latter scheme
insecure.

The new encryption algorithm Enc′pk(m) works as follows: To encrypt a mes-
sage m, invoke the original encryption Encpk(m) for (say) k = 10(ln(t + 1) +
ln(10))/ε2 times, thus generating k ciphertexts. Apply MajEval to those k ci-
phertexts and output the resulting ciphertext.

The security of the new scheme is related to that of the original by a straight-
forward hybrid argument. We will show that the new scheme has decryption
error at most 1/(10(t + 1)), but in a slightly weaker sense then Definition 2.1:
We will allow 2% of the keys to be “bad” instead of just 1% as before. One can
easily verify that the proof of Lemma 3.1 works in this case as well.

Our set of good key pairs for Enc′ is those for which Decsk(Encpk(·)) indeed
have decryption error at most 1/2− ε and in addition MajEval is correct. By the
union bound this happens with probability at least 0.98.

To bound the decryption error of Decsk(Enc
′
pk(·)), assume that we have a

good key pair as described above. We will bound the probability that more
than a 1/2− ε/2 fraction of the k ciphertexts generated by Enc′ are decrypted
incorrectly. Clearly if this bad event does not happen, then by the correctness
of MajEval, the resulting ciphertext will decrypt correctly.
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Recalling that the expected fraction of falsely decrypted ciphertexts is at most
1/2− ε, the Chernoff bound implies that the aforementioned bad event happens
with probability at most

e−2(ε/2)
2k < 1/(10(t+ 1)) ,

and the theorem follows.

From the proof it is obvious that even “approximate-majority homomorphism”
is sufficient for the theorem to hold. Namely, even if MajEval only computes
the majority function correctly if the fraction of identical inputs is more than
1/2 + ε/2. Even more generally, we can use any function FEval for which
Decsk(FEval(Encpk(m), . . . ,Encpk(m))) = m with high probability.

We can derive a general corollary for every weakly-learnable function using
Claim 2. This applies, for example, to linear functions, low degree polynomials
and shallow circuits.

Corollary 3.5. An encryption scheme whose decryption function is weakly-
learnable and whose decryption error is 1/2− ε cannot be ω(logn/ε2)-majority-
homomorphic.

The Role of Bad Keys. Recall that in Definitions 2.1 and 2.2 (decryption error
and majority homomorphism) we allowed a constant fraction of keys to be useless
for the purpose of decryption and homomorphic evaluation, respectively. In fact,
it is this relaxation that makes our argument more involved than [15, 16].

As we mentioned above, the choice of constant 0.01 is arbitrary. Let us now
explain how our results extend to the case of 1/2−κ fraction of bad keys, where
κ = 1/poly(n) (we now count the keys that are either bad for decryption or
bad for homomorphism). In such case, the argument of Lemma 3.1 will work
so long as we start with a (t, η)-sc-learner with η < κ/3 and so long as the
decryption error for good keys is at most κ/(3(t+1)). If the scheme is furthermore
O(log(t/κ)/ε2) = O(log n/ε2)-majority-homomorphic, the proof of Theorem 3.4
will also go through. Finally, using boosting, we can start with any weak learner
and reduce η to < κ/3 at the cost of a polynomial increase in t, which is tolerable
by our arguments (and swallowed by the asymptotic notation).

4 Attacks on the BL Scheme

In this section we use our tools from above to show that the BL scheme (outlined
in Section 4.1 below) is broken. We present two attacks: the first, in Section 4.2,
follows from Corollary 3.3 (and works in the spirit of Theorem 3.4); and the
second, in Section 4.3, directly attacks a lower level subcomponent of the scheme
and allows to decrypt any ciphertext. In fact, the latter attack also follows the
same basic principles and exploits a “built-in” evaluation of majority that exists
in that sub-component of BL.
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4.1 Essentials of the BL Scheme

In this section we present the properties of the BL scheme. We concentrate on
the properties that are required for our breaks. We refer the reader to [3] for
further details.

The BL scheme has a number of layers of abstraction, which are all instanti-
ated based on a global parameter 0 < α < 0.25 as explained below.

The Scheme Kq(n). BL introduce Kq(n), a public-key encryption scheme with
imperfect correctness. For security parameter n, the public key is a matrix P ∈
Fn×r
q , where r = n1−α/8, and the secret key is a vector y ∈ Fn

q in the kernel of

PT (namely, yT ·P = 0). The keys are generated in a highly structured manner
in order to support homomorphism, but their structure is irrelevant to us. An
encryption of a message m ∈ Fq is a vector c = P ·x+m ·1+ e, where x ∈ Fr

q is
some vector, and where e ∈ Fn

q is a low hamming weight vector. Decryption is
performed by taking the inner product 〈y, c〉, and succeeds so long as 〈y, e〉 = 0
(the vector y is chosen such that 〈y,1〉 = 1). It is shown how the structure of the
keys implies that decryption succeeds with probability at least

(
1− n−(1−α/2)

)
.

Finally, BL show that Kq(n) is homomorphic with respect to a single addition
or multiplication.3

Re-Encryption. In order to enable homomorphism, BL introduce the notion
of re-encryption. Consider an instantiation of Kq(n), with keys (P,y), and an

instantiation of Kq(n
′) with keys (P′,y′), for n′ = n1+α. Let Hn′:n ∈ Fn′×n

q

be an element-wise encryption of y using the public key P′.4 Namely Hn′:n =
P′ ·X′+1 ·yT +E′. Due to the size difference between the schemes, it holds that
with probability

(
1− n−Ω(1)

)
, all of the columns of Hn′:n are simultaneously

decryptable and indeed y′T · Hn′:n = yT . In such case, for any ciphertext c
of Kq(n), we get 〈y′,Hn′:nc〉 = 〈y, c〉. The matrix Hn′:n therefore re-encrypts
ciphertexts of Kq(n) as ciphertexts of Kq(n

′).
The critical idea for our second break is that a re-encrypted ciphertext always

belongs to an n-dimensional linear subspace (recall that n� n′), namely to the
span of Hn′:n.

The Scheme BASIC. Using re-encryption, BL construct a ladder of schemes
of increasing lengths that allow for homomorphic evaluation. They define the
scheme BASIC which has an additional depth parameter d = O(1) (BL suggest
to use d = 8, but our attack works for any d > 1). They consider instantiations

of Kq(ni), where ni = n(1+α)−(d−i)

, for i = 0, . . . , d, so nd = n. They generate

3 Homomorphic operations (addition, multiplication) are performed element-wise on
ciphertext vectors, and the structure of the key guarantees that correctness is
preserved.

4 A note on notation: In [3], the re-encryption parameters are denoted by I (as opposed
to ourH). We feel that their notation ignores the important linear algebraic structure
of the re-encryption parameters, and therefore we switched to matrix notation, which
also dictated the change of letter.
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all re-encryption matrices Hni+1:ni (with success probability
(
1− n−Ω(1)

)
) and

can thus homomorphically evaluate depth d circuits.
The homomorphic evaluation works by performing a homomorphic operation

at level i of the evaluated circuit (with i going from 0 to d− 1), and then using
re-encryption with Hni+1:ni to obtain a fresh ciphertext for the next level.

For the purposes of our (second) break, we notice that in the last step of
this evaluation is re-encryption using Hnd:nd−1

. This means that homomor-
phically evaluated ciphertexts all come from a linear subspace of dimension
nd−1 = n1/(1+α).

Error Correction and the Matrix Hn:n. Up to this point, BL only get homo-
morphism at the cost of increasing the input size (namely n). In order to get
size-preserving homomorphism, BL show that given key-pairs (P,y), (P∗,y∗) for
Kq(n); they can generate, with probability

(
1− n−Ω(1)

)
, a matrix Hn:n whose

columns are encryptions of y under y∗. Most importantly, Hn:n should not give
an attacker any excess power. Such a matrix will allow a single size-preserving
homomorphic operation.

The idea is to think about (P∗,y∗) as the last step of the key ladder in
BASIC, and generate encryptions of y under the first step of that ladder. Nat-
urally, the probability that all of those encryptions are simultaneously correctly
decryptable is very slim, but the depth d homomorphism of BASIC can then
be used to homomorphically apply error correction on these ciphertexts. More
details follow.

BL generate an instance of BASIC, with public keys P0, . . . ,Pd, secret key
yd = y∗, and re-encryption matrices Hni+1:ni . An additional independent in-
stance of Kq(n) is generated, whose keys we denote by (P,y). Then, a large
number of encryptions of the elements of y under public key P0 are gener-
ated.5 While some of these ciphertexts may have encryption error, BL show that
homomorphically evaluating a depth-d correction circuit (CORR in their nota-
tion), one can obtain a matrix Hn:n, whose columns are encryptions of y that
are decryptable under y∗ without error. This process succeeds with probability(
1− n−Ω(1)

)
.

The resemblance to the learner of Corollary 2.7 is apparent. In a sense, the
public key of BASIC is ready-for-use learner.

To conclude this part, BL generate a re-encryption matrix Hn:n that takes
ciphertexts under y and produces ciphertexts under y∗. Since Hn:n is produced
using homomorphic evaluation, its rank is at most nd−1 = n1/(1+α). We will
capitalize on the fact that re-encryption using Hn:n produces ciphertexts that
all reside in a low-dimensional space.

Achieving Full Homomorphism – The Scheme HOM. The basic idea is to gen-
erate a sequence of matrices Hn:n, thus creating a chaining of the respective
secret keys that will allow homomorphism of any depth. However, generating

5 To be absolutely precise, BL encrypt a bit decomposition of y∗, but this is immaterial
to us.
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an arbitrarily large number of such re-encryption matrices will eventually cause
an error somewhere down the line. Therefore, a more sophisticated solution is
required. BL suggest to encrypt each message a large number of times, and gen-
erate a large number of re-encryption matrices per level. Then, since the vast
majority of matrices per level are guaranteed to be correct, one can use shallow
approximate majority computation to guarantee that the fraction of erroneous
ciphertexts per level does not increase with homomorphic evaluation.

Decryption is performed as follows: Each ciphertext is a set of ciphertexts
c1, . . . , ck of Kq(n) (all with the same secret key). The decryption process first
uses the Kq(n) key to decrypt the individual ciphertexts and obtain m1, . . . ,mk,
and then outputs the majority between the values mi. BL show that a major-
ity of the ciphertexts (say more than 15/16 fraction) are indeed correct, which
guarantees correct decryption.

BL can thus achieve a (leveled) fully homomorphic scheme which they denote
by HOM, which completes their construction.

4.2 An Attack on BL Using Homomorphism

We will show how to break the BL scheme using its homomorphic properties.
We use Corollary 3.3 and our proof contains similar elements to the proof of
Theorem 3.4. (The specifics of BL do not allow to use Corollary 3.5 directly.)

Theorem 4.1. There is a polynomial time CPA attack on BL.

Proof. Clearly we cannot apply our methods to the scheme HOM as is, since its
decryption is not learnable. We thus describe a related scheme which is “embed-
ded” in HOM and show how to distinguish encryptions of 0 from encryptions
of 1, which will imply a break of HOM.

We recall that the public key of HOM contains “chains” of re-encryption
matrices of the formHn:n. The length of the chains is related to the homomorphic
depth of HOM. Our sub-scheme will only require a chain of constant length 

which will be determined later (such sub-chain therefore must exist for any
instantiation of BL that allows for more than constant depth homomorphism).
Granted that all links in the chain are successfully generated (which happens
with probability 
 · n−Ω(1)), such a chain allows homomorphic evaluation of any
depth-
 function. Let us focus on the case where the chain is indeed properly
generated.

Intuitively, we would have liked to use this structure to evaluate majority on 2�

input ciphertexts. However, BL is defined over a large field F, and it is not clear
how to implement majority over F in depth that does not depend on q = |F|. To
solve this problem, we use BL’s CORR function. This function is just a NAND
tree of depth 
 (extended to F in the obvious way: NAND(x, y) = 1 − xy). BL
show that given 2� inputs, each of which is 0 (respectively 1) with probability

1− ε, the output of CORR will be 0 (resp. 1) with probability 1−O(ε)2
�/2

.
To encrypt a message m ∈ {0, 1} using our sub-scheme, we will generate 2�

ciphertexts. Each ciphertext will be an independent encryption of m using the
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public key of HOM (which essentially generates Kq(n) ciphertexts that corre-
spond to the first link in all chains). We then apply CORR homomorphically to
the generated ciphertexts. Decryption in our subscheme will be standard Kq(n)
decryption (which is a linear function) using the secret key that corresponds to
the last link in the chain.6

We recall that the decryption error of Kq(n) is ε = n−Ω(1). By the properties
of CORR, we can choose 
 = O(1) such that the decryption error of our sub-
scheme is at most (say) o(1)/n.

In conclusion, we get a sub-scheme of HOM such that with probability 1 −
n−Ω(1) > 0.9 over the key generation, the decryption error is at most o(1)/n.
Furthermore, decryption is linear. Corollary 3.3 implies that such scheme must
be insecure.

4.3 A Specific Attack on BL

We noticed that the scheme BASIC, which is a component of HOM, contains
by design homomorphic evaluation of majority: this is how the matrix Hn:n

is generated. We thus present an attack that only uses the matrix Hn:n and
allows to completely decrypt BL ciphertexts (even non binary) with probability
1−n−Ω(1). We recall that an attack completely breaks a scheme if it can decrypt
any given ciphertext with probability 1− o(1).

Theorem 4.2. There exists a polynomial time attack that completely breaks
BASIC, and thus also BL.

Proof. We consider the re-encryption matrix H = Hn:n ∈ Fn×n
q described in

Section 4.1, which re-encrypts ciphertexts under y into ciphertexts under y∗.
The probability that H was successfully generated is at least 1 − n−Ω(1), in
which case it holds that

y∗T ·H = yT .

In addition, as we explained in Section 4.1, the rank ofH is at most h = n1/(1+α).
Our breaker will be given H and the public key P that corresponds to y, and

will be able to decrypt any vector c = EncP(m) with high probability, namely
compute 〈y, c〉.

Breaker Code. As explained above, the input to the breaker isH,P and challenge
c = EncP(m). The breaker will execute as follows:

1. Generate k = h1+ε encryptions of 0, denoted v1, . . . ,vk, for ε =
α(1−α)

4 (any

positive number smaller than α(1−α)
2 will do).

6 The secret key of the last link is not the same as the secret key of HOM, since
we are only considering a sub-chain of a much longer chain. However, this is not a
problem: Our arguments do not require that the secret key is known to anyone in
order to break the scheme.
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Note that this means that with probability 1−n−Ω(1), all vi are decryptable
encryptions of 0. Intuitively, these vectors, once projected through H, will
span all decryptable encryptions of 0.

2. For all i = 1, . . . , k, compute v∗i = H · vi (the projections of the ciphertexts
above through H). Also compute o∗ = H · 1 (the projection of the all-one
vector).

3. Find a vector ỹ∗ ∈ Fn
q such that 〈ỹ∗,v∗i 〉 = 0 for all i, and such that

〈ỹ∗,o∗〉 = 1. Such a vector necessarily exists if all vi’s are decryptable,
since y∗ is an example of such a vector.

4. Given a challenge ciphertext c, compute c∗ = H · c and output m = 〈ỹ∗, c∗〉
(namely, m = ỹ∗T ·H · c).

Correctness. To analyze the correctness of the breaker, we first notice that the
space of ciphertexts that decrypt to 0 under y is linear (this is exactly the
orthogonal space to y). We denote this space by Z. Since 1 �∈ Z, we can define
the cosets Zm = Z+m ·1. We note that all legal encryptions of m using P reside
in Zm.

We let Z∗ denote the spaceH·Z (all vectors of the formH·z such that z ∈ Z).
This is a linear space with dimension at most h. Similarly, define Z∗m = Z∗+m·o∗.

Consider the challenge ciphertext c = EncP(m). We can think of c as an
encryption of 0 with an added term m · 1. We therefore denote c = c0 +m · 1.
Again this yields a c∗0 such that c∗ = c∗0 +m · o∗.

Now consider the distribution Z over Z, which is the distribution of de-
cryptable encryptions of 0 (i.e. the distribution c = EncP(0), conditioned on
〈y, c〉 = 0). The distribution Z∗ is defined by projecting Z through H. With
probability

(
1− n−Ω(1)

)
, it holds that v∗1 , . . . ,v

∗
k, and c∗0 are uniform samples

from Z∗.
By Lemma 2.4 below, it holds that c∗0 ∈ Span {v∗1 , . . . ,v∗k}, with probability(

1− n−Ω(1)
)
. In such case

〈ỹ∗, c∗〉 = 〈ỹ∗, c∗0〉+m · 〈ỹ∗,o∗〉 = m .

We conclude that with probability 1− n−Ω(1), our breaker correctly decrypts c
as required.
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Abstract. Yao’s Garbled Circuit (GC) technique is a powerful crypto-
graphic tool which allows to “encrypt” a circuit C by another circuit Ĉ
in a way that hides all information except for the final output. Yao’s orig-
inal construction incurs a constant overhead in both computation and
communication per gate of the circuit C (proportional to the complexity
of symmetric encryption). Kolesnikov and Schneider (ICALP 2008) in-
troduced an optimized variant that garbles XOR gates “for free” in a way
that involves no cryptographic operations and no communication. This
variant has become very popular and has lead to notable performance
improvements.

The security of the free-XOR optimization was originally proven in
the random oracle model. Despite some partial progress (Choi et al.,
TCC 2012), the question of replacing the random oracle with a standard
cryptographic assumption has remained open.

We resolve this question by showing that the free-XOR approach can
be realized in the standard model under the learning parity with noise
(LPN) assumption. Our result is obtained in two steps:
– We show that the random oracle can be replaced with a symmetric

encryption which remains secure under a combined form of related-
key (RK) and key-dependent message (KDM) attacks; and

– We show that such a symmetric encryption can be constructed based
on the LPN assumption.

As an additional contribution, we prove that the combination of RK and
KDM security is non-trivial: There exists an encryption scheme which
achieves both RK security and KDM security but breaks completely at
the presence of combined RK-KDM attacks.

1 Introduction

Yao’s garbled circuit (GC) construction [42] is an efficient transformation which
maps any boolean circuit C : {0, 1}n → {0, 1}m together with secret randomness
into a “garbled circuit” Ĉ along with n pairs of short k-bit keys (W 0

i ,W
1
i ) such

that, for any (unknown) input x, the garbled circuit Ĉ together with the n keys
Wx = (W x1

1 , . . . ,W xn
n ) reveal C(x) but give no additional information about
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x. Yao’s celebrated result shows that such a transformation can be based on
the existence of any pseudorandom generator [12,41], or equivalently a one-way
function [20].

The GC construction was originally motivated by the problem of secure mul-
tiparty computation [41,19]. Along the years, the GC construction has found a
diverse range of other applications to problems such as computing on encrypted
data, parallel cryptography, verifiable computation, software protection, func-
tional encryption, and key-dependent message security (see [5] for references).
Despite its theoretical importance, GC was typically considered to be impractical
due to a large computational and communication overhead which is proportional
to the circuit size. This belief was recently challenged by a fruitful line of works
that optimizes the concrete efficiency of GC-based protocols up to a level that
suits large-scale practical applications [36,33,30,29,38,37,21,22,40,23,28].

Among other things, all current implementations of GCs (e.g., [38,21,32,40,22])
employ the so-called free-XOR optimization of Kolesnikov and Schneider [27].
While in Yao’s original construction every gate of the circuit C has a computa-
tional cost of few cryptographic operations (e.g., three or four applications of a
symmetric primitive) and a communication cost of few ciphertexts, Kolesnikov
and Schneider showed how to completely eliminate the communication and com-
putational overhead of XOR-gates. Although this leads “only” to an efficiency
improvement by a constant factor, the effect on the practical performance turns
to be significant, especially for large or medium size circuits as demonstrated
in [27,26,38].

As in many cases, this efficiency gain has a cost in terms of the underlying
cryptographic assumptions. Unlike Yao’s GC which can be based on the existence
of standard symmetric-key cryptography, the free-XOR optimization relies on a
hash function H which is modeled as a random oracle [9]. Due to the known
limitations of the random oracle model [15], it is natural to ask:

Is it possible to realize the free-XOR optimization in the standard model?

This question was raised in the original work of Kolesnikov and Schneider [27]
and was further studied in [3,16]. In [27] it was conjectured that the full power
of the random oracle is not really needed, and that the function H can be
instantiated with a correlation-robust hash function [24], a strong (yet seemingly
realizable) version of a hash function which remains pseudorandom even when
it is applied to linearly related inputs. Choi et al. [16] showed that the picture is
actually more complex: correlation robustness alone does not suffice for security
(as demonstrated by an explicit counter-example in the random-oracle model).
Instead, one has to employ a stronger form of hash function which, in addition
to being correlation-robust, also satisfies some form of circular security [14,10].
While the existence of circular correlation-robust hash functions (a new primitive
introduced by Choi et al. [16]) seems to be a reasonable assumption (significantly
weaker than the existence of a random oracle), it is still unknown how to realize
it based on a standard cryptographic assumption. This leaves open the problem
of implementing the free-XOR approach in the standard model.
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1.1 Our Contribution

We resolve the above feasibility question by showing that the free-XOR ap-
proach can be realized in the standard model under the learning parity with
noise (LPN) assumption [18,11]. This assumption, which can also be formulated
as the intractability of decoding a random linear code, is widely studied by the
coding and learning communities and was extensively employed in cryptographic
constructions during the last two decades.

Specifically, we make the following contributions:

1. We introduce a new combined form of Related Key (RK) and Key Dependent
Message (KDM) attacks. Roughly speaking, in such an attack the adversary
is allowed to see ciphertexts of the form Encφ(K)(ψ(K)) where K is the
secret key and the functions φ and ψ are chosen by the adversary from
some predefined function families. This notion of security, referred to as
RK-KDM security, generalizes the previous definitions of semantic security
under related key attacks [3] and key-dependent message attacks [14,10]. In
fact, as shown in Section 5, the RK-KDM security is strictly stronger than
both RK-security and KDM-security.

2. We prove that the free-XOR construction is secure when instantiated with
a semantically-secure symmetric encryption scheme whose security is pre-
served under linear RK-KDM attacks. (Essentially, φ(K) = K ⊕ Δ1 and
ψ(K) = K ⊕Δ2 for any fixed shift vectors Δ1 and Δ2.)

3. We show that the LPN-based symmetric encryption of [17] and its gener-
alization [2] satisfies RK-KDM security with respect to linear functions. In
fact, our proof provides a general template for proving RK-KDM security
based on pseudorandomness and joint key/message homomorphism. This is
similar to previous results along these lines [13,2,6,3].

Altogether our proofs turn to be quite simple (which we consider as a virtue),
short and modular. This is due to the following choices:

Encryption vs. Hashing. The key point in which we deviate from [27,16] is the
use of (randomized) symmetric encryption, as opposed to deterministic hash
function (or some other pseudorandom primitive). Indeed, the GC construction
essentially employs the hash function only as a “computational one-time pad”,
namely, as a mean to achieve secrecy. Therefore, in terms of functionality it
seems best (i.e., more general) to abstract the underlying primitive as an en-
cryption scheme. While this is true in general for the standard GC (cf. [30,4]
and the recent discussion in [7]), this distinction becomes even more important
in the context of the free-XOR variant. In this case, the underlying primitive
should satisfy stronger notions of security (RKA and KDM), and this turns to
be much easier for randomized encryption than for pseudorandom objects such
as hash functions. (See also [3].) As a secondary gain, the new security definition
that arises for symmetric encryption (RKA-KDM semantic security) is natural
and compatible with existing well-studied notions. In contrast, the analog defini-
tion of RKA-KDM security for hash functions (circular correlation-robustness)
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appears less natural as there is no obvious interpretation for the concepts of
message and key.

GC as Randomized Encoding. It is important to distinguish between the garbled
circuit transformation (i.e., the mapping from C to Ĉ) and the secure function
evaluation protocol which is based on it. The distinction between the two, which
is sometimes blurred, can be formulated via the notion of randomized encoding
of functions [25] as done in [4]. Our proofs follow this abstraction, and show that
the free-XOR technique yields computationally private randomized encoding. At
this point one can invoke, for example, the general theorem of [4] to derive a
secure MPC protocol. Similarly, all other applications (cf. [1]) of randomized
encoding can be obtained directly by invoking the reduction from RE to the
desired task. This is the first modular treatment of the free XOR variant.

1.2 Discussion

The main goal of this work is to provide a solid theoretical justification for the
free-XOR heuristic. This is part of an ongoing effort of the theory community
to explain the security of “real world” protocols. Several such examples arise
when trying to import random-oracle based protocols to the standard model. In
this context, [15] suggested a two-step methodology: (1) “identify useful special-
purpose properties of the random oracle” and (2) show that these properties
“can be also provided by a fully specified function (or function ensemble)”. In
the context of the free-XOR optimization, the first step was essentially taken
by [16] who identified the extra need of “circular security”, while the current
paper completes the second step which involves, in addition, some fine-tuning of
step 1.

It should be emphasized that we do not suggest to replace the hash function
with an LPN-based scheme in practical implementations (though we do not rule
out such a possibility either). Still, we believe that the results of this work are
useful even if one decides, due to efficiency considerations, to use a heuristic
implementation. Specifically, viewing the primitive as an RKA-KDM secure en-
cryption scheme allows to rely on other heuristic solutions such as block ciphers,
for which RKA and KDM security are well studied.

Other Related Works. The notions of key-dependent message security (aka circu-
lar security) and related-key attacks were introduced by [14,10] and [8]. Both no-
tions were extensively studied (separately) during the last decade. Most relevant
to this paper is our joint work with Harnik and Ishai [3]. This work introduces
the notion of semantic security under related-key attacks, describes several con-
structions, and shows that protocols employing correlation-robust hash functions
and their relatives (e.g., [35,24]), can be securely instantiated with RKA-secure
encryption schemes. In addition, [3] suggested to apply a similar modification to
the free-XOR variant, which was believed to be secure when instantiated with
correlation-robust hash functions [27]. As mentioned, the latter claim was found
to be inaccurate, and therefore the results of [3] cannot be used in the context of
the free-XOR approach. (The other applications mentioned in [3] remain valid.)
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Organization. Following some preliminaries (Section 2), in Section 3 we define
semantic security under RK-KDM attacks and describe an LPN-based imple-
mentation. Section 4 is devoted to the garbled circuit construction, including
definitions (in terms of randomized encoding), a description of Yao’s original
construction and the free-XOR variant, and a proof of security that reduces the
privacy of the free-XOR GC to the RK-KDM security of the underlying encryp-
tion. In Section 5, we describe an encryption scheme which is KDM secure and
RKA secure but not RK-KDM secure, separating the latter notion from the
formers. Finally, we end with a short conclusion in Section 6.

2 Preliminaries

We let ◦ denote string concatenation. Strings are often treated as vectors or ma-
trices over the binary field F2, accordingly string addition is interpreted simply
as bit-wise exclusive-or. When adding together two matrices An×k and BN×k
where n < N we assume that the last N −n missing rows of A are padded with
zeroes. The same convention holds with respect to vectors (i.e., when k = 1).

2.1 Randomized Functions

We extensively use the abstraction of randomized functions which can be seen
as a special case of Maurer’s Random Systems [34]. A randomized function is a
two argument function f : X × R → Y whose first input x is referred to as the
deterministic input and the second input is referred to as the random input. For
every deterministic input x, we think of f(x) as the random variable induced by

sampling r
R← R and computing f(x; r) ∈ Y . When a (randomized) algorithm A

gets an oracle access to a randomized function f , we assume that A has control
only on the deterministic input; namely, if A queries f with x, it gets as a result
a fresh sample from f(x). Note that Af itself defines a randomized function. We
say that {fs}s∈{0,1}∗ is a collection of randomized functions if fs is a randomized
function for every key s. By default, all the collections are efficiently computable
in the sense that fs(x) can be sampled in time poly(|s|+ |x|).

Indistinguishability. A pair of randomized functions f, g is equivalent f ≡ g if
for every input x the random variables f(x) and g(x) are identically distributed.
A pair f = {fs} and g = {gs} of collections of randomized functions is compu-

tationally indistinguishable, denoted by f
c≡ g, if for every efficient adversary A

it holds that∣∣∣∣∣ Pr
s

R←{0,1}k
[Afs(1k) = 1]− Pr

s
R←{0,1}k

[Ags(1k) = 1]

∣∣∣∣∣ < neg(k).

We extend the above definition to the case of collections f = {f1κ} and g = {g1κ}
which contain a single randomized function for every input length κ. In this
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case, we augment f (resp., g) by letting fs = f1|s| (resp., gs = g1|s|) and use the
previous definition.1

Let {fs} , {gs} and {hs} be collections of randomized functions. We will need
the following standard facts (cf. [34]).

Fact 1. If for every k ∈ N, Pr
s

R←{0,1}k
[fs ≡ gs] > 1 − ε(k) for some negligible

function ε, then {fs}
c≡ {gs}.

Fact 2. If {fs}
c≡ {gs} and A is an efficient function then

{
Afs
}
s

c≡ {Ags}s.

Fact 3. If {fs}
c≡ {gs} and {gs}

c≡ {hs} then {fs}
c≡ {hs}.

3 RK-KDM Security

A pair of efficient probabilistic algorithms (Enc,Dec) is a symmetric encryption
scheme over the message-space {0, 1}∗ and key-space {0, 1}k (where k serves as
the security parameter) if for every message M ∈ {0, 1}∗

Pr
s

R←{0,1}k
[Decs(Encs(M)) = M ] = 1.

We also assume (WLOG) length-regularity, i.e., that messages of equal length
M,M ′ are always encrypted by ciphertexts of equal length |Encs(M)| =
|Encs(M ′)|.

Our security definitions are parameterized by a family of key-derivation and
key-dependent-message functions (which are also indexed by the security param-
eter k)

ΦRKA =
{
φ : {0, 1}k → {0, 1}k

}
, ΨKDM =

{
ψ : {0, 1}k → {0, 1}∗

}
.

These families determine the legal relations between the related-keys, and the
key-related messages. RK-KDM Security is defined via the following pair of
real/fake oracles Reals and Fakes which are indexed by a key s ∈ {0, 1}k. For
a query (φ ∈ ΦRKA, ψ ∈ ΨKDM), the oracle Reals returns a sample from the
distribution Encφ(s)(ψ(s)), whereas, the oracle Fakes returns a sample from the

distribution Encφ(s)(0
|ψ(s)|).

Definition 1 (RK-KDM-secure encryption). A symmetric encryption
scheme (Enc,Dec) is semantically-secure under Related-Key and Key-Dependent
Message Attacks (in short, RK-KDM-secure) with respect to ΦRKA, ΨKDM if Reals
c≡ Fakes where s

R← {0, 1}k.

1 More generally, one can define computational indistinguishability with respect to
a pair of key sampling algorithm KeyGenf (1

κ) and KeyGeng(1
κ) which induce, for

every security parameter κ, a probability distribution over the ensembles f and g.
However, for this paper the simpler definition suffices.
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Remarks:

– Relation to previous definitions. We note that the above definition gen-
eralizes semantic security under related-key attacks [3] and semantic secu-
rity under key-dependent message attacks [10]. Indeed, the former notion
is obtained by restricting ΨKDM to contain only constant functions, and the
latter is obtained by letting ΦRKA contain only the identity function. If both
restrictions are applied simultaneously, the definition becomes identical to
standard semantic security under Chosen-Plaintext Attacks. On the other
hand, as we show in Section 5, a scheme may satisfy both RKA security and
KDM security without achieving the combined form of RKA-KDM security.

– Non-Adaptivity. Definition 1 allows the adversary to choose its queries in a
fully adaptive way. One may define a seemingly weaker non-adaptive variant
in which the adversary has to specify all its queries at the beginning of the
game. We note that this weaker variant suffices for the free-XOR application.

– LIN RK-KDM security. We will be interested in linear functions over F2.
Namely, both ΦRKA and ΨKDM contain functions of the form s �→ s + Δ for
every Δ ∈ Fk

2 . To be compatible with standard semantic security, we require
that ΨKDM also contains all fixed functions. Using a compact notation, we
can describe each function in ΨKDM by a message M and a bit σ and let
gM,σ : s �→ (M +(σ · s)). If the length of M is larger than k, we assume that
(σ · s) is padded with zeroes at the end. Hence, the adversary may ask for
an encryption of the shifted key concatenated with some fixed message. We
refer to this notion as LIN RK-KDM security.2

3.1 LPN-Based Construction

The learning parity with noise problem is parameterized by positive integers k,
t, and noise parameter 0 < ε < 1

2 . The input to the problem is a random matrix

A
R← Ft×k

2 and a vector y = As + e ∈ Ft
2 where s

R← Fk
2 and e

R← Bertε is an
“error” vector of t independent Bernoulli random variable which take the value
1 with probability ε. The goal is to recover the secret vector s. This can be
considered to be a “decoding game” where A generates a random linear code
and the goal is to recover a random information word s given a noisy codeword
y. For polynomially bounded integer function t = t(k) and a parameter ε, we say
that the problem LPNt,ε is hard, if there is no efficient adversary that can solve
it with more than negligible success probability. We say that LPNε is hard if
LPNt,ε is hard for every polynomial t(·). We describe the symmetric encryption
scheme of [2] which is a variant of the scheme of [17].

2 A seemingly weaker definition of LIN RK-KDM security restricts the KDM family
to functions gM,σ : s �→ (M + (σ · s)). If M is longer than k where M and s are of
the same length. We note that a scheme that satisfies this notion can be trivially
converted into a scheme that satisfies our definition (which supports M longer than
s). This can be done by partitioning the long message M into t blocks M1, . . . ,Mt

of length k each, and concatenating the encryptions of these two blocks. A query of
the form (f ∈ ΦRKA, gM,σ) can then be emulated by a linear query (f ∈ ΦRKA, gM1,1)
and t− 1 fixed-message query (f ∈ ΦRKA, gMi,0).
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Parameters. Let 
 = 
(k) be a message-length parameter which is set to be an
arbitrary polynomial in the security parameter k. (Shorter messages are padded
with zeroes.) Let ε < 1

2 and 0 < δ < 1
2 be constants. We will use a family of

linear binary error-correcting codes with information words of length 
(k) and
block length t = t(n), that has an efficient decoding algorithmD that can correct
up to (ε + δ) · t errors. We let G = G� be the t × 
 binary generator matrix of
this family and we assume that it can be efficiently constructed (given 1k).

Construction 4 (LPN-construction). Let N = N(k) be an arbitrary polyno-
mial (which controls the tradeoff between the key-length and the time complexity
of the scheme). The private key of the scheme is a matrix S which is chosen
uniformly at random from Fk×N

2 .

– Encryption: To encrypt a message M ∈ F�×N
2 , choose a random A

R← Ft×k
2

and a random noise matrix E
R← Bert×Nε . Output the ciphertext

(A,A · S + E +G ·M).

– Decryption: Given a ciphertext (A,Z) apply the decoding algorithm D to
each of the columns of the matrix Z −AS and output the result.

Observe that the decryption algorithm errs only when there exists a column in
E whose Hamming weight is larger than (ε + δ)m, which, by Chernoff Bound,
happens with negligible probability. (This error can be eliminated by rejecting
noise vectors whose relative Hamming weight exceeds (ε+δ).) The scheme is also
highly efficient. Encryption requires only cheap matrix operations and decryption
requires in addition to decode the code G. It is shown in [2] that for proper choice
of parameters both encryption and decryption can be done in quasilinear time
in the message length (for sufficiently long message).

Construction 4 was proven to be semantically secure based on the intractabil-
ity of the LPNε problem [2]. Security against KDM and RKA attacks with respect
to linear functions was further proven in [2] and [3]. We now generalize these
results and show that the scheme is LIN RK-KDM secure.

Theorem 5. Assuming that LPNε is hard, the above construction is LIN RK-
KDM secure.

3.2 Proof of Theorem 5

Through this section we keep the convention that S ∈ Fk×N
2 is a key, Δ ∈ Fk×N

2

is a key-shift vector, M ∈ F�×N
2 is a message, b ∈ {0, 1} is a bit, and the pair

(A,Z) ∈ Ft×k
2 × Ft×N

2 is a potential ciphertext. In addition, we let Enc denote
the LPN encryption defined in Construction 4.

Recall that our goal is to prove that for a random key S
R← Fk×N

2 the ran-
domized functions

RealS : (Δ,M, b) �→ EncS+Δ(M + bS)

FakeS : (Δ,M, b) �→ EncS+Δ(0�×N),

are indistinguishable. This will be proven via a sequence of hybrids.
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LetRS be a randomized function which ignores the key S and the given input,

and outputs a fresh uniformly chosen matrices A
R← Ft×k

2 and Z
R← Ft×N

2 . (If
RS is applied to the same input more than once it responds with independent
answers.)

The following lemma (which is implicit in [2]) shows that the LPN encryption
scheme is not only semantically secure but also pseudorandom in the following
sense:

Lemma 1. Assuming that LPNε is hard, {EncS}
c≡ {RS}, where S

R← Fk×N
2 .

We will need the following key observation:

Lemma 2. There exists an efficient oracle machine F (·) : (Δ,M, b) �→ (A,Z)
such that

RealS ≡ F EncS and FRS ≡ RS ,

for every S ∈ Fk×N
2 .

Proof. We define F as follows: Given a query (Δ,M, b) the machine F calls
the oracle with input M , gets back the answer (A′, Z ′), and outputs the pair
A = A′ + GH and Z = Z ′ + AΔ where G is the generating matrix used in
Construction 4 and H ∈ F�×k

2 is the matrix
( b·Ik×k

0�−k×k

)
.

Fix a key S and a query (Δ,M, b), we will show that F EncS (Δ,M, b) is
distributed identically to RealS(Δ,M, b). Let (A′, Z ′) be a fresh sample from
EncS(M). Clearly, A = A′+GH is uniform in Ft×k

2 since A′ is uniform. In addi-

tion, since Z ′ = A′ · S +E +G ·M where E
R← Bert×Nε , and since A′ = A+GH

we can write Z as

(A+GH) · S + E +G ·M +AΔ = A · (S +Δ) + E +G · (M +HS)

= A · (S +Δ) + E +G · (M + bS),

where the first equality is due to linearity, and the second equality follows from
the definition ofH . It follows that (A,Z) is a fresh sample from EncS+Δ(M+bS).

To prove that FRS ≡ RS , it suffices to show that for any fixed query (Δ,M, b)
the transformation from (A′, Z ′) to (A,Z) is an affine invertible mapping. This
follows immediately from the definition of F . �

We conclude that for S
R← Fk×N

2 ,

RealS ≡ F EncS c≡ FRS ≡ RS . (1)

Indeed, the first and third transitions are due to Lemma 2, and the second
transition is due to Lemma 1 and Fact 2.

To complete the argument we need two additional definitions. First we define
an oracle machine which given an oracle O and an input (Δ,M, b) outputs a
sample from FO(Δ, 0�×N , 0); namely, it replaces M, b with zeroes and proceeds
as FO. By abuse of notation, we refer to this oracle as F (·, 0�×N , 0). Similarly,
we let RealS(·, 0�×N , 0) denote the randomized function which maps (Δ,M, b)
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to RealS(Δ, 0�×N , 0). Note that the latter is just an equivalent formulation of
FakeS . Moreover, we can write:

RS ≡ F (·, 0�×N , 0)RS
c≡ F (·, 0�×N , 0)EncS(0�×N )

≡ RealS(·, 0�×N , 0) ≡ FakeS , (2)

where the first and third transitions are due to Lemma 2, and the second tran-
sition is due to Lemma 1 and Fact 2. By combining Eq. 1 and Eq. 2 with Fact 3
we get that RealS

c≡ FakeS , and Theorem 5 follows. �

Remark 1 (Abstraction). The proof of Theorem 5 provides a general template
for proving RKA-KDM security. Specifically, the properties needed are pseudo-
randomness (in the sense of Lemma 1) and key/message homomorphism (in the
sense of Lemma 2). Indeed, observe that, apart from the proofs of Lemmas 1
and 2, the overall proof can be written in a fully generic form with no specific
references to the LPN construction.

4 Yao’s Garbled Circuit

4.1 Definition

Let f = {fn}n∈N be a polynomial-time computable function. In an abstract

level, Yao’s garbled circuit technique [42] constructs a randomized function f̂ =

{f̂n}n∈N which “encodes” f in the sense that for every x the distribution f̂(x)
reveals the value of f(x) but no other additional information. We formalize this
via the notion of computationally private randomized encoding from [4], while
adopting the original definition from a non-uniform adversarial setting to the
uniform setting (i.e., adversaries are modeled by probabilistic polynomial-time
Turing machines).

Definition 2 (Computational randomized encoding). Let f={fn : {0, 1}n
→ {0, 1}�(n)}n∈N be an efficiently computable function and let f̂ = {f̂n : {0, 1}n×
{0, 1}m(n) → {0, 1}s(n)}n∈N be an efficiently computable randomized function.

We say that f̂ is a computational randomized encoding of f (or encoding for
short), if there exist an efficient recovery algorithm Rec and an efficient proba-
bilistic simulator algorithm Sim that satisfy the following:

– Perfect correctness. For any n and any input x ∈ {0, 1}n,

Pr[Rec(1n, f̂n(x)) �= fn(x)] = 0.

– Computational privacy. The randomized function f̂n(·) is computation-
ally indistinguishable from the randomized function Sim(1n, fn(·)).

Remark 2. The above definition uses n both as an input length parameter and as
a cryptographic “security parameter” quantifying computational privacy. When
describing our construction, it will be convenient to use a separate parameter
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k for the latter, where computational privacy will be guaranteed as long as
k ≥ nε for some constant ε > 0. Furthermore, while it is convenient to define
randomized encoding for a single function f , Yao’s construction (as well as the
free-XOR variant) actually provides a compiler that given a circuit C outputs

the encoding f̂ , the recovery algorithm Rec and the simulator Sim, represented
as circuits. (See [5] for formal definition.) In this sense the encoding is fully
constructive.

4.2 Yao’s Construction and the Free XOR Variant

Let f = {fn : {0, 1}n → {0, 1}�(n)}n∈N be a polynomial-time computable func-
tion computed by the uniform circuit family {Cn}n∈N. In the following we de-
scribe Yao’s construction and its free-XOR variant. Our notation and terminol-
ogy borrow from previous presentations of Yao’s construction in [39,36,31,4].

Double-keyed Encryption. Let k = k(n) be a security parameter (by default,
k = nε for some constant ε > 0). We will employ a symmetric encryption
scheme (E2, D2) which is keyed by a pair of k-bit keys K1,K2. Intuitively, this
corresponds to a double-locked chest in the sense that decryption is possible only
if one knows both keys. There are several ways to implement such an encryption
scheme based on standard single-key symmetric encryption (Enc,Dec) and, for
simplicity, we choose to use

E2
K1,K2

(M) := (EncK1(R),EncK2(R +M)),

D2
K1,K2(C1, C2) := DecK1(C1) + DecK2(C2) (3)

where R is a random string of length |M |. Other choices are also applicable
under the LPN assumption.

The Original Construction. For each wire i of the circuit Cn we assign a pair of
keys: a 0-key W 0

i ∈ {0, 1}k that represents the value 0 and a 1-key W 1
i ∈ {0, 1}k

that represents the value 1. For each of these pairs we randomly “color” one

key black and the other key white. This is done by choosing ri
R← {0, 1} and by

letting ri + b be the color of W b
i . Fix some input x for fn, and let bi = bi(x) be

the value of the i-th wire induced by x. We refer to the key W bi
i as the active

key of the i-th wire.
The idea is to let the encoding f̂n(x; (W, r)) reveal only the value of the active

keys W bi
i and their colors ci. This is done by traversing the circuit from inputs

to outputs: first the encoding reveals the active keys of the inputs; in addition,
for each gate, the encoding provides a mechanism that translates the active keys
of the input wires into the active keys of the output wires. Specifically, for each
Binary gate g(·, ·) (e.g., AND) the encoding outputs an encryption tables (or
“gate labels”) in which the keys of the outgoing wire W 0

� ,W
1
� are encrypted

under the keys of the incoming wires i, j. Hence, one can propagate the values
of W bi

i from the inputs to the outputs. It is crucial to observe that the values
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of the active keys W bi
i and their colors ci reveal nothing on their semantics bi.

Only for the output wires, we reveal the coloring ri, which makes it possible to
recover the value of the i-th output wire bi.

Free XOR-gates. The “free-XOR” optimization modifies the above construction
by making sure that the key W 0

� and coloring r� of a wire which outgoes a XOR
gate is just the sum of the keys and coloring of the incoming wires i and j,
namely,

W 0
� = W 0

i +W 0
j , r� = ri + rj .

In addition, all key pairs W 0
� ,W

1
� have a fixed global (secret) difference s =

W 0
� + W 1

� . As a result, for every pair of values (α, β) ∈ {0, 1}2 for the input
wires of a XOR gate, we have that

Wα+β
� = Wα

i +W β
j .

Hence, one can derive the colored active key (W
b�(x)
� , r� + b�(x)) of the output

wire by XOR-ing the colored active keys (W
bi(x)
i , ri+ bi(x)), (W

bj(x)
j , rj + bj(x))

of the input wires, and so gate labels are not needed. XOR gates have, therefore,
no effect on the communication complexity of the encoding, and only a minor
effect on the computational complexity. A formal description of the encoding is
given in Figure 1.

Our main result shows that, assuming LIN RK-KDM security, the free XOR
variant gives rise to a valid computational encoding:

Theorem 6 (Main). If the underlying symmetric encryption scheme (Enc,Dec)

is LIN RK-KDM secure, then the randomized function f̂ , as defined in Figure 1,
is a randomized encoding of the function f .

The proof of the theorem is deferred to Section 4.3 (correctness) and 4.4 (pri-
vacy).

4.3 Correctness

The following lemma shows that the encoding is correct.

Lemma 3 (Correctness). There exists an efficient recovery algorithm Rec
such that for every x ∈ {0, 1}n it holds that

Pr[Rec(1n, f̂n(x; (r,W ))) �= fn(x)] = 0.

Proof. Let α = f̂n(x; (r,W )) for some x ∈ {0, 1}n and (r,W ) ∈ {0, 1}μ(n). It
suffices to show that, given α, it is possible to recover the active key W bi

i of
every wire i together with its color ci = (bi(x) + ri). Indeed, once these values
are known we can easily recover all the outputs of fn(x): For every output wire
j, we recover bj by XOR-ing cj with the mask rj which is given explicitly as
part of α.
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The Encoding f̂n

Input: x ∈ {0, 1}n.
Randomness: Choose a random global shift vector s

R← {0, 1}k.
For a wire � that is not an output of a XOR gate let

r�
R← {0, 1}, W 0

�
R← {0, 1}k, W 1

� := W 0
� + s.

For a wire � that is an output of a XOR gate with inputs i, j let

r� := ri + rj , W 0
� := W 0

i +W 0
j , W 1

� := W 0
i + s.

Outputs: The encoding consists of the following outputs:

1. For an input wire i, labeled by a literal χ (either some variable xu or its

negation) output W
χ(x)
i ◦ (χ(x) + ri). If i is an output wire i, output the

mask of this wire ri.
2. For a non-XOR gate t that computes some binary function g : {0, 1}2 → {0, 1}

with input wires i, j and output wirea y. We associate with this gate 4 ordered
outputs (“gate labels”). For every (ai, aj) ∈ {0, 1}2 we output:

Q
ai,aj
t := E2

W
ai+ri
i ,W

aj+rj
j

(
W

g(ai+ri,aj+rj)
y ◦ (g(ai + ri, aj + rj) + ry)

)
,

(4)

where ◦ denotes concatenation, and E2 is a double-encryption algorithm
whose randomness is omitted for simplicity.

a If the fan-out is larger than 1, all outgoing wires are treated as a single wire,
i.e., with the same key and the same color.

Fig. 1. The encoding f̂n(x; (W,r, s)) of the function fn(x). We assume that wires and
gates of the circuit that computes fn are numbered according to some topological
order. The double-encryption algorithm E2

K1,K2
(M) is defined based on a standard

encryption (Enc,Dec) as in Eq. 3.
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The active keys and their colors are computed by scanning the circuit from
bottom to top as follows. For an input wire i the desired value, W bi

i ◦ ci, is given
as part of α. Next, consider a wire y that goes out of a gate t, and assume that
we have already computed the desired values of the input wires i and j of this
gate. If t is a XOR gate then we let

W by
y = W bi+bj

y = W bi
i +W

bj
i , and cy = (bi+bj)+ry = (bi+bj)+(ri+rj) = ci+cj .

It t is not a XOR gate then we use the colors ci, cj of the active keys of the
input wires to select the active label Q

ci,cj
t of the gate t (and ignore the other 3

inactive labels of this gate). Consider this label as in Equation (4); recall that
this cipher was “double-encrypted” under the key W ci−ri

i = W bi
i and the key

W
cj−rj
j = W

bj
j . Since we have already computed the values ci, cj,W

bi
i and W

bj
j ,

we can decrypt the label Q
ci,cj
t (by applying the decryption algorithm D2) and

recover the value

W g(bi,bj)
y ◦ (g(bi, bj) + ry) = W by

y ◦ (cy),

where g is the function that gate t, which satisfies, by definition, the equality
by = g(bi, bj). �

4.4 Privacy

Computational privacy is slightly more subtle. The free-XOR optimization cor-
relates the key pairs via the global shift s. This introduces two form of depen-
dencies: (1) The four ciphertexts of every gate are encrypted under related keys ;
and (2) The keys (of the incoming wires) which are used to encrypt the gate-
labels are correlated with the content of the labels (i.e., the keys of the outgoing
wires). We show that if the underlying encryption (Enc,Dec) is RKA and KDM
secure with respect to linear functions, then the encoding is indeed private.

Lemma 4 (Privacy). There exists an efficient simulator Sim such that

f̂n(·)
c≡ Sim(1n, fn(·)).

To prove the lemma we define an oracle-aided algorithm HO(x) such that (1)
when the oracle O is the real RK-KDM oracle (with respect to linear queries)

the distribution of HO(x) is identical to the distribution f̂n(x), and (2) when the
oracle O is the fake RK-KDM oracle, the distribution HO(x) can be efficiently
sampled based on the output fn(x), and therefore can be used as a simula-
tor Sim(1n, fn(x)). The indistinguishability of the two oracles implies that the
simulator’s output is computationally indistinguishable from the encoding’s dis-
tribution f̂n(x).

The Algorithm H(·)(x). Let k = k(n), x ∈ {0, 1}n be the input. We assume that

H is given an oracle access to a randomized function Os where s
R← {0, 1}k will
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play the role of the secret global shifts. We will assume that Os has the same
interface as Reals and Fakes, namely, given a pair of linear functions (φ, ψ) the
oracle outputs a ciphertext of (Enc,Dec). For every wire 
 we define the following
values:

1. If 
 is not an output of a XOR gate, choose a random active key W b�
�

R←
{0, 1}k and a random color bit c�

R← {0, 1}.
2. If the wire 
 is an output of a XOR gate, letW b�

� := W bi
i +W

bj
j and c� = ci+cj

where i and j are the incoming wires.
3. If 
 is an input wire output W b�

� ◦ c�; if it is an output wire output r� =
c� − b�(x) (recall that x is known).

4. The inactive keyW b�+1
� is unknown, but it can be written as a linear function

of the master-key s, i.e., φ� : s �→ s+W b�
� .

For every (non-XOR) gate t with input wires i, j and output wire y we do the
following:

5. Output the active label

Q
ci,cj
t := E2

W
bi
i ,W

bj
j

(W by
y ◦ cy) (5)

6. Compute the inactive labels as follows. For every (α, β) �= (0, 0) choose

Rα,β
R← {0, 1}k+1 and define the linear function ψα,β which maps s to the

value(
(W by

y + s · g(bi +α, bj + β) + by) ◦ (g(ci +α+ ri, cj + β+ rj) + ry)
)
+Rα,β ,

where g is the function that the gate computes, and bi = bi(x), ri = bi + ci,
bj = bj(x), rj = bj + cj and by = by(x), ry = by + cy. Now, output

Q
ci+1,cj
t :=

(
O(φi, ψ1,0),Enc

W
bj
j

(R1,0)
)

Q
ci+1,cj+1
t :=

(
O(φi, ψ1,1),O(φj , R1,1)

)
(6)

Q
ci,cj+1
t :=

(
Enc

W
bi
i

(R0,1),O(φj , ψ0,1)
)
,

where in the second equation, we let the string R1,1 represent the constant
function s �→ R1,1.

Claim 7. The randomized functions f̂n and HReals for s
R← {0, 1}k are identi-

cally distributed.

Proof. We prove a stronger claim: for every x ∈ {0, 1}n even if the encoding
and the hybrid HReals(x) output their internal coins (including the ones used
by the oracle Reals), the two experiments are identically distributed. First, it is
not hard to verify that the values s,W 0

� , r� and W 1
� = W 0

� + s are identically
distributed in both experiments. When these values are fixed, the active labels
are also identically distributed. Finally, by substituting φi, ψα,β in Eq. 6 it follows

that the inactive labels are also distributed exactly as in f̂(x). �
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Let us move to the case where the oracle O is instantiated with the oracle Fakes
for s

R← {0, 1}k. By the RK-KDM security of the scheme (Enc,Dec) and Fact 2,
we get that

Claim 8. The randomized functions
{
HReals

}
s
and

{
HFakes

}
s
are computation-

ally indistinguishable.

Finally, we define the simulator which is just an equivalent description of
HFakes(x):

The Simulator Sim. Given z = fn(x), for some x ∈ {0, 1}n, the simulator mimics
the first three steps ofH which can be computed based on the value of the output
wires fn(x) (without knowing x itself). However, instead of virtually setting

inactive keys in the forth step, the simulator chooses a random shift vector s
R←

{0, 1}k and sets W 1+b�
� = W b�

� +s for every wire 
. Then, the simulator computes
the active labels exactly as in Eq. 5. Note that all these computations can be
done without knowing x (or bi(x)). To compute the inactive labels the simulator

mimics the distribution of HFakes(x): It chooses R1,0, R1,1, R0,1
R← {0, 1}k+1 and

computes

Q
ci+1,cj
t :=

(
Enc

W
bi+1

i

(0k+1),Enc
W

bj
j

(R1,0)
)

Q
ci+1,cj+1
t :=

(
Enc

W
bi+1

i

(0k+1),Enc
W

bj+1

j

(0k+1)
)

(7)

Q
ci,cj+1
t :=

(
Enc

W
bi
i

(R0,1),EncW bj+1

j

(0k+1)
)
.

Indeed, all these ciphertexts can be computed directly since the inactive keys
(and the global shift s) are known.

Claim 9. The randomized functions Sim(fn(·)) and HFakes(·) for s
R← {0, 1}k

are identically distributed.

Proof. Again, a stronger claim holds: for every x ∈ {0, 1}n even if the simulator
and the algorithm HFakes(·)(x) output their internal coins, the two experiments
are identically distributed. First, it is not hard to verify that the values s,W 0

� , r�
and W 1

� = W 0
� + s are identically distributed in both experiments. When these

values are fixed, the active labels are also identically distributed. Finally, the
inactive labels as defined by the simulator (Eq. 7) are computed exactly as they
are computed by HFakes(·)(x) (i.e., as defined in Eq. 6 when the oracle Fakes(·)
is being used). �

The proof of Lemma 4 follows from Claims 7–9 and Facts 1 and 3.

5 Separating RK-KDM from RKA and KDM

Recall that LIN RKA security corresponds to RK-KDM security with ΦRKA taken
to be the class of linear functions (over the binary field) and ΨKDM contains
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the identity function. Similarly, LIN KDM security corresponds to RK-KDM
security with ΨKDM taken to be the class of all linear (and fixed) functions, and
ΦRKA contains the identity function.

We describe a symmetric encryption scheme (Enc,Dec) which is semantically
security under linear related-key attacks and semantically-secure under linear
key-dependent message attacks but does not achieve linear RK-KDM security.
In fact, one can fully recover the secret key via a combined LIN RK-KDM attack.
Our counter-example will be based on a pair of symmetric encryption schemes
(RE,RD) and (KE,KD) as follows.

RKA-security+KDM-insecurity. We define the scheme (RE,RD) identically to
the LPN construction (Construction 4) except that if the prefix of a plaintext M
is equal to the key S, then the corresponding ciphertext will be M itself (unen-
crypted). It is not hard to prove that (RE,RD) is secure under linear related-key
attacks, but is completely insecure at the presence of linear key-dependent mes-
sage attacks. (See full version for a proof.)

KDM-security+RKA-insecurity. To define the scheme (KE,KD), we modify
the LPN construction (PE,PD) as follows. The key S ∈ {0, 1}κ is augmented
with an index i ∈ {1, . . . , κ}. A plaintext M will be encrypted by the triple
(PES(M), i, Si). In the full version we show that the scheme is LIN KDM se-
cure. In fact, it will be useful to prove KDM security with respect to a slightly
richer family of “extended linear functions” which contains functions of the form
ψM,T : S →M + TS for every M ∈ F�

2 and matrix T ∈ F�×κ
2 .3

On the other hand, one can fully recover the key S via an RKA by shifting
the index i through all possible indices in {1, . . . , κ}. Note that this attack is
oblivious to the messages encrypted; In particular, all the attacker needs is the
ability to obtain, for any choice of Δ, a ciphertext KE(S,i)+Δ(M) where the
message M may be arbitrary and possibly unknown (e.g., chosen by the oracle).

Counter Example. Our counter-example is defined via the following double-
encryption:

EncS1,S2(M) := KES2(RES1(M)), DecS1,S2(C) := RDS1(KDS2(C)).

In the full version we will prove the following claim:

Claim 10. Under the LPN assumption, the scheme (Enc,Dec) satisfies the
followings:

1. Security under linear related-key attacks.
2. Security under linear key-dependent message attacks.
3. The secret key can be fully recovered via a LIN RK-KDM attack.

3 It is shown in [2] that the (non-modified) LPN encryption (PE,PD) satisfies this ex-
tended form of KDM security. To handle the single-bit leakage, we rely on additional
“leakage resilience” properties of LPN. See full version.
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The first and third items follow standard arguments. The proof of the second item
is based on the observation that, when the key S1 and the internal randomness
of RE are fixed, the encryption RES1(S1, S2) can be written as an (extended)
linear function of S2. Details are deferred to the full version.

6 Conclusion

We defined a new combined form of RKA-KDM security, proved that such an
encryption scheme can be realized based on the LPN assumption, and showed
that the free-XOR approach can be securely instantiated with it. Altogether, our
results enable a realization of the free-XOR optimization in the standard model
under a well-studied cryptographic assumption.

The new definition of RKA-KDM security further motivates the study of
security under related-key and key-dependent attacks. Specifically, in light of
our counter-example, it is is natural to ask whether LIN RKA-KDM security
can be constructed based on some combination of an RKA-secure scheme and
a KDM-secure scheme, or better yet, based on more general assumptions (e.g.,
CPA-secure encryption scheme). It will also be interesting to find additional
applications of RKA/KDM secure primitives.

References

1. Applebaum, B.: Randomly Encoding Functions: A New Cryptographic Paradigm
(Invited Talk). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 25–31. Springer,
Heidelberg (2011)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

3. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: ICS, pp. 45–60 (2011)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomiz-
ing polynomials and their applications. Computional Complexity 15(2), 115–162
(2006); Preliminary version in Proc. 20th CCC (2005)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
FOCS, pp. 120–129 (2011)

6. Bellare, M., Cash, D.: Pseudorandom Functions and Permutations Provably Secure
against Related-Key Attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010)

7. Bellare, M., Hoang, V.T., Rogaway, P.: Garbling schemes. Cryptology ePrint
Archive, Report 2012/265 (2012), http://eprint.iacr.org/

8. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: First ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, Fairfax (1993)

http://eprint.iacr.org/


180 B. Applebaum

10. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

11. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic Primitives Based on
Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994),
citeseer.nj.nec.com/blum94cryptographic.html

12. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13, 850–864 (1984); preliminary version
in Proc. 23rd FOCS (1982)

13. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryp-
tion from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

14. Camenisch, J.L., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

15. Canetti, Goldreich, Halevi: The random oracle methodology, revisited. JACM:
Journal of the ACM 51 (2004)

16. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the Security of the “Free-
XOR” Technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012)

17. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to Encrypt with the LPN Problem.
In: Aceto, L., Damg̊ard, I.B., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690.
Springer, Heidelberg (2008)

18. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom genera-
tors. SIAM J. Comput. 22(6), 1163–1175 (1993); preliminary version in Proc. 29th
FOCS (1988)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play ANYmental game. In: STOC,
pp. 218–229 (1987)

20. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
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Abstract. The Fiat-Shamir heuristic [CRYPTO ’86] is used to con-
vert any 3-message public-coin proof or argument system into a non-
interactive argument, by hashing the prover’s first message to select the
verifier’s challenge. It is known that this heuristic is sound when the hash
function is modeled as a random oracle. On the other hand, the surpris-
ing result of Goldwasser and Kalai [FOCS ’03] shows that there exists a
computationally sound argument on which the Fiat-Shamir heuristic is
never sound, when instantiated with any actual efficient hash function.

This leaves us with the following interesting possibility: perhaps we
can securely instantiates the Fiat-Shamir heuristic for all 3-message
public-coin statistically sound proofs, even if we must fail for some com-
putationally sound arguments. Indeed, this has been conjectured to be
the case by Barak, Lindell and Vadhan [FOCS ’03], but we do not have
any provably secure instantiation under any “standard assumption”. In
this work, we give a broad black-box separation result showing that the
security of the Fiat-Shamir heuristic for statistically sound proofs can-
not be proved under virtually any standard assumption via a black-box
reduction. More precisely:
– If we want to have a “universal” instantiation of the Fiat-Shamir

heuristic that works for all 3-message public-coin proofs, then we
cannot prove its security via a black-box reduction from any as-
sumption that has the format of a “cryptographic game”.

– For many concrete proof systems, if we want to have a “specific”
instantiation of the Fiat-Shamir heuristic for that proof system, then
we cannot prove its security via a black box reduction from any
“falsifiable assumption” that has the format of a cryptographic game
with an efficient challenger.
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1 Introduction

The Fiat-Shamir (FS) heuristic [FS86] allows us to convert an interactive public-
coin protocol between a prover P and a verifier V into a one-message (non-
interactive) protocol. Recall that, in a public-coin protocol, the verifier sends a
uniformly random challenge to the prover in each round. Under the FS heuristic,
the prover executes the original interactive protocol “in his head”, computing
the verifier’s challenge in each round by applying some public hash function
to the transcript of the protocol so far. The prover then only sends the final
protocol transcript to the actual verifier, who verifies its validity. The hash
function can be initialized with some randomly chosen public seed, which we
think of as a “common random string (CRS)”, and therefore the compiled pro-
tocol is non-interactive in the CRS model. Alternatively, the seed can also be
chosen by the verifier in an additional initial message, in which case the com-
piled protocol consists of two messages. This heuristic has numerous remarkable
applications in cryptography, such as constructing practical signature schemes
[Sch91, GQ90, Oka93], non-interactive zero knowledge (NIZK) [BR93], and non-
interactive succinct arguments [Mic00].

Soundness of FS. Although the FS heuristic seems to produce secure crypto-
graphic schemes in practice, its formal security properties remain elusive. Per-
haps the most basic question is to understand the soundness of the heuristic
when applied to a statistically sound proof or computationally sound argument
for some NP language. We say that an instance of the FS-heuristic is sound
if the resulting non-interactive protocol is a computationally sound argument,
for the same language. We can ask what kind of protocols do we need to start
with, and what kind of hash functions should we use, to make the FS-heuristic
sound. Since we are interested in a negative result, we restrict our attention to
3-message public-coin (3PC) protocols.

Applying FS to Arguments. On the positive side, if the FS heuristic uses a
random oracle as its hash function, then it is known to be sound when applied
to any 3PC argument [BR93, PS00, AABN02]. On the other hand, the work of
Goldwasser and Kalai [GK03] shows a surprising negative result: the FS heuristic
cannot be securely instantiated with any actual efficient hash function that would
achieve the same result. In particular, there exists some 3PC argument on which
the FS heuristic is never sound, no matter which efficient hash function we try
to instantiate it with.

Applying FS to Proofs. The above negative result only applies to compu-
tationally sound arguments, and therefore we are still left with the following
interesting possibility: perhaps the FS heuristic could be instantiated with some
hash function that makes it sound for all 3PC statistically sound proofs, even if
it can fail for some arguments. We call such a hash function FS-universal. When
instantiated with an FS-universal hash function, the FS heuristic should suc-
cessfully compile any 3PC proof into a non-interactive (computationally sound)
argument.
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Barak, Lindell, and Vadhan [BLV03] conjecture that such FS-universal hash
functions should indeed exist, and define a plausible hash-function property
called entropy-preservation, which they show to be sufficient. Variants of this
entropy-preservation property were further studied by Dodis, Ristenpart and
Vadhan [DRV12], who also showed that it is necessary. Nevertheless, despite the
amazing possibility that such hash functions may exist, we do not have any can-
didate construction that is provably secure under some “standard” cryptographic
hardness assumption.

Less ambitiously, we may hope to securely instantiate the Fiat-Shamir heuris-
tic for many specific 3PC proof and argument systems. In particular, for some
candidate 3PC proof or argument Π , we can hope to have a FS(Π)-secure hash
function that preserves soundness when applying the FS heuristic specifically
to the protocol Π . We do not know how to construct such FS(Π)-secure hash
functions for essentially any “interesting” proof or argument system Π .

1.1 Our Results

In this work, we re-examine the possibility of having FS-universal hash func-
tions, or FS(Π)-secure hash functions for specific proof systems Π . We prove
broad black-box separation results showing that the security of such hash func-
tions cannot be proved under virtually any standard assumption via a black-box
reduction that treats the attacker as a black box. More specifically, we provide
two main results:

FS-Universal Hash Functions. We show that one cannot prove the secu-
rity of an FS-universal hash function via a black-box reduction from any
“cryptographic game assumption” (see below). We leverage the connection
of [BLV03, DRV12] between FS-universal and entropy preserving hash func-
tions. Specifically, we first provide a separation for entropy preserving hash
functions, and then use it to get a similar separation for FS-universal hash
functions.

FS(Π)-Secure Hash Functions. For many specific proof and argument sys-
temsΠ , we show that one cannot prove the FS(Π)-security of a hash function
via a black-box reduction from any “falsifiable assumption” (see below). In
particular, we first prove a black-box impossibility result for two-round zero
knowledge w.r.t. super-poynomial simulation, extending the result of Goldre-
ich and Oren [GO94]. Then, by relying on this result, we obtain a black-box
impossibility result for any proof/argument systemΠ for a sub-exponentially
hard language L if Π is also honest-verifier zero-knowledge (HVZK) against
sub-exponential size distinguishers and has “short” challenges. The above
includes many natural Σ-protocols.
As an additional application of our result on two-round zero knowledge,
we show a black-box impossibility result for proving soundness of Micali’s
CS-proofs [Mic94] based on any falsifiable assumption. We note that unlike
[GW11], this result also holds for non-adaptive cheating proves, who choose
the instance before seeing the verifier’s message.



Why “Fiat-Shamir for Proofs” Lacks a Proof 185

We wish to emphasize that these results do not refute the highly believable
conjecture that the FS heuristic can be securely instantiated for all proofs and
many natural arguments. However, it shows that we will need to rely on new
“non-standard” assumptions or develop new “non-black box” proof techniques
if we ever hope to prove this conjecture.

Assumptions. To capture all “standard assumptions”, we consider general
classes of assumptions defined in terms of the syntactic format that the assump-
tion takes. A “cryptographic game assumption” has the format of an interactive
game between a (possibly inefficient) challenger who interacts in a black-box
manner with some candidate attacker. The assumption states that every effi-
cient attacker has at most negligible probability in winning this game. This
notion is due to [DOP05, HH09]. A “falsifiable assumption” [Nao03] is a crypto-
graphic game assumption where the challenger is also efficient. Note that these
notions capture essentially all of the concrete assumptions we use in cryptogra-
phy, such as the hardness of factoring, the RSA problem, the discrete logarithm
problem, the computational/decissional Diffie-Hellman problem (CDH/DDH),
learning with errors (LWE), etc. We stress that these notions are defined as lib-
erally as possible so as to include essentially everything that could be considered
a “standard assumption”, and to make our negative result as strong as possible.
Of course, it may also capture many non-standard (and false) assumptions, as
well as trivially true and uninteresting assumptions.

FS-Universality. The assumption that a hash function is FS-universal does not
have the format of a cryptographic game, since the assumption quantifies over all
proof systems. In particular, an attack against “FS-universality” consists of two
components: a 3PC proof system Π = (P, V ) for some language L and a breaker
A that breaks the soundness of the Fiat-Shamir transform applied to Π . The
challenger cannot test that Π is a 3PC proof system by interacting with P, V in a
black-box manner. When we talk about black-box reductions for FS-universality,
we naturally restrict the challenger to interact with P, V,A as a black box. In
other words, the reduction is black-box in the code of the attacker, as well as
the proof system Π .

FS(Π)-Security. For a particular proof systemΠ for a language L, the assump-
tion that a hash function is FS(Π)-secure is a cryptographic game assumption:
the attacker wins if he can come up with a false statement x and an accepting
proof π under the non-interactive argument that we get by applying the FS
heuristic to Π . However, it does not have the format of a falsifiable assump-
tion since the challenger cannot efficiently test whether x is false statement, and
therefore, whether the attacker breaks soundness.

2 Preliminaries and Definitions

Let n denote the security parameter. We say that a function f(n) = 1/nω(1)

negligible in the security parameter, and denote it by negl(n). We consider the
class of efficient schemes to be ones that can be implemented by a probabilistic
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polynomial-time Turing machine, denoted by PPT. In contrast, we consider the
class of efficient adversaries A = {An} to be non-uniform families of polynomial-
size circuits, denoted by polysize.

We start by describing the Fiat-Shamir heuristic for public-coin interactive
proofs. Recall that an interactive proof system [GMR89] for a language L with
corresponding relation R is a tuple of efficient algorithms Π = (P ,V), where
P and V denote the prover and the verifier algorithms respectively. We assume
familiarity of the reader with the standard notions of completeness and soundness
for an interactive proof system, and skip formal defnitions.

The Fiat-Shamir Heuristic. Throughout the paper, we will mainly focus on
the special case of applying the FS heuristic to a 3-message public-coin (3PC)
interactive proof system Π = 〈P, V 〉 for an NP relation R.1 Denote the first
message of the prover by α, the verifier’s challenge by β, and the final message
of the prover by γ. Also, let π = (α, β, γ) denote the transcript of the execution.

For security parameter n, let m(n) and k(n) denote the lengths of α and β,
respectively. Let H = {hs : {0, 1}m(n) → {0, 1}k(n)}n∈N,s∈{0,1}�(n) be a family
of hash functions mapping m bits to k bits. The Fiat-Shamir collapse (or FS-
collapse in short) of protocol Π = 〈P, V 〉 using H is a two-message protocol
ΠFS = 〈PFS, VFS〉 defined as follows:

– In the first message, the FS verifier VFS(1
n, x) selects a random seed s ←

{0, 1}�(n) for the hash function. (We can also skip this step by thinking of s
as a common reference string).

– In the second message, the FS prover PFS(1
n, x, w) runs P (1n, x, w) to derive

its first message α. It then computes the challenge β := hs(α) by hashing α,
and passes β to P to get its third message γ. Finally, PFS outputs the tuple
(α, β, γ).

– The FS verifier VFS(1
n, x) accepts the proof if β = hs(α) and the original

verifier V (1n, x) accepts the protocol (α, β, γ) when executed with random-
coins β.

We say that the FS-collapse is sound if the resulting protocol ΠFS is a
computationally-sound argument system as specified below.

Definition 1 (Fiat-Shamir soundness). We say that ΠFS is computationally
sound if, for any polysize prover P ∗ = {P ∗n} and x /∈ L(R)

Pr
s

$←{0,1}�(n)

⎡⎣V (1n, x, π) = 1

∣∣∣∣∣∣
π ← P ∗n(x, s)
π = (α, β, γ)
hs(α) = β

⎤⎦ ≤ negl(n) .

We call the above probability the advantage of P ∗ in breaking computational
soundness.

1 Indeed, this is the most common but also minimal case for which Fiat-Shamir is
expected to work, and therefore restricting ourselves to this case gives us the strongest
negative result.
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Cryptographic Games and Falsifiable Assumptions.Cryptographic games
present a general framework for defining cryptographic assumptions and security
properties. A game is given by a protocol specified via a challenger who interacts
with an arbitrary attacker – security mandates that no efficient attacker should
be able to win the game with better than negligible probability.

Definition 2 (Cryptographic game [HH09]). A cryptographic game G =
(Γ, c) is defined by a (possibly inefficient) random system Γ , called the chal-
lenger, and a constant c ∈ [0, 1). On security parameter n, the challenger Γ (1n)
interacts with some attacker An and outputs a bit b. We denote the output of
this interaction by b = (An � Γ (1n)). The advantage of an attacker An in the
game G is defined as

AdvAG (n)
def
= Pr[ (An � Γ (1n)) = 1 ]− c .

A cryptographic game G is secure if for all polysize attackers A = {An}, the
advantage AdvAG (n) is negligible. The game is T (n)-secure if for all attackers

running in time poly(T (n)) the advantage AdvAG (n) is negl(T (n)) = T (n)−ω(1).

When c = 0, the above definition of cryptographic games captures search prob-
lems such as factoring, the discrete logarithm problem, signature security etc.
When c = 1

2 , it captures decisional problems such as DDH, encryption security
etc. Note that cryptographic games may be highly interactive and may not even
have any a-priori bound on the number of rounds of interaction between A and
Γ . The work of [GW11] defined a more restricted notion of cryptographic games
called “falsifiable assumptions” (following [Nao03]) where the challenger is also
required to be efficient.

Definition 3 (Falsifiable Assumption). We say that a cryptographic game
G = (Γ, c) is a falsifiable assumption if the challenger Γ (1n) runs in time poly(n).

3 Black-Box Impossibility of Entropy-Preserving Hashing
and Fiat-Shamir Universality

In this section, we show a black-box separation between hash function that are
Fiat-Shamir-universal and general cryptographic games. As explained in the
introduction, an FS-universal hash function family guarantees the soundness of
the Fiat-Shamir heuristic for any 3PC system with appropriate message and
challenge length.

Definition 4 ((m, k)-FS-universal hash function). We say that a hash-
function family H = {hs : {0, 1}m(n) → {0, 1}k(n)}s∈{0,1}�(n) is (m(n), k(n))-
FS-universal if for every 3PC (statistically sound) proof system 〈P, V 〉 with first
and second messages of respective lengths m = m(n) and k = k(n), the FS-
collapse ΠFS is a (computationally sound) argument.
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As the main step towards this separation, we show a black-box separation be-
tween the notion of entropy-preserving hash-functions introduced by Barak et
al. [BLV03] and general cryptographic games. We then leverage the connec-
tion between entropy-preserving hashing and FS-universal hashing as shown in
[BLV03, DRV12] to prove a similar seperation for the latter.

3.1 Black-Box Impossibility for Entropy-Preserving Hashing

Barak et al. [BLV03] formulated a relatively simple entropy preservation property
for hash functions, and showed that it is sufficient for FS-universality. Recall that
the (Shannon) entropy of a random variable x isH(x)=E

x
$←x

[− log(Pr [x = x])].

For jointly distributed random variables (x,y), the conditional entropy of x given
y is defined by

H (x | y) = E
y

$←y

[H (x | y = y)] ,

where x|y=y is a random variable distributed according to x conditioned on
y = y.

Definition 5 (Definition 9.2 in [BLV03]). We say that a hash function fam-
ily H = {hs : {0, 1}m(n) → {0, 1}k(n)}s∈{0,1}�(n) preserves u(n)-entropy, if for any
polysize A, and all large enough values of the security parameter n ∈ N we have

H (hs(x) | x) > u(n) ,

where s,x are correlated random variables defined by choosing s uniformly at
random over {0, 1}�(n), and setting x to be the first m(n) bits of the output
of A(1n, s). We say that the hash function (just plain) preserves entropy if it
preserves u(n)-entropy for u(n) = 0.

The work of [BLV03] shows that any hash function family that preserves u(n) =
k(n) − O(log n) entropy is (m, k)-FS-universal. An alternative take on the no-
tion of “entropy preserving” hash functions and a detailed exploration of the
parameters is given by Dodis, Ristenpart, and Vadhan [DRV12]. The same work
also shows an implication in the reverse direction: any (m, k)-FS-universal hash
function family must also preserve entropy. We will thus focus on showing a
black-box separation for entropy-preserving hash functions, and then adapt the
[DRV12] result to our setting.

Black-Box Reductions. We now define the notion of a black-box reduction
from entropy-preserving hashing to a cryptographic game.

Definition 6 (BB Reduction for Entropy Preserving Hash). Let G =
(Γ, c) be a cryptographic game and let H be a hash function family with input
length m(n) and output length k(n), for some polynomials m, k. A black-box
reduction showing that H is entropy-preserving from the security of the game G
is an oracle-access PPT machine B(·) for which there exists some polynomial p
such that the following holds. Let A = {An} be any (possibly inefficient) attacker
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such that H (hs(x) | x) = 0, where the random variable s,x are defined the same

way as in Definition 5, i.e., s
$← {0, 1}�(n), and x← An(s). Then, the advantage

of BAn(1n) in the game G is at least 1/p(n).

Remark 1 (Reductions from T (n)-security assumptions). We can also consider a
variant, where the black-box reduction is from the T (n)-security of the crypto-
graphic game G. In this case, we allow the reduction B(·) to run in time poly(T (n))
and only insist that its advantage is ≥ 1/p(T (n)).

For simplicity, we insist that the reduction itself has some noticeable advantage
1/p(n) rather than the standard requirement that its advantage is simply non-
negligible. Furthermore, we also insist that the reduction is security-parameter
preserving meaning that when it is called with security parameter 1n it only
accesses the oracle An on the same security parameter n. The above two re-
quirements come with some loss of generality, but they hold for all of the natural
reductions in cryptography.

BB Separation via Simulatable Attack. We now outline a general strategy
for proving black-box separations via a technique called a simulatable attack.
This strategy has been used in several prior works [BV98, Cor02, Bro05, PV05,
GBL08] [DOP05, HH09, GW11, Pas11, Seu12, DHT12, Wic12]. The main idea
of this paradigm is to construct a special inefficient attacker A that breaks the
security of the target primitive (in our case, the entropy-preserving security of
H), but for which there is an efficient simulator Sim such that no distinguisher
can tell the difference between “black-box” interaction with Sim and A. This
means that any efficient black-box reduction which can win some cryptographic
game, given oracle access to the inefficient attacker A, can also win the cryp-
tographic game, given oracle access to the efficient simulator Sim. Hence, if we
have a black-box reduction showing the entropy-preserving security of H under
some cryptographic-game assumption, it implies that the reduction, together
with the efficient simulator Sim, give us an efficient stand-alone attack against
the assumption, and so it cannot be secure to begin with!

Aspects of this technique were recently formalized in [Wic12], and we will rely
on the notation and the results from that work. However, for concreteness, we
only restrict ourselves to describing this strategy for the specific case of entropy
preserving hash functions.

Definition 7 (Simulatable Attack for Entropy-Preserving Hashing).
Let H be some hash function family with input length m(n) and output length
k(n). A ε(n)-simulatable attack on the entropy-preserving security of H con-
sists of: (1) an ensemble of (possibly inefficient) stateless non-uniform attackers
{An,f}n∈N,f∈Fn where {Fn} is some ensemble of finite sets, and (2) a stateful
PPT simulator Sim. We require that the following two properties hold:

– For each n ∈ N, f ∈ Fn, the (inefficient) attacker An,f successfully breaks
the entropy-preserving security of H.
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– For every (possibly inefficient) oracle access machine M(·), making at most
q = q(n) queries to its oracle:∣∣∣∣∣ Pr

f
$←Fn,M

[MAn,r (1n) = 1] − Pr
(M,Sim)

[MSim(1n)(1n) = 1]

∣∣∣∣∣ ≤ poly(q(n)) · ε(n).

namely, oracle access to An,f for a random f
$← Fn is indistinguishable from

that to Sim.

We omit the ε(n) and just say “simulatable attack” as shorthand for an ε(n)-
simulatable attack with some negligible ε(n) = negl(n).

As discussed in the introduction, the existence of a simulatable attack against
some scheme H ensures that one cannot prove the security of H using black-
box reduction from cryptographic game assumption, unless the assumption is
false. This is because a reduction must be able to use the simulatable attacker
A against H to break the underlying assumption, but then this means that
the reduction and the simulator together would give us an efficient stand-alone
attack against the assumption to begin with. A general version of this theorem
was given in [Wic12] and therefore we get the following as a special case.

Theorem 1 (Special case of [Wic12]). If there exists a simulatable attack
against the entropy preserving security of H, and there is a black-box reduction
showing the entropy preserving security of H from the security of some crypto-
graphic game G, then G is not secure.

Furthermore, for any T (n), if there exists an ε(n) = T (n)−ω(1)-simulatable
attack against H and there is a black-box reduction from the T (n)-security of G,
then G is not T (n)-secure.

Constructing a Simulatable Attack. We now show that, for any family of
hash functions H, there is a simulatable attack against its entropy preserving
security.

Theorem 2. Let H = {hs : {0, 1}m(n) → {0, 1}k(n)}n∈N,s∈{0,1}�(n) be any fam-

ily of hash functions. Then there is a 2−Ω(m−k)-simulatable attack against the
entropy preserving security of H.

Proof outline. Let Fn be the set of functions f : {0, 1}m(n) → {0, 1}k(n), and
let F∗n ⊆ Fn be a subset consisting of all the functions f such that for every
s ∈ {0, 1}�(n), there is some x ∈ {0, 1}m on which hs(x) = f(x). We will define
a family of inefficient attackers {Breakf}, indexed by functions f ∈ F∗n, that
break the entropy preserving security of H. Before we do so, we first note that a
simple counting argument shows that F∗n is non-empty, and in fact forms a very
dense subset of Fn.

Claim. F∗n is dense in Fn with
|F∗

n|
|Fn| = (1− 2−Ω(2m−k))-fraction of Fn.
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Breakf : f ∈ F∗
n

Given input s ∈ {0, 1}�(n), output a random x from the set of all values satisfying
hs(x) = f(x).
(By the definition of F∗

n, at least one such x always exists.)

Fig. 1.

Constructing an attack. Now, we are ready to define a family of inefficient
attackers {Breakf}, indexed by functions f ∈ F∗n, that break the entropy pre-
serving security of H as follows:

The attack is successful. For any fixed f ∈ F∗n, it is easy to see that the
attacker Breakf breaks the entropy preserving security of H. This is because,
conditioned on seeing any output x ← Breakf (s), we can completely determine
the value hs(x) without knowing the seed s, via the relation hs(x) = f(x).
Therefore, defining the random variables s to be uniform over {0, 1}�(n) and
x← Breakf (s), we have H(hs(x) | x) = 0 as desired.

The simulator for the attack. The more interesting part of the proof is showing
that for random f ← F∗n, the attacker Breakf can be simulated very efficiently,
with a small statistical error. Our (stateful) simulator is incredibly simple and, on
each invocation, just outputs a fresh random value (which wasn’t output previ-
ously). It is easy to see that the simulator satisfies the efficiency requirements

Sim(1n)

Initialize the set X := ∅.
On input s ∈ {0, 1}�(n): Sample x ← {0, 1}m \X, add x to the set X, and output
x.

Fig. 2.

of the definition of a simulatable attack.
Indistinguishability of simulator. The next step is to show that a random

attacker from the class {Breakf} and the above simulator are statistically indis-
tinguishable. In particular, for any (computationally unbounded) q-query distin-
guisher M,∣∣∣∣∣ Pr

f
$←F∗

n

[
MBreakf (1n) = 1

]
− Pr

Sim

[
MSim(1n)(1n) = 1

]∣∣∣∣∣ ≤ q2 · 2−Ω(m−k) .

Theorem 1 and Theorem 2 allow us to conclude the following.

Corollary 1. Let G = (Γ, c) be a cryptographic game assumption and let H
be an (m, k)-hash function family for some polynomials m = m(n), k = k(n)
such that m(n)−k(n) = ω(log(n)). If there is a black-box reduction showing that
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H is entropy-preserving from the security of the game G, then G is not secure.
Furthermore, if m(n) − k(n) = ω(log(T (n)) and there is a black-box reduction
showing that H is entropy preserving from the T (n)-security of G, then G is not
T (n)-secure.

3.2 Black-Box Impossibility of Fiat-Shamir Universality

As we have already mentioned, the work of Dodis, Ristenpart and Vadhan
[DRV12], shows that any FS-universal hash function family H must also be
entropy-preserving. Intuitively, this should imply that our negative result for
entropy-preserving hashing from the previous section should yield a similar neg-
ative result for FS-universal hashing. Indeed, we do show a theorem along these
lines. However, formalizing the above intuition requires some care. For example,
it becomes important that our notion of black-box reductions for FS-universal
hashing treats the 3PC proof-system as a black box. Intuitively, this is because
the result of [DRV12] uses the attackerA against the entropy-preserving security
of a hash family H to construct a 3PC proof system ΠA = 〈PA, V A〉 as well as
to attacker DA that breaks the soundness of the FS-collapse of ΠA. Therefore,
any black-box reduction that shows the FS-universality of H under some game
assumption by treating the proof system ΠA = 〈PA, V A〉 and the attacker DA
as a black box, can also be used as a reduction showing the entropy-preserving
security of H under the same assumption by treating the attacker A as a black
box. Further details can be found in [BGW12].

4 Impossibility of Fiat-Shamir for Specific Proof Systems

In this section, we show that for many well-studied public-coin interactive proofs,
the soundness of the Fiat-Shamir heuristic cannot be proven via a black-box
reduction to any falsifiable assumption. Using similar techniques, we also show a
black-box impossibility result for proving soundness of Micali’s CS-proofs [Mic94]
based on any falsifiable assumption. The main tool underlying both of these
results is a black-box impossibility result for two-round zero-knowledge w.r.t.
super-polynomial simulation.

We note that the connection between zero-knowledge and the (in)security of
Fiat-Shamir heuristic was already made in prior works. In particular, Dwork
et al. [DNRS99] showed that if a public-coin interactive protocol is “weakly”
zero-knowledge (where the ZK property is weakened by changing the order of
quantifiers in the standard ZK definition, but requiring the simulator and dis-
tinguisher to be polynomial time) then the Fiat-Shamir heuristic applied to
this protocol is not sound. We note however, that known public-coin protocols
where the FS-heuristic would typically be applied, are not known to satisfy their
zero-knowledge property. In contrast, (as we discuss below) we only require the
protocol to be honest-verifier zero-knowledge w.r.t. sub-exponential adversaries,
and show that this property is satisfied by many well-known protocols (under
some assumptions).
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The rest of this section is organized as follows. In Section 4.1, we prove a
general theorem on the black-box impossibility of 2-round zero-knowledge argue-
ments. In Section 4.2 we apply this theorem to show that for many well-studied
public-coin interactive proofs, the soundness of the Fiat-Shamir heuristic cannot
be proven via a black-box reduction to any falsifiable assumption. Finally, in
Section 4.3, we extend our techniques to show a black-box impossibility result
for proving soundness of Micali’s CS-proofs [Mic94].

4.1 Black-Box Impossibility for 2-Round Zero Knowledge

In this section, we give a black-box impossibility result for 2-round zero-
knowledge arguments. Our theorem extends the negative result of Goldreich
and Oren [GO94], and can be seen as essentially tight, in view of the positive
result of Pass [Pas03]. We refer the reader to the full version [DJKL12] for a
detailed comparison of our result with [GO94] and [Pas03].

We start with some preliminaries and then describe our result.

Hard Languages and Zero-Knowledge Proofs.We start by formally defin-
ing a hard NP language.

Definition 8 (T -Hard Language). For any T = T (n), an NP language L
is said to be T -hard if there exist two distribution families X = {Xn}n∈N and
X̄ = {X̄n}n∈N, and a PPT sampling algorithm Samp such that:

– For every n ∈ N the support of Xn is in L and the support of X̄n is in L̄.
– The distributions X and X̄ are T (n)-indistinguishable.
– The support of the sampling algorithm Samp consists of elements (x,w) such

that R(x,w) = 1, and its projection to the first coordinate yields the distri-
bution X = {Xn}n∈N.
Note that since Samp is efficient, the distribution family X is efficiently
sampleable. There are no constraints on the size of the instances in Xn or
X̄n, however since X is efficiently sampleable each x ← Xn is of size at most
poly(n).

An NP language is said to be sub-exponentially hard if it is 2n-hard.2

We now define the zero-knowedge property for an interactive proof system
[GMR89].

Definition 9 (T -Zero Knowledge). For any T = T (n), we say that an in-
teractive proof system Π = (P ,V) for an NP language L is (auxiliary-input) T -
zero-knowledge if for every poly-size circuit V∗ there exists a simulator SV∗(1n)
of size poly(T (n)) such that for every n ∈ N, every instance x ∈ L of length

2 Note that it should be hard for a poly(2n)-time distinguisher to distinguish between
elements in Xn and elements in X̄n, where these elements can be much longer than n,
and can be of length nε for any constant ε > 0 (thus, capturing the sub-exponential
hardness).
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at most poly(n) with a corresponding witness w, and every auxiliary input z ∈
{0, 1}poly(n), it holds that for every non-uniform distinguisher D = {Dn} of size
poly(T (n))∣∣Pr[D ((P(w),V∗(z))(1n, x)) = 1]− Pr[D (SV∗(1n, x, z)) = 1]

∣∣ ≤ negl(T (n)),

where (P(w),V∗(z))(1n, x) denotes the view of the verifier V∗ after interacting
with the honest prover on input security parameter n, statement x ∈ L, auxil-
iary input z, and SV∗(1n, x, z) denotes the output of the simulator SV∗ on input
(1n, x, z).

We now state our main technical theorem:

Theorem 3. For any T (n) and any T -hard language L, there does not exist a
2-round argument system Π for L such that:

– Π is (auxiliary-input) T -zero-knowledge, and
– the soundness of Π can be proven via a black-box reduction to a T -hard

falsifiable assumption,

unless the assumption is false.

Theorem 3, which we believe to be of independent interest, is also the starting
point for our impossibility results for the Fiat-Shamir paradigm (see Section 4.2)
and for CS proofs (see Section 4.3).

Proof Idea. Consider a 2-round argument system Π for a T -hard language
L that is (auxiliary-input) T -zero-knowledge. We prove, by contradiction, that
the soundness of Π cannot be proven via a black-box reduction to a T -hard
falsifiable assumption. Let n be a security parameter and suppose that there
exists a poly(T (n))-time black-box reduction R such that given black-box oracle
access to any cheating prover P∗, uses this oracle to break a T (n)-hard falsifiable
assumption. By the definitions of a T (n)-hard falsifiable assumption and a black-
box reduction, we know the reduction R runs in time poly(T (n)).

By naturally extending Goldreich and Oren’s 2-round zero-knowledge impos-
sibility result [GO94], we first prove that the T -zero-knowledge simulator S al-
ways produces an accepting transcript, even when given a statement x ∈ L̄.
Thus, we may view S as a cheating prover. This means that R breaks the as-
sumption when given oracle access to S (and S is given x ∈ L̄). For brevity, we
say that RS(x∈L̄) breaks the assumption. However, we must be careful because
the reduction R may “lie” about the security parameter and run S with secu-
rity parameter κ �= n. We denote by n the security parameter of the underlying
falsifiable assumption, and denote by κ the security parameter that the reduc-
tion uses when calling S (though the reduction R may call S many times with
different security parameters). Note that the bound on the running time of R
means κ ≤ T (n).

Our approach is to show that oracle access to S(x ∈ L̄κ) can be simulated in
time poly(T (n)) regardless of the value of κ. If κ ≤ n then S(x ∈ L̄κ) runs in
time poly(T (κ)) ≤ poly(T (n)) and we are done. However, if κ > n then we show
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that if RS(x∈L̄κ) breaks the assumption then so does RP(x∈Lκ,w), where w is a
valid witness for x ∈ Lκ and P is the honest prover. Since P(x ∈ Lκ, w) runs
in time poly(κ) ≤ poly(T (n)), this means we can simulate S(x ∈ L̄κ) in time
poly(T (n)).

4.2 Black-Box Impossibility for Fiat-Shamir Paradigm

For the sake of simplicity of notation, we present our results for the case of 3-
round public-coin protocols. We note that although our techniques generalize to
constant-round protocols, the case of 3-rounds already covers many interesting
applications of the Fiat-Shamir paradigm.

We start by defining special honest-verifier (auxiliary-input) T -zero-knowledge.
We will later show the black-box impossibility results for protocols which have
this property.

Definition 10. For any T = T (n), we say that a 3-round public-coin proof
(or argument) system Π = (P ,V) for an NP language L is (auxiliary-input)
special honest-verifier T -zero-knowledge if there exists a simulator S(1n) of size
poly(T (n)) such that for every n ∈ N, every instance x ∈ L of length at most
poly(n) with a corresponding witness w, every auxiliary input z ∈ {0, 1}poly(n),
and every random tape β of the verifier it holds that for every non-uniform
distinguisher D = {Dn} of size poly(T (n))∣∣Pr[D ((P(w),V(z, β))(1n, x)) = 1]− Pr[D (S(1n, x, z, β)) = 1]

∣∣ ≤ negl(T (n)),

where (P(w),V(z, β))(1n, x) denotes the view of the honest verifier V after in-
teracting with the honest prover on input security parameter n, statement x ∈ L,
auxiliary input z, and random tape β, and S(1n, x, z, β) denotes the output of
the simulator S on the corresponding inputs.

We note that special honest verifier zero knowledge differs from honest verifier
zero knowledge since the simulator must successfully simulate the view of the
honest verifier for every given random tape β.

We now state the main theorem of this section:

Theorem 4. For any T (n) and any T -hard language L, let Π be a 3-round
public-coin proof (or argument) system for L with 2|β| ≤ T (n) which is special
honest verifier (auxiliary input) T -zero knowledge. Then, the soundness of the
FS-collapse of Π, namely, ΠFS, cannot be proven via a black-box reduction to a
T -hard falsifiable assumption (unless the assumption is false).

Note that many public-coin proof (or argument) systems (such as those discussed
in Section 4.2) consist of 
 parallel repetitions of a basic protocol where the
length of the verifier’s message is a constant number of bits (or may depend
logarithmically on the size of the instance x). To save on communication, it is
desirable to repeat the protocol only 
 = poly log(n) times, since this already
achieves negligible soundness error. For such protocols, Theorem 4 implies that if
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the language L is quasi-polyomially hard, then the Fiat-Shamir transformation
applied to this protocol cannot be proven sound via a black-box reduction to a
falsifiable assumption.

Given Theorem 4, one may hypothesize that the Fiat-Shamir transformation,
when applied to protocols of the type discussed above, can in fact be proven
secure (via a black-box reduction to a falsifiable assumption) when the number
of parallel repetitions is increased to 
 = poly(n). However, we show that this is
not the case; for many protocols of interest, the impossibility result holds even
when the number of repetitions 
, is greater than the hardness of the language.

Corollary 2. Let L be a sub-exponentially hard language and let Π be a 3-round
public-coin proof (or argument) system for L with the following properties:

– The length of the second message, β, is polynomial in the security parameter,
n, and is independent of the length of the instance, x.

– Π is special honest verifier (auxiliary input) 2|β|-zero knowledge.

Then, the soundness of the FS-collapse of Π, namely, ΠFS, cannot be proven via
a black-box reduction to a 2|β|-hard falsifiable assumption (unless the assumption
is false).

Corollary 2 follows from Theorem 4, as follows. Recall that a language is said
to be sub-exponentially hard if it is T -hard for T (n) = 2n (see Definition 8).
Namely, if there exist distributions Xn and X̄n over strings of length poly(n)
that are 2n-indistinguishable, where Xn is a distribution over instances in the
language and X̄n is a distribution over instances outside the language. Note that
the length of these instances can be much larger than n, and can be of length
n1/ε for any constant ε > 0.

We argue that any sub-exponentially hard language is also 2p(n)-hard, for any
polynomial p. This follows by simply taking X ′n = Xp(n) and by taking X̄ ′n =
X̄p(n). Using this observation, Corollary 2 follows immediately from Theorem 4

by choosing T (n) = 2p(n) such that |β| = p(n).

Remark 2. It was first observed by Dwork et al. [DNRS99] that if Π is a 3-
round public-coin proof (or argument) system for L that is T -zero-knowledge for
T = poly(n), then the transformed protocol, ΠFS, cannot be not sound. In con-
trast, we prove our results for protocols Π that have inefficient zero-knowledge
simulators; i.e., simulators that run in T -time, where T is superpolynomial in
n. Note, however, that we only require standard soundness from ΠFS; i.e., we
require that ΠFS is sound against efficient, polynomial-time, adversaries. Thus,
our results do not follow from [DNRS99].

Applications of Theorem 4 and Corollary 2. Typically (or at least tradi-
tionally), the Fiat-Shamir paradigm is applied to 3-round identification schemes,
or more generally to what are called Σ-protocols. All these protocols are special
honest-verifier zero-knowledge (see Definition 10). Therefore, Theorem 4 and
Corollary 2 imply (black-box) negative results for the Fiat-Shamir paradigm
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when applied to any such protocol. In what follows we give two specific exam-
ples, keeping in mind that there are many other natural examples that we do
not mention.

Perfect Zero-Knowledge Protocol for Quadratic Residuosity. Recall the
language LQR of quadratic residues.

LQR = {(N, y) | ∃x ∈ Z∗N s.t. y = x2 mod N}

This language is assumed to be hard w.r.t. distributions Xn and X̄n, defined
as follows. In both distributions, N is sampled by sampling two random n-bit
primes p and q, and setting N = pq; in Xn, the element y is a random quadratic
residue, and in X̄n the element y is a random quadratic non-residue with Jacobi
symbol 1.

Recall the well-known perfect zero-knowledgeΣ-protocol for quadratic residu-
osity with soundness 1/2 [Blu81]. We denote by Π�-QR the perfect special honest-
verifier zero-knowledge protocol consisting of 
 parallel executions of the basic
Σ-protocol. We denote by ΠFS(�-QR) the protocol obtained when applying the
Fiat-Shamir paradigm to Π�-QR. By applying Corollary 2, we obtain the follow-
ing theorem:

Theorem 5. For any 
 = 
(n) = poly(n), if LQR is sub-exponentially hard
then the soundness of ΠFS(�-QR) cannot be proven via a black-box reduction to a
falsifiable assumption (unless the assumption is false).

Blum’s Zero-Knowledge Protocol for NP. Recall the well-knownΣ-protocol
for NP of Blum [Blu87], based on the NP-complete problem of Graph Hamiltonic-
ity, with soundness 1/2. We denote by Π�-Blum the special honest-verifier zero-
knowledge protocol consisting of 
 parallel executions of the basic Σ-protocol.
Note that Π�-Blum is special honest-verifier 2�-zero-knowledge, if the hiding prop-
erty of the commitment scheme holds against 2�-size adversaries.3

We denote by ΠFS(�-Blum) the protocol obtained when applying the Fiat-
Shamir paradigm to Π�-Blum. By applying Corollary 2, we obtain the following
theorem:

Theorem 6. For any 
 = 
(n) = poly(n), if there exist NP languages L which
are sub-exponentially hard, and if ΠFS(�-Blum) is instantiated with a commitment
scheme whose hiding property holds against 2�-size adversaries, then the sound-
ness of ΠFS(�-Blum) cannot be proven via a black-box reduction to a falsifiable
assumption (unless the assumption is false).

As noted above, one can apply Theorem 4 or Corollary 2 to many other Σ proto-
cols (such as the ones based on the DDH assumption or on the N ’th residuosity
assumption), and obtain (black-box) negative results for the soundness of the
resulting protocols obtained by applying the Fiat-Shamir paradigm.

3 Recall that for a protocol to be special honest-verifier 2�-zero knowledge, the simu-
lated view needs to be 2�-indistinguishable from the real view (see Definition 10).
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Proof Intuition for Theorem 4. Theorem 4 follows from the following lemma
and from Theorem 3:

Lemma 1. Let Π be a 3-round public-coin proof or argument system for a T (n)-
hard language L with the following properties:

– The length of the second message, β, satisfies 2|β| ≤ T .
– Π is special honest verifier (auxiliary input) T -zero knowledge.

Then the FS-collapse of Π, namely, ΠFS is (auxiliary-input) T -zero-knowledge.

Proof Idea. In order to show that ΠFS is (auxiliary-input) T -zero knowledge,
we must present a simulator SFS that simulates the view of every poly-sized
circuit V∗. Informally, SFS does the following:

– Begin an emulation of V∗ and continue until V∗ outputs hFS.
– Choose T 2 random values β1, . . . , βT 2

– Invoke S, the special honest verifier T -zero-knowledge simulator for Π , T 2

times on β1, . . . , βT 2 , receiving transcripts (α1, β1, γ1), . . . , (αT 2 , βT 2 , γT 2).
– Return the first transcript (αi, βi, γi), such that hFS(αi) = βi. If no such

transcript exists, return ⊥.

We show that if there is a distinguisher D of size poly(T (n)) that can distinguish
between real and simulated transcripts outputted by SFS, then there is also
a distinguisher D∗ of size poly(T (n)) that distinguishes between sequences of
length T 2 of real and simulated transcripts ouputted by S. This contradicts the
special honest verifier (auxiliary-input) T -zero knowledge of Π .

Intuitively, D∗ will emulate SFS, but will receive transcripts (αi, βi, γi), from
an external challenger which are either sampled from the real distribution or
which are sampled from S. Then, D∗ will run D on the view outputted by the
emulation and will output whatever D outputs.

Now, in the case that (αi, βi, γi), are sampled from the real distribution, SFS

outputs ⊥ with negligible (in T ) probability. This is the case since in the real
distribution, each βi is independent of αi and so the probability that hFS(αi) �= βi

is 1− 1/T . Therefore, the probability that for all 1 ≤ i ≤ T 2, hFS(αi) �= βi, is at

most (1−1/T )T
2

. Thus when (αi, βi, γi), are sampled from the real distribution,
the output of D∗ is statistically close to a real execution of ΠFS.

On the other hand, when (αi, βi, γi) are outputted by S, then the output of
D∗ is identical to the output of SFS. Thus, D, and so also D∗, will distinguish
between the two cases.

4.3 Separating CS Proofs from Falsifiable Assumptions

In this section we show that for sufficiently hard NP languages, there exist
probabilistically checkable proofs (PCPs) such that Micali’s CS proofs [Mic94]
instantiated with such a PCP cannot be proven sound (even when the state-
ment is chosen “non-adaptively”) via a black-box reduction to any falsifiable
assumption.
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Let ΠFS denote Micali’s 2-message CS proof system obtained by applying
the Fiat-Shamir transformation to Kilian’s succinct argument system [Kil92] Π
using hs ← H. For any NP language L and any PCP, Πpcp, for L, Micali proved
that ΠFS is sound in the so called random oracle model, where the FS-hash hs is
modeled as a random oracle. We now prove that for every 2�(n)-hard language L,
there exists an 
-query PCP such that the CS proof ΠFS for language L cannot
be proven sound via a black-box reduction to any falsifiable assumption. More
formally,

Theorem 7. For all 
 = 
(n) and any 2�(n)-hard language L, there exists an

-query PCP Πpcp such that the soundness of CS proof ΠFS instantiated with
Πpcp for language L cannot be proven via a black-box reduction to a 2�(n)-hard
falsifiable assumption (unless the assumption is false).

The following corollary follows easily from Theorem 7.

Corollary 3. For any sub-exponentially hard language L and for any

 = poly(n), there exists an 
-query PCP Πpcp such that the soundness of CS
proof ΠFS instantiated with Πpcp for language L cannot be proven via a black-box
reduction to a 2�(n)-hard falsifiable assumption (unless the assumption is false).

Let L be a 2�(n)-hard language. Our main idea is to show that when Kilian’s suc-
cinct argument Π is instantiated with a specific PCP (with some zero-knowledge
properties), then it is a (special) honest verifier 2�(n)-zero knowledge argument
for L, where the verifier’s second message is of length at most 
. This, when
combined with Theorem 4 immediately yields the proof of Theorem 7. Due to
lack of space, we defer the proof to the full version [DJKL12].
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Abstract. The Fiat-Shamir paradigm was proposed as a way to remove
interaction from 3-round proof of knowledge protocols and derive secure
signature schemes. This generic transformation leads to very efficient
schemes and has thus grown quite popular. However, this transforma-
tion is proven secure only in the random oracle model. In FOCS 2003,
Goldwasser and Kalai showed that this transformation is provably inse-
cure in the standard model by presenting a counterexample of a 3-round
protocol, the Fiat-Shamir transformation of which is (although provably
secure in the random oracle model) insecure in the standard model, thus
showing that the random oracle is uninstantiable. In particular, for every
hash function that is used to replace the random oracle, the resulting sig-
nature scheme is existentially forgeable. This result was shown by relying
on the non-black-box techniques of Barak (FOCS 2001).

An alternative to the Fiat-Shamir paradigm was proposed by Fis-
chlin in Crypto 2005. Fischlin’s transformation can be applied to any
so called 3-round “Fiat-Shamir proof of knowledge’’ and can be used
to derive non-interactive zero-knowledge proofs of knowledge as well as
signature schemes. An attractive property of this transformation is that
it provides online extractability (i.e., the extractor works without hav-
ing to rewind the prover). Fischlin remarks that in comparison to the
Fiat-Shamir transformation, his construction tries to “decouple the hash
function from the protocol flow” and hence, the counterexample in the
work of Goldwaaser and Kalai does not seem to carry over to this setting.

In this work, we show a counterexample to the Fischlin’s transforma-
tion. In particular, we construct a 3-round Fiat-Shamir proof of knowl-
edge (on which Fischlin’s transformation is applicable), and then, present
an adversary against both - the soundness of the resulting non-interactive
zero-knowledge, as well as the unforegeability of the resulting signature
scheme. Our attacks are successful except with negligible probability for
any hash function, that is used to instantiate the random oracle, provided
that there is an apriori (polynomial) bound on the running time of the
hash function. By choosing the right bound, secure instantiation of Fis-
chlin transformation with most practical cryptographic hash functions
can be ruled out.

The techniques used in our work are quite unrelated to the ones used
in the work of Goldwasser and Kalai. Our primary technique is to bind
the protocol flow with the hash function if the code of the hash function
is available. We believe that our ideas are of independent interest and
maybe applicable in other related settings.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 202–221, 2013.
c© International Association for Cryptologic Research 2013



On the (In)security of Fischlin’s Paradigm 203

1 Introduction

The Fiat-Shamir paradigm [FS86] was proposed as a way to remove interaction
from 3-round proof of knowledge protocols and derive secure signature schemes.
It is a generic transformation which leads to quite efficient schemes thus making
it quite popular. The security of this transformation was later analyzed un-
der the ideal assumption that the hash function behaves as a random oracle
[BR93, PS00]. Thus, the resulting non-interactive proofs and signature scheme
are automatically secure in the random oracle model. Several signature schemes
(with the best known ones being [Sch91, GQ88, Oka92]) were constructed follow-
ing the Fiat-Shamir paradigm. It has also been useful in obtaining forward secure
schemes and improving the tightness of security reductions [AABN02, MR02].

Random oracle model can be seen as a methodology to design secure cryp-
tographic systems in two steps: first construct and analyze a scheme assuming
only oracle access to the random function. Then, find a suitable hash function
and instantiate the previous construction with that to get a real world secure
cryptographic system.

For the Fiat-Shamir paradigm, Goldwasser and Kalai [GK03] showed that
unfortunately the second step of the design methodology cannot be carried out.
In particular, they show that the Fiat-Shamir transformation is uninstantiable
in the real world: regardless of the choice of the hash function, the resulting
signature scheme is insecure. To do this, they first gave a construction of a 3-
round identification scheme based on the non-black-box simulation techniques of
Barak [Bar01], and then showed that the resulting signature scheme is universally
forgeable for any hash function.

An alternative to the Fiat-Shamir paradigm was proposed by Fischlin [Fis05].
Fischlin’s transformation can be applied to any so called 3-round “Fiat-Shamir
proof of knowledge” and can be used to derive non-interactive zero-knowledge
proofs of knowledge as well as signature schemes. An attractive property of this
transformation is that it provides online extractability. In other words, just by
observing queries a (possibly malicious) prover makes to the random oracle, an
extractor is guaranteed to be able to output the witness of the statement being
proven (except with negligible probability). This is in contrast to Fiat-Shamir
transformation where an extractor must work by rewinding the prover. This
property is quite useful while using the resulting non-interactive schemes in larger
systems. Fischlin also shows applications of his transformation in constructing
group signature schemes [BBS04].

Even though the purpose of Fischlin’s transformation is quite similar to that
of Fiat-Shamir, the transformation itself is quite different. Fiat-Shamir trans-
formation is applied on a 3 round public coin proof of knowledge protocol and
works as follows. Prover sends a commitment to the verifier, the verifier sends
back a random challenge, and, the prover finally responds to that challenge. In
the transformed non-interactive protocol, the challenge of the verifier is gener-
ated by applying the random oracle to the first message (i.e., the commitment)
of the prover. The non-interactive scheme is secure in the random oracle model
since getting the challenge from the random oracle is similar to getting it from
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the external verifier; both challenges will be unpredictable to a malicious prover
and trying again any polynomial number of times does not help.

Goldwasser and Kalai [GK03] showed insecurity of the Fiat-Shamir paradigm
by relying the breakthrough work of Barak [Bar01]. Indeed it seems (in retro-
spect) that the non-black-box simulation techniques of Barak fits in quite well
to show insecurity of the Fiat-Shamir paradigm:

– In the Fiat-Shamir paradigm, the verifier basically just acts as a hash func-
tion (i.e., the verifier message is computed by simply evaluating the hash
function on the incoming prover message).

– Hence, having oracle access to the hash function is similar to having a black-
box access to the verifier, while, having the code of the hash function directly
translates to having non-black-box access to the verifier.

– Barak’s techniques yield a zero-knowledge protocol which is secure given only
black-box access to the verifier (in other words, a scheme which is resettably-
sound [BGGL01]), but becomes insecure given non-black-box access to the
verifier.

We remark that even though the above idea is the starting point towards showing
insecurity of the Fiat-Shamir paradigm in [GK03], this by itself is not sufficient.
This is because Barak’s techniques do not yield a 3-round protocol. Goldwasser
and Kalai make use of a number of additional tools and ideas; please refer to
[GK03] for more details.

The above high level idea completely breaks down in the context of Fischlin’s
transformation. As Fischlin remarks [Fis05], “in comparison to the Fiat-Shamir
transformation, this construction somewhat decouples the hash function from
the protocol flow”. In other words, the prover and the verifier messages of the
underlying scheme are computed as specified in the underlying scheme; not by
making use of the hash function in any way. The hash function is only used
to make some final checks on the resulting transcript of interaction. Hence, as
observed by Fischlin, the counterexample in [GK03] does not seem to carry over
to this setting [Fis05]. This raises the following natural question.

“Is there a concrete hash function using which Fischlin transformation can be
securely instantiated?”

Our Results. In this work, we give a partial answer to the above question. More
specifically, we prove the following.

“There does not exist any hash function, whose running time is bounded
by an apriori fixed polynomial, using which Fischlin transformation can
be securely instantiated.”

One can interpret the above result in two different ways. Firstly, the bound on
the running time will typically be chosen to be a large polynomial in the security
parameter. By choosing a large bound, we can rule out the instantiation of
Fischlin transformation with widely used hash functions such as SHA-1. Another
interpretation is that, given any hash function, we can construct a (3-round
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Fiat-Shamir proof of knowledge) protocol such the the following holds. When
Fischlin’s transformation is applied on this protocol and instantiated using this
hash function, the resulting signature scheme as well the non-interactive zero-
knowledge scheme is completely insecure.

We note that the above does not invalidate the original security proof of
Fischlin’s transformation in any way (which are provided only in the random
oracle model). No claims regarding the security of the transformation, once the
hash function is instantiated are made in [Fis05]. Fischlin explicitly acknowledges
the possibility of such a result in the introduction of his paper [Fis05].

1.1 Technical Overview

Before we discuss the techniques involved in our work, we briefly sketch Fischlin’s
transformation in the following.

Fischlin’s Transformation. Fischlin [Fis05] proposed an approach to transform
any Fiat-Shamir proof of knowledge (as defined in Section 2) to a non-interactive
zero knowledge proof of knowledge in the random oracle model. The basic idea
of his transformation is given in the following. The transformed prover (of the
non-interactive zero-knowledge scheme) roughly works as follows.

– In the underlying Fiat-Shamir proof of knowledge, the challenge space is
restricted to be of polynomial size (i.e., the challenge string of the verifier
will be of logarithmic length). The protocol begins by executing a super-
constant number of parallel copies of the honest prover of the underlying
Fiat-Shamir proof of knowledge.

– For each parallel execution i, the prover computes the commitment αi (i.e.,
the first message).

– For all possible (polynomially many) challenges βi starting from 0 the prover
performs the following test. It checks whether a fixed number (depending on
the security parameter) of least significant bits of O

(
(α1, . . . , αr), i, βi, γi

)
are all 0. Here γi is the prover’s response to the challenge βi and O denotes
the random oracle. If the test passes, the prover fixes βi to be the challenge
for session i.

– Finally, the transcript (αi, βi, γi) corresponding to every execution i is output
as the proof.

– Verifier accepts the proof only if: (a) the transcript for every execution is
accepted by the verifier of the underlying Fiat-Shamir proof of knowledge,
and, (b) for all executions, the least significant bits of the random oracle
invocation come out to be all 0 (as described above). 1

The above construction retains the completeness property: except with negligible
probability, for each execution, there will be at least one challenge βi for which
the random oracle outputs 0 (in the relevant bits).

1 This is actually the simplified version of the final construction in [Fis05]. Our results
apply to both the variants.
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The construction provides soundness for the following reasons. If the state-
ment is false, for each αi, there is a single challenge βi for which a satisfying
response γi can be given. Consider the vector of first messages chosen by the ad-
versary (α1, . . . , αr). Except with negligible probability, there will exist at least
one i such that O

(
(α1, . . . , αr), i, βi, γi

)
does not have its required bits to be

all 0. Once that happens, the adversary will have to change αi (and hence the
vector (α1, . . . , αr) changes). Thus, adversary has to essentially restart its effort
to produce a false proof (and again it will only be successful with negligible
probability).

Thus, it is crucial to have the entire vector (α1, . . . , αr) as part of the input
to the random oracle. Even if the adversary fails to obtain the required 0’s even
in a single execution, it has to start again from scratch. See section 2 for more
details.

Our Ideas. Recall that the verifier accepts the proof only if: (a) the transcript
for every execution is accepted by the verifier of the underlying Fiat-Shamir
proof of knowledge, and, (b) for all executions, the least significant bits of the
random oracle invocation come out to be all 0. Normally, these two tests will be
“independent and uncorrelated”. This is because no random oracle invocations
are involved in the first test (the underlying Fiat-Shamir proof of knowledge
protocol does not make use of random oracles). However once the code of the
hash function is available, it can be used in the underlying protocol making
the two tests correlated. In fact, in our construction, the two tests will end up
being identical. This would allow an adversarial prover to succeed (using the
description of the hash function). Below we provide a very high level overview
of our main idea.

– Observe that in the final transcript being output, for each session i, adversary
needs to include an accepting response for just a single challenge βi (for
which the random oracle output has 0 in all required positions). What if
somehow magically, adversary exactly has the capability to come up with
an accepting response for just this βi (note that adversary can have the
capability of creating an accepting response just for a single challenge)?

– To achieve the following, we take any Fiat-Shamir proof of knowledge and
then add another “mode of execution” to it. In this mode, the prover doesn’t
need the witness to execute the protocol. However the verifier’s test is such
that for each αi, there is a single βi for which verifier accepts. Hence, the
protocol still maintains the special soundness property. This new protocol
will be the underlying protocol on which Fischlin’s transformation will be
applied.

– Now we sketch the test the verifier performs in this second mode. The prover
will be free to send any hash function to the verifier as part of αi. Using this
hash function, the verifier is instructed to compute the only acceptable βi for
this αi. If that is the challenge he chose, the verifier is instructed to accept
(and reject otherwise).
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– The acceptable βi is the first possible challenge (lexicographically) such that
H
(
(α1, . . . , αi, . . . αr), i, βi, γi

)
has 0 in all the required positions (where H

is the hash function chosen by the prover).
– Now if the hash function H is the same as the random oracle, we have that

the second test (by the verifier of the non-interactive proof) is satisfied for
free. Hence, by running in the second mode, soundness of the non-interactive
scheme can be violated.

There are several problems with this basic idea. To start with, the verifier of the
(interactive) Fiat-Shamir protocol that we constructed is unaware of any other
sessions. Whether or not it accepts should only be decided by the transcript of
this session. However the test H

(
(α1, . . . , αi, . . . αr), i, βi, γi

)
requires the knowl-

edge of the first prover messages in all other sessions (we resolve this problem by
having a construction in which a first prover message for one session can be used
to compute first prover messages for the other sessions). Secondly, note that the
random oracle instantiation could be done by any (possibly adversarial) hash
function. Since the transcript of interaction in mode 1 and mode 2 may be easily
distinguishable, the hash function may never give output having 0 in the relevant
places for mode 2 messages (we solve this problem by employing encryption in
a deterministic way using shared public randomness). The final construction is
given in Section 3.

We note that once we have an adversary to violate soundness of the non-
interactive zero-knowledge scheme, it is also easy to design a forger for the re-
sulting signature scheme.

Further Comments. We note that Fischlin’s transformation could still be secure
in the following sense. For every protocol (on which Fischlin’s transformation
can be applied), there exists a hash function, whose running time depends upon
the parameters of the protocol (in particular upon the running time of the par-
ties in the protocol) such that the following happens. The signature scheme (and
non-interactive zero-knowledge scheme) obtained by applying Fischlin’s trans-
formation on this protocol, when instantiated with this hash function, is secure
in the plain model. However we note that the hash function used to instantiate
the scheme has to be dependent on the protocol. In particular, one cannot use
a fixed hash function (such as SHA-256) to instantiate the resulting schemes.

Furthermore, Fischlin’s construction could still be instantiated if there are
no shared public parameters between the prover and the verifier. As with the
counterexample for the Fiat-Shamir transformation [GK03], our construction is
in the setting where the prover and the verifier share some public parameters2.
We also sketch an extension of our main construction to the setting where the
prover and the verifier have no prior communication/setup in Section 4. In this
setting, our results are only valid for the class of hash function whose output is
pseudorandom. Indeed, it is natural to think of the random oracle being instan-
tiated by a pseudorandom function. We leave getting an unrestricted result in
this setting as an open problem.

2 Note that none of the parties need to trust the public parameters for their security.
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Related Works. A number of works have investigated the difference in the set-
tings: where one only has oracle access to a primitive v/s having the full code
of the primitive. These lines of research include ones on program obfuscation
[BGI+01, GK05], non-black-box simulation techniques [Bar01, Pas04, DGS09],
uninstantiabilty of constructions in the random oracle model [CGH04], etc.

2 Fischlin Transformation

In this section, we shall review the Fischlin transformation. We begin by stating
the preliminaries. Throughout the paper, we denote the security parameter by
k. A function f : N→ R+ ∪ {0} is said to be negligible (in its input) if, for any
constant c > 0, there exists a constant, k0 ∈ N, such that f(k) < (1/k)c for any
k > k0. We let f(k) = negl(k) denote that f(k) is a negligible function. We say
that function is non-negligible if it is not negligible; namely, we say that f(·)
is non-negligible in its input if there is constant c ¿ 0 such that for infinitely
many k, it holds f(k) ≥ (1/k)c. For a probabilistic polynomial time algorithm
A, we use the notation y ← A(x) to denote A outputting y on input x. We
use the notation Pr[E] � 1 to indicate that the probability of the event E is
negligibly close to 1. Similarly, the notation Pr[E] � 0 is used to indicate that
the probability of the event E is neglibly close to 0.

In this paper, we scrutinize the “real-world’’ security of protocols that are
proven secure in the random oracle model. In the random oracle model, all the
parties have access to a purely random function (i.e., a mapping that maps
every input to an output that is distributed uniformly random in a range space
whose size is dependent on the security parameter. We denote the random oracle
by O.

Fischlin transformation converts a 3-round zero-knowledge proof of knowl-
edge, termed as Fiat-Shamir proof of knowledge, to a non-interactive zero-
knowledge proof of knowledge proven secure in the random oracle model. In
what follows we shall review the formal definitions for both Fiat-Shamir proof
of knowledge as well as non-interactive zero-knowledge proof of knowledge as
defined in [Fis05].

Definition 1. A Fiat-Shamir proof of knowledge (with O(log(k))-bit challenges)
for a witness relation W is a pair (P, V ) of probabilistic polynomial time algo-
rithms P = (P0, P1), V = (V0, V1) with the following properties.

[Completeness]. For any parameter k, (x,w) ∈ Wk, (α, β, γ) ← (P (x,w), V0(x))
it holds V1(x, α, β, γ) = Accept.

[Commitment Entropy]. For parameter k, for any (x,w) ∈ Wk, the min-entropy
of α ← P0(x,w) is superlogarithmic in k.

[Public Coin]. For any k, any (x,w) ∈ Wk, any α ← P0(x,w), the challenge
β ← V0(x, α) is uniform on {0, 1}l(k).
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[Unique responses]. For any probabilistic polynomial time algorithm A, for pa-
rameter k and (x, α, β, γ, γ′)← A(k), we have, as a function of k,

Pr[V1(x, α, β, γ) = V1(x, α, β, γ
′) = Accept ∧ γ �= γ′] ≈ 0

[Special Soundness]. There exists a probabilistic polynomial time algorithm K,
the knowledge extractor, such that for any k, any (x,w) ∈Wk, any pairs (α,β,γ),
(α,β′,γ′) with V1(x, α, β, γ) = V1(x, α, β

′, γ′) = Accept and β �= β′, for w′ ←
K(x, α, β, γ, β′, γ′) it holds (x,w′) ∈ Wk.

[Honest-Verifier Zero-Knowledge]. There exists a probabilistic polynomial time
algorithm Z, the zero-knowledge simulator, such that for any pair of probabilis-
tic polynomial time algorithms D = (D0, D1) the following distributions are
computationally indistinguishable:

– Let (x,w, δ) ← D0(k) and (α, β, γ) ← (P (x,w), V0(x)) if (x,w) ∈ Wk and
(α, β, γ)← ⊥ otherwise. Output D1(α, β, γ, δ).

– Let (x,w, δ)← D0(k) and (α, β, γ)← Z(x,YES) if (x,w) ∈Wk and (α, β, γ)
← Z(x,NO). Output D1(α, β, γ, δ).

Definition 2. A pair (P, V ) of probabilistic polynomial time algorithms is called
a non-interactive zero-knowledge proof of knowledge for relation W with an on-
line extractor (in the random oracle model) if the following holds.
[Completeness] For any oracle O, any (x,w) ∈ Wk and any π ← PO(x,w), we
have Pr[V O(x, π) = Accept] � 1.
[Zero-knowledge] There exist a pair of probabilistic polynomial time algorithms
Z = (Z0, Z1), the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial time algorithms D = (D0, D1), the following distributions are
computationally indistinguishable:

– Let O be a random oracle, (x,w, δ) ← DO0 (k), and π ← PO(x,w) where
(x,w) ∈Wk. Output DO1 (π, δ).

– Let (O0, σ) ← Z0(k), (x,w, δ) ← DO0
0 (k) and (O1, π) ← Z1(σ, x). Output

DO1
1 (π, δ).

[Online Extractor]. There exists a probabilistic polynomial time algorithm K, the
online extractor, such that the following holds for any algorithm A. Let O be a
random oracle, (x, π)← AO(k) and QO(A) be the sequence of queries of A to O
and O’s answers. Let w ← K(x, π,QO(A)). Then, as a function of k,

Pr[(x,w) /∈Wk ∧ V O(x, π) = Accept] ≈ 0

We are now ready to give a formal description of the Fischlin transformation.

Fischlin Transformation. Let (PFS , VFS) be an interactive Fiat-Shamir proof
of knowledge with challenges of l = l(k) = O(log(k)) bits for a relation W . De-
fine the parameters b, r, S, t as the number of test bits, repetitions, maximum
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sum and trial bits such that br = ω(log(k)), t− b = ω(log(k)),b, r, t = O(log(k)),
S = O(r) and b ≤ t ≤ l. Define the following non-interactive proof system for
relation W in the random oracle model where the random oracle maps to b bits.

Prover: The prover PO on input (x,w), first runs the prover PFS(x,w) in r
independent repetitions to obtain r commitments (α1, . . . , αr). Then PO does
the following, either sequentially or in parallel for each repetition i. For each
βi = 0, 1, . . . , 2t − 1 it lets PFS compute the final responses γi by rewinding,
until it finds the first one such that O(x, (α1, . . . , αr), i, βi, γi) = 0b, if no such
tuple is found then PO picks the first one for which the hash value is minimal
among all 2t hash values. The prover finally outputs π = (αi, βi, γi)i=1,...,r.

Verifier: The verifier V O on input x and π = (αi, βi, γi)i=1,...,r accepts if and
only if V1,FS(x, αi, βi, γi) = Accept (first test) for each i ∈ [r] and if∑r

i=1O(x, (α1, . . . , αr), i, βi, γi) ≤ S (second test).

We shall now briefly review the proof of security (in the random oracle model) of
the Fischlin transformation. We shall begin by arguing completeness. We need
to show that the (honest) prover fails to convince the verifier only with negligible
probability. From the completeness property of the underlying Fiat-Shamir proof
of knowledge, the proof produced by the honest prover passes the first test with
probability 1. It can be shown that the probability that the proof passes the
second test is negligibly close to 1 by the following two basic arguments:

– Probability that at least in one of the r repititions the smallest hash value
that the prover obtains is > S is negligible. Hence, with all but negligible
probability the sum of the hash values ≤ rS.

– By a basic combinatorial argument, the sum of the hash values > S and
≤ rS only with negligible probability. Hence, the sum is ≤ S with all but
negligible probability.

From this, it can be seen that the honest prover passes the second test with
probability negligibly close to 1.

We now prove that the protocol satisfies online extractability (which in turn
implies soundness). Consider an adversarial prover who produces a proof given
just the input instance. The claim is that except with negligible probability
the proof is rejected by the verifier. Consider a particular commitment tu-
ple (α1, . . . , αr). Observe that in the queries made by the adversarial prover
to the random oracle there cannot be two accepting transcripts of the form
((α1, . . . , αr), i, β, γ) and ((α1, . . . , αr), i, β

′, γ′) because then the special sound-
ness property of the underlying Fiat-Shamir proof of knowledge would imply
that the adversary has the witness for the input instance. Hence, corresponding
to each repetition i and commitment tuple (α1, . . . , αr), the adversary can query
the random oracle for at most one challenge βi. Let si be the value output by
the random oracle for this particular βi. With negligible probability, the sum-
mation of si over all the repetitions is at most S. This is because, there are only
polynomially many (in the security parameter) possible tuples (s

′
1, . . . , s

′
r) whose
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summation is at most S and since si is picked uniformly at random, the proba-
bility that the sum of si is at most S is poly(k).negl(k) which is also negligible
in k. This means that the adversary has negligible probability of succeeding for
a given (α1, . . . , αr). Since, the adversary can try only polynomially many such
commitment tuples, it is only with negligible probability that it can produce an
accepting proof.

Fischlin showed that the non-interactive zero-knowledge proof of knowledge
obtained from his construction can be used to construct signature schemes which
are secure. The signature scheme derived from his construction was shown to be
existentially unforgeable against adaptive chosen message attacks in the random
oracle model.

In this paper, we give a construction of 3-round Fiat-Shamir proof of knowl-
edge protocol such that the resulting protocol obtained after applying Fischlin
transformation does not satisfy soundness in the real-world. And hence, note
that the security of the signature scheme built over this non-interactive protocol
(which is the output of Fischlin transformation) also breaks down.

3 Our Construction

Our goal is to construct a Fiat-Shamir proof of knowledge (P ∗, V ∗) for some
witness relation such that the non-interactive protocol obtained after applying
the Fischlin transformation to it is insecure when the random oracle is instan-
tiated with a hash function ensemble containing functions whose running time
is apriori bounded by some polynomial. We now give the intuition about the
construction of proof of knowledge (P ∗, V ∗). We first consider a Fiat-Shamir
proof of knowledge (P, V ) from which we build (P ∗, V ∗). The verifier V ∗ is ba-
sically V with its verdict function extended so as to also accept in the case
when the challenge equals the output of some pre-determined function, denoted
by least (defined later). The function least takes the first message as input and
returns a challenge. As the verifier chooses the challenge uniformly at random,
it is only with low probability that the challenge equals the output of least of
the first message. This, together with the fact that (P, V ) is sound, implies that
(P ∗, V ∗) satisfies soundness property. However, in the non-interactive protocol
obtained by applying Fischlin transformation to (P ∗, V ∗), denoted by (PO, V O),
the prover himself is supposed to compute the challenge messages. However, the
probability that any adversarial prover succeeds in producing an accepting proof
is negligible from the security proof of the Fischlin transformation. But when
the random oracle O in (PO, V O) is instantiated by a hash function h drawn
from a hash function ensemble to get (Ph, Vh) we can construct an adversary to
violate the soundness of (Ph, Vh) as follows. The adversarial prover first makes
the least function dependent on machine M, which implements the instantiated
hash function h, in such a way that the first test and the second test become
identical. The adversary then produces an accepting proof by setting the chal-
lenges in each repetition to be the output of the least function of the first message
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and thus succeeds in passing the first test and hence the second test too. We
now give details of the construction below:

Let (P, V ) be a Fiat-Shamir proof of knowledge for a relation W . We use two
main tools for our construction, namely, a CPA symmetric encryption scheme
E = (KeyGen,Enc,Dec) and a pseudorandom function family F . Before we de-
scribe the protocol, we make the following assumption: In all the executions of
the protocol, the prover and the verifier have access to a string which is gener-
ated by a Setup algorithm. The Setup algorithm takes 1k as input and executes
KeyGen to obtain SK. It further chooses a key K uniformly at random to choose
a function from the pseudorandom function family F . Finally, (SK,K) is out-
put by Setup.3 The output of the Setup is used in the following way. Each time
the prover or the verifier needs to encrypt a message m, they proceed as fol-
lows. Compute fK(m) (where fK is the function in F corresponding to key K)
to obtain r. To encrypt m, execute the algorithm Enc with inputs m, SK and r.
Unless explicitly mentioned, by Enc(m) we mean that m is encrypted using key
SK and randomness fK(m). This means that Enc(m) gives the same ciphertext
every time it is executed. If we intend to use a different randomness, we use
the notation Enc(m : R) to mean that m is encrypted using the randomness
R. When the prover or the verifier wants to decrypt a message m they execute
Dec with input m and key SK. Jumping ahead, we need to encrypt messages
because the hash function used to instantiate the random oracle might have the
code of the verifier V embedded in it. In this case the hash function may output
values depending whether the input transcripts are accepting or rejecting. To
make our security proof go through we need to make sure the hash function
does not have the capability to distinguish the transcripts. We can ensure this
by encrypting the messages of the prover (The Setup algorithm is considered to
be a part of the interaction between a specific prover and a verifier; the hash
function used to instantiate the random oracle is independent of the output of
the Setup algorithm). We now proceed to describe the protocol.

As discussed before, we will first consider a Fiat-Shamir proof of knowledge
(P, V ). We assume that the prover P in (P, V ) can be decomposed into P0

and P1, where P0(x,w) outputs the commitment α and P1(x,w, α, β) outputs γ.
Similarly, the verifier V can be decomposed into V0 and V1 such that V0 interacts
with P (by outputting β on input some (x, α)) to produce the transcript (α, β, γ)
and then V accepts if and only if V1(α, β, γ) accepts. We use the symbols r, b, t
as defined in the Fischlin construction (c.f. Section 2). We denote the least
significant l bits of M(y) by M(y)(l).

Our protocol is parameterized by a polynomial phash. We are now ready to
describe the protocol (P ∗, V ∗) for the relation W .

Protocol (P ∗, V ∗):

3 We note that neither the prover nor the verifier needs to place any trust in the setup
algorithm for their security. The reason to have (SK,K) as the public parameters (as
opposed to the part of protocol messages) will become clear later on.
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1. P ∗: Run P0 on (x,w) to obtain α. Define α∗ = Enc((α, i, bit,M)), where each
of i, bit,M is set to 0, with their lengths being log(r) bits, 1 bit, and |x| bits,
respectively4. Send α∗ to V ∗.
[Note: Looking ahead, in the protocol obtained by first applying Fischlin transfor-
mation to (P ∗, V ∗) and then instantiating it with the hash function, the adversary
will set i to be the repetition number, bit to be 1 and M to be the hash function
instantiating the random oracle.]

2. V ∗: Execute Dec(α∗) to obtain α1 which is then parsed as (α, i, bit,M). Run
V0 on input (x, α) to obtain β. Send β to P ∗.

3. P ∗: Run P1 on input (x,w, α, β) to obtain γ. Send γ∗ = Enc(γ) to V ∗.

V ∗ then decides to accept or reject the transcript (x, α∗, β, γ∗) by executing the
following.

i. Let α1 ← Dec(α∗) and γ ← Dec(γ∗).
ii. Parse α1 to be (α, i, bit,M).
iii. If bit = 0 then Accept if and only if V0(x, α, β, γ) accepts and γ∗ = Enc(γ).

[Note: Recall that Enc(m) is the encryption of m using the randomness
fK(m). Hence, the check γ∗ = Enc(γ) ensures that γ∗ is indeed the encryp-
tion of γ using the randomness fK(γ). Looking ahead, this will be helpful to
make the protocol satisfy the unique responses property.]

iv. Else, do the following. If M is not a valid Turing machine then Reject. Oth-
erwise, Accept if both the following conditions hold:
• β = least(x, α, i,M).
• γ∗ = Enc((i, β)).

where the least procedure is defined below.

least(x, α, i,M):

1. min ← 2b + 1
2. β ← null
3. For j = 0 to 2t − 1:

4. y ←
(
x,
(
Enc((α, 1, 1,M)), . . . ,Enc((α, r, 1,M)), i, j,Enc((i, j))

))
5. Execute M(y) upto phash(|y|) steps
6. If M(y) terminates within phash(|y|) steps:
7. hash← M(y)(b)

8. If min > hash:
9. min← hash
10. β ← j
11. Return β.

4 Hereafter, unless specified otherwise, we maintain that the lengths of bit, i are spec-
ified above, and in every instance where we set M to 0, it is of length |x|.
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The least algorithm does the following. It checks for
what values of j from 0 to 2t − 1, the last b bits of

M
(
x, (Enc((α, 1, 1,M)), . . . ,Enc((α, r, 1,M)), i, j,Enc((i, j))

)
takes the min-

imum value among all possible 2t values provided M terminates within

phash

(∣∣∣x,Enc((α, 1, 1,M)), . . . , Enc((α, r, 1,M)), i, j,Enc((i, j))
∣∣∣) steps. If there

are many values of j for which the hash function maps to the minimum then it
picks the one which is the smallest. Observe that in the Fischlin construction,
the non-interactive prover PO would implicitly run the least algorithm as
follows. It rewinds the prover in the Fiat-Shamir proof of knowledge until
it finds the smallest β such that the hash value when applied on the entire
transcript maps to a minimum. This observation was the main intuition behind
our definition of the least algorithm.

We show that (P ∗, V ∗) satisfies all the properties of Fiat-Shamir proof of
knowledge.

Lemma 1. (P ∗, V ∗) is a Fiat-Shamir proof of knowledge for the relation W .

Proof. Before we show that (P ∗, V ∗) satisfies all the properties of Fiat-Shamir
proof of knowledge, we first make the observation that both the prover P ∗ and
the verifier V ∗ run in polynomial time.

[Completeness]. For any (α∗, β, γ∗) resulting from the interaction between P ∗

and V ∗ on input x, we have that α∗ = Enc((α, i, bit,M)) and γ∗ = Enc(γ) with
each of i, bit,M being 0. V ∗ accepts (α∗, β, γ∗) only if V (x, α, β, γ) accepts. Thus,
the completeness of (P ∗, V ∗) follows from the completeness property of (P, V ).

[Special Soundness]. Let K be a knowledge extractor for (P, V ). We show that
(P ∗, V ∗) satisfies special soundness by constructing a knowledge extractor K∗

that uses K as follows. For any (x,w) ∈ W , on input (x, α∗, β1, γ
∗
1 , β2, γ

∗
2) such

that V ∗(x, α∗, β1, γ
∗
1 ) = V ∗(x, α∗, β2, γ

∗
2 ) = Accept and β1 �= β2, K

∗ does the
following. It decrypts α∗ to obtain (α, i, bit,M). Similarly it decrypts γ∗1 and γ∗2 to
obtain γ1 and γ2 respectively. Then, K∗ outputs whatever K(x, α, β1, γ1, β2, γ2)
outputs. To see that K∗ is indeed a knowledge extractor for (P ∗, V ∗), consider
the following two cases.

– bit = 0: Here, V ∗(x, α∗, β1, γ
∗
1 ) = V ∗(x, α∗, β2, γ

∗
2 ) = Accept only if

V (x, α, β1, γ1) = V (x, α, β2, γ2) = Accept. Hence the special soundness prop-
erty is satisfied because the special soundness of (P, V ) ensures that for such
an input (x, α, β1, γ1, β2, γ2), K outputs w′ such that (x,w′) ∈W .

– bit = 1: In this case, V ∗ accepts both inputs (α∗, β1, γ
∗
1 ) and (α∗, β2, γ

∗
2)

only if both β1 and β2 are equal to least(α, i, 1,M). This contradicts the
assumption that β1 �= β2.

[Commitment entropy]. The first message of P ∗ contains α which has the same
distribution as the first message of P and hence the commitment entropy prop-
erty is satisfied.
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[Public coin]. This follows from the description of V ∗.

[Unique responses]. For any probabilistic polynomial-time algorithm A and
(x, α∗, β, γ∗1 , γ

∗
2 ) ← A(1k), where α∗ = Enc((α, i, bit,M)), Enc(γ1) = γ∗1 and

Enc(γ2) = γ∗2 . We claim that the following is negligible in k:

Pr[V ∗(α∗, β, γ∗1 ) = V ∗(α∗, β, γ∗2 ) = Accept & γ∗1 �= γ∗2 ].

To prove this claim, consider the following cases.

– bit = 0: Observe that in this case, V ∗(x, α∗, β, γ∗1 ) = Accept only if
V (x, α, β, γ1) = Accept, and V ∗(x, α∗, β, γ∗2 ) = Accept only if V (x, α, β, γ2) =
Accept. Also, γ1 is equal to γ2 only if γ∗1 is equal to γ∗2 . This is because of
the following reason. γ∗1 is the encryption of γ1 using the randomness fK(γ1)
and γ∗2 is the encryption of γ2 using the randomness fK(γ2). And hence if γ1
were to be equal to γ2 then this would imply that γ∗1 equals γ∗2 . Combining
the above arguments we have the following. Conditioned on bit = 0,

Pr[V ∗(α∗, β, γ∗1 ) = V ∗(α∗, β, γ∗2 ) = Accept & γ∗1 �= γ∗2 ]

= Pr[V (α, β, γ1) = V (α, β, γ2) = Accept & γ1 �= γ2]

Since (P, V ) satisfies the unique responses property, the quantity
Pr[V (α, β, γ1) = V (α, β, γ2) = Accept & γ1 �= γ2] is negligible and hence the
claim follows.

– bit = 1: Note that in this case, one of the conditions that needs to be satisfied
for V ∗ to accept (α∗, β, γ∗1 ) (and (α∗, β, γ∗2 )) is that γ∗1 = Enc((i, β)) (resp.,
γ∗2 = Enc((i, β))). This implies that γ∗1 = γ∗2 and hence the following holds
conditioned on bit = 1.

Pr[V ∗(α∗, β, γ∗1 ) = V ∗(α∗, β, γ∗2 ) = Accept & γ∗1 �= γ∗2 ] = 0

[Honest Verifier Zero-knowledge]. To prove that (P ∗, V ∗) satisfies honest ver-
ifer zero-knowledge property, we construct a zero-knowledge simulator Z∗ for
(P ∗, V ∗) as follows. Let Z be a zero-knowledge simulator for the protocol
(P, V ). On input (x,membership), where membership ∈ {yes, no}, Z∗ runs
Z(x,membership) to obtain (α, β, γ). Z∗ outputs (Enc((α, i, bit,M)), β,Enc(γ)),
where i, bit and M are set to 0.

To prove that Z∗ is a zero-knowledge simulator for (P ∗, V ∗), we first assume
for contradiction that there exists a distinguisher D∗ = (D∗0 , D

∗
1) such that the

statistical distance between following two distributions is non-negligible.

– Dist∗real: Let (x,w, state) ← D∗0(1
k) and (α∗, β, γ∗) ← (P ∗(w), V ∗)(x) if

(x,w) ∈W , and (α∗, β, γ∗)← ⊥ otherwise. Output D∗1(α
∗, β, γ∗, state).

– Dist∗sim: Let (x,w, state) ← D∗0(1
k) and (α∗, β, γ∗) ← Z∗(x, yes) if (x,w) ∈

W , and (α∗, β, γ∗)← Z∗(x, no) otherwise. Output D∗1(α
∗, β, γ∗, state).
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Then, we construct a distinguisherD = (D0, D1) that contradicts the honest ver-
ifier zero-knowledge property of (P, V ) as follows. D0(1

k) runs D∗0(1
k) to obtain

(x,w, state) and outputs the same. Once D1 receives (α, β, γ), if (α, β, γ) �= ⊥
then it outputs D∗1(Enc((α, i, bit,M)), β,Enc(γ), state), where i, bit and M are set
to 0, else it outputs D∗1(⊥, state). Now consider the following distributions.

– Distreal: Let (x,w, state) ← D0(1
k) and (α, β, γ) ← (P (w), V )(x) if (x,w) ∈

W , and (α, β, γ)← ⊥ otherwise. Output D1(α, β, γ, state).
– Distsim: Let (x,w, state) ← D0(1

k) and (α, β, γ) ← Z(x, yes) if (x,w) ∈ W ,
and (α, β, γ)← Z(x, no) otherwise. Output D1(α, β, γ, state).

Now, from the way Z∗ andD are constructed, the distribution Distreal is the same
as Dist∗real. Similarly, the distribution Distsim is the same as Dist∗sim. This implies
that the statistical distance between Distreal and Distsim is also non-negligible, a
contradiction.

3.1 On the Insecurity of (Ph, Vh)

The non-interactive zero-knowledge proof of knowledge (P ∗O, V ∗O) obtained by
applying the Fischlin transformation to (P ∗, V ∗) is sound in the random oracle
model. This follows from the fact that (P ∗, V ∗) is Fiat-Shamir proof of knowledge
(Theorem 3) and any protocol obtained by applying Fischlin transformation
to a Fiat-Shamir proof of knowledge is secure in the random oracle model. In
this section, we show that when the random oracle is instantiated by a hash
function h, whose worst case running time is at most the polynomial phash in the
size of its inputs, the protocol (Ph, Vh), which is obtained by instantiating the
random oracle O in (P ∗O, V ∗O), is not sound. Typically, phash is chosen to be a
polynomial of degree c, for a large constant c. The following theorem rules out
the secure instantiation of the Fischlin construction with most of the practical
hash functions.

Theorem 1. Let (P ∗, V ∗) be the 3-round Fiat-Shamir proof of knowledge, for
a witness relation W and the corresponding language L = {x : (x,w) ∈ W}, as
described above. Let (P ∗O, V ∗O) be the non-interactive zero-knowledge proof of
knowledge obtained by applying the Fischlin transformation to (P ∗, V ∗). Then,
for any hash function h, that is used to instantiate the random oracle O, and
whose running time is at most phash(|y|) for any input y∈ {0, 1}∗, the resulting
protocol (Ph, Vh) is not sound. In other words, there exists an adversary A such
that Pr[(x, π) ← A(1k) : V h(x, π) = 1 and x /∈ L] is non-negligible.

The proof of the above theorem can be found in the full version.

4 Simplified Construction for Pseudorandom Hash
Functions

In this section, we present a simpler construction to demonstrate the insecurity
of the Fischlin transformation with respect to hash functions which behave as
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pseudorandom functions (i.e., the output of such a hash function for any input
is indistinguishable from random). As in the main construction, we restrict our
attention to the case when the worst case running time of the hash function
is at most some fixed polynomial in the size of the input. More formally, the
insecurity arguments hold only for those hash functions whose running time
is at most phash(|y|) on input y, where phash is a polynomial. Unlike the main
construction, the construction presented below does not require any initial setup.

Let (P, V ) be any 3-round Fiat-Shamir proof of knowledge for some witness re-
lation W . We extend (P, V ) to obtain a 3-round Fiat-Shamir proof of knowledge
(P ∗, V ∗) as we shall describe shortly.

Let P = (P0, P1) and V = (V0, V1). On input (x,w), P0 generates α, and
on input (x,w, α, β) P1 generates γ. Also, V0 and V1 are such that V0 interacts
with P to produce a transcript (α, β, γ) by generating β uniformly at random
and then V accepts if and only if V1(x, α, β, γ) accepts. The protocol (P ∗, V ∗)
is described below.

1. P ∗: Run P0 on (x,w) to obtain α. Define α∗ = (α, i, bit,M), where each of
i, bit,M is set to 0, with their lengths being log(r) bits, 1 bit, and and |x|
bits, respectively5. Send α∗ to V ∗.

2. V ∗: Run V0 to obtain β. Send β to P ∗.
3. P ∗: Run P1 on input (x,w, α, β) to obtain γ. Send γ to V ∗.
4. V ∗: Parse α∗ as (α, i, bit,M). If bit = 0 then Accept if V0(x, α, β, γ) accepts.

If bit = 1 then check if M is a valid Turing Machine. If M is not a valid TM
then Reject. Else, Accept if all the following conditions hold:

• β = least(x, α, i, 1,M)
• γ = 0

where the function least is defined as follows.

least(x, α, i,M):

1. min ← 2b + 1
2. β ← null
3. For j = 0 to 2t − 1:

4. y ←
(
x, ((α, 1, 1,M), . . . , (α, r, 1,M)), i, j, 0

)
5. Execute M(y) upto phash(|y|) steps
6. If M(y) terminates within phash(|y|) steps:
7. hash← M(y)(b)

8. If min > hash:
9. min← hash
10. β ← j
11. Return β.

5 Hereafter, unless specified otherwise, we maintain that the lengths of bit, i,M are as
specified here.
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The functionality of the least algorithm defined above is very similar to the one
defined in the main construction with the main difference being that the first
message and the last messages are not encrypted in the algorithm described
above unlike the least algorithm defined in the main construction. Further,
the symbols r, b, t are as described in the Fischlin construction (c.f. Section 2).
We now show that (P ∗, V ∗) satisfies all the properties of Fiat-Shamir proof of
knowledge.

4.1 On the Security of (P ∗, V ∗)

Theorem 2. (P ∗, V ∗) is a Fiat-Shamir proof of knowledge for the relation W .

Proof. [Completeness] For any (α∗, β, γ) resulting from the interaction between
P ∗ and V ∗, we have that α∗ = (α, i, bit,M) with each of i, bit,M being 0 and with
(α, β, γ) generated as per the description of (P, V ). Since, if V accepts (α, β, γ)
then V ∗ accepts (α∗, β, γ), completeness of (P, V ) implies that of (P ∗, V ∗).

[Special Soundness]. Let K be a knowledge extractor for (P, V ). We show that
(P ∗, V ∗) satisfies special soundness by constructing a knowledge extractor K∗

that uses K as follows: For any (x,w) ∈ Wk, on input (x, α∗, β, γ, β′, γ′), where
α∗ = (α, i, bit,M), β �= β′, and V ∗(x, (α, i, bit,M), β, γ) = V ∗(x, (α, i, bit,M),
β′, γ′) = Accept, K∗ outputs K(x, α, β, γ, β′, γ′). To see that K∗ is indeed a
knowledge extractor for (P ∗, V ∗), consider the following two cases.

– bit = 0: Here, V ∗(x, (α, i, bit,M), β, γ) = V ∗(x, (α, i, bit,M), β′, γ′) = Accept
implies that V (x, α, β, γ) = V (x, α, β′, γ′) = Accept. Since special soundness
of (P, V ) ensures that for an input (x, α, β, γ, β′, γ′), K outputs w′ such that
(x,w′) ∈Wk, K

∗ also outputs a witness.
– bit = 1: In this case, V ∗ accepts on both inputs ((α, i, bit,M), β, γ) and

((α, i, bit,M), β′, γ′) only if both β and β′ are equal to least(α, i, 1,M) which
leads to a contradiction to β �= β′.

[Commitment entropy]. The first message of P ∗ contains α which has the same
distribution as the first message of P and hence the commitment entropy prop-
erty is satisfied.
[Public coin]. This follows directly from the description of V ∗.

[Unique responses]. For any probabilistic polynomial-time algorithm A, and
(x, (α, i, bit,M), β, γ, γ′)← A(1k), we claim that the following is negligible in k:

Pr[V ∗((α, i, bit,M), β, γ) = V ∗((α, i, bit,M), β, γ′) = Accept & γ �= γ′].

We establish the claim under the following two cases.

– bit = 0: Note that, V ∗(x, (α, i, bit,M), β, γ) = Accept implies that
V (x, α, β, γ) = Accept, and also, V ∗(x, (α, i, bit,M), β, γ′) = Accept im-
plies that V (x, α, β, γ′) = Accept. Since Pr[V (α, β, γ) = V (α, β, γ′) =
Accept & γ �= γ′] is negligibly close to 0, we have Pr[V ∗((α, i, bit, h), β, γ) =
V ∗((α, i, bit, h), β, γ′) = Accept & γ �= γ′|bit = 0] is negligibly close to 0.



On the (In)security of Fischlin’s Paradigm 219

– bit = 1: Observe that, V ∗(x, (α, i, bit,M), β, γ) = Accept implies that γ = 0,
and also, V ∗(x, (α, i, bit,M), β, γ′) = Accept implies that γ = 0, thus giving
us γ = γ′.

[Honest Verifier Zero-knowledge]. To prove that (P ∗, V ∗) is an HVZK pro-
tocol, we construct a special zero-knowledge simulator Z∗ for (P ∗, V ∗)
as follows. Let Z be a special zero-knowledge simulator for the protocol
(P, V ). On input (x, β,memebership), where memebership ∈ {yes, no}, Z∗ runs
Z(x, β,memebership) to obtain (α, β, γ). If (α, β, γ) = ⊥, then Z∗ also outputs
⊥; otherwise, it outputs ((α, i, bit,M), β, γ), where i, bit and M are set to 0.

To prove that Z∗ is a special zero-knowledge simulator for (P ∗, V ∗), assume
for contradiction that there exists a distinguisher D∗ = (D∗0 , D

∗
1) such that the

statistical distance, ε(k), between following two distributions is non-negligible.

– Dist∗real: Let (x,w, state) ← D∗0(1
k) and (α∗, β, γ) ← (P ∗(w), V ∗)(x) if

(x,w) ∈Wk, and (α∗, β, γ)← ⊥ otherwise. Output D∗1(α
∗, β, γ, state).

– Dist∗sim: Let (x,w, state)← D∗0(1
k) and (α∗, β, γ)← Z∗(x, yes) if (x,w) ∈Wk,

and (α∗, β, γ)← Z∗(x, no) otherwise. Output D∗1(α
∗, β, γ, state).

Then, we construct a distinguisher D = (D0, D1) against the HVZK prop-
erty of (P, V ) as follows. D0(1

k) runs D∗0(1
k) to obtain (x,w, state) and out-

puts the same. Once D1 receives (α, β, γ), if (α, β, γ) �= ⊥ then it outputs
D∗1((α, i, bit,M), β, γ, state), where i, bit and M are set to 0; otherwise, it sets
(α∗, β, γ) ← ⊥ and outputs D∗1(α

∗, β, γ, state). Now consider the following
distributions.

– Distreal: Let (x,w, state) ← D0(1
k) and (α, β, γ) ← (P (w), V )(x) if (x,w) ∈

Wk, and (α, β, γ)← ⊥ otherwise. Output D1(α, β, γ, state).
– Distsim: Let (x,w, state) ← D0(1

k) and (α, β, γ) ← Z(x, yes) if (x,w) ∈ Wk,
and (α, β, γ)← Z(x, no) otherwise. Output D1(α

∗, β, γ, state).

Now, from the way Z∗ and D are constructed, the output of Distreal is the same
as the output of Dist∗real. Similarly, the output of Distsim is the same as the output
of Dist∗sim. This implies that the statistical distance between Distreal and Distsim
is also ε(k), a contradiction.

4.2 On the Insecurity of (Ph, Vh)

Let Fphash
be a pseudorandom function family such that each function in the

family can be be evaluated on any input in time phash in the size of its inputs,
where phash is a polynomial. Now we shall show that for every such hash function
that is used to instantiate the random oracle in the non-interactive ZK PoK
that is obtained by applying Fischlin transformation to (P ∗, V ∗), the resulting
protocol does not satisfy the soundness.

In order to model a pseudorandom hash function family, one may look at
the function to take a randomly chosen secret key also as an input. Thus, to
instantiate the random oracle, first a key K is picked uniformly at random.
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Let fK be the pseudorandom hash function corresponding to K in Fphash
. Hence-

forth, we shall denote fK by h for a simpler notation. Let (Ph, Vh) be the protocol
obtained by applying Fischlin transformation to (P ∗, V ∗). The following theorem
shows that the protocol (Ph, Vh) does not satisfy the soundness property.

Theorem 3. Let (P ∗, V ∗) be the 3-round Fiat-Shamir proof of knowledge de-
scribed above for a witness relation W with corresponding language L and let
(PO, V O) be the non-interactive zero-knowledge proof of knowledge protocol ob-
tained by applying Fischlin transformation to (P ∗, V ∗). Then for any pseudoran-
dom hash function h in Fphash

that is used to instantiate the random oracle O, the
resulting protocol (Ph, Vh) does not satisfy soundness. In other words, there exists
an adversary A that outputs (x, π) such that Pr[Vh(x, π) = Accept and x /∈ L] is
non-negligible.

The proof of the above theorem can be found in the full version.
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Abstract. We introduce Signatures of Correct Computation (SCC), a new model
for verifying dynamic computations in cloud settings. In the SCC model, a trusted
source outsources a function f to an untrusted server, along with a public key for
that function (to be used during verification). The server can then produce a suc-
cinct signature σ vouching for the correctness of the computation of f , i.e., that
some result v is indeed the correct outcome of the function f evaluated on some
point a. There are two crucial performance properties that we want to guarantee in
an SCC construction: (1) verifying the signature should take asymptotically less
time than evaluating the function f ; and (2) the public key should be efficiently
updated whenever the function changes.

We construct SCC schemes (satisfying the above two properties) support-
ing expressive manipulations over multivariate polynomials, such as polynomial
evaluation and differentiation. Our constructions are adaptively secure in the ran-
dom oracle model and achieve optimal updates, i.e., the function’s public key can
be updated in time proportional to the number of updated coefficients, without
performing a linear-time computation (in the size of the polynomial).

We also show that signatures of correct computation imply Publicly Verifiable
Computation (PVC), a model recently introduced in several concurrent and inde-
pendent works. Roughly speaking, in the SCC model, any client can verify the
signature σ and be convinced of some computation result, whereas in the PVC
model only the client that issued a query (or anyone who trusts this client) can
verify that the server returned a valid signature (proof) for the answer to the query.
Our techniques can be readily adapted to construct PVC schemes with adaptive
security, efficient updates and without the random oracle model.

1 Introduction

Given the emergence of the cloud computing paradigm in business and consumer
applications, it has become increasingly important to provide integrity guarantees in
third-party data management settings. Consider for example the following scenario: A
company has developed some novel algorithm, e.g., for personalized medicine, or for
stock trend prediction. To avoid investing in expensive IT infrastructure in-house, the
company chooses to outsource the execution of this algorithm to an external, untrusted
cloud provider (e.g., Amazon, Google). How could a user verify the correctness of the
computation under the assumption that she only trusts the company that developed the

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 222–242, 2013.
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algorithm, but not the cloud provider? The above question poses two crucial require-
ments: (1) efficiency, meaning that the running time of the verification algorithms ex-
ecuted by the client should be asymptotically less than the time needed to execute the
algorithm in the cloud; and (2) public verifiability, meaning that our verification mech-
anism should not be tied to a specific verifier’s secret key so that any user can verify the
computation. In addition, another desirable property is to efficiently handle updates to
the outsourced algorithm, without computing public parameters from scratch.

In this paper, we propose a new paradigm for verifying dynamic computation in the
cloud called signatures of correct computation (SCC). SCC allows an untrusted worker
to produce a signature vouching for the correctness of some computation over some
input; any user can verify the signature using a public key (produced by an one-time
preprocessing) published by a trusted source who outsourced the function in the cloud.

Signatures of correct computation are closely related to publicly verifiable com-
putation (PVC), proposed by Parno et al. [31], Canetti et al. [9] and Fiore and Gen-
naro [12,13], in concurrent and independent works to ours. Specifically, signatures of
correct computation are stronger than publicly verifiable computation: given an SCC
scheme, one can directly construct a PVC scheme; while the other way around does not
seem to be true. More specifically, in PVC, a “proof of correct computation” is tied to a
specific challenge (generated by an algorithm ProbGen in [31]), and can only be ver-
ified by the client who has generated that challenge (or anyone who trusts this client).
By contrast, a signature of correct computation is not tied to any challenge, and can be
verified by anyone in the world, in much the same way as a traditional signature on a
message. We provide a detailed comparison of PVC and SCC in Section 1.2.

1.1 Results and Contributions

We design SCC schemes for multivariate polynomial manipulations, including polyno-
mial evaluation and differentiation. One of our technical highlights is a new method in
this setting that allows us to slightly modify our selectively secure schemes to achieve
adaptive security. Our SCC schemes achieve adaptive security under the random oracle
model. We also show that under the weaker PVC model, our techniques can achieve
adaptive security under the standard model without random oracles.

Our main results and contributions are summarized below:

Definition of New Paradigm. We are the first ones to formally define signatures of
correct computation (SCC) and its security and to study its relation to PVC.

Novel Constructions for Polynomial Manipulations. We focus on deriving efficient
and optimized constructions for specific functionalities rather than generic construc-
tions, as the approach taken by Parno et al. [31] and Canetti et al. [9]. We present
efficient SCC constructions for expressive polynomial manipulations, including multi-
variate polynomial evaluation and differentiation. Operations on polynomials represent
a common building block in a wide range of applications, such as in statistical analysis,
scientific computing, and machine learning. Fiore and Gennaro [13] point out many in-
teresting applications of publicly verifiable computation on polynomials, including its
use in proofs of retrievability, verifiable keyword search, discrete Fourier tranform, and
linear transformations. Our constructions are based on bilinear groups. We prove the
adaptive security of our constructions under the random oracle model.
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Efficient Incremental Updates. Our constructions allow a trusted source to make in-
cremental updates in time proportional to the number of the updated polynomial coeffi-
cients, and without performing a computation from scratch that would take linear time
in the size of the polynomial.

Novel proof Techniques for Adaptive Security. Our constructions and proofs intro-
duce several novel techniques. First, we observe key polynomial decomposition prop-
erties (Lemmas 1 and 3) that become the central idea underlying our constructions.
Second, while achieving adaptive security appears relatively easy for univariate poly-
nomial evaluation [23], achieving adaptive security in the multivariate case appears to
be fundamentally more difficult. To this end, we present novel techniques that involve
embedding randomness in the polynomial decomposition properties (Lemmas 2 and 4),
such that our simulator can later manipulate these random numbers in the proof. We
give a high-level technical overview in Section 1.3.

Contributions to Publicly Verifiable Computation. Our results also bring advances
in the area of publicly verifiable computation. Specifically, our techniques can be read-
ily applied to yield publicly verifiable computation schemes (for the same operations)
with adaptive security (without the random oracle model) and with efficient updates. In
comparison, existing PVC works [9,13,31], achieve adaptive security but do not support
efficient updates. We give a more detailed comparison in Section 1.2.

1.2 Related Work

Authenticated Data Structures. The SCC model is directly related to the model of
authenticated data structures (ADS) [33,35]. In some sense, SCC and ADS are dual
problems to each other, sharing exactly the same security properties. In SCC, a trusted
source outsources a function, and a client wishes to verify the outcome of the function
at a given point. In ADS, a trusted source outsources the data or a data structure, and
the client wishes to verify the correctness of the result of a data structure query, e.g.,
dictionaries [18,26], graphs [20,25] and hash tables [29,34]. Most authenticated data
structures schemes incur logarithmic or linear overheads for verification costs, with
some exceptions being authenticated range queries [2,19] and set operations [30], where
verification takes time proportional to the size of the answer.

Verifiable Computation in the Secret Key Setting (SVC). Recent works on verifiable
computation [1,10,14] achieve efficient verification of general boolean circuits, but in
the secret key model. Therefore they are inherently inadequate for the setting of signa-
tures, which are required to be publicly verifiable.

Verifiable Computation for Polynomials. Benabbas et al. [3] developed methods for
efficient verification of multivariate polynomial evaluation by using algebraic one-way
functions—however, in the SVC model. This work does not achieve efficient updates
of polynomial coefficients (specifically, in order to update a coefficient, one has to re-
randomize all the existing coefficients).1 Kate et al. [23] give a publicly verifiable com-
mitment scheme for univariate polynomials, which is essentially an SCC scheme for

1 However, apart from verification of polynomial evaluation, their techniques can be applied to
support very efficient dynamic verifiable databases (constant query and update complexity).
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Table 1. Asymptotic cost on the client side. In the table below, n is the number of variables in
the polynomial and d is the maximum degree. With SVC we denote a “secretly delegatable and
verifiable scheme”, with PVC we denote a “publicly delegatable and verifiable scheme”, with
PVC* we denote a “publicly verifiable but not publicly delegatable scheme” (see Section 1.2,
Paragraph 5) and with SCC we denote a “signatures of correct computation scheme”. Notice
that an n-variate polynomial of degree d can have up to

(
n+d
d

)
terms, requiring up to

(
n+d
d

)
time to evaluate. Therefore, the verification costs here are smaller than the cost of evaluating the
polynomial. For PVC schemes, the client cost includes both delegation and verification costs.

scheme
polynomial polynomial efficient

security model
evaluation differentiation updates

Benabbas et al. [3] n log d N/A no adaptive SVC

Parno et al. [31] n n+ log d no adaptive PVC

Canetti et al. [9] polylog
((

n+d
d

))
polylog

((
n+d
d

))
no adaptive PVC

Fiore and Gennaro [12,13] n log d N/A no adaptive PVC*
This paper n n+ d yes selective SCC

This paper n+ d n+ d2 yes adaptive PVC

This paper n+ d n+ d2 yes adaptive (RO) SCC

univariate polynomial evaluation. However, their scheme does not directly extend to
multivariate polynomials. Also note that our construction is the first to support efficient
verification of differentiation queries—even in the SVC setting.

Relation to CS Proofs and SNARGs. Our SCC model is strongly related to the model
of computationally-sound proofs, introduced by Micali in 1994 [27], and to the subse-
quent works on succinct non-interactive arguments (SNARGs) by Groth [22], Bitan-
sky et al. [4,5] and Gennaro et al. [15]. The main connection is that both SCC and
SNARGs models are non-interactive and publicly verifiable (CS proofs can also be
non-interactive in the random oracle model), i.e., a publicly verifiable proof can be
computed independently from (and with no communication with) the verifier. We note
here that all CS proofs and SNARGs constructions that have been presented in the lit-
erature are generalized, in that they can handle all of NP by using powerful tools such
as the PCP theorem (with an exception of [15] that uses a different characterization of
NP). Moreover, all of them (except for the work of Micali [27] that is secure in the ran-
dom oracle model) are proved secure based on non-falsifiable assumptions [17], e.g.,
the works of Groth [22] and Gennaro et al. [15] use variants of the knowledge-based
assumption introduced by Damgard [11]. Non-falsifiable assumptions are considered to
be a lot stronger than all common assumptions used in cryptography (one-way func-
tions, trapdoor permutations, DDH, RSA, LWE etc.). We note that the assumptions that
we are using in our construction do not belong in this category—however, for verifying
multivariate polynomials (not for univariate ones) we do use the random oracle, as the
construction of Micali [27] does. The main difference (with [27]) however is that we do
not use the PCP theorem, hence achieving more practical schemes.

Concurrent and Independent Works. Two closely related schemes are the ones by
Parno et al. [31] and Cannetti et al. [9], which were developed concurrently with and
independently from our work.
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In the PVC formulation proposed by Parno et al. [31], any client can verify that an
untrusted server correctly computes a function f on a specific input a. Their definition
however requires an input preparation randomized algorithm (ProbGen), mapping user
inputs a to server inputs σa and preparing an object VKa to be used for verification,
specific for σa. Therefore, as opposed to the SCC setting, only the client that issued a
query for a (or anyone who trusts this client) can verify that the server returned a valid
signature (proof) for f(a). For otherwise, a client running the ProbGen algorithm can
potentially collude with the server to forge a proof, convincing another party to accept
the proof. Apart from defining PVC, Parno et al. [31] give a construction for gener-
alized boolean functions (closed under complement) from attribute-based encryption
(ABE). Their construction is asymptotically efficient—the proof size is proportional to
the size of the answer. Moreover, due to recent advances in ABE schemes by Lewko
and Waters [24], the PVC constructions of Parno et al. [31] can be proved adaptively
secure, since they directly inherit the security of the underlying ABE scheme.

A PVC scheme having similar properties with the scheme of Parno et al. [31] was
presented by Canetti et al. [9], where client verification is polylogarithmic in the size
of the evaluated circuit. Canetti et al. achieve adaptive security under a slightly weaker
model (as Parno et al. point out [31]), in which the client needs to keep certain secret
state. Their scheme shares the same limitation with the scheme of Parno et al. [31] in
that a client can verify only his queries unless extra assumptions are put into place.

The most closely related works are the recent works by Fiore and Gennaro [13],
who presented a PVC scheme tailored for multivariate polynomials that is based on
algebraic one-way functions. An improved version [12] uses less complex assumptions
such as RSA to achieve the same goal. The works by Fiore and Gennaro differ from
ours in the following sense. First, they consider a model (denoted with PVC* in Table 1)
that is more restrictive than the PVC model proposed by Parno et al. [31]—and hence
more restrictive than the SCC model. Specifically, there is an explicit delegation phase
where a problem instance is generated based on an input (as in the PVC definition
by Parno et al. [31]). However, in their constructions (and unlike the original PVC
definition), only the party who ran the setup algorithm for a specific function can run
the problem generation algorithm. Therefore, their schemes are publicly verifiable, but
not publicly delegatable. As a result, their schemes would not work for the application
scenario where a pharmaceutical company outsources a genomic algorithm, and each
user submits their own genomic data for computation. Moreover, they do not consider
efficient updates of the polynomial coefficients. In comparison, their scheme has more
efficient verification and a delegation step of O(n log d) cost. A detailed comparison
of our scheme against several related works in terms of verification cost and security
model is presented in Table 1.

1.3 Highlights of Techniques

Multivariate Polynomial Evaluation. The polynomial commitment scheme by Kate
et al. [23] can be employed to construct an SCC scheme of univariate polynomial
evaluations. Specifically, Kate et al. [23] observe that to vouch for the outcome of a
polynomial f(x) in Zp evaluated at the point a ∈ Zp, one can rely on the property
that the polynomial f(x) − f(a) is perfectly divisible by the degree-1 polynomial
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x − a, where a ∈ Zp. In other words, one can find a polynomial w(x) such that
f(x) − f(a) = (x − a)w(x). Using this property, they construct a witness from the
term w(x), and using the pairing operation in bilinear groups, they encode the above
test f(x)− f(a) = (x− a)w(x) in the exponents of group elements.

Unfortunately, the above test does not apply to the multivariate case. We therefore
propose a novel technique based on the following observation. Let f(x) be a multivari-
ate polynomial in Zp where x = [x1, x2, . . . , xn]. Then, for a = [a1, a2, . . . , an] ∈ Zn

p ,
the polynomial f(x)− f(a) can be expressed as f(x)− f(a) =

∑n
i=1(xi − ai)wi(x).

The polynomials wi(x) will be used to construct witnesses in our scheme. Specifically,
we encode their terms as exponents of bilinear group elements. The verification is a
pairing product equation encoding the above test in the exponent.

From Selective to Adaptive Security. The test that holds for the polynomial evaluation
contains a sum of terms, as opposed to a single term in the univariate case [23]. This
gives rise to certain technicalities in the proof, allowing us to prove only the weaker
notion of selective security (see Definition 6 in the Appendix).

Going from selective security to adaptive security turns out to be non-trivial. To
achieve this, we devise a novel technique where we build randomness into the polyno-
mial decompositions (Lemmas 2 and 4) which are central to our constructions. As an
immediate corollary of our adaptively secure SCC construction with random oracles,
we construct an adaptively secure PVC scheme in the plain model.

Derivative Evaluation. A naive method to support verifiable derivative evaluation is
for the source to commit to nk polynomials during setup, corresponding to the 1st,
2nd, . . . , k-th derivatives of each possible variable. However, as noted in Section 5, this
scheme results in increased setup and update overhead.

Our techniques for verifying the evaluation of an arbitrary derivative are inspired
by the following observation that holds for first derivatives of univariate polynomi-
als: Given a univariate polynomial f(x), the remainder of dividing the polynomial
f(x)− f ′(a)x with the polynomial (x − a)2 is always a constant polynomial, and not
a degree-one polynomial, as would generally happen. In other words, f(x)− f ′(a)x =
(x − a)2q(x) + b for some q(x) ∈ Zp[x], and b ∈ Zp. A similar, slightly more in-
volved, observation can be made for higher-order derivatives and multivariate polyno-
mials. More details are provided in Section 5.

2 Preliminaries, Definitions and Assumptions

In this section, we give necessary definitions that are going to be used in the rest of the
paper. The security parameter is denoted λ, PPT stands for probabilistic polynomial-
time and neg(λ) denotes the set of negligible functions, i.e., all the functions less than
1/p(λ), for all polynomials p(λ). We also use bold letters for vector variables, i.e.,
x = [x1, x2, . . . , xn] denotes a vector of n entries x1, x2, . . . , xn.

2.1 Problem Definition

We now formally define signatures of correct computation (SCC).
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Definition 1 (SCC scheme). An SCC scheme (signatures of correct computation) for
a function family F is a tuple (KeyGen,Setup,Compute,Verify,Update) of five PPT
algorithms with the following specification:

1. (PK, SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security pa-
rameter λ and a function family F . It outputs a public/secret key pair (PK, SK).
KeyGen is run only once at system initialization by a trusted source;

2. FK(f) ← Setup(SK,PK, f): Algorithm Setup (run by a trusted source) takes as
input the secret key SK, the public key PK, and a function f ∈ F . It outputs the
function public key FK(f) for the function f ;

3. (v, w) ← Compute(PK, f, a): Algorithm Compute (run by an untrusted server)
takes as input the public key PK, a function f ∈ F and a value a ∈ domain(f). It
outputs a pair (v, w), where v = f(a) and w is a signature;

4. {0, 1} ← Verify(PK,FK(f), a, v, w): Algorithm Verify (run by any verifier) takes
as input the public key PK, the function public key FK(f), value a ∈ domain(f), a
claimed result v and a signature w. It outputs 0 or 1;

5. FK(f ′)← Update(SK,PK,FK(f), f ′): Algorithm Update (run by a trusted source)
takes as input the secret key SK, the public key PK, the function public key FK(f)
for the old function f and the updated function description f ′. It outputs the up-
dated function public key FK(f ′).

The Update algorithm allows the source to update the function f to a new function f ′.
A naive way to implement Update is to simply run the Setup algorithm again for the
new f ′. However, in practice, one may wish to allow more efficient incremental updates
(and this is what is achieved by our constructions).

2.2 Correctness and Security Definitions

We describe now the correctness and adaptive security definitions for SCC. Intuitively,
an SCC scheme is correct if whenever its algorithms are executed honestly, it never
rejects a correct signature. Also, it is secure if, after the setup/update algorithms have
been executed, an adversary cannot convince a verifier to accept a wrong result on an
input of his choice, except with negligible probability.

Definition 2 (Correctness of an SCC scheme). Let λ be the security parameter and let
P be an SCC scheme (KeyGen,Setup,Compute,Verify,Update) for a function family
F . Let (PK, SK)← KeyGen(λ,F). For all i = 1, . . . , poly(λ), for any function fi ∈ F ,
suppose FK(fi) is the output of Update(SK,PK,FK(fi−1), fi), where FK(f0) is output
by algorithm Setup(SK,PK, f0) for some f0 ∈ F . We say that P is correct, if for any
i = 0, . . . , poly(λ), for any a ∈ domain(fi), it is 1 ← Verify(PK,FK(fi), a, v, w),
where (v, w) ← Compute(PK, fi, a).

Definition 3 (Adaptive security of an SCC scheme). Let λ be the security parameter
and let P be an SCC scheme (KeyGen,Setup,Compute,Verify,Update) for a function
family F . We say that P is adaptively secure if no PPT adversary A has more than
negligible probability neg(λ) in winning the following security game, played between
the adversary A and a challenger:
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1. Initialization. The challenger runs algorithm KeyGen which outputs (PK, SK) and
then gives PK to the adversary but maintains SK secret;

2. Setup and update. The adversary makes an oracle query to the Setup(SK,PK, f0)
algorithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for
i = 1, . . . , k, where k = poly(λ), he makes a polynomial number of oracle queries
to the Update(SK,PK,FK(fi−1), fi) algorithm, each time specifying fi ∈ F . The
challenger answers the queries by returning the resulting FK(fi);

3. Forgery. The adversary A outputs a point b ∈ domain(fi) for some 0 ≤ i ≤ k,
and the forgery (b, v, w).

The adversary A wins the game if 1← Verify(PK,FK(fi),b, v, w) and fi(b) �= v.

2.3 SCC Implies PVC

As we highlighted in the introduction, signatures of correct computation (SCC) are
stronger than the publicly verifiable computation (PVC) notions studied in concurrent
but independent papers [9,12,13,31]. Specifically, a correct and secure SCC scheme
implies a correct and secure PVC scheme, but not the other way around. To see that,
one can implement algorithm σa ← ProbGen(PK, a) of the PVC scheme (e.g., [31]) to
simply output a and all the other algorithms remain the same.

For completeness, in Definition 6 in the Appendix, we also provide the definition of
publicly verifiable computation (PVC) . Our PVC definition is essentially equivalent to
those proposed by Parno et al. [31] and Canetti et al. [9], with the exception that we aug-
ment it with an Update algorithm which a trusted source can employ to incrementally
update the outsourced function (also, our ProbGen algorithm is called Challenge).

2.4 Multivariate Polynomials Notation

We now give some notation for multivariate polynomials. We use the notion of a multi-
set over some universe U , a generalized set comprising elements from the universe U ,
where each element can appear more than once; for example, {1, 1, 2, 3, 3, 3} is a multi-
set. In this paper, we use the following notation to denote multisets. Formally, a multiset
S : U → Z≥0 is a function mapping each element in a universe U to its multiplicity.
For any x /∈ S, S(x) = 0. E.g., for the multiset {a, a, b, c, c, c}, we have S(a) = 2,
S(b) = 1, S(c) = 3; however, S(e) = 0 since e is not contained in the above multiset.

Let now S, T denote two multisets over universe U . It is S ⊆ T , if ∀a ∈ U ,
S(a) ≤ T (a). The size of S over universe U , denoted |S|, is defined as the sum
of the multiplicity of all elements in S, i.e., |S| =

∑
a∈U S(a). Finally, Sd,n de-

notes the set of multisets of size at most d over the universe {1, 2, . . . , n}. Let now
f ∈ Zp[x1, x2, . . . , xn] = Zp[x] be an n-variate polynomial over Zp with maximum
degree d. We can use the following generic notation to represent f , i.e.,

f(x) = f(x1, x2, . . . , xn) =
∑

S∈Sd,n

cS ·
∏
i∈S

x
S(i)
i . (2.1)

For example, the multiset {1, 1, 2, 2, 2, 5} corresponds to the term for x2
1x

3
2x5 in the

expanded form of the polynomial. The empty multiset ∅ corresponds to the constant
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term in the polynomial. Finally, the degree of a multivariate polynomial is the maximum
total degree of any monomial contained in the polynomial. For example, the degree of
the polynomial 3x1x2 + x3

3x4x5 is 5.

2.5 Bilinear Groups and Computational Assumption

We now review some background on bilinear groups of prime order. Let G be a cyclic
multiplicative group of prime order p, generated by g. Let also GT be a cyclic multi-
plicative group with the same order p and e : G × G → GT be a bilinear pairing with
the following properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and
a, b ∈ Zp; (2) Non-degeneracy: e(g, g) �= 1; (3) Computability: There is an efficient
algorithm to compute e(P,Q) for all P,Q ∈ G. We denote with (p,G,GT , e, g) the bi-
linear pairings parameters, output by a PPT algorithm on input 1λ. We use the following
computational assumption [6]:

Definition 4 (Bilinear 
-strong Diffie-Hellman assumption). Suppose λ is the secu-
rity parameter and let (p,G,GT , e, g) be a uniformly randomly generated tuple of bi-
linear pairings parameters. Given the elements g, gt, . . . , gt

� ∈ G for some t chosen at
random from Z∗p, for 
 = poly(λ), there is no PPT algorithm that can output the pair
(c, e(g, g)1/(t+c)) ∈ Z∗p\{−t} ×GT except with negligible probability neg(λ).

3 Selectively Secure Multivariate Polynomial Evaluation

As a warm-up exercise, in this section we first present an SCC scheme for multivariate
polynomial evaluation that is secure under a relaxed security model, namely, the se-
lective security model. Then, in Section 4, we explain how to augment this selectively
secure scheme and achieve adaptive security in the random oracle model.

Selective security is weaker than adaptive security, requiring the adversary to commit
ahead of time to the challenge point a, which is analogous to the selective security no-
tion often adopted in Identity-Based Encryption (IBE) [7], Attribute-Based Encryption
(ABE) [21], Functional Encryption (FE) [32] and Predicate Encryption (PE) [8]. The
detailed selective security definition is described in Definition 6 in the Appendix.

3.1 Intuition

Our construction relies on the following key observation.

Lemma 1 (Polynomial decomposition). Let f(x) ∈ Zp[x] be an n-variate polyno-
mial. For all a ∈ Zn

p , there exist polynomials qi(x) ∈ Zp[x] such that the polynomial
f(x)− f(a) can be expressed as f(x)− f(a) =

∑n
i=1(xi− ai)qi(x). Moreover, there

exists a polynomial-time algorithm to find the above polynomials qi(x).

The above lemma can be proved by explicit construction, dividing each time the poly-
nomial f(x)−f(a) with (xi−ai). Its proof is given in the full version of our paper [28].

Given now an n-variate polynomial f(x), the trusted source runs algorithms KeyGen
and Setup to create the function public key FK(f) = gf(t) of the polynomial f
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evaluated over a randomly chosen point t. Later in the computation stage, when a
server wishes to prove that v is indeed the value f(a), it will rely on the key obser-
vation stated in Lemma 1: It will compute n polynomials q1(x), q2(x), . . . , qn(x) such
that the relation of Lemma 1 holds, and the values gqi(t) (i = 1, . . . , n) will be provided
as the signature. To allow the server to evaluate the polynomials qi(x) at the commit-
ment point t in the exponent, the public key must contain appropriate helper terms.
If the claimed computation result v is correct, then the following must be true, where
both sides of the equation are evaluated at the commitment point t, i.e., it should be
f(t)− v =

∑
i∈[n](ti − ai)qi(t). We note here that in the real construction, the terms

in the above equation are encoded in the exponents of group elements, and therefore
the verifier cannot directly check the above equation. However, the verifier can check
the above condition using operations in the bilinear group, including the pairing opera-
tion which allows one to express one multiplication in the exponent. The bilinear group
operations directly translate to checking the above condition in the exponent.

3.2 Detailed Construction

We now present our selectively secure SCC scheme supporting multivariate polynomial
evaluation.

Algorithm (PK, SK) ← KeyGen(λ,F): Suppose that the function family F ⊆ Zp[x]
represents all polynomials over Zp with at most n variables and degree bounded by d.
Namely, family F contains the polynomials represented by multisets in set Sn,d (see
Equation 2.1). The KeyGen algorithm invokes the bilinear group generation algorithm
to generate a bilinear group instance of prime order p (of λ bits), with a bilinear map
function e : G × G → GT . Then it chooses a random generator g ∈ G and a random
point t = [t1, t2, . . . , tn] ∈ Zn

p and computes the signature generation set Wn,d

Wn,d =
{
g
∏

i∈S t
S(i)
i : ∀S ∈ Sn,d

}
. (3.2)

For example, W2,2 contains the elements g, gt1 , gt2 , gt
2
1 , gt

2
2 , gt1t

2
2 , gt

2
1t2 , gt

2
1t

2
2 . The al-

gorithm finally outputs the public key PK that contains g,Wn,d and the description of
G,GT , e. The secret key SK contains the commitment point t. We describe an opti-
mization referring to reducing the number of group elements ofWn,d in the full version
of the paper [28].

Algorithm FK(f)← Setup(SK,PK, f): Let f(x) ∈ Zp[x] denote an n-variate polyno-
mial of maximum degree d overZp that is represented by the multisets S1, S2, . . . , Sk ∈
Sn,d and the respective coefficients c1, c2, . . . , ck ∈ Zp (the polynomial has k terms),
as defined in Equation 2.1. The setup algorithm, by using the signature generation set
Wn,d contained in PK, computes the polynomial public key, i.e.,

FK(f) = gf(t) =
(
g
∏

i∈S1
t
S1(i)

i

)c1
×
(
g
∏

i∈S2
t
S2(i)

i

)c2
× . . .×

(
g
∏

i∈Sk
t
Sk(i)

i

)ck

.

(3.3)
The algorithm outputs the function public key FK(f).

Algorithm (v, w) ← Compute(PK, f, a): This algorithm first computes v = f(a).
Using Lemma 1, it finds an appropriate set of polynomials q1(x), q2(x), . . . , qn(x) to
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express polynomial f(x)− v as f(x) − v =
∑n

i=1(xi − ai)qi(x) . The signature w is
a vector of n witnesses w1, w2, . . . , wn, such that wi = gqi(t) for all i ∈ [n]. Note that
wi can easily be computed using the signature generation set Wn,d, as is achieved for
the function public key in Equation 3.3. It finally outputs the pair (v, w), where v is the
outcome of the polynomial evaluated at a, and w is the signature of correctness.

Algorithm Verify(PK,FK(f), a, v, w): Parse PK as the signature generation set Wn,d.
To verify that v is indeed f(a), given a signature w = [w1, w2, . . . , wn], algorithm
Verify checks if the following equation holds:

e
(
FK(f)g−v, g

) ?
=

n∏
i=1

e
(
gti−ai , wi

)
. (3.4)

In the above, the terms gti are contained in PK (specifically in Wn,d) and the function
public key FK(f) equals gf(t). The algorithm accepts the result v, and outputs 1 if the
above equations hold; otherwise, it rejects and outputs 0.

Algorithm FK(f ′) ← Update(SK,PK,FK(f), f ′): Let f denote the current polyno-
mial and f ′ be the new polynomial that corresponds to the update. Assume f ′ and f
differ in only one coefficient. Specifically, let S denote the multiset corresponding to
that coefficient.2 Suppose the current function public key is FK(f). The algorithm sets

FK(f ′) = FK(f) · g(c
′
S−cS)

∏
i∈S t

S(i)
i ,

updating FK(f) to FK(f ′), the new function public key. We now state our first theorem.

Theorem 1. There exists an SCC scheme for polynomial evaluation such that (1) It is
correct according to Definition 2; (2) For univariate polynomials, it is adaptively se-
cure according to Definition 3 and under the 
-SBDH assumption; (3) For multivariate
polynomials, it is selectively secure according to Definition 6 and under the 
-SBDH
assumption.

The correctness of our construction follows in a straightforward manner from Lemma 1,
and the bilinear property of the pairing operation e. The asymptotic cost analysis of the
scheme’s algorithms are presented in Section 6.The security proofs are presented in the
full version of the paper [28]. However, we give a proof sketch in the following.

3.3 Selective Security Proof Sketch

We briefly explain the selective security proof intuition of our scheme. The simulator
obtains an 
-SBDH instance, g, gτ , . . . , gτ

� ∈ G and it will construct a simulation such
that if an adversary can break the selective security of the SCC scheme, the simula-
tor can leverage it to break the 
-SBDH instance. Specifically, with knowledge of the
challenge point a = [a1, a2, . . . , an] that the adversary commits to at the beginning of
the selective security game, the simulator can carefully craft the simulation such that

2 I.e., the only difference between f and f ′ is that the coefficient cS corresponding to term∏
i∈S x

S(i)
i is updated to c′S in f ′.
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ti − ai = λi(τ + c), where t = [t1, t2, . . . , tn] represents the committed point used to
compute the polynomial digest, and λi and c are constants known to the simulator.

If an adversary can forge a signature for a wrong outcome of a polynomial, then
the simulator is able to raise terms in Equation 3.4 to the (τ + c)−1 power and output
e(g, g)(τ+c)−1

, breaking in this way the 
-SBDH assumption. Notice that in the selective
security proof, the simulator’s ability to take appropriate terms in Equation 3.4 to the
(τ + c)−1 power relies on knowing the challenge point a in advance, and the ability to
craft the simulation such that ti − ai = λi(τ + c).

4 Adaptively Secure Multivariate Polynomial Evaluation

In this section, we augment the above selectively secure SCC scheme to achieve adap-
tive security in the random oracle model. We also show that the same techniques can be
applied to construct an adaptively secure PVC scheme under the formulation of Parno
et al. [31] without the random oracle model.

4.1 Intuition

The intuition of the new construction is similar to the selectively secure construction.
For technical reasons explained later, instead of relying on the polynomial decomposi-
tion method described in Lemma 1, we use a new decomposition that is randomized, so
that it can later be manipulated by a simulator in the proof to achieve adaptive security.
The decomposition we are using is the following:

Lemma 2 (Randomized decomposition). Let f(x) ∈ Zp[x] be an n-variate polyno-
mial of degree at most d. For all a ∈ Zn

p and for all r1, . . . , rn−1 ∈ Zp such that
r1r2 . . . rn−1 �= 0, there exist polynomials qi(x) ∈ Zp[x] such that the polynomial
f(x)− f(a) can be expressed as

f(x)− f(a) =

n−1∑
i=1

[ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) ,

where qn(xn) is a polynomial of degree at most d that contains only variable xn. More-
over, there exists a polynomial-time algorithm to find the above polynomials qi(x).

The above lemma can be proved by explicit construction, each time dividing the poly-
nomial by ri(xi − ai) + xi+1 − ai+1, for increasing values of i, in a way such that
the remainder should not contain xi. The full proof of Lemma 2 is provided in the full
version of our paper [28]. We note here that in our construction explained below, the
numbers r1, r2, . . . , rn−1 mentioned in Lemma 2 will be chosen “at random” by calling
a hash function modelled as a random oracle (see Equation 4.5).

4.2 Detailed Construction

We now continue with the algorithms of our adaptively secure SCC scheme.
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Algorithm (PK, SK)← KeyGen(λ,F): Same as in Section 3.

Algorithm FK(f)← Setup(SK,PK, f): Same as in Section 3.

Algorithm (v, w) ← Compute(PK, f, a): Parse a as [a1, a2, . . . , an]. The algorithm
first computes the outcome of the polynomial v = f(a). Next, compute the following,
where H : {0, 1}∗ → Zp is a hash function (later modelled as a random oracle):

∀1 ≤ i ≤ n− 1 : ri = H(a||i) . (4.5)

Now, using Lemma 2, find an appropriate set of polynomials q1(t), q2(t), . . . , qn(tn) to
express polynomial f(x)− f(a) as

∑n−1
i=1 [ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn −

an)qn(xn) . Next, leverage the signature generation setWn,d (see Equation 3.2) to com-
pute wi = gqi(t) for 1 ≤ i ≤ n − 1. It is not hard to see that all wi’s can be computed
fromWn,d. The signaturew is composed as w = [w1, w2, . . . , wn, polynomial qn(xn)],
where the polynomial qn(xn) contains the description of the polynomial, i.e., up to d
coefficients βd, . . . , β0, since it is a univariate polynomial in xn of degree at most d.

The algorithm outputs the pair (v, w) denoting the outcome of the polynomial eval-
uated at a, and a signature to vouch for the correctness of the computation.

Algorithm {0, 1} ← Verify(PK,FK(f), a, v, w): Parse a as [a1, a2, . . . , an] ∈ Zn
p ;

then parse the signature w as [w1, w2, . . . , wn−1, polynomial qn(xn)]. To verify that v
is indeed the outcome of the correct polynomial evaluated at point a ∈ Zn

p , algorithm
Verify first computes gqn(tn) using the signature generation set Wn,d (Equation 3.2)
which is part of the public key PK.

Next, it computes the ri values in the same way as in Equation 4.5, namely, ri =
H(a||i) for 1 ≤ i ≤ n− 1. Finally, it checks if the following equation holds:

e
(
FK(f) · g−v, g

) ?
=

n−1∏
i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gqn(tn)

)
, (4.6)

In the above, the terms gti are contained in PK (specifically inWn,d) and FK(f) equals
gf(t). The algorithm accepts if the above equation holds; otherwise, it rejects.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Same as in Section 3.

4.3 Adaptive Security Proof Sketch

The simulator obtains an 
-SBDH instance, g, gτ , . . . , gτ
� ∈ G and it will construct a

simulation such that if an adversary can break the adaptive security of the SCC scheme,
the simulator can leverage it to break the 
-SBDH instance. Unlike in the selective
security proof of Section 3.3, without the adversary committing to the challenge point
in advance, the simulator cannot craft terms to satisfy conditions such as ti − ai =

λi(t+c)—but this condition is crucial later for the simulator to compute e(g, g)(τ+c)−1

and break the hardness assumption.
To circumvent this barrier in the proof, we embed “randomness” into the verification

equation, such that the simulator can manipulate these random numbers to satisfy a
condition described below, without having to know the challenge point ahead of time:
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ri(ti − ai) + ti+1 − ai+1 = λi(τ + c) for i = 1, . . . , n− 1 , (4.7)

where λi and c are constants known to the simulator.
Specifically, since these random numbers are outputs from a “random” hash function,

under the random oracle model, the simulator can manipulate the answers to the random
oracle queries in the simulation to achieve the above goal. Note that our SCC signature
with adaptive security has size O(n+d), as opposed to O(n), which was the size of the
signature in the selectively secure scheme (see Section 6). This is because it is essential
the signature contain the polynomial qn(xn) for the adaptive security proof to work, so
that the simulator can divide both sides of Equation 4.6 with τ + c. We can now state
our main theorem (see detailed proof in the full version of our paper [28]).

Theorem 2. There exists an SCC scheme for the evaluation of multivariate polynomials
such that (1) It is correct according to Definition 2; (2) It is adaptively secure according
to Definition 3, under the 
-SBDH assumption and in the random oracle model.

4.4 An Adaptively Secure PVC Scheme without Random Oracles

Our techniques can be readily adapted to construct an adaptively secure PVC scheme
for multivariate polynomial evaluation—see Section 2.3. Neverthelsess, if we were to
use the observations of Section 2.3 as a black box, we would construct a PVC scheme
that has the random oracle. However, we are able to remove the random oracle by taking
advantage of the fact that PVC is weaker than SCC.

The resulting PVC scheme is very similar to our construction in this section—except
that in the PVC scheme, the random numbers ri’s are directly chosen at random (as
a challenge) by a client issuing a query to the untrusted server, instead of being the
outputs of a hash function modeled as a random oracle. We provide the detailed PVC
scheme with full security in the the full version of the paper [28].

Theorem 3. There exists a PVC scheme for the evaluation of multivariate polynomials
of total such that (1) It is correct according to Definition 8; (2) It is adaptively secure
according to Definition 9 and under the 
-SBDH assumption.

5 SCC Schemes for Polynomial Differentiation

In this section, we construct an SCC scheme for the verification of differentiation
queries. Given a multivariate polynomial f(x), we show how to construct signatures
of correct computation for derivatives ∂kf(x)/∂xk

j (a) evaluated at a chosen point a.
One naive method to support verification of derivative computation is to commit to

all nk polynomials corresponding to all the possible derivatives (k in total) of each pos-
sible variable. This would incur a setup cost of O(nk

(
n+d
d

)
). In contrast, our construc-

tion requires only O(
(
n+d
d

)
) setup cost (see Section 6), the same with the polynomial

evaluation scheme. Another drawback of the naive method is increased update cost,
since an update operation would now involve updating all nk polynomials. In contrast,
our construction allows for efficient incremental updates.
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5.1 Intuition

The intuition of supporting polynomial differentiation is similar to the evaluation case.
In place of the decomposition lemmas (Lemmas 1 and 2) for polynomial evaluation, we
have the following counterparts (Lemmas 3 and 4) for derivative computation:

Lemma 3 (Decomposition for derivatives). For a ∈ Zn
p , the n-variate polynomial

f(x) ∈ Zp[x] can be expressed as

f(x) =

n−1∑
i=1

(xi − ai)ui(x) + (xn − an)
k+1q(xn) + ckx

k
n + . . .+ c1xn + c0 .

Then, the k-th derivative of f(x) wrt xn equals k!·ck at point a, i.e., ∂kf(x)/∂xk
n(a) =

k! · ck. A similar result holds for other variables xi by variable renaming.

Lemma 4 (Randomized decomposition for derivatives). For a ∈ Zn
p and for all

r1, . . . , rn−2 ∈ Zp such that r1r2 . . . rn−2 �= 0, the n-variate polynomial f(x) ∈ Zp[x]
can be expressed as

f(x) =
n−2∑
i=1

[ri(xi − ai) + xi+1 − ai+1]ui(x) + (xn−1 − an−1)un−1(x)

+ (xn − an)
k+1q(xn) + ckx

k
n +

k∑
i=0

cix
i
n ,

where un−1(x) is a polynomial containing only variables xn−1 and xn and q(xn) is
a polynomial containing only variable xn. Then, the k-th derivative of f(x) wrt xn

equals k! · ck at point a, i.e., ∂kf(x)/∂xk
n(a) = k! · ck. A similar result holds for other

variables xi by variable renaming.

Similar to the multivariate polynomial evaluation case, Lemmas 3 and 4 allow us to
construct respectively: 1) an SCC scheme for polynomial differentiation with selective
security; and 2) an SCC scheme for polynomial differentiation with adaptive security
in the random oracle model and a PVC scheme for polynomial differentiation with
adaptive security without the random oracle model .

5.2 Detailed Construction

We now present the adaptively secure SCC scheme for polynomial differentiation (based
on Lemma 4). For completeness, we also present a selectively secure scheme for poly-
nomial differentiation in the full version of the paper [28].

Algorithm (PK, SK)← KeyGen(λ,F): Same as in Section 3.

Algorithm FK(f)← Setup(SK,PK, f): Same as in Section 3.

Algorithm (v, w) ← Compute(PK, f, a, k, ind): In addition to the point a ∈ Zn
p , the

Compute algorithm here takes in two additional parameters k and ind, indicating the
evaluation of the k-th derivative of the polynomial with respect to variable xind at a.
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Without loss of generality, below we assume ind = n. In other words, the algorithm
should evaluate the k-th partial derivative with respect to xn at point a. First, the algo-
rithm computes randomness ri as

ri = H(a||ind||k||i) ∀1 ≤ i ≤ n− 2 , (5.8)

where H : {0, 1}∗ → Zp is a hash function (later modeled as a random oracle). Due to
Lemma 4, f(x) can be expressed as f(x) =

∑n−2
i=1 [ri(xi− ai) +xi+1− ai+1]ui(x) +

(xn−1−an−1)un−1(x)+(xn−an)
k+1q(xn)+

∑k
i=0 cix

i
n. The signature w for correct

derivative computation is the following tuple:

w =
(
gu1(t), . . . , gun−2(t), gq(tn), ck−1, . . . , c1, c0, polynomial un−1(x)

)
,

where polynomial un−1(x) is a description of the polynomial containing the corre-
sponding coefficients. Note that by Lemma 4, polynomial un−1(x) contains up to d2

terms. Also, the signature does not contain the term ck—this can be implicitly retrieved
by the result v since ck = v/k!. Finally, the result of the computation v is returned.

Algorithm Verify(PK,FK(f), a, k, ind, v, w): Let ck = v
k! . To verify that v is indeed

the outcome of the k-th partial derivative on variable xind (ind = n) evaluated at point
a ∈ Zn

p , perform the following steps.
Parse w as (w1, . . . , wn−2, wn, ck−1, . . . , c1, c0, polynomial un−1(x)).
Compute the ri values in the same way as in Equation 5.8, i.e., ri = H(a||ind||k||i)

for 1 ≤ i ≤ n− 2.

Check if e (FK(f), g) equals the following quantity (where L =
∏k

i=0 e
(
gt

i
n , g
)ci

):

n−2∏
i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
· e
(
gtn−1−an−1 , gun−1(t)

)
· e
(
g(tn−an)

k+1

, wn

)
· L ,

The above quantity can be easily computed with the public keys in O(n + d2) time,
since un−1(x) is a polynomial containing d2 terms and k ≤ d (see Section 6). The
algorithm accepts v and outputs 1 if the above equation holds; otherwise, it rejects.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Same as in Section 3.

Theorem 4. There exists an SCC scheme for the differentiation of multivariate poly-
nomials such that (1) It is correct according to Definition 2; (2) It is adaptively secure
according to Definition 3, under the 
-SBDH assumption and in the random oracle
model.

Corollary 1. There exists a PVC scheme for the differentiation of multivariate polyno-
mials such that (1) It is correct according to Definition 8; (2) It is adaptively secure
according to Definition 9 and under the 
-SBDH assumption.

6 Asymptotic Cost Analysis

In this section, we analyze the asymptotic cost of our schemes. Clearly, the worst-case
complexity of KeyGen is O(

(
n+d
d

)
), since the set Wn,d should contain one term for
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every possible term of the polynomial in n variables and total degree d. Similarly
algorithm Setup takes O(

(
n+d
d

)
) time to execute in the worst case. In practice, both

these complexities can be O(m), where m is the number of the terms contained in the
polynomial—see the full version of the paper [28] for minimizing the size of Wn,d.

Also for our adaptive security schemes, the size of the signature is O(n), and the
client performs O(n) amount of work to verify it using algorithm Verify (these costs are
O(n+d) for derivative computation). For our adaptive security schemes, the size of the
signature increases to O(n + d), and the client performs O(n + d) amount of work to
verify it (again, these costs O(n+ d2) for derivative computation).

As for algorithm Compute, it needs to decompose the polynomial according to Lem-
mata 1, 2, 3, 4 (depending on which scheme we are using). This polynomial decomposi-
tion dominates the asymptotic performance. To perform the polynomial decomposition,
the server performs n polynomial divisions. If we use the naive polynomial division
algorithm, since each variable can have degree up to d, each polynomial division in-
volves d steps, and each step takes time proportional to the number of terms in the poly-
nomial, namely, O(

(
n+d
d

)
). Therefore, the polynomial decomposition (Lemma 1) can

be achieved in O(nd
(
n+d
d

)
) time using the naive algorithm. However, in cases where

d > log n, one can use the FFT method to perform polynomial division, resulting in
O(n log n

(
n+d
d

)
) computation time. Finally, algorithm Update takes constant time to

update a constant number of coefficients.

7 Extensions and Observations

7.1 I/O Privacy

In our constructions, the client’s sensitive input is in plaintext, directly readable by
the untrusted server. To offer input and output privacy, we could potentially use a
fully-homomorphic public-key encryption scheme [16] (FHE scheme) so that algorithm
Compute executed by the untrusted server could operate on encrypted points. In this
way, everybody that knows pk could send queries to the server. After Compute executes
on the encryption of some point ā, it outputs the encrypted signature w of the value
v̄ = f(ā) under the public key pk, allowing only the owner of the secret key to de-
crypt and retrieve (and verify) the output of the computation. This could have various
applications which we highlight in the Appendix of the full version of the paper [28].

7.2 Removing the Random Oracles Through Stronger Assumptions

We now observe that if we are willing to (i) use subexponential assumptions and (ii)
restrict the size of the domain of the inputs of our polynomials to be subexponential
(now it is exponential), we can remove the random oracle from our adaptively secure
constructions. The subexponential assumption we use can be stated as follows:

Definition 5 (δ-subexponential bilinear 
-strong Diffie-Hellman assumption). Sup-
pose k is the security parameter, let 0 < δ < log k−1

log k and let (p,G,GT , e, g) be a uni-
formly randomly generated tuple of bilinear pairings parameters. Given the elements
g, gt, . . . , gt

� ∈ G for some t chosen at random from Z∗p, for 
 = poly(k), there is no
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algorithm running in time less than 22k
δ

that can output the pair (c, e(g, g)1/(t+c)) ∈
Z∗p\{−t} ×GT , except with negligible probability neg(k).

Note that in the above definition, we require δ < log k−1
log k so that 2kδ < k.

Theorem 5 (Adaptive security in the standard model). Let x be the input to our
polynomial. For x belonging to a domain of subexponential size, our selectively se-
cure scheme (Section 3) is adaptively secure in the standard model and assuming the
δ-subexponential bilinear 
-strong Diffie-Hellman assumption. Namely, for all PPT ad-
versaries, we can build a simulator running in subexponential time that breaks the
δ-subexponential bilinear 
-strong Diffie-Hellman assumption (see Definition 5).

Proof. Suppose we have n variables x1, x2, . . . , xn, and each one of which can take
values in [0, 1, . . . ,m − 1]. Assume that mn = 2k

δ

, yielding n logm = kδ. To build
the desired simulator, we modify the initialization phase of our selective security proof
in Section 3.3: We do not require the adversary to commit to an initial point a. In-
stead the simulator guesses the point a that the adversary is going to output later as a
forgery—and the simulator aborts if the guess is wrong. Clearly, the guess is success-
ful with probability 2−k

δ

. Therefore the simulation, in expectation, takes 2k
δ

time to
succeed. Since the adversary runs in at most polynomial time (see our adaptive secu-
rity definition), it follows that we have derived an algorithm that runs in poly(k)2k

δ

time and breaks the assumption. Note that this is a contradiction since the function
poly(k)2k

δ

= o(22k
δ

). This completes our proof. �

The same technique was also described by Boneh and Boyen [7] to achieve adaptive
security in their IBE scheme.
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Appendix

Definition 6 (Selective security of an SCC scheme). Let λ be the security parameter
and let P be an SCC scheme (KeyGen,Setup,Compute,Verify,Update) for a function
familyF . We say thatP is selectively-secure if no PPT adversaryA has more than neg-
ligible probability neg(λ) in winning the following game between A and a challenger:

1. Initialization. The adversary A commits to a point b. The challenger runs algo-
rithm KeyGen which outputs (PK, SK) and gives PK toA but maintains SK secret;

2. Setup and Update. The adversary A initially makes an oracle query to algorithm
Setup(SK,PK, f0), specifying an initial function f0 ∈ F , outputting FK(f0). Then,
for i = 1, . . . , k, where k = poly(λ), he makes a polynomial number of oracle
queries to the Update(SK,PK,FK(fi−1), fi) algorithm, each time specifying fi ∈
F . The challenger answers the queries by returning the resulting FK(fi);

3. Forgery. The adversaryA outputs a forgery (b, v, w) for point b that he committed
in the initialization phase, for some function fi previously queried where 0 ≤ i ≤ k.

The adversary A wins if 1← Verify(PK,FK(fi),b, v, w) and fi(b) �= v.

Definition 7 (PVC scheme). We define a PVC scheme for a function family F to be a
tuple of six PPT algorithms (KeyGen,Setup,Challenge,Compute,Verify,Update) with
the following specification:
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1. (PK, SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security pa-
rameter λ and a function family F . It outputs a public/secret key pair (PK, SK).
KeyGen is run only once at system initialization by a trusted source;

2. FK(f) ← Setup(SK,PK, f): Algorithm Setup (run by a trusted source) takes as
input the secret key SK, the public key PK, and a function f ∈ F . It outputs the
function public key FK(f) for the function f ;

3. chal(a) ← Challenge(PK, a): Algorithm Challenge (run by the verifier) takes as
input a value a ∈ domain(f). It outputs a challenge chal(a) corresponding to a;

4. (v, w) ← Compute(PK, f, a, chal(a)): Algorithm Compute (run by an untrusted
server) takes as input the public key PK, a function f ∈ F and a value a ∈
domain(f). It outputs a pair (v, w), where v = f(a) and w is a signature;

5. {0, 1} ← Verify(PK,FK(f), a, chal(a), v, w): Algorithm Verify (run by the verifier)
takes as input the public key PK, function public key FK(f), value a ∈ domain(f),
a claimed result v and a signature w. It outputs 0 or 1;

6. FK(f ′) ← Update(SK,PK,FK(f), f ′): Algorithm Update (run by the trusted
source) takes as input the secret key SK, the public key PK, the function public
key FK(f) for the old function f and the updated function description f ′. It outputs
the updated function public key FK(f ′).

Definition 8 (Correctness of a PVC scheme). Let λ be the security parameter and let
P be a PVC scheme (KeyGen,Setup,Challenge,Compute,Verify,Update) for a func-
tion family F . Let (PK, SK) ← KeyGen(λ,F). For all i = 1, . . . , poly(λ), for any
function fi ∈ F , suppose FK(fi) is the output of Update(SK,PK,FK(fi−1), fi), where
FK(f0) is output by algorithm Setup(SK,PK, f0) for some f0 ∈ F . We say that P
is correct, if for any i = 0, . . . , poly(λ), for any a ∈ domain(fi), for any chal(a)
output by Challenge(PK, a), it is 1 ← Verify(PK,FK(fi), a, chal(a)), v, w), where
(v, w)← Compute(PK, fi, a, chal(a))).

Definition 9 (Adaptive security of a PVC scheme). Let λ be the security parameter
and let P be a PVC scheme (KeyGen,Setup,Challenge,Compute,Verify,Update) for
a function family F . We say that P is adaptively secure if no PPT adversary A has
more than negligible probability neg(λ) in winning the following security game, played
between the adversary A and a challenger:

1. Initialization. The challenger runs algorithm KeyGen which outputs (PK, SK) and
then gives PK to the adversary but maintains SK secret;

2. Setup and Update. The adversary initially makes an oracle query to algorithm
Setup(SK,PK, f0), specifying an initial function f0 ∈ F , outputting FK(f0). Then,
for i = 1, . . . , k, where k = poly(λ), he makes a polynomial number of oracle
queries to the Update(SK,PK,FK(fi−1), fi) algorithm, each time specifying fi ∈
F . The challenger answers the queries by returning the resulting FK(fi);

3. Challenge and Forgery. The adversary A outputs a point b and sends it to the
challenger. The challenger returns chal(b) output by Challenge. The adversary A
outputs the forgery (b, chal(b), v, w) for one of the functions fi (0 ≤ i ≤ k) that
has been queried.

The adversary A wins if 1← Verify(PK,FK(fi),b, chal(b), v, w) and fi(b) �= v.
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Abstract. It is well known that it is impossible for two parties to toss a
coin fairly (Cleve, STOC 1986). This result implies that it is impossible
to securely compute with fairness any function that can be used to toss
a fair coin. In this paper, we focus on the class of deterministic Boolean
functions with finite domain, and we ask for which functions in this class
is it possible to information-theoretically toss an unbiased coin, given a
protocol for securely computing the function with fairness. We provide
a complete characterization of the functions in this class that imply and
do not imply fair coin tossing. This characterization extends our knowl-
edge of which functions cannot be securely computed with fairness. In
addition, it provides a focus as to which functions may potentially be
securely computed with fairness, since a function that cannot be used
to fairly toss a coin is not ruled out by the impossibility result of Cleve
(which is the only known impossibility result for fairness). In addition
to the above, we draw corollaries to the feasibility of achieving fairness
in two possible fail-stop models.

1 Introduction

1.1 Background

In the setting of securemultiparty computation, somemutually distrusting parties
wish to compute some joint function of their inputs in the presence of adversarial
behaviour. Loosely speaking, the security requirements from such a computation
are that nothing is learned from the protocol other than the output (privacy), that
the output is distributed according to the prescribed functionality (correctness),
and that parties cannot choose their inputs as a function of the others’ inputs (in-
dependence of inputs). Another important property is that of fairness which, in-
tuitively, means that either everyone receives the output or no one does.

It is well known that when a majority of the parties are honest, it is possible to
securely compute any functionality while guaranteeing all of the security proper-
ties mentioned above, including fairness [8,2,4,11]. Furthermore, when there is no
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honest majority, including the important case of two parties where one may be
corrupted, it is possible to securely compute any functionality while guaranteeing
all of the security properties mentioned above except for fairness [13,8,6]. The
fact that fairness is not achieved in this latter case is inherent, as was shown in
the seminal work of Cleve [5] who proved that there exist functions that cannot
be computed by two parties with complete fairness. Specifically, Cleve showed
that the very basic and natural functionality of coin-tossing, where two parties
toss an unbiased coin, cannot be computed fairly. The impossibility result of
Cleve implies that fairness cannot be achieved in general. That is, Cleve’s re-
sult proves that it is impossible to securely compute with complete fairness any
function that can be used to toss a fair coin (like the boolean XOR function).

Until recently, the accepted folklore from the time of Cleve’s result was that
only trivial functions can be securely computed with complete fairness without
an honest majority. This changed recently with the surprising work of Gordon
et al. [9] who showed that this folklore is incorrect and that there exist some
non-trivial boolean functions that can be computed fairly, in the two party
setting. They showed that any function that does not contain an embedded
XOR (i.e., inputs x1, x2, y1, y2 such that f(x1, y1) = f(x2, y2) �= f(x1, y2) =
f(x2, y1)) can be computed fairly in the malicious settings. Examples of functions
without an embedded XOR include the boolean OR and AND functions and
Yao’s millionaires problem [13] (i.e., the greater-than function). This possibility
result changes our understanding regarding fairness, and re-opens the question
of which functions can be computed with complete fairness. Given the possibility
result mentioned above, and given the fact that Cleve’s impossibility result rules
out completely fair computation of boolean XOR, a natural conjecture is that
the presence of an embedded XOR serves as a barrier to a fair computation of
a given function. However, [9] showed that this is also incorrect: they give an
example of a function that does contain an embedded XOR and construct a
protocol that securely computes this function with fairness.

Since [9], there have been no other works that further our understanding
regarding which (boolean) functions can be computed fairly without an honest
majority in the two party setting. Specifically, Cleve’s impossibility result is the
only known function that cannot be computed fairly, and the class of functions
for which [9] shows possibility are the only known possible functions. There is
therefore a large class of functions for which we have no idea as to whether or
not they can be securely computed with complete fairness.

1.2 Our Work

Motivated by the fundamental question of characterizing which functions can be
computed with complete fairness, we analyze which functions cannot be com-
puted fairly since they are already ruled out by Cleve’s original result. That is,
we show which boolean functions “imply” the coin-tossing functionality. We pro-
vide a simple property (criterion) on the truth table of a given boolean function.
We then show that for every function that satisfies this property, it holds that
the existence of a protocol that fairly computes the given function implies the
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existence of a protocol for fair coin-tossing in the presence of a fail-stop or mali-
cious adversary, in contradiction to Cleve’s impossibility result. This implies that
the functions that satisfy the property cannot be computed fairly. The property
is very simple, clean and general.

The more challenging and technically interesting part of our work is a proof
that the property is tight. Namely, we show that a function f that does not
satisfy the property cannot be used to construct a fair coin-tossing protocol (in
the information theoretic setting). More precisely, we show that it is impossible
to construct a fair two-party coin-tossing protocol, even if the parties are given
access to a trusted party that computes f fairly for them. We prove this im-
possibility by showing the existence of an (inefficient) adversary that can bias
the outcome with non-negligible probability. Thus, we prove that it is not possi-
ble to toss a coin with information-theoretic security, when given access to fair
computations of f . We stress that this “impossibility” result is actually a source
of optimism, since it may be possible to securely compute such functions with
complete fairness. Indeed, the fair protocols presented in [9] are for functions for
which the property does not hold.1

It is important to note that our proof that functions that do not satisfy the
property do not imply coin tossing is very different from the proof of impossibil-
ity by Cleve. Specifically, the intuition behind the proof by Cleve is that since
the parties exchange messages in turn, there must be a point where one party
has more information than the other about the outcome of the coin-tossing pro-
tocol. If that party aborts at this point, then this results in bias. This argument
holds since the parties cannot exchange information simultaneously. In contrast,
in our setting, the parties can exchange information simultaneously via the com-
putation of f . Thus, our proof is conceptually very different to that of Cleve,
and in particular, is not a reduction to the proof by Cleve.

The Criterion. Intuitively, the property that we define over the function’s truth
table relates to the question of whether or not it is possible for one party to sin-
glehandedly change the probability that the output of the function will be 1 (or 0)
based on how it chooses its input. In order to explain the criterion, we give two
examples of functions that imply coin-tossing, meaning that a fair secure protocol
for computing the function implies a fair secure protocol for coin tossing. We dis-
cuss how each of the examples can be used to toss a coin fairly, and this in turn will
help us to explain the criterion. The functions are given below:

(a)

y1 y2 y3
x1 0 1 1
x2 1 0 0
x3 0 0 1

(b)

y1 y2 y3
x1 1 0 0
x2 0 1 0
x3 0 0 1

1 We remark that since our impossibility result is information theoretic, there is the
possibility that some of the functions for which the property does not hold do imply
coin tossing computationally. In such a case, the impossibility result of Cleve still
applies to them. See more discussion in “open questions” below.
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Consider function (a), and assume that there exists a fair protocol for this
function. We show how to toss a fair coin using a single invocation of the protocol
for f . Before doing so, we observe that the output of a single invocation of the
function can be expressed by multiplying the truth-table matrix of the function
by probability vectors.2 Specifically, assume that party P1 chooses input xi with
probability pi, for i = 1, 2, 3 (thus p1 + p2 + p3 = 1 since it must choose some
input); likewise, assume that P2 chooses input yi with probability qi. Now, let
Mf be the “truth table” of the function, meaning thatMf [i, j] = f(xi, yj). Then,
the output of the invocation of f upon the inputs chosen by the parties equals 1
with probability exactly (p1, p2, p3) ·Mf · (q1, q2, q3)T .

We are now ready to show how to toss a coin using f . First, note that there
are two complementary rows; these are the rows specified by inputs x1 and x2.
This means that if P1 chooses one of the inputs in {x1, x2} uniformly at random,
then no matter what distribution over the inputs (corrupted) P2 uses, the result
is a uniformly chosen coin. In order to see this, observe that when we multiply
the vector (12 ,

1
2 , 0) (the distribution over the input of P1) with the matrix Mf ,

the result is the vector (12 ,
1
2 ,

1
2 ). This means that no matter what input P2

will choose, or what distribution over the inputs it may use, the output is 1 with
probability 1/2 (formally, the output is 1 with probability 1

2 ·q1+
1
2 ·q2+

1
2 ·q3 = 1

2
because q1 + q2 + q3 = 1). This means that if P1 is honest, then a corrupted
P2 cannot bias the output. Likewise, there are also two complementary columns
(y1 and y3), and thus, if P2 chooses one of the inputs in {y1, y3} uniformly at
random, then no matter what distribution over the inputs (a possibly corrupted)
P1 uses, the result is a uniform coin.

In contrast, there are no two complementary rows or columns in the function
(b). However, if P1 chooses one of the inputs {x1, x2, x3} uniformly at random
(i.e., each input with probability one third), then no matter what distribution
P2 will use, the output is 1 with probability 1/3. Similarly, if P2 chooses a
uniformly random input, then no matter what P1 does, the output is 1 with the
same probability. Therefore, a single invocation of the function f in which the
honest party chooses the uniform distribution over its inputs results in a coin
that equals 1 with probability exactly 1

3 , irrespective of what the other party
inputs. In order to obtain an unbiased coin that equals 1 with probability 1

2 the
method of von-Neumann [12] can be used. This method works by having the
parties use the function f to toss two coins. If the resulting coins are different
(i.e, 01 or 10), then they output the result of the first invocation. Otherwise,
they run the protocol again. This yields a coin that equals 1 with probability
1
2 since the probability of obtaining 01 equals the probability of obtaining 10.
Thus, conditioned on the results being different, the probability of outputting 0
equals the probability of outputting 1.

The criterion is a direct generalization of the examples shown above.
Let f : {x1, . . . , x�} × {y1, . . . , y�} → {0, 1} be a function, and let Mf be the
truth table representation as described above. We say that the function has the
criterion if there exist two probability vectors, p = (p1, . . . , pm), q = (q1 . . . , q�)

2 p = (p1, . . . , pm) is a probability vector if pi ≥ 0 for every 1 ≤ i ≤ m, and
∑m

i=1 pi = 1.
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such that p · Mf and Mf · qT are both vectors that equal δ everywhere, for
some 0 < δ < 1. Observe that if such probability vectors exist, then the func-
tion implies the coin-tossing functionality as we described above. Specifically, P1

chooses its input according to distribution p, and P2 chooses its inputs according
to the distribution q. The result is then a coin that equals 1 with probability
δ. Using the method of von-Neumann, this can be used to obtain a uniformly
distributed coin. We conclude:

Theorem 1.1 (informal). Let f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1} be a
function that satisfies the aforementioned criterion. Then, the existence of a
protocol for securely computing f with complete fairness implies the existence of
a fair coin tossing protocol.

An immediate corollary of this theorem is that any such function cannot be
securely computed with complete fairness, as this contradicts the impossibility
result of Cleve [5].

As we have mentioned above, the more interesting and technically challenging
part of our work is a proof that the criterion is tight. That is, we prove the
following theorem:

Theorem 1.2 (informal). Let f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1} be a
function that does not satisfy the aforementioned criterion. Then, there exists
an exponential-time adversary that can bias the outcome of every coin-tossing
protocol that uses ideal and fair invocations of f .

This result has a number of ramifications. Most notably, it helps focus our re-
search on the question of fairness in two-party secure computation. Specifically,
the only functions that can potentially be computed securely with fairness are
those for which the property does not hold. In these functions one of the parties
can partially influence the outcome of the result singlehandedly, a fact that is
used inherently in the protocol of [9] for the function with an embedded XOR.
This does not mean that all functions of this type can be fairly computed. How-
ever, it provides a good starting point. In addition, our results define the set
of functions for which Cleve’s impossibility result suffices for proving that they
cannot be securely computed with fairness. Given that no function other than
those implying coin tossing has been ruled out since Cleve’s initial result, un-
derstanding exactly what is included in this impossibility is of importance.

On Fail-Stop Adversaries. Our main results above consider the case of ma-
licious adversaries. In addition, we explore the fail-stop adversary model where
the adversary follows the protocol like an honest party, but can halt early. This
model is of interest since the impossibility result of Cleve [5] for achieving fair
coin tossing holds also for fail-stop adversaries. In order to prove theorems re-
garding the fail-stop model, we first provide a definition of security with complete
fairness for fail-stop adversaries that follows the real/ideal simulation paradigm.
Surprisingly, this turns out not to be straightforward and we provide two nat-
ural formulations that are very different regarding feasibility. The formulations
differ regarding the ideal-world adversary/simulator. The question that arises is
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whether or not the simulator is allowed to use a different input to the prescribed
one. In the semi-honest model (which differs only in the fact that the adver-
sary cannot halt early) the standard formulation is to not allow the simulator
to change the prescribed input, whereas in the malicious model the simulator is
always allowed to change the prescribed input. We therefore define two fail-stop
models. In this first, called “fail-stop1”, the simulator is allowed to either send
the trusted party computing the function the prescribed input of the party or
an abort symbol ⊥, but nothing else. In the second, called “fail-stop2”, the sim-
ulator may send any input that it wishes to the trusted party computing the
function. Note, however, that if there was no early abort then the prescribed in-
put must be used because such an execution is identical to an execution between
two honest parties.

Observe that in the first model, the honest party is guaranteed to receive the
output on the prescribed inputs, unless it receives abort. In addition, observe
that any protocol that is secure in the presence of malicious adversaries is secure
also in the fail-stop2 model. However, this is not true of the fail-stop1 model
(this is due to the fact that the simulator in the ideal model for the case of
malicious adversaries is more powerful than in the fail-stop1 ideal model since
the former can send any input whereas the latter can only send the prescribed
input or ⊥).

We remark that Cleve’s impossibility result holds in both models, since the
parties do not have inputs in the coin-tossing functionality, and therefore there
is no difference in the ideal-worlds of the models in this case. In addition, the
protocols of [9] that are secure for malicious adversaries are secure for fail-stop2
(as mentioned above, this is immediate), but are not secure for fail-stop1.

We show that in the fail-stop1 model, it is impossible to securely compute with
complete fairness any function containing an embedded XOR. We show this by
constructing a coin-tossing protocol from any such function, that is secure in the
fail-stop model. Thus, the only functions that can potentially be securely com-
puted with fairness are those with no embedded XOR but with an embedded OR
(if a function has neither, then it is trivial and can be computed unconditionally
and fairly); we remark that there are very few functions with this property. We
conclude that in the fail-stop1 model, fairness cannot be achieved for almost all
non-trivial functions. We remark that [9] presents secure protocols that achieve
complete fairness for functions that have no embedded XOR; however, they are
not secure in the fail-stop1 model, as mentioned.

Regarding the fail-stop2 model, we prove an analogous result to Theorem 1.2.
In the proof of Theorem 1.2, the adversary that we construct changes its input
in one of the invocations of f and then continues honestly. Thus, it is malicious
and not fail-stop2. Nevertheless, we show how the proof can be modified in order
to hold for the fail-stop2 model as well.

These extensions for fail-stop adversaries deepen our understanding regarding
the feasibility of obtaining fairness. Specifically, any protocol that achieves fair-
ness for any non-trivial function (or at least any function that has an embedded
XOR), must have the property that the simulator can send any input in the
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ideal model. Stated differently, the input that is effectively used by a corrupted
party cannot be somehow committed, thereby preventing this behaviour. This
also explains why the protocols of [9] have this property.

1.3 Open Questions

In this work we provide an almost complete characterization regarding what
functions imply and do not imply coin tossing. Our characterisation is not com-
pletely tight since the impossibility result of Theorem 1.2 only holds in the
information-theoretic setting; this is due to the fact that the adversary needs
to carry out inefficient computations. Thus, it is conceivable that coin tossing
can be achieved computationally from some such functions. It is important to
note, however, that any function that does not fulfil our criterion implies obliv-
ious transfer (OT). Thus, any protocol that uses such a function has access
to OT and all that is implied by OT (e.g., commitments, zero knowledge, and
so on). Thus, any such computational construction would have to be inherently
nonblack-box in some sense. Our work also only considers finite functions (where
the size of the domain is not dependent on the security parameter); extensions
to other function classes, including non-Boolean functions, is also of interest.

The main open question left by our work is to characterize which functions
for which the criterion does not hold can be securely computed with complete
fairness. Our work is an important step to answering this question by providing
a clearer focus than was previously known. Observe that in order to show that
a function that does not fulfil the criterion cannot be securely computed with
complete fairness, a new impossibility result must be proven. In particular, it
will not be possible to reduce the impossibility to Cleve [5] since such a function
does not imply coin tossing.

2 Definitions

The Coin-Tossing Functionality. We define the coin-tossing functionality
simply by f ct(λ, λ) = (U1, U1), where λ denotes the empty input and U1 denotes
the uniform distribution over {0, 1}. That is, the functionality receives no input,
chooses a uniformly chosen bit and gives both parties the same bit. This yields
the following definition:

Definition 2.1 (Coin-Tossing by Simulation). A protocol π is a secure coin-
tossing protocol via simulation if it securely computes f ct with complete fairness
in the presence of malicious adversaries.

The above definition provides very strong simulation-based guarantees, which
is excellent for our positive results. However, when proving impossibility, it
is preferable to rule out even weaker, non-simulation based definitions. We
now present a weaker definition where the guarantee is that the honest party
outputs an unbiased coin, irrespective of the cheating party’s behaviour.
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However, we stress that since our impossibility result only holds with respect
to an all-powerful adversary (as discussed in the introduction), our definition is
stronger than above since it requires security in the presence of any adversary,
and not just polynomial-time adversaries.

Notations. Denote by 〈P1, P2〉 a two party protocol where both parties act
honestly. For 
 ∈ {1, 2}, let out�〈P ∗1 , P ∗2 〉 denote the output of party P ∗� in an
execution of P ∗1 with P ∗2 . In some cases, we also specify the random coins that
the parties use in the execution; 〈P1(r1), P2(r2)〉 denotes an execution where P1

acts honestly and uses random tape r1 and P2 acts honestly and uses random
tape r2. Let r(n) be a polynomial that bounds the number of rounds of the
protocol π, and let c(n) be an upper bound on the length of the random tape of
the parties. Let Uni denote the uniform distribution over {0, 1}c(n) × {0, 1}c(n).
We are now ready to define a coin-tossing protocol:

Definition 2.2 (Information-Theoretic Coin-Tossing). A polynomial-time
protocol π = 〈P1, P2〉 is an unbiased coin-tossing protocol, if the following hold:

1. (agreement) There exists a negligible function μ(·) such that for every n it
holds that:

Pr
r1,r2←Uni

[
out1〈P1(r1), P2(r2)〉 �= out2〈P1(r1), P2(r2)〉

]
≤ μ(n) .

2. (no bias) For every adversary A there exists a negligible function μ(·) such
that for every b ∈ {0, 1} and every n ∈ N:

Pr
[
out1〈P1,A〉 = b

]
≤ 1

2
+ μ(n) and Pr

[
out2〈A, P2〉 = b

]
≤ 1

2
+ μ(n) .

Observe that both requirements together guarantee that two honest parties will
output the same uniformly distributed bit, except with negligible probability.

Function Implication. In the paper, we study whether or not a function f
“implies” the coin-tossing functionality. We now formally define what we mean
by “function implication”. Our formulation uses the notion of a hybrid model,
which is a combination of the ideal and real models (see [3,6]). Specifically,
let f be a function. Then, an execution in the f -hybrid model consists of real
interaction between the parties (like in the real model) and ideal invocations of
f (like in the ideal model). The ideal invocations of f take place via a trusted
party that receives inputs and sends the output of f on those inputs to both
parties, exactly like in the ideal model. We stress that in our ideal model both
parties receive the output of f simultaneously since we are considering fair secure
computation. We are now ready for the definition.

Definition 2.3. Let f : X × Y → Z and g : X ′ × Y ′ → Z ′ be functions.
We say that function f implies function g in the presence of malicious adversaries
if there exists a protocol that securely computes g in the f -hybrid model with
complete fairness, in the presence of static malicious adversaries. We say that
f information-theoretically implies g if the above holds with statistical security.
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Note that if g can be securely computed with fairness (under some assumption),
then every function f computationally implies g. Thus, this is only of interest for
functions g that either cannot be securely computed with fairness, or for which
this fact is not known.

3 The Criterion

In this section we define the criterion, and explore its properties. We start with
the definition of δ-balanced functions.

3.1 δ-Balanced Functions

A vector p = (p1, . . . , pk) is a probability vector if
∑k

i=1 pi = 1, and for every
1 ≤ i ≤ k it holds that pi ≥ 0. Let 1k be the all one vector of size k. In addition,
for a given function f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1}, let Mf denote the
matrix defined by the truth table of f . That is, for every 1 ≤ i ≤ m, 1 ≤ j ≤ 
,
it holds that Mf [i, j] = f(xi, yj).

Informally, a function is balanced if there exist probabilities over the inputs for
each party that determine the probability that the output equals 1, irrespective
of what input the other party uses. Assume that P1 chooses its input according to
the probability vector (p1, . . . , pm), meaning that it uses input xi with probability
pi, for every i = 1, . . . ,m, and assume that party P2 uses the jth input yj . Then,
the probability that the output equals 1 is obtained by multiplying (p1, . . . , pm)
with the jth column of Mf . Thus, a function is balanced on the left, or with
respect to P1, if when multiplying (p1, . . . , pm) with Mf the result is a vector
with values that are all equal. Formally:

Definition 3.1. Let f : {x1, . . . , xm}× {y1, . . . , y�} → {0, 1} be a function, and
let 0 ≤ δ1, δ2 ≤ 1 be constants. We say that f is δ1-left-balanced if there exists a
probability vector p = (p1, . . . , pm) such that:

(p1, . . . , pm) ·Mf = δ1 · 1� = (δ1, . . . , δ1) .

Likewise, we say that the function f is δ2-right-balanced if there exists a proba-
bility vector q = (q1, . . . , q�) such that:

Mf · (q1, . . . , q�)T = δ2 · 1T
m .

If f is δ1-left-balanced and δ2-right-balanced, we say that f is (δ1, δ2)-balanced.
If δ1 = δ2, then we say that f is δ-balanced, where δ = δ1 = δ2. We say that f
is strictly δ-balanced if δ1 = δ2 and 0 < δ < 1.

Note that a function may be δ2-right-balanced for some 0 ≤ δ2 ≤ 1 but not
left balanced. For example, consider the function defined by the truth table

Mf
def
=

[
1 0 1
0 1 1

]
. This function is right balanced for δ2 = 1

2 by taking q = (12 ,
1
2 , 0).

However, it is not left-balanced for any δ1 because for every probability vector
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(p1, p2) = (p, 1−p) it holds that (p1, p2)·Mf̃ = (p, 1−p, 1), which is not balanced
for any p. Likewise, a function may be δ2-right-balanced, but not left balanced.

We now prove a simple but somewhat surprising proposition, stating that if
a function is (δ1, δ2)-balanced, then δ1 and δ2 must actually equal each other.
Thus, any (δ1, δ2)-balanced function is actually δ-balanced.

Proposition 3.2. Let f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1} be a (δ1, δ2)-
balanced function for some constants 0 ≤ δ1, δ2 ≤ 1. Then, δ1 = δ2, and so f is
δ-balanced.

Proof: Under the assumption that f is (δ1, δ2)-balanced, we have that there
exist probability vectors p = (p1, . . . , pm) and q = (q1, . . . , q�) such that p·Mf =
δ1 ·1� and Mf ·qT = δ2 ·1T

m. Observe that since p and q are probability vectors,
it follows that for every constant c we have p · (c ·1T

m) = c · (p ·1T
m) = c; likewise

(c · 1�) · qT = c. Thus,

p ·Mf · qT = p ·
(
Mf · qT

)
= p ·

(
δ2 · 1T

m

)
= δ2

and
p ·Mf · qT =

(
p ·Mf

)
· qT =

(
δ1 · 1�

)
· qT = δ1,

implying that δ1 = δ2.

Note that a function can be both δ2-right-balanced and δ′2-right-balanced for
some δ2 �= δ′2. For example, consider the function Mf , which was defined above.
It is easy to see that the function is δ2-right-balanced for every 1/2 ≤ δ2 ≤ 1
(by multiplying with the probability vector (1 − δ2, 1 − δ2, 2δ2 − 1)T from the
right). Nevertheless, in cases where a function is δ2-right-balanced for multiple
values, Proposition 3.2 implies that the function cannot be left-balanced for any
δ1. Likewise, if a function is δ1-left balanced for more than one value of δ1, it
cannot be right-balanced.

3.2 The Criterion

The criterion for determining whether or not a function implies coin-tossing is
simply the question of whether the function is strictly δ-balanced for some δ.
Formally:

Property 3.3. A function f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1} is strictly
balanced if it is δ-balanced for some 0 < δ < 1.

Observe that if Mf has a monochromatic row (i.e., there exists an input x such
that for all yi, yj it holds that f(x, yi) = f(x, yj)), then there exists a probability
vector p such that p ·Mf = 0 ·1� or p ·Mf = 1 ·1�; likewise for a monochromatic
column. Nevertheless, we stress that the existence of such a row and column does
not imply f is strictly balanced since it is required that δ be strictly between 0
and 1, and not equal to either.
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3.3 Exploring the δ-Balanced Property

In this section we prove some technical lemmas regarding the property that
we will need later in the proof. First, we show that if a function f is not left-
balanced for any 0 ≤ δ ≤ 1 (resp. not right balanced), then it is not close to
being balanced. More precisely, it seems possible that a function f can be not
δ-balanced, but is only negligibly far from being balanced (i.e., there may exist
some probability vector p = p(n) (that depends on the security parameter n)
such that all the values in the vector p · Mf are at most negligibly far from
δ, for some 0 ≤ δ ≤ 1). In the following claim, we show that this situation is
impossible. Specifically, we show that if a function is not δ balanced, then there
exists some constant c > 0, such that for any probability vector p, there is a
distance of at least c between two values in the vector p ·Mf . This holds also
for probability vectors that are functions of the security parameter n (as can be
the case in our setting of secure protocols).

Lemma 3.4. Let f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1} be a function that is
not left balanced for any 0 ≤ δ1 ≤ 1 (including δ1 = 0, 1). Then, there exists a
constant c > 0, such that for any probability vector p = p(n), it holds that:

max
i

(δ1, . . . , δ�)−min
i
(δ1, . . . , δ�) ≥ c

where (δ1, . . . , δ�) = p ·Mf , and Mf is the matrix representation of f .

Proof: Let Pm be the set of all probability vectors of size m. That is, Pm ⊆
[0, 1]m (which itself is a subset of Rm), and each vector sums up to one. Pm is
a closed and bounded space. Therefore using the Heine-Borel theorem, Pm is a
compact space.

We start by defining a function φ : Pm → [0, 1] as follows:

φ(p) = max
i

(p ·Mf)−min
i
·(p ·Mf)

Clearly, the function p · Mf (where Mf is fixed and p is the variable) is a
continuous function. Moreover, the maximum (resp. minimum) of a continuous
function is itself a continuous function. Therefore, from composition of contin-
uous functions we have that the function φ is continuous. Using the extreme
value theorem (a continuous function from a compact space to a subset of the
real numbers attains its maximum and minimum), there exists some probability
vector pmin for which for all p ∈ Pm, φ(pmin) ≤ φ(p). Since f is not δ-balanced,

pmin ·Mf �= δ · 1� for any 0 ≤ δ ≤ 1, and so φ(pmin) > 0. Let c
def
= φ(pmin).

This implies that for any probability vector p, we have that φ(p) ≥ φ(pmin) = c.
That is:

max
i

(δ1, . . . , δ�)−min
i
(δ1, . . . , δ�) ≥ c (1)

where (δ1, . . . , δ�) = p·Mf . We have proven this for all probability vectors of size
m. Thus, it holds also for every probability vector p(n) that is a function of n,
and for all n’s (this is true since for every n, p(n) defines a concrete probability
vector for which Eq. (1) holds).

A similar claim holds for the case where f is not right balanced.



254 G. Asharov, Y. Lindell, and T. Rabin

4 Strictly-Balanced Functions Imply Coin Tossing

In this section, we show that any function f that is strictly balanced can be used
to fairly toss a coin. Intuitively, this follows from the well known method of Von
Neumann [12] for obtaining an unbiased coin toss from a biased one. Specifically,
given a coin that is heads with probability ε and tails with probability 1 − ε,
Von Neumann showed that you can toss a coin that is heads with probability
exactly 1/2 by tossing the coin twice in each phase, and stopping the first time
that the pair is either heads-tails or tails-heads. Then, the parties output heads
if the pair is heads-tails, and otherwise they output tails. This gives an unbiased
coin because the probability of heads-tails equals the probability of tails-heads
(namely, both probabilities equal ε · (1− ε)). Now, since the function f is strictly
δ-balanced it holds that if party P1 chooses its input via the probability vector
(p1, . . . , pm) then the output will equal 1 with probability δ, irrespective of what
input is used by P2; likewise if P2 chooses its input via (q1, . . . , q�) then the
output will be 1 with probability δ irrespective of what P1 does. This yields a
coin that equals 1 with probability δ and thus Von Neumann’s method can be
applied to achieve unbiased coin tossing. We stress that if one of the parties
aborts early and refuses to participate, then the other party proceeds by itself
(essentially, tossing a coin with probability δ until it concludes). We have the
following theorem:

Theorem 4.1. Let f : {x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a strictly-balanced
function for some constant 0 < δ < 1, as in Property 3.3. Then, f information-
theoretically and computationally implies the coin-tossing functionality f ct with
malicious adversaries.

Application to Fairness. Cleve [5] showed that there does not exist a protocol
that securely computes the fair coin-tossing functionality in the plain model.
Since any strictly-balanced function f implies the coin-tossing functionality, a
protocol for f in the plain model implies the existence of a protocol for coin-
tossing in the plain model. We therefore conclude:

Corollary 4.2. Let f : {x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a strictly-balanced
function. Then, f cannot be securely computed with fairness (with computational
or information-theoretic security).

5 Unbalanced Functions Do Not Information-
Theoretically Imply Coin Tossing

We now show that any function f that is not strictly-balanced (for all δ) does not
information-theoretically imply the coin-tossing functionality. Stated differently,
there does not exist a protocol for fairly tossing an unbiased coin in the f -hybrid
model, with statistical security. Observe that in the f -hybrid model, it is possible
for the parties to simultaneously exchange information, in some sense, since
both parties receive output from calls to f at the same time. Thus, Cleve-type
arguments [5] that are based on the fact that one party must know more than
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the other party at some point do not hold. We prove our result by showing that
for every protocol there exists an unbounded malicious adversary that can bias
the result. Our unbounded adversary needs to compute probabilities, which can
actually be approximated given an NP-oracle. Thus, it is possible to interpret
our technical result also as a black-box separation, if desired.

As we have mentioned in the introduction, although we prove an “impossibil-
ity result” here, the implication is the opposite. Specifically, our proof that an
unbalanced3 f cannot be used to toss an unbiased coin implies that it may be
possible to securely compute such functions with fairness. Indeed, the functions
that were shown to be securely computable with fairness in [9] are unbalanced.

Recall that a function is not strictly balanced if is not δ-balanced for any
0 < δ < 1. We treat the case that the function is not δ-balanced at all separately
from the case that it is δ-balanced but for δ = 0 or δ = 1. In the proof we show
that in both of these cases, such a function cannot be used to construct a fair
coin tossing protocol.

Theorem 5.1. Let f :{x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a function that is
not left-balanced, for any 0 ≤ δ1 ≤ 1. Then, f does not information-theoretically
imply the coin-tossing functionality with malicious adversaries.

Proof Idea: We begin by observing that if f does not contain an embedded OR
(i.e., inputs x0, x1, y0, y1 such that f(x0, y0) = f(x1, y0) = f(x0, y1) �= f(x1, y1))
or an embedded XOR (i.e., inputs x0, x1, y0, y1 such that f(x0, y0) = f(x1, y1) �=
f(x0, y1) = f(x1, y0)), then it is trivial and can be computed by simply having
one party send the output to the other. This is because such a function depends
only on the input of one party. Thus, by [5], it is impossible to fairly toss an
unbiased coin in the f -hybrid model, since this is the same as fairly tossing an
unbiased coin in the plain model. Thus, we consider only functions f that have
an embedded OR or an embedded XOR.

In addition, we consider coin-tossing protocols that consist of calls to f only,
and no other messages. This is due to the fact that we can assume that any
protocol consists of rounds, where each round is either an invocation of f or a
message consisting of a single bit being sent from one party to the other. Since
f has an embedded OR or an embedded XOR, messages of a single bit can be
sent by invoking f . This is due to the fact that in both cases there exist inputs
x0, x1, y0, y1 such that f(x1, y0) �= f(x1, y1) and f(x0, y1) �= f(x1, y1). Thus, in
order for P2 to send P1 a bit, the protocol can instruct the parties to invoke f
where P1 always inputs x1, and P2 inputs y0 or y1 depending on the bit that it
wishes to send; similarly for P1. Thus, any non-trivial function f enables “bit
transmission” in the above sense. Observe that if one of the parties is malicious
and uses an incorrect input, then this simply corresponds to sending an incorrect
bit in the original protocol.

Intuition. The fact that f is not balanced implies that in any single invocation
of f , one party is able to have some effect on the output by choosing its input

3 Note, that the name unbalanced is a bit misleading as the complement of not being
strictly balanced also includes being 1 or 0-balanced.
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appropriately. That is, if the function is non-balanced on the left then the party
on the right can use an input not according to the prescribed distribution in the
protocol, and this will change the probability of the output of the invocation
being 1 (for example). However, it may be possible that the ability to somewhat
influence the output in individual invocations is not sufficient to bias the overall
computation, due to the way that the function calls are composed. Thus, in the
proof we need to show that an adversary is in fact capable of biasing the overall
protocol. We demonstrate this by showing that there exist crucial invocations
where the ability to bias the outcome in these invocation suffice for biasing the
overall outcome. Then, we show that such invocations are always reached in any
execution of the protocol, and that the adversary can (inefficiently) detect when
such an invocation has been reached and can (inefficiently) compute which input
it needs to use in that invocation in order to bias the output.

We prove the above by considering the execution tree of the protocol, which
is comprised of calls to f and the flow of the computation based on the output
of f in each invocation (i.e., the parties proceed left in the tree if the output of f
in this invocation is 0; and right otherwise). Observe that a path from the root
of the tree to a leaf-node represents a protocol execution. We show that in every
path from the root to a leaf, there exists at least one node with the property
that influencing the output of the single invocation of that node yields a bias
in the final outcome. In addition, we describe the strategy of the adversary to
detect such a node and choose its input for that node in order to obtain a bias.

In more detail, for every node v in the execution tree of the protocol, the
adversary calculates (in an inefficient manner) the probability that the output of
the computation equals 1, assuming that v is reached in the execution. Observe
that the probability of obtaining 1 at the root node is at most negligibly far
from 1/2 (since it is a secure coin-tossing protocol), and that the probability of
obtaining 1 at a leaf node is either 1 or 0, depending on whether the output at
the given leaf is 1 or 0 (the way that we define the tree is such that the output is
fully determined by the leaf). Using a pigeon-hole like argument, we show that
on every path from the root to a leaf there must be at least one node where
the probability of outputting 1 given that this node is reached is significantly
different than the probability of outputting 1 given that the node’s child on the
path is reached. We further show that this difference implies that the two children
of the given node yield significantly different probabilities of outputting 1 (since
the probability of outputting 1 at a node v is the weighted-average of outputting
1 at the children, based on the probability of reaching each child according to
the protocol). This implies that in every protocol execution, there exists an
invocation of f where the probability of outputting 1 in the entire protocol is
significantly different if the output of this invocation of f is 0 or 1. Since f is
not balanced, it follows that for any distribution used by the honest party to
choose its input for this invocation, there exist two inputs that the corrupted
party can use that result in significantly different probabilities of obtaining 1.
In particular, at least one of these probabilities is significantly different from the
probability of obtaining 1 in this call when both parties are honest and follow the
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protocol.4 Thus, the adversary can cause the output of the entire execution to
equal 1 with probability significantly different than 1/2, which is the probability
when both parties play honestly.

The above description does not deal with question of whether the output will
be biased towards 0 or 1. In fact we design two adversaries, one that tries to
bias the output towards 0 and the other towards 1. Then we show that at least
one of these adversaries will be successful (see Footnote 4 for an explanation as
to why only one of the adversaries may be successful). The two adversaries are
similar and very simple. They search for the node on the path of the execution
where the bias can be created and there make their move. In all nodes until and
after that node they behave honestly (i.e., choose inputs for the invocations of
f according to the input distribution specified by the protocol). We analyze the
success of the adversaries and show that at least one of them biases the output
with noticeable probability. The full proof appears in [1].

The above theorem proves impossibility for the case that the function is not
balanced. As we have mentioned, we must separately deal with the case that
the function is balanced, but not strictly balanced; i.e., the function is either
0-balanced or 1-balanced. The main difference in this case is that not all nodes
which have significantly different probabilities in their two children can be used
by the adversary to bias the outcome. This is due to the fact that the protocol
may specify an input distribution for the honest party at such a node that forces
the output to be either 0 or 1 (except with negligible probability), and so the
“different child” is only reached with negligible probability. This can happen
since the function is balanced with δ = 0 or δ = 1. The proof therefore shows
that this cannot happen too often, and the adversary can succeed enough to bias
the output. The following is proven in [1]:

Theorem 5.2. Let f :{x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a 1-balanced or a
0-balanced function. Then, f does not information-theoretically imply the coin-
tossing protocol.

Conclusion: Combining Theorems 4.1, 5.1 and 5.2, we obtain the following:

Corollary 5.3. Let f :{x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a function.

1. If f is strictly-balanced, then f implies the coin-tossing functionality (com-
putationally and information theoretically).

2. If f is not strictly-balanced, then f does not information-theoretically imply
the coin-tossing functionality with malicious adversaries.

Impossibility in the OT-Hybrid Model. Our proof of impossibility holds
only in the information-theoretic setting since the adversary must carry out com-
putations that do not seem to be computable in polynomial-time. It is natural

4 Observe that one of these probabilities may be the same as the probability of ob-
taining 1 in an honest execution, in which case choosing that input will not result in
any bias. Thus, the adversary may be able to bias the output of the entire protocol
towards 1 or may be able to bias the output of the entire protocol towards 0, but
not necessarily both.
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to ask whether or not the impossibility result still holds in the computational
setting. We do not have an answer to this question. However, as a step in this
direction, we show that the impossibility still holds if the parties are given access
to an ideal oblivious transfer (OT) primitive as well as to the function f . That
is, we prove the following:

Theorem 5.4. Let f : {x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a function. If f
is not strictly-balanced, then the pair of functions (f,OT ) do not information-
theoretically imply the coin tossing functionality with malicious adversaries.

Proof: In order to see that this is the case, first observe that if f has an
embedded-OR then it implies oblivious transfer [10]. Thus, f can be used to
obtain OT, and so the question of whether f implies coin tossing or (f,OT )
imply coin tossing is the same. It thus remains to consider the case that f
does not have an embedded OR but does have an embedded XOR (if it has
neither then it is trivial and so clearly cannot imply coin tossing, as we have
mentioned). We now show that in such a case f must be strictly balanced, and
so this case is not relevant. Let x1, x2, y1, y2 be an embedded XOR in f ; i.e.,
f(x1, y1) = f(x2, y2) �= f(x1, y2) = f(x2, y1). Now, if there exists a y3 such that
f(x1, y3) = f(x2, y3) then f has an embedded OR. Thus, x1 and x2 must be
complementary rows (as in example function (a) in the Introduction). Likewise,
if there exists an x3 such that f(x3, y1) = f(x3, y2) then f has an embedded OR.
Thus, y1 and y2 must be complementary columns. We conclude that f has two
complementary rows and columns, and as we have shown in the Introduction,
this implies that f is strictly balanced with δ = 1

2 .

6 Fairness in the Presence of Fail-Stop Adversaries

In order to study the feasibility of achieving fair secure computation in the fail-
stop model, we must first present a definition of security for this model. To the
best of our knowledge, there is no simulation-based security definition for the fail-
stop model in the literature. As we have mentioned in the introduction, there are
two natural ways of defining security in this model, and it is not clear which is the
“correct one”. We therefore define two models and study feasibility for both. In
the first model, the ideal-model adversary/simulator must either send the party’s
prescribed input to the trusted party computing the function, or a special abort
symbol ⊥, but nothing else. This is similar to the semi-honest model, except that
⊥ can be sent as well. We note that if ⊥ is sent, then both parties obtain ⊥ as
output and thus fairness is preserved.5 This is actually a very strong requirement
from the protocol since both parties either learn the prescribed output, or they
both output ⊥. In the second model, the ideal adversary can send any input

5 It is necessary to allow an explicit abort in this model since if the corrupted party
does not participate at all then the output cannot be computed. The typical solution
to this problem, which is to take some default input, is not appropriate here because
this means that the simulator can change the input of the corrupted party. Thus,
such an early abort must result in output ⊥.
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that it wishes to the trusted party, just like a malicious adversary. We remark
that if the real adversary does not abort a real protocol execution, then the
result is the same as an execution of two honest parties and thus the output
is computed from the prescribed inputs. This implies that the ideal adversary
can really only send a different input in the case that the real adversary halts
before the protocol is completed. As we have mentioned in the Introduction, the
impossibility result of Cleve [5] for coin-tossing holds in both models, since the
parties have no input, and so for this functionality the models are identical.

6.1 Fail-Stop 1

In this section we define and explore the first fail-stop model.

Execution in the Ideal World. An ideal execution involves parties P1 and
P2, an adversary S who has corrupted one of the parties, and the trusted party.
An ideal execution for the computation of f proceeds as follows:

Inputs: P1 and P2 hold inputs x ∈ X , and y ∈ Y , respectively; the adversary
S receives the security parameter 1n and an auxiliary input z.

Send Inputs to Trusted Party: The honest party sends its input to the trusted
party. The corrupted party controlled by S may send its prescribed input
or ⊥.

Trusted Party Sends Outputs: If an input ⊥ was received, then the trusted
party sends ⊥ to both parties. Otherwise, it computes f(x, y) and sends the
result to both parties.

Outputs: The honest party outputs whatever it was sent by the trusted party,
the corrupted party outputs nothing and S outputs an arbitrary function of
its view.

We denote by IDEAL
f-stop-1
f,S(z) (x, y, n) the random variable consisting of the output

of the adversary and the output of the honest party following an execution in
the ideal model as described above.

Security. The real model is the same as is defined in the standard definition of
secure two-party computation [6], except that we consider adversaries that are
fail-stop only. This means that the adversary must behave exactly like an honest
party, except that it can halt whenever it wishes during the protocol. We stress
that its decision to halt or not halt, and when, may depend on its view. We are
now ready to present the security definition.

Definition 6.1 (Security – Fail-Stop1). Protocol π securely computes f with
complete fairness in the fail-stop1 model if for every non-uniform probabilistic
polynomial-time fail-stop adversary A in the real model, there exists a non-
uniform probabilistic polynomial-time adversary S in the ideal model such that:{

IDEAL
f-stop-1
f,S(z) (x, y, n)

}
c≡
{
REALπ,A(z)(x, y, n)

}
where x ∈ X, y ∈ Y , z ∈ {0, 1}∗ and n ∈ N.
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Exploring Fairness in the Fail-stop-1 Model. We first observe that if a
function contains an embedded XOR, then it cannot be computed fairly in this
model.

Theorem 6.2. Let f : {x1, . . . , xm} × {y1, . . . , y�} → {0, 1} be a function that
contains an embedded XOR. Then, f implies the coin-tossing functionality and
thus cannot be computed fairly.

Proof: Assume that f contains an embedded XOR; i.e., there exist inputs
x1, x2, y1, y2 such that f(x1, y1) = f(x2, y2) �= f(x1, y2) = f(x2, y1). We can
easily construct a protocol for coin-tossing using f that is secure in the fail-stop
model. Party P1 chooses input x ∈ {x1, x2} uniformly at random, P2 chooses
y ∈ {y1, y2} uniformly at random, and the parties invoke the function f where
P1 inputs x and P2 inputs y. In case the result of the invocation is ⊥, the other
party chooses its output uniformly at random.

Since the adversary is fail-stop1, it must follow the protocol specification (in-
cluding choosing its input in the invocation of f correctly until it aborts when
it can input ⊥). In both cases, it is easy to see that the honest party outputs an
unbiased coin. Formally, for any given fail-stop adversary A we can construct
a simulator S: S receives from the coin tossing functionality f ct the bit b, and
invokes the adversary A. If A sends the trusted party computing f the symbol
⊥, then S responds with ⊥. Otherwise, (if A sends some real value - either x1, x2

if it controls P1, or y1, y2 if it controls P2), then S responds with the bit b that
it received from f ct as if it is the output of the ideal call to f . It is easy to see
that the ideal and real distributions are identical.

As we have mentioned, if a function does not contain an embedded XOR or OR
then it is trivial and can be computed fairly (because the output depends on
only one of the parties’ inputs). It therefore remains to consider the feasibility of
fairly computing functions that have an embedded OR but no embedded XOR.
Gordon et. al [9] present a protocol for securely computing any function of this
type with complete fairness, in the presence of a malicious adversary. However,
the security of their protocol relies inherently on the ability of the simulator
to send the trusted party an input that is not the corrupted party’s prescribed
input. Thus, their protocol seems not to be secure in this model.

The problem of securely computing functions that have an embedded OR
but no embedded XOR therefore remains open. We remark that there are very
few functions of this type, and these functions have a very specific structure, as
discussed in [9].

6.2 Fail-Stop 2

In this section we define and explore the second fail-stop model. In this case,
the ideal adversary can send any value it wishes to the trusted party (and the
output of the honest party is determined accordingly). It is easy to see that
in executions where the real adversary does not abort the output is the same
as between two honest parties. Thus, the ideal adversary is forced to send the
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prescribed input of the party in this case. Observe that the ideal model here
is identical to the ideal model for the case of malicious adversaries. Thus, the
only difference between this definition and the definition of security for malicious
adversaries is the quantification over the real adversary; here we quantify only
over fail-stop real adversaries. Otherwise, all is the same.

Definition 6.3 (Security – Fail-Stop2). Protocol π securely computes f with
complete fairness in the fail-stop2 model if for every non-uniform probabilistic
polynomial-time fail-stop adversary A in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S in the ideal model such that:{

IDEALf,S(z)(x, y, n)
} c≡
{
REALπ,A(z)(x, y, n)

}
where x ∈ X, y ∈ Y , z ∈ {0, 1}∗ and n ∈ N, and IDEAL denotes the standard
ideal model for malicious adversaries.

In the g-hybrid-model for fail-stop2 adversaries, where the parties have access to
a trusted party computing function g for them, a corrupted party may provide
an incorrect input to an invocation of g as long as it halts at that point. This may
seem arbitrary. However, it follows naturally from the definition since a secure
fail-stop2 protocol is used to replace the invocations of g in the real model. Thus,
if a fail-stop adversary can change its input as long as it aborts in the real model,
then this capability is necessary also for invocations of g in the g-hybrid model.

Exploring Fairness in the Fail-Stop-2 Model. In the following we show that
the malicious adversaries that we constructed in the proofs of Theorem 5.1 and
Theorem 5.2 can be modified to be fail-stop2. We remark that the adversaries
that we constructed did not abort during the protocol execution, but rather
continued after providing a “different” input in one of the f invocations. Thus,
they are not fail-stop2 adversaries. In order to prove the impossibility for this
case, we need to modify the adversaries so that they halt at the node v for which
they can bias the outcome of the invocation (i.e., a node v for which v’s children
in the execution tree have significantly different probabilities for the output of the
entire execution equalling 1). Recall that in this fail-stop model, the adversary
is allowed to send a different input than prescribed in the invocation at which it
halts; thus, this is a valid attack strategy. In the full paper we prove:

Theorem 6.4. Let f :{x1, . . . , xm}×{y1, . . . , y�} → {0, 1} be a function that is
not δ-balanced, for any 0 < δ < 1. Then, f does not information-theoretically
imply the coin-tossing protocol in the fail-stop2 model.

We prove the above by considering two possible cases, relating to the potential
difference between the honest party outputting 1 at a node when the other party
aborts at that node but until then was fully honest, or when the other party con-
tinues honestly from that node (to be more exact, we consider the average of
these differences over all nodes). First, assume that there is a noticeable differ-
ence between an abort after fully honest behavior and a fully honest execution.
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In this case, we construct a fail-stop adversary who plays honestly until an ap-
propriate node where such a difference occurs and then halts. (In fact, such an
adversary is even of the fail-stop1 type). Next, assume that there is no notice-
able difference between an abort after fully honest behavior and a fully honest
execution. Intuitively, this means that continuing honestly or halting makes no
difference. Thus, if we take the malicious adversaries from Section 5 and modify
them so that they halt immediately after providing malicious input (as allowed
in the fail-stop2 model), then we obtain that there is no noticeable difference
between the original malicious adversary and the fail-stop2 modified adversary.
We remark that this is not immediate since the difference in this case is between
aborting and not aborting without giving any malicious input. However, as we
show, if there is no difference when honest inputs are used throughout, then this
is also no difference when a malicious input is used.

We conclude that one of the two types of fail-stop2 adversaries described
above can bias any protocol.

Acknowledgements. We thank Gene S. Kopp and John D. Wiltshire-Gordon
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Abstract. In secure multi-party computation, a reactive functionality
is one which maintains persistent state, takes inputs, and gives outputs
over many rounds of interaction with its parties. Reactive functionalities
are fundamental and model many interesting and natural cryptographic
tasks; yet their security properties are not nearly as well-understood as
in the non-reactive case (known as secure function evaluation).

We present new combinatorial characterizations for 2-party reactive
functionalities, which we model as finite automata. We characterize the
functionalities that have passive-secure protocols, and those which are
complete with respect to passive adversaries. Both characterizations are
in the information-theoretic setting.

1 Introduction

Ever since Yao [17] introduced the concept of secure multi-party computation
(SMPC) with his famous Millionaire’s Problem, the majority of research in the
area has focused on understanding secure function evaluation (SFE) tasks.
In an SFE task, all parties provide inputs and then receive outputs according
to a (typically) deterministic function, in a single round of interaction with the
functionality. The functionality that carries out this task has no need for per-
sistent memory — it simply receives inputs from the parties, computes outputs,
and thereafter forgets everything.

Yet, SMPC security models (e.g., [2]) allow for functionalities that maintain
internal state across many rounds of interaction. We call such functionalities
reactive. The most well-known example of an inherently reactive functionality
is bit-commitment, the cryptographic equivalent of a locked box.

In a secure protocol, the parties must achieve the same effect as the function-
ality. Reactivity introduces new and unique challenges; in particular, there is a
tension between the fact that the parties may individually have a great deal of
uncertainty about the functionality’s internal state, and the fact that the par-
ties collectively must be able to maintain its internal state in order to correctly
simulate its behavior.
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To understand reactive functionalities is, therefore, to understand how persis-
tent information can be maintained, updated, kept secret, and computed upon.
What’s more, from a practical perspective, reactive tasks are fundamental — any
task involving time-sensitive release of information or the ability for parties to
adapt to new information learned from an interactionmust be necessarily reactive.

Background & Related Work. The first security model for which SFE tasks were
understood is the model of passive security against computationally unbounded
adversaries. Beaver [1] & Kushilevitz [12] independently characterized secure
realizability for 2-party SFE tasks in this model. These results characterized
which functionalities have perfectly secure protocols; the same characterization
was later extended to the case where negligible security error is allowed [13,11].
We strongly leverage this characterization in our own result for the reactive case.

A functionality F is said to be complete (with respect to some security notion
for protocols) if every functionality has a secure protocol in which the parties are
allowed to make use of ideal instances of F . Kilian [6] was the first to characterize
completeness for 2-party SFE functionalities. The result was later generalized to
functionalities with possibly different outputs to the two parties [9]. As before,
we strongly leverage the well-known characterization for the SFE case in our
own result for the reactive case.

These characterizations, and many others for SFE tasks (e.g., [4,7,8]) are ex-
clusively combinatorial in nature. Each SFE is associated with its 2-dimensional
input/output table and then classified based on whether this table has a certain
structure — say, a forbidden kind of 2× 2 submatrix.

In some security settings, there exist secure protocols for every SFE function-
ality (e.g., standalone security in the computationally bounded setting); it is not
hard to see that this also implies secure protocols for all reactive functionalities as
well. However, hardness (infeasibility) results for reactive functionalities are much
rarer in the literature. Some fundamental reactive functionalities like bit commit-
ment have been studied in an ad hoc fashion [3]. To the best of our knowledge,
large classes of reactive functionalities have been considered only in [15,14,16]. Of
these, only one result ofMaji, Prabhakaran, andRosulek [14] involves a combinato-
rial (decidable) characterization. They characterize the 2-party reactive function-
alities which have UC-secure protocols without any setup (the characterization is
the same for both the computationally bounded and unbounded settings). They
model functionalities as deterministic, finite-state transducers; our work uses the
same automata model of reactive functionalities. We note that, while the SMPC
paradigmallows one to consider reactive functionalities that cannot be represented
as such finite automata,many important and natural functionalities can indeed be
modeled in this way (e.g., bit commitment).

1.1 Our Results

We derive combinatorial characterizations for the cryptographic properties of
2-party reactive functionalities. In particular, we characterize triviality (i.e., fea-
sibility) and completeness with respect to computationally unbounded, passive
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(a.k.a. semi-honest, or honest-but-curious) adversaries. Ours is the first work to
classify properties of reactive functionalities in this fundamental setting. Follow-
ing [14], we model reactive functionalities as finite automata.

For a reactive functionality F , define a related non-reactive functionality F (k)

which takes a length-k sequence of inputs from each of Alice and Bob, then runs
F for k rounds on these inputs and gives each party their corresponding length-k
sequence of outputs. It is not difficult to see that:

– F is passive-trivial if and only if for all k ∈ N, F (k) is passive-trivial.
– F is passive-complete if and only if F (k) is passive-complete for some k ∈ N.

In this way it is possible to reduce the characterizations for reactive functional-
ities to the corresponding well-known ones for SFE functionalities.

However, the above characterizations are of limited use. Both conditions are
infinitary in nature (requiring either the universe of all protocols to be enumer-
ated, or an infinite number of values k to be checked). Our technical contribu-
tion is in our analyses showing that only a finite number of values k need to be
checked. We obtain characterizations of the following form:

Main Theorem. Let F be a reactive 2-party functionality. There exist con-
stants Kt and Kc, which depend only on the number of states in F , such that:

1. F is passive-trivial if and only if for all k ≤ Kt, F (k) is passive-trivial; and
2. F is passive-complete if and only if F (k) is passive-complete for some k ≤

Kc.

Thus we obtain total decision procedures for determining triviality and complete-
ness of reactive functionalities. The characterizations for SFE are combinatorial
in nature, and thus ours also inherit that flavor. Also, the statement of the main
theorem is valid even if protocols are allowed a negligible error (though the final
characterization for passive-triviality is the same whether zero error or negligible
error is required).

The bulk of our effort is devoted to proving the existence of the constant Kt

above. The main technical challenge when dealing with reactive functionalities
is accounting for the uncertainty both parties have about the (hidden) internal
state of the functionality. For example, even if the behavior of the functionality
is benign in every state, it may still be possible to elicit non-trivial behavior from
the functionality when both parties have uncertainty about its internal state. To
justify our somewhat complicated analysis, we show that simply inspecting the
local behavior of each state does not suffice to characterize the security properties
of reactive functionalities.

To properly deal with the complications of a functionality’s hidden internal
state, we develop a “normal form” for functionalities that explicitly captures
the common knowledge both parties have about the internal state. The final
characterization follows then by the requirements imposed by this normal form.

Our characterizations are for functionalities that give possibly different out-
puts to each party. Using the normal form described above, we show that, unless
a functionality is passive-complete, it is isomorphic to one with symmetric out-
put. This generalizes an analogous result of [9] for non-reactive functionalities.
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2 Preliminaries

A probability p(n) is negligible if for all c > 0, p(n) < n−c for all but finitely
many n. We use bold symbols (e.g., x, y) to denote sequences over some finite
alphabet (e.g., X or Y ). We write |x| to denote the length of a sequence, and we
use ‖ to denote concatenation of sequences (e.g., x‖x). When T is a 2-dimensional
table, and a and b are appropriate indices, we use the notation T [a, b] to denote
the entry of T in row a, column b.

2.1 Passive Security

We use the standard real-ideal paradigm [5] to define protocol security. We ex-
clusively consider security against passive (a.k.a. honest-but-curious, or semi-
honest) and computationally unbounded adversaries, and we call protocols which
achieve this standard passive-secure for short. We say that a protocol uses the
functionality G if the parties are instructed to interact with ideal instances of
the functionality G (i.e., the protocol is in the “G-hybrid model”).

We say that a functionality F is passive-trivial if there is a passive-secure
protocol for F without any setups. We say that F is passive-complete if there
is a passive-secure oblivious-transfer protocol that uses access to ideal instances
of F . In this work, we consider the information-theoretic setting exclusively, so
adversaries are computationally unbounded. Unlike the first characterizations
for SFE functionalities [1,12], we do not restrict our attention to protocols that
achieve perfect security. Instead, we use the now-standard notion of passive
security, which permits protocols to have a negligible simulation error.

Isomorphism. We call a protocol for F using G a local protocol if it uses just one
instance of G to realize an instance of F , does not use communication between
the parties other than G, and each round of outputs for F is realized in the
protocol by the parties making a single call to G. Then call two functionalities
F and G isomorphic if there is a local, passive-secure protocol for F using G
and vice-versa.

2.2 Notation and Characterizations for SFE

We briefly review known characterizations for passive-triviality and passive-
completeness of SFE functionalities. We state the characterizations in terms of
new notation, which cleanly unifies the cases of symmetric and non-symmetric
output for the two parties. The terminology defined here is used throughout the
work.

A 2-party SFE F is specified by finite sets X and Y , and two deterministic
functions fA : X × Y → {0, 1}∗ and fB : X × Y → {0, 1}∗. We use these default
variable names throughout this work. As a cryptographic functionality, Alice and
Bob provide inputs x ∈ X and y ∈ Y to F , respectively, and receive outputs
fA(x, y) and fB(x, y), respectively.

1

1 In this work we consider security only against passive adversaries. As such, issues of
fairness in output delivery are not relevant.
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Let restrict(F , A×B) denote the restriction of F to the input domain A×B ⊆
X × Y . For (x, y) ∈ X × Y , we define rectangle(F , x, y) = Ax,y × Bx,y where
Ax,y = {x′ | fB(x′, y) = fB(x, y)} and Bx,y = {y′ | fA(x, y′) = fA(x, y)}. We

say that F is basic on X̃ × Ỹ if: for all y ∈ Ỹ , fB is a constant function on
X̃×{y}, and for all x ∈ X̃, fA is a constant function on {x}× Ỹ . Basic functions
require no interaction to evaluate (a party’s input has no influence on the other’s
output). Finally, an or-minor in F is a tuple (x, x′, y, y′) ∈ X2 × Y 2 with:

fA(x, y) = fA(x, y
′); fB(x, y) = fB(x

′, y);(
fA(x

′, y), fB(x, y
′)
)
�=
(
fA(x

′, y′), fB(x
′, y′)

)
.

Passive-Completeness. or-minors exactly characterize passive-completeness for
SFE functionalities:

Lemma 1 ([9]). The following are equivalent for a 2-party SFE F :

1. F is passive-complete.
2. F has an or-minor.
3. There exist inputs x, y such that F is not basic on rectangle(F , x, y).

Proof. The equivalence of 1 & 2 was shown by Kraschewski & Müller-Quade [9],
generalizing the analogous statement for symmetric-output functions by Kil-
ian [6]. The equivalence of 2 & 3 follows straightforwardly from the definitions
of or-minor and rectangle(F , x, y).

The following useful lemma was also proven in [9]:

Lemma 2 (Symmetrization [9]). Given an SFE F , define the (symmetric)
SFE functionality Fsym, which on input x from Alice and y from Bob gives both
parties output rectangle(F , x, y).

If F has no or-minor, then F is isomorphic to Fsym.

Passive-Triviality. Passive-triviality for SFE functionalities is characterized by
a combinatorial condition called decomposability.

Definition 1 ([1,12]). An SFE F is decomposable if one of the following
holds:

1. F is basic (defined above); or,
2. There is a partition X = X̃1 ∪ X̃2 so that for all x1 ∈ X̃1, x2 ∈ X̃2 and

y ∈ Y , fB(x1, y) �= fB(x2, y), and furthermore restrict(F , X̃1 × Y ) and
restrict(F , X̃2 × Y ) are decomposable; or,

3. There is a partition Y = Ỹ1 ∪ Ỹ2 so that for all x ∈ X, y1 ∈ Ỹ1, and
y2 ∈ Ỹ2, fA(x, y1) �= fA(x, y2), and furthermore restrict(F , X × Ỹ1) and
restrict(F , X × Ỹ2) are decomposable.

Lemma 3 ([13,11]). F is passive-trivial if and only if it is decomposable.

This lemma was originally proved for the case of perfectly secure protocols by
Beaver [1] & Kushilevitz [12] (independently); later it was extended for the
standard notion of security (allowing negligible error) by Maji, Prabhakaran &
Rosulek [13] and Künzler, Müller-Quade & Raub [11] (independently).
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2.3 Model of Reactive Functionalities

We use the model of reactive functionalities from [14]:

Definition 2 ([14]). A (2-party) deterministic finite functionality (DFF)
is a tuple F = (Q,X, Y, δ, fA, fB, q0), where

– Q is a finite set of states,
– X and Y are finite input sets,
– δ : Q×X × Y → Q is the state transition function,
– fA, fB : Q×X × Y → {0, 1}∗ are two output functions, and
– q0 ∈ Q is the start state.

The behavior of F as an ideal functionality is defined formally in Figure 1.2 As
before, we use these standard variable names throughout.

Set variable q := q0. Then repeatedly do:

– Wait for input x ∈ X from Alice and input y ∈ Y from Bob. Give outputs
fA(q, x, y) to Alice and fB(q, x, y) to Bob. Update q := δ(q, x, y) and repeat.

Fig. 1. Semantics of the DFF functionality F = (Q,X, Y, δ, fA, fB , q0)

We extend the functions δ, fA, and fB to sequences of inputs in the natural
way. Let x = (x1, . . . , xk) ∈ Xk and y = (y1, . . . , yk) ∈ Y k. We write δ(q,x,y)
to denote the state of F after receiving inputs (x1, y1), . . . , (xk, yk) starting in
state q. We write fA(q,x,y) to denote the concatenation of Alice’s k outputs
when F receives inputs (x1, y1), . . . , (xk, yk) starting in state q. We write F (k)

to denote the SFE functionality which on input (x,y) with |x| = |y| = k, gives
output fA(q0,x,y) to Alice and fB(q0,x,y) to Bob. Then we have the following
simple observations:

Proposition 1 Let F be a DFF, and F (k) defined above.

1. For all k, there is a passive-secure protocol for F (k) using F .
2. There is a passive-secure protocol for F using {F (k)}k∈N.
Hence:

3. F is passive-trivial if and only if, for all k, F (k) is passive-trivial.
4. F is passive-complete if and only if F (k) is passive-complete for some k.

The secure protocol for F using (the infinite set of functionalities) {F (k)} requires
both parties to maintain their history of inputs x and y. In the (k+1)th round
with histories x and y and new inputs x and y, both parties call F (k+1) with
inputs x‖x and y‖y.3
2 As before, issues of fairness in output delivery are not relevant when considering
only passive adversaries.

3 Note that we use the fact that the parties honestly follow the protocol, as they must
faithfully keep track of their history of inputs to simulate F using {F(k)}.
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3 Limits of Local Conditions

When classifying a DFF for its cryptographic properties, one is tempted to
examine the behaviors of each state, in isolation, for certain properties. We call
such a test local, and in this section we describe the limitations of such local
tests.

One way that local tests fail stems from the fact that local information is
not enough to determine even whether two states have identical behavior. Given
that, suppose some state has a transition function that contains an or-minor
involving states q, q′. How this or-minor affects the triviality/completeness of
the functionality depends crucially on whether q and q′ have identical behavior.
Still, we will show that, even when redundant states have been removed, local
tests are insufficient to classify the cryptographic properties of DFFs.

We say that two states q and q′ are redundant in F if for all x,y with |x| =
|y| we have fA(q,x,y) = fA(q

′,x,y) and fB(q,x,y) = fB(q
′,x,y). Redundant

states can easily be collapsed in F using the classical Myhill-Nerode DFA mini-
mization algorithm. Throughout this work we will generally assume without loss
of generality that redundant states have been collapsed. Non-redundant state
pairs (q, q′) have a distinguishing sequence (x,y) satisfying(

fA(q,x,y), fB(q,x,y)
)
�=
(
fA(q

′,x,y), fB(q
′,x,y)

)
.

Local tests can give an indication of the complexity of some DFFs, but can-
not give a complete characterization. We consider local tests which inspect the
output and transition functions of each state. To formalize this, we define for a
DFF F a related DFF Fst to be a modification to F which always announces its
internal state to both parties. Then the output function of state q in Fst contains
all the relevant information about both the output and transition functions of q
in F .

Lemma 4. Let F be a DFF that contains no redundant states.

1. If any reachable state in Fst has an output function that is not decomposable,
then F is not passive-trivial.

2. If any reachable state in Fst has an output function that contains an or-
minor, then F is passive-complete.

3. The converses of the above statements are false. In fact, there exist func-
tionalities of arbitrary status (i.e., passive-trivial, passive-complete, neither)
without redundant states whose output functions are constant and whose
transition functions are decomposable in every state.

Proof. For items (1) and (2), we can assume without loss of generality that it
is the start state of F that has the offending transition/output functions. More
formally, let F [q] denote F with its start state changed to q. If q is reachable
in F— say, via sequence (x,y) — then a passive-secure protocol for F [q] using
F is to have both parties send an initial “preamble” of (x,y) to F and then
proceed with the dummy protocol.
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For items (1) and (2), if it is an output function in F (i.e., not in Fst) that
is non-decomposable (resp. contains an or-minor), then the claim follows much
more easily. There is a natural passive-secure protocol using F that realizes the
start state’s (SFE) output function – the parties simply interact with F for one
round. The claims then follow from the complete characterizations for passive-
triviality and passive-completeness of SFE (see Section 2.2).

(1) We fall into the case described above unless the start state’s output func-
tion is decomposable. So, let G = (gA, gB) denote the SFE which evaluates
the first round only of Fst and Let X̃ × Ỹ denote minimal subsets such that
restrict(G, X̃ × Ỹ ) is not decomposable.

Next we show that the output function of the start state in F (not Fst) is basic
on X̃× Ỹ . If not, then since it is decomposable, it induces either a corresponding
row- or column-decomposition step in G (which includes the F -output as well
as the state). This splits X̃ × Ỹ into at least two smaller subdomains, which by
the minimality condition are decomposable. Thus G is decomposable on X̃ × Ỹ ,
which we have assumed to be false. By this contradiction, we see that the output
function of F ’s start state must be basic on X̃ × Ỹ .

Let q, q′ be two distinct states reachable from the start state by single transi-
tions on (x, y) ∈ X̃× Ỹ . As these states are non-redundant, let (x,y) be a distin-
guishing sequence for them, with |x| = |y| = k. Now consider the SFE function-
ality H = (hA, hB) which on input (x, y) ∈ X̃ × Ỹ gives output fA(q0, x‖x, y‖y)
to Alice and fB(q0, x‖x, y‖y) to Bob. There is a passive-secure protocol for H
using F (H is a submatrix of F (k+1)). By Lemma 3 it suffices to show that H is
not decomposable.

We have that rectangle(G, x, y) ⊆ rectangle(H, x, y), since the first round of
F gives basic output for inputs in X̃ × Ỹ . Also, by our choice of x,y as a
distinguishing sequence we have that H itself is not basic. Consider any partition
of X̃ , say, X̃ = X̃0 ∪ X̃1. Since G is minimal and not decomposable, there exists
x0 ∈ X̃0, x1 ∈ X̃1, y ∈ Ỹ such that gB(x0, y) = gB(x1, y). Hence, hB(x0, y) =
hB(x1, y) so X̃ = X̃0 ∪ X̃1 does not satisfy the requirement for decomposability
of H. Symmetrically, no partition of Ỹ satisfies the requirement; hence H is not
decomposable, as desired.

(2) Let (x0, x1, y0, y1) be the inputs of the relevant or-minor in the start state
of Fst; as above, we may assume that the output function of q0 in F is basic
over {x0, x1} × {y0, y1}. Hence, the or-minor occurs entirely in the transition
function of F ; i.e., δ(q0, xi, yj) = ri∨j for some states r0 �= r1. Let (x,y) be a
distinguishing sequence for r0, r1, with |x| = |y| = k. Then it is straight-forward
to verify that (x0‖x, x1‖x, y0‖y, y1‖y) is an or-minor in F (k+1). Note that we
crucially use the fact that the output of F is basic in the first round for the
chosen input sequences.

(3) Let G be an arbitrary symmetric SFE functionality to be chosen later,
and define F to do the following: In the first round, F gives constant output
(regardless of the input) and remembers Alice’s input x in its states, ignoring
Bob’s input. In the second round, F gives constant output and transitions to
state rF(x,y), where y is the input of Bob in the second round (Alice’s input in
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this round is ignored). Here, states {ri}i are a set of states distinct from those
used to implement rounds 1 & 2. Finally, in state ri, F gives constant output i
and self-loops.

Note that the transition functions of F are all decomposable (in particular,
at each round the transitions depend on at most one party’s input), as are the
output functions (they are constant functions in each state). A passive-secure
protocol for G can be obtained from F , and vice-versa, in the natural way. Thus,
F and G have the same status (e.g., trivial, complete, neither). We complete
the proof by taking G to be an appropriate passive-trivial, passive-complete, or
intermediate SFE.

4 Characterizing Completeness

Theorem 2. Let F be a DFF with n states. Then F is passive-complete if and
only if there exists k ≤ n4 such that F (k) contains an or-minor.

Proof. The “⇐” direction follows trivially from Proposition 1 and the charac-
terization of completeness for SFE functionalities based on or-minors [6,9].

For the other direction, let π be a passive-secure protocol for 1-out-of-2 obliv-
ious transfer (OT) using F . For sake of contradiction, suppose that for every k,
F (k) has no or-minor. Following Proposition 1, we can without loss of general-
ity modify π to obtain a passive-secure OT protocol using the collection of SFE
functions{F (k)}k.

Consider an execution of the protocol in which input bits a0, a1 for Alice and
b for Bob are chosen uniformly (i.e., Bob should learn ab and Alice should learn
nothing). Let V denote the messages exchanged in the protocol along with the
list of rectangle(F (k), x, y) values for every time F (k) is invoked with inputs (x, y)
in the protocol. Define Ps,t = Pr[as = t | V ] for s, t ∈ {0, 1}. Importantly, since
no F (k) contains an or-minor, both parties can compute V (Lemma 2), and
hence the Ps,t values.

Suppose Bob guesses Alice’s input as to be the value t that maximizes Ps,t.
By a straight-forward argument, this guess will be correct with probability Ps,t.
Hence, by the security of the protocol, P1−b,0 and P1−b,1 must be close to 1/2
with high probability (recall that b is Bob’s choice bit). However, by the cor-
rectness of the protocol we must also have Pb,ab

close to one and Pb,1−ab
close

to zero with high probability as well.4 Since Alice can also compute these Ps,t

values, this gives her a way to determine Bob’s choice bit b with high probability
(i.e., guess the value b such that Pb,ab

is maximized). Hence, we contradict the
passive-security of the protocol, as desired. We note that this part of the proof
is essentially the same as Kilian’s proof for the case of SFE functionalities [6].

4 The correctness of the protocol implies that Bob’s entire view determines ab with
high probability, whereas Ps,t is computed using less information than Bob’s view.
In particular, V does not include Bob’s inputs to the ideal functionality. However,
every input for Bob from rectangle(F(k), x, y) would have had exactly the same effect
on the interaction, in the absence of an or-minor. In other words, an honest Bob
only needs to remember his input with as much specificity as rectangle(F(k), x, y).
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So far we have shown only that some F (k) must have an or-minor. Fix k
to be minimal value such that F (k) contains an or-minor. If k ≤ n4 then we
are done. Otherwise, let d(x,y, i) denote the internal state of F after the first i
rounds when the input sequence is (x,y), when i ≤ k = |x| = |y|. Define

D(x,y,x′,y′, i) :=
(
d(x,y, i), d(x,y′, i), d(x′,y, i), d(x′,y′, i)

)
∈ Q4.

Let (x,x′,y,y′) be the or-minor of F (k). By the pigeonhole principle (since
k > n4) there are distinct indices i, j ∈ {0, . . . , k} such that D(x,y,x′,y′, i) =
D(x,y,x′,y′, j). Then removing positions i through j−1 in the input sequences
x,y,x′,y′ yields an or-minor in F (k−j+i). But this contradicts the minimality
of k, so we must have originally had k ≤ n4.

5 Characterizing Passive Triviality

5.1 Overview

Our approach is to reduce our characterization of DFFs as much as possible to
the known characterizations for SFE (given in Section 2.2). For intuition, suppose
Alice & Bob have performed k rounds with F , giving input sequences x and y,
respectively. When the functionality is passive-trivial, both parties can agree on
A × B = rectangle(F (k),x,y), knowing that (x,y) ∈ A × B. Their uncertainty
about the current state of F is then captured by restrict(δ(k), A×B), where δ(k)

is the extended transition function δ(k)(x,y) = δ(q0,x,y).
Intuitively, both parties can maintain the 2-dimensional table

C = restrict(δ(k), rectangle(F (k),x,y)), along with their respective inputs x and
y to this table. Furthermore, these three pieces of information (x, y, and C) are
enough to determine all future behavior of F . One could imagine a “canonical”
protocol for F in which parties maintain such information (Alice maintaining x
and C; Bob maintaining y and C).

With this as our starting point, we argue the following. First, duplicate rows &
columns within C can be canonically removed. Second, the table C is a submatrix
of δ(k); as such, it can contain no or-minor when F is passive-trivial. Finally, we
prove a purely combinatorial lemma stating that any table that avoids duplicate
rows, duplicate columns, and or-minors must be bounded in its dimensions (the
bound is a function of the number of allowed values in the cells of the table).
Hence, when F is trivial, the table C described above has an a priori, finite
bound in size.

Our combinatorial lemma reveals some structure of functions which avoid or-
minors. In that sense, our lemma is reminiscent of similar lemmas used in [4]
and [10], for the n-party setting.

We prove our characterization by converting F into an equivalent “normal
form” F̂ , which simulates F by keeping track of the information (x, y, and

C) described above. In each state of F̂ , we use the internal state variable C to
associate a related submatrix of F (k) for some k. We then show that F is passive-
trivial if and only if each of these submatrices of {F (k)}k is itself passive-trivial.
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Importantly, there can be only a finite number of states — hence, a finite number
of F (k) submatrices — to inspect when deciding whether F is passive-trivial.

We highlight one important subtlety in the construction of F̂ . Our combinato-
rial lemma shows that the table C has bounded size, but we are also associating
its rows & columns with F -input sequences of length k. Thus, while the table
itself has bounded size, conceivably the row- and column-“labels” become un-
bounded in length. Our construction of F̂ implicitly shows that these row- and
column-labels are not used meaningfully; that is, they can be renormalized to
simply be numerical indices into the table. Hence, the entire state-space of F̂
(which contains this table C as well as two labels indexing into the table) is
indeed finite.

5.2 Combinatorial Lemma

Definition 3 (Grid colorings and their properties). A k-coloring of an
m × n grid is a function C : {1, . . . ,m} × {1, . . . , n} → {1, . . . , k}. A row i
is a duplicate row if C(i, ·) ≡ C(i′, ·) for some i′ �= i. Duplicate columns are
defined analogously. A tuple (i, i′, j, j′) forms an or-minor in C if C(i, j) =
C(i, j′) = C(i′, j) �= C(i′, j′).

We will use the following lemma, which states that sufficiently large grid
colorings cannot avoid duplicate rows, duplicate columns, and or-minors.

Lemma 5 (Unavoidable structures of grid colorings). There is a function
R : N→ N satisfying the following property. For every k-coloring C of an m×n
grid, if max{m,n} ≥ R(k), then C contains either a duplicate row, duplicate
column, or an or-minor.

Proof. We prove the lemma for the bound R(2) = 3; R(k) = k · R(k − 1).
Thus R(k) = Θ(k!). In fact, we prove the two stronger statements that (1) if
m ≥ R(k) then C contains either a duplicate row or an or-minor; (2) if n ≥ R(k)
then C contains either a duplicate column or an or-minor. The two proofs are
symmetric and we give the proof of (1) here. The case of R(2) = 3 can be verified
by exhaustion.

For the inductive case, consider a k-coloring C with more than R(k) rows. We
assume that C has no or-minors, and will show that there must be a duplicate
row. By the pigeonhole principle, there must be some color (by symmetry, color
#k) which appears more than R(k)/k = R(k − 1) times in the first column.
The properties we seek are invariant under permuting rows and columns, so
permute the rows and columns so that the north-west corner is colored #k, and
the instances of color #k in the first row and first column are contiguous.

Since C contains no or-minor, we have that C can be partitioned into four
quadrants, NW, NE, SE, SW:

C =

[
NW NE
SW SE

]
,
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where NW has more than R(k−1) rows, NW contains only color #k, and NE and
SW contain only colors {1, . . . , k − 1}. Thus, NE is a (k − 1)-coloring with more
than R(k−1) rows and no or-minors. As such it contains duplicate rows. When
augmented to the left with identical sequences of k’s, we obtain corresponding
duplicate rows in C, as desired.

We proved the existence of such an R with R(k) = Θ(k!), which suffices for our
purposes but which may or may not be optimal. We can obtain a lower bound
of 2k−1 on the optimal value of R(k), by considering the following recursively-
defined k-colorings of a 2k−1 × 2k−1 grid:

C1 = [1]; Ck =

[
Uk Ck−1
Ck−1 Uk

]
.

Here Uk denotes the 2k−2×2k−2 grid filled uniformly with color k. The colorings
{Ck}k avoid duplicate rows, duplicate columns, and or-minors. We conjecture
that R(k) = 2k−1 is the optimal value for R as in the lemma statement.

5.3 Normal Form

Let T be a 2-dimensional table with row- and column-labels A and B, respec-
tively. Define an equivalence relation, where a ≈A a′ if for all b ∈ B, we have
T [a, b] = T [a′, b] — that is, a ≈A a′ if rows a and a′ of T are identical. We
define an equivalence relation ≈B analogously. Finally, let [a]A and [b]B denote
equivalence classes under these relations, respectively.

Definition 4. Let T , A, and B be as above. Let eA1 , . . . , e
A
m denote the distinct

equivalence classes of ≈A, and let eB1 , . . . , eBn denote the distinct equivalence
classes of ≈B.

We define trim(i, j, T ) for (i, j) ∈ A×B to denote a tuple (i′, j′, T ′), where:

1. T ′ is a table with row-labelsA′ = {1, . . . ,m} and column-labelsB′ = {1, . . . , n}.
For each i∗, j∗, we have T ′[i∗, j∗] = T [a, b], where a is any representative of eAi∗
and b is any representative of eBj∗ .

2. eAi′ = [i]A. That is, i
′ is the index of i’s equivalence class.

3. eBj′ = [j]B. That is, j
′ is the index of j’s equivalence class.

By item (1) we see that T ′ has no duplicate columns or rows. Essentially, trim
removes duplicate rows/columns and re-normalizes the row/column labels. Fur-
thermore, the mapping i �→ i′ does not depend on j, the mapping j �→ j′ does
not depend on i, and the mapping T �→ T ′ does not depend on i or j.

Definition 5. Let T be a 2-dimensional table with row- and column-labels A
and B, respectively, and whose entries are states of a DFF F . Then explode(T )
is a 2-party SFE with input domain (A ×X) × (B × Y ). On input (a, x) from
Alice and (b, y) from Bob, the output of explode(T ) is fA(T [a, b], x, y) for Alice
and fB(T [a, b], x, y) for Bob.
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Normal form F̂ . Let F = (Q,X, Y, δ, fA, fB, q0) be a DFF. Then define F̂ to

be a functionality given by Figure 2. Note that we define F̂ without explicitly
considering whether it is a DFF (that is, whether it has a finite number of states).

Whether F̂ has a finite number of states depends on F in a way that will be
established later Lemma 8.

Maintain internal state (a, b, C), initialized to a = b = 1 and C = [q0] (that is, a
1× 1 matrix), where q0 is the start state of F .

With internal state (a, b, C), and on input x ∈ Y from Alice and y ∈ Y from Bob:

1. Give output fA(C[a, b], x, y) to Alice and fB(C[a, b], x, y) to Bob.
2. Set A′ × B′ = rectangle(explode(C), (a, x), (b, y)). Write A′ and B′

in some canonical ordering A′ = {(a′
1, x

′
1), . . . , (a

′
m, x′

m)} and B′ =
{(b′1, y′

1), . . . (b
′
n, y

′
n)}. (Recall that inputs to explode(C) are tuples of this

form.)
3. Define an m× n table C′ via C′[i, j] := δ(C[a′

i, b
′
j ], x

′
i, y

′
j).

4. Set a′ := indexof((a, x), A′) and b′ := indexof((b, y),B′), where indexof(s, S =
{s1, . . . , sn}) denotes the value i such that si = s.

5. Set (a, b, C) := trim(a′, b′, C′).

Fig. 2. Functionality F̂ : the “normal-form” representation of F

Lemma 6. Let F and F̂ be as above, and let δ(k) denote the function δ(k)(x,y) =
δ(q0,x,y). Suppose that F is not passive-complete. Then, after reading inputs x

and y (with |x| = |y|), F̂ is in state

(a, b, C) = trim(x,y, restrict(δ(k), rectangle(F (k),x,y))).

It then follows that F and F̂ have identical external behavior (since the above

implies that C[a, b] = δ(k)(x,y), and F̂ gives outputs matching those of state
C[a, b] in F).

Proof. The claims are true when x and y are empty sequences. Suppose F̂ is
in state (a, b, C) after receiving inputs (x,y), with |x| = |y| = k. Suppose that

F̂ receives inputs (x, y) at this point; we will prove the claims with respect to
x′ = x‖x, y′ = y‖y. Denote the rows & columns of C as A×B.

First, we prove the desired claims without the call to trim, for a variant of F̂
that does not call trim. It is straight-forward to verify that it makes no difference
to the end result to “postpone” all trim steps taken by F̂ until the last step, at
which point they are clearly idempotent.

By the inductive hypothesis, we have an isomorphism between
restrict(δ(k), rectangle(F (k),x,y)) and C. Thus, we freely identify A × B with
rectangle(F (k),x,y), where a with is identified with x, and b is identified with y.
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Since A × B = rectangle(F (k),x,y), and F (k) has no or-minor (recall we
assume that F is not passive-complete), we have that F (k) is basic on A × B
(Lemma 1). As such, for any x′ ∈ A×X and y′ ∈ B × Y we have that

rectangle(restrict(F (k+1), A×X,B × Y ),x′,y′) = rectangle(F (k+1),x′,y′).

That is, within this domain of inputs, a party’s input can influence the other’s
output only in the k + 1 round.

explode(C) is an SFE whose inputs are then (A×X)× (B × Y ) — which we
associate with input sequences of length k + 1 for Alice & Bob, respectively —
and whose output is the corresponding output of F in the (k+1)-th round only.
But again, when restricted to input domain A×B, the first k rounds of output
are basic, so

rectangle(explode(C),x′,y′) = rectangle(restrict(F (k+1), A×X,B × Y ),x′,y′).

Putting things together, from lines 3–4 of F̂ it follows that C′ is exactly
restrict(δ(k+1), rectangle(F (k+1),x′,y′)), a′ is identified with x′, and b′ is identi-
fied with y′, as desired.

Lemma 7. If F is not passive-complete, then while interacting with F̂ , Alice
has no uncertainty about (a, C) and Bob has no uncertainty about (b, C), where

(a, b, C) is the internal state of F̂ .

Proof. The claim is true for the initial configuration of F̂ . In round k, both
parties inductively know C (and hence explode(C)) from round k−1. When F is
not passive-complete, then each explode(C) contains no or-minor. Hence, after
giving inputs x and y respectively, and receiving their outputs (computed from

explode(C)), each party can deduce R = rectangle(explode(C), x, y). In F̂ , the
value C is updated based only on this common information R. The value a is
updated based only on R and x; the value b is updated based only on R and y.
Each party thus has enough information to update the values required for the
lemma.

Lemma 8. Let F be a DFF. If F is not passive-complete, then in F̂ the internal
variable C is bounded in size by a constant that depends only on F . Thus F̂ has
a finite number of states (at most R(n)2 · nR(n)2).

Proof. It follows from the definition of F̂ that, in every reachable state (a, b, C),
the table C has no duplicate rows or columns. We will show that C also contains
no or-minor. Then it will follow from Lemma 5 that C has dimensions at most
R(n) × R(n), where n is the number of states in F . Since a and b are row and

column indexes into C, there are at most R(n)2nR(n)2 states in F̂ .
Without loss of generality, assume that F contains no redundant states.

Suppose for contradiction that C contains an or-minor (a0, a1, b0, b1), so that
C(ai, bj) = ri∨j for distinct states r0 and r1. Let x∗,y∗ be a distinguishing
sequence for states r0 and r1, with |x∗| = |y∗| = 
.
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From Lemma 6, C is a submatrix of δ(k) for some k, so there exist input
sequences x0,x1,y0,y1 with δ(k)(xi,yj) = C[ai, bj]. Furthermore, {x0,x1} ×
{y0,y1} ⊆ rectangle(F (k),xi,yj), and so (since we are assuming that F is not

passive-complete) F (k) is basic restricted to {x0,x1} × {y0,y1}.
But then (x0‖x∗,x1‖x∗,y0‖y∗,y1‖y∗) is an or-minor in F (k+�), contradict-

ing our assumption that F is not passive-complete. The reasoning is exactly the
same as in the proof of Lemma 4. Importantly, Alice’s input does not influence
Bob’s output (and vice-versa) for the first k rounds, and at least one party’s
total output depends only on whether r0 or r1 was reached in round k.

5.4 Deciding Passive-Triviality

The following theorem and its corollary provide total decision procedures for
determining whether a given DFF is passive-trivial.

Theorem 3. Let F be a DFF and F̂ be as above. Suppose F is not passive-
complete. Then F is passive-trivial if and only if, for every reachable state
(a, b, C) in F̂, explode(C) is decomposable.

Proof. (⇒) Let (a, b, C) be a reachable state in F̂ . Then from Lemma 6 we
have that C is a submatrix of δ(k) for suitable k. As such, explode(C) is a
submatrix of F (k+1). By Proposition 1, F (k+1), and hence all of its submatrices,
is decomposable.

(⇐) A passive-secure protocol for F̂ (and hence F , since they have identi-
cal external behavior — Lemma 6) is the following. Alice maintains (a, C) and

Bob maintains (b, C) corresponding to the internal state of F̂ at all times, as
in Lemma 7. Inductively they will at each round compute the correct outputs
and can thus update these (a, b, C) values. When Alice receives input x and
Bob receives input y, both parties run a passive-secure protocol for evaluating
explode(C) at inputs a‖x and b‖y, respectively. Since explode(C) is decompos-
able, it follows that such a secure protocol exists; furthermore, both parties know
a common C and can agree upon this protocol.

Corollary 4. Let F be a DFF with n states, and let K := R(n)2 ·nR(n)2 , where
R is the function from Lemma 5. Then F is passive-trivial if and only if, for all
k ≤ K, F (k) is decomposable.

Proof. The forward direction (⇒) follows trivially from Proposition 1.
For the other direction, if each of {F (k)}k≤K is decomposable, then F is

not passive-complete (Theorem 2). Then from Lemma 8, there are at most K

distinct states in F̂ . Any reachable state in F̂ is therefore reachable by an input
sequence of length at most K − 1. If state (a, b, C) is reachable by an input
sequence of length k, then explode(C) appears as a submatrix of F (k+1); so if
each of {F (k) | k ≤ K} is decomposable, then so is each explode(C). Hence, F
is passive-trivial by Theorem 3.
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5.5 Symmetrization

Theorem 5. Let F be a DFF. If F is not passive-complete, then there exists a
symmetric functionality (that is, one which gives identical output to each party
in every round) G that is isomorphic to F .

This theorem is a generalization of an analogous theorem of Kraschewski and
Müller-Quade [9] for the special case of SFE.

Proof. As described in the discussion after Lemma 1, when F is an SFE, we
can take G to be the SFE that gives output rectangle(F , x, y) to both parties on
input x and y.

Now consider when F is a DFF, and recall its associated F̂ . If F is not
passive-complete, then F̂ is also a DFF (Lemma 8). In state (a, b, C) and on

inputs (x, y) in F̂ , the parties are given the output of explode(C) on inputs

(a, x) and (b, y). Define G to be the same as F̂ , except that both parties are
given output z = rectangle(explode(C), (a, x), (b, y)). Since both parties know C,
Alice without loss of generality knows (a, x), and Bob without loss of generality
knows (b, y), the output z is enough for both parties to infer the corresponding

output of F̂ . Similarly, both parties can infer z from their outputs from F̂ . Thus,
F and G are isomorphic.

6 Conclusion and Discussion

We presented two new characterizations for cryptographic properties of reactive
functionalities, in the setting of computationally unbounded passive adversaries.
We highlight several remaining areas of inquiry:

Active adversaries. While there is a characterization of triviality of reactive func-
tionalities in the UC model [14], there is no such characterization for the stand-
alone model. There is a characterization for completeness of DFFs as well [14],
but it is in the polynomial-time setting. No characterization exists for complete-
ness of reactive functionalities against active adversaries in the information-
theoretic setting.

We conjecture that the characterization for active-completeness of DFFs will
follow that of the SFE case [9]. That is, we expect there to be a suitable definition
of redundant inputs for DFFs so that F is active-complete if and only if F is
passive-complete after removing all redundant inputs. We note that [14] do in
fact define a notion of redundant inputs for DFFs, but only for inputs in the first
round. The characterization we seek would require the simultaneous removal of
redundant inputs in all states.

A characterization of active (standalone) triviality for DFFs will require a
significantly different approach than the one here for passive triviality. We high-
light several fundamental aspects of our techniques that seem incompatible with
active adversaries:
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– We use the fact that F can be securely realized using {F (k)}k and vice-versa.
Neither direction of this equivalence holds with respect to active security.
When emulating the kth round of F using F (k), we rely on the fact that
parties honestly maintain their history of inputs and provide them as part
of their input to F (k). To emulate F (k) using F , the protocol invokes k
rounds of F . An active adversary could (depending on F) violate security
by adaptively changing its behavior based on the partial information it learns
about the other party’s input in the first k − 1 rounds.

– In our proofs we use the fact that certain SFE functionalities appear as
a submatrix of some F (k), to demonstrate their triviality. In the passive
security setting, every submatrix of an SFE inherits the triviality of the
parent SFE. This property is not true in the active security setting; the
characterization of standalone-triviality for SFE [13,11] is not closed under
the submatrix relation.

Randomized functionalities. Compared to deterministic functionalities, our un-
derstanding of randomized functionalities is practically non-existent (an excep-
tion is for completeness of certain classes of SFE functionalities; cf. [7]). For
example, there is still no analog of the Beaver-Kushilevitz characterization of
passive-trivial SFE [1,12] in the randomized case (not even for perfectly-secure
protocols).

Our characterization in this work reduces the reactive case to the non-reactive
case in some sense. It may be that a similar approach would work even for
DFFs with randomized output (even if the actual characterization for SFE is
unknown). However, we expect that a randomized transition function would
lead to complications that are not present in the deterministic case.
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Abstract. It is known that cryptographic feasibility results can change
by moving from the classical to the quantum world. With this in mind, we
study the feasibility of realizing functionalities in the framework of univer-
sal composability, with respect to both computational and information-
theoretic security. With respect to computational security, we show that
existing feasibility results carry over unchanged from the classical to the
quantum world; a functionality is “trivial” (i.e., can be realized without
setup) in the quantumworld if and only if it is trivial in the classical world.
The same holds with regard to functionalities that are complete (i.e., can
be used to realize arbitrary other functionalities).

In the information-theoretic setting, the quantum and classical worlds
differ. In the quantum world, functionalities in the class we consider are
either complete, trivial, or belong to a family of simultaneous-exchange
functionalities (e.g., XOR). However, other results in the information-
theoretic setting remain roughly unchanged.

1 Introduction

In a classical setting of cryptography, participants in a protocol (both the hon-
est parties and the adversary), are modeled as being able to perform classical
computation only. In the quantum setting, however, parties are able to send
and receive quantum states and process quantum information. It is well known
that cryptographic feasibility results in these two settings differ; for example,
key exchange with information-theoretic security is possible in the quantum
world, but not in the classical world. In this paper we focus on protocols for
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universally composable two-party computation, and study the relationships be-
tween feasibility/impossibility results in the classical and quantum settings.

1.1 Universally Composable Computation in the Classical World

Our focus in on secure computation within the framework of universal compos-
ability [8], which provides strong composition guarantees when arbitrary proto-
cols are executed concurrently. Soon after the introduction of this framework,
Canetti and Fischlin [9] showed that, without honest majority, UC commitment
is impossible to achieve. This was later extended to rule out protocols for securely
achieving most other “interesting” tasks [10,32].

On the positive side, it is known that (under suitable cryptographic assump-
tions) any functionality can be securely computed, without honest majority, if
we are willing to assume some form of trusted setup such as a common refer-
ence string [9,11]. Subsequent work has identified other complete setup assump-
tions [1,19,18,12]. Completeness results in the information-theoretic (or statisti-
cal) setting, where the adversary is computationally unbounded, have also been
shown [21,18].

Maji et al. [28] proved a zero/one law: every two-party deterministic function
with polynomial-size input domain is either trivial1 (i.e, can be realized in the
UC framework with no setup assumptions), or complete (i.e., sufficient for com-
puting arbitrary other functions, under appropriate complexity assumptions).
This characterization was extended by Katz et al. [20], who showed complete-
ness for deterministic functions with exponential-size input domains, and by
Rosulek [33], who showed completeness for randomized, reactive functions as
well. In the setting of information-theoretic security, Kraschewski et al. [22] give
a characterization of completeness for two-party deterministic functionalities,
and show that a zero/one laws does not hold. In fact, Maji et al. [27] show there
is an infinite hierarchy of function complexity in the statistical setting.

1.2 The Shift to a Quantum World

How do the results described in the previous section change when we move to
the quantum world? The answer, a priori, is unclear. Feasibility results in the
classical setting may not hold in the quantum setting since quantum adversaries
are more powerful than classical ones. This is true even if “quantum-resistant”
cryptographic assumptions are used, since techniques such as rewinding that
are used to prove security against classical adversaries may not apply in the
quantum setting. Even in the case of statistical security, feasibility results may
not translate from the classical world to the quantum world [14].

In the other direction, impossibility results in the classical setting might po-
tentially be circumvented in the quantum setting since honest parties can rely
on quantum mechanics, too. As a notable example of this, statistically secure
key exchange is possible in the quantum world [3] but not in the classical one.

1 We use trivial and feasible exchangeably hereafter.
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While several impossibility results for statistically secure two-party computation
in the quantum setting are known [29,24,23,34,6], these results say nothing about
the computational setting. They also say nothing about what might be possi-
ble given trusted setup. An example here, that also demonstrates the power of
quantum protocols, arises in the context of building oblivious transfer (OT) from
commitment. Classically, this is impossible [27]. However, there is a construc-
tion of OT from commitment in the quantum world [4,15,36,5]; as a consequence,
commitment is complete for UC computation in that setting [36].

Given the above, the situation regarding triviality and completeness of func-
tionalities within the quantum UC framework (see Section 2) is unclear, though
partial answers are known. In the statistical setting, Unruh [36] gives a generic
“lifting” theorem asserting that classically secure protocols remain (statistically)
secure in the quantum world. So any functionalities that are classically trivial (in
a statistical sense) are also trivial in a quantum setting. Moreover, any functional-
ity that is classically complete in a statistical sense (and so in particular OT [36])
is complete with respect to the quantum UC framework as well. The situation
is less clear with regard to computational security. A recent work by Hallgren
et al. [17] “salvages” a few classically complete functionalities, showing that,
for example, coin-flipping and zero-knowledge are still complete in the quantum
world. But this does not rule out the possibility that some classically complete
functionalities are no longer complete in the quantum setting.

1.3 Our Results

We study feasibility and completeness of an interesting class of two-party, deter-
ministic functionalities on polynomial-size domains. We prove generic, quantum-
lifting theorems and use them to show that feasibility in the quantum world
is equivalent to classical feasibility, in both the computational and statistical
settings. An important ingredient here is a quantum analogue of the Canetti-
Fischlin result [9], showing that there is no quantum protocol realizing UC com-
mitment against computationally bounded quantum adversaries in the plain
model.2 This result extends the known impossibility results mentioned earlier
for statistically secure protocols in the quantum setting.

At the core of our quantum-lifting theorems is a quantum construction of sta-
tistically secure OT from the “2-bit cut-and-choose” functionality F2CC. (Note
that F2CC is not complete in the classical setting.) Our construction is a modi-
fication of the BBCS protocol [4], but existing techniques do not seem to apply
for arguing its security. Instead, we introduce and analyze an adaptive version
of the sampling technique from [5], and use this to prove the security of our OT
protocol. The adaptive-sampling analysis may be of independent interest.

Our lifting theorems for the case of computational security, together with
Unruh’s lifting theorem for the statistical case [36], imply that any classically
complete functionality remains complete in the quantum setting. On the other
hand, we identify tasks that are statistically complete using quantum protocols
but are incomplete classically. Our results show, roughly, that every functionality

2 A similar result was stated in [31] with no proof.
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in our class is either trivial or complete in the quantum computational setting;
thus, the situation here is analogous to the classical case [28]. In the quantum
statistical setting, however, functionalities fall into one of three different classes;
this is in contrast with the (more complicated) classical picture [27,22].

1.4 Additional Related Work

Proving security of quantum protocols has been challenging and nontrivial. In-
deed, it was only several years after the invention of quantum key-exchange
protocols that rigorous proofs of security were given [30,25,35]. With regard
to secure computation, the first broad feasibility results were in the setting of
multi-party protocols with information-theoretic security, assuming honest ma-
jority [13,2]. Positive results for computational security in the quantum world,
without honest majority, have only recently been shown [37,26,17,16].

1.5 Outline of the Paper

In Section 2, we describe the classical and the quantum UC models as well as
our terminology. We prove our lifting theorems for completeness in Section 3,
and for feasibility in Section 4. In Section 5, we apply our lifting theorems to
classify the cryptographic complexity of functionalities in the class we consider.

2 The Model

In this section we describe the model and our terminology. We consider two types
of security statements, namely classical and quantum. The classical statements
are done in Canetti’s (classical) UC framework [8]. For quantum statements
we use the recently developed quantum-UC framework [36]. In this work, we
assume static, i.e., non-adaptive corruption. Namely an adversary chooses the
set of parties to corrupt before execution of the protocol.

The UC Framework. The security of protocols is argued via the simulation
paradigm. Intuitively, a protocol securely realizes a given ideal functionality F,
if the adversary cannot gain more in the protocol (real-world) than what she
could in an ideal-evaluation of F where a trusted party computes the function
values and hand them to designated players (ideal-world). More formally, a pro-
tocol π securely realizes a functionality F if for every real-world adversary A
there exists an ideal-world adversary S, called the simulator, such that no envi-
ronment can distinguish whether it is witnessing the real-world execution with
adversary A or the ideal-world execution with simulator S. The parties, the
adversary, the simulator, the functionalities, and the environment, are modeled
as interactive Turing-machines (ITMs). Depending on the assumed computing
power of the adversaries and the environment we distinguish between computa-
tional security, where they are all considered to be polynomially bounded ITMs,
and information-theoretic (i.t.), also known as statistical security, where they
are assumed to be computationally unbounded.
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Universal Composability and the Hybrid Model. The most important
feature of the simulation-based security definition is that it allows to argue about
security of protocols in a composable way. In particular, let π be a protocol which
securely realizes a functionality F. If we can prove that a protocol π′ securely
realizes a functionality F′ using invocations of F as in the ideal world, then it
follows automatically that if we replace in π′ the invocations of F by invocations
of π, the resulting protocol also securely realizes F′. Therefore we only need to
prove the security of π′ in the so-called F-hybrid model, where the players run
π′ and are allowed to make invocations to F.

Reductions and Cryptographic Complexity. For two ideal functionalities
F and F′, we say that F computationally (classical) UC reduces to F′, denoted
as F 'ccomp F′, if there exists a F′-hybrid protocol πF

′
which computationally

securely realizes F. If the protocol πF
′
statistically securely realizes F, then we

say that F statistically (classical) UC reduces to F′, denoted as F 'cstat F′. As
syntactic sugar, we say that F and F′ are computationally (resp. statistically)

UC equivalent, denoted as F
ccomp
≡ F′ (resp. F cstat≡ F′), if F 'ccomp F′ and

F′ 'ccomp F (resp. F 'cstat F′ and F′ 'cstat F).
The reduction-relation ' is “transitive” in the sense that if F′ ' F, then any

task which is implementable in the F′-hybrid world is also implementable in the
F-hybrid world. This implies a notion of cryptographic complexity for functions,
where F′ ' F implies that F is at least as high in the hierarchy as F′.

Feasibility and Completeness. Let FSEC denote the secure channels function-
ality.We say that a functionality F is computationally (resp. statistically) UC
feasible if F 'ccomp FSEC (resp. F 'cstat FSEC). Furthermore, we say that F is
computationally (resp. statistically) UC complete if for any well-formed function-
ality F′ : F′ 'ccomp F (resp. F′ 'cstat F).

The Quantum UC Framework [36]. The quantum-UC framework general-
izes the classical UC model, in which the players (including the adversaries and
the environment) are quantum machines. A quantum universal composition the-
orem was proved in [36]. We point out that in this work we only consider ideal
functionalities with classical inputs and outputs. For two ideal functionalities
F and F′, we say that F computationally quantum-UC reduces to F′, denoted
as F 'qcomp F′, if there exists a F′-hybrid protocol πF

′
which computationally

securely realizes F. If the protocol πF
′
statistically securely realizes F, then we

say that F statistically quantum-UC reduces to F′, denoted as F 'qstat F′. We
say that a functionality F is computationally (resp. statistically) quantum-UC
feasible if F can be computationally (resp. statistically) quantum-UC realized in
the plain quantum-UC model, i.e., without assuming any hybrids.3 Furthermore,
we say that F is computationally (resp. statistically) quantum-UC complete if for
any well-formed (classical) functionality F′ : F′ 'qcomp F (resp. F′ 'qstat F).

3 We point out that quantum secure channel is implied by authentication channel
due to QKD protocols, which is by default provided in the quantum-UC framework,
hence there is no need to assume quantum secure channels.
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The definitions of computation and statistical quantum-UC equivalence is also
analogous to the classical setting.

In [36] the so-called (statistical) quantum lifting theorem was proved which,
roughly speaking shows that if a classical protocol is statistically UC secure then
it is also statistically quantum-UC secure.

Fact 1 ([36, Theorem 15] – The Quantum Lifting Theorem). If a proto-
col π statistically UC realizes a functionality F, then π statistically quantum-UC
realizes the functionality F.

Remark 1 (Polynomial Simulation). In all the security definitions considered in
this work we explicitly require that the simulator’s running time is polynomial to
the running time of the adversary. We call this property polynomial simulation.
The property ensures that when a protocol statistically realizes a functionality,
then it also computationally realizes it [7,8]. We point out that the definition of
statistical quantum-UC security in [36] explicitly requires polynomial simulation.

Ideal Functionalities and the Class U−. Ideally, we would like our state-
ments to cover the whole class U of finite, deterministic, two-party functional-
ities, which is the central class studied in [27,28]. However, we were unable to
prove or disprove (quantum-UC) neither completeness nor feasibility of the 1-
bit cut-and-choose functionality F1CC ∈ U (also denoted as FCC). We were able
to prove statistical quantum-UC completeness of its “closest sibling;” namely,
the 2-bit cut-and-choose functionality F2CC.

4 Therefore, our results are for the
slightly smaller class U− which is U excluding the small fraction of function-
alities that are sufficient for (statistically classically) realizing F1CC but not for
realizing F2CC. Formally:

U− = {F | (F ∈ U) ∧ ((F2CC 'cstat F) ∨ (F1CC �'cstat F))}.

Note that, as demonstrated in [28], the missing fraction, i.e., U \ U−, is indeed
very small as, roughly, it corresponds to the lowest primitive of an infinite strict
hierarchy of (statistically classically) incomplete “cut-and-choose” primitives.5

Nevertheless, it remains an open problem to prove quantum-UC feasibility or
completeness of F1CC (which would complete the characterization of U) as it
does not follow from any known classical or quantum results.

For completeness, we list a few two-party ideal functionalities that are used as
setups in this work.Consistently with existing literature we use the names Alice
and Bob for the parties:

• 1-out-of-2 Oblivious Transfer FOT: Alice (the sender) inputs 2 bits (s0, s1) and
Bob (the receiver) inputs a selection bit c ∈ {0, 1}. Bob receives sc from FOT.

4 Our conjecture is that F1CC is also statistically quantum-UC complete. Recall that
classically neither FCC nor F2CC is statistically UC complete [28].

5 These are variations of F2CC parameterized by the size of Bob’s input, i.e., FmCC

behaves as FCC where Bob’s input is a string of length m. (F1CC is the lowest and
F2CC is the second lowest primitive in this hierarchy.) [28].
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We also consider the more general string OT, where (s0, s1) are 
-bit strings.
Our OT protocol in Sect. 3.1 realizes string OT.

• Commitment FCOM: Alice (the committer) inputs a bit b and Bob (the receiver)
receives from FCOM a notification that a bit was received. At a later point, Alice
can input the command open to FCOM in which case Bob receives b.

• XOR FXOR: Alice and Bob input bits bA and bB, respectively. They both receive
the output y = bA ⊕ bB.

• 2-bit Cut-and-Choose F2CC: Bob inputs a 2-bit string b = (b0, b1), an Alice
inputs a selection bit sA; informally, sA indicates whether or not Alice wishes
to learn b. Bob receives output sA and Alice receives output b if sA = 1, and
receives ⊥ if sA = 0.
• Coin Tossing FCOIN: Alice and Bob input a request to FCOIN, and FCOIN randomly
chooses a fair coin r ∈ {0, 1} and it then sends delayed output r to both Alice
and Bob.

Note that the functionalities FOT, FXOR, F2CC, and FCOM are in the set U−.
Notational Conventions. Throughout the paper we use small π to denote
a classical protocol in classical UC model, while we use capital Π to denote a
classical or quantum protocol in quantum UC model.

3 Quantum Lifting for Completeness

In this section we prove that statements about completeness of functionalities
in the classical setting are preserved in the quantum setting. More precisely, we
prove the following theorem:

Theorem 1. For any F ∈ U− the following statements hold:

1. (Statistical Setting) If F is statistically classical-UC complete then F is sta-
tistically quantum-UC complete.

2. (Computational Setting) If F is computationally classical-UC complete under
the semi-honest OT assumption shOT then F is computationally quantum-
UC complete under the assumptions of existence of a quantum-secure pseu-
dorandom generator and a dense encryption that is quantum IND-CPA.

The statistical statement follows easily from Unruh’s quantum lifting theorem
(Fact 1) and the definition of completeness. In the remaining of this section
we prove the computational statement. To this direction we follow a structure
similar to that of [28]: First, in Section 3.1 we show that for any F ∈ U−,
either F is computationally quantum-UC feasible or for a functionality F′ ∈
{FXOR,FOT,F2CC,FCOM}, there exists a statistically quantum-UC secure protocol
which reduces F′ to F. Second, in Section 3.2, we show that FXOR, FOT, F2CC, and
FCOM are computationally quantum-UC complete. Statement 2 of the theorem
follows then immediately by combining the above steps and using the fact that
any statistically quantum-UC secure protocol is also computationally quantum-
UC secure.
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3.1 Non-feasibility Implies FXOR, FOT, F2CC, or FCOM

To show that every infeasible F ∈ U−, there is some F′ ∈ {FXOR,FOT,F2CC,FCOM}
such that F′ 'qcomp F, we use the following result that is proved in [28, Theo-
rems 1,4]: if F ∈ U is not UC feasible, then for F′ 'cstat F. Using this result on
U− we obtain the following:

Fact 2 ([28]). Let F ∈ U−. If F is not compuationally (UC) feasible, then for
some F′ ∈ {FXOR,FOT,F2CC,FCOM} the following holds: F′ 'cstat F.

Because the reductions in Fact 2 are information-theoretic (with polynomial-
simulation), the statement can be translated to the quantum-UC setting by
Fact 1. This proves the following lemma:

Lemma 1. Let F ∈ U−. If F is not statistically quantum-UC feasible , then for
some F′ ∈ {FXOR,FOT,F2CC,FCOM} the following holds: F′ 'qstat F.

Proof. First observe that F is not statistically classical-UC feasible, because oth-
erwise the lifting lemma (Fact 1) will impy that F is also statistically quantum-
UC feasible, contradicting the assumption. Then by our lifting theorem for fea-
sibility in later section (Sect. 4, Theorem 2), statistical UC infeasibility of F
implies that F is not computationally UC feasible. Then Fact 2 tells us that for
some F′ ∈ {FXOR,FOT,F2CC,FCOM} : F′ 'cstat F , which, in turns implies that
F′ 'qstat F by Fact 1.

3.2 Quantum-UC Completeness of FXOR, FOT, F2CC, and FCOM

We next prove that each of the functionalities FXOR,FOT, F2CC and FCOM is compu-
tationally quantum-UC complete6. The quantum-UC completeness of FOT and
FCOM was proved in [36]:

Lemma 2. FOT and FCOM are statistically quantum-UC complete.

This immediately gives us the desired computational quantum-UC completeness
of FOT and FCOM. Next, we show completeness for the XOR functionality. To this
direction we use the following idea: first we use the straight-forward classical
FXOR-hybrid coin-tossing protocol (each party chooses a random bit and sends it
to FXOR; the output of every party is the value they receive from FXOR) to construct
FCOIN; subsequently, we apply the results of [17] who proved computationally
quantum-UC completeness of FCOIN under proper assumptions.

Lemma 3. Assuming existence of a quantum-secure pseudorandom generator
and a dense encryption that is quantum IND-CPA, then FXOR is computationally
quantum-UC complete.

6 Actually, as will be shown, FCOM, FOT, F2CC are statistically quantum-UC complete.
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The most involved completeness proof is the one concerning the cut-and-choose
functionality F2CC. In [28], they constructed a classical protocol realizing FCOM

from F1CC. However, their security proof involves rewinding, and it is unclear
how to make it go through against quantum adversaries.7

Instead, we demonstrate completeness of F2CC by constructing a quantum
protocol that statistically quantum-UC realizes FOT in F2CC-hybrid world (and
then applying Lemma 2). The idea is motivated by the quantum OT construction
in the FCOM hybrid world by Bennett et al [4]. In this protocol, roughly speaking,
FCOM is used in a checking subroutine to ensure that malicious Bob measures
his qubits upon arrival (and does not store them until Alice informs him about
the bases used). More specifically, Alice sends several qubits encoded in random
bases, and Bob measures all of them and commits, for each qubit, to the pair
(x̃B

i , θ̃Bi ), where x̃B
i is the outcome of the measurement of the ith qubit and θ̃Bi

is the corresponding basis Bob used. Alice then asks Bob to open a randomly
chosen subset of the committed pairs, and she checks consistency with how she
had prepared the qubits. Intuitively, this indeed ensures that Bob has measures
most of the qubits, as otherwise he would not know what to commit to. Formally
proving this intuition turned out to be non-trivial, with the first rigorous proofs
given in [15,36,5].

Our protocol uses, instead of commitments, invocations to F2CC to implement
the checking step (see the protocol ΠQOT below). Intuitively, this should enforce
Bob to measure all the qubits as in the original protocol based on commitments.
Unfortunately, the formal proof does not carry over. The problem arises from
the fact that in the original protocol, Bob has to commit to all the θ̃Bi and x̃B

i

before he gets to see the random subset that Alice chooses for testing consistency,
whereas in our protocol based on F2CC, Bob can make his input (θ̃Bi , x̃B

i ) to F2CC

adaptively, and dependent on which prior positions Alice has tested. Current
proofs, like [15,5], cannot deal with that.

In order to deal with this issue, we introduce an adaptive version of the sam-
pling framework of [5]. We then show, analogous to the static setting as in [5],
that the security of the OT scheme reduces to the analysis of a quantum sampling
problem in our adaptive sampling framework. Analyzing the quantum sampling
problem can further be reduced to a classical probabilistic analysis, which can
be handled by standard techniques (e.g., Azuma’s inequality).

In the following, we describe the F2CC-hybrid OT protocol ΠQOT and state its
security in Lemma 4. The formal proof can be found in the full version.

Lemma 4. There exists an F2CC-hybrid protocol which statistically quantum-UC
realizes FOT.

The following corollary follows from Lemma 4 and the completeness of FOT

(Lemma 2), by applying the quantum-UC composition theorem.

7 It is in general hard to clearly define what it means for a security proof to “not
use rewinding”. It is not enough for the protocol to have a straight-line simulator,
which [28] actually satisfies. The subtlety is that the correctness of the simulator
might still involve rewinding argument (e.g., in defining hybrid experiments).
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Protocol ΠQOT

Parameters: A family F =
{
f : {0, 1}n → {0, 1}�

}
of universal hash functions.

Parties: The sender Alice and the recipient Bob.
Inputs: Alice gets two �-bit strings s0 and s1, Bob gets a bit c.

1. (Initialization)
1.1 Alice chooses x̃A = (x̃A

1 , . . . , x̃
A
n ) ∈R {0, 1}n and θ̃A = (θ̃A1 , . . . , θ̃

A
n ) ∈R

{+,×}n uniformly at random and sends |x̃A〉θ̃A to Bob who denotes the
received state by |ψ〉.

2.2 Bob chooses θ̃B = (θ̃B1 , . . . , θ̃Bn ) ∈R {+,×}n uniformly at random and
measures the qubits of |ψ〉 in the bases θ̃B ; denote the result by x̃B :=
(x̃B

1 , . . . , x̃
B
n ).

2. (Checking)
2.1 For i = 1, . . . n the following steps are executed sequentially:

(a) Alice chooses a bit bi ∈R {0, 1} uniformly at random.
(b) Alice and Bob invoke F2CC with inputs bi and (x̃B

i , θ̃
B
i ), respectively.

2.2 If in some iteration i of Step 2.1 Alice receives θ̃Bi = θ̃Ai but x̃B
i �= x̃A

i , then
Alice aborts. If in Step 2.1 Bob receives (as output of F2CC) the bit bi = 1
more than 3n/5 times then Bob aborts.

2.3 Let x̂A be the string resulting from removing in x̃A the bits at positions i
with bi = 1. Define θ̂A, x̂B, θ̂B analogously.

3. (Partition Index Set) Alice sends θ̂A to Bob. Bob sets Ic := {i : θ̂Ai = θ̂Bi }
and I1−c := {i : θ̂Ai �= θ̂Bi }. Then Bob sends (I0, I1) to Alice.

4. (Secret Transferring)
4.1 Alice picks a function f ∈R F; for i = 0, 1 : Alice computes mi := si⊕f(x′

i),
where x′

i is the n-bit string that consists of x̂A|Ii padded with zeros, and
sends (f,m0,m1) to Bob.

4.2 Bob outputs s := mc ⊕ f(x′
B), where x′

B is the n-bit string that consists of
x̂B|Ic padded with zeros.

Corollary 1. F2CC is statistically quantum-UC complete.

The proof of Theorem 3 follows easily from Lemmas 1, 2, 3, and Corollary 1, by
applying the quantum-UC composition theorem.

4 Quantum Lifting for Feasibility

In this section we show a bi-directional lifting theorem for feasibility statements.
Informally, we show that if a functionality F ∈ U− is feasible in the classical
UC setting, then F is also feasible in the quantum-UC setting and vise versa.
In fact, we can even show a stronger statement, namely that the set of feasible
functionalities in U− is the same set irrespective of whether we are considering
the classical or the quantum setting and independent of the level of security (i.e,
computational or statistical). We point out that the computational statements
in the following theorem are under that semi-honest OT assumption for the
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classical setting, and under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA, for
the quantum setting.

Theorem 2. Let F ∈ U−. The following statements are equivalent

1. F is computationally (classical) UC feasible.

2. F is statistically (classical) UC feasible.

3. F is statistically quantum-UC feasible.

4. F is computationally quantum-UC feasible.

Proof. (1 ⇒ 2) is already implicit in [28]. For F ∈ U−, if F is computationally
feasible, then such F is splittable and we can construct a trivial protocol [32].
Then we can show the same trivial protocol can realize F information theoreti-
cally, which means F is statistically feasible.

(2 ⇒ 3) is immediate from Unruh’s quantum lifting lemma. (3 ⇒ 4) follows
because we require poly-time simulation in statistical UC model, and hence
statistical UC security in particular implies computational UC security. We are
left to show (4⇒ 1).

Assume for contradiction that F is computationally quantum-UC feasible but
classically not computationally classical-UC feasible. Invoke Fact 2 again, we
have that for some F′ ∈ {FOT,F2CC,FCOM,FXOR} : F′ 'cstat F, which by Theo-
rem 1, implies that F is computationally quantum-UC complete. This, combined
with the assumption that F is computationally quantum-UC feasible, implies
that every F ∈ U− is computationally quantum-UC feasible. This is a contra-
diction because one can prove that FCOM is not computationally quantum-UC
feasible, i.e., there exists no (quantum) protocol that realizes FCOM with compu-
tational quantum-UC security. The argument is similar the classical impossibility
proof of UC commitments [9], and the details can be found in the full version.

5 Putting it Together

In this section we bring the pieces together and describe the cryptographic-
complexity landscape for U− in the quantum world. In the case of computational
quantum-UC security, we can derive a zero/one law in the flavor of [28]. For
statistical quantum-UC security we show that, roughly speaking, every F ∈ U−
is either statistically quantum-UC feasible, or F is statistically quantum-UC
complete, or FXOR statistically quantum-UC reduces to F.

5.1 Computational Security: A Zero/One Law

Our quantum lifting theorems for feasibility and completeness imply that all
computational UC complete (resp. UC feasible) functionalities in U− are also
computational quantum-UC complete (resp. quantum-UC feasible). Using this
fact along with the classical zero/one law, one can derive a zero-one law for the
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computational quantum-UC setting in a straight-forward manner (under the
assumptions of existence of a quantum-secure pseudorandom generator and a
dense encryption that is quantum IND-CPA). This proves the following theorem
(see Figure 1a):

Theorem 3 (A Computational Zero/One Law). Every functionality F ∈
U− is either computationally quantum-UC feasible or computationally quantum-
UC complete.

As a straightforward corollary of the above theorem we can conclude that the
quantum lifting theorem for completeness can be made bi-directional in the com-
putational setting. Theorem 1 already states that computational completeness
of some F ∈ U− in the classical setting implies computational completeness of F
in the quantum setting. In the other direction, if F is quantumly-UC complete,
then Theorem 3 implies that it is not quantum-UC feasible, which implies (by
Theorem 2) that it is not (classically) UC feasible; hence, the computational
(classical) zero/one law implies that F is computationally (classically) UC com-
plete. This proves the following:

Corollary 2. Let F ∈ U− be a functionality. F is computationally UC complete
under the semi-honest OT assumption shOT if and only if F is computationally
quantum-UC complete under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA.

5.2 Statistical Security: Three Classes

We next turn to the setting of statistical security. In the classical setting, the
cryptographic-complexity landscape is complicated, as, apart from the com-
plete/feasible functionalities, there is a partition of the set U− in clusters for
which the exact relation is not known. In contrast we can show a “[zero/xor/one]-
law” in the statistical quantum-UC setting. In other words we can divide the
class U− into functionalities that are either complete, or feasible, or we can re-
duce FXOR to them. This considerably simplifies the landscape of the classical
statistical setting, as the hierarchy of functionalities that we can reduce F2CC to
collapses at the second level (i.e, to F2CC) which as it follows from Lemma 4 is
in fact complete in the quantum setting. This illustrates, as [36] mentioned also,
that the inverse of the Unruh’s quantum lifting lemma is in general not true.
Namely, there exist classical well-formed infeasible functionalities F and F′ such
that there exist an F-hybrid quantum protocol which statistically quantum-UC
securely realizes F′, but there exists no F-hybrid classical protocol which statis-
tically classical-UC realizes F′.

The following theorem states the aforementioned zero/xor/one-law:

Theorem 4 (A [Zero/Xor/One]-Law for the Information-Theoretic
Setting). Let F ∈ U−. Then exactly one of the following statements holds: (1)
F is quantum-UC feasible, (2) F is quantum-UC complete, and (3) F is neither
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(a) Computational landscape: zero/one
law. The picture is the same as in the
classical-UC setting.

1CC

2CC1XOR

Feasible

Complete

OT

COM

(b) Statistical landscape:
zero/xor/one. The three dots represent
an infinite hierarchy of functionalities.

Fig. 1. Cryptographic complexity in the quantum-UC framework: the box denotes the
class of deterministic finite two-party functionalities. The set U− corresponds to the
white area. The solid lines represent separations between non-equivalent primitives.
The dotted lines represent separations that exist only in the classical-UC setting.

quantum-UC complete nor quantum-UC feasible and FXOR 'qstat F. Further-
more, for each of the three statements, there exists at least one F ∈ U− which
satisfies it.

Proof (Sketch). By Lemma 2 and because statistically, F2CC, FCOM and FOT are
quantum-UC complete and FXOR is not quantum-UC feasible (since otherwise
FXOR is also classical-UC feasible, contradicting the classical impossibility result
in [27]), we can see that that for any F ∈ U−, either F is quantum-UC feasible,
or at least one of the following two statements holds: (1) F is quantum-UC
complete and (2) FXOR 'qstat F.

We then show that FXOR is not quantum-UC complete by proving that there
is no quantum protocol that UC realizes FCOM in the FXOR-hybrid world. Proof of
this statement is reminiscence of Lo and Chau’s proof that quantum protocols
are impossible to implement commitment [24]. The essence there is a so called
“purification” attack where a dishonest sender can purify the protocol in the
commit phase which allows him to apply a transformation on his local system,
by which he can open to a value other than what he committed to. In our case,
the only difference is that a quantum protocol can use FXOR as an extra setup.
However, FXOR is nothing but a classical fair-exchange channel. In particular,
the classical information in the protocol is symmetric to both parties, and we
can argue that a dishonest committer can make the overall quantum state pure
conditioned on shared classical information at the end of commit phase, so that
the purification attack still applies. We defer a formal proof to the full version.
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Finally, [27] showed that classically the class of functionalities that FXOR

reduces to and are not complete, denoted E , are exactly those of the form
FEXCH

(�1,�2): simultaneous exchange channels that trasmit 
1 (resp. 
2) bits from
one party to the other. The above argument that FXOR is not quantum-UC com-
plete extends straightforwardly to all such FEXCH, thus we conclude that any
functionality in the FXOR family E are neither statistically quantum-UC complete
nor statistically quantum-UC feasible. Thus we can derive the quantum-UC sta-
tistical landscape for U− as in Figure 1b.
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Abstract. A Zero-Knowledge PCP (ZK-PCP) is a randomized PCP
such that the view of any (perhaps cheating) efficient verifier can be
efficiently simulated up to small statistical distance. Kilian, Petrank, and
Tardos (STOC ’97) constructed ZK-PCPs for all languages in NEXP.
Ishai, Mahmoody, and Sahai (TCC ’12), motivated by cryptographic
applications, revisited the possibility of efficient ZK-PCPs for all of NP
where the PCP is encoded as a polynomial-size circuit that given a query
i returns the ith symbol of the PCP. Ishai et al. showed that there is no
efficient ZK-PCP for NP with a non-adaptive verifier, that prepares all of
its PCP queries before seeing any answers, unless NP ⊆ coAM and the
polynomial-time hierarchy collapses. The question of whether adaptive
verification can lead to efficient ZK-PCPs for NP remained open.

In this work, we resolve this question and show that any language or
promise problem with efficient ZK-PCPs must be in SZK (the class of
promise problems with a statistical zero-knowledge single prover proof
system). Therefore, no NP-complete problem can have an efficient ZK-
PCP unless NP ⊆ SZK (which also implies NP ⊆ coAM and the
polynomial-time hierarchy collapses). We prove our result by reducing
any promise problem with an efficient ZK-PCP to two instances of the
Conditional Entropy Approximation problem defined and studied
by Vadhan (FOCS’04) which is known to be complete for the class SZK.

Keywords: Probabilistically Checkable Proofs, Statistical Zero-
Knowledge.

1 Introduction

Since their inception, interactive proofs [GMR89, BM88] have had a transfor-
mative effect on theoretical computer science in general and the foundations of
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cryptography in particular. In an interactive proof for a language L, a computa-
tionally bounded randomized verifier V and an all-powerful prover P are given
a common input x, and P tries to convince V that x ∈ L. The proof must be
complete: P successfully convinces V that x ∈ L; as well as sound : no cheating
prover P̂ should be able to convince V that x ∈ L when x /∈ L. [GMR89] showed
that by allowing interaction and probabilistic verification, nontrivial languages
outside of BPP can be proved while the verifier statistically “learns nothing”
beyond the fact that x ∈ L. Thus in eyes of the verifier, the interaction remains
“zero-knowledge”. Shortly after, [GMW91] extend this fundamental result to all
of NP based on computational assumptions and a computational variant of the
notion of zero-knowledge.

The notion of zero-knowledge is formalized using the simulation paradigm:
for each (possibly cheating) efficient verifier, there is an efficient simulator that
generates a verifier view that is indistinguishable from the view the verifier would
obtain by honestly interacting with the prover, and therefore anything the verifier
could do using a transcript of his interaction with the prover, he could do by using
the simulator (without talking to the prover). Throughout this paper by default
we mean statistical indistinguishability and statistical zero knowledge, namely
they must hold against any (possibly computationally inefficient) distinguisher.
Any discussion about computational indistinguishability will be made explicit.

Motivated by the goal of unconditional security, Ben-Or et al. [BGKW88]
showed that if a verifier V interacts with multiple interactive provers (MIPs)
P1,P2, . . . who may coordinate on a strategy beforehand, but are unable to com-
municate once the interaction with V starts, then all languages in NP can be
proved in a (statistical) zero-knowledge way without any computational assump-
tion. Fortnow, Rompel, and Sipser [FRS94] showed that, the MIP model is essen-
tially equivalent to having a (perhaps exponentially long) proof, whose answers
to all possible queries are fixed before interaction begins (in contrast to the usual
notion of a prover, who may choose to alter his answers based on the queries he
has seen so far). Such proof systems are now known as probabilistically check-
able proofs (PCPs for short) and have found applications throughout theoretical
computer science, notably in the areas of hardness of approximation through the
celebrated PCP theorem [BFL90,AS98,ALM+98] and communication-efficient
interactive proofs [Kil92].

The existence of of ZK proofs for NP in the MIP model [BGKW88] and
the “equivalence” of MIP and PCP models (as a proof system) raised the fol-
lowing basic question: Does NP have PCPs that remain zero-knowledge against
malicious verifiers?

The work of [BGKW88] does not resolve this question, because their protocol,
when implemented in the PCPmodel, remains ZK only if cheating verifiers follow
the protocol honestly. This highlights an important point: since we have no con-
trol over the cheating verifier (except that we assume it is efficient), if the proof is
polynomial size then a cheating verifier may read the entire proof and this is not
zero knowledge. Therefore, the proof π should be super-polynomially long, and
we assume that an efficient (perhaps cheating) verifier V̂ is only allowed black-box
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access to the proof. Since V̂ is polynomially bounded, having black-box access to
such a proof πmeans that V̂ will be able to query only polynomially many symbols
in the proof at will. Thus, by definition, ZK-PCPs are incomparable to standard
(statistical) zero knowledge proofs in the single or multi-prover proof systems: (1)
the zero knowledge property is harder to achieve in the PCP model because the
proof is fixed and there is no control on which queries the verifier chooses to make,
(2) but the soundness propertymay be easier to achieve in the PCPmodel because
the soundness is required only against fixed cheating proofs (rather than cheating
provers who may adaptively manipulate their answers).

Kilian, Petrank, and Tardos [KPT97] were the first to explicitly study the
question above and (relying on the previous work of [DFK+92] which in turn
relied on the PCP theorem) showed that in fact every language in NEXP has
a ZK-PCP. Their ZK-PCPs, however, were not efficient even when constructed
for languages in NP, where by an efficient PCP for L ∈ NP, we mean any PCP
π whose answer π(q) to any query q can be computed using a polynomial size
circuit (which may depend on the common input x ∈ L, a witness w that x ∈ L,
and an auxiliary random string rπ). This limitation is inherent in the approach
of [KPT97], since in order to be ZK, their PCP requires more entropy than the
number of queries made by any cheating verifier.

Motivated by the lack of progress for over 10 years towards giving ZK-PCPs for
NP that are ZK with respect to all efficient cheating verifiers, Ishai, Mahmoody,
and Sahai [IMS12] asked whether this may be inherently impossible. Namely,
they asked the following question, which is also the main question studied in
this work.

Main Question: Are there efficient ZK-PCPs for NP?

Ishai et al. proved that any language or promise problem L with an efficient
ZK-PCP where the honest verifier’s queries are non-adaptive must satisfy L ∈
coAM. Therefore, NP does not have such efficient ZK-PCPs unless the
polynomial-time hierarchy collapses [BHZ87]. Thus, the main question above
remained open whether there exist efficient ZK-PCPs for NP if we allow the
verifier to be adaptive. In this paper we resolve this question in the negative;
namely we prove:

Theorem 1 (Main Result). Any promise problem L with an efficient ZK-
PCP is in SZK.

This strengthens the negative result of [IMS12] in two ways: (1) we lift the
restriction that the verifier be non-adaptive, and (2) we can conclude that L ∈
SZK which is stronger than L ∈ AM ∩ coAM, since it is known that SZK ⊆
AM ∩ coAM [For89, AH91]. On the other hand, [IMS12] only requires zero-
knowledge to hold for non-adaptive malicious verifiers, while we assume that the
zero-knowledge property holds for general (adaptive) malicious verifiers. (This
is natural, since if the honest verifier is adaptive then even honest-verifier zero-
knowledge would require zero-knowledge against an adaptive verifier, namely the
honest one.) Finally, we emphasize that Theorem 1 does not assume that the
simulation is black-box.
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Relation to Resettable Zero-Knowledge. The notion of resettable zero-knowledge
single prover proof systems introduced by Canetti et al. [CGGM00] is comparably
stronger than the notion of ZK-PCPs. Essentially, a resettable-ZK proof is a ZK-
PCP where soundness is required to hold even against adaptive cheating provers
who may manipulate their answers based on the queries they see (rather than just
fixed cheating proofs). Canetti et al. [CGGM00] showed how to obtain efficient
PCPs that are computational zero-knowledge based on computational hardness
assumptions. Thus, in the case of computational zero knowledge, the question is
resolved in the positive direction (under believable computational assumptions).
Similarly, it would be possible to get statistical zero-knowledge probabilistically
checkable arguments (with soundness against computationally bounded stateful
provers) if one can construct resettable statistical zero-knowledge arguments. The
work of [GMOS07] shows the existence of a closely related object, namely concur-
rent statistical zero-knowledge arguments for all of NP. But recall that in this
work, both the zero-knowledge and the soundness are statistical, and so thesemen-
tioned results do not resolve our main question.

Recently, Garg et al. [GOVW12] showed that efficient resettable statistical ZK
proof systems exist for non-trivial languages (e.g. Quadratic Residuosity) based
on computational assumptions. Therefore under the same assumptions, these
languages also possess efficient ZK-PCPs. Garg et al. also showed that assuming
the existence of exponentially hard one-way functions, statistical zero-knowledge
proof systems can be made resettable. Unfortunately this transformation does
not preserve the efficiency of the prover. Therefore, even though by the works
of Micciancio, Ong, and Vadhan [MV03,OV08] we know that SZK ∩ NP has
statistical zero-knowledge proofs with an efficient prover, the result of [GOVW12]
does not necessarily preserve this efficiency.

Finally note that if one can transform any statistical ZK proof into a resettable
statistical ZK proof without losing the efficiency of the prover, then together with
our main result of Theorem 1 this would imply that the problems with efficient
ZK-PCPs are exactly those in SZK ∩NP.

Relation to Basing Cryptography on Tamper-Proof Hardware. A main motiva-
tion of [IMS12] to study the possibility of efficient ZK-PCPs for NP comes
from a recent line of work on basing cryptography on tamper-proof hardware
(e.g. [Kat07,MS08,CGS08,GKR08,GIS+10,Kol10,GIMS10]). In this model, the
parties can exchange classical bits as well as hardware tokens that hide a state-
ful or stateless efficient algorithm. The receiver of a hardware token is only
able to use it as a black-box and call it on polynomially many inputs. Using
stateless hardware tokens makes the protocol secure against “resetting” attacks
where the receiver of a token is able to reset the state of the token (say, by
cutting its power). The work of Goyal et al. [GIMS10] focused on the power and
limits of stateless tamper-proof hardware tokens in achieving statistical security
and proved that statistical zero-knowledge for all of NP is possible using a single
stateless token sent from the prover to the verifier followed by O(1) rounds of clas-
sical interaction. A natural question remaining open after the work of [GIMS10]
was whether the classical interaction can be eliminated and achieve statistical
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ZK for NP using only a single stateless token. It is easy to see that this question
is in fact equivalent to our main question above, and thus our Theorem 1 proves
that a single (efficient) stateless token is not sufficient for achieving statistical
ZK proofs for NP.

2 Our Techniques

In this section we describe the ideas and techniques behind the proof of Theorem
1. We then compare it to the approach of [IMS12], which is restricted to non-
adaptive verifiers, and highlight why our technique bypasses this barrier. In the
following let us assume for notational simplicity that L is a language; the idea
is identical for general promise problems.

2.1 Our Approach

If L has a ZK-PCP, one naive approach to decide L using its simulator is to
run the simulator to obtain a view ν = (r, (q1, a1), . . . , (qm, am)), where r is the
random seed of the verifier and the (qi, ai) are queries/answers to the ZK-PCP,
and accept iff ν is an accepting view. This approach would obtain accepting
views if x ∈ L due to the zero-knowledge property, but there is no guarantee
about the case x �∈ L.

Our proof will show that if in addition to making sure that the view is ac-
cepting we do some extra tests on the distribution of the simulated view, then
this will allow us to decide L. Suppose for a moment that the ZK-PCP is de-
terministic, i.e. on an input x the prover deterministically generates a proof
π. (Of course it is known that ZK with deterministic provers cannot exist for
non-trivial languages [GO94]. We make this simplification here only to make our
proof sketch easier to describe, and we will argue below how one can do away
with this simplification.)

We will show that when the ZK-PCP is deterministic, it suffices to run the
simulator and check that the generated view is accepting and to check some
entropy-related properties of the view which in our case happen to be a compu-
tational task in SZK. Let (r, (q1, a1), . . . , (qm, am)) be the distribution of views
generated when running the simulator for the honest verifier. By the ZK prop-
erty, this is statistically close to the view of an honest verifier interacting with
the honest prover on YES (i.e. x ∈ L) instances. Let j be uniform in [m] and
consider the distribution (qj, aj).

We argue that to decide the language it suffices to check first that the sim-
ulated transcript is accepting, and second that H(aj | qj) is small. On YES
instances, the simulated transcript is almost surely accepting because of the ZK
property, and furthermore H(aj|qj) = 0 because the simulated proof is deter-
ministic. On the other hand, on NO (i.e. x �∈ L) instances, we will show that
if H(aj | qj) is sufficiently small, then the simulated transcript is statistically
close to an interaction between an honest verifier and a proof sampled as fol-
lows: for each q, the corresponding answer bit of the proof is sampled according
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to aj | qj = q. By the soundness condition of the ZK-PCP, it follows that the
transcript must be rejecting with high probability. It is clear that checking that
the simulated transcript is accepting is in BPP, while checking that H(aj | qj) is
small is a conditional entropy approximation problem, which is in SZK [Vad06].

To generalize the above argument to the case of randomized ZK-PCPs, we
use the following argument (which is a stronger version of an argument that first
appeared in [IMS12]): Any efficiently computable PCP (as a random variable
describing its truth table) has polynomial entropy. Therefore if we repeat the
honest verifier 
 times where 
 is a polynomial sufficiently larger than the size
of the circuit computing the PCP, we can essentially “exhaust” the entropy of
the proof observed by the next independent verification over the same PCP.
This allows us to prove that H(aj|qj) is small conditioned on the PCP answers
observed in the first 
 verifications. Interestingly, this argument when applied to
a random query index j (which is the index distribution we use—see Lemma 6) is
rather delicate and heavily relies on the fact that PCPs are fixed; the statement
is not true for interactive proofs, where the answers may depend on, say, the
order of the queries.

Finally we note that even after making sure that the simulator is choosing its
PCP answers close to some fixed oracle, it still might be the case that for NO
instances it does not run an honest execution of the verifier against this PCP
and somehow manages to generate accepting views for NO instances as well. To
complete the proof, one final technicality that we check is that the random coins
r generated by the simulator are indeed close to uniform conditioned on the 

previously sampled views. (They are guaranteed to be so on YES instances by
ZK, but may not be on NO instances.) This latter task is also reducible to the
conditional entropy approximation problem.

Approach of [IMS12]. At a high level, in our work we show that deciding the
language using the simulator can be done in SZK by a direct reduction to
a problem in SZK. In contrast, [IMS12] tried to “extract” a PCP from the
simulator and then run the honest verifier against this extracted PCP. Since the
extraction process requires sampling from inefficiently samplable distributions,
this task is accomplished with the aid of an all-powerful yet untrusted prover
(this is how they obtain the conclusion that the language is in AM ∩ coAM).
This makes our approach conceptually different from the approach of [IMS12].

3 Preliminaries

Basic Terminology and Notation. We use bold letters to denote random vari-
ables (e.g. X or x). By x ← x we mean that x is sampled according to the
distribution of the random variable x. We write Ex[·] to denote Ex←x[·], where
any x appearing inside the expression in the expectation is fixed. For any finite
set S, x ← S denotes x sampled uniformly from S. Un denotes the uniform
distribution over {0, 1}n, and [n] denotes the set {1, 2, . . . , n}. For jointly dis-
tributed random variables (x,y), and for a specific value y ← y, by (x | y)
we mean the random variable x conditioned on y = y. When we say an event
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occurs with negligible probability denoted by negl(n), we mean it occurs with
probability n−ω(1). We call two random variables x,y (or their correspond-
ing distributions) over the support set S ε-close if their statistical distance
Δ(x,y) = 1

2 ·
∑

s∈S |Pr[x = s]− Pr[y = s]| is at most ε. By an ensemble (of
random variables) {yx}x∈I we denote a set of random variables indexed by a
set I. We call two ensembles {yx}x∈I and {zx}x∈I with the same index set sta-
tistically close if Δ(yx, zx) = negl(|x|) for all x ∈ I. We use the terms efficient
and PPT to refer to any probabilistic polynomial time (perhaps oracle-aided)
algorithm. For an oracle π and an (oracle-aided) algorithm V, by Vπ we refer to
an execution of V given access to π and by View〈Vπ〉 we refer to the view of V in
its execution given π which consists of its randomness r and the sequence of its
oracle query-answer pairs [(q1, a1), (q2, a2), . . . ] (having only the oracle answers
and r is sufficient to know View〈Vπ〉). All logarithms are base 2. By H(X) we
denote the Shannon entropy of X defined as H(X) = EX lg(1/Pr[X = X ]). By
H(X | Y), we denote the conditional entropy as EY [H(X | Y )], and we note the
conditional mutual information as I(X;Y | Z) = H(X | Z)− (X | YZ).

A language L is a partition of {0, 1}∗ into LY = L and LN = {0, 1}∗ \ L.
A promise language (or problem) L = (LY, LN) generalizes the notion of

a language by only requiring that LY ∩ LN = ∅ (but there could be some
x ∈ {0, 1}∗ \ (LY ∪LN)). For promise problems, we will sometimes use x ∈ L to
denote x ∈ LY .

Definition 1 (Operations on Promise Languages). We define the following
three operations over promise languages.

– The complement L = (L
Y
, L

N
) of a promise language L = (LY, LN) is

another promise language such that L
Y
= LN and L

N
= LY.

– Conjunction L = L1 ∧ L2 of promise languages L1 and L2:
• x = (x1, x2) ∈ LY iff x1 ∈ LY

1 and x2 ∈ LY
2 ,

• x = (x1, x2) ∈ LN iff x1 ∈ LN
1 or x2 ∈ LN

2 .
– Disjunction L = L1 ∨ L2 of promise languages L1 and L2:

• x = (x1, x2) ∈ LY iff x1 ∈ LY
1 or x2 ∈ LY

2 ,
• x = (x1, x2) ∈ LN iff x1 ∈ LN

1 and x2 ∈ LN
2 .

It is easy to see that L1 ∨ L2 = L1 ∧ L1.

Definition 2 (Karp Reduction). A Karp reduction R from a promise problem
L1 to another promise problem L2 is a deterministic efficient algorithm such that
R(x) ∈ LY

2 for every x ∈ LY
1 and R(x) ∈ LN

2 for every x ∈ LN
1 .

Definition 3 (PCPs). A (randomized) probabilistically checkable proof (PCP
for short) Π = ({πx∈L},V) for a promise problem L consists of an ensemble of
random variables {πx} indexed by x ∈ L whose values are oracles (also called
proofs) and also a verifier V which is an oracle-aided PPT with randomness r.
We require the following properties to hold.

– Completeness: For every x ∈ LY and every π ∈ Supp(πx) it holds that
Prr[V

π
r (x) = 1] ≥ 2/3.

– Soundness: If x ∈ LN , then for every oracle π̂: Prr[V
π̂
r (x) = 0] ≥ 2/3.
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We call a PCP for problem L ∈ NP efficient, if for all x ∈ L and all π ∈
Supp(πx), there exists a poly(n)-sized circuit Cπ such that for all queries q,
Cπ(q) = π(q). Namely, Cπ encodes π.

Notice that this definition of efficiency is non-uniform: the distribution of proofs
Cπ may depend non-uniformly on x. This only makes our negative results stronger
than if we required Cπ to depend uniformly on x. We also note that our nega-
tive result holds even using a weaker notion of completeness for PCPs in which
Prr[V

π
r (x) = 1] ≥ 2/3 holds over the randomness of the verifier and the random-

ness of sampling the oracle π. We use the above definition since the positive con-
structions of randomized PCPs do satisfy this stronger condition, and it is more
convenient for amplifying the gap between the completeness and soundness errors.

Definition 4. Let Π = ({πx∈L},V) be a PCP for the problem L. Π is called

zero-knowledge (ZK) if for every malicious poly(n)-time verifier V̂, there exists a
simulator Sim which runs in (expected) poly(n)-time and the following ensembles
are statistically close:

{Sim(x)}x∈L , {View〈V̂πx (x)〉}x∈L.
Note that V̂ only has oracle access to π ← πx, and the statistical indistinguisha-
bility should hold for large enough |x|. We call Π perfect ZK if the simulator’s
output distribution, conditioned on not aborting, is identically distributed to the
view of the verifier V̂ accessing π ← πx∈L.

Non-uniformity vs. auxiliary input. By combining Definitions 3 and 4 one can
obtain the definition of an efficient ZK-PCP. Note that, zero-knowledge with
an “efficient prover” is typically defined using some auxiliary input given to
the “prover”, however, since here we prove a negative result using non-uniform
efficiency (as in Definition 3) only makes our results stronger. In particular,
if there exists an ensemble πx,w of efficiently computable proofs that is zero-
knowledge and depends on both x ∈ L and some witness w for x ∈ L, one can
always obtain a non-uniformly computable efficient ZK-PCP (according to our
Definitions 3 and 4) by hardwiring, for every x ∈ L, the lexicographically first
witness w into the efficient algorithm computing πx.

The definition of the complexity class SZK is indeed very similar to Definition
4 with the difference that the soundness holds against provers (which can be
thought of as stateful oracles who could answer new queries depending on the
previous queries asked.) Since we do not need the exact definition of the class
SZK, here we only describe it at a high level.

Definition 5 (Complexity Class SZK). The class SZK consists of promise
problems which have an interactive (single prover) proof system with soundness er-
ror ≤ 1/3 and the view of any malicious verifier can be simulated up to negl(n)
statistical error.

Lemma 1. For a constant k, let L1, . . . , Lk be a set of promise languages all in
SZK, and let F be a constant-size k-input formula with operations: complement,
conjunction, and disjunction as in Definition 1. Then F (L1, . . . , LK) ∈ SZK.

See Section 4.5 and Corollary 6.5.1 of [Vad99] for a proof.
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3.1 Shannon Entropy and Related Computational Problems

Fact 2 (Basic Facts about Entropy) The following hold for any random
variables X,Y,Z:

1. H(X | Y) ≤ H(X).

2. I(X;Y | Z) = H(X | Z)−H(X | YZ) = H(Y | Z)−H(Y | XZ) ≥ 0

3. Data processing inequality: for any randomized function F (whose random-
ness is independent of X,Y,Z), it holds that I(F(X);Y | Z) ≤ I(X;Y | Z).

Definition 6 (Conditional Entropy Approximation). The promise prob-
lem CEAε is defined as follows. Suppose C is a poly(n)-size circuit sampling a
joint distribution (X,Y), i.e. this is the distribution of the output of C run over
fresh randomness. Then given (C, r) we have:

– (X,Y, r) ∈ CEAY
ε iff H(X | Y) ≥ r.

– (X,Y, r) ∈ CEAN
ε iff H(X | Y) ≤ r − ε.

Lemma 2. For any ε > 1/ poly(n), CEAε ∈ SZK.

Proof. We give a reduction from CEAε to CEA1, which is known to be SZK-
complete [Vad06]. The reduction maps

(X,Y, r) �→ ((X1, . . . ,X1/ε), (Y1, . . . ,Y1/ε), r/ε)

where for every i ∈ [1/ε], (Xi,Yi) is sampled identically to (X,Y) and indepen-
dently of all other components (i.e. by an independent copy of the circuit C). It
is easy to see that

H((X1, . . . ,X1/ε) | (Y1, . . . ,Y1/ε)) =
1

ε
· H(X | Y).

In our main reduction, we will reduce problems to the following problem in SZK:

Definition 7 (Conditional Entropy Bound). CEBα,β is the following
promise problem where inputs are poly(n)-size circuits C sampling a joint dis-
tribution (X,Y):

1. (X,Y) ∈ CEBY
α,β iff H(X | Y) ≥ α.

2. (X,Y) ∈ CEBN
α,β iff H(X | Y) ≤ β.

The following is immediate from Lemma 2:

Lemma 3. For all functions α(n), β(n) uniformly computable in time poly(n)
and satisfying α(n) − β(n) > 1/ poly(n), CEBα,β ∈ SZK.
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3.2 Statistical Distance vs Conditional Entropy

To prove our main result, we need to bound statistical distance using conditional
(Shannon) entropy and vice versa. See the full version of the paper for proofs of
the following two lemmas.

Lemma 4 (Conditional Entropy to Statistical Distance). Suppose
Supp(X) = {0, 1}n. Then it holds that EY←Y Δ((X | Y ),Un) ≤

√
n−H(X | Y).

Lemma 5 (Statistical Distance to Conditional Entropy). For ε ∈ [0, 1]
let H(ε) = ε lg(1/ε) + (1 − ε) lg(1/1−ε). Suppose Δ((X,Y), (X′,Y′)) ≤ ε and
Supp(X) ∪ Supp(X′) ⊆ {0, 1}n. Then it holds that |H(X | Y) − H(X′ | Y′)| ≤
4(H(ε) + ε · n).

4 Proving the Main Result

Theorem 3. Suppose the promise problem L = (LY , LN ) has a ZK-PCP Π =
({πx∈L},V) of entropy at most H(πx) ≤ poly(|x|). Then L ∈ SZK.

(Note that the theorem extends beyond efficient ZK-PCP’s and encompasses all
ZK-PCP’s where proofs have low entropy.) In the rest of this section we prove
Theorem 3. Fix such a ZK-PCP for L and let η = H(πx) ≤ poly(n).

The first step of our proof is to define a verifier who can “exhaust” all of
the entropy of the ZK-PCP so that the proof behaves essentially as if it were
deterministic. We use the following verifier: let V[�] = (V1, . . . ,V�) be a verifier
who executes 
 independent instances of V against the given oracle and let Vi

be its ith verification. (We will fix a choice of 
 = poly(n) � η later.) Let Sim

be the simulator that simulates the view of V[�] statistically well (i.e. Sim(x) is
negl(|x|)-close to the view of V[�](x) when accessing π ← πx for x ∈ L). The
view of Vi can be represented as νi = (ri, qi1, a

i
1, . . . , q

i
m, aim) where ri ∈ {0, 1}k

is the randomness used by Vi, qij is its jth oracle query and aij is the answer to

qij . We use the notation ai = (ai1, . . . , a
i
m), qi = (qi1, . . . , q

i
m). The view of V[�]

consists of (ν1, . . . , ν�).
In order to prove L ∈ SZK, we show how to reduce L to a constant size

formula over SZK languages. As we mentioned in the introduction, we need
to check three conditions: the simulator generates an accepting view, the en-
tropy of a random answer in the view has low entropy given the query, and the
distribution of the random coins in the view is uniform.

To describe our reduction formally we first need to define a circuit Csim

x and
a promise problem Dα,β as follows.

– The circuitCsim

x takes as input rsim (for input length |x|).The circuitCx outputs
Sim(x; rsim) = (ν1, . . . , ν�) where for each i ∈ [
], νi = (ri, qi1, a

i
1, . . . , q

i
m, aim).

– For α > β, Dα,β is a promise problem whose inputs are Boolean circuits C
of input length n and size |C| = poly(n); then:
1. C ∈ DY

α,β iff Pr[C(Un) = 1] ≥ α, and

2. C ∈ DN
α,β iff Pr[C(Un) = 1] ≤ β.
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The parameters α and β could be functions of n, and it is easy to see that for
efficiently computable α, β (given n) it holds that Dα,β ∈ BPP if α − β >
1/ poly(n).

Reduction 4 (Main Reduction). Given a parameter 
, we map x �→ (C1, C2,
C3) as follows.

1. C1 checks the uniformity of the random coins in the view. C1 is a circuit
sampling the joint distribution (X1,Y1) defined as follows. On input (rsim, i),
C1 executes the circuit Csim

x on rsim to get (ν1, . . . , ν�) = Csim

x (rsim) and sets:
X1 = ri and Y1 = (ν1, . . . , νi−1).

2. C2 checks that the conditional entropy of a randomly chosen answer is low
conditioned on the corresponding query. C2 is a circuit sampling the joint
distribution (X2,Y2) defined as follows. On input (rsim, i, j), C2 executes the
circuit Csim

x on rsim to get (ν1, . . . , ν�) = Csim

x (rsim) and sets: X2 = aij and

Y2 = (ν1, . . . , νi−1, qij). We emphasize the fact that while aij , q
i
j appear in the

output of C2, the actual index j itself does not appear in the output.
3. C3 checks that the view is accepting. C3 operates as follows: on input (rsim, i),

C3 executes the circuit Csim

x on rsim to obtain (ν1, . . . , ν�) = Csim

x (rsim), and
output 1 iff νi is an accepting view of V.

Claim. Reduction 4 is a Karp reduction from L (specified in Theorem 3) to
the promise language Z = CEBk−1/200,k−1/100 ∧ CEB2η/�,1.1η/� ∧D0.66,β for β =
1/3 + 1/10 + 2mη/
.

Proving Theorem 3 Using Claim 4. By taking 
 = 40mη, it holds that 2m ·η/
 <
1/20 in Lemma 7 and so β < 1/2, which implies that Dα,β ∈ BPP, Z ∈ SZK,
and so L ∈ SZK.

In the following we prove Claim 4 by studying each case of x ∈ LY and x ∈ LN

separately. We begin with a lemma that will be useful for the case x ∈ LY .
The following lemma bounds the conditional entropy of a single answer to a

single randomly chosen verifier query by the conditional entropy of the set of all
answers to the set of all verifier queries. This is non-trivial because the verifier
queries may be asked adaptively.

Lemma 6. Let A be any randomized algorithm that (adaptively) queries a PCP
π. Let r ∈ {0, 1}k denote the random coins of A. Let q = (q1, . . . , qm) be the
queries that Aπ(r) makes and let aj = π(qj) be the corresponding answers. Let
π be an arbitrary distribution over proofs, and let q and a be the distribution
over (the vectors of) queries and answers obtained by querying π using algorithm
A on uniform random coins r. Let also j be an arbitrary distribution over [m].
Then H(aj | qj) ≤ H(a | r) where in the notation qj the value of j is not explicitly
revealed.

Proof. By the definition of conditional entropy and that 0 = H(ajqj | π) −
H(ajqj | π), we get H(aj | qj) = H(ajqj)− H(ajqj | π)− (H(qj)− H(ajqj | π)).
Since a proof π is stateless for any fixed π, given any query q asked at some point
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during the execution of Aπ, the answer a = π(q) is also fixed. Therefore it holds
that H(ajqj | π) = H(qj | π), and by the definition of mutual information, we
have H(aj | qj) = I(ajqj;π) − I(qj;π) ≤ I(ajqj;π). Since I(ajqj;π) = H(π) −
H(π | ajqj) and since π and r are independent, Item 1 of Fact 2 implies that

H(aj | qj) ≤ I(ajqj;π) = H(π)−H(π | ajqj)

≤ H(π | r)−H(π | ajqjr) = I(ajqj;π | r)

Let F be the function that takes as input (a,q) and outputs (aj,qj) by sampling
j. By the data processing inequality (Item 3 of Fact 2) it holds that

H(aj | qj) ≤ I(ajqj;π | r) = I(F(aq);π | r)
≤ I(aq;π | r) ≤ H(aq | r) = H(a | r) + H(q | ar)

Finally, since H(q | ar) = 0, this implies the proposition.

Remark 1. We emphasize that if π was stateful (i.e. a “prover”, rather than a
“proof”), then Lemma 6 would be false. Even a deterministic prover can correlate
his answers to the verifier’s queries, and so it may be that H(a | q) = 0 but
H(aj | qj) > 0. Namely, even given π (say for a stateful prover that π gives the
random coins of the prover) and a query q, the answer to q may have entropy
because π’s answer to q may be different depending on whether q was asked as
the first query or second query or third query, etc. In particular, the equality
H(ajqj | π) = H(qj | π) used in the proof of Lemma 6 would not hold anymore.
This is one place where we crucially use the fixed nature of a PCP.

Proof of Claim 4: The Case x ∈ LY . Here we would like to show that
(C1 ∈ CEBY

k−1/200,k−1/100) and (C2 ∈ CEB
Y

2η/�,1.1η/�) and (C3 ∈ DY
0.66,β). We

study each of the generated instances Ci for i ∈ [3]. In all these cases, we first
assume that the simulator’s output is identically distributed to the view of V[�]

interacting with a prover and then will show how to remove this assumption.

The Instance C1. If the simulator’s outputs were identically distributed to the
view of V[�] interacting with a prover, then the simulated randomness X1 = ri

will be uniformly distributed over {0, 1}k with entropy k independently of Y1 =
(ν1, . . . ,νi−1). Since the simulator generates a view that is statistically close to
the honest interaction (and since k = poly(|x|) and H(negl(n)) = negl(n)) we
may apply Lemma 5 to deduce that H(X1 | Y1) ≥ k − negl(n) ≥ k − 1/200.
Therefore, C1 ∈ CEBY

k−1/200,k−1/100.

The Instance C2. Here we study the view of V[�] while interacting with a proof
generated according to the distribution πx whose entropy is bounded by η. Sup-
pose first that the simulator’s outputs were identically distributed to the view
of V[�] interacting with πx. In this case, by an argument similar to [IMS12], one
can show that

Claim. Ei←[�] H(a
i | ν1, . . . ,νi−1, ri) ≤ η/
.
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Proof.

η + k
 ≥ H(πx) + H(r1, . . . , r�)

(πx, r
1, . . . , r� independent) = H(πx, r

1, . . . , r�)

(πx, r
1, . . . , r� fix ν1, . . . ,ν�) ≥ H(ν1, . . . ,ν�)

=
∑
i∈[�]

H(νi | ν1, . . . ,νi−1)

(ri and ai determine qi) =
∑
i∈[�]

H(ri | ν1, . . . ,νi−1)

+ H(ai | ν1, . . . ,νi−1, ri)

= k
+
∑
i∈[�]

H(ai | ν1, . . . ,νi−1, ri).

Thus, by averaging over i we have Ei←[�] H(a
i | ν1, . . . ,νi−1, ri) ≤ η/
.

The following claim is also based on the assumption that the simulation is per-
fect, and thus the distribution of (ν1, . . . ,νm) generated by the simulator is
identical to the view of V[�] run against π ← πx∈L,w.

Claim. For each fixed value of i and (ν1, . . . , νi−1), it holds that

H(aij | qi
j , ν

1, . . . , νi−1) ≤ H(ai | ri, ν1, . . . , νi−1) (1)

Namely, the entropy of the answers of the ith verification gives an upper-bound
on the entropy of the answer to a randomly chosen query of the verifier without
revealing its index.

Proof. Let (πx,ν
1, . . . ,νi−1) be the joint distribution of an honest proof πx and

i−1 executions of the honest verifier V1, . . . ,Vi−1 using proof πx. Apply Lemma
6 using the distribution over proofs given by (πx | ν1, . . . , νi−1), and with the
honest verifier algorithm Vi as the query algorithm accessing the proof.

Using Claims 4 and 4, we conclude that H(X2 | Y2) ≤ η/
, assuming that
the simulator was perfect. If we only assume that the simulator’s output is
statistically close to the view of V[�] interacting with πx, then we can apply
Lemma 5 and deduce that H(X2 | Y2) ≤ η/
 + negl(n) < 1.1η/
 which implies

that C2 ∈ CEB
Y

2η/�,1.1η/�.

The Instance C3. By the completeness of Π , when V[�] = (V1, . . . , V �) interacts
with a proof, for all i ∈ [
], Vi accepts with probability ≥ 2/3. Since the simu-
lation is statistically close to the real interaction, it holds that νi is accepting
with probability 2/3− negl(n) ≥ 0.66, and so C3 ∈ DY

0.66,β.

Proof of Claim 4: The Case x ∈ LN . Here we would like to show that
C1 ∈ CEBN

k−1/200,k−1/100 or C2 ∈ CEB
N

2η/�,1.1η/� or C3 ∈ DN
0.66,β. This follows

from the following lemma.
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Lemma 7. Suppose x ∈ LN , C1 �∈ CEBN
k−1/200,k−1/100, and also that C2 �∈

CEB
N

2η/�,1.1η/�. Then C3 ∈ DN
0.66,β for β = 1/3 + 1/10 + 2m · η/
.

Intuition. Since C2 �∈ CEB
N

2η/�,1.1η/�, therefore, the oracle answers returned to

the verifier in the ith execution (for a random i← [
]) all have very low entropy
and thus close to a fixed proof. Moreover, due to C1 �∈ CEBN

k−1/200,k−1/100, the
randomness of the verifier in this execution has almost full entropy, and therefore,
the ith execution is close to an honest execution of the verifier against some
oracle. Finally, since x ∈ LN by the soundness of the PCP, the verifier would
accept with probability at most ≈ 1/3. The formal argument goes through a
hybrid argument as follows.

Experiments. The outputs of all experiments described below consist of a view of
V[i] (i.e. the first i executions of the verifier). The distribution of (ν1, . . . , νi−1)
in all of these executions is the same and is sampled by Sim(x), and they only
differ in the way they sample νi.

– Experiment Real. Choose i ← [
], and take the output (ν1, . . . , νi) by
running Sim(x).

– Experiment Ideal. Choose i ← [
], and take the output (ν1, . . . , νi−1) by
running Sim(x). To sample νi = (ri,qi, ai) we first sample ri ← {0, 1}k
uniformly at random, and then using ri we run the verifier against the oracle
π̂ defined as follows.

The Oracle π̂: Suppose we have fixed (νi, . . . , νi−1). Recall the distribution
((qi

j, a
i
j) | νi, . . . , νi−1) defined above when defining the instance C2 (i.e.,

(aij,q
i
j) is a randomly chosen pair of query-answer pairs from the view νi

without revealing the index j). For every query q, the oracle π̂ gets one
sample according to a← (aij | νi, . . . , νi−1,qi

j = q) and sets π̂(q) = a forever.

If Pr[qi
j = q | νi, . . . , νi−1] = 0, we define π̂(q) = ⊥.

– Experiment Hybj for j ∈ [m+ 1]. These experiments are in between Real
and Ideal and for larger j they become closer to Real. Here we choose i← [
],
and take the output (ν1, . . . , νi) by running Sim(x). Then we will re-sample
parts of νi as follows. We will keep (ri, (qi1, a

i
1), . . . , (q

i
j−1, a

i
j−1)) as sampled

by Sim(x). For the remaining queries and answers we sample an oracle π̂ as
described in Ideal, and we let (qij , a

i
j), . . . , (q

i
m, aim) be the result of continuing

the execution of Vi using ri and the oracle π̂. Note that Hybm+1 ≡ Real.

Claim. If x ∈ LN , then PrIdeal[ν
i accepts ] ≤ 1/3.

Claim. If C1 �∈ CEBN
k−1/200,k−1/100, then Δ(Ideal,Hyb1) ≤ 1/10.

Claim. If C2 �∈ CEB
N

2η/�,1.1η/�, then Ej∈[m] Δ(Hybj ,Hybj+1) ≤ 2η/
.
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Proving Lemma 7. Claims 4, 4, and 4 together imply that

Pr
Real

[νi accepts ] ≤ Pr
Ideal

[νi accepts ] +Δ(Ideal,Hyb1) +
∑
j∈[m]

Δ(Hybj ,Hybj+1)

≤ 1/3 + 1/10 + 2mη/


which proves that C3 ∈ DN
2/3,β. In the following we prove these claims.

Proof (Proof of Claim 4). Since the oracle π̂ is sampled and fixed before choosing
ri and executing Vi, and because x ∈ LN , by the soundness property of the PCP
it holds that PrIdeal[ν

i accepts ] ≤ 1/3.

Proof (Proof of Claim 4). If C1 �∈ CEBN
k−1/200,k−1/100, then we have Ei←[�][H(r

i |
ν1, . . . ,νi−1)] ≥ k − 1/100. By Lemma 4 it holds that

E
i←[�],ν1,...,νi−1

[Δ((ri | ν1, . . . , νi−1),Uk)] ≤
√
1/100 = 1/10.

But note that the only difference between Ideal and Hyb1 is the way we sample
ri conditioned on the previously sampled parts (i.e. ν1, . . . , νi−1). Thus it holds
that Δ(Ideal,Hyb1) ≤ 1/10.

Proof (Proof of Claim 4). The only difference between Hybj and Hybj+1 is the

way they answer qij . In Hybj+1 the original answer of the simulator is used, while
in Hybj this answer is provided by the oracle π̂. Thus, they are different only
when the answer re-sampled by π̂ differs from the original answer. Therefore, we
have that:

Δ(Hybj ,Hybj+1) ≤ E
ν1,...,νi−1,i

[
Pr

ai,qi,π̂
[aij �= π̂(qi

j) | i, ν1, . . . , νi−1]
]

Taking an expectation over all j ← [
] we conclude Claim 4 as follows.

E
j
[Δ(Hybj ,Hybj+1)] = E

j,i,ν1,...,νi−1

[
Pr

ai,qi,π̂
[aij �= π̂(qi

j) | i, ν1, . . . , νi−1]
]

= E
i,ν1,...,νi−1

[
Pr

j,ai,qi,π̂
[aij �= π̂(qi

j) | i, ν1, . . . , νi−1]
]
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By combining the sampling of aij,q
i
j directly, we have that

E
j
[Δ(Hybj ,Hybj+1)] = E

i,ν1,...,νi−1

[
Pr

ai
j,q

i
j ,π̂

[aij �= π̂(qi
j) | i, ν1, . . . , νi−1]

]

= E
i,ν1,...,νi−1

[
1− Pr

ai
j,q

i
j ,π̂

[aij = π̂(qi
j) | i, ν1, . . . , νi−1]

]

= E
i,ν1,...,νi−1,qij ,a

i
j

[
1− Pr

π̂
[aij = π̂(qij) | i, ν1, . . . , νi−1]

]

(1− α ≤ lg 1
α ∀α ∈ [0, 1]) ≤ E

i,ν1,...,νi−1,qij ,a
i
j

[
lg

1

Prπ̂[a
i
j = π̂(qij) | i, ν1, . . . , νi−1]

]
(by definition of π̂) = E

i

[
H(aij | ν1, . . . ,νi−1,qi

j)
]

(C2 �∈ CEB
N

2η/�,1.1η/�) ≤ 2η/
.
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A common relaxation is a preprocessing SNARG, which allows the
verifier to conduct an expensive offline phase that is independent of
the statement to be proven later. Recent constructions of preprocessing
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proofs consist of only O(1) encrypted (or encoded) field elements, and
verification is via arithmetic circuits of size linear in the NP statement.
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We present a general methodology for the construction of preprocess-
ing SNARGs, as well as resulting concrete efficiency improvements. Our
contribution is three-fold:

(1) We introduce and study a natural extension of the interactive proof
model that considers algebraically-bounded provers; this new setting is
analogous to the common study of algebraically-bounded “adversaries”
in other fields, such as pseudorandomness and randomness extraction.
More concretely, in this work we focus on linear (or affine) provers, and
provide several constructions of (succinct two-message) linear-interactive
proofs (LIPs) for NP. Our constructions are based on general transfor-
mations applied to both linear PCPs (LPCPs) and traditional “unstruc-
tured” PCPs.

(2) We give conceptually simple cryptographic transformations from
LIPs to preprocessing SNARGs, whose security can be based on different
forms of linear targeted malleability (implied by previous knowledge as-
sumptions). Our transformations convert arbitrary (two-message) LIPs
into designated-verifier SNARGs, and LIPs with degree-bounded verifiers
into publicly-verifiable SNARGs. We also extend our methodology to ob-
tain zero-knowledge LIPs and SNARGs. Our techniques yield SNARGs
of knowledge and thus can benefit from known recursive composition and
bootstrapping techniques.

(3) Following this methodology, we exhibit several constructions achiev-
ing new efficiency features, such as “single-ciphertext preprocessing
SNARGs” and improved succinctness-soundness tradeoffs. We also offer
a new perspective on existing constructions of preprocessing SNARGs,
revealing a direct connection of these to LPCPs and LIPs.

1 Introduction

Interactive proofs [GMR89] are central to modern cryptography and complexity
theory. One extensively studied aspect of interactive proofs is their expressibility,
culminating with the result IP = PSPACE [Sha92]. Another aspect, which is the
focus of this work, is that proofs for NP statements can potentially be much
shorter than an NP witness and be verified much faster than the time required
for checking the NP witness.

1.1 Background

Succinct Interactive Arguments. In interactive proofs for NP with statistical
soundness, significant savings in communication (let alone verification time)
are unlikely [BHZ87, GH98, GVW02, Wee05]. If we settle for proof systems
with computational soundness, known as argument systems [BCC88], then sig-
nificant savings can be made. Using collision-resistant hashes (CRHs) and
probabilistically-checkable proofs (PCPs) [BFLS91], Kilian [Kil92] showed a
four-message interactive argument for NP where, to prove membership of an
instance x in a given NP language L with NP machine ML, communication and
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verification time are bounded by poly(λ + |ML| + |x| + log t), and the prover’s
running time is poly(λ + |ML|+ |x|+ t). Here, t is the classical NP verification
time of ML for the instance x, λ is a security parameter, and poly is a universal
polynomial (independent of λ, ML, x, and t). We call such argument systems
succinct.

Proof of Knowledge. A natural strengthening of computational soundness is
(computational) proof of knowledge: it requires that, whenever the verifier is
convinced by an efficient prover, not only can we conclude that a valid witness
for the theorem exists, but also that such a witness can be extracted efficiently
from the prover. This property is satisfied by most proof system constructions,
including the aforementioned one of Kilian [BG08], and is useful in many appli-
cations of succinct arguments.

Removing Interaction. Kilian’s protocol requires fourmessages.A challenge, which
is of both theoretical and practical interest, is the construction of non-interactive
succinct arguments. As a first step in this direction, Micali [Mic00] showed how
to construct publicly-verifiable one-message succinct non-interactive arguments
for NP, in the random oracle model, by applying the Fiat-Shamir heuristic [FS87]
to Kilian’s protocol. In the plain model, one-message solutions are impossible for
hard-enough languages (against non-uniform provers), so one usually considers
the weaker goal of two-message succinct arguments where the verifier message is
generated independently of the statement to be proven. Following [GW11], we call
such arguments SNARGs. More precisely, a SNARG for a language L is a triple
of algorithms (G,P, V ) where: the generator G, given the security parameter λ,
samples a reference string σ and a corresponding verification state τ (G can be
thought to be run during an offline phase, by the verifier, or by someone the ver-
ifier trusts); the (honest) prover P (σ, x, w) produces a proof π for the statement
“x ∈ L” given a witness w; then, V (τ, x, π) verifies the validity of π. Soundness
should hold even if x is chosen depending on σ.

Gentry and Wichs [GW11] showed that no SNARG can be proven secure via
a black-box reduction to a falsifiable assumption [Nao03]; this may justify using
non-standard assumptions to construct SNARGs. (Note that [GW11] rule out
SNARGs only for (hard-enough) NP languages. For the weaker goal of verifying
deterministic polynomial-time computations in various models, there are beau-
tiful constructions relying on standard assumptions, such as [GKR08, KR09,
AIK10, CKV10, GGP10, BGV11, CRR11, CTY11, CMT12, FG12]. We focus
on verifying nondeterministic polynomial-time computations.)

Extending earlier works [ABOR00, DLN+04, Mie08, DCL08], several works
showed how to remove interaction in Kilian’s PCP-based protocol and obtain
SNARGs of knowledge (SNARKs) using extractable collision-resistant hash-
ing [BCCT12a, DFH12, GLR11], or construct MIP-based SNARKs using fully-
homomorphic encryption with an extractable homomorphism property [BC12].

The Preprocessing Model. A notion that is weaker than a SNARK is that of
a preprocessing SNARK: here, the verifier is allowed to conduct an expensive
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offline phase. More precisely, the generator G takes as an additional input a
time bound T , may run in time poly(λ+ T ) (rather than poly(λ+ log T )), and
generates σ and τ that can be used, respectively, to prove and verify correctness
of computations of length at most T . Bitansky et al. [BCCT12b] showed that
SNARKs can always be “algorithmically improved”; in particular, preprocessing
SNARKs imply ones without preprocessing. (The result of [BCCT12b] crucially
relies on the fast verification time and the adaptive proof-of-knowledge property
of the SNARK.) Thus, “preprocessing can always be removed” at the expense
of only a poly(λ)-loss in verification efficiency.

1.2 Motivation

The typical approach to construct succinct arguments (or, more generally, other
forms of proof systems with nontrivial efficiency properties) conforms with the
following methodology: first, give an information-theoretic construction, using
some form of probabilistic checking to verify computations, in a model that en-
forces certain restrictions on provers (e.g., the PCP model [Kil92, Mic00, BG08,
DCL08, BCCT12a, DFH12, GLR11] or other models of probabilistic checking
[IKO07, KR08, SBW11, SMBW12, SVP+12, BC12, SBV+12]); next, use crypto-
graphic tools to compile the information-theoretic construction into an argument
system (where there are no restrictions on the prover other than it being an ef-
ficient algorithm).

Existing constructions of preprocessing SNARKs seem to diverge from this
methodology, while at the same time offering several attractive features: such as
public verification, proofs consisting of only O(1) encrypted (or encoded) field
elements, and verification via arithmetic circuits that are linear in the statement.

Groth [Gro10] and Lipmaa [Lip12] (who builds on Groth’s approach) intro-
duced clever techniques for constructing preprocessing SNARKs by leveraging
knowledge-of-exponent assumptions [Dam92, HT98, BP04] in bilinear groups. At
high level, Groth considered a simple reduction from circuit satisfaction prob-
lems to an algebraic satisfaction problem of quadratic equations, and then con-
structed a set of specific cryptographic tools to succinctly check satisfiability
of this problem. Gennaro et al. [GGPR12] made a first step to better separate
the “information-theoretic ingredient” from the “cryptographic ingredient” in
preprocessing SNARKs. They formulated a new type of algebraic satisfaction
problems, called Quadratic Span Programs (QSPs), which are expressive enough
to allow for much simpler, and more efficient, cryptographic checking, essen-
tially under the same assumptions used by Groth. In particular, they invested
significant effort in obtaining an efficient reduction from circuit satisfiability to
QSPs.

Comparing the latter to the probabilistic-checking-based approach described
above, we note that a reduction to an algebraic satisfaction problem is a typi-
cal first step, because such satisfaction problems tend to be more amenable to
probabilistic checking. As explained above, cryptographic tools are then usu-
ally invoked to enforce the relevant probabilistic-checking model (e.g., the PCP
one). The aforementioned works [Gro10, Lip12, GGPR12], on the other hand,
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seem to somehow skip the probabilistic-checking step, and directly construct spe-
cific cryptographic tools for checking satisfiability of the algebraic problem itself.
While this discrepancy may not be a problem per se, we believe that understand-
ing it and formulating a clear methodology for the construction of preprocessing
SNARKs are problems of great interest. Furthermore, a clear methodology may
lead not only to a deeper conceptual understanding, but also to concrete im-
provements to different features of SNARKs (e.g., communication complexity,
verifier complexity, prover complexity, and so on). Thus, we ask:

Is there a general methodology for the construction of preprocessing SNARKs?
Which improvements can it lead to?

1.3 Our Results

We present a general methodology for the construction of preprocessing SNARKs,
as well as resulting concrete improvements. Our contribution is three-fold:

– We introduce a natural extension of the interactive proof model that consid-
ers algebraically-bounded provers. Concretely, we focus on linear interactive
proofs (LIPs), where both honest and malicious provers are restricted to
computing linear (or affine) functions of messages they receive over some
finite field or ring. We then provide several (unconditional) constructions of
succinct two-message LIPs for NP, obtained by applying simple and general
transformations to two variants of PCPs.

– We give cryptographic transformations from (succinct two-message) LIPs
to preprocessing SNARKs, based on different forms of linear targeted mal-
leability, which can be instantiated based on existing knowledge assumptions.
Our transformation is very intuitive: to force a prover to “act linearly” on
the verifier message, simply encrypt (or encode) each field or ring element
in the verifier message with an encryption scheme that only allows linear
homomorphism.

– Following this methodology, we obtain several constructions that exhibit new
efficiency features. These include “single-ciphertext preprocessing SNARKs”
and improved succinctness-soundness tradeoffs. We also offer a new perspec-
tive on existing constructions of preprocessing SNARKs: namely, although
existing constructions do not explicitly invoke PCPs, they can be reinter-
preted as using linear PCPs, i.e., PCPs in which proof oracles (even mali-
cious ones) are restricted to be a linear functions.1

We now discuss our results further, starting in Section 1.3 with the information-
theoretic constructions of LIPs, followed in Section 1.3 by the cryptographic
transformations to preprocessing SNARKs, and concluding in Section 1.3 with
the new features we are able to obtain.

1 A stronger notion of linear PCP has been used in other works [IKO07, SBW11,
SMBW12, SVP+12, SBV+12] to obtain arguments for NP with nontrivial efficiency
properties.
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Fig. 1. High-level summary of our transformations

Linear Interactive Proofs. The LIP model modifies the traditional interactive
proofs model in a way analogous to the way the common study of algebraically-
bounded “adversaries”modifies other settings, such as pseudorandomness [NN90,
BV07] and randomness extraction [GR05, DGW09]. In the LIP model both hon-
est and malicious provers are restricted to apply linear (or affine) functions over
a finite field F to messages they receive from the verifier. (The notion can be
naturally generalized to apply over rings.) The choice of these linear functions
can depend on auxiliary input to the prover (e.g., a witness), but not on the
verifier’s messages.

With the goal of non-interactive succinct verification in mind, we restrict
our attention to (input-oblivious) two-message LIPs for boolean circuit satis-
fiability problems with the following template. To verify the relation RC =
{(x,w) : C(x,w) = 1} where C is a boolean circuit, the LIP verifier VLIP sends
to the LIP prover PLIP a message q that is a vector of field elements, depending
on C but not on x; VLIP may also output a verification state u. The LIP prover
PLIP(x,w) applies to q an affine transformation Π = (Π ′, b), resulting in only a
constant number of field elements. The prover’s message a = Π ′ ·q+ b can then
be quickly verified (e.g., with O(|x|) field operations) by VLIP, and the soundness
error is at most O(1/|F|). From here on, we shall use the term LIP to refer to
LIPs that adhere to the above template.

LIP Complexity Measures. Our constructions provide different tradeoffs among
several complexity measures of an LIP, which ultimately affect the features of the
resulting preprocessing SNARKs. The two most basic complexity measures are
the number of field elements sent by the verifier and the number of those sent by
the prover. An additional measure that we consider in this work is the algebraic
complexity of the verifier (when viewed as an F-arithmetic circuit). Specifically,
splitting the verifier into a query algorithm QLIP and a decision algorithmDLIP, we
say that it has degree (dQ, dD) if QLIP can be computed by a vector of multivariate
polynomials of total degree dQ each in the verifier’s randomness, and DLIP by a
vector of multivariate polynomials of total degree dD each in the LIP answers a
and the verification state u. Finally, of course, the running times of the query
algorithm, decision algorithm, and prover algorithm are all complexity measures
of interest.
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As mentioned above, our LIP constructions are obtained by applying general
transformations to two types of PCPs. We now describe each of these transfor-
mations and the features they achieve. Some of the parameters of the resulting
constructions are summarized in Table 1.

LIPs from Linear PCPs. A linear PCP (LPCP) of length m is an oracle com-
puting a linear function π : Fm → F; namely, the answer to each oracle query
qi ∈ Fm is ai = 〈π, qi〉. Note that, unlike in an LIP where different affine func-
tions, given by a matrix Π and shift b, are applied to a message q, in an LPCP
there is one linear function π, which is applied to different queries. (An LPCP
with a single query can be viewed as a special case of an LIP.) This difference
prevents a direct use of an LPCP as an LIP.

Our first transformation converts any (multi-query) LPCP into an LIP with
closely related parameters. Concretely, we transform any k-query LPCP of length
m over F into an LIP with verifier message in F(k+1)m, prover message in Fk+1,
and the same soundness error up to an additive term of 1/|F|. The transfor-
mation preserves the key properties of the LPCP, including the algebraic com-
plexity of the verifier. Our transformation is quite natural: the verifier sends
q = (q1, . . . , qk+1) where q1, . . . , qk are the LPCP queries and qk+1 = α1q1 +
. . .+αkqk is a random linear combination of these. The (honest) prover responds
with ai = 〈π, qi〉, for i = 1, . . . , k + 1. To prevent a malicious prover from using
inconsistent choices for π, the verifier checks that ak+1 = α1a1 + . . .+ αkak.

By relying on two different LPCP instantiations, we obtain two corresponding
LIP constructions:

– A variant of the Hadamard-based PCP of Arora et al. [ALM+98] (ALMSS),
extended to work over an arbitrary finite field F, yields a very simple LPCP
with three queries. After applying our transformation, for a circuit C of
size s and input length n, the resulting LIP for RC has verifier message in
FO(s2), prover message in F4, and soundness error O(1/|F|). When viewed
as F-arithmetic circuits, the prover PLIP and query algorithm QLIP are both
of size O(s2), and the decision algorithm is of size O(n). Furthermore, the
degree of (QLIP, DLIP) is (2, 2).

– A (strong) quadratic span program (QSP), as defined by Gennaro et al.
[GGPR12], directly yields a corresponding LPCP with three queries. For a
circuit C of size s and input length n, the resulting LIP for RC has verifier
message in FO(s), prover message in F4, and soundness error O(s/|F|). When

viewed as F-arithmetic circuits, the prover PLIP is of size Õ(s), the query
algorithm QLIP is of size O(s), and the decision algorithm is of size O(n). The
degree of (QLIP, DLIP) is (O(s), 2).

A notable feature of the LIPs obtained above is the very low “online complexity”
of verification: in both cases, the decision algorithm is an arithmetic circuit of
size O(n). Moreover, all the efficiency features mentioned above apply not only
to satisfiability of boolean circuits C, but also to satisfiability of F-arithmetic
circuits.
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In both the above constructions, the circuit to be verified is first represented as
an appropriate algebraic satisfaction problem, and then probabilistic checking
machinery is invoked. In the first case, the problem is a system of quadratic
equations over F, and, in the second case, it is a (strong) quadratic span program
(QSP) over F. These algebraic problems are the very same problems underlying
[Gro10, Lip12] and [GGPR12].

As explained earlier, [GGPR12] invested much effort to show an efficient re-
duction from circuit satisfiability problems to QSPs. Our work does not subsume
nor simplify the reduction to QSPs of [GGPR12], but instead reveals a simple
LPCP to check a QSP, and this LPCP can be plugged into our general transfor-
mations. Reducing circuit satisfiability to a system of quadratic equations over F
is much simpler, but generating proofs for the resulting problem is quadratically
more expensive. (Concretely, both [Gro10] and [Lip12] require O(s2) computa-
tion already in the preprocessing phase).

LIPs from Traditional PCPs. Our second transformation relies on traditional
“unstructured” PCPs. These PCPs are typically more difficult to construct than
LPCPs; however, our second transformation has the advantage of requiring the
prover to send only a single field element. Concretely, our transformation con-
verts a traditional k-query PCP into a 1-query LPCP, over a sufficiently large
field. Here the PCP oracle is represented via its truth table, which is assumed to
be a binary string of polynomial size (unlike the LPCPs mentioned above, whose
truth tables have size that is exponential in the circuit size). The transformation
converts any k-query PCP of proof length m and soundness error ε into an LIP,
with soundness error O(ε) over a field of size 2O(k)/ε, in which the verifier sends
m field elements and receives only a single field element in return. The high-level
idea is to use a sparse linear combination of the PCP entries to pack the k an-
swer bits into a single field element. The choice of this linear combination uses
additional random noise to ensure that the prover’s coefficients are restricted
to binary values, and uses easy instances of subset-sum to enable an efficient
decoding of the k answer bits.

Taking time complexity to an extreme, we can apply this transformation to the
PCPs of Ben-Sasson et al. [BSCGT12] and get LIPs where the prover and verifier
complexity are both optimal up to polylog(s) factors, but where the prover
sends a single element in a field of size |F| = 2λ·polylog(s). Taking succinctness
to an extreme, we can apply our transformation to PCPs with soundness error
2−λ and O(λ) queries, obtaining an LIP with similar soundness error in which
the prover sends a single element in a field of size |F| = 2λ·O(1). For instance,
using the query-efficient PCPs of H̊astad and Khot [HK05], the field size is
only |F| = 2λ·(3+o(1)).2 (Jumping ahead, this means that a field element can
be encrypted using a single, normal-size ciphertext of homomorphic encryption
schemes such as Paillier or Elgamal even when λ = 100.) On the down side, the

2 In the case of [HK05], we do not obtain an input-oblivious LIP, because the queries
in their PCP depend on the input; while it is plausible to conjecture that the queries
can be made input-oblivious, we did not check that.
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degrees of the LIP verifiers obtained via this transformation are high; we give
evidence that this is inherent when starting from “unstructured” PCPs.

Table 1. Summary of our LIP constructions

starting point of # field elements in # field elements in algebraic properties field size for 2−λ

LIP construction verifier message prover message of verifier knowledge error

Hadamard PCP O(s2) 4 (dQ, dD) = (2, 2) 2λ ·O(1)

QSPs of [GGPR12] O(s) 4 (dQ, dD) = (O(s), 2) 2λ ·O(s)

PCPs of [BSCGT12] Õ(s) 1 none 2λ·polylog(s)

PCPs of [HK05] poly(s) 1 none 2λ·(3+o(1))

Honest-Verifier Zero-Knowledge LIPs. We also show how to make the above
LIPs zero-knowledge against honest verifiers (HVZK). Looking ahead, using
HVZK LIPs in our cryptographic transformations results in preprocessing
SNARKs that are zero-knowledge (against malicious verifiers in the CRS model).

For the Hadamard-based LIP, an HVZK variant can be obtained directly
with essentially no additional cost. More generally, we show how to transform
any LPCP where the decision algorithm is of low degree to an HVZK LPCP
with the same parameters up to constant factors;this HVZK LPCP can then
be plugged into our first transformation to obtain an HVZK LIP. Both of the
LPCP constructions mentioned earlier satisfy the requisite degree constraints.

For the second transformation, which applies to traditional PCPs (whose ver-
ifiers, as discussed above, must have high degree and thus cannot benefit from
our general HVZK transformation), we show that if the PCP is HVZK (see
[DFK+92] for efficient constructions), then so is the resulting LIP; in particular,
the HVZK LIP answer still consists of a single field element.

Proof of Knowledge. In each of the above transformations, we ensure not only
soundness for the LIP, but also a proof of knowledge property. Namely, it is
possible to efficiently extract from a convincing affine function Π a witness for
the underlying statement. The proof of knowledge property is then preserved
in the subsequent cryptographic compilations, ultimately allowing to establish
the proof of knowledge property for the preprocessing SNARK. As discussed
in Section 1.1, proof of knowledge is a very desirable property for preprocessing
SNARKs; for instance, it enables to remove the preprocessing phase, as well as to
improve the complexity of the prover and verifier, via the result of [BCCT12b].

Preprocessing SNARKs from LIPs. We explain how to use cryptographic
tools to transform an LIP into a corresponding preprocessing SNARK. At high
level, the challenge is to ensure that an arbitrary (yet computationally-bounded)
prover behaves as if it was a linear (or affine) function. The idea, which also
implicitly appears in previous constructions, is to use an encryption scheme
with targeted malleability [BSW12] for the class of affine functions: namely,
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an encryption scheme that “only allows affine homomorphic operations” on an
encrypted plaintext (and these operations are independent of the underlying
plaintexts). Intuitively, the verifier would simply encrypt each field element in
the LIP message q, send the resulting ciphertexts to the prover, and have the
prover homomorphically evaluate the LIP affine function on the ciphertexts;
targeted malleability ensures that malicious provers can only invoke (malicious)
affine strategies.

We concretize the above approach in several ways, depending on the proper-
ties of the LIP and the exact flavor of targeted malleability; different choices will
induce different properties for the resulting preprocessing SNARK. In particu-
lar, we identify natural sufficient properties that enable an LIP to be compiled
into a publicly-verifiable SNARK. We also discuss possible instantiations of the
cryptographic tools, based on existing knowledge assumptions. (Recall that, in
light of the negative result of [GW11], the use of nonstandard cryptographic
assumptions seems to be justified.)

Designated-Verifier Preprocessing SNARKs from Arbitrary LIPs. First, we show
that any LIP can be compiled into a corresponding designated-verifier pre-
processing SNARK with similar parameters. (Recall that “designated veri-
fier” means that the verifier needs to maintain a secret verification state.)
To do so, we rely on what we call linear-only encryption: an additively ho-
momorphic encryption that is (a) semantically-secure, and (b) linear-only.
The linear-only property essentially says that, given a public key pk and ci-
phertexts Encpk(a1), . . . ,Encpk(am), it is infeasible to compute a new cipher-
text c′ in the image of Encpk, except by “knowing” β, α1, . . . , αm such that
c′ ∈ Encpk(β +

∑m
i=1 αiai). Formally, the property is captured by guaranteeing

that, whenever A(pk,Encpk(a1), . . . ,Encpk(am)) produces valid ciphertexts (c′1,
. . . , c′k), an efficient extractor E (non-uniformly depending on A) can extract
a corresponding affine function Π “explaining” the ciphertexts. As a candidate
for such an encryption scheme, we propose variants of Paillier encryption [Pai99]
(as also considered in [GGPR12]) and of Elgamal encryption [EG85] (in those
cases where the plaintext is guaranteed to belong to a polynomial-size set, so
that decryption can be done efficiently). These variants are “sparsified” versions
of their standard counterparts; concretely, a ciphertext does not only include
Encpk(a), but also Encpk(α ·a), for a secret field element α. (This “sparsification”
follows a pattern found in many constructions conjectured to satisfy “knowledge-
of-exponent” assumptions.) As for Paillier encryption, we have to consider LIPs
over the ring Zpq (instead of a finite field F); essentially, the same results also hold
in this setting (except that soundness is O(1/min {p, q}) instead of O(1/|F|)).

We also consider a notion of targeted malleability, weaker than linear-only
encryption, that is closer to the definition template of Boneh et al. [BSW12]. In
such a notion, the extractor is replaced by a simulator. Relying on this weaker
variant, we are only able to prove the security of our preprocessing SNARKs
against non-adaptive choices of statements (and still prove soundness, though
not proof of knowledge, if the simulator is allowed to be inefficient). Nonethe-
less, for natural instantiations, even adaptive security seems likely to hold for our
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construction, but we do not know how to prove it. One advantage of working with
this weaker variant is that it seems to allow for more efficient candidates con-
structions. Concretely, the linear-only property rules out any encryption scheme
where ciphertexts can be sampled obliviously; instead, the weaker notion does
not, and thus allows for shorter ciphertexts. For example, we can consider a
standard (“non-sparsified”) version of Paillier encryption. We will get back to
this point in Section 1.3.

Publicly-Verifiable Preprocessing SNARKs from LIPs with Low-Degree Verifiers.
Next, we identify properties of LIPs that are sufficient for a transformation to
publicly-verifiable preprocessing SNARKs. Note that, if we aim for public verifi-
ability, we cannot use semantically-secure encryption to encode the message of
the LIP verifier, because we need to “publicly test” (without decryption) certain
properties of the plaintext underlying the prover’s response. The idea, implicit in
previous publicly-verifiable preprocessing SNARK constructions, is to use linear-
only encodings (rather than encryption) that do allow such public tests, while
still providing certain one-wayness properties. When using such encodings with
an LIP, however, it must be the case that the public tests support evaluating
the decision algorithm of the LIP and, moreover, the LIP remains secure despite
some “leakage” on the queries. We show that LIPs with low-degree verifiers
(which we call algebraic LIPs), combined with appropriate one-way encodings,
suffice for this purpose.

More concretely, like [Gro10, Lip12, GGPR12], we consider candidate encod-
ings in bilinear groups under similar knowledge-of-exponent and computational
Diffie-Hellman assumptions; for such encoding instantiations, we must start with
an LIP where the degree dD of the decision algorithm DLIP is at most quadratic.
(If we had multilinear maps supporting higher-degree polynomials, we could sup-
port higher values of dD.) In addition to dD ≤ 2, to ensure security even in the
presence of certain one-way leakage, we need the query algorithm QLIP to be of
polynomial degree.

Both of the LIP constructions from LPCPs described in Section 1.3 sat-
isfy these requirements. When combined with the above transformation, these
LIP constructions imply new constructions of publicly-verifiable preprocessing
SNARKs, one of which can be seen as a simplification of the construction of
[Gro10] and the other as a reinterpretation (and slight simplification) of the
construction of [GGPR12].

Zero-Knowledge. In all aforementioned transformations to preprocessing SNARKs,
if we start with an HVZK LIP (such as those mentioned in Section 1.3) and
additionally require a rerandomization property for the linear-only encryption/
encoding (which is available in all of the candidate instantiations we consider),
we obtain preprocessing SNARKs that are (perfect) zero-knowledge in the CRS
model. In addition, for the case of publicly-verifiable (perfect) zero-knowledge pre-
processing SNARKs, the CRS can be tested, so that (similarly to previous works
[Gro10, Lip12, GGPR12]) we also obtain succinct ZAPs.
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New Efficiency Features for SNARKs. We obtain the following concrete
improvements in communication complexity for preprocessing SNARKs.

“Single-Ciphertext Preprocessing SNARKs”. If we combine the LIPs that we
obtained from traditional PCPs (where the prover returns only a single field
element) with “non-sparsified” Paillier encryption, we obtain (non-adaptive)
preprocessing SNARKs that consist of a single Paillier cipherext. Moreover,
when using the query-efficient PCP from [HK05] as the underlying PCP, even a
standard-size Paillier ciphertext (with plaintext group Zpq where p, q are 512-bit
primes) suffices for achieving soundness error 2−λ with λ = 100. (For the case
of [HK05], due to the queries’ dependence on the input, the reference string of
the SNARK also depends on the input.) Alternatively, using the sparsified ver-
sion of Paillier encryption, we can also get security against adaptively-chosen
statements with only two Paillier ciphertexts.

Towards Optimal Succinctness. A fundamental question about succinct argu-
ments is how low can we push communication complexity. More accurately: what
is the optimal tradeoff between communication complexity and soundness? Ide-
ally, we would want succinct arguments that are optimally succinct : to achieve
2−Ω(λ) soundness against 2O(λ)-bounded provers, the proof length is O(λ) bits
long.

In existing constructions of succinct arguments, interactive or not, to provide
2−Ω(λ) soundness against 2O(λ)-bounded provers, the prover has to communi-
cate ω(λ) bits to the verifier. Concretely, PCP-based (and MIP-based) solu-
tions require Ω(λ3) bits of communication. This also holds for known prepro-
cessing SNARKs, because previous work and the constructions discussed above
are based on bilinear groups or Paillier encryption, both of which suffer from
subexponential-time attacks.

If we had a candidate for (linear-only) homomorphic encryption that did not
suffer from subexponential-time attacks, our approach could perhaps yield pre-
processing SNARKs that are optimally succinct. The only known such candidate
is Elgamal encryption (say, in appropriate elliptic curve groups) [PQ12]. How-
ever, the problem with using Elgamal decryption in our approach is that it
requires, in general, to compute discrete logarithms.

One way to overcome this problem is to ensure that honest proofs are always
decrypted to a known polynomial-size set. This can be done by taking the LIP to
be over a field Fp of only polynomial size, and ensuring that any honest proof π
has small 
1-norm ‖π‖1, so that in particular, the prover’s answer is taken from
a set of size at most ‖π‖1 ·p. For example, in the two LPCP-based constructions
described in Section 1.3, this norm is O(s2) and O(s) respectively for a circuit of
size s. This approach, however, has two caveats: the soundness of the underlying
LIP is only 1/poly(λ) and moreover, the verifier’s running time is proportional
to s, and not independent of it, as we usually require.

A very interesting related question that may lead to a solution circumvent-
ing the aforementioned caveats is whether there exist LIPs where the decision
algorithm has linear degree. With such an LIP, we would be able to directly use
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Elgamal encryption because linear tests on the plaintexts can be carried out “in
the exponent”, without having to take discrete logarithms.

Finally, a rather generic approach for obtaining “almost-optimal succintness”
is to use (linear-only) Elgamal encryption in conjunction with any linear homo-
morphic encryption scheme (perhaps not having the linear-only property) that is
sufficiently secure. Concretely, the verifier sends his LIP message encrypted un-
der both encryption schemes, and then the prover homomorphically evaluates the
affine function on both. The additional ciphertext can be efficiently decrypted,
and can assist in the decryption of the Elgamal ciphertext. For example, there are
encryption schemes based on Ring-LWE [LPR10] that are conjectured to have
quasiexponential security; by using these in the approach we just discussed, we
can obtain 2−Ω(λ) soundness against 2O(λ)-bounded provers with Õ(λ) bits of
communication.

Strong Knowledge and Reusability. Designated-verifier SNARKs typically suffer
from a problem known as the verifier rejection problem: security is compromised
if the prover can learn the verifier’s responses to multiple adaptively-chosen
statements and proofs. For example, the PCP-based (or MIP-based) SNARKs
of [BCCT12a, GLR11, DFH12, BC12] suffer from the verifier rejection problem
because a prover can adaptively learn the encrypted PCP (or MIP) queries, by
feeding different statements and proofs to the verifier and learning his responses,
and since the secrecy of these queries is crucial, security is lost.

Of course, one way to avoid the verifier rejection problem is to generate a new
reference string for each statement and proof. Indeed, this is an attractive solu-
tion for the aforementioned SNARKs because generating a new reference string
is very cheap: it costs poly(λ). However, for a designated-verifier preprocessing
SNARK, generating a new reference string is not cheap at all, and being able
to reuse the same reference string across an unbounded number of adaptively-
chosen statements and proofs is a very desirable property.

A property that is satisfied by all algebraic LIPs , which we call strong knowl-
edge, is that such attacks are impossible. Specifically, for such LIPs, every prover
either makes the verifier accept with probability 1 or with probability less than
O(poly(λ)/|F|). (In the full version of this paper, we also show that traditional
“unstructured” PCPs cannot satisfy this property.) Given LIPs with strong
knowledge, it seems that designated-verifier SNARKs that have a reusable ref-
erence string can be constructed. Formalizing the connection between strong
knowledge and reusable reference string actually requires notions of linear-only
encryption that are somewhat more delicate than those we have considered so
far.

1.4 Structured PCPs In Other Works

Ishai et al. [IKO07] proposed the idea of constructing argument systems with
nontrivial efficiency properties by using “structured” PCPs and cryptographic
primitives with homomorphic properties, rather than (as in previous approaches)
“unstructured” polynomial-size PCPs and collision-resistant hashing. We have
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shown how to apply this basic approach in order to obtain succinct non-interactive
arguments with preprocessing. We now compare our work to other works that
have also followed the basic approach of [IKO07].

Strong vs. Weak Linear PCPs. Both in our work and in [IKO07], the notion of
a “structured” PCP is taken to be a linear PCP. However, the notion of a linear
PCP used in our work does not coincide with the one used in [IKO07]. Indeed
there are two ways in which one can formalize the intuitive notion of a linear
PCP. Specifically:

– A strong linear PCP is a PCP in which the honest proof oracle is guaranteed
to be a linear function, and soundness is required to hold for all (including
non-linear) proof oracles.

– A weak linear PCP is a PCP in which the honest proof oracle is guaranteed
to be a linear function, and soundness is required to hold only for linear
proof oracles.

In particular, a weak linear PCP assumes an algebraically-bounded prover, while
a strong linear PCP does not. While Ishai et al. [IKO07] considered strong linear
PCPs, in our work we are interested in studying algebraically-bounded provers,
and thus consider weak linear PCPs.

Arguments from Strong Linear PCPs. Ishai et al. [IKO07] constructed a four-
message argument system for NP in which the prover-to-verifier communication
is short (i.e., an argument with a laconic prover [GVW02]) by combining a
strong linear PCP and (standard) linear homomorphic encryption; they also
showed how to extend their approach to “balance” the communication between
the prover and verifier and obtain a O(1/ε)-message argument system for NP
with O(nε) communication complexity. Let us briefly compare their work with
ours.

First, in this paper we focus on the non-interactive setting, while Ishai et al.
focused on the interactive setting. In particular, in light of the negative result of
Gentry and Wichs [GW11], this means that the use of non-standard assumptions
in our setting (such as linear targeted malleability) may be justified; in contrast,
Ishai et al. only relied on the standard semantic security of linear homomorphic
encryption (and did not rely on linear targeted malleability properties). Second,
we focus on constructing (non-interactive) succinct arguments, while Ishai et al.
focus on constructing arguments with a laconic prover. Third, by relying on weak
linear PCPs (instead of strong linear PCPs) we do not need to perform (explicitly
or implicitly) linearity testing, while Ishai et al. do. Intuitively, this is because we
rely on the assumption of linear targeted malleability, which ensures that a prover
is algebraically bounded (in fact, in our case, linear); not having to perform
proximity testing is crucial for preserving the algebraic properties of a linear
PCP (and thus, e.g., obtain public verifiability) and obtaining O(poly(λ)/|F|)
soundness with only a constant number of encrypted/encoded group elements.
(Recall that linearity testing only guarantees constant soundness with a constant
number of queries.)
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Turning to computational efficiency, while their basic protocol does not pro-
vide the verifier with any saving in computation, Ishai et al. noted that their
protocol actually yields a batching argument : namely, an argument in which, in
order to simultaneously verify the correct evaluation of 
 circuits of size S, the
verifier may run in time S (i.e., in time S/
 per circuit evaluation). In fact, a set
of works [SBW11, SMBW12, SVP+12, SBV+12] has improved upon, optimized,
and implemented the batching argument of Ishai et al. [IKO07] for the purpose
of verifiable delegation of computation.

Finally, [SBV+12] have also observed that QSPs can be used to construct
weak linear PCPs; while we compile weak linear PCPs into LIPs, [SBV+12] (as
in previous work) compile weak linear PCPs into strong ones. Indeed, note that
a weak linear PCP can always be compiled into a corresponding strong one, by
letting the verifier additionally perform linearity testing and self-correction; this
compilation does not affect proof length, increases query complexity by only a
constant multiplicative factor, and guarantees constant soundness.

Remark 1.1. The notions of (strong or linear) PCP discussed above should not
be confused with the (unrelated) notion of a linear PCP of Proximity (linear
PCPP) [BSHLM09, Mei12], which we now recall for the purpose of comparison.

Given a field F, an F-linear circuit [Val77] is an F-arithmetic circuit C : Fh →
F� in which every gate computes an F-linear combination of its inputs; its kernel,
denoted ker(C), is the set of all w ∈ Fh for which C(w) = 0�. A linear PCPP
for a field F is an oracle machine V with the following properties: (1) V takes
as input an F-linear circuit C and has oracle access to a vector w ∈ Fh and
an auxiliary vector π of elements in F, (2) if w ∈ ker(C) then there exists π so
that V w,π(C) accepts with probability 1, and (3) if w is far from ker(C) then
V w,π(C) rejects with high probability for every π.

Thus, a linear PCPP is a proximity tester for the kernels of linear circuits
(which are not universal), while a (strong or weak) linear PCP is a PCP in
which the proof oracle is a linear function.
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Abstract. We present barriers to provable security of two fundamental
(and well-studied) cryptographic primitives perfect non-interactive zero
knowledge (NIZK), and non-malleable commitments:

– Black-box reductions cannot be used to demonstrate adaptive sound-
ness (i.e., that soundness holds even if the statement to be proven is
chosen as a function of the common reference string) of any statis-
tical (and thus also perfect) NIZK for NP based on any “standard”
intractability assumptions.

– Black-box reductions cannot be used to demonstrate non-malleability
of non-interactive, or even 2-message, commitment schemes based on
any “standard” intractability assumptions.

We emphasize that the above separations apply even if the construction
of the considered primitives makes a non-black-box use of the underlying
assumption.

As an independent contribution, we suggest a taxonomy of game-
based intractability assumption based on 1) the security threshold, 2) the
number of communication rounds in the security game, 3) the computa-
tional complexity of the game challenger, 4) the communication complex-
ity of the challenger, and 5) the computational complexity of the security
reduction.

1 Introduction

Modern Cryptography relies on the principle that cryptographic schemes are
proven secure based on mathematically precise assumptions; these can be gen-
eral—such as the existence of one-way functions—or specific—such as the hard-
ness of factoring products of large primes. The security proof is a reduction
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that transforms any attacker A of the scheme into a machine that breaks the
underlying assumption (e.g., inverts an alleged one-way function). This study
has been extremely successful, and during the past three decades many crypto-
graphic tasks have been put under rigorous treatment and numerous construc-
tions realizing these tasks have been proposed under a number of well-studied
complexity-theoretic hardness assumptions.

We here consider two fundamental cryptographic primitives—perfect non-
interactive zero-knowledge with adaptive statements and non-interactive non-
malleable commitments—for which security proofs based on well-studied
intractability assumptions have remained elusive.

Perfect NIZK with Adaptive Inputs. A non-interactive zero-knowledge (NIZK)
protocol [BFM88] is protocol between two parties, a Prover, and a Verifier,
through which the Prover can non-interactively (i.e., by sending a single mes-
sage π) convince the Verifier of the validity of a statement x, only if x is true
(this is called the soundness property), while at the same time revealing noth-
ing beyond the fact that x is true (this is called the zero-knowledge property).
To make such constructs possible both parties are additionally assumed to have
access to a “Common Reference String” (CRS) that has been ideally sampled
according to some distribution. The original definition of [BFM88] only consid-
ered non-adaptive notions of soundness and zero-knowledge: Roughly speaking,
the (non-adaptive) soundness condition requires that for every false statement
x /∈ L, with high probability over the choice of the CRS, any proof π output
by a malicious prover will be rejected by the verifier. The (non-adaptive) zero-
knowledge property, on the other hand, requires that for every true statement
x ∈ L, the joint distribution consisting of the reference string, and an honestly
generated proof, can be reconstructed by a simulator. In both of these properties,
the statement x is required to be fixed before the reference string is known. Feige,
Lapidot and Shamir [FLS90] introduced stronger adaptive notions of both sound-
ness and zero-knowledge; roughly speaking, here soundness and zero-knowledge
should hold even if the statement x is adversarially chosen as a function of the
reference string.

As with traditional zero-knowledge protocols, NIZKs come in several flavors:
computational NIZK, statistical NIZK, and perfect NIZK. In the computational
notion, the simulator’s output is only required to be computationally indistin-
guishable from an honestly generated view, whereas in the statistical (resp. per-
fect) variants, it is required to be statistically close (resp identical) to an honestly
generated view. Computational NIZK with adaptive zero-knowledge and sound-
ness were constructed early on based on standard cryptographic intractability
assumptions [FLS90, BY96], but constructions of statistical and perfect NIZK
were elusive.

Only recently, a breakthrough result by Groth, Ostrovsky and Sahai (GOS)
[GOS06] provided a construction of a perfect NIZK forNP based on the hardness
of a number theoretic assumption over bilinear groups. Their protocol satisfies
the adaptive notion of zero-knowledge; however, it only satisfies the non-adaptive
notion of soundness (that is, soundness is no longer guaranteed to hold if the
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attacker chooses a statement x /∈ L as a function of the common reference
string). We here focus on whether there exists a perfect NIZK for NP with both
adaptive soundness and zero-knowledge.

A step towards answering this question appears in the work of Abe and Fehr
[AF07], which presented a perfect NIZK for NP with both adaptive sound-
ness and zero-knowledge, using an “knowledge-extractaction” assumption (sim-
ular to the “knowledge-of-exponent” assumption of [Dam91]), as opposed to a
computational-intractability assumption. Abe and Fehr also demonstrate that
certain (arguably natural) types of proof techniques—which they refer to as
“direct” black-box reductions—cannot be used to prove adaptive soundness of
perfect NIZKs for NP . Their notion of a “direct” proof, however, is quite re-
strictive (very roughly speaking, it requires the security reduction to “directly
embedd” some hard instance into the CRS in a “structure preserving way”).1

Non-interactive Non-malleable Commitments. Often described as the “digital”
analogue of sealed envelopes, commitment schemes enable a sender to commit it-
self to a value while keeping it secret from the receiver. This property is called hid-
ing. Furthermore, the commitment is binding, and thus in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a
single value determined in the committing stage. For many applications, how-
ever, the most basic security guarantees of commitments are not sufficient. For
instance, the basic definition of commitments does not rule out an attack where
an adversary, upon seeing a commitment to a specific value v, is able to commit
to a related value (say, v − 1), even though it does not know the actual value
of v. This kind of attack might have devastating consequences if the underlying
application relies on the independence of committed values (e.g., consider a case
in which the commitment scheme is used for securely implementing a contract
bidding mechanism). In order to address the above concerns, Dolev, Dwork and
Naor introduced the concept of non-malleable commitments [DDN00]. Loosely
speaking, a commitment scheme is said to be non-malleable if it is infeasible
for an adversary to “maul” a commitment to a value v into a commitment to a
related value ṽ.

More precisely, we consider a man-in-the-middle (MIM) attacker that partic-
ipates in two concurrent executions of a commitment scheme Π ; in the “left”
execution it interacts with an honest committer; in the “right” execution it in-
teracts with an honest receiver. Additionally, we assume that the players have
n-bit identities (where n is polynomially related to the security parameter), and
that the commitment protocol depends only on the identity of the committer;
we sometimes refer to this as the identity of the interaction. Intuitively, Π be-
ing non-malleable means that if the identity of the right interaction is different

1 Among other things, the structure preserving property requires that if the “hard
instance” being directly embedded in the CRS is true, the CRS is valid, and if the
hard instance is false, then the CRS is “invalid”. This property can never hold when
considering NIZK in the Uniform Reference String model (as every CRS is valid), and
as such their result holds vacously when considering NIZK in the Uniform Reference
String model.
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than the identity of the left interaction (i.e., A does not use the same identity
as the left committer), the value A commits to on the right does not depend on
the value it receives a commitment to on the left; this is formalized by requir-
ing that for any two values v1, v2, the value A commits to after receiving left
commitments to v1 or v2 are indistinguishable.

The first non-malleable commitment protocol was constructed by Dolev,
Dwork and Naor [DDN00] in 1991. The security of their protocol relies on the
minimal assumption of one-way functions and requires Ω(log n) rounds of inter-
action, where k ∈ N is the length of party identities. The round-complexity of
non-malleable commitments has since been extensively studied (see e.g.,
[Bar02, PR05b, PR05a, LPV08, LP09, PW10, Wee10]), leading up to constant
round protocols based on one-way functions [LP11, Goy11].

The question of whether non-interactive, or even 2-round, non-malleable com-
mitments exist, however, is wide open. (We note that in the Common Reference
String model, constructions of non-interactive non-malleable commitments are
known [CIO98]; we here focus on constructions in the plain model, without any
set-up.) Some initial progress towards this question can be found in [PPV08]
where a construction of non-interactive non-malleable commitments based on a
new hardness assumption is given; this assumption, however, has a strong non-
malleability flavor; as such, it provides little insight into the question of whether
non-malleability can be obtained from a “pure” hardness assumptions (such as
e.g., the hardness of factoring).

1.1 Our Results

The main result of this paper is showing that Turing (i.e., black-box) reductions
cannot be used to base the security of the above-mentioned primitives, on a
general class of intractability assumption.

More precisely, following Naor [Nao03] (see also [DOP05, HH09, RV10, Pas11,
GW11]), we model an intractability assumption as an arbitrary game between
a (potentially) unbounded challenger C, and an attacker A. A is said to break
the assumption C with respect to the threshold t if it can make C output 1
with probability non-negligibly higher than the threshold t. All traditional cryp-
tographic hardness assumptions (e.g., the hardness of factoring, the hardness
of the discrete logarithm problem, the decisional Diffie-Hellman problem etc.)
can be modeled as 2-round challengers C with the threshold t being either 0 (in
case of the factoring or discrete logarithm problems) or 1/2 (in case of the deci-
sional Diffie-Hellman problem). In all these examples C is polynomial-time; Naor
[Nao03] and Gentry and Wichs [GW11] refer to such assumptions as “falsifiable”.
For generality, we here (following [Pas11]) refer to these as “efficient-challenger”
assumptions. More generally, we refer to an assumption where the challenger can
be implemented in time (resp. size) T (·) as a “T (·)-time (resp. size) challenger
assumption” Note that more “esoteric” assumptions such as the “one-more dis-
crete logarithm assumption” [BNPS03, BP02], or “adaptive one-way functions”
[PPV08], are not efficient-challenger assumptions, but they are exponential-time
challenger assumptions.
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Our first result rules out basing statistical (and thus also perfect) NIZK with
adaptive soundness on efficient-challenger (a.k.a falsifiable) assumptions.

Theorem 1 (Main Theorem 1—Informally stated). Assume the existence of
(non-uniformly hard) one-way functions. Then there exists an NP-language L
such that the following holds. Let Π be a statistical non-interactive adaptively
zero-knowledge argument for L. Assume there exists a polynomial-time Turing
reduction R such that RA breaks the efficient-challenger assumption C w.r.t. the
threshold t for every A that breaks adaptive soundness of Π. Then C can be
broken in polynomial-time with respect to the threshold t.

We next show that if we additionally assume the existence of sub-exponential
one-way functions, and consider the constructions of NIZK for proving any
polynomial-length (in the security parameter) statement in NP based on a par-
ticular exponential-time challenger assumption (C, t), then the assumption can
already be broken in polynomial time.

Moving on to non-interactive non-malleable commitments, we show that if
non-malleability of a non-interactive, or two message, commitment scheme Π
can be based on a efficient-challenger (resp. T (·)-size) challenger assumption
(C, t) using a polynomial-time (resp. T (·)-sized) security reduction, then C can
be broken in polynomial-time (resp. by a poly(T (·))-sized circuit).

Theorem 2 (Main Theorem 2—Informally stated). Let Π be a two-message
commitment scheme. Assume there exists a polynomial-time (resp. T (·)-size)
Turing reduction R such that RA breaks the efficient-challenger (resp. T (·)-size)
assumption C w.r.t. the threshold t for every A that breaks non-malleability of
Π. Then C can be broken in polynomial-time (resp. by a poly(T (·))-sized circuit)
with respect to the threshold t.

We emphasize that for all the above-mentioned results, the construction of the
protocols Π need not make use of the underlying assumption in a black-box
way; the only restriction we impose is that the security reduction is a Turing
(i.e., black-box) reduction.

Let us also remark that although we see only superficial similaries between the
primitives of non-interactive statistical NIZK and non-interactive non-malleable
commitments (e.g., they both refer to non-interactive primitives), the techniques
used to prove the above impossibility results have significant overlap.

Uniform v.s. Non-uniform Security Reductions. In this work we focus on ruling
out uniform security reductions; that is, the security reduction is a Turing ma-
chine that gets no advice about the attacker. Nevertheless, a very recent work by
Chung, Lin, Mahmoody and Pass [CLMP13] provides techniques for extending
certain types of separation results for the uniform setting also to the non-uniform
setting (where we consider reductions that may receive a polynomial-length ad-
vice about the attacker). These technique readily apply to our results, which
thus also extend to rule out non-uniform security reductions.
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A Taxonomy of Intractability Assumption. As an independent contribution, we
slightly generalize the notion of an intractability assumption from [Pas11] (see
also [Nao03, DOP05, HH09, RV10, GW11]) and provide an, in our eyes, natural
taxonomy of intractability assumptions based on 1) the security threshold, 2) the
number of communication rounds in the security game, 3) the computational com-
plexity of the game challenger, 4) the communication complexity of the challenger,
and 5) the computational complexity of the security reduction. Our results, com-
bined with [Pas11, GW11], demonstrate several natural primitives that may be
(trivially) based on assumption of a certain type (e.g., the soundness condition
of a perfect NIZK can trivially be viewed as a bounded-round assumption), but
cannot be based on a different type of assumption (e.g., an assumption where the
challenger is efficient). Our results focus on understanding limitations in terms of
items 1, 2, 3 and 5; we leave open an exploration of item 4, i.e., the communication
complexity of the challenger. More generally, we are optimistic that cryptographic
tasks may be classified in this taxonomy, based on whether they can be acheived—
even using a non-black-box construction—based on a class of assumptions in this
taxonomy, but not on another (much like the celebrated taxonomy of Impagliazzo
[Imp95] in the context of black-box constructions.)

A Note on Random Oracles. Let us point out that in the Random Oracle model
[BR93], both of the above-mentioned primitives are easy to construct. Perfect
NIZK were construced in [BR93] (by relying on the “Fiat-Shamir heuristic”
[FS87]) and non-interactive non-malleable commitments in [Pas03a]. Indeed,
many practical protocols rely on the assumption that a “good” hashfunction be-
haves like a non-interactive non-malleable commitment, and on non-interactive
zero-knowledge arguments constructed by applying the “Fiat-Shamir heuristic”
[FS87] to a three-message perfect zero-knowledge protocol. Our results show
that such commonly used sub-protocols cannot be proven secure based on stan-
dard hardness assumptions. Note that these results are incomparable to those of
e.g., [CGH04, GK03] on the “uninstantiability of random oracles”: the results of
[CGH04, GK03] are stronger in the sense that any instantiation of their scheme
with a concrete function can actually be broken, whereas we just show that the
instantiated scheme cannot be proven secure using a Turing reduction based on
standard assumptions. On the other hand, the separations of [CGH04, GK03]
consider “artifical protocols”, whereas the protocols we consider are natural (and
commonly used in practice).

1.2 Related Separation Results

There is a large literature on separation results between cryptographic primi-
tives/assumptions. We distinguish between two types of results.

Separations for Fully Black-box Constructions. The seminal work of Impagli-
azzo and Rudich [IR88] provides a framework for proving black-box separations
between cryptographic primitives. We highlight that this framework considers
so-called “fully-black-box constructions” (see [RTV04] for a taxonomy of var-
ious black-box separations); that is, the framework considers both black-box



340 R. Pass

constructions (i.e., the higher-level primitive only uses the underlying primitive
as a black-box), and black-box reductions.

Separations for Black-box Reductions. In recent years, new types of black-box
separations have emerged. These types of separation apply even to non-black-box
constructions, but still only rule out black-box proofs of security: Pass [Pas06]
and Pass, Tseng and Venkitasubramaniam [PTV11] (relying on the works of
Brassard [Bra83] and Akavia et al [AGGM06], demonstrating limitations of
“NP-hard Cryptography”2) demonstrate that under certain (new) complexity
theoretic assumptions, various cryptographic task cannot be based on one-way
functions using a black-box security reduction, even if the protocol uses the
one-way function in a non-black-box way. Very recently, two independent works
demonstrate similar types of separation bounds, but this time ruling our se-
curity reductions to a general set of intractability assumptions: Pass [Pas11]
demonstrates impossibility of using black-box reductions to prove the security
of several primitives (e.g., Schnorr’s identification scheme, commitment scheme
secure under weak notions of selective opening, Chaum Blind signatures, etc)
based on any “bounded-round” intractability assumption (where the challenger
uses an a-priori bounded number of rounds, but is otherwise unbounded). Gentry
and Wichs [GW11] demonstrate (assuming the existence of strong pseudoran-
dom generators) impossibility of using black-box security reductions to prove
soundness of “succinct non-interactive arguments” based on any “falsifiable”
assumption (where the challenger is computationally bounded). Both of the
above-mentioned work fall into the ”meta-reduction” paradigm of Boneh and
Venkatesan [BV98], which was earlier used to prove separations for restricted
types of reductions (see e.g., [BMV08, HRS09, FS10]). Our separation results
are in the vein of these two works, and follows some of their techniques.

1.3 Proof Overview: Perfect NIZK with Adaptive Inputs

Assume there exists a perfect NIZK (P, V ) for a hard-on-the average language
L; for simplicity, in this proof overview we focus on the case when the refer-
ence string is uniformly random (i.e., we consider only NIZK in the so-called
Uniform Reference String (URS) Model). Assume further that there exists a
Turing reduction R such that RA breaks the assumption C (with respect to
some thresholds t) whenever A breaks adaptive soundness of (P, V ). Follow-
ing the “meta-reduction” paradigm by Boneh and Venkatesan [BV98] (which is
used in both [Pas11] and [GW11], and also [AF07]), we want to use R to directly
break C.

More precisely (just as in [Pas11, GW11]) we exhibit a particular attacker
A to the adaptive soundness of (P, V ) and next show how to “emulate” this
attacker for R without disturbing R’s interaction with C. Whereas in [Pas11]

2 See also the results of Feigenbaum and Fortnow [FF93] and the result of Bogdanov
and Trevisan [BT03] that demonstrate limitations of NP-hard cryptography for re-
stricted types of reductions.
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the emulation was statistically close (and thus the separation could be applied
also to unbounded challengers), in [GW11] the emulation was only computa-
tionally indistinguishable, but this still suffices for convincing C as long as C is
computationally efficient. We here follow the approach of [GW11].

Let us turn to describing our attacker A, and next explain how to emulate
it. Given a CRS ρ, A first attempts to recover the random coins r used by the
simulator S when outputting the CRS ρ; since the simulation is perfect, such a
string r exists (but finding r might require super-polynomial time). (Recall that
since we are dealing with adaptive zero-knowledge, the zero-knowledge simulator
needs to output a reference string ρ before knowing what statement it needs to
simulate a proof of.) Next, A samples a false instance x /∈ L which is indistin-
guishable from a true instance (since L is hard-on-the average, this can be done
efficiently). Finally, it runs the simulator S on the random coins r to generate ρ,
and next feeds it the instance x, and lets π denote the proof output by S (again
this final step is efficient).

Let us argue that the proof π of x is accepted by V (ρ). Towards this, consider
a hybrid attacker A′ that performs exactly the same steps as A, but instead
samples a true instance x ∈ L. It follows from the ZK property (combined
with the completeness property) that V accepts the proofs output by A′. Now,
intuitively, it should follow from the hard-on-the-average property of L that V
also accepts the proofs output by A. But there is a catch: recall that A is not
efficient. However, since it is only the first step of A that is inefficient, we can
fix the random string r non-uniformly and still use the remaining steps of A
and the efficient verifier V to contradict the hard-on-average property of L, as
long as we assume that L is hard-on-average for non-uniform polynomial-time.
Note that we here rely on the fact that A is allowed to choose the statement
x after having seen the reference string ρ (i.e., we rely on A breaking adaptive
soundness)—this is what allows us to non-uniformly choose r as a function of ρ,
before sampling x ∈ L.

Now given this breaker A, let us see an attacker Ã that efficiently simulates
it (in a computationally indistinguishable way). Ã(ρ) simply picks a random
true statement x together with a witness w, and next runs the honest prover
strategy P (ρ, x, w) to produce a proof π (this strategy is similar to the one
used in [GW11]). It follows by the ZK property that the output of C when
communicating with Ã and A′ are indistinguishable, and we can then apply a
similar argument as above (but more complicated) to argue that the output of C

when communicating with A′ and A are indistinguishable, and thus RÃ breaks
C with roughly the same probability as RA does.

Dealing with Exponential-time Challenger Assumptions. In case the running-
time of the challenger C is super-polynomial in the security parameter k, the
above approach seemingly fails: the fact that Ã generates computationally indis-
tinguishable messages does not suffice to argue that C still accepts in the interac-

tion with RÃ. However, if we assume that the language L is hard-on-the-average
for non-uniform subexponential time, then the above approach still works, as
long as C is subexponential time; in fact, it rules out also subexponential-time
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reductions. To deal with also exponential-time challenger assumptions, we pro-
ceed as follows. If the same assumption C can be used to prove any statement
in NP of length polynomial in the security parameter, then if the language L
is hard-on-the-average for non-uniform sub-exponential time, it suffices to pick
statements x that are sufficiently long (but still of polynomial length) to ensure
that Ã generates messages that are indistinguishable from those sent by Ã, even
by C.

1.4 Proof Overview: Non-interactive Non-malleable Commitments

Assume there exists a non-interactive commitment scheme Π ; for simplicity of
exposition we here focus only on non-interactive, as opposed to two-message,
commitments. Assume further that there exists a Turing reduction R such that
RA breaks the assumption C (with respect to some thresholds t) whenever
A breaks non-malleability of Π . Recall that an attacker A that breaks non-
malleability of Π participates in two interactions—one on the “left” acting as
a receiver, and one on the “right” acting as a committer. To be successful A
needs to choose a different identity for the left and right interactions, and must
commit to a value ṽ which is related to the value v it receives a commitment
to on the left. Consider a strong attacker A that chooses identity 0 on the left,
and 1 on the right, and upon receiving a commitment c recovers (using brute
force) the unique value v that c is a commitment to (if the value is not unique
v is set to ⊥), and next honestly commits to v on the right. Clearly A breaks
non-malleability of Π , and thus RA also breaks C w.r.t. t.

Let us now see how to efficiently emulate A. We simply consider a “trivial”
adversary Ã that picks identity 0 on the left and 1 on the right (just as A), but
instead of trying to commit to v on the right, it simply commits to 0 on the right.
Now, intuitively, if the reduction R and the challenger C are polynomial-time,

then it should follow by the hiding property of Π that RÃ still breaks C (w.r.t.
t). Note, however, that R may be asking its oracle to break non-malleability of
multiple commitments, and since A is not efficiently computable, we need to
be a bit careful when doing the hybrid argument. Nevertheless, using a careful
ordering of the hybrid (and as in the lower bound for statistical NIZK) relying

on the non-uniform hiding property of Π we can show that RÃ still breaks C
(w.r.t. t).

Note that the above proof idea applies to a very weak notion of “one-sided”
non-malleability, where the attacker always uses identity 0 on the left and 1
on the right; Liskov et al [LLM+01] call commitments satisfying this weak no-
tion of non-malleability, mutually independent. Interestingly, [LLM+01] shows a
construction of a mutually independent commitment based on the existence of
subexponentially hard one-way permutations. The idea is simple: Let Com0 be
a commitment scheme that is hard for subexponential time, and let Com1 be a
commitment scheme that can be fully broken in subexponential time. If a MIM
upon receving a commitment of v using Com0 is able to output a commitment
to a related value ṽ using Com1, then we can violate the hiding of Com0 by
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breaking Com1 using brute-force. This security reduction, however, is super-
polynomial (subexponential) time. A natural question is thus whether subexpo-
nential time/size reductions may be helpful for constructing “full-fledged” (as
opposed to one-sided) non-interactive commitments.3 We proceed to rule out
such reductions (or rather to show that if there exists such a reduction, then the
reduction itself must already break the assumption).

Consider a T (k)-sized reduction R, where T (k) is super-polynomial, for bas-
ing non-malleability on an efficient challenger assumption C4, and consider the
algorithms A and Ã described above. Note that if R has super-polynomial size,

we have no guarantees that RÃ breaks C even if RA does; since hiding of Π is

only required to hold for polynomial-sized algorithms, RÃ’s success probability
may be very different from RA success probability. But in this case, intuitively,
R itself must be able to break the hiding of commitments using identity 1 (recall
that A and Ã use identity 1 on the right).

So, if RÃ does not already convince C, we can use R (in conjunction with C)
to obtain a circuit D that distinguishes, say commitments to 0k and 1k using
identity 1.5 We may then use D to construct a man-in-the-middle attacker A′

that chooses identity 1 on the left and 0 on the right (as opposed to 0 on the
left and 1 on the right, as A and Ã did) to break non-malleability of Π , and
finally use R combined with A′ to directly break C. So, summarizing, either

RÃ works, or else, we use R in order to construct an MIM A′ that breaks non-
malleability, and then use RA′

to convinve C—in essence, we use R “on itself” to
convince C.

1.5 Overview of the Paper

We provide definitions of intractability assumptions and black-box reductions in
Section 2; this section also contains our taxonomy of intractability assumptions.
We formally state and prove our results about NIZK in Section 3. A formal
treatment of our results about non-malleable commitments are found in the full
version.

2 Intractability Assumptions and Black-box Reductions

Our definition of an intractability assumption closely follows [Pas11]. Following
Naor [Nao03] (see also [DOP05, HH09, RV10]), we model an intractability as-
sumption as an interaction (or game) between a probabilistic machine C—called

3 Indeed, [PW10] rely on intuitions similar to those from mutually independent com-
mitments to construct a “full-fledged” non-malleable commitment, but this construc-
tion requires multiple communication rounds.

4 The assumption that C is an efficient challenger is only made here to simplify expo-
sition; our actual proof also works when C is T (k)-sized.

5 As in the previous proof, to obtain a machine that breaks the hiding of the com-
mitment, we need to rely a polynomial-length non-uniform advice to deal with the
above-mentioned inefficiency issue in the hybrid argument; this is why we work with
circuits here.
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the challenger—and an attacker A. Both parties get as input 1k where k is the
security parameter. Any such challenger C, together with a threshold function
t(·) intuitively corresponds to the assumption:

For every polynomial-time adversary A, there exists a negligible func-
tion μ such that for all k ∈ N , the probability that C outputs 1 after
interacting with A is bounded by t(k) + μ(k).

We say that A breaks C w.r.t t with probability p on common input 1k if
Pr
[
〈A,C〉(1k) = 1

]
≥ t(k) + p.

If the challenger C is polynomial-time in the length of the messages it receives,
we say that the assumption is efficient challenger ; such assumptions are referred
to as falsifiable assumptions by Naor [Nao03] and Gentry and Wichs [GW11].
More generally, we refer to an assumption as having a T (·, ·)-time (resp. size)
challenger if C can be implemented in time (resp. size) T (k, 
) on input the secu-
rity parameter 1k, and when receiving messages of length 
. (C, t) is an efficient
challenger assumption iff C is a T (·, ·)-assumption where T (k, 
) is polynomial
in both k and 
. For simplicity, we here consider either poly(k, 
)-time (or size)
challengers, or T (k, 
) = T (k)-time (or size) challengers, where the running-time
of the challenger is bounded only as a function of the security parameter.

We can easily model all “traditional” cryptographic assumptions as efficient
challengers C and a threshold t. For instance, the assumption that a particular
function f is (strongly) one-way corresponds to the threshold t(k) = 0 and the 2-
round challengerC that on input 1k pick a random input x of length k, sends f(x)
to the attacker, and finally outputs 1 iff the attacker returns an inverse to f(x).
Decisional assumptions (such as, e.g., the decisional Diffie-Hellman problem, or
the assumption that a particular function g is a pseudorandom generator) can
also easily be modelled as 2-round challengers but now we have the threshold
t(k) = 1/2. More esoteric assumptions such as the “one-more discrete logarithm
assumption” [BNPS03, BP02], or “adaptive one-way functions” [PPV08], are not
efficient-challenger assumptions; however, they can be modeled as exponential-
time challenger assumptions.

We may also consider other restricted types of intractability assumptions. For
instance, [Pas11] considers challengers C that are computationally unbounded,
but for which there exists a polynomial upper bound in the terms of the secu-
rity parameter k on the number of communications rounds by C; we refer to
these assumptions as bounded round intractability assumptions. Another inter-
esting class of assumptions is obtained by further restricting the communication
complexity of C; for instance, we may require that there is a polynomial bound
(again in terms of the security parameter k) on the communication complex-
ity of C; we refer to these assumptions as bounded-communication intractability
assumption.

In this work we focus on establishing impossibility results for reductions
from efficient-challenger (just as the results of [GW11]), and more generally
time/size T (·) challenger assumptions where T (·) is a super-polynomial function.
As mentioned, in [Pas11] impossibility results for reductions from bounded-round
assumptions are presented. Since both non-malleability of a protocol, and
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adaptive soundness of a NIZK, is a bounded round assumption, we cannot hope
to strengthen our result to rule out reductions also from bounded round assump-
tions. We leave open an exploration of bounded-communication intractability
assumptions.

Finally, note that we can capture super-polynomial hardness of an assumption
by allowing for super-polynomial-time reductions to the assumption.

A Taxonomy of Intractability Assumption. The above way of modeling assump-
tions, provides an, in our eyes, natural taxonomy of intractability assumptions
based on 1) the security threshold t, 2) the number of communication rounds
used by C, 3) the computational complexity of C, 4) the communication com-
plexity of C, and 5) the computational complexity of the security reduction. We
are optimistic that cryptographic tasks may classified in this taxonomy, based
on whether they can be acheived—even using a non-black-box construction—
based on class of assumptions in this taxonomy, but not on another (much like
the celebrated taxonomy of Impagliazzo [Imp95] in the context of black-box con-
structions.)

Indeed, as mentioned above, the results of [Pas11, GW11] already yield some
results in this direction, separating unbounded-round and bounded-round as-
sumptions [Pas11] and unbounded-challenger and efficient-challenger assump-
tions [GW11]. The results in this paper further elucidate the landscape; among
other things, separating unbounded challenger and exponential-time challenger
assumptions, and exponential-time and efficient-challenger assumptions.

An interesting question for future work is obtaining separations for non-
black-box constructions for more “structured” types of assumptions (such as the
existence of one-way functions, one-way permutations). The results of [Pas06,
PTV11] provide a first step in this direction, exhibiting separations from one-way
functions for some natural cryptographic primitives, but rely on new complexity-
theoretic assumptions.

Black-box Reductions. We consider probabilistic polynomial time Turing
reductions—i.e., black-box reductions. A black-box reduction refers to a proba-
bilistic polynomial-time oracle algorithm. Roughly speaking, a black-box reduc-
tion for basing the security of a primitive P on the hardness of an assumption
C, is a probabilistic polynomial-time oracle machine R such that whenever the
oracle O “breaks” P with respect to the security parameter k, then RO “breaks”
C with respect to a polynomially related security parameter k′ such that k′ can
be efficiently computed given k. We restrict to the case when k′ = k. This is
without loss of generality: we can always redefine the assumption C so that it on
input k acts as if its input actually was k′ (since k′ can be efficiently computed
given k). To formalize this notion, we thus restrict to oracle machines R that on
input 1k always query their oracle on inputs (1k, ·).

Definition 1. We say that R is a valid black-box reduction if R is an oracle
machine such that R(1k) only queries its oracle with inputs of the form (1k, y),
where y ∈ {0, 1}∗.
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The reason that we (and as it standard in the literature) restrict R to only query
its oracle on a single “input length” k, is that standard cryptographic definitions
require ruling out the existence of attackers that break some primitive even for
infinitely many input lengths; as these inputs lengths can be very sparse, a black-
box reduction must be successful even if it has access to an attacker that only
succeeds on a single input length.6

3 Security of Perfect Adaptive NIZK

We recall the traditional definition of non-interactive proofs in the Common
Reference String (CRS) model. For generality (and since we are proving a lower
bound) we allow the CRS ρ be generated by an arbitrary polynomial-time distri-
bution (as opposed to requiring it to be uniformly random). In the adaptively-
sound notion of an non-interactive proof/argument, we require that soundness
holds even if the attacker may adaptively pick a statement after having seen the
CRS. We here focus only on proofs for languages in NP where the prover is
efficient when given an NP-witness.

Definition 2 (Non-Interactive Proofs/Arguments). A triple of algorithms,
(D, P, V ), is called a non-interactive proof system (with non-adaptive soundness)
for a language L if the algorithm D is probabilistic polynomial-time, the algo-
rithm V is a deterministic polynomial-time, and P is probabilistic polynomial-
time, such that the following two conditions hold:

– Completeness: There exists a negligible function μ such for every x ∈ L,
every w ∈ RL(x) and every k ∈ N ,

Pr
[
ρ← D(1k, 1|x|); π ← P (1k, x, w, ρ) : V (1k, x, ρ, π) = 1

]
≥ 1− μ(k)

– Soundness: For every algorithm B and every polynomial q, there exists a
negligible function μ such that for every k ∈ N and every x /∈ L such that
|x| ≤ q(k)

Pr
[
ρ← D(1k, 1|x|); π′ ← B(1k, x, ρ) : V (1k, x, ρ, π′) = 1

]
≤ μ(k)

If additionally the following condition holds, then we call (D, P, V ) an adaptively-
sound non-interactive proof system:

– Adaptive Soundness: For every algorithm B and every polynomial q, there
exists a negligible function μ such that for every k ∈ N,n ∈ [q(k)]

Pr

[
ρ← D(1k, 1n); (x, π′)← B(1k, 1n, ρ) : V (1k, x, ρ, π′) = 1
∧|x| = n ∧ x /∈ L

]
≤ μ(k)

6 For instance, consider an attacker that succeeds only on input lengths 2c, 22
c

, . . . (and
outputs ⊥ on all other inputs); a black-box reduction that only accesses its oracle
on a polynomially related security parameter can only access a single “non-⊥” input
length
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Finally, if the soundness (resp adaptive soundness) condition only holds w.r.t
polynomial-time adversaries B, we call (D, P, V ) a non-interactive argument
(resp. an adaptively-sound non-interactive argument)).

Let us turn to defining zero-knowledge. Also here there is a non-adaptive and
an adaptive version. In the non-adaptive definition of zero-knowledge from
[BFM88], there is a single simulator, which, after seeing the statement to be
proven, generates both the CRS and the proof at the same time. In the adaptive
definition from [FLS90], there are two simulators—the first of which must output
a string before seeing any theorems. The stronger adaptive definition guarantees
zero-knowledge even when the statement to be proved is chosen as a function of
the CRS. We here focus only on adaptive zero-knowledge.

Definition 3 (Non-Interactive Zero-Knowledge). Let (D, P, V ) be an non-
interactive proof system for the language L. We say that (D, P, V ) is (adaptively)
zero-knowledge if there exists two probabilistic polynomial-time simulators S1, S2

such that for every polynomial q, every non-uniform polynomial-time statement-
chosing algorithm c(·) that on input (1k, 1n, ρ) outputs a n-bit statement x ∈ L,
and every function w(·) such that w(x) ∈ RL(x), the following two ensembles
are computationally indistinguishable{
ρ ← D(1k, 1n); x ← c(1k, 1n, ρ);w ← w(x);π ← P (1k, x, w, ρ) : (ρ, x, π)

}
k∈N,n∈[q(k)]{

(ρ, aux) ← S1(1
k, 1n); x ← c(1k, 1n, ρ);π′ ← S2(1

k, x, aux) : (ρ, x, π′)
}
k∈N,n∈[q(k)]

We furthermore say that (D, P, V ) is perfect (resp. statistical) zero-knowledge if
the above ensembles are identically distributed (resp. statistically close).

We use the (common) acronym “NIZK” to denote a non-interactive zero-
knowledge proof or argument. Feige, Lapidot and Shamir and Bellare and Yung
[FLS90, BY96] (building on [BFM88]) show that the existence of enhanced trap-
door permutations implies that all of NP has a adaptively-sound NIZK, but the
zero-knowledge property is only computational. As mentioned, Groth, Ostrovsky
and Sahai [GOS06] show (under some number theoretic assumptions) that all
of NP has a perfect NIZK with non-adaptive soundness. More recently, Abe
and Fehr [AF07] present a perfect NIZK for NP also with adaptive soundness
but based the soundness property on a “knowledge” assumption (rather than an
intractability assumption).

We aim to prove limitations of basing even weak notions of adaptive soundness
for perfect or statistical NIZK for NP on intractability assumptions. Let us first
explicitly define what it means to break adaptive soundnessof a NIZK.

Definition 4 (Breaking Adaptive Soundness). We say that A breaks adaptive
soundness of (D, P, V ) w.r.t the language L on input lengths q(·) with probability
μ(·) if for every k ∈ N ,

Pr

[
ρ← D(1k, 1q(k)); (x, π′)← A(1k, ρ) : V (1k, x, ρ, π′) ∧ |x|
= q(k) ∧ x /∈ L = 1

]
≥ μ(k)

Let us turn to defining what it means to base adaptive soundness on an in-
tractability assumption C.
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Definition 5 (Basing Adaptive Soundness on the Hardness of C). We say that
R is a black-box reduction for basing adaptive soundness of (D, P, V ) w.r.t. L
and input lengths q, on the hardness of C w.r.t threshold t(·) if R is a valid black-
box reduction and there exists a polynomial p(·, ·) such that for every probabilistic
machine A that breaks adaptive soundness of (D, P, V ) w.r.t L and inputs lengths
q(·) with probability μ(·), for every k ∈ N , RA breaks C w.r.t t with probability
p(μ(k), 1/k) on input 1k.

Note that we here require that RO breaks the assumption C on the security
parameter k by querying O on the same security parameter k. As previously
mentioned, a seemingly more general definition would allow RO to break C on
a polynomially-related security parameter k′ (which can be efficiently computed
given k), but this extra generality does not buy us anything as we can always
re-define C to on input k act as its input was k′.

We now have the following theorem:

Theorem 3. Assume the existence of non-uniformly hard one-way functions.
Then there exists an NP-language L such that the following holds. Let (D, P, V )
be a statistical non-interactive adaptively zero-knowledge argument for L, let q(k)
be polynomially related to k, and let (C, t) be any efficient-challenger assump-
tion. If there exists a black-box reduction R for basing adaptive soundness of
(D, P, V ) w.r.t L and input lengths q on the hardness of C w.r.t threshold t,
then there exists a probabilistic polynomial-time machine B and a polynomial
p′(·) such that for infinitely many k ∈ N , B breaks C w.r.t t with probability

1
p′(k) on input 1k. If furthermore assuming the existence of one-way functions

secure against non-uniform subexponential-time algorithms, the above holds even
if C is subexponential-time computable.

Let us also remark that under the assumption of one-way functions secure against
non-uniform subexponential-time algorithms, Theorem 3 directly extends also to
a super-polynomial-time (SPS) [Pas03b] relaxation of the notion of a statistical
NIZK, where the simulator may run in subexponential time. (Let us also briefly
point our a very recent work by Chung, Lui, Mohammad and Pass [CLMP12]
that presents barriers to two-message SPS zero-knowledge arguments.)

Note that in Theorem 3, we rule out statistical NIZK where adaptive sound-
ness only needs to hold w.r.t. statements of a particular (polynomial) length
n = q(k).

Our next theorem rules out even exponential-time challenger assumptions C
if the same assumption C can be used to prove adaptive soundness for any
polynomial length statement (indeed, as far as we know, in all known NIZK con-
structions, the underlying intractability assumption depends only on the security
parameter for the NIZK but not on the length of the statement to be proven).

Theorem 4. Assume the existence of one-way functions secure against non-
uniform subexponential-time algorithms. Then there exists an NP-language L
such that the following holds. Let (D, P, V ) be a statistical non-interactive adap-
tively zero-knowledge argument for L, and let (C, t) be any exponential-time chal-
lenger assumption. If for every polynomial q, there exists a black-box reduction R
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for basing adaptive soundness of (D, P, V ) w.r.t L and the input length q on the
hardness of C w.r.t threshold t, then there exists a probabilistic polynomial-time
machine B and a polynomial p′(·) such that for infinitely many k ∈ N , B breaks
C w.r.t t with probability 1

p′(k) on input 1k.

Note that Theorem 4 is weaker than Theorem 3 in that we require that the same
assumption C can be used to prove any polynomial-length statement, whereas
in Theorem 3 we rule out NIZK where the underlying hardness assumption may
depend also on the length of the statement proved. This additional restriction
is necessary: the assumption that a particular NIZK is adaptively sound for
statements of length q(k) = k can clearly be stated as an exponential-time
challenger assumption.

We here only prove Theorem 3 and leave Theorem 4 for the full version.

3.1 Proof of Theorem 3

Proof. We here consider only a simplified case when the zero-knowledge property
is perfect and the distribution sampled by D is uniform over {0, 1}poly(k)—i.e.,
we consider perfect NIZK in the so-called “Uniform Reference String” (URS)
model. The remainder of the proof of Theorem can be found in the full version.
Let g : {0, 1}∗ → {0, 1}∗ be a length-doubling PRG. Consider the language L =
{g(s)|s ∈ {0, 1}∗}. Assume there exists a perfect NIZK (D, P, V ) for L in the URS
model, where the reference string is of length 
(k) given the security parameter k,
and assume there exists a black-box reduction R for basing adaptive soundness
of (D, P, V ) w.r.t L and input lengths q(·) on the hardness of C w.r.t threshold
t. In particular, this means that for every A that breaks the adaptive soundness
of (D, P, V ) w.r.t L and input lengths q(·) with overwhelming probability, there
exists a polynomial p(·) such that for infinitely many k ∈ N , RA breaks C
w.r.t t on common input 1k with probability 1

p(k) ; i.e., Pr
[
〈RA, C〉(1k) = 1

]
≥

t(k) + 1
p(k)

To be more concrete, R may feed A(1k) a reference string ρ, and will get
in return a statement x ∈ {0, 1}q(k)—that with high probability is false—and
a proof π of x—that with high probability is accepting; R may continue this
process all throughout its interaction with C. Note that R is required to work
even if A is probabilistic, and on each query made by R, A uses fresh random
coins. (As we show in the full version, at the cost of a minor complication, the
proof can be adapted to work also if only considering reductions that work as
long as the attacker is deterministic.)

Our goal is to present a polynomial-time algorithm that directly breaks C
without the help of A. Towards this goal, we will first define a particular ran-
domized attacker A, and next present an efficient “simulator” Ã for A, and show

that RÃ still breaks C (w.r.t t).
Let us start by defining the attacker A. To simplify notation, let us assume

that q(k) = 2k; it is easy to see that the same proof works as long as q(k) is
polynomially related to k. On input 1k and a reference string ρ, A proceeds as
follows:
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– A first checks that |ρ| = 
(k); if not, it simply sends back ⊥.
– Otherwise, it uniformly picks a random tape r such that S1(1

k, 1n) outputs
ρ, aux on input the random tape r. Since, by our assumption, the simulation
is perfect, every string ρ ∈ {0, 1}�(k) is output by S1(1

k, 1n) with positive
(and the same) probability, so A will succeed in this task. Note, however,
that this step is not necessarily efficient.

– Next, A uniformly picks a string x ∈ {0, 1}n. Note that, except with proba-
bility 2−k, x /∈ L (there are 22k strings, and at most 2k can be in the range
of the PRG g).

– Finally, A runs the simulator S2(1
k, 1n, x, aux) to produce the proof π, and

outputs (x, π).

As noted above, with high probability, the statement x picked by A is false.
But it remains to argue that the proof π of x output by A is accepting (for the
reference string ρ). For now, let us simply assume that the proof is accepting
with high probability, and let instead show how to emulate A in polynomial time
(thus proving that C can be broken in polynomial time). We will then return to
showing that A indeed is a ”good” attacker, producing accepting proofs of false
statements.

Consider the ”simulator”, Ã that on input 1k and a reference string ρ, proceeds
as follows:

– Just as A, Ã first check that |ρ| = 
(k); if not it simply sends back ⊥.
– Next, Ã uniformly picks a string s ∈ {0, 1}k, and lets x = g(s). Note that

by definition x ∈ L.
– Finally, Ã runs the honest prover algorithm P (1k, ρ, x, w) to produce the

proof π, and outputs (x, π).

The following claim shows that Ã is a good simulator for A.

Claim 1. For every efficient C and R, there exists a negligible function μ such

that for every k ∈ N ,
∣∣∣Pr [〈RÃ, C〉(1k) = 1

]
− Pr

[
〈RA, C〉(1k) = 1

]∣∣∣ ≤ μ(k).

Proof. As a first attempt to proving the claim, consider a hybrid attacker A′

that performs exactly the same steps as A, but samples a true statement x ∈ L
in exactly the same way as Ã (but otherwise runs the simulator, just as A).
Note that the only difference between A′ and Ã is that A′ provides ”simulated”
proofs (of true statements), whereas Ã gives honestly generated proofs. Indeed,
it follows from the perfect zero-knowledge property that A′ perfectly emulates
Ã. Furthermore, intuitively, it should follows from the fact that true and false
statement are indistinguishable (by the pseudorandomness property of g) that
A′ correctly emulates A. But there is a problem: although, both C and R are
efficient, A and A′ are not, so efficiently contradicting the pseudorandomness
property becomes problematic.

To circumvent this problem, we define a carefully ordered sequence of hybrid
experiments, and rely on the fact that it is only the first step of A (and A′) that
is inefficient. With this careful ordering, the inefficient part of A can be dealt



Unprovable Security of Perfect NIZK 351

with using non-uniformity (and thus we finally contradict the pseudorandomness
property of g w.r.t. non-uniform polynomial-time algorithms).

More precisely, assume for contradiction that the claim is false. That
is, there exists a polynomial p′ such that for infinitely many k ∈ N ,

|Pr
[
〈RÃ, C〉(1k) = 1

]
− Pr

[
〈RA, C〉(1k) = 1

]
| ≥ 1

p′(k) . Let m(k) be an upper-

bound on the number of oracle queries by R on input 1k, and fix a canoni-
cal k for which the above happens. Consider a sequence of hybrid experiments
H0, . . . , Hm(k), where Hi is defined as the output of C(1k) after communicating

with R(1k) where the first i oracle queries of R are answered by A, and the

remaining ones are answered by the efficient Ã. Note that H0 = 〈RÃ, C〉(1k)
and Hm(k) = 〈RA, C〉(1k). It follows that there exists some j such that

|Pr [Hj+1 = 1] − Pr [Hj = 1] | ≥ 1
m(k)p′(k) . Define another hybrid H ′j which is

identically defined to Hj , but where the statement x in the j+1 oracle query is
selected as a true statement (just as inHj+1) but we still run the simulation (just
as in Hj). It follows directly by the perfect zero-knowledge property of (D, P, V )
that the output of H ′j is identically distributed to the output of Hj+1. To reach
a contradiction, let us finally argue that the output of Hj is indistinguishable to
that of H ′j . Note that up until the point when R receives its (j+1)st proof back
from the oracle, the two experiments proceed identically the same. Thus, if they
are distinguishable, there exists some prefix τ of the execution of Hj

7, up until
and including the j+1 query of R, such that conditioned on this prefix τ , Hj and
H ′j are distinguishable. We may now simply extend τ to also include the string
aux picked by A in the j+1 query, and conclude that there exists some extension
τ ′ of τ such that even conditioned on τ ′, Hj and H ′j are distinguishable. But
now, note that given the prefix τ ′, the continuations of Hj and H ′j (conditioned
on τ ′) can be efficiently generated. And since the only difference between them is
the choice of the statement x, if they can be distinguished, we violate the pseu-
dorandomness property of g. Note that we here require that g is pseudorandom
against non-uniform polynomial time (as we need the non-uniform advice τ ′).
This concludes the proof of Claim 1.

So conclude the proof of the theorem, it only remains to show that A is a
good attacker. Note that by the completeness property of (D, P, V ) it holds
that, except with negligible probability, Ã provides accepting proofs. It now
follows as a corollary of Claim 1 that except with negligible probability, A also
provides accepting proofs: simply let R be the reduction that picks an honestly
generated reference string ρ, and upon receiving back the pair (x, π), outputs
1 iff V (1k, ρ, x, π) outputs 1, and let C be the algorithm that simply outputs
whatever R outputs.

Ruling out Subexponential-time Challenger Assumptions. If the challenger C is
not efficient, then in the above hybrid argument, when switching the statement
x = g(s) from being pseudorandom to being truly random, we can no longer

7 Technically, the prefix includes the random tape of C and R and all the answers to
the first j queries by R.
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directly argue that the probability of C outputting 1 does not change by much.
However, if use a PRG secure against subexponential time, then same proof goes
through as long as C is subexponential-time computable.

Acknowledgements. I am extremely grateful to Kai-min Chung and Moham-
mad Mahmoody for many helpful comments and definitional discussions.
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Abstract. Secure computation has been a powerful and important re-
search area in cryptography since the first breakthrough results in the
1980s. For many years this area was purely theoretical, as the feasibility
results have not been considered even close to practical. Recently, it ap-
pears to have turned a corner, with several research efforts showing that
secure computation for large classes of functions, and even generic secure
computation, has the potential to become truly practical. This shift is
brought on by algorithmic advancements and new cryptographic tools,
alongside advancements in CPU speed, parallelism, and storage capabili-
ties; it is further motivated by the explosion of new potential application
domains for secure computation.

A compelling motivation for making secure computation practical is
provided by the burgeoning field of Big Data, representing the deluge of
data being generated, collected, and stored all around us. Protocols for
secure computation on big data can provide critical value for many busi-
ness, medical, legal, and personal applications. However, conventional
approaches to secure computation are inherently insufficient in this set-
ting, where even linear computation can be too prohibitive.

In this talk I discuss challenges and solutions related to secure com-
putation for big data, following two thrusts:

– Overcoming inherent theoretical bounds of (in)efficiency; and
– Satisfying immediate practical needs in a theoretically sound way.

Both goals require the development of new models of secure computa-
tion, allowing for theoretically and practically meaningful relaxations of
the standard model. In particular, I discuss a few works I have partici-
pated in over the last decade, which address the challenge of achieving
efficient secure computation for massive data. I also share some experi-
ences from the last few years working on secure search over massive data
sets. This research has externally imposed practical constraints, such as
strict performance requirements. I focus on my perspective as a theo-
retical cryptographer and discuss some open cryptographic challenges in
this emerging domain.
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Abstract. We devise multi-party computation protocols for general se-
cure function evaluation with the property that each party is only re-
quired to communicate with a small number of dynamically chosen
parties. More explicitly, starting with n parties connected via a com-
plete and synchronous network, our protocol requires each party to send
messages to (and process messages from) at most polylog(n) other
parties using polylog(n) rounds. It achieves secure computation of any
polynomial-time computable randomized function f under cryptographic
assumptions, and tolerates up to ( 1

3
−ε)·n statically scheduled Byzantine

faults.

We then focus on the particularly interesting setting in which the func-
tion to be computed is a sublinear algorithm: An evaluation of f depends
on the inputs of at most q = o(n) of the parties, where the identity of
these parties can be chosen randomly and possibly adaptively. Typically,
q = polylog(n). While the sublinear query complexity of f makes it pos-
sible in principle to dramatically reduce the communication complexity
of our general protocol, the challenge is to achieve this while maintaining
security: in particular, while keeping the identities of the selected inputs
completely hidden. We solve this challenge, and we provide a protocol
for securely computing such sublinear f that runs in polylog(n) + O(q)
rounds, has each party communicating with at most q · polylog(n) other
parties, and supports message sizes polylog(n) · (� + n), where � is the
parties’ input size.

Our optimized protocols rely on a multi-signature scheme, fully ho-
momorphic encryption (FHE), and simulation-sound adaptive NIZK ar-
guments. However, we remark that multi-signatures and FHE are used
to obtain our bounds on message size and round complexity. Assuming
only standard digital signatures and public-key encryption, one can still
obtain the property that each party only communicates with polylog(n)
other parties. We emphasize that the scheduling of faults can depend on
the initial PKI setup of digital signatures and the NIZK parameters.

� This research was initiated and done in part while the authors were visiting the Isaac
Newton Institute for Mathematical Sciences in Cambridge, UK.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 356–376, 2013.
c© International Association for Cryptologic Research 2013
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1 Introduction

Multiparty computation (MPC) protocols for secure function evaluation (SFE)
witnessed a significant body of work within the cryptography research commu-
nity in the last 30 years.

These days, an emerging area of potential applications for secure MPC is to
address privacy concerns in data aggregation and analysis, to match the explo-
sive current growth of available data. Large data sets, such as medical data,
transaction data, the web and web access logs, or network traffic data, are now
in abundance. Much of the data is stored or made accessible in a distributed
fashion. This necessitated the development of efficient distributed protocols to
compute over such data. In order to address the privacy concerns associated
with such protocols, cryptographic techniques such as MPC for SFE where data
items are equated with servers can be utilized to prevent unnecessary leakage of
information.

However, before MPC can be effectively used to address today’s challenges,
we need protocols whose efficiency and communication requirements scale prac-
tically to the modern regime of massive data. An important metric that has
great effect on feasibility but has attracted surprisingly little attention thus far
is the number of other parties that each party must communicate with during
the course of the protocol. We refer to this as the communication locality. In-
deed, if we consider a setting where potentially hundreds of thousands, or even
millions of parties are participating in a computation over the internet, requiring
coordination between each pair of parties will be unrealistic.

In this work, we work to optimize the communication locality for general se-
cure function evaluation on data which is held distributively among n parties.
These parties are connected via a complete synchronous communication net-
work, of whom (13 − ε)n may be statically scheduled, computationally bounded
Byzantine faults. We do not assume the existence of broadcast channels.

We also focus on a particularly interesting setting in which the randomized
function f to be computed is a sublinear algorithm: namely, a random execution
of f(x1, ..., xn) depends on at most q = o(n) of the inputs xi. We consider both
non-adaptive and adaptive sublinear algorithms, in which the identities of the
selected inputs may depend on the randomness r of execution, or on both r and
the values of xi queried thus far. Sublinear algorithms play an important role
in efficiently testing properties and trends when computing on large data sets.
The sublinear query complexity makes it possible in principle to dramatically
reduce the amount of information that needs to be communicated within the
protocol. However, the challenge is to achieve this while maintaining security—
in particular, keeping the identities of the selected inputs completely hidden.

Straightforward application of known general MPC techniques results in pro-
tocols where each party sends and receives messages from all n parties, and where
the overall communication complexity is O(n2), regardless of the complexity of
the function to be computed. We remark that this is obviously the case for the
classical general SFE protocols (beginning with [26,14,5]) in which every party
first secret shares its input among all other parties (and exchanges messages
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between all n parties at the evaluation of every gate of the circuit of the func-
tion computed). Furthermore, although much progress was made in the MPC
literature of the last two decades to make MPC protocols more efficient and suit-
able for practice, this is still the case both in works on scalable MPC [17,20,19,18]
and more recent works utilizing the existence of fully homomorphic encryption
schemes [35,3] for MPC. The latter achieve communication complexity that is
independent of the circuit size, but not of the number of parties when broadcast
channels are not available.

A recent notable exception to the need of each party to communicate with
all other parties is the beautiful work of King, Saia, Sanwalani and Vee [34] on
what they call scalable protocols for a relaxation of the Byzantine agreement and
leader election problems. Their protocols require each honest party to send and
process a polylog(n) number of bits. On the down side, the protocols of [34] do
not guarantee that all honest parties will achieve agreement, but only guarantee
that 1 − o(1) fraction of the good processors reach agreement—achieving only
so-called almost everywhere agreement. In another work of King et al [32], it
is shown how using Õ(

√
n) communication, full Byzantine agreement can be

achieved. The technique of almost-everywhere leader election of [34] will be the
technical starting point of our work.

1.1 Our Results

We provide multiparty computation protocols for general secure function evalu-
ation with communication locality that is polylogarithmic in the number of par-
ties. That is, starting with n parties connected via a complete and synchronous
network, we prove the following main theorem:

Theorem 1. Let f be any polynomial-time randomized functionality
on n inputs. Then, for every constant ε > 0, there exists an n-party
protocol Πf that securely computes a random evaluation of f , tolerating
t < (1/3− ε)n statically scheduled active corruptions, with the following
complexities:
(1) Communication locality: polylog(n).
(2) Round complexity: polylog(n).
(3) Message sizes: O(n · l · polylog(n)), where l = |xi| is the individual

input size.
(4) The protocol uses a setup consisting of n · polylog(n) signing keys

of size polylog(n), as well as a polylog(n)-long additional common
random string (CRS).1

The protocol assumes a secure multisignature scheme, a fully homo-
morphic encryption (FHE) scheme, simulation-sound NIZK arguments,
as well as pseudorandom generators.

Assuming only a standard signature scheme and semantically secure
public-key encryption, and setup as in (4), there exists a protocol for
securely computing f with polylog(n) communication locality.

1 Adversarial corruptions may be made as a function of this setup information.
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Multisignatures [39,36] are digital signatures which enable the verification
that a large number of signers have signed a given message, where the number
of signers is not fixed in advance. The size of a multisignature is independent of
the number of signers, but in order to determine their identities one must attach
identifying information to the signature. Standard instantiations of such schemes
exist under the bilinear computational Diffie-Hellman assumption [44,36].

The use of multisignatures rather than standard digital signatures enables us
to bound the size of the messages sent in the protocol. Further, the use of FHE
enables us to bound the number of messages sent, rather than depend on the time
complexity of the function f to be computed and polynomially on the input size.
However, we can obtain the most important feature of our complexity, the need
of every party to send messages to (and process messages from) only polylog(n)
parties in the network, solely under the assumption that digital signatures and
public-key encryption exist.

In addition, we show how to convert an arbitrary sublinear algorithm with
query complexity q = polylog(n) into a multi-party protocol to evaluate a
randomized run of the algorithm with polylog(n) communication locality and
rounds, and where the total communication complexity sent by each party is
only O(polylog(n) · (l + n)) for l = |x| an individual input size. We prove that
participating in the MPC reveals no information beyond the output of the sub-
linear algorithm execution using a standard Ideal/Real simulation-based security
definition.

For underlying query complexity q, our second main theorem is as follows:

Theorem 2. Let SLA be a sublinear algorithm which retrieves q =
q(n) = o(n) different inputs. Then, for all constant ε > 0, there exists
an n-party protocol ΠSLA that securely computes an execution of the
sublinear algorithm SLA tolerating t < (1/3 − ε)n statically scheduled
active corruptions, with the following complexities, where l is the size of
the individual inputs held by the parties:

(1) Communication locality: q · polylog(n).
(2) Round complexity: O(q) + polylog(n).
(3) Message sizes: O((l + n) · polylog(n)).
(4) The protocol uses a setup consisting of n · polylog(n) signing keys of

size polylog(n), as well as a polylog(n)-long additional CRS.

The protocol assumes a secure multisignature scheme, an FHE scheme,
simulation-sound NIZK arguments, and pseudorandom generators.

Techniques. We first describe how to achieve our second result, for the case
when f is a sublinear algorithm. This setting requires additional techniques in
order to attain the communication complexity gains. After this, we describe
the appropriate modifications required to maintain polylog(n) communication
locality for general functions f .

There are three main technical components to our protocol for sublinear al-
gorithms. The first is to set up a committee structure constituted of a supreme
committee C and n input committees C1, ..Cn. These committees will all be of
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size polylog(n) and with high probability have a 2/3 majority of honest parties.
Each committee Ci will (to begin with) hold shares of the input xi whereas the
role of the supreme committee will essentially be to govern the running of the
protocol. A major challenge is to ensure that all parties in the network know
the identity of parties in all the committees. The starting point to address this
challenge is to utilize the communication-efficient almost-everywhere leader elec-
tion protocol of [34]. We remark that [34] achieves better total communication
complexity of polylog(n) bits and offers unconditional results, but only achieves
an almost-everywhere agreement: there may be a o(1) fraction of honest parties
who will not reach agreement and, in our context, will not know the makeup of
the committees. The main idea to remedy this situation is to add an iterated
certification procedure using multi-signatures to the protocol of [34], while keep-
ing the complexity of only polylog(n) messages sent and processed by any honest
party. In the process, however, we move from unconditional to computational
security and our message sizes grow, as they will be signed by multi-signatures.
Whereas the size of the multi-signatures depends only on the security parameter,
the messages should indicate the identities of the signers – this is cause for the
increased size of messages.

The second component is to implement a randomly chosen secret reshuffling ρ
of parties’ inputs within the complexity restrictions we have alloted. At the end
of the shuffling, committee Cρ(i) will hold the input of committee Ci. Informally,
this will address the major privacy issue in executing a sublinear algorithm in a
distributed setting, which is to ensure that the adversary does not learn which
of the n inputs are used by the algorithm. We implement the shuffling via dis-
tributed evaluation of a switching network with very good mixing properties
under random switching, all under central coordination by the supreme commit-
tee. We assume that a fixed switching network over n wires is given, with depth
d = polylog(n), and is known to everyone.

The third component, once the inputs will be thus permuted, is to actually
run the execution of the sublinear algorithm. For lack of space, let us illustrate
how this is done for the sub class of non-adaptive sublinear algorithms. This is
a class of algorithms that proceed in two steps:

– First, a random subset I of size q of the indices 1, ..., n is selected.
– Second, an arbitrary polynomial-time algorithm is computed on inputs xj

for j ∈ I.

To run an execution of such an algorithm, the supreme committee: first selects
a random and secret q = polylog(n) size subset I of the inputs; and second, runs
a secure function evaluation (SFE) protocol on the set of inputs in ρ(I) with the
assistance of parties in committees Cj for j ∈ ρ(I). In the adaptive case, one
essentially assumes queries are asked in sequence, and executes in a similar way
the sublinear algorithm query after query, contacting committee ρ(i) for each
query i, instead of parallelizing the computation for all inputs from I. The price
to pay is an additive factor q in the number of rounds of the protocol. However,
note that in the common case q = polylog(n), this does not affect the overall
asymptotic complexity.



Communication Locality in Secure Multi-party Computation 361

Now, consider the case when f is a general polynomial-time function, whose
evaluation may depend on a large number of its inputs. In this case, we can skip
the aforementioned shuffling procedure, and instead simply have each party Pi

send his (encrypted) input up to the supreme committee C to run the evaluation
of f . That is, each Pi gives an encryption of his input to the members of his
input committee Ci, and each party in Ci sends the ciphertext up to C via a
communication tree that is constructed during the process of electing committees
(in Step 1). Then, the members of the supreme committee C (who collectively
have the ability to decrypt ciphertexts) are able to evaluate the functionality f
directly via a standard SFE.

Remarks. A few remarks are in order.

– Flooding by faulty parties. There is no limit (nor can there be) on how many
messages are sent by faulty parties to honest parties, as is the case in the
works mentioned above. To address this issue in [34,32,33,21], for example, it
is (implicitly) assumed that the authenticated channels between parties can
“recognize” messages from unwarranted senders which should not be pro-
cessed and automatically drop them, whereas we will use a digital signature
verification procedure to recognize and drop these messages which should
not be processed.

– Security definition for sublinear algorithms. The security definition we achieve
is the standard definition of secure multiparty computation (MPC). In-
formally, the parties will receive the output corresponding to a random
execution of the sublinear algorithm but nothing else. Formally, we use
the ideal/real simulation-based type definition. We note that in works of
[29,23,31] on MPC for approximation algorithms for functions f , privacy
is defined so as to mean that no information is revealed beyond the exact
value of f , rather than beyond the approximate value of f computed by the
protocol. One may ask for a similar privacy definition for sublinear algo-
rithms, which are an approximation algorithm of sorts. However, this is an
orthogonal concern to the one we address in this work.

1.2 Further Related Work

Work on MPC in partially connected networks, such as the recent work of Chan-
dran, Garay and Ostrovsky [12,13], shows MPC protocols for network graphs of
degree polylog(n) (thus each party is connected to no more than polylog(n) par-
ties). They can only show how to achieve MPC amongst all but o(n) honest
parties. Indeed, in this setting it is unavoidable for some of the honest parties
to be cut out from every other honest party. In contrast, in the present work,
we assume that although the n parties are connected via a complete network
and potentially any party can communicate with any other party, our protocols
require each honest party to communicate with only at most polylog(n) parties
whose identity is only determined during the course of the protocol execution.
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The problem of sublinear communication in MPC has also been considered
in the realm of two-party protocols, e.g. by [40] who provide communication-
preserving protocols for secure function evaluation (but which require super-
polynomial computational effort), and in a recent collection of works including
[28] which achieve amortized sublinear time protocols, and the work of [31] which
show polylogarithmic communication for specific functions.

An interesting point of comparison to our result is the work of Halevi, Lin-
dell and Pinkas [30]. They design computationally secure MPC protocols for n
parties in which one party is singled out as a server and all other parties com-
municate directly with the server in sequence (in one round of communication
each). However, it is easy to see that protocols in this model can only provide a
limited privacy guarantee: for example, as pointed out by the authors, if the last
i parties collude with the server then they can always evaluate the function on
as many input settings as they wish for variable positions n− i, n− i+1, . . . , n.
No such limitations exist in our model.

In a recent and independent work to the current paper, King et al [21] extends
[32] to show a protocol for unconditionally secure SFE for general f that requires
every party to send at most O(mn +

√
n) messages, where m is the size of a circuit

representation of f . A cursory comparison to our work shows that in [21] each
party sends messages to Ω(

√
n) other parties.

Finally, let us point out that our approach to anonymize access patterns
to parties is similar in spirit to problems arising in the context of Oblivious
RAM [27], and uses similar ideas to the obfuscated secret shuffling protocols of
Adida and Wilkström [2].

2 Preliminaries

We recall first the definitions of standard basic tools used throughout the paper,
and then move to some important results on shuffling and our notation for
sublinear algorithms.

2.1 Basic Tools

Non-interactive Zero Knowledge. We make use of a standard non-interactive
zero knowledge (NIZK) argument system (Gen,Prove,Verify,S = (Scrs,SProof))
with unbounded adaptive simulation soundness, as defined in [22,6,7]. That is,
soundness of the argument system holds even against PPT adversaries who are
given access to an oracle that produces simulated proofs of (potentially false)
statements. For a formal definition, we refer the reader to, e.g., [22,6,7].

Theorem 1. [42] There exists an unbounded simulation-sound NIZK proof sys-
tem for any NP language L, based on trapdoor one-way permutations, with proof
length poly(|x|, |w|), where x is the statement and w is the witness.
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Fully Homomorphic Encryption. We make use of a fully homomorphic public-
key encryption (FHE) scheme (Gen,Enc,Dec,Eval) as defined in, e.g., [25]. For
our purposes, we require an FHE scheme with the additional property of certi-
fiability. A certifiable FHE scheme is associated with a set R of “good” encryp-
tion randomness such that (repeated execution of) the Eval algorithm and the
decryption algorithm Dec are correct on ciphertexts derived from those using
randomness from R to encrypt. A formal definition follows.

Definition 1. For a given subset R ⊆ {0, 1}poly(k) of possible randomness val-
ues, we (recursively) define the class of R-evolved ciphertexts with respect to a
public key pk to include all ciphertexts c of the form:

– c = Encpk(m; r) for some m in the valid message space and randomness
r ∈ R, and

– c = Evalpk((ci)i∈I , f) for some poly(k)-size collection of R-evolved ciphertexts
(ci)i∈I and some poly-size circuit f .

Definition 2. A FHE scheme is said to be certifiable if there exists a subset
R ⊆ {0, 1}poly(k) of possible randomness values for which the following hold.

1. Pr[r ∈ R] = 1 − negl(k), where the probability is over uniformly sampled
r ← {0, 1}poly(k).

2. There exists an efficient algorithm AR such that AR(r) = 1 for r ∈ R and 0
otherwise.

3. With overwhelming probability, Gen outputs a key pair (pk, sk) such that
Decsk(Evalpk((ci)1≤i≤n, f)) = f((xi)1≤i≤n) for all poly-sized circuits f and
for all R-evolved ciphertexts c1, . . . , cn, where xi = Decsk(ci).

Certifiable FHE schemes have been shown to exist based on the Learning with
Errors assumption, together with a circular security assumption (e.g., Brakerski
and Vaikuntanathan [10] and Brakerski, Gentry, and Vaikuntanathan [9]). For
the readers who are familiar with these constructions, the set of “good” certifying
randomness R corresponds to encrypting with sufficiently “small noise.”

Multisignatures. A multisignature scheme is a digital signature scheme with
the ability to combine signatures from multiple signers on the same message
into a single short object (a multisignature).2 The first formal treatment of
multisignatures was given by Micali, Ohta, and Reyzin [39].

Definition 3. A multisignature scheme is a tuple of PPT algorithms
(Gen, Sign,Verify,Combine,MultiVerify), where syntactically (Gen, Sign,Verify) are
as in a standard signature scheme, and Combine,MultiVerify are as follows:

Combine({{vkj}j∈Ji , σi}�i=1,m): For disjoint J1, . . . , J� ⊆ [n], takes as input a
collection of signatures (or multisignatures) σi with respect to verification
keys vkj for j ∈ Ji, and outputs a combined multisignature, with respect to
the union of verification keys.

2 Note that multisignatures are a special case of aggregate signatures [8], which in
contrast allow combining signatures from n different parties on n different messages.
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MultiVerify({vki}i∈I ,m, σ): Verifies multisignature σ with respect to the collec-
tion of verification keys {vki}i∈I. Outputs 0 or 1.

All algorithms satisfy the standard natural correctness properties, except with
negligible probability. Moreover, the scheme is secure if for any PPT adversary
A, the probability that the challenger outputs 1 in the following game is negligible
in the security parameter k:

Setup. The challenger samples n public key-secret key pairs, (vki, ski)← Gen(1k)
for each i ∈ [n], and gives A all verification keys {vki}i∈[n]. A selects a
proper subset M ⊂ [n] (corresponding to parties to corrupt) and receives the
corresponding set of secret signing keys {ski}i∈M .

Signing Queries. A may issue multiple adaptive signature queries, of the form
(m, i). For each such query, the challenger responds with a signature σ ←
Signski(m) on message m with respect to the signing key ski.

Output. A outputs a triple (σ̄∗,m∗, I∗), where σ̄∗ is an alleged forgery multisig-
nature on message m∗ with respect to a subset of verification keys I∗ ⊂ [n].
The challenger outputs 1 if there exists i ∈ I∗ \ M such that the mes-
sage m∗ was not queried to the signature oracle with key ski, and 1 ←
MultiVerify({vki}i∈I∗ ,m∗, σ∗).

The following theorem follows from a combination of the (standard) signature
scheme of Waters [44] together with a transformation from this scheme to a
multisignature scheme due to Lu et. al. [36].

Theorem 2. [44,36] There exists a secure multisignature scheme with signature
size poly(k) (independent of message length and number of potential signers),
based on the Bilinear Computational Diffie-Hellman assumption.

Multi-party Protocols: Model and Security Definitions. We consider the setting
of n parties P = {P1, ..., Pn} within a synchronous network who wish to jointly
compute any PPT function f over their private inputs. We allow up to t statically
chosen Byzantine (malicious) faults and a rushing adversary. In our protocols
below, we consider t ≤ (13−ε)n for any constant ε > 0. We assume that every pair
of parties has the ability to initiate direct communication via a point-to-point
private, authenticated channel. (However, we remark that in our protocol, each
(honest) party will only ever send or process information along subset of only
polylog(n) such channels.) We assume the existence of a public-key infrastruc-
ture, but allow the adversary’s choice of corruptions to be made as a function of
this public information.

The notion of security we consider is the standard simulation-based definition
of secure multiparty computation (MPC), via the real/ideal world paradigm.
Very loosely, we require that for any PPT adversary A in a real-world execution
of the protocol, there exists another PPT adversary who can simulate the output
of A given only access to an “ideal” world where he learns only the evaluated
function output. We refer the reader to, e.g., [11] for a formal definition of
(standalone) MPC security.
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General secure function evaluation. The following theorem is well known and
will be use throughout this paper. Let C be a circuit with n inputs, and let FC

the functionality that computes the circuit.

Theorem 3. [5] For any t < n/3, there exists a protocol that securely computes
the functionality FC functionality, with perfect security. The protocol proceeds
in O(|C|) rounds, and each party sends poly(n) messages of size poly(k, n) each.

Verifiable Secret Sharing. A secret sharing scheme is a protocol that allows a
dealer who holds a secret input s, to share his secret among n parties such that
any t parties do not gain any information about the secret s, but any set of (at
least) t+ 1 parties can reconstruct s. A verifiable secret sharing (VSS) scheme,
introduced by Chor et al. [15], is a secret sharing scheme with the additional
guarantee that after the sharing phase, a dishonest dealer is either rejected, or
is committed to a single secret s, that the honest parties can later reconstruct,
even if dishonest parties do not provide their correct shares.

For concreteness, we consider a class of VSS constructions that takes advan-
tage of reconstruction and secrecy properties of low-degree polynomials [43,38].
In particular, security of such a VSS protocol Share is formalized as emulating the
ideal functionality F t

VSS for parties PD, P1, ..., Pn with distinguished dealer PD

such that FVSS(q, (∅, ..., ∅)) =
(
∅, (q(α1), ..., q(αn))

)
for fixed evaluation points

α1, . . . , αn if deg(q) ≤ t, and FVSS(q, (∅, ..., ∅)) = (∅, (⊥, ...,⊥)) otherwise. The
party can also run a reconstruction protocol Reconst such that if honest parties
input the correct shares output by the above functionality to them, then they
recover the right value. The following result is well known.

Theorem 4. [5,4] For any t < n/3, there exists a constant-round protocol Share
that securely computes the F t

VSS functionality, with perfect security. Each party
sends poly(n) messages of size O(l log l), where l = max{|x|, n}.

Also, we will be interested in the case where the dealer D can be any of the n
parties, and he sends shares to a subset P ′ of the n parties of size n′ (e.g., n′ =
polylog(n)), and we may not necessarily have D ∈ P ′. The above functionality
can be extended to this case naturally, and it is a folklore result that the protocols
given by the above theorem also remain secure in this case as long as less than
a fraction 1/3 of the parties in P ′ are corrupted.

Broadcast. Another important functionality we need to implement is broadcast.
To define, a broadcast protocol can be seen as an example of an MPC imple-
menting a functionality FBC for parties PD, P1, ..., Pn with distinguished dealer
PD, defined as FBC(m, (∅, ..., ∅)) =

(
∅, (m, . . . ,m))

)
, where m is the message to

be broadcast.

Theorem 5. [24] For any t < n/3, there exists a constant-round protocol that
securely computes the FBC functionality, with perfect security. Each party sends
poly(n) messages of size O(|m|) each.
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2.2 Random Switching Networks and Random Permutations

Our protocol will employ what we call an n-wire switching network, which con-
sists of a sequence of layers, each layer in turn consisting of one or more swapping
gates which decide to swap the values of two wires depending on a bit. Formally,
given an input vector x = (x1, . . . , xn) (which we assume to be integers wlog), a
swap gate operation swap(i, j,x, b) returns x′, where if b = 0 then x = x′, and
if b = 1 then we have x′i = xj , x

′
j = xi, and x′k = xk for all k �= i, j. A switching

layer is a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs of distinct in-
dices of [n]. A d-depth switching network is a list SN = (L1, . . . , Ld) of switching
layers. Note that for each assignment of the bits of the gates in SN , the network
defines a permutation from [n] to [n] by inputting the vector x = (1, 2, . . . , n)
to the network. The question we are asking is the following: If we set each bit in
each swap gate uniformly and independently at random, how close to uniform is
the resulting permutation? The following theorem guarantees the existence of a
sufficiently shallow switching network giving rise to an almost-uniform random
permutation.

Theorem 6. For all c > 1, there exists an efficiently computable n-wire switch-
ing network of depth d = O(polylog(n) · logc(k)) (and size O(n · d)) such that
the permutation π̂ : [n] → [n] implemented by the network when setting swaps
randomly and independently has negligible statistical distance (in k) from a uni-
formly distributed random permutation on [n].

Proof. By Theorem 1.11 in [16], there exists such network SN of depth d =
O(polylog(n)) where the statistical distance is of the order O(1/n). Consider
now the switching network SN ′ obtained by cascading r copies of SN . Then,
when setting switching gates at random, the resulting permutation π̂ equals
π̂1 ◦ · · · ◦ π̂n, where π̂i are independent permutations obtained each by setting
the gates in SN uniformly at random. With π being a random permutation, a
well-known property of the statistical distance Δ(·, ·), combined with the fact
permutation composition gives a group (see e.g. [37] for a proof) yields

Δ(π̂, π) ≤ 2r−1 ·
r∏

i=1

Δ(π̂i, π) ≤ O

((
2

n

)r)
≤ O(2r(log 2−log(n))) ,

which is negligible in k for r = logc(k). �

Note that in particular this means that each wire is connected to at most d =
O(polylog(n) · logc(k)) other wires via a switching gates, as each wire is part of
at most one gate per layer.

2.3 Sublinear Algorithms

We consider a model where n inputs x1, . . . , xn are accessible to an algorithm
SLA via individual queries for indices i ∈ [n]. Formally, a Q-query algorithm
in the n-input model is a tuple of (randomized) polynomial time algorithms
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SLA = (SLA.Sel1, SLA.Sel2, . . . , SLA.SelQ, SLA.Exec). During an execution with
inputs (x1, . . . , xn), SLA.Sel1 takes no input and produces as output a state σ1

and a query index i1 ∈ [n], and for j = 2, . . . , n, SLA.Selj takes as input a
state σj−1 and input xij−1 , and outputs a new state σj and a new query index
ij. Finally, SLA.Exec takes as input σQ and xQ, and produces a final output
y. We say that SLA is sublinear if Q = o(n). We will also consider the special
case of non-adaptive algorithms which consist without loss of generality of only
two randomized algorithms SLA = (SLA.Sel, SLA.Exec), where SLA.Sel outputs a
subset I ⊆ [n] of indices of inputs to be queried, and the final output is obtained
by running SLA.Exec on input (xi)i∈I .

Examples of sublinear algorithms, many of them non-adaptive, include algo-
rithms for property testing such as testing sortedness of the inputs, linearity,
approximate counting, and numerous graph properties, etc. Surveying this large
area and the usefulness of these algorithms goes beyond the scope of this paper,
and we refer the reader to the many available surveys [1].

3 Multi-party Computation for Sublinear Algorithms

We present a high-level overview geared at illustrating the techniques used within
our sublinear algorithm compiler (Theorem 2), which is the more involved of
our two results. For exposition, we focus on the case of non-adaptive algorithms.
Given aQ-query non-adaptive sublinear algorithm SLA, we would like to evaluate
it in a distributed fashion along the following lines. First, a small committee
C consisting of polylog(n) parties is elected, with the property that at least
two thirds of its members are honest. This committee then jointly decides on a
random subset ofQ parties I, output by SLA.Sel, from which inputs are obtained.
The parties in C∪I jointly execute a multi-party computation among themselves
to produce the output of the sublinear algorithm according to the algorithm
SLA.Exec, which is then broadcasted to all parties.

But things will not be as simple. Interestingly, one main challenge is very
unique to the setting of sublinear algorithms: An execution of the protocol needs
to hide the subset I of parties whose inputs contribute to the output! More
precisely, an ideal execution of the sublinear algorithm via the functionality
FSLA only reveals the output of the sublinear algorithm. Therefore, we need to
ensure that the adversary does not learn any additional information about the
composition of I from a protocol execution beyond what leaked via the final
output. Our protocol will indeed hide the set I completely. This will require
modifying the above naive approach considerably.

The second challenge is complexity theoretic in nature. Enforcing low com-
plexity of our protocol when implementing the above steps, while realizing our
mechanism to hide the subset I, will turn out to be a delicate balance act.

In particular, at a high level our protocol will consist of the following
components:

Committee Election Phase. The n parties jointly elect a supreme committee
C, as well as individual committees C1, . . . , Cn on which they all agree,
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sending each at most polylog(n) messages of size each n·poly(logn, log k). All
committees have size polylog(n) and at least a fraction 2/3 of the parties in
them are honest. As part of this process, the parties set up a communication
structure that allows the supreme committee to communicate messages to
all parties.

Commitment Phase. Each party Pi commits to its input so that Ci holds
shares of these inputs.

Shuffling Phase. To hide the access pattern of the algorithm (i.e., which in-
puts are included in the computation), the committees will randomly shuffle
the inputs they hold with respect to a random permutation ρ. This will hap-
pen by using a switching network with good shuffling properties. For each
swap gate (i, j) in the switching network, committees Ci and Cj will swap at
random the sharings they hold via a multi-party computation under a ran-
dom decision taken by the supreme committee C. The supreme committee
then holds a secret sharing of ρ.

Evaluation Phase. The parties in the supreme committee C sample a random
query set I according to SLA.Sel via MPC and learn ρ(I) only. They will
then include the parties in committees Ci for i ∈ ρ(I) in a multi-party
computation to evaluate the sublinear algorithm on the inputs they hold.
(Recall that C holds ρ in shared form.)

Output Phase. The supreme committee broadcasts the output of the compu-
tation to all parties, using the communication structure from the first stage.

In addition, we carefully implement sharings and multi-party computations using
FHE to improve complexity, making the dependency of both the communication
and round complexities linear in the input length |x|, rather than polynomial,
and independent of the circuit sizes to implement the desired functionalities.

The following paragraphs provide a more detailed account of the techniques
used within our protocol. In addition, a high-level description of the protocol
procedure is given in Figure 1.

Committee Election Phase. The backbone behind this first phase is given
by the construction of a communication tree using a technique of King et al [34].
Such tree is a sparse communication subnetwork which will ensure both the
election of the supreme committee, as well as a basic form of communication
between parties and the supreme committee where each party communicates
only with polylog(n) other parties and only polylog(n) rounds of communication
are required. Informally, the protocol setting up the tree assigns (possibly over-
lapping) subsets of parties of polylogarithmic size to the nodes of a tree with
polylogarithmic height and logarithmic degree. The set of parties assigned to the
root will take the role the supreme committee C. Communication from the root
to the parties (or the other way round) occurs by communicating messages over
paths from the root to the leaves of the tree, with an overall communication cost
of polylog(n) messages per party. To elect the committees C1, . . . , Cn, we can
have the supreme committee agree on the seed s of a PRF family F = {Fs}s via
a coin tossing protocol, where Fs maps elements of [n] to subsets of [n] of size
polylog(n), and send s to all parties. We then let Ci = Fs(i).
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However, a closer look reveals that it is only possible for the protocol building
the communication tree to enforce that a vast majority of the nodes of the
tree are assigned to a set of parties for which a 2/3 majority is honest, but
some nodes are unavoidably associated with too large a fraction of corrupted
parties. Indeed, some parties may be connected to too many bad nodes and
their communication ends up being essentially under adversarial control. As a
consequence, the supreme committee is only able to correctly communicate with
a 1 − o(1) fraction of the (honest) parties. Moreover, individual parties are not
capable of determining whether the value they hold is correct or not. We refer
to this situation as almost-everywhere (ae) agreement.

Our main contribution here is the use of cryptographic techniques to achieve
full agreement on C and s in this stage, while maintaining polylog(n) commu-
nication locality; this improves on previous work in the information-theoretic
setting [32,33,21] which requires each party to talk to O(

√
n · polylog(n)) other

parties to reach agreement. We tackle these two issues in two separate ways.

1. From ae agreement to ae certified agreement. We first move to a stage where
a large 1 − o(1) fraction of the parties learn the value sent by the supreme
committee, together with a proof that the output is the one sent by the com-
mittee, whereas the remaining parties who do not know the output are also
aware of this fact. We refer to this scenario as almost-everywhere certified
agreement. Let us start with the basic idea using traditional signatures (we
improve on this below using multisignatures). After having the supreme com-
mittee send a value m to all parties with almost-everywhere agreement, each
party Pi receiving a value mi will sign mi with his own signing key, producing
a signature σi. Then, Pi sends (mi, σi) up the tree to the supreme committee,
and each member will collect at least n/2 signatures on σi on some message
m. Note that this will always be possible, as a fraction 1− o(1) > n/2 of the
honest parties will receive the messagemi = m and send a valid signature up
the tree. Moreover, the adversary would need to forge signatures for honest
parties in order to produce a valid certificate for a message which was not
broadcast by the supreme committee.

2. From ae certified agreement to full agreement. We finally describe a transfor-
mation from ae certified agreement to full agreement. If a committee wants
to broadcast m to all parties, the committee additionally generates a seed
s for a PRF and broadcasts (m, s) in a certified way using the above trans-
formations. Each party i receiving (m, s) with a valid certificate π forwards
(m, s, π) to all parties in “his” committee Fs(i). Whenever a party receives
(m, s, π) with a valid certificate, it stops and outputs m. Note that no party
sends more than polylog(n) additional messages in this transformation. More-
over, it is not hard to see that with very high probability every honest party
will be in at least one of the Fs(i) for a party i who receives (m, s) correctly
with a certificate, by the pseudorandomness of F . Note in particular that the
same seed s can be used over multiple executions of this broadcast procedure
from the committee to the parties, and can be used directly to generate the
committees C1, . . . , Cn.
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While we do guarantee that every party sends at most polylog(n) messages, a
problem of the above approach is the potentially high complexity of processing
incoming messages if dishonest parties flood an honest party by sending too
many messages. Namely, the t = Θ(n) corrupted parties can always each send
(m, s) with an invalid certificate to some honest party Pi, who needs to verify
all signatures in the certificate to confirm that these messages are not valid.
We propose a solution based on multisignatures that alleviates this problem by
making certificates only consist of an individual aggregate signature (instead of
of Θ(n)), as well as of a description of the subset of parties whose signatures
have been aggregated. The main idea is to have all parties initially sign the value
they receive from the supreme committee with their own signing keys. However,
when sending their values up the tree, parties assigned to inner nodes of the tree
will aggregate valid signatures on the message which was previously sent down
the tree, and keep track of which signatures have contributed.

Commitment Phase. Our instantiations of multi-party computations among
subsets of parties will be based on fully homomorphic encryption (FHE). To this
end, we want parties in each input committee Ci to store an FHE encryption
Enc(pk, xi) of the input xi that we want to be committing. The FHE public
key pk is generated by the supreme committee (who holds secret shares of the
matching secret key sk), and sent to all parties using the methods outlined above.
A party i is committed to the value xi if the honest parties in Ci all hold the
same ciphertext encrypting xi. This presents some challenges which we address
and solve as follows:

1. First, a malicious party Pi must not be able to broadcast an invalid cipher-
text to the members of the committee Ci. This is prevented by appending
a simulation-sound NIZK argument π to the ciphertext c that there exists a
message x and “good” randomness r such that Enc(pk, x; r) = c.

2. Second, for a security proof to be possible, it is well known that not only
the encryption needs to be hiding and binding, but a simulator needs to be
able to have some way to extract the corresponding plaintext from a valid
ciphertext-proof pair (c, π). A major issue here is that the simulated setup
must be independent of the corrupted set in our model. This prevents the
use of NIZK arguments of knowledge. Moreover, we can expect the FHE
encryption to be secure against chosen plaintext attacks only. We will solve
this by means of double encryption, following Sahai’s construction [41] of a
CCA-secure encryption scheme from a CPA-secure one. Namely, we provide
an additional encryption c2 of x under a different public-key (for which no one
needs to hold the secret key), together with an additional NIZK argument
that c1 and c2 encrypt the same message. The ciphertext c2 will not be
necessary at any later point in time and serves only the purpose of verifying
commitment validity (and permitting extraction in the proof).

3. Third, a final problem we have to face is due to rushing adversaries and the
possibility of mauling commitments, in view of the use of the same public
key pk for all commitments. This can be prevented in a black-box way by
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letting every party Pi first (in parallel) VSS its commitment to the parties
in Ci, and then in a second phase letting every committee Ci reconstruct
the corresponding commitment. If the VSS protocol is perfectly secure, this
ensures input-independence.

Another challenge is how to ensure that ciphertext sizes and the associated NIZK
proof length are all of the order |x| · poly(k), instead of poly(|x|, k). We achieve
this by encrypting messages bit-by-bit using a bit-FHE scheme, whose cipher-
texts are hence of length poly(k). The corresponding NIZK proof is obtained
by sequentially concatenating individual proofs (each of length poly(k)) for the
encryptions of individual bits.

Shuffling Phase. The major privacy issue in executing a sublinear algorithm
in a distributed setting is that the adversary must not learn which parties have
contributed their inputs to the protocol evaluation, beyond any information that
the algorithm’s output itself reveals. Ideally, we would like parties to shuffle their
inputs in a random (yet oblivious) fashion, so that at the end of such a protocol
each party Pi holds the input of party Pπ(i) for a random permutation π, but
such that the adversary has no information about the choice of π and for which
party π(i) he holds an input. At the same time, the supreme committee jointly
holds information about the permutation π in a shared way. Unfortunately, this
seems impossible to achieve: A disrupting adversary may always refuse to hold
inputs for other parties. However, we can now exploit the fact that the inputs
are held by committees C1, . . . , Cn containing a majority of honest parties.

The actual shuffling is implemented via distributed evaluation of a switching
network SN , under central coordination by the supreme committee. We assume
that a switching network over n wires is given, with depth d = polylog(n),
and is known to everyone, and with the property given by Theorem 6: i.e., it
implements a nearly uniform permutation on [n] under random switching. For
each swap gate (i, j) in the network, the supreme committee members jointly

produce an encryption b̂i,j of an (unknown) random bit bi,j , indicating whether
the inputs xi and xj are to be swapped or not when evaluating the corresponding

swapping gate. The value b̂i,j is broadcast to all parties in Ci and Cj . At this
point, each party in Ci broadcasts his copy of x̂i to all parties in Cj , and each
party in Cj does the same with x̂j to all parties in Ci. (Each party then, given
ciphertexts from the other committee, will choose the most frequent one as the
right one.) Then, each party in Ci (or Cj) will update his encryption x̂i to

be an encryption of Dec(sk, x̂j) or Dec(sk, x̂i), depending on the value of b̂i,j ,
using homomorphic evaluation of the swap-or-not function. We note that this
operation can be executed in parallel for all gates on the same layer, hence the
swapping requires d rounds.

Evaluation Phase. Once the parties’ inputs have been (obliviously) shuffled,
we are ready to run the sublinear algorithm. The execution is controlled by the
supreme committee C. First, the members of C will run an MPC to randomly
select the subset of inputs I ⊂ [n] to be used by the algorithm. The output of
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Protocol for Non-adaptive Sublinear Algorithm Evaluation (Overview)
Committee Election Phase
1. Execute almost-everywhere committee election protocol of [34] to generate a com-

munication tree together with a committee C at its root (where (1− o(1)) fraction
of honest parties agree on C).

2. Achieve certified almost-everywhere agreement on C and individual committees
{Ci}i∈[n] as follows. Members of C collectively sample a PRF seed s and commu-
nicate it to (almost) all parties. Each Ci is defined by Fs(i). Every party signs his
believed value of (C, s) and passes it up the communication tree to C, where agree-
ing signatures are aggregated into a single multisignature at each inner node. The
message and “certificate” multisignature that contains signatures from a majority
of all parties is sent back down the tree.

3. Achieve full agreement on C, {Ci}i∈[n] as follows. Each party Pi possessing a valid
certificate π on (C, s) sends (C, s, π) to each party in Ci := Fs(i). Each party Pj

who does not have a valid certificate listens for incoming messages and adopts the
first properly certified tuple. (Note steps 2-3 enable C to broadcast messages).

Commitment Phase
4. Parties in the primary committee C run the (standard) MPC protocol of [5]

amongst themselves to generate keys for the FHE scheme and a second standard
PKE scheme. Parties in C receive the public keys pk, pk′ and a secret share of FHE
key sk. They broadcast pk, pk′ to all parties.

5. In parallel, each party Pi acts as dealer to VSS the following values to his input
committee Ci: (1) an FHE encryption of his input x̂i ← Encpk(xi), (2) a second
encryption of xi under the standard PKE with pk′, and (3) NIZK proofs that x̂i

is a valid encryption and the two ciphertexts encrypt the same value.
Shuffling Phase
6. Parties in primary committee C run an MPC to generate a random permutation

ρ, expressed as a sequence of random swap bits in the switching network SN . The
output is an FHE encryption ρ̂ of ρ, which they broadcast to all parties.

7. The committees Ci obliviously shuffle their stored input values, as follows.
For each layer L1, ..., Ld in the sorting network SN ,
– Let L� = ((i1, j1), ..., (in/2, jn/2)) be the swapping pairs in the current layer �.
– In parallel, the corresponding pairs of committees (Ci1 , Cj1), ..., (Cin/2

, Cjn/2
)

exchange their currently held input ciphertexts x̂p, x̂q (using broadcast then
majority vote) and homomorphically evaluate the swap-or-not function on
x̂p, x̂q, and the appropriate encrypted swap bit b̂ contained in ρ̂.

Outcome: each party in committee Ci holds encryption of input xρ(i).
Evaluation Phase
8. Parties in primary committee C run an MPC to execute the input selection proce-

dure I ← SLA.Sel. The output of the MPC is the set of permuted indices ρ(I) ⊂ [n].
9. Every party in C sends a message “Please send encrypted input �” to every party

Pj in C� for which � ∈ ρ(I).
10. Each party Pj ∈ C� who receives consistent messages “Please send encrypted input

�” from amajority of the parties in C, broadcasts his currently held encrypted input
x̂j
p�

to all parties in C. (Recall that this allegedly corresponds to an encryption of
the input xp held by the committee C� = Cρ(p) after the ρ-permutation shuffle).

11. The parties of C evaluate the second portion of the sublinear algorithm, SLA.Exec
via an MPC. Each party of C broadcasts the resulting output answer to all parties.

Fig. 1. High-level overview of the protocol ΠSLA for secure distributed evaluation of a
non-adaptive sublinear algorithm SLA = (SLA.Sel,SLA.Exec)
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the MPC will be the set of permuted indices σ(I) := {σ(i) : i ∈ I}. The corre-
sponding committees {Cj : j ∈ σ(I)} are invited to join in a second MPC. Each
member of Cj enters the MPC with input equal to his currently held encrypted
secret share (of some unknown input xi, for which j = σ(i)). Each member of
C enters the MPC with input equal to his share of the secret decryption key sk.
Collectively, the members of C∪(

⋃
j∈σ(I) Cj) run an MPC which (1) recombines

the shares of sk, (2) decrypts the secret shares held by each Cj , (3) reconstructs
each of the relevant inputs xi, i ∈ I, from the corresponding set of secret shares,
(4) executes the sublinear algorithm on the reconstructed inputs, and (5) out-
puts only the output value dictated by the sublinear algorithm (e.g., for many
algorithms, this will simply be YES/NO).

The main challenge is making the complexity of this stage such that
only poly(log n, log k) rounds are executed, and only messages of size |x| ·
poly(log k, logn) will be exchanged. This will be achieved by performing most of
the computations locally via FHE by the parties in the supreme committee, and
by generating the randomness to be used in SLA.Sel and SLA.Exec by first agree-
ing on a poly(k)-short seed of a PRG via coin-tossing, and then subsequently
using the PRG output as the actual randomness.

Extension: Adaptive Algorithms. The above protocol can be modified to accom-
modate adaptive sublinear algorithms SLA = (SLA.Sel1, . . . , SLA.Selq, SLA.Exec)
simply by modifying the evaluation phase such that an MPC is run for each
next-query SLA.Selj to obtain the permuted index of the next query ρ(ij). Note
that without loss of generality all queries are distinct. As a result of this mod-
ification, the number of rounds unavoidably increases: Namely, we need O(q)
additional rounds to obtain inputs from the committees Cρ(ij) one by one. How-
ever, the proof and the protocol are otherwise quite similar, and we postpone a
more detailed description to the final version of this paper.
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Abstract. We present a new method for secure two-party Random Access Mem-
ory (RAM) program computation that does not require taking a program and first
turning it into a circuit. The method achieves logarithmic overhead compared to
an insecure program execution.

In the heart of our construction is a new Oblivious RAM construction where
a client interacts with two non-communicating servers. Our two-server Oblivious
RAM for n reads/writes requires O(n) memory for the servers, O(1) memory
for the client, and O(log n) amortized read/write overhead for data access. The
constants in the big-O notation are tiny, and we show that the storage and data
access overhead of our solution concretely compares favorably to the state-of-
the-art single-server schemes. Our protocol enjoys an important feature from a
practical perspective as well. At the heart of almost all previous single-server
Oblivious RAM solutions, a crucial but inefficient process known as oblivious
sorting was required. In our two-server model, we describe a new technique to
bypass oblivious sorting, and show how this can be carefully blended with exist-
ing techniques to attain a more practical Oblivious RAM protocol in comparison
to all prior work.

As alluded above, our two-server Oblivious RAM protocol leads to a novel
application in the realm of secure two-party RAM program computation. We ob-
serve that in the secure two-party computation, Alice and Bob can play the roles
of two non-colluding servers. We show that our Oblivious RAM construction
can be composed with an extended version of the Ostrovsky-Shoup compiler to
obtain a new method for secure two-party program computation with lower over-
head than all existing constructions.
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implementations (e.g. [20], [24], etc.), modern algorithms are typically represented as
Random Access Memory (RAM) programs rather than circuits, that contain multiple
branches, recursion, while loops, etc. Unrolling these into circuits it often incredibly
costly. The alternative was proposed by Ostrovsky and Shoup (in STOC 1997) [33]:
to utilize Oblivious RAM machinery inside two party computation and “simulate” the
client by two players. More specifically, Ostrovsky and Shoup [33] suggests simulating
the CPU of an oblivious RAM machine using off-the-shelf secure computation to per-
form CPU execution steps with atomic instructions implemented by circuits (that are
executed securely) to simulate a “virtual” client in the Oblivious RAM and rely on one
of the players to implement encrypted memory of Oblivious RAM. The simulation of
each CPU is done through circuit-based secure two-party computation, thus CPU size in
the Oblivious RAM simulation must be minimized, as otherwise it impacts simulation
of each step of the computation. Luckily, there are multiple Oblivious RAM solutions
that require O(1) CPU memory in the security parameter.

The Ostrovsky-Shoup compiler suffers from two drawbacks: (1) The best running
time of Oblivious RAM simulation with O(1) memory requires O(log2 n/ log logn)
overhead for running programs of length n due to Kushilevitz, Lu, and Ostrovsky (in
SODA 2012) [26] and (2) The most problematic part of this approach is that most
Oblivious RAM simulations with small CPU size, starting with Goldreich and Ostro-
vsky require “Oblivious Sorting” that introduce a huge constant into Oblivious RAM
simulation that essentially kills all practicality. In this paper we eliminate both draw-
backs stated above.

At the heart of our construction is a model known as “Distributed (or two-Server)
Oblivious RAM” where an Oblivious RAM client is allowed to interact with two or
more non-communicating databases. This model is analogous to the multi-server Pri-
vate Information Storage model introduced by Ostrovsky and Shoup [33]. The critical
difference is that in [33], while using two servers, as a building block they use single-
server Oblivious RAM solution as a building block. The principle difference in the cur-
rent paper is to take a closer look that the Oblivious RAM technology itself and to show
how two non-communicating servers can lead to significant efficiency improvements
in the Oblivious RAM itself. Further, we argue that two-server model of the Oblivious
RAM is very natural in multiple applications. For example, as already mentioned our
Oblivious RAM construction critically uses the two servers in obtaining an efficient
two-party computation (where two players naturally implement two servers) since we
show how completely skip the expensive “oblivious sorting” step of Oblivious RAM.
We then show how two players can act as two servers in distributed ORAM and sort
directly on the pseudo-random keys. This contribution may also be of independent in-
terest in the realm of practical Oblivious RAM, as well as theoretical constructions that
use Oblivious RAM.

We highlight two practical and realistic scenarios in which our solution is especially
important: as already mentioned, complicated programs with branching, loops, recur-
sion, and multiple execution paths, and secondly, programs which access during run-
time only a small number of bits from large public inputs. If the size of the random
access program (which could be dramatically smaller than the corresponding circuit)
and inputs are bounded by Λ and runs in time T , our solution is the first practical method
with O((T +Λ) log(T +Λ)) communication and computation complexity. We also re-
mark that if we allow preprocessing on large inputs (such as on a large database, maps,
graphs, networks, etc.), the online work can be reduced to O((T + ε) log(T + Λ)),
where ε bounds the size of online inputs (such as in a query). This precomputation
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model was used in the work of Gordon et al. [19] to achieve polylogarithmic online
overhead, which we improve to logarithmic overhead. We now remind the reader of the
motivation behind Oblivious RAM.

The concept of outsourcing data storage or computation is wide-spread in practice.
This raises the issue of what happens to the privacy of the data when the outsourcing
service is only semi-trusted or untrusted. Encryption can be employed to protect the
content of the data, but it is apparent that information might be revealed based on how
the data is accessed. Simply put, encryption by itself alone does not entirely address the
issue of data privacy at hand.

The sequence of reads and writes a client makes to the remotely stored data is known
as the access pattern. Even if the content of the data is protected by encryption, the
server storing the data can deduce information about the encrypted data just by observ-
ing and analyzing the access pattern. For instance, the server can correlate this pattern
with public information about the client’s behavior, such as the purchase or sale of stock.
Over time, the server may learn enough information to predict the behavior of the client
or the underlying semantics of the data, thereby defeating the purpose of encrypting it
in the first place.

A trivial solution would be for the client to access the entire stored database every
single read or write. This clearly hides the access pattern, but the per-access overhead
is linear in the size of stored data. The question remains:

Is it possible to hide the access pattern with less than linear overhead?
In the model where the client is a Random Access Machine (i.e. RAM model), Gol-

dreich and Ostrovsky [11, 32, 31, 14] introduced the concept of hiding the access pattern
in the context of software protection. A small protected CPU would run on a machine
with large unprotected RAM. The goal was to obliviously simulate access to RAM,
so that the set of instructions ran by the CPU would be protected against an outsider
monitoring the RAM. In this manner, an adversary observing the RAM would learn
nothing about what instructions were executed except the total number of instructions.
The work of Goldreich [11] featured two solutions using constant client memory: a
“square-root” solution and a “recursive square-root” solution. The amortized time over-
head of executing a program in the former scheme was O(

√
n), and O(2

√
logn log logn)

in the latter. Ostrovsky [32, 31] then discovered what is known as the “hierarchical so-
lution” which had amortized overhead O(min{log3 n, log3 t}), where t is the running
time. The subsequent work of Goldreich and Ostrovsky [14] contains the merged results
of [32, 31, 11] and featured a simpler method of reshuffling. The work described a way
of simulating oblivious RAM with O(log3 n) amortized overhead per access for n data
items, using constant client storage1 and O(n log n) server storage. A simple way to
modify the solution to make it worst-case O(log3 n) overhead per access was pointed
out by Ostrovsky and Shoup in 1997 [33].

While the asymptotic behavior of O(log3 n) overhead might seem efficient, this only
gives a practical advantage over the trivial solution when n > log3 n (without even con-
sidering the constants hidden in the O). A database of size n = 220 results in an over-
head factor of roughly 8000, and such a large overhead would seem to cast oblivious
RAM as outside the realm of practicality. Making oblivious RAM practical would be

1 We count storage as the number of records or data items stored in memory. We do not count
small variables such as counters or loop iterators toward this amount as these typically are tiny
compared to the size of a data item, nor the private-key encryption/decryption cost.
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of great impact, as it can be applied to software protection and several other important
problems such as cloud computing, preventing cache attacks, etc. as we discuss later.

A highly interesting and powerful application of Oblivious RAM is in the prob-
lem of efficient, secure two-party program computation. While there are many ways
to model computation, such as with Turing Machines, (Boolean) Circuits, Branching
Programs, or Random Access Machines, one representation might be more natural than
another, depending on the program. Nearly all secure two-party computation protocols
require the program to be specified as a circuit between the two parties. Due to a clas-
sic result by Pippenger and Fischer [37], any Turing machine running in time T can
be transformed into a circuit with only O(log T ) blowup, but it is not known in the
RAM model of computation whether there exists such an efficient transformation to
circuits. Therefore, even using the most efficient secure two-party protocols for circuits
(e.g. IKOS [21] or IPS [22] protocols), there is no clear path on how to apply these to
efficiently perform secure RAM computation. We consider the question:

How can one efficiently perform secure two-party computation in the natural RAM
model?

RELATED WORK. Subsequent to Goldreich and Ostrovsky [32, 31, 11, 14], works on
Oblivious RAM [40, 41, 36, 16, 17, 38, 18, 26, 39] looked at improving the concrete
and asymptotic parameters of oblivious RAM. We give a full summary of these schemes
in Section 2. The major practical bottleneck of all these works on Oblivious RAMs is a
primitive called oblivious sorting that is being called upon as a sub-protocol. Although
the methods for oblivious sorting have improved, it still remains as both the critical
step and the primary stumbling block of all these schemes. Even if new methods for
oblivious RAM are discovered, there is an inherent limit to how much these schemes
can be improved. It was shown in the original work of Goldreich and Ostrovsky [14]
that there is a lower bound for oblivious RAM in this model.

([14], Theorem 6): To obliviously perform n queries using only O(1) client memory,
there is a lower bound of O(log n) amortized overhead per access.

We mention several results that are similar to Oblivious RAM but work in slightly
different models. The works of Ajtai [1] and Damgård et al. [10] show how to construct
oblivious RAM with information-theoretic security with poly-logarithmic overhead in
the restricted model where the Adversary can not read memory contents. That is, these
results work in a model where an adversary only sees the sequence of accesses and
not the data. The work of Boneh, Mazieres and Popa [7] suggests ways to improve the
efficiency of the “square-root” solution [11, 14] when memory contents are divided into
larger blocks.

Finally, the notion of Private Information Storage introduced by Ostrovsky and
Shoup [33] allows for private storage and retrieval of data. The work was primarily con-
centrated in the information theoretic setting. This model differs from Oblivious RAM
in the sense that, while the communication complexity of the scheme is sub-linear,
the server performs a linear amount of work on the database. The work of Ostrovsky
and Shoup [33] gives a multi-server solution to this problem in both the computational
and the information-theoretic setting and introduces the Ostrovsky-Shoup compiler of
transforming Oblivious RAM into secure two-party computation. Directly quoting from
their STOC 1997 [33] paper (with citations cross-referenced):

Both databases keep shares of the state of the CPU, and additionally one of the databases
also keeps the contents of the Oblivious RAM memory. The main reason why we can
allow one of the constituent databases to keep both the “share” of the CPU and the
Oblivious RAM memory and still show that the view of this constituent database is
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computationally indistinguishable for all executions is that the Oblivious RAM memory
component is kept in an encrypted (and tamper-resistant) form (see [14]), according to
a distributed (between both databases) private-key stored in the CPU. For every step
of the CPU computation, both databases execute secure two-party function evaluation
of [42, 13] which can be implemented based on any one-way trapdoor permutation
family (again communicating through the user) in order to both update their shares and
output re-encrypted value stored in a tamper-resistant way in Oblivious RAM memory
component.

The current work can be viewed as a generalization of the [33] model where servers
must also perform sublinear work. The notion of single-server “PIR Writing” was sub-
sequently formalized in Boneh, Kushilevitz, Ostrovsky and Skeith [6] where they pro-
vide a single-server solution. The case of amortized “PIR Writing” of multiple reads
and writes was considered in [8].

Also along the lines of oblivious simulation of execution, the result of Pippenger and
Fischer [37] shows that a single-tape Turing machine can be obliviously simulated by a
two-tape Turing machine with logarithmic overhead.

With regard to secure computation for RAM programs, the implications of the
Ostrovsky-Shoup compiler was explored in the work of Naor and Nissim [29] which
shows how to convert RAM programs into so-called circuits with “lookup tables” (LUT).
This transformation incurs a poly-logarithmic blowup, or more precisely, for a RAM
running in time T using space S, there is a family of LUT circuits of size T ·polylog(S)
that performs the same computation. The work then describes a specific protocol that
securely evaluates circuits with lookup tables. [29] also applies to the related model of
securely computing branching programs.

The Ostrovsky-Shoup compiler was further explored in the work of Gordon et al. [19]
in the case of amortized programs. Namely, consider a client that holds a small in-
put x, and a server that holds a large database D, and the client wishes to repeatedly
perform private queries f(x,D). In this model, an expensive initialization (depend-
ing only on D) is first performed. Afterwards, if f can be computed in time T with
space S with a RAM machine, then there is a secure two-party protocol computing f
in time O(T ) · polylog(S) with the client using O(log S) space and the server using
O(S · polylog(S)) space.

Efforts on making Oblivious RAM perform well in the worst case were initiated
by Ostrovsky and Shoup [33] with follow-up works by Shi et. al [38] and Stefanov-
Shi-Song [39]. These results independently discover a way to avoid oblivious sorting,
though have worse asymptotics than our new scheme. Although these results asymptot-
ically perform worse (such as having O(log3 n) overhead), their focus was on reducing
the worst-case overhead as well as minimizing actual constants and was effective for
improving the running time for reasonably sized databases. Other works that considered
worst-case overhead include Goodrich et. al [17] and Kushilevitz et. al [26].

OUR RESULTS. In this paper, we consider a model for oblivious RAM in which we can
achieve far better parameters than existing single-server schemes. We mention that our
model, like most existing schemes, focuses on computational rather than information-
theoretic security, and we only make the mild assumption that one-way functions exist.
Instead of having a single server store our data, similar to Ostrovsky-Shoup [33] we
consider using multiple2 servers to store client’s data. These servers are assumed to
not communicate or collude with each other, but only communicate with the client.

2 In general, we can consider multiple servers. For our purposes, two servers suffice.
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The main difference compared with [33] is that [33], while having several servers im-
plemented virtual “off-the-shelf” Oblivious RAM that has a single server. We, in con-
trast, examine what two servers can bring to the Oblivious RAM world, where we allow
these servers to perform simple computations such as hashing and sorting.

Note that although this Oblivious RAM model differs from the original model of
the server only having read/write, we mention that it is still applicable in many of the
interesting applications, such as cloud computing, tamper-proof CPUs interacting with
other CPUs, and our main application, secure two-party computation. From a theo-
retical point of view, this model has been used in the past to much success such as
in the seminal works in the areas of multi-prover Interactive Proof Systems [4] and
multi-server Private Information Retrieval [9]. As already mentioned, this model is also
directly applicable to the Ostrovsky-Shoup compiler for the construction of secure two-
party RAM computation protocols.

In our two-server model, we introduce a new approach for Oblivious RAM that
completely bypasses oblivious sorting, which was the inhibiting factor of practicality
in most previous schemes (we give a comparison in Section 2.3). To perform a sequence
of n reads or writes, our solution achieves O(log n) amortized overhead per access,
O(n) storage for the servers, and constant client memory. This matches the lower bound
in the single-server model [14], and thus no single-server solution that uses constant
client memory can asymptotically outperform our solution.

Theorem 1 (Informal). Assume one-way functions exist. Then there exists an Oblivi-
ous RAM simulation in the two-server model with O(log n) overhead.

In the work of [18], the notion of Stateless Oblivious RAM was introduced due to the
fact that many Oblivious RAM solutions using super-constant client memory also re-
quired the client to maintain state between queries. All previous schemes with constant
client memory were stateless and our new construction follows this trend.

As mentioned above, this new Oblivious RAM protocol leads to a novel appli-
cation to secure RAM program computation. We then show how to perform secure
two-party RAM computation by adapting our multi-server Oblivious RAM solution
to fit the Ostrovsky-Shoup compiler [33]. This allows us (under cryptographic assump-
tions) to achieve the most efficient logarithmic communication complexity overhead
for secure RAM computation as opposed to the poly-logarithmic overhead of all prior
schemes [33, 29, 19, 28].

Theorem 2 (Informal). Given any secure circuit computation protocol with O(1) com-
munication overhead, for any RAM program Π with upper bound T on its running time
and Λ on its size (including |Π |) and length of inputs), there exists a two-party secure
computation protocol for executing Π with O((T + Λ) · log (T + Λ)) communication
and computation complexity. If large inputs are pre-processed and the online inputs
sizes are bounded by ε, the online cost becomes O((T + ε) · log (T + Λ)).

As an additional important remark, if players are willing to reveal to each other the
actual running time on specific (private) inputs, we can replace in the above theorem T
with the exact running on specific inputs, even though this may leak additional informa-
tion. In some applications this information may be harmless, but in other applications
with vastly different average-case/worst-case performance, this leads to a natural and
interesting question on the tradeoff between efficiency and privacy.
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1.1 Applications

SECURE TWO-PARTY AND MULTIPARTY COMPUTATION. In the case of MPC, we
can apply oblivious RAM by letting the participants jointly simulate the client, and
have the contents of the server be stored in a secret-shared manner. This application
was originally described by Ostrovsky and Shoup [33] in the case of secure two-party
computation. As described above, several other subsequent works [29, 10, 19] also in-
vestigated the application of Oblivious RAM to the area of secure computation. This
can be beneficial in cases where the program we want to securely compute is more suit-
able to be modeled by a RAM program than a circuit. In particular, we demonstrate in
this paper how our two-server ORAM construction can be applied to the case of secure
two-party RAM program computation in the semi-honest model to obtain more efficient
protocols for this purpose.

SOFTWARE PROTECTION. Original works of Goldreich [11] and Ostrovsky [32] envi-
sioned protecting software using oblivious RAM. A small tamper-resistant CPU could
be incorporated in a system with a large amount of unprotected RAM. A program could
be run on this CPU by using oblivious RAM to access the large memory. Because this
RAM could be monitored by an adversary, the benefit of oblivious RAM is that it hides
the access pattern of the program that is running, thus revealing only the running time
of the program to the adversary.

CLOUD COMPUTING. With the growing popularity of storing data remotely in the
cloud, we want a way to do so privately when the data is sensitive. As mentioned before,
simply encrypting all the data is insufficient, and by implementing oblivious RAM in
the cloud, a client can privately store and access sensitive data on an untrusted server.

PREVENTING SIDE-CHANNEL ATTACKS. There are certain side-channel attacks that
are based on measuring the RAM accesses that can be prevented by using oblivious
RAM. For example, an adversary can mount a cache attack by observing the memory
cache of a CPU. This poses a real threat as it can be used for cryptanalysis and has even
been observed in practice in the work of Osvik-Shamir-Tromer [34].

PRIVATE DATA STRUCTURES. Rather than protecting an entire program, we can con-
sider the middle ground of data structures. Data structures typically fit neatly into the
RAM model, where each read or write is a sequence of accesses to memory. Performing
these operations will leak information about the data, and we can use oblivious RAM
to mitigate such issues. For example, commercial databases typically offer encryption
to protect the data, but to protect the access pattern we can replace the data structures
with oblivious ones.

2 Background

2.1 Model

We work in the RAM model, where there is a tiny machine that can run a program that
performs a sequence of reads or writes to memory locations stored on a large memory.
This machine, which we will refer to as the client, can be viewed as a stateful proces-
sor with a special data register v that can run a program Π . From a given state Σ of
the client and the most recently read element x, Π(Σ, x) acts as the next instruction
function and outputs a read or write query and an updated state Σ′.
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Because we wish to hide the type of access performed by the client, we unify both
types of accesses into a operation known as a query. A sequence of n queries can be
viewed as a list of (memory location, data) pairs (v1, x1), . . . , (vn, xn), along with a
sequence of operations op1, . . . , opn, where opi is a READ or WRITE operation. In
the case of READ operations, the corresponding x value is ignored. The sequence of
queries, including both the memory location and the data, performed by a client is
known as the access pattern.

In our model, we wish to obliviously simulate the RAM machine with a client, which
can be viewed as having limited storage, that has access to multiple servers with large
storage that do not communicate with one another. However, the servers are untrusted
and assumed to only be, in the best case, semi-honest, i.e. each server follows the proto-
col but attempts to learn additional information by reviewing the transcript of execution.
For our model, we assume that the servers can do slightly more than just I/O, in that
they can do computations locally, such as shuffle arrays, as well as perform hashing and
basic arithmetic and comparison operations.

An oblivious RAM is secure if for any two access patterns in the ideal RAM, the
corresponding views in the execution of those access patterns of any individual server
are computationally indistinguishable. Another way of putting it is that the view of a
server can be simulated in a way that is indistinguishable from the view of the server
during a real execution.

We also briefly state the model of secure two-party RAM computation which we
work in (see, e.g. [12], for a more in-depth treatment of general models of secure com-
putation). Let f(A,B) be a function that can be efficiently computed by a RAM ma-
chine, that is to say, there exists a program Π that a client can execute starting with
A and B stored in the appropriate input memory locations and halting with the re-
sult f(A,B) in the appropriate output memory location on the server. We usually de-
note the running time T (n) and the space used S(n) which depend on the size of the
input n.

We use an ideal/real simulation-based definition of security and also work in the
setting of semi-honest adversaries. There are two parties, Alice and Bob that receive
inputs A and B respectively and they wish to compute f(A,B). In the ideal world,
there is an ideal functionality Ff that on inputs A and B simply computes f(A,B)
and sends the output to Alice and Bob. In the real world, we can think of the Alice
and Bob executing a protocol πf that computes f(A,B). Roughly speaking, we say
that πf securely realizes the functionality Ff if there exists an efficient simulator S
playing the role of the corrupted party in the ideal world can produce an output that
is computationally indistinguishable from the view of the corrupted party in the real
world.

2.2 Tools

HASHING. In our scheme and in previous schemes, hashing is a central tool in storing
the records. For our purposes, the hash functions used for hashing will be viewed as
either a random function or a keyed pseudorandom function family Fk. Recall the stan-
dard hashing with buckets data structure: there is a table of m buckets, each of size b,
and a hash function h : V → {1 . . .m}. A record (v, x) is stored in bucket h(v).

CUCKOO HASHING. A variant of standard hashing known as Cuckoo Hashing was
introduced by Pagh and Rodler [35]. In this variant, the hash table does not have buckets,
but now two hash functions h1, h2 are used. Each record (v, x) can only reside in one
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of two locations h1(v) or h2(v), and it is always inserted into h1(v). If there was a
previous record stored in that location, the previous record is kicked out and sent to
its other location, possibly resulting in a chain of kicks. If the chain grows too long or
there is a cycle, new hash functions are chosen, and it was shown that this results in an
amortizedO(1) insertion time. A version of cuckoo hashing with a stash was introduced
by Kirsch et al. [23] where it was shown that the probability of having to reset drops
exponentially in the size of the stash.
OBLIVIOUS SORTING. A key ingredient in most previous schemes is the notion of
oblivious sorting. This is a sorting algorithm such that the sequence of comparisons
it makes is independent of the data. For example, the schemes of Batcher [3] and Aj-
tai et al. [2] are based on sorting networks, and recently a randomized shell sort was
introduced by Goodrich [15].

2.3 Comparison to Prior Work

We briefly overview the relevant key techniques used in previous schemes:

Table 1. Comparison of oblivious RAM schemes

Scheme Comp. Overhead Client Storage Server # of Servers Dist. Prob.3

Storage

[14]ORAMGO1 O(
√
n log n) O(1) O(n+

√
n) 1 negl

[14]ORAMGO2 O(log4 n) O(1) O(n log n) 1 negl
[14]ORAMGO3 O(log3 n) O(1) O(n log n) 1 negl
[40]ORAMWS O(log2 n) O(

√
n) O(n log n) 1 negl

[41]ORAMWSC O(log n log log n) O(
√
n) O(n) 1 poly

[36]ORAMPR O(log2 n) O(1) O(n) 1 poly
[16]ORAMGM1 O(log2 n) O(1) O(n) 1 negl
[16]ORAMGM2 O(log n) O(nν) O(n) 1 negl
[18]ORAMGMOT O(log n) O(nν) O(n) 1 negl
[17]ORAMGMOT2 O(log n) O(nτ ) O(n) 1 negl
[38]ORAMSCSL O(log3 n) O(1) O(n log n) 1 negl
[39]ORAMSSS O(log n) cn, c << 1 4n+ o(n) 1 negl
[26]ORAMKLO O(log2 n/ log log n) O(1) O(n) 1 negl

Our Scheme O(log n) O(1) O(n) 2 negl

SQUARE ROOT SOLUTION. In the work of Goldreich [11] and subsequently Goldreich-
Ostrovsky [14], a “square root” solution (which we label ORAMGO1) was introduced
for oblivious RAM. This solution was not hierarchical in nature, and instead had a
permutation of the entire memory stored in a single array along with a cache of size√
n which was scanned in its entirety during every query. After every

√
n queries, the

entire array was obliviously sorted and a new permutation was chosen. This results in
an amortized communication overhead of O(

√
n logn) per access.

3 Due to flaws in the way hash functions are used, the security of these schemes could be only
polynomially secure. For further discussion on the security analysis of these schemes, see
[16, 26, 19].
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HIERARCHICAL SOLUTION. In the work of Ostrovsky [32] and subsequently [14], a
hierarchical solution was given for oblivious RAM. In this solution, the server holds a
hierarchy of bucketed hash tables, growing geometrically in size. New records would
be inserted at the smallest level, and as the levels fill up, they would be reshuffled down
and re-hashed by using oblivious sorting. A query for v would scan bucket hi(v) in the
hash table on level i. By using the oblivious sorting of Batcher [3], the scheme achieves
an O(log4 n) amortized query overhead (ORAMGO2), and with AKS [2], an O(log3 n)
query overhead is achieved (ORAMGO3).

BUCKET SORTING. In the work of Williams-Sion [40], the client was given O(
√
n)

working memory instead of O(1). By doing so, it was possible to achieve a more ef-
ficient oblivious sorting algorithm by sorting the data locally in chunks of size

√
n

and then sending it back to the server. This resulted in a solution (ORAMWS) with
O(log2 n) query overhead. This idea of using the client to sort was continued in the
work of Williams et al. [41] in which a Bloom filter [5] was introduced to check
whether or not an element was stored in a level before querying upon it. This solu-
tion (ORAMWSC ) was suggested to have O(log n log logn) overhead, but the a more
careful analysis of [36] shows that this depends on the number of hash functions used
in the Bloom filter.

CUCKOO HASHING. Pinkas and Reinman [36] suggested a solution in which cuckoo
hashing is used instead of standard bucketed hashing. The oblivious sorting algorithm
used the more practical one of [15]. This resulted in a scheme (ORAMPR) that only
used constant client memory, O(n) server storage, and only O(log2 n) query overhead
where the constant was empirically shown to be as small as 150. The work of Goodrich
and Mitzenmacher [16] also made use of cuckoo hashing, although the stashed variant
of cuckoo hashing was used for their scheme (ORAMGM1), which resulted in sim-
ilar parameters. They also suggested a solution where the client has O(nν) memory
(ORAMGM2) , in which case they are able to achieve O(log n) query overhead. A
stateless version of this scheme is featured in [18] with similar asymptotic behavior.
The best known overhead for schemes with constant client memory come from the
work of Kushilevitz, Lu, and Ostrovsky [26] (full version appears on ePrint [25]), where
they introduce a new balancing technique for their scheme (ORAMKLO) to achieve an
overhead of O(log2 n/ log logn).

WORST-CASE. Recent schemes considered also the worst-case overhead per client
query. The first paper to address works-case overhead was [33] which showed a
poly-log worst case overhead. Works such as Goodrich et. al [17] (which we label
ORAMGMOT2), Shi et. al [38] (ORAMSCSL), Kushilevitz et. al [26], and Stefanov-
Shi-Song [39]
(ORAMSSS) also featured schemes that provide worst-case guarantees. All these
schemes additionally either bypass or amortize oblivious sorting, albeit in independent
and different manners than our new construction in this paper.

3 Our Scheme

3.1 Overview

Our new scheme uses the hierarchical format of Ostrovsky [32]. The general principle
behind protocols using this technique can be stated as: the data is encrypted (under
semantically secure encryption) and stored in hierarchical levels that reshuffle and move
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into larger levels as they fill up. To keep track of the movement, for each level we
logically divide different time periods into epochs, based on how many queries the
client has already performed. All parties involved are aware of a counter t that indicates
the number of queries performed by the client.

In hierarchical schemes, the reshuffling process is the main bottleneck in efficiency,
specifically the need to perform “oblivious sorting” several times. We identify the pur-
poses that oblivious sorting serves during reshuffling and describe methods on how to
replace oblivious sorting in our two-server model.

The first purpose of oblivious sorting is to separate real items from “dummy” items.
Dummy items are records stored in the levels to help the client hide the fact that it may
have already found what it was looking for prior to reaching that level. For example,
if the client was searching for virtual memory location v, and it was found on level 3,
the client still needs to “go through the motions” and search on the remaining levels to
hide the fact that v had already been found. On all subsequent levels in this example,
the client would search for “dummy” ◦ t instead of v.

The second purpose of oblivious sorting is to identify old records being merged with
new records. New records are always inserted at the topmost level, and as the levels
are reshuffled down, there is the possibility that an old record will run into a new one
on some lower level. Because they both have the same virtual memory location v, a
collision will occur. To resolve this, when records are being reshuffled, an oblivious
sort is performed to place old records next to new ones so that the old records can be
effectively erased (re-encrypted as a dummy record).

Finally, oblivious sorting is used to apply a pseudorandom permutation to the records
as they are being reshuffled. A permutation is necessary to prevent the server from being
able to track entries as they get reshuffled into lower levels.

The key ingredient to our new techniques is the idea of “tagging” the records and
letting the two servers do most of the work for the client. A typical record looks like
(v, x) where v is the index of the record (virtual memory location), and x is the data
stored at that index. In most previous schemes, a hash function was applied to v to
determine where the record would be stored in the data structure. Because the client
cannot reveal v to the servers, and yet we wish for the servers to do most of the work,
the client needs to apply tags to the records. Later, when the client needs to retrieve
index location v, the client first computes the tag and then looks up the tag instead of v
in the data structure located on the servers.

Note that this tagging must be performed carefully. We want the client to use only
O(1) working memory, so it cannot simply keep a list of all the tags it has generated
in the past. Instead, the tags must be deterministic so that the client is able to re-create
the tag at a future point in time when needed. However, if the tags depend only on
v, a server can immediately identify when two encrypted records have the same index
location v.

To resolve the apparent tension between these two requirements, we use a pseudo-
random function (PRF) applied to v, the level it is stored on, as well as the period of
time which it is stored at that level, known as the epoch. We describe this in greater
detail in our construction. In the expanded version [27] we first present a warm-up con-
struction to demonstrate the utility of tagging and using two servers. For a sequence
of client queries of length n, this insecure strawman construction will have the servers
storing O(n) data, the client having O(1) working memory, and the amortized overhead
of queries being O(log n).
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3.2 Full Construction

A recent result [26] points out that hash overflows leads to an adversary distinguishing
different access patterns. Plain cuckoo hashing and the variant of cuckoo hashing with
a constant stash [16] yield a polynomial chance of this event occurring. The work of
Goodrich-Mitzenmacher [16] shows that cuckoo hashing with logarithmic size stash
yields a superpolynomially small chance (in n) of overflow, under the assumption that
the size of the table is Ω(log7 n). Thus, as a starting point, we use the level layout
of [16], where smaller levels are standard hash tables with buckets and larger levels
are cuckoo hash tables with a stash of size O(log n). Furthermore, we use the idea of
“caching the stash” that was previously used in [26] that can be viewed as an alterna-
tive to a “shared stash” [18]. We emphasize that this is where the similarities end with
existing schemes and that significant modifications must be diligently balanced to yield
a scheme with our desired parameters. Before we begin describing our full construc-
tion, we take a quick glance at the balancing dynamics involved in choosing the right
parameters for our scheme. Our goal is to achieve O(log n) amortized overhead per
query, while maintaining that the hash tables do not overflow with all but negligible
probability.

Recall that the hybrid construction in [16] uses standard hashing with buckets for
lower levels, up until the point where a level contains log7 n elements, where it switches
to cuckoo hashing with a stash of size logn. For the probability of overflow to be
negligible for standard hashing, the buckets must be of size logn. To perform a read
query, a bucket is scanned at each of the smaller levels, and the entire stash is scanned
along with 2 elements of the cuckoo hash table at the larger levels. This operation
already incurs a total of O(log n log logn) reads for the small levels and O(log2 n) for
the larger levels. We now summarize the series of modifications that need to be made
to the structure of the scheme:

Reduce Bucket Size. The standard hash tables will now use buckets of size
3 logn/ log logn. This causes the total amount of reads for the small levels to drop
down to O(log n). This produces a negative side effect: a bucket will now overflow
with 1

n2 probability.
Standard Hash with Stash. We introduce a stash of size logn to the standard hash

tables to hold the overflows from the now reduced bucket sizes. We prove in ex-
panded version [27] that the probability of overflowing the stash is negligible. This
produces a negative side effect: each stash must be read at the smaller levels, bring-
ing us back to O(log n log logn) reads for the smaller levels.

Cache the Stash.[18, 16, 26] For both the smaller levels and larger levels, the stash of
size logn will not be stored at that level, but the entire stash is instead re-inserted
into the hierarchy. In fact, by choosing the top level to be of size O(log n), we
can fit the entire stash into the top level. We show how this step is done during
a reshuffle. Now, because there is no longer a stash at any level, the total amount
read from all the levels combined will be O(log n). This will cause the levels to be
reshuffled more often, but we show that it is at most by a constant factor.

We now give the full details of our scheme.
Let c = 2 logn, where c is taken to be the size of the top level (i = 1). We split

the top level in half so that each server holds half of the top level, and for subsequent
levels, server Si mod 2 holds level i. Let 
cuckoo be the level such that c · 2�cuckoo−1 is
Ω(log7 n), e.g. 7 log logn. For levels i = 2, . . . , 
cuckoo − 1, level i will be a standard
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hash table consisting of c · 2i−1 buckets, each of size 3 logn/ log logn, along with a
“mental”4 stash of size logn. For levels i = 
cuckoo, . . . , N , level i will be a cuckoo
hash table that can hold up to c · 2i−1 elements, which is of size c · 2i, along with a
“mental” stash of size logn.

The client keeps a local counter t of how many queries have been performed so far,
as well as a counter s to indicate how many dummy stash elements were created. We
describe how a query is performed in Figure 1. To reshuffle levels 1 . . . i into level i+1,
suppose Sb holds level i+1 and let Sa = S1−b be the other server. The steps in Figure 2
are performed.

1. The client allocates temporary storage m, large enough to hold a single record,
initialized to a dummy value “dummy”.

2. Read each entry of the entire top level from both servers one at a time. If v is found as
some entry (v, x) then store x in m.

3. For small levels i = 2 . . . �cuckoo − 1, perform the following with the server holding
level i:
(a) If v has not already been found, compute the tag for v at this level as

z = Fs(i, ei, v). Else, set z = Fs(i, ei, “dummy” ◦ t).
(b) Fetch into local memory the bucket corresponding to h(z) one element at a time,

i.e. fetch (vj , xj) for j = 1, . . . , 3 log n/ log log n from bucket h(z) one element
at a time.

(c) If v is found in some record (vi, xi), then replace vi with “dummy” ◦ t and store
xi in m.

(d) Re-encrypt the fetched records and store them back to their original locations,
releasing them from local client memory.

4. For large levels i = �cuckoo . . . N , perform the following with the server holding level
i:
(a) If v has not already been found, compute the tag for v at this level as

z = Fs(i, ei, v). Else, set z = Fs(i, ei, “dummy” ◦ t).
(b) Fetch into local memory the records (v0, x0) and (v1, x1) from locations h0(z)

and h1(z).
(c) If v is found at one of these locations, i.e. v = vb for some b = 0, 1, then replace

vb with “dummy” ◦ t and store xb in m.
(d) Re-encrypt the fetched records and store them back to their original locations,

releasing them from local client memory.
5. In the case of a write query, here we overwrite m = y.
6. Read each entry of the entire top level one at a time, and re-encrypt each record with the

following exception: If the record is of the form (v, x), then overwrite it with (v,m)
before re-encrypting it.

7. If (v, x) was not overwritten at the top level, write (v,m) in the first available empty
spot (even if m is “dummy”), otherwise write a dummy value
(“dummy” ◦ t, “dummy”).

8. The client increments the local query counter t. If t is a multiple of c/2, then a reshuffle
step is performed as described below.

Fig. 1. Main Construction: Query

4 There will be no physical stash at this level, but during reshuffles a temporary stash is created
for the purpose of hashing which will subsequently be re-inserted back to the top level.
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1. Sa allocates a temporary array and inserts every (encrypted) record it holds between
levels 1 and i. Sa applies a random permutation to this temporary array and sends its
contents one by one to the client.

2. The client re-encrypts each record and sends it to Sb. In this step, both empty and
dummy records are treated as real records.

3. Sb allocates a temporary array and inserts every record it holds between levels 1 and i as
well as the records it received from the client in the previous step. Sb applies a random
permutation to this temporary array and sends its contents one by one to the client.

4. The client re-encrypts each record and sends it to Sa, announcing that it is empty if the
record is empty, and tagging remaining records (v, x) with the output of the PRF
Fs(i+ 1, ei+1, v), where ei+1 is the new epoch of level i+ 1. Note that v may be a
virtual memory address, a dummy value, or a stash dummy value. In this step, dummy
records are treated as real records and we are only concerned with eliminating empty
records.

5. Sa now holds c · 2i−1 tagged records. It allocates a temporary hash table (standard or
cuckoo, depending on the level), with a stash of size log n and it uses the hash functions
corresponding to level i+ 1 and epoch ei+1 to hash these records into this temporary
table. If the insertion fails, new hash functions are selected (we will show this happens
with negligible probability). Sa then informs the client the number of elements inside
the stash, σ, then sends both the temporary table and the stash one record at a time to
the client.

6. As the client receives records from Sa one at a time, it re-encrypts each record and
sends them to Sb without modifying the contents except:
(a) The first σ empty records in the table the client receives from Sa are encrypted as

(“stashdummy” ◦ s, “empty”), incrementing s each time. Note that a table is
always more than half empty, and therefore we can always find σ empty slots.

(b) Subsequent empty records from the table are encrypted as (“empty”, “empty”).
(c) Every empty record in the stash is re-encrypted as

(“stashdummy” ◦ s, “empty”), incrementing s each time.
7. Sb stores the table records in level i+ 1 in the order in which they were received, and

stores the stash records at the top level.

Fig. 2. Main Construction: Reshuffle

3.3 Analysis of Main Construction

Theorem 1. For a sequence of n queries, the main construction uses O(n) memory for
each server, O(1) working memory for the client, and O(log n) amortized overhead for
queries.

Proof. Computing the sizes of the levels, level 1 is of size c = 2 logn, split between
the servers, levels i = 2, . . . , 
cuckoo − 1 are of size c · 2i−1 · 3 logn/ log logn each,
giving a total of O(log9 n) size, since 
cuckoo = 7 log logn. Levels i = 
cuckoo, . . . , N
are of size c ·2i each, where c ·2N = n, hence there is a total of O(n) size. Note that the
additional elements added in by the stash dummy elements can be counted as follows:
every c/2 steps, we insert another logn stash dummy records into the hierarchy. There-
fore, after n steps, at most 2n logn/c = n stash dummy records have been inserted,
and we can simply accommodate this by adding one extra level at the bottom.

Clearly, the client uses constant working memory as it only transmits records one at
a time.

When the client performs the read operation, it reads 2 logn records from the top
level, 3 logn/ log logn elements from each level i = 2, . . . , 
cuckoo−1, and 2 elements
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from each level i = 
cuckoo, . . . , N . Since 
cuckoo = 7 log logn and N = log n −
log logn− 1, this gives a total of roughly 25 logn elements read.

Because we re-insert the stash (which is half the size of the top level), we need to
reshuffle twice as often. Note that each reshuffle only moves an element in the level at
most 3 times. We sketch the analysis of the amortized overhead:

– For levels 2, . . . , 
cuckoo−1, each level contains c ·2i−13 logn/ log logn elements
and needs to be reshuffled every c ·2i−1/2 steps. This incurs an amortized overhead
of:

3

7 log logn−1∑
i=2

c · 2i−13 logn/ log logn
c · 2i−2 = O(log n)

with a constant of roughly 125.
– For levels 
cuckoo, . . . , N , each level contains c·2i elements and needs to be reshuf-

fled every c · 2i−1/2 steps. This incurs an amortized overhead of:

3

logn−log log n−1∑
i=7 log logn

c · 2i
c · 2i−2 = O(log n)

with a constant of roughly 10.

Before we prove the security of our construction, we state a few important lemmas.

Lemma 1. At all times during the execution of the scheme, any record of the form (v, ∗)
will appear at most once in the hierarchy unless v = “empty”.

Proof. An index v must be either a virtual memory location, a dummy element, a stash
dummy element, or empty. Virtual memory locations are only introduced into the hier-
archy either from a read query that found v at a lower level and moved it to the top, or
from a write query that did not find v in the hierarchy. A dummy element “dummy′′ ◦ t
can only be introduced during query t, and it can be introduced at most once. Similarly,
stash dummy elements can only be introduced once as s is incremented after every such
entry.

Lemma 2. The same v will not be queried upon twice between reshuffles at any level.

Proof. Once v is queried upon at a level, i, either it is a “dummy” ◦ t value (in which
case it will trivially never be queried again, as t is incremented at the next query), or
it is some virtual memory location. In the latter case, v will be written to the top level
after the query, and subsequent queries to v will find v before it reaches level i, and the
only way v can reach a deeper level is if i is reshuffled.

Lemma 3. Every level except the top will always be empty or half-full (a half-full stan-
dard hash contains a number of records equal to half the number of buckets) and this
state depends only on t.

Proof. The proof is straightforward and we refer the reader to the full version [27].

Lemma 4. Any time a level i is reshuffled, its stash is included in the shuffle.

Proof. We observe that the only way a level is shuffled is if all previous levels are
shuffled as well and become empty. Because the stash of level i was stored in the hier-
archy above level i, no elements of the stash will fall below level i unless caused by a
reshuffle, in which case it will be shuffled with level i.



392 S. Lu and R. Ostrovsky

Theorem 2. Under the assumption that one-way functions exists, the main construction
is a secure two-server oblivious RAM.

Proof. One-way functions allow private-key encryption and authentication. We use
method of [31] to prevent tampering and thus must only show how to protect the access
pattern.

We show how to simulate the view of a server’s access pattern during the execution
of the protocol upon any sequence of queries q1, . . . , qn knowing only the length n.
We begin by first making the observation that every record is encrypted and will be
re-encrypted whenever it is accessed. By the semantic security of the encryption, we
can assume that all these data contents are computationally indistinguishable from the
encryption of any other contents. We also replace both the hash functions (which are
modeled as PRFs) and the tagging PRF by random functions.

We first consider the view of each server during a reshuffle. If the server is playing the
role of Sa, after its initial message out, it sees a random sequence of encrypted records
(real or dummy) with tags, and announced empty records. By Lemma 1, all the hidden
records will contain elements with unique v’s, and hence their tags will also be unique
with overwhelming probability. The tags came from a random function that had not
been previously used, and so the tags that the server sees are independent from its view.
Furthermore, because of Lemmas 3 and 4, the number of empty records revealed will
be deterministic and will not reveal any additional information. Thus, we can simulate
this view by calculating the number of pre-determined items of each type, and use
encryptions of 0 for all of them and tagging the appropriate records with completely
random tags.

If the server is playing the role of Sb during a reshuffle, it will receive a sequence
of encrypted records which reveals no information. Next, after it shuffles these records
and sends them out, it receives back another sequence of encrypted records which also
reveals no information. This view can be trivially simulated.

Finally, we argue that the sequence of reads can also be simulated. By the above
arguments, we see that what each server holds at level i is nearly independent of its view,
except for the fact that the tags of the records stored at that level are consistent with the
hash function used at that level. By Lemma 2, between two reshuffles, the sequence of
queries made to level i will all be distinct, but they may arbitrarily intersect the elements
contained in level i. However, because only a negligible fraction of hash functions do
not agree with the records in level i (i.e. would cause an overflow), the distribution of the
outputs of the hash function applied to any sequence of distinct queries is statistically
close to uniform5. Thus, we can simulate the probes to level i between reshuffles by a
random sequence of probes.

4 Application to Secure Two-Party RAM Computation

In this section, we describe how our multi-party Oblivious RAM simulation can be
applied to the setting of secure two-party computation on RAM programs. The idea of
using Oblivious RAM for the purpose of secure computation has been suggested in the
literature [33, 29, 10, 19] and we outline the high-level idea of its use.

Consider the setting of two (semi-honest) parties, Alice and Bob, who wish to se-
curely compute some function f (computed as some RAM program Π that runs in time

5 Note that this does not hold true for plain cuckoo hashing, where there is a noticeable
difference between a uniform hash function and one that makes a consistent cuckoo hash table.
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T = T (n) and uses S = S(n) space) on their inputs A and B. Observe that in an Obliv-
ious RAM, the view of the server can be simulated, so the idea is to let Alice or Bob
play the role of the server (or in the case of our construction, two servers). However, in
the case of Oblivious RAM, the privacy of the data is not protected from the client, so
in order to securely run Π , we need to somehow simulate the client as well. In order
to do so, we let the state of the client be shared between Alice and Bob so that neither
party learns what is going on until the end of the computation when their outputs are re-
vealed. In order to compute on this shared state, each fixed instruction of Π is encoded
as a circuit. We emphasize that rather than unrolling the entire program into a circuit,
which may be quite inefficient, we are only representing each atomic instruction as a
circuit.

Because the joint state secure computation occurs at each step in the program, we
want to minimize the amount of computation and communication overhead incurred by
this step. In particular, in order for Alice and Bob to jointly compute Π and simulate the
state of the client efficiently, the client state should be as small as possible. This means
that even if an ORAM solutions is efficient in terms of computation or communication
overhead, we cannot use it if the footprint of the client is too large. In particular, works
that require the memory of the client to be O(

√
n) (e.g. [40, 41]) or O(nν) (e.g. [16, 18])

will incur too much overhead per step of the program. The currently most efficient
(single-server) ORAM protocol that is suitable for this purpose comes from the work
of [26].

We point out that when modeling the client, we can either treat it as operating on bits
or on “words”. By this we mean the client may need, for example, pointers of O(log S)
bits so that it can index into memory. The notion of a client having constant memory
can implicitly mean that we are operating on words and these can each hold sufficiently
many bits to perform the necessary instructions. However, when simulating the client
steps using a circuit, we need to operate on bits rather than words.

Because of this, the client state may in fact be larger than a constant number of bits
despite having only a constant number of words. In order not to gain any additional
overhead when performing the simulation of the client state, we need to use an efficient
MPC that has only constant overhead. For example, the protocols of IKOS [21] or
IPS [22] suit this situation.

By using our two-server ORAM solution in the Ostrovsky-Shoup compiler, we are
able to achieve lower overhead for secure RAM computation than any known single-
server ORAM solution. We have:

Theorem 3. Suppose there exists a symmetric-key encryption scheme and a hash func-
tion modeled as a random function or an efficient PRF (e.g. [21, 19]). Suppose there
exists a two-party secure circuit computation protocol with constant overhead ( e.g. [21,
22]). Then to securely compute a RAM program that runs in T (n) time with access to
S(n) space with the size of the program (including inputs) bounded by Λ(n), there
exists a two-party secure RAM computation protocol in the semi-honest model with
O(log (T + Λ)) multiplicative overhead in communication and computational com-
plexity, and an additive one-time cost of O(Λ log(Λ)) for setup (that can be amortized
over multiple secure evaluations on small online inputs). If the client computes on bits
instead of words, there is an additional implicit O(log S) multiplicative overhead.

Proof Sketch. We give a construction of such a scheme and argue that it is secure.
We follow the construction of the Ostrovsky-Shoup [33] compiler and let Alice

and Bob hold inputs A and B respectively, and let Π be the program they wish to
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securely compute. Initialize the two-server ORAM as follows: let Alice play the role of
one server and let Bob play the role of the other server. They jointly simulate the state of
the client in our two-server ORAM protocol initialized to the secret sharing of the ini-
tial state. The parties then proceed by secret sharing A and B with each other. The two
parties run the MPC protocol on the instructions that tells the client to obliviously insert
(via ORAM) A and B into the locations inside the RAM where the program Π expects
to read them as input. At the end of this process, Alice and Bob hold their respective
encrypted server data as well as the shared state of the client.

Then, Alice and Bob begin to jointly execute the instructions of Π . Namely, they
start with a shared state Σ and a shared value x and they perform the secure two-
party computation on the circuit representing the step Π(Σ, x) to receive a new shared
state Σ′ and a read or write operation op. The operation is converted into a sequence
of oblivious instructions op′1, . . . , op

′
� by running the MPC on the two-server ORAM

protocol steps. When the operation involves reading or writing from the server Alice
is holding, Bob sends Alice his share of that instruction and Alice reconstructs the
instruction and executes it on her server before re-sharing the result. Similarly, Alice
reveals her share to Bob when the operation involves reading or writing from his server.
At the end of execution of Π , Alice and Bob recombine shares to retrieve the output.

We follow the (standard) proof technique of composition of simulation of CPU and
simulation of Oblivious RAM in which we invoke the simulatability of both the under-
lying MPC and ORAM (see also [19]). To simulate the view of one party, say Alice, we
begin by generating a uniformly random share of the initial state for her view. As her
input and Bob’s input are being stored on the servers obliviously, we simulate the inter-
mediate state shares Σ as random shares as well. To simulate the instruction execution
via (Σ′, op) ← Π(Σ, x), again we generate uniform random shares for the interme-
diate state as well as the values retrieved. In a real execution, the resulting operation
op is then converted into a sequence of oblivious instructions op′1, . . . , op

′
�, and by the

simulatability of the underlying oblivious RAM, we can in fact simulate the sequence
by replacing op with a dummy operation. The simulator runs the sequence of oblivi-
ous instructions induced by this dummy operation and writes the sequences of Alice’s
memory probes to the simulated view.

Finally, when the output is about to be reconstructed, the simulator (which knows
the result via interaction with the ideal functionality) sets the revealed share to be r ⊕
f(A,B) where r is the random share of the data for Alice during this final step.

5 Conclusion and Open Problems

In this paper, we introduced a new multi-server model for oblivious RAM and con-
structed a two-server scheme in this model. The scheme is secure against honest-but-
curious servers assuming one-way functions exist. The parameters of the scheme – O(1)
client memory, O(n) server memory, and O(log n) overhead – match the lower bound
of single-server oblivious RAM. The natural open problem to ask is whether or not the
same lower bound holds, or if a better scheme can be constructed in this new model.

Our scheme was constructed under the assumption of the existence of one-way func-
tions. We ask the open question of whether or not information-theoretic multi-server
oblivious RAM can be constructed with similar parameters. One naive way of doing so
would be to duplicate each server and use information-theoretic secret sharing between
each server and its duplicate in order to replace encryption. The interesting question is
to ask whether one can do so with fewer servers or perhaps better performance.
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In the follow-up paper we have shown how to make garble RAM programs non-
interactive with poly-logarithmic communication overhead [28]. In this paper, we
showed how to make the overhead logarithmic. This improves existing constructions [33,
29, 19, 28]. Notice, however, that unlike the non-interactive solution of [28], the solu-
tion presented in this paper is highly interactive. The task of achieving logarithmic
overhead for non-interactive secure execution of RAM programs remains an interesting
open question.
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Abstract. We present a 2-round protocol to prove knowledge of a plain-
text corresponding to a given ciphertext. Our protocol is black-box in
the underlying cryptographic primitives and it can be instantiated with
almost any fully homomorphic encryption scheme.

Since our protocol is only 2 rounds it cannot be zero-knowledge [GO94];
instead, we prove that our protocol ensures the semantic security of the
underlying ciphertext.

To illustrate the merit of this relaxed proof of knowledge property, we
use our result to construct a secure multi-party computation protocol for
evaluating a function f in the standard model using only black-box access
to a threshold fully homomorphic encryption scheme. This protocol re-
quires communication that is independent of |f |; while Gentry [Gen09a]
has previously shown how to construct secure multi-party protocols with
similar communication rates, the use of our novel primitive (along with
other new techniques) avoids the use of complicated generic white-box
techniques (cf. PCP encodings [Gen09a] and generic zero-knowledge
proofs [AJLA+12, LATV11].)

In this sense, our work demonstrates in principle that practical TFHE
can lead to reasonably practical secure computation.

Keywords: Fully Homomorphic Encryption, Threshold Encryption, Se-
cure Multi-Party Computation, Communication and Round Complexity,
Proof Of Knowledge.

1 Introduction

The main technical contribution of this paper is a novel proof of knowledge of a
plaintext protocol and its demonstrated use in the construction of a fully black-
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briefly describe the motivation behind our work.
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Communication. Secure computation with an honest majority can be accom-
plished without any cryptographic assumptions, but the best such protocol re-
quires the parties to communicate |f | log |f |+d2 ·poly(n, log |f |) bits [DIK10] and
at least d rounds. Here |f | is the size of the function being computed and d is the
circuit depth of f , and thus the communication of the protocol is super-linearly
related to the number of gates in f . Until recently, even the use of cryptographic
assumptions for secure computation required polylog(λ) communication over-
head per gate [DIK10] where λ is a security parameter.

Gentry [Gen09a] circumvents per-gate overhead as follows: the honest-but-
curious parities use secure multi-party computation to generate an FHE key, each
party encrypts its input, and sends the resulting ciphertext and proof to other
parties. Once all parties have encryptions of everyone’s inputs, they compute the
function of interest locally using the evaluation procedure of the FHE. Finally, to
use the resulting ciphertexts as inputs to a secure multi-party computation which
computes the decryption of the majority input. In order to be secure against
malicious adversaries, the Naor and Nissim compiler [NN01], which makes use
of the PCP theorem, can be applied. The use of the PCP theorem in the SMC
steps makes the approach impractical, even when presented with a practical FHE
scheme.

The motivation behind our work is to remove any use white-box techniques,
such as the PCP theorem or generic ZK or NIZK, from the above framework
for constructing communication-efficient secure protocols. These techniques have
historically been inefficient. In other words, we seek a black-box transformation
from TFHE to secure computation.

First Contribution. The main technical hurdle in devising a black-box trans-
formation from TFHE to secure computation is to implement the requirement
for each player to prove that they “know the plaintext” corresponding to the
encrypted input that they have broadcast. This step is essential because it pre-
vents one player from copying (or mauling via the homomorphism) the input of
a player who has acted earlier. To handle this step, we show how to construct a
two-round black-box proof of knowledge of an encrypted bit for any circuit pri-
vate FHE scheme using only the encryption scheme. Since our protocol is only
two rounds, it is not zero-knowledge (cf. [GO94]), but can provably keep the
encrypted bit hidden. Our POK requires that the public-key contain a labeled
encryption of 0 and 1, which given all known FHE schemes seems to be a natural
modification. 1 For traditional FHE schemes, the POK can be used completely
black-box, without even the need for the modification.

The basic idea of our proof of knowledge protocol is to first modify the en-
cryption scheme so that the message is encoded using an error-correcting code
(ECC) based verifiable secret sharing (VSS) scheme. To encrypt a message we

1 Since all current schemes contain bit-wise encryptions of their own secret-keys which
are random bit strings, and a natural extension of any protocol that provides en-
cryptions of one’s own secret-key can be used to derive a labeled encryption of 0 and
1 which we describe.
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first generate its secret shares, and encrypt them independently using fresh ran-
domness. A verifier now requests the Prover to reveal the randomness used to
encrypt a sub-threshold number of the shares. The verifier then does a consis-
tency check, based on the ECC underlying the scheme, to ensure that the shares
were encoded properly. In particular, the error-correcting code we choose offers a
property that allows one to check whether local parts of the codeword are error-
free. The verifier accepts if everything appears to be properly coded. Since the
number of shares revealed is less than the threshold, it does not leak any infor-
mation about the original message. To show a proof of knowledge property, we
argue that an extractor can rewind the Prover and ask for another set of shares
to be opened. With high probability, this second transcript provides enough new
shares to run the VSS recover algorithm, and recover the original message. The
one issue with this approach is that the Prover must reveal the randomness used
to encrypt some of the shares. The semantic security of an encryption scheme
does not guarantee any security when these random bits are revealed—in par-
ticular, the security of the rest of the unopened encryptions are not guaranteed.
Instead, we require the encryption scheme to be secure against a selective open-
ing attack (SOA). Fortunately, a result of Hemenway et al. [HLOV11] can be
generalized to show that any circuit private homomorphic encryption scheme
can be made into an SOA-secure one.

We point out that our proof of knowledge requires the encryption scheme to
be homomorphic and circuit-private. Recently, Damg̊ard et al. [DPSZ12] demon-
strates a three-round Σ-protocol for knowledge of plaintext, but their protocol
requires the underlying encryption scheme to also be homomorphic on the ran-
dom coins used to encrypt. Although many FHE schemes support this property
on their random coins, it is certainly not specified in the definition of FHE.
In contrast, circuit privacy has been independently defined and seems to be a
naturally weaker property.2 Moreover, their scheme requires the message space
for the FHE to be over ZN for N related to the security parameter. While in
general, single-bit FHE implies many-bit FHE, we are not aware of any such
transformation that also preserves the homomorphism over the random coins
as required by their protocol. Thus, the requirement for large message space
and homomorphism over the random coins seem to be extra assumption which
our work can avoid (our protocol also works on single-bit FHE). Finally, the
Σ-protocol from [DPSZ12] must be compiled into a full zero-knowledge protocol
using standard techniques which add round complexity and/or setup assump-
tions; we show that our two-round protocol with its hidden-bit property suffices
for our secure computation protocol.

Second Contribution. By combining our result with almost any TFHE scheme,
we construct a secure multi-party protocol that avoids both per-gate communi-

2 Even though current schemes achieve circuit privacy via randomness homomor-
phisms, it is certainly plausible for future constructions to achieve circuit privacy
in other ways. Moreover, there do not seem to be any natural ways to transform a
circuit private scheme to one with a randomness homomorphism, and thus we feel
it is a weaker notion.
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cation complexity and white-box techniques such as the PCP theorem or Zero-
Knowledge. The communication complexity of our protocol is O(λc · n2) where
λ is a security parameter and c is a small constant for the TFHE scheme and is
thus independent of |f |. Our black-box transformation is particularly important
because if practical FHE (and TFHE) can be constructed, our transformations
will result in practical SFE. Our work is in the standard model and does not
require trust assumptions such as the common reference string, a random oracle
or public-key setup.

Final Contribution. For completeness, we also construct a threshold fully ho-
momorphic public-key encryption scheme (TFHE) based on the Approximate
GCD problem and the fully homomorphic encryption scheme presented by van
Dijk et al. [vDGHV10], and our result was the first to demonstrate the feasi-
bility of directly achieving this threshold primitive for FHE. Since our original
eprint submission, [AJLA+12] and [LATV11] present more efficient TFHE con-
structions based on LWE-style assumptions. The point of this construction is to
demonstrate feasibility of TFHE under different complexity assumptions.3

We present our protocols in the information-theoretic model over secure point-
to-point channels, and thus our protocols are secure in the presence of an honest
majority. Thus, when used with our transformation, the resulting protocol is also
only secure with an honest majority. By using another TFHE that tolerates a
dishonest majority, our transformation results in an secure computation protocol
that also tolerates the same.

The TFHE scheme provides a constant-round protocol for n players to gen-
erate a public-key and distribute private shares of the corresponding secret-key
of a fully homomorphic encryption scheme. This step itself is non-trivial since
the generation of the public-key for an FHE scheme (that is based on boot-
strapping) requires encryption of the secret-key. Later, a majority of players can
cooperatively decrypt a ciphertext by running a constant-round protocol on their
private shares and a public ciphertext. We also provide methods for distributed
encryption and for proving knowledge of an encrypted value.

We note that both our TFHE key generation and decryption protocols are
more efficient than generically applying secure function evaluation techniques
to the key generation or decryption algorithms of an FHE scheme. For exam-
ple, with the right set of the parameters, our decryption protocol requires only
a constant number of share multiplications, whereas generic techniques would
require O(poly(λ)) such multiplications. We heavily exploit the linear nature
of the operations involved in key generation, encryption and decryption for the
particular FHE scheme of van Dijk et al. For key generation and decryption, we
develop specific multiparty computation protocols that evaluates an arithmetic
circuit using verifiable secret sharing techniques, that is more efficient than the
application of generic techniques.

3 We note that historically, threshold encryption has been presented where the key-
generation algorithm and decryption algorithms are single algorithms, or they are
multi-party protocols. We present multi-party protocols.
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Comparison with Other FHE-Based Secure Computation Protocols. Gentry’s
[Gen09a] secure computation protocol was the first to achieve communication
complexity that is independent of |f | by using the PCP theorem in several steps.

Asharov, Jain and Wichs [AJLA+12] and López-Alt, Tromer, and Vaikun-
tanathan [LATV11] have constructed more efficient TFHE schemes based on
LWE and the closely related RLWE assumption, which can be reduced to vary-
ing degrees to worst-case lattice problems. Their approaches rely on the ability
to construct an FHE that also has a homomorphism on the secret-keys, and can
also be used to achieve secure computation with communication that is inde-
pendent of |f |. Together, our results demonstrate that the TFHE primitive can
be developed from reductions to different classes of hardness assumptions, and
therefore TFHE is not simply a consequence of a specific hardness property.

To achieve security against malicious adversaries, López-Alt et al. rely on a
common reference string setup so that players can use a NIZK to prove to each
other that their keys and their input ciphertexts are well-formed. The use of
such NIZK also requires additional hardness assumptions, since (T)FHE is not
known to imply NIZK. They can also instantiate their ideas in the standard
model by replacing these NIZK proofs with traditional interactive ZK proofs;
but in either case, the generic (NI)ZK techniques used require non-blackbox
use of the underlying TFHE scheme.4 By choosing the CRS model, the authors
observed that by using a more expensive simulation-sound NIZK, their protocols
can also achieve UC-security. Our protocols only claim standard security, but it
has bee pointed out to us that it is likely that we can state some of ours results
as UC in a TFHE-hybrid model.

Asharov et al. use efficient Σ-Protocol constructions to prove well-formedness;
these make heavy use of the underlying mathematical structure of the LWE
assumption. In order to have efficient NIZK proofs, they must rely on the use of
the Random Oracle model, and the use of the Fiat-Shamir heuristic to transform
the Σ-protocols into NIZK proofs. In any case, due to the black-box nature of
our SMC construction, with simple modifications to the public-key to include
labeled ciphertexts representing encryptions of 0 and 1, either of the López-Alt
et al. or Asharov et al. TFHE schemes can be plugged in to our construction
to achieve security against an arbitrary number of malicious adversaries, with
abort. In contrast, with our scheme we are guaranteed output delivery, but need
an honest majority of players.

The protocols of Damg̊ard et al. [DPSZ12] and Bendlin et al. [BDOZ11] use a
different approach to constructing secure computation protocols from traditional
homomorphic encryption. Their schemes rely on the idea from Beaver [Bea91] for
circuit randomization. First, they use an offline phase in which the parties use a
somewhat homomorphic encryption primitive to create shares of triples (a, b, c)
such that a · b = c. One triple is required for each multiplication gate in f that
is to be evaluated and requires approximately O(n/s) “heavy” cryptographic

4 In other words, the encryption algorithm of the TFHE will need to be expressed in
terms of a graph-coloring instance (or Hamiltonicity, circuit-sat ,etc...). As far as we
know, this transformation requires a high-order polynomial overhead.
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operations to generate. Next, after such triples have been created, the parties use
only information-theoretic methods to evaluate the circuit. This approach results
in admirable communication parameters for small circuits (as they have also run
practical examples); nonetheless, the approach requires linear communication
for each gate in |f |, and thus does not achieve our main aim of eliminating this
relationship.

Finally, these prior results are all in a model in which n parties are comput-
ing, and the protocols can tolerate up to n − 1 malicious parties. In contrast,
our protocols require an honest majority. The relative incomparability of these
models is well understood. In particular, in the model that tolerates up to n− 1
malicious adversaries, if any one party deviates form the protocol or fails, then
all parties output ⊥. Alternately, with an honest majority, all parties can out-
put an effective output, as supported by our protocol. For a discussion of the
relative merits of the two models, and the impossibility of having protocols that
achieve the best of both worlds for general functionalities, see the work of Ishai
et al. [IKK+11].

In summary, all of these recent works have advantages and disadvantages
of their own; our major contribution is the black-box transformation and the
independent hardness assumption.

Related work. Cramer, Damg̊ard and Nielson [CDN01], along with Jakobbsson
and Juels [JJ00] show how to use threshold cryptography to construct secure mul-
tiparty computation protocols. In more detail, we use many ideas from [CDN01]
which shows how a homomorphic threshold cryptosystem can be used to achieve
general multiparty computation protocols. The notion of using secret-sharing to
encode encryptions, as we will do, was first seen in [CDSMW08] and has recently
been extended in [GLOV12], although these works use the technique to ensure
consistency, and not a proof-of-knowledge, as pursued here.

2 Preliminaries and Notation

A 4-tuple of protocols and algorithms (Gen,Enc,Dec,Eval) is a (t, n)-threshold
fully homomorphic encryption scheme if the following hold:

Key Generation. An n-party protocol Gen that at each invocation returns
a new public-key PK and the secret-key (SK1, . . . , SKn), where SKi is the
share of the secret-key for Playeri.

Encryption. A PPT algorithm EncPK(m, r) that returns the encryption of the
plaintext m under the public-key PK with random coins r.

Decryption. There exists a PPT n-party protocolDec(c, SK1, . . . , SKn), which
returns the plaintext m using the shares SKi held by honest party Playeri,
where c = Enc(m, r) for some random r.

fPK-homomorphic. There exists a PPT algorithm Eval which given a poly-
nomial f , ciphertexts c1 ∈ EncPK(m1), . . . , ck ∈ EncPK(mk) for some k and
a public-key PK, outputs c ∈ Enc(f(m1, . . . ,mk)).
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The natural notion of chosen plaintext attack indistinguishability needs to be
modified in the venue of threshold cryptography to take into account the fact
that the adversary has access to shares of the secret-key. The appropriate cor-
responding and natural definition is given in [CDN01], and full version of our
paper [MSas11]. Standard security notions for secure multi-party computation
protocols can be used to define the security for the protocols Gen and Dec in
any given instantiation of a TFHE (e.g., we can consider security in the real/ideal
standalone paradigm, the UC framework, etc..)

Next, we present the notion of bootstrapping a ciphertext. Gentry developed
the notion of Bootstrapping to reduce noise in a somewhat fully homomorphic
encryption scheme, in order to achieve a fully homomorphic scheme. In contrast,
we assume the existence of an FHE and simply use it to reduce noise produced
in ciphertexts generated in our selective opening attack secure scheme that we
introduce later.

Definition 1. (Bootstrapping a Ciphertext) For a FHE scheme Π =
(G,E,D,Eval) and the security parameter k, let DΠ be Π’s decryption cir-
cuit, which takes a secret-key and s ciphertext as input. Given a ciphertext C
encrypted with respect to a public-key PK and secret-key SK = (SK1, .., SK�)
we require that PK contains a bit-wise encryption of SK, denoted s1, ..., s�
where si = E(PK, SKi). Let (C1, .., Cn) denote the bits of C, and generate
ci = E(PK, Ci). We say that the value C† = Eval(PK, Dπ, s1, ..., s�, c1, .., cn)
(which homomorphically evaluates D(SK, C)) is the result of bootstrapping C.

2.1 Selective Opening Security

In our construction, we will need to refer to encryption schemes where messages
that are encrypted remain secure, even after the randomness used to encrypt
related messages is revealed. This notion of security is called Selective Opening
Security.

Definition 2 (IND-SO-SEC Encryption Security). A public-key encryp-
tion scheme Π = (G,E,D) is Indistinguishable Selective Opening secure if, for
any message sampler M that supports efficient conditional resampling, and any
ppt adversary A = (A1, A2) there exists a negligible function μ such that for all
sufficiently large k:∣∣Pr[AInd-SO-Real

Π (1k) = 1]− Pr[AInd-SO-Ideal
Π (1k) = 1]

∣∣ ≤ μ(k).

A message sampler M is a PPT algorithm that outputs a vector m of n mes-
sages from a given distribution. It is an efficient conditional resampler if, when
given two auxiliary inputs, a set of indices I ⊆ [n], and a vector of messages
m = (m1, ...,mn), M samples another vector m′ = (m′1, · · · ,m′n) conditioned on
mi = m′i for each i ∈ I. We define the experiments Ind-SO-Real and Ind-SO-Ideal
as follows.
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Ind-SO-Real(1k, A)
(PK, SK)← G(1k)
m = (m1, . . . ,mn)←M
r1, . . . , rn ← R
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
Output A2(σ, (mi, ri)i∈I ,m)

Ind-SO-Ideal(1k, A)
(PK, SK)← G(1k)
m = (m1, . . . ,mn)←M
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
m′ = (m′1, . . . ,m

′
n)←M|I,m[I].

Output A2(σ, (mi, ri)i∈I ,m
′)

2.2 Circuit Privacy

Definition 3. ((Statistical) Circuit Private Homomorphic Encryption). A ho-
momorphic encryption scheme ε = (Gen,Enc,Dec) is circuit-private for cir-
cuits in a set Cε if, for any key pair (PK, SK) output by Gen(λ), any circuit
C ∈ Cε, and any fixed ciphertext ψ = 〈ψ1, . . . , ψt〉 that are in the image of Enc
for plaintexts π1, . . . , πt, the following distributions (over the random coins in
Enc, Eval) are (statistically) indistinguishable:

EncPK(C(π1, . . . , πt)) ≈ EvalPK(C,ψ)

In the original schemes first presented by both Dijk et al. [vDGHV10] and Gen-
try [Gen09a], the initial evaluation functions are deterministic and not circuit-
private. In order to overcome this problem, both works introduce a method
for adding random noise to encryptions, whether they are output from Eval
or Enc, and thus in some sense rerandomizing them. This is done by adding
an ‘encryption’ of 0 to the ciphertext in question, but where the ‘encryption’
has significantly more noise than would be generated by either the legitimate
encryption or evaluation process. Specifically, they introduce ppt algorithms la-
beled CircuitPrivacy : Cb → C′b, where C consists of all the ciphertexts that are
output from EncPK(b) or a call to Eval with an encrypted output bit of b. It is
the case that for any b and any cb,0,cb,1 ∈ Cb.

CircuitPrivacy(cb,0) ≈s CircuitPrivacy(cb,1).

3 Proof of Knowledge of an Encryption

As noted in the Introduction, the method of Cramer, Damg̊ard, and
Nielsen [CDN01] requires an honest-verifier zero-knowledge proof of knowledge
of encrypted values for the threshold schemes that they employ. We provide a
weaker 2-round solution to that requirement, which alas, is not zero-knowledge,
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but also does not release any information about the bit being discussed (we for-
malize this below). Moreover, our construction is black-box in the underlying
circuit-private FHE scheme.

We construct this proof through a two-step process. At a high-level, instead of
encrypting a bit b, we use a specific (n, n/2+ 2) verifiable secret sharing scheme
to generate n shares of b and encrypt those shares.5 In order to give a proof of
knowledge of the encryption of b, we allow a verifier to select n/2 + 1 of the en-
cryptions of shares of b, and then direct the Prover to reveal the randomness used
to encrypt those shares. To extract the bit, our extractor rewinds the proof and
selects an alternate n/2+1 shares, so that with high probability, it can use n/2+2
shares to reconstruct b, and only b due to the verifiability of the secret sharing
scheme. The problem with this approach is that revealing the randomness for an
encryption raises selective decommitment issues. We use techniques from Hemen-
way et al. [HLOV11] to construct a bit-wise Indistinguishable Selective-Opening
Secure encryption scheme from our threshold fully-homomorphic scheme. We
can then use it to bitwise encrypt the VSS shares.

We note that the encryptions of the shares under the bit-wise Indistinguishable
Selective-Opening Secure scheme, is not itself a homomorphic encryption scheme.
For example, we cannot multiply directly two sets of shares encoding b0 and
b1 and expect the result to encode b0 · b1. However, the individual encrypted
bits are still properly encoded ciphertexts under the FHE scheme that have a
circuit-privacy evaluation function applied to them. Intuitively, therefore, we can
homomorphically evaluate the reveal function of the secret sharing scheme to get
a single encryption representing the reconstituted bit. This encryption can then
be used to homomorphically evaluate the function as in Cramer et al. [CDN01].
There is however a snag: in principle, once the circuit-privacy function has been
applied to a ciphertext, it may no longer be able to have homomorphic operations
applied to it, as this is not guaranteed by the definition.6 However, this problem is
easily surmounted by applying Gentry’s bootstrapping technique (cf. Defn 1) to
re-encode the selective-opening secure schemes into ciphertexts which can have
homomorphic operations applied to them, and thus the VSS’s reveal algorithm
can be applied to the individual bits of the shares, resulting in ciphertext of the
encoded bit, which is in the ciphertext space of the TFHE scheme.

Using FHE to construct a Selective Opening Encryption Scheme. Hemenway et
al. [HLOV11] show how any re-randomizable encryption scheme can be used to
construct a natural lossy encryption scheme and thus, by the result of Bellare
et al. [BHY09], is secure against indistinguishable selective opening attacks.

Since the Hemenway and Ostrovsky construction relies on re-randomization,
they suggest that the distribution of a “fresh” encryption of a message should be

5 We use a verifiable secret sharing scheme with a n/2 + 2 threshold to simplify the
proof of the VSS, thus |T | = n/2+1 is chosen to be right under the threshold of the
VSS, as one might expect.

6 Further, in practice, with known schemes, these ciphertexts have too much noise
in them to allow further homomorphic operations without sacrificing decryption
correctness.
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statistically close to a rerandomization of a fixed message. They point out that
all homomorphic encryption schemes up to that point achieved this property by
adding an encryption of 0 to the current message. While this property was true
of all schemes at the time, it is not actually true of the known fully homomorphic
encryption schemes, because each time we add an encrypted message to another
we increase the amount of noise that is embedded in the ciphertexts, and thus
fresh encryptions have less noise than encryptions that have had operations
(such as addition) applied to them. Fortunately, the property they state is overly
strong, and a simple observation shows that for their construction to go through
they only require that the distributions

{r ← R : Epk(, 0, r)� Epk(m, r0)} ≈s {r ← R : Epk(0, r) � Epk(m, r1)},

for all public-keys pk, messages m and random strings r0 and r1 where � is the
homomorphic addition operation. However, it is simple to see that even these
two distributions are not statistically close for the fully homomorphic encryption
schemes that have been proposed. Fortunately, both schemes under consideration
have rerandomization functions built to ensure Circuit-Privacy, as is defined
in [Gen09b] and Def. 3.

Construction of a SOA from Lossy. We generate a public-key for the Lossy
scheme by generating a traditional public-key and secret-key for the TFHE,
and then we augment the public-key with two labeled ciphertexts c0 and c1,
representing encryptions of 0 and 1. Now, to encrypt a bit b, we take cb, and
rerandomize it using the circuit-privacy function (In comparison, Hemenway and
Ostrovsky add an encryption of the bit 0). Decryption works as it does in the
FHE scheme. The lossy key generator simply has c1 represent an encryption of
0 instead of 1. By the IND-CPA security of the TFHE scheme, the keys are
indistinguishable. The scheme is formally described below.

Key Generation G′(1k, b), b ∈ {INJ, LOSSY}: Let (PK, SK) ← G(1k), c0 ←
E(PK, 0), c1 ← E(PK, 1) and c′1 ← E(PK, 0). If b = INJ Output PK′ =
(pk, c0, c1) and SK′ = SK, else when b = LOSSY output PK′ = (PK, c0, c

′
1)

and SK′ = SK.
Encryption E′(PK′ = (PK, c0, c1), b): Output ReRand(cb).
Decryption D′(SK, c): Output D(SK, c).

Theorem 1. If (G,E,D) is a circuit-private FHE, then the blackbox construc-
tion (G′, E′, D′) described above is an IND-SO-SEC secure encryption scheme.

Proof. Follows from [HLOV11] and [BHY09].

Modifying the SOA-secure Encryption Scheme to Support POKs. Again, in order
to be able to provide a proof of knowledge that a party has knowledge of the value
encrypted, we need to provide a POK. We will show a 2-round public-coin proof
of knowledge of the encrypted bit based on any selective opening secure scheme.
The protocol is neither zero-knowledge nor witness indistinguishable, but does
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maintain secrecy of the encrypted bit. First, we encrypt bits using the following
protocol. Let Π ′ = (G′, E′, D′) be the selective-opening attack secure scheme
described in Thm. 1. We construct a new encryption scheme Π̂ = (Ĝ, Ê, D̂) to
encode bits as follows. We define Ĝ = G′, and present the algorithms for Ê and
D̂ below. Refer to a full version of our work [MSas11] for the standard definitions
of the Verifiable Secret Sharing algorithms.

Ê(PK, b, r) D̂(SK,C)
(s1, ..., sn)← VSShare(n,n/2+2 )(b) M = {Mi,j}i,j∈[n] ← D′(SK,C)
Let M be the n× n matrix Let (s1, . . . , sn) be the shares
representation of shares (s1, . . . , sn) corresponding to matrix M .
ci,j = E′(PK,Mi,j , ri,j) T ′ = {t|1 ≤ t ≤ n share st
Output C = {ci,j}i,j∈n is n/2 + 2 -consistent}

If |T ′| < n/2 + 2 output ⊥.
Let T ⊆ T ′ s.t. |T | = n/2 + 2.
Output VSReveal(n,n/2+2 )({sti})ti∈T

Hidden Bit POK. Given a ciphertext C = {ci,j}i,j∈n output by encryption

algorithm Ê and the random coins r used to generate it, we show how to perform
a two-round proof of knowledge of the encrypted bit D̂(SK,C). P will prove
that it has knowledge of the underlying shares of the verifiable secret-sharing
scheme that have been encrypted. In order to do this, the verifier sends a random
challenge of indices T ⊂ [n], where |T | = n/2+1. The encryptor then decommits
to these encryptions by providing the random-bits used to encrypt each share of
the bit. If each bit decommits successfully, and the result is n/2+ 1 valid shares
to the VSS, then the verifier accepts.

Prover(PK,C = {ci,j}i,j∈[n] Verifier(PK,C = {ci,j}i,j∈[n])

= Ê(PK, b, r),M, r)

Let ci,j = E′(PK,Mi,j , ri,j)
T←− T ← {S|S ⊂ [n] ∧ |S| = n

2
+ 1}

{Mi,x,ri,x,Mx,i,rx,i} i∈T
x∈[n]−→ if ∃i, j: cij �= E′(PK,Mi,j , ri,j),

output ⊥.
Output 1.

Extractor (C,PK, U1 = {Mi,x, ri,x,Mx,i, rx,i} i∈T1
x∈[n]

, U2 = {Mi,x, ri,x,Mx,i, rx,i} i∈T2
x∈[n]

)

Let T = T1 ∪ T2, U = U1 ∪ U2

If |T | < n/2 output ⊥.
If ∃i ∈ T, x ∈ [n] s.t. E′(PK,Mi,x, ri,x) �= ci,x or E′(PK,Mx,i, rx,i) �= cx,i output ⊥.
For each i ∈ T reconstruct its corresponding share si.
Output VSReveal(n,n/2+2)(sr1 , .., srn

2
), where r1, .., rn

2
are the smallest indices in T .

Completeness. Follows by inspection.
Extractability (Soundness). Soundness follows from an extractor.
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Theorem 2. For all sufficiently large n, for all d > 0, for all (SK,PK) ← Ĝ,
for all ‘ciphertext’ inputs C, and provers P ′, if (P ′, V )(C = {ci,j}i,j∈[n],PK)

accepts with probability 1/nd, then there exists a probabilistic polynomial time
extractor that, with all but negligible probability, outputs a set of decommitments
to all ciphertexts for a given set of indices L = {
1, · · · , 
n/2+2} ⊆ [n] that consti-
tute shares S = {s�1 , ..., s�n/2+2

} such that VSReveal(n,n/2+2 )(s�1 , ..., s�n/2+2
) =

D̂(SK, C).

Definition 4. We say an n×n matrix representation of shares has t-consistent
indices if there is a set S of size t such that for each i ∈ S, each row i and
column i is n/2 + 2 consistent.

Proof. Given the ability to rewind the prover-verifier protocol, we can extract
the encrypted bit by recovering enough shares of the VSS scheme. We continue
to execute the prover/verifier protocol until we get two distinct separate ac-
cepting proofs. It is a simple observation that except with exponentially small
probability, we will succeed in O(nd+1) rewinds. Let (T1, U1) and (T2, U2) be the
flows in the first and second accepting proofs, respectively. By the security of
the commitment scheme (here we are using our encryption scheme as a simple
commitment scheme), the probability that there is a ciphertext ci,j that is ever
decommitted to in two distinct fashions is negligble.

We feed these inputs in to Extractor . If there is not a valid encryption of a bit
(fewer than n/2 + 2 committed and consistent shares), then by Lemma 1, the
probability that the verifier outputs anything other than ⊥ is less than 1

( n
n/2+2)

which grows exponentially small.
Given the decommitments of the shares {si}i∈Ti for different randomly chosen

set of indices T1 and T2, note these sets are not the same by selection, and
therefore there is no chance that ⊥ is output by the extractor. Next the extractor
executes a VSReveal(n,n/2+2 ) command. However, this is not necessarily over the
same shares as would be revealed in a legitimate decryption. We need to ensure
that no matter which of the rewound and newly played legitimate traces we
receive, we are going to reveal the same encrypted bit, with all but negligible
probability. That is, we need to ensure that VSReveal(n,n/2+2 )(sr1 , ..., srn/2

) =
VSReveal(n,n/2+2 )(s1, ..., sn/2). This is the case, as shown in Lemma 2 because
of the verifiable properties of the secret sharing scheme ensures that even in
the case of a corrupted dealer (improper ciphertext encoding of shares) then
all honest players will reveal the same value, with all but negligible probability.
Therefore, with all but negligible probability we have that the extractor outputs
the same value as D(SK, c).

Lemma 1. Let M be an n× n matrix with at most n/2 + 1 consistent indices.
The probability that any n/2+1 randomly selected indices (without replacement)
choose a set of n/2 + 1 consistent indices is no more than

1/

(
n

n/2 + 1

)
.
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Proof. There can be at most 1 set of size (n/2 + 1) that is (n/2 + 1) consistent
in an n×n matrix. The lemma follows by computing the probability of choosing
this one set from a set of n objects.

Lemma 2. Let M be n×n matrix representation of shares. Let S, T ⊆ [n], |S| =
|T | = n/2 + 2, S �= T , and the rows RS = {ri}i∈S, RT = {ri}i∈T and columns
CS = {ci}i∈S, CT = {ci}i∈T are all n/2 + 2-consistent. Let s = (s1, ..., sn/2+2)
and t = (t1, ..., tn/2+2) be the shares drawn from M corresponding to the sets of
indices S and T respectively. Then

VSReveal(n,n/2+2 )(s1, ..., sn/2+1) = VSReveal(n,n/2+2 )(t1, ..., tn/2+1)

Proof. Note that VSReveal(n,n/2+2 ) will never output ⊥ under our conditions,
so all that we need do is show that f will interpolate to the same value in both
cases.

We know that the rows RT = {ri}i∈T and columns CR = {ci}i∈T are
all (n/2 + 2)-consistent. Choose any j ∈ S \ T . Let T = {t1, . . . , tn/2+2}.
Consider cj = (c1,j , c2,j, . . . , cn,j)

T . Since cj is n/2 + 2-consistent, the points
(ct1,j, t1), . . . , (ctn/2+1,j , tn/2+2), interpolate to a unique univariate degree n/2+1

polynomial (i.e. f(x, j)). This defines (c1,j , c2,j , . . . , cn,j)
T , so the column j must

be consistent with T . Since the jth column was an arbitrary column in S differ-
ent from those in T , all such columns must be consistent with the rows defined
be T . A symmetric argument shows that rows selected by S must be consistent
with the columns selected by T . Therefore, both sets are consistent in that they
define the same polynomials. Therefore, interpolation in VSReveal(n,n/2+2 ) will
result in the same output.

Hidden Bit. We show that no efficient cheating verifier can predict the bit b,
when given C = Ê(PK, b, r) as a theorem for which we are engaging in a POK.

Theorem 3. For every P.P.T. adversary A = (A1, A2), there exists a negligible
function μ such that Pr[HBA(1

k) = 1] ≤ 1/2+μ(k), where HBA is defined below:

HBA(1
k)

(PK, SK)← Ĝ(1k)
b ∈ {0, 1}
C = {ci,j}i,j∈[n] = Ê(PK, b) where ci,j = E′(PK,Mi,j, ri,j) are SOA-sec.
(T, σ)← A1(PK, C) where T ⊂ [n], |T | = n/2 + 1.
b′ ← A2(σ, (Mi,j , ri,j)i,j∈T )
Output 1 iff b = b′

Proof. This follows directly from the IND-SO-SEC security of Π ′ = (G′, E′, D′).
Suppose an adversary A = (A1, A2) breaks the hidden bit security of the pro-
tocol. That is for some d > 0 and infinitely many k: Pr[HBA(1

k) = 1] ≥
1/2 + 1/kd. We use it to build an adversary B = (B1, B2) and message selector
M that breaks the IND-SO-SEC security (cf. Defn. in [BHY09] or [MSas11])
of Π ′ = (G′, E′, D′). The message selector M chooses a random bit b, let
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(s1, ..., sn) ← VSShare(n,n/2+2 )(b), and let M be the n × n matrix that rep-
resents the shares (s1, . . . , sn) according to the ECC representation of the VSS.
Output M.

The adversary B1

(
PK, (E(PK,Mi,j, ri,j))i,j∈n

)
for the IND-SO-SEC exper-

iment simulates (T, σ) ← A1(PK, C = (E(PK,Mi,j, ri,j)), and outputs I =
{(i, j)|i, j ∈ n, i ∈ T or j ∈ T } and σ′ = (T, σ). Recall by the definition of A1,
|T | = n/2 + 1.

The conditional message selector MI,m[I] from the SOA security definition
finds a random bi-variate polynomial of degree n/2 + 1 in each variable over
the field F such that f(0, 0) ∈ {0, 1} and for each (i, j) ∈ I, it holds that
f(i, j) = Mi,j . Since |T | = n/2 + 1, and thus we have effectively release n/2+ 1
shares for a VSS scheme that requires n/2 + 2 for reconstruction, the informa-
tion secrecy property of the VSS guarantees there are exactly the same number
of such selections for the case f(0, 0) = 0 and f(0, 0) = 1. MI,m[I] outputs
{f(i, j)}1≤,i,j≤n.

The adversary B2(σ, (Mi,j , ri,j)(i,j)∈I ,M
∗) computes the shares (s∗1, ..., s

∗
n)

that correspond to M∗, and runs VSReveal(n,n/2+2 )(s
∗
1, .., s

∗
n) = b′, it then exe-

cutes b← A2(σ, (mi,j , ri,j)(i,j)∈I) and outputs 1 iff b = b′.

Now consider Pr[BInd-SO-Real
Π (1k) = 1], this is a perfect simula-

tion of HBA(1
k), and therefore by the assumption that A breaks

the hidden-bit security, the term must exceed 1/2 + ε, where ε ≥
1/kc. In contrast, consider Pr[BInd-SO-Ideal

Π (1k) = 1]. In the case that
VSReveal(n,n/2+2 )(s

∗
1, . . . , s

∗
n) = VSReveal(n,n/2+2 )(s1, . . . , sn), which occurs

with probability exactly 1/2, it is again a perfect simulation of HBA(1
k),

and so the experiment outputs 1 with probability 1/2 + ε. In contrast, when
VSReveal(n,n/2+2 )(s

∗
, 1..., s

∗
n)) �= VSReveal(n,n/2+2 )(s1, ..., sn), then we know

that A2 outputs VSReveal(n,n/2+2 )(s1, ..., sn) with probability 1/2+ε, and so B2

outputs 1 with probability 1−(1/2+ε) = 1/2−ε. Therefore, Pr[BInd-SO-Ideal
Π (1k) =

1] = (1/2)(1/2 + ε + 1/2 − ε) = 1/2. Therefore, Pr[BInd-SO-Real
Π (1k) = 1] −

Pr[BInd-SO-Ideal
Π (1k) = 1] = 1/2+ ε− 1/2 ≥ 1/kc, breaking IND-SO-SEC security.

Using the SOA Ciphertexts in a Secure Multiparty Computation Protocol. In our
SMC construction, we encode all users’ inputs using the POK scheme above.
The encrypted inputs are sent to the other parties. After each party’s input has
been confirmed with a proof of knowledge, the parties homomorphically evaluate
the different ciphertexts to get an appropriate encrypted output. However, as
explained before, the POK encryptions are not themselves homomorphic. To
solve this problem we use Gentry’s bootstrapping technique. Bootstrapping lets
us take a ciphertext in an FHE scheme with any amount of noise that still
allows for proper decryption (specially, this is potentially more noise than is
permissible to perform any extra homomorphic operations without destroying
the correctness of the ciphertext), and output a new ciphertext in the FHE
scheme, of the same value, but with a small enough amount of noise that it
can be properly computed on through the use of the FHE’s evaluation function.
Given a ciphertext C = {ci,j}i,j∈[n] in the POK scheme, each ci,j is a ciphertext
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from a lossy encryption scheme. To convert C into a corresponding encryption c†

in the TFHE scheme we do the following: We bootstrap each ci,j which is simply
a TFHE ciphertext that has had the circuit-privacy function applied to it—thus
containing potentially too much noise to apply further homomorphic operations
to, but not so much that it decrypts improperly— to receive the corresponding
lower-noise TFHE ciphertext c′i,j . The c′ ciphertexts can now be evaluated in
the THFE eval function, and in particular we can use the TFHE eval function,
to evaluate VSReveal(n,n/2+2 ). The result of this evaluation is the ciphertext C†

corresponding to the output.

Protocols vs. Algorithms. We note that there is one technical issue that needs to
be resolved, which is that in this section we have described the key generation
and decryption algorithms as stand-alone algorithms, rather than protocols. For
our purposes, we need a joint protocol for key generation and decryption. For
this reason, we need to modify our key generation algorithm in the TFHE scheme
to include an encryption of the bits 0 and 1 in the public-key. These values allow
the parties to encrypt under the SOA secure encryption scheme Π̂ . The SOA
secure scheme does not modify the decryption algorithm, so there is no need for
modification to the decryption protocol.

4 Secure Multiparty Computation

We follow the Cramer et al. [CDN01] approach for constructing a multi-party
computation protocol based on threshold cryptography. Our biggest changes are
that we do not need a protocol for multiplication, we use a different approach
for proving knowledge of encryption, and we explicitly describe a key generation
phase whereas it is assumed as an external setup in [CDN01]. Since our solution
requires less interaction among the parties, our simulation argument is simpler
than the argument from [CDN01].

We use the standard simulation-based definition of stand-alone secure multi-
party computation. We assume the existence of a standard n-party CoinFlip-
ping protocol which guarantees soundness in the presence of < n/2 adversaries:
namely, for any minority set of adversaries, the protocol guarantees that the
distribution is still statistically close to uniform. Such a protocol can be easily
constructed based on the existence of hiding commitments. (Unlike [CDN01], we
do not need this coin flipping protocol to be simulatable.). See our full version
[MSas11] for a definition of the real/ideal paradigm for secure multi-party com-
putation from [CDN01] and [IKK+11]. In this section the TFHE scheme used is
denoted Π̃ = (G̃, Ẽ, D̃,Eval).

We assume that the players can communicate via an authenticated broadcast
channel and via point-to-point private and authenticated channels (which may
in turn be implemented using signatures, public-key encryption, etc.)
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Protocol 1. Each party holds private input xi; the parties jointly compute
f(x1, . . . , xn).

1: Party Pi receives as input (1k, n, xi). (We assume the adversary receives
as input 1k, n, a set of corrupted parties C and the inputs {xc}c∈X for the
corrupted parties, and auxiliary information.)

2: Players run the TFHE key generation subprotocol G̃(η, τ, ρ, θ, Θ, κ) to gen-
erate a public-key P̃K and shares of the secret for the threshold scheme
Π̃ . At the end of this step, player pi holds share SKi of the secret-key SK.
If the sub-protocol halts prematurely, then players halt and output ⊥.

3: The players take sequential turns sharing their input using the encryption
scheme Π̂ that is constructed from Π (see §3). More specifically, for i ∈ [n],
player Pi broadcasts ci,j ← Ê(P̃K, xi,j). Then all of the players run a
standard CoinFlipping protocol to generate a random string ri. Player Pi

now interprets ri as n strings ri,1, . . . , ri,n and uses coins ri,j as the random
coins to run Verifier(PK,ci,j) (see §3) of the Hidden Bit POK protocol on
input ci,j for each bit j ∈ [n] of input xi. Player Pi runs the corresponding
Prover algorithm on ci,j using the random coins used to generate ci,j as the
witness, and broadcasts the Prover message. The remaining players also
execute the Verifier algorithm using the same random coins and verify
that the first message is consistent and the second message is accepted.
If player Pi fails the POK protocol, then Pi is excluded from the rest of
the protocol, and the remaining players that have not been excluded use
a canonical encryption of 0 as the input for Pi (e.g., they use Ẽ(P̃K, 0; 0)
as each input bit).

4: The players that have not been excluded locally run
Eval(P̃K, c1,1, . . . , cn,n, f̃) where the function f̃ first transforms the

input ciphertexts encrypted under Π̂ into ones for scheme Π̃ . This is
done by homomorphically evaluating the decryption procedure described
in §3 (i.e. bootstrapping, see Defn. 1).(Note: All of the ciphertexts in ci,j
have a large degree of noise in them due to the circuit-privacy call that
was used to rerandomize the ciphertexts. Therefore, the first thing that is
done is that the ciphertexts are re-encoded with less noise using the same
procedure as FHE bootstrapping.) Next, compute ciphertext zi of the
result f(x1, . . . , xn). Note that each player can complete this step using
only local information (since the public-key for the FHE includes all the
information needed for evaluation).

5: Each player Pi that has not been excluded broadcasts the ciphertext zi
computed in the previous step. Each player then locally computes the
majority of the broadcasts as ciphertext z′. A majority is guaranteed to
exist since the malicious players form a minority and Eval is deterministic.
Any player whose broadcast differs from the majority is excluded from the
remaining portion of the protocol.

6: Players pi that have not been excluded run the distributed subprotocol
D̃(z′, SK1, . . . , SKn) using input z′ and their local share SKi. The output
of the protocol is taken as the output.
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Theorem 4. Let π be Protocol 8 for a function f , and fix s ∈ {1, . . . , n/2}. If
Π is a circuit-private TFHE encryption scheme, then for any ppt adversary A,
there exists a ppt adversary A′ such that for every polynomial-size circuit family
Z = Zk corrupting a minority of parties the following is negligible:

|Pr [REALπ,A,Z(k) = 1]− Pr [IDEALf,A′,Z(k) = 1]| .

See full version for details.

5 Threshold FHE for the Integers

In this section we briefly highlight the construction of a TFHE scheme Π̃ =
(G̃, Ẽ, D̃, ˜Eval) from the FHE scheme Π = (G,E,D,Eval) based on the
Approximate-GCD problem described by [vDGHV10]. The details are presented
in our full version online. We point out that in any such transformation Ẽ = E
and ˜Eval = Eval, and thus we only need to describe protocols for computing G̃
and D̃.

Sharing the Public and Secret-Key. Recall the secret-key p for the “somewhat
homomorphic encryption scheme” is an odd η-bit integer. To sample p in a
distributed fashion, we notice that the bits p0 and pη−1 should be 1 whereas the
rest of the bits p1, . . . , pη−2 should be randomly shared. At the end, each player
holds a share of p. We then extend techniques from [KLML05] to allow multiple
parties who hold shares of p to compute shares of 1/p and xp = )2κ/p�.

Recall that the secret-key for Π consists of a Θ-bit vector s with Hamming
weight θ. Our first modification to Π is to note that instead of θ, it suffices
to select a vector with Hamming weight in the interval θ ± θ/4. To verify this,
note that the sparse subset-sum problem is assumed to be hard for θ = Θε for
0 < ε < 1; our change does not violate this condition. Also, our new range of
settings for θ does not increase the total degree of the decryption circuit by
more than a factor of 2 and thus the condition that the decryption protocol
is admissible is maintained (and thus the scheme is bootstrappable. See the
computation on p.18 [vDGHV10].) Our approach for producing s is to securely
generate a random number ri in the range [0, Θ] for each si and setting si = 1
if ri ≤ θ and 0 otherwise.

The public-key consists of the vectors x and u. Using s and xp, we compute
the vector u using the formula u =

∑
i si · ui mod 2κ+1. These shares can be

used to compute the vector y.
Using bits of 1/p computed in previous steps, we generate the xi’s. Recall

from the original public-key generation algorithm that we need to sample xi ←
Dγ,ρ(p) for i = 0, . . . , τ . Intuitively, these xi represent random encryptions of
0 that get added to our base encryption in the homomorphic scheme. Further,
recall that

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x← pq + r}.
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After sampling, the list should be relabeled so that x0 is the largest. The key-
generation process requires that the process is restarted if either x0 is even or
x0−)x0/p� ·p is odd. Since x0 = pq+r is generated as directed for some random
q and r and since p is an odd number, the requirement that x0 is odd can be
checked by inspecting the least significant bits of the q and r: If q0+r0 = 1, then
x0 satisfies the first condition. To check the second condition, that x0−)x0/p� ·p
is an odd number, we observe that because of the constraints −2ρ < r < 2ρ and
2η−1 ≤ p < 2η, it follows that −2ρ−η+1 < r/p < 2ρ−η+1.

Since ρ = λ and η = Õ(λ2), therefore for all sufficiently large λ (if η = λ2,
then for λ > 2), )r/p� = 0 and as a result r can be ignored. That is )x0/q� =
)pq + r/q� = q + )r/q� = q. So x0 − )x0/p� · p = x0 − q · p. Because x0 and
p are both odd, q must be odd to make the term x0 − )x0/p� · p even. These
constraints imply that for x0 to be odd and x0 − )x0/p� · p to be even, then q
must be even and r must be odd.

Computing encryptions of s. One step in Gentry’s paradigm for FHE construc-
tion requires the public-key to contain an encryption of the secret-key. We as-
sume circular security of the underlying encryption scheme, as do van Dijk et
al. [vDGHV10] and Gentry [Gen09b]. Towards this goal, we design a protocol
that enables players who hold private shares of the secret-key (as well as the
entire public-key) to compute an encryption of the secret-key under the public-
key. Note this cannot be done trivially with homomorphic evaluation because the
encrypted secret-key is in fact necessary to homomorphically evaluate circuits of
an arbitrary depth, resulting in a circular requirement.

Recall that in Dijk et al. [vDGHV10], the encryption of m under the public-
key 〈x0, . . . , xτ 〉 computes as [m+ 2r + 2

∑
i∈S xi]x0 , where r ∈ (−2ρ′

, 2ρ
′
) and

S ⊆ {1, . . . , τ} is a random subset. Since both the xi’s and r can take negative
values (as integers) whereas the computation is in a finite field, we need to
somehow make sure the computation in the finite field result in the same integer
value of the encryption of m. To resolve this issue, we compute the value min
which is a unique value that satisfies the following two properties: 1) min = 0
mod x0, and 2) for an arbitrary S and for our set of xi’s and any value of r, it
would make the summation m + 2r + 2

∑
i∈S xi positive. Because the range of

values that r can take is public, all users can compute min locally and agree on
respective shares. Next, to encrypt the secret-key, all users generate shares for a
set S and the shares for a value r. All users then add their shares of r, use shares
in S to add in appropriate xi’s, and add min .See the full version for details.

Computing encryptions of 0 and 1 for PK. The same techniques from the previ-
ous step can be used to produce encryptions of random bits. These encryptions
can then be collaboratively decrypted until both an encryption of 0 and an en-
cryption of 1 are identified. These two ciphertexts can then be adjoined to the
public-key—they are guaranteed to be well-formed and have the right amount
of noise.
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A Verifiable Secret-Sharing Scheme

A
(

n
n/2+2

)
Verifiable Secret-Sharing scheme consists of a sharing algorithm which

takes as input a secret s and produces n-shares s1, ..., sn. These shares have
the property that for any T ⊂ {1, . . . n}, |T | < n/2 + 2 it is the case that
{si}i∈T is information theoretically independent from s. However, for any S ⊆
{1, . . . n}, |S| ≥ n/2 + 2, it is the case that the reveal algorithm, when given
{si}i∈S , can reconstruct s. In a traditional interactive setting we require that all
non-cheating parties agree on the reconstructed secret. We use a modification
of the Cramer et al. [CDD+99] verifiable secret sharing scheme; we do not need
to deal with interactive adversaries, nor players, so the scheme is significantly
simplified. We present the sharing and revealing algorithms in our full version.

Definition 5. A vector (e1, ..., en) ∈ Fn is n/2 + 2−consistent if there exists a
polynomial w of degree at most n/2 + 1 such that w(i) = ei for 0 ≤ i < n.

Definition 6. Given two shares si = (i,ai = (ai1, . . . , ain), bi = (b1i, . . . , bni))
and sj = (j,aj(aj1, . . . , ajn), bj = (b1j , . . . , bnj)), we say that they are pairwise
consistent if aij = bij and aji = bji.

Definition 7. For our purposes it is useful to note that given the n× n matrix

http://eprint.iacr.org/
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f(1, 1) f(1, 2) . . . f(1, n)
f(2, 1) f(2, 2) . . . f(2, n)

...
...

. . .
...

f(n, 1) f(n, 2) . . . f(n, n)

⎤⎥⎥⎥⎦ ,

that a share si simply corresponds to the ith row and column of the matrix. We
will call this the matrix representation of the shares. Notice that when given in
the matrix representation, any two shares are necessarily pairwise consistent.
Given a set of n pairwise consistent shares s = (s1, ..., sn), we define Ms as the
n× n matrix representation of the shares.
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Abstract. In the past few years, the focus of research in the area of statistical
data privacy has been in designing algorithms for various problems which satisfy
some rigorous notions of privacy. However, not much effort has gone into de-
signing techniques to computationally verify if a given algorithm satisfies some
predefined notion of privacy. In this work, we address the following question:
Can we design algorithms which tests if a given algorithm satisfies some specific
rigorous notion of privacy (e.g., differential privacy)?

We design algorithms to test privacy guarantees of a given algorithm A when
run on a dataset x containing potentially sensitive information about the individ-
uals. More formally, we design a computationally efficient algorithm Tpriv that
verifies whether A satisfies differential privacy on typical datasets (DPTD) guar-
antee in time sublinear in the size of the domain of the datasets. DPTD, a similar
notion to generalized differential privacy first proposed by [3], is a distributional
relaxation of the popular notion of differential privacy [14].

To design algorithm Tpriv , we show a formal connection between the testing
of privacy guarantee for an algorithm and the testing of the Lipschitz property
of a related function. More specifically, we show that an efficient algorithm for
testing of Lipschitz property can be used as a subroutine in Tpriv that tests if an
algorithm satisfies differential privacy on typical datasets.

Apart from formalizing the connection between the testing of privacy guaran-
tee and testing of the Lipschitz property, we generalize the work of [21] to the
setting of property testing under product distribution. More precisely, we design
an efficient Lipschitz tester for the case where the domain points are drawn from
hypercube according to some fixed but unknown product distribution instead of
the uniform distribution.

1 Introduction

The trend towards data driven decision making has resulted in many commercial data
sharing platforms like BlueKai, TellApart or Criteo. These platforms extensively collect
and share user data with third-parties (e.g., advertisers) to enhance specific user expe-
rience (e.g., better behavioral targeting). Since the data which gets shared is extremely
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rich in user information, it poses serious privacy concerns about the users’ information
contained in the data [23,6]. A more cautious approach would be to require third-party
clients to submit their algorithms (e.g. as binary executables or as programs) and run
it “in-house” (i.e., within the data sharing platform itself) and only release the outputs
of their algorithms. But what if the output of the algorithm itself reveals some private
information? Fortunately, there are notions of privacy (e.g. differential privacy [14])
which impose strict privacy requirements on the algorithm computing on the data and
guarantee that the output of the algorithm does not disclose too much information (pro-
vided the algorithm satisfies these requirements). There still remains the nagging ques-
tion that these algorithms come from third-parties. How does one ensure that they have
implemented their algorithms in a way which meet the specifications of the privacy-
requirements?

One approach (e.g. [25,30,29]) that has been taken to address the above problem is
to require clients to write their programs using a specific set of trusted built-in functions
provided by the platform. The platform ensures (either statically or at run time) that the
implementation complies by the rules of using only the built-in functions while operat-
ing on the private data. Another approach [21] based on property reconstruction allows
arbitrary programs and uses the global sensitivity framework of [14] as the underlying
privacy mechanism. However, this approach provably [1] requires prohibitively huge
running time. Another approach [26] uses the algorithmic framework of [32,27] to al-
low arbitrary programs but the utility guarantees are limited by the guarantees of the
framework.

In this work, we propose a new approach to the above problem which we call privacy
testing. We do this by formulating the above problem in the well-studied framework
of property testing [31,17]. Property testing is concerned with approximately deciding
whether an input object (e.g. a graph or a function) satisfies a given property (e.g. con-
nectivity or monotonicity). In the same spirit, we treat algorithm A as an object (e.g.
as a family of functions) which is required to satisfy some fixed property, specifically,
the property of being private under some well-defined notion of privacy. The goal is
to design efficient algorithms which can test if A satisfies the privacy definition under
consideration.

In this work, we design an algorithm Tpriv to test if an untrusted algorithmA satisfies
a distributional relaxation of the popular notion of differential privacy [10,14,11,12].
Roughly speaking, differential privacy guarantees that the output of an algorithm A
does not depend “too much” on any particular record of the underlying dataset x. The
distributional relaxation we adhere to in our work is called differential privacy on typi-
cal datasets (DPTD). DPTD ensures a similar guarantee as differential privacy, except
that the guarantee is now only over typical data sets, namely, datasets with sufficiently
high probability mass under a fixed data generating distribution. DPTD is a special case
of generalized differential privacy from [3].

To test for DPTD, we show a new connection between differential privacy and the
problem of testing the Lipschitz property of functions first studied by [21]. Informally, a
function f(x1, . . . , xd) is Lipschitz if changing at most one input of f arbitrarily while
keeping the other inputs fixed does not change the value of f drastically. For testing
algorithm A for the property of being DPTD, we view A as a family of functions.
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We show that testing DPTD reduces to testing the property that every function in the
family is simultaneously Lipschitz. We allowA to be an arbitrary randomized algorithm
(indeed, most privacy preserving algorithms are randomized) but, in this work, restrict it
to have finite domain and range. While property testing algorithms usually only require
black-box access to the object, in this exploratory work, we assume oracle access to
values Pr[A(x) = r] given arbitrary domain point x and range point r. (We discuss
these assumptions in more detail in Section 7.)

Going beyond privacy testing, we show how to convert an arbitrary algorithmA into
an algorithm which always satisfies DPTD. We test algorithm A for DPTD and only if
the tester accepts, we allow it to be run on the private data. Details appear in Section 4.2.

Property testing of functions deals with algorithms which can distinguish between
functions which satisfy a given property P (in our case, the Lipschitz property) from
those which are far from the property. A function f is far from propertyP if the distance
between f and every member of P (where we view P as the set of functions satisfying
P) is large under a suitable definition of distance between functions. In the standard
property testing, the distance between functions f and g is given by Pr[f(x) �= g(x)]
where x is chosen uniformly from the domain. We refer to this as property testing un-
der uniform distribution. While previous works [21,2,7] studied Lipschitz testing under
uniform distribution, in this work we focus on the setting when the distribution on the
underlying data set is an unknown product distribution. This is important to test the
notion of DPTD for a large class of distributions (and not merely the uniform distri-
bution). Property testing under unknown distribution is a well-studied area under the
name of distribution free testing [19] with many positive and negative results [19,20].
In this work, we give the first Lipschitz tester which works for arbitrary unknown prod-
uct distribution with nearly the same running time as the Lipschitz tester for the uniform
distribution from [21].

1.1 Summary of Our Contributions

Formulate testing of data privacy property as Lipschitz property testing. In this paper
we initiate the study of testing privacy properties of a given candidate algorithm A.
The specific privacy property that we test is differential privacy on typical datasets
(DPTD) (see Definition 3.2). In order to design a tester for DPTD property, we cast
the problem of testing DPTD property as a problem of testing the Lipschitz property.
(See Theorem 4.1.) The problem of testing the Lipschitz property was initially proposed
by [21].

Design a generic transformation to convert an algorithm A to its DPTD variant. We
design a generic transformation to convert a candidate algorithmA to its DPTD variant.
(See Theorem 4.2.)

Lipschitz testers over product distributions. In order to allow our privacy tester to be
effective for a large class of data generating distributions, we extend the existing Lips-
chitz testers to work with product distributions. We give the first efficient tester for the
Lipschitz property on the hypercube domain which works for arbitrary product distri-
bution. (See Theorem 5.1.) Previous works [21,2,7] on Lipschitz testing focuses on the
case of uniform distribution.
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Concrete instantiation of privacy testers based on old and new Lipschitz testers. We
instantiate privacy tester with the Lipschitz tester described in the previous item to get a
concrete instantiation of the privacy tester. This also leads to a concrete instantiation of
Item 2 mentioned above. We also instantiate privacy testers based on the state-of-the-art
Lipschitz tester from [7] for the uniform distribution. This is summarized in Section 6.

1.2 Related Work

Recently, various notions of data privacy have been proposed such as k-anonymity [33],

-diversity [24], differential privacy [14], noiseless privacy [4], generalized differential
privacy [3] and natural differential privacy [5]. With known attacks (e.g. [15]) on k-
anonymity and 
-diversity, privacy community has pretty much converged to theoret-
ically sound notions of privacy like differential privacy. In this paper, we work with
the definition of differential privacy on typical datasets (DPTD) (Definition 3.2). DPTD
is a special case of generalized differential privacy (GDP), where we assume that the
auxiliary information Aux in the GDP definition is all but one entry in the underlying
dataset. The primary difference between GDP and the other related definitions is that
it incorporates both the randomness in the underlying dataset x and the randomness of
the algorithmA, where as other notions (like noiseless privacy and differential privacy)
consider either the randomness of the data or the algorithm.

[21] initiated the study of testing (and reconstruction) of the Lipschitz property. Sub-
sequently, [2,7] gave Lipschitz testers with [7] being the current state-of-the-art for the
Boolean hypercube domain. All these testers work for the uniform distribution on the
domain. In our work, we allow arbitrary product distribution on the underlying domain.
Thus, our work is closely related to the work done in the area of distribution free test-
ing introduced by Goldreich et al [17]. (See also [19].) They noted that many graph
properties have testers with query complexity independent of the input size when the
points are drawn from the uniform distribution (e.g. bipartiteness, k-colorability etc.),
but the distribution free testers for the same properties do not have query complexity
independent of the input size. In contrast, Halevi and Kushilevitz gave a series of posi-
tive results for distribution-free testing in [20] and [19]. In particular, they proved that
there are testers with time complexity independent of the domain size for the proper-
ties like sparse graph connectivity [19] and juntas, parities, low-degree polynomials and
Boolean literals [20].

1.3 Organization of the Paper

In Section 2, we review the concepts of general property testing and provide the defi-
nition of the Lipschitz property testers that we use in our work. In Section 3, we show
the connection between testing of differential privacy on typical datasets (DPTD) and
Lipschitz property testing. Section 4 is dedicated to our main result giving the pri-
vacy tester (Section 4.1) and application of privacy tester in obtaining DPTD-algorithms
(Section 4.2). In Section 5, we present our new Lipschitz property testers over product
distributions on the hypercube domain. In Section 6, we instantiate privacy testers with
Lipschitz testers. Lastly, in Section 7, we conclude with discussion about the limitations
of our current approach and some open problems.
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2 Preliminaries for Lipschitz Property Testing

Property testing [17,31] is concerned with distinguishing objects which satisfy a given
property P from those which are far from satisfying it. When P is a property of func-
tions f : X d → R over a finite domainX d, distance to the property is usually measured
in terms of the fraction of points in the domain X d on which f must be modified in or-
der to satisfy the property. A more general notion of distance is defined with respect to
a probability distribution on the domain X d.

Definition 2.1 (Distance to a property). Let P be a property (i.e., a set) of functions
f : X d → R. Let Π be a distribution on X d. The distance distΠ(f, g) between func-
tions f, g : X d → R (with respect to the distribution Π) is Prx∼Π [f(x) �= g(x)]. The
distance distΠ(f,P) of a function f from the property P is ming∈P distΠ(f, g). We
say that f is ε-far from the property P if distΠ(f,P) ≥ ε.

In this work, we study the Lipschitz property of functions, first considered in the context
of property testing by [21].

Definition 2.2. A real-valued function f : X d → R is c-Lipschitz if |f(x) − f(y)| ≤
c · dH(x, y) where dH(x, y) is the Hamming distance between x and y, that is, the
number of coordinates in which x an y differ. We say f is Lipschitz if f is 1-Lipschitz.

Next we define a Lipschitz tester. Our definition differs from the standard definition of
a property tester (e.g., as used in [21]) in two aspects: (i) we only require a Lipschitz
tester to distinguish Lipschitz functions from functions which are ε-far from (1 + δ)-
Lipschitz for some fixed δ ≥ 0 and (ii) we measure the distance between functions with
respect to a fixed probability distribution Π on the domain. The relaxation of Condition
(i) has been considered earlier e.g. in [28] for the property of having small diameter and
in [21] for the Lipschitz property. The generalization of Condition (ii) is well-studied
in property testing under the name distribution free testing. See e.g. [19]. We remark
that setting (1 + δ) = 1, ρ = 1/3 and Π to be the uniform distribution on X d in
the definition below recovers the standard definition of property tester (in our case, the
Lipschitz tester as defined in [21]).

Definition 2.3 (Approximate Lipschitz Tester). A (1+δ)-approximate Lipschitz tester
TLip(ε, ρ, δ, d) is a randomized algorithm that gets as input: (i) oracle access to func-
tion f : X d → R; (ii) oracle access to independent samples from distribution Π on
X d and (iii) a few parameters, namely, the proximity parameter ε, the error probability
parameter ρ, the approximation parameter δ and the parameter d. The tester provides
the following guarantee. If f is Lipschitz, then the algorithm accepts. If f is ε-far from
the (1 + δ)-Lipschitz property with respect to distribution Π , then with probability at
least 1− ρ, the algorithm rejects.

We say the Lipschitz property can be tested with one-sided error if there exists a Lip-
schitz tester as defined above. Further, we say it can be tested nonadaptively if all the
queries made by TLip to its oracles are made in advance without the knowledge of
answers to the previous queries.
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3 Differential Privacy and Its Connections to Testing the Lipschitz
Property

Intuitively, the output of a differentially private algorithm is almost the same whether
or not a specific person’s data is present in the dataset. Datasets are modeled as fixed-
length vectors from an arbitrary domain X d, where each coordinate represents one per-
son’s data. (For example, when X d is {0, 1}d, datasets consist of d-bit vectors and each
person’s data is a Boolean value.) An algorithm is differentially private if it has similar
distribution on outputs when run on datasets which are close in Hamming distance. The
Hamming distance between x and x′, denoted dH(x, x′), is the number of coordinates
on which x and x′ differ.

Definition 3.1 ((α, β)-Differential Privacy [14,13]). A randomized algorithm A is
(α, β)-differentially private if for any two datasets x and x′ in X d, and for all mea-
surable sets Z ⊆ Range(A), the following holds:

Pr[A(x) ∈ Z] ≤ eα·dH(x,x′) Pr[A(x′) ∈ Z] + β. (1)

If β = 0, algorithm A is called α-differentially private.

In this work, we focus on differentially private algorithms which output values in a
finite range space Z . Such algorithms have a clean characterization in terms of the
Lipschitz property. Specifically, define functions fz : x→ R for every z ∈ Z by setting
fz(x) = log Pr[A(x) = z]. We make the following simple but important observation.

Observation 3.1 (Differential Privacy as a Lipschitz Condition). AlgorithmA is α-
differentially private if and only if for every z ∈ Z , function fz is α-Lipschitz.

Therefore, one could check if an algorithm specified by functions fz is differentially pri-
vate, given oracle access to these functions, if one could design a procedure that decides
if an input function is Lipschitz. However, as noted in [21], deciding if a given function
is Lipschitz is NP-hard. Can we still efficiently check for some relaxation of differ-
ential privacy? Towards answering this question, we take motivation from relaxations
of differential privacy considered in the literature based on distributional assumptions.
Specifically, we adapt a particular relaxation from [3] and show that it can indeed be
tested using a connection to testing the Lipschitz property. The relaxation we consider
assumes that datasets come from some fixed distribution Π on the set of all datasets.
The notion of privacy is relaxed from the worst case guarantee over all pairs of datasets
(i.e., differential privacy) to a notion where the differential privacy condition is required
to hold only on datasets which are more likely to occur (i.e., have high-probability mass
under distribution Π). We refer to this notion as differential privacy on typical datasets
(DPTD) (Definition 3.2). As mentioned earlier, DPTD is an adaptation of more general
definition introduced in [3] under the name of generalized differential privacy (GDP).
GDP was defined in the context of a related distributional notion of privacy called noise-
less privacy, first introduced by [4]. A related notion called natural differential privacy
has also been recently proposed by [5]. Since we focus on DPTD in this work, we do not
discuss noiseless privacy (and its variants) further. Next we give a formal definition of
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DPTD. The definition is parametrized by three parameters α, β and γ. The parameters
α and β play the same role as in the differential privacy definition, while the parame-
ter γ bounds the probability of the “bad” set B of databases on which the differential
privacy condition fails to hold.

Definition 3.2 ((α, β, γ)-Differential Privacy on Typical Datasets (DPTD)). Let Π
be a fixed distribution on the domain X d of datasets. A randomized algorithm A is
(α, β, γ)-differentially private on typical datasets, if there exists a subset B ⊆ X d

satisfying Prx∼Π [x ∈ B] ≤ γ such that condition (1) of Definition 3.1 holds for any
two datasets x, x′ ∈ X d \ B and all measurable sets Z ⊆ Range(A). The probability
in (1) is over the randomness of the algorithm A.

Our main observation is that for algorithms which output values in a finite range, test-
ing DPTD can be reduced to testing the Lipschitz property (of a family of functions).
Assume again that the output space of A is a finite set Z and define functions fz as
above.

Observation 3.2 (DPTD for Algorithms with Finite Range). AlgorithmA is (α, 0, γ)-
differentially private if and only if the following two conditions hold: (i) there exists a
subset B ⊆ X d such that Prx∼Π [x ∈ B] ≤ γ; and (ii) for every z ∈ Z , function fz is
α-Lipschitz on the set X d \B.

Recall that a function f is ε-close to property P with respect to distribution Π if there
is a function g which satisfies P and Prx∼Π [f(x) �= g(x)] ≤ ε. Observation 3.2, in
particular, implies the following. If algorithmA satisfies (α, 0, γ)-DPTD, then for every
z ∈ Z , function fz is γ-close to the α-Lipschitz property with respect to the distribution
Π . However, to apply a Lipschitz tester, we need a converse of this statement. The
following lemma gives the converse.

Lemma 3.1 (Connection between DPTD and Testing the Lipschitz Property). If
for every z ∈ R, function fz is εz-close to the α-Lipschitz property with respect to
the distribution Π , then A is (α, 0,

∑
z εz)-DPTD. In particular, if A is not (α, 0, γ)-

DPTD, then there exists z ∈ Z such that fz is γ/|Z|-far from the α-Lipschitz property.

Proof. Since every fz is εz-close to the α-Lipschitz property with respect to the distri-
bution Π , there exists Bz corresponding to each fz such that (i) fz is α-Lipschitz on
X d \ Bz ; and (ii) Prx∼Π [x ∈ Bz ] ≤ εz . Let B be the union over all z of the sets Bz .
Applying the union bound, we get Prx∼Π [x ∈ B] ≤

∑
z εz . Then the first part of the

lemma follows from Observation 3.2 with B as the required set. The second part of the
lemma follows from an averaging argument. �

3.1 Discussion of Differential Privacy on Typical Datasets

Differential privacy on typical datasets (DPTD) in Definition 3.2 is very similar to
the definition of differential privacy, except in DPTD there exists a set of datasets B
where the differential privacy condition (i.e., Equation 1 of Definition 3.1) does not
hold. Moreover, the probability mass of B under the data generating distribution Π is
at most γ. If we assume β = 0 for simplicity, then at a high-level DPTD implies that for
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any two datasets x and x′ from the set X d \ B, which have sufficient probability mass
under Π and differ in k-entries, the distribution of A(x) and A(x′) have a statistical
distance of 2kα when kα is less than one.

In differential privacy, the scale of the parameters α and β are typically chosen as
follows: α is chosen to be some small constant and β is chosen to be O(1/d2). With
this choice of parameters, differential privacy ensures that even in the presence of any
auxiliary information, from the output of the algorithmA, an adversary draws the same
conclusions about any entry in the data set irrespective of its presence or absence. (See
[22] for more discussion.) Since α and β play the same role in DPTD, we think of α
and β of the same order as discussed for differential privacy. Additionally, throughout
this paper we think of γ and β to be of the same order.

In [3], a generalization of DPTD has been stated under the name of generalized
differential privacy (GDP). Under suitable choice of auxiliary information (i.e., the ran-
dom variable Aux), the definition of [3] reduces to Definition 3.2. More precisely, for
every data entry xi, the auxiliary information in the GDP condition (of the definition of
GDP) corresponds to all entries in the data set x except xi.

4 Testing and Reconstruction of Differential Privacy on Typical
Datasets

In this section we present an algorithm Tpriv (Algorithm 1) which “tests” whether a
given algorithm A is private. The guarantee of the testing algorithm Tpriv is “asym-
metric”, i.e., if algorithm A is α-differentially private, then the tester accepts, and if
the algorithm A is not (α, 0, γ)-DPTD, then the tester rejects with high probability. It
is worth highlighting that this style of utility guarantee deviates from the conventional
utility guarantees in property testing literature (where the utility guarantee is symmetric
over a particular property P).

Next we use Tpriv as a subroutine to design a “reconstruction” algorithmAprivGen

(Algorithm 2). The algorithmAprivGen is guaranteed to be differential private on typ-
ical datasets under the data generating distribution Π . Moreover, if A is differentially
private, then the output of AprivGen equals the output of A. (See Theorem 4.2 for the
exact parameters.)

4.1 Tester for Differential Privacy on Typical Datasets

In this section, we prove the following theorem.

Theorem 4.1 ((α, β, γ, δ)-Privacy testing). Let A be a randomized algorithm which
outputs values in the finite set Z . Let Π be a data generating distribution. Let TLip be
a δ-approximate Lipschitz tester. Suppose there is an oracle OA which for every value
z ∈ Z and for every x ∈ X d allows constant time access to the value Pr(A(x) = z)
(where the probability is only over the randomness of the algorithmA). Then algorithm
Tpriv (Algorithm 1), given access to OA, satisfies the following.
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– If algorithm A is α-differentially private, then Tpriv accepts.
– If algorithmA is not (α(1+δ), 0, γ)-DPTD, then the tester rejects with probability

at least 1− β.

The algorithm Tpriv uses TLip as a subroutine and runs in time

O(|Z| · Run-time

(
TLip(

γ

|Z| , β, δ, d)
)
.

At high level, algorithm Tpriv (Algorithm 1) does the following. For each possible
output z ∈ Z , it defines a function fz (with the domain X d). It then invokes algorithm
TLip to test fz for the Lipschitz property. It accepts iff TLip accepts all fz .

Algorithm 1 Tpriv: Tester of Differential Privacy on Typical Data Sets

Require: Algorithm A, data generating distribution Π , data domain X d, output range Z, privacy
parameters α, γ ∈ (0, 1], failure probability β ∈ (0, 1] and approximation parameter δ.

1: Let TLip be a δ-approximate Lipschitz tester defined in Definition 2.3.
2: for all values z ∈ Z do
3: Define function fz : X d → R by setting fz(x) =

1
α
log Pr(A(x) = z).

4: Run TLip on fz with proximity parameter γ
|Z| and failure probability β.

5: If TLip rejects, then reject.
6: end for
7: Accept.

Proof. We use Lemma 3.1 and Observation 3.1 to prove the theorem. To prove the first
item, assume A is α-differentially private. Then Observation 3.1 implies that for every
z ∈ Z , function fz (in Line 4 of Algorithm 1) is Lipschitz. Since Tpriv always accepts a
Lipschitz function, we get that Tpriv accepts, as required. For the second item, assume
A is not (α, 0, γ)-DPTD. Then Lemma 3.1 implies that there exists z∗ such that fz∗ is
γ/|Z|-far from being (1 + δ)-Lipschitz. From definition of TLip, it follows that TLip

rejects fz∗ with probability at least 1 − β, and therefore, so does Tpriv . The running
time of Tpriv follows from the fact that the tester TLip is invoked at most |Z| times.

�
The proof above used the second part of Lemma 3.1 and used an arbitrary Lipschitz
tester TLip. It is possible to obtain faster privacy testers using the (stronger) statement
given in the first part of Lemma 3.1. This requires making mild assumptions about the
guarantees of the Lipschitz tester. We defer this analysis to the full version.

4.2 Application of DPTD Tester to Ensure Privacy of a Given Candidate
Algorithm

In this section we will demonstrate how one can use algorithm Tpriv (Algorithm 1)
designed in the previous section to guarantee (α, β, γ)-differential privacy on typical
datasets to the output produced by a candidate algorithm A. The details are given in
Algorithm 2.
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Algorithm 2 AprivGen: DPTD mechanism
Require: Dataset x, candidate algorithm A, testing algorithm Tpriv , data generating distribution

Π , data domain X d, output set Z, privacy parameters α, β, γ
1: Run Tpriv with parameters A,Π,X d,Z, privacy parameters α, γ, and failure parameter β
2: If Tpriv accepts, then output A(x). Otherwise, output FAIL.

The guarantees for Algorithm 2 are given below.

Theorem 4.2 (((1+δ), α, β, γ)-DPTD mechanism). Let TLip be a (1+δ)-approximate
Lipschitz tester (see Definition 2.3) used in the testing algorithm Tpriv (Algorithm 1).
Under the assumptions of Theorem 4.1, algorithmAprivGen (Algorithm 2) satisfies:

– (privacy) Algorithm AprivGen (Algorithm 2) is (α(1 + δ), β, γ)-DPTD.
– (utility) If the candidate algorithm A is α-differentially private, then the output

distributions of algorithm AprivGen (Algorithm 2) and A are identical.

We defer the proof of this theorem to the full version.

5 Lipschitz Property Testing on the Hypercube under Product
Distribution

In this section, we present a δ-approximate Lipschitz tester (see Definition 2.3) for
functions defined on X d = {0, 1}d when the underlying distribution on {0, 1}d is an
unknown product distribution. Specifically, the points in the dataset are distributed ac-
cording to the product distribution Π = Ber(p1) × Ber(p2) × ...,×Ber(pd) where
Ber(p) denotes the Bernoulli distribution with probability p. Namely, Ber(p) is 1 with
probability p and 0 with probability 1− p. Therefore, each vertex in x ∈ {0, 1}d has an

associated probability mass px =
∏
i∈[d]

pxi

i (1− pi)
1−xi .

In this section, we view the domain {0, 1}d as vertices of the hypercube graphHd =

({0, 1}d, E). The edge set E consists of pairs {x, y} of vertices x, y ∈ {0, 1}d which
differ in exactly one coordinate (i.e., there exists i ∈ [d] such that xi = yi and for all
j �= i, xj = yj). Observe that f is Lipschitz on {0, 1}d if and only if for every edge
{x, y} ∈ E, the following holds: |f(x) − f(y)| ≤ 1. An edge which does not satisfy
this condition is called a violated edge.

5.1 Algorithm for Testing the Lipschitz Property on the Hypercube

In this section, we prove the following theorem which gives a 1-approximate Lipschitz
tester for δZ-valued functions. A function is δZ valued if it produces outputs in integral
multiples of δ. The running time of our tester is stated in terms of the image diameter
of the input function f .



428 K. Dixit et al.

Definition 5.1 (Image Diameter). The image diameter of a function f : X d → R,
denoted by ImD(f), is the difference between the maximum and the minimum values
attained by f , i.e., maxx∈X d f(x)−minx∈X d f(x).

Theorem 5.1. Let {0, 1}d be the domain from which the dataset are drawn according
to a product probability distribution Π = Ber(p1) × Ber(p2) × ...,×Ber(pd). The
Lipschitz property of functionsf : {0, 1}d → δZ on these datasets can be tested non-
adaptively and with one sided error probability ρ in O(d·min{d,ImD(f)}

δ(ε−d2δ) ln( 2ρ)) time for
δ ∈ (0, ε

d2 ). Here ImD is the image diameter defined in Definition 5.1.

By discretizing, as in proof of Corollary 1.2 in [21], we obtain a (1 + δ)-approximate
Lipschitz tester for real-valued functions.

Corollary 5.1. Let {0, 1}d be the domain from which the dataset are drawn according
to a product probability distribution Π = Ber(p1)× Ber(p2)× ...,×Ber(pd). There
is an algorithm that on input parameters δ ∈ (0, ε

d2 ), ε ∈ (0, 1), d and oracle access to
a function f : {0, 1}d → R has the following behavior: It accepts if f is Lipschitz and
rejects with probability at least 1 − ρ if f is ε-far (with respect to the distribution Π)
from (1 + δ)-Lipschitz and runs in O(d·min{d,ImD(f)}

δ(ε−d2δ) ln( 2ρ )) time. Here ImD is the
image diameter defined in Definition 5.1.

Theorem 5.1 is proved in Section 5.2. To state the proof we need the following technical
result stated in lemma 5.1.

We define a distribution DE on edges of the hypercube where the probability mass
of an edge {x, y} is given by px+py

d . Note that
∑

(x,y)∈E(Hd)
(px+py)

d = 1. Thus, DE

is well-defined. Our tester is based on detecting violated edges (that is, edges which vi-
olate the Lipschitz property) sampled from distribution DE . Our main technical lemma
(Lemma 5.1) gives a lower bound on the probability of sampling a violated edge ac-
cording to distribution DE for a function that is ε-far from Lipschitz. (Recall that ε-far
is measured with respect to the distribution Π .)

Lemma 5.1. Let function f : {0, 1}d → δZ be ε-far from Lipschitz. Let V (f) denote
the set of edges in Hd violated by f . Then∑

(x,y)∈V (f)

(px + py)

d
≥ δ(ε− d2δ)

d · ImD(f)

Here ImD is the image diameter defined in Definition 5.1.

We prove the above lemma in section 5.3.

5.2 Lipschitz Tester

In this section we prove Theorem 5.1 and Corollary 5.1. We first present the algorithm
stated in Theorem 5.1.
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Algorithm 3 Lipschitz Tester

Require: Data domain {0, 1}d, product distribution on dataset Π = Ber(p1)×Ber(p2)× ...×
Ber(pd), failure probability ρ, proximity parameter ε′, discretization parameter δ.

1: Set ε = ε′ − d2δ.
2: Sample t =

⌈
2
ε
ln( 2

ρ
)
⌉

vertices z1, z2, ..., zt independently from Hd according to the distri-

bution Π .
3: Let r = maxt

i=1 f(zi)−mint
i=1 f(zi).

4: If r > d, reject.

5: Sample
⌈

dr
δε

ln( 2
ρ
)
⌉

edges independently with each edge (x, y) picked with probability
(px+py)

d
from the hypercube Hd.

6: If any of the sampled edges is violated, then reject, else accept.

Proof (of Theorem 5.1). First observe that if input function f is Lipschitz then Algo-
rithm 3 always accepts. This is because a Lipschitz function f has image diameter (see
Definition 5.1) at most d and hence cannot be rejected in Step 4. Moreover, it does not
have any violated edges and hence cannot be rejected in Step 6. Next consider the case
when f is ε-far from Lipschitz. Towards this we first extend Claim 3.1 of [21] about
sample diameter r to our setting where the distance (in particular, the notion of ε-far) is
measured with respect to a product distribution.

Claim. Value r computed on Line 3 is at most ImD(f) and with probability at least
1− ρ

2 , f is ε-close to having diameter at most r.

Proof. Sort the points in {0, 1}d according to their function values in non-decreasing
order. Let L be the first 
-points such that their probability mass sums up to ε

2 and R
be the set of last 
′ points such that their probability mass sums up to ε

2 . The rest of the
proof is very similar to the proof of Claim 3.1 in [21], so we omit the details here. �

Having established Claim 5.2, the rest of the proof of Theorem 5.1 is identical to [21].
We omit the details. �

5.3 Repair Operator and Proof of Lemma 5.1

We show a transformation of an arbitrary function f : {0, 1}d → δZ into a Lips-
chitz function by changing f on certain points, whose probability mass is related to the
probability mass (with respect to DE) of the violated edges of Hd. This is achieved
by repairing one dimension of Hd at a time as explained henceforth. To achieve this,
we define an asymmetric version of the basic operator of [21]. The operator redefines
function values so that it reduces the gap asymmetrically according to the Hamming
weights (and probability masses in-turn) of the endpoints of the violated edge. This is
the main difference from previous approaches ([21], [2]) which do not work if applied
directly, because of the varying probability masses of the vertices with respect to the
Hamming weight, defined as |x| for a vertex x. We first define the building block of the
repair operator which is called the asymmetric basic operator.
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Definition 5.2 (Asymmetric basic operator). Given f : {0, 1}d → δZ, for each vio-
lated edge {x, y} along dimension i, where f(x) < f(y)− 1, define Bi as follows.

1. If |x| > |y|, then Bi[f ](x) = f(x) + (1− pi)δ and Bi[f ](y) = f(y)− piδ
2. If |x| < |y|, then Bi[f ](x) = f(x) + piδ and Bi[f ](y) = f(y)− (1− pi)δ

Now we define the repair operator.

Definition 5.3 (Repair Operator). Given f : {0, 1}d → δZ, Ai[f ](x) is obtained from
f by several applications of the asymmetric basic operator (see Definition 5.2) Bi along
dimension i followed by a single application of the rounding operator. Specifically, let
f ′ be the function obtained from f by applying Bi repeatedly until there are no violated
edges along the i-th dimension. Then, Ai[f ] is defined to be R[f ′] where the rounding
operator R rounds the function values to the closest δZ-valued function.

In effect, we have the following picture for the repair operation.

f = f0
A1−−→ f1

A2−−→ f2 −→ · · · −→ fd−1
Ad−−→ fd.

Now we define a measure called violation score which will be used to show the progress
of repair operation. As shown later, the violation score is approximately preserved along
any dimension j �= i when we apply the repair operator to repair the edges along
dimension i. Note that the violation score closely resembles the violation score in [21]
except that it depends on the function value as well as the probability masses of the
end-points of the edge.

Definition 5.4. The violation score of an edge with respect to function f , denoted by
vs({x, y}), is max(0, (px+ py)(|f(x)− f(y)| − 1)). The violation score along dimen-
sion i, denoted by V Si(f), is the sum of violation scores of all edges along dimension i

The violation score of an edge {x, y} is positive iff it is violated and violation score of
a δZ valued function is contained in the interval [δ(px + py), ImD(f)(px + py)]. Let
V i(f) denote be the set of edges along dimension i violated by f . Then

δ ·
∑

{x,y}∈V i(f)

(px + py) ≤ V Si(f) ≤
∑

{x,y}∈V i(f)

(px + py) · ImD(f) (2)

Lemma 5.2 shows that Ai does not increase the violation score in dimensions other than
i more than the additive value of δ.

Lemma 5.2. For all i, j ∈ [d], where i �= j, and every function f : {0, 1}d → δZ, the
following holds.

– (progress) Applying the repair operatorAi does not introduce new violated edges in
dimension j if the dimension j is violation free, i.e. V Sj(f)=0⇒ V Sj(Ai[f ])=0.

– (accounting) Applying the repair operator Ai does not increase the violation score
in dimension j by more than δ, i.e. V Sj(Ai[f ]) ≤ V Sj(f) + δ.
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Application of the repair operator Ai entails several applications of the basic operator
Bi followed by a single application of the rounding operatorR. In Lemma 5.3, we show
that the applications of Bi does not increase the violation score along the remaining
dimensions. In Claim 5.3, we show that the second step (rounding) is not too harmful
for the remaining dimensions either. Finally, we use Lemma 5.3 and Claim 5.3 to prove
Lemma 5.2.

Lemma 5.3. Suppose f : Hd → R is such that for every edge {x, y} in Hd, the
difference f(x) − f(y) ∈ δZ. Let f ′ be the function obtained from f by applying Bi

repeatedly until there are no violated edges along the i-th dimension. Then for every
dimension j �= i, V Sj(f

′) ≤ V Sj(f).

Proof. First observe that it is sufficient to prove the lemma for a single application
of the basic operator Bi. This is because for every edge {x, y}, the following holds:
f(x)− f(y) ∈ δZ⇒ Bi[f ](x)−Bi[f ](y) ∈ δZ. To see this observe that, by definition
of the basic operator, Bi[f ](x)−Bi[f ](y) is either f(x)− f(y)+ δ or f(x)− f(y)− δ
and we already started with the assumption that f(x) − f(y) ∈ δZ. Note that before
the application of repair operations, the function f has range in δZ and the assumption
holds true. Also, it holds true for the further applications of Bi as shown above. Next
we prove the lemma for one step of the basic operator.

Following the proof outline of a similar proof in [21], we show that application of
the asymmetric basic operator in dimension i does not increase the violation score in
dimension j �= i. Standard arguments [16,9,21,2] show that it is enough to analyze
the effect of applying Bi on one fixed disjoint square formed by adjacent edges that
cross dimensions i and j. (This is because edges along dimensions i and j form disjoint
squares in the hypercube. So proving the statement for one fixed square of the hyper-
cube, the full claim follows by summing up the inequalities over all such squares.)

yt

ybxb

xt

i

j

Fig. 1. Image courtesy [21]

Consider the two dimensional function f : {xb, xt, yb, yt}→R where {xb, xt, yb, yt}
are as positioned in the figure. Assume that the basic operator is applied along the
dimension i. We show that the violation score along dimension j does not increase.
Assume that the violation score along edge {xb, xt} increases. First, assume that the
Bi[f ](xt) > Bi[f ](xb). (The other case is very similar and we will prove it later.) Then
Bi increases f(xt) and/or decreases f(xb). Assume that Bi increases f(xt). (The other
case is symmetrical.) This implies that {xt, yt} is violated and f(xt) < f(yt). Recall
that the repair operator is applied only if the edge is violated. Therefore f(yt)−f(xt) >
1. Since f(yt)− f(xt) ∈ δZ and 1

δ is an integer, we have

f(yt) ≥ f(xt) + 1 + δ
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The above inequality is crucial for the remaining proof of the lemma 5.1. Now consider
the cases when either the bottom edge is also violated or is not violated.

If the bottom edge is not violated then we have f(xb) ≥ f(yb) − 1 and f(xb) and
f(yb) are not modified by the basic operator. Since vs({xt, xb}) increases, f(xt) >
f(xb) + 1 − piδ. Combining the above inequalities, we get f(yt) ≥ f(xt) + 1 + δ >
f(xb) + 2 + (1 − pi)δ ≥ f(yb) + 1 + (1 − pi)δ > f(yb) + 1. Thus the violation
score increases along {xt, xb} by (pxb

+pxt)piδ and decreases along {yb, yt} by (pyb
+

pyt)(1−pi)δ = (pxb
+pxt)

(
pi

1−pi

)
(1−pi)δ which is same as (pxb

+pxt)piδ, keeping

the violation score along the dimension j unchanged.
If the bottom edge is violated, then the increase in vs({xb, xt}) implies that f(xb)

must decrease (after application of Bi) by piδ (since |xb| < |yb|) implying f(yb)+ 1 <
f(xb)). Therefore f(xt)+piδ > f(xb)+1−piδ or f(xt) > f(yt)+1−2piδ. Therefore
f(yt) > f(xt) + 1 > f(xb) + 2 − 2piδ ≥ f(yb) + 3 − 2piδ + δ ≥ f(yb) + 1 + δ.
The last inequality is true since δ ≤ 1 and pi ≤ 1. Thus, vs({xt, xb}) increases by
at most (pxb

+ pxt)2piδ while vs({yt, yb}) decreases by (pyt + pyb
)2(1 − pi)δ =

(pxb
+ pxt)2piδ, ensuring that violation score along the vertical dimension does not

increase.
Now we turn to the case when Bi[f ](xt) < Bi[f ](xb). By the arguments very similar

to the first case, it can be proved that f(xt) ≥ f(yt)+1+ δ and the application of basic
operator decreases f(xt) by piδ and increases f(yt) by (1− pi)δ.

If the bottom edge is not violated then f(yb) ≥ f(xb)−1 and f(xb) and f(yb) are not
modified by the basic operator. Since vs({xt, xb}) increases, f(xb) > f(xt)+ 1− piδ.
Combining the above inequalities, we get f(yb) ≥ f(xb)− 1 > f(xt)−piδ ≥ f(yt)+
1 + δ(1− pi). Thus the violation score increases along {xt, xb} by (pxb

+ pxt)piδ and

decreases along {yb, yt} by (pyb
+pyt)(1−pi)δ = (pxb

+pxt)
(

pi

1−pi

)
(1−pi)δ which

is same as (pxb
+pxt)piδ, keeping the violation score along the dimension j unchanged.

If the bottom edge is violated, then the increase in vs({xb, xt}) implies that f(xb)
must increase implying f(yb) > f(xb) + 1. Therefore, the increase in vs{xb, xt}
implies that f(xb) + piδ > f(xt) − piδ + 1 or f(xb) > f(xt) − 2piδ + 1. Com-
bining the above inequalities, we get f(yb) > f(xb) + 1 > f(xt) − 2piδ + 2 ≥
f(yt)+3+δ−2piδ ≥ f(yt)+1+δ. The last inequality is true since δ ≤ 1 and pi ≤ 1.
Thus, vs({xt, xb}) increases by at most (pxb

+ pxt)2piδ while vs({yt, yb}) decreases
by (pyt + pyb

)2(1 − pi)δ = (pxb
+ pxt)2piδ, ensuring that violation score along the

vertical dimension does not increase. �

Claim (Rounding is safe). Given a, b ∈ R satisfying |a − b| ≤ 1, let a′ (respectively,
b′) be the value obtained by rounding a (respectively, b) to the closest δZ integer. Then
|a′ − b′| ≤ 1.

Proof. Assume without loss of generality a ≤ b. For x ∈ R, let )x*δ be the largest
value in δZ not greater than x. Observe that a′ ∈ {)a*δ , )a*δ + δ}. Using the fact that
)a*δ ≤ b′ ≤ )a*δ + 1 + δ, we see that if a′ = )a*δ + δ then |b′ − a′| ≤ 1 always
holds. Therefore, assume a′ = )a*δ . This can happen only if a ≤ )a*δ+δ/2. The latter
implies b ≤ )a*δ + 1 + δ/2 (using the fact that b − a ≤ 1). That is b′ �= )a*δ + 1 + δ.
In other words, b′ ≤ )a*δ + 1 again implying b′ − a′ ≤ 1, as required. �
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Proof (of Lemma 5.2). Let f ′ be the function from the statement of Lemma 5.3. Then
function Ai[f ] is obtained by rounding the values of f ′ to the closest δZ values. Since
rounding can never create new edge violations by Claim 5.3, we immediately get the
first part of the lemma. The second part follows from the observation that the rounding
step modifies each function value by at most δ/2. Correspondingly, the violation score
of an edge along the j-th dimension changes by at most 2·(δ/2)·(pu+pv) where the fac-
tor 2 comes because both endpoints of an edge may be rounded. Summing over all edges
in the j-th dimension, we get, increase in violation score ≤

∑
{u,v} δ · (pu + pv) = δ

where the last equality holds because edges along the j-th dimension form a perfect
matching and therefore the probabilities pu + pv sum to 1. �

Proof of Lemma 5.1. Using the arguments very similar to [21] as given below, we can
get the following sequence of inequalities

Dist(fi−1, fi) = Dist(fi−1, Ai(fi−1)) ≤
∑

(x,y)∈Vi(fi−1)

(px + py)

≤ 1

δ
V Si(fi−1) ≤

1

δ
V Si(f) + (d− i)δ ≤ 1

δ

∑
(x,y)∈V i(f)

(px + py) · ImD(f) + (d− i)δ

Here functions {fi}i=d
i=0 are defined in the same way as [21]. The first inequality holds

because Ai modifies f only at the endpoints points x and y of violated edge (x, y)
along dimension i, thus paying px + py. The second and fourth inequalities follow
from Equation (2) and the third inequality holds because of Lemma 5.2. Therefore, by
triangle inequality, we have

Dist(f, fd) ≤
∑
i∈[d]

Dist(fi−1, fi)

≤
∑
i∈[d]

⎛⎝ ∑
(x,y)∈V if(H)

(px + py) ·
ImD(f)

δ

⎞⎠+ (d− i)δ

≤

⎛⎝ ∑
(x,y)∈V (f))

(px + py) ·
ImD(f)

δ

⎞⎠+ d2δ

For a function which is ε-far from Lipschitz, we have Dist(f, fd) ≥ ε. Therefore, from
the above inequality, we have∑

(x,y)∈V (f)

(px + py)

d
≥ δ(ε− d2δ)

d · ImD(f)

6 Instantiation of Privacy Tester Using Lipschitz Testers

In this section, we instantiate the privacy tester of Section 4 with both known Lipschitz
testers as well as the Lipschitz tester developed in this work. The table below compares
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the current state of art Lipschitz testers on the hypercube domain. The third column
gives the “approximation factor” as defined in Definition 2.3 for the various testers.
The last row gives the result of Lipschitz tester (Section 5) developed in this work. The
discussion about the instantiations follows.

Reference Functions Approx. Factor Distribution Tester running time
[7] {0, 1}d → R 1 Uniform O(dε )

This work {0, 1}d → R (1 + δ) Product O
(

d·ImD(f)
(ε−d2δ)δ

)
First we analyze the result for the case when points are sampled from {0, 1}d ac-

cording to the uniform distribution. In this case, the running time for for (α, β, γ, δ)-

privacy testing of Tpriv (defined in theorem 4.1) is O( |Z|
2d
γ ). Let us now analyze

the running time for the same when applied to the datasets coming from the hyper-
cube domain according to some (possibly unknown) product distribution. We use the
tester given in the algorithm 3. The running time in this case is given by O(|Z| ·
Run-time

(
TLip(

γ
|Z| , β, δ, d)

)
. Choosing δ = γ

4d2|Z| , one gets the running time of the

Tpriv to be O(d
4|Z|3
γ2 ). In general, δ can be made smaller at the cost of higher run-

ning time of tester. This clearly shows the trade off between the privacy guarantee and
running time of the tester.

7 Discussions and Open Problems

In this section we discuss some of the interesting implications of our current work and
some of the new avenues it opens up. Also we state some of the open problems that
remains unresolved in our work.

Privacy: In this work, we took the first step towards designing efficient testing algo-
rithm for statistical data privacy. Our work indicates that it is indeed possible to design
efficient testing algorithms for some existing notions of statistical data privacy (e.g.,
differential privacy on typical datasets). It is important that the current paper should be
treated as an initial study of the problem and in no way should be interpreted as con-
clusive. It is interesting (and also important) to explore other rigorous notions of data
privacy, their implications, and design testers for them.

In this paper, we test for differential privacy on typical datasets, which is a relaxation
of differential privacy. It remains an open problem to design a privacy tester for pure
(α, β)-differential privacy.

Lipschitz Testing: This work presents the first Lipschitz property tester for the setting
where the domain points are sampled from a distribution that is not uniform. Because
of possible applications to statistical data privacy, this work has motivated the design
of such Lipschitz testers for other domains, e.g. hypergrid. Also, this paper mainly
shows the tester for the product distribution over the hypercube domain, but it still
remains open to design testers for other distributions that may be correlated in some way



Privacy Testing via Distributional Lipschitz Testers 435

(e.g., pairwise correlation). In the current work, we have designed testers where the
domain of the dataset is finite. A natural question that arises is that if we can extend the
current results to design privacy testers when the datasets are drawn from continuous
domain.

Other Limitations of our Approach: The current work on testing of privacy properties
have several limitations which are worth highlighting. These limitations need to be ad-
dressed in order to allow our current testing algorithms to be used in practice. Firstly,
our current testing algorithm works on discrete range space S. This significantly limits
the applicability of our testing algorithm in various applications which are meaning-
ful over continuous range spaces (e.g., various machine learning problems). Also the
running time of our tester depends polynomially on the size of the range space S. Sec-
ondly, our testing algorithm needs oracle access to the probability measure induced on
the range space of the untrusted algorithm A. In general it is not clear how to come up
with a computationally efficient oracle given just the algorithm A. Thirdly, the current
results are only for discrete domain of datasets X d. This restricts the applicability of
our approach to many interesting applications (e.g., Gaussian process regression).

Acknowledgements. We would like to thank Adam Smith for suggesting the
name Differential Privacy on Typical Datasets and for various other suggestions and
comments.

References

1. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of lipschitz
and monotone functions. In: Gupta, et al.: [18], pp. 374–386

2. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Testing lipschitz functions on hyper-
grid domains. In: Gupta, et al.: [18], pp. 387–398

3. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy.
Cryptology ePrint Archive, Report 2011/487 (version: 20120524:110619) (2011),
http://eprint.iacr.org/

4. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless Database Pri-
vacy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232.
Springer, Heidelberg (2011)

5. Bhowmick, A., Dwork, C.: Natural differential privacy. Personal Communication (2012)
6. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “you might also

like: ” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy,
pp. 231–246 (2011)

7. Chakrabarty, D., Seshadhri, C.: Optimal bounds for monotonicity and lipschitz testing over
the hypercube. CoRR abs/1204.0849 (2012)

8. Dixit, K., Jha, M., Raskhodnikova, S., Thakurta, A.: Testing the lipschitz property over prod-
uct distributions with applications to data privacy (2013),
http://arxiv.org/abs/1209.4056

9. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Im-
proved Testing Algorithms for Monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P.,
Sinclair, A. (eds.) RANDOM-APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Hei-
delberg (1999)

http://eprint.iacr.org/
http://arxiv.org/abs/1209.4056


436 K. Dixit et al.

10. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

11. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z.,
Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

12. Dwork, C.: The Differential Privacy Frontier (Extended Abstract). In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Pri-
vacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private
Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006)

15. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary informa-
tion in data privacy. In: KDD, pp. 265–273 (2008)

16. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonic-
ity. Combinatorica 20(3), 301–337 (2000)

17. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653–750 (1998)

18. Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.): APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408. Springer, Cambridge (2012)

19. Halevy, S., Kushilevitz, E.: Distribution-free property-testing. SIAM J. Comput. 37(4),
1107–1138 (2007)

20. Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing for sparse graphs. Algorith-
mica 51(1), 24–48 (2008)

21. Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with applica-
tions to data privacy. In: Ostrovsky, R. (ed.) FOCS, pp. 433–442. IEEE (2011)

22. Kasiviswanathan, S.P., Smith, A.: A note on differential privacy: Defining resistance to arbi-
trary side information. CoRR abs/0803.3946 (2008)

23. Korolova, A.: Privacy violations using microtargeted ads: A case study. In: ICDMW, pp.
474–482 (2010)

24. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy
beyond k-anonymity. In: ICDE, p. 24 (2006)

25. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In: SIGMOD, pp. 19–30 (2009)

26. Mohan, P., Thakurta, A., Shi, E., Song, D., Culler, D.: Gupt: privacy preserving data analysis
made easy. In: SIGMOD, pp. 349–360 (2012)

27. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data
analysis. In: STOC, pp. 75–84 (2007)

28. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms 20(2), 165–
183 (2002)

29. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential
privacy. In: ICFP, pp. 157–168 (2010)

30. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and privacy for
mapreduce. In: NSDI, pp. 297–312 (2010)

31. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Comput. 25(2), 252–271 (1996)

32. Smith, A.: Privacy-preserving statistical estimation with optimal convergence rates. In:
STOC, pp. 813–822 (2011)

33. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)



Limits on the Usefulness of Random Oracles

Iftach Haitner1,�, Eran Omri2,�,��,���, and Hila Zarosim3,��,†

1 School of Computer Science, Tel Aviv University
iftachh@cs.tau.ac.il

2 Dep. of Mathematics and Computer Science, Ariel University Center
omrier@gmail.com

3 Dep. of Computer Science, Bar Ilan University
zarosih@cs.biu.ac.il

Abstract. In the random oracle model, parties are given oracle access
to a random function (i.e., a uniformly chosen function from the set of
all functions), and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). This
model provides powerful properties that allow proving the security of
many protocols, even such that cannot be proved secure in the standard
model (under any hardness assumptions). The random oracle model is
also used for showing that a given cryptographic primitive cannot be used
in a black-box way to construct another primitive; in their seminal work,
Impagliazzo and Rudich [STOC ’89] showed that no key-agreement pro-
tocol exists in the random oracle model, yielding that key-agreement
cannot be black-box reduced to one-way functions. Their work has a
long line of followup works (Simon [EC ’98], Gertner et al. [STOC ’00]
and Gennaro et al. [SICOMP ’05], to name a few), showing that given
oracle access to a certain type of function family (e.g., the family that
“implements” public-key encryption) is not sufficient for building a given
cryptographic primitive (e.g., oblivious transfer). Yet, the following ques-
tion remained open:

What is the exact power of the random oracle model?
We make progress towards answering this question, showing that essen-
tially, any no private input, semi-honest two-party functionality that can
be securely implemented in the random oracle model, can be securely im-
plemented information theoretically (where parties are assumed to be all
powerful, and no oracle is given). We further generalize the above result
to function families that provide some natural combinatorial property.

Our result immediately yields that essentially the only no-input func-
tionalities that can be securely realized in the random oracle model (in the
sense of secure function evaluation), are the trivial ones (ones that can be
securely realized information theoretically). In addition, we use the recent
information theoretic impossibility result of McGregor et al. [FOCS ’10],
to show the existence of functionalities (e.g., inner product) that cannot
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be computed both accurately and in a differentially private manner in the
random oracle model; yielding that protocols for computing these func-
tionalities cannot be black-box reduced to one-way functions.

Keywords: random oracles, black-box separations, one-way functions,
differential privacy, key agreement.

1 Introduction

In the random-oracle model, the parties are given oracle access to a random
function (i.e., a uniformly chosen function from the set of all functions — the
all-function family), and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). Many crypto-
graphic primitives are known to exist in this model, such as (exponentially hard)
collision resistant hash functions. More importantly, in this model it is possible
to implement secure protocols for tasks that are hard to implement in the stan-
dard model, and sometimes even completely unachievable; a well known example
is the work of Fiat and Shamir [6], showing how to convert three-message iden-
tification schemes to a highly efficient (non interactive) signature scheme. In the
random-oracle model, their methodology preserves the security of the original
scheme [20], but (for some schemes ) does not do so in the standard model [10, 3].

On a different route, the random-oracle model was used to show that one
cryptographic primitive cannot be used in a black-box way to construct another
primitive. In their seminal work, Impagliazzo and Rudich [13] showed that no
key-agreement protocol exists in the random oracle model, yielding that key-
agreement cannot be black-box reduced to one-way functions. Their work has
initiated a long line of follow up works (Simon [22], Gertner et al. [9], and Gen-
naro et al. [8], to name a few) showing that given oracle access to a certain
type of function family (e.g., the family that “implements” public-key encryp-
tion) is not sufficient for building a given cryptographic primitive (e.g., oblivious
transfer). Yet, the following question remained open:

What is the exact power of the random-oracle model?
Apart from being aesthetic mathematically, answers to this question are very
likely to enrich our understanding of (the limitations of) black-box reductions
in cryptography.

It is well known that for malicious adversaries, there exist functionalities that
cannot be achieved in the information-theoretic model, i.e., where all entities are
assumed to be unbounded (with no oracle access), yet can be securely computed
in the random-oracle model (e.g., commitment schemes, coin-tossing protocols
and, non-trivial zero-knowledge proofs). All of these functionalities, however, are
blatantly trivial when considering semi-honest adversaries, which are the focus
of this work.

1.1 Our Result

We make progress towards answering the above question, showing that, essen-
tially, any no private input, semi-honest, two-party computation that can be
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securely implemented in the random-oracle model, can be securely implemented
in the information-theoretic model.

Theorem 1 (Main Theorem, Informal). Let π be a no private-input, m-
round, 
-query, oracle-aided two-party protocol. Then for any ε > 0 there exists
an O(
2/ε2)-query oracle-aided function Map, and a stateless, no oracle, m-

round protocol π̃ = (Ã, B̃) such that:

SD

((
outA, outB,Mapf (t)

)
f←FAF,(outA,outB,t)←〈Af ,Bf 〉

,
〈
Ã, B̃

〉)
∈ O(ε),

where FAF is the all functions family, and 〈X,Y 〉 stands for a random execution
of the protocol (X,Y ), resulting in the parties’ private outputs and the common
transcript.

Furthermore, the projections of the above distributions to their first and third
coordinates, or to their second and third coordinates are identically distributed
(i.e., the transcripts concatenated with the outputs of one of the parties, are
identically distributed).

Namely, the distributions induced by a random execution of πf (for a random
f ← FAF) on the parties’ private outputs and the common transcript, is almost
the same as that induced by a random execution of the (no oracle) protocol π̃,
where the only difference is that one needs to apply an efficient procedureMap to
π’s transcript. Theorem 1 generalizes to all function families with the property
that answers for distinct queries, induced by drawing a random member from
the family, are independent.

A major ingredient in the proof of Theorem 1 is the dependency finder al-
gorithm presented by Barak and Mahmoody [1], refining a similar algorithm
by Impagliazzo and Rudich [13] (see Section 1.2). While we could have based
the proof of Theorem 1 on a combination of several results from [1] (or alter-
natively, to get a somewhat weaker variant of the theorem by basing the proof
on a followup result of Dachman-Soled et al. [5, Lemma 5] or of Mahmoody
et al. [16, Lemma A.1]), we chose to give a new proof also for this part (modulo
clearly marked parts taken from [1]). The new proof (given as part of the proof
of Lemma 2) holds with respect to a larger set of function families. More signif-
icantly, it is more modular and introduces several simplifications comparing to
the previous proofs.

Applications. We demonstrate the usefulness of Theorem 1 via the following
three examples. The first example (reproving [13, 1]) concerns the existence of
key-agreement protocols in the random-oracle model. Recall that key-agreement
protocols cannot be realized in the information-theoretic model. Namely, for any
(no oracle) protocol π, there exists a passive (i.e., semi-honest) adversary that
extracts the key from the protocol’s transcript. Hence, Theorem 1 yields that
key-agreement protocols cannot be realized in the random-oracle model, and thus
key-agreement protocols cannot be black-box reduced to one-way functions. The
actual parameters achieved by applying Theorem 1, match the optimal bound
given in Barak and Mahmoody [1].
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As a second more detailed example, we prove that in the random-oracle model,
it is impossible for two parties to accurately approximate the inner-product func-
tion in a differentially private manner. Namely, in a way that very little informa-
tion is leaked about any single bit of the input of each party to the other party.
A recent result of McGregor et al. [17] shows that in the information-theoretic
model, it is impossible to approximately compute the inner product function
in a differentially private manner. Combining their result with Theorem 1, we
obtain the following fact.1

Theorem 2 (Informal). Any 
-query, (
2, α, γ)-differentially private protocol,

errs (with constant probability) with magnitude at least
√
n

log(n)·eα , in computing

the inner product of two n-bits strings.

Very informally, a protocol is (k, α, γ)-differentially private, if no party, making
at most k queries to the oracle, learns more then ε information about one of the
other party’s input bits, except with some small probability γ.

The above result yields the impossibility of fully black-box reducing differ-
entially private protocols for (well) approximating two-party inner-product to
the existence of one-way functions. Roughly speaking, such a fully black-box
reduction is a pair of efficient oracle-aided algorithms (Q,R) such that the fol-
lowing hold: (1) Qf is a good approximation protocol of the inner-product for
any function f , and (2) Rf,A inverts f , for any adversary A that learns too much
about the input of one of the parties in Qf . Since a random sample from the all-
function family is hard to invert (cf., [13, 8]), the existence of such a reduction
yields that Qf is differentially-private with respect to poly-query adversaries,
when f is chosen at random from the set of all functions.2 Hence, Theorem 2
yields the following result.

Corollary 1 (Informal). There exists no fully black-box reduction from (α, γ)-
differentially private protocol computing the inner product of two n-bit strings

with error magnitude less than
√
n

log(n)·eα , to one-way functions.

We mention that, following an observation made by McGregor et al. [17], The-
orem 2 and Corollary 1 imply similar results for two-party differentially private
protocols for the Hamming distance functionality.3

The third (and last) example is with respect to no-input secure function eval-
uation. Let G = (GA, GB) be a distribution over A×B, where GA and GB denote

1 We mention that the result of [17] is stated for protocol with inputs, where Theo-
rem 1 is only applicable to no-input protocols. Indeed, a fair amount of work was
needed to derive an impossibility result for no-input protocols, from the work of
[17].

2 Assume towards a contradiction the existence of a poly-query adversary A for Qf ,
then the poly-query Rf,A would successfully invert a random f .

3 The inner product between two bit strings x, y can be expressed as IP(x, y) =
w(x) + w(y) + Hd (x, y), where the weight w(z) is number of 1-bits in z. Thus,
a differentially private protocol for estimating the Hamming distance Hd (x, y) can
be turned into one for the inner product by having the parties send differentially
private approximations of the weights of their inputs.
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its marginal distributions over A and B respectively. A protocol π = (A,B) is
an information-theoretically δ-secure implementation of G, if it is a δ-correct
(no-oracle) implementation of G (i.e., the local outputs of the parties induced
by a random execution of π are δ-close to G), and is δ-private according to
the simulation paradigm (against all-powerful distinguishers). Specifically, there
exists an algorithm (a simulator) that on input x ∈ Supp(GA), outputs a view
for A that is δ-close to the distribution of A’s view, conditioned on A’s local
output being x. Similarly, there exists a simulator for B’s view. A protocol π is a
(T, δ)-secure random-oracle implementation of G, if it is a correct random-model
implementation of G, and it is δ-private according to the simulation paradigm,
against T -query, all-powerful distinguishers. Finally, G is δ-trivial, if it has an
information-theoretically δ-secure implementation. Theorem 1 yields the follow-
ing result.

Theorem 3 (Informal). Let π be an 
-query oracle-aided protocol that is an
(O(
2/δ2), δ)-secure implementation of a distribution G in the random-oracle
model. Then, G is O(δ)-trivial.

Applying Theorem 3 to a distribution G that has a (poly(n), 1/ poly(n))-secure
random-oracle model implementation, it follows that G has a 1/ poly(n)-secure
no-oracle implementation. We note that Theorem 3 does not seem to imply
the previous two examples. Since, for instance, the notion of differential privacy
cannot be realized via the real/ideal paradigm.

1.2 Our Technique

When using a no-oracle protocol to emulate an oracle-aided protocol π, having
oracle access to a random member of the all-function family, the crucial issue is
to find all common information the parties share at a given point. The clear ob-
stacle are the oracle calls: the parties might share information without explicitly
communicating it, say by making the same oracle call.

Here comes into play the Dependency Finder of Impagliazzo and Rudich [13],
and Barak and Mahmoody [1] (algorithm Eve, in their terminology). This oracle-
aided algorithm (Finder, hereafter) gets as input a communication transcript t
of a random execution of π, and an oracle access to f , the “oracle” used by the
parties in this execution. Algorithm Finder outputs a list of query/answer pairs
to f that with high probability contains all oracle queries that are common to
both parties (and possibly also additional ones). Moreover, with high probability
Finder is guaranteed not to make “too many” oracle queries.

Equipped with Finder, we give the following definition for the map-
ping procedure Map and the stateless (no-oracle) protocol π̃ = (Ã, B̃):
on a communication transcript t, the oracle-aided algorithm Mapf out-

puts
((

t1, I1 = Finderf (t1)
)
,
(
t1,2, I2 = Finderf (t1,2)

)
. . . ,
(
t, Im = Finderf (t)

))
.

Namely, Map invokes Finder on each prefix of the transcript, and outputs the
result. The no-oracle protocol π̃ = (Ã, B̃) is defined as follows: assume that Ã
speaks in round (i + 1), and that the i’th message is ((t1, I1), . . . , (t1,...,i, Ii)).
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The stateless, no-oracle Ã samples random values for f ∈ FAF and the random
coins of A, conditioned on (t1,...,i, Ii) being the protocol’s transcript. It then lets
ti+1 be the next message of A induced by the above choice of f and random

coins, and sends
(
t
′
= (t1,...,i, ti+1),Finder

f (t
′
)
)

back to B̃. In case this is the

last round of interaction, Ã locally outputs the (local) output of A induced by

this choice of f and random coins. In other words, Ã selects a random view (in-
cluding the oracle itself) for A that is consistent with the information contained
in the no-oracle protocol augmented transcript (i.e., the transcript of the oracle
protocol and the oracle calls), and then acts as A would.

The fact that Ã perfectly emulates A (and that B̃ perfectly emulates B) triv-
ially holds for information theoretic reasons. For the same reason, it also holds
that the transcript generated by applying Mapf to a random transcript of πf ,
where f ← FAF, generates exactly the same transcript as a random execution
of π̃ does (actually, the above facts hold for any reasonable definition of Finder4

and for any function family). The interesting part is arguing that the joint out-
put of the no-oracle protocol has similar distribution to that of the oracle-aided
protocol. To see that this is not trivial, assume that in the last round both or-
acle parties make the same oracle query q and output the query/answer pair
(q, f(q)). If it happens that (q, ·) /∈ I, where I = Finder(t) is the query/answer
pairs made by the final call to Finder on transcript t, then the answer that each
of the no-oracle parties compute for the query q might be different. In this case,
the joint output of the no-oracle protocol does not look like the joint output of
the oracle protocol. Luckily, the above scenario is unlikely to happen due to the
guarantee of Finder; with high probability I contains all common queries that
the two parties made, yielding that the joint output of the no-oracle protocol has
similar distribution to that of the oracle protocol. It turns out that the above
example generalizes to any possible protocol, yielding that the above mapping
and no-oracle protocol are indeed the desired ones.

1.3 Related Work

In their seminal work, Impagliazzo and Rudich [13] showed that there are no key-
agreement protocols in the random-oracle model, and deduce that key-agreement
protocols cannot be black-box reduced to one-way functions. This result was
later improved by Barak and Mahmoody [1], showing there are no 
-query key-
agreement protocols in the random-oracle model, secure against adversary mak-
ing O(
2) queries. Thus, matching the upper bound of Merkle [18].

In an independent work, Mahmoody et al. [16] show that the all-function
family (and thus one-way functions) are useless for secure function evaluation
of deterministic, polynomial input-domain, two-party functionalities. In other
words, deterministic, bounded input domain functionalities that can be securely
computed in the random-oracle model, are the trivial ones — functionalities that
can be securely computed unconditionally. The comparison to the result stated
here is that [16] handle with input functionalities, but only deterministic with

4 Whose output contains all queries it made to the oracle.
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polynomial input domain, where here we handle input-less functionalities, but
including randomized ones. Putting the two results together, gives a partial char-
acterization of the power of the random-oracle model for (semi-honest) two-party
computation. It is still open, however, whether the random-oracle model is useful
for securely computing randomized functionalities with inputs, or functionalities
of super-polynomial input domain.

Additional Black-Box Separations. Following [13], the method of black-
box separation was subsequently used in many other works: [21] shows that
there does not exist a black-box reduction from a k-pass secret key agreements
to (k − 1)-pass secret key agreements; [22] shows that there exist no black-
box reductions from collision-free hash functions to one-way permutations; [14]
shows that there exists no construction of one-way permutations based on one-
way functions. Other works using this paradigm contain [4, 7, 8, 9, 11, 15, 23],
to name a few.

Differential Privacy. Distributed differential privacy was considered by Beimel
et al. [2], who studied the setting of multiparty differentially private computa-
tion (where an n-bit database is shared between n parties). They gave a sepa-
ration between information theoretic and computational differential privacy in
the distributed setting. The notion of computational differential privacy was
considered in Mironov et al. [19]. They presented several definitions of compu-
tational differential privacy, studied the relationships between these definitions,
and constructed efficient two-party computational differentially private proto-
cols for approximating the Hamming-distance between two vectors. Two-party
differential privacy (where an n-bit database is shared between two parties) was
considered by McGregor et al. [17]. They prove a lower-bound on the accuracy
of two party differentially private protocols, in the information theoretic model,
for computing the inner-product between two n-bit strings (and, consequently
for protocols for computing the Hamming distance). Hence, proving a separa-
tion between information theoretic and computational two-party differentially
private computation. In this paper, we extend the lower-bound of [17] to the
random-oracle model.

1.4 Open Problems

As mentioned above, the main open problem is the full characterization of
the power of the random-oracle model with respect to semi-honest adversaries.
Specifically, is it possible to come up with a similar mapping from any (also
with inputs) oracle-aided protocol to an equivalent one in the no-oracle model?
Another interesting problem is to use our mapping (or a variant of it) to show
that the random-oracle model is also useless for protocols (say, input-less) that
are secure against fail-stop adversaries. An immediate implication of such a re-
sult would be that optimally-fair coin tossing are impossible to achieve in the
random function model.5

5 We mention that Dachman-Soled et al. [5] showed such an impossibility result for
O(n/ log n)-round protocols, where n being the random function input length.
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Paper Organization

Formal definitions are given in Section 2. We state our main result in Section 3
where different applications of our main result are given in Section 4. For lack
of space we omit most of the proofs, and they can be found in the full version
of this paper [12].

2 Preliminaries

2.1 Interactive Protocols

The communication transcript (i.e., the “transcript”) of a given execution of the
protocol π = (A,B), is the list of messages t exchanged between the parties in an
execution of the protocol, where t1,...,j denotes the first j messages in t. A view
of a party contains its input, its random tape and the messages exchanged by
the parties during the execution. Specifically, A’s view is a tuple vA = (iA, rA, t),
where iA is A’s input, rA are A’s coins, and t is the transcript of the execution.
We let (vA)j denote the partial view of A in the first j rounds of the execution
described by vA, namely, (vA)j = (iA, rA, t1,...,j); we define vB analogously. We
call v = (vA, vB) the joint view of A and B, and let vj = ((vA)j , (vB)j). Given
a distribution (or a set) D on the joint views of A and B, we let DA be the
projection of D on A’s view (i.e., PrDA

[vA] = Pr(vA,·)←D[vA]), and define DB

analogously. Finally, we sometimes refer to a well structured tuple v as a “view”
of π, even though v happens with zero probability. When we wish to stress that
we consider a view that has non-zero probability, we call it a valid view.

We call π an m-round protocol, if for every possible random tapes for the
parties, the number of rounds is exactly m. Given a joint view v (containing the
views of both parties) of an execution of (A,B) and P ∈ {A,B}, let vP denote P’s
part in v and let trans(v) denote the communication transcript in v. For j ∈ [m],
let outPj (v) = outPj (vP) denote the output of party P at the end of the j’th round

of v (i.e., the string written on P’s output tape), where outPj (v) = outPj−1(v), in
case P is inactive in the j’th round of v.

We sometimes consider stateless protocols – the parties hold no state, and
in each round act on the message received in the previous round with freshly
sampled random coins. Throughout this paper we almost solely consider no-
private input protocols – the parties’ only input is the common input (the only
exception to that is in Section 4.2, additional required notations introduced
therein). Given a no-input two-party protocol π, let 〈π〉 be the distribution over
the joint views of the parties in a random execution of π.

Oracle-Aided Protocols. An oracle-aided, two-party protocol π = (A,B) is
a pair of interactive Turing machines, where each party has an additional tape
called the oracle tape; the Turing machine can make a query to the oracle by
writing a string q on its tape. It then receives a string ans (denoting the answer
for this query) on the oracle tape.
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For simplicity, we only consider function families whose inputs and outputs
are binary strings. For an oracle-aided, no-input, two-party protocol π = (A,B)
and a function family F , we let ΩF ,π be the set of all triplets (rA, rB, f), where
rA and rB are possible random coins for A and B, and f ∈ F (henceforth, we
typically omit the superscript (F , π) from the notation, whenever their values
are clear from the context). For f ∈ F , the distribution

〈
πf = (Af ,Bf )

〉
, is

defined analogously to 〈π〉 = 〈A,B〉, i.e., it is the distribution over the joint
views of parties in a random execution of π with access to f . Given some in-
formation inf about some element of Ω (e.g., a set of query/answer pairs, or
a view), let PrΩ [inf] = Prω←Ω[ω is consistent with inf], and let PrΩ|inf′ [inf] be
this probability conditioned that ω is consistent with inf ′ (set to zero in case
PrΩ[inf

′] = 0).
Given a (possibly partial) execution of πf , the views of the parties contain ad-

ditional lists of query/answer pairs made to the oracle throughout the execution
of the protocol. Specifically, A’s view is a tuple vA = (rA, t, fA), where rA are A’s
coins, t is the transcript of the execution, and fA are the oracle answers to A’s
queries. By convention, the active party in round j first makes all its queries to
the oracle for this round, and then writes a value to its output tape and send a
message to the other party. We denote by (fP)j the oracle answers to the queries
that party P makes during the first j rounds. As above, we let (vA)j denote the
partial view of A in the first j rounds of the execution described by vA, namely,
(vA)j = (rA, t1,...,j, (fA)j). We define vB analogously.

For ω ∈ Ω, we let view(ω) be the full view of the parties determined by ω. We
say that a “view” v is consistent with (F , π), if PrΩF,π [v] > 0.

We consider the following distributions.

Definition 1 (Ω(t, I) and VIEW(t, I)). Given a partial transcript t and a
set of query/answer pairs I, let Ω(t, I) = ΩF ,π(t, I) be the set of all tuples
(rA, rB, f) ∈ Ω = ΩF ,π, in which f is consistent with I, and t is a prefix of
the transcript induced by

〈
Af (rA),B

f (rB)
〉
. Given a set P ⊆ Ω, let ΩP(t, I) =

Ω(t, I) ∩ P.
Let VIEW(t, I) = VIEWF ,π(t, I) be the value of view(ω)|t| for ω ← Ω(t, I),

and define VIEWF ,π
P (t, I) analogously.

We note that since we consider the uniform distribution over Ω, we have that for
any partial transcript t, set of query/answer pairs I, set P ⊆ Ω, and information
inf about some element of Ω it holds that PrΩP(t,I)[inf] = PrΩ|t,I,P [inf].

3 Mapping Oracle-Aided Protocols to No-Oracle
Protocols

In this section we prove our main result, a mapping from protocols in the random-
oracle model to (inefficient) no-oracle protocols.
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3.1 Dependent Views

In the following we fix an m-round oracle-aided protocol π and a function family
F . We would like to restrict VIEW(t, I) to those views for which I contains all
the joint information of the parties about f . We start by formally defining what
it means for I to contain all the joint information.

Definition 2. Let vA be a jA-round view for A and vB be a jB-round view for
B, for some jA, jB ∈ [m]. For i ∈ [jA], let IAi be the set of query/answer pairs
that A makes in the i’th round of vA (where IAi = ∅, if A is idle in round i),
and define IBi analogously. Given a set I of query/answer pairs, we define

1. αIvA =
∏

i∈[jA] PrΩ | I,IA1...,IAi−1

[
IAi
]
and

2. αIvA|vB =
∏

i∈[jA] PrΩ | I,IA1,IB1,...,IAi−1,IBi−1

[
IAi
]
,

and define αIvB|vA and αIvB analogously.

Intuitively, αIvA is the probability of A’s view of f given I, and αIvA|vB is this
probability when conditioning also on B’s view. We will focus on those views
with αIvA = αIvA|vB and αIvB = αIvB|vA .

Definition 3 (Dependent Views). Let v = (vA, vB) be a pair of (possibly
partial) valid views.6 We say that vA and vB are dependent with respect to a set
of query/answer pairs I and a function family F , denoted DependentFI (v) = 1,
if αIvA �= αIvA|vB or αIvB �= αIvB|vA .

7

A pair of views v = (vA, vB) with DependentI(v) = 0 is called indepen-
dent. We let IndF ,π(t, I) = {ω ∈ Ω(t, I) : DependentFI (view(ω)|t|) = 0} and

let VIEWF ,π
Ind (y) stand for VIEWF ,π

IndF,π(y)
(y).

3.2 Intersecting Views

A special case of dependent views is when the two paries share a common oracle
query not in I.

Definition 4 (Intersecting Views). A (possibly partial) pair of views v =
(vA, vB) are intersecting with respect to a set of query/answer pairs I, denoted
IntersectI(v) = 1, if vA and vB share a common query q not in I (i.e., (q, ·) /∈ I).

For most function families, an intersection implies being dependent (with respect
to the same list of query/answer pairs). In this paper we limit our attention
to “simple” function families for which also the other direction holds, namely
dependency implies intersection.

6 While properly defined for any pair of views (vA, vB), we will typically only consider
the following notions for pairs with trans(vA) = trans(vB) (i.e., both views induce
the same transcript).

7 One can verify that DependentFI (v) = 1, in case v is inconsistent with F , namely,
PrF [IA, IB] = 0, where IA and IB, are the lists of query/answer pairs appear in vA
and vB respectively.
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Definition 5 (Simple Function Families). A function family F is simple, if
for any oracle-aided protocol π, list I of query/answer pairs that is consistent
with some f ∈ F , and a (possibly partial) pair of views v = (vA, vB) consistent
with I, it holds that DependentFI (v) = 1 iff IntersectI(v) = 1.

It is not hard to verify that the all-function family is simple (see proof in [12]).

Definition 6 (the all-function family). For n ∈ N, let FAFn be the family of
all functions from n-bit strings to n-bit strings.

Lemma 1. For every n ∈ N, the family FAFn is simple.

3.3 Oracle-Aided to No-Oracle Protocol Mapping

The following theorem shows that an execution of an oracle-aided protocol with
oracle access to a random f ∈ F , where F is a simple function family, can be
mapped to an execution of a related protocol with no oracle access. In Section 4
we use this result to prove limitations on the power of oracle-aided protocols in
achieving specific cryptographic tasks.

Definition 7 (Oracle-Aided to No-Oracle Mapping). A pair of a function
family F and a no-input, m-round, oracle-aided protocol π = (A,B), has a (T, ε)-
mapping, if there exists a deterministic, oracle-aided T -query algorithm Map
and a stateless, m-round, no-input (and no-oracle) protocol (Ã, B̃), such that the
following hold:

1. SD (DF ,DP ) ≤ ε for every j ∈ [m], where

DF =
(
outAj (v), out

B
j (v),Mapf (trans(v)1,...,j)

)
f←F ,v←〈Af ,Bf 〉

and,

DP =
(
outÃj (v), out

B̃
j (v), trans(v)1,...,j

)
v←〈Ã,B̃〉

.8

Furthermore, DP [1, 3] ≡ DF [1, 3] and DP [2, 3] ≡ DF [2, 3].9
2. For every f ∈ F , an m-round transcript t and j ∈ [m], it holds

that Mapf (t1,...,j) = Mapf (t)1,...,j. Furthermore, the oracle calls made in

Mapf (t1,...,j) are a subset of those made in Mapf (t).

Theorem 4. Let F be a simple function family and let π = (A,B) be an 
-query,
oracle-aided, no-input protocol, then (F , π) has an (256 · 
2/ε2, ε)-mapping for
any 0 < ε ≤ 1.

Remark 1 (Round complexity of the no-oracle protocol). The proof of Theorem 4
can be easily modified to yield a one-message no-oracle protocol (in this case, DF
and DP should be modified to reflect the transcript and outputs at the end of
the executions). The roles of Ã and B̃ in the resulting protocol however, cannot
reflect as closely the roles of A and B, as done in the many-round, no-oracle
protocol stated above.

9 I.e., the projections of DP and DF to their transcript part and the output of one of
the parties, are identically distributed.
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The heart of the proof is the following lemma, proof given in [12] .10

Definition 8 (DependencyFinder). Let F be a function family and let π = (A,B)
be an m-round oracle-aided protocol. A deterministic oracle-aided algorithm
Finder is a (T, ε)-DependencyFinder for (F , π) if the following holds for any
j ∈ [m]: consider the following random process CF = CF(F , π,Finder):

1. Choose (rA, rB, f) ← ΩF ,π and let t be the j-round transcript of π induced
by (rA, rB, f).

2. For i = 1 to j set Ii = Ii−1 ∪ Finderf (t1,...,i, Ii−1) (letting I0 = ∅), where
Finderf (x) is the set of queries/answers made by Finderf (x) to f .

3. Output
(
t, Ij
)
.

Then

1. Ed←CF

[
SD

(
VIEWF ,π(d), (VIEWF ,π(d)A,VIEWF ,π(d)B)

)]
≤ ε, and

2. Pr[# of f -calls made in CF > T ] ≤ ε.

That is, conditioned on a random transcript of πF and the oracle queries made
by a (T, δ)-DependencyFinder, the parties’ views are close to being in a product
distribution.

Lemma 2. Let F be a simple function family and let π = (A,B) be an 
-query
oracle-aided protocol, then (F , π) has a (64/δ2, 
δ)-DependencyFinder for any
0 < δ ≤ 1/
.

We now use Lemma 2 to prove Theorem 4.

Proving Theorem 4. Fix a simple function family F and a no-input, m-
round, 
-query oracle-aided protocol π. Fix 0 < ε ≤ 1 and let Finder be the (T =
256 · 
2/ε2, ε/2)-DependencyFinder guaranteed by Lemma 2 for (F , π) (taking
δ = ε/2
). We start by defining the mapping algorithm and then we define a
protocol with no oracle access.

Algorithm 5 (Map)
Oracle: f ∈ F .
Input: j-round transcript t of π.
Operation:

1. For i = 1 to j set Ii = Ii−1 ∪ Finderf (t1,...,i, Ii−1) (letting I0 = ∅).
2. If in some round i∗ the overall number of f calls (made by Finder) is T ,

halt the above procedure and set Ii∗ to be the set of T query/answer pairs
obtained so far,11 and set Ii = Ii∗ for all i∗ < i ≤ j.

3. Output
(
t1, I1

)
,
(
t1,2, I2

)
, . . . ,

(
t, Ij
)
.

10 As mentioned in the introduction, the proof of Lemma 2 could be essentially derived
by combining several statements in [1]. Alternatively, a somewhat weaker variant of
the lemma can be directly proved using the followup result of Dachman-Soled et al.
[5, Lemma 5] or of Mahmoody et al. [16, Lemma A.1].

11 I.e., augmenting Ii∗−1 with the queries/answers made in round i∗ before halting.
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The no-oracle protocol. Our stateless, no-oracle protocol π̃ = (Ã, B̃), emulates
the oracle-aided protocol π by keeping the “important” oracle queries as part of
the transcript, and selecting the rest of the oracle at random (independently in

each round). In particular, Ã is active in π̃ in the same rounds that A is in π

(same for B̃ and B). The definition of Ã is given below (B̃ is analogously defined).

Algorithm 6 (Ã)
Input: A pair (t, I), where t is a transcript of length j and I is a set of
query/answer pairs.
Operation:

1. Sample (rA, rB, f)← Ω(t, I), and let outj+1 and tj+1 denote A’s output and
message respectively, in the (j + 1) round of

〈
Af (rA),B

f (rB)
〉
.

2. Output outj+1.

3. Compute the value of Ij+1 output by Mapf (tj+1) for tj+1 = (t, tj+1).

4. Send (tj+1, Ij+1) to B̃.

Using Lemma 2, one can prove that above mapping function and no-oracle pro-
tocol, indeed establish mapping and protocol guaranteed in Theorem 4. For the
formal proof, see the full version.

4 Applications

In this section we use our main result (i.e., the oracle-aided to no-oracle protocol
mapping for simple function families) from Section 3 to derive the impossibility
of realizing three cryptographic tasks, with respect to simple function families
(implying the same result with respect to the all function family, which is simple).
In Section 4.1 we re-establish the result of [13], showing that key-agreement
protocols cannot be realized with respect to simple function families. Then, in
Section 4.2, we extend the lower-bound of [17] on the accuracy of two-party
differentially private no-oracle protocols, to show it also holds (with a slight loss
in parameters) for oracle-aided differentially private protocols (with respect to
this class of function families). Finally, in Section 4.3, we show that no-input
functionalities that cannot be securely evaluated in the no-oracle model (even
when allowing some small loss of security), cannot be securely evaluated (again,
even with some small loss of security) by oracle-aided protocols that are given
access to a random member of a simple function family.

Remark 2 (definitions for no-oracle primitives). Throughout this section we only
give formal definitions (of the security and correctness) of primitives with respect
to oracle-aided protocols. Deriving formal definitions for their no-oracle coun-
terparts can be easily done by considering the trivial function family (i.e., a
singleton family, whose only member returns ⊥ on any query).



450 I. Haitner, E. Omri, and H. Zarosim

4.1 Key Agreement Protocols

In a key-agreement protocol two parties wish to agree on a common secret in
a secure way — an observer (adversary) seeing the communication transcript,
cannot find the secret. Below we prove that with respect to a certain class of
function families, non-trivial key-agreement cannot be achieved. We start by
formally defining the notion of key agreement. We then recall the known fact that
in the no-oracle model, an adversary can reveal any secret agreement between
two parties in the strongest possible sense (i.e., with the same probability that
the parties themselves agree). Combining this fact with the mapping from oracle-
aided to no-oracle protocols, described in Section 3, yields a similar result for
oracle-aided protocols.

We remark that the results presented in this section yield very little conceptual
added-value to what was already shown by [13, 1]. We do, however, present
them here to demonstrate how they are easily derived from our main result
(Theorem 4), and as a warm-up before moving on to the other applications of
our main result, described in Sections 4.2 and 4.3.

Standard Definitions and Known Facts. Recall (see Section 2.1) that for a
joint view v ∈ Supp

(〈
πf
〉)
, we let trans(v) denote the communication transcript

in v, and outPi (v) denote the output of the party P at the i’th round. In the
following we let outP(v) = outPm(v), where m is the last round in v.

Definition 9 (Key Agreement Protocol). Let 0 ≤ γ, α ≤ 1 and k ∈ N. A
two-party, oracle-aided protocol π = (A,B) is a (k, α, γ)-key-agreement protocol
with respect to a function family F , if the following hold:

Consistency: π is (1−α)-consistent with respect to F . Namely for every f ∈ F ,

Pr
v←〈πf 〉

[
outA (v) = outB (v)

]
≥ 1− α. (1)

Security: For every P ∈ {A,B} and any k-query adversary Eve,

Pr
f←F ,v←〈πf 〉

[
Evef (trans (v)) = outP (v)

]
≤ γ. (2)

A protocol π is an (α, γ)-key-agreement protocol, if it is a (·, α, γ)-key-agreement
protocol with respect to the trivial function family.12

In the no-oracle model, all correlation between the parties is implied by the
transcript. Hence, an adversary that on a given transcript t samples a random
view for A that is consistent with t and outputs whatever A would upon this
view, agrees with B with the same probability as does A. This simple argument
yields the following fact.

12 We remark that our impossibility result (as well the results of [13, 1]) would also
hold with respesct to a weaker definition, requiring consistency to hold for a random
f , rather than for every f ∈ F .
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Fact 7. Let 0 ≤ α ≤ 1 and let π = (A,B) be a no-oracle, two-party, no-input
protocol. Assume that the probability that in a random execution of π both parties
output the same value is 1 − α. Then there exists an adversary that, given the
transcript of a random execution of π, outputs the same value as does B with
probability 1− α.

An immediate implication of Fact 7 is that there does not exist any no-oracle,
two-party, (α, γ)-key-agreement protocol for any 0 ≤ γ < 1−α. We next use our
main result from Section 3 to prove a similar result for oracle-aided protocols.

Our Result. In the language of the above definition, our main result is stated
as follows.

Theorem 8. Let F be a function family and let π be an oracle-aided protocol.
Assume that the pair (F , π) has a (T, ε)-mapping, then π is not a (T, α, γ)-key-
agreement with respect to F for any 0 ≤ γ < 1− (α+ ε).

Proof. Assume to the contrary that π is a (T, α, γ)-key-agreement with respect

to F for some 0 ≤ γ < 1 − (α+ ε). Let π̃ = (Ã, B̃) and Map be the no-input
no-oracle protocol and oracle-aided algorithm, guaranteed by the assumption of
the theorem. The first item in Definition 7 yields that

SD

(
(outÃ (v) , outB̃ (v))v←〈π̃〉, (out

A (v) , outB (v))f←F ,v←〈πf 〉

)
≤ ε (3)

Hence, the (1− α)-consistency of π yields that

τ := Pr
v←〈π̃〉

[
outÃ (v) = outB̃ (v)

]
≥ 1− (α+ ε) . (4)

Fact 7 yields an adversary Ẽve that given the transcript of a random execution of
π̃, outputs the same value as does B with probability τ . Let Eve be an adversary
for π that upon a transcript t (of an execution of π with access to f) applies

Ẽve to Mapf
(
t
)
and outputs whatever Ẽve does. Note that by Definition 7, Eve

makes at most T oracle calls. The definition of Eve yields that

Pr
f←F ,v←〈πf 〉

[
Evef (trans (v)) = outB (v)

]
(5)

= Pr
f←F ,v←〈πf 〉

[
Ẽve
(
Mapf (trans (v))

)
= outB (v)

]
= Pr

ṽ←〈π̃〉

[
Ẽve (trans (ṽ)) = outB̃ (ṽ)

]
= τ ≥ 1− (α+ ε) ,

where the second equality follows from the furthermore statement of the first
item in Definition 7, stating that (Mapf (trans (v)) , outB (v)) is identically dis-

tributed as (trans (ṽ) , outB̃ (ṽ)), where f , v, and ṽ are sampled as in Equation (5).
�

Combining Theorems 4 and 8 yields the following result.
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Theorem 9. Let F be a simple function family. For parameters k, 
 ∈ N and

α, γ ∈ R with k ≥ 210 ·
(

�
1−α−γ

)2
and 1 − α > γ ≥ 0, there exists no 
-query

oracle-aided protocol, that is (k, α, γ)-key-agreement with respect to F .

4.2 Differentially Private Two-Party Computation

In this section we apply our main result to extend the lower-bound of McGre-
gor et al. [17] to oracle-aided protocols equipped with simple function families.
Specifically, we show that when given access to a random member of a sim-
ple function family (e.g., the all-function family), any two-party, differentially
private, oracle-aided protocol computing the inner product of two s-bit strings,
exhibits error magnitude of roughly Ω (

√
s/ log s) .

Standard Definitions. For strings x, x′ ∈ Σs, let Hd (x, x
′) =

|{i ∈ [s] : xi �= x′i}| denote the Hamming distance between x and x′.

Definition 10 (Differential Privacy for Oracle-Aided Protocols). Let F
be a function family and let π = (A,B) be an s-bit input, oracle-aided proto-
col. The protocol π is (k, α, γ)-differentially private with respect to F and A, if
for every k-query, oracle-aided distinguisher D and every x, x′, y ∈ {0, 1}s with
Hd (x, x

′) = 1, it holds that

Pr
f←F ,v←〈πf (x,y)〉

[
Df (trans (v)) = 1

]
≤ eα · Pr

f←F ,v←〈πf (x′,y)〉

[
Df (trans (v)) = 1

]
+ γ.

Being (k, α, γ)-differentially private with respect to F and B, is analogously de-
fined. If π is (k, α, γ)-differentially private with respect to F and both parties,
then it is (k, α, γ)-differentially private with respect to F .
Finally, π is (α, γ)-differentially private, if it is (·, α, γ)-differentially private
with respect to the trivial function family.

Note that for no-oracle protocols, the above definition of (α, γ)-differentially
private matches the standard (no-oracle) definition (slightly relaxed, as we only
require the transcript to preserve the privacy of the parties). Our impossibility
results, given below, apply to privacy parameter α being smaller than some
constant.

Since differentially private mechanisms cannot be deterministic, for any de-
terministic (non-constant) function g of the input, one can only hope for the
output of the mechanism being a good approximation for g. We next define a
notion of accuracy for differentially private protocols.

Definition 11 (Good Approximations). Let g : {0, 1}s × {0, 1}s �→ R be a
deterministic function and let π = (A,B) be an s-bit input, oracle-aided protocol.
The protocol π is a (β, d)-approximation for g with respect to a function family
F , if for very f ∈ F , for every x, y ∈ {0, 1}s and P ∈ {A,B}, it holds that

Pr
v←〈πf (x,y)〉

[∣∣g (x, y)− outP (v)
∣∣ > d

]
< β. (6)
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Namely, we require that the output of both parties is within distance d from
g (x, y) with probability at least β.

For two s-bit strings x and y, let IP(x, y) denote the inner product of x and
y; that is IP(x, y) =

∑
i∈[s] xi · yi.

Our Result. Combining Theorem 4 and the lower bounds of McGregor et al.
[17] we get the following result (see proof in [12]) .

Definition 12 (The Sampled-Input Variant μ (π)). Given an s-bit input,
(possibly, oracle-aided) protocol π = (A,B), let μ (π) = (μ (A) , μ (B)) denote the
following s-bit sampled-input protocol:
The parties μ (A) and μ (B) interact in an execution of (A(xA; rA),B(xB; rB)),
taking the roles of A and B respectively, where xA [resp., xB] is the first s bits
of μ (A)’s [resp., μ (B)’s] coins, and rA [resp., rB] is the rest of μ (A)’s [resp.,
μ (B)’s] coins. Let a and b be the outputs of A and B, respectively, in this execu-
tion, then the outputs of μ (A) and μ (B) will be (xA, a) and (xB, b), respectively.

Theorem 10. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and
z ∈ N such that the following holds. Let F be a function family and let π = (A,B)
be an oracle-aided, s-bit input protocol.

Assume that π is (T, α, γ)-differentially private with respect to F , that the
pair (F , μ (π)) has a (T, ε)-mapping (where μ (π) is sampled-input variant of
π) and that s ≥ z, then for some f ∈ F ,13 and every P ∈ {A,B}, there exist
x, y ∈ {0, 1}s such that

Pr
v←〈πf (x,y)〉

[∣∣outP(v) − IP(x, y)
∣∣ ≤ Δ := λ ·

√
s

log s
· (τ − ε)

]
≤ τ (7)

for every τ ≤ 1 with τ − ε ≥ max {48sγ, ν}.14

Combining Theorems 4 and 10 yields the following result.

Theorem 11. Let F be a simple function family. For numbers 0 < ν < 1
and α ≥ 0, there exist numbers λ > 0 and z ∈ N such that, for s ≥ z, the
following holds. Assume that π is an s-bit input, 
-query oracle-aided protocol

that is (k, α, γ)-differentially private with respect to F , with k > 210 ·
(

�
1−ν

)2
and γ ≤ ν

48·s . Then, π is not a (β, d)-approximation with respect to F for the

inner-product function, with β < 1−ν
2 and d ≤ λ · ν ·

√
s

log s .

4.3 Secure Function Evaluation

In this section we apply our main result to show that when given access to
a random member of a simple function family (e.g., the all-function family),

13 Actually, the following holds for most elements of F .
14 This constraint implies that γ should be smaller than the inverse of some polynomial

in s, however, this is how we typically think of γ.
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no oracle-aided protocol can securely compute any no-input functionality that
cannot be (almost) securely computed by a no-oracle protocol.

In semi-honest no-input secure function evaluation, two parties A and B
wish to compute some (randomized) functionality privately and correctly. Let
G = (GA, GB) be a distribution overA×B, where GA and GB denote its marginal
distributions over A and B respectively. The parties wish to perform a compu-
tation, where party A learns gA and party B learns gA for g = (gA, gB) ← G,
but nothing else. Since the parties are semi-honest, they will always follow the
prescribed protocol. A corrupted party, however, may try to use its view in the
computation to infer additional information after the computation terminates.

Standard Definitions

Definition 13 (No-Input Secure Function Evaluation). Let G = (GA, GB)
be a distribution over A×B, where GA and GB denote its marginal distributions
A and B respectively. A two-party, oracle-aided protocol π = (A,B) is a (m, k, δ)-
secure protocol for G with respect to a function family F , for δ ∈ [0, 1] and
m, k ∈ N, if the following hold:

Correctness: π is a δ-correct implementation of G with respect to F :

SD

((
outA (v) , outB (v)

)
v←〈πf 〉 , G

)
≤ δ

for every f ∈ F .
Privacy: π is an (m, k, δ)-private implementation of G with respect to F : for

every P ∈ {A,B} there exists an m-query algorithm (simulator) SimP such
that

E
f←F

∣∣∣∣[Pr[D((Simf
P (g) , g

)
g←GP

)
= 1

]
−Pr

[
D
((

vP, out
P (v)

)
v←〈πf 〉

)
= 1
]]∣∣∣∣≤ δ

for any k-query distinguisher D.

A protocol π is a δ-secure (no-oracle) implementation of G if it is a (·, ·, δ)-secure
implementation of G with respect to the trivial (i.e., the empty) function family.
A distribution G is δ-trivial, if G has a δ-secure no-oracle implementation.

Our Result. In the language of the above definitions, our main result is stated
as follows (see proof in [12]) .

Theorem 12. Let F be a function family, and let π be an oracle-aided protocol
that is a (·, T, δ)-secure oracle-aided implementation of a distribution G with
respect to F . Assume that the pair (F , π) has a (T, δ)-mapping. Then, G is
2δ-trivial.

Combining Theorems 4 and 12 yields the following result.

Theorem 13. Let F be a simple function family. For parameters k, 
 ∈ N and

δ ∈ R with k ≥ 256 ·
(
�
δ

)2
, and for a distribution G that is not 2δ-trivial,

there exists no 
-query oracle-aided protocol that is a (·, k, δ)-secure oracle-aided
implementation of G with respect to F .
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Abstract. We develop algorithms for the private analysis of network data that
provide accurate analysis of realistic networks while satisfying stronger privacy
guarantees than those of previous work. We present several techniques for de-
signing node differentially private algorithms, that is, algorithms whose output
distribution does not change significantly when a node and all its adjacent edges
are added to a graph. We also develop methodology for analyzing the accuracy
of such algorithms on realistic networks.

The main idea behind our techniques is to “project” (in one of several senses)
the input graph onto the set of graphs with maximum degree below a certain
threshold. We design projection operators, tailored to specific statistics that have
low sensitivity and preserve information about the original statistic. These oper-
ators can be viewed as giving a fractional (low-degree) graph that is a solution to
an optimization problem described as a maximum flow instance, linear program,
or convex program. In addition, we derive a generic, efficient reduction that al-
lows us to apply any differentially private algorithm for bounded-degree graphs
to an arbitrary graph. This reduction is based on analyzing the smooth sensitivity
of the “naive” truncation that simply discards nodes of high degree.

1 Introduction

Data from social and communication networks have become a rich source of insights
in the social and information sciences. Gathering, sharing and analyzing these data is
challenging, however, in part because they are often highly sensitive (your Facebook
friends or the set of people you email reveal a tremendous amount of information about
you, as in, e.g., Jernigan and Mistree [11]). This paper develops algorithms for the
private analysis of network data that provide accurate analysis of realistic networks
while satisfying stronger privacy guarantees than those of previous work.
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A recent line of work, starting from Dinur and Nissim [4], investigates rigorous defi-
nitions of privacy for statistical data analysis. Differential privacy (Dwork et al. [8, 5]),
which emerged from this line of work, has been successfully used in the context of
“tabular”, or “array” data. Roughly, differential privacy guarantees that changes to one
person’s data will not significantly affect the output distribution of an analysis proce-
dure.

For tabular data, it is clear which data “belong” to a particular individual. In the
context of graph data, two interpretations of this definition have been proposed: edge
and node differential privacy. Intuitively, edge differential privacy ensures that an algo-
rithm’s output does not reveal the inclusion or removal of a particular edge in the graph,
while node differential privacy hides the inclusion or removal of a node together with
all its adjacent edges.

Node privacy is a strictly stronger guarantee, but until now there have been no node-
private algorithms that can provide accurate analysis of the sparse networks that arise
in practice. One challenge is that for many natural statistics, node privacy is impossible
to achieve while getting accurate answers in the worst case. The problem, roughly, is
that node-private algorithms must be robust to the insertion of a new node in the graph,
but the properties of a sparse graph can be altered dramatically by the insertion of a
well-connected node. For example, for common graph statistics – the number of edges,
the frequency of a particular subgraph – the change can overwhelm the value of the
statistic in sparse graphs.

In this paper we develop several techniques for designing differentially node-private
algorithms, as well as a methodology for analyzing their accuracy on realistic networks.
The main idea behind our techniques is to “project” (in one of several senses) the input
graph onto the set of graphs with maximum degree below a certain threshold. The ben-
efits of this approach are two-fold. First, node privacy is easier to achieve in bounded-
degree graphs since the insertion of one node affects only a relatively small part of the
graph. Technically, the sensitivity of a given query function may be much lower when
the function is restricted to graphs of a given degree. Second, for realistic networks this
transformation loses relatively little information when the degree threshold is chosen
carefully.

The difficulty with this approach is that the projection itself may be very sensitive
to a change of a single node in the original graph. We handle this difficulty via two
different techniques. First, for a certain class of statistics, we design tailored projec-
tion operators that have low sensitivity and preserve information about a given statistic.
These operators can be viewed as giving a fractional (low-degree) graph that is a solu-
tion to a convex optimization problem, typically given by a maximum flow instance or
linear program. Using such projections we get algorithms for accurately releasing the
number of edges in a graph, and counts of small subgraphs such as triangles, k-cycles,
and k-stars (used as sufficient statistics for popular graph models) in a graph, and certain
estimators for power law graphs (see Sections 4 and 5).

Our second technique is much more general: we analyze the “naive” projection
that simply discards high-degree nodes in the graph. We give efficient algorithms for
bounding the “local sensitivity” of this projection, which measures how sensitive it is to
changes in a particular input graph. Using this, we derive a generic, efficient reduction
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that allows us to apply any differentially private algorithm for bounded-degree graphs
to an arbitrary graph. The reduction’s loss in accuracy depends on how far the input
graph is from having low degree. We use this to design algorithms for releasing the
entire degree distribution of a graph.

Because worst-case accuracy guarantees are problematic for node-private algorithms,
we analyze the accuracy of our algorithms under a mild assumption on the degree dis-
tribution of the input graph. The simplest guarantees are for the case where a bound D
on the maximum degree of the graph is known, and the guarantees typically relate the
algorithms’s accuracy to how quickly the query function can change when restricted to
graphs of degree D (e.g., Corollary 6.1). However, real-world networks are not well-
modeled by a graphs of a fixed degree, since they often exhibit influential, high-degree
nodes. In our main results, we assume only that tail of the degree distribution decreases
slightly more quickly than what trivially holds for all graphs. (If d̄ is the average degree
in a graph, Markov’s inequality implies that the fraction of nodes with degree above t · d̄
is at most 1/t. We assume that this fraction goes down as 1/tα for a constant α > 1
or α > 2, depending on the result.) Our assumption is satisfied by all the well-studied
social network models we know of, including so-called scale-free graphs [3].

1.1 Related Work

The initial statements of differential privacy [8, 5] considered databases that are arrays
or sets – each individual’s information corresponds to an entry in the database, and this
entry may be changed without affecting other entries. That paper also introduced the
very basic technique for constructing differentially private function approximations, by
the addition of Laplace noise calibrated to the global sensitivity of the function.1 This
notion naturally extends to the case of graph data, where each individual’s information
corresponds to an edge in the graph (edge privacy). The basic technique of Dwork et
al. [8] continues to give a good estimate, e.g., for counting the number of edges in a
graph, but it ceases to provide good analyses even for some of the most basic functions
of graphs (diameter, counting the number of occurrences of a small specified subgraph)
as these functions exhibit high global sensitivity.

The first differentially private computations over graph data appeared in Nissim et
al. [15] where it was shown how to estimate, with differential edge privacy, the cost of
the minimum spanning tree and the number of triangles in a graph. These computations
employed a different noise addition technique, where noise is calibrated to a more lo-
cal variant of sensitivity, called smooth sensitivity. These techniques and results were
further extended by Karwa et al. [12]. Hay et al. [10] showed that the approach of [8]
can still be useful when combined with a post-processing technique for removing some
of the noise. They use this technique for constructing a differentially edge-private algo-
rithm for releasing the degree distribution of a graph. They also proposed the notion of
differential node privacy and highlighted some of the difficulties in achieving it.

A different approach to graph data was suggested by Rastogi et al. [16], where
the privacy is weakened to a notion concerning a Bayesian adversary whose prior

1 Informally, global sensitivity of a function measures the largest change in the function out-
come than can result from changing one of its inputs.
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distribution on the database comes from a specified family of distributions. Under this
notion of privacy, and assuming that the adversary’s prior admits mainly negative cor-
relations between edges, they give an algorithm for counting the occurrences of a spec-
ified subgraph. The notion they use, though, is weaker than differential edge privacy.
We refer the reader to [12] for a discussion on how the assumptions about an attacker’s
prior limit the applicability of the privacy definition.

The current work considers databases where nodes correspond to individuals, and
edges correspond to relationships between these individuals. Edge privacy corresponds
in this setting to a requirement that the properties of every relationship (such as its
absence or presence) should be kept hidden, but the overall relationship pattern of an
individual may be revealed. However, each individual’s information corresponds to all
edges adjacent to her node and a more natural extension of differential privacy for this
setting would be that this entire information should be kept hidden. This is what we call
node privacy (in contrast with edge privacy guaranteed in prior work). A crucial devia-
tion from edge privacy is that a change in the information of one individual can affect
the information of all other individuals. We give methods that provide node privacy for
a variety of types of graphs, including very sparse graphs.

Finally, motivated by examples from social networks Gehrke et al. [9] suggest a
stronger notion than differential node privacy – called zero-knowledge privacy – and
demonstrate that this stronger notion can be achieved for several tasks in extremely
dense graphs. Zero-knowledge privacy, as they employ it, can be used to release quan-
tities that can be computed from small, random induced subgraphs of a larger graph.
Their techniques are not directly applicable to sparse graphs (since a random induced
subgraph will contain very few edges, with high probability).

We note that while node privacy gives a very strong guarantee, it may not answer all
privacy concerns in a social network. Kifer and Machanavajjhala [13] criticize differen-
tial privacy in the context of social networks, noting that individuals can have a greater
effect on a social network than just forming their own relationships (their criticism is
directed at edge privacy, but it can also apply to node privacy).

Concurrent Work. In independent work, Blocki et al. [1] also consider node-level
differential private algorithms for analyzing sparse graphs. Both our work and that of
Blocki et al. are motivated by getting good accuracy on sparse graphs, and employ pro-
jections onto the set of low-degree graphs to do so. The two works differ substantially
in the technical details. See Appendix A for a detailed comparison.

Organization. Section 2 defines the basic framework of node and edge privacy and
gives background on sensitivity and noise addition that is needed in the remainder of
the paper. Section 3 introduces a useful, basic class of queries that can be analyzed
with node privacy, namely queries that are linear in the degree distribution. Section 4
gives our first projection technique based on maximum flow and applies it to privately
estimate the number of edges in a graph (Section 4.2). Section 4.3 generalizes the flow
technique to apply it to any concave function on degree. Section 5 provides a private
(small) subgraph counting algorithm via linear programming. Finally, Section 6 de-
scribes our general reduction from privacy on all graphs to the design of algorithms
that are private only on bounded-degree graphs, and applies it to privately release the
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(entire) degree distribution. Due to space constraints, all proofs are deferred to the full
version of this paper.

2 Preliminaries

Notation. We use [n] to denote the set {1, . . . , n}. For a graph, (V,E), d̄(G) = 2|E|/|V |
is the average degree of the graph G and degv(G) denotes the degree of node v ∈ V in
G. When the graph referenced is clear, we drop G in the notation. The asymptotic no-
tation On(·), on(·) is defined with respect to growing n. Other parameters are assumed
to be functions independent of n unless specified otherwise.

Let G denote the set of unweighted, undirected finite labeled graphs, and let Gn
denote the set of graphs on at most n nodes and Gn,D be the set of all graphs in Gn with
maximum degree D.

2.1 Graphs Metrics and Differential Privacy

We consider two metrics on the set of labeled graphs: node and edge distance. The
node distance dnode(G,G′) (also called rewiring distance) between graphs G and G′ is
the minimum number of nodes in G′ that need to be changed (“rewired”) to obtain G.
Rewiring allows one to add a new node (with an arbitrary set of edges to existing nodes),
remove it entirely, or change its adjacency lists arbitrarily. In particular, a rewiring can
affect the adjacency lists of all other nodes. Equivalently, let k is the number of nodes
in the largest induced subgraph of G which equals the corresponding induced subgraph
of G′. The node distance is dnode(G,G′) = max{|VG|, |VG′ |} − k . Graphs G,G′ are
node neighbors if their node distance is 1.

The edge distance dedge(G,G′) is the minimum number of edges in G′ that need to
be changed (i.e., added or deleted) to obtain G. We also count insertion or removal of
an isolated node (to allow for graphs with different number of nodes). In this paper,
distance between graphs refers to the node distance unless specified otherwise.

Definition 2.1 ((ε, δ)-differential Privacy [8, 5, 6]) A randomized algorithm A is
(ε, δ)-node-private (resp. edge-private) if for all events S in the output space of A,
and for all graphs G,G′ at rewiring distance 1 (resp. edge-distance 1) we have:

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S] + δ .

When δ = 0, the algorithm is ε-differentially private. In this paper, if node or edge
privacy is not specified, we mean node privacy by default.

In this paper, for simplicity of presentation, we assume that n = |V |, the number of
nodes of the input graph G, is publicly known. This assumption is justified since, as we
will see, one can get a very accurate estimate of |V | via a node-private query. Moreover,
given a publicly known value n, one can force the input graph G = (V,E) to have
n nodes without sacrificing differential node privacy: one either pads the graph with
isolated nodes (if |V | < n) or discards the |V |−n “excess” nodes with the largest labels
(if |V | > n) along with all their adjacent edges. Changing one node of G corresponds to
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a change of at most one node in the resulting n-node graph as long as the differentially
private algorithms being run on the data do not depend on the labeling (i.e., they should
be symmetric in the order of the labels).

Differential privacy “composes” well, in the sense that privacy is preserved (albeit
with slowly degrading parameters) even when the adversary gets to see the outcome of
multiple differentially private algorithms run on the same data set.

Lemma 2.1 (Composition, Post-processing [14, 7]). If an algorithm A runs t ran-
domized algorithms A1, . . . ,At, each of which is (ε, δ)-differentially private, and ap-
plies an arbitrary (randomized) algorithm g to their results, i.e.,A(G) = g(A1(G), . . . ,
At(G)), then A is (tε, tδ)-differentially private.

2.2 Calibrating Noise to Sensitivity

Output Perturbation. One common method for obtaining efficient differentially pri-
vate algorithms for approximating real-valued functions is based on adding a small
amount of random noise to the true answer. In this paper, we use two families of ran-
dom distributions to add noise: Laplace and Cauchy. A Laplace random variable with
mean 0 and standard deviation

√
2λ has density h(z) = (1/(2λ))e−|z|/λ. We denote it

by Lap(λ). A Cauchy random variable with median 0 and median absolute deviation λ
has density h(z) = 1/(λπ(1 + (z/λ)2)). We denote it by Cauchy(λ).

Global Sensitivity. The most basic framework for achieving differential privacy,
Laplace noise is scaled according to the global sensitivity of the desired statistic f .
This technique extends directly to graphs as long as we measure sensitivity with respect
to the same metric as differential privacy. Below, we define these (standard) notions in
terms of node distance and node privacy. Recall that Gn is the set of all n-node graphs.

Definition 2.1 (Global Sensitivity [8]). The 
1-global node sensitivity of a function
f : Gn → Rp is:

Δf = max
G,G′ node neighbors

‖f(G)− f(G′)‖1 .

For example, the number of edges in a graph has node sensitivity n (when we restrict
our attention to n-node graphs), since rewiring a node can add or remove at most n
nodes. In contrast, the number of nodes in a graph has node sensitivity 1, even when we
consider graphs of all sizes (not just a fixed size n).

Theorem 2.2 (Laplace Mechanism [8]). The algorithmA(G) = f(G)+Lap(Δf/ε)p

(i.e., adds i.i.d. noise Lap(Δf/ε) to each entry of f ), is ε-node-private.

Thus, we can release the number of nodes |V | in a graph with noise of expected mag-
nitude 1/ε while satisfying node differential privacy. Given a public bound n on the
number of nodes, we can release the number of edges |E| with additive noise of ex-
pected magnitude (n− 1)/ε (the global sensitivity for releasing edge count is n− 1).

Local Sensitivity. The magnitude of noise added by the Laplace mechanism depends
on Δf and the privacy parameter ε, but not on the database G. For many functions, this
approach yields high noise, not reflecting the function’s typical insensitivity to individ-
ual inputs. Nissim et al. [15] proposed a local measure of sensitivity, defined next.
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Definition 2.2 (Local Sensitivity [15]). For a function f : Gn → Rp and a graph
G ∈ Gn, the local sensitivity of f at G is LSf (G) = max

G′
‖f(G)− f(G′)‖1, where the

maximum is taken over all node neighbors G′ of G.

Note that, by Definitions 2.1 and 2.2, the global sensitivity Δf = maxG LSf (G). One
may think of the local sensitivity as a discrete analogue of the magnitude of the gradient
of f .

A straightforward argument shows that every differentially private algorithm must
add distortion at least as large as the local sensitivity on many inputs. However, finding
algorithms whose error matches the local sensitivity is not straightforward: an algorithm
that releases f with noise magnitude proportional to LSf(G) on input G is not, in gen-
eral, differentially private [15], since the noise magnitude itself can leak information.

Smooth Bounds on LS. Nissim et al. [15] propose the following approach: instead of
using the local sensitivity, select noise magnitude according to a smooth upper bound on
the local sensitivity, namely, a functionS that is an upper bound on LSf at all points and
such that ln(S(·)) has low global sensitivity. The level of smoothness is parameterized
by a number β (where smaller numbers lead to a smoother bound) which depends on ε.

Definition 2.3 (Smooth Bounds [15]). For β > 0, a function S : Gn → R is a β-
smooth upper bound on the local sensitivity of f if it satisfies the following require-
ments:

for all G ∈ Gn : S(G) ≥ LSf(G);

for all neighbors G,G′ ∈ Gn : S(G) ≤ eβS(G′).

One can add noise proportional to smooth bounds on the local sensitivity using a variety
of distributions. We state here the version based on the Cauchy distribution.

Theorem 2.3 (Calibrating Noise to Smooth Bounds [15]). Let f : Gn → Rp be a
real-valued function and let S be a β-smooth bound on LSf . If β ≤ ε/(

√
2p), the

algorithm A(G) = f(G) + Cauchy(
√
2S(G)/ε)p (adding i.i.d. Cauchy(

√
2S(G)/ε)

to each coordinate of f ) is ε-differentially private.

From the properties of Cauchy distribution, the algorithm of the previous theorem has
median absolute error (

√
2S(G))/ε (the median absolute error is the median of the

random variable |A(G) − f(G)|, where A(G) is the released value and f(G) is the
query answer). Note that the expected error of Cauchy noise is not defined. One can get
a similar result with an upper bound on any finite moment of the error using different
heavy-tailed probability distributions [15]. We use Cauchy noise here for simplicity.

To compute smooth bounds efficiently, it is convenient to break the expression defin-
ing it down into tractable components. For every distance t, consider the largest local
sensitivity attained on graphs at distance at most t from G. The local sensitivity of f at
distance t is:

LS(t)(G) = max
G′∈Gn: dnode(G,G′)≤t

LSf(G
′) .

Now the smooth sensitivity is: S∗f,β(G) = maxt=0,...,n e−tβLS(t)(G) . Many smooth

bounds on the local sensitivity have a similar form, with LS(t) being replaced by some
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other function C(t)(G) with the property that C(t)(G) ≤ C(t+1)(G′) for all pairs of
neighbors G,G′. For example, our bounds on the sensitivity of naive truncation have
this form (Proposition 6.1, Section 6).

2.3 Sensitivity and Privacy on Bounded-Degree Graphs

A graph is D-bounded if it has maximum degree at most D. The degree bound D can
be a function of the number of nodes in the graph. We can define a variant of differential
privacy that constrains an algorithm only on these bounded-degree graphs.

Definition 2.4 (Bounded-degree (ε, δ)-differential Privacy) A randomized algorithm
A is (ε, δ)D-node-private (resp. (ε, δ)D-edge-private) if for all pairs of D-bounded
graphs G1, G2 ∈ Gn,D that differ in one node (resp. edge), we have Pr[A(G) ∈ S] ≤
eε Pr[A(G′) ∈ S] + δ.

In bounded-degree graphs, the difference between edge privacy and node privacy is
relatively small. For example, an (ε, 0)D-edge-private algorithm is also (εD, 0)D-node-
private (and a similar statement can be made about (ε, δ) privacy, with a messier growth
in δ).

The notion of global sensitivity defined above (from previous work) can also be
refined to consider only how the function may change within Gn,D, and we can ad-
just the Laplace mechanism correspondingly to add less noise while satisfying (ε, 0)D-
differential privacy.

Definition 2.4 (Global Sensitivity on Bounded Graphs). The 
1-global node sensi-
tivity on D-bounded graphs of a function f : Gn → Rp is:

ΔDf = max
G,G′∈Gn,D: dnode(G,G′)=1

‖f(G)− f(G′)‖1 .

Observation 2.5 (Laplace Mechanism on Bounded Graphs) The algorithmA(G) =
f(G) + Lap (ΔDf/ε)

p is (ε, 0)D-node-private.

2.4 Assumptions on Graph Structure

Let pG denote the degree distribution of the graph G, i.e., pG(k) =
∣∣{v : degv(G) =

k}
∣∣/|V |. Similarly, PG denotes the cumulative degree distribution, i.e., PG(k) =

∣∣{v :

degv(G) ≥ k}
∣∣/|V |. Recall that d̄(G) = 2|E|/|V | is the average degree of G.

Assumption 2.6 (α-decay) Fix α ≥ 1. A graph G satisfies α-decay if for all2 real
numbers t > 1, PG(t · d̄) ≤ t−α.

Note that all graphs satisfy 1-decay (by Markov’s inequality). The assumption is non-
trivial for α > 1, but it is nevertheless satisfied by almost all widely studied classes of

2 Our results hold even when this condition is satisfied only for sufficiently large t. For simplic-
ity, we use a stronger assumption in our presentation.
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graphs. So-called “scale-free” networks (those that exhibit a heavy-tailed degree dis-
tribution) typically satisfy α-decay for α ∈ (1, 2). Random graphs satisfy α-decay for
essentially arbitrarily large α since their degree distributions have tails that decay ex-
ponentially (more precisely, for any α we can find a constant cα such that, with high
probability, α-decay holds when t > cα). Regular graphs satisfy the assumption with
α =∞. Next we consider an implication of α-decay.

Lemma 2.2. Consider a graph G on n nodes that satisfies α-decay for α > 1, and
let D > d̄. Then the number of edges in G adjacent to nodes of degree at least D is
O(d̄αn/Dα−1).

3 Linear Queries in the Degree Distribution

The first, and simplest, queries we consider are functions linear in the degree distribu-
tion. In many cases, these can be released directly with node privacy, though they also
highlight why bounding the degree leads to such a drastic reduction in sensitivity. Sup-
pose we are given a function h : N → R≥0 that takes nonnegative real values. We can
extend it to a function on graphs as follows:

Fh(G)
def
=
∑
v∈G

h(degv(G)) ,

where degv is the degree of the node v in G. We will drop the superscript in Fh when
h is clear from the context. The query Fh can also be viewed as the inner product
of h = (h(0), . . . , h(n − 1)) with the degree distribution pG, scaled up by n, i.e.,
Fh(G) = n〈h, pG〉.

Several natural quantities can be expressed as linear queries. The number of edges
in the graph, for example, corresponds to half the identity function, that is, h(i) = i/2
(since the sum of the degrees is twice the number of edges). The number of nodes in
the graph is obtained by choosing the constant function h(i) = 1. The number of nodes
with degrees in a certain range – say above a threshold D – also falls into this category.
Less obviously, certain subgraph counting queries, namely, the number of k-stars for a
given k, can be obtained by taking h(i) =

(
i
k

)
for i ≥ k (and h(i) = 0 for i < k).

The sensitivity of these linear queries depends on the maximum value that h can take
as well as the largest jump in h over the interval {0, . . . , n− 1}. Let

‖h′‖∞ def
= max

0≤i<n−1
|h(i+ 1)− h(i)| .

We refer to ‖h′‖∞ as the maximum slope of h. This quantity depends on n, though we
leave n out of the notation for clarity. Let

‖h‖∞ def
=

(
max

0≤i≤n−1
|h(i)|

)
.

Lemma 3.1. The sensitivity of Fh on Gn is at most ΔFh ≤ ‖h‖∞ + (n− 1) · ‖h′‖∞ .
If there is a value j ∈ {0, . . . , n−1} such that h(j) = 0, then ΔFh ≤ 2(n−1)‖h′‖∞ .
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This simple rule immediately gives us tight bounds on the sensitivity of several nat-
ural functions, such as the number of nodes, number of edges and the number of k-stars
for a given k). We mention here two functions that come up later in the paper.

(1) Common Estimators for Power Law Coefficients: Many real-world networks
exhibit heavy-tailed degree distributions, and a common goal of analysts is to iden-
tify the coefficient of a power law that best fits the data (we note that power laws
are not the only heavy-tailed distributions, but they are very popular). One well-
studied approach to identifying the power law coefficient is to treat the degrees as
n independent samples from a power law distribution (Clauset et al. [3]). In that
case, the maximum likelihood estimator for the exponent is 1 + n/M(G) where
M(G) =

∑
v∈V ln(degv). Note that M is a linear function of the degree distribu-

tion (as M(G) = Fh(G) with h(i) = ln(i) for i ≥ 1 and h(0) = 0) with maximum
slope ln(2)− ln(1) = ln(2) and maximum value ln(n− 1). The sensitivity of M
is Θ(n). Therefore, applying the Laplace mechanism directly is problematic, since
the noise (of magnitude O(n/ε)) will swamp the value of the query. In Section 4.3,
we propose a different approach (based on convex programming) for privately re-
leasing these estimators.

(2) Counting Nodes in an Interval: If f = χ[a,b] where χ[a,b](i) = 1 if a ≤ i ≤ b,
and 0 otherwise, then Ff counts the number of nodes of degree between thresholds
a and b. However, the sensitivity ΔFf = Θ(n), making the answer to this query
useless once Laplace noise has been added.

We can reduce the sensitivity of this query by tapering the characteristic func-
tion of the interval. Given an interval [a, b], consider the tapered step function
ft,a,b(i) = max{0, 1 − t · dist(i, [a, b])}, where dist(i, [a, b]) denotes the dis-
tance from i to the nearest point in the interval [a, b]. The maximum slope of ft,a,b
is t, so ΔFft,a,b

= 2tn. Answers to this query may be meaningful for any t = o(1)
(since then the sensitivity will be o(n)). We will find this sort of “smoothed” count-
ing query to be useful when estimating how many nodes of high degree there are
in a graph (see Proposition 6.1, Section 6).

The linear queries already give us a toolkit for analyzing graphs with node privacy,
much as linear queries (over the data points) give a powerful basic toolkit for the differ-
entially private analysis of conventional data sets (as in the SuLQ framework of Blum et
al. [2]). The difference, of course, is that we need to consider slowly varying functions
in order to keep the sensitivity low.

Graphs of Bounded Degree. Notice that the techniques mentioned above for bounding
the sensitivity of a linear query work better in bounded-degree graphs. Specifically, the
sensitivity of Fh on D-bounded graphs is at most

ΔFh ≤ ‖h‖∞ +D‖h′‖∞ . (1)

This motivates the approaches in the remainder of the paper, which seek to first bound
the degree via a projection step.
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4 Flow-Based Lipschitz Extensions

We now present our flow-based technique. In Section 4.1, we define a flow function and
show that it has low global node sensitivity and, on bounded-degree graphs, it correctly
computes the number of edges in the graph. In Section 4.2, we design a node-private
algorithm for releasing the number of edges in a graph based on this flow function.

4.1 Flow Graph

Definition 4.1 (Flow graph). Given an (undirected) graph G = (V,E), let V� = {v� |
v ∈ V } and Vr = {vr | v ∈ V } be two copies of V , called the left and the right
copies, respectively. Let D be a natural number less than n. The flow graph of G with
parameter D, a source s and a sink t is a directed graph on nodes V� ∪ Vr ∪{s, t} with
the following capacitated edges: edges of capacity D from the source s to all nodes in
V� and from all nodes in Vr to the sink t, and unit-capacity edges (u�, vr) for all edges
{u, v} of G. Let vfl(G) denote the value of the maximum flow in the flow graph of G.

Lemma 4.1. The global node sensitivity Δvfl ≤ 2D.

Lemma 4.2. For all graphs G, the value vfl(G) ≤ 2fe(G). Moreover, if G is D-
bounded then vfl(G) = 2fe(G).

4.2 Algorithm for Releasing the Number of Edges

In this section, we design a node-private algorithm for releasing the number of edges.
The main challenge in applying the methodology from the previous section is that we
need to select a good threshold D that balances two conflicting goals: keeping the sen-
sitivity low and retaining as large a fraction of the graph as possible.

Given a graphG, let fe(G) be the number of edges in G. Observe that the global node
sensitivity of the edge count, Δfe, is at most n because rewiring (or adding/removing)
a node can change this count by at most n. So releasing fe with Laplace noise of the
magnitude n/ε is ε-node-private. The resulting approximate count is accurate if the
number of edges in the input graph G is large. The following algorithm allows us to
release an accurate count even when this number is low, provided that G satisfies α-
decay, a natural assumption discussed in Section 2.4.

Algorithm 1. ε-Node-Private Algorithm for Releasing fe(G)

Input: parameters ε,D, n, and graph G on n nodes.

1: Let ê1 = fe(G) + Lap( 2n
ε
) and threshold τ = n lnn

ε
.

2: If ê1 ≥ 3τ , return ê1.
3: Else compute the flow value vfl(G) given in Definition 4.1 with D.
4: return ê2 = vfl(G)/2 + Lap( 2D

ε
).

Lemma 4.3. Algorithm 1 is an ε-node-private algorithm that takes a graph G and pa-
rameters ε, n,D, and outputs an approximate count for fe(G) (number of edges in G).
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1. If fe(G) ≥ (5n lnn)/ε, then with probability at least 1 − 1/ lnn, Algorithm 1
outputs ê1 with

|ê1 − fe(G)| ≤ (2n ln lnn)/ε.

2. If G satisfies α-decay for α > 1, D > d̄, and fe(G) < (n lnn)/ε, then with
probability at least 1− 2/ lnn, Algorithm 1 outputs ê2 and

|ê2 − fe(G)| = O

(
2D ln lnn

ε
+

d̄α

Dα−1

)
.

The algorithm runs in O(nfe(G)) time.

Using this lemma, and setting D = n1/α, we get the following theorem about privately
releasing edge counts.

Theorem 4.1 (Releasing Edge Counts Privately). There is a node differentially pri-
vate algorithm which, given constants α > 1, ε > 0, and a graph G on n nodes,
computes with probability at least 1− 2/(lnn) an (1± on(1))-approximation to fe(G)
(the number of edges in G) if either of the following holds:

1. If fe(G) ≥ (5n lnn)/ε.
2. If G satisfies α-decay and fe(G) = ω(n1/α(lnn)α+1).

4.3 Extension to Concave Query Functions

The flow-based technique of the previous section can be generalized considerably. In
this section, we look at linear queries in the degree distribution in which the function
h specifying the query is itself concave, meaning that its increments h(i + 1) − h(i)
are non-increasing as i goes from 0 to n − 2. The number of edges in the graph is an
example of such a query, since the increments of h(i) = i/2 are constant.3

For mathematical convenience, we assume that the function h is in fact defined on
the real interval [0, n − 1] and is increasing and concave on that set (meaning that for
all x, y ∈ [0, n − 1], we have h((x + y)/2) ≤ (h(x) + h(y))/2. It is always possible
to extend a (discrete) function on {0, . . . , n − 1} with nonincreasing increments to a
concave function on [0, n − 1] by interpolating linearly between each adjacent pair of
values h(i), h(i + 1). Note that the maximum of h is preserved by this transformation,
and the largest increment |h(i + 1) − h(i)| equals the Lipschitz constant of the new
function (defined as supx,y∈[0,n−1]

|h(x)−h(y)|
|x−y| ).

Given a graph G on at most n nodes, a concave function h on [0, n− 1] and a thresh-
old D, we define an optimization problem as follows: construct the flow graph (Defini-
tion 4.1) as before, but make the objective to maximize objh(Fl) =

∑
v∈V h(Fl(v)),

where Fl(v) is the units of flow passing from s to v� in the flow Fl. Let opth(G) denote
the maximum value of the objective function over all feasible flows. The constraints of
this optimization problem are all linear.

3 There is some possible confusion here: any query of the form Fh described in Section 3
is linear in the degree distribution of the graph. Our additional requirement here is that the
“little” function h be concave in the degree argument i.
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This new optimization problem is no longer a maximum flow problem (nor even
a linear program), but the concavity of h ensures that it still a convex optimization
problem and can be solved in polynomial time using convex programming techniques.
Note that we need h be to concave only for computational efficiency purposes, and one
could define the above flow graph and optimization problem for all h.

Proposition 4.1. For every increasing function h : [0, n− 1]→ R,

1. If G is D-bounded, then opth = Fh(G) (that is, the value of the optimization
problem equals the correct value of the query).

2. The optimum opth has global sensitivity at most ‖f‖∞ + D‖f ′‖∞ on Gn, where
‖f‖∞ = max0≤x≤D h(x) and ‖f ′‖∞ is the Lipschitz coefficient of h on [0, D]
(that is, the global sensitivity of the optimization problem’s value is at most the
sensitivity of Fh on D-bounded graphs).

3. If h is concave then opth(G) can be computed to arbitrary accuracy in polynomial
(in n) time.

Thus, as with the number of edges, we can ask a query which matches Fh on D-bounded
graphs but whose global sensitivity on the whole space is bounded by its sensitivity of
the set of D-bounded graphs.

The MLE for power laws described in Section 3 is an interesting example where
Proposition 4.1 could be used. There is a natural concave extension for the power law
MLE: set f(x) = x for 0 ≤ x < 1 and f(x) = 1 + ln(x) for x ≥ 1. The sensitivity of
Ff on D-bounded graphs is ΔDf ≤ 1 + ln(D) +D (this follows from (1)). In graphs
with few high-degree nodes of degree greater than D, this leads to a much better private
approximation to the power-law MLE in low-degree graphs than suggested in Section 3.

5 LP-Based Lipschitz Extensions

In this section, we show how to privately release the number of (not necessarily induced
copies) of a specified small template graph H in the input graph G. For example, H can
be a triangle, a k-cycle, a length-k path, a k-star (k nodes connected to a single common
neighbor), or a k-triangle (k nodes connected to a pair of common neighbors that share
an edge). Let fH(G) denote the number of (not necessarily induced) copies of H in G,
where H is a connected graph on k nodes.

5.1 LP-Based Function

Definition 5.1 (Function vLP(G)). Given an (undirected) graph G = ([n], E) and a
number D ∈ [n], consider the following LP. The LP has a variable xC for every copy
of the template graph H in G. Let ΔDf denote the global node sensitivity of func-
tion f in D-bounded graphs. Then the LP corresponding to G is specified as follows:

maximize
∑

copies C of H

xC subject to:

0 ≤ xC ≤ 1 for all variables xC

Sv ≤ ΔDfH for all nodes v ∈ [n], where Sv =
∑

C:v∈V (C)

xC .

We denote the value that maximizes this linear program by vLP(G).
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When the variable xC takes values 1 or 0, it signifies the presence or absence of the
corresponding copy of H in G. The first type of constraints restricts these variables to
[0, 1]. The second type of constraints says that every node can participate in at most
ΔDfH copies of H . This is the largest number of copies of H in which a node can
participate in a D-bounded graph.

Observation 5.1 ΔDfH ≤ k ·D · (D − 1)k−2, where k is the number of nodes in H .

Lemma 5.1. The global node sensitivity ΔvLP ≤ ΔDfH ≤ k ·D · (D − 1)k−2.

Lemma 5.2. For all graphs G, the value vLP(G) ≤ fH(G). Moreover, if G is D-
bounded then vLP(G) = fH(G).

5.2 Releasing Counts of Small Subgraphs

The LP-based function from the previous section can be used to privately release small
subgraph counts. If fH(G) is relatively large then the Laplace mechanism will give an
accurate estimate. Using the LP-based function, we can release fH(G) accurately when
fH(G) is much smaller, provided that G satisfies α-decay. In this section, we work out
the details of the algorithm for the special case when H has 3 nodes, i.e., is the triangle
or the 2-star, but the underlying ideas apply even when H is some other small subgraph.

Algorithm 2. ε-Node-Private Algorithm for Releasing Subgraph Count fH(G)

Input: parameters ε,D, n, template graph H on 3 nodes, and graph G on n nodes.
1: Let f̂1 = fH(G) + Lap( 6n

2

ε
) and threshold ζ = n2 lnn

ε
.

2: If f̂1 ≥ 7ζ, return f̂1.
3: Compute the value vLP(G) given in Definition 5.1 using D.

4: return f̂2 = vLP(G) + Lap( 6D
2

ε
).

Lemma 5.3. Algorithm 2 is an ε-node-private polynomial time algorithm that takes
a graph G, parameters ε,D, n, and a connected template graph H on 3 nodes, and
outputs an approximate count for fH(G) (the number of copies of H in G).

1. If fH(G) ≥ (13n2 lnn)/ε, then with probability at least 1 − 1/ lnn, Algorithm 2
outputs f̂1 and ∣∣∣f̂1 − fH(G)

∣∣∣ ≤ (6n2 ln lnn)/ε.

2. If G satisfies α-decay for α > 1, D > d̄, and fH(G) < (n2 lnn)/ε, then with
probability at least 1− 2/ lnn, Algorithm 2 outputs f̂2 and

|f̂2 − fH(G)| ≤ 6D2 ln lnn

ε
+ th,

where th =

⎧⎪⎨⎪⎩
O
(
d̄αn ·D2−α) if α > 2,

O
(
d̄αn · lnn

)
if α = 2,

O
(
d̄αn · n2−α) if 1 < α < 2.
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Lemma 5.4. If H has 3 nodes and G satisfies α-decay for α > 1 and D ≥ d̄ then
vLP(G) ≥ fH(G) − th, where th = O

(
d̄αnD2−α) if α > 2, th = O

(
d̄2n lnn

)
if

α = 2, and th = O
(
d̄αnn2−α) if 1 < α < 2.

Using Lemmas 5.3 and 5.4 with a carefully chosen threshold degree D, we get the
following theorem about privately releasing counts of subgraphs on 3 nodes. A private
value of d̄ can be obtained using Theorem 4.1.

Theorem 5.2 (Releasing Subgraph Counts Privately). There is a node differentially
private algorithm which, given constants α > 1, ε > 0, a connected template graph H
on 3 nodes, and a graph G on n nodes, computes with probability at least 1− 2/(lnn)
an (1 ± on(1))-approximation to fH(G) (the number of copies of H in G) if either of
the following holds:

1. If fH(G) ≥ (13n2 lnn)/ε.
2. If G satisfies α-decay, has average degree at most d̄ > 1, and either of the following

holds: (a) fH(G) = ω(d̄2n2/α lnn) if α > 2, (b) fH(G) = ω(d̄n ln2 n) if α = 2,
or (c) fH(G) = ω(d̄αn3−α lnn) if 1 < α < 2 .

6 Generic Reduction to Node Privacy in Bounded-Degree Graphs

We now turn to another, more general approach to getting more the accurate queries
by looking at bounded degree graphs. Recall that if we had a promise that all degrees
were at most D, then for many natural queries we could add less noise and still satisfy
differential privacy. The question is, how can we enforce such a promise? Given an input
graph G, possibly of large maximum degree, it is tempting to simply answer all queries
with respect to a “truncated” version T (G), in which nodes of very large degree have
been removed. This is delicate, however, since the truncated graph T (G) may change
a lot when a single node of G is changed. That is, it could be that the local sensitivity
of the “truncation” operator (viewed as a map from Gn to Gn,D) is very high, making
queries on the truncated graph also high-sensitivity.

More generally, consider a projection operator T : Gn → Gn,D which takes an arbi-
trary graph and outputs a D-bounded graph. We may define the (local, global, smooth)
sensitivity of T in terms of the node distance dnode(T (G1), T (G2)) where G1 and G2

differ in one node.
Given a query f defined on D-bounded graphs, it is easy to see that the local sensi-

tivity of a composed query f ◦ T is bounded by the product LST (G) · ΔDf (one can
see this as a discrete analogue of the chain rule from calculus). Our main lemma is that
we can bound the smooth sensitivity similarly. We use the definition of β-smooth upper
bound on local sensitivity from 2.3.

Lemma 6.1 (Smooth Bounds on Composed Functions). Let T : Gn → Gn,D . If
ST (G) is a β-smooth upper bound on the local sensitivity of T (measured w.r.t. node
distance), then Sf◦T (G) = ST (G) ·ΔDF is a β-smooth bound on the local sensitivity
of f ◦ T .
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Given a smooth upper bound on the local sensitivity of Ff ◦T , we can use Theorem 2.3
to obtain a private algorithm for releasing Ff on all graphs in Gn.

Instead of using smooth sensitivity, we can also use a differentially private upper
bound on the local sensitivity, inspired by Dwork and Lei [7] and Karwa et al. [12].
This give a general technique to transform any algorithm that is private on D-bounded
graphs to one which is private for all graphs.

Lemma 6.2 (Generic Reduction [12]). Let T : Gn → Gn,D. Suppose Lε is an (ε, δ1)-
differentially private algorithm (on all graphs in Gn) that outputs a real value such that
Pr[Lε(G) > LST (G)] ≥ 1− δ2 (where LST is measured w.r.t. node distance).

Suppose that A is a (ε, 0)D-differentially private algorithm. Then the following al-
gorithm is (2ε, eεδ2 + δ1)-differentially private: compute L̂ = Lε(G), then run A on
input T (G) with privacy parameter ε′ = ε/L̂ and finally output the pair L̂, A(T (G)).

Naive Truncation. This is the simplest truncation operator. Consider the operator Tnaive

that deletes all nodes of degree greater than D in G = (V,E). This may have high local
sensitivity (for example, rewiring one node may change the degrees of many nodes from
D to D+1, resulting in a drastic increase in the number of nodes deleted by Tnaive. This
projector is computable in O(n+m) time, where n = |V | and m = |E|. The following
simple lemma analyzes the sensitivity of this truncation operation.

Lemma 6.3. Given a threshold D, the local sensitivity of naive truncation (w.r.t. node
distance) is 1 plus the number of nodes with degree either D or D + 1.

The following proposition bounds the local and smooth sensitivity of naive truncation.
The last two parts of this proposition allow us to employ Lemmas 6.1 and 6.2, respec-
tively.

Proposition 6.1 (Bounding the Sensitivity of Naive Truncation). Given a graph G,
let Nk(G) denote the number of nodes in G with degrees in the range [D−k,D+k+1].
Let Ck(G) = 1 + k +Nk(G). Then

1. C0(G) is the local sensitivity of naive truncation at G.
2. For any graph G′ within rewiring distance k+1 of G, the local sensitivity of naive

truncation between G and G′ is at most Ck(G).
3. STnaive(G) = maxk≥0 e

−βkCk(G) is a smooth upper bound on the local sensitivity
of naive truncation. Moreover, if Nlnn/β(G) ≤ 
 (that is, if there are 
 nodes in G
with degrees in the range D ± lnn/β), then

STnaive(G) ≤ 
+ 1/β + 1 .

4. Consider the tapered interval query given by the function ft,D,D+1 (defined in Sec-
tion 3, Item (2)) for some t ∈ ( 1n , 1]. The algorithm that returns

L(G) = 1 + Fft,D,D+1 (G) +
2tn log(1/δ)

ε
+ Lap

(
2tn

ε

)
is (ε, 0)-node-private and returns a value larger than LSTnaive(G) with probability
at least 1− δ.
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6.1 Using Naive Truncation: Deterministic and Randomized Cutoffs

The smooth sensitivity bound of Proposition 6.1 depends on the number of nodes imme-
diately around the cutoff D. Thus, even if a graph G is D-bounded, truncating exactly
at D may lead to a large smooth sensitivity bound. We get a much better bound on
the noise by truncating slightly above the maximum degree. The following corollary
follows by adding Cauchy noise as per Theorem 2.3.

Corollary 6.1. For every ε > 0, every threshold D >
√
2(lnn)/ε and every real-

valued function f : Gn,D → R, there is a ε-node-private algorithm that outputs f(G)

with median error O(ΔD̂f/ε2), where D̂ = D + 2 ln(n)/ε ≤ 2D.

Randomizing the Degree Threshold One obvious problem with the truncation tech-
nique is that we may not know the maximum degree in the graph, or the maximum
degree may be very large. Indeed, as have seen in the algorithms for counting sub-
graphs, it often makes sense to project to a degree threshold well below the maximum
degree in a graph. In that case, the smooth sensitivity bound of Proposition 6.1 could be
large.

One can get a substantially better bound by randomizing the cutoff. Given a target
threshold D, consider an algorithm that picks a random threshold in a range of bounded
by a constant multiple of D (say, between 2D and 3D). We show that the smooth
sensitivity of naive truncation is (likely to be) close to the average number of nodes of
a random degree in the range, saving a factor of roughly D in the introduced noise.

Lemma 6.4 (Randomized Cutoff Lemma). Fix β > 0, a graph G on n nodes, and an
integer D > 0. Let PG(D) be the fraction of nodes in G of degree greater than D, and
let D̂ be uniformly random in the range {D+ 1+ lnn/β, . . . , 2D+ lnn/β} . If Tnaive

is the naive truncation at degree D̂, then

E
D̂

[STnaive(G)] ≤ 3
nPG(D)

D
· lnn

β
+

1

β
+ 1 .

6.2 Application of Naive Truncation for Releasing Degree Distribution

For concreteness, we work out one application of the naive truncation idea to releas-
ing an approximation to the entire degree distribution (rather than releasing specific
functions of that distribution). Our goal is to output a vector p̂ that minimizes the 
1-
error ‖p̂− pG‖1, where pG is the (true) degree distribution of the graph. If the error is
o(1), then p̂ provides an estimate with vanishing error for all of the entries of degree
distribution.

We use Lemma 6.1 to get a smooth bound on local sensitivity. The global sensitivity
ΔD̂‖p̂− pG‖1 ≤ 2D̂.

Theorem 6.1. Algorithm 3 is an ε-node-private algorithm that takes a graph G and
parameters n,D, ε, and outputs a vector p̂ such that, if G satisfies α-decay for α > 1
and D > 4

ε lnn and D > d̄ where d̄ = d̄(G) is the average degree in G , then with
probability at least 1/2 we have
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Algorithm 3. ε-Node-Private Algorithm for Releasing Degree Distributions
Input: parameters ε,D, n, and a graph G on n nodes.

1: Pick D̂ ∈R {D + lnn
β

+ 1, . . . , 2D + lnn
β

}.

2: Compute the naive truncation Tnaive(G) with threshold D̂ and the smooth bound STnaive(G)
with β = ε/(

√
2(D̂ + 1)) (as in Proposition 6.1).

3: Output p̂ = pTnaive(G) + Cauchy
(

2
√

2D̂
ε

STnaive(G)
)D̂+1

(that is, add i.i.d. Cauchy noise

with median absolute deviation 2
√

2D̂
ε

STnaive(G) to the entries of the degree distribution of
Tnaive(G)).

‖p̂− pG‖1 = O

(
d̄α lnn ln(D)

ε2Dα−2 +
D3 ln(D)

n ε2

)
= Õ

(
1

ε2

(
d̄α

Dα−2 +
D3

n

))
,

and the Õ notation hides constants depending on α and polylogarithmic factors in n.

We note that one can get slightly better bounds on the error by considering an algorithm
that uses different noise distributions other than Cauchy. We stick to Cauchy noise here
for simplicity. For the following corollary, we set D = d̄

α
α+1n

1
α+1 in the previous

theorem.

Corollary 6.2 (Releasing Degree Distribution Privately). There is a node differen-
tially private algorithm running in O(|E|) time which, given α > 1, ε > 0, and a graph
G = (V,E) on n nodes, computes an approximate degree distribution with 
1 error
(with probability at least 1/2)

‖p̂− pG‖1 = Õ
(
d̄

3α
α+1 /

(
ε2n

α−2
α+1

))
if G satisfies α-decay and has average degree at most d̄ > 1. In particular, this error
goes to 0 for any constant α > 2 when d̄ is polylogarithmic in n.

Acknowledgments. We thank Madhav Jha for pointing out an error in an earlier ver-
sion of the Randomized Cutoff Lemma.
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A Comparison to Concurrent Work

Blocki et al. [1] provide algorithm for analyzing graph data with node-level differential
privacy. They proceed from a similar intuition to ours, developing low-sensitivity pro-
jections onto the set of graphs of a given maximum degree. However, the results of the
two papers are not directly comparable. This section discusses the differences between
the two works.

Specifically, Blocki et al.have two main results on node privacy, both of which are
incomparable to our corresponding results.

– First, Blocki et al.show that for every function f : Gn,D → R, there exists an
extension g : Gn → R that agrees with f on Gn,D and that has global sensitivity
Δg = ΔDf . The resulting function need not be computable efficiently.

In contrast, we give explicit, efficient constructions of such extensions for sev-
eral families of functions (the number of edges, linear functions of the degree dis-
tribution defined by concave queries, and subgraph counting queries).

– Second, Blocki et al.give a specific projection from arbitrary graphs to graphs of a
particular degree μ : Gn → Gn,D , along with a smooth upper bound on its local
sensitivity. They propose to use this for answering queries which have low node
sensitivity on Gn,D.

http://www.cse.psu.edu/~asmith/pubs/NRS07
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We give a similar result for a different projection (naive truncation). As in their
work, we propose to compose this projection with queries that have low sensitivity
when restricted to graphs of bounded degree (Lemma 6.1), though we also observe
that more general types of composition are also possible (Lemma 6.2).

The results for these different projections are similar in that both techniques have
low smooth sensitivity (depending only on ε) when the input graph has degree less
than the input threshold D.

To the best of our understanding, the accuracy results are nevertheless incom-
parable. The Blocki et al.projection has a bicriteria approximation guarantee: on
input D and G, their projection function is guaranteed to output a graph of degree
at most D such that the distance dnode(G,μ(G)) ≤ 4dnode(G,Gn,D/2). (No such
guarantee is possible for naive truncation, which may be arbitrarily worse than the
optimal projection even onto graphs of degree smaller than D.) Nonetheless, the
sensitivity bound for μ can be quite a bit higher than the one we present for naive
truncation, resulting in lower noise added for privacy (similarly, there are graphs
for which the other projection is less sensitive).

Our approach has a considerable efficiency advantage: the naive truncation pro-
cedure we propose runs in O(n+m) time for a graph with n vertices and m edges,
whereas the projection of Blocki et al.seems to require solving a linear program
with n+

(
n
2

)
variables and Θ(n2) constraints.

The final accuracy guarantees for our algorithms are stated for graphs that satisfy a mild
tail bound on the degree distribution, called α-decay. In contrast, Blocki et al.only give
accuracy guarantees for graphs with bounded degree.

Finally, Blocki et al.also consider edge privacy, and give a simple, elegant projection
operator that has constant edge sensitivity. There is no analogue of that result in this
paper, which focuses on node privacy.
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Abstract. In synchronous networks, protocols can achieve security guar-
antees that are not possible in an asynchronous world: they can si-
multaneously achieve input completeness (all honest parties’ inputs are
included in the computation) and guaranteed termination (honest par-
ties do not “hang” indefinitely). In practice truly synchronous networks
rarely exist, but synchrony can be emulated if channels have (known)
bounded latency and parties have loosely synchronized clocks.

The widely-used framework of universal composability (UC) is inher-
ently asynchronous, but several approaches for adding synchrony to the
framework have been proposed. However, we show that the existing pro-
posals do not provide the expected guarantees. Given this, we propose a
novel approach to defining synchrony in the UC framework by introduc-
ing functionalities exactly meant to model, respectively, bounded-delay
networks and loosely synchronized clocks. We show that the expected
guarantees of synchronous computation can be achieved given these func-
tionalities, and that previous similar models can all be expressed within
our new framework.

1 Introduction

In synchronous networks, protocols can achieve both input completeness (all
honest parties’ inputs are included in the computation) and guaranteed termi-
nation (honest parties do not “hang” indefinitely). In contrast, these properties
cannot simultaneously be ensured in an asynchronous world [7,17].

The traditional model for synchronous computation assumes that protocols
proceed in rounds: the current round is known to all parties, and messages sent
in some round are delivered by the beginning of the next round. While this is a
strong model that rarely corresponds to real-world networks, the model is still
useful since it can be emulated under the relatively mild assumptions of a known
bound on the network latency and loose synchronization of the (honest) parties’
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clocks. In fact, it is fair to say that these two assumptions are exactly what is
meant when speaking of “synchrony” in real-world networks.

The framework of universal composability (UC) [12] assumes, by default, com-
pletely asynchronous communication, where even eventual message delivery is
not guaranteed. Protocol designers working in the UC setting are thus faced
with two choices: either work in an asynchronous network and give up on in-
put completeness [7] or guaranteed termination [29,15], or else modify the UC
framework so as to incorporate synchronous communication somehow.

Several ideas for adding synchrony to the UC framework have been proposed.
Canetti [10] introduced an ideal functionality Fsyn that was intended exactly
to model synchronous communication in a general-purpose fashion. We prove
in Section 5.1, however, that Fsyn does not provide the guarantees expected of
a synchronous network. Nielsen [34] and Hofheinz and Müller-Quade [25] also
propose ways of modeling synchrony with composition guarantees, but their ap-
proaches modify the foundations of the UC framework and are not sufficiently
general to model, e.g., synchrony in an incomplete network, or the case when
synchrony holds only in part of a network (say, because certain links do not
have bounded delay while others do). It is fair to say that the proposed modifi-
cations to the UC framework are complex, and it is unclear whether they ade-
quately capture the intuitive real-world notion of synchrony. The timing model
considered in [20,23,26] extends the notion of interactive Turing machines by
adding a “clock tape.” It comes closer to capturing intuition, but (as we show
in Section 5.2) this model also does not provide the guarantees expected from
a synchronous network. A similar approach is taken in [4], which modifies the
reactive-simulatability framework of [6] by adding an explicit “time port” to each
automaton. Despite the different underlying framework, this work is most sim-
ilar to the approach we follow here in that it also captures both guaranteed
termination and incomplete networks. Their approach, however, inherently re-
quires changing the underlying model and is based on restricting the class of
adversaries (both of which we avoid). Such modifications result in (at least) a
reformulation of the composition theorem and proof.

Our Approach and Results. We aim for an intuitively appealing model that
faithfully embeds the actual real-world synchrony assumptions into the standard
UC framework. The approach we take is to introduce functionalities specifically
intended to (independently) model the two assumptions of bounded network
delay and loose clock synchronization. An additional benefit of separating the
assumptions in this way is that we can also study the case when only one of the
assumptions holds.

We begin by formally defining a functionality corresponding to (authenti-
cated) communication channels with bounded delay. Unfortunately, this alone
is not sufficient for achieving guaranteed termination. (Throughout, we will al-
ways want input completeness to hold.) Intuitively, this is because bounded-delay
channels alone—without any global clock—only provide the same “eventual mes-
sage delivery” guarantee of classical asynchronous networks [7,9]. It thus becomes
clear that what is missing when only bounded-delay channels are available is
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some notion of time. To rectify this, we further introduce a functionality Fclock
that directly corresponds to the presence of loosely synchronized clocks among
the parties. We then show that Fclock together with eventual-delivery channels
is also not sufficient, but that standard protocols can indeed be used to securely
realize any functionality with guaranteed termination in a hybrid world where
both Fclock and bounded-delay (instead of just eventual delivery) channels are
available.

Overall, our results show that the two functionalities we propose—meant to
model, independently, bounded-delay channels and loosely synchronized clocks—
enable us to capture exactly the security guarantees provided by traditional
synchronous networks. Moreover, this approach allows us to make use of the
original UC framework and composition theorem.

Guaranteed Termination. We pursue an approach inspired by constructive cryp-
tography [31,32] to model guaranteed termination. We describe the termination
guarantee as a property of functionalities; this bridges the gap between the
theoretical model and the realistic scenario where the synchronized clocks of
the parties ensure that the adversary cannot stall the computation even if he
tries to (time will advance). Intuitively, such a functionality does not wait for
the adversary indefinitely; rather, the environment—which represents (amongst
others) the parties as well as higher level protocols—can provide the functional-
ity with sufficiently many activations to make it proceed and eventually produce
outputs, irrespective of the adversary’s strategy. This design principle is applied
to both the functionality that shall be realized and to the underlying function-
alities formalizing the (bounded-delay) channels and the (loosely synchronized)
clocks.

We then require from a protocol to realize a functionality with this guaranteed
termination property, given as hybrids functionalities that have the same type
of property. In more detail, following the real-world/ideal-world paradigm of the
security definition, for any real-world adversary, there must be an ideal-world
adversary (or simulator) such that whatever the adversary achieves in the real
world can be mimicked by the simulator in the ideal world. As the functionality
guarantees to terminate and produce output for any simulator, no (real-world)
adversary can stall the execution of a secure protocol indefinitely.

The environment in the UC framework can, at any point in time, provide
output and halt the entire protocol execution. Intuitively, however, this corre-
sponds to the environment (which is the distinguisher) ignoring the remainder
of the random experiment, not the adversary stalling the protocol execution. Any
environment Z can be transformed into an environment Z ′ that completes the
execution and achieves (at least) the same advantage as Z.

A “Polling”-Based Notion of Time. The formalization of time we use in this
work is different from previous approaches [20,23,26,33]; the necessity for the
different approach stems from the inherently asynchronous scheduling scheme
of the original UC model. In fact, the order in which protocols are activated in
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this model is determined by the communication; a party will only be activated
during the execution whenever this party receives either an input or a message.

Given this model, we formalize a clock as an ideal functionality that is avail-
able to the parties running a protocol and provides a means of synchronization:
the clock “waits” until all honest parties signal that they are finished with their
tasks. This structure is justified by the following observation: the guarantees that
are given to parties in synchronous models are that each party will be activated
in every time interval, and will be able to perform its local actions fast enough to
finish before the deadline (and then it might “sleep” until the next time interval
begins). A party’s confirmation that it is ready captures exactly this guarantee.
As this model differentiates between honest and dishonest parties, we have to
carefully design functionalities and protocols such that they do not allow exces-
sive capabilities of detecting dishonest behavior. Still, the synchrony guarantee
inherently does provide some form of such detections (e.g., usually by a time-out
while waiting for messages, the synchrony of the clocks and the bounded delay
of the channels guarantee that “honest” ones always arrive on time).

Our notion of time allows modeling both composition of protocols that run
mutually asynchronously, by assuming that each protocol has its own indepen-
dent clock, as well as mutually synchronous, e.g. lock-step, composition by as-
suming that all protocols use the same clock.

Organization of the Paper. In Section 2, we include a brief description of the
UC model [12] and introduce the necessary notation and terminology. In Sec-
tion 3, we review the model of completely asynchronous networks, describe its
limitations, and introduce a functionality modeling bounded-delay channels. In
Section 4, we introduce a functionality Fclock meant to model loose clock syn-
chronization and explore the guarantees it provides. Further, we define compu-
tation with guaranteed termination within the UC framework, and show how
to achieve it using Fclock and bounded-delay channels. In Section 5, we revisit
previous models for synchronous computation. Many details and, in particular,
proofs have been omitted from this version but they can be found in the full
version of this paper [27].

2 Preliminaries

Simulation-Based Security. Most general security frameworks are based on the
real-world/ideal-world paradigm: In the real world, the parties execute the pro-
tocol using channels as defined by the model. In the ideal world, the parties
securely access an ideal functionality F that obtains inputs from the parties,
runs the program that specifies the task to be achieved by the protocol, and
returns the resulting outputs to the parties. Intuitively, a protocol securely real-
izes the functionality F if, for any real-world adversaryA attacking the protocol
execution, there is an ideal-world adversary S, also called the simulator, that
emulates A’s attack. The simulation is good if no distinguisher Z—often called
the environment—which interacts, in a well defined manner, with the parties
and the adversary/simulator, can distinguish between the two worlds.
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The advantage of such security definitions is that they satisfy strong compos-
ability properties. Let π1 be a protocol that securely realizes a functionality F1.
If a protocol π2, using the functionality F1 as a subroutine, securely realizes a
functionality F2, then the protocol π

π1/F1
2 , where the calls to F1 are replaced by

invocations of π1, securely realizes F2 (without calls to F1). Therefore, it suffices
to analyze the security of the simpler protocol π2 in the F1-hybrid model, where
the parties run π2 with access to the ideal functionality F1. A detailed treatment
of protocol composition appears in, e.g., [6,11,12,18,32].

Model of Computation. All security models discussed in this work are based on
or inspired by the UC framework [12]. The definitions are based on the simula-
tion paradigm, and the entities taking part in the execution (protocol machines,
functionalities, adversary, and environment) are described as interactive Turing
machines (ITMs). The execution is an interaction of ITM instances (ITIs) and
is initiated by the environment that provides input to and obtains output from
the protocol machines, and also communicates with the adversary. The adver-
sary has access to the ideal functionalities in the hybrid models and also serves
as a network among the protocol machines. During the execution, the ITIs are
activated one-by-one, where the exact order of the activations depends on the
considered model.

Notation, Conventions, and Specifics of UC ’05. We consider protocols that are
executed among a certain set of players P , often referred to as the player set,
where every pi ∈ P formally denotes a unique party ID. A protocol execution
involves the following types of ITMs: the environment Z, the adversary A, the
protocol machine π, and (possibly) ideal functionalities F1, . . . ,Fm. We say that
a protocol π securely realizes F in the F ′-hybrid model if for each adversary A
there exists a simulator S such that for all environments Z, the contents of Z’s
output tape after an execution of π (using F ′) with A is indistinguishable from
the contents of the tape after an execution of F with S. For the details of the
execution, we follow the description in [10].

As in [10], the statement “the functionality sends a (private) delayed output y
to party i” describes the following process: the functionality requests the adver-
sary’s permission to output y to party i (without leaking the value y); as soon as
the adversary agrees, the output y is delivered. The statement “the functionality
sends a public delayed output y to party i” corresponds to the same process,
where the permission request also includes the full message y.

All our functionalities F use standard (adaptive) corruption as defined in [10].
At any point in the execution, we denote by H the set of “honest” parties that
have not (yet) been corrupted. Finally, all of our functionalities use a player set
P that is fixed when the functionality is instantiated, and each functionality has
a session ID which is of the form sid = (P , sid′) with sid′ ∈ {0, 1}∗. We will
usually omit the session ID from the description of our functionalities; different
instances behave independently.

The functionalities in our model and their interpretation are specific to the
model of [10] in that they exploit some of the mechanics introduced there, which
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we recall here. First, the order of activations is strictly defined by the model:
whenever an ITI sends a message to some other ITI, the receiving ITI will im-
mediately be activated and the sending ITI will halt. If some ITI halts without
sending a message, the “master scheduler,” the environment Z, will become ac-
tive. This scheme allows to model guaranteed termination since the adversary
cannot prevent the invocation of protocol machines. Second, efficiency is defined
as a “reactive” type of polynomial time: the number of steps that an ITI per-
forms is bounded by a polynomial in the security parameter and (essentially)
the length of the inputs obtained by this ITI. Consequently, the environment
can continuously provide “run-time” to protocol machines to make them poll,
e.g., at a bounded-delay or eventual-delivery channel. Our modeling of eventual
delivery fundamentally relies on this fact.

3 Synchronous Protocols in an Asynchronous Network

Protocols in asynchronous networks cannot achieve input completeness and guar-
anteed termination simultaneously [7,17]. Intuitively, the reason is that honest
parties cannot distinguish whether a message has been delayed—and to satisfy
input completeness they should wait for this message—or whether the sender is
corrupted and did not send the message—and for guaranteed termination they
should proceed. In fact, there are two main network models for asynchronous
protocols: on the one hand, there are fully asynchronous channels that do not
at all guarantee delivery [10,15]; on the other hand, there are channels where
delivery is guaranteed and the delay might be bounded by a publicly known
constant or unknown [7]. In the following, we formalize the channels assumed
in each of the two settings as functionalities in the UC framework and discuss
how they can be used by round-based, i.e., synchronous, protocols. The results
presented here formally confirm—in the UC framework—facts about synchrony
assumptions that are known or folklore in the distributed computing literature.

3.1 Fully Asynchronous Network

The communication in a fully asynchronous network where messages are not
guaranteed to be delivered is modeled by the functionality Fsmt from [10], which
involves a sender, a receiver, and the adversary. Messages input by the sender
ps are immediately given to the adversary, and delivered to the receiver pr only
after the adversary’s approval. Different privacy guarantees are formulated by a
so-called leakage function �(·) that determines the information leaked during the
transmission if both ps and pr are honest. In particular, the authenticated chan-
nel Fauth is modeled by Fsmt parametrized by the identity function �(m) = m,
and the ideally secure channel Fsec is modeled by Fsmt with the constant func-
tion �(m) =⊥. (For realistic channels obtained by encryption one typically re-
sorts to the length function �(m) = |m|, see [14].)An important property of Fsmt
is adaptive message replacement: the adversary can, depending on the leaked
information, corrupt the sender and replace the sent message.
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Canetti et al. [15] showed that, in this model and assuming a common refer-
ence string, any (well-formed) functionality can be realized, without guaranteed
termination. Moreover, a combination of the results of Kushilevitz, Lindell, and
Rabin [29] and Asharov and Lindell [1] show that appropriate modifications of
the protocols from the seminal works of Ben-Or, Goldwasser, and Widgerson [8]
and Chaum, Crépeau, and Damgård [16] (for unconditional security) or the work
by Goldreich, Micali, and Widgerson [22] (for computational security)—all of
which are designed for the synchronous setting—are sufficient to achieve general
secure computation without termination in this asynchronous setting, under the
same conditions on corruption-thresholds as stated in [8,16,22].

The following lemma formalizes the intuition that a fully asynchronous net-
work is insufficient for terminating computation, i.e., computation which cannot
be stalled by the adversary. For a functionality F, denote by [F]NT the non-
terminating relaxation of F defined as follows: [F]NT behaves as F, but whenever
F outputs a value to some honest party, [F]NT provides this output in a delayed
manner (see Section 2). More formally, we show that there are functionalities
F that are not realizable in the Fsmt-hybrid model, but their delayed relax-
ations [F]NT are. This statement holds even for stand-alone security, i.e., for
environments that do not interact with the adversary during the protocol exe-
cution. Additionally, the impossibility applies to all non-trivial, i.e., not locally
computable, functionalities (see [28]) with guaranteed termination as defined in
Section 4. While the lemma is implied by the more general Lemma 5, we describe
the proof idea for this simpler case below.

Lemma 1. There are functionalities F such that [F]NT can be realized in the
Fsmt-hybrid model, but F cannot be realized.

Proof (idea). Consider the functionality F which behaves as Fsmt, but with the
following add-on: upon receiving a special “fetch” message from the receiver pr,
outputs y to pr, where y = m if the sender has input the message m, and y =⊥
(i.e., a default value), otherwise. [F]NT is realized from Fsmt channels by the
dummy protocol, whereas realizing F is impossible. ��

3.2 Eventual-Delivery Channels

A stronger variant of asynchronous communication provides the guarantee that
messages will be delivered eventually, independent of the adversary’s strategy [7].
The functionality Fed-smt captures this guarantee, following the principle de-
scribed in Section 1: The receiver can enforce delivery of the message using
“fetch” requests to the channel. The potential delay of the channel is modeled
by ignoring a certain number D of such requests before delivering the actual
message to pr; to model the fact that the delay might be arbitrary, we allow the
adversary to repeatedly increase the value of D during the computation. Yet,
the delay that A can impose is bounded by A’s running time.1 The fact that
this models eventual delivery utilizes the “reactive” definition of efficiency in [10]:
1 This is enforced by accepting the delay-number only when given in unary notation.
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after the adversary determined the delay D for a certain message, the environ-
ment can still provide the protocol machines of the honest parties with suffi-
ciently many activations to retrieve the message from the channel. The eventual
delivery channel Fed-smt is, like Fsmt, parametrized by a leakage function �(·).

Functionality Fed-smt(ps, pr, �(·))
Initialize M := ⊥ and D := 0.
– Upon receiving a message m from ps, set D := 1 and M := m and send

�(M) to the adversary.
– Upon receiving a message (fetch) from pr:

1. Set D := D − 1.
2. If D = 0 then send M to pr (otherwise no message is sent and, as

defined in [10], Z is activated).
– Upon receiving a message (delay, T ) from the adversary, if T encodes a

natural number in unary notation, then set D := D + T ; otherwise ignore
the message.

– (adaptive message replacement): Upon receiving (corrupt, ps, m
′, T ′) from

A: if D > 0 and T ′ is a valid delay, then set D := T ′ and set M := m′.

Channels with eventual delivery are strictly stronger than fully asynchronous
communication in the sense of Section 3.1. Indeed, the proof of Lemma 1 extends
to the case where F is the eventual-delivery channel Fed-smt: the simulator can
delay the delivery of the message only by a polynomial number of steps, and the
environment can issue sufficiently many queries at the receiver’s interface.

As with fully asynchronous channels, one can use channels with eventual deliv-
ery to achieve secure computation without termination. Additionally, however,
eventual-delivery channels allow for protocols which are guaranteed to (even-
tually) terminate, at the cost of violating input completeness. For instance, the
protocol of Ben-Or, Canetti, and Goldreich [7] securely realizes any functionality
where the inputs of up to n

4 parties might be ignored. Yet, the eventual-delivery
channels, by themselves, do not allow to compute functionalities with strong
termination guarantees. In fact, the result of Lemma 1 holds even if we replace
Fsmt by Fed-smt. This is stated in the following lemma, which again translates
to both stand-alone security and to arbitrary functionalities that are not locally
computable, and is again implied by Lemma 5.

Lemma 2. There are functionalities F such that [F]NT can be realized in the
Fed-smt-hybrid model, but F cannot be realized.

3.3 Bounded-Delay Channels with a Known Upper Bound

Bounded-delay channels are described by a functionality Fbd-smt that is similar
to Fed-smt but parametrized by a (strictly) positive constant δ bounding the
delay that the adversary can impose. In more detail, the functionality Fbd-smt
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works as Fed-smt, but queries of the adversary that lead to an accumulated
delay of T > δ are ignored. Furthermore, the sender/receiver can query the
functionality to learn the value δ. A formal specification of Fbd-smt is given in
the following:

Functionality Fδ
bd-smt(ps, pr, �(·))

Initialize M := ⊥ and D := 1, and Dt := 1.
– Upon receiving a message m from ps, set D := 1 and M := m and send

�(M) to the adversary.
– Upon receiving a message (LearnBound) from ps, pr, or A, reply with δ.
– Upon receiving a message (fetch) from pr:

1. Set D := D − 1.
2. If D = 0, then send M to pr.

– Upon receiving (delay, T ) from the adversary, if Dt + T ≤ δ, then set
D := D + T and Dt := Dt + T ; otherwise ignore the message.

– Upon receiving (corrupt, ps, m
′, T ′) from A: if D > 0 and T ′ is a valid

delay, then set D := T ′ and M := m′.

In reality, a channel with latency δ′ is at least as useful as one with latency
δ > δ′. Our formulation of bounded-delay channels is consistent with this in-
tuition: for any 0 < δ′ < δ, Fδ

bd-smt can be UC-realized in the Fδ′
bd-smt-hybrid

model. Indeed, the simple Fδ′
bd-smt-hybrid protocol that drops δ − δ′ (fetch)-

queries realizes Fδ
bd-smt; the simulator also increases the delay appropriately.

The converse is not true in general: channels with smaller upper bound on the
delay are strictly stronger when termination is required. This is formalized in
the following lemma, which again extends to both stand-alone security and to
non-trivial functionalities with guaranteed termination as in Section 4.

Lemma 3. For any 0 < δ′ < δ, the functionality [Fδ′
bd-smt]

NT can be realized in
the Fδ

bd-smt-hybrid model, but Fδ′
bd-smt cannot be realized.

The proof of Lemma 3 follows the same idea as Lemma 2 and can be found
in the full version of the paper. (The proof of Lemma 2 does not use the fact
that no upper bound on the network latency is known.) The technique used
in the proof already suggests that bounded-delay channels, without additional
assumptions such as synchronized clocks, are not sufficient for terminating com-
putation. While Lemma 3 only handles the case where the assumed channel has
a strictly positive upper-bound on the delay, the (more general) impossibility in
Lemma 5 holds even for instant-delivery channels, i.e., bounded-delay channels
which become ready to deliver as soon as they get input from the sender.

In the remainder of this paper we use instant-delivery channels, i.e., Fδ
bd-smt

with δ = 1; however, our results easily extend to arbitrary values of δ. To simplify
notation, we completely omit the delay parameter, i.e., we write Fbd-smt instead
of F1

bd-smt. Furthermore, we use Fbd-sec and Fbd-auth to denote the correspond-
ing authenticated and secure bounded-delay channel with δ = 1, respectively.
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4 Computation with Guaranteed Termination

Assuming bounded-delay channels is not, by itself, sufficient for achieving both
input completeness and termination. In this section, we introduce the function-
ality Fclock that, together with the bounded-delay channels Fδ

bd-smt, allows syn-
chronous protocols to satisfy both properties simultaneously. In particular, we
define what it means for a protocol to UC-realize a given multi-party function
with guaranteed termination, and show how {Fclock,Fδ

bd-smt}-protocols can sat-
isfy this definition.

4.1 The Synchronization Functionality

To motivate the functionality Fclock, we examine how synchronous protocols
in reality use the assumptions of bounded-delay (with a known upper bound)
channels and synchronized clocks to satisfy the input-completeness and the ter-
mination properties simultaneously: they assign to each round a time-slot that
is long enough to incorporate the time for computing and sending all next-round
messages, plus the network delay. The fact that their clocks are (loosely) syn-
chronized allows the parties to decide (without explicit communication) whether
or not all honest parties have finished all their operations for some round. Note
that it is sufficient, at the cost of having longer rounds, to assume that the clocks
are not advancing in a fully synchronized manner but there is an known upper
bound on the maximum clock-drift [23,26,33].

The purpose of Fclock is to provide the described functionality to UC proto-
cols. But as Fclock is an ordinary UC functionality, it has no means of knowing
whether or not a party has finished its intended operations for a certain round.
This problem is resolved by having the parties signal their round status (i.e,
whether or not they are “done” with the current round) to Fclock. In particular,
Fclock keeps track of the parties’ status in a vector (d1, . . . , dn) of indicator
bits, where di = 1 if pi has signaled that it has finished all its actions for the
current round and di = 0, otherwise. As soon as di = 1 for all pi ∈ H, Fclock
resets di = 0 for all pi ∈ P .2 In addition to the notifications, any party pi can
send a synchronization request to Fclock, which is answered with di. A party
pi that observes that di has switched can conclude that all honest parties have
completed their respective duties.3 As Fclock does not wait for signals from cor-
rupted parties, Fclock cannot be realized based on well-formed functionalities.
Nevertheless, as discussed above, in reality time does offer this functionality to
synchronous protocols.

2 Whenever some party is corrupted, Fclock is notified and updates H accordingly.
This is consistent with models such as [10,34] (and, formally, requires a small change
to the UC control function).

3 For arbitrary protocols, the functionality offers too strong guarantees. Hence, we
restrict ourselves to considering protocols that are either of the type described here
or do not use the clock at all.
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Functionality Fclock(P)
Initialize for each pi ∈ P a bit di := 0.
– Upon receiving message (RoundOK) from party pi set di := 1. If for all

pj ∈ H : dj = 1, then reset dj := 0 for all pj ∈ P . In any case, send
(switch, i) to A.a

– Upon receiving (RequestRound) from pi, send di to pi.

a The adversary is notified in each such call to allow attacks at any point in time.

Synchronous Protocols as {Fclock,Fbd-smt }-Hybrid Protocols. The code of every
party is a sequence of “send,” “receive,” and “compute” operations, where each
operation is annotated by the index of the round in which it is to be executed.
In each round r, each party first receives its messages from round r − 1, then
computes and sends its messages for round r. The functionalities Fclock and
Fbd-smt are used in the straightforward manner: At the onset of the protocol
execution, each pi sets its local round index to 1; whenever pi receives a message
from some entity other than Fclock (i.e., from Z, A, or some other functional-
ity), if a (RoundOK) messages has not yet been sent for the current round (i.e.,
the computation for the current round is not finished) the party proceeds with
the computation of the current round (the last action of each round is sending
(RoundOK) to Fclock); otherwise (i.e., if (RoundOK) has been sent for the current
round), the party sends a (RequestRound) message to Fclock, which replies with
the indicator bit di. The party pi uses this bit di to detect whether or not every
party is done with the current round and proceeds to the next round or waits
for further activations accordingly.

In an immediate application of the above described protocol template, the
resulting protocol would not necessarily be secure. Indeed, some party might
start sending its round r + 1 messages before some other party has even re-
ceived its round r messages, potentially sacrificing security. (Some models in the
literature, e.g. [34], allow such an ordering, while others, e.g. [25], don’t.) The
slackness can be overcome by introducing a “re-synchronization” round between
every two rounds, where all parties send empty messages.

Perfect vs. Imperfect Clock Synchronization. Fclock models that once a single
party observes that a round is completed, every party will immediately (upon
activation) agree with this view. As a “real world” assumption, this means that
all parties perform the round switch at exactly the same time, which means that
the parties’ clocks must be in perfect synchronization. A “relaxed” functionality
that models more realistic synchrony assumptions, i.e., imperfectly synchronized
clocks, can be obtained by incorporating “delays” as for the bounded-delay chan-
nel Fbd-smt. The high-level idea for this “relaxed” clock F−

clock is the following:
for each party pi, F−

clock maintains a value ti that corresponds to the number of
queries needed by pi before learning that the round has switched. The adversary
is allowed to choose (at the beginning of each round), for each party pi a delay ti
up to some upper bound δ > 0. A detailed description of the functionality F−

clock
can be found in the full version [27].
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4.2 Defining Guaranteed Termination

In formalizing what it means to UC-securely compute some specification with
guaranteed termination, we follow the principle described in Section 1. For sim-
plicity, we restrict ourselves to non-reactive functionalities (secure function eval-
uation, or SFE), but our treatment can be easily extended to reactive multi-party
computation. We refer to the full version [27] for details on this extension.

Let f : ({0, 1}∗)n×R −→ ({0, 1}∗)n denote an n-party (randomized) function,
where the i-th component of f ’s input (or output) corresponds to the input (or
output) of pi, and the (n+1)-th input r ∈ R corresponds to the randomness used
by f . In simulation-based frameworks like [10], the secure evaluation of such a
function f is generally captured by an ideal functionality parametrized by f . For
instance, the functionality Ff

sfe described in [10] works as follows: Any honest
party can either submit input to Ff

sfe or request output. Upon input xi from some
party pi, Ff

sfe records xi and notifies A. When some party requests its output,
Ff

sfe checks if all honest parties have submitted inputs; if so, Ff
sfe evaluates

f on the received inputs (missing inputs of corrupted parties are replaced by
default values), stops accepting further inputs, and outputs to pi its output of
the evaluation. We refer to [10,27] for a more detailed description of Ff

sfe.
As described in Section 1, an ideal functionality for evaluating a function f

captures guaranteed termination if the honest parties (or higher level protocols,
which are all encompassed by the environment in the UC framework) are able
to make the functionality proceed and (eventually) produce outputs, irrespec-
tive of the adversary’s strategy. (Technically, we allow the respective parties to
“poll” for their outputs.) The functionality Ff

sfe from [10] has this “terminating”
property; yet, for most choices of the function f , there exists no synchronous
protocol realizing Ff

sfe from any “reasonable” network functionality. More pre-
cisely, we say that a network-functionality Fnet provides separable rounds if for
any synchronous Fnet-hybrid protocol which communicates exclusively through
Fnet, Fnet activates the adversary at least once in every round.4 The follow-
ing lemma then shows that for any function f which requires more than one
synchronous round to be evaluated, Ff

sfe cannot be securely realized by any
synchronous protocol in the Fnet-hybrid model. Note that this includes many
interesting functionalities such as broadcast, coin-tossing, etc.

Lemma 4. For any function f and any network functionality Fnet with sepa-
rable rounds, every Fnet-hybrid protocol π that securely realizes Ff

sfe computes
its output in a single round.

Proof (sketch). Assume, towards a contradiction, that π is a two-round protocol
securely computing Ff

sfe. Consider the environment Z that provides input to all
parties and immediately requests the output from some honest party. As Fnet
provides separable rounds, after all inputs have been submitted, the adversary
4 In [10], this is not necessarily the case. A priori, if some ITI sends a message to some

other ITI, the receiving ITI will be activated next. Only if an ITI halts without
sending a message, the “master scheduler”—the environment—will be activated.
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will be activated at least twice before the protocols first generate outputs. This is
not the case for the simulator in the ideal evaluation of Ff

sfe. Hence, the dummy
adversary cannot be simulated, which contradicts the security of π. ��
To obtain an SFE functionality that matches the intuition of guaranteed termi-
nation, we need to circumvent the above impossibility by making the function-
ality activate the simulator during the computation. We parametrize Fsfe with
a function Rnd(k) of the security parameter which corresponds to the number
of rounds required for evaluating f ; one can easily verify that for any (polyno-
mial) round-function Rnd(·) the functionality Ff,Rnd

sfe will terminate (if there are
sufficiently many queries at the honest parties’ interfaces) independently of the
simulator’s strategy. In each round, the functionality gives the simulator |P|+ 1
activations which will allow him to simulate the activations that the parties need
for exchanging their protocol messages and notifying the clock Fclock.

Functionality Ff,Rnd
sfe (P)

Ff,Rnd
sfe proceeds as follows, given a function f : ({0, 1}∗ ∪ {⊥})n × R →

({0, 1}∗)n, a round function Rnd, and a player set P . For each pi ∈ P , initialize
variables xi and yi to a default value ⊥ and a current delay ti := |P| + 1.
Moreover, initialize a global round counter � := 1.
– Upon receiving input (input, v) from some party pi ∈ P , set xi := v and

send a message (input, i) to the adversary.
– Upon receiving input (output) from some party pi ∈ P , if pi ∈ H and xi

has not yet been set then ignore pi’s message, else do:
• If ti > 1, then set ti := ti − 1. If (now) tj = 1 for all pj ∈ H, then set

� := � + 1 and tj := |P|+ 1 for all pj ∈ P . Send (activated, i) to the
adversary.
• Else, if ti = 1 but � < Rnd, then send (early) to pi.
• Else,
∗ if xj has been set for all pj ∈ H, and y1, . . . , yn have not yet been

set, then choose r
R← R and set (y1, . . . , yn) := f(x1, . . . , xn, r).

∗ Output yi to pi.

Definition 1 (Guaranteed Termination). A protocol π UC-securely evalu-
ates a function f with guaranteed termination if it UC-realizes a functionality
Ff,Rnd

sfe for some round function Rnd(·).
Remark 1 (Lower Bounds). The above formulation offers a language for making
UC-statements about (lower bounds on) the round complexity of certain prob-
lems in the synchronous setting. In particular, the question whether Ff,Rnd

sfe can
be realized by a synchronous protocol corresponds to the question: “Does there
exist a synchronous protocol π which securely evaluates f in Rnd(k) rounds?”,
where k is the security parameter. As an example, the statement: “A function f
needs at least r rounds to be evaluated.” is (informally) translated to “There ex-
ists no synchronous protocol which UC securely realizes the functionality Ff,r′

sfe ,
where r′ < r.”
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The following theorem allows us to translate known results on feasibility of se-
cure computation, e.g., [8,16,22,35], into our setting of UC with termination.
(This follows from the theorem and the fact that these protocols are secure
with respect to an efficient straight-line black-box simulator.) The only modifi-
cation is that the protocols start with a void synchronization round where no
honest party sends or receives any message. For a synchronous protocol ρ, we
denote by ρ̂ the protocol which is obtained by extending ρ with such a start-
synchronization round. The proof is based on ideas from [29] and is included in
the full version [27].

Theorem 1. Let f be a function and let ρ be a protocol that, according to the
notion of [11], realizes f with computational (or statistical or perfect) security in
the stand-alone model, with an efficient straight-line black-box simulator. Then ρ̂
UC-realizes f with computational (or statistical or perfect) security and guaran-
teed termination in the {Fclock,Fbd-sec}-hybrid model with a static adversary.

4.3 The Need for Both Synchronization and Bounded-Delay

In this section, we formalize the intuition that each one of the two “standard”
synchrony assumptions, i.e., bounded-delay channels and synchronized clocks,
is alone not sufficient for computation with guaranteed termination. We first
show in Lemma 5 that bounded-delay channels (even with instant delivery) are,
by themselves, not sufficient; subsequently, we show in Lemma 6 that (even
perfectly) synchronized clocks are also not sufficient, even in combination with
eventual-delivery channels (with no known bound on the delay).

Lemma 5. There are functions f such that for any (efficient) round-function
Rnd and any δ > 0: [Ff,Rnd

sfe ]NT can be realized in the Fδ
bd-smt-hybrid model, but

Ff,Rnd
sfe cannot.

Proof (idea). Consider the two-party function f which, on input a bit x1 ∈ {0, 1}
from party p1 (and nothing from p2), outputs x1 to p2 (and nothing to p1). The
functionality Ff,Rnd

sfe guarantees that an honest p1 will be able to provide input,
independently of the adversary’s behavior. On the other hand, a corrupted p1 will
not keep p2 from advancing (potentially with a default input for p1).5 However,
in the real world, the behavior of the bounded-delay channel in the above two
cases is identical.

On the other hand, the functionality [Ff,Rnd
sfe ]NT can be realized from Fbd-smt:

p1 simply has to send the input to p2 via the Fbd-smt-channel. The simulator
makes sure that the output in the ideal model is delivered to the p2 only after
Z acknowledges the delivery. A detailed proof can be found in [27]. ��

5 This capability of distinguishing “honest” from “dishonest” behavior is key in syn-
chronous models: as honest parties are guaranteed that they can send their messages
on time, dishonest parties will blow their cover by not adhering to the deadline.
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In reality, synchronous clocks alone are not sufficient for synchronous computa-
tion if there is no known upper bound on the delay of the channels (even with
guaranteed eventual delivery); this statement is formalized using the clock func-
tionality Fclock and the channels Fed-smt in the following lemma. The proof is
similar to the proof of Lemma 1 and can be found in [27].

Lemma 6. There are functions f such that for any (efficient) round-function
Rnd: [Ff,Rnd

sfe ]NT can be realized in the {Fed-smt,Fclock}-hybrid model, but Ff,Rnd
sfe

cannot.

4.4 Atomicity of Send/Receive Operations and Rushing

Hirt and Zikas [24] pointed out that the standard formulation of a “rushing” ad-
versary [11] in the synchronous setting puts a restriction on the order of the
send/receive operations within a synchronous round. The modularity of our
framework allows to pinpoint this restriction by showing that the rushing as-
sumption corresponds to a “simultaneous multi-send” functionality which cannot
even be realized using Fclock and Fbd-smt.

Intuitively, a rushing adversary [11] cannot preempt a party while this party
is sending its messages of some round. This is explicitly stated in [11], where the
notion of “synchronous computation with rushing” is defined (cf. [11, Page 30]).
In reality, it is arguable whether we can obtain the above guarantee by just as-
suming bilateral bounded-delay channels and synchronized clocks. Indeed, send-
ing multiple messages is typically not an atomic operation, as the messages are
buffered on the network interface of the computer and sent one-by-one. Hence,
to achieve the simultaneity, one has to assume that the total time it takes for
the sender to put all the messages on the network minus the minimum latency
of the network is not sufficient for a party to become corrupted.

The “simultaneous multi-send” guarantee is captured in the following UC-
functionality, which is referred to as the simultaneous multi-send channel, and
denoted by Fms. On a high level, Fms can be described as a channel allowing a
sender pi to send a vector of messages (x1, . . . , xn) to the respective receivers
p1, . . . , pn as an atomic operation. The formal description of Fms is similar to
Fbd-smt with the following modifications: First, instead of a single receiver, there
is a set P of receivers, and instead of a single message, the sender inputs a
vector of |P| messages, one for each party in P . As soon as some party receives
its message, the adversary cannot replace any of the remaining messages that
correspond to honest receivers, not even by corrupting the sender. As in the case
of bounded-delay channels, we denote by Fms-auth the multi-send channel which
leaks the transmitted vector to the adversary. The following lemma states that
the delayed relaxation of Fms-auth cannot be realized from Fbd-sec and Fclock
when arbitrary many parties can be corrupted. This implies that Fms-auth can
also not be realized from Fbd-sec and Fclock.
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Functionality Fms(�, i,P)

– Upon receiving a vector of messages m = (m1, . . . , mn) from pi, record
m and send a message (sent, �(m)) to the adversary.

– Upon receiving (fetch) from pj ∈ P , output mj to pj (mj = ⊥ if m has
not been recorded).

– (restricted response to replace ) Upon receiving a (replace, m′) request
from the adversary for replacing pi’s input (after issuing a request for
corrupting pi), if no (honest or corrupted) pj received mj before pi got
corrupted, then replace m by m′.

Lemma 7. Let P be a player set with |P| > 3. Then there exists no proto-
col which UC-realizes [Fms-auth]NT in the {Fclock,Fbd-auth}-hybrid model and
tolerates a corrupted majority.

Proof (sketch). Garay et al. [21] showed that if atomic multi-send (along with a
setup for digital signatures) is assumed, then the broadcast protocol from Dolev
and Strong [19] UC-realizes broadcast (without guaranteed termination) in the
presence of an adaptive adversary who corrupts any number of parties. Hence,
if there exist a protocol for realizing [Fms-auth]NT in the synchronous model, i.e.,
in the {Fclock,Fbd-auth}-hybrid world, with corrupted majority and adaptive
adversary, then one could also realize broadcast in this model, contradicting the
impossibility result from [24]. ��

The above lemma implies that the traditional notion of “synchronous computa-
tion with rushing” cannot be, in general, achieved in the UC model unless some
non-trivial property is assumed on the communication channel. Yet, [Fms-auth]NT

can be UC-realized from {[Fbd-auth]
NT, [Fcom]NT}, where Fcom denotes the stan-

dard UC-commitment functionality [13]. The idea is the following: In order to
simultaneously multi-send a vector (x1, . . . , xn) to the parties p1, . . . , pn, the
sender sends an independent commitment on xi to every recipient pi, who ac-
knowledges the receipt (using the channel [Fbd-sec]

NT). After receiving all such
acknowledgments, the sender, in a second round, opens all commitments. The
functionality Fcom ensures that the adversary (unless the sender is corrupted
in the first round) learns the committed messages xi only after every party has
received the respective commitment; but, from that point on, A can no longer
change the committed message. For completeness we state the above in the fol-
lowing lemma.

Lemma 8. There is a synchronous {[Fbd-auth]NT, [Fcom]NT}-hybrid protocol that
UC-realizes [Fms-auth]NT.

Using Lemmas 7 and 8, and the fact that the delayed relaxation of any F can be
realized in the F-hybrid model, we can extend the result of [13] on impossibility
of UC commitments to our synchronous setting.

Corollary 1. There exists no protocol which UC-realizes the commitment func-
tionality Fcom in the {Fbd-auth,Fclock}-hybrid model.
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5 Existing Synchronous Models as Special Cases

In this section, we revisit existing models for synchronous computation. We show
that the Fsyn-hybrid model as specified in [10] and the Timing Model from [26]
are sufficient only for non-terminating computation (which can be achieved even
in a fully asynchronous environment). We also show that the models of [34]
and [25] can be expressed as special cases in our model. Many details are omitted;
we refer to the full version of this paper [27] for a complete treatment.

5.1 The Fsyn-Hybrid Model

In [10], a model for synchronous computation is specified by a synchronous net-
work functionality Fsyn. On a high-level, Fsyn corresponds to an authenticated
network with storage, which proceeds in a round-based fashion; in each round r,
every party associated to Fsyn inputs a vector of messages, where it is guaran-
teed that (1) the adversary cannot change the message sent by an honest party
without corrupting this party, and (2) the round index is only increased after
every honest party as well as the adversary have submitted their messages for
that round. Furthermore, Fsyn allows the parties to query the current value of
r along with the messages of that round r.
Fsyn requires the adversary to explicitly initiate the round switch; this allows

the adversary to stall the protocol execution (by not switching rounds). Hence,
Fsyn cannot be used for evaluating a non-trivial6 function f with guaranteed
termination: because we require termination, for every protocol which securely
realizes Fsfe and for every adversary, the environment Z which gives inputs to
all honest parties and issues sufficiently many fetch requests has to be able to
make π generate its output from the evaluation. This must, in particular, hold
when the adversary never commands Fsyn to switch rounds, which leads to a
contradiction.

Lemma 9. For every non-trivial n-party function f and for every round func-
tion Rnd there exists no Fsyn-hybrid protocol which securely realizes Ff,Rnd

sfe with
guaranteed termination.

The only advantage that Fsyn offers on top of what can be achieved from (asyn-
chronous) bounded-delay channels is that Fsyn defines a point in the computation
(chosen by A) in which the round index advances for all parties simultaneously.
More precisely, denote by F−

syn the functionality that behaves as Fsyn, except
for a small modification upon receiving the (Advance-Round)-message: F−

syn ad-
vances the round, but, for each party, allows the adversary to further delay
the output (initially, the (receive)-requests of pi are still answered with the
previous round messages). This is only a mild relaxation of the functionality:
the adversary can delay the delivery of the new messages, but the important

6 Recall that a non-trivial function is one that cannot be computed locally (cf. [28]).
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property that the messages are “committed” by the time of the round switch is
preserved.7

The functionality F−
syn can be realized by a protocol using asynchronous chan-

nels with eventual delivery. This protocol follows the ideas of [2,26]: In each round
r, each party pi sends a message to all other parties. After receiving messages
from all pj, pi sends an acknowledgment to all pj. Once all such acknowledg-
ments have been received, pi prepares the messages received in that round for
local output (upon request) and starts the next round (as soon as messages have
been provided as local input). This proves the following lemma.

Lemma 10. There exist a protocol that UC-realizes the functionality F−
syn in

the Fbd-smt-hybrid model.

5.2 The Timing Model

The “Timing model” [23,26] integrates a notion of time into the protocol exe-
cution by extending the model of computation. Each party, in addition to its
communication and computation tapes, has a clock tape that is writable for
the adversary in a monotone and “bounded-drift”-preserving manner: The ad-
versary can only increase the value of the clocks, and, for any two parties, the
distance ε of their clocks’ speed (drift) at any point in time is bounded by a
known constant. The value of a party’s clock-tape defines the local time of this
party. Depending on this time, protocols delay sending messages or time-out if
a message has not arrived as expected. We formalize this modeling of time in
UC in the following straightforward manner: We introduce a functionality Ftime
that maintains a clock value for each party and allows the adversary to advance
this clock in the same monotone and “bounded-drift”-preserving way. Instead of
reading the local clock tape, Ftime-hybrid protocols obtain their local time value
by querying Ftime.

Lemma 11 shows that Ftime can be realized from fully asynchronous authen-
ticated communication. The idea of the proof is the following: The protocol τ
that realizes the functionality Ftime from pairwise authenticated channels main-
tains, for each party pi, a local integer variable ti that corresponds to pi’s local
time. Using the authenticated network, the parties ensure that the local time
values increase with bounded drift. Together, Lemmas 11 and 12 demonstrate
that “timed” protocols cannot UC-realize more functionalities than non-“timed”
protocols, which is consistent with [26, Theorem 2] and implies that the Timing
Model does not allow for computation with guaranteed termination.

Lemma 11. Let P be a player set and ε ≥ 1. The functionality Ftime(P , ε) can
be UC-realized from pairwise authenticated channels Fauth.

In contrast to Fsyn, which “lives” in the UC framework, security statements in
the Timing Model cannot be automatically transferred to the UC setting. In-
deed, there is a “type-mismatch” between functionalities/protocols in the two
7 The delay can only be detected if the parties have access to a channel which deliv-

ers faster than the specified delay. The parties overcome this slackness by issuing
(receive)-queries until they obtain the desired output.
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frameworks, which we resolve by the following idea inspired by [3,30,32]: A func-
tionality F in the timing model is compiled to a functionality in UC which
behaves exactly as F but ensures that the interfaces are compatible with the UC
model of computation. On a high-level, the functionality compiler TT (·) works
as follows: TT (F) behaves as F, but on any input from an honest party it notifies
the adversary (without leaking the contents). Whenever F outputs a value y to
some party, TT (F) issues a (private) delayed output y instead.

Lemma 12 then shows that any security statement about a functionality F
in the Timing Model can be translated into a statement about TT (F) in the
{Ftime,Fauth}-hybrid model (in UC). The translation is both constructive and
uniform, i.e., we describe a protocol compiler CT (·) that translates a protocol in
the Timing Model into a corresponding one in the {Ftime,Fauth}-hybrid model.

Lemma 12. For an arbitrary functionality F and a protocol π in the Timing
Model, π securely realizes F (in the Timing Model) if and only if the compiled
protocol CT (π) UC-realizes TT (F) in the {Ftime,Fauth}-hybrid model in the pres-
ence of a static adversary.

5.3 Models with Explicit Round-Structure

Nielsen’s Framework [34]. The framework described in [34] is an adaptation
of the asynchronous framework of [12] to authenticated synchronous networks.
While the general structure of the security definition is adopted, the definition
of protocols and their executions differs considerably. For instance, the “subrou-
tine” composition of two protocols is defined in a “lock-step” way: the round
switches occur at the same time. Similarly to our bounded-delay channels, mes-
sages in transfer can be replaced if the sender becomes corrupted. Lemma 13
allows to translate, along the lines of Section 5.2, any security statement in
the model of [34] into a security statement about a synchronous protocol in
the {Fclock,Fbd-auth}-hybrid model. As in the previous section, the transla-
tion is done by a functionality compiler TN(·) that resolves the type-mismatch
between the functionalities in UC and in [34], and a corresponding protocol com-
piler CN (·). We emphasize that the converse statement of Lemma 13 does not
hold, i.e., there are UC statements about synchronous protocols that cannot be
modeled in the [34] framework. For instance, our synchronous UC model allows
protocols to use further functionalities that run mutually asynchronously with
the synchronous network, which cannot be modeled in [34].

Lemma 13. For an arbitrary functionality F and a protocol π in [34], π securely
realizes F (in [34]) if and only if the compiled protocol CN (π) UC-realizes TN(F)
in the {Fclock,Fbd-auth}-hybrid model.

Hofheinz and Müller-Quade’s Framework [25]. The framework of [25] also mod-
els authenticated synchronous networks based on the framework of [12], but the
rules of the protocol execution differ considerably: The computation proceeds in
rounds, and each round is split into three phases. In each phase, only a subset of
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the involved ITIs are activated, and the order of the activations follows a specific
scheme. The adversary has a relaxed rushing property: while being the last to
specify the messages for a round, he cannot corrupt parties within a round. This
corresponds to a network with guarantees that are stronger than simultaneous
multi-send: once the first message of an honest party is provided to the adver-
sary, all messages of honest parties are guaranteed to be delivered correctly.8 We
model this relaxed rushing property in UC by the functionality Fms+ (cf. [27]),
which is a modified version of Fms and exactly captures this guarantee. As be-
fore, we translate the security statements of [25] to our model (where Fms+ is
used instead of Fauth) through a pair of compilers (TH(·), CH(·)).

Lemma 14. For an arbitrary functionality F and a protocol π in [25], π securely
realizes F (in [25]) if and only if the compiled protocol CH(π) UC-realizes TH(F)
in the {Fclock,Fms+}-hybrid model.

6 Conclusion

We described a modular security model for synchronous computation within
the (otherwise inherently asynchronous) UC framework by specifying the real-
world synchrony assumptions of bounded-delay channels and loosely synchro-
nized clocks as functionalities. The design principle that underlies these func-
tionalities allows us to treat guaranteed termination; previous approaches for
synchronous computation within UC either required fundamental modifications
of the framework (which also required re-proving fundamental statements) or
did not allow to make such statements altogether. Given this model, we revis-
ited basic results from the literature on synchronous protocols, formalizing and
proving them within the UC framework. Finally, we showed that previous spe-
cialized frameworks can be cast as special cases of our model by introducing
network functionalities that provide the guarantees formalized in those models.
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Abstract. Gennaro et al. (Crypto 2010) introduced the notion of non-
interactive verifiable computation, which allows a computationally weak
client to outsource the computation of a function f on a series of in-
puts x(1), . . . to a more powerful but untrusted server. Following a pre-
processing phase (that is carried out only once), the client sends some
representation of its current input x(i) to the server; the server returns
an answer that allows the client to recover the correct result f(x(i)),
accompanied by a proof of correctness that ensures the client does not
accept an incorrect result. The crucial property is that the work done by
the client in preparing its input and verifying the server’s proof is less
than the time required for the client to compute f on its own.

We extend this notion to the multi-client setting, where n computa-
tionally weak clients wish to outsource to an untrusted server the com-
putation of a function f over a series of joint inputs (x

(1)
1 , . . . , x

(1)
n ), . . .

without interacting with each other. We present a construction for this
setting by combining the scheme of Gennaro et al. with a primitive called
proxy oblivious transfer.

1 Introduction

There are many instances in which it is desirable to outsource computation from
a relatively weak computational device (a client) to a more powerful entity or
collection of entities (servers). Notable examples include:

– Distributed-computing projects (e.g., SETI@Home or distributed.net), in
which idle processing time on thousands of computers is harnessed to solve
a computational problem.

� Portions of this work were done while at the University of Maryland.
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– Cloud computing, where individuals or businesses can purchase computing
power as a service when it is needed to solve some difficult task.

– Outsourcing computationally intensive operations from weak mobile devices
(e.g., smartphones, sensors) to a back-end server or some other third party.

In each of the above scenarios, there may be an incentive for the server to try
to cheat and return an incorrect result to the client. This may be related to
the nature of the computation being performed — e.g., if the server wants to
convince the client of a particular result because it will have beneficial conse-
quences for the server — or may simply be due to the server’s desire to minimize
the use of its own computational resources. Errors can also occur due to faulty
algorithm implementation or system failures. In all these cases, the client needs
some guarantee that the answer returned from the server is correct.

This problem of verifiable (outsourced) computation has attracted many re-
searchers, and various protocols have been proposed (see Section 1.3). Recently,
Gennaro et al. [13] formalized the problem of non-interactive verifiable compu-
tation in which there is only one round of interaction between the client and the
server each time a computation is performed. Specifically, fix some function f
that the client wants to compute. Following a pre-processing phase (that is car-
ried out only once), the client can then repeatedly request the server to compute
f on inputs x(1), . . . of its choice via the following steps:

Input Preparation: In time period i, the client processes its current input x(i)

to obtain some representation of this input, which it sends to the server.
Output Computation: The server computes a response that encodes the cor-

rect answer f(x(i)) along with a proof that it was computed correctly.
Output Verification: The client recovers f(x(i)) from the response provided

by the server, and verifies the proof that this result is correct.

The above is only interesting if the input-preparation and output-verification
stages require less time (in total) than the time required for the client to com-
pute f by itself. (The time required for pre-processing is ignored, as it is assumed
to be amortized over several evaluations of f .) Less crucial, but still important,
is that the time required for the output-computation phase should not be much
larger than the time required to compute f (otherwise the cost to the server
may be too burdensome). Gennaro et al. construct a non-interactive verifiable-
computation scheme based on Yao’s garbled-circuit protocol [25] and any fully
homomorphic encryption scheme.

1.1 Our Results

The scheme presented in [13] is inherently single-client. There are, however,
scenarios in which it would be desirable to extend this functionality to the
multi-client setting, e.g., networks made up of several resource-constrained nodes
(sensors) that collectively gather data to be used jointly as input to some com-
putation. In this work we initiate consideration of this setting. We assume n



Multi-Client Non-interactive Verifiable Computation 501

(semi-honest) clients wish to outsource the computation of some function f over

a series of joint inputs (x
(1)
1 , . . . , x

(1)
n ), . . . to an untrusted server.

A trivial solution to the problem would be for the last n−1 clients to send their
inputs to the first client, who can then run a single-client verifiable-computation
scheme and forward the result (assuming verification succeeded) to the other
clients. This suffers from several drawbacks:

– This solution requires the clients to communicate with each other. There
may be scenarios (e.g., sensors spread across a large geographical region)
where clients can all communicate with a central server but are unable to
communicate directly with each other.1

– This solution achieves no privacy since the first client sees the inputs of all
the other clients.

Addressing the first drawback, we consider only non-interactive protocols in
which each client communicates only with the server. A definition of soundness in
the non-interactive setting is subtle, since without some additional assumptions
(1) there is no way for one client to distinguish another legitimate client from a
cheating server who tries to provide its own input xi, and (2) there is nothing
that “binds” the input of one client at one time period to the input of another
client at that same time period (and thus the server could potentially “mix-and-
match” the first-period input of the first client with the second-period input
of the second client). We address these issues by assuming that (1) there is a
public-key infrastructure (PKI), such that all clients have public keys known to
each other, and (2) all clients maintain a counter indicating how many times they
have interacted with the server (or, equivalently, there is some global notion of
time). These assumptions are reasonable and (essentially) necessary to prevent
the difficulties mentioned above.

Addressing the second drawback, we also define a notion of privacy of the
clients’ input from each other that we require any solution to satisfy. This is in
addition to privacy of the clients’ inputs from the server, as in [13].

In addition to defining the model, we also show a construction of a protocol
for non-interactive, multi-client verifiable computation. We give an overview of
our construction in the following section.

1.2 Overview of Our Scheme

Our construction is a generalization of the single-client solution by Gennaro et
al., so we begin with a brief description of their scheme.

Single-Client Verifiable Computation. We first describe the basic idea. Let
Alice be a client who wishes to outsource computation of a function f to a server.
In the pre-processing phase, Alice creates a garbled circuit that corresponds to f ,

1 Note that having the clients communicate with each other by routing all their mes-
sages via the server (using end-to-end authenticated encryption, say) would require
additional rounds of interaction.
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and sends it to the server. Later, in the online phase, Alice computes input-wire
keys for the garbled circuit that correspond to her actual input x, and sends these
keys to the server. The server evaluates the garbled circuit using the input-wire
keys provided by Alice to obtain the output keys of the garbled circuit; if the
server behaves honestly, these output keys correspond to the correct output f(x).
The server returns these output keys to Alice, who then checks if the key received
from the server on each output wire is a legitimate output key (i.e., one of the
two possibilities) for that wire. If so, then Alice determines the actual output
based on the keys received from the server. Loosely speaking, verifiability of
this scheme follows from the fact that evaluation of a garbled circuit on input-
wire keys corresponding to an input x does not reveal information about any
output-wire keys other than those that correspond to f(x). (See also [3].)

The scheme described above works only for a single evaluation of f . To ac-
commodate multiple evaluations of f , Gennaro et al. propose the use of fully
homomorphic encryption (FHE) in the following way. The pre-processing step
is the same as before. However, in the online phase, Alice generates a fresh pub-
lic/private key pair for an FHE scheme each time she wants the server to evalu-
ate f . She then encrypts the input-wire keys that correspond to her input using
this public key, and sends these encryptions (along with the public key) to the
server. Using the homomorphic properties of the encryption scheme, the server
now runs the previous scheme to obtain encryptions of the output-wire keys cor-
responding to the correct output. The server returns the resulting ciphertexts to
Alice, who decrypts them and then verifies the result as before. Security of this
scheme follows from the soundness of the one-time scheme described earlier and
semantic security of the FHE scheme.

Multi-client Verifiable Computation. In the rest of the overview, we discuss
how to adapt the solution of Gennaro et al. to the multi-client setting. In our
discussion, we consider the case where only the first client gets output. (The more
general case is handled by simply having the clients run several executions of the
scheme in parallel, with each client playing the role of the first in one execution.)
We discuss the case of two clients here for simplicity, but our solution extends
naturally to the general case.

Suppose two clients Alice and Bob want to outsource a computation to a
server. Applying a similar idea as before, say Alice creates a garbled circuit which
it sends to the server in the pre-processing phase. During the online phase, Alice
will be able to compute and send to the server input-wire keys that correspond
to her input. However, it is unclear how the server can obtain the input-wire keys
corresponding to Bob’s input. Recall that we are interested in a non-interactive
solution and Alice does not know the input of Bob; moreover, Alice cannot send
two input-wire keys for any wire to the server or else soundness is violated.

We overcome this difficulty using a gadget called proxy oblivious transfer
(proxy OT) [22]. In proxy OT, there is a sender that holds inputs (a0, a1),
a chooser that holds input bit b, and a proxy that, at the end of the protocol,
learns ab and nothing else. Since we are ultimately interested in a non-interactive
solution for multi-client verifiable computation, we will be interested only in non-
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interactive proxy-OT schemes. We show a construction of a non-interactive proxy
OT from any non-interactive key-exchange protocol.

Coming back to the multi-client verifiable-computation scheme described ear-
lier, we can use proxy OT to enable the server to learn the appropriate input-wire
label for each wire that corresponds to Bob’s input. In more detail, let (w̃0, w̃1)
denote the keys for input-wire w in the garbled circuit that was created by Alice
in the pre-processing phase. Alice acts as the sender with inputs (w̃0, w̃1) in a
proxy OT protocol, and Bob acts as the chooser with his actual input bit b
for that wire. The server is the proxy, and obtains output w̃b. The server learns
nothing about w̃1−b and so, informally, soundness is preserved. The rest of the
protocol proceeds in the same way as the single-client protocol. The extension
to accommodate multiple evaluations of f is done using fully homomorphic en-
cryption as described earlier.

A Generic Approach to Multi-client Outsourcing. It is not hard to see
that our techniques can be applied to any single-client, non-interactive, verifiable-
computation scheme that is projective in the following (informal) sense: the
input-preparation stage generates a vector of pairs (w1,0, w1,1), . . . , (w�,0, w�,1),
and the client sends w1,x1 , . . . , w�,x�

to the server.

1.3 Related Work

The problems of outsourcing and verifiable computation have been extensively
studied. Works such as [9,16,17] have focused on outsourcing expensive crypto-
graphic operations (e.g., modular exponentiations, one-way function inversion)
to semi-trusted devices. Verifiable computation has been the focus of a long line
of research starting from works on interactive proofs [2,15], and efficient argu-
ment systems [19,21,20]. In particular, Micali’s work [21] gives a solution for
non-interactive verifiable computation in the random oracle model. Goldwasser,
Kalai, and Rothblum [14] give an interactive protocol to verify certain computa-
tions efficiently; their solution can be made non-interactive for a restricted class
of functions.

Gennaro et al. [13] formally defined the notion of non-interactive verifiable
computation for general functions and gave a construction achieving this no-
tion. Subsequent schemes for non-interactive verifiable computation of general
functions include [10,1]. Other works have focused on improving the efficiency of
schemes for verifiable computation of specific functions [5,24,12,23], or in slightly
different models [7,8,11,6]. To the best of our knowledge, our work is the first (in
any setting) to consider verifiable computation for the case where multiple par-
ties provide input. Kamara et al. [18] discuss the case of multi-client verifiable
computation in the context of work on server-aided multi-party computation,
but leave finding a solution as an open problem.

2 Multi-client Verifiable Computation

We start by introducing the notion of multi-client, non-interactive, verifiable
computation (MVC). Let κ denote the security parameter. Suppose there are
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n clients that wish to evaluate a function f multiple times. Without loss of
generality, we assume that each client Pj contributes an 
-bit input and that

the output length of f is 
, that is, we have f : {0, 1}n�→{0, 1}�. We abuse
notation and let f also denote the representation of the function within some

computational model (e.g., as a boolean circuit). Let x
(i)
j denote client Pj ’s input

in the ith execution. For simplicity, we assume that only one client (the first)
learns the output; however, we can provide all clients with output by simply
running anMVC scheme in parallel n times (at the cost of increasing the clients’
computation by at most a factor of n).

Syntax. An n-party MVC scheme consists of the following algorithms:

– (pkj , skj)←KeyGen(1κ, j). Each client Pj will run this key generation algo-

rithm KeyGen and obtain a public/private key pair (pkj , skj). Let
−→
pk denote

the vector (pk1, . . . , pkn) of the public keys of all the clients.
– (φ, ξ)← EnFunc(1κ, f). The client P1 that is supposed to receive the output

will run this function-encoding algorithm EnFunc with a representation of
the target function f . The algorithm outputs an encoded function φ and the
corresponding decoding secret ξ. The encoded function will be sent to the
server. The decoding secret is kept private by the client.

– (χ
(i)
1 , τ (i))←EnInput1

(
i,
−→
pk, sk1, ξ, x

(i)
1

)
. When outsourcing the ith computa-

tion to the server, the first client P1 will run this input-encoding algorithm

EnInput1 with time period i, the public keys
−→
pk, its secret key sk1, the secret

ξ for the encoded function, and its input x
(i)
1 . The output of this algorithm

is an encoded input χ
(i)
1 , which will be sent to the server, and the input

decoding secret τ (i) which will be kept private by the client.

– χ
(i)
j ←EnInputj

(
i,
−→
pk, skj , x

(i)
j

)
. When outsourcing the ith computation to

the server, each client Pj (with j �= 1) will run this input-encoding algorithm

EnInputj with time period i, the public keys
−→
pk, its secret key skj , and its

input x
(i)
j . The output of this algorithm is an encoded input χ

(i)
j , which will

be sent to the server. We let χ(i) denote the vector (χ
(i)
1 , . . . , χ

(i)
n ) of encoded

inputs from the clients.

– ω(i)←Compute(i,
−→
pk, φ,χ(i)). Given the public keys

−→
pk, the encoded function

φ, and the encoded inputs χ(i), this computation algorithm computes an
encoded output ω(i).

– y(i)∪{⊥}←Verify(i, ξ, τ (i), ω(i)). The first client P1 runs this verification al-
gorithm with the decoding secrets (ξ, τ (i)), and the encoded output ω(i). The

algorithm outputs either a value y(i) (that is supposed to be f(x
(i)
1 , . . . , x

(i)
n )),

or ⊥ indicating that the server attempted to cheat.

Of course, to be interesting an MVC scheme should have the property that the
time to encode the input and verify the output is smaller than the time to com-
pute the function from scratch. Correctness of an MVC scheme can be defined
naturally, that is, the key generation, function encoding, and input encoding
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algorithms allow the computation algorithm to output an encoded output that
will successfully pass the verification algorithm.

2.1 Soundness

Intuitively, a verifiable computation scheme is sound if a malicious server cannot
convince the honest clients to accept an incorrect output. In our definition, the
adversary is given oracle access to generate multiple input encodings.

Definition 1 (Soundness). For a multi-client verifiable-computation scheme
MVC, consider the following experiment with respect to an adversarial server A:

Experiment Expsound
A [MVC, f, κ, n]

For j = 1, . . . , n:
(pkj , skj)←KeyGen(1κ, j),

(φ, ξ)← EnFunc(1κ, f).
Initialize counter i := 0

ω∗←AIN (·)(
−→
pk, φ);

y∗← Verify(i, ξ, τ (i), ω∗);

If y∗ �∈ {⊥, f(x
(i)
1 , . . . , x

(i)
n )},

output 1;
Else output 0;

Oracle IN (x1, . . . , xn):
i := i+ 1;

Record (x
(i)
1 , . . . , x

(i)
n ) := (x1, . . . , xn).

(χ
(i)
1 , τ (i))←EnInput1

(
i,
−→
pk, sk1, ξ, x

(i)
1

)
For j = 2, . . . , n:

χ
(i)
j ←EnInputj

(
i,
−→
pk, skj , x

(i)
j

)
.

Output (χ
(i)
1 , . . . , χ

(i)
n ).

A multi-client verifiable computation scheme MVC is sound if for any n =
poly(κ), any function f , and any PPT adversary A, there is a negligible function
negl such that:

Pr[Expsound
A [MVC, f, κ, n] = 1] ≤ negl(κ).

Selective Aborts. Our MVC construction described in Section 5 inherits the
“selective abort” issue from the single-client scheme of Gennaro et al. [13]; that
is, the server may be able to violate soundness if it can send ill-formed responses
to the first client and see when that client rejects. In our definition we deal with
this issue as in [13] by assuming that the adversary cannot tell when the client
rejects. In practice, this issue could be dealt with by having the first client refuse
to interact with the server after receiving a single faulty response.

Adaptive Choice of Inputs. As in [13], we define a notion of adaptive sound-
ness that allows the adversary to adaptively choose inputs for the clients af-
ter seeing the encoded function. (The weaker notion of non-adaptive soundness
would require the adversary to fix the clients’ inputs in advance, before see-
ing the encoded function.) Bellare et al. [3] noted that the proof of adaptive
soundness in [13] is flawed; it appears to be non-trivial to resolve this issue
since it amounts to proving some form of security against selective-opening at-
tacks. Nevertheless, it is reasonable to simply make the assumption that Yao’s
garbled-circuit construction satisfies the necessary criterion (namely, aut!, as de-
fined in [3]) needed to prove adaptive security. Similarly, we reduce the adaptive
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security of our scheme to adaptive authenticity (aut!) of the underlying garbling
scheme. Alternately, we can prove non-adaptive soundness based on standard
assumptions.

2.2 Privacy

We consider two notions of privacy.

Privacy against the First Client. In our schemes, clients other than the
first client clearly do not learn anything about each others’ inputs. We define
the requirement that the first client not learn anything (beyond the output of
the function), either. Namely, given any input vectors x0 = (x1, x2, . . . , xn) and
x1 = (x1, x

′
2, . . . , x

′
n) with f(x1, x2, . . . , xn) = f(x1, x

′
2, . . . , x

′
n), the view of the

first client when running an execution of the protocol with clients holding inputs
x0 should be indistinguishable from the view of the first client when running an
execution with clients holding inputs x1.

Privacy against the Server. Next, we consider privacy against the server;
that is, the encoded inputs from two distinct inputs should be indistinguishable
to the server.

Definition 2 (Privacy against the Server). For a multi-client verifiable
computation scheme MVC, consider the following experiment with respect to
a stateful adversarial server A:

Experiment Exppriv
A [MVC, f, κ, n, b]:

(pkj , skj)←KeyGen(1κ, j), for j = 1, . . . , n.
(φ, ξ)← EnFunc(1κ, f).
Initialize counter i := 0

((x0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n))←AIN (·)(

−→
pk, φ);

Run (χ
(i)
1 , . . . , χ

(i)
n )←IN (xb

1, . . . , x
b
n);

Output AIN (·)(χ
(i)
1 , . . . , χ

(i)
n );

We define the advantage of an adversary A in the experiment above as:

Advpriv
A (MVC, f, κ, n) =

∣∣∣∣Pr[Exppriv
A [MVC, f, κ, n, 0] = 1]

−Pr[Exppriv
A [MVC, f, κ, n, 1] = 1]

∣∣∣∣
MVC is private against the server if for any n = poly(κ), any function f , and
any PPT adversary A, there is a negligible function negl such that:

Advpriv
A (MVC, f, κ, n) ≤ negl(κ).

3 Building Blocks for MVC
3.1 (Projective) Garbling Schemes

Bellare et al. [4] recently formalized a notion of garbling schemes that is meant
to abstract, e.g., Yao’s garbled-circuit protocol [25]. We follow their definition,
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since it allows us to abstract the exact properties we need. For completeness, we
present their definition below.

A garbling scheme [4] is a five-tuple of algorithms G = (Gb,En,De,Ev, ev) with
the following properties:

– y := ev(f, x). Here, f is a bit string that represents a certain function map-
ping an 
-bit input to anm-bit output. (We require that 
 andm be extracted
from f in time linear in |f |.) For example, f may be a circuit description
encoded as detailed in [4]. Hereafer, we abuse the notation and let f also de-

note the function that f represents. Given the description f and x ∈ {0, 1}�
as input, ev(f, x) returns f(x). A garbling scheme is called a circuit garbling
scheme if ev = evcirc is the canonical circuit-evaluation function.

– (F, e, d)←Gb(1κ, f). Given the description f as input, Gb outputs a garbled
function F along with an encoding function e and a decoding function d.

– X := En(e, x). Given an encoding function e and x ∈ {0, 1}� as input, En
maps x to a garbled input X . Our scheme will use a projective garbling
scheme, i.e., the string e encodes a list of tokens, one pair for each bit in
x ∈ {0, 1}�. Formally, for all f ∈ {0, 1}∗, κ ∈ N, i ∈ [
], x, x′ ∈ {0, 1}� s.t.
xi = x′i, it holds that

Pr

⎡⎣ (F, e, d)←Gb(1κ, f),
(X1, . . . , X�) := En(e, x),
(X ′1, . . . , X

′
�) := En(e, x′)

: Xi = X ′i

⎤⎦ = 1.

For a projective garbling scheme G, it is possible to define an additional deter-
ministic algorithm Enproj. Let (X

0
1 , . . . , X

0
� ) := En(e, 0�), and (X1

1 , . . . , X
1
� ) :=

En(e, 1�). The output Enproj(e, b, i) is defined as Xb
i . We refer to Enproj as

the projection algorithm.
– Y := Ev(F,X). Given a garbled function F and a garbled input X as input,

Ev obtains the garbled output Y .
– y := De(d, Y ). Given a decoding function d and a garbled output Y , De

maps Y to a final output y.

Note that all algorithms except Gb are deterministic. A garbling scheme must
satisfy the following:

1. Length condition: |F |, e, and d depend only on κ, 
, m, and |f |.
2. Correctness condition: for all f ∈ {0, 1}∗, κ ∈ N, x ∈ {0, 1}�, it holds that

Pr[(F, e, d)←Gb(1κ, f) : De(d,Ev(F,En(e, x))) = ev(f, x)] = 1.

3. Non-degeneracy condition: e and d depends only on κ, 
,m, |f |, and the
random coins of Gb.

Authenticity. We will employ a garbling scheme that satisfies the authenticity
property [4]. Loosely speaking, a garbling scheme is authentic if the adversary
upon learning a set of tokens corresponding to some input x is unable to pro-
duce a set of tokens that correspond to an output different from f(x). Different
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notions of authenticity are possible depending on whether the adversary chooses
the input x adaptively (i.e., whether it sees the garbled function F before choos-
ing x). We adopt the adaptive definition given in [3] because we want our MVC
scheme to achieve adaptive soundness; alternately, we could use a non-adaptive
definition of authenticity and achieve non-adaptive soundness.

Definition 3. For a garbling scheme G = (Gb,En,De,Ev, ev) consider the fol-
lowing experiment with respect to an adversary A.

Experiment ExpAut!G
A [κ] :

f←A(1κ).
(F, e, d)←Gb(1κ, f).
x←A(1κ, F ).
X := En(e, x).
Y ←A(1κ, F,X).
If De(d, Y ) �= ⊥ and Y �= Ev(F,X), output 1, else 0.

A garbling scheme G satisfies the authenticity property if for any PPT adversary
A, there is a negligible function negl such that

Pr[ExpAut!G
A [κ] = 1] ≤ negl(κ).

3.2 Fully Homomorphic Encryption

In a (compact) fully-homomorphic encryption scheme FHE = (Fgen,Fenc,Fdec,
Feval), the first three algorithms form a semantically secure public-key encryp-
tion scheme. Moreover, Feval takes a circuit C and a tuple of ciphertexts and
outputs a ciphertext that decrypts to the result of applying C to the plaintexts;
here, the length of the output ciphertext should be independent of the size of
the circuit C. We will treat FHE as a black box.

4 Non-interactive Proxy OT

In this section, we introduce a new primitive called non-interactive proxy obliv-
ious transfer (POT), which is a variant and generalization of proxy OT of the
notion defined by Naor et al. [22]. In a POT protocol there are three parties: a
sender, a chooser, and a proxy. The sender holds input (x0, x1), and the chooser
holds choice bit b. At the end of the protocol, the proxy learns xb (but not x1−b);
the sender and chooser learn nothing. Our definition requires the scheme to be
non-interactive, so we omit the term ‘non-interactive’ from now on.

The generalization we define incorporates public keys for the sender and the
chooser, and explicitly takes into account the fact that the protocol may be
run repeatedly during multiple time periods. These are needed for the later
application to our MVC construction.
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Syntax. A proxy OT consists of the following sets of algorithms:

– (pkS , skS)←SetupS(1κ). The sender runs this one-time setup algorithm to
generate a public/private key pair (pkS , skS).

– (pkC , skC)← SetupC(1κ). The chooser runs this one-time setup algorithm to
generate a public/private key pair (pkC , skC).

– α← Snd(i, pkC , skS , x0, x1). In the ith POT execution the sender, holding
input x0, x1 ∈ {0, 1}κ, runs this algorithm to generate a single encoded
message α to be sent to the proxy. We refer to α as the sender message.

– β←Chs(i, pkS , skC , b). In the ith POT protocol, the chooser, holding input
b ∈ {0, 1}, runs this algorithm to generate a single encoded message β to be
sent to the server. We refer to β as the chooser message.

– y := Prx(i, pkS , pkC , α, β). In the ith POT protocol, the proxy runs this algo-
rithm using the sender message α and the chooser message β, and computes
the value y = xb.

A proxy OT is correct if the sender algorithm Snd and chooser algorithm Chs
produce values that allow the proxy to compute one of two sender inputs based
on the chooser’s selection bit.

Sender Privacy. A proxy OT is sender private if the proxy learns only the
value of the sender input that corresponds to the chooser’s input bit. To serve
our purpose, we define sender privacy over multiple executions. We stress that a
single setup by each party is sufficient to run multiple executions (this is essential
for our MVC construction).

Definition 4 (Sender Privacy). For a proxy OT (SetupS, SetupC, Snd,Chs,
Prx), consider the following experiments with respect to an adversarial proxy A.

Experiment Exps-priv
A [POT, κ, n, e]:

(pkS , skS)← SetupS(1κ).
For j = 1, . . . , n:

(pkC,j , skC,j)←SetupC(1κ).
Output APOT e(·)(pkS , pkC,1, . . . , pkC,n).

Oracle POT e(i, j, x0, x1, b, x
′):

If a previous query
used the same (i, j)
output ⊥ and terminate.

If e = 0, set y0 := x0, y1 := x1.
Else set yb := xb, y1−b := x′.
α←Snd(i, pkC,j , skS , y0, y1).
β←Chs(i, pkS , skC,j , b).
Output (α, β).

Note that the sender messages α generated from oracle POT 0 (resp., POT 1)
would encode the sender’s input xb and x1−b (resp., xb and x′). We define the
advantage of an adversary A in the experiment above as:

Advs-priv
A (POT, κ, n) =

∣∣∣∣Pr[Exps-priv
A [POT, κ, n, 0] = 1]

−Pr[Exps-priv
A [POT, κ, n, 1] = 1]

∣∣∣∣
A proxy OT (SetupS, SetupC, Snd,Chs,Prx) is sender private, if for any n =
poly(κ) and any PPT adversary A, there is a negligible function negl such that:

Advs-priv
A (POT, κ, n) ≤ negl(κ).
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Chooser Privacy. A proxy OT is chooser private if the proxy learns no infor-
mation about the chooser’s input bit. To serve our purpose, we define chooser
privacy over multiple executions.

Definition 5 (Chooser Privacy). For a proxy OT (SetupS, SetupC, Snd,Chs,
Prx), consider the following experiments with respect to an adversarial proxy A.

Experiment Expc-priv
A [POT, κ, n, e]:

(pkS , skS)← SetupS(1κ).
For j = 1, . . . , n:

(pkC,j , skC,j)← SetupC(1κ).
Output ACHSe(·)(pkS , pkC,1, . . . , pkC,n).

Oracle CHSe(i, j, b0, b1):
If a previous query
used the same (i, j)
output ⊥ and terminate.

β←Chs(i, pkS , skC,j, be).
Output β.

We define the advantage of an adversary A in the experiment above as:

Advc-priv
A (POT, κ, n) =

∣∣∣∣Pr[Expc-priv
A [POT, κ, n, 0] = 1]

−Pr[Expc-priv
A [POT, κ, n, 1] = 1]

∣∣∣∣
A proxy OT (SetupS, SetupC, Snd,Chs,Prx) is chooser private, if for any n =
poly(κ) and any PPT adversary A, there is a negligible function negl such that:

Advc-priv
A (POT, κ, n) ≤ negl(κ).

4.1 Proxy OT from Non-interactive Key Exchange

Non-interactive Key Exchange. A non-interactive key-exchange (NIKE)
protocol allows two parties to generate a shared key based on their respective
public keys (and without any direct interaction). That is, let KEA1,KEB2 be
the algorithms used by the two parties to generate their public/private keys.
(pka, ska) and (pkb, skb), respectively. Then there are algorithms KEA2 and KEB2

such that KEA2(pkb, ska) = KEB2(pka, skb). An example is given by static/static
Diffie-Hellman key exchange.

Regarding the security of NIKE, to the view of a passive eavesdropper the
distribution of the key shared by the two parties should be indistinguishable
from a uniform key.

Definition 6 (Security of NIKE). A NIKE (KEA1,KEA2,KEB1,KEB2) is
secure if for any PPT A, it holds that |p1 − p2| is negligible in κ, where

p1 = Pr

[
(pka, ska)←KEA1(1

κ);
(pkb, skb)←KEB1(1

κ)
: A(pka, pkb,KEA2(pkb, ska)) = 1

]

p2 = Pr

⎡⎣ (pka, ska)←KEA1(1
κ);

(pkb, skb)←KEB1(1
κ);

r←{0, 1}κ
: A(pka, pkb, r) = 1

⎤⎦ .

Proxy OT from NIKE. We define a protocol for proxy OT below. The main
idea is that the sender and the chooser share randomness in the setup stage by
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using the key-exchange protocol. Then, using the shared randomness (which is
unknown to the proxy), both parties can simply use a one-time pad encryption
to transfer their inputs. Let Prf be a pseudorandom function.

– (pkS , skS)← SetupS(1κ). Run a key exchange protocol on Alice’s part, that
is, (pka, ska)←KEA1(1

κ). Set pkS := pka and skS := ska.
– (pkC , skC)← SetupC(1κ). Run a key exchange protocol on Bob’s part, that

is, (pkb, skb)←KEB1(1
κ). Set pkC := pkb and skC := skb.

– α← Snd(i, pkC , skS , x0, x1). Let k be the output from the key-exchange
protocol, i.e., k := KEA2(pkC , skS). Compute (z0, z1, π) := Prfk(i) where
|z0| = |z1| = κ and π ∈ {0, 1}. Then, set α := (α0, α1), where

απ = z0⊕x0, α1⊕π = z1⊕x1.

– β← Chs(i, pkS , skC , b). Let k be the output from the key exchange protocol,
i.e., k := KEB2(pkS , skC). Compute (z0, z1, π) := Prfk(i) where |z0| = |z1| =
κ and π ∈ {0, 1}. Then, reveal only the part associated with the choice bit
b. That is, β := (b⊕π, zb)

– y := Prx(i, pkS , pkC , α, β). Parse α as (α0, α1), and β as (b′, z′). Compute
y := αb′⊕z′.

It is easy to see that the scheme satisfies the correctness property. Sender privacy
over a single execution easily follows from the fact that the outputs from the
key exchange and the pseudorandom function look random. Sender privacy over
multiple pairs can also be shown with a hybrid argument. The scheme also hides
the choice bit of the chooser from the proxy.

5 Construction of MVC
In this section, we present our construction forMVC. Our scheme uses proxy OT
to extend the single-client scheme of Gennaro et al. [13] (see Section 1.2 for an
overview of the scheme). In the pre-processing stage, the keys for proxy OT are
set up, and the first client P1, who will receive the function output, generates a
garbled function F and gives it the server. Now delegating computation on input
(x1, . . . , xn), where the client Pj holds xj ∈ {0, 1}�, is performed as follows:

1. For each j ∈ [n] and k ∈ [
], do the following in parallel:
(a) Client P1 computes the following pair for the potential garbled input.

X0
jk := Enproj(e, 0, (j − 1)
+ k), X1

jk := Enproj(e, 1, (j − 1)
+ k)

(b) A proxy OT protocol is executed in which client P1 plays as the sender
with (X0

jk, X
1
jk) as input, and the client Pj plays as the chooser with the

kth bit of xj as input; the server plays as the proxy.
2. Using the outputs from the proxy OT protocols, the server evaluates the

garbled function F and sends the corresponding garbled output Y to P1.
3. Client P1 decodes Y to obtain the actual output y.
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Protocol 1

Let G = (Gb,En,De,Ev, ev) be a projective garbling scheme, FHE =
(Fgen,Fenc,Fdec,Feval) be a fully homomorphic encryption scheme, and
(SetupS,SetupC,Snd,Chs,Prx) be a proxy OT scheme. Let Lj := (j − 1)� and
IDijk := (i− 1)n�+ Lj + k.

– (pkj , skj)←KeyGen(1κ, j). The first client runs the algorithm SetupS(1κ)
to obtain (pk1, sk1). For each 2 ≤ j ≤ n, client Pj runs SetupC(1κ) to
generate (pkj , skj).

– (φ, ξ)←EnFunc(1κ, f). The first client generates (F, e, d)←Gb(1κ, f), and
sets φ := F and ξ := (e, d).

– (χ
(i)
1 , τ (i))←EnInput1(i,

−→
pk, sk1, ξ, x

(i)
1 ). Let a := x

(i)
1 and parse a as

a1 . . . a�.

1. Generate (PKi,SKi)← Fgen(1κ).
2. For each k ∈ [�], run X̃i1k ←Fenc(PKi,Enproj(e, ak, k)). Set ψi1 :=

(X̃i11, . . . , X̃i1�).
3. For 2 ≤ j ≤ n, do the following:

(a) For each k ∈ [�], compute

X̃0
ijk ← Fenc(PKi,Enproj(e, 0, Lj + k)),

X̃1
ijk ← Fenc(PKi,Enproj(e, 1, Lj + k)),

αijk ←Snd(IDijk, pkj , sk1, X̃
0
ijk, X̃

1
ijk).

(b) Set ψij := (αij1, . . . , αij�).

4. Set χ
(i)
1 := (PKi, ψi1, . . . , ψin) and τ (i) := SKi.

– χ
(i)
j ←EnInputj(i,

−→
pk, skj , x

(i)
j ) for j = 2, . . . n. Let a := x

(i)
j and parse a

as a1 . . . a�.
1. For each k ∈ [�], compute βijk ←Chs(IDijk, pk1, skj , ak).

2. Set χ
(i)
j := (βij1, . . . , βij�).

– ω(i) ←Compute(i,
−→
pk, φ, (χ

(i)
1 , . . . , χ

(i)
n )). Parse χ

(i)
1 as (PKi, ψi1, . . . , ψin),

where ψi1 = (X̃i11, . . . , X̃i1�) and for 2 ≤ j ≤ n, ψij = (αij1, . . . , αij�). In

addition, for 2 ≤ j ≤ n, parse χ
(i)
j as (βij1, . . . , βij�). The server does the

following:
1. For 2 ≤ j ≤ n and for 1 ≤ k ≤ �, compute X̃ijk :=

Prx(IDijk, pk1, pkj , αijk, βijk).
2. Let CF denote the circuit representation of Ev(F, ·). Then the server

computes ω(i) ←Feval(PKi, CF , {X̃ijk}j∈[n],k∈[�]).

– y(i) ∪ {⊥}←Verify(i, ξ, τ (i), ω(i)). Parse ξ as (e, d). Client P1 obtains
Y (i) ← Fdec(τ (i), ω(i)), and outputs y(i) := De(d, Y (i)).

Fig. 1. A scheme for multi-client non-interactive verifiable computation
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The above scheme allows delegating the computation one-time; intuitively, the
sender privacy of the underlying proxy OT makes the server learn the garbled
inputs only for the actual inputs of all clients. Multiple inputs can be handled
using fully-homomorphic encryption as with the single-client case. The detailed
protocol (called Protocol 1) is described in Figure 1.

Correctness and Non-triviality. Correctness of our scheme follows from the
correctness of the garbling scheme, the correctness of the fully homomorphic
encryption scheme, and the correctness of the proxy OT. Non-triviality of our
scheme follows from the fact that (1) the time required (by client P1) for com-
puting Enproj, Fenc, and Snd is O(poly(κ)|x(i)|), and is independent of the circuit
size of f , and (2) the time required (by all clients Pj for 2 ≤ j ≤ n) for computing
Chs is O(poly(κ)|x(i)|), and is independent of the circuit size of f .

Soundness. At a high level, the soundness of Protocol 1 follows from the sender
security of proxy OT, the semantic security of FHE, and the authenticity property
of the garbling scheme G.

Theorem 1. Suppose G = (Gb,En,De,Ev, ev) be a projective garbling scheme
satisfying the authenticity property, FHE is a semantically secure FHE scheme,
and (SetupS, SetupC, Snd,Chs,Prx) is a proxy OT scheme that is sender private.
Then Protocol 1 is a sound MVC scheme.

A proof is given in the following section.

Privacy. It is easy to see that Protocol 1 is private against the first client,
since the output of Compute algorithm is basically the encryption of the garbled
output. For privacy against the server, we need a proxy OT that hides the
chooser’s input as well.

Theorem 2. Suppose that FHE is a semantically secure fully homomorphic en-
cryption scheme, and that (SetupS, SetupC, Snd,Chs,Prx) is a proxy OT scheme
that is chooser private. Then Protocol 1 is private against the server.

5.1 Proof of Theorem 1

Suppose there exists an adversary A that breaks the soundness of Protocol 1
with respect to a function f .

Hybrid 0. Let p be an upper bound on the number of queries Amakes. Consider
the following experiment that is slightly different from Expsound

A [MVC, f, κ, n]:

Experiment Expr-sound
A [MVC, f, κ, n]:

(pkj , skj)←KeyGen(1κ, j), for j = 1, . . . , n.
(φ, ξ)←EnFunc(1κ, f).
Initialize counter i := 0

Choose r← [p].

(i∗, ω∗)←AIN (·)(
−→
pk, φ);
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If i∗ �= r, output 0 and terminate.

y∗← Verify(i∗, ξ, τ (i
∗), ω∗);

If y∗ �= ⊥ and y∗ �= f(x
(i∗)
1 , . . . , x

(i∗)
n ), output 1;

Else output 0;

Since r is chosen uniformly at random, A would succeed in the above experi-
ment with non-negligble probability (i.e., Pr[Expsound

A [MVC, f, κ, n] = 1]/p).

Hybrid 1. In this hybrid, the oracle queries IN (x
(i)
1 , . . . , x

(i)
n ) are handled by

the following instead of setting χ
(i)
1 ←EnInput1

(
i,
−→
pk, sk1, ξ, x

(i)
1

)
– Run (χ

(i)
1 , τ (i))←EnInput′1(i,

−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n )).

At a high level, EnInput′1 is identical to EnInput1 except it sets the inputs
to the sender algorithm Snd of the proxy OT as follows: For all input bits, Snd
obtains the correct token corresponding to the actual input bit, and a zero string
in place of the token corresponding to the other bit. The explicit description of
EnInput′1 is found in Figure 2.

(χ
(i)
1 , τ (i))←EnInput′1(i,

−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n ))

Let aj := x
(i)
j for j ∈ [n], and parse aj as aj1 . . . aj�.

1. Generate (PKi,SKi)← Fgen(1κ).
2. For each k ∈ [�], run X̃i1k ← Fenc(PKi,Enproj(e, a1k, k)). Set ψi1 :=

(X̃i11, . . . , X̃i1�).
3. For 2 ≤ j ≤ n, do the following:

(a) For each k ∈ [�], compute

b := ajk, X̃b
ijk ← Fenc(PKi,Enproj(e, b, Lj + k)), X̃1−b

ijk := 0|X
b
ijk|,

αijk ← Snd(�i+ Lj + k, pkj , sk1, X̃
0
ijk, X̃

1
ijk).

(b) Set ψij := (αij1, . . . , αij�).

4. Set χ
(i)
1 := (PKi, ψi1, . . . , ψin) and τ (i) := SKi.

Fig. 2. Description of EnInput′1

It is easy to see that Hybrid 0 and Hybrid 1 are indistinguishable due to the
sender privacy of the underlying proxy OT scheme. In the reduction, the adver-
sary breaking sender privacy will simulate experiment Expr-sound

A [MVC, f, κ, n]
while invoking the oracle POT with queries (i, j, X̃0

ijk, X̃
1
ijk, x

(i)
jk , 0

|X̃0
ijk|) to gen-

erate the sender messages of the proxy OT, where x
(i)
jk is the kth bit of x

(i)
j , and

for b ∈ {0, 1}, the value X̃b
ijk is the output from Fenc(PKi,Enproj(e, b, Lj + k)).
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Hybrid 2. In this hybrid, the oracle queries IN (x
(i)
1 , . . . , x

(i)
n ) are handled using

the following instead of running χ
(i)
1 ←EnInput′1

(
i,
−→
pk, sk1, ξ, x

(i)
1

)
1. If i = r, run (χ

(i)
1 , τ (i))←EnInput′1(i,

−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n ));

Otherwise, (χ
(i)
1 , τ (i))←EnInput′′1 (i,

−→
pk, sk1, (x

(i)
1 , . . . , x

(i)
n )) ;

At a high level, EnInput′′1 is identical to EnInput′1 except it replaces the token
values to zero strings. The explicit description of EnInput′′1 is found in Figure 3.

(χ
(i)
1 , τ (i))←EnInput′′1 (i,

−→
pk, sk1, (x

(i)
1 , . . . , x

(i)
n )

Let aj := x
(i)
j for j ∈ [n], and parse aj as aj1 . . . aj�. Let λ be the output

length of the Enproj algorithm.

1. Generate (PKi,SKi)← Fgen(1κ).

2. For each k ∈ [�], compute X̃i1k ←Fenc(PKi, 0
λ) . Set ψi1 :=

(X̃i11, . . . , X̃i1�).
3. For 2 ≤ j ≤ n, do the following:

(a) For each k ∈ [�], compute

b := ajk, X̃b
ijk ← Fenc(PKi, 0

λ) , X̃1−b
ijk := 0|X

b
ijk |,

αijk ← Snd(�i+ Lj + k, pkj , sk1, X̃
0
ijk, X̃

1
ijk).

(b) Set ψij := (αij1, . . . , αij�).

4. Set χ
(i)
1 := (PKi, ψi1, . . . , ψin) and τ (i) := SKi.

Fig. 3. Description of EnInput′′1

Indistinguishability between Hybrid 1 and Hybrid 2 can be shown with a
simple hybrid argument where indistinguishability between two adjacent hybrids
holds from the semantic security of the underlying FHE scheme.

Final Step. As a final step, we reduce the security to the authenticity of the
underlying garbling scheme. In particular, using the adversary A that succeeds
in Hybrid 2 with non-negligible probability, we construct an adversary B that
breaks the authenticity of the underlying garbling scheme. B works as follows:

B sends f to the challenger and receives F from it. Then, it simulates
Hybrid 2 as follows:

1. Run (pkj , skj)←KeyGen(1κ, j), for j = 1, . . . , n.
2. Let p be the upper bound on the number of queries that A makes,

and choose r← [p].

3. Run (i∗, ω∗)←AIN(·)(
−→
pk, φ) while handling the query IN (x

(i)
1 , . . . , x

(i)
n )

as follows:
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(a) For the input encoding of the first party, if i = r, then B sends

(x
(i)
1 , . . . , x

(i)
n ) to the challenger and receives the corresponding

tokens (X1, . . . , Xn�). Using these tokens, B perfectly simulates

EnInput′1(i,
−→
pk, sk1, ξ, (x

(i)
1 , . . . , x

(i)
n )) by replacing Enproj(e, ·, k′)s

with Xk′s. Otherwise, run EnInput′′1 (i,
−→
pk, sk1, (x

(i)
1 , . . . , x

(i)
n )).

(b) For j = 2, . . . , n, run χ
(i)
j ←EnInput

(
i, j,

−→
pk, skj , x

(i)
j

)
.

4. If i∗ = r, the adversary B runs Y ∗←Fdec(SKi∗ , ω
∗) and outputs Y ∗

to the challenger. Otherwise, it outputs ⊥.
The above simulation is perfect.

We show that B breaks the authenticity of the underlying garbling scheme with
non-negligible probability. Let Succ be the event that A succeeds in Hybrid 2,
that is, Y ∗ is a valid encoded output but different from Ev(F,Xr), where X(r)

is the encoded input for x(r). This implies that

Pr[ExpAut!G
B = 1] ≥ Pr[Succ].

Since by assumption, G satisfies the authenticity property, we conclude that
Pr[Succ] must be negligible in κ, contradiction. This concludes the proof of
soundness of Protocol 1.
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Abstract. Oblivious transfer is one of the most basic and important
building blocks in cryptography. As such, understanding its cost is of
prime importance. Beaver (STOC 1996) showed that it is possible to
obtain poly(n) oblivious transfers given only n actual oblivious transfer
calls and using one-way functions, where n is the security parameter.
In addition, he showed that it is impossible to extend oblivious transfer
information theoretically. The notion of extending oblivious transfer is
important theoretically (to understand the complexity of computing this
primitive) and practically (since oblivious transfers can be expensive and
thus extending them using only one-way functions is very attractive).

Despite its importance, very little is known about the feasibility of
extending oblivious transfer, beyond the fact that it is impossible infor-
mation theoretically. Specifically, it is not known whether or not one-way
functions are actually necessary for extending oblivious transfer, whether
or not it is possible to extend oblivious transfers with adaptive secu-
rity, and whether or not it is possible to extend oblivious transfers when
starting with O(log n) oblivious transfers. In this paper, we address these
questions and provide almost complete answers to all of them. We show
that the existence of any oblivious transfer extension protocol with se-
curity for static semi-honest adversaries implies one-way functions, that
an oblivious transfer extension protocol with adaptive security implies
oblivious transfer with static security, and that the existence of an obliv-
ious transfer extension protocol from only O(log n) oblivious transfers
implies oblivious transfer itself.

1 Introduction

Background – Extending Oblivious Transfer. In the oblivious transfer
problem [17,5], a sender holds a pair of input bits (b0, b1) and enables a receiver
to obtain one of them at its choice. The security requirements are that the sender
learns nothing about which input is obtained by the receiver, while the receiver
learns only one bit.
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Oblivious transfer is one of the most basic and important primitives in cryp-
tography in general, and in secure computation in particular. Oblivious transfer
is used in almost all general protocols for secure computation with no honest
majority (e.g., see [20,7]), and has been shown to imply essentially all basic cryp-
tographic tasks [13]. Due to its importance, the complexity of computing obliv-
ious transfer is of great importance. Oblivious transfer can be constructed from
enhanced trapdoor permutations [5,9] and from homomorphic encryption [1]. In
addition, it is known that it is not possible to construct oblivious transfer from
public-key encryption (or one-way functions and permutations) in a black-box
manner [6]. Thus, oblivious transfer requires quite strong hardness assumptions
(at least when considering black-box constructions, and no nonblack-box con-
structions from weaker assumptions are known).

Due to the importance of oblivious transfer and its cost, Beaver asked whether
or not it is possible to use a small number of oblivious transfers and a weaker as-
sumption like one-way functions in order to obtain many oblivious transfers [3];
such a construction is called an OT extension. Beaver answered this question in
the affirmative and in a beautiful construction showed how to obtain poly(n)
oblivious transfers given ideal calls to O(n) oblivious transfers and using a pseu-
dorandom generator and symmetric encryption, which can both be constructed
from any one-way function. In addition, he showed that OT extensions cannot be
achieved information theoretically. These results of [3] are of great importance
theoretically since they deepen our understanding of the complexity of oblivious
transfer. In addition, OT extensions are of interest practically, since oblivious
transfer is much more expensive than symmetric primitives. Thus, OT extensions
can potentially be used to speed up protocols that rely on many oblivious trans-
fers. In this direction, efficient OT extensions (based on a stronger assumption
than one-way functions) were presented in [11].

This Paper – A Feasibility Study of OT Extensions. In this paper, we
ask the following questions:

1. What is the minimal assumption required for constructing OT extensions?
It has been shown that one-way functions suffice, and that OT extensions
cannot be carried out information theoretically [3]. However, it is theoreti-
cally possible that OT extensions can be achieved under a weaker assumption
than that of the existence of one-way functions. Admittedly, it is hard to con-
ceive of a cryptographic construction that is not information theoretic and
does not require one-way functions. However, a proof that one-way functions
really are necessary is highly desired.

2. Can oblivious transfer be extended with adaptive security? The known con-
structions of OT extensions maintain security only in the presence of static
corruptions, where the set of corrupted parties is fixed before the protocol
begins. This is because the messages sent by the sender in the constructions
of [3,11] are binding with respect to the sender’s input strings, and so an
adaptive simulator cannot explain a transcript in multiple ways. Nothing is
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known about whether or not adaptively secure OT extensions exist without
assuming erasures1.

3. How many oblivious transfers are needed for extensions? In the construc-
tions of [3,11], one must start with O(n) oblivious transfers where n is the
security parameter. These constructions can also be made to work when a
superlogarithmic number ω(logn) of oblivious transfers are given. However,
they completely break down if O(log n) oblivious transfers only are avail-
able. We ask whether or not it is possible to extend a logarithmic number of
oblivious transfers.

We prove the following theorems:

Theorem 1.1. If there exists an OT extension protocol from n to n + 1 (with
security in the presence of static semi-honest adversaries), then there exist one-
way functions.

Thus, one-way functions are necessary and sufficient for OT extensions.

Theorem 1.2. If there exists an OT extension protocol from n to n + 1 that
is secure in the presence of adaptive semi-honest adversaries, then there exists
an oblivious transfer protocol that is secure in the presence of static semi-honest
adversaries.

This means that the construction of an adaptive OT extension protocol involves
constructing statically secure oblivious transfer from scratch. This can still be
meaningful, since adaptive oblivious transfer cannot be constructed from static
oblivious transfer in a black-box manner [15]. However, it does demonstrate that
adaptive OT extensions based on weaker assumptions than those necessary for
static oblivious transfer do not exist.

Theorem 1.3. If there exists an OT extension protocol from f(n) = O(log n)
to f(n) + 1 that is secure in the presence of static malicious adversaries, then
there exists an oblivious transfer protocol that is secure in the presence of static
malicious adversaries.

This demonstrates that in order to extend only a logarithmic number of oblivi-
ous transfers (with security for malicious adversaries), one has to construct an
oblivious transfer protocol from scratch. Thus, meaningful OT extensions exist
only if one starts with a superlogarithmic number of oblivious transfers.

We stress that all of our results are unconditional, and are not black-box
separations. Rather, we construct concrete one-way functions and OT protocols
in order to prove our results.

Our results provide quite a complete picture regarding the feasibility of con-
structing OT extensions. The construction of [3] is optimal in terms of the com-
putational assumption, and the constructions of [3,11] are optimal in terms of

1 Note that in the erasures model, an OT extension can be constructed from one-way
functions using the original construction of Beaver and the two-party computation
protocol of [14] that is adaptively secure with erasures and is based on Yao’s protocol.
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the number of oblivious transfers one starts with. Finally, the fact that no OT ex-
tensions are known for the setting of adaptive corruptions is somewhat explained
by Theorem 2.

Open Questions. Theorem 2 shows that there do not exist adaptively secure
OT extensions based on weaker assumptions than what is needed for statically
secure OT. However, we do not know how to construct an adaptively secure OT
extension even from statically secure OT. Thus, the question of whether or not it
is possible to construct an adaptively secure OT extension from an assumption
weaker than adaptive OT is still open.

Theorem 3 holds only with respect to OT-extensions that are secure against
malicious adversaries. For the case of semi-honest adversaries, the question of
whether one can construct an an OT-extension from f(n) = O(log n) to f(n)+1
from an assumption weaker than statically secure OT protocol is open.

In this paper, we have investigated OT extensions. However, the basic question
of extending a cryptographic primitive using a weaker assumption than that
needed for obtaining the primitive from scratch is of interest in other contexts
as well. For example, hybrid encryption (where one encrypts a symmetric key
using an asymmetric scheme, and then encrypts the message using a symmetric
scheme) is actually an extension of public-key encryption that requires one-way
functions only.

A primitive that could certainly benefit from a study such as this one is key
agreement. In this context, the question is whether it is possible for two parties
to agree on an m + 1-bit long key, given an m-bit key, under assumptions that
are weaker than those required for constructing a secure key-agreement from
scratch. In the basic case, it is clear that OWFs are necessary and sufficient
for any nontrivial KA extension that starts with n bits (where n is the security
parameter). A more interesting question regarding this problem relates to the
adaptive setting. Specifically, since adaptive key agreement is very expensive,
it would be very beneficial if one could extend this primitive more efficiently
and/or under weaker assumptions.

2 Definitions and Notations

We denote the security parameter by n, and we denote by Un a random variable
uniformly distributed over {0, 1}n. We say that a function μ : N→ N is negligible
if for every positive polynomial p(·) and all sufficiently large n it holds that
μ(n) < 1

p(n) . We use the abbreviation PPT to denote probabilistic polynomial-

time. We denote the bits of a string x ∈ {0, 1}n by x1, . . . , xn; for a subscripted
string xb, we denote the bits by x1

b , . . . , x
n
b . In addition, for strings x0, x1, σ ∈

{0, 1}n we denote by xσ the string x1
σ1
, . . . , xn

σn
.

For two distribution ensembles X = {X(a, n)} and Y = {Y (a, n)} with a ∈
{0, 1}∗ and n ∈ N, we write X

c≡ Y if they are computationally indistinguishable,

and we write X
s≡ Y if they are statistically close. We also denote by SD(X,Y )

the statistical distance between X and Y .
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Interactive Protocols. Let π = 〈A,B〉 be an interactive protocol for comput-
ing a functionality f . We denote f = (fA, fB), where fA is the first output of f
(for party A) and fB is the second output of f (for party B).

The random variable View
π
A(xA, xB) denotes the view of the party A in an

execution of π with inputs xA for A and xB for B, where the random tapes of
the parties are uniformly chosen. Note that a view of a party contains its input,
randomness and the messages it has received during the execution.

The random variable Output
π
A(xA, xB) denotes the output of the party A in

an execution of π with inputs xA for A and xB for B, where the random tapes
of the parties are uniformly chosen.

Definition 2.1. Let f(·, ·) be a deterministic binary functionality, let π = 〈A,B〉
be an interactive protocol and let n be the security parameter. We say that π com-
putes the functionality f if there exists a negligible function negl(·) such that for
all n, xA and xB :

Pr [〈A(1n, xA), B(1n, xB)〉 = (fA(xA, xB), fB(xA, xB))] ≥ 1− negl(n).

Definition 2.2. Let π = 〈A, b〉 be a protocol that computes a deterministic func-
tionality f = (fA, fB). Protocol π securely computes f in the presence of static
semi-honest adversaries if there exist two PPT algorithms SA and SB such that:

{SA(1n, xA, fA(xA, xB))}
c≡ {View

π
A(1

n, xA, xB)} and {SB(1n, xB , fB(xA, xB))}
c≡ {View

π
B(1

n, xA, xB)} where xA, xB ∈ {0, 1}∗ and n ∈ N.

Security in the Presence of Malicious Adversaries. To define security in
the presence of malicious adversaries, we use the ideal/real framework as defined
by Canetti in [4]. Loosely speaking, in this approach we formalize the real-life
computation as a setting where the parties, given their private inputs, interact
according to the protocol in the presence of a real-life adversary that controls a
set of corrupted parties. The real-life adversary can be either static (where the
set of corrupted parties is fixed before the protocol begins) or adaptive (where
the adversary can choose to corrupt parties during the protocol execution based
on what it sees). At the end of the computation, the honest parties output what
is specified by the protocol and the adversary outputs some arbitrary function
of its view. If the adversary is adaptive, there is an additional entity Z, called
the environment, who sees the output of all of the parties. In addition, there
is a “postexecution phase”, where Z can instruct the adversary to also corrupt
parties after the execution of the protocol ends (and the transcript is fixed,
implying that “rewinding” is no longer allowed). At the end of the postexecution
phase, Z outputs some function of its view.

Next we consider an ideal process, where an ideal-world adversary controls a
set of corrupted parties. Then, in the computation phase, all parties send their
inputs to some incorruptible trusted party. The ideal-world adversary sends in-
puts on behalf of the corrupted parties. The trusted party evaluates the function
and hands each party its output. The honest parties then output whatever they
received from the trusted party and the ideal-world adversary outputs some ar-
bitrary value. Similarly to the real-life setting, in the case of adaptive security,
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there is an environment Z who sees all outputs and can instruct the adversary to
also corrupt parties in the postexecution phase. At the end of the postexecution
phase, Z outputs some function of its view.

Loosely speaking, a protocol π is secure in the presence of static malicious ad-
versaries, if for every static malicious real-life adversary A, there exists a static
malicious ideal-world adversary SIM such that the distribution obtained in a
real-life execution of π with adversary A is indistinguishable from the distribu-
tion obtained in a ideal-world with adversary SIM. Likewise, a protocol π is
secure in the presence of adaptive malicious adversaries, if for every adaptive mali-
cious real-life adversaryA and environment Z, there exists an adaptive malicious
ideal-world adversary SIM such that the output of Z in a real-life execution
of π with adversary A is indistinguishable from its output in a ideal-world with
adversary SIM.

Security in the presence of adaptive semi-honest adversaries is defined in the
same way as adaptive malicious adversaries, except that the adversary only sees
the internal state of a corrupted party but cannot instruct it to deviate from the
protocol specification. For full definitions see [4].

The Hybrid Model. Let φ be a functionality. The φ-hybrid model is defined
as follows. The real-life model for protocol π is augmented with an incorruptible
trusted party T for evaluating the functionality φ, and the parties are allowed
to make calls to the ideal functionality φ by sending their φ-inputs to T . If we
consider malicious adversaries, the adversary specifies the inputs of all parties
under its control. If the adversary is semi-honest, then even the corrupted parties
hand T inputs as specified by the protocol π. At each invocation of φ, the trusted
party T sends the parties their respective outputs.

We stress that if π is in the φ-hybrid model, then a view of a party A contains
also the inputs sent by A to the functionality φ and the outputs sent to A by T
computing φ.

Oblivious Transfer and Extensions. We are now ready to define oblivious
transfer and OT extensions.

Definition 2.3. The bit oblivious transfer functionality OT is defined by
OT ((b0, b1), σ) = (λ, bσ). The parallel oblivious transfer functionality m × OT
is defined for strings x0, x1, σ ∈ {0, 1}m as follows: m × OT ((x0, x1), σ) =
(λ, (x1

σ1
, . . . , xm

σm
)) = (λ, xσ) (recall that xσ denotes the string x1

σ1
, . . . , xn

σn
).

We denote by OT k the ideal functionality of k independent OT computations.
We stress that OT k is not the same as k × OT , since in the latter all of the
inputs are given at once whereas in OT k the inputs can be chosen over time
(in particular, the receiver can choose its inputs as a function of the previous
outputs it received). Using this notation, we have that an OT extension protocol
is a protocol that securely computes m×OT given access to OT k, where k < m.
Formally:

Definition 2.4 (OT -extension). Let π be a protocol and let k,m : N → N be
two functions where k(n) < m(n) for all n. We say that π is an OT-extension
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from k = k(n) to m = m(n) if π securely computes the m×OT functionality in
the OT k-hybrid model.

OT Extensions – Two Technical Propositions. We present two proposi-
tions that we use throughout the paper. Beaver showed that OT can be precom-
puted [2]. That is, it is possible to first compute OT on random inputs and then
use the result to later compute an OT on any input. Stated formally:

Proposition 2.5 (Beaver [2]). Let m = m(n) be a polynomial. If there exists
a protocol that securely computes the m × OT functionality, then there exists a
protocol that securely computes the OTm ideal functionality.

Proposition 2.5 shows that Definition 2.4 could have been stated as a protocol
that securely computes OTm in the OT k (or even the k ×OT ) hybrid model.

The fact that a single extension implies many has been stated many times in
the literature (e.g., [3]) and is well accepted folklore, but has not been formally
proved. In the full version of this paper [16], we sketch a proof of this. We
stress that this holds irrespectively of how many oblivious transfers you start
with (even if only a constant number), as long as only a polynomial number of
transfers are derived. We state the proposition for adaptive malicious adversaries
and observe that it holds for all four combinations of static/adaptive and semi-
honest/malicious adversaries.

Proposition 2.6. Let f : N→ N be any polynomially-bounded function, and let
n be the security parameter. If there exists a protocol π that is an OT-extension
from f(n) to f(n)+1 that is secure in the presence of adaptive malicious adver-
saries, then for every polynomial p(·) there exists an OT-extension protocol from
f(n) to p(n) that is secure in the presence of adaptive malicious adversaries.

3 OT Extensions Imply One-Way Functions

In this section we show that the existence of an OT extension protocol implies
the existence of one-way functions. We prove the theorem for any OT extension
that is secure in the presence of static semi-honest adversaries (thus the theorem
also holds when the OT extension is secure in the presence of adaptive and/or
malicious adversaries, since these variants all imply security for static semi-
honest adversaries).

Theorem 3.1. Let n be the security parameter. If there exists a protocol that is
an OT-extension from n to n + 1 that is secure in the presence of static semi-
honest adversaries, then there exist one-way functions.

Proof Sketch: To prove this, we use an information-theoretic lower bound
given in [18] to show that the existence of a protocol π that is an OT-extension
from n to n+1 implies the existence of two polynomial-time constructible prob-
ability ensembles that are computationally indistinguishable and yet their sta-
tistical distance is noticeable. The fact that this implies one-way functions was
shown in [8].
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We define two polynomial-time constructible probability ensembles RL =
{RLn}n∈N and SM = {SMn}n∈N that are computationally indistinguishable, but
have noticeable statistical distance. Let SS and SR be the two simulators that
are guaranteed to exist for π by its semi-honest security. We begin by defining
the probability ensembles RL and SM, that represent the real and the simulated
transcripts, respectively.

RLn: First, a party P ∈ {S,R} is chosen at random. Then, inputs for both
parties x0, x1, σ ∈ {0, 1}n are chosen uniformly at random and the real
protocol π is executed on inputs (x0, x1) for the sender and σ for the receiver.
The output of RLn is a pair (v, ω) where v is the view of party P in the
execution described above and ω is the output of the other party.

SMn: Similarly to the above, a party P ∈ {S,R} and inputs x0, x1, σ ∈ {0, 1}n
are chosen uniformly at random. Then, the simulator SP (that is, SR is
P = R and SS if P = S) is executed on the corresponding input and output
of party P . The output of SMn is a pair (v, ω) where v is the view generated
by the simulator and ω is the output of the other party as defined by the
functionality.

We now prove that the ensembles RL and SM are computationally indistinguish-
able but statistically far. The fact that they are computationally indistinguish-
able can be derived from the (computational) security of π. Specifically, for every
P ∈ {S,R}, it holds that the view generated by the simulator SP is computa-
tionally indistinguishable from a real view of P in an execution of π, and hence
it can be easily shown that RL and SM are computationally indistinguishable.
Intuitively, the fact that the two ensembles are statistically far apart follows
from the fact that OT cannot be extended with statistical security [3] and so the
ensembles cannot be statistically close. However, this argument is not sufficient,
because it only implies that RL and SM are not statistically close, whereas what
we need to show is that the two ensembles are statistically far apart. Specifi-
cally, the impossibility result of [3] only shows that there exists a polynomial
p(·) such that for infinitely many n’s, the statistical distance between RLn and
SMn is 1

p(n) , while the existence of one-way functions as proven in [8] only fol-

lows if there exists a polynomial p(·) such that for all sufficiently large n’s, the
statistical distance between RLn and SMn is 1

p(n) . We therefore use the recent

non-asymptotic bound on the statistical distance shown by [18], and use it to
derive the following:

Claim 3.2. There exists a polynomial p(·) such that for all sufficiently large n’s
the statistical distance between RLn and SMn is at least 1/p(n). Stated differently,
the ensembles RL and SM have noticeable statistical distance.

The proof of Claim 3.2 appears in [16]. Applying [8], as mentioned above, we
conclude that one-way functions exist, and this concludes the proof sketch.
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4 Adaptive Security

In this section we consider the feasibility of constructing OT -extension protocols
that are secure in the presence of adaptive adversaries. It is easy to see that the
OT -extension protocols of Beaver [3] and Ishai et al. [11] are not secure when
considering adaptive security. This is because the receiver’s view is essentially a
binding commitment to all of the sender’s inputs.2 This raises the question as to
whether there exists an OT extension protocol at all in the presence of adaptive
adversaries. Of course, if the existence of anOT extension protocol (that is secure
for adaptive adversaries) implies OT that is secure for adaptive adversaries, then
this means that only a trivial OT extension that constructs OT from scratch
exists. We provide a partial answer to this question and show that a protocol for
OT -extension that is secure in the presence of adaptive adversaries implies the
existence of an OT protocol that is secure in the presence of static adversaries.
Thus, any protocol for extending OT that maintains adaptive security needs
to assume, at the very least, the existence of a statically secure protocol for
OT . We state and prove this for semi-honest adversaries; an analogous theorem
for malicious adversaries can be obtained by applying a GMW-type compiler.
Formally, we prove the following theorem (the intuition appears immediately
after Protocol 4.2 below):

Theorem 4.1. Let n be the security parameter. If there exists an OT -extension
protocol from n to n + 1 that is secure in the presence of adaptive semi-honest
adversaries, then there exists an OT protocol that is secure in the presence of
static semi-honest adversaries.

Proof. We prove the theorem by building an OT protocol that is secure in the
presence of static adversaries from any OT extension from n to 4n that is secure
in the presence of adaptive adversaries. (Note that by Proposition 2.6, an OT
extension from n to 4n exists if there exists an extension from n to n+ 1.) We
first present the construction of the OT protocol for static adversaries and then
provide intuition as to why it is secure.

Let π = 〈S,R〉 be a protocol that securely computes the 4n×OT functionality
in the OT n-hybrid model in the presence of adaptive semi-honest adversaries.
We assume that all of the ideal calls to OT in π are such that S plays the sender
and R plays the receiver. This is without loss of generality since the roles in OT
can always be reversed [19]. We construct an OT protocol π̂ in the plain model
(i.e., with no calls to an ideal OT functionality), as follows:

Protocol 4.2 (OT protocol π̂ = 〈Ŝ, R̂〉 for Static Adversaries)

– Inputs: Sender Ŝ has b0, b1 ∈ {0, 1} and receiver R̂ has σ ∈ {0, 1}.

2 In [3] a Yao garbled circuit is used which is binding when instantiated with known
encryption methods. Likewise, [11] uses correlation-robust hash functions for which
it is hard to find collisions, which is exactly what is needed in order to “explain the
transcript” in different ways as is needed for proving adaptive security.



528 Y. Lindell and H. Zarosim

– The protocol:

1. Ŝ chooses two random strings α0, α1 ∈ {0, 1}4n.
2. Ŝ and R̂ run the extension protocol π as follows:

(a) Ŝ plays the sender S in π with inputs (α0, α1).
(b) R̂ plays R in π with input σ4n (i.e., the string of length 4n with all

bits set to σ).
(c) The parties follow the instructions of π exactly except that whenever

π instructs them to make an ideal call to the OT functionality with
input (β0, β1) for S and input τ for R, the sender Ŝ sends the pair
(β0, β1) to R̂, and R̂ proceeds to run R with output βτ from the
simulated ideal call.

(d) Let γ ∈ {0, 1}4n denote the output of R in the execution of π.
3. Ŝ chooses two random strings r0, r1 ∈R {0, 1}4n and sets:

z0 = 〈α0, r0〉 ⊕ b0 and z1 = 〈α1, r1〉 ⊕ b1.

Ŝ sends (r0, z0) and (r1, z1) to R̂.

– Output: R̂ outputs zσ ⊕ 〈γ, rσ〉.

It is clear that π̂ correctly computes the OT functionality. This is because by
the correctness of the OT extension protocol, R will output γ = ασ in Step 2d,
except with negligible probability. Thus, zσ ⊕ 〈γ, rσ〉 = zσ ⊕ 〈ασ, rσ〉 = bσ, as
required.

We proceed to prove that π securely computes the OT functionality in the
presence of semi-honest adversaries. We begin with the intuition. If Ŝ and R̂
were to run the original extension protocol π with the ideal calls, then it is
clear that π̂ is a secure OT protocol. This is because Ŝ learns nothing about σ,
and R̂ learns ασ but nothing about α1−σ. Thus, R̂ learns bσ but nothing about
b1−σ (observe that 〈α1−σ, r1−σ〉 hides b1−σ by the fact that α1−σ is random).
Now, in π̂ the difference is that Ŝ sends both inputs to R̂ in every ideal OT
call within the execution of π. Clearly, Ŝ’s view can be simulated since its view
is identical to the case that π with the ideal OT calls is used. In contrast, R̂
learns more information since it obtains both sender inputs in all ideal OT calls.
Since the inputs to each ideal call are a single bit, we have that R̂ obtains n
more bits of information than in the original extension protocol using ideal OT
calls. However, α1−σ is 4n bits long and so still must have high entropy even
given the n additional bits of information learned. This entropy is enough to
hide b1−σ since 〈α1−σ, r1−σ〉 is a perfect universal hash function, and so a good
randomness extractor.

The above seems to have nothing to do with the fact that the extension pro-
tocol π is secure in the presence of adaptive adversaries. However, the argument
that just n more bits of information are obtained is valid only in this case. Specif-
ically, by the definition of security in the presence of adaptive adversaries, the
simulator must be able to simulate in the case that the receiver is corrupted at
the onset, and the sender is corrupted at the end after the protocol concludes
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(formally, in the “post-execution corruption phase”). This means that the simu-
lator must first generate a receiver-view (given the receiver’s input and output),
and must then later generate a sender-view (given the sender’s input) that is
consistent with the already fixed receiver-view that it previously generated. This
sender-view contains, amongst other things, the inputs that the sender uses in
all of the n ideal calls to the OT functionality within the extension protocol π.
Thus, it is possible to add these inputs of the sender to the previously gener-
ated receiver-view (we call this the extended receiver view) and the result is the
receiver-view in the modified extension protocol used in Step 2 of π̂; in par-
ticular, both sender’s inputs to all ideal OT calls appear. Observe that only n
bits of additional information are added to the receiver view in order to obtain
the extended view, and so there are at most 2n extended views for any given
receiver view. However, there are 24n different possible strings α1−σ. The crucial
point here is that the above implies that many different possible strings α1−σ
must be consistent with any given extended view (except with negligible prob-
ability). This relies critically on the fact that the receiver-view is fixed before
the sender corruption and so the same extended receiver-view must be consis-
tent with many different sender inputs to the ideal OT calls. Now, once we have
that many different possible α1−σ strings are consistent, we can use the fact that
α1−σ is randomly chosen to apply the leftover hash lemma and conclude that
〈α1−σ, r1−σ〉 is a bit that is statistically close to uniform. We now proceed to
the formal proof.

Corrupted Sender: The case of a corrupted sender is straightforward since
the sender Ŝ receives no information in Step 2 of π̂ beyond what it receives in a
real execution of π with ideal OT calls. Thus the simulator that is assumed to
exist for the sender S in π can be used to generate the exact view of Ŝ in Step 2
of π̂. Since Ŝ receives no messages beyond in Step 2, there is nothing more to be
added to the view of Ŝ.

Corrupted Receiver: In order to construct our simulator SR̂ for the corrupted

receiver R̂ in π̂, we first define a specific simulator SIM for the extension pro-
tocol π for the adaptive setting. Let A and Z be the following real-life semi-
honest adversary and environment for π; see Section 2 for a brief overview of
the definition of adaptive security, and [4] for full definitions. At the beginning
of the execution of π, the adversary A corrupts the receiver and learns its input
σ ∈ {0, 1}4n. It then follows the honest strategy for R and at the end of the
execution, outputs its entire view. In the post-execution phase, Z generates a
“corrupt S” message, sends it to A who corrupts S and hands Z the internal
view of S. Z then outputs its internal view (note that it contains views of both
R and S). Let SIM be the ideal-process adversary that is guaranteed to exist
for this A and Z by the security of π. We remark that SIM generates a view
of an execution of π in the OT -hybrid model, where ideal calls are used for the
n invocations of OT . We use SIM to construct the simulator SR̂ for the case
of a corrupted receiver in π̂.
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Construction 4.3 (SR̂). SR̂ receives σ and bσ as input and works in three
stages as follows:

1. Stage 1 – obtain simulated receiver-view in π:
(a) Choose a random string ασ ∈R {0, 1}4n as the “output of π” and a

random tape rSIM for SIM of the appropriate length.
(b) Start an execution of SIM with random-tape rSIM. When SIM cor-

rupts the receiver, hand σ4n to SIM as the input of R.
(c) In the computation stage, play the role of the trusted party and send ασ

to SIM as the output of R from 4n × OT . (Since we are in the semi-
honest setting, R always sends its specified input σ4n and so the output
that it would receive is always ασ.)

(d) Let vR be the output of SIM at the end of the execution phase (this
consists of a view for the receiver). If vR is not consistent with σ4n and
ασ,

3 return ⊥ and abort. Otherwise, proceed to the next stage.
2. Stage 2 – obtain extended receiver-view:

(a) Choose a random string α1−σ ∈ {0, 1}4n.
(b) Send a “corrupt S” message to SIM on behalf of Z. When SIM cor-

rupts the sender, hand (α0, α1) to SIM as the input of S.
(c) Let vS be the view of the sender sent by SIM to Z. If vS is not consistent

with vR and the inputs, output ⊥ and abort. If vS is consistent with vR
and the inputs, then for each of the n calls for the ideal OT functionality,
extend vR by appending the other input used by the sender (as appear
in vS) into the view vR (note that vR already contains one of the inputs
used by the sender in each call since the receiver receives one output in
each ideal call). Let v′R be the extended view.

3. Stage 3 – complete simulation:
(a) Choose two random strings r0, r1 ∈ {0, 1}4n; let zσ = 〈ασ, rσ〉⊕bσ (where

bσ is from the input of SR̂) and let z1−σ be a random bit.
(b) Output v′R, r0, r1, z0, z1.

We prove that:{
SR̂(1

n, σ, bσ)
}
b0,b1,σ∈{0,1},n∈N

c≡
{
View

π̂
R̂
(1n, b0, b1, σ)

}
b0,b1,σ∈{0,1},n∈N

(1)

To prove Eq. (1), we consider a hybrid simulator Sh that receives as input b1−σ
in addition to the input (σ, bσ) of SR̂. It then works exactly as SR̂ except that in
Stage 3 of the simulation it sets z1−σ = 〈α1−σ, r1−σ〉 ⊕ b1−σ (instead of setting
z1−σ to a random bit as SR̂ does).

We first prove that the output of the hybrid simulator is indistinguishable
from the receiver view in a real execution. That is, we prove that:{

Sh(1n, σ, b0, b1)
} c≡

{
View

π̂
R̂
(1n, b0, b1, σ)

}
(2)

3 We say that a view is consistent with inputs and outputs if when running the party
on the given view and input, it outputs the correct output.
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The only difference between the two distributions is that in View
π̂
R̂
(1n, b0, b1, σ),

the “extended view of R” (including both inputs used by the sender in each ideal
OT call) is generated in a real execution of π, whereas in Sh(1n, σ, b0, b1) the ex-
tended view is generated by SIM after the corruption at the end. So intuitively
the guarantee that SIM is a good simulator implies that the two ensembles
are computationally indistinguishable. Formally, we define a machine D that
receives the output of Z after an execution of π in the adaptive setting, and
attempts to determine whether it obtained a pair of receiver/sender views from
a real or ideal execution. D generates an extended receiver-view from the pair
of receiver/sender views that it received, and in addition computes the messages
(r0, z0), (r1, z1) using the correct sender inputs b0, b1 (that it’s given as auxil-
iary input) and using the strings α0, α1 that appear in Z’s output. Finally, D
outputs the extended receiver-view together with the last message; this consti-
tutes a view of the receiver R̂ in π̂. It is immediate that if D received a pair
of views from a real execution of π then it outputs a view which is identical to
View

π̂
R̂
(1n, b0, b1, σ). In contrast, if D received a pair of views generated by SIM

in an ideal execution, then it outputs a view which is identical to Sh(1n, σ, b0, b1).
Thus, Eq. (2) follows from the security of π with simulator SIM.

We now proceed to prove that the output of SR̂ is statistically close to the
output of the hybrid simulator Sh. That is:{

SR̂(1
n, σ, bσ)

}
b0,b1,σ∈{0,1},n∈N

s≡
{
Sh(1n, σ, b0, b1)

}
b0,b1,σ∈{0,1},n∈N

(3)

First note that SR̂ and Sh work identically in the first two stages of the simulation
and differ only in how z1−σ is computed. In particular, the distributions over the
extended views generated by SR̂ and by Sh are identical; let V ′R(1

n, σ) denote
this distribution.

The first step is to show that with probability negligibly close to 1, there
are exponentially many strings α1−σ that are consistent with an extended view
generated by SIM (as run by Sh or equivalently SR̂). Fix σ ∈ {0, 1} and bσ (the
following holds for all σ, bσ and we fix them here for clarity). For a given random
tape rSIM of SIM and a given ασ, let vR be the (regular, non-extended) view
generated by SIM with random tape rSIM and ασ in the execution phase.
Let Δ(rSIM, ασ) be the set of all strings α1−σ of size 4n for which the views
vR, vS generated by SIM with random tape rSIM and inputs ασ and α1−σ in
the computation and post-execution phases, respectively, are all consistent (we
have already fixed σ and bσ so consistency is also with respect to these values;
see Footnote 3). Note that if Sh or SR̂ would output ⊥ in the first stage (i.e., if
vR is not consistent with the input and output) when choosing rSIM, ασ then
Δ(rSIM, ασ) is empty.

We now prove that for every σ, bσ ∈ {0, 1}, there exists a negligible function
μ such that

PrrSIM,ασ

[
|Δ(rSIM, ασ)| ≥ 23n

]
≥ 1− μ(n).

Intuitively, this holds because if Δ(rSIM, ασ) is “small”, then SIM would fail
with high probability. Formally, assume that PrrSIM,ασ [|Δ(rSIM, ασ)| ≥ 23n] is
non-negligibly smaller than 1. We consider two cases:
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1. With non-negligible probability, the view vR generated by SIM with ran-
dom tape rSIM and ασ cause Sh and SR̂ to output ⊥ (i.e., it is not consistent
with the inputs/outputs): In this case, a distinguisher Z easily distinguishes
the output of SIM from the views of vR, vS in a real execution of π since in
a real execution the views are consistent except with negligible probability.

2. With non-negligible probability, vR is consistent but |Δ(rSIM, ασ)| < 23n:
In this case, it is possible to distinguish a real execution of π from an ideal
execution with SIM because the probability that a random α1−σ is in

Δ(rSIM, ασ) is less than 23n

24n = 2−n. Thus, the environment Z can just
supply a random α1−σ and see if in the post-execution corruption it receives
a consistent view. In the real execution it will always receive a consistent
view. However, in the ideal (simulated) execution, it will receive a consis-
tent view with probability less than 2−n. This is due to the fact that when
α1−σ /∈ Δ(rSIM, ασ) the view is not consistent. Thus, Z distinguishes with
probability (1 − 2−n) times the probability that this case occurs, which is
non-negligible.

We stress that the calculation in the second case holds since the view of the
receiver vR is fixed before the post-execution phase and thus is fixed before
α1−σ is essentially chosen.

We now fix r∗SIM and α∗σ for which |Δ(r∗SIM, α∗σ)| ≥ 23n and prove that the
outputs of Sh and SR̂ are statistically close for such r∗SIM and α∗σ. First, recall
that an extended view v′R is obtained by concatenating the other (previously not
received) input of the sender in the n calls to the ideal OT to the view vR. Since
there are 2n possible “other sender inputs” in the n ideal OT calls, it follows that
for any given receiver-view vR (which is fully determined by r∗SIM and α∗σ; recall
that σ, bσ are already fixed) there are at most 2n possible associated extended
views. (Again, this relies on the fact that the receiver-view is fixed before the
post-execution corruption phase.)

Now, since there are 2n possible extended views, we can partition the at least
23n consistent strings α1−σ ∈ Δ(r∗SIM, α∗σ) so that each partition contains the set
of strings α1−σ that yield the extended view v′R. Equivalently, we associate α1−σ
with v′R if SIM with r∗SIM and α∗σ outputs the extended view v′R when given
α1−σ in the post-execution corruption phase. We denote by Γ (v′R, r

∗
SIM, α∗σ) the

set of all strings α1−σ ∈ Δ(r∗SIM, α∗σ) which are associated with v′R, as described
above.

We argue that the probability of obtaining an extended view v′R for which
|Γ (v′R, r

∗
SIM, α∗σ)| < 2n is at most 2−n (i.e., an extended view for which the set

of associated strings α1−σ is small is obtained with probability at most 2−n).
We stress that the probability is over the choice of α1−σ (all other randomness
is fixed).

In order to see this, observe that the fact that |Δ(r∗SIM, α∗σ)| ≥ 23n implies
that there are at least 23n strings α1−σ that are associated with some extended
view v′R. Now, for every v′R for which |Γ (v′R, r

∗
SIM, α∗σ)| < 2n, we have that v′R

is generated by less than 2n of those 23n strings. Thus, such a v′R is obtained
with probability less than 2n/23n = 2−2n. By union bound over the 2n possible
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extended views v′R (which also bounds the number of extended views for which
|Γ (v′R, r

∗
SIM, α∗σ)| < 2n) we conclude that

Pr
[
|Γ (v′R, r

∗
SIM, α∗σ)| < 2n

]
< 2n · 1

22n
=

1

2n
(4)

where the probability is over the choice of α1−σ.
From Eq. (4), we know that when α1−σ is random, the probability that we

will obtain an extended view v′R such that Γ (v′R, r
∗
SIM, α∗σ) is small (with less

than 2n strings α1−σ associated with it) is less than 2−n. We therefore proceed
by conditioning further over views v′R for which |Γ (v′R, r

∗
SIM, α∗σ)| ≥ 2n. Specif-

ically, we argue that the distributions generated by SR̂ and Sh are statistically
close, conditioned on r∗SIM, α∗σ such that |Δ(r∗SIM, α∗σ)| ≥ 23n and conditioned
on the extended view being a specific v′

∗
R for which

∣∣Γ (v′
∗
R, r
∗
SIM, α∗σ)

∣∣ ≥ 2n.
First, observe that since α1−σ is chosen uniformly and independently of

r∗SIM, ασ, it is uniformly distributed in Γ (v′
∗
R, r
∗
SIM, α∗σ), when conditioning

on all of the above. (The conditioning over v′
∗
R is equivalent to saying that

α1−σ is uniform in Γ (v′
∗
R, r
∗
SIM, α∗σ) instead of being uniform in {0, 1}4n.) Sec-

ond, recall that Γ (v′
∗
R, r
∗
SIM, α∗σ) is a set of size at least 2n. Third, note that

Hr1−σ (x) = 〈r1−σ , x〉) is a universal hash function from {0, 1}4n to {0, 1}. Thus,
by the Leftover Hash Lemma (the version given in [12]), it holds that:

SD
(
(r1−σ, 〈r1−σ, α1−σ〉), (r1−σ , U1)

)
≤ 1

2(n−1)/2

where SD denotes statistical distance and U1 denotes the uniform distribution
over {0, 1} (as above, this statistical distance is computed when conditioned
over v′

∗
R, r
∗
SIM, α∗σ). Thus, these random variables are statistically close, con-

ditioned on v′∗R, r
∗
SIM, α∗σ as above. Noting that in the output of SR̂ we have

(r1−σ, z1−σ) = (r1−σ , U1), and in the output of Sh we have that (r1−σ , z1−σ) =
(r1−σ, 〈r1−σ , α1−σ〉), we conclude that{

SR̂(1
n, σ, bσ) | v′∗R, r∗SIM, α∗σ

}
s≡
{
Sh(1n, σ, b0, b1) | v′∗R, r∗SIM, α∗σ

}
where the conditioning is as described above. We reiterate that this holds since
the extended views and the pair (rσ, zσ) are generated in an identical way by
SR̂ and Sh, and the only difference is with respect to (r1−σ, z1−σ). Eq. (3)
follows from the fact that we condition here on events that occur with all but
negligible probability (and the events have identical probability with SR̂ and
Sh). Combining Eq. (2) with Eq. (3), we derive Eq. (1), thereby completing the
proof of Theorem 4.1.

Corollary – Lengthening String OT. Observe that in our proof above the
receiver always uses σ4n for input. Thus, it follows that the theorem holds even
if the receiver is interested in only obtaining the string of all of the “0 inputs”
or the string of all of the “1 inputs”. Stated differently, our proof holds also for
the problem of lengthening string OT; i.e., for the problem of obtaining a single
string OT for strings of length n+1 or more, given a single string OT for strings
of length n.
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5 OT Extensions Require Super-Logarithmic Calls

Theorem 5.1. Let f : N → N be a function such that f(n) ∈ O(log n), and
let n be the security parameter. Then, if there exists a protocol π that is an
OT-extension from f(n) to f(n) + 1 that is secure in the presence of malicious
adversaries, then there exists a protocol for the OT functionality that is secure
in the presence of malicious adversaries.

Proof. Intuitively, in an OT extension protocol using only O(log n) ideal OT
calls, it is possible for the receiver to guess the bits that it would receive as
output from these calls instead of actually running them. Since there are only
O(log n) calls, the probability that the receiver guesses correctly is 2−O(logn) =
1/poly(n). This idea can be used to construct an OT protocol that is weak in the
sense that full privacy is maintained, but correctness only holds with probability
1/2 + 1/poly(n). We stress that a naive attempt to implement the above idea
will not work since it is necessary to ensure that if the receiver’s guesses are
incorrect then it still outputs the correct output of the protocol with probability
almost 1/2. Otherwise, the “advantage” in obtaining the correct output when
the receiver guesses correctly can be canceled out by the “disadvantage” when
the receiver guesses incorrectly. We therefore use a similar technique as in the
proof regarding adaptive adversaries above. Specifically, we use the fact that an
extension from f(n) to f(n) + 1 implies an extension from f(n) to n, and then
use this to obliviously transfer n random bits. The actual oblivious transfer is
carried out by applying a universal hash function to the random strings and
using the result to mask the actual bits being transferred. This ensures that we
obtain correctness that is noticeable greater than 1/2 and so can be amplified.
However, in addition, we also have to claim that privacy is maintained. This is
not immediate since the receiver does not follow the specified protocol (rather,
it chooses the outputs from the ideal OT calls at random, and this may effect
the other messages that it sends). By requiring that the extension protocol be
secure for malicious adversaries, this ensures that the receiver cannot learn more
by behaving in this way. In addition, we show that a malicious sender can also
achieve the same affect by inputting a random bit (for both sender inputs) in each
ideal OT call. This implies that a malicious sender can also not learn anything
by the receiver behaving in this way. We now proceed to the formal proof.

Throughout the proof, we will construct protocols that are secure for semi-
honest adversaries only. This suffices since semi-honest OT implies malicious
OT [7,10]. Let f : N → N be a function such that f(n) ∈ O(logn) and
let π = 〈S,R〉 be a protocol such that on security parameter n and inputs
x0, x1 ∈ {0, 1}f(n)+1 and σ ∈ {0, 1}f(n)+1 securely computes the (f(n)+1)×OT
functionality in the OT f(n)-hybrid model (that is, making at most f(n) calls to
an ideal OT). We assume that π is secure in the presence of malicious adver-
saries. We assume that in all of these calls, R is the one to receive output (this
is without loss of generality since oblivious transfer is symmetric [19] and so
the roles can be reversed by adding additional messages in π). We show how
to construct a protocol for computing the OT functionality without any further
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assumptions other than the existence of an extension protocol π with the pa-
rameters in the theorem statement. This is achieved in two steps. First, we use
the OT-extension from f(n) = O(log n) to n to construct a protocol π̃ which is
simulatable and therefore fully secure, but whose error might be large. Then we
amplify the correctness of the protocol using multiple executions. As we show,
this can be done once the basic protocol is fully secure.

Step 1 – Constructing a Weak-OT. We begin by formally defining weak-
OT, which is an oblivious transfer for semi-honest adversaries that has weak
correctness but full simulation security.4 We then show how to construct a weak-
OT protocol π̃ = 〈S̃, R̃〉 from an OT-extension from f(n) to n. Note that by
Proposition 2.6, if there exists an extension protocol from f(n) to f(n)+1, then
there exists an extension protocol from f(n) to n.

Definition 5.2 (Weak-OT). A two-party protocol π = 〈S,R〉 is a weak-OT if
the following hold:

– Weak-correctness: There exists a polynomial p(·) such that for all b0, b1, σ ∈
{0, 1} and all large enough n’s, Pr[Output

π
R(1

n, b0, b1, σ) = bσ] ≥ 1
2 +

1
p(n) .

– Privacy: There exists PPT machines SR and SS such that

{SR(1n, σ, bσ)}b0,b1,σ∈{0,1},n∈N
c≡ {View

π
R(1

n, b0, b1, σ)}b0,b1,σ∈{0,1},n∈N
{SS(1n, b0, b1)}b0,b1,σ∈{0,1},n∈N

c≡ {View
π
S(1

n, b0, b1, σ)}b0,b1,σ∈{0,1},n∈N

Let α0, α1, c ∈ {0, 1}n be n-bit strings. Let α0 = α1
0, . . . , α

n
0 , α1 = α1

1, . . . , α
n
1 ,

and c = c1, . . . , cn. Recall that αc = α1
c1 , α

2
c2 , . . . , α

n
cn ; that is, the ith bit of αc

is either αi
0 or αi

1, depending on the value of ci.
Let π = 〈S,R〉 be an OT-extension protocol from f(n) = O(log n) to n. We

construct a weak OT protocol π̃ = 〈S̃, R̃〉 as follows:

Protocol 5.3 (A weak-OT with no ideal OT calls)

– Inputs: Sender S̃ has two bits b0, b1 ∈ {0, 1}, and receiver R̃ has σ ∈ {0, 1}.
– The protocol:

1. S̃ chooses two random strings α0, α1 ∈R {0, 1}n.
2. R̃ chooses a random string c ∈R {0, 1}n.
3. S̃ and R̃ simulate an execution of the extension protocol π, as follows:

(a) S̃ plays the role of the sender S with input α0, α1 ∈ {0, 1}n and R̃
plays the role of the receiver R with input c ∈ {0, 1}n.

(b) Whenever π instructs the parties to make an OT call, the parties
make no call and R̃ chooses a random bit as its output from the call.
We denote by β1, . . . , βf(n) the random bits chosen by R̃ as the OT
outputs.

(c) Let γ ∈ {0, 1}n denote the receiver-output of the simulation of π
received by R̃.

4 Note that we cannot cast this as a special case of Definition 2.2 since full correctness
is required there by stating that π computes f .
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4. R̃ chooses a random c′ ∈R {0, 1}n and sends (c0, c1) to S̃, where cσ = c
and c1−σ = c′.

5. S̃ chooses two random strings r0, r1 ∈R {0, 1}n, computes z0 = 〈r0, αc0〉⊕
b0 and z1 = 〈r1, αc1〉 ⊕ b1, and sends (r0, z0), (r1, z1) to R̃.

– Output: S̃ outputs nothing and R̃ outputs out = zσ ⊕ 〈rσ, γ〉.

We now prove that Protocol 5.3, also denoted π̃, is a weak-OT protocol. Intu-
itively, weak correctness holds because R̃ correctly guesses the outputs of the
OT calls with probability 1/2f(n) in which case γ = αc by the correctness of π
(except with negligible probability), and thus 〈rσ , γ〉 = 〈rσ, αc〉 and out = bσ.
In addition, when the guesses made by R̃ are not correct, it still outputs bσ
with probability 1/2. This holds because when r is random, the function 〈r, ·〉
is a universal hash function, and so 〈rσ , γ〉 is uniformly distributed and equals
〈rσ, αc〉 with probability 1/2. See [16] for the full proof.

We proceed to prove privacy, by constructing SS̃ and SR̃ as required. We start
by constructing the simulator SS̃ for the case that the sender is corrupted. To
prove this we use the fact that the original protocol π is secure in the presence of
malicious adversaries. Consider a malicious adversary A for π that controls the
sender and learns its input α0, α1 ∈ {0, 1}n. A follows the honest strategy for
S except that it chooses random bits β1, . . . , βn and then in the jth call to the
ideal OT functionality, it uses βj as both sender inputs to the OT call (ensuring
that R receives βj). We stress that in the rest of the execution, it behaves as if
it has used the correct inputs that were supposed to be sent to the OT calls.
Observe that the view of A in an execution of π is identically distributed to the
view of S̃ in the simulation of π run in Step 3 of Protocol 5.3. Let SIM be the
simulator that is guaranteed to exist for A by the security of π. We construct
the simulator SS̃ using SIM:

Construction 5.4 (SS̃). : Upon input b0, b1 ∈ {0, 1}, SS̃ works as follows:

1. SS̃ chooses two random strings α0, α1 ∈R {0, 1}n and runs SIM with
sender-inputs α0, α1. Let vS be the sender-view output by SIM at the end of
its execution (SIM also sends input to the trusted party, but this is ignored
by SS̃).

2. SS̃ chooses two random strings c0, c1 ∈R {0, 1}n as the message received

from R̃ in Step 4 of Protocol 5.3, and outputs vS̃ = (vS , c0, c1).

The fact that SS̃ is a good simulator follows immediately from the fact that
SIM generates a sender-view that is indistinguishable from what A would see
in a real execution of π. Since we have already observed that the view of S̃ in
Step 3 of Protocol 5.3 is identical to the view of A above in π, it follows that vS
is indistinguishable from S̃’s view in Step 3 of Protocol 5.3. Next observe that
a distinguisher D for SIM and π obtains the input/output used (α0, α1, c) and
thus can extend the view of the sender to include c0, c1 where cσ = c, and c is
the input of R into the execution of π with A (we can assume that D knows σ
as auxiliary input). Thus, the view of S̃ in Protocol 5.3 (resp., as generated by
simulator SS̃) can be perfectly constructed by D from the real view vS of S in π
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(resp., from a simulated view vS of S as generated by SIM). This implies that
if the output of SS̃ can be distinguished from the view of S̃ in a real execution
of Protocol 5.3, then the output of SIM can be distinguished from the view of
A in a real execution of π, in contradiction to the security of π with simulator
SIM. The formal reduction is straightforward.

We now proceed to construct a simulator SR̃ for the case that the receiver is
corrupted. As above, we consider a malicious adversary A for π as follows. A
receives the receiver’s input c ∈ {0, 1}n and follows the honest receiver strategy
except that in each of the calls to the ideal OT functionality, it chooses a random
bit βj and proceeds with βj as the output of the ideal OT . Let SIM be the
simulator that is guaranteed to exist for A by the security of π. We use it
construct the simulator SR̃ (recall that SIM works in the setting for malicious
adversaries and thus interacts with a trusted party and sends a receiver-input
which is not necessarily the prescribed receiver-input):

Construction 5.5 (SR̃). : Upon input σ, bσ ∈ {0, 1}, SR̃ works as follows:

1. SR̃ chooses three random strings α0, α1, c ∈R {0, 1}n.
2. SR̃ runs SIM with receiver input c.

3. When SIM sends some c∗ ∈ {0, 1}n to the trusted party, SR̃ hands αc∗ as
the receiver-output to SIM from the trusted party. Let vR be the output of
SIM.

4. SR̃ chooses random strings c′, r0, r1 ∈R {0, 1}n, and sets cσ = c and c1−σ =
c′. Then, SR̃ computes zσ = 〈rσ , αcσ〉 ⊕ bσ and sets z1−σ ∈R {0, 1} to be a
random bit.

5. SR̃ outputs a receiver view (c0, c1, vR, r0, z0, r1, z1). (Note that c0, c1 are ac-

tually part of R̃’s random tape, since they are chosen by R̃.)

Intuitively, the two differences between the simulated and real executions are
(a) the execution of π is simulated using SIM (which is indistinguishable by
assumption), and (b) z1−σ is generated randomly instead of being computed as
z1−σ = 〈r1−σ, αc1−σ 〉⊕ b1−σ. However, since c1−σ = c′ is chosen at random inde-
pendently of the execution, and since SIM learns only the bits in the sender’s
input that correspond to c∗, with high probability there is enough uncertainty
about 〈αc1−σ , r1−σ〉 and thus z1−σ is statistically close to a random bit. This is
formally proven in [16]. We conclude that Protocol 5.3 is a weak-OT protocol.

Step 2 – full-OT from weak-OT. The last step to transform weak OT to
full OT simply works by running multiple executions and taking the majority
result. Since the weak OT is fully secure, and it is only the correctness that is
weak, this preserves security and so achieves what is needed. This concludes the
proof.
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Abstract. In Eurocrypt 2010, Miccinacio initiated an investigation of
cryptographically sound, symbolic security analysis with respect to coin-
ductive adversarial knowledge, and showed that under an adversarially
passive model, certain security criteria may be given a computationally
sound symbolic characterization, without the assumption of key acyclic-
ity. Left open in his work was the fundamental question of “the viability
of extending the coinductive approach to prove computational soundness
results in the presence of active adversaries.” In this paper we make some
initial steps toward this goal with respect to an extension of a trace-
based security model (Micciancio and Warinschi, TCC 2004) including
asymmetric and symmetric encryption; in particular we prove that a
random computational trace can be soundly abstracted by a coinductive
symbolic trace with overwhelming probability, provided that both the un-
derlying encryption schemes provide IND-CCA2 security (plus ciphertext
integrity for the symmetric scheme), and that the diameter of the under-
lying coinductively-hidden subgraph is constant in every symbolic trace.
This result holds even if the protocol allows arbitrarily nested appli-
cations of symmetric/asymmetric encryption, unrestricted transmission
of symmetric keys, and adversaries who adaptively corrupt users, along
with other forms of active attack.

As part of our proof, we formulate a game-based definition of encryp-
tion security allowing adaptive corruptions of keys and certain forms of
adaptive key-dependent plaintext attack, along with other common forms
of CCA2 attack. We prove that (with assumptions similar to above) se-
curity under this game is implied by IND-CCA2 security. This also char-
acterizes a provably benign form of cyclic encryption implied by standard
security definitions, which may be of independent interest.

Keywords: Computational soundness, adaptive corruptions, coinduc-
tion, circular security, trace-based protocol security, active adversaries.

1 Introduction

Provable security, since its introduction in the early 1980s, has provided a rig-
orous foundation for the security analysis of cryptographic schemes.Typically,
proving a cryptographic construction meets a given security goal within the
provable security framework requires: (1) formally defining the security goal in
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terms of what comprises a violation of the goal and what is assumed about
the computational power of the adversary, and (2) giving a feasible method
which transforms any attack against the construction to an attack against one
of its underlying primitives [12,13]. This methodology provides strong security
assurances against resource-bounded attackers, which is a fairly realistic assump-
tion in real-world applications. However, doing computational security analysis,
even for small-sized protocols, can be a gruelingly tedious task, and normally
a small change in the protocol necessitates a new security proof. On the other
hand, formal (logic-based) methods [24,15] greatly simplify security analysis us-
ing idealized abstractions of cryptographic primitives and limiting adversarial
computation, even allowing for automated verification. While formal methods
may help designers identify subtle flaws in their schemes, they do not necessar-
ily provide guarantees of computational security. At the very least, a formally
verified scheme may be computationally insecure if realized under “insufficiently
strong” primitives (e.g. using malleable encryption in the case of active attacks).
Motivated by the mismatch between these two approaches, a large body of work,
starting from [1], attempts to give computational justifications for formal secu-
rity proofs, in the form of computational soundness theorems. Generally speak-
ing, a formal system for security proofs is computationally sound if whenever a
scheme is proved secure in the system, it is guaranteed to also be secure in an
appropriate computational security framework.

Background. Standard notions of secure encryption [26,38] ensure privacy of
plaintexts chosen independently from the underlying secret key(s). It has long
been known that a key encrypted under itself may no longer remain secret, and
recent results [20,2] show that indeed for all k ≥ 1, k-circular security is not
implied by standard security. Moreover, currently known techniques for stan-
dard security fall short when trying to prove non-trivial security statements
against more adaptive adversaries. As an example, assume in the standard
multiple-key-based indistinguishability game [9] over keys ck1, . . . , ckn, the ad-
versary is additionally allowed to obtain the (nested) encryption of any cki under
{ck1, . . . , cki−1}, giving rise to an acyclic encryption ordering between keys. One
can use a standard hybrid argument to show that security in this setting is no
stronger than standard security. However, this simple hybrid argument fails in
the case that the (acyclic) encryption ordering is a priori unknown and formed
adaptively by the adversary. (The naive approach of guessing the underlying or-
dering also trivially yields an exponential reduction factor.) In contrast, conven-
tional Dolev-Yao style security analysis models adversarial knowledge inductively
in an all-or-nothing fashion (i.e. the adversary either knows a secret piece of data,
or it does not have any information about it). As a result, adversarial power is
limited, essentially treating uniformly all symbolic ciphertexts whose encryption
keys are underivable under so-called Dolev-Yao deduction rules. Consequently,
Dolev-Yao models typically assume no difference between two symbolic encryp-
tions {k}k and {k1}k. Also, the “adaptive problem” described above seems to not
be a challenge within these models. For these reasons, most existing soundness
results are restricted in their assumptions, which include excluding key cycles
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altogether in the case of passive adversaries [1,28], posing certain encryption
orderings in the case of passive-but-adaptive adversaries [33], and disallowing
symmetric encryption in the case of active adversaries [34,6,19].

As a resolution to the problems created by key cycles, Micciancio [32] proposes
a coinductive method for modeling symbolic security, and obtains computational
soundness in the setting of message indistinguishability for passive adversaries,
while allowing key cycles and assuming only semantic security for the underlying
encryption function. Coinductive symbolic security corresponds to a greatest-
fixedpoint -based definition of adversarial knowledge, as opposed to the least-
fixedpoint -based definition adopted by conventional inductive methods. From a
cryptographic perspective, [32] implicitly characterizes a provably benign form of
circular encryption, in particular the equivalence of standard security to secure
encryption under a variant of the multiple-key-based game described above in
which the adversary may obtain the (single or nested) encryption of any cki under
arbitrary keys, provided at least one of them is in {ck1, . . . , cki−1}, resulting in
a (possibly) cyclic encryption ordering. To obtain soundness, [32] shows that for
an a priori known sequence of exchanged symbolic messages (which is the case
in the passive setting), one may order all coinductively irrecoverable keys from
this sequence as k1, . . . , km, such that each occurrence of ki is encrypted under
at least one of {k1, . . . , ki−1}.
Our Results. In this paper we investigate the question left open in [32]; namely,
whether a coinductive approach provides similar soundness guarantees when ap-
plied in the setting of active adversaries. We consider a symbolic/computational
trace-based execution model [34], including asymmetric and symmetric encryp-
tion. In contrast to previous work, we allow symmetric keys to be freely included
in protocol messages, symmetric and asymmetric encryptions to be arbitrarily
nested, and adversaries to adaptively corrupt users, along with other forms of
active attack. We first pose the following central question: to what extent can
any encryption scheme with standard security withstand stronger types of attack
including adaptive corruptions of keys and key-dependent/circular encryption?
To formalize this, consider the following game over symmetric/asymmetric en-
cryption schemes Es = (Gs, Es, Ds), Ea = (Ga, Ea, Da), {cki}1≤i≤n ← Gs(1η),
and {(pki, ski)}1≤i≤n ← Ga(1η), in which the adversary is allowed to adap-
tively corrupt keys (symmetric and asymmetric), obtain decryptions of per-
missible ciphertexts, and issue key-dependent encryption queries of the form
Es(f(ck1, . . . , ckn), ckj) or Ea(f(ck1, . . . , ckn), pkj), where f is any arbitrary
composition of constant, pairing, projection (Pi(ck1, . . . , ckn) = cki), and en-
cryption (Ea

pki
(·) , Es

cki
(·)) functions. We remark asymmetric decryption keys

may not be used to form key-dependent messages, reflecting our assumption that
such keys are not sent as plaintexts in protocol messages1. This function family
allows one to describe encryption queries symbolically (e.g. Es(Es(ck1, ck2), ck1)
is denoted {{k1}k2}k1), and hence symbolically keep track of adversarial knowl-
edge. Now we ask: if Ea and Es provide IND-CCA2 security only, can we prove,

1 Relaxing this requirement does not add to the technical difficulty of the proofs. We
assumed this requirement as it seems to be the case for most protocols in practice.
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at the end of the game, certain keys still maintain computational secrecy, in
the sense they can securely be used in an encryption-based indistinguishability
game2? Several negative results [20,2] show certain key cycles may compromise
the secrecy of their component keys, but on the positive side this problem (in
a generic sense involving circular encryption) has not been considered much.
Motivating the discussion, the results of [32] in the context of the above game
(but where only symmetric encryption is used,) imply if all queries are made at
once (i.e. nonadaptively), then any cki, whose symbolic key ki remains coinduc-
tively irrecoverable (irrecoverable for short), even if used in key cycles, maintains
computational secrecy. Along these lines, we call (Ea, Es) CI secure if after the
adaptive execution of the above game all keys whose symbolic keys remain ir-
recoverable maintain computational secrecy. We also consider ACI security, an
extension of CI security which adds ciphertext integrity and obtain the following

Theorem (informal). If (Ea, Es) is ACI secure, it provides soundness for coin-
ductive traces.

Next we ask if CI security may be based on IND-CCA2 security. Note that
the CI attack model is ostensibly much stronger than the CCA2 one, allowing
a CI adversary to adaptively corrupt keys and obtain circularly-encrypted ci-
phertexts. A naive reduction attempt would be to a priori guess all keys which
remain irrecoverable during the game, together with their underlying encryption
ordering, and then use a hybrid argument in the style of [32] to do the reduction.
Such an idea clearly yields an infeasible reduction factor. Instead, we prove that
if the diameter of the coinductively-hidden subgraph of the resulting key graph is
constant, then CI security is implied by IND-CCA2 security. (It will soon be in-
formally described why our reduction is dependent on this parameter.) Here, the
key graph is the (random) multigraph Gk which has a node for every key in the
game, and an edge vi → vj if vi’s associated key encrypts vj ’s in an encryption
query (e.g. the encryption query {{k1}k2}k1

creates one self-loop and one normal
edge,) and by “coinductively hidden subgraph” we mean the induced subgraph
of Gk on irrecoverable nodes (nodes whose associated keys remain irrecoverable).
We remark that as long as the above condition holds, the adversary may corrupt
any number of keys, and create arbitrary key cycles and arbitrarily-long paths
in the whole key graph.

Theorem (informal). If Ea and Es are both IND-CCA2 secure, then for every
adversary A where the diameter of the coinductively hidden subgraph of Gk(A)
is constant (i.e. independent of the security parameter), A has a negligible ad-
vantage in the CI game for (Ea, Es). Moreover, if Es is also INT-CTXT secure,
A has a negligible advantage in the ACI game.

The starting point of our proof is [36]’s positive results on security against
adaptive corruptions (in an authenticated channel setting), showing that security

2 Our definition of computational secrecy is close to the idea of key usability, de-
veloped in [23], for defining alternate, composition-amenable security criteria for
key-exchange protocols.
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in a setting over Es and {cki}1≤i≤n ← Gs(1η), in which A may adaptively cor-
rupt keys, and obtain single encryptions Es(cki, ckj), for 1 ≤ i, j ≤ n, subject to
key acyclicity, is obtained via a reduction to the semantic security of Es, with a
factor of O(nl) where l is the diameter of the resulting key graph. Although the
results of [36] seem to extend, by its mere developed techniques, to an authenti-
cated setting with nested encryptions, they crucially rely on acyclicity and break
down if this latter is relaxed. Allowing cyclic nested encryptions, irrecoverable
nodes may have self-loops or oppositely-directed edges between themselves (en-
cryption queries {{k1}k2}k3 and {k2}k1 create such edges, while k1, k2 remain
irrecoverable), and we still need to prove their computational secrecy. Central to
our proof is a new notion of coinductive continuability, which for every irrecov-
erable node characterizes a special set of paths ending in that node, satisfying a
property which enables a path-based reduction proof in the style of [36]. (Our re-
duction is based on guessing random coinductiely continuable paths with certain
properties, making it depend on the diameter.) Also, allowing both nested en-
cryptions and decryption queries creates a new complication; namely, to simulate
a CI adversary ACI by a CCA2 adversary Acca, nested encryptions may make
an Acca’s challenge ciphertext a “legitimate” ciphertext for ACI (e.g., when the
ciphertext corresponding to {k1}k2 in {{k1}k2}k3 is created under Acca’s left-or-
right oracle and k3 remains irrecoverable), and if ACI makes such a decryption
query, our simulation fails. A large part of our proof, thus, involves showing ACI

may produce such ciphertexts only with negligible probability. Such a compli-
cation does not arise if one only deals with single encryptions, and in fact, the
results of [36] immediately extend if decryption queries are also allowed.

Applications. Our reduction result implies for a protocol Π (which may contain
symmetric keys and nonces as atomic messages) and a trace-expressible security
property P (here, loosely speaking, by a trace we mean a sequence of states cre-
ated during an execution of a protocol as a result of adversarial/honest-parties’
actions. Formal definitions are given in Section 3), if the following two sym-
bolic assertions hold, then the (CCA2, CCA2+CTXT)-based implementation
of Π provably achieves P (in an insecure channel setting) with strong security
guarantees against adaptive corruptions: (a) No symbolic coinductive adversary
may create a trace containing an arbitrarily-long encryption chain (in the sense
described above), and (b) Π is coinductively secure; namely, no coinductive sym-
bolic adversary may produce a trace not satisfying the underlying symbolic prop-
erty. We observe that all protocols in the Clark-Jacob library [21], in which the
only primitives used are asymmetric/symmetric encryption, satisfy our sound-
ness restriction (item (a) above), making it applicable to them. A number of
these protocols are asymmetric encryption-based, and analyzable under previ-
ous soundness theorems (e.g. [34,6]). Using our techniques, we show that [27] the
Wide-Mouthed Frog authentication protocol, which is not analyzable under the
cryptographic library of [4] due to the classic commitment problem prevalent in
simulation-based approaches, satisfies our soundness restriction. This advocates
for the use of coinduction as a strong tool in yielding provably-sound security
proofs, while circumventing issues involved with using induction-based methods.
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Why Not KDM Security? It may be asked why we bother to investigate
soundness of coinductive methods, when there are constructions in the stan-
dard model for secure encryption under key-dependent messaging [14,16]. We
note that security against adaptive corruptions is a necessary requirement for
any encryption scheme used in a protocol which is run in an environment with
adversarially adaptive corruptions. In such situations, once a key is corrupted,
the security of the protocol will depend on the preservation of secrecy for keys
which are not trivially corrupted. Even in the idealized static corruption model,
a key may dynamically be revealed by the exploitation of potential weaknesses
of a protocol (e.g., consider a situation where the adversary gets to alter a com-
municated message by replacing an “honest” key with his own key, making an
honest party then encrypt a secret key under the adversarial key.) To the best of
our knowledge, there are no provable constructions of KDM-secure encryption
in the standard model which also provide security against adaptive corruptions.
Backes et al. [5] consider a limited case in which security is defined only in
a left-or-right indistinguishability sense, not addressing the above problem. In
subsequent work, [3] considers the problem in its full generality as described
above, but their construction is in the random-oracle model. Moreover, they do
not consider the question of whether generic constructions from KDM-secure
encryption schemes exist (in the standard model) which also provide security
against adaptive corruptions.

Related Work. Obtaining sound abstract security proofs for protocols involving
symmetric encryption has also been considered following the ideal/real simula-
tion paradigms of [17,37]. [4] shows that secure realization of ideal symmetric
encryption (in the sense of reactive simulatability) is possible in their crypto-
graphic library [6] if the commitment problem does not occur (i.e. any honest
party’s key, after it is used for encryption, never becomes “known” to the ad-
versary), and the used-order property is satisfied. (i.e. Deployed keys admit an
a priori encryption ordering.) The authors of [30], by extending the framework
of [19] to allow symmetric encryption, show if a key-exchange protocol satisfies
their symbolic criteria and if the above conditions hold, the protocol securely
realizes a key-exchange functionality in the sense of universal composability. We
comment the commitment problem may intrinsically occur as a direct result of
security formalizations; adaptive corruptions, for instance, trivially enable this
possibility. Also, the requirement that “a session-key loss in a key-exchange pro-
tocol should not affect the secrecy of other session keys” is formalized by allowing
the adversary to adaptively learn session keys, leading, possibly, to the commit-
ment problem. Thus the aforementioned frameworks do not consider the above
two attack scenarios. We remark the commitment problem was known long be-
fore in the setting of adaptively-secure multiparty computation, with initial solu-
tions given in [18]. The results of [22] are aimed at indistinguishability-based
security properties (e.g., secrecy requirements for key-exchange protocols), by
showing that observational equivalence between two processes implies computa-
tional indistinguishability under standard cryptographic assumptions. Although
[22] allows symmetric encryption, it imposes the same restrictions as [4,30].
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A very different approach which in principle supports reasoning about sit-
uations which include key-cyclic encryption and adaptive corruption for both
symmetric and asymmetric encryption as well as other primitives is the use of
what might be called general-purpose security logics. Here we include probabilis-
tic process calculi [31,35], logics which axiomatize computational indistinguisha-
bility [29,8] and first-order logics augmented with axioms characterizing specific
security properties [7]. The tradeoff involved in taking a more generic approach
is the loss of structure in proofs, potentially undermining some of the benefits
of the formal approach.

Basic Notation: For a review of the standard notions of encryption security,
we refer to [10,11]. If D is a probability distribution, then x← D denotes choos-
ing an element according to D, and if S is a set, x ← S denotes choosing an
element uniformly at random from S. For a probability distribution D, sup[D]
denotes the support set of D, and we write x ∈ D to mean x ∈ sup [D]. We call
a function negligible if it grows more slowly than the inverse of any polynomial
function. For ease of notation, we use negl(·) to refer to any negligible function.

2 Preliminaries

A Formal Language for Cryptographic Expressions. Expressions are built
from four infinite sets of basic symbols – identifiers, ID, public-key symbols,
Kpub, private-key symbols Kpriv, and nonces, X – using encryption, {�}◦, and
concatenation, (·, ·), operators for building compound messages. We further parti-
tion Kpriv into asymmetric private keys, Kprivasym, and symmetric private keys
Kprivsym. We fix a bijective key-inverse operation (.)−1 : Kpub ∪ Kprivsym →
Kpriv, which induces the identity function on subdomain Kprivsym.

Whenever it is essential to distinguish between the adversary’s and honest
parties’ basic symbols, we add a subscript A or H to basic symbols, and for
every set S defined above, we further define S = SH ∪SA (e.g. Kpriv

H and Kpriv
A ).

Moreover, whenever it is necessary to distinguish between symmetric and asym-
metric private-key symbols, we add a superscript sym to symmetric ones. (e.g.
we have (ksym

1 )−1 = ksym
1 .) The set of formal expressions, Exp, is:

Exp ::= Plain | Cipher | (Exp, Exp)

Plain ::= ID | X | Kpub | Kprivsym

Cipher ::= {Plain}k∈Kpub∪Kprivsym | {Cipher}k∈Kpub∪Kprivsym

Coniductive Modeling of Adversarial Knowledge. We take a coinduc-
tive approach to modeling adversarial attacks. To model coinductive adversar-
ial knowledge [32], we define a key-recovery function, F , which specifies given
e ∈ Exp and T ⊆ Kpriv

H , what keys can be deduced by “single-round” applica-
tions of Dolev-Yao rules. Defined naturally, Fs(T ) = s∩Kpriv

H for a basic symbol
s, F(e1,e2)(T ) = Fe1(T )∪Fe2(T ), and F{e}k

(T ) = Fe(T ) if k−1 ∈ T ∪Kpriv
A and

F{e}k
(T ) = ∅, otherwise. T is a fixedpoint of Fe if Fe(T ) = T , and is the greatest

(resp. least) fixedpoint if T is the greatest (resp. least) solution of Fe(X) = X
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(according to ⊆ ordering). Now T is coinductively (resp. inductively) defined by
Fe if T is the greatest (resp. least) fixedpoint of Fe. It is easy to see that Fe is
a monotone function (i.e., S1 ⊆ S2 ⇒ Fe(S1) ⊆ Fe(S2).

The Tarski-Knaster Theorem implies for every monotone function F : ℘(D)→
℘(D), where D is some set and ℘(D) is its powerset, the least fixedpoint, fix(F ),
and greatest fixedpoint, FIX(F ), of F exist and are obtained as follows

fix(F ) =
⋂

S:F (S)⊆S

S (1) FIX(F ) =
⋃

S:S⊆F (S)

S (2)

Note that if T ⊆ Fe(T ), then cl(T )

= ∪i≥1F i

e(T ) is a fixedpoint, for which
T ⊆ cl(T ), where F i

e(T ) denotes i successive applications of Fe on T . The
latter follows from monotonicity of Fe, and the former follows observing that
Fk

e (T ) = Fk+1
e (T ) for sufficiently large k’s. (This is because the number of keys

in e is finite.) Thus the following equivalent formulations follow:

fix(Fe) =
⋂

Fe(S)=S

S =
⋃
i≥1

F i
e(∅) (3)

FIX(Fe) =
⋃

S=Fe(S)

S =
⋂
i≥1

F i
e(K

priv
H )

(4)

We show (4); the proof for (3) follows by a dual argument. The first equal-
ity for FIX(Fe) follows from (2) and the argument presented above. The sec-
ond equality follows from the following three observations: (a)

⋂
i≥1F i

e(K
priv
H )

is a fixedpoint of Fe, (b) if T is a fixedpoint of Fe, then T =
⋂

i≥1F i
e(T ),

and (c) by monotonicity,
⋂

i≥1F i
e(T ) ⊆

⋂
i≥1F i

e(K
priv
H ). Now the set of coinduc-

tively recoverable keys of e is the set coinductively defined by Fe. For example
for e = k−1, {{ksym

1 }ksym
2

, {ksym
2 }ksym

1
}

k
, its coinductively recoverable keys are

{k−1, ksym
1 , ksym

2 }. (As a convention, we omit parentheses in expressions and
write e1, e2 for (e1, e2).) See [32] for more examples.

We define the coinductive closure set of e ∈ Exp, denoted closurec(e), to
be the smallest set satisfying: (i) closurec(e) contains e, FIX(Fe), ID, Kpub,
and all the adversary’s basic symbols, (ii) if (e1, e2) ∈ closurec(e) then e1, e2 ∈
closurec(e), (iii) if e′ and e′′ are both in closurec(e), so is (e′, e′′), (iv) if {m}k ∈
closurec(e) and k−1 ∈ closurec(e) then m ∈ closurec(e), and (v) if m ∈
closurec(e) and k ∈ closurec(e) then {m}k ∈ closurec(e). Although the above
definition is a hybrid of inductive and coinductive definitions, an equivalent,
(fully) coinductive definition is also possible; however, we adopt the above one as
it is more natural. Now e1 is coinductively recoverable from e if e1 ∈ closurec(e).
Note, if e1 ∈ closurec(e) but ksym /∈ closurec(e), Rule (v) does not allow us to
deduce {e1}ksym ∈ closurec(e). This models the idealized symbolic assumption
that if the adversary does not know an honest party’s symmetric key, he cannot
produce a ciphertext which decrypts to a meaningful plaintext under that key.
To support this assumption in our computational model, we will assume the
symmetric encryption scheme provides ciphertext integrity.

We say e′ is a subexp of (or occurs in) e, denoted e′ ! e, if e = e′, or e = (e1, e2)
and e′ ! e1 or e′ ! e2, or e = {e1}k and e′ ! e1. We say k1 encrypts k−1

2 in
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e, denoted k1 →e k−1
2 , if for some {e1}k1 which occurs in e, k−1

2 ! e1. An ex-
pression is key cyclic if it contains a key cycle, that is a sequence k0, k1, . . . ki−1

such that kj → k−1
(j+1 mod i) for all j ≥ 0, and is called key acyclic if it is not

key cyclic. It is known the inductive and coinductive definitions coincide for key-
acyclic expressions[32]. The converse of this, however, does not hold true; it is
possible some keys occur in certain key cycles but remain coinductively irrecov-
erable (e.g. consider {{k−1

1 }k1}k2). In fact, we will prove it is exactly such keys
that remain “secure” under concrete implementations.

Computational Interpretation of Cryptographic Expressions. Under
a pair of symmetric/asymmetric schemes Ep = (Esym, Easy) with parameters
(ηsym, ηasy), an invertible pairing function, and a mapping τ(ηsym, ηasy, ◦), which
gives a concrete value to every basic symbol, every e ∈ Exp induces a natural
probability distribution, denoted �e�

Ep
τ , which we call the computational image

of e with respect to Ep and τ . If E ∈ �e�
Ep
τ and e1 ! e, given τ , one may define

the underlying value of e1 in E in a natural way.

3 Symbolic and Computational Trace-Based Protocol
Security

We will now introduce a protocol specification language and consider an exten-
sion of the model given in [34] for analyzing security protocols in the presence of
active adversaries. For simplicity, we consider two-party protocols, and assume
that each protocol runs in a constant number of rounds, and admits a symbolic
specification. Under these assumptions, a protocol can be described as a se-
quence Π = (M I

1 , MR
1 , M I

2 , MR
2 , . . . M I

r , MR
r ) of messages being sent alternately

between two parties: initiator and responder. (Here having the responder send
the last message is arbitrary.) We assume that each party has an associated long-
lived public key which the other party may use to encrypt messages, and whose
matching private key is never sent as a plaintext. The parties, however, may gen-
erate fresh symmetric keys, send them (encrypted) to each other, and later on
use exchanged keys to encrypt future messages. Messages that we use to specify
protocols are built upon four disjoint sets Ids = {I, R}, nonces = {X1, X2, . . . },
pubkeys = {KI , KR}, and symkeys = {Ksym

1 , Ksym
2 , . . . }, using encryption and

concatenation for building compound messages, where KI and KR denote the
parties’ respective public keys. We further require protocols be computationally
executable; in particular, a party should be able to fully decrypt (all encrypted
parts of) a message she receives. (Our results seem to easily extend by relax-
ing this restriction, allowing, e.g., ciphertext forwarding, which allows a party
to forward a message without decrypting it.) To summarize our assumptions,
we call Π valid if: (1) for all 1 ≤ i ≤ r and x ∈ {I, R}; K−1

I and K−1
R do not

occur in Mx
i , and (2) for all 1 ≤ i ≤ r, x ∈ {I, R}, and y = {I, R} − {x}; if Mx

i

has a subexp {M}K, then K is inductively recoverable from (Ky, M
x
1 , . . . , Mx

i ).
(We will use a coinductive approach for modeling adversarial attacks, and this
condition is solely meant to specify our class of protocols. In particular, since we
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require parties be able to fully decrypt their received messages, and their roles
be computationally executable, such a condition seems necessary.)

So far we have only described the “syntax” of protocols; this should not be
confused with the formal execution semantics to be presented below. Treating
Π as a tuple of messages, we denote its ith message by Πi. We denote the set
of protocol users (participants) by U = {u1, u2, ..., un}, where any two of whom
may initiate an instance of the protocol together, in a manner controlled by an
adversary. The adversary is not himself a protocol user, but may dynamically
subvert users during the execution. We model adversarial power as an oracle
with which he is adaptively interacting, by making the following types of query:

– corrupt(i): Corrupts user ui. In response, the long-lived secret key of ui (and
all other ui’s internal information) is given to the adversary.

– new-session(i, j): Causes ui and uj to start a new session, with ui as the
initiator. The oracle assigns a unique number, sn, to their session and gives
sn to the adversary plus the first message that ui sends to uj in this session.

– send(sn, m1, I): Causes the oracle to send message m1 to the initiator of
session sn and give m2, the message that the user produces in response,
to the adversary. Here m2 may be a valid message, an error message ⊥
(indicating m1 was not of the right format), or a flag message ∗ indicating
that the user has received her last message, finishing her session.

– send(sn, m1, R): Similar to above, but m1 is sent to the responder of sn.

We now give formal and computational semantics for protocols. In the formal
setting, we denote the long-lived public key of ui by kui , and for each session
sn that ui is a user of, we denote ui’s generated symmetric keys and nonces in
sn, respectively, by Ksym

i,sn = {ksym
i,sn,j | j ∈ N} ⊆ Kprivsym

H , Xi,sn = {xi,sn,j | j ∈
N} ⊆ XH . The adversary may use his own basic symbols to build new messages;
we denote the adversary’s symmetric keys and nonces, respectively, by Ksym

A =
{ksym

A,j | j ∈ N} ⊆ Kprivsym
A , XA = {xA,j | j ∈ N} ⊆ XA. We let Expbasic be the

union of all XA,Ksym
A , Ksym

i,sn ’s, Xi,sn’s.
The adversary initially knows only his own basic symbols and parties’ IDs and

public keys. If he corrupts ui, he receives k−1
ui

as well as Ksym
i,sn ∪Xi,sn, for every

sn that ui has engaged in. A protocol state is characterized by the following
components:

f : {I, R} ×BS(Π)× SN → Expbasic ∪ {⊥} l : {I, R} × SN → Πi ∪ {
√}

h : {I, R} × SN → U corr-users ⊆ {u1, . . . , un}

Here SN denotes the set of all session numbers, and, recall that, U is the set of all
protocol users. Function f represents the symbolic values that the initiator and
responder of each session of the protocol give to basic symbols in that session,
and ⊥ means that the party does not yet know the value of the corresponding
basic message. Function l denotes the index of the next message in the protocol
that the initiator and responder of each session expect to receive, and

√
indicates

that the party has finished her respective session. Finally function h indicates
what protocol users take the roles of “initiator” and “responder” in each session.
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We denote the initial state of the system by FS0, where corr-users = ∅, and
l, f, h map all their inputs to null values. An execution of a formal adversary,
AF , can be described as a sequence of queries E(AF ) = (q1, q2, . . . ), with cor-
responding replies (r1, r2, . . . ). We then call AF coinductively legitimate if m ∈
closurec(r1, r2, . . . , ri−1) for all i such that qi = send(sn, m, {I, R}). Under AF ’s
execution, we denote the induced formal trace by FT (AF ) = (FS0, FS1 . . . ),
where state FSi is obtained from FSi−1 as a result of query qi.

Under the computational execution, elements of BS(Π) ⊆ Ids ∪ nonces ∪
pubkeys ∪ symkeys are replaced with random bitstrings, sampled w.r.t. a pair
Ep = (Easy, Esym), with w.l.o.g. a shared security parameter 1η, and the coins
tossed by both protocol users and the adversary during the protocol execution.
Each (initially honest) ui, before engaging in the protocol execution, samples
her long-lived key pair, (pki, ski) ← Genasy(η), and for each session sn that ui

participates in, ui uses a (polynomially-long) uniformly-selected random string
Ri,sn to sample her nonces and symmetric keys in that session, where symmetric
keys are sampled according to Gensym, and nonces chosen uniformly at random
from a fixed nonce space, NS = {0, 1}poly(η). The adversary, using random string
RA, may choose his nonces and symmetric keys (to, e.g., replace those of cor-
rupted parties, inject in messages on the network, etc.) in any arbitrary efficient
manner; he may also initially corrupt a party and choose her public/private key
pair in any arbitrary manner (not necessarily following Genasy).

Letting Cη = NS∪sup [Gensym(η)]∪sup
[
Genasy1(η)

]
, a computational state

of the protocol is given by (F, L, H, Corr-Users), where L, H, Corr-Users are
defined analogously to their formal counterparts, and F is also defined similarly
to f by replacing Expb with Cη. The adversary interacts with a computational or-
acle by issuing the four types of queries explained above, where the input/output
of queries are probabilistic, depending on RA and RH . (Here RH is the concate-
nation of all random coins used by honest parties.) Among oracle queries, we
only explain the effect of a corruption query (the others are fairly straightfor-
ward): if the adversary corrupts ui, he is given (pki, ski), and for every session
sn in which ui takes the role X ∈ {I, R}, the adversary is given F (X, bs, sn), for
every bs ∈ BS(Π). Finally, under fixed RH and RA, the induced computational
trace is deterministic and denoted by CT (A,RA,RH , ΠEp).

Let FT = 〈(f1, l1, h1, corr-users1), (f2, h2, l2, corr-users2), . . . 〉 be a formal
trace and let τ : Expbasic → Cη be a concrete mapping. We say a concrete trace

CT = 〈(F1, L1, H1, Corr-Users1), (F2, L2, H2, Corr-Users2), . . . 〉
is an encoding of FT under τ , written FT ≺τ CT , if li = Li, hi = Hi,
Corr-Users = corr-users and Fi = τfi, for all i ≥ 1. We say CT is the compu-
tational image of FT , written FT ≺ CT , if there exists τ such that FT ≺τ CT .

We are now ready give the computational soundness definition.

Definition 1. A pair Ep = (Easy, Esym) provides a computationally-sound in-
terpretation of symbolic encryption with respect to coinductive Dolev-Yao traces
(shortly, provides soundness) if for all valid protocols Π, adversaries Ac, we have

Pr
RA,RH

[∃{coind-legit AF } : FT (AF ) ≺ CT (Ac,RA,RH , ΠEp)] ≥ 1− negl(η)
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4 Computational Realization of Coinductive Methods

We describe a joint notion of security for asymmetric/symmetric encryption
which provides soundness for coinductive symbolic traces. We then explore how
this notion may be achieved under standard complexity-theoretic assumptions.

We begin with some motivation. Consider a single run of a protocol against a
passive adversary, in which the whole sequence of exchanged messages is known
a priori. We wish to formalize what it means for a piece of data (nonce or sym-
metric key) to remain secure in both the formal and computational settings.
Under the formal approach, one would typically say the secrecy of a piece of
data is retained if it cannot be deduced by applying Dolev-Yao rules. For a
nonce X , for instance, if X is not formally deducible, it means all occurrences of
X are encrypted under keys which cannot be obtained by a Dolev-Yao adversary.
Thus, under the concrete instantiation, after the adversary has received the com-
putational representations of the exchanged messages, the random nonce value
underlying X should still be as computationally random as a freshly-generated
random nonce, provided the encryption scheme is sufficiently strong. However,
for the case of symmetric keys the situation is quite different: even if a symmetric
key is not Dolev-Yao-style deducible, the key may leak significant information
when it comes to a concrete implementation. For instance, a symmetric-key value
may lose its original randomness if used for encryption. (i.e. The adversary will
be able to tell it apart from a fixed key, causing it to not be as “random” as a
freshly generated key.) Thus the definition of secrecy for symmetric keys in the
computational model turns out to be more delicate.

Our ultimate goal is to establish a close correspondence between coinduc-
tive Dolev-Yao adversaries and computational adversaries, by showing that a
computational adversary essentially cannot do anything (in terms of mounting
successful attacks) which cannot already be performed by a simple Dolev-Yao ad-
versary. We capture the essence of active-attack scenario within a cryptographic
game, played between an adversary and a challenger, in which the adversary is
faced with a number of unknown keys (both asymmetric and symmetric) and
nonces, generated by the challenger, and his goal is to infer “non-trivial” in-
formation from the challenger’s secret data, by exploiting active attacks such
as corrupting arbitrary keys of the challenger, getting her to encrypt messages
which depend on her own secret data, and getting her to decrypt “permissible”
ciphertexts. Our goal is to show that, under sufficiently strong security require-
ments, the computational adversary cannot learn non-trivial information from
a piece of data (nonce or private key) that cannot already be obtained by a
coinductive Dolev-Yao adversary. The key point in our security definition is to
formalize the idea of “computational secrecy” for private keys. As it is probably
clear from the above discussion, “requiring the adversary not be able to distin-
guish the private key (used in the game) from a freshly generated key” would
not work. We formalize it in the following standard way: a private key retains
its computational secrecy if the adversary is unable to distinguish between the
encryptions of real/random messages under that key. We will be able to show
that security in our game provides computational soundness.
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Our security notion is formalized via the following game which we call the
coinductive, key-dependent indistinguishability game, or the CI game for short.
Below, for S = {(s1

1, s
2
1), . . . (s

1
n, s2

n)}, we define Si 
= {si

1, . . . , s
i
n} for i ∈ {1, 2}.

4.1 Coinductive, Key-Dependent Indistinguishability (CI) Game

Assume Easy = (Genasy, Encasy, Decasy) and Esym = (Gensym, Encsym, Decsym)
are asymmetric/symmetric encryption schemes whose joint security is to be
defined, w.l.o.g., w.r.t. the shared security parameter 1η. The game is played be-
tween an adversary,A, and a challenger, B, and is parameterized over a publicly-
known, poly-bounded integer function n(η) (we write n for n(η)). Suppose τB(·)
and τA(·) are (dynamically growing) mappings which give bitstring values to,
respectively, the basic symbols of B and A (we will see shortly what those sym-
bols are), and let τ be a mapping defined to be τB on the domain of B’s symbols
and τA on A’s. Here τA is publicly known, while access to τB and τ is restricted
to B. The game proceeds in three phases: setup, interaction, and guessing.

In the setup phase, B first picks b ← {0, 1}, generates {(pki, ski)}1≤i≤n ←
Genasy(η), symmetric keys {cki}1≤i≤n ← Gensym(η), and nonces {nci}1≤i≤n ←
{0, 1}q(η) (for some poly q), makes {pki}1≤i≤n public, and keeps the rest se-
cret. We introduce {(ki, k

−1
i )}1≤i≤n ∈ Kpub

H × Kprivasym
H , and {ksym

i }1≤i≤n ∈
Kprivsym

H , and {xi}1≤i≤n ∈ XH , and assign τB(ki) = pki, τB(k−1
i ) = ski,

τB(ksym
i ) = cki and τB(xi) = nci, for 1 ≤ i ≤ n. We initialize eval-exp = ∅.

During the interaction phase, A may dynamically update τA, mapping his
newly-created basic symbols to arbitrary values. In the interaction phase A
adaptively interacts with B by issuing queries of the following types:

1. Corruption: A may corrupt a B’s key by issuing corrupt(s), where s ∈
{k−1

1 , . . . , k−1
n , ksym

1 , . . . , ksym
n }. In response A receives τ(s), and (s, τ(s))

is added to eval-exp.
2. Encryption: A may issue a query encrypt(e, x), where x ∈ {k1, . . . , kn, ksym

1

, . . . , ksym
n }, and e may not have any k−1

i ’s as a subexp. In response, A is
given c ← �{e}x�τ and ({e}x, c) is added to eval-exp. Here e may contain
both the challenger’s and adversary’s basic symbols.

3. Decryption: A may issue decrypt(c, s′), where s′ ∈ {k−1
1 , . . . , k−1

n , ksym
1 ,

. . . , ksym
n }. In responseA receives Decasy(c, ski) if s′ = k−1

i and Decsym(c, cki)
if s′ = ksym

i , unless there exists ({e}kp , cp) ∈ eval-exp such that {e}kp has a
subexp {e′}s (where s′ = s−1) which in {e}kp is encrypted only under keys
whose decryption keys are in closurec(eval-exp1), and that c corresponds to
the computational image of {e′}s in cp. In this case the answer is ⊥.

After making a number of such queries, A proceeds to the final, guessing phase,
in which he claims he is able to infer “non-trivial” information about irrecover-
able secret data of B. He does so by issuing a challenge query, which is either
of the form challenge(s), where s ∈ {x1, . . . , xn} (nonce challenge), or of the
form challenge(s, bs), where bs ∈ {0, 1}∗ and s ∈ {k−1

1 , . . . , k−1
n , ksym

1 , . . . , ksym
n }

(secret key challenge.) The response to the query is decided as follows: if s ∈
closurec(eval-exp1), then he is given ⊥, otherwise:
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– if b = 0, A is given ncj if s = xj , Encasy(bs, pkj) if s = k−1
j , and otherwise

Encsym(bs, ckj) if s = ksym
j .

– if b = 1, A is given nc′j ← {0, 1}q(η) if s = xj , Encasy(r, pkj) if s = k−1
j , and

Encsym(r, ckj) if s = ksym
j , where r ← {0, 1}|bs|.

A finally outputs his guess for b. Denoting by ACI
Ep
b the output of A when the

secret bit is b, his CI-advantage is (below Ep refers to the pair of schemes):

AdvCI
Ep,A(η) =

∣∣Pr[ACI
Ep
b (η) = 1 | b = 0]− Pr[ACI

Ep
b (η) = 1 | b = 1]

∣∣.
Definition 2. A pair of Ep = (Esym, Easy) provides joint security under the CI
game (shortly, is CI-secure) if for every A, AdvCI

Ep,A(η) is negligible.

We now explain the restrictions on challenge and decryption queries. For our
discussion, assume that E = (Gen, Enc, Dec) is a symmetric encryption scheme
wherein Enc(ck, ck) leads to computation of ck. (This could happen although
E is secure in any standard sense.) In the absence of the condition for chal-
lenge queries, A could simply win the game by doing the following: make two
queries encrypt(ksym

1 , ksym
1 ) and encrypt(ksym

2 , ksym
1 ) to receive, respectively, c1

and c2, and then issue the challenge query challenge(ksym
2 , 0n); A may now ob-

tain τ(ksym
1 ) from c1 and τ(ksym

2 ) from c2, trivially winning the game. Also in
the absence of the condition for decryption queries, A could simply win as fol-
lows: (1) make two queries encrypt(ksym

1 , ksym
1 ) and encrypt({ksym

2 }ksym
3

, ksym
1 )

to receive, respectively, c1 and c2, (2) after computing τ(ksym
1 ) from c1, issue

the decryption query decrypt(c3, k
sym
3 ), where c3 = Dec(c2, τ(ksym

1 )), and (3)
after obtaining τ(ksym

2 ) issue the challenge query challenge(ksym
2 , 0n), trivially

winning the game. Finally we remark that the recent results of [20] show that
there exists an IND-CCA2-secure symmetric encryption scheme such that cipher-
texts Enc(ck1, ck2), . . . , Enc(ckn−1, ckn), Enc(ckn, ck1), for randomly-generated
cki’s, lead to revelation of all ck1, . . . , ckn (a weaker case than k-circular secu-
rity). Therefore, the above attack methods extend to longer key cycles.

Note, A may use an encrypt query to obtain the encryption of any bitstring.
For example, to encrypt m under cki, he may introduce a new basic symbol xA,
set τA(xA) = m, and then issue encrypt(xA, ksym

i ). Also it is possible to define
and extend results we present about CI security to a (seemingly) stronger notion
in which A is allowed to make multiple challenge queries, possibly making them
interleave with the other types of queries. Right now for applications that we
consider, CI security suffices. CI security may be thought of as a variant of KDM
security with the underlying function family consisting of any arbitrary compo-
sition of constant, projection, pairing and encryption functions. However, since
we aim to prove generic implication results from standard security definitions,
we have to restrict the set of keys for which we want to prove computational
secrecy (i.e. those which remain coinductively irrecoverable). This differs from
KDM security in which one wants to prove computational secrecy for all keys,
regardless of what encryption queries were made. Finally we stress that a key A
challenges in the guessing phase may have previously occurred in key cycles.
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CI security is still insufficient for providing soundness as it does not provide
integrity of ciphertexts. To account for this, we strengthen it to also provide
ciphertext integrity and call the new notion authenticated CI (or ACI) security.
We say (Easy, Esym) is ACI secure if it is CI secure and further any A has a
negligible chance of winning in the ACI game defined as follows: the setup and
interaction phases proceed exactly as in the CI game, while in the guessing
phase, A outputs (c, i) and wins if: (1) Decsym(c, cki) �= ⊥, and (2) there does
not exist ({e}kj , c

′) ∈ eval-exp such that {e}kj has a subexp {e′}ki encrypted
in {e}kj only under keys whose decryption keys are in closurec(eval-exp1), and
that c is the corresponding image of {e′}ki in c′.

As a step toward proving soundness with respect to ACI security, we formu-
late a new notion which characterizes security requirements capturing the basic
Dolev-Yao assumptions made in protocol analysis, and prove that it provides
soundness. Our notion, which we call coinductive, key-dependent non-malleability
(shortly CNM ) notion, is a generalization of the Dolev-Yao non-malleability no-
tion of [28], which was defined for the passive setting.

4.2 Coinductive, Key-Dependent Non-Malleability (CNM) Game

The game is parameterized, again, over Ep = (Easy, Esym), a shared security pa-
rameter η, and a computational mapping τ , and runs in three phases with the
setup and interaction phases as in the CI game (except that no b is sampled).
However, in the guessing phase, A claims he is able to construct the compu-
tational image of an expression which is not coinductively constructible from
eval-exp1. To this end, he outputs (e, E), where e ∈ Exp (containing, possibly,
both the adversary’s and challenger’s symbols) and E ∈ {0, 1}∗. The output of
the game is 1, written as CNMEp,η(A) = 1, if the following two conditions hold:

1. e /∈ closurec(eval-exp1); and
2. E is a possible mapping of e under τ and Ep; namely, E ∈ �e�

Ep
τ .

Note condition (2) is efficiently verifiable given access to τ . We define

AdvCNM
Ep,η (A) = Pr[CNMEp,η(A) = 1].

Definition 3. A pair Ep = (Easy, Esym) provides security under the CNM game
(shortly, is CNM-secure) if for every adversary A, AdvCNM

Ep,η (A) is negligible.

Theorem 1. 1. CNM security ⇒ soundness
2. ACI security ⇒ CNM security.

Proof (Outline): For (2) if Acnm is able to output a CNM-valid (e, E), then
e /∈ T , where T = closurec(eval-exp1) implies e has a subexp s such that s
is either a nonce/private key, or s = {·}ksym

j
, and that any subexp of e which

contains s is not in T . This implies the underlying value of s is recoverable from
E (with the aid of the decryption oracle) through successive decryptions down
along the path leading to s, which will then enable an attack either against CI
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security or ciphertext integrity depending on the type of s. The proof for (1)
also follows using ideas similar to those of [34]. We give a full proof in [27]. ��
For an adversary A in either of the above games, we define a labeled key graph,
G(A) = (VA, EA), as follows: VA = {vasy

1 , . . . , vasy
n , vsym

1 , . . . , vsym
n }, and vx

i
a−→

vy
j ∈ EA, for x, y ∈ {asy, sym} and a ∈ N, if kx

i encrypts the ath occurrence of
(ky

j )−1 in the sequence ofA’s encryption queries. Here ath occurrence refers to an
increasing numbering given to each decryption key as it appears in the sequence;
for example, if e1 = {ksym

1 , ksym
p }

k3
, ksym

p and e2 = ksym
2 , {ksym

p }k4 and the first
two encryption queries are encrypt(e1, k3) and encrypt (e2, k5); the set of keys
that encrypt the 3rd occurrence of ksym

p is {k4, k5}. We call vx
i coinductively

irrecoverable (irrecoverable for short) if kx
i
−1 /∈ closurec(eval-exp1), and we

refer to the induced subgraph on irrecoverable nodes as the hidden subgraph.
The diameter of a graph is the length of the longest path in the graph. We
define indeg(vx

i ) to be the maximum a for which we have an incoming edge with
label a to vx

i ; this specifies the number of times kx
i
−1 occurs in A’s encryption

queries. Note, indeg(vasy
i ) = 0, for every 1 ≤ i ≤ n, and also both G(A) and

indeg(vi) are random variables depending on the coins tossed during the game.
If all encryption queries were of the form encrypt(ksym

i , kx
j ) (i.e. single encryp-

tions) without cycle creation, then all nodes from which there was a path to an
irrecoverable node would also be irrecoverable. However, in the case of nested en-
cryptions with key cycles, the above appealing property no longer holds; namely,
an irrecoverable node may occur in certain key cycles, and may have edges
from nodes which are recoverable. For example, assuming e1 = {ksym

1 }ksym
2

and
e2 = {ksym

3 }ksym
4

, if A makes queries encrypt(e1, k
sym
5 ), encrypt(ksym

2 , ksym
1 ),

encrypt(e2, k
sym
6 ), and corrupt(ksym

4 ), all keys except ksym
4 remain irrecover-

able, and there exists, for instance, edges in both directions between vsym
1 and

vsym
2 in G(A).
However, in the case of cyclic nested encryption, we will base our hybrid

arguments on a provable property, which we call coinductive continuability, of
irrecoverable nodes. In G(A), we say vx

y1

a2−→ vsym
y2

a3−→ . . .
ap−→ vsym

yp
, for x ∈

{sym, asy}, is a coinductively continuable path if the following conditions hold:
(below for better clarity we drop the superscripts x and sym.)

1. Path validity: For all 2 ≤ i ≤ p, vyi−1 →ai vyi ∈ EA, and if 1 ≤ w < h ≤ p
then vyw �= vyh

,
2. For all s ∈ {kx

y1

−1, ksym
y2

, . . . , ksym
yp
} it holds s /∈ closurec(eval-exp1), and

3. either indeg(vy1) = 0 or for every 1 ≤ a1 ≤ indeg(vy1) there exists vw
i , with

w ∈ {asy, sym}, such that vw
i

a1−→ vy1

a2−→ . . .
ap−→ vyp is a coinductively

continuable path.

We call vx
i coinductively continuable if its associated path of length zero is so.

Lemma 1. At any point, any irrecoverable node is coinductively continuable.

Proof (Outline): We prove this by an induction over the length of the longest
path ending in the irrecoverable node. A full proof is given in [27]. ��
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Definition 4. We say that Ep = (Easy, Esym) provides l-CI security if AdvCI
E,A(η)

is negligible for every A for whom the diameter of the hidden subgraph of G(A) is
always at most l. We say Ep provides l-ACI security if it is l-CI secure and any
A (under the ACI game) for which the diameter of the resulting hidden subgraph
is always at most l has a negligible advantage.

Theorem 2. If Easy and Esym are both IND-CCA2 secure, then (Easy , Esym)
provides l-CI security, for every constant l.

Proof (Outline): The central idea is to guess a “random”, coinductively con-
tinuable path, with some associated parameters, which ends in the challenge
key, give “fake” values to certain private keys occurring as plaintexts, and prove
the adversary’s advantage under this replying strategy is negligibly different from
that under the standard game. A full proof is given in [27]. ��

Theorem 3. If Easy provides IND-CCA2 security, and Esym provides both IND-
CCA2 and INT-CTXT security, then (Easy, Esym) provides l-ACI security, for
every constant l.

Proof (Outline): We first show ifAaci is able to output an ACI-valid (c, i), then
in a world, Wi, in which occurrences of ksym

i as a plaintext and its occurrences
as an encryption key are given two independent values, Aaci should have “the
same” probability of producing a valid (c, i), or otherwise a CI-attack can be
made. Next, we show if under Wi an adversaryA is able to produce an ACI-valid
(c, i) and c is already a plaintext of a ciphertext obtained under an encryption
query (e.g. A has called encrypt({x1}ksym

i
, ksym

2 ) to obtain c2, ksym
2 remains

coinductively irrecoverably, and c = Decsym(c2, ck2)), then a CI attack follows,
and otherwise an INT-CTXT attack follows. A full proof is given in [27]. ��

5 Conclusion

We investigated soundness of coinductive methods in a protocol model allowing
arbitrary composition of symmetric/asymmetric encryption, as well as unre-
stricted transmission of secret keys. In such situations, an active adversary may
selectively influence the encryption ordering between deployed keys, dynamically
compromise them (naturally or under his corruption power), and potentially ob-
tain encryption cycles. Any weakness in the underlying encryption schemes in the
face of such an adversary may lead to insecure instantiations of protocols. Most
previous work on computationally sound symbolic analysis of protocols either
does not allow symmetric encryption, or imposes restrictions aimed at avoiding
the above possibilities. Our soundness theorem, founded on coinduction, does
not assume any such restrictions, while providing strong computational secu-
rity guarantees against adaptive corruptions. Our results, however, rely on a
property of protocols we call boundedness (formalized in [27]), which requires
that no symbolic execution of the underlying protocol produce a coinductively-
irrecoverable encryption chain of nonconstant length. We observe that almost
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all protocols from [21] (when run in isolation) admit (at most) 2-boundedness.
(All of them are bounded.) In [27], we provide statements on how one can rea-
son about boundedness of a protocol, and whether the boundedness property is
retained when two (individually bounded) protocols are run concurrently.

While the main focus of this paper is on trace-based security, we believe sim-
ilar results can also be proved for key-exchange (KE) security tasks. A central
security requirement for key exchange is the secrecy condition, requiring a secret
key exchanged by a KE protocol be indistinguishable from a freshly generated
key. Our CI game is rich enough to encompass common features of a KE attack
model, including adaptive corruptions of users and session keys, while guaran-
teeing that (under stated complexity assumptions) coinducitve symbolic secrecy
under the game implies computational secrecy (real-or-random indistinguisha-
bility in the case of nonces and key usability [23] in the case of secret keys).

For simplicity we have assumed if a user is corrupted, the adversary obtains
only her long-lived key and her past generated secret keys/nonces, but not her
past random coins. In [27] we give partial results about this more general case.

As briefly explained in the introduction, current results about KDM security
do not seem sufficient for (unrestricted) secure realizations of protocols with in-
ductive, symbolic security proofs. It would be interesting to extend (and realize)
KDM security definitions to support adaptive corruptions. As pointed out earlier,
defining the extension in an entirely left-or-right indistinguishability sense, as in
[5], would entail inherent limitations; for example, if a left-or-right encryption
query is made under ck, then ck cannot be corrupted afterward.

Finally it would be interesting to improve the bounds imposed by our sound-
ness theorem (and those of [36]), and investigate its extensions to more general
cryptographic frameworks supporting compositional reasoning [6,19].
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Abstract. In [6,7], Dwork et al. posed the fundamental question of ex-
istence of commitment schemes that are secure against selective open-
ing attacks (SOA, for short). In [2] Bellare, Hofheinz, and Yilek, and
Hofheinz in [13] answered it affirmatively by presenting a scheme which
is based solely on the non-black-box use of a one-way permutation need-
ing a super-constant number of rounds. This result however opened other
challenging questions about achieving a better round complexity and ob-
taining fully black-box schemes using underlying primitives and code of
the adversary in a black-box manner.

Recently, in TCC 2011, Xiao ([23]) investigated on how to achieve
(nearly) optimal SOA-secure commitment schemes where optimality is
in the sense of both the round complexity and the black-box use of
cryptographic primitives. The work of Xiao focuses on a simulation-based
security notion of SOA. Moreover, the various results in [23] focus only
on either parallel or concurrent SOA.

In this work we first point out various issues in the claims of [23]
that actually re-open several of the questions left open in [2,13]. Then,
we provide new lower bounds and concrete constructions that produce a
very different state-of-the-art compared to the one claimed in [23].

1 Introduction

Commitment schemes are a fundamental building block in cryptographic proto-
cols. By their usual notion, they satisfy two security properties, namely, hiding
and binding. While the binding property guarantees that a committed message
can not be opened to two distinct messages, the hiding property ensures that
before the decommitment phase begins, no information about the committed
message is revealed. Binding and hiding are preserved under concurrent compo-
sition, in the sense that even a concurrent malicious sender will not be able to
open a committed message in two ways, and even a concurrent malicious receiver
will not be able to detect any relevant information about committed messages
as long as only commitment phases have been played so far.
� Work done while visiting UCLA.
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In [6], Dwork et al. pointed out a more subtle definition of security for hiding
where the malicious receiver is allowed to ask for the opening of only some of the
committed messages, with the goal of breaking the hiding property of the remain-
ing committed messages. This notion was captured in [6] via a simulation-based
security definition, and is referred to as hiding in presence of selective opening
attack (SOA, for short). [6] shows that, in a trusted setup setting, it is possible
to construct a non-interactive SOA-secure commitment scheme from a trapdoor
commitment scheme. Indeed, in the trusted setup the simulator sets the pa-
rameters of the trapdoor commitment, thus obviously it knows the trapdoor.
However, the fundamental question of whether there exist SOA-secure commit-
ment schemes in the plain model, is left open in [6]. We stress that the question
is particularly important since commitments are often used in larger protocols,
where often only some commitments are opened but the security of the whole
scheme still relies on hiding the unopened commitments. For instance, the im-
portance of SOA-secure commitments for constructing zero-knowledge sets is
discussed in [10]1.

The SOA-security experiment put forth in [6] considers a one-shot commit-
ment phase, in which the receiver gets all commitments in one-shot, picks adap-
tively a subset of them, and obtains the opening of such subset. Such definition
implicitly considers non-interactive commitments and only parallel composition.
Subsequent works have explored several extensions/variations of this definition
showing possibility and impossibility results. Before proceeding to the discussion
of the related work, it is useful to set up the dimensions that will be consid-
ered. One dimension is composition. As commitment is a two-phase functional-
ity, other than parallel composition, one can consider two kinds of concurrent
composition. Concurrent-with-barrier composition (considered in [2,13]), refers
to the setting in which the adversarial receiver can interleave the execution of
several commitments, and the execution of decommitments, with the restriction
that all commitment phases are played before any decommitment phase begins.
Thus, there is a barrier between commitment and decommitment stage. Fully-
concurrent composition (considered in [23]) refers to the setting in which the
adversary can arbitrarily interleave the execution of the commitment phase of
one session with the decommitment of another session (and vice-versa).

Next dimension is the access to primitive, namely, if the construction uses a
cryptographic primitive as a black-box (in short, BB), or in a non black-box way
(in short, NBB).

Another dimension is simulation. In this discussion we consider always black-
box simulators (if not otherwise specified).

The question of achieving SOA-secure commitments without any set-up was
solved affirmatively in [2] by Bellare, Hofheinz, and Yilek, and by Hofheinz
in [13], who presented an interactive SOA-secure scheme based on non-black-
box use of any one-way permutation and with a commitment phase requiring a
super-constant number of rounds. The security of such construction is proved in

1 In [10] some forms of zero-knowledge sets were proposed, and their strongest defini-
tion required SOA-secure commitments.
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the concurrent-with-barrier setting. [2,13] also show that non-interactive SOA-
secure commitments which use cryptographic primitives in a black-box way do
not exist. The same work introduces the notion of indistinguishability under se-
lective opening attacks, that we do not consider in this work. The results of [2,13]
left open several other questions on round optimality and black-box use of the
underlying cryptographic primitives.

In TCC 2011 [23], Xiao addressed the above open questions and investigated
on how to achieve nearly optimal schemes where optimality concerns both the
round complexity and the black-box use of cryptographic primitives. In par-
ticular, Xiao addressed SOA-security of commitment schemes for both paral-
lel composition and fully-concurrent composition and provided both possibility
and impossibility results, sticking to the simulation-based definition. Concerning
positive results, [23] shows a 4-round (resp., (t + 3)-round for a t-round
statistically-hiding commitment) computationally binding (resp., statistically
binding) SOA-secure scheme for parallel composition. Moreover, [23] provides a
commitment scheme which is “strong” (the meaning of strong is explained later)
SOA-secure in the fully-concurrent setting and requires a logarithmic number
of rounds. All such constructions are fully black-box. Concerning impossibil-
ity results, [23] shows that 3-round (resp., 4-round) computationally binding
(resp., statistically binding) parallel SOA-secure commitment schemes are im-
possible to achieve. As explained later, in this paper – among other things –
we present issues in the proof of security of the constructions shown in [23]. We
also show that, the strong security claimed for the construction suggested for
the fully-concurrent setting, is actually impossible to achieve, regardless of the
round complexity. We contradict the lower bounds claimed in [23] by provid-
ing a 3-round fully black-box commitment scheme which is SOA-secure under
concurrent-with-barrier composition, which implies parallel composition.

In a subsequent work [25], after our results became publicly available, Xiao
showed a black-box construction of 4-round statistically-binding commitment
scheme which is SOA-secure under parallel composition. As we shall see later,
our 3-round and 4-round schemes are only computationally binding, but are
secure in the stronger setting of concurrent-with-barrier composition.

In [24], the same author provides an updated version of [23]. Concerning pos-
itive results, [24] includes the (t + 3, 1)-round construction of [23] and shows
a new simulation strategy for it. Concerning impossibility results, [24] includes
the lower bounds of [23] that are still valid for 2-round (resp., 3-round) com-
putationally hiding and computationally (resp., statistically) binding, parallel,
SOA-secure commitment schemes with black-box simulators. [24] contains also
other contributions of [23] that are not contradicted by this work.

In [1], Bellare et al. proves that existence of CRHFs implies impossibility of
non-interactive SOA-secure commitments (regardless of the black-box use of the
cryptographic primitives). In fact, they show something even stronger; they show
that this impossibility holds even if the simulator is non-black-box and knows
the distribution of the message space. An implication of such results is that,
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standard security does not imply SOA-security. Previous results in [2,13] only
showed the impossibility for the case of black-box reductions.

In [19], Pass and Wee provide several black-box constructions for two-party
protocols. In particular, they provide constructions for look-ahead trapdoor com-
mitments (in a look-ahead commitment, knowledge of the trapdoor is necessary
already in the commitment phase in order for the commitment to be equivocal,
in this paper we call such commitments “weak trapdoor commitments”), and
trapdoor commitments. Such constructions have not been proved to be SOA-
secure commitment schemes, as SOA-security is proven in presence of (at least)
parallel composition, while security of the trapdoor commitment of [19] is proved
only in the stand-alone setting. In the full version of this paper we discuss how
the look-ahead thread of [19] can be plugged in our construction based on weak
trapdoor commitments, to obtain a 6-round SOA-secure commitment scheme in
the concurrent-with-barrier setting.

1.1 Our Contribution

In this work we focus on simulation-based SOA-secure commitment schemes, and
we restrict our attention to black-box simulation, and (mainly) black-box access
to cryptographic primitives (like in [23]). Firstly, we point out various issues in
the claims of [23]. These issues essentially re-open some of the open questions
that were claimed to be answered in [23]. We next show how to solve (in many
cases in a nearly optimal way) all of them. Interestingly, our final claims render
quite a different state-of-the-art from (and in some cases also in contrast to) the
state-of-the-art set by the claims of [23].

In detail, by specifying as (x, y) the round complexity of a commitment scheme
when the commitment phase takes x rounds and the decommitment phase takes
y rounds, we revisit some claims of [23] and re-open some challenging open
questions as follows.

1. The proof in [23] of the non-existence of (3, 1)-round schemes assumes im-
plicitly that the sender sends the last message during the commitment phase.
We show here that surprisingly this assumption is erroneous, and that one
round might be saved in the commitment phase if the receiver goes last.
This re-opens the question of the achievability of (3, 1)-round SOA-secure
schemes, even for just parallel composition.

2. There are issues in the proof of binding and SOA-security of the (4, 1)-round
scheme of [23] for parallel composition, and it is currently unknown whether
the scheme is secure. The same issue in the SOA-security proof exists for
the (t + 3, 1)-round statistically binding scheme of [23] which is based on
any t-round statistically-hiding commitment. Indeed, for both constructions,
SOA-security is claimed to follow from the simulation technique of Goldreich-
Kahan [11]. The problem is that the simulator of [11] was built for a stand-
alone zero-knowledge protocol, where an atomic sub-protocol is repeated
several times in parallel, and the verifier cannot selectively abort one of the
sub-protocols. Instead in the SOA-setting, the adversarial receiver interacts
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with multiple senders and can decide to abort a subset of the sessions of its
choice adaptively based on the commitment-phase transcript.

We note that this implies that [23] contains no full proof of a constant
round SOA-secure scheme (but we remark that, subsequent to our results,
the same author presented a new proof of the (t + 3, 1)-round scheme based
on statistically-hiding commitment in the work [25,24]).

3. There is an issue in the proof of security of the fully-concurrent SOA-secure
commitment scheme proposed in [23]. The security of such construction is
claimed even for the case in which the simulator cannot efficiently sample
from the distribution of messages committed to by the honest sender (but
needs to query an external party for it).2 This notion is referred in [23]
as “strong” security. This issue in [23] re-opens the possibility of achieving
schemes that are strong SOA-secure under fully concurrent composition (for
any round complexity).

In this paper we solve the above open problems (still sticking to the notion of
black-box simulation as formalized in [23]) as follows.

1. We present a (3, 1)-round scheme based on BB use of any trapdoor commit-
ment (TCom, for short), which contradicts the lower bound claimed in [23].
We also provide several constructions based on BB use of various weaker
assumptions. We show: a (3, 3)-round scheme based on BB use of any OWP,
a (4, 1)-round scheme based on BB use of any weak trapdoor commitment
(wTCom, for short)3, and a (5, 1)-round scheme based on BB use of any
OWP.

2. We show that when the simulator does not know the distribution of the mes-
sages committed to by the honest sender, there exists no scheme that achieves
fully concurrent SOA-security, regardless of the round complexity and of the
BB use of cryptographic primitives. Thus contradicting the claimed security
of the construction given in [23].

3. As a corollary of our (3, 1)-round scheme based on BB use of any TCom,
there exists a (3, 1)-round scheme based on NBB use of any one-way function
(OWF). This improves the round complexity in [2] from logarithmic in the
security parameter to only 3 rounds and using minimal complexity-theoretic
assumptions. Moreover, we observe that (as a direct consequence from proof
techniques in [23]) a (2, 1)-round SOA-secure scheme is impossible regardless
of the use of the underlying cryptographic primitive (for black-box simulation
only). Thus, our (3, 1)-round scheme for black-box simulation is essentially
round-optimal.

Notice that both our (3, 1)-round protocols – the one based on BB use of TCom
and the other based on NBB use of OWFs – contradict the impossibility given
2 For simplicity, we shall hereafter refer to this case as the simulator not knowing the

distribution.
3 This result indeed requires a relaxed definition of trapdoor commitment where the

trapdoor is required to be known already during the commitment phase in order to
later equivocate. We call it “weak” because any TCom is also a wTCom.
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in [23], that was claimed to hold regardless of the access to the cryptographic
primitives.

All the constructions shown in this paper are secure under concurrent-with-
barrier composition, which obviously implies parallel composition. Our simula-
tors work for any message distributions, and do not need to know the distribution
of the messages committed to by the honest sender. In light of our impossibility
for the fully concurrent composition (see Item 2 of the above list), the concur-
rency achieved by our schemes seems to be optimal for this setting.

As an additional application, we also show that our (3, 1)-round schemes can
be used to obtain non-interactive (concurrent) zero knowledge [8] with 3 rounds
of pre-processing. This improves upon [5] where (at least) 3 rounds of interactions
are needed both in the pre-processing phase and in the proof phase. Moreover,
the simulator of [5] works only with non-aborting verifiers, while our simulator
does not have this limitation. This application also establishes usefulness of
concurrency-with-barrier setting.

Comparison with Previous Work. For a better clarity we compare previous re-
sults and constructions with the contribution of this paper in Table 1. In the
table, listings under “Impossible” column refer to the impossibility results in the
papers heading the corresponding row. Similarly, the listings under “Construc-
tions” column refer to the constructions in the papers heading the correspond-
ing row. All such constructions are proved via black-box simulations. BB (resp.,
NBB) stands for black-box (resp., non black-box) access to cryptographic prim-
itives. PAR, CwB, CC, refer respectively to parallel, concurrent-with-barrier,
fully-concurrent composition. PB and SB are shorthands for perfectly binding
and statistically binding, and TCom, wTCom, OWP are shorthands for Trap-
door Commitment, weak Trapdoor Commitment, One-Way Permutation. For
instance, an entry like, “BB (1, 1) (or PB) PAR” under Impossible column and
for the row [2,13], says that [2,13] demonstrate that non-interactive, or perfectly-
binding commitment schemes that are SOA-secure under parallel composition,
are impossible to construct given only BB access to cryptographic primitives.
The entry, "NBB (log n, 1) CwB OWP" under Constructions column and in the
row headed by [2] says that [2] shows a (log n, 1)-round scheme based on NBB
use of OWPs that is SOA-secure under concurrent-with-barrier composition.

On Simulator not Knowing Message Distribution. All our protocols and impos-
sibility results are in the setting where the simulator by itself cannot efficiently
sample from the message distribution but needs to query an external oracle for
the same. Positive results can only be stronger with this requirement.

Selective Opening, Adaptive Security, Trapdoor Commitments and Non-malleable
Commitments. The concept of commitments secure in presence of selective open-
ing attacks is very related to adaptively secure commitments4, and trapdoor

4 In such a notion, an adversary can corrupt a party anytime during the protocol
execution, obtaining the party’s internal state.
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Table 1. This work in relation to the state-of-the-art

Impossible Constructions
[2,13] BB (1, 1) (or PB) PAR NBB (log n, 1) CwB OWP
[1] NBB (1, 1) PAR
[6] Set-up assumption: BB (1, 1) CC TCom

This Paper on [19] * BB (x, y) LA-TCom implies BB (2 + x, y) CwB
(3, 1) PAR BB (4, 1) PAR OWP

[23] (o(log n/ log log n), 1) CC BB (t + 3, 1) PAR (t, 1)-SH
BB SIM BB (ω(t log n), 1) CC (t, 1)-SH

BB (4, 1) PAR OWP
This Paper on [23] (3, 1) PAR BB (t + 3, 1) PAR (t, 1)-SH

BB SIM BB (ω(t log n), 1) CC (t, 1)-SH
BB (3, 1) TCom; NBB (3, 1) OWF

This Paper BB (any, any) CC BB (4, 1) wTCom ; BB (3, 3) OWP
BB SIM BB (5, 1) OWP (all CwB)

[25] BB SB (t + 2, 1) PAR (t, 1)-SH
[24] BB (t + 3, 1) PAR (t, 1)-SH

commitments, – in which there exists a trapdoor that allows to open a commit-
ment in many ways. However, they are three different settings.

First, trapdoor commitments are not necessarily SOA-secure (in the plain
model). The reason is that trapdoor commitments only guarantee that there ex-
ists a trapdoor which would allow to equivocate a commitment, however, such
trapdoor is clearly not available to a simulator. To achieve SOA-security from
a trapdoor commitment scheme one should provide a mechanism for the simu-
lator to get the trapdoor, still not violating binding. The converse moreover is
not true, namely, a SOA-secure commitment is not necessarily also a trapdoor
commitment. This comes from the fact that the simulator of a SOA-secure com-
mitment could use rewinding capabilities instead of a trapdoor that might not
exist at all.

Second, a commitment scheme that is adaptively secure in the parallel compo-
sition, is also parallel SOA-secure commitment. The converse is not necessarily
true. Namely, a SOA-secure commitment scheme is not necessarily adaptively
secure. The reason is that in a selective opening attack, a malicious receiver can
“corrupt” the sender in the decommitment phase only, and by definition, it is
allowed to see only the openings of the commitments instead of the whole state
of the sender.

Finally, we stress that our adversary can play as sender only or as receiver
only. An interesting question is which type of SOA security can be achieved also
against man-in-the-middle attacks. The recent work of [12] gives hope towards a
construction of a constant-round non-malleable SOA-secure protocol with black-
box simulation and black-box use of any one-way function.

2 Preliminaries

Notation. We denote by n ∈ N the security parameter and by PPT the property
of an algorithm of running in probabilistic polynomial-time. A function ε is
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negligible (negl., for short) in n (or just negligible) if for every polynomial p(·)
there exists a value n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n).
We denote by [k] the set {1, . . . , k}; poly(n) stands for polynomial in n. We
denote by x ← D the sampling of an element x from the distribution D. We
also use x

$← A to indicate that the element x is uniformly sampled from set
A. We denote by (vA, vB)← 〈A(), B()〉 the pair of outputs of parties A and B,
respectively, after the completion of their interaction. We use v

$← A() when
the algorithm A is randomized. Finally, let P1 and P2 be two parties running
a protocol that uses protocol 〈A, B〉 as a sub-routine. When we say that party
“P1 runs 〈A(·), B(·)〉 with P2” we always mean that P1 executes the procedure
of party A and P2 executes the procedure of party B. In the paper we use the
words decommitment and opening interchangeably.

2.1 Commitment Schemes

In the following definitions we assume that parties are stateful and that malicious
parties obtain auxiliary inputs, although for better readability we omit them.

Definition 1 (Bit Commitment Scheme). A commitment scheme is a tu-
ple of PPT algorithms Com = (Gen, S, R) implementing the following two-phase
functionality. Gen takes as input a random n-bit string r and outputs the public
parameters pk. Given to S an input b ∈ {0, 1}, in the first phase (commitment
phase) S interacts with R to commit to the bit b; we denote this interaction as
〈S(pk, com, b), R(rcv)〉. In the second phase (opening phase) S interacts with R
to reveal the bit b, we denote this interaction as 〈S(open), R(open)〉 and R finally
outputs a bit b′ or ⊥. Consider the following two experiments:

Experiment Expbinding
Com,S∗ (n): Experiment Exphiding-b

Com,R∗ (n):
R runs (pk)← Gen(r) and sends pk to S∗; pk∗ ← R∗(1n);
〈S∗(pk, com, b), R(rcv)〉; (·, b′) $← 〈S(pk∗, com, b), R∗(rcv)〉;
(·, b0)

$← 〈S∗(open, 0), R(open)〉; output b′.
rewind S∗ and R back after the second step;
(·, b1)

$← 〈S∗(open, 1), R(open)〉;
output 1 iff ⊥ �= b0 �= b1 �=⊥ .

Com = (Gen, S, R) is a commitment scheme if the following conditions hold:

Completeness. If S and R are honest, for any S’s input b ∈ {0, 1} the output
of R in the opening phase is b′ = b.

Hiding. For any PPT malicious receiver R∗, there exists a negligible function
ε such that the following holds:

Advhiding
Com,R∗ = |Pr[(Exphiding-0

Com,R∗ (n)→ 1)]− Pr[Exphiding-1
Com,R∗ (n)→ 1)]| ≤ ε(n).

Binding. For any PPT malicious sender S∗ there exists a negl. function ε such
that: Pr[Expbinding

Com,S∗ → 1] ≤ ε(n).



Revisiting Lower and Upper Bounds for Selective Decommitments 567

The above probabilities are taken over the choice of the randomness r for the
algorithm Gen and the random coins of the parties. A commitment scheme is
statistically hiding (resp., binding) if hiding (resp., binding) condition holds even
against an unbounded malicious Receiver (resp., Sender).

The above definition is a slight modification of the one provided in [2,13], and
is more general in the fact the it includes the algorithm Gen. Such a definition
is convenient when one aims to use commitment schemes as sub-protocols in a
black-box way. However, for better readability, when we construct or use as sub-
protocol a commitment scheme that does not use public parameters, we refer to
it only as Com = (S, R), omitting the algorithm Gen.

Definition 2 (Trapdoor Commitment). A tuple of PPT algorithms TC =
(TGen, S, R, TFakeD) is a trapdoor commitment scheme if TGen, on input a
random n-bit string r, outputs a public key/secret key pair (pk,sk), TGenpk is
the related functionality that restricts the output of TGen to the public key,
(TGenpk, S, R) is a commitment scheme, and (S, TFakeD) are such that:

Trapdoor Property. There exists b� ∈ {0, 1}, such that for any b ∈ {0, 1}, for
all (pk, sk)← TGen(r), and for any PPT malicious receiver R∗ there exists
a negl. function ε such that the following holds:

Advtrapdoor
TC,R∗ = Pr[ExpTrap

TC (n)→ 1]− Pr[ExpCom
TC (n)→ 1] ≤ ε(n).

The probability is taken over the choice of r for the algorithm TGen and the
random coins of the players.

Experiment ExpCom
TC (n) : Experiment ExpTrap

TC (n):
R∗ chooses a bit b; R∗ chooses a bit b;
〈S(pk, com, b), R∗(pk, sk, b, rcv)〉; (ξ, ·)← 〈S(pk, com, b�), R∗(pk, sk, b, rcv)〉;
(·, b′) $← 〈S(open), R∗(open)〉; (·, b′) $← 〈TFakeD(sk,open,b,ξ),R∗(open)〉;
output b′; output b′;

In the experiment ExpTrap
TC (n), S runs the procedure of the honest sender on

input b�. The variable ξ contains the randomness used by S to compute the
commitment phase and it is used by TFakeD to compute the decommitment.
The knowledge of the trapdoor is required only in decommitment phase. In the
trapdoor commitment of Pedersen [20], the trapdoor property holds for any b�,
namely one can use the honest sender procedure to commit an arbitrary bit b�

and use the trapdoor to decommit to any b �= b�. Instead, in the trapdoor com-
mitment proposed by Feige and Shamir [9]5, the trapdoor property holds only
if the honest procedure was used to commit to bit b� = 0. In both commitment
schemes the trapdoor is used only in the decommitment phase.
5 The commitment procedure consists of running the simulator of Blum’s protocol [3]

for Graph Hamiltonicity where the challenge is the bit to commit to. This commit-
ment use OWFs in a NBB way.
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Definition 3 (Hiding in the presence of Selective Opening Attacks
(slight variation of [2,13])). Let k = poly(n), let B be a k-bit message distri-
bution and b $← B be a k-bit vector, let I = {Ik}k∈N be a family of sets, where
each Ik is a set of subsets of [k] denoting the set of legal subsets of (indexes
of) commitments that the receiver (honest or malicious) is allowed to ask for
the opening. A commitment scheme Com = (Gen, S, R) is secure against selective
opening attacks if for all k, all sets I ∈ I, all k-bit message distributions B, all
PPT relations R, there exists an expected PPT machine Sim such that for any
PPT malicious receiver R∗ there exists a negl. function ε such that:

Advsoa
Com =

∣∣Pr[Expreal
Com,S,R∗(n)→ 1]− Pr[Expideal

Com,Sim,R∗(n)→ 1]
∣∣ ≤ ε(n).

The probability is taken over the choice of the random coins of the parties.

Experiment Expreal
Com,S,R∗(n): Experiment Expideal

Com,Sim,R∗(n):
pk

$← R∗(1n); pk
$← R∗(1n);

b $← B; b $← B;
I

$← 〈Si(pk, com,b[i])i∈[k], R
∗(pk, rcv)〉; I

$← SimR∗
(pk);

(·, ext) $← 〈Si(open)i∈I , R
∗(open)〉; ext

$← SimR∗
(b[i])i∈I ;

output R(I,b, ext). output R(I,b, ext).

We denote by (·, ext) $← 〈Si(·), R∗(·)〉 the output of R∗ after having interacted
concurrently with k instances of S each one denoted by Si. In the paper an in-
stance of the protocol is called session. A malicious receiver R∗ can run many ses-
sions in concurrency with the following limitation. R∗ runs commitment phases
concurrently for polynomially many sessions, but it can initiate the first de-
commitment phase only after the commitment phases of all the sessions have
been completed (and therefore after the set of indexes has been requested). This
means that the set of indexes I (i.e., the commitments asked to be opened),
depends only of the transcript of the commitment phase. We call this definition
concurrent-with-barrier (CwB, for short), meaning that many commitment
phases (decommitment phases) can be run concurrently but the commitment
phase of any session cannot be interleaved with the decommitment of any other
session. Notice that as in [23], our definition assumes that the honest receiver
chooses to open only a subset of the commitments, but this is done independently
of the transcript (i.e., I

$← I).
We now discuss the choices that we made to obtain the above definitions.

Concurrency-with-barrier Composition vs Parallel and Concurrent Composition.
In [23] Xiao provides two main definitions: SOA-security under parallel (PAR)

composition and SOA-security under “fully” concurrent composition (CC). In
the fully concurrent definition there is no barrier between commitment and de-
commitment phase: R∗ is allowed to interleave the commitment phase of one
session with the decommitment phase of another, basically having the power of
deciding which decommitment/commitment to execute, depending on the tran-
script of the commitment and decommitment of other sessions. This definition is
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pretty general, but unfortunately, as we show in this paper, achieving this result
is impossible (under the assumption that the simulator does not know the dis-
tribution of the messages committed to by the honest sender); this is in contrast
to [23] where it is claimed that this definition is achievable. The concurrent-
with-barrier composition that we adopted (following [13]) implies security under
parallel composition while due to the barrier between commitment and decom-
mitment phase, it is weaker than the fully concurrent definition of [23].

Decommitment Phase can be Interactive. Following [13] our definition is more
general than the one of [23] since it allows also the decommitment phase to be
interactive.

Honest Party Behaviour. We follow [23] in defining the behaviour of the honest
receiver, i.e, R chooses the subset of commitments to be opened according to some
distribution I. To see why this definition makes sense, think about extractable
commitments where the sender and receiver engage in many commitments of
pairs of shares of a message but finally only one share per pair is required to be
opened in the commitment phase.

Concerning the honest sender, we assume that R∗ interacts with k independent
senders, that are oblivious to each other, and play with input b[j], while [23]
considers a single sender Sk who gets as input the complete k-bit string and
plays k independent sessions with R∗. This variation is cosmetic only.

Comparison with the Definitions of [2,13]. In [2,13] the behaviour of the hon-
est receiver is not explicitly defined, implying that the honest receiver always
obtains all the openings. In order to be more general and to make SOA-secure
commitments useful in more general scenarios, we deviate from this definition
allowing the honest receiver to ask for the opening of a subset of the commit-
ments. Moreover, the set of indexes I chosen by the (possibly malicious) receiver
is explicitly given as input to the relation R.

Summing up, the definition that we adopt mainly follows the one of [2,13] and
is more general than the one of [23] in the fact that it allows interaction also
during the decommitment phase, and provides concurrency-with-barrier that
implies the definition of security under parallel composition. Moreover, our defi-
nition is more general than the one of [13] since it allows also the honest receiver
to choose the commitments to be opened. However, our definition is weaker than
the concurrent definition of [23] that however we show to be impossible to achieve
(when the distribution of the messages committed by S is unknown to Sim).

3 Upper Bounds

3.1 (3, 1)-Round Scheme from Trapdoor Commitments

We present a construction for round-optimal SOA-secure commitment scheme
based on BB use of trapdoor commitments. In particular we show that if 2-round
(where the first round only serves for the receiver to send the public parameters)
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trapdoor commitment schemes exist6, then a 3-round SOA-secure commitment
scheme exists.

Roughly, the main idea of the protocol is to require the sender to commit to
its private bit using a trapdoor commitment scheme and to make the trapdoor
extractable to a black-box simulator. The goal is to allow the simulator to cheat
in the opening phase without changing the transcript of the commitment phase.
This is inspired by the techniques used in [17]. The parameters of the trapdoor
commitment are generated by the receiver (if this was not the case then a ma-
licious sender can cheat in decommitment phase using the trapdoor), and are
made extractable through cut-and-choose techniques.

In more details, the protocol goes as follows. R runs the generation algorithm
of the trapdoor commitment scheme (TGen) to compute the pairs (pki, ski) of
public and trapdoor parameters, and sends the public parameters to the sender.
To guarantee the extraction of the trapdoor, we require that R provides 2n
public parameters to S. S will use half of them to commits to n shares of its
secret bit, while for the other half, it will ask the receiver to reveal the trapdoors
associated. Then in the decommitment phase S simply opens the n commitments,
and R computes the xor of the opened values.

To argue hiding in presence of SOA adversaries, we show the following simu-
lator. Recall that, the malicious receiver can open many sessions and run many
commitment phases concurrently (CwB definition). For each session, the simu-
lator honestly commits to n random bits, and obtains n trapdoors. This is the
main tread. When all commitment phases are completed, the simulator obtains
from the adversary, the indexes of the sessions to be opened, and from the ex-
periments, the actual bits to open. Next, it starts a rewinding thread for each
session that needs to be open. In each rewinding thread, the simulator runs as
in the main thread, except that it asks the adversary to open a different subset
of trapdoors. Therefore, after an expected polynomial number of rewindings, it
will obtain at least one new trapdoor for each session. One trapdoor will suffice
to equivocate one share, and therefore to successfully open to any bit for that
session.

Binding follows straight-forwardly from the binding of the trapdoor commit-
ment scheme used as sub-protocol.

In the full version of this paper [18] we additionally show a (4, 1)-round con-
structions that is based on weak trapdoor commitment schemes.

The formal description of the construction is provided in Protocol 1. We de-
note by TC = (TGen, STC, RTC, S, TFakeD) a trapdoor commitment scheme. We
denote by 〈STC

d̄i

i , RTC
d̄i

i 〉 the i-th invocation of sub-protocol TC run with public
key pkd̄i . Here di denotes the ith challenge for the cut-and-choose, i.e., Ssoa com-
putes the trapdoor associated to the key pkdi , while it commits to the ith share
of the input using key pkd̄i (for which the trapdoor will not be revealed).

6 [20] is an example of a trapdoor commitment scheme where the public parameters
pk are generated by the receiver and sent to the sender in the first round. Given pk,
the commitment procedure is non-interactive.
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Protocol 1. [(3,1)-round SOA-Commitment] [SOACom=(Ssoa, Rsoa)]
Commitment Phase

Rsoa: For i = 1, . . . , n:
1. r0

i , r1
i

$← {0, 1}n; (pk0
i , sk

0
i ) ← TGen(r0

i ); (pk1
i , sk

1
i )← TGen(r1

i );
2. send (pk0

i , pk1
i ) to Ssoa;

Ssoa: On input a bit b. Upon receiving {pk0
i , pk1

i }i∈[n]:
1. secret share the bit b: for i = 1, . . . , n: bi

$← {0, 1}, such that b =
(
⊕n

i=1 bi);
2. for i = 1, . . . , n do in parallel:

– send di
$← {0, 1} to Rsoa;

– run 〈STC
d̄i

i (pkd̄i

i , com, bi), RTC
d̄i

i (pkd̄i

i , rcv)〉 with Rsoa;
Rsoa: Upon receiving d1, . . . , dn: if all commitment phases of protocol TC were

successfully completed, send {rdi

i }i∈[n] to Ssoa;
Ssoa: Upon receiving {rdi

i }i∈[n] check consistency: for i = 1, . . . , n: (pk′di

i , sk′di

i )←
TGen(rdi

i ); if pk′di

i �= pkdi

i then abort.

Decommitment Phase

Ssoa: for i = 1, . . . , n: run (·, b′i)← 〈STC
d̄i

i (open), RTC
d̄i

i (open)〉 with Rsoa;
Rsoa: If all opening phases were successful completed output b′ ←

⊕n
i=1 b′i. Oth-

erwise, output ⊥.

The full proof of the following theorem can be found in the full version [18].

Theorem 1 (Protocol 1 is secure under selective opening attacks). If
TC = (TGen, STC, RTC, TFakeD) is a trapdoor commitment scheme, then Pro-
tocol 1 is a commitment scheme secure in presence of selective opening attacks.

(3,1)-round SOA-secure Scheme based on NBB use of OWFs. We observe that,
by instantiating Protocol 1 with the Feige-Shamir trapdoor commitment one can
obtain a (3,1) SOA-secure scheme with non-black-box access to OWFs.

3.2 (3,3)-Round Scheme from One-Way Permutations

In this section we present a (3, 3)-round SOA-secure commitment scheme based
on BB use of any OWP. As a main ingredient, we use a (3, 1)-round extractable
commitment scheme, that we refer to as ExtCom. Very informally, extractable
means that given black-box access to an adversarial sender, one can extract
the bit played by the latter. A (3, 1)-round extractable commitment can be
constructed from BB access to any OWP. Such construction is pretty standard,
thus for further details we refer the reader to the full version [18].

The idea behind the protocol is as follows. The sender and the receiver first
engage in a coin-flipping protocol where the receiver commits to its random-
string, then the sender sends its random string in the clear, and finally the
receiver reveals its random string. Simultaneously, the sender commits to its
input bit b, n pairs of times (with the two commitments in each pair indexed
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by 0 and 1). In the decommitment phase, at the completion of the coin-flipping
protocol, the sender opens only one of the commitments in each pair according
to the outcome of the coin-flipping.

To allow for simulation (while arguing hiding), the commitment of the re-
ceiver in the coin-flipping protocol is implemented via extractable commitment
scheme, so that the simulator can extract the receiver’s string in the commit-
ment phase itself. Furthermore, we require that the sender sends its random
string for the coin-flipping only in the decommitment phase; by the beginning of
the decommitment phase, the simulator will have received the bit b to open to,
and this gives the simulator an opportunity to craft its random string to point
to the commitments of b. To see why, first note that if the simulator somehow
knows the receiver’s random string before it sends its own, then it can easily
open the commitment to either 0 or 1: in each pair, it just commits to 0 in
one of the commitments and 1 in the other. Then, with the knowledge of the
receiver’s random string and the bit b, it can craft its own random string such
that the xor with the string of R points to the commitments of b. Since the
receiver commits via an extractable commitment scheme, the simulator is able
to extract the receiver’s random string and hence is able to equivocate in the
opening phase. Furthermore, as it will appear more clearly in the protocol, since
the sender would send its commitments (resp., decommitments) always after it
receives commitments (resp., decommitments) from the receiver, we require that
the sender’s 2n commitments to its input bit are implemented via extractable
commitment scheme so that we avoid malleability issues that may compromise
the binding property.

We prove binding by reducing it to the binding property of ExtCom (due
to the ExtCom commitments played by Ssoa) and to the computational hiding
property of ExtCom (due to the ExtCom commitments played by Rsoa). At a high
level, we show that if an adversarial sender breaks binding, then it should have
been able to bias outcome of the coin-flipping by predicting the randomness
committed to by the receiver using ExtCom, before the sender sends its own
ExtCom commitments. Then in the reduction, we make use of this fact to break
computational hiding of ExtCom.

We now provide formal specification of our protocol. Let ExtCom be a (3, 1)-
round extractable commitment scheme. In the following we denote by 〈Sext

i(com,
ai) , Rext

i (rcv)〉 the i-th of the n parallel executions of the extractable commit-
ment scheme run by Rsoa to commit to its random string for coin-flipping, while
we denote by 〈Sext

i,σ(com, b), Rext
i,σ(rcv)〉 the commitment in position σ of the

i-th pair (among the n pairs) of parallel executions run by Ssoa to commit to its
input b.

Protocol 2. [(3,3)-round SOA-Commitment] [SOACom=(Ssoa, Rsoa)]
Commitment Phase

Rsoa : For i = 1, . . . , n do in parallel:
1. ai

$← {0, 1};
2. run 〈Sext

i(com, ai), Rext
i(rcv)〉 with Ssoa;
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Ssoa : on input a bit b. For i = 1, . . . , n do in parallel:
1. run 〈Sext

i,0(com, b), Rext
i,0(rcv)〉 with Rsoa;

2. run 〈Sext
i,1(com, b), Rext

i,1(rcv)〉 with Rsoa;

Decommitment Phase

Ssoa : If all extractable commitments played with Rsoa are successfully completed,
send d

$← {0, 1}n to Rsoa;
Rsoa : Open all commitments:

for i = 1 . . . , n: run 〈Sext
i(open), Rext

i(open)〉 with Ssoa;
Ssoa : If all openings provided by Rsoa are valid, for i = 1, . . . , n:

1. σi ← di ⊕ ai;
2. run 〈Sext

i,σi(open), Rext
i,σi(open)〉 with Rsoa;

Rsoa : If all the corresponding openings provided by Ssoa open to the same bit b,
and if for every i, σi = di ⊕ ai, then output b. Otherwise, output ⊥.

Theorem 2 (Protocol 2 is secure under selective opening attacks). If
ExtCom is an extractable commitment scheme, then Protocol 2 is a commitment
scheme secure in presence of selective opening attacks.

Details on the proof can be found in the full version of this paper [18]. In [18] we
also show a variation of Protocol 2, which yield a 5-round commitment scheme
with non-interactive decommitment, and is based on OWPs.

4 Issues in Some of the Claims of [23]

In this section we point out some issues regarding some of the main results
in [23].

Revisiting Proof of Theorem 3.3 in [23]. Theorem 3.3 in [23] claims that their
(4, 1)-round protocol is SOA-secure under parallel composition with BB use of
OWPs. The protocol recalls the equivocal commitment scheme of [5]. There is
a preamble for coin flipping followed by Naor’s commitment. In the preamble,
the receiver commits to a random string α using a non-interactive (therefore
computationally hiding only) commitment scheme; the sender sends a random
string β in the clear; and finally, the receiver opens its commitment. Then the
sender sends a Naor’s commitment computed on the output of the coin flip-
ping. Theorem 3.3 in [23] claims that the resulting protocol is computationally
hiding, computationally binding and SOA-secure under parallel composition.
We observe that this construction suffers of issues in the proof of binding and
SOA-security. Concerning binding, [23] claims that it follows from the same
arguments of Naor’s commitment [16]. However this would be the case only if
the commitment used by the receiver is at least statistically hiding (as in [5]),
which is not the case in the (4, 1)-round construction of [23]. SOA-security is
claimed to follow from the simulation strategy of Goldreich and Kahan [11]. The
issue here is that, such simulation strategy does not apply to the selective open-
ing setting where multiple sessions are played in parallel with possibly different
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abort probabilities. Similar issues have been pointed out in [22] on previous work
on round-optimal concurrent zero knowledge with bare public keys. The same
issue on simulatability holds for the (t + 3, 1)-round scheme. We remark that
although the (t + 3, 1)-round scheme of [23] is not simulatable directly via the
Goldreich-Kahan’s simulation strategy, the author of [23], elaborated an alter-
native simulation strategy for the same protocol. See [24] for details.

Revisiting Proof of Theorem 3.5 in [23]. Theorem 3.5 of [23] claims that if a
coin-flipping preamble implemented via the ω(log(n))-round preamble of [21],
is followed by Naor’s commitment, then the resulting protocol is an ω(log(n))-
round scheme that is SOA-secure under fully-concurrent composition with BB
use of OWPs. Moreover, Theorem 3.5 also applies to the strong definition where
the same simulator must work with respect to all distribution of messages, in-
cluding the ones selected by the adversary and unknown to the simulator.

According to their proof, the simulatability of the protocol follows from the
PRS’s simulation strategy [21]. Specifically, if the coin-flipping is implemented
with the PRS preamble, the claim of [23] is that the PRS’s simulator obtains
the random string committed to by the receiver, by the end of the coin-flipping,
and this values can be used by the SOA-simulator to equivocate.

However the oblivious strategy of [21] cannot be applied in the SOA-setting
(and, as we prove in Theorem 3 there exists no simulation strategy that can be
applied if the black-box simulator has no access to the message distribution).

To see why, first recall that the proof of concurrent zero knowledge of [21] (used
by [23]) critically relies on the fact that, the probability that the simulator aborts,
namely, it reaches the end of a preamble without solving the session, is negligible.
Second, observe that in the setting of fully-concurrent SOA, the adversarial
receiver adaptively selects the sessions to be opened, and the opening of one
session can be interleaved with the preamble of another session. In particular,
during the rewinding threads needed by the PRS’s simulator, the adversary can
ask the opening of sessions that were not asked in the main thread. The simulator
could handle such sessions in two possible ways. For one, it can query the external
oracle to obtain the messages for the new sessions requested by the adversary7,
and then proceed to the completion of the rewinding thread. This would lead
to a deviation in the distribution of the sessions queried to the external oracle,
since the number of queries made in the simulation will be larger compared to
the real game. On the other hand, the simulator can simply abort the rewinding
threads that require the opening of new sessions (and thus additional queries
to the external party). However, this will contradict the necessary condition
(i.e., the simulator should abort with negligible probability only) for the PRS
strategy [21] to be applicable. We stress that the above observations crucially
rely on the fact that the protocol of [23] is claimed to be SOA-secure in the
7 Note that here we are critically considering the case in which the distribution is not

known to the simulator, and therefore the only way to answer consistently for it is
to query the oracle. If instead the distribution is known, the simulator could sample
from the distribution and therefore manage in some way the opening of new sessions
started during rewinding thread.
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strong sense, namely, the simulator cannot sample from the distribution of the
messages committed by the honest sender.

Revisiting Proof of Theorem 4.4 in [23]. Theorem 4.4 in [23] states that, there
exists no (3, 1)-round commitment scheme that is SOA-secure even under parallel
composition, when security is proved using a black-box simulator. The proof
essentially assumes that the structure of the commitment phase is such that the
sender speaks first. However, we argue that this assumption loses generality. In
fact, we present a (3, 1)-round commitment scheme (Protocol 1) in which the
receiver speaks first, such that security in the concurrent-with-barrier setting
(that is strictly stronger than the parallel composition setting of [23]) is proved
using a black-box simulator. We observe that, the proof of Theorem 4.4. of [23],
however, can be used to show impossibility of 2-round SOA-secure protocols
(when security is proved via black-box simulation).

5 Impossibility of Strong Fully-Concurrent SOA-Security
with Black-Box Simulation

The protocols presented in this paper achieve security under concurrent-with-
barrier composition in the “strong” sense, that is, assuming that the simulator
cannot sample from the distribution of the messages committed to by the sender.
The last question to answer is whether there exist protocols that actually achieve
the definition of security under strong fully-concurrent composition (as defined
in [23]), or if the strong concurrent-with-barrier security definition is the best one
can hope to achieve (when black-box simulation is taken into account). In this
section we show that in contrast to the claim of Theorem 3.5 of [23], the strong
fully-concurrent security definition of [23] is impossible to achieve. This holds
regardless of the round complexity of the protocol 8 and of the black-box use
of cryptographic primitives. Under the assumption that OWFs exist, the only
requirements that we use for the impossibility is that the simulator is black-box
and does not know the distribution of the messages committed by the sender.
Both requirements are already specified in the strong fully concurrent security
definition of [23].

Theorem 3. If OWF exists, then no commitment scheme can be strong SOA-
secure under fully-concurrent composition.

Proof Idea. The proof consists in adapting a proof provided by Lindell in [15]. [15]
shows that, there exist functionalities, for which proving that a protocol is secure
under m-concurrent composition using a black-box simulator, requires that the
protocol has at least m rounds. As corollary it holds that, for such functional-
ities, unbounded concurrency proved using a black-box simulator is impossible
to achieve. Such a theorem cannot be directly applied to the case of SOA-secure

8 This is therefore different from the case of concurrent zero knowledge [4,21].
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commitments since it is provided only for two functionalities in which both par-
ties have private inputs, such as, blind signatures and OT functionalities. In the
setting of SOA-secure commitments the receiver has no private input and there
is no ideal functionality involved. For our setting, we observe that, the fact that
simulator cannot sample from the message distribution, means that it needs to
access to an oracle for that. In our proof, we convert the role of the oracle into
the role of the ideal functionality, and when deriving the contradiction we do
not break the privacy of the receiver but the binding of the protocol.

The proof is based on the following two observations. First of all, since the
simulator is black-box, the only advantage that it can exploit to carry out a
successful simulation, is to rewind the adversary. Moreover, rewinds must be
effective, in the sense that upon each rewind, the simulator must change the
transcript in order to “extract” information from the adversary (obviously, if the
transcript is not changed, then the rewind is useless). Second, in the strong SOA
setting, the malicious receiver chooses the sessions to be opened, adaptively on
the transcript seen so far, and the simulator can obtain the correct messages to
be opened, only by querying the oracle. Changing the transcript in a rewinding
attempt, may yield the adversary to change the sessions asked for opening (in
particular to open sessions that were not asked in the main thread) and in
turn, it may require the simulator to make additional queries to the oracle.
Such additional queries are caused only by the rewinding attempts and they do
not appear in the real-world execution. However, the distribution of the set of
sessions’ indexes asked by Sim in the ideal game, should not be distinguishable
from the one asked by the adversary in the real game. Thus, the idea of the proof
is to show that there exists an adversarial receiver, that makes the rewinding
attempts of any black-box Sim ineffective, unless Sim makes additional queries
the oracle, and hence the set of sessions asked in the ideal game is distinguishable
from the set asked in the real game. Then, the next step is to show that, if
nonetheless there exists a simulator that is able to deal with such an adversary
(without rewinding), then such a simulator can be used by a malicious sender
to break the binding of the protocol. The formal proof can be found in the full
version of this paper [18].

6 Application to cZK with Pre-processing

We show how to use SOA-secure commitment schemes to construct concurrent
zero-knowledge (cZK) protocol with pre-processing by using OWFs only, there-
fore improving a previous result of [5]. We combine our (3, 1)-round SOA-secure
computationally binding scheme based on NBB use of OWFs with the use of the
special WIPoK of [14]. The preprocessing takes 3 rounds and is composed by
two subprotocols played in parallel. The first subprotocol is a coin-flipping pro-
tocol where the prover commits to a random string using the SOA commitment
that ends with the 3rd round of the verifier. In the 3rd round the verifier also
sends his random string and the xor of the two strings is the outcome of this
subprotocol. The second subprotocol is a special WIPoK to prove that x ∈ L
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or the output of the coin flipping is also the output of a PRG. Only two rounds
of this subprotocol are played during the preprocessing.

At the end of the above preprocessing the prover knows the result of the coin
flipping and later non-interactively can complete the proof by opening his SOA
commitment and sending the last round of the special WIPoK. The simulator
will get advantage of the simulator of the SOA commitment to bias the outcome
of all coin-flipping protocols, therefore being able to complete all proofs running
the prover of the special WIPoK using the trapdoor witness. For more details
the reader is referred to the full version of this paper [18].
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Abstract. Motivated by recent developments in fully homomorphic en-
cryption, we consider the folklore conjecture that every semantically-
secure bit-encryption scheme is circular secure, or in other words, that
every bit-encryption scheme remains secure even when the adversary is
given encryptions of the individual bits of the private-key. We show the
following obstacles to proving this conjecture:

1. We construct a public-key bit-encryption scheme that is plausibly
semantically secure, but is not circular secure. The circular security
attack manages to fully recover the private-key.
The construction is based on an extension of the Symmetric Ex-
ternal Diffie-Hellman assumption (SXDH) from bilinear groups, to
�-multilinear groups of order p where � ≥ c · log p for some c > 1.
While there do exist �-multilinear groups (unconditionally), for � ≥
3 there are no known candidates for which the SXDH problem is
believed to be hard. Nevertheless, there is also no evidence that
such groups do not exist. Our result shows that in order to prove
the folklore conjecture, one must rule out the possibility that there
exist �-multilinear groups for which SXDH is hard.

2. We show that the folklore conjecture cannot be proved using a black-
box reduction.That is, there is no reduction of circular security of a bit-
encryption scheme to semantic security of that very same scheme that
uses both the encryption scheme and the adversary as black-boxes.

Both of our negative results extend also to the (seemingly) weaker con-
jecture that every CCA secure bit-encryption scheme is circular secure.

As a final contribution, we show an equivalence between three seem-
ingly distinct notions of circular security for public-key bit-encryption
schemes. In particular, we give a general search to decision reduction
that shows that an adversary that distinguishes between encryptions of
the bits of the private-key and encryptions of zeros can be used to actu-
ally recover the private-key.

1 Introduction

Modern cryptographic applications, both practical and theoretical, have led
to the study of increasingly complex types of attacks on encryption schemes.
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tern at Microsoft Research, New England.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 579–598, 2013.
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For example, chosen plaintext attacks (CPA) and chosen ciphertext attacks
(CCA) extend the classical notion of semantic security [GM84] by allowing an
attacker access to encryptions of arbitrary messages of its choice (in the CPA
model) and to a decryption oracle (in the CCA model).

A different type of attack that has been recently considered is when the at-
tacker manages to obtain encryptions of messages that are related to the (pri-
vate) decryption-key. The notion of key dependent message (KDM) security was
first considered by Camenisch and Lysyanskaya [CL01] and (independently) by
Black et al.[BRS02]. Informally, an encryption scheme is KDM secure for a class
of functions F if it is infeasible to distinguish between an oracle that on input
f ∈ F outputs an encryption of f evaluated on the decryption-key and an oracle
that just returns encryptions of zeros.

Perhaps the most basic type of KDM attack is one in which the attacker is just
given an encryption of the entire decryption-key. Security with respect to such a
KDM attack is also known as “circular security” since the key encrypts itself.1

While some encryption schemes have been proved to be circular secure under
plausible cryptographic assumptions (e.g., [BHHO08, ACPS09]), it is natural to
ask whether semantic security actually guarantees circular security. A folklore
example shows that this is not the case: given any private-key encryption scheme
we can slightly modify the encryption algorithm by checking if the input mes-
sage is the (symmetric) key itself or not. If not, then the encryption proceeds
as usual. But, if the input message equals the key, then the encryption algo-
rithm is modified to output the key in the clear. The resulting scheme is still
semantically secure2 and yet it is not circular secure, since an adversary that
gets an encryption of the key trivially breaks security. The counterexample can
be easily extended to the public-key setting by having the encryption algorithm
check whether a given input message functions as a “good” decryption-key.3

The foregoing counterexample shows that, in general, semantic security does
not suffice for circular security. Motivated by recent developments in fully homo-
morphic encryption (see Section 1.2), we restrict our attention to a specific class
of encryption schemes - those that encrypt their input bit-by-bit (also called bit-
encryption schemes).4 Thus, we ask whether every bit-encryption scheme that

1 Circular security may also refer to larger key cycles were there are t keys arranged
in a directed cycle and the adversary sees encryptions under every key of its next
neighbor’s key. We only consider the case t = 1.

2 Semantic security follows from the fact that the probability that the message (which
is selected before the keys) equals the key is negligible.

3 The (public-key) encryption algorithm can do so by encrypting sufficiently many ran-
dom messages and checking whether the given input message (used as a decryption-
key) correctly decrypts these ciphertexts.

4 We assume that the encryption algorithm does not maintain a state between exe-
cutions. Note that the folklore counterexample for full fledged encryption can be
adapted to stateful bit-encryption schemes by having the encryption algorithm
record its last n (single-bit) messages in a buffer (where n is the length of the
decryption-key), and outputting the decryption-key in the clear whenever the buffer
equals the decryption-key.
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is semantically secure is also circular secure. An alternative way to phrase the
question is whether every semantically secure (either private-key or public-key)
encryption scheme remains secure even if the adversary is given encryptions of
the individual bits of the decryption-key (in order, of course).

At this point it is worthwhile to point out two ways in which the counterex-
ample (for full fledged encryption schemes) uses the fact that the encryption
algorithm is given the entire decryption-key as its message:

1. It is easy to identify when the decryption-key is given as the input message
to the encryption algorithm (trivially in the private-key setting and almost
as easily in the public-key setting); and

2. In the semantic security setting, the event that the message equals the
decryption-key is sufficiently rare that we can modify the encryption al-
gorithm to handle this event in a special way without jeopardizing security.

In the case of bit-encryption schemes both properties no longer hold and con-
structing a counterexample seems to be more difficult.5 In fact, the above has
led to a folklore conjecture, which we call the bit-encryption conjecture, that
every secure bit-encryption scheme (either private-key or public-key) is in fact
circular secure. Let us state this as:

Conjecture 1 (Bit-Encryption Conjecture). Every semantically secure public-key
bit-encryption scheme is circular secure.

The focus of this work is to show obstacles to proving the validity of this conjec-
ture. Focusing on the public-key case only strengthens our negative results since
every public-key scheme is also a private-key scheme. (In Section 1.3 we also
discuss the (seemingly) weaker conjecture that every CCA secure bit-encryption
scheme is circular secure.)

1.1 Our Results

We address the question of circular security for bit-encryption schemes and show
the following results:

A Circular Insecure Bit-encryption Scheme Based on 
-multilinear Maps. We
construct a (plausibly) semantically secure public-key encryption scheme for
which, given encryptions of the bits of the decryption-key, it is possible to fully
recover the decryption-key (i.e., the strongest type of attack). The security of our
construction is based on an extension of the Symmetric External Diffie-Hellman
(SXDH) assumption (see, e.g., [ACHdM05, BGdMM05, ABBC10, CGH12]) to
multilinear groups, which we describe next.

5 In fact, for the very same reasons, even constructing an encryption scheme for loga-
rithmically long messages that is semantically secure but circular insecure seems to
be difficult. We note that our negative results extend also to this case but in this
work we only discuss the single bit case.
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An 
-multilinear map is a (non-degenerate) mapping e : G1 × · · · ×G� → GT

where G1, . . . , G� and GT are cyclic groups of prime order p, such that for every
g1 ∈ G1, . . . , g� ∈ G�, every i ∈ [
] and a ∈ Zp it holds that

e(g1, . . . , g
a
i , . . . , g�) = e(g1, . . . , g�)

a.

Recall that, informally, the Decisional Diffie Hellman (DDH) assumption is said
to hold in the cyclic group G if it is infeasible to distinguish between g, ga, gb, gab

and g, ga, gb, gc where g is a generator of G and a, b and c are random exponents.
The standard SXDH assumption extends the DDH assumption to 2-multilinear
(a.k.a bilinear) groups by stating that there exist groups (G1, G2) equipped with
a bilinear map for which the DDH assumption holds (separately) for each one of
the groups G1 and G2. We further extend the SXDH assumption by assuming
that there exist 
-multilinear groups for which DDH is hard in each one of the 

groups. For our result to hold we need 
 ≥ c · log p for some c > 1.

Since, for 
 > 2, we do not have candidate 
-multilinear groups for which we
conjecture SXDH to be hard, we do not interpret our construction as a coun-
terexample, but rather as an obstacle to proving the bit-encryption conjecture
(Conjecture 1). Our construction shows that in order to prove that every seman-
tically secure bit-encryption scheme is circular secure one would have to rule out
the existence of 
-multilinear groups for which SXDH is hard.

The possibility of constructing 
-multilinear group schemes for which discrete
log is hard was previously considered by Boneh and Silverberg [BS03], who
showed cryptographic applications of multilinear maps as well as difficulties in
constructing such group schemes based on known techniques in algebraic geom-
etry. We note that [BS03] only considered the special case of G1 ≡ . . . ≡ G�

and the hardness of discrete log for G1 (in fact, if G1 ≡ . . . ≡ G� then SXDH
becomes trivially easy6).

We also note that the standard SXDH assumption was previously used in
the context of circular security by Acar et al.[ABBC10] and Cash et al.[CGH12].
Both Acar et al. and (independently) Cash et al. address the question of whether
every encryption-scheme (not necessarily a bit-encryption scheme) is secure if
the adversary gets a key-cycle of length 2. They show strong negative evidence
by constructing an encryption scheme (that is not a bit-encryption scheme) that
is semantically secure based on (standard) SXDH but is insecure if the adversary
gets a key cycle of length 2. In contrast, we show a bit-encryption scheme (based
on the aforementioned extension of SXDH to multilinear groups) that is insecure
when the adversary gets a cycle of length 1, that is, an encryption of the secret
key (see the discussion above for why bit-encryption is more interesting in this
context).

Impossibility of Black-box Reductions. We show that a black-box reduction can-
not be used to prove the bit-encryption conjecture. Our black-box impossibility

6 Using the fact that the groups are equals, we can solve DDH in G1. Specifically,
given g, ga, gb, gc ∈ G1 just compare e(ga, gb, g, . . . , g) and e(gc, g, . . . , g), where we
use the fact that gb ∈ G2 = G1. If c = ab then equality holds but if c is random then
the two values are different with overwhelming probability.
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result differs from standard black-box impossibility results in that we do not
consider the possibility of constructing a circular secure bit-encryption from any
semantically-secure bit-encryption but rather the question of whether every se-
mantically secure bit-encryption is by itself already circular secure.

In other words, we prove that there cannot exist a general black-box reduction
that transforms any circular security attack into a semantic security attack. By
black-box we mean that the reduction uses both the attack and the primitive
(in our case the encryption scheme) in a black-box manner (for a discussion of
different types of black-box separations, see [RTV04]).

We note that for the application to fully homomorphic encryption (see Sec-
tion 1.2), a construction of a circular-secure scheme from any bit-encryption
scheme would most likely not be helpful. Indeed, in order to be useful, such
a construction would have to preserve both the homomorphic properties and
the decryption depth (for the bootstrapping operation). Thus, we focus on the
question of whether every bit-encryption scheme is by itself circular secure.

We mention that Haitner and Holenstein [HH09] also showed a (different)
black-box impossibility result for KDM security. See the full version for a com-
parison of the results.

From Indistinguishability to Key-Recovery. We show an equivalence between
three natural notions of circular security for public-key bit-encryption schemes.
In all three scenarios we give the adversary access to an oracle that on input
i returns an encryption of the i-th bit of the decryption-key. We refer to this
oracle as the KDM oracle. The three security notions differ in the task that a
hypothetical adversary, which has access to the KDM oracle, has to accomplish
in order to be deemed successful (i.e., break security). We consider the following
possible tasks:

1. The adversary needs to fully recover the decryption-key.
2. The adversary gets as input an encryption of a random bit and needs to

guess the value of this bit.
3. The adversary is given access to either the KDM oracle or an oracle that

always returns encryptions of 0 and needs to distinguish in which of the
two cases it is. This is the standard notion of circular security as defined in
[CL01, BRS02].

We show that the three foregoing notions are actually equivalent. In particular,
this result implies a general search to decision reduction that transforms any
circular security distinguisher into an adversary that, given access to the KDM
oracle, can fully recover the decryption-key d. (In contrast, in the setting of
semantic security, finding the key can be a much harder task than recovering the
message from the ciphertext.)
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1.2 Connection to Fully Homomorphic Encryption and Full KDM
Security

Other than being an interesting and natural question on its own, the question of
circular security for bit-encryption schemes is further motivated by recent break-
throughs in the construction of fully homomorphic encryption schemes (FHE)
and fully KDM secure encryption schemes.

Fully Homomorphic Encryption. Informally, an FHE is an encryption scheme for
which given an encryption of a message m and any circuit C, one can compute
an encryption of C(m) without knowing the decryption-key.

Gentry [Gen09] constructed the first FHE and gave a general technique called
bootstrapping for the construction of FHE schemes. Gentry’s idea is to first
construct an encryption scheme that is somewhat homomorphic (that is, ho-
momorphic with respect to some limited class of circuits), and then, using the
bootstrapping technique, to transform it into an FHE. The bootstrapping tech-
nique inherently uses the assumption that the underlying somewhat homomor-
phic encryption is circular secure.7 Since most of these schemes are bit encryption
schemes and their circular security is only conjectured and not proved (based on
their semantic security), the question of circular security for bit-encryption is es-
pecially important for the construction of secure FHE. In particular, proving the
bit-encryption conjecture would establish the existence of an FHE based solely
on (say) the hardness of the learning with errors (LWE) problem (see [BV11]).

Our KDM equivalence theorem for bit-encryption (see end of Section 1.1) is
also of particular interest to the current candidate FHE schemes. As alluded to
above, the theorem implies that a KDM distinguisher can be used to construct an
attacker that given access to the KDM oracle actually finds the decryption-key.
However, for the current candidate fully homomorphic bit-encryption schemes,
the KDM oracle can actually be simulated using only the public-key.8 Thus, the
equivalence theorem gives a generic (and simple) search to decision reduction for
these schemes that transforms any attack that breaks semantic security into an
attack that finds the decryption-key (without using an external KDM oracle).

Full KDM Security from Semantic Security. An additional motivation for the
study of the circular security of bit-encryption schemes arises from the recent

7 Actually, there are two variants of the bootstrapping technique. The one that we
refer to assumes circular security and constructs an FHE. The other variant does not
assume circular security but only achieves leveled FHE (i.e., an encryption scheme
that is homomorphic with respect to any circuit of some a priori fixed depth) and
also increases the length of the public-key multiplicatively in the depth of supported
circuits.

8 This follows from the facts that (1) the public-key of these schemes actually contains
encryptions of the bits of the decryption-key (for bootstrapping), and (2) ciphertexts
can be re-randomized. An oracle query for the i-th bit of the decryption-key can be
simulated by re-randomizing the ciphertext in the public-key that is an encryption
of the i-th bit of the decryption-key.
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work of Applebaum [App11] (following [BHHI10, BGK11]) who showed an ampli-
fication theorem for KDM security. Specifically, [App11] showed that an encryp-
tion scheme that is KDM secure for any fixed class of polynomial-size circuits,
can be constructed from an encryption scheme that is KDM secure only with
respect to the class of projections and negation of projections (i.e., any function
f of the form f(d) = di or f(d) = 1 − di). Thus, proving a slightly stronger
variant of the bit-encryption conjecture would imply that semantic security is a
sufficient assumption for the construction of a very strong form of KDM security.

1.3 Chosen Ciphertext Security vs. Circular Security

Recall that an encryption scheme is CCA-2 secure if it is semantically secure even
when the attacker has access to a decryption oracle that decrypts any ciphertext
other than the challenge ciphertext.

Since we show difficulties to proving that every semantically secure bit-
encryption is circular secure, it is natural to ask whether a stronger notion
of security, such as CCA security, might instead suffice. We first note that our
black-box impossibility result extends also to this case. That is, we show that
there is no blackbox reduction of circular-security even to CCA-2 security.

Actually, assuming the existence of doubly-enhanced trapdoor permutations,
the conjecture that every CCA bit-encryption scheme is circular-secure is equiva-
lent to the bit encryption conjecture. This equivalence follows from the fact that
the Naor-Yung paradigm [NY90] transforms a semantically secure but circular
insecure scheme into a CCA secure but circular insecure one.9 Using this observa-
tion we can extend our construction of a circular-insecure bit-encryption scheme
(based on multilinear SXDH, see Section 3) to a CCA-2 secure but circular-
insecure bit-encryption scheme (assuming, in addition to multilinear SXDH, the
existence of doubly-enhanced trapdoor permutations).10

Remark. We also mention that the converse direction that asks whether every
circular secure bit-encryption scheme is also CCA secure is in fact false (assum-
ing that there exist circular secure bit-encryption schemes at all). For example,
taking any circular secure scheme and modifying it by adding to the public-key
an encryption of the decryption-key, yields a scheme that is circular secure but
is not even CCA-1 secure.

9 Recall that the Naor-Yung paradigm consists of a double encryption of the plaintext
using independent keys and a non-interactive zero-knowledge (NIZK) proof of con-
sistency. A circular security attack on the underlying scheme immediately translates
into a circular security attack on the constructed CCA secure scheme. Note that
the Naor-Yung transformation can be made to achieve not only CCA-1 security but
even CCA-2 security (see [Sah99] or [Lin06]).

10 We note that this equivalence does not directly imply the extension of our black-box
result to the CCA case because the Naor-Yung transformation makes non black-
box use of the encryption scheme. Instead we prove the extension of the black-box
result directly (without even assuming the existence of doubly-enhanced trapdoor
permutations).
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Organization

In Section 2 we define KDM security and the cryptographic assumptions that we
will use. In Section 3 we present our “multilinear map” based circular insecure
bit-encryption scheme. In Section 4 we prove the equivalence of three notions
of KDM security. Finally, in Section 5, we present our black-box impossibility
result.

2 Preliminaries

We denote by x ∈R S a random variable x that is uniformly distributed in the
set S.

Semantic Security and CCA Security. In this work we consider only bit-
encryption schemes, that is, encryption schemes that encrypt only single bit
messages. We use the standard definition of semantic-security and CCA security
(as in [Gol04]) restricted to single-bit messages.

2.1 KDM and Circular Security for Bit-Encryption

To model KDM security we need to specify what information is given to the ad-
versary and what it means for the adversary to break security. The former is the
simpler of the two - we simply give the adversary access to an oracle (henceforth
called the KDM oracle) that on input i returns a (random) encryption of the i-th
bit of the decryption-key. Formally, for a pair (e, d) of encryption and decryption
keys, we define an oracle Oe,d(i) which on input i ∈ [|d|] returns Ence(di).

Turning to the second part of the definition, we consider three possible ways
in which an adversary can break security. The strongest type of attack (which
corresponds to the weakest definition of security) that we consider is full key
recovery. Security against this type of attack means that no efficient adversary,
which gets encryptions of the individual bits of the decryption-key, can find
the entire decryption-key. Using the definition of the oracle Oe,d we can define
circular security of bit-encryption with respect to key-recovery:

Definition 2. A public-key bit-encryption scheme (KeyGen,Enc,Dec) is cir-
cular secure with respect to key recovery if for every probabilistic polynomial-time
oracle machine A it holds that

Pr
(e,d)←KeyGen(1n)

[
AOe,d(e) = d

]
< neg(n).

It is worth noting that, in contrast to the semantic security setting, in the KDM
setting the decryption-key is information theoretically determined and therefore
there is at least some hope to recover the actual decryption-key used by the
scheme.11

11 In the semantic security model, there may be many decryption keys corresponding
to the same encryption-key and a semantic security adversary (which only has ac-
cess to functions of the encryption-key) cannot hope to always find the particular
decryption-key being used.
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Next, we consider an adversary that is given an encryption of a random bit,
as well as access to the KDM oracle, and needs to guess the value of the bit:

Definition 3. A public-key bit-encryption scheme is circular secure with re-
spect to message recovery if for every probabilistic polynomial-time oracle ma-
chine A it holds that

Pr
(e,d)←KeyGen(1n),

b∈R{0,1}

[
AOe,d(e, Ence(b)) = b

]
<

1

2
+ neg(n).

Lastly, we consider the standard definition of circular security as put forth by
[CL01, BRS02]. Their definition requires that if be infeasible for an adversary
to distinguish between the KDM oracle and an “all zeros” oracle that always
returns encryptions of 0. Formally, for an encryption-key e, we define Je to be
an oracle that on input i just returns Ence(0) (i.e., an encryption under e of
the bit 0). In contrast to the two prior definitions, indistinguishability of oracles
does not inherently imply semantic security and therefore we explicitly add this
requirement.

Definition 4. A semantically-secure public-key bit-encryption scheme is circu-
lar secure with respect to indistinguishability of oracles if for every probabilistic
polynomial-time oracle machine A it holds that∣∣∣∣ Pr

(e,d)←KeyGen(1n)

[
AOe,d(e) = 1

]
− Pr

(e,d)←KeyGen(1n)

[
AJe(e) = 1

]∣∣∣∣ < neg(n).

In Section 4 we show that the three notions of circular security presented above
are actually equivalent.

2.2 Hardness Assumptions in Bilinear and �-Multilinear Groups

We first define bilinear and 
-multilinear maps and then define the computational
assumptions that we use.

An 
-multilinear map is a non-degenerate12 function e : G1 × · · · ×G� → GT ,
where G1, . . . , G�, GT are cyclic groups of prime order p such that for every
g1 ∈ G1, . . . , g� ∈ G�, every i ∈ [
] and a ∈ Zp, it holds that:

e(g1, . . . , g
a
i , . . . , g�) = e(g1, . . . , g�)

a.

An 
-multilinear group scheme is an algorithm that for every security parameter
n produces a description of 
 + 1 groups of order p (where p is an n-bit prime)
together with an efficiently computable 
-multilinear map that maps the first 

groups to the (
+ 1)-th group:

12 By degenerate we mean a function that maps all inputs to the identity element of
GT .
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Definition 5. Let 
 = 
(n) be a polynomially bounded function. An 
-multilinear
group scheme is a probabilistic polynomial-time algorithm GS that on input 1n

outputs params = (p, (G1, . . . , G�, GT ), (g1, . . . , g�, gT ), e) where 2n−1 < p < 2n

is an n-bit prime, G1, . . . , G� and GT are concise descriptions of 
+1 groups of
order p (that allow efficient evaluation of the group operation), with the respec-
tive generators g1, . . . , g�, gT and e : G1×· · ·×G� → GT is a concise description
of an efficiently computable 
-multilinear map.

For every 
 there exist trivial examples of 
-multilinear group schemes. However,
our computational hardness assumptions do not hold for these trivial examples.13

In fact, for 
 ≥ 3 we do not know of a candidate 
-multilinear group scheme for
which the discrete log problem is believed to be hard (in any of the groups).
Nevertheless, there is also no negative evidence that such group schemes do not
exist. For 
 ≤ 2 there do exist candidate group schemes for which discrete log is
conjectured to be hard (discussed next).

Computational Assumptions. Loosely speaking, the DDH assumption for a cyclic
group G states that the distributions (g, ga, gb, gab) and (g, ga, gb, gc) are com-
putationally indistinguishable, where g is a generator of G and a, b and c are
random exponents. The SXDH assumption extends DDH to 2-multilinear (a.k.a
bilinear) groups by assuming that there exist groups G1, G2 equipped with a
bilinear map such that the DDH assumption holds for both G1 and G2 (sepa-
rately). We further extend SXDH to the 
-multilinear SXDH assumption which
states that there exists an 
-multilinear group scheme for which DDH is hard
for all 
 groups G1, . . . , G�. Note that 1-multilinear SXDH corresponds exactly
to DDH and that 2-multilinear SXDH corresponds to the standard SXDH as-
sumption. We emphasize that we only have candidate group schemes for which
the 
-multilinear SXDH assumption is conjectured to hold for 
 ≤ 2 (see, e.g.,
[ACHdM05, BGdMM05, ABBC10, CGH12]).

Definition 6. The 
-multilinear SXDH assumption states that there exists an

-multilinear group scheme GS such that for every function i : N→ N for which
i(n) ∈ [
(n)], the following ensembles are computationally indistinguishable:

1. {params, i(n), gai(n), g
b
i(n), g

ab
i(n)}n∈N; and

2. {params, i(n), gai(n), g
b
i(n), g

c
i(n)}n∈N

where a, b, c ∈R Zp and params
def
= (p, (G1, . . . , G�, GT ), (g1, . . . , g�, gT ), e) is

distributed as GS(1n).

13 A trivial example of an �-multilinear group scheme is when G1, . . . , G� are all the ad-
ditive group mod p. Since exponentiation in the additive group corresponds to mod-
ular multiplication, being multilinear means that for every a, z1, . . . , z� ∈ Zp it holds
that e(z1, . . . , a · zi, . . . , z�) = a · e(z1, . . . , z�). Hence, the mapping e(z1, . . . , z�) =∏�

i=1 zi mod p is a multilinear map for these groups. Note however that discrete
log in the additive group is equivalent to modular division and can be efficiently
computed.
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3 A Circular Insecure Bit-Encryption Scheme

In this section we show a construction of a bit-encryption scheme (KeyGen,Enc,
Dec) that is (plausibly) semantically secure but is not circular secure. In Sec-
tion 3.1 we present the construction and prove its correctness. See the full version
for the proof of semantic security (based on the hardness of 
-multilinear SXDH,
for 
 ≥ c · log p for some constant c > 1). In Section 3.2 we use the multilinear
map to show a circular security attack on the scheme.

Notation. For a matrix X , we let X [i, j] denote the (i, j)-th entry of X .

3.1 The Encryption Scheme

Let GS be any 
-multilinear group scheme (as in Definition 5).

Construction 7. Consider the following public-key bit-encryption scheme
(KeyGen,Enc,Dec):

KeyGen(1n)
1. Invoke the group scheme algorithm to obtain params ← GS(1n) (where

params equals (p, (G1, . . . , G�, GT ), (g1, . . . , g�, gT ), e)).
2. Select X ∈R Z2×�

p (i.e., a 2× 
 matrix with random entries in Zp).

3. Set U =

[
g
X[0,1]
1 g

X[0,2]
2 . . . g

X[0,�]
�

g
X[1,1]
1 g

X[1,2]
2 . . . g

X[1,�]
�

]
.

4. Select s ∈R {0, 1}� and set α =
∑�

i=1 X [si, i] mod p.
5. The (public) encryption-key is (params, U, α) and the (private)

decryption-key is (X, s).

Enc(params,U,α)(σ) (where σ ∈ {0, 1})
1. Select at random r1, . . . , r� ∈R Zp.
2. Output (gr11 , (U [σ, 1])r1), . . . , (gr�� , (U [σ, 
])r�).

Dec(X,s)((c1, d1), . . . , (c�, d�))

1. If c
X[0,1]
1 = d1 output 0 and otherwise output 1.

Before proceeding, we wish to highlight a few points. First, we note that both
α and s are not used by the encryption or decryption algorithms and seem
unneeded. Second, we note that (ignoring the presence of α in the public-key)
even by setting 
 = 1 we obtain a secure encryption scheme (under DDH) and
it is not clear why we need a larger 
 (recall that we need 
 >> log p).

The reason for the existence of α and s is (solely) to help the KDM attacker
whereas the large value of 
 helps maintain semantic security despite the fact
that α is revealed in the public-key.14 The key idea is that in the semantic

14 Note that when using small values of � (in particular using � = 1), the fact that α is
revealed in the public-key makes the scheme totally insecure.
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security setting, an attacker has essentially no information about s (because 
 is
sufficiently large that α looks random) whereas, in the KDM setting, the attacker
can obtain additional information about s (specifically encryptions of the bits of
s) and can use this additional information to verify that α is consistent with s.

The above gives us a way to distinguish between the KDM oracle and the
all zeros oracle thereby breaking circular security with respect to indistinguisha-
bility of oracles. Using Theorem 8 this attack can be transformed into a full
key-recovery attack.

We proceed to show that Construction 7 is indeed correct. See the full version
for the proof that it is also semantically-secure (based on multilinear SXDH).

Correctness. Consider a pair of encryption and decryption keys
((params, U, α), (X, s)) and let ((c1, d1), . . . , (c�, d�)) be an encryption of

a bit σ ∈ {0, 1}. If σ = 0 then d1 = c
X[0,1]
1 and the ciphertext decrypts

correctly to 0. If σ = 1 then d1 = c
X[1,1]
1 and therefore, except with negligible

probability, d1 �= c
X[0,1]
1 . Hence, the ciphertext decrypts correctly to 1 (except

with negligible probability).
Note that we can easily eliminate the negligible decryption error by sampling

X from a statistically close distribution in which X [0, 1] �= X [1, 1].

3.2 The KDM Attack

We show a distinguisher that breaks the circular security with respect to indistin-
guishability of oracles (Definition 4) of Construction 7. Using Theorem 8, we can
obtain a KDM attack that breaks circular security with respect to key recovery
(Definition 2).

Our distinguisher gets as input a public-key and has access to either the KDM
oracle that on input i returns an encryption of the i-th bit of the decryption-key
or to the all-zeros oracle that always returns an encryption of 0. The goal of the
distinguisher is to distinguish between the two cases.

Consider the following distinguisher which has access to an alleged KDM
oracle and gets as input an encryption-key (params, U, α):

1. For i = 1, . . . , 
:

(a) Query the oracle for an encryption ((c1, d1), . . . , (c�, d�)) of si (the i-th
bit of s).

(b) Set yi = ci and zi = di.

2. If e(y1, . . . , y�)
α ≡p

∏�
i=1 e(y1, . . . , yi−1, zi, yi+1, . . . , y�) then output 1 and

otherwise output 0 (where ≡p denotes congruence mod p).

We first show that when using the KDM oracle, the distinguisher always outputs

1. Indeed, in this case yi = grii and zi = g
ri·X[si,i]
i . Therefore,
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�∏
i=1

e(y1, . . . , yi−1, zi, yi+1, . . . , y�) ≡p

�∏
i=1

e(gr11 , . . . , g
ri−1

i−1 , g
riX[si,i]
i , g

ri+1

i+1 , . . . , gr�� )

≡p

�∏
i=1

e(gr11 , . . . , gr�� )X[si,i]

≡p e(gr11 , . . . , gr�� )
∑�

i=1 X[si,i] mod p

≡p e(y1, . . . , y�)
α

and so the distinguisher outputs 1 in this case.
Next, consider the case that the distinguisher uses the all zeros oracle. In this

case we yet again have yi = grii but now zi = g
ri·X[0,i]
i and so we have:

�∏
i=1

e(y1, . . . , yi−1, zi, yi+1, . . . , y�) ≡p

�∏
i=1

e(gr11 , . . . , g
ri−1

i−1 , g
ri·X[0,i]
i , g

ri+1

i+1 , . . . , gr�� )

≡p

�∏
i=1

e(gr11 , . . . , gr�� )X[0,i]

≡p e(y1, . . . , y�)
∑�

i=1 X[0,i] mod p.

But, since the group GT is cyclic, it holds that:

Pr
[
e(y1, . . . , y�)

α ≡p e(y1, . . . , y�)
∑�

i=1 X[0,i] mod p
]

= Pr

[
�∑

i=1

X [si, i] ≡p

�∑
i=1

X [0, i]

]
≤ 2−� +

1

p
.

Hence, except with negligible probability, the distinguisher outputs 0 when given
access to the all zeros oracle and we conclude that our distinguisher breaks the
circular security of the scheme (with an overwhelming gap).

4 Equivalence of KDM Notions for Bit-Encryption

In this section, we establish an equivalence between the three notions of circular
security for bit-encryption that were defined in Section 2.1.

Theorem 8. For every public-key bit-encryption scheme the following are
equivalent:

1. The scheme is circular secure with respect to key recovery.
2. The scheme is circular secure with respect to message recovery.
3. The scheme is circular secure with respect to indistinguishability of oracles.

In particular, Theorem 8 implies that an adversary that merely distinguishes
between a KDM oracle and an all zeroes oracle with a non-negligible gap can be
used to fully recover the decryption-key.
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We provide sketches of the proofs. See the full version for full proofs.

Lemma 9. Every public-key bit-encryption scheme that is circular secure with
respect to key recovery is also circular secure with respect to message recovery.

Proof Sketch. Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme,
and suppose that there exists an adversary A that has access to the KDM oracle
and is given as input an encryption-key e and an encryption of a random bit b
and manages to guess b with non-negligible advantage. We use A to construct a
key-recovery adversary (which also has access to the KDM oracle).

Intuitively, it seems as though in order to find di (the i-th bit of the decryption-
key d), the key-recovery adversary can just invoke its KDM oracle on i to obtain
ci = Ence(di) and then run A on input (e, ci) (while answering A’s oracle queries
using its own KDM oracle). The intuition is that since A is a message recovery
attacker, it should output the bit di. The problem with this intuition is that A
is only guaranteed to work when given an encryption of a random bit that is
independent of the decryption-key (which is obviously not the case for di).

We resolve this problem by restricting our attention to the set S of all keys
(e′, d′) for which A manages to recover messages with non-negligible advantage.
We make two simple observations:

1. The set S contains a polynomial fraction of the keys (this follows from the
fact that A has a non-negligible advantage over all key pairs).

2. If a fixed key pair (e, d) is in S, then there should be a non-negligible gap
between the distribution A(e, Ence(0)) and the distribution A(e, Ence(1)).

Note that for a fixed (e, d), the distributionA(e, Ence(di)) is exactlyA(e, Ence(0)
if di = 0 and A(e, Ence(1)) if di = 1. Therefore, to find di we approximate the
following probabilities:

– The probability μ0 that A outputs 1 when given an encryption of 0.
– The probability μ1 that A outputs 1 when given an encryption of 1.
– The probability ν that A outputs 1 when given an encryption of di. (To

approximate this probability we use fresh calls to the KDM oracle.)

We guess that di is the bit b such that ν is closer to μb than to μ1−b and we are
correct with overwhelming probability (over the coins used for the approxima-
tions). By repeating this procedure for every i ∈ [|d|] we obtain an overwhelming
probability of finding d for every (e, d) ∈ S. Since S is sufficiently large, this gives
us a non-negligible probability of finding D even for a random key-pair (e, d). �

Lemma 10. Every public-key bit-encryption scheme that is circular secure with
respect to message recovery is circular secure with respect to indistinguishability
of oracles.

Proof Sketch. Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme
that is circular insecure with respect to indistinguishability of oracles. That is,
there exists an adversary A that gets as input an encryption-key e and access to
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an oracle that is either the KDM oracle or the all-zeros oracle and manages to
distinguish between the two cases.15 We use A to construct a circular security
message recovery adversary A′ for the scheme.

For simplicity, assume that A is just given an encryption-key e and a list of
ciphertexts c1, . . . , c� (where 
 is the length of the decryption-key d) and manages
to distinguish between the case that for every i the ciphertext ci is an encryption
of the i-th bit of d and the case that for every i the ciphertext ci is an encryption
of 0.16

We use a hybrid argument to argue that there exists an i ∈ [
] such that A,
given input e, (c1, . . . , c�), distinguishes between the following two cases:

1. c1, . . . , ci−1 are encryptions of the first i − 1 bits of d and ci, . . . , c� are
encryptions of 0.

2. c1, . . . , ci are encryptions of the first i bits of d and ci+1, . . . , c� are encryp-
tions of 0.

The hybrid argument only tells us thatA distinguishes the two cases for a random
pair of keys. The first step of our message-recovery adversary A′ is to find i (this
can be done by approximating the output distribution of A for every hybrid with
respect to random key pair) and to check that A distinguishes between the two
cases for the specific keys (e, d) (where A′ uses the KDM oracle to generate the
two neighboring distributions).

If A does not distinguish between the two cases then A′ just outputs 0 and 1
with probability 1

2 . If on the other hand, A does distinguish (and by the hybrid
argument there is a non-negligible probability for this event), then the i-th bit of
dmust be 1 (otherwise the two cases are identically distributed), and therefore A′

can decrypt its challenge ciphertext c by running A on c1, . . . , ci−1, c, ci+1, . . . , c�
where c1, . . . , ci−1 are encryptions of the first i− 1 bits of d and ci+1, . . . , c� are
encryptions of 0. If c is an encryption of 0 then the input to A corresponds to the
(i−1)-th hybrid whereas if c is an encryption of 1 then the input corresponds to
the i-th hybrid. The fact that A distinguishes between these two hybrids gives
A′ a non-negligible advantage in guessing the value of b. �

To complete the equivalence theorem, we also need to show the following:

Lemma 11. Every public-key bit-encryption scheme that is circular secure with
respect to indistinguishability of oracles is also circular secure with respect to key
recovery.

15 Actually, since Definition 4 explicitly requires semantic security, we may instead have
an adversary that directly breaks semantic security. The same adversary also breaks
circular security with respect to message recovery.

16 In the general case we need to handle an adversary that can ask for t encryptions
of each bit of the decryption-key, where t is a bound on the running time of the
adversary. To handle this case, we construct an intermediate adversary A′ that dis-
tinguishes between t encryptions of 0 and t encryptions of 1. We use an additional
hybrid argument to show how to convert A′ to a single message adversary (see the
full version for details).
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Intuitively, given a key recovery adversary we can obtain an indistinguishability
of oracles adversary by running the key-recovery adversary using the alleged
KDM oracle. If the oracle is indeed the KDM oracle then with non-negligible
probability the adversary finds the decryption-key whereas if the oracle is the
all zeros oracle then it should be infeasible to find the decryption-key. Since it
is easy to check whether the output of the key-recovery adversary is a “good”
decryption-key or not, we obtain a non-negligible advantage in distinguishing
between the two oracles. See the full version for the full proof.

5 A Black-Box Impossibility Result

In this section we show that the bit-encryption conjecture cannot be proved by
a black-box reduction. Actually, as discussed in Section 1.3, we prove a stronger
result, that the circular security of every CCA-2 secure bit-encryption cannot be
proved using a black-box reduction.

We start off by defining what we mean by a black-box reduction of circular
security of bit-encryption to semantic security and to CCA-2 security:

Definition 12. A black-box reduction of circular security to semantic security
for bit-encryption schemes is a probabilistic polynomial-time algorithm R such
that for every encryption scheme (KeyGen, Enc, Dec) and every circular se-
curity adversary A for which there exists a polynomial p and infinitely many n
such that:∣∣∣∣ Pr

(e,d)←KeyGen(1n)
[AOe,d(e) = 1]− Pr

(e,d)←KeyGen(1n)
[AJe(e) = 1]

∣∣∣∣ > 1

2
+

1

p(n)

there exists a polynomial p′ such that for infinitely many n:

Pr
(e,d)←KeyGen(1n)

b∈R{0,1}

[R(KeyGen,Enc,Dec),A(e, Ence(b)) = b] >
1

2
+

1

p′(n)

where the probabilities are also over the coin tosses of all algorithms.

A black-box reduction of circular security to CCA-2 security is defined sim-
ilarly except that the reduction R also has oracle access to the oracle Dec′d
that decrypts any message (using the decryption-key d) except for the challenge
ciphertext.

We prove the following theorem:

Theorem 13. There exists no black-box reduction of circular security to se-
mantic security for bit-encryption schemes. Furthermore, there also exists no
fully black-box reduction of circular security to CCA-2 security for bit-encryption
schemes.
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Note that the furthermore clause actually implies the theorem since CCA-2
security implies semantic security. Therefore, to prove Theorem 13, it suffices to
show a single encryption scheme and a successful circular security adversary for
the scheme such that the scheme is CCA-2 secure even given access to the circular
security adversary. Since we consider a reduction in which the circular security
adversary is used in a black-box manner, we may even consider an inefficient
circular security adversary.

For a given encryption-scheme, consider an inefficient circular security adver-
sary A that given an encryption-key e first finds the corresponding decryption-
key d (suppose that d is uniquely determined by e), then asks its oracle for
encryptions of all the key bits, decrypts these ciphertexts to obtain d′1, . . . , d

′
n

(where n = |d|) and outputs 1 if d′
def
= d′1, . . . , d

′
n equals d and ⊥ otherwise.

Indeed, A breaks circular security and therefore to prove Theorem 13, it suffices
to show a single encryption scheme for which it is infeasible to break semantic
security even given oracle access to A.

Intuitively, we would like to argue that the adversaryA specified above cannot
be used to break the security of any CCA-2 secure encryption scheme (although
to prove the theorem it suffices to show a single such scheme). The intuition is
that for such schemes, it is infeasible, given only the encryption-key, to produce
encryptions of all of the key bits.17 Therefore, it seems as though the reduction
cannot use the circular security adversary A in any meaningful way and that A
can be simulated by always returning ⊥. Thus, it seems as though the scheme
remains CCA-2 secure even given oracle access to A.

The problem with the foregoing argument is that the reduction may decide to
query A not on its own challenge encryption-key e but on some related key e′.
In such a case we can no longer argue that A can be simulated by just returning
⊥. While it seems strange for a generic reduction (which should work for any
CCA-2 encryption-scheme) to run A on keys other than its own, we cannot rule
out this possibility.

We overcome this difficulty by restricting our attention only to reductions
that also use the encryption-scheme as a black-box. Such reductions should also
work when given an inefficient encryption-scheme. We use this fact to construct
a specific inefficient CCA-2 secure encryption scheme that has the additional
important property that its encryption keys are totally unrelated. Therefore,
intuitively, querying the adversary A on a key e′ �= e cannot help the reduction
break semantic security.

Proof (of Theorem 13).
We construct an inefficient encryption scheme (KeyGen,Enc,Dec) and an in-

efficient circular security adversaryA for (KeyGen,Enc,Dec) such that no algo-
rithm R that makes only polynomially many oracle calls to (KeyGen,Enc,Dec)
and A can break CCA-2 security. The encryption scheme that we construct has
two main properties:

17 If it were feasible to generate encryptions of all the key bits than a CCA attacker
could use the decryption oracle on these encryptions to find the decryption-key and
break the security of the scheme.
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1. Given only the encryption-key it is infeasible to generate encryptions of all
of the bits of the private-key.

2. Encryption keys of the scheme are totally unrelated.

As is usual in black-box separations, our construction is randomized. That is,
we construct a family of encryption schemes and consider a random encryp-
tion scheme in the family. Specifically, consider a totally random length tripling
injective function G : {0, 1}n → {0, 1}3n and a collection of 2n random injec-

tive functions E def
= {Ee : {0, 1} × {0, 1}n → {0, 1}3n}e∈G({0,1}n). We define the

following family of encryption schemes (indexed by G, E):

KeyGen(1n) : select at random d ∈ {0, 1}n and output (e, d) such that e = G(d).
Ence(σ) : select at random r ∈ {0, 1}n and output Ee(σ, r).
Decd(c) : output b ∈ {0, 1} if there exists an r ∈ {0, 1}n such that c = Ee(b, r),

where e = G(d). Otherwise output ⊥.

Note that (KeyGen,Enc,Dec) essentially form an idealized encryption scheme
and that there is no correlation between different encryption keys. Additionally,
note that both the set of encryption keys and the sets of ciphertexts are a random
exponentially vanishing subset of {0, 1}3n and therefore a polynomially bounded

adversary only has probability poly(n)
22n < 2−n to produce a valid public-key or

ciphertext without invoking the oracles KeyGen and Enc.
Consider the following inefficient circular security adversary for

(KeyGen,Enc,Dec):

A(e, (c1, . . . , cn)) : output 1 if there exist r1, . . . , rn ∈ {0, 1}n and d ∈ {0, 1}n
such that G(d) = e and for every i ∈ [n], it holds that ci = Ee(di, ri).
Otherwise output ⊥.

The attacker A indeed breaks the circular security (with respect to indistin-
guishability of oracles) of (KeyGen,Enc,Dec) for every G, E . We proceed to
show that the reduction cannot utilize A to break CCA-2. That is, we will show
that for every probabilistic polynomial-time algorithm R and all sufficiently large
n it holds that

Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[R(KeyGen,Enc,Dec),A,Dec′d(e, Ence(b)) = b] <
1

2
+ 2 · 2−n (1)

where the probability is also over the coin tosses of all the algorithms and Dec′d is
the aforementioned CCA-2 decryption oracle. The existence of a single G, E that
is semantically secure follows (from standard black-box techniques, see [IR89]).

Our main step is to show that R can essentially simulate A by itself (Proposi-
tion 14). Once we get rid of A, it is not hard to see that R cannot break semantic
security (Proposition 15).
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Proposition 14. There exists a probabilistic polynomial-time algorithm R′ such
that for all sufficiently large n it holds that∣∣∣∣∣ Pr

G,E
(e,d)←G(1n)
b∈R{0,1}

[
R(KeyGen,Enc,Dec),A,Dec′d (e, Ence(b)) = b

]

− Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[
R′(KeyGen,Enc,Dec),Dec′d (e, Ence(b)) = b

] ∣∣∣∣∣ < 2−n.

Proposition 15. For any (computationally unbounded) algorithm R′ that makes
at most polynomially many oracle queries and for all sufficiently large n, it holds
that

Pr
G,E,b∈R{0,1}

[R′(KeyGen,Enc,Dec),Dec′d(e, Ence(b)) = b] <
1

2
+ 2−n

See the full version for the proofs of Proposition 14 and 15.
From Propositions 14 and 15 we obtain Eq. (1). Using standard techniques in

black-box separations (specifically an application of Markov’s inequality and the
Borel-Cantelli lemma, see [IR89]), the latter implies that there exist specific ora-
cles G and E for which the corresponding encryption scheme (KeyGen,Enc,Dec)
is CCA-2 secure. Thus, we have found an adversary A that breaks the circular
security of (KeyGen,Enc,Dec) but on the other hand (KeyGen,Enc,Dec) is
CCA-2 secure even given oracle access to A. �

Remark. Our black-box impossibility result only considers reductions that treat
both the adversary and the primitive (in our case the encryption scheme) as
black boxes. We note that the discussion preceding the proof of Theorem 13
shows that a reduction that uses only the adversary as a black-box must query
the adversary on keys that are somehow related to the challenge encryption-key.
Since such a reduction should work for all bit-encryption schemes, we view this
as an additional obstacle to proving the bit-encryption conjecture.

Acknowledgments. I would like to thank Benny Applebaum, Oded Goldreich
and Allison Lewko for very helpful conversations and comments.
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Constant parallel-time cryptography allows performing complex cryptographic
tasks at an ultimate level of parallelism, namely, by local functions that each of
their output bits depend on a constant number of input bits. The feasibility of
such highly efficient cryptographic constructions was widely studied in the last
decade via two main research threads.

The first is an encoding-based approach, developed in [1,2], in which standard
cryptographic computations are transformed into local computations via the use
of special encoding schemes called randomized encoding of functions. The second
approach, initiated by Goldreich [3], is more direct and it conjectures that almost
all non-trivial local functions have some cryptographic properties.

In this survey we focus on the latter approach. We consider random local
functions in which each output bit is computed by applying some fixed d-local
predicate P to a randomly chosen d-size subset of the input bits. Formally, this
can be viewed as selecting a random member from a collection FP,n,m of d-
local functions where each member fG,P : {0, 1}n → {0, 1}m is specified by a
d-uniform hypergraph G with n nodes and m hyperedges, and the i-th output of
fG,P is computed by applying the predicate P to the d inputs that are indexed
by the i-th hyperedge.

In this talk, we will investigate the cryptographic hardness of random lo-
cal functions. In particular, we will survey known attacks and hardness results,
discuss different flavors of hardness (one-wayness, pseudorandomness, collision
resistance, public-key encryption), and mention applications to other problems
in cryptography and computational complexity. We also present some open ques-
tions with the hope to develop a systematic study of the cryptographic hardness
of local functions.
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Abstract. We investigate the extent to which correlated secret ran-
domness can help in secure computation with no honest majority. It is
known that correlated randomness can be used to evaluate any circuit
of size s with perfect security against semi-honest parties or statistical
security against malicious parties, where the communication complexity
grows linearly with s. This leaves open two natural questions: (1) Can
the communication complexity be made independent of the circuit size?
(2) Is it possible to obtain perfect security against malicious parties?

We settle the above questions, obtaining both positive and negative
results on unconditionally secure computation with correlated random-
ness. Concretely, we obtain the following results.

Minimizing communication. Any multiparty functionality can be real-
ized, with perfect security against semi-honest parties or statistical secu-
rity against malicious parties, by a protocol in which the number of bits
communicated by each party is linear in its input length. Our protocol
uses an exponential number of correlated random bits. We give evidence
that super-polynomial randomness complexity may be inherent.

Perfect security against malicious parties. Any finite “sender-
receiver” functionality, which takes inputs from a sender and a receiver
and delivers an output only to the receiver, can be perfectly realized given
correlated randomness. In contrast, perfect security is generally impos-
sible for functionalities which deliver outputs to both parties. We also
show useful functionalities (such as string equality) for which there are
efficient perfectly secure protocols in the correlated randomness model.

Perfect correctness in the plain model. We present a general
approach for transforming perfectly secure protocols for sender-receiver
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functionalities in the correlated randomness model into secure protocols
in the plain model which offer perfect correctness against a malicious
sender. This should be contrasted with the impossibility of perfectly
sound zero-knowledge proofs.

1 Introduction

Secure computation is a fundamental problem that has been extensively studied
since the 1980s, originating from the seminal works of [35,20,6,11]. In this paper,
we study the power of correlated randomness in secure two-party computation
and multiparty computation with no honest majority. That is, we consider secure
computation with a randomness distribution phase which takes place before the
inputs are known. In this phase the parties receive a sample from a predetermined
joint distribution. While each party only receives its own random string from this
sample, these random strings are correlated as specified by the joint distribution.

From a theoretical point of view, the correlated randomness model is inter-
esting because it can be used to circumvent impossibility results for the plain
model such as the impossibility of information-theoretic security, analogously to
the use of shared secret randomness for encryption. This model can also be of
practical relevance, as it can be instantiated in the following ways:

– MPC with preprocessing. It is often the case that parties can use idle
time before they have any input to run a secure “offline protocol” for gen-
erating and storing correlated randomness. This correlated randomness is
later consumed by an “online protocol” which is executed once the inputs
become available. This paradigm for MPC is particularly useful when it is
important that the outputs are known shortly after the inputs are (i.e., for
low-latency computation). Note that if the online protocol is uncondition-
ally secure, then it has the potential efficiency advantage of not requiring any
“cryptographic” operations. If the online protocol is perfectly secure, then it
has the additional potential advantage of a finite complexity that does not
grow with a statistical security parameter. From here on we will refer to
MPC with correlated randomness also as MPC with preprocessing.

– Commodity-based MPC. In the setting of commodity-based cryptogra-
phy [4], the parties can “purchase” correlated randomness from one or more
external servers. Security in this model is guaranteed as long as at most t
of the servers are corrupted, for some specified threshold t, where corrupted
servers may potentially collude with the parties. In contrast to the obvious
solutions of employing a server as a trusted party or running an MPC pro-
tocol among the servers, the servers are only used during an offline phase
before the inputs are known, and do not need to be aware of the existence
of each other.

– Honest-majority MPC. Recent large-scale practical uses of MPC [10,9]
employed three servers and assumed that at most one of these servers is
corrupted by a semi-honest adversary. Protocols in the correlated random-
ness model can be translated into protocols in this 3-server model by simply
letting one server generate the correlated randomness for the other two.
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A prime example of a cryptographic task that can benefit from having access to
correlated randomness is oblivious transfer (OT) [30,16]. Beaver [3] shows that
having access to the inputs and outputs of a random instance of OT can be used
to realize OT on any inputs with unconditional security. This, together with
the fact that OT is complete for secure computation [24,22], shows that every
functionality can be securely computed given access to an appropriate source of
correlated randomness and no additional assumptions.

While the OT protocol from [3] has both perfect security and optimal commu-
nication complexity, the protocols obtained using the compilers of [24,22] only
achieve statistical security and their communication complexity grows linearly
with the circuit size of the functionality. The same holds for more recent uncon-
ditionally secure MPC protocols in the preprocessing model [7,13]. This leaves
open the following natural questions:

Question 1. What is the communication complexity of unconditionally secure
computation in the preprocessing model? Can the communication be made in-
dependent of the circuit size?

Question 2. Are there general protocols in the preprocessing model that achieve
perfect security against malicious parties?

While the first question is clearly motivated by the goal of (theoretical and
practical) efficiency, we argue that this is also the case for the second question.
Consider a scenario where two parties wish to securely evaluate a functionality
f(x, y) where x and y are taken from small input domains. Viewing the input
size as constant, it can be shown that the asymptotic complexity of any statisti-
cally secure protocol with simulation error of 2−σ must grow (at least) linearly
with σ, whereas any perfectly secure protocol has constant complexity. Finally,
the question of perfect security is conceptually interesting, as there are very
few examples of perfectly secure cryptographic protocols with security against
malicious parties.

Our Results: We essentially settle the above questions, obtaining both posi-
tive and negative results on unconditionally secure computation with correlated
randomness. In doing so, we present a number of efficient protocols that can
be useful in practice, especially when securely computing (many instances of)
“unstructured” functions on small input domains. Concretely, we obtain the
following results.

Communication Complexity. We show that any multiparty functionality can be
realized, with perfect security against semi-honest parties or statistical security
against malicious parties, by a protocol in which the number of bits communi-
cated by each party is linear in its input length. A disadvantage of our protocols
is that their storage complexity (i.e., the number of bits each party receives dur-
ing preprocessing) grows exponentially with the input length. We give evidence
that this disadvantage is inherent even when the honest parties are computa-
tionally unbounded. Concretely, if every two-party functionality had a protocol
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with polynomial storage complexity, this would imply an unexpected answer to
a longstanding open question on the complexity of information-theoretic private
information retrieval [12] (see Theorem 14).

We also prove a separation between the communication pattern required by
unconditionally secure MPC in the preprocessing model and the communication
with no security requirement. Concretely, for most functionalities (even ones
with a short output) it is essential that the communication by each party grows
linearly with its input length. In contrast, without security requirements it is
always possible to make the communication by one of the parties comparable to
the length of the output, independently of the input length. The same is true in
the computational model of security under standard cryptographic assumptions.
Concretely, such a communication pattern is possible either without preprocess-
ing using fully homomorphic encryption [19], or with preprocessing by using
garbled circuits [34] (provided that the inputs are chosen independently of the
correlated randomness [5]).

Perfect Security. We show that any “sender-receiver” functionality, which takes
inputs from both parties and delivers an output only to the receiver, can be
perfectly realized in the preprocessing model. In contrast, we show that perfect
security is generally impossible for functionalities which deliver outputs to both
parties, even for non-reactive functionalities and even if one settles for “security
with abort” without fairness (Thm. 4). A similar impossibility result for bit
commitment (a reactive functionality) was obtained in [8].

The communication and storage complexity of our perfectly secure protocols
are comparable to those of the statistical protocols, except for eliminating the
dependence on a security parameter. In particular, the storage complexity grows
exponentially with the bit-length of the inputs. We present storage-efficient pro-
tocols for several natural functionalities, including string equality (see Section 1.2
below), set intersection, and inner product (Appendix A). Our positive results
for general functionalities are summarized in Table 1, and for specific sender-
receiver functionalities in Table 2.

Table 1. Comparison of our positive results with previous work: s is the size of a
boolean circuit computing the functionality, n is the length of the inputs, m is the
output length, and σ is a statistical security parameter. In the asymptotic complexity
expressions, the number of parties k is viewed as constant. The protocol of Theorem 3
applies only to sender-receiver two-party functionalities.

Protocol Communication Storage Parties Security

[20,3] O(s) O(s) k perfect, passive

[24,22] O(s) + poly(σ) O(s) + poly(σ) k statistical, active

Theorem 1 O(n) O(2nm) k perfect, passive

Theorem 2 O(n+ σ) O(2n(m+ σ)) k statistical, active

Theorem 3 O(n) O(2n(m+ n)) 2 perfect, active
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Table 2. Sender-receiver protocols for specific tasks. Two variants of set intersection
are given: a perfectly secure with exponential computation, and a statistically secure
with efficient computation.

Protocol f Communication Storage Computation Security

Sec. 1.2 x =? y 2|x| O(|x|) poly(|x|) perfect, active
Thm. 7 x ∩ y poly(|x|) + |y| poly(|x|) exp(|x|, |y|) perfect, active
Thm. 7 x ∩ y poly(|x|, k) + |y| poly(|x|, σ) poly(|x|, |y|, σ) statistical, active
Thm. 8 〈x, y〉 2|x| O(|x|) superpoly(|x|) perfect, active

Perfect Correctness in the Plain Model. We present a somewhat unexpected ap-
plication of our positive results in the preprocessing model to security in the plain
model. Consider the goal of securely evaluating a sender-receiver functionality f .
We say that a protocol for f is perfectly correct if the effect of any (unbounded)
malicious sender strategy on the honest receiver’s output can be perfectly sim-
ulated, via some distribution over the sender’s inputs, in an ideal evaluation of
f . For example, consider the string equality functionality f(x, y) which receives
an n-bit string from each party, and delivers 1 to the receiver if x = y and 0
otherwise. A perfectly correct protocol for f should guarantee, for instance, that
if the honest receiver picks its input at random, then the receiver should output
1 with exactly 2−n probability, no matter which strategy the sender uses.

The impossibility of perfectly sound zero-knowledge proofs (which carries over
to the preprocessing model, see Theorem 15) shows that perfect correctness
cannot always be achieved when the honest parties are required to be efficient.
We complement this by a positive result which applies to all functionalities on
a small input domain as well as some natural functionalities on a large input
domain (like string equality). Our result is based on a general approach for
transforming perfectly secure protocols for sender-receiver functionalities in the
preprocessing model into (computationally) secure protocols in the plain model
which additionally offer perfect correctness against a malicious sender.

To summarize, we have the following lower bounds:

– We show limits to what functionalities can be implemented perfectly. Theo-
rem 4 shows that not all two-party functionalities have protocols with perfect
security and abort. This is generalized in Theorem 9 to show a function that
requires Ω(log 1

ε ) communication to compute with ε-security.

– We lower bound the amount of communication that a secure protocol for
a non-trivial functionality must use. Theorem 11 for the perfect case and
Theorems 12, 13 for the statistical case show that for general functionalities
the communication complexity of our protocols is optimal. Another general-
ization (Theorem 10) shows that the negative results extends to the case of
expected round complexity.

– We show that superpolynomial preprocessing is needed in general. Theorem
14 explains that improving on the preprocessing needed for sender-receiver
functionalities will imply a breakthrough in information theoretic PIR.
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On the positive side, we show in Theorem 5 and 6 how to use perfectly se-
cure sender-receiver protocols in the preprocessing model to implement perfectly
correct protocols in the plain model (if the preprocessing is small enough).

1.1 Related Work

Beaver [3] showed that OT can be realized with perfect security given prepro-
cessing. Later Beaver [4] generalized the above to the commodity-based model,
a setting where there are multiple servers providing precomputed randomness,
only a majority of which are honest (in the full version, we describe a general
approach for applying our results in the commodity-based model). Beaver also
notes that perfect security is not possible in general because commitment cannot
be realized perfectly, and a proof of this appeared in [8]. However, the question
was left open for standard (non-reactive) functionalities.

Since OT can be precomputed [3] and as it is complete for secure computa-
tion [24], it is possible to compute any function with statistical security. The
result of [22] improves the asymptotical complexity of [24], while [2,7,27] offer
efficient statistically secure protocols in the preprocessing model for arithmetic
and Boolean circuits respectively. A recent result [14] shows that this can be
done with no overhead during the online phase by giving a protocol with opti-
mal communication complexity for the case of “generic preprocessing” (i.e., the
preprocessing does not depend on the function to be evaluated – only on its
size). Our results achieve better online communication complexity as we do not
rely on a circuit representation.

A protocol for computing secret shares of the inner product against malicious
adversaries was proposed in [15]. In Appendix A, we give a protocol for com-
puting the inner product where one party learns the output. In the setting of
malicious corruptions, it is not trivial to reconstruct the results from the shares,
and therefore our protocol takes a substantially different approach than [15].

In [32], a perfectly secure protocol for oblivious polynomial evaluation in the
preprocessing model is presented. [32] also presents a protocol for equality which
is claimed to be perfectly secure but it is however not perfectly secure accord-
ing to the standard simulation-based definition — see Section 1.2 below for a
perfectly secure protocol for equality.

The type of correlated randomness needed for realizing multiparty computa-
tion with unconditional security in the presence of an honest majority is studied
in [17,18]. Statistically secure commitment protocol from correlated randomness
are constructed in [31]. Finally [33] gives linear lower bounds on the storage
complexity of secure computation with correlated randomness.

1.2 Warmup: Equality Test

To introduce some of the notation and the techniques that we use later to prove
more general results, we describe the simple protocol in Figure 1 for equality
testing in the preprocessing model.



606 Y. Ishai et al.

Functionality:
– The receiver has input x ∈ X, the sender input y ∈ X;
– The receiver learns 1 if x = y or 0 otherwise. The sender learns nothing;

Preprocessing:
1. Sample a random 2-wise independent permutation P : X → X, and a

random string r ∈R X. Compute s = P (r);
2. The preprocessing outputs (r, s) to the receiver and P to the sender;

Protocol:
1. The receiver computes u = x+ r and sends to sender;
2. The sender computes v = P (u− y) and sends to the receiver;
3. The receiver outputs 1 if v = s, and 0 otherwise;

Fig. 1. A perfectly secure protocol for equality with preprocessing

We consider at the sender-receiver version of the functionality, where only the
receiver gets output from the protocol. In this setting, we have a receiver and
a sender holding respectively x, y in some group X . At the end of the protocol,
the receiver learns whether x = y or not. The protocol achieves perfect security
against malicious adversaries and it is optimal in terms of communication com-
plexity. Correctness follows from v = P (u− y) = P (r+ x− y), and this is equal
to s iff x = y.

One can prove that the protocol is perfectly secure by a simulation argument:
The simulator has access to all preprocessed information. In case of a corrupted
sender, the simulator proceeds as follows: the simulator sends a random u to
the adversary and, when the adversary replies v, the simulator computes y =
u−P−1(v) and inputs it to the ideal functionality. In case of a corrupted receiver,
the simulator extracts the input string x (using u, r) and inputs it to the ideal
functionality for equality. If the ideal functionality outputs 1, the simulator sends
v = s to the corrupted receiver, but if it outputs 0, the simulator chooses v ∈R X
such that v �= s. This simulation is perfect, as the adversary’s view of the protocol
is distributed identically both in the real execution and in the simulation. Note
that it is enough for P to be drawn from a family of pairwise independent
permutations, since the receiver only learns the permutation at two indices.

The protocol is also UC-secure (the simulation is straight line) and is adap-
tively secure. This is the case for all the protocols presented in this work.

2 Preliminaries

Notation. Let [n] denote the set {1, 2, . . . , n}. We use ZX×Y to denote the set of
matrices over Z whose rows are labeled by the elements of X and whose columns
are labeled by the elements of Y .

Computational Model. We assume perfect uniform sampling from [m], for any
positive integer m, as an atomic computational step.
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Network Model. We consider protocols involving n parties, denoted P1, . . . , Pn.
The parties communicate over synchronous, secure and authenticated point-to-
point channels. In some constructions we also use a broadcast channel. We note
that, in the preprocessing model, all these channels can be implemented with
unconditional security over insecure point-to-point channels. Specifically, secure
channels can be perfectly implemented in the preprocessing model using a one-
time pad, authentication (with statistical security) using a one-time message
authentication code (MAC), and broadcast (with statistical security) using the
protocol of [29].

Functionalities. We consider non-reactive secure computation tasks, defined by
a deterministic or randomized functionality f : X1 × . . .×Xn → Z1 × . . .× Zn.
The functionality specifies a mapping from n inputs to n outputs which the
parties want to compute. We will often consider a special class of two-party
functionalities referred to as sender-receiver functionalities. A sender-receiver
functionality f : X × Y → Z gets an input x from P1 (the receiver), an input y
from P2 (the sender) and delivers the output z only to the receiver.

Protocols with Preprocessing. An n-party protocol can be formally defined by a
next message function. This function, on input (i, xi, ri, j,m), specifies an n-tuple
of messages sent by party Pi in round j, when xi is its inputs, ri is its randomness
and m describes the messages it received in previous rounds. (If a broadcast
channel is used, the next message function also outputs the message broadcasted
by Pi in Round j.) The next message function may also instruct Pi to terminate
the protocol, in which case it also specifies the output of Pi. In the preprocessing
model, the specification of a protocol also includes a joint distribution D over
R1×R2 . . .×Rn, where the Ri’s are finite randomness domains. This distribution
is used for sampling correlated random inputs (r1, . . . , rn) which the parties
receive before the beginning of the protocol (in particular, the preprocessing is
independent of the inputs). The next message function, in this case, may also
depend on the private random input ri received by Pi from D. We assume that
for every possible choice of inputs and random inputs, all parties eventually
terminate.

Security Definition. We work in the standard ideal-world/real-world simulation
paradigm. Our positive results hold for the strongest possible security model,
namely UC-security with adaptive corruptions, while our negative results hold
for the weaker model of standalone security against static corruptions. We con-
sider both semi-honest (passive) corruptions and malicious (active) corruptions.
Using the standard terminology of secure computation, the preprocessing model
can be thought of as a hybrid model where the parties have a one-time access
to an ideal randomized functionality D (with no inputs) providing them with
correlated, private random inputs ri. We consider by default full security (with
guaranteed output delivery) for sender-receiver functionalities, and security with
abort for general functionalities. We mainly focus on the cases of statistical or
perfect security, though some of our results refer to computational security as
well. We will sometimes refer separately to correctness and privacy – the former
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considers only the effect of the adversary on the outputs and the latter considers
only the view of the adversary. The full security definition is omitted for lack
of space.

3 Optimal Communication for General Functionalities

In this section, we settle the communication complexity of MPC in the prepro-
cessing model. For simplicity, we restrict the attention to non-reactive function-
alities, but the results of this section apply also to reactive functionalities.

3.1 Upper Bounds on Communication Complexity

The following is a summary of our upper bounds. These will follow from the
Claims 1, 2 and 3 (some of which are in later sections) and by inspection of the
protocols.

Theorem 1. For any n-party functionality f : X1 × . . . × Xn → Z1 × . . . ×
Zn, there is a protocol π which realizes f , in the preprocessing model, and has
the following features against semi-honest parties: (1) π is perfectly secure; (2)
It uses two rounds of communication; (3) Let α =

∑
i∈[n] log |Xi| be the total

input length. Then, the total communication complexity is O(α) and the storage
complexity is O(α2α).

Theorem 2. For any n-party functionality f : X1 × . . .×Xn → Z1 × . . .× Zn

and ε > 0, there is a protocol π which realizes f , in the preprocessing model
against a malicious adversary, such that: (1) π is statistically ε-secure with
abort; (2) It uses two rounds of communication (given broadcast); (3) The to-
tal communication complexity is O(α + n log 1/ε) and the storage complexity is
O(2α · (α+ n log 1/ε)), where α being the total input length, as above.

Theorem 3. For any 2-party sender-receiver functionality f : X × Y → Z,
there is a protocol π which realizes f , in the preprocessing model against a ma-
licious adversary, such that: (1) π is perfectly secure; (2) It uses two rounds of
communication; (3) The total communication complexity is log |X |+log |Y | and
the storage complexity is O(|X | · |Y | · log |Y |).

3.2 Semi-honest Two-Party Protocol, via One-Time Truth Table

For the sake of exposition, we focus on protocols where both parties P1, P2

receive the same output f(x, y) ∈ Z, for some function f : X×Y → Z. We view
X,Y and Z as groups and use additive notation for the group operation, i.e.,
(X,+), (Y,+), (Z,+).

In Figure 2 we present a simple protocol that is secure against a semi-honest
adversary if the parties have access to a preprocessing functionality dealing corre-
lated randomness. The protocol has communication complexity log |X |+log |Y |+
2 log |Z|. A protocol with communication complexity log |X | + log |Y | + log |Z|
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follows from the protocol in Section 4.1 We start by presenting this slightly less
efficient protocol here, as this protocol is easier to generalize for security against
malicious parties and for the multiparty case (see Figure 3 and the full version).

The protocol uses one-time truth tables (OTTT). Intuitively, OTTT can be
seen as the one-time pad of secure function evaluation. The parties hold shares
of a permuted truth-table, and each party knows also the permutation that was
used for its input. In the two-party case, the truth-table can be seen as a matrix,
where one party knows the permutation of the rows and the other knows the
permutation of the columns. In fact, given that every truth table will be only
used once, a random cyclic-shift can be used instead of a random permutation.

Functionality:
– P1 has input x ∈ X, P2 has input y ∈ Y .
– Both parties learn z = f(x, y).

Preprocessing:
1. Sample random r ∈ X, s ∈ Y and let A be the permuted truth table; i.e.,

Ax+r,y+s = f(x, y) ;

2. Sample a random matrix M1 ∈ ZX×Y and let M2 = A−M1;
3. Output (M1, r) to P1 and (M2, s) to P2;

Protocol:
1. P1 sends u = x+ r to P2;
2. P2 sends v = y + s and z2 = M2

u,v to P1;
3. P1 sends to P2 the value z1 = M1

u,v;
4. Both parties output z = z1 + z2;

Fig. 2. Semi-Honest Secure Protocol using One-Time Truth Table

Claim 1. The protocol in Figure 2 securely computes f with perfect security
against semi-honest corruptions.

Proof. When both parties are honest, the protocol indeed outputs the correct
value:

z = z1 + z2 = M1
u,v +M2

u,v = Au,v = Ax+r,y+s = f(x, y).

Security against semi-honest parties can be argued as follows: the view of P2

can be simulated by choosing a random u ∈ X and defining z1 = z − M2
u,v.

The view of P1 can be simulated by choosing a random v ∈ Y and defining
z2 = z −M1

u,v. As both in the simulation and in the real protocol the values
u, v, z1, z2 are distributed uniformly at random in the corresponding domains,
the protocol achieves perfect security.

1 The protocol of Section 4 has complexity log |X| + log |Y | but only one party gets
output; however, in the semi-honest case, this party may simply transfer the output
(log |Z| bits) to the other party.
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3.3 One-Time Truth Tables with Malicious Security

The above protocol is only secure against semi-honest adversaries, as a malicious
party Pi could misreport its output share zi and therefore change the output
distribution. To fix this problem, we will enhance the OTTT protocol using
information theoretic message authentication codes (MAC): the preprocessing
phase will output keys for a one-time MAC to both parties, and will add shares
of these MACs to the truth table. The resulting protocol is only statistically
secure as an adversary will always have a (negligibly small) probability to output
a fake share zi together with a valid MAC. As we will see later (Section 4.1), this
is inherent; i.e., it is impossible to securely compute every function with perfect
security, even in the preprocessing model.

Definition 1 (One-Time MAC). A pair of efficient algorithms (Tag,Ver) is
a one-time ε-secure message authentication code scheme (MAC), with key space
K and MAC space M, if Verk(m,Tagk(m)) = 1 with probability 1 and for every
(possibly unbounded) adversary A:

Pr[k ← K,m← A, (m′, t′)← A(m,Tagk(m)) : Verk(m
′, t′) = 1∧m �= m′] < ε .

The MAC can be instantiated with the standard “am + b” construction: Let
F be a finite field of size |F| > ε−1, and let k = (a, b) ∈ F2. To compute a
MAC tag, let Tagk(m) = am + b and for verification compute Verk(m, t) = 1
iff t = am + b. Without loss of generality, the range of f , the function to be
computed, is Z = F. 2 For the purpose of this application, we will write the
MAC space M as an additive group (M,+).

MAC Enhanced OTTT: In Figure 3, the protocol for general two-party compu-
tation in the preprocessing model using OTTT is presented. Note that, as all
the MAC signatures are secret-shared and only one is reconstructed, we can use
the same MAC key for all the entries in the matrix. We assume, for notational
simplicity, that both parties obtain the same output z; the general case may be
handled similarly.

Claim 2. The protocol in Figure 3 computes f with ε-security against a mali-
cious adversary.

The proof of this claim is pretty straightforward and is therefore deferred to the
full version of this paper. In the full version we also show how this protocol can
be generalized to n parties. The main issue here is to have all the honest parties
to output the same value (in particular, if one honest party outputs ⊥ then
all honest parties must output ⊥). This is done using unanimously identifiable
commitments from [21,28].

In the full version, we also prove negative results which complement the above
positive results (see also Appendix B). In particular, we show that the commu-
nication complexity of the above protocols is optimal (for non-trivial functions)
and give evidence that the exponential storage complexity (or randomness com-
plexity) is inherent.

2 Note that we still only need log2 |Im(f)| bits to encode the output of the function.
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Functionality:
– P1 has input x ∈ X and P2 has input y ∈ Y .
– Both parties learn f(x, y).

Preprocessing:
1. Sample random keys for an ε-secure MAC scheme k1, k2 ∈ K;
2. Sample random r ∈ X, s ∈ Y and let A ∈ (Z ×M×M)X×Y be a matrix

s.t.
Ax+r,y+s =

(
f(x, y),Tagk1

(f(x, y)),Tagk2
(f(x, y))

)
;

3. Sample a random matrix M1 ∈ (Z ×M×M)X×Y and let M2 = A−M1;
4. Output (M1, r, k1) to P1 and (M2, s, k2) to P2;

Protocol:
1. P1 sends u = x+ r to P2;
2. P2 sends v = y + s and z2 = M2

u,v to P1;
3. P1 sends z1 = M1

u,v to P2;
4. Each party Pi parses z1 + z2 as (z, t1, t2);
5. If Verki(z, ti) = 1, party Pi outputs z, otherwise it outputs ⊥;

Fig. 3. Malicious Secure Protocol using One-Time Truth Table

4 Perfect Security for Sender-Receiver Functionalities

In this section we show that, if only one party receives output, it is possible
to achieve perfect security even against a malicious adversary. We will show, in
Section 4.1, that this is not the case for general functionalities where all parties
receive outputs.

The protocol is presented in Figure 4. The structure of the protocol is similar
to previous constructions, in the sense that the preprocessing samples some
random permutations, and then during the online phase the parties apply the
random permutations on their inputs and exchange the results. However, the
protocol uses the asymmetry between the sender and receiver: every row of
the truth table (corresponding to each input of the receiver) is permuted using
a different random permutation. The sender learns this set of permutations,
permuted under a receiver permutation (implemented by a random circular shift,
as in previous constructions). The receiver learns the truth table where each row
is permuted according to the corresponding permutation.

In the online phase, the sender uses the first message of the receiver to de-
termine which of the permutation to apply to his input. The receiver, using this
value, can perform a look-up in the permuted truth table and output the correct
result. The protocol is intuitively perfectly private as both parties only see each
other’s input through a random permutation. Perfect correctness is achieved be-
cause, in contrast to previous constructions, every message sent by the sender
uniquely determines its input (together with the preprocessing information).

Claim 3. The protocol in Figure 4 securely computes the sender-receiver func-
tionality f with perfect security and optimal communication complexity against
malicious corruptions.
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Functionality:
– R has input x ∈ X, S has input y ∈ Y .
– R learns z = f(x, y);

Preprocessing:
1. Sample random r ∈ X;
2. Sample random permutations {Px}x∈X with Px : Y → Y , and let {Qi}i∈X

be a “shifted” sequence of those permutations, where Qx+r = Px;
3. Compute the permuted truth table Ax,Px(y) = f(x, y);
4. Output (A, r) to R and {Qi}i∈X to S;

Protocol:
1. R sends u = x+ r to S;
2. S sends v = Qu(y) to R;
3. R outputs f(x, y) = Ax,v (if v �∈ Y , then R outputs f(x, y0), for some

fixed value y0);

Fig. 4. Perfect Secure Protocol for Sender-Receiver Functionalities, Malicious
Adversaries

Proof. When both parties are honest the output is correct:

Ax,v = Ax,Qu(y) = Ax,Px(y) = f(x, y).

If S∗ is a corrupted sender, the simulator samples the preprocessing for S con-
sisting of the permutations {Qi}i∈X . The simulator then picks a random message
u, as the first message of the protocol. Then, it runs v ← S∗({Qi}, y, u), and it
extracts an effective input y′ = Q−1u (v) and inputs y′ to the ideal functionality
to get the ideal-world output z = f(x, y′). The simulator outputs the simulated
view ({Qi}, v). Observe that u and {Qi} are distributed as in the real world and
independently of x. The simulated view considered jointly with f ’s output on
the effective input (i.e., z) is thus distributed identically to the view of S∗ jointly
with the receiver’s output, in the real-world execution.

For a corrupted receiver R∗, the simulator samples A, r, {Qi}, runs u ←
R∗(A, r, x), extracts x′ = u − r, inputs it to the ideal functionality, receives
z = f(x′, y), computes u = A−1x,v(z) and outputs the simulated view (A, r, u).
This is distributed identically to the real-world view of R∗.

Note that even for the case of semi-honest security, this protocol is more efficient
than a protocol using 1-out-of-n OT, where the sender acts as the transmitter
and offers f(x1, y), . . . , f(xm, y) for each possible xi ∈ X and the receiver acts
as the chooser and selects x. Such protocol would have (online) communication
complexity O(|X | log |Z|), while our protocol requires only log(|X |) + log(|Y |)
bits of communication.

4.1 Impossibility of Perfect Security for General Functionalities

The following theorem shows that the above positive result cannot be extended
to general functionalities (see Appendix B and the full version for a tight tradeoff
between communication and error probability).
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Theorem 4. Let f(x1, x2) = (x1 ⊕ x2, x1 ⊕ x2). Then, there is no protocol for
f , in the preprocessing model, which is perfectly secure with abort.

Proof. Assume towards a contradiction that π perfectly realizes f with abort
given preprocessing D. Consider the experiment of running π on a uniformly
random choice of inputs (x1, x2) ∈ {0, 1}2 and correlated random inputs (r1, r2)
drawn from D. Let i1 be the minimal number such that, at the beginning of
round i1, the output of P1 is always determined (over all choices of inputs and
random inputs) regardless of subsequent messages (which may possibly be sent
by a malicious P ∗2 ). That is, when running the above experiment, before round
i1, party P1 may have an uncertainty about the output; but, at the beginning of
round i1, the view of P1 always determines a unique output value b ∈ {0, 1} such
that P1 will either output b or ⊥. The value i2 is defined symmetrically. Note
that i1, i2 are well defined, because the outputs are always determined at the
end of the execution, and, moreover, they are distinct because only one party
sends a message in each round.

Assume, without loss of generality, that i1 < i2 and, moreover, that in the
above experiment there is an execution which terminates with P2 outputting 0,
but where in the beginning of round i1 the output of P2 is not yet determined
(namely, there are messages of P ∗1 that would make it output 1).

We can now describe a malicious strategy P ∗1 that would make an honest P2,
on a random input x2, output 1 with probability p > 1/2. Since this is impossible
in the ideal model, we get the desired contradiction. The malicious P ∗1 proceeds
as follows.

– Run the protocol honestly on a random input x1 until the beginning of round
i1. Let b be the output value determined at this point.

– If b = 1, continue running the protocol honestly.
– Otherwise, continue the protocol by sending a uniformly random message in

each round.

In the event that b = 1, which occurs with probability 1/2, P2 will always output
1. In the event that b = 0, by the above assumption there exist subsequent
messages of P ∗1 making P2 output 1, and hence also in this case P2 outputs 1
with nonzero probability. Overall P2 outputs 1 with probability p > 1/2.

5 Perfect Correctness in the Plain Model

Theorem 15 shows that the impossibility of perfectly sound zero-knowledge
proofs for NP carries over to the preprocessing model. This implies that some
sender-receiver functionalities cannot be securely realized with perfect correct-
ness in the plain model. In this section, we show that the class of functionalities
that can be securely realized with perfect correctness is actually quite rich. To the
best of our knowledge, this important fundamental question has been neglected
in the literature so far.

We present a general transformation from perfect sender-receiver protocols in
the preprocessing model, to protocols with perfect correctness in the plain model.
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This is possible for functionalities for which the preprocessing can be realized in
the plain model with perfect privacy (and computational correctness): the main
conceptual contribution is to show how we can turn perfect privacy into perfect
correctness by using an offline/online protocol.

The high level idea of this transformation is to use the “reversibility” of cor-
related randomness for turning perfect privacy in the plain model into perfect
correctness in the plain model. Concretely, let π be a perfectly secure protocol
for f in the preprocessing model. Using standard techniques (a combination of
perfectly private OT protocols [26,1] with an information-theoretic variant of
the garbled circuit technique [35,24]), one can get a perfectly private protocol π′

(with unbounded simulation) for all sender-receiver functionalities in NC1. We
then use π′, with the sender in π playing the role of the receiver in π′, for gener-
ating the correlated randomness required by π. In this subprotocol the receiver
picks its randomness rx from the correct marginal distribution and the sender
obtains as its output from π′ a random input ry sampled from the conditional
distribution defined by rx. This subprotocol prevents a malicious sender from
learning any information about rx other than what follows from ry. Running π
on top of the correlated randomness (rx, ry) generated by the subprotocol gives
a perfectly correct protocol for f .

The approach described so far only guarantees security against semi-honest
parties (in addition to perfect correctness against a malicious sender); however,
using a GMW-style compiler we get (computational) security against malicious
parties while maintaining perfect correctness against a malicious unbounded
sender.

Formally, let D be a distribution over R1 × R2 such that all probabilities in
the support of D are rational. Let Dr1 be a family of distributions over R2 such
that the two distributions {(r1, r2) : (r1, r2) ← D} and {(r1, r′2) : (r1, r2) ←
D, r′2 ← Dr1} are identically distributed. Let PreD : R1 → R2 be a randomized
functionality3 that, on input r1 from party R outputs r2, sampled according to
Dr1 to S (if r1 is not in the support of D, the function outputs ⊥). Applications
and proofs of the following theorems are discussed in the full version.

Theorem 5. Let f be a sender-receiver functionality that admits a perfectly
secure protocol πonline, in the presence of preprocessing D, where all probabilities
in support(D) are rational. Let πpre be a protocol that realizes PreD which is
semi-honest secure and perfectly private against malicious S.

Then, it is possible to securely compute f with semi-honest security and perfect
correctness.

Theorem 6. Assuming one-way permutations exist, the result of Theorem 5
holds with security against malicious parties.

3 As discussed in Section 2, our computational model allows perfect sampling from the
uniform distribution over [m], for all integers m.
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A Protocols for Specific Tasks

In this section, we present protocols for a number of specific sender-receiver
tasks. We focus on the case of perfect security in the malicious model. All of
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these protocols have a 2-move structure: the receiver sends a message mX , the
sender replies with a message mY , and the receiver computes its output. Due to
space limitations the proofs are deferred to the full version.

A.1 Set Intersection

Functionality:
– R has input x consisting of k distinct elements x1, . . . , xk ∈ U ; S has input

y consisting of l distinct elements y1, . . . , yl ∈ U ;
– R learns the intersection z = x ∩ y.

Preprocessing:
1. Pick a random permutation P : U → U and k distinct elements

r1, . . . , rk ∈R U ;
2. S gets P and R gets r1, . . . , rk and s1 = P (r1), . . . , sk = P (rk);

Protocol:
1. R picks a random permutation Q : U → U , under the constraint that

Q(xi) = ri, for all i ∈ [k]. It sends Q to S;
2. S computes M = {P (Q(yj)) | j ∈ [l]}. It sends M (size-l sorted set) to R;
3. R outputs a set I consisting of all i such that si ∈ M;

Fig. 5. Protocol for Set Intersection

In Figure 5, we present a protocol for computing the intersection of two sets
x, y of fixed sizes (k, l, respectively) over some domain U .

Theorem 7. The protocol in Figure 5 realizes the sender-receiver functionality
set intersection with perfect security.

Optimizing the protocol In the above protocol, both the randomness and the
first message have size O(|U | log |U |) (the space it takes to describe a permu-
tation). This may be super-exponential in the input size. Like for the equality
protocol, we can optimize by taking advantage of k-wise independent families
of permutations, as these may have smaller descriptions (the existence of small
permutation families with this property was recently proven in [25], but this is
only an existential result. Instead we can use the efficient explicit constructions
of [23] but achieve only statistical security).

A.2 Inner Product

Let Fp be a finite field of size p, and let t ≥ 1. The inner product functionality
IPt,p is as follows:

– S has input y ∈ Fp
t and R has a linear function x : Fp

t → Fp, represented
by a vector x ∈ Fp

t, so that x(y) = 〈x, y〉 =
∑

i≤t xiyi.
– R outputs x(y).
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Some Algebraic Preliminaries. Let ei ∈ Ft be the i-th unit vector of length t.
Let F∗ be the multiplicative group of a finite field F. By default, vectors are
column vectors. Fm×n is the set of m× n matrices over F. Let GL(n, p) be the
group (under matrix multiplication) of invertible matrices in Fp

n×n. Mi is the
i’th row of a matrix M. Given vectors v1, . . . , vn ∈ Fm, let (v1; . . . ; vn) denote the
matrix M ∈ Fn×m with rows Mi = vTi . We will also need the following algebraic
primitive:

Definition 2 (Good exhaustive operator). Let L : Fp
t → Fp

t be the lin-
ear, injective operator defined via L(y) = yTL (L represents both the opera-
tor and the matrix implementing it). Consider the (infinite) sequence seqL =
(v, L(v), . . . , L(i)(v), . . . ) generated by L for some v.

We say that L is a g.e.o. for v ∈ Fp
t if:

1. seqL is periodic with period length pt−1 for v (i.e., all elements in Ft
p, except

0, appear in seqL).
2. The the first t elements in seqL forms a basis for Fp

t.

Lemma 1 (instantiating good exhaustive operators). Consider the oper-
ator Lx where Lx(y) = x · y where x, y are viewed as elements of Fpt (the
multiplication is over Fpt). Viewed as a linear function from Fp

t to Fp
t, we have

Lx(y) = yTLx. Let g be a generator of F∗pt , then Lg is a g.e.o. for v = et (could
use any other vector v).

Functionality:
– Inputs: R gets x �= 0 ∈ Ft

p, and S gets y ∈ Ft
p.

– Output: R outputs 〈x, y〉.
Primitives: Let L ∈ Fp

t×t be a g.e.o. for et. For a ∈ Ft
p\{0}, we let ind(a) denote

the index of the first appearance of a in seqL.
Preprocessing:

1. S gets a random vector r2 = y′ ∈ Ft
p.

2. R gets (x′, p2), where x′ is randomly chosen at Ft
p \ {0} and p2 = 〈y′, x′〉.

Protocol:
1. R sends δ = ind(x′)− ind(x) (mod pt − 1) to S.
2. S sends the vector m = (eTt L

0(y + Lδy′), eTt L(y + Lδy′), . . . , eTt L
t−1(y +

Lδy′)).
3. R sets M = (eTt ; e

T
t L; . . . ; e

T
t L

t−1), r = xTM−1. It outputs rm− p2.

Fig. 6. A protocol for IP+t,p

The Protocol. In Figure 6, we present a protocol for a slightly modified func-
tionality, IP+t,p, where x is restricted to be non-zero. This also implies a protocol
for IPt,p, as on input x = 0 the receiver can adopt any input x′ �= 0, and output
0 at the end, ignoring the communication.
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Theorem 8. The above protocol is a perfectly secure protocol, with preprocess-
ing, for the functionality IP+t,p, for all t ≥ 1 and prime p. The communication
complexity, randomness size and S’s work are polynomial in |x| = t log p, while
R’s computation is as hard as finding discrete log in F∗pt .

B “Teasers” from the Full Version

The full version of this article contains several other results. Due to space lim-
itation, we can only state the theorems here and invite the interested reader
to look at the full version for further discussion, proofs and applications of the
following theorems.

Theorem 9. Every protocol with preprocessing Π that ε-securely computes the
functionality f(x1, x2) = (x1 ⊕ x2, x1⊕ x2) with abort, has communication com-
plexity Ω(log 1

ε ).

Theorem 10. Let f(x1, x2) = (x1⊕x2, x1⊕x2). Then there is no protocol for f
in the preprocessing model which is perfectly secure with abort, having expected
communication complexity t, for any t ∈ N.

Theorem 11. Given a perfectly secure protocol for some sender-receiver func-
tionality f : X × Y → Z in the semi-honest model, with sender message domain
MY , and receiver message domain MX . Then,

– If for all y1 �= y2 ∈ Y , there exists x ∈ X such that f(x, y1) �= f(x, y2), then
|MY | ≥ |Y |.

– If for every z1, z2 ∈ Z and x1 �= x2 ∈ X, we have {y|f(x1, y) = z1} �=
{y|f(x2, y) = z2}, then |MX | ≥ |X |.

Theorem 12. Let c > 0 be a constant, and consider a sender-receiver function-
ality f : X × Y → {0, 1} where log |X | = n, log |Y | = m. Assume there exists a
subset X ′ ⊆ X of size c ·m, such that {(x′, f(x′, IY ))}x′∈X determines IY , for
all IY ∈ Y ). Then, there exists ε > 0, depending only on c, such that in any ε-
secure protocol with preprocessing for f in the semi-honest model, the sender-side
communication is Ω(m).

Theorem 13. Let c1, c2, c3 > 0 be constants such that (1 + c3)(1 − c2) < 1.
Consider a sender-receiver functionality f : X × Y → {0, 1} where log |X | = n,
log |Y | = m satisfying

– For all x �= x′ ∈ X, we have H(f(x′, IY )|f(x, IY )) ≥ c1, where IY is picked
uniformly from Y .

– For all y �= y′ ∈ Y , we have Pr(f(IX , y) = f(IX , y′)) ≥ c2, where IX is
picked uniformly at random.

– There exists a subset Y ′ ⊆ Y of size (1 + c3)n, such that {y, f(IX , y)}y∈Y
determines IX , for all IX ∈ X).

Then, there exists ε > 0, depending only on the ci’s, such that in any ε-secure
protocol with preprocessing for f , in the semi-honest model, the receiver-side
communication is Ω(n).
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Theorem 14. Suppose there is a semi-honest statistically secure protocol in the
preprocessing model for every sender-receiver functionality f : {0, 1}n×{0, 1}n →
{0, 1} with correlated randomness complexity r(n) (i.e., where rX , rY ∈ {0, 1}r(n))
and communication complexity c(n). Then, there is a 3-server statistical PIR
protocol with communication complexity O(r(logN) + c(logN) + logN), where
N is the database size.

Theorem 15. If NP �⊆ BPP , there exists a sender-receiver functionality that
cannot be efficiently computed with semi-honest security and perfect correctness
(even in the preprocessing model).
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Abstract. We present a protocol for securely computing a Boolean cir-
cuit C in presence of a dishonest and malicious majority. The protocol
is unconditionally secure, assuming a preprocessing functionality that is
not given the inputs. For a large number of players the work for each
player is the same as computing the circuit in the clear, up to a constant
factor. Our protocol is the first to obtain these properties for Boolean
circuits. On the technical side, we develop new homomorphic authenti-
cation schemes based on asymptotically good codes with an additional
multiplication property. We also show a new algorithm for verifying the
product of Boolean matrices in quadratic time with exponentially small
error probability, where previous methods only achieved constant error.

1 Introduction

In multiparty computation, a set of players each holding a private input wish
to compute an agreed function such that the intended result is the only new
information that is revealed. This must hold also if some subset of the play-
ers are corrupted by an adversary. Even in the most difficult case where all
but one player can be corrupt (aka. dishonest majority), it is known that any
efficiently computable function can be computed securely, under appropriate
complexity assumptions [CLOS02], also when asking for universal composable
security [Can01]. This leads naturally to the question of what the price of se-
curity is, i.e., how much extra resources must we invest to compute the function
securely, as opposed to just computing it?

The case of dishonest majority can be handled by different approaches. It is
well known that using fully homomorphic encryption, the communication com-
plexity can be made very small, and only needs to depend on the number of
inputs and outputs of the function. Although the computational overhead is
usually very large, for some cryptosystems even this can be made small, in
fact poly-logarithmic in the security parameter, see [GHS12]. However, the ex-
ponent hidden in the poly-logarithmic notation is quite large because the ap-
proach requires so-called bootstrapping and currently does not yield practical
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protocols. The overhead can also be made small using “MPC-in-the-head” tech-
niques [IKOS08], at least for a constant number of parties, but still using (some-
what non-standard) computational assumptions. Furthermore in these cases,
only computational security can be obtained.

On the other hand, if we allow a preprocessing phase where the inputs to the
function need not be known, then unconditional, active security can be obtained,
and complexity can be reduced to a point where we get eminently practical pro-
tocols. This was first demonstrated by Bendlin et al. [BDOZ11], who showed that
given a preprocessing functionality, an arithmetic circuit over a large field Fq can
be computed with unconditional security and very efficiently: if the number of
players is constant and log q ∈ Ω(κ), where κ is the security parameter, then the
total computational work invested by each player is a constant times the work
one needs to compute the same circuit in the clear. More recently, Damg̊ard et
al.[DPSZ12] improved this result by showing the same for any number of play-
ers. In both cases, preprocessing works independently of the inputs, and simply
produces ‘raw material’ for the computation phase. The preprocessing can be
implemented by a general MPC protocol which can be run any time prior to the
computation. However, [BDOZ11, DPSZ12] show particularly efficient prepro-
cessing protocols based on public-key cryptosystems with special properties.

In this paper we are interested in computing Boolean circuits securely given
preprocessing. Here, the techniques from the online phases of [BDOZ11] and
[DPSZ12] also work, in particular Nielsen et al.[NNOB12] use the approach
from [BDOZ11] for Boolean circuits. However, some efficiency is lost: for every
AND-gate in the circuit, each player must do Ω(κ) bit operations, resulting in
a computational overhead that is at least linear in κ. Getting constant overhead
also for small fields was left as an open problem in [DPSZ12].

To be more precise about the cost of these protocols, we define three different
types of overhead: the data-overhead is the total number of bits players must
store from the preprocessing divided by N · |C|, where |C| is the size of the
circuit to compute. The communication-overhead and the computation-overhead
is the communication complexity and the computational complexity respectively
(in bit operations) of the protocol divided by N · |C|. For some protocols, these
overheads turn out to be the same up to constant factors, and in such a case, we
just speak of the overhead of the protocol. In a nutshell, the overhead represents
the amount of resource each player needs to invest per gate in the circuit.

In this terminology, the protocol in [NNOB12] has overhead Ω(κ). It is nev-
ertheless practical and has been implemented with promising results. On the
other hand, Damg̊ard et al. [DIK10] show that based on the “MPC in the head”
technique one can obtain a protocol with overhead essentially log(|C|)polylog(κ).
This is based on preprocessing of a large number of oblivious transfers and us-
ing them to convert a multiparty protocol for honest majority into a two-party
protocol. The constants involved here are very large, however, and the protocol
is in fact not practical. Both these protocols are for the two-party case. The
one from [DIK10] generalizes to several players but then the overhead would be
Ω(N log(|C|)polylog(κ)).



Constant-Overhead Secure Computation of Boolean Circuits 623

Before presenting our results, we consider how small overheads we can hope
for. Here it is useful to distinguish between two cases: either the preprocessing
is useful for computing any circuit, we call this universal preprocessing – or the
preprocessing knows the circuit (but not the inputs) and only has to generate
data for computing this circuit. We call this dedicated preprocessing.

In [DPSZ12] some lower bounds are shown for universal preprocessing, saying
that data and computational overheads must be at least constant. For dedicated
preprocessing, one can note that preprocessing targeted against a universal cir-
cuit is essentially universal preprocessing. Hence by the known bound, the data
overhead cannot be sub-constant for all circuits even in the dedicated case. More-
over, it would be surprising if the computational overhead could be sub-constant,
even for dedicated preprocessing. In such a case, each player would have to do
substantially less work than it takes to compute the circuit in the clear. Since
a single player has to rely on the work of other (corrupt) players, all players
must prove correctness of their part. This should then be possible in complexity
much smaller than the clear computation and with unconditional privacy and
correctness for all parties. This is not something we know how to do, even with
preprocessing.

Finally, for communication overhead, it follows from results in [IKM+13] that
we only need communication linear in the size of the inputs, but this comes at
the cost that the data overhead is exponential in the input size. Evidence is
given in [IKM+13] that getting small communication and data overhead would
lead to a major breakthrough in private information retrieval.

In conclusion, the results and evidence we know suggest that getting constant
overhead is the goal we can realistically hope to achieve.

1.1 Our Contribution

In this paper we show a multiparty computation protocol in the preprocessing
model, for computing Boolean circuits securely. It is information theoretically
secure against an active adversary corrupting up to N − 1 players. We assume
synchronous communication and secure point-to-point channels.

We focus on circuits that are not too “oddly shaped”. Concretely, we assume
that every layer of the circuit is Ω(κ) gates wide, where κ is the security pa-
rameter (except perhaps for a constant number of layers). Second, we want that
the number of bits that are output from layer i in the circuit and used in layer
j is either 0 or Ω(κ) for all i < j (where again a constant number of exceptions
are allowed). We call such circuits well-formed. In a nutshell, well-formed circuit
are those that allow a modest amount of parallelization, namely a program com-
puting the circuit can always execute Ω(κ) bit operations in parallel and when
storing bits for later use or retrieving, it can always access Ω(κ) bits at a time.

Since our protocol has error probability 2−κ and is unconditionally secure,
the value of κ can be quite small, e.g., 80 and would not be affected by future
advances in cryptanalysis. From a practical point of view one may therefore
think of κ as being very small compared the the circuit size, and hence the
requirement that the circuit be well-formed seems rather modest. We stress that
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our protocols work for arbitrary circuits, but the claims we can make on the
overhead will be weaker.

Throughout, we think of the circuit size as being also much larger than the
number of players. Our statements on overheads below therefore ignore additive
terms that are O(κN/|C|).

Our protocols are based on families of codes with some specific nice properties
that we explain in more detail below. The simplest construction follows from
Reed-Solomon codes and from this we get:

Theorem 1. There exists an N -party protocol for computing securely a well-
formed Boolean circuit C in the dedicated preprocessing model, statistically secure
against N − 1 active corruptions. For error probability 2−κ, the overhead is
O(polylog(κ)), where κ is the security parameter.

There also exists an N -party protocol for computing securely a well-formed
Boolean circuit C in the universal preprocessing model, statistically secure against
N − 1 active corruptions. For error probability 2−κ, the overhead is O(log(|C|) ·
polylog(κ)).

The second result applies a technique from [DIK10] to restructure C into a new
circuit that has a more regular structure, but still computes the same function.
The result from [DIK10] leads in general to circuits that have size O(log(|C|)|C|+
d2κ log |C|), where d is the depth of C. However, in case of well-formed circuits
the term depending on d disappears.

In comparison, the protocol one can construct from [DIK10] would have a
larger overhead, namely Ω(log(|C|) · polylog(κ) · N) in both the universal and
dedicated preprocessing model1. In comparison to [NNOB12], we clearly do bet-
ter asymptotically in the dedicated model. But also for concrete efficiency, our
method can offer an improvement, particularly for the case where the circuit
does a computation that is “born” parallel and hence lends itself easily to block-
wise computation. In particular, using Reed-Solomon codes over the F256 and
n = 256, then for 128 bit security we can obtain almost an 8-fold improvement
in data overhead over [NNOB12], see more details in the full version [DZ12].

Using algebraic geometry codes and results on strongly multiplicative secret
sharing from [CCX11] we obtain a result that is better than Theorem 1 when
the number of players is large.

Theorem 2. There exists an N -party protocol for computing securely a well-
formed Boolean circuit C in the dedicated preprocessing model, statistically secure
against N − 1 active corruptions. For an error probability of 2−κ, the data and
communication overhead are O(1) while the computation-overhead is O(1 + κ

N ),
where κ is the security parameter.

1 The reason why that protocol does not benefit from dedicated preprocessing is that
it is based on processing bits in parallel in large blocks, and in between permuting
bits inside these blocks. The efficiency, even in the online phase, crucially depends
on the fact that only a logarithmic number of different permutations are needed.
For this one needs to always transform C to a more regular form, leading to the
log(|C|)-factor.
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There also exists an N -party protocol for computing securely a well-formed
Boolean circuit C in the universal preprocessing model, statistically secure against
N − 1 active corruptions. For error probability 2−κ, data and communication
overheads are O(log(|C|)), while computation overhead is O(log(|C|)(1 + κ

N )).

If we are willing to assume that the layers in C are κ2 gates wide, then we can
get computational overhead O(1 + κε

N ), Where ε is defined as the smallest value
for which multiplication of n by n matrices can be done in time O(n2+ε). Based
on the best known matrix multiplication algorithms, we can have ε ≈ 0.3727. It
may even be that any ε > 0 suffices, but this is an open problem.

Note that none of the overheads we obtain increase with N and in fact most
of them do not depend on N . In particular our protocols have constant stor-
age overhead and constant computation overhead for a large enough number
of players. They are the first protocols in the preprocessing model for Boolean
circuits with this property, and in fact, from the discussion in the introduction,
the results seem close to optimal.

Techniques. We use the idea from [DPSZ12] of having the values we compute on
be secret-shared among the players, where also a Message Authentication Code
(MAC) on this value is secret-shared. Using precomputed values for multiplica-
tion, linear operations then suffice for executing the computation.

However, directly usage of the MACs from [DPSZ12] or any other previous
construction would not be efficient enough here, since we would have to use
values from a large field (F2κ) to authenticate single bits. A naive approach
where one groups κ bits together and authenticate them using a single MAC
over F2κ fails: we will need to do bit-wise addition and multiplication on such
κ-bit vectors, and since this does not commute with multiplication in F2κ , we
lose the homomorphic property of the MACs that is crucial for the protocol.

The key to our results consists of two technical contributions. First, we develop
a new authentication scheme based on families of linear codes where each code
as well as its so-called Schur-transform have minimum distance and dimension
a constant times their length. This scheme has the homomorphic property we
need, and is able to authenticate κ-bit vectors using MACs and keys of size O(κ).
We note that the idea of using small MACs on entries in an error correcting code
appeared in a different context in [IKOS08]. However, that application did not
use any homomorphic properties of the MACs, or the Schur transform.

The second technique is an efficient method for verifying membership in a
linear binary code for a batch of purported codewords. We show how to do this
with constant overhead per data bit. The underlying algorithm is of independent
interest, as it is actually a general method for verifying multiplication of Θ(n) by
Θ(n) binary matrices in time O(n2) with exponentially small error probability.
The best previous methods give only constant error probability in the same time.
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2 Linear Codes

In the following, we will consider a [n, k, d] linear code C over a field F = F2u ,
i.e., C has length n, dimension k and minimum distance d. We will assume
throughout that n, k, d are all Θ(κ), where κ is the security parameter. We will
use boldface such as x to denote vectors, and when x, y are vectors of the same
length, we let x ∗ y denote the coordinate-wise product of x and y.

For a vector x ∈ {0, 1}k, we let C(x) be the encoding of x as a codeword
in C. Without loss of generality, we assume throughout that the encoding is
systematic, so that x itself appears as the first k entries in C(x).

For a linear code C with parameters as above, the Schur-transform of C,
written C∗, is a linear [n, k∗, d∗]-code, defined as the span of the set of vectors
{x ∗ y| x,y ∈ C}. It is easy to see that k∗ ≥ k and d∗ ≤ d. However, we will
assume that d∗ is still large, namely d∗ ∈ Θ(κ). This is by no means always the
case, but can be obtained if C is properly constructed.

Let x, y be k-bit strings. We define C∗(x) to the set of codewords in C∗ where
x appears in the first k coordinates. This is indeed a set and not a single code-
word: since k∗ can be larger than k, x does not necessarily uniquely determine a
codeword in C∗. Note that since C(x) ∗C(y) ∈ C∗, and since furthermore x ∗ y
appears in the first k coordinates of this codeword, we have

C(x) ∗ C(y) ∈ C∗(x ∗ y)

This also shows that C∗(x) is always non-empty, by taking y = (1, 1, ..., 1).

Reed-Solomon Codes. As a first example, we give a simple construction showing
that Reed-Solomon type codes have the right properties, if we assume that u is
Θ(log κ). Then we set n = 3k, and we may assume that F has at least n distinct
elements a1, .., an. Now define C to be the code consisting of vectors of form
(f(a1), ..., f(an)) where f is a polynomial over F of degree at most k − 1. Then
C∗ will be a code of the same form, but defined using polynomials of degree at
most 2(k − 1).

It follows immediately from Lagrange interpolation that C and C∗ have min-
imum distances as large as required. Note that we can put C in systematic form
also using interpolation: given k field elements to encode, we interpolate a poly-
nomial f such that f(a1), ..., f(ak) equal these elements and then evaluate f
in the remaining points to complete the codeword. Note also that in this case
encoding and verifying membership in the codes is very efficient because it can
be done by multiplication by Van der Monde matrices or their inverses. Using
well-known algorithms based on the fast Fourier transform, this can be done in
time n · polylog(n). In Section 4.1 we cover the complexity of our protocol when
using Reed-Solomon codes.

Algebraic Geometry Codes. Using the work of Cascudo et al. [CCX11], one can
do even better: based on Algebraic Geometry, they construct families of codes
with properties as we require over constant size fields. In Section 4.2 we cover
the complexity of our protocol when using Algebraic Geometry codes.
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3 Authentication Schemes Based on Linear Codes

In this section we present a new authentication scheme that we will need in the
following. We will assume that we have a code C as described above, of length
n, dimension k and minimum distance d. In its most basic version there is a
receiver who knows a key α ∈ Fn chosen at random. The value to authenticate
is a k-vector x and the message authentication code (MAC) is m = C(x) ∗α.

Note that we use coordinate-wise multiplication by α, and therefore the
scheme is actually doing a standard MAC over the field F for every coordinate of
C(x). Since F has constant size, this would normally not be good enough since
one can forge such a MAC with constant probability 1/|F|, namely by guessing
the corresponding entry in α. But in our case, the coding saves the day: to forge
a MAC, one would need to change to a different codeword and therefore forge
not 1, but d MACs. Of course, if both x and m were known, information on α
would leak and other MACs might be forged. But in the protocol to follow, m
will be unknown to the adversary (since it is secret shared). It therefore turns
out that the following basic result on security for these MACs is what we need:

Lemma 1. Using the above notation, suppose the adversary is given x and then
outputs x′ and a “MAC-error” Δ. We say the adversary wins if C(x′) ∗ α =
m+Δ and x �= x′. The probability that the adversary wins is at most 2−d.

Proof. Assuming the adversary wins, we know C(x′)∗α = m+Δ holds. Plugging
in m = C(x) ∗α, we obtain α ∗ (C(x)−C(x′)) = Δ. Since the adversary wins,
C(x)−C(x′) is a non-zero codeword, so it is non-zero in at least d coordinates.
The equation therefore determines α in at least d positions so we see that the
adversary must guess at least d coordinates of the key to win.

Next, we consider a different way to use these MACs that turns out to be more
efficient when many messages are authenticated. In this variant the scheme will
use a single global key α that will be secret shared so it is unknown to the
adversary. The MAC on a value x is defined as before as m = α ∗ C(x). In the
protocol we make sure to reveal nothing about α nor about any of the MACs
until the end of the protocol where it will be too late for corrupted players
to forge any values. The way we prove security is thus to design the following
security game modeling the way this scheme is used in the protocol.

1. The challenger generates the secret key α and MACs mi ← α ∗ wi and
sends the messages w1, . . . ,wT to the adversary. Note that here messages
are codewords.

2. The adversary sends back messages w′1, . . . ,w
′
T .

3. The challenger generates random values e1, . . . , eT ← Fn and sends them to
the adversary.

4. The adversary provides an error Δ.
5. Set w ←

∑T
i=1 ei ∗w′i,m←

∑T
i=1 ei ∗mi. Now, the challenger checks that

all w′i’s are valid codewords and that α ∗w = m+Δ.

The adversary wins if there is an i for which w′i �= wi and the final checks pass.
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Generating the e’s. We will show below that the adversary can only win this
game with negligible probability if the ej ’s are uniformly random. However im-
plementing such a (trusted) random choice in our protocol turns out to be ex-
pensive, so we consider instead a way to choose them pseudorandomly using
a smaller number of random bits. What we will require is a way to generate
(pseudo) random strings v = (v1, ..., vT ) ∈ FT that are linearly ε-biased. By this
we mean that for any fixed non-zero vector u, we have Pr[u · v �= 0] ≥ ε for
some constant ε.

In [NN93], Naor and Naor present a construction (attributed there to Bruck)
that does exactly this, based on codes with good properties, namely the same
as we use here: both the dimension and the minimum distance of the code are a
constant time the length of the code. Let G be the generator matrix of the code,
where the rows of G form a basis of the code. Say that G has m columns where
m is in Θ(T ), and that the minimum distance of the code is εm for a constant ε.

Now the idea is to simply let v be a random column of G. To see why this
works, fix any u and consider two random experiments: 1) compute the codeword
uG and output a random entry from the result. 2) choose a random column v
from G and output u · v.

The first experiment clearly gives a non-zero result with probability ε, but on
the other hand, it is equivalent to the second one since the entries in uG are the
inner products of u with each column in G. We therefore get Pr(u · v �= 0) ≥ ε
as desired. To connect this to the above security game, let ei = (e1i , ..., e

n
i )

and define ej := (ej1, . . . , e
j
T ). We can now choose the ej ’s to be linearly ε-biased

instead of choosing them at random. Note that for this we need a seed consisting
of logm ∈ O(log T ) random bits for each ej , i.e, a total of O(n log T ) random
bits. We then have the following:

Lemma 2. The adversary wins the above security game with probability at most
2−Θ(n). This holds, even if the ej are not random but only linearly ε-biased.

Proof. Let us start by assuming that the ei’s are completely random and look
at the adversary’s probability of winning. If the checks hold then we have the
following equality α ∗

∑T
i=1 ei ∗ vi = Δ where vi := w′i−wi for i = 1, . . . , T are

codewords and there exists at least one j for which vj �= 0. Note that since vj

is a codeword it contains at least d entries that are 1.
Consider the sum

∑T
i=1 ei ∗ vi. Let v

j
i be the j’th entry in vi, then we define

vj := (vj1, . . . , v
j
T ). Finally we define the function fvj (ej) :=

∑T
i=1 e

j
iv

j
i which is

a linear mapping, that is not the 0-mapping for at least d number of j’s since at
least one vi �= 0 and hence has at least d entries which are nonzero. From linear
algebra we then have the rank-nullity theorem telling us that dim(ker(fvj )) =
T−1. Furthermore, since ej is random and the adversary does not know ej when
choosing the w′i’s, the probability of ej ∈ ker(fvj ) is |FT−1|/|FT | = 1/|F| ≤
1/2. In the following we assume for simplicity the worst case |F| = 2. So we
expect d/2 of the fvj (ej)’s in question to be 1. We can use Hoeffding’s inequality
[Hoe63] to bound the probability that we are far from the expectation: define
random variables X1, ..., Xd that take the value of the d non-trivial instances of
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fvj (ej) when ej is chosen at random. We can view the values as the result of
d independent experiments where the expected value E[Xi] is 1/2. Then from

Hoeffding’s inequality we get that Pr[|
∑

Xi

d − 1/2| ≥ t] ≤ e−2t
2d, for any t > 0.

This shows that except with exponentially small probability (as a function of d)
we can guarantee to deviate with at most a small constant fraction, that is, we
can guarantee at least d/2 − td = cd number of nonzero entries in

∑T
i=1 ei ∗ vi

for any c < 1/2.
Assume we have this many non-zero entries. Then going back to the equality

α ∗
∑T

i=1 ei ∗ vi = Δ, this implies that satisfying it is equivalent to guessing at
least cd entries of α. However, since the adversary has no information about α,
guessing can be done with probability at most 2−cd. It follows that the proba-
bility the adversary wins is at most the probability that

∑T
i=1 ei ∗ vi has less

than cd non-zero entries, plus 2−cd. This is exponentially small in d and hence
also in n since d is assumed to be Θ(n).

If the ei’s are instead chosen such that the ej ’s are pseudorandom but inde-
pendent and linearly ε-biased, then we can show the same result using a similar
argument. The only difference will be that we expect to see at least εd non-zero
entries in

∑T
i=1 ei ∗ vi. By independence we can still use Hoeffding to guarantee

we are close to this number of non-zero entries, and the adversary will now have
to guess εd entries of α.

Note that the above security game and lemma work exactly the same way if we
replace the code C by C∗, since we have assumed that the minimum distance
of C∗ is also Θ(n). We may even have codewords from both C and C∗ in the
game, as long as it is agreed in advance which words are supposed to be in C
and C∗ respectively. This is because the proof only depends on the fact that the
non-zero vector vj we construct has Θ(n) non-zero coordinates.

4 Protocol for Secure Computation

We are now ready to present our protocol. In structure it is much like the online
protocol from [DPSZ12], but with the big difference that we are working with
blocks of bits and doing parallel block-wise operations. Therefore, our protocol
has an extra operation: Between two layers in the circuit we need to be able
to reorganize the output bits so that they match up with the gates where they
should be input. Here we assume a dedicated preprocessing phase where we know
the circuit to be computed so we will know exactly how we need to move the
bits around. However, as mentioned earlier, we will also show a solution which
is general, i.e. it does not depend on a preprocessing where the circuit is known.

We assume synchronous communication and secure point-to-point channels.
We also assume for simplicity that broadcast is available at unit cost. This
assumption can be removed without affecting the complexity using a method
from [DPSZ12] which also works for our protocol since it has a similar structure.
Also for simplicity we assume there is only one input from each player and one
public output. It is straightforward to remove these restrictions without affecting
the complexity.
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Representation of Values. Values in our computation will be bits which are
grouped in vectors of length k, i.e. we have x ∈ Fk so that we will be doing
parallel operations on blocks of k bits. Each value will be secret shared among
the players along with a MAC on the value. More concretely, player i will hold
the encoding of a share C(xi), where C is a linear code as described in the
previous sections. There is also a public codeword dx = C(v) such that x =
x1 + · · ·+xN +v. Moreover, the MAC m(x) = α ∗C(x) will also be additively
shared such that player i holds m(x)i. This MAC is based on C and computed
using a global key α. The public codeword dx is necessary to easily add public
values to our representation. Summing up we have the following representation
for a shared value x

〈x〉 := (dx, (C(x1), . . . , C(xN )), (m(x)1, . . . ,m(x)N)).

Note that while the additive shares that represent x are codewords, the shares
of the MAC are taken from the entire space Fn. This is necessary as the MAC
itself is not in general a codeword.

We will also need to work with another kind of representation, denoted 〈·〉∗,
which is exactly like the 〈·〉-representation except that in 〈x〉∗, the additive
shares representing x are taken from C∗ and add up to a codeword in C∗(x).
The MAC is still shared with shares from Fn, but its security is now based on the
minimum distance of C∗. The 〈·〉∗-representation comes up when we multiply a
〈·〉-representation with a public constant.

It is straight forward with 〈·〉 to do linear operations. For adding two rep-
resentations, and multiplying a public constant u encoded in C(u) we simply
compute component-wise. For adding the public constant we modify the first
share and the public codeword. We write as follows:

〈x〉+ 〈y〉 = (dx + dy, (C(x1) + C(y1), . . . ), (m(x)1 +m(y)1, . . . ))
= 〈x+ y〉 .

C(u) ∗ 〈x〉 = (C(u) ∗ dx, (C(u) ∗ C(x1), . . . ), (C(u) ∗m(x)1, . . . ))
= 〈u+ x〉∗ .

C(u) + 〈x〉 = (dx − C(u), (C(x1) + C(u), . . . C(xN )), (m(x)1, . . . ,m(x)N))
= 〈u+ x〉 .

With 〈·〉∗ we cannot do multiplications since multiplying two codewords in C∗ is
not guaranteed to give a result in C∗. We solve this in the protocol, by converting
〈·〉∗ back into a 〈·〉-representation immediately after a multiplication. We convert
〈w〉∗ into 〈w〉 by taking a pair of random values (〈s〉∗ , 〈s〉) and open 〈w〉∗−〈s〉∗
to get σ∗ ∈ C∗(w − s). From σ∗, w − s can be read on the first k coordinates.
A single player, say P1 then computes σ = C(w − s) and broadcasts σ. The
rest of the players check that σ∗ and σ∗ are valid codewords encoding the same
value and compute 〈w〉 = σ + 〈s〉.



Constant-Overhead Secure Computation of Boolean Circuits 631

To compute the mutiplication 〈x〉∗〈y〉 we need to use the preprocessing which
will output random triples 〈a〉 , 〈b〉 , 〈c〉∗, where c = a∗b. Given such a triple, we
can do multiplication in the following standard way: To compute 〈x ∗ y〉 we first
open 〈x〉−〈a〉 to get ε = C(x−a), and 〈y〉−〈b〉 to get δ = C(y−b). Then, since
x∗y = (a+(x−a))∗(b+(y−b)) = c+(x−a)∗b+(y−b)∗a+(x−a)∗(y−b),
a new representation of x ∗ y can be computed as

〈x〉 ∗ 〈y〉 = 〈c〉∗ + ε ∗ 〈b〉+ δ ∗ 〈a〉+ ε ∗ δ = 〈x ∗ y〉∗ .

A final operation we need is reorganizing of bits between layers s.t. the output
bits become input bits to the intended gates. This may involve permuting bits,
duplicating bits and/or leaving out some bits. Clearly this reorganizing can be
expressed as a linear function F that takes as input all the output bits of a
given layer, which in our representation will be a vector of blocks of bits B =
(b1, . . . , bl). The output of F is a new vector of blocks F (B) = B′ = (b′1, . . . , b

′
l′).

For this purpose we extend our notation of 〈·〉 to also include a vector of blocks
instead of only one single block. We will write this as 〈B〉 := 〈b1〉 , . . . , 〈bl〉.
In general we will have that capital letters in 〈·〉 denotes a vector of blocks.
With this representation we still maintain the linear properties, simply by doing
the operations coordinate-wise, i.e. 〈A〉 + 〈B〉 := 〈a1〉 + 〈b1〉 , . . . , 〈al〉 + 〈bl〉
and so on. This means that we can compute F (〈B〉) and obtain 〈F (B)〉 for
any linear function F . If we assume that we know in advance the circuit to
be computed, then we also know exactly which reorganizing functions we need
between the circuit layers. Thus, for each needed reorganizing function F , we
will preprocess pairs of representations 〈R〉 , 〈F (R)〉, where R is random and of
appropriate length. As shown later, these pairs will then be used in the protocol
to reorganize the actual bits.

An important note is that during our protocol we are actually not guaranteed
that we are working with the correct results, since we do not immediately check
the MACs of the opened values. During the first part of the protocol, parties
only do what we define as a partial opening, meaning that each party Pi sends
his share C(ai) to one chosen party, say P1. Then, P1 computes and broadcasts
C(a) and the other parties verify that C(a) is a valid codeword. We assume here
for simplicity that we always go via P1, whereas in practice, one would balance
the workload over the players.

The checking is postponed to the end of the protocol in the output phase.
To check the MACs the global key α is needed. This key is provided by the
preprocessing but in a slightly different representation:

[[α]] := ((C(α1), . . . , C(αN )), (βi,m(α)i1, . . . ,m(α)iN)i=1,...N
),

where α =
∑N

i=1 αi and
∑N

j=1 m(α)ji = C(α) ∗ βi. Player Pi holds C(αi),βi,

m(α)i1, . . . ,m(α)iN . The idea is that m(α)i ←
∑N

j=1 m(α)ji is the MAC au-
thenticating α under Pi’s private key βi. To open [[α]], each Pj sends to each

Pi his share C(αj) of α and his share m(α)ji of the MAC on α made with Pi’s

private key and then Pi checks that
∑N

j=1 m(α)ji = C(α) ∗ βi. (To open the
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value to only one party Pi, the other parties will simply send shares only to Pi,
who will do the checking.)

The protocol assumes access to a commitment functionality FCom for com-
mitments. A player commits by calling it with a secret value s as input. The
functionality stores the value until the committer calls open, in which case the
value is revealed to all players. This can be implemented based only on FPrep:
We open a random [[r]] only to the committer, who then broadcasts r+s. When
opening, we open [[r]] to all players so s can be computed.

The Protocol. We assume an ideal preprocessing functionality2 FPrep, shown
in Figure 6. Given FPrep and the techniques described earlier we can construct
a protocol that securely implements the ideal functionality in Figure 4. The
protocol is presented in Figure 1 where we for brevity drop explicit mentioning of
variable identifiers. We assume here that the circuit to be computed is structured
such that there is only one type of gate per layer. This can be done without loss of
generality since any function to be computed can be expressed by NAND-gates
only, which then can be expressed by AND and XOR which are the operations
we support. We can now state the theorem on security of the online protocol.

Theorem 3. In the FPrep,FCom-hybrid model, the protocol ΠMPC implements
FMPC with statistical security against any static active adversary corrupting up
to N − 1 parties.

Proof (Theorem 3).
We construct a simulator SMPC such that a poly-time environment Z cannot

distinguish between the real protocol system FPrep,FCom composed with ΠMPC

and FMPC composed with SMPC. We assume static, active corruption. The simu-
lator will internally run a copy of FPrep composed with ΠMPC where it corrupts
the parties specified by Z. The simulator relays messages between parties/FPrep

and Z, such that Z will see the same interface as when interacting with a real
protocol. The specification of the simulator SMPC is presented in Figure 2.

To see that the simulated and real processes cannot be distinguished, we show
that the view of the environment in the ideal process is statistically indistinguish-
able from the view in the real process. This view consists of the corrupt players’
view of the protocol execution as well as inputs/outputs of honest players.

We first argue that the view up to the point where the output value is opened
(step 5 of the ‘output’ stage) has exactly the same distribution in the real and
in the simulated case: First, the value broadcast by honest players in the input
stage are always uniformly random. Second, when a value is partially opened
in a secure multiplication or a reorganize step, fresh shares of a random value

2 Note that we don’t show a specific implementation of FPrep, since that is not the
core of our result. An implementation can always be done by a general MPC proto-
col. However, in [DPSZ12] an efficient preprocessing protocol is shown which works
on vectors of values with coordinate-wise operations just as we need in our case.
Furthermore, since our online protocol in structure resembles theirs, we can use the
same kind of preprocessing. We will elaborate on this in the full version, [DZ12].
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Protocol ΠMPC

Initialize: The parties first invoke the preprocessing to get the shared secret key
[[α]], a sufficient number of multiplication triples (〈a〉 , 〈b〉 , 〈c〉∗), pairs of ran-
dom values and single values (〈r〉 , [[r]]), (〈s〉 , 〈s〉∗), 〈t〉, [[t′]], and pairs (〈R〉,
〈F (R)〉) of representations for random blocks R and linear function F .

Rand: The parties take an available single 〈t〉.
Input: To share Pi’s input xi, take an available pair 〈r〉 , [[r]] and do the following:

1. [[r]] is opened to Pi.
2. Pi broadcasts ε ← C(xi)− C(r).
3. The parties verify that ε is a codeword and if so, compute 〈xi〉 ← 〈r〉+ ε.

Add: To add representations 〈x〉 , 〈y〉, parties locally compute 〈x+ y〉 ← 〈x〉+〈y〉.
Multiply: To multiply 〈x〉 , 〈y〉, parties take a triple (〈a〉 , 〈b〉 , 〈c〉∗) and a pair of

random values 〈s〉 , 〈s〉∗ from the set of the available ones and do:
1. Partially open 〈x〉 − 〈a〉 to get ε and 〈y〉 − 〈b〉 to get δ
2. Compute 〈x ∗ y〉∗ ← 〈c〉∗ + ε ∗ 〈b〉+ δ ∗ 〈a〉+ ε ∗ δ.
3. Partially open 〈x ∗ y〉∗ − 〈s〉∗ to get σ∗ ∈ C∗. P1 extracts x ∗ y − s and

encodes this value into a codeword σ ∈ C which he broadcasts.
4. All players check that σ∗,σ are codewords for the same value and then

compute 〈x ∗ y〉 ← σ + 〈s〉.
Reorganize Let B = (b1, . . . , bl) be the vector of blocks containing the output

bits of a given layer in the circuit. To reorganize these bits as inputs for the
next layer the parties first identify the F matching this reorganizing and take
preprocessed (〈R〉, 〈F (R)〉) for R with same length as B. The parties then do:
1. Partially open 〈B〉−〈R〉, so a set of codewords C(B − R) becomes public.
2. P1 extracts B − R, computes F (B − R) and broadcasts C(F (B − R)).
3. All players verify that C(B − R), C(F (B − R)) are sets of valid code-

words and that the encoded bits are related via F . Then compute
〈F (R)〉 ← C(F (B −R)) + 〈F (R)〉.

Output: This stage is entered when the players have 〈y〉 for (possibly incorrect)
but not opened output value y. They do the following:
1. Let C(aj), . . . , C(aT ′+1), be all partially opened values so far, where

〈aj〉 = (δj , (C(aj,1), . . . , C(aj,N )), (m(aj)1, . . . ,m(aj)N )). Similarly let
C∗(aT ′+1), . . . , C

∗(aT ) be opened values encoded in C∗. Open �c ·
N log(T )/k� random values [[t]] and use them as seeds to get e1, . . . ,eT

as described in Section 3. Compute a ←
∑T

j=1 ej ∗ C(a)j +
∑T

j=T ′+1 ej ∗
C∗(a)j .

2. Each Pi calls FCom to commit to mi ←
∑T

j=1 ej ∗m(aj)i. For output value
〈y〉, Pi also commits to his share yi, and his share m(y)i in the MAC.

3. [[α]] is opened.
4. Each Pi asks FCom to open mi, and all check that α ∗ (a +

∑T
j=1 ej ∗

δj) =
∑N

i=1 mi. If a check fails, the protocol aborts. Otherwise the players
conclude that the output value is correctly computed.

5. The commitments to yi,m(y)i are opened. Define y as y :=
∑N

i=1 yi and

check that α ∗ (y + δ) =
∑N

i=1 m(y)i, if so, y is the output.

Fig. 1. The online protocol
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are subtracted, so the honest players will always send a set of uniformly ran-
dom and independent values. Third, the honest players hold shares in MACs on
the opened values, these are random sharings of a correct MAC. Therefore, also
the MAC and shares revealed in step 4 of ‘output’ have the same distribution in
the simulated as in the the real process. Finally note that if the simulated proto-
col aborts, the simulator makes the ideal functionality fail, so the environment
will see that honest players generate no output, just as when the real process
aborts.

Now, if the real or simulated protocol proceeds to the last step, the only new
data the environment sees is output value y, plus some shares of honest players.
These are random shares that are consistent with y and its MAC in both the
simulated and real case. In other words, the environments’ view of the last step
has the same distribution in real and simulated case as long as y is the same.

In the simulation, y is of course the correct evaluation on the inputs match-
ing the shares that were read from the corrupted parties in the beginning. To
finish the proof, it is therefore sufficient to show that the same happens in the
real process with overwhelming probability. In other words, we show that the
event that the real protocol terminates but the output is not correct occurs with
negligible probability. Incorrect outputs result if corrupted parties during the
protocol successfully cheat with their shares. We have two kinds of checks on
shares corresponding to the two kinds of representations [[·]] and 〈·〉. The checks
related to the openings of [[·]]-values are done during ’Input and in steps 1 and
3 of ’Output’. We get from Lemma 1 that the probability of cheating in each of
these openings is at most 2−d.

For the check in step 5 (which is for all the opened 〈·〉 and 〈·〉∗ values) we turn
to the security game of Lemma 2 in Section 3. It is not difficult to see this game
indeed models ‘Output’(up to step 5): The second step in the game where the
adversary sends the w′i’s models the fact that corrupted players can choose to
lie about their shares of values opened during the protocol execution. Δ models
the fact that the adversary may modify the shares of MACs held by corrupt
players. Finally, since α and mi are secret shared in the protocol, the adversary
has no information on α and m ahead of time in the protocol, just as in the
security game. Therefore, we get from Lemma 2 that the probability of a party
being able to cheat in step 5 is at most 2−Θ(n). Finally, for the check in step 6,
only one MAC is checked for each output, so here the probability of cheating is
2−d, again by Lemma 1.

Since the protocol aborts as soon as a check fails, the probability that it
terminates with an incorrect output is the maximum probability with which any
single check can be cheated. Since n and d are assumed to be Θ(κ), all these
probabilities are 2−Θ(κ), and hence the maximum is also exponentially small. �

Having shown the construction of the protocol and proved security, the only
thing left is to argue about the complexities depending on the concrete linear
codes and preprocessing model. In the following two sections we argue the com-
plexities using Reed-Solomon and Algebraic Geometry codes respectively with
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both dedicated and universal preprocessing, and thereby completing the proofs
of Theorem 1 and Theorem 2.

Simulator SMPC

Initialize: The simulator runs the ”Initialize” step honestly on the copy. This
involves initializing and creating the desired number of preprocessed values by
doing the steps in FPrep. Note that here the simulator will read all data (shares,
keys, errors) of the corrupted parties specified to the FPrep copy.

Rand: The simulator runs the copy protocol honestly and calls rand on the ideal
functionality FMPC.

Input: If Pi is not corrupted the copy is run honestly with dummy input, for
example 0. If in Step 1 during input, the MACs are not correct, the protocol
is aborted.
If Pi is corrupted the input step is done honestly and then the simulator waits
for Pi to broadcast ε. Given this, the simulator can compute x′

i = r + ε since
it knows (all the shares of) r. This is the supposed input of Pi, which the
simulator now gives to the ideal functionality FMPC.

Add: The simulator runs the protocol honestly and calls add on the ideal func-
tionality FMPC.

Multiply: The simulator runs the protocol honestly and, as before, aborts if some
codeword is not valid. Otherwise it calls multiply on the ideal functionality
FMPC.

Reorganize The simulator runs the protocol honestly and, as before, aborts if
some codeword is not valid. Otherwise it calls reorganize on the ideal function-
ality FMPC.

Output: The output step is run and the protocol is aborted if some MAC is not
correct. Otherwise the simulator calls output on FMPC and gets Pi’s output y
back. Now it has to simulate shares yj of honest parties such that they are
consistent with y. Note that the simulator already has shares of an output
value y′ that was computed using the dummy inputs, as well as shares of the
MAC for y′.
The simulator now selects an honest party, say Pk and adds y−y′ to his share
of y and compute its new encoding. Similarly it adds α∗C(y−y′) to his share
of the MAC. Note that the simulator can compute α∗C(y−y′) since it knows
from the beginning (all the shares of) α. Now it simulates the openings of shares
of y towards the environment according to the protocol. If the environment lets
this terminate correctly, send “OK” to FMPC.

Fig. 2. The simulator for FMPC

4.1 Using the Protocol with Reed-Solomon Codes

Dedicated Preprocessing. First, we note that by our assumptions on the code
C, a codeword contains k ∈ Θ(n) data bits. Moreover, in the 〈·〉-representation,
each player stores only two n-bit vectors as his share of each encoded block,
namely a codeword of the additive share of the value itself and a share of the
MAC. It follows that each player storesO(n) field elements per 〈·〉-representation.
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We then define a block operation to be an addition, a multiplication, or an
opening of 〈·〉-representations. Since the circuit is well formed and each 〈·〉-
representation “contains” Θ(n) data bits, it is not hard to see that the number
of block operations we need to compute a circuit of size S is O(S/n).

Now, the storage and communication overheads follow because we use at
most a constant number of 〈·〉- representations from the preprocessing for each
block operation, and the communication needed is a most Nn field elements
for each such operation. So O(S/n · Nn) = O(SN) field elements need to be
stored from the preprocessing and this is also the communication complexity.
The field has to have at least n elements for the Reed-Solomon construction
to work, hence each field element has size O(log n) = O(log κ) bits. Putting all
this together, we see that the storage and communication overheads are both
O(SN log κ/(SN)) = O(log κ). It should be noted that we also use some of the
more expensive [[·]]-representations, these cost O(N2n) field elements in storage
and communication when they are opened. However, we only need �c·n log(T )/k�
of these, which is O(log(T )). Since T is linear in the circuit size S, the storage
and communication overhead for this part will be O(N2n log(κ)·log(S)/(SN)) =
O(Nκ log(κ) log(S)/S). As explained in the introduction, we assume S is much
larger than Nκ, so this term can be ignored when we compute the overhead.

As for computation, the most expensive operation done on a block is the
re-encoding and membership verification we need for every layer and every mul-
tiplication. This costs O(n · polylog(n)) bit operations per block, because we are
working with Van der Monde matrices, as explained in Section 2. This means
the total computational complexity is O(S/n ·N ·n ·polylog(n)), so the overhead
is O(polylog(n)) = O(polylog(κ)).

Universal Preprocessing. Here we use the restructuring of the circuit as de-
scribed [DIK10]. This makes the circuit somewhat larger, namely by a factor of
O(log(S)) as mentioned in Section 1.1. Now the reorganization of bits between
layers can be done simply by permuting inside one block at a time. Moreover,
the permutations we need are the same, independently of the circuit we want
to compute. Hence a number of random pairs 〈r〉 , 〈π(r)〉 can be prepared in
advance, where π ranges over the permutations needed. This implies the sec-
ond part of Theorem 1 if we again use Reed-Solomon codes. The only change
compared to dedicated preprocessing is that overheads have to be multiplied by
the factor by which the circuit gets larger when we apply the restructuring from
[DIK10].

4.2 Using the Protocol with Algebraic Geometry Codes

Before going into depth with the argument for complexity using Algebraic Ge-
ometry codes, we look at the problem of batch verification of membership in
binary codes.

Verifying Membership in (Binary) Codes with Amortized Efficiency.
We will need a solution to the following problem: Suppose we are given a set of
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vectors of length n and it is claimed that they are all in the linear binary code
C, of dimension k and length n. Say there are Θ(n) input vectors. We want to
verify that every vector is indeed in C, possibly with an error probability that
is negligible in n, and without making any assumptions on C.

Let H be the parity check matrix for C, so H has n columns and n− k rows.
We then put the input vectors as columns in a matrix M , where we assume for
simplicity that there are n − k input words so M has n − k columns. Now, an
obvious method is to just compute U = HM and check this result is the all-0
matrix. Using good matrix multiplication algorithms, this does save time over the
naive approach of just multiplying H on every input vector, namely we go from
cubic time to O(n2+v) where v > 0 depends on the matrix algorithm used. We
could also use the algorithm of Freiwalds for verifying a matrix product [Fre77],
but it has constant error probability for a constant-size field and is therefore not
good enough for us even though it runs in time O(n2). We now explain how to
do better.

Let G be a generator matrix for a linear time encodable code, of dimension
n−k and length m. From the results of Spielman [Spi96], it follows that families
of such codes exist, that also have constant information and error rate. We
can therefore assume that m is in Θ(n) and the minimum distance of the code
generated by G is also in Θ(n). Using the standard convention that the rows of
G form a basis of the code, We assume that G has m columns and n− k rows.
Let G† be the transposed of G.

By linear time encodability, we can multiply a row vector with G in linear time
(or multiply G† by a column), and hence compute G†H and MG in time O(n2).
This leads to the algorithm in Figure 3, which is actually a general method for
checking whether the product of two matrices is 0.

Algorithm CheckZeroProduct

1. On input H,M , compute G†H and MG.
2. Select at random n pairs of indices (i�, j�) ∈ {1, . . . ,m}2 for � = 1, . . . , n.
3. For � = 1, . . . , n, compute inner product of row i� of G†H and column j� of

MG.
4. If all inner products are 0, output “accept”, else “reject”.

Fig. 3. Algorithm for checking zero product of matrices

Theorem 4. The algorithm CheckZeroProduct runs in time O(n2). If HM =
0 it always accepts, and if not, it accepts with probability in 2−Θ(n).

Proof. Recall that U = HM and note that

(G†H)(MG) = G†UG = (G†U)G.

Now, if U = 0, then GUG† = 0 and the algorithm accepts. Otherwise, at least
one entry in U is not 0. We can think of the expression (G†U)G as first encoding
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each column of U using G† and then encoding each row of the result using G.
Since the code generated by G has minimum weight/distance in Θ(n), it follows
that a constant fraction of the entries in (G†U)G are non-zero. The algorithm
effectively probes n random entries in (G†U)G and will therefore accept in this
case with probability at most 2−Θ(n). We already argued that we can compute
G†H andMG in time O(n2) and the inner products clearly also take time O(n2).

Now we return to our protocol and derive the overheads we get if we use algebraic
geometry codes and exploit the fast verification of codewords. This will establish
the results claimed in Theorem 2.

For the storage and communication overhead, exactly the same arguments
as for Reed-Solomon codes apply, with the only difference that the field size is
now constant, so this immediately gives us that the storage and communica-
tion overheads are constant when we do dedicated preprocessing. For universal
preprocessing we have to multiply by the “expansion factor” from [DIK10].

As for the computation overhead, again the re-encoding done for multiplica-
tion and reordering of bits is the bottleneck, in fact the overhead from other
computation is constant. Note that in the protocol only a single player encodes
data, while the other players only verify membership in the codes, and the over-
head from verification can be made constant using the above algorithm. We
therefore just need to compute the overhead coming from a single player doing
O(S/n) encodings, where S is the size of the circuit computed. Doing encoding
by simply multiplying by the generator matrix costs O(n2) operations, so we get
an overhead of O(nS/(NS)) = O(κ/N).

If the circuit is wide enough that encoding can always be done in batches of
size Ω(n), it can be done by matrix multiplication in time O(n2+ε) for a batch,
or O(n1+ε) per encoded word. This gives computation overhead O(κε/N) by the
same argument as for Reed-Solomon.

Acknowledgment We thank Yuval Ishai for inspiring discussions leading to
the CheckZeroProduct algorithm.
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A Functionalities

Functionality FMPC

Initialize: On input (init , k) from all parties, the store the block length k.
Rand: On input (rand , Pi, vid) from all parties Pi, with vid a fresh identifier, the

pick r ← Fk
2 and store (vid , r).

Input: On input (input , Pi, vid ,x) from Pi and (input , Pi, vid , ?) from all other
parties, with vid a fresh identifier, store (vid ,x).

Add: On command (add , vid1, vid2, vid3) from all parties (if vid1, vid2 are present
in memory and vid3 is not), retrieve (vid1,x), (vid2,y) and store (vid3,x+y).

Multiply: On input (mult , vid1, vid2, vid3) from all parties (if vid1, vid2 are
present in memory and vid3 is not), retrieve (vid1,x), (vid2,y) and store
(vid3,x ∗ y).

Reorganize: On input (reorg, F, vid1, . . . , vid l, vid
′
1, . . . , vid

′
l′) from all par-

ties (if vid1, . . . vid l are present in memory and vid ′
1, . . . , vid

′
l′ are not),

retrieve (vid1,x1), . . . , (vid l,xl). Apply the function F (if the number
of parameters match) to get F (x1, . . . ,xl) = (x′

1, . . . ,x
′
l′) and store

(vid ′
1,x

′
1), . . . , (vid

′′
l,x

′
l′).

Output: On input (output , vid) from all honest parties (if vid is present in mem-
ory), retrieve (vid ,x) and output it to the environment. If the environment
returns “OK”, then output (vid ,x) to all players, else output ⊥ to all players.

Fig. 4. The ideal functionality for MPC

FPrep Macros

Usage: We describe two macros, one to produce [[v]] representations and one to
produce 〈v〉 representations. We denote by A the set of corrupted players.

Bracket(v1, . . . ,vN ,β1, . . . ,βN ), where vi,βi ∈ Fn and vi’s are codewords in C.
1. Let v =

∑N
i=1 vi and then for i = 1, . . . , N :

(a) Compute the MAC m(v)i ← v ∗ βi.
(b) For every corrupt Pj , j ∈ A the environment specifies a share m(v)ji .
(c) Set each share m(v)ji , j /∈ A, uniformly st.

∑N
j=1 m(v)ji = m(v)i.

2. Send (vi, (βi,m(v)i1, . . . ,m(v)iN)) to each honest player Pi.
Angle(v1, . . . ,vN ,α), where vi,α ∈ Fn and vi’s are codewords, all in C or C∗.

1. Let v =
∑N

i=1 vi, and compute the MAC m(v) ← v ∗α.
2. For every corrupt player Pi, i ∈ A the environment specifies a share m(v)i.
3. The functionality sets each share m(v)i i /∈ A uniformly such that∑N

i=1 m(v)i = m(v).
4. It send (0, vi,m(v)i) to each honest player Pi.

Fig. 5. Macros for use in FPrep
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Functionality FPrep

Usage: The functionality uses two macros described in Figure 5, to produce [[v]]
and 〈v〉 representations. We denote by A the set of players controlled by the
adversary. When any of the commands below are called, the environment may
send “stop”, in which case the functionality sends “fail” to all parties and stops.

Initialize: On input (init , n, k, d, u, G) from all players, store integers n, k, d, u and
generator matrix G for a linear [n, k, d]-code C over the field F = F2u .
1. For each corrupt player Pi, i ∈ A, get codeword C(αi) of a share αi from

the environment.
2. Set each share αi, i /∈ A uniformly.
3. For each corrupt player Pi, i ∈ A, the environment specifies a key βi.
4. The functionality sets each key βi i /∈ A uniformly.
5. It runs the macro Bracket(C(α1), . . . C(αn),β1, . . . ,βn).

Pairs(〈r〉 , [[r]]): On input (pair) from all players, do:
1. For each corrupt player Pi, i ∈ A, the environment specifies a codeword

C(ri) of the share ri.
2. Set each share ri, i /∈ A uniformly.
3. Run Bracket(C(r1), . . . , C(rn),β1, . . . ,βn), Angle(C(r1), . . . , C(rn),α).

Pairs(〈r〉 , 〈r〉∗): On input (pair, ∗) from all players
1. For each corrupt player Pi, i ∈ A, the environment specifies codewords

C(ri), C
∗(ri) of the share ri.

2. Set each share ri, i /∈ A uniformly.
3. Run Angle(C(r1), . . . , C(rn),α),Angle(C∗(r1), . . . , C(rn),α).

Pairs(〈R〉 , 〈F (R)〉)): On input (pair, F (X) from all players
1. For each corrupt player Pi, i ∈ A, the environment specifies a vector of

codewords (C(ri1), . . . , C(ril)) representing the vector Ri = (ri1, . . . , ril)
of length l according to F .

2. Set each Ri, i /∈ A uniformly. ( Now R :=
∑

i Ri = (r1, . . . , rl), where
rj :=

∑
i rij .)

3. To get the shared representation of each entry in R and F (R),
run for j = 1, . . . , l the macros Angle(C(r1j), . . . , C(rnj),α) and
Angle(F (r1j), . . . , F (rnj),α), where we abuse the notation slightly to let
F (rij) denote the jth entry of the vector F (Ri).

Triples: On input (triple) from all players
1. For each corrupt player Pi, i ∈ A, the environment specifies codewords

C(ai), C(bi) of shares ai, bi .
2. Set each share ai, bi, i /∈ A uniformly. Let a :=

∑n
i=1 ai, b :=

∑n
i=1 bi.

3. Set c ← a ∗ b.
4. For each corrupt player Pi, i ∈ A, the environment specifies a codeword

C(ci) of the share ci .
5. Set each share ci, i /∈ A uniformly with the constraint

∑n
i=1 ci = c.

6. Run Angle(C(a1), . . . , C(an),α), Angle(C(b1), . . . , C(bn),α), and
Angle(C(c1), . . . , C(cn),α).

Fig. 6. The ideal functionality for preprocessing
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Abstract. Resettable hardware tokens, usually in the form of smart
cards, are used for a variety of security-critical tasks in open environ-
ments. Many of these tasks require trusted hardware tokens. With the
complexity of hardware, however, it is not feasible to check if the hard-
ware contains an internal state or gives away information over side chan-
nels. This inspires the question of the cryptographic strength of untrusted
resettable hardware tokens in the universal composability framework.

In this work, we consider the problem of realizing general UC-
functionalities from untrusted resettable hardware-tokens, with the goal
of minimizing both the amount of interaction and the number of to-
kens employed. Our main result consists of two protocols, realizing
functionalities that are sufficient to UC-realize any resettable two-party
functionality.

The first protocol requires two rounds of interaction in an initialization
phase and only a single hardware-token. The second protocol is fully non-
interactive and requires two tokens. One of these relaxations, allowing
either communication with the issuer of the token or issuing two tokens,
is necessary. We show that even a simple functionality cannot be realized
non-interactively using a single token.

Keywords: Resettably secure computation, Tamper-Proof hardware,
Universal Composability.

1 Introduction

In this paper we investigate the cryptographic strength of tamper-proof reset-
table hardware tokens in the universal composability model. This setting is mo-
tivated by smart cards. Smart cards are tamper-proof and resettable. Our aim is
to obtain non-interactive protocols where a sender can issue tamper-proof hard-
ware which is not necessarily trusted by the receiver. Non-interactive protocols
allow communication only in one direction from the sender to the receiver. We
will, however, differentiate two types of non-interactive protocols. In the first
type we allow an exchange of hardware tokens and interactive communication
between sender and receiver in an initialization phase before the input is given.
After the input is given the only communication allowed is one message sent
from the sender to the receiver. The second and more strict type allows (even in
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an initialization phase) communication and sending of hardware tokens in one
direction only.

Of course, using resettable hardware and non-interactive protocols one can-
not expect to realize any non-resettable ideal functionality. The real adversary
could always reset the token and start the protocol all over again. Hence this
unavoidable attack must be reflected in the ideal functionality. Note that this
poses a limitation on the usefulness of some ideal functionalities. E.g. a coin-toss
of a single bit becomes useless as an attacker could reset the protocol until his
desired result occurs. Resettable functionalities resemble an ideal, i.e. black-box,
code obfuscation which is impossible without secure hardware [1].

Our Contribution. In the following we prove that there exist simple resettable
ideal functionalities, namely point-functions, which cannot securely be realized
by a strictly non-interactive protocol using one single resettable hardware token.
We prove the impossibility of realizing a point-function with a single resettable
token in a strictly non-interactive protocol along the lines of [2]. Any successful
simulator for a corrupted token would already yield a cheating strategy for the
token in the real model.

If we were given a common-reference-string (CRS), however, non-interactive
protocols can be realized via secure two party computations between the receiver
and the hardware token. Note that the secure two-party computation must be
adapted to be used with a resettable token. A general construction can be found
in [3]. For each message m which is sent to the token in the secure two-party
computation one sends the complete previous transcript plus the message m.
The token then verifies the transcript and answers according to the protocol.
Any UC-compiler for secure two-party computation in the CRS-hybrid-model
(e.g. [4]) can be used to implement the underlying two-party protocol.

So the problem of non-interactive secure computation boils down to securely
computing a CRS in an initialization phase of the protocol. As our main contri-
bution we provide two constructions for securely realizing the CRS functionality
with resettable tamper-proof hardware tokens. The first protocol-construction
obtains a CRS using a single resettable hardware-token and a 4-move interactive
initialization-phase. The second protocol-construction obtains a resettable CRS
using two resettable hardware tokens and no further interaction with the sender.

Our Techniques. At the core of our first construction, which allows interaction
with the sender in an initialization phase, is a Blum coin-toss protocol. In this
protocol the hardware token is used like a UC-commitment which is opened via
the possession of a secret which is sent by the sender in the unveil phase. This
secret is not directly given to the token to avoid communication between the
sender and the token, instead a zero-knowledge proof is used. Note that this
ZK proof must be resettably-sound and therefore can only be achieved using
non-black-box techniques.

Our second construction uses two hardware tokens which are both issued by
the sender and works in the strictly non-interactive setting where nothing may
ever be sent by the receiver. In the strictly non-interactive setting one cannot use
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one of the two tokens like a UC-commitment which is unveiled via the possession
of a secret value, because both tokens are resettable and the receiver could learn
the committed value, reset, and force the coin-toss to some malicious value. The
basic idea behind our solution is a Blum coin-toss where the receiver commits
to a random value x and sends x together with the commitment c to the first
token. The token answers with a value y which is deterministically derived from
the commitment by a pseudorandom function. The second token is then used to
check if the value y is indeed deterministically derived. The second token is given
the commitment c and must answer with the same y. In this case x ⊕ y is the
result of the coin-toss. For the security proof in case of a corrupted receiver it
is crucial that the communication with the two tokens takes place in this order.
The second token must not reveal the value y too early, because the simulator
must choose y depending on x which is not possible if he must choose y too
early. To cope with that, the first token signs the commitment and the second
token accepts a commitment only together with a proof of possession of a valid
signature. For the simulation of a corrupted sender, however, it is necessary to
obtain y before one is actually committed to x. To do so the simulator executes
the protocol out of order. He is able to forge the proof of possession of a valid
signature. To the best of our knowledge this simulation technique is novel and
an interesting result on its own.

As an application of our non-interactive protocols we propose a conditional
decrypt for a fully homomorphic encryption scheme. The condition for decryption
being that a universal argument is provided to the token that a specific compu-
tation has been performed. This allows offloading computations from the token.
The actual computation can be performed using fully homomorphic encryption
and only the conditional decrypt has to be realized as a two-party computation.
This construction can be used to achieve obfuscation.

FurtherRelatedandConcurrentWork.The notion of resettability has gained
considerable attention, especially in the context of zero-knowledge. The results
range from a resettable prover [3, 5, 6], to a resettable verifier [6, 7] and simulta-
neously resettable prover and verifier [8–10]. These works spawned a line of work
realizing compilers for resettable and stateless secure multi-party computation.
Goyal and Sahai [11] presented a compiler which enables multi-party computa-
tion of arbitrary PPT-functionalities either with honest majority where any party
can be resettable, or no honest majority is required and only one predetermined
party may be resettable. Surpassing the honest majority requirement, Goyal and
Maji [12] introduced a compiler that transforms most PPT-functionalities (ex-
cept a certain class of pseudorandom generators) into a stateless variant. Goyal et
al. [13] present an unconditionally secure zero-knowledge protocol for NP . They
show that statistically secure commitments with one stateless token are only pos-
sible when interaction between the parties is allowed, but impossible in the non-
interactive setting. This is due to the fact that in the non-interactive case the
token needs to contain superpolynomial entropy since both sender and receiver
are unbounded. In contrast, we consider computational UC-security [14], so their
impossibility result does not apply to us.
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There are several results concerning multi-party computation in the UC-
framework. [14] showed that under the assumption of an honest majority, any
multi-party protocol is realizable in the UC-framework. Since it is known to be
impossible to construct large classes of UC-secure two-party protocols in the
plain model [14–16], the result of Canetti et al. [4] was a breakthrough. In their
work, a common reference string is needed as a setup assumption to overcome
the impossibility results and realize arbitrary multi-party protocols in the UC-
framework. Further work based on tamper-proof hardware includes [17, 18].

In a work independent and concurrent to ours, [19] investigated how stateless
tamper-proof hardware tokens can serve as a minimal UC-setup assumption.
They present a black-box protocol realizing OT with two stateless tokens and
show that OT from one stateless token is not possible if only black-box techniques
are used. This is similar to our impossibility result, but we cover any amount of
resettable tokens in the non-interactive setting. Further, they construct a coin-
toss protocol with a single hardware token using similar techniques to our first
protocol. However, they do not consider a non-interactive coin-toss protocol.

2 Preliminaries

Let in the following k denote a security parameter. We use the cryptographic
standard notions of negligible functions, as well as computational/statistical/per-
fect indistinguishability.

2.1 Framework

We state and prove our results in the UniversalComposability (UC)-framework
of [14]. In this framework security is defined by comparison of a real model and
an ideal model. The protocol of interest Π is running in the latter, where an
adversary A coordinates the behavior of all corrupted parties. We assume static
corruption, i.e. the adversary A cannot adaptively change corruption during a
protocol-run. In the ideal model, which is secure by definition, an ideal function-
ality F implements the desired protocol task and a simulator S tries to mimic
the actions of A. An environment Z is plugged either to the ideal or the real
model and has to guess which model it is actually plugged to. Denote the ran-
dom variable representing the output of Z when interacting with the real model
by RealAΠ(Z) and when interacting with the ideal model by IdealSF (Z). Protocol
Π is said to be UC-secure if for any environment Z the distributions RealAΠ(Z)
and IdealSF (Z) are (computationally, statistically or perfectly) indistinguishable.

2.2 Strongly Unforgeable Signatures

As our scheme requires the use of signatures, we shall briefly review the stan-
dard notion of strongly unforgeable signature schemes. A signature scheme SIG
consists of three PPT-algorithms KeyGen, Sign and Verify.
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– KeyGen(1k) generates a public verification key vk and a private signature
key sgk.

– Signsgk(m) takes a signature key sgk and a message m ∈ {0, 1}∗ and returns
a signature σ.

– Verifyvk(m,σ) takes as input a verification key vk, a message m ∈ σ∗ and a
signature σ and outputs 1 if σ is a valid signature for m and 0 otherwise.

In the EUF-CMA-experiment an adversary A is given a verification key vk and
access to a signature-oracle. A wins the experiment if it manages to forge a
valid signature σ for a message of its choice m, without having queried its
signature-oracle with m. A signature scheme SIG is called EUF-CMA-secure,
if no PPT-adversary A wins the EUF-CMA-experiment better than with negli-
gible probability. For the sake of simplicity, we require signature schemes with a
deterministic verification procedure and succinct signature length (i.e. the length
of σ does not depend onm). Standard hash-and-sign [20, 21] constructions suffice
these requirements.

Additionally, we require the signing procedure to be deterministic. However,
this is no restriction since the random coins used for signing can be chosen by a
pseudorandom function, which is seeded by a part of the signing key.

2.3 Resettably-Sound Zero-Knowledge Arguments of Knowledge

For the construction of our protocols we use resettably-sound zero-knowledge
(rsZK) arguments of knowledge [7]. We briefly define the notions.

Definition 1. A resettably-sound zero-knowledge argument of knowledge system
for a language L ∈ NP (with witness-relation RL and witness-set wL(x) = {w :
(x,w) ∈ RL}) consists of a pair of PPT-machines (P,V), where the verifier V is
stateless, such that there exist two PPT-machines Sim and Ext and the following
conditions hold.

– Completeness. For every (x,w) ∈ RL it holds that Pr[〈P(w),V〉(x) = 1]
= 1.

– Computational Soundness. For every x /∈ L and every PPT-machine P∗

it holds that Pr[〈P∗,V〉(x) = 1] < negl(|x|).
– Computational Zero-Knowledge. For every (x,w) ∈ RL and every state-

ful or stateless PPT V∗ it holds the distributions Real = {〈P(w),V∗〉(x)} and
Ideal = {Sim(x,V∗)} are computationally indistinguishable.

– Proof of Knowledge. For every x ∈ L and every PPT-machine P∗ there
exists a negligible ν such that Pr[Ext(x,P∗)] ∈ wL(x)] > Pr[〈P∗,V〉(x) =
1]− ν.

2.4 Perfectly Binding Commitments

Another tool we need is a non-interactive perfectly binding commitment scheme.
Generally, a commitment scheme consists of two phases: the commit phase in
which a sender commits to a value v without revealing it, and the reveal phase
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where the sender reveals his private coins r together with v such that a receiver
can verify the correctness of the commitment. The value v has to be hidden from
the receiver while the commitment has to be binding for the sender. For our
application, a standard computationally hiding and perfectly binding commit-
ment scheme is sufficient, e.g. a construction based on a one-way permutation
[22]. Perfectly binding means that there is exactly one randomness to unveil
correctly.

3 Resettable Hardware in the UC-Framework

In this section, we will introduce resettable UC-functionalities and the ideal
functionalities for resettable hardware tokens. We first provide the definition
of resettable two-party UC-functionalities. Let M be a Turing machine. The
resettable functionality FM specified by M is defined as follows. For the sake of
readability, we omit session and message identifiers.

Functionality FM (parametrized by a security parameter k).

– Sender Input Upon receiving (sender, init) from S, store init, write init on
M’s input tape and run M until it halts. Store the state of M. Accept no
further inputs by S

– Receiver Input Upon receiving (receiver,msg) from R, write msg on M’s
input tape and run M starting from most recent state until it halts. Store
the state of M. Read a message out from M’s output tape and send out to
R.

– Reset (Adversarial receiver only) Upon receiving reset from R, reset the
Turing machine M to its initial state. Write init on M’s input tape and run
M until it halts. Store the state of M.

We use a definition of wrapper-functionalities very similar to [17, 18]. For simplic-
ity, we state the functionality in the two-party case where only a sender-machine
S and a receiver-machine R are present. This definition allows the sender S to
wrap a program T in a hardware token, and send this token to the receiver R
who can query it an arbitrary (polynomial) number of times. Additionally, we
allow an adversarial receiver to reset the program T to its initial state.

Functionality Fwrap (parametrized by a security parameter k and a polynomial
runtime bound p(·)).

– Create Upon receiving (create,T, p(·)) from S, where T is a Turing machine,
send create to R and store T.

– Execute Upon receiving (run, w) from R, check if a create-message has al-
ready been sent by S, if not output ⊥. Run T(w) for at most p(k) steps, and
let m be the output. Save the current state of T. Output m to R

– Reset (Adversarial Receiver only) Upon receiving reset from R, reset the
Turing machine T to its initial state.
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The messages between Fwrap and R are delivered immediately without sched-
uling by the adversary. In the sequel, we will use the notation T for programs
(given as code, Turing-machine etc.) and T for the instance of the wrapper-
functionality Fwrap in which T runs.

We will introduce two new hybrid functionalities as an intermediate building
block between Fwrap and general resettable UC-functionalities. Both function-
alities are enhanced wrapper-functionalities where both the receiver of the to-
ken and the wrapped program are given access to a trusted common reference
string. The two different flavors of this functionality we consider here differ in
that the common reference string is either resettable by a corrupted receiver or
non-resettable.

Functionality Fhybrid1
wrap (parametrized by a security parameter k and a polyno-

mial runtime bound p(·)).

– Create Upon receiving (create,T, p(·)) from S, where T is a Turing machine,
store T, choose the common reference string crs uniformly at random of
length 
 and give T read-access to crs. Send (create, crs) to R and S.

– Execute Upon receiving (run, w) from R, check if a create-message has al-
ready been sent by S, if not output ⊥. Run T(w) for at most p(k) steps, and
let m be the output. Save the current state of T. Output m to R

– Reset (Adversarial Receiver only) Upon receiving reset from R, reset the
Turing machine T to its initial state.

Remark. By having the functionality Fhybrid1
wrap send the common reference string

crs to the sender S we model an artifact that arises in our protocol.

Functionality Fhybrid2
wrap (parametrized by a security parameter k and a polyno-

mial runtime bound p(·)). Let H be a random oracle that maps to strings of
length 
.

– Create Upon receiving (create,T, p(·)) from S, where T is a Turing machine,
store T, set the common reference string to be crs = H(1) and give T read-
access to crs. Send (create, crs) to R.

– Execute Upon receiving (run, w) from R, check if a create-message has al-
ready been sent by S, if not output ⊥. Run T(w) for at most p(k) steps, and
let m be the output. Save the current state of T. Output m to R

– Reset (Adversarial Receiver only) Upon receiving (reset, j) from R, reset
Turing machine T to its initial state and set the common reference string to
crs = H(j).

We will briefly sketch how general-purpose UC-compilers in the CRS-hybrid-
model, like for instance the compiler of [4], can be used to implement arbi-
trary resettable two-party UC-functionalities in the Fhybrid1

wrap and Fhybrid2
wrap hy-

brid model. Recall that these functionalities provide both the receiver and the
encapsulated program access to an encapsulated common reference string. The
basic idea is to assign the receiver the role of one protocol-party and the encap-
sulated program the role of the other protocol-party. The case of a malicious
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sender is trivial, as any UC-simulator against a corrupted sender can also serve
as a simulator against a malicious token. The case of a malicious receiver needs
to take reset-attacks against the token into account. However, this can be dealt
with by applying a transformation due to [3]. This transformation replaces ran-
dom coins used by the token with pseudorandom coins, which deterministically
depend on all the messages received by the token at each point in time. This
transformation merely requires a pseudorandom function.

4 Limitations

In this section, we will sketch two limitations regarding the implementation of
resettable UC-functionalities using untrusted resettable hardware tokens. For
simplicity, we consider protocols realizing the point-function functionality FPF.
This functionality is initialized by an input x̂ ∈ {0, 1}n from the sender. The
receiver can query FPF an arbitrary (polynomial) amount of times with inputs x,
receiving output PFx̂(x), where PFx̂(x) = 1 if x = x̂ and PFx̂(x) = 0 otherwise.

Lemma 1. There exists no protocol which (computationally) UC-realizes the
FPF-functionality using only a single hardware token and no further commu-
nication. Moreover, any protocol UC-realizing the FPF-functionality using any
amount of resettable hardware tokens (issued from S to R) must make use of
non-black-box techniques in its security proof.

Proof. First assume there exists a protocol ΠPF that UC-implements FPF using
a single (resettable) hardware token and no interaction (w.l.o.g. we can assume
that messages from S to R are sent together with the token). Let ÃR be the
dummy-adversary for the receiver R. Since ΠPF is UC-secure, there exists a

simulator SR such that it holds for any PPT-environment Z that RealÃR
ΠPF

(Z) ≈c

IdealSRFPF
(Z). We will now show that for every sender-simulator SS there exists a

PPT-environment Z∗ such that the distributions RealÃΠPF
(Z∗) and IdealSSFPF

(Z∗)
are efficiently distinguishable, contradicting the UC-security of ΠPF. This Z∗
creates a malicious token T ∗ which behaves adaptively in the following sense.
The token T ∗ internally simulates the simulator SR together with a malicious
functionality F∗, providing its interface with R to SR. The malicious functionality
F∗ behaves as follows. Once it receives an input x for the first time, it checks
whether x is equal to a secret random x̂0. If so, it will behave like the point
function PFx̂0 in this call and all successive calls. If not, it will behave like
a point function PFx̂1 (for a secret random x̂1) in this call and all successive
calls. Observe now that from the view of R, the protocol ΠPF always implements
a proper point function. However, a simulator SS must decide if it inputs x̂0

or x̂1 into the ideal functionality FPF without knowing the first input x of R.
The environment Z can now distinguish between real and ideal as follows. It
first flips an unbiased coin. If the outcome is 0, it provides input x = x̂0 to
R, otherwise it provides input x = x̂1 to R. If Z∗ is connected to the real
experiment, then the output of R behaves according to the specification of F∗.
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In the ideal experiment however, the output of R behaves either like PFx̂0 or
PFx̂1 (or completely different). Thus, with probability at least 1/2 Z∗ notices a
difference. This contradicts the UC-security of ΠPF.

For the second statement of the lemma, assume there exists a protocol
ΠPF UC-realizing FPF and that there exists a black-box simulator SS against
a corrupted sender ÃS such that it holds for all PPT-environments Z that

RealÃS

ΠPF
(Z) ≈c IdealSSFPF

(Z). Such a simulator must be able to extract a point
x̂ from the malicious tokens T ∗1 , . . . , T ∗n using only black-box techniques (i.e.
rewinding). We will now construct an environment Z∗ and a malicious receiver
AR that extracts the secret x̂ from the tokens T1, . . . , Tn. AR internally simu-
lates SS and provides his interface with T1, . . . , Tn to SS. AR then outputs to Z
whatever SS outputs. From the view of SS, the simulation ofAR is identically dis-
tributed to IdealSSFPF

(Z). Thus, AR outputs the secret point x̂ with overwhelming
probability. On the other hand, any simulator SR has only black-box access to
the point function PFx̂ via FPF. Thus SR succeeds to learn x̂ only with negligible
probability. Therefore Z∗ can efficiently distinguish RealAR

ΠPF
(Z) and IdealSRFPF

(Z)
for any PPT-simulator SR, contradicting the UC-security of ΠPF.

5 Resettable UC-Functionalities from Untrusted
Hardware

In this section, we present the main result of this work. We provide two UC-
secure protocols implementing the Fhybrid1

wrap and Fhybrid2
wrap UC-functionalities in

the Fwrap-hybrid model. The protocol for Fhybrid1
wrap requires only a single Fwrap-

instance, i.e. a single untrusted hardware token. However, the protocol requires
an interactive initialization phase with the issuer of the token. The protocol
Fhybrid2

wrap requires two Fwrap-instances, but is on the other hand completely non-
interactive. The blueprint for both protocols is the same. In a setup-phase, a com-
mon random reference string is negotiated via a variant of the Blum coin-tossing
protocol tailored for the respective setting. In the second phase, a program M
encapsulated in the wrapper-functionality (that has access to the common ref-
erence string) can be queried by the receiver.

We will start outlining the ideas behind the first protocol Πhybrid1. On an
intuitive level, the token is locked with a password. The receiver first needs to
obtain the password a to use the token. The receiver obtains a after performing
a Blum coin-toss with the sender which results in a common reference string. For
this coin-toss, the issuer uses the token itself to commit to a random string y.
More specifically, the sender programs the token to release y, after the token is
convinced the the receiver is in possession of a. First the sender sends the token
to the receiver to commit himself to the random string y. In the second step, the
receiver sends a random x to the sender, who replies with y and the password a
(which serves as unveil-information). The receiver now proves to the token that
he is in possession of a, thereby obtaining (y′, a′) from the token. If it holds that
y = y′, the receiver is convinced that the sender was a-priori committed to y
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and a. If the receiver accepts, sender and receiver set crs = x⊕ y and the sender
signs crs, so that the receiver can use it with the token.

One issue we did not address yet is how the receiver proves to the token that he
is in possession of the password a. For that purpose, we first make the password
a verifiable. We do this by choosing the string a uniformly at random and having
the sender publish the image b = F(a) of a under a one-way function F. As the
token is resettable, we will use a resettably-sound zero-knowledge argument of
knowledge system for the receiver to prove to the token that he is in possession
of the password a, i.e. he possesses an a such that F(a) = b.

In our second protocol Πhybrid2, where the sender issues two stateless tokens
to the receiver and no communication between the sender and receiver is allowed,
the above protocol fails. The reason for this is that once the receiver knows a, it
can learn the string y, reset the second token (which acts in the role of the sender)
and force the crs to a value of his liking by choosing his input x adaptively.

We now give an outline of our second protocol. In order to prohibit the re-
ceiver to choose his input x adaptively, he is now required to commit to x using
a non-interactive perfectly binding commitment-scheme com. The protocol pro-
ceeds as follows. First, R computes c = com(x; r) (for random coins r). R then
sends (x, c) to the first token T1 and proves that c is a proper commitment of
x. Again, we use a resettably-sound zero-knowledge argument system, as T1 is
resettable. If T1 accepts, it computes y pseudorandomly by y = prf(c), where
prf is a pseudorandom function. Notice that a corrupted sender may choose prf
maliciously, it is therefore essential that prf remains oblivious of x. Instead of
releasing a password, T1 now computes a signature σ of c. This σ will now serve
as a witness to unlock the second token T2 for a run with the commitment c.
More specifically, R sends c to T2 and proves to T2, using a resettably-sound
zero-knowledge argument system of knowledge, that it knows a valid signature
of c under the verification key vk, i.e. it knows a σ such that verification suc-
ceeds. Once T2 is convinced that R knows such a σ, it computes y′ = prf(c) and
outputs y′ to R. R now checks if y = y′ holds, if so it sets crs = x ⊕ y and uses
crs as common random reference string in a two-party computation with T1.

5.1 A Single Resettable Token

We now provide a formal statement of protocol Πhybrid1 that UC-emulates
Fhybrid1

wrap . Let k be a security-parameter. Let T = Fwrap be a resettable hard-

ware wrapper-functionality, let F : {0, 1}k → {0, 1}m be a one-way function
and (P,V) be a resettably-sound zero-knowledge argument system of knowledge
for the language L = {b : ∃a ∈ {0, 1}k s.t. b = F (a)}. Further let SIG be an
EUF-CMA-secure signature scheme.

Let 
 = poly(k) be the desired length of the output common reference string.

Protocol Πhybrid1

1. Sender S (setup step 1): The input of S is a program M
– Choose a← {0, 1}k uniformly at random. Set b = F (a).
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– Choose y ← {0, 1}� uniformly at random.
– Generate a key pair (vk, sgk) = SIG.KeyGen()
– Program a stateless token T with the following functionality.

• Upon receiving a message unveil from R, run the verifier V with
input b. Forward the messages between R and V. If V rejects, output
⊥.

• If V accepts, send y to R.
• Upon receiving a message (crs, σ), check if SIG.Verifyvk(crs, σ) = 1,

if not abort.
• Upon receiving input (run, w) from R, run M on input w starting
from its most recent state, output whatever M outputs and save the
new state of M and wait for the next message (run, w).

– Input T into T and send (vk, b) to R
2. Receiver R (setup step 2):

– Wait for the ready message from T and a message (vk, b) from S.
– Choose x← {0, 1}� uniformly at random.
– Send x to S.

3. Sender S (setup step 3):
– Upon receiving a message x from R, set crs = x ⊕ y, compute σ =

SIG.Signsgk(crs). Send (y, a, σ) to R. Output crs.
4. Receiver R (setup step 4):

– Wait for a message (y, a, σ) from S.
– Check if F(a) = b, if not abort.
– Run the prover P with input b and witness-input a. Forward the messages

between P and T . Let y′ be the output of T .
– If y �= y′, abort.
– Set crs = x⊕ y.
– Send (crs, σ) to T

5. Receiver R (Execute Phase): Upon receiving input (run, w), send (run, w)
to T and output whatever T outputs.

5.2 Proof of Security

We will prove computational UC-security against both corrupted sender and
receiver.

Corrupted Receiver. We will start with a corrupted receiver. Let AR be the
dummy-adversary for a corrupted receiver. Let Ext be the knowledge-extractor
for the argument of knowledge-system (P,V). We will first state the simulator
SR.

Simulator SR
– Simulate the first round of a sender S, forward the message (vk, b) to AR

and store the signature key sgk. Use the token-code T output by S to sim-
ulate the token T for AR. Let a be the preimage of b under the one-way
function F.
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– When the simulated S receives a message x from AR do the following. Let
crs be the common reference string output by Fhybrid1

wrap . Set y = crs⊕ x and
σ = SIG.Signsgk(crs). Output (y, a, σ) to AR.

– If AR sends an unveil-message to T do the following. If AR has not yet sent
x to S, output ⊥, regardless if V would accept. Otherwise output the same
y as S.

– If AR sends a tuple (crs′, σ′) to T do the following. If it holds that AR has
not yet sent an x to S or SIG.Verifyvk(crs

′, σ′) = 0 output ⊥.
– If AR sends a tuple (run, w) to T do the following. If AR has not yet sent

a tuple (crs, σ) to T1 with SIG.Verifyvk(crs, σ) = 1, output ⊥. Otherwise
forward (run, w) to Fhybrid1

wrap and output whatever Fhybrid1
wrap outputs.

– Whenever AR sends a message reset to T send reset to Fhybrid1
wrap and reset

the state of T .

Theorem 1. For every PPT-environment Z, it holds that the random variables
RealAR

Πhybrid1 (Z) and IdealSR
Fhybrid1

wrap
(Z) are computationally indistinguishable.

To prove the theorem, we will show indistinguishability of the following experi-
ments.

Experiment 1. Simulator S1 simulates the real protocol Πhybrid1.

Experiment 2. Identical to experiment 1, except that T outputs ⊥ if AR sends
an unveil-query for which the verifier V accepts before AR has sent his coins x
to S.

Experiment 3. Identical to experiment 2, except that S’s coins y are computed
by y = crs⊕ y, where crs is a common random reference string chosen uniformly
at random.

Experiment 4. Identical to experiment 3, except that T aborts if AR sends a a
tuple (crs, σ), where it holds that SIG.Verifyvk(crs, σ) = 1 and crs has not been
signed by S. This is the ideal experiment.

Remarks. Experiment 1 and experiment 2 are computationally indistinguish-
able, given that the one-way function F is strongly one way. Experiment 2 and
experiment 3 are identically distributed, as both x and crs are uniformly and
independently distributed. The indistinguishability of experiment 3 and experi-
ment 4 follows easily from the EUF-CMA-security of SIG.

Lemma 2. From Z’s view, experiment 1 and experiment 2 are computationally
indistinguishable, given that F is a one-way function and the argument system
(P,V) suffices the proof of knowledge property.

Proof. From Z’s view, experiment 1 and experiment 2 are identically distributed
conditioned to the event that AR does not convince V that it possesses an a such
that F(a) = b before sending his own coins x to S. Thus, a Z distinguishing
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between experiment 1 and experiment 2 must succeed in making AR convince T
of this before receiving such a value a from S.

Assume that Z causes this event with non-negligible probability ε. We will
construct an adversary B that inverts the one-way function F with non-negligible
probability. Let m = poly(k) be an upper bound on the number of unveil calls
that AR sends to T . Let b′ be the image on which B is supposed to invert F. B
first chooses an index i ∈ {1, . . . ,m} uniformly at random.

Let S ′1 be a simulator the behaves exactly like S1, except for one modifica-
tion. S ′1 sets b = b′ instead of generating b by b = F(a). B then simulates the
interaction between Z and S ′1 until AR makes the i’th unveil-call. B now halts
the computation of Z. If the computation of Z continued after this point, the
subsequent messages passed by AR correspond to the messages of a malicious
prover P∗ for the argument system (P,V). Thus, B can construct P∗ from the
state of the halted Z which basically continues the simulation of Z at its current
state and forwards messages between AR and an external verifier V. B can now
take the code of P∗ and run the extractor Ext(b,P∗). Let a be the output of Ext.
B outputs a and terminates.

First notice, that from Z’s view, this simulation is identically distributed
to experiment 1. Thus, the event that AR succeeds in convincing T that it
possesses a preimage a of b happens with probability at least ε. With probability
at least 1/m, the index i chosen by B matches the index of the proof where
this event happens. Therefore, it holds that Pr[〈P∗,V(c)〉 = 1] ≥ ε/m. Due to
the proof of knowledge property of the argument system (P,V) it holds that
Pr[Ext(b,P∗) ∈ wL1(b)] > Pr[〈P∗,V(c)〉 = 1] − ν ≥ ε − ν for some negligible ν.
Thus, with probability ε− ν, which is non-negligible, B outputs a preimage a of
b′ under F , thus breaking the one-wayness property of F .

Corrupted Sender. Next, we will prove computational UC-security for the case
of a corrupted sender. Let AS be the dummy-adversary for a corrupted sender
and let Sim be the non-black-box simulator for the argument system (P,V), that
takes as input a statement (k, b) and the code V∗ of a malicious verifier. The
simulator SS is given as follows.

Simulator SS

– Let T∗ be the token sent by AS and (vk, b) be the message sent by AS.
– Simulate T using T∗.
– Construct a malicious verifier V∗ for the argument system (P,V) that basi-

cally simulates the zero-knowledge step of T∗ and outputs the state of T∗

after the zero-knowledge step is over.
– Run the non-black-box simulator Sim on input b and auxiliary input V∗. The

output of Sim is the state of T∗ after the zero-knowledge protocol. Continue
the simulation of T from this state until it outputs y.

– Let crs be the common reference string sent by Fhybrid1
wrap . Set x = crs⊕ y.

– Send x to S. Let (y′, a, σ) be the response of S.
– If y �= y′ or F(a) �= b abort. Otherwise run T on input (crs, σ).
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– Input T∗ with the most recent state taken from T hardwired into Fhybrid1
wrap

and output crs to S.

Let Z be a PPT environment. We will now prove computational indistinguisha-
bility between RealAR

ΠCRS
(Z) and IdealSRFCRS

(Z) directly, given that the argument
system (P,V) is zero-knowledge.

Theorem 2. RealAS

Πhybrid1 (Z) and IdealSS
Fhybrid1

wrap
(Z) are computationally indistin-

guishable.

To prove the theorem, we will show indistinguishability of the following
experiments.

Experiment 1. Simulator S1 simulates the protocol Πhybrid1

Experiment 2. Identical to experiment 1, except that when R sends an unveil-
message to T∗, S2 runs the non-black-box simulator Sim on the verifier V∗ (as
constructed in the description of the simulator SS) instead of letting the prover P
interact with T∗. S2 then uses the output of Sim as most recent state to continue
the computation of T∗.

Experiment 3. Identical to experiment 2, except that S3 runs the unveil-phase
of T before interacting with AS, thereby obtaining y. Set x = crs⊕ y, where crs
is a uniformly random common reference string. This is the ideal experiment.

Remarks. The indistinguishability of experiment 1 and experiment 2 follows
from the computational zero-knowledge property of the argument system (P,V).
Experiment 2 and experiment 3 are identically distributed, as the interactions
of R with T and AS are independent of one another in both experiments and
thus exchangeable.

Lemma 3. From Z’s view, experiment 1 and experiment 2 are computation-
ally indistinguishable, provided that the argument system (P,V) is computational
zero-knowledge.

Proof. Fix a PPT-environmentZ. Assume for contradiction that Z distinguishes
experiment 1 and experiment 2 with non-negligible advantage ε. We will con-
struct a malicious verifier V∗ and a distinguisher D, such that D distinguishes
the random variables 〈P(a),V∗〉(b) and Sim(b,V∗) with advantage ε, for some
a and b. Fix the random tape of Z such that Z with these fixed coins distin-
guishes between experiment 1 and experiment 2 with advantage ε. By a simple
averaging argument, such coins must exist. Let (a, b) with F(a) = b be the fixed
tuple that corresponds with this Z. The malicious verifier V∗ is constructed as
in the description of the simulator. The distinguisher D is obtained by plugging
the machine Z and S2 together, with modification to the simulator S2 that it
does not obtain the state of T by running Sim on b and V∗, but using its own
input as state of T . Clearly, if D’s input is distributed by 〈P(a),V∗〉(b), then Z’s
view is distributed identical as in experiment 1. If, on the other hand, D’s input
is distributed according to Sim(b,V∗), then Z’s view is distributed identical to
experiment 2. Thus D and V∗ contradict the zero-knowledge property of (P,V).
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5.3 Two Resettable Tokens

In this section we will describe our protocol Πhybrid2 that implements Fhybrid2
wrap .

Let {PRF} be a family of pseudorandom functions, com(·, ·) be a non-interactive
perfectly binding commitment scheme and SIG = (KeyGen, Sign,Verify) be an
EUF-CMA-secure signature scheme with deterministic signing algorithm. We
further need two resettably-sound zero-knowledge argument of knowledge sys-
tems. Let (P1,V1) be such a system for the language L1 = {(x, c)|∃r : c =
com(x; r)} and (P2,V2) be such a system for the language L2 = {(vk, c)|∃σ :
Verify(c, σ) = 1}. Let T1 and T2 be two Fwrap functionalities.

Protocol Πhybrid2

1. Sender S (setup step 1): The input of S is a program M
– Sample a pseudorandom function prf ← {PRF}, generate signature and

verification keys (sgk, vk) = SIG.KeyGen().
– Choose a random tape for the token T1 and program T1 as follows.

• Set flag ready = 0.
• Upon receiving input (x, c) from R, run the verifier V1 with input
(x, c). Forward the messages between R and V1. If V1 rejects, output
⊥.

• If V1 accepts, compute y = prf(c) and σ = SIG.Signsgk(c). Set flag
ready = 1 and output (y, σ)

• Upon receiving input (run, w) from R, run M on input w starting
from its most recent state, output whatever M outputs and save the
new state of M and wait for the next message (run, w).

– Choose a random tape for the token T2 and program T2 as follows.
• Upon receiving input c from R, run the verifier V2 with input (vk, c).
Forward the messages between R and V2. If V2 rejects, output ⊥.

• If V1 accepts, compute y = prf(c) and output y.
– Input T1 into T1 and T2 into T2. Send vk to R.

2. Receiver R (setup step 2):

– Choose x← {0, 1}k uniformly at random.
– Compute c = com(x; r) with a uniformly random chosen r.
– Send (x, c) to T1 and run the prover P1 with input (x, c) and witness-

input r. Forward the messages between P1 and T1. Let (y, σ) be the
output of T1.

– Check if SIG.Verifyvk(c, σ) = 1, if not abort.
– Send c to T2 and run the prover P2 with input (vk, c) and witness-input

σ. Let y′ be the output of T2.
– Check whether y = y′, if not abort. Otherwise set crs = x⊕ y.

3. Receiver R (Execute Phase): Upon receiving input (run, w), send (run, w)
to T1 and output whatever T1 outputs.

Corrupted Receiver. We will prove computational UC-security against a cor-
rupted receiver R. We therefore first provide the simulator SR.
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Simulator SR
– Simulate the first round of a sender S and forward the message vk to AR

and store sgk. Use the token-codes T1 and T2 output by S to simulate T1
and T2 for AR. Setup a counter j = 1.

– If AR sends a message (x, c) to T1 do the following. Continue the simulation
of T1 until the verifier V1 either accepts or rejects. If it accepts, even though
a tuple (x′, y′, c′, j′) has been stored, for some x′ �= x and c′ = c, output
⊥. Otherwise, if V1 accepts, compute σ = SIG.Signsgk(c) and output (y, σ),

for which a tuple (x, y, c, j′) has been stored. Send (reset, j′) to Fhybrid2
wrap .

If no such tuple has been stored before, increment j by 1, send (reset, j′)
to the Fhybrid2

wrap functionality to get a string crs, set y = x ⊕ crs, compute
σ = SIG.Signsgk(c), store the tuple (x, y, c, j) and output (y, σ).

– If AR sends a message c to T2 do the following. Continue the simulation of
T2 until the verifier V2 either accepts or rejects. If it accepts, check if a tuple
(x′, y′, c′, j′) with c′ = c has been stored. If not, output ⊥. Otherwise output
y′.

– Whenever AR sends a message reset to T2, reset T2.

Theorem 3. For every PPT-environment Z, it holds that the random variables
RealAR

Πhybrid2 (Z) and IdealSR
Fhybrid2

wrap
(Z) are computationally indistinguishable.

Again, to prove the theorem, we will show indistinguishability of the following
experiments.

Experiment 1. Simulator S1 simulates the protocol Πhybrid2. This is the real
experiment.

Experiment 2. Identical to experiment 1, except that y is not computed as
y = prf(c) but as follows. If a tuple (x′, y′, c′, j′) has been stored with c′ = c,
set y = y′. Otherwise, choose crs uniformly at random and set y = x⊕ crs. Also
store the tuple (x, y, c).

Experiment 3. Identical to experiment 2, except that T1 outputs ⊥ if V1 accepts,
even though a tuple (x′, y′, c′, j′) has been stored, with x′ �= x and c′ = c.

Experiment 4. Identical to experiment 3, except that T2 outputs ⊥ if V2 accepts,
even though no tuple (x′, y′, c′, j′) with c′ = c has been stored. This is the ideal
experiment.

Remarks. Given that prf is a pseudorandom function, we can replace the outputs
of prf with truly random values, thus experiment 1 and experiment 2 are indis-
tinguishable. The indistinguishability of experiment 2 and experiment 3 follows
from the binding property of the commitment scheme com. The event that T1
outputs ⊥ even though V1 accepts happens only when AR manages to convince
T1 that c is a commitment to two different values x and x′. The proof of knowl-
edge property of the argument system (P1,V1) guarantees that the corresponding
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unveils r and r′ can be extracted with high probability. The indistinguishability
of experiment 3 and experiment 4 follows from the EUF-CMA-property of the
signature scheme SIG. If T2 outputs ⊥, even though the verifier V2 accepts, then
AR has convinced V2 that it possesses a signature on a commitment c for which
it never received a signature σ from T1. The proof of knowledge property enables
us to extract such a forged signature, contradicting the EUF-CMA-security of
SIG. For the complete proof refer to the full version of this paper.

Corrupted Sender. We will prove computational UC-security against a cor-
rupted sender S. Let therefore AS be the dummy-adversary and Z be a PPT-
environment. We first state the sender-simulator SS. This simulator programs a
simulator-token TS and sends this token to Fhybrid2

wrap .

Simulator SS.

– Let T1 and T2 be the inputs of AS.
– Simulate T2 with the code T2.

– Set c = com(0; r) for a randomly chosen r.

– Use the code T2 to construct the code V∗2 of a verifier that runs the verifier-
stage of T2 when its input is c. The output of V∗2 is the the same output that
T2 would provide to R.

– Run Sim2 with input (vk, c) and witness-input V∗. Let y′ be the output of
Sim2

– Program a token TS as follows.

• Read the common reference string crs provided by the Fhybrid2
wrap function-

ality. Set x = crs⊕ y′.
• Use the code T1 to construct the code V∗1 of a verifier that runs the
verifier stage of T1 when its input is (x, c). The output of V∗1 is the the
same output that T1 would provide to R.

• Run Sim1 with input (x, c) and witness-input V∗1 . Let (y, σ) be the output
of Sim1.

• Check whether y = y′. If not abort.
• Upon receiving input (run, w) from R, run M on input w starting from
its most recent state, output whatever M outputs and save the new state
of M and wait for the next message (run, w).

– Input TS into Fhybrid2
wrap

Theorem 4. For every PPT-environment Z, it holds that the random variables
RealAS

Πhybrid2 (Z) and IdealSS
Fhybrid2

wrap
(Z) are computationally indistinguishable.

To prove the theorem, we will show indistinguishability of the following
experiments.

Experiment 1. Simulator S1 simulates the protocol Πhybrid2. This is the real
experiment.
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Experiment 2. Identical to experiment 1, except that S2 does the following.
Instead of running P2 with input (vk, c) and witness-input σ, it runs Sim2 with
input (vk, c) and witness-input V∗2 (where V∗2 is as defined in the description of
simulator SS).

Experiment 3. Identical to experiment 2, except that S3 does the following.
Instead of running P1 with input (x, c) and witness-input r, it runs Sim1 with
input (x, c) and witness-input V∗1 (where V∗1 is as defined in the description of
simulator SS).

Experiment 4. Identical to experiment 3, except that the commitment c is com-
puted as c = com(0; r) instead of c = com(x; r).

Experiment 5. Identical to experiment 4, except that S5 first interacts with T2
and then with T1, instead of vice versa. Moreover, it sets x = crs⊕ y′ instead of
choosing x uniformly at random. This is the ideal experiment.

Remarks. Experiment 1 and experiment 2 are indistinguishable given that the
argument system (P1,V1) is zero-knowledge. Similarly, experiment 2 and ex-
periment 3 are indistinguishable given that (P2,V2) is zero-knowledge. Both
indistinguishability proofs are almost identical to the proof of Lemma 3 and
thus omitted. The indistinguishability of experiment 3 and experiment 4 follows
straightforwardly from the hiding property of the commitment scheme com. Ex-
periment 4 and experiment 5 are identically distributed, as in both experiments
y is independently uniformly distributed.

6 Applications

One application for our protocols is implementing a UC-secure functionality we
call conditional decryption, FCONDEC. In essence, what can be achieved through
the conditional decryption functionality is that the computational workload is
transfered from the hardware token to the user of the protocol, similar in concept
to delegation of computation [23, 24].

The FCONDEC-functionality takes as sender-input a private key sk for a fully
homomorphic encryption scheme FHE. The receiver can send decryption-queries
c to FCONDEC. Before FCONDEC decrypts such queries, the receiver must prove that
the query is well-formed. This proof is implemented using a universal argument
system [25]. Such a conditional decryption has a straightforward application in
the context of obfuscation. Given FCONDEC, a sender initializes the conditional
decryption functionality. He can then encrypt an arbitrary program and send it
to the receiver. All the receiver has to do is to homomorphically evaluate the
encrypted program and send the result together with a proof to the token. If
the homomorphic evaluation was carried out correctly, the token will decrypt
the result and send it to the receiver. The advantage of this approach is that
the sender can obfuscate programs arbitrarily without having to send a new
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token each time. A similar construction can be found in [26]. Due to space lim-
itations, the above high level description omits several important details which
are necessary for a UC-proof. A detailed description of the protocols and a full
proof can be found in a preliminary version of this paper [27].

7 Conclusion

In this work, we investigated the cryptographic strength of untrusted resettable
hardware tokens in the UC-framework. We devised two protocols that use reset-
table hardware tokens to realize intermediate functionalities that are sufficient
to UC-emulate arbitrary resettable functionalities. The first protocol uses one
resettable token and two rounds of interaction in an initialization phase, after
which no further interaction takes place. In the second protocol, messages and
hardware tokens are only passed from the sender to the receiver. However, this
protocol requires two resettable token. Given these protocols, it is possible to
UC-realize any resettable two-party computation. We showed that a completely
non-interactive coin-toss with only one resettable token is impossible. Thus, both
our protocols are optimal if one of the conditions (no interaction or just a single
token) is dropped.
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Abstract. We present a new framework for proving fully black-box
separations and lower bounds. We prove a general theorem that facili-
tates the proofs of fully black-box lower bounds from a one-way function
(OWF).

Loosely speaking, our theorem says that in order to prove that a
fully black-box construction does not securely construct a cryptographic
primitiveQ (e.g., a pseudo-random generator or a universal one-way hash
function) from a OWF, it is enough to come up with a large enough set
of functions F and a parameterized oracle (i.e., an oracle that is defined
for every f ∈ {0, 1}n → {0, 1}n) such that Of breaks the security of the
construction when instantiated with f and the oracle satisfies two local
properties.

Our main application of the theorem is a lower bound of Ω(n/ log(n))
on the number of calls made by any fully black-box construction of a
universal one-way hash function (UOWHF) from a general one-way func-
tion. The bound holds even when the OWF is regular, in which case it
matches to a recent construction of Barhum and Maurer [4].

Keywords: Complexity-Based Cryptography, One-Way Functions,
Universal One-Way Hash Functions, Black-Box Constructions, Lower
Bounds.

1 Introduction

1.1 Cryptographic Primitives and Black-Box Constructions

An important question in complexity-based cryptography is understanding
which cryptographic primitives (e.g., one-way functions, pseudo-random gener-
ators) are implied by others. In principle, an implication between two primitives
can be proved as a logical statement (e.g., the existence of one-way functions
implies the existence of pseudo-random generators). However, most proofs of
such implications (with very few exceptions, e.g., [2]) are in fact so-called fully
black-box constructions.

Informally, a black-box construction of a primitive Q from a primitive P is
a pair of algorithms, called construction and reduction, such that the construc-
tion, using only the functionality of P, implements Q and the reduction, using
only the functionality of P and the one of a potential breaker algorithm, breaks

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 662–679, 2013.
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P whenever the breaker algorithm breaks Q. As a corollary, such a black-box
construction establishes that the existence of P implies the existence of Q. One
of many such examples is the construction of a one-way function from a weak
one-way function [18].

After futile attempts to prove that the existence of one-way functions implies
that of key agreement, Impagliazzo and Rudich [10] proved the first black-box
separation result: They showed that there is no fully black-box construction of
key agreement from one-way functions. Their seminal work inspired a plethora
of similar results and nowadays one identifies two main types of black-box sep-
aration results: black-box separations of a primitive Q from a primitive P and
lower bounds on some complexity parameter (e.g., seed length, number of calls
to the underlying primitive, etc.) in the construction of Q from P. Besides [10],
the work of Simon [17], where he shows that there is no fully black-box construc-
tion of a collision-resistant hash function from a one-way function, is an example
of the former. As an example of the latter, Kim et. al. [11] established a lower
bound of Ω(

√
k/ log(n)) on the number of queries of any construction of a uni-

versal one-way hash function that compresses k bits from a one-way permutation
on n bits. This was later improved by Gennaro et. al. [5] to Ω(k/ log(n)).

Reingold et. al. [13] were the first to formalize a model for and study
the relations between different notions of “black-boxness” of cryptographic
constructions.

A key property of a fully black-box construction of Q from P is the require-
ment that it constructs Q efficiently even when given black-box access to a non-
efficient implementation of P. A proof technique utilizing this property, which is
implicit in many black-box separations, involves an (inefficient) oracle instanti-
ation of the primitive P and an appropriate (inefficient) breaker oracle B. The
separation is usually proved by showing that B breaks the security of the can-
didate construction for Q, but at the same time no efficient oracle algorithm
that has black-box oracle access to both the breaker and the primitive (in par-
ticular, the potential reduction) breaks the security property of the underlying
instantiation of P.

1.2 Our Contribution

In constructions based on one-way functions (or permutations), i.e., when
P = OWF, the oracle that implements OWF is usually set to be a random
permutation, which is one-way with very high probability even in the presence
of a non-uniform algorithm. On the other hand, the proof that the breaker al-
gorithm for the constructed primitive Q does not help invert the permutation is
repeated in an “ad-hoc” manner in many separation proofs, e.g., in [17,6] and
also in a recent result on lower bounds on the number of calls made by any
construction of a pseudo-random generator from a one-way function [9].

Thus, while in many separation proofs the task of finding the right breaker
oracle is different (this is inherent, as each time it is required to break the
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security of a different primitive), we observe that the proof that it does not help
in inverting the underlying one-way function can be facilitated and unified to a
large extent. To that end, we prove a general theorem that facilitates the proof
of black-box separations (Theorem 1). In particular, we show that any circuit
with access to an oracle that satisfies two local properties, does not help to invert
many functions.

Our framework allows proving separation results that exclude the existence of
reductions with very weak security requirements. In this work we focus on the
important case where the black-box construction is so-called fixed-parameter.
That is, for a security parameter ρ, both the construction algorithm and the
reduction access the primitive and breaker of security ρ only. All black-box con-
structions found in the literature are in fact fixed-parameter constructions. We
believe that adapting the approach of [9], it is possible to extend our results to
the most general case.

Our proof uses the encoding technique from [5], which was already adapted to
the special cases in [6] and [9]. We also use the bending technique that originated
in [17] and was subsequently used in [7] and [9].

As an application, in Section 4 we prove a lower bound of Ω(n/ log3(n)) on the
number of calls made by any fully black-box construction of a universal one-way
hash function (UOWHF) from a one-way function f : {0, 1}n → {0, 1}n. This
can be further improved to Ω(n/ log(n)) (see Section 5 in [3]).

UOWHFs are a fundamental cryptographic primitive, most notably used for
obtaining digital signatures. They were studied extensively since their introduc-
tion by Naor and Yung [12], who showed a simple construction that makes only
one call to the underlying one-way function whenever, additionally, the func-
tion is a permutation. Rompel [14] showed a construction based on any one-way
function, and the most efficient construction based on general one-way functions
is due to Haitner et. al. [8]. Their construction makes Õ(n6) calls to a one-way
function f : {0, 1}n → {0, 1}n. Note that the bound given in [5] does not say
anything for the mere construction of a UOWHF (e.g., for a function which com-
presses one bit), and prior to our work it would have been possible to conjecture
that there exists a construction of a UOWHF from a general one-way function
that makes only one call to the underlying one-way function. Our bound matches
exactly and up to a log-factor the number of calls made by the constructions of
[4] and [1], respectively.

Our result can be understood as an analog to that of Holenstein and Sinha,
who show a bound of Ω(n/ log(n)) on the number of calls to a one-way func-
tion that are made by a construction of a pseudo-random generator. We observe
(details are omitted) that the recent result of [9] can be explained in our frame-
work. Our characterization of UOWHFs (presented in Section 4.1) is inspired
by their characterization of pseudo-random generators. For some candidate con-
structions, our proof also utilizes their BreakOW oracle. Our main technical
contribution in Section 4.2 is the oracle BreakPI and the proof that it satisfies
the conditions of our theorem from Section 3.
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2 Preliminaries

2.1 The Computational Model

A function p = p(ρ) is polynomial if there exists a value c such that p(ρ) = ρc.
A machine M is efficient if there exists a polynomial p such that on every input
x ∈ {0, 1}∗, M(x) halts after at most p(|x|) steps. A function s : N+ → N+ is
a security function if for every ρ ∈ N+ it holds that s(ρ + 1) ≥ s(ρ), and s is
efficiently computable (i.e., there exists an efficient machine M that on input 1ρ

outputs s(ρ)). For a security function s we define 1
s : N+ → R+ as 1

s (ρ)
def
= 1

s(ρ) .

A function f : N+ → R+ is negligible if for all polynomial security functions p it
holds that f(ρ) < 1

p(ρ) for all large enough ρ.

An (n, n′)-oracle circuit C(?) is a circuit that contains special oracle gates of
input length n and output length n′. An (n1, n

′
1, n2, n

′
2)-oracle circuit C(?) is a

circuit that contains two types of oracle gates, where the ith type contains ni

input gates and n′i output gates.
A family of functions f = {fρ}ρ∈N+ is uniformly efficiently computable if there

exists an efficient machine M such that for every ρ ∈ N+ it holds that M(1(ρ))
outputs a circuit that implements fρ. A non-uniform algorithm A = {Aρ}ρ∈N+ is
a parameterized family of circuits Aρ. A non-uniform algorithm A implements
the parametrized functions family f = {fρ}ρ∈N+ , if each Aρ implements fρ.

A non-uniform oracle algorithm A(?) = {A(?)
ρ}ρ∈N+ is a parameterized family

of oracle circuits. Let A(?) be an oracle algorithm. A parametrized family of
functions f = {fρ}ρ∈N+ (resp., an algorithm B = {Bρ}ρ∈N+ ) is compatible with

A(?) if for all ρ > 0 it holds that fρ (resp., Bρ) is compatible with Aρ. In this

case we define the algorithm A(f) def
= {Afρ

ρ } (resp., A(B) def
= {ABρ

ρ }).

Uniform Generation of Oracle Algorithms. The construction and reduc-
tion algorithms in fully black-box constructions are assumed to work for any1

input/output lengths of the primitive and breaker functionalities, and there-
fore are modeled in the following way: In addition to the security parameter ρ,
both the construction and the reduction algorithms take as input information
about the input/output lengths of the underlying primitive fρ and the breaker
algorithm Bρ.

A uniform oracle algorithm is a machine M that on input M(1ρ, n(ρ), n′(ρ))

outputs an (n(ρ), n′(ρ))-oracle circuit A
(?)
ρ . For a uniform oracle algorithm M

and a parameterized family of functions f = {fρ : {0, 1}n(ρ) → {0, 1}n′(ρ)}ρ∈N+ ,

define M (f) def
= {A(fρ)

ρ }ρ∈N+ , where A
(?)
ρ

def
= M(1ρ, n(ρ), n′(ρ)). For a non-

uniform algorithm A, the family M (A) is defined analogously.
Let s = s(ρ) be a security function. An s-non-uniform two oracle algorithm is

a machine M such that for every ρ, n1, n
′
1, n2, n

′
2 ∈ N+ and every a ∈ {0, 1}s(ρ),

1 A-priori, for a fixed security parameter ρ there is no bound on the input length the
construction is expected to work, as long as the series of the input-output lengths is
bounded by some polynomial.
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it holds that M(1ρ, n1, n
′
1, n2, n

′
2, a) outputs an (n1, n

′
1, n2, n

′
2)-two oracle circuit

A
(?,?)
ρ,a with at most s(ρ) oracle gates. Note that the last requirement is essential

and is implicit in the case of an efficient uniform oracle algorithm, where the
number of oracle gates is bounded by the polynomial that bounds the running
time of the algorithm. For an s-non-uniform two oracle algorithm M , a non-

uniform algorithm B and a family of functions f , we formally define M [B,f ] def
=

(M,B, f).

2.2 Modeling Cryptographic Primitives

In order to state our results in their full generality, and in particular to exclude
reductions that are allowed to use non-uniformity and are considered successful
in inverting the one-way function even if they invert only a negligible fraction
of the inputs of the function, the following two definitions are very general, and
extend Definitions 2.1 and 2.3 from [13]. The example of modeling a one-way
function follows the definition.

Definition 1 (Cryptographic Primitive). A primitive Q is a pair
〈FQ, RQ〉, where FQ is a set of parametrized families of functions f = {fρ}ρ∈N+

and RQ is a relation over triplets 〈fρ, C, ε〉 of a function fρ ∈ f (for some
f ∈ FQ), a circuit C and a number ε > 0. We define that C (Q, ε)-breaks fρ if
and only if 〈fρ, C, ε〉 ∈ RQ.

The set FQ specifies all the correct implementations (not necessarily efficient) of
Q and the relation RQ captures the security property ofQ, that is, it specifies for
every concrete security parameter implementation, how well a breaker algorithm
performs with respect to the security property of the primitive.

Finally, let s = s(ρ) be a security function, B = {Bρ}ρ∈N+ be a non-uniform
algorithm, and f ∈ FQ. We say that B (Q, 1

s )-breaks f if 〈fρ, Bρ,
1

s(ρ) 〉 ∈ RQ
for infinitely many values ρ. Let us fix an s-non-uniform two oracle algorithm R.
We say that R[B,f ] (Q, 1

s )-breaks f if for infinitely many values ρ there exists an

a ∈ {0, 1}s(ρ) (called advice) such that 〈fρ, R(Bρ,fρ)
ρ,a , 1

s(ρ) 〉 ∈ RQ, where R
(?,?)
ρ,a =

R(1ρ, n, n′, b, b′, a).
The usual notion of polynomial security of a primitive is captured by the

following definition: B Q-breaks f if there exists a polynomial p = p(ρ) such
that B (Q, 1

p )-breaks f .
A primitive Q exists if there exists an efficient uniform algorithm M that

implements an f ∈ FQ, and for every efficient uniform algorithm M ′ that, on
input 1ρ outputs a circuit, it holds that {M ′(1ρ)}ρ∈N+ does not Q-break f .

Observe that the requirement that M ′ outputs a circuit is made without loss
of generality and captures the standard definition of an efficient randomized
machine M ′ that breaks a primitive. Given such an M ′ that tosses at most
r = r(ρ) random coins, there exists2 a (now deterministic) efficient uniform

2 For example, by the canonical encoding of an efficient machine as in the Cook-Levin
Theorem.
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machine M ′′ that on input 1ρ outputs a circuit Cρ with m(ρ)+ r(ρ) input gates
and n(ρ) output gates that computes the output of M for all strings of length
m(ρ), and therefore Q-breaks the primitive.

2.3 One-Way Functions

Our model for describing a primitive is very general and captures the security
properties of many cryptographic primitives. As an example, we bring a standard
definition of a one-way function and then explain how it can be described in our
model.

Definition 2 (One-Way Function). A one-way function f = {fρ}ρ∈N+ is an

efficiently uniformly computable family of functions fρ : {0, 1}n(ρ) → {0, 1}m(ρ),
such that for every efficient randomized machine A, the function that maps ρ to

Pr
x

r←{0,1}m(ρ)

[
A(1ρ, fρ(x)) ∈ f−1ρ (fρ(v))

]
is negligible.

In order to model a one-way function (OWF), we set f = {fρ}ρ∈N+ ∈ FOWF,

where fρ : {0, 1}n(ρ) → {0, 1}m(ρ), if and only if n = n(ρ) and m = m(ρ) are
polynomial security functions. We say that FOWF contains a collection of sets
of functions F = {Fρ}ρ∈N+ , if for every family f ′ = {f ′ρ}ρ∈N+ , where f ′ρ ∈ Fρ

for every ρ, it holds that f ′ ∈ FOWF.
In this case, for a function fρ ∈ f ∈ FOWF, a circuit C that inverts fρ on

an ε-fraction of its inputs, and ε′ > 0, set 〈f, C, ε′〉 ∈ ROWF if and only if
ε ≥ ε′. The definition is general, and allows for the circuit C to implicitly use
randomness. In such a case, for fρ as before, a circuit with C with m(ρ) + r(ρ)
input bits that computes an output x ∈ {0, 1}n(ρ), and a value ε′ > 0, define
〈fρ, C, ε′〉 ∈ ROWF if and only if ε ≥ ε′, where ε is the probability over uniform
z ∈ {0, 1}r(ρ) and x ∈ {0, 1}n(ρ) that C(fρ(x), z) outputs an x′ ∈ f−1ρ (fρ(x)).

2.4 Fully Black-Box Cryptographic Constructions

Finally, we bring the standard definition of a fixed-parameter fully black-box
construction of a primitive Q from a primitive P, which is usually implicit in the
literature. The construction algorithm G is an efficient uniform oracle algorithm
and the security reduction R is an efficient uniform two-oracle algorithm. For ev-
ery security parameter ρ and a function fρ : {0, 1}n(ρ) → {0, 1}n′(ρ), G’s output

on (1ρ, n, n′) is an (n, n′)-oracle circuit g
(?)
ρ such that {g(fρ)ρ }ρ∈N+ implements

Q. The reduction algorithm works as follows: For a security parameter ρ and
f as before, and additionally a breaker circuit B : {0, 1}b(ρ) → {0, 1}b′(ρ), the
reduction R on input (1ρ, n, n′, b, b′) outputs an (n, n′, b, b′)-two-oracle circuit

R
(?,?)
ρ . The security property property requires that indeed the series of circuits

{R(Bρ,fρ)
ρ }ρ∈N+ P-breaks f . We emphasize that the vast majority (if not all) of

the constructions of primitives from a one-way function found in the literature
are in fact fixed-parameter fully black-box constructions. Formally:
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Definition 3 (fixed-parameter fully black-box construction of Q from
P). An efficient uniform oracle algorithm G and an efficient uniform two
oracle algorithm R are a fixed-parameter fully-BB construction of a primitive
Q = 〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every f ∈ FP:

1. (correctness) G(f) implements f ′ ∈ FQ.

2. (security) For every algorithm B: If B Q-breaks G(f) then R(B,f) P-
breaks f .

For a super-polynomial security function s = s(ρ) (e.g., s(ρ) = 2
√
ρ), the fol-

lowing definition of a fully black-box construction is significantly weaker than
the standard one in the following three aspects: First, it requires that reduc-
tion only mildly breaks the one-way property of the function f (whenever the
breaker breaks the constructed primitive in the standard polynomial sense). Sec-
ond, the reduction algorithm does not have to be efficient or uniform (but the
non-uniformity is limited to an advice of length s). Lastly, it allows the reduction
to make s calls to its oracles3.

Definition 4 (s-weak fixed-parameter fully black-box construction of
Q from P).
A uniform oracle algorithm G and an s-non-uniform two oracle algorithm R are
an s-weak fixed-parameter fully-BB construction of a primitive Q = 〈FQ, RQ〉
from a primitive P = 〈FP, RP〉 if for every f ∈ FP:

1. (correctness) G(f) implements an f ′ ∈ FQ.

2. (security) For every non-uniform algorithm B: If B Q-breaks G(f) then
R[B,f ] (P, 1/s)-breaks f .

2.5 Random Permutations and Regular Functions

Let n and i be two integers such that 0 ≤ i ≤ n. We denote the set of all
permutations on {0, 1}n by Pn. Let X ,Y be sets. We denote by (X → Y) the
set of all functions from X to Y. A function f : X → Y is regular if |{x′ : f(x) =
f(x′)}| is constant for all x ∈ X . A family of functions f = {fρ}ρ∈N+ is a regular
function if for every ρ the function fρ is regular. We denote by Rn,i the set of
all regular functions from {0, 1}n to itself such that the image of f contains 2i

values. E.g., Rn,n = Pn is the set of all permutations, and Rn,0 is the set of all
constant functions.

2.6 Bending a Function and Image Adaptation

It will be useful for us to compare the run of a circuit with oracle access to a
function f to a run that is identical except that the output of one specific value
is altered.
3 In Definition 3 the limitation on the number of queries made to the oracles is implicit
as R is an efficient algorithm, and so its output circuit has at most a polynomially
number of oracle gates.
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For a fixed function f : {0, 1}n → {0, 1}n and y′, y′′ ∈ {0, 1}n, set

f(y′,y′′)(x)
def
=

{
y′′ if f(x) = y′

f(x) otherwise.

Similarly, for two fixed functions f, f ′ : {0, 1}n → {0, 1}n and a set S ⊂ {0, 1}n,
we define the image adaptation4 of f to f ′ on S to be the function

f(S,f ′)(x)
def
=

{
f ′(x) if x ∈ f−1(f(S))

f(x) otherwise.

3 A General Theorem for Proving Strong Black-Box
Separations

3.1 Deterministic Parametrized Oracles and Local Sets

The following definition allows to model general parameterized oracles, that is,
oracles that, for any function f from some set of functions and any q from some
query domain, return a value a from some answer set. We observe that many
of the oracles used for black-box separations found in the literature could be
described in such a way.

Let X ,Y,D and R be sets. A deterministic parametrized oracle for a class of
functions (X → Y) is an indexed collection O = {Of}f∈X→Y , where Of : D →
R. We call f , D, and R the function parameter, the domain, and the range of
the oracle, respectively.

Our first example of a deterministic parametrized oracle is the evaluation oracle
E for functions on {0, 1}n, which on a query q returns the evaluation of f on q.

In this case we have that X = Y = D = R = {0, 1}n and Ef (q) def
= f(q).

The next two definitions capture two important local properties of
parametrized oracles. We believe that they are natural and observe that many
of the oracles devised for separation results satisfy them.

Intuitively, a determining set is an indexed collection of sets that determine
the output of the oracle for every function f and query q in the following sense:
If for two functions f and f ′ it holds that their corresponding oracle outputs
differ for some q, then for one of them (f or f ′) it holds that the local change of
an image adaptation of one of the functions to agree with that of the other on
its determining set changes the output of the oracle. Formally:

Definition 5. Let O be a deterministic parametrized oracle. A determining set
IO for a class of functions F ⊂ (X → Y) is an indexed collection {IOf,q}f∈F ,q∈D
of subsets of X , such that for every f, f ′ ∈ F and every query q ∈ D: If Of (q) �=
4 We mention that if f is a permutation, the condition f(x) = y can be replaced by
x = f−1(y), and similarly for f(S,f ′) check whether x ∈ S, which is what one may
expect initially from such a definition.
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Of ′(q), then it holds that either the image adaptation of f to f ′ on IOf ′,q changes

Of (q) (i.e., Of(
IO
f′,q,f′

)(q) �= Of (q)), or the image adaptation of f ′ to f on IOf,q
changes Of ′(q). IO is a t-determining set if for every function f ∈ F and query
q ∈ D it holds that

∣∣IOf,q∣∣ ≤ t.

In the example of the evaluation oracle, we observe that it has a 1-determining

set. Indeed, setting IEf,q
def
= {q} satisfies the required definition, since if for any

f, f ′ ∈ {0, 1}n → {0, 1}n and x ∈ {0, 1}n for which f(x) �= f ′(x) it holds that
f({x},f ′)(x) = f ′(x) �= f(x).

Consider an oracleO with a determining set IO for some class of permutations
F . Fix f, f ′ ∈ F and q ∈ D. The following two propositions are immediate from
the definition of determining sets:

Proposition 1. If Of (q) �= Of ′(q) and f(x) = f ′(x) for all x ∈ IOf ′,q (in this

case we say that f agrees with f ’ on IOf ′,q), then adapting f ′ to agree with f on

IOf,q changes Of ′(q).

Proposition 2. If for all x ∈ IOf,q ∪IOf ′,q it holds that f(x) = f ′(x) (in this case
we say that the functions agree on their determining sets), then Of (q) = Of ′(q).

Proposition 2 establishes that determining sets indeed determine the output of
the oracle in the following sense: If we know the value Of (q) for a query q
and a function f , and, moreover, we know that functions f ′, f agree on their
determining sets for q, then this information already determines for us the value
Of ′(q).

The next local property of an oracle captures the fact that it is in some sense
“stable”. For a function f and query q as before, and a value y in the image set
of f , a bending set for f, q, and y is a set of all potentially “sensitive” y′ values:
For any value y which is not in the image of f on its determining set, and for
any value y′ which is not in the bending set, the oracle’s answer to query q does
not change for the local adaptations of f from y′ to y. That is, it holds that
Of(y′ ,y)(q) = Of (q). Formally:

Definition 6. Let O be a deterministic parametrized oracle. A bending set BO
for F is an indexed collection {BOf,q,y}f∈F ,q∈D,y∈Y of subsets of Y, such that for
every function f ∈ F , query q ∈ D, for every target image y ∈ Y, and for every
source image y

′
/∈ BOf,q,y, it holds that Of (q) = Of(y′ ,y)(q). We say that BO is a

t-bending set if for every function f ∈ F , query q ∈ D and y ∈ Y it holds that
|BOf,q,y| ≤ t.

For the example of the evaluation oracle, we observe that it also has a 1-bending

set. Setting BEf,q,y
def
= {f(q)} (for the relevant f, q and y) satisfies the required

definition. Indeed, for any y′ �= f(q) and y′′ ∈ Y, it holds that Ef(y′ ,y′′)(q) =

f(y′,y′′)(q) = f(q) = Ef (q).
Finally, a deterministic parametrized algorithm O is t-stable for a class of

functions F if there exist (IO,BO) that are a t-determining set and a t-bending
set for F , respectively, and at least one of them is not empty.
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We note that determining and bending sets always exist unconditionally (just
choose the entire domain and range of f , for every determining and bending set,
respectively). The challange is finding an oracle that allows to break a primitive
and at the same time is t-stable.

3.2 A t-Stable Oracle Of Inverts Only a Few Functions

The next lemma, which first appeared in [5] and was subsequently adapted to
many other separation results, e.g., [6,15,9], establishes an information-theoretic
bound on the number of functions an oracle-aided algorithm can invert from a
set F if the oracle is t-stable for F . Essentially, it shows that given an oracle
circuit A(?) with access to such an oracle O, it is possible to encode a function
f ∈ F that A inverts well using significantly fewer bits than log(|F|), such that
f can still be fully reconstructed, or equivallently, that the encoding is injective.

Lemma 1 (Encoding Lemma). Let A(?) be an oracle circuit making at most
c calls to its oracle, and let O = {Of}f∈{0,1}n→{0,1}n be a deterministic parame-
terized oracle such that for a class of permutations F ⊆ Pn it is t-stable with sets

(IO,BO). Then, for at most dn = dn(c, t) =
((

2n

b

))2
·((2n−b)!), where b

def
= 2n

3·c2·t ,

of the permutations f in F , it holds that Pr
x

r←{0,1}n
[
AOf (f(x)) = x

]
> 1

c .

The proof is a generalized version of the encoding technique of [5].
The next theorem is proved by means of a reduction to Lemma 1 and ex-

pressing canonically a regular function using premutations. Detailed proofs of
the lemma and the theorem are available in [3].

Theorem 1 (Black-Box Separation Factory). Let s = s(ρ) be a security
function, and p = p(ρ) be a polynomial function. Let (G,A) = (G(?), A(?,?)) be
a uniform oracle algorithm and an s-non-uniform two-oracle algorithm, respec-
tively. Let F = {Fρ}ρ>0, where Fρ ⊂ Rn(ρ),i(ρ)(Pρ, Iρ), be contained in FOWF,
and O = {Oρ}ρ>0, where Oρ = {Oρ,f}f∈Fn(ρ),i(ρ)(Pρ,Iρ)

, such that for all large

enough ρ:

1. Oρ,f (Q, 1
p(ρ) )-breaks g

(f)
ρ for every f ∈ Fρ, where g

(?)
ρ

def
= G(1ρ, n, n′).

2. Oρ is t-stable with sets (IO,BO) for Fρ such that 2s(ρ) · di(s(ρ), t) < |Fρ|
holds, where di is as in Lemma 1.

Then (G,A) is not an s-weak fixed-parameter fully black-box construction of Q

from OWF.

4 A Lower Bound on the Number of Calls for a
Fixed-Parameter Fully Black-Box Construction of
UOWHF from OWF

In this section we prove our second main result, namely a lower bound on the
number of calls made by the construction algorithm G in any fully black-box
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construction (G,R) of UOWHF from OWF. Our bound is achieved by showing
a sequence of efficient fixed-parameter fully black-box constructions, where each
primitive is constructed from the one that precedes it, and by proving the lower
bound on the number of calls a construction makes on the last primitive. A
diagram of the reduction sequence is depicted in Figure 1.

4.1 A Characterization of Universal One-Way Hash Functions

Loosely speaking, a universal one-way hash function is a keyed compressing
function for which the probability that an adversary wins the following game is
very small: First the adversary chooses a preimage v. Then a random key for the
UOWHF is chosen. Finally, the adversary “wins” the game he finds a different
preimage v′ that maps to the same value under the chosen key. Formally:

Definition 7 (UOWHF). A universal one-way hash function h = {hρ}ρ∈N+ is

a family of uniformly efficiently computable keyed functions hρ : {0, 1}κ(ρ) ×
{0, 1}m(ρ) → {0, 1}m′(ρ) with m′(ρ) < m(ρ) such that for any pair of efficient
randomized algorithms (B1, B2) the function mapping ρ to

Pr
(v,σ)

r←B1(ρ)

k
r←{0,1}κ(ρ)

v′ r←B2(k,v,σ)

[hρ(k, v) = hρ(k, v
′) ∧ v �= v′]

is negligible. The family h is an 
-bit compressing UOWHF, where 
 = 
(ρ), if
m(ρ)−m′(ρ) ≥ 
(ρ) for all large enough ρ.

The primitive UOWHF = (FUOWHF, RUOWHF) is defined implicitly anal-
ogously to the way OWF was defined for one-way functions

Domain Extension of a UOWHF. The definition of a UOWHF only guaran-
tees that hρ is compressing (i.e., it is possible that 
(ρ) = 1). The first reduction
we use is a domain extension of a UOWHF, that allows to construct an 
-bit
compressing UOWHF from a UOWHF. Shoup [16] shows a fully-black box con-
struction of a 
-bit compressing UOWHF from one that compresses only one bit,
which is the minimal requirement from any UOWHF.

Lemma 2 (UOWHF domain extension). There exists a fixed-parameter
fully black-box construction of an 
-bit compressing UOWHF h′ρ :

{0, 1}log(�)·κ(ρ) × {0, 1}m+� → {0, 1}m from a one-bit compressing UOWHF
hρ : {0, 1}κ(ρ) × {0, 1}m+1 → {0, 1}m. In order to evaluate h′ρ the construc-

tion makes exactly 
(ρ) calls to hρ. The security reduction R
hρ,B
ρ makes 
 calls

to its hρ oracle, and exactly one call to the breaker Bρ = (B1, B2)ρ oracle.
Furthermore, if Bρ (�-UOWHF, ε)-breaks h′ρ, then the reduction (UOWHF, ε

� )-
breaks hρ.
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We observe that the security definition for UOWHFs involves an interaction,
and allows the adversary to save its state using σ. It will be more convenient for
us to work with an equivalent non-interactive version. The following definition
of collision resistance is tightly related to that of a UOWHF by the lemma that
follows it, where we denote by a‖b the concatenation of a and b.

Definition 8 (RP-CRHF). A random preimage collision resistance hash function
is an efficiently uniformly computable family of functions hρ : {0, 1}m(ρ) →
{0, 1}m′(ρ) with m′(ρ) < m(ρ), such that for every efficient randomized machine
B the function mapping ρ to

Pr
v

r←{0,1}m(ρ)

v′ r←B(ρ,v)

[hρ(v) = hρ(v
′) ∧ v �= v′] is negligible.

The family h is an 
-bit compressing RP-CRHF, where 
 = 
(ρ), if additionally
it holds that m(ρ)−m′(ρ) ≥ 
(ρ) for all large enough ρ.

The primitives RP-CRHF and log2(ρ)-RP-CRHF are defined analogously.

Lemma 3 (UOWHF to RP-CRHF, folklore). Let h = {hρ}ρ∈N+ be a

UOWHF. Then the family h′ρ : {0, 1}κ(ρ)+m(ρ) → {0, 1}κ(ρ)+m′(ρ) given by

h′ρ(k‖v)
def
= (k‖hρ(k, v)) is an RP-CRHF.

Pseudo-injective Functions. Our last reduction establishes that padding the
output of a log2(ρ)-RP-CRHF yields a primitive that is both a one-way function,
and behaves like an injective function. A pseudo-injective function is an efficiently
uniformly computable family g = {gρ}ρ∈N+ of length preserving functions gρ :

{0, 1}m(ρ) → {0, 1}m(ρ) such that for a uniformly chosen input v ∈ {0, 1}m(ρ) it
is impossible to find another input v′ �= v such that both map to the same value
under gρ. We stress that pseudo-injective functions exists unconditionally: Any
permutation is a pseudo-injective function. Formally:

Definition 9 (Pseudo-Injectivity). A pseudo-injective function g = {gρ}ρ∈N+

is a uniformly efficiently computable family of functions gρ : {0, 1}m(ρ) →
{0, 1}m(ρ), such that for all uniform efficient algorithms A the function map-
ping ρ to

Pr
v

r←{0,1}m(ρ)

v′ r←A(1ρ,v)

[gρ(v
′) = gρ(v) ∧ v′ �= v] is negligible.

Similarly to before, the primitive PI = 〈FPI, RPI〉 corresponds to a pseudo-
injective function. Next, we consider the primitive OWF∧PI that corresponds to
all functions which are both a one-way function and a pseudo-injective function.
Formally, it holds that f ∈ FOWF∧PI if and only if f ∈ FOWF and f ∈
FPI. For a breaker circuit C, a function fρ ∈ f ∈ FOWF∧PI, and a number
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ε it holds that 〈fρ, C, ε〉 ∈ ROWF∧PI if and only if 〈fρ, C, ε〉 ∈ ROWF or
〈fρ, C, ε〉 ∈ RPI. It turns out that padding any log2(n)-RP-CRHF to a length-
preserving function, yields a function which is both a one-way function and a
pseudo-injective function.

Lemma 4 (log2(ρ)-RP-CRHF to OWF∧PI). Let h = {hρ}ρ∈N+ be an RP-

CRHF that compresses 
(ρ)
def
= m(ρ) −m′(ρ) bits, where 
(ρ) ≥ log2(ρ). Then

the family {h′ρ}ρ∈N+ , where h′ρ(v)
def
= hρ(v)‖0�(ρ), is a one-way function and a

pseudo-injective function.

Due to limitations of space the proof is omitted. The composition of the con-
structions depicted in Lemmas 2, 3 and 4 establishes a fixed-parameter fully
black-box construction of an h′ ∈ FOWF∧PI from any h ∈ FUOWHF that
makes log2(ρ) calls to the underlying UOWHF. The security reduction makes
log2(ρ) calls (to both its oracles) in order to break the security of the underlying
UOWHF, and if B (OWF∧PI, 1

p )-breaks the constructed h for some polyno-

mial p and breaker B, then the reduction (UOWHF, 1
p′ )-breaks h, where p′ is a

different polynomial such that p′(ρ) > 4 · p(ρ) · log2(ρ). Thus we obtain:

Corollary 1. Suppose that (G,R) is an s′-weak fixed-parameter fully black-box
construction of UOWHF from OWF that makes at most r′ = r′(ρ) queries to
OWF. Then there exists an s-weak fixed-parameter fully black-box construction
of OWF∧PI from OWF that makes r′(ρ)·log2(ρ) calls to the underlying one-way

function, where s(ρ)
def
= s′(ρ) · log2(ρ).

Therefore, in order to show that there is no s′-weak fixed-parameter fully black-
box construction of UOWHF from OWF, where the construction makes r′ calls
to the one-way functions, it is sufficient to show that there is no s-weak fixed-
parameter fully black-box construction of OWF∧PI from OWF that makes r

calls, where s(ρ)
def
= s′(ρ) · log2(ρ) and r(ρ)

def
= r′(ρ) · log2(ρ). This is the goal of

the next section.

OWF UOWHF log2(ρ)-UOWHF log2(ρ)-RPCRHF OWF∧PI

Lemma 2 Lemma 3 Lemma 4?

/

No s-weak construction making r ∈ o
(

n(ρ)
log(s(ρ))

)
calls to f .

Fig. 1. Fully Black-Box Constructions Diagram

4.2 A Lower Bound on the Number of Calls for an s-Weak
Fixed-Parameter Fully Black-Box Construction of OWF∧PI

from OWF

As explained, a lower bound on a construction of OWF∧PI from OWF yields
a very good (up to a log2-factor) bound on the construction of UOWHF.
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Our proof utilizes the machinery from Section 3. Let us introduce some no-
tation. For an (n, n)-oracle circuit g(?) : {0, 1}m → {0, 1}m, a function f :
{0, 1}n → {0, 1}n and a value v ∈ {0, 1}m, denote by Xg(f, v) and Yg(f, v) the
sets of queries and answers made to and received from f during the evaluation
of g(f)(v), respectively.

For any potential construction (G,R) denote by r = r(ρ) the number of
queries gρ makes when instantiated for security parameter ρ with a one-way

function fρ : {0, 1}ρ → {0, 1}ρ, that is we set n(ρ)
def
= n′(ρ)

def
= ρ. Additionally,

let s = s(ρ) be a super-polynomial security function smaller than 2
ρ
10 . I.e., for all

polynomials p and all large enough ρ it holds that p(ρ) < s(ρ) < 2
ρ
10 . We prove

that if r(ρ) < n(ρ)
2000·log(s(ρ))) holds for all large enough ρ, then (G,R) is not an

s-weak fixed-parameter fully black-box construction of OWF∧PI from OWF.

Theorem 2. For all super-polynomial security functions s = s(ρ) < 2
ρ
10 and

r = r(ρ) there is no s-weak fixed-parameter fully black-box construction of

OWF∧PI from OWF such that g
(?)
ρ : {0, 1}m(ρ) → {0, 1}m(ρ) makes at most

r(ρ) calls to the underlying one-way function, where n(ρ)
def
= n′(ρ)

def
= ρ and

g
(?)
ρ

def
= G(1ρ, n, n′), and r(ρ) ≤ n(ρ)

2000·log(s(ρ)) holds for all large enough ρ.

Proof. Without loss of generality, we assume that the construction g makes

exactly r(ρ)
def
= n(ρ)

2000·log(s(ρ)) different queries. Whenever this is not the case,

it is always possible to amend G so that it behaves exactly as before, but on
input (1ρ, n, n′) it outputs an (n, n′)-oracle circuit with r(ρ) oracle gates, and
additionally, all queries are different.

Let s and r be a pair of security functions such that s is super-polynomial,
that is, for every polynomial p and large enough ρ it holds that s(ρ) > p(ρ), and

that r(ρ) = n(ρ)
2000·log(s(ρ)) holds for all sufficiently large ρ.

We now explain how to construct the oracle O = {Oρ}ρ∈N+ and the collection
of sets of functions F = {Fρ}ρ∈N+ . For each security paramter ρ we define the
oracle Oρ and the set Fρ independently of the oracles and function sets chosen
for other security parameters. It will always hold that Fρ ⊂ {0, 1}n → {0, 1}n,
and so the constructed F is contained in FOWF.

Therefore, from now on we omit the security parameter in our notation, but
formally all our parameters depend on the security parameter ρ. In particular,
g(?) is the construction that the uniform construction algorithm G outputs for
security parameter ρ = n = n′ with a function fρ : {0, 1}ρ → {0, 1}ρ.

Analogously to [9], for every security parameter we break either the one-
wayness property of the constructed function, or its pseudo-injectivity. For the
oracle circuit g(?) : {0, 1}m → {0, 1}m, we check whether when g is evaluated

with a random permutation f
r← Pn and a random input v

r← {0, 1}m, the
output gf (v) is significantly correlated with any subset of the set of oracle
answers returned by f on the calls made to it during the evaluation of gf (v)
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(recall that these are denoted by Yg(f, v)). To this end, we bring the procedure
STA (for safe to answer), which returns true if and only if there is no such
correlation:

Procedure STA(w,Q) (on w ∈ {0, 1}m and Q ⊂ {0, 1}n of size r)
.

for all B ⊆ Q do

. if Pr
f ′ r←Pn,v′ r←{0,1}m

[
g(f

′)(v′) = w
∣∣∣B ⊆ Yg(f

′, v′)
]
≥ 2−m+ n

30

. return false

return true

We set p(g), the probability that for a random permutation f and a random
input v, the output gf(v) is correlated with some subset of the answers Yg(f, v).
Define

p(g)
def
= Pr

f
r←Pn,v

r←{0,1}m

[
STA(g(f)(v), Yg(f, v))

]
. (1)

We stress that both the output of STA (for any value y and a setQ), and the value
p(g) do not depend on any specific permutation, but rather on a combinatorial
property of the construction as a whole, which averages over all permutations.

As explained, we set the oracle O and the set F based on the value

p(g). In case that p(g) > 1
2 we set the oracle O def

= BreakOWg
def
=

{BreakOWg,f}f∈{0,1}n→{0,1}n , where we use the oracle BreakOWg from [9],
which is described next. In [9] it is implicitly proved that there exists a set

F ⊂ Pn of size |F| > |Pn|
5 , such that BreakOWg,f (OWF, 14 )-breaks gf for all

f ∈ F , and that BreakOWg is 2
n
5 -stable for F , in which case condition (2) in

Theorem 1 is satisfied.

Algorithm BreakOWg,f (w) (on input w ∈ {0, 1}m)
.

for all v ∈ {0, 1}m do
. if g(f)(v) = w then
. if STA(w, Yg(f, v)) then
. return v
return ⊥

In the case p(g) ≤ 1
2 we show that when f is chosen uniformly at random from

a set of regular degenerate functions, it is often the case that the construction
g(f) is not injective, and therefore there exists an oracle which breaks the pseudo-
injectivity of g(f). The challenge is to find a breaker oracle that is t-stable. The
next lemmas establish that the oracle BreakPI satisfies the required conditions
in this case.
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Formally, for a construction circuit g we define the oracle BreakPIg =
{BreakPIg,f}f∈{0,1}n→{0,1}n that for a function f is given by:

Algorithm BreakPIg,f (v) (on input v ∈ {0, 1}m)
.

for all v′ ∈ {0, 1}m do
. if g(f)(v) = g(f)(v′) and v′ �= v then
. if Yg(f, v) = Yg(f, v

′) then
. return v′

return ⊥

Now, we fix i
def
= n

200·r = 10 · log(s). We show that for a 1
6 -fraction of the

functions f in Rn,i it holds that BreakPIg,f breaks the pseudo-injectivity of g(f).

Lemma 5. Let g : {0, 1}m → {0, 1}m be an r-query oracle construction with
p(g) ≤ 1

2 . Then for a 1
6 -fraction of the functions in Rn, n

200·r it holds that

Pr
v

r←{0,1}m

[
BreakPIg,f (v) outputs v′ s.t. v �= v′ ∧ g(f)(v) = g(f)(v′)

]
≥ 1

24
. (2)

The proof of the Lemma appears in [3]. We conclude from Lemma 5 that if
p(g) ≤ 1

2 , there exists a partition P of {0, 1}n to sets of size 2n−i and an image-
set I of size 2i, such that (2) holds for at least a 1

6 -fraction of the functions
f ∈ Rn,i(P, I). Set F ⊂ Rn,i(P, I) to be the set of all functions for which (2)
holds. It follows that |F| ≥ 1

6 · 2i, as |Rn,i(P, I)| = |Pi|.
We next show that for the class of functions Rn,i(P, I) the oracle can be

implemented such that it is stable.

Lemma 6. Let i ∈ N+ and I ⊂ {0, 1}n of size 2i and P a partition of {0, 1}n
to sets of size 2n−i. Then there exists an implementation of the oracle BreakPIg
that is n-stable for Rn,i(P, I).

The proof of the Lemma appears in [3]. It is left to check (the simple calculation
is omitted) that 2s · di(s, n) < |F|.

We have shown that the conditions of Theorem 1 hold, and therefore we
conclude that there is no s-weak fixed-parameter fully black-box construction of
OWF∧PI from OWF. The theorem is proved. �

4.3 Deriving the Lower Bound

We are now ready to derive our lower bound for constructions of a universal
one-way hash function from a one-way function:

Corollary 2. Let s′ be a security function such that s(n)
def
= s′(n) · log2(n) is

a super-polynomial security function for which s(n) < 2
n
10 holds. Then there is

no s-weak fixed-parameter fully black-box construction of UOWHF from OWF,
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where the construction makes at most r′(n) = n
2000·log(s(n))·log2(n)

calls to a one-

way function f = {fn : {0, 1}n → {0, 1}n}n∈N+ .

Proof. We apply Corollary 1 with Theorem 2. �

Corollary 3. There is no fixed-parameter fully black-box construction of
UOWHF from OWF, where the construction makes at most r = r(n) calls

to a OWF f = {fn : {0, 1}n → {0, 1}n}n∈N+ , where r ∈ o
(

n
log3(n)

)
.

Proof. Let r ∈ o
(

n
log3(n)

)
. Then there exists a super-constant function α = α(n),

such that the function r′(n) given by r′(n)
def
= r(n)·α(n) is still in o

(
n

log3(n)

)
. The

bound follows immediately from Corollary 2 applied with s(n)
def
= 2α(n)·log(n).

�
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Abstract. In this paper we introduce the notion of Algebraic (Trapdoor)
One Way Functions, which, roughly speaking, captures and formalizes
many of the properties of number-theoretic one-way functions. Infor-
mally, a (trapdoor) one way function F : X → Y is said to be algebraic
if X and Y are (finite) abelian cyclic groups, the function is homomor-
phic i.e. F (x) · F (y) = F (x · y), and is ring-homomorphic, meaning that
it is possible to compute linear operations “in the exponent” over some
ring (which may be different from Zp where p is the order of the under-
lying group X) without knowing the bases. Moreover, algebraic OWFs
must be flexibly one-way in the sense that given y = F (x), it must be
infeasible to compute (x′, d) such that F (x′) = yd (for d �= 0). Inter-
estingly, algebraic one way functions can be constructed from a variety
of standard number theoretic assumptions, such as RSA, Factoring and
CDH over bilinear groups.

As a second contribution of this paper, we show several applications
where algebraic (trapdoor) OWFs turn out to be useful. These include
publicly verifiable secure outsourcing of polynomials, linearly homomor-
phic signatures and batch execution of Sigma protocols.

1 Introduction

Algebraic One-Way Functions. This paper introduces the notion of Al-
gebraic One-Way Function, which aims to capture and formalize many of the
properties enjoyed by number-theoretic based one-way functions. Intuitively, an
Algebraic One-Way Function (OWF) F : Xκ → Yκ is defined over abelian cyclic
groups Xκ,Yκ, and it satisfies the following properties:

– Homomorphic: the classical property that says that group operations are
preserved by the OWF.
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– Ring-Homomorphic: this is a new property saying, intuitively, that it is pos-
sible to efficiently perform linear operations “in the exponent” over some
ring K. While this property turns out to be equivalent to the homomorphic
property for groups of known order n and the ring K = Zn, it might not
hold for groups of unknown order. Yet for the case of RSA Moduli we show
that this property holds, and more interestingly it holds for any finite ring.

– Flexibly One-Way: We strengthen the usual notion of one-wayness in the
following way: given y = F (x) is should be unfeasible to compute (x′, d) such
that F (x′) = yd and d ∈ K �=0 (in contrast with the traditional definition of
one-wayness where d is fixed as 1).

In our work we also consider natural refinements of this notion to the cases when
the function is a permutation and when there exists a trapdoor that allows to
efficiently invert the function.

We demonstrate the existence of Algebraic OWFs with three instantiations,
the security of which is deduced from the hardness of the Diffie-Hellman problem
in groups with bilinear maps and the RSA/Factoring assumptions respectively.

Applications. As a second contribution of this paper, we turn our attention
to three separate practical problems: outsourcing of polynomial computations,
linearly homomorphic signatures and batch executions of identification protocols.
In all three separate problems, we show that Algebraic OWFs can be used for
building truly efficient schemes that improve in several ways on the “state-of-
the-art”. In particular, we propose solutions for:

– Publicly Verifiable Secure Outsourcing of Polynomials which works over rings
of arbitrary size and characteristic and does not necessarily use bilinear maps.

– Linearly Homomorphic Signature Schemes also over arbitrary rings, and in
particular even small fields such as F2. The only known constructions for the
latter case require assumptions over lattices [8] while we can use any of the
assumptions above obtaining more efficient algorithms.

– Batch Executions of Identification Protocols: we construct a Sigma-protocol
based on algebraic one-way functions and then we show that it is possible to
construct a “batch” version of it where many statements are proven basically
at the cost of a single one. A similar batch version for the Schnorr’s Sigma
protocol has been proposed in [20] and we generalize it to any of the assump-
tions above. In particular for the instantiation based on RSA we obtain a
batch version of the Guillou-Quisquater protocol [25] which yields, to the
best of our knowledge, the first batch verifiable Sigma protocol for groups of
unknown order, a problem left open in [20].

The application to batch executions of identification protocols is deferred to the
full version of this paper [11]. Below, we elaborate in detail about the improve-
ments of our solutions to the remaining two applications.

1.1 Secure Outsourcing of Polynomials

Starting from work by Benabbas et al. [6], several papers have been investigat-
ing the problem of securely outsourcing the computation of large polynomials.
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The problem can be described as follows: a computationally weak client stores a
large polynomial (say in m variables, of degree d) with a powerful server. Later,
the client will request the server to evaluate the polynomial at a certain input x
and the server must provide such result together with a “proof” of its correctness.
In particular, it is crucial that verifying such a proof must require substantially
less resources than computing the polynomial from scratch. Furthermore, the
client must store only a “small” amount of secret information, e.g. not the entire
polynomial.

Following [6], several other papers (e.g. [33,34,16]) have investigated this prob-
lem, focusing specifically on the feature of public verification, i.e. the proof of
correctness of the result provided by the server can be verified by anyone. This
comes in contrast with the original solution in [6] which obtained only private
verification, i.e. the proof of correctness of the result provided by the server can
be verified only by the client who initially stored the polynomial.

The popularity of this research problem can be explained by its numerous
practical applications including, as discussed in [6], Proofs of Retrievability (the
client stores a large file F with the server and later wants a short proof that
the entire file can be retrieved) and Verifiable Keyword Search (given a text file
T = {w1, . . . , w�} and a word w, the server tells the client if w ∈ T or not).

Limitation of Previous Solutions. The solutions for outsourcing of polyno-
mial computations mentioned above suffer from two main drawbacks:

– Large Field Size. The schemes presented in [6,33,16] work only for polynomi-
als computed over fields of prime characteristic p, which is the same p as the
order of the underlying cryptographic group that is used to prove security.
That means that for the schemes to be secure, p must be large. Therefore
up to now, none of the existing schemes could handle small field sizes. The
solution recently proposed in [34] can support polynomials over Z2, and thus,
by working in a “bit-by-bit” fashion, over any field. However, to work over
other fields of any characteristic p, it incurs a O(log p) computational over-
head since O(log p) parallel instances of the scheme must be run. It would
be therefore nice to have a scheme that works for polynomials over arbitrary
fields, without a “bit-by-bit” encoding, so that the same scheme would scale
well when working over larger field sizes.

– Public Verifiability via Bilinear Maps. All previous solutions that achieve
public verifiability [33,34,16] do so by means of groups with bilinear maps
as the underlying cryptographic tool. Since pairing computations may be
expensive compared to simpler operations such as exponentiations, and given
that bilinear maps are the only known algebraic structure under which we can
currently build publicly verifiable computation, it is an interesting question
to investigate whether we can have solutions that use alternative algebraic
tools and cryptographic assumptions (e.g. RSA moduli) to achieve public
verifiability.

Our new solution removes these two problems. As discussed above, we can in-
stantiate our protocols over RSA moduli, and prove their security under the
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DDH/RSA/Factoring Assumptions over such groups, therefore avoiding the use
of bilinear maps. Perhaps more interestingly, our protocols can handle finite rings
of any size and any characteristic, thus allowing for much more flexibility and
efficiency. Moreover, the schemes in [34] are based on specific Attribute-Based
Encryption schemes (e.g. [28]) whose security relies on “q-type” assumptions,
whereas our solution can do so based on the well known RSA/Factoring as-
sumptions.

As in the case of [16] our techniques extend for building a protocol for Matrix
Multiplication. In this problem (also studied in [30]) the client stores a large
(n×d) matrix M with the server and then provides d-dimensional vectors x and
obtains y = M · x together with a proof of correctness.

Other Comparisons with Related Work. The subject of verifiable out-
sourced computation has a large body of prior work, both on the theoretical
front (e.g. [4,24,27,29,23]) and on the more applied arena (e.g. [31,5,37,38]).

Our work follows the “amortized” paradigm introduced in [18] (also adopted in
[14,2]) where a one-time expensive preprocessing phase is allowed. The protocols
described in those papers allow a client to outsource the computation of an
arbitrary function (encoded as a Boolean circuit) and use fully homomorphic
encryption (i.e. [21]) resulting in solutions of limited practical relevance. Instead,
we follow [6] by considering a very limited class of computations (polynomial
evaluation and matrix multiplication) in order to obtain better efficiency.

As discussed above, we improve on [33] by providing a solution that works
for finite rings of arbitrary characteristic (even small fields) and by avoiding the
use of bilinear maps. Given that our solution is a generalization of [16] we also
inherit all the improvements of that paper. In particular, compared to [33]:

– we get security under constant-size assumptions (i.e. assumptions that do
not asymptotically depend on the degree of the polynomial), while their
scheme uses a variation of the CDH Assumption that grows with the degree.

– we handle a larger class of polynomial functions: their scheme supports poly-
nomials in m variables and total degree d (which we also support) but we
additionally consider also polynomials of degree d in each variable.

– For the case we both support, we enjoy a much faster verification protocol: a
constant amount of work (a couple of exponentiations over an RSA modulus)
while they require O(m) pairings1.

1.2 Linearly Homomorphic Signatures

Imagine a user Alice owns some data setm1, . . . ,mn ∈M that she keeps (signed)
in some database stored at a, not necessarily trusted, server. Imagine also that

1 In contrast the delegation phase is basically free in their case, while our delegation
step requires O(md) work – note however that in a publicly verifiable scheme, the
verification algorithm might be run several times and therefore its efficiency is more
important.
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some other user, Bob, is allowed to query the database to perform some basic
computation (such as the mean or other statistics) over Alice’s data set. The
simplest way to do this in a reliable manner (for Bob) is to download the full data
set from the server, check all the signatures and compute the desired statistic.
This solution, however, has two drawbacks. First, it is inefficient in terms of
bandwidth. Second, even though Alice allows Bob to access some statistics over
her data, she might not want this data to be explicitly revealed. Homomorphic
signatures allow to overcome both these issues in a very elegant fashion [8].
Indeed, using a homomorphic signature scheme, Alice can sign m1, . . . ,mn, thus
producing the signatures σ1, . . . , σn, which can be verified exactly as ordinary
signatures. The homomorphic property provides the extra feature that given
σ1, . . . , σn and some function f :Mn →M, one can compute a signature σf on
the value f(m1, . . . ,mn) without knowledge of the secret signing key SK. In other
words, for a fixed set of original signed messages, it is possible to provide any
y = f(m1, . . . ,mn) with a proof of correctness σf . In particular the creation and
the verification of σf does not require SK. The security definition is a relaxation
over the classical security notion for signatures: it should be impossible to create
a signature σf for m �= f(m1, . . . ,mn) without knowing SK.

The notion of homomorphic signature was introduced by Johnson et al. [26]
and later refined by Boneh et al. [7]. Its main motivation was realizing a linear
network coding scheme [1,35] secure against pollution attacks. The construction
from [7] uses bilinear groups as the underlying tool and authenticates linear
functions on vectors defined over large prime fields. Subsequent works considered
different settings as well. In particular, the constructions in [19,12,13] are based
on RSA, while [9,8] rely on lattices and can support linear functions on vectors
over small fields. A general framework for building homomorphic signatures in
the standard model, was recently provided by Freeman [17].

Our Contribution. In this paper we show that algebraic trapdoor one way per-
mutations, directly allow for a very simple and elegant extension of Full Domain
Hash (FDH) to the case of linearly homomorphic signatures. Similarly to stan-
dard FDH signatures our construction is secure in the random oracle model and
allows for very efficient instantiations. Our framework allows for great flexibility
when choosing a homomorphic signature scheme and the underlying message
space. Indeed our constructions support messages and homomorphic operations
over arbitrary finite rings. While it was already known how to realize linearly
homomorphic signatures over small fields [9,8], ours seem to be the first schemes
achieving this in a very efficient way and based on simple assumptions such as
Factoring and RSA. To give a more concrete idea about the efficiency of our
scheme, if we consider the case of messages in F2, then our signing algorithm is
more efficient than that in [8] in the same order of magnitude as taking a square
root in Z∗N is more efficient than sampling a pre-image in lattice-based trapdoor
functions, at comparable security levels.
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2 Preliminaries

In what follows we will denote with λ ∈ N a security parameter. We say that a
function ε is negligible if it vanishes faster than the inverse of any polynomial. If

S is a set, we denote with x
$← S the process of selecting x uniformly at random

in S. Let A be a probabilistic algorithm. We denote with x
$← A(·) the process

of running A on some appropriate input and assigning its output to x.
Below we give informal definitions of verifiable computation and linearly ho-

momorphic signatures. For more formal and precise descriptions, we defer the
interested reader to the full version of this paper [11] and to relevant related
work [34,17].

Verifiable Computation [34]. A Verifiable Computation scheme VC enables
a client to outsource the computation of a function f to an untrusted worker,
in such a way that the client can verify the correctness of the result returned by
the worker. In order for the outsourcing to make sense, it is crucial that the cost
of verification at the client must be cheaper than computing the function locally.
A VC scheme for a class of functions F is defined by the following algorithms.
The key generation KeyGen(1λ, f), given a function f ∈ F , produces a secret key
SKf that will be used for input delegation, a public verification key PKf , used
to verify the correctness of the delegated computation, and a public evaluation
key EKf which will be handed to the server to delegate the computation of f .
The problem generation algorithm ProbGen(PKf , SKf , x) → (σx,VKx) takes a
value x ∈ Dom(f), and is run by the delegator to produce an encoding σx of
x, together with a public verification key VKx. Compute(EKf , σx) → σy is run
by the worker to compute an encoded version of y = f(x). The verification
algorithm Verify(PKf ,VKx, σy) → y ∪ ⊥ takes the public information and an
encoded output σy, and returns a value y or an error ⊥.

Intuitively, for security, we require that any PPT worker, with oracle access
to ProbGen, should not be able to cheat by producing a proof σ for y′ �= f(x)
that correctly verifies for f(x).

Linearly-Homomorphic Signatures. Linearly-homomorphic signatures, as
recently formalized in [9,8,17], extend the standard notion of digital signatures
as follows. A linearly-homomorphic signature scheme consists of the following
algorithms. The key generation Hom.KG(1λ,m), given a maximum data set
size m, outputs a public key PK and a secret key SK. The signing algorithm
Hom.Sign(SK, τ,M, i) takes SK, a tag τ identifying a data set, a message M and
an index i ∈ {1, 2, . . . ,m}, and outputs a signature σ. Hom.Ver(VK, τ,M, σ, f)
checks whether σ is valid w.r.t. a tag τ , a message M and a function f ∈ F .
The evaluation algorithm Hom.Eval(VK, τ, f,σ), given a tag τ , a function f and
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a tuple of signatures {σi}mi=1 (that should be valid for {Mi}mi=1 respectively)
outputs a new signature σ′ that will verify correctly for f(M1, . . . ,Mm)2.

The security notion for linearly-homomorphic signatures is an extension of the
classical notion of unforgeability against chosen-message attacks. The adversary
A can ask signatures on triples of the form (τ,M, i) (precisely, the tag is chosen by
the challenger), and at the end it should not be able to produce a valid signature
σ∗ on (τ∗,M∗, f∗) such that: either (1) τ∗ is “new”, or (2) τ∗ = τ for some tag τ
asked during the game and M∗ �= f∗(M1, . . . ,Mm), where M1, . . . ,Mm are the
messages in the data set identified by τ . Notice that by definition of Hom.Eval,
for any f∗ everyone could compute a valid signature on M = f∗(M1, . . . ,Mm).
Thus condition (2) makes sure that no one can do it for M∗ �= f∗(M1, . . . ,Mm).

3 Algebraic (Trapdoor) One-Way Functions

A family of one-way functions consists of two efficient algorithms (Gen, F ) that
work as follows. Gen(1λ) takes as input a security parameter 1λ and outputs a
key κ. Such key κ determines a member Fκ(·) of the family, and in particular it
specifies two sets Xκ and Yκ such that Fκ : Xκ → Yκ. Given κ, for any input
x ∈ Xκ it is efficient to compute y ∈ Yκ where y = Fκ(x). In addition, we assume
that κ specifies a finite ring K that will be used as described below.

(Gen, F ) is a family of algebraic one-way functions if it is:

Algebraic: ∀λ ∈ N, and every κ
$← Gen(1λ), the sets Xκ, Yκ are abelian cyclic

groups. In our work we denote the group operation by multiplication, and we
assume that given κ, sampling a (random) generator as well as computing the
group operation can be done efficiently (in probabilistic polynomial time).

Homomorphic: ∀λ ∈ N, every κ
$← Gen(1λ), for any inputs x1, x2 ∈ Xκ, it

holds: Fκ(x1) · Fκ(x2) = Fκ(x1 · x2).
Ring-homomorphic: intuitively, this property states that it is possible to eval-

uate inner product operations in the exponent given some “blinded” bases.
Before stating the property formally, we give a high level explanation of this
idea by using an example. Assume that one is given values W1 = hω1 ,W2 =
hω2 ∈ Xκ, ω1, ω2 ∈ Z, and wants to compute h(ω1α1+ω2α2 mod q) for some
integer coefficients α1, α2. If q �= |Xκ| and the order of Xκ is not known,
then it is not clear how to compute such a value efficiently (notice that h
is not given). The ring-homomorphic property basically says that with the
additional knowledge of Fκ(h), such computation can be done efficiently.

More formally, let κ
$← Gen(1λ), h1, . . . , hm ∈ Xκ be generators (for m ≥

1), and let W1, . . . ,W� ∈ Xκ be group elements, each of the form Wi =

h
ω

(1)
i

1 · · ·hω
(m)
i

m · Ri, for some Ri ∈ Xκ and some integers ω
(j)
i ∈ Z (note that

this decomposition may not be unique).

2 We remark that, for technical reasons, the realization given in section 5, slightly
deviates from the above syntax. In particular, it requires Hom.Eval to receive, as
additional inputs, the vector messages M and the functions f under which the
signatures σ are supposed to verify.
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We say that (Gen, F ) is ring-homomorphic (for the ring K specified by κ) if

there exists an efficient algorithm Eval such that for any κ
$← Gen(1λ), any

set of generators h1, . . . , hm ∈ Xκ, any vector of elements W ∈ X �
κ of the

above form, and any vector of integers α ∈ Z�, it holds

Eval(κ,A,W ,Ω,α) = h
〈ω(1),α〉
1 · · ·h〈ω(m),α〉

m

�∏
i=1

Rαi

i

where A = (A1, . . . , Am) ∈ Ym
κ is such that Ai = Fκ(hi), Ω = (ω

(j)
i )i,j ∈

Z�×m, and each product 〈ω(j),α〉 in the exponent is computed over the ring
K. We notice that over all the paper we often abuse notation by treating
elements of the ring K as integers and vice versa. For this we assume a
canonical interpretation of d ∈ K as an integer [d] ∈ Z between 0 and |K|−1,
and that both d and [d] are efficiently computable from one another.

We note that in the case when the ring K is Zp, where p is the order of
the group Xκ, then this property is trivially realized: every OWF where Xκ

is a group of order p, is ring-homomorphic for Zp. To see this, observe that
the following efficient algorithm trivially follows from the simple fact that
Xκ is a finite group: Eval(κ,A,W ,Ω,α) =

∏�
i=1 W

αi

i .
What makes the property non-trivial for some instantiations (in particu-

lar the RSA and Factoring-based ones shown in the next section) is that the
algorithm Eval must compute the inner products 〈ω(j),α〉 over the ring K,
which might be different from Zp, where p is the order of the group Xκ over
which the function is defined.

Flexibly One-way: finally, we require a family (Gen, F ) to be non-invertible
in a strong sense. Formally, we say that (Gen, F ) is flexibly one-way if for
any PPT adversary A it holds:

Pr[A(1λ, κ, y) = (x′, d) : d �= 0 ∧ d ∈ K ∧ Fκ(x
′) = yd]

is negligible, where κ
$← Gen(1λ), x

$← Xκ is chosen uniformly at random
and y = Fκ(x).

Our definition asks for d �= 0 as we additionally require that in the case
when d = 0 (over the ring K) the function must be efficiently invertible. More
precisely, given a value y = Fκ(x) ∈ Yκ (for any x ∈ Xκ) and an integer d
such that d = 0 over the ring K (d may though be different from zero over
the integers), there is an efficient algorithm that computes x′ ∈ Xκ such that
Fκ(x

′) = yd.

Notice that flexible one-wayness is stronger than standard one-wayness (in which
d is always fixed to 1). Also, our notion is closely related to the notion of q-one
wayness for group homomorphisms given in [15]. Informally, this latter notion
states that for some prime q: (1) f is one-way in the standard sense, (2) there
is a polynomial-time algorithm that on input (f, z, y, i) such that f(z) = yi (for
0 < i < q) computes x such that f(x) = y, and (3) yq is efficiently invertible.
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It is not hard to see that when q = |K| flexible one-wayness and q-one-wayness
are basically equivalent, except for that we do not require the existence of an
efficient algorithm that on input (F, z, y, i) such that F (z) = yi computes x such
that F (x) = y.

We stress that even though flexible one-wayness may look non-standard, in
the next section we demonstrate that our candidates satisfy it under very simple
and standard assumptions.

Algebraic Trapdoor One-Way Functions. Our notion of algebraic one-
way functions can be easily extended to the trapdoor case, in which there exists
a trapdoor key that allows to efficiently invert the function. More formally, we
define a family of trapdoor one-way functions as a set of efficient algorithms
(Gen, F, Inv) that work as follows. Gen(1λ) takes as input a security parameter
1λ and outputs a pair (κ, td). Given κ, Fκ is the same as before. On input the
trapdoor td and a value y ∈ Yκ, the inversion algorithm Inv computes x ∈ Xκ

such that Fκ(x) = y. Often we will write Invtd(·) as F−1κ (·). Then we say that
(Gen, F, Inv) is a family of algebraic trapdoor one-way functions if it is algebraic,
homomorphic and ring-homomorphic, in the same way as defined above.

Finally, when the input space Xκ and the output space Yκ are the same
(i.e., Xκ = Yκ) and the function Fκ : Xκ → Xκ is a permutation, then we call
(Gen, F, Inv) a family of algebraic trapdoor permutations.

3.1 Instantiations

We give three simple constructions of algebraic (trapdoor) one-way functions
from a variety of number theoretic assumptions: CDH in bilinear groups, RSA
and factoring.

CDH in Bilinear Groups

Gen(1λ): use G(1λ) to generate groups G1,G2,GT of the same prime order p,
together with an efficiently computable bilinear map e : G1 × G2 → GT .
Sample two random generators g1 ∈ G1, g2 ∈ G2 and output κ = (p, e, g1, g2).
The finite ring K is Zp.

Fκ(x): the function Fκ : G1 → GT is defined by: Fκ(x) = e(x, g2).

The algebraic and homomorphic properties are easy to check. Moreover, the
function is trivially ring-homomorphic for Zp as p is the order of G1.

Its security can be shown via the following Theorem. The proof is straight-
forward and is deferred to the full version.

Theorem 1. If the co-CDH assumption holds for G(·), then the above function
is flexibly one-way.

RSA (over QRN). This construction is an algebraic trapdoor permutation,
and it allows to explicitly choose the ring K as Ze for any prime e ≥ 3.

Gen(1λ, e): let e ≥ 3 be a prime number. Run (N, p, q)
$← RSAGen(1λ) to gener-

ate a Blum integerN , product of two safe primes p and q. If gcd(e, φ(N)) �= 1,
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then reject the tuple (N, p, q) and try again. Output κ = (N, e) and td =
(p, q).

Fκ(x): the function Fκ : QRN → QRN is defined by: Fκ(x) = xe mod N .
Invtd(y): the inversion algorithm computes c = e−1 mod φ(N), and then out-

puts: xc mod N .
Eval(κ,A,W ,Ω,α): for j = 1 to m, compute ω(j) = 〈ω(j),α〉 over the integers

and write it as ω(j) = ω(j)′ + e · ω(j)′′ , for some ω(j)′ , ω(j)′′ ∈ Z. Finally,
output

V =

∏�
i=1 W

αi

i∏m
j=1 A

ω(j)′′
j

mod N

The algebraic and homomorphic properties are easy to check. To see that the
function is ring-homomorphic for K = Ze, we show the correctness of the Eval
algorithm as follows:

V =

∏�
i=1 W

αi

i∏m
j=1 A

ω(j)′′
j

mod N =

∏l
i=1(

∏m
j=1 h

ω
(j)
i

j · Ri)
αi∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

=

∏m
j=1 h

(〈ω(j),α〉 mod φ(N))
j

∏l
i=1 R

αi

i∏m
j=1 h

(eω(j)′′ mod φ(N))
j

mod N

=

∏m
j=1 h

(ω(j)′+eω(j)′′ mod φ(N))
j

∏l
i=1 R

αi

i∏m
j=1 h

(eω(j)′′ mod φ(N))
j

mod N

= hω(1)′

1 · · ·hω(m)′

m

l∏
i=1

Rαi

i mod N.

The security of the function is shown via the following Theorem:

Theorem 2. If the RSA assumption holds for RSAGen, the above function is
flexibly one-way.

To prove the theorem, we simply observe that since d �= 0 and d ∈ Ze, it holds
gcd(e, d) = 1. Therefore, it is possible to apply the well known Shamir’s trick
[36] to transform any adversary against the security of our OWF to an adversary
which solves the RSA problem for the fixed e.

On the other hand, given y ∈ Yκ, in the special case when d = 0 mod e,
finding a pre-image of yd can be done efficiently by computing yd

′
where d′ is

the integer such that d = e · d′.

Factoring. This construction also allows to explicitly choose the ring K, which
can be Z2t for any integer t ≥ 1.

Gen(1λ, t): run (N, p, q)
$← RSAGen(1λ) to generate a Blum integer N product

of two safe primes p and q. Output κ = (N, t) and td = (p, q).

Fκ(x): The function Fκ : QRN → QRN is defined by: Fκ(x) = x2t mod N .
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Invtd(y): given td = (p, q) and on input y ∈ QRN , the inversion algorithm pro-
ceeds as follows. First, it uses the factorization of N to compute the four
square roots x,−x, x′,−x′ ∈ Z∗N of y, and then it outputs the only one
which is in QRN (recall that since N is a Blum integer exactly one of the
roots of y is a quadratic residue).

Eval(κ,A,W ,ω,α): for j = 1 to m, compute ω(j) = 〈ω(j),α〉 over the integers
and write it as ω(j) = ω(j)′ + 2t · ω(j)′′ . Finally, output

V =

∏�
i=1 W

αi

i∏m
j=1 A

ω(j)′′
j

mod N

The algebraic and homomorphic properties are easy to check. To see that the
function is ring-homomorphic for Z2t , observe that its correctness can be checked
similarly to the RSA case. We notice that this construction is an algebraic trap-
door permutation.

The security of the function can be shown via the following Theorem. For lack
of space, its proof appears in the full version of this paper.

Theorem 3. If Factoring holds for RSAGen, then the above function is flexibly
one-way.

4 Our Verifiable Computation Schemes

In this section we propose the construction of verifiable computation schemes
for the delegation of multivariate polynomials and matrix multiplications. Our
constructions make generic use of our new notion of algebraic one-way functions.

An Overview of Our Solutions. Our starting point is the protocol of [6]:
assume the client has a polynomial F (·) of large degree d, and it wants to com-
pute the value F (x) for arbitrary inputs x. In [6] the client stores the polynomial
in the clear with the server as a vector of coefficients ci in Zp. The client also
stores with the server a vector of group elements ti of the form gaci+ri where g
generates a cyclic group G of order p, a ∈R Zp, and ri is the ith-coefficient of a
polynomial R(·) of the same degree as F (·). When queried on input x, the server
returns y = F (x) and t = gaF (x)+R(x), and the client accepts y iff t = gay+R(x).

If R(·) was a random polynomial, then this is a secure way to authenticate y,
however checking that t = gay+R(x) would require the client to compute R(x) –
the exact work that we set out to avoid! The crucial point, therefore, is how to
perform this verification fast, i.e., in o(d) time. The fundamental tool in [6] is the
introduction of pseudo-random functions (PRFs) with a special property called
closed-form efficiency: if we define the coefficients ri of R(·) as PRFK(i) (which
preserves the security of the scheme), then for any input x the value gR(x) can
be computed very efficiently (sub-linearly in d) by a party who knows the secret
key K for the PRF.

Our first observation was to point out that one of the PRFs proposed in
[6] was basically a variant of the Naor-Reingold PRF [32] which can be easily
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istantiated over RSA moduli assuming the DDH assumption holds over such
groups (in particular over the subgroup of quadratic residues).

Note, however, that this approach implies a private verification algorithm by
the same client who outsourced the polynomial in the first place, since it requires
knowledge of the secret key K. To make verification public, Fiore and Gennaro
proposed the use of Bilinear Maps together with algebraic PRFs based on the
decision linear problem [16].

Our second observation was to note that the scheme in [6] is really an
information-theoretic authentication of the polynomial “in the exponent”. In-
stead of using exponentiation, we observed that any “one-way function” with
the appropriate “homomorphic properties” would do. We teased out the rele-
vant properties and defined the notion of an Algebraic One-Way Function and
showed that it is possible to instantiate it using the RSA/Rabin functions.

If we use our algebraic one-way functions based on RSA and factoring de-
scribed in Section 3.1, then we obtain new verifiable computation schemes whose
security relies on these assumptions and that support polynomials over a large
variety of finite rings: Ze for any prime e ≥ 3, Z2t for any integer t ≥ 1. Pre-
viously known solutions [33,16] could support only polynomials over Zp where
p must be a large prime whose size strictly depends on the security parameter
1λ (basically, p must be such that the discrete logarithm problem is hard in a
group of order p).

In contrast, our factoring and RSA solutions allow for much more flexibility.
Precisely, using the RSA function allows us to compute polynomials over Ze for
any prime e ≥ 3, where e is the prime used by the RSA function. Using the
Rabin function allows us to handle polynomials over Z2t for any integer t ≥ 1.

A Solution for Polynomials of Degree d in Each Variable. In this section
we propose the construction of a scheme for delegating the computation of m-
variate polynomials of degree at most d in each variable. These polynomials
have up to l = (d + 1)m terms which we index by (i1, . . . , im), for 0 ≤ ij ≤ d.
Similarly to [6,16], we define the function h : Km → Kl which expands the input
x to the vector (h1(x), . . . , hl(x)) of all monomials as follows: for all 1 ≤ j ≤ l,
use a canonical ordering to write j = (i1, . . . , im) with 0 ≤ ik ≤ d, and then
hj(x) = (xi1

1 · · ·xim
m ). So, using this notation we can write the polynomial as

f(x) = 〈f , h(x)〉 =
∑l

j=1 fj · hj(x) where the fj ’s are its coefficients.
Our scheme uses two main building blocks: an algebraic one-way function (see

definition in Section 3) (Gen, F ) and a pseudorandom function with closed form
efficiency for polynomials whose notion is recalled below.

Closed-Form Efficient PRFs. The notion of closed form efficient pseudo-
random functions, firstly introduced by Benabbas et al. [6] and later refined by
Fiore and Gennaro [16], is defined as follows.

The function consists of algorithms (PRF.KG,PRF.F). The key generation
PRF.KG takes as input the security parameter 1λ, and outputs a secret key
K and some public parameters pp that specify domain X and range Y of the
function. On input x ∈ X , PRF.FK(x) uses the secret key K to compute a value
y ∈ Y. It must of course satisfy the usual pseudorandomness property. Namely,
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(PRF.KG,PRF.F) is secure if for every PPT adversary A, the following difference
is negligible: ∣∣Pr[APRF.FK(·)(1λ, pp) = 1]− Pr[AR(·)(1λ, pp) = 1]

∣∣
where (K, pp)

$← PRF.KG(1λ), and R(·) is a random function from X to Y.
In addition, it is required to satisfy the following closed-form efficiency prop-

erty. Consider an arbitrary computation Comp that takes as input l random
values R1, . . . , Rl ∈ Y and a vector of m arbitrary values x = (x1, . . . , xm),
and assume that the best algorithm to compute Comp(R1, . . . , Rl, x1, . . . , xm)
takes time T . Let z = (z1, . . . , zl) a l-tuple of arbitrary values in the domain
X of PRF.F. We say that a PRF (PRF.KG,PRF.F) is closed-form efficient for
(Comp, z) if there exists an algorithm PRF.CFEvalComp,z such that

PRF.CFEvalComp,z(K,x) = Comp(FK(z1), . . . , FK(zl), x1, . . . , xm)

and its running time is o(T ). For z = (1, . . . , l) we usually omit the subscript z.
Note that depending on the structure of Comp, this property may enforce some

constraints on the range Y of the PRF. In particular in our case, Y will be an
abelian group. We also remark that due to the pseudorandomness property the
output distribution of PRF.CFEvalComp,z(K,x) (over the random choice of K) is
indistinguishable from the output distribution of Comp(R1, . . . , R�, x1, . . . , xm)
(over the random choices of the Ri).

Our scheme. Our verifiable computation scheme works generically for any
family of functions F that is the set of m-variate polynomials of degree d over
a finite ring K such that: (1) the algebraic one-way function Fκ : Xκ → Yκ is
ring-homomorphic for K, and (2) there exists a PRF whose range is Xκ, and
that has closed form efficiency relative to the computation of polynomials, i.e.,

for the algorithm Poly(R,x) =
∑l

j=1 R
hj(x)
j .

If we instantiate these primitives with the CDH-based algebraic OWF of Sec-
tion 3.1 and the PRFs based on Decision Linear described in [16], then our
generic construction captures the verifiable computation scheme of Fiore and
Gennaro [16]. Otherwise we can obtain new schemes by using our algebraic
OWFs based on RSA and Factoring described in Section 3.1. They have input
and output space Xκ = Yκ = QRN , the subgroup of quadratic residues in Z∗N .
So, to complete the instantiation of the scheme VCPoly, we need a PRF with
closed form efficiency whose range is QRN . For this purpose we can use the
PRF constructions described in [6] that are based on the Naor-Reingold PRF.
The only difference is that in our case we have to instantiate the PRFs in the
group QRN , and thus claim their security under the hardness of DDH in the
group QRN .

With these instantiations we obtain new verifiable computation schemes that
support polynomials over a large variety of finite rings: Ze for any prime e ≥ 3,
Z2t for any integer t ≥ 1. Previously known solutions [33,16] could support only
polynomials over Zp where p must be a large prime whose size strictly depends
on the security parameter 1λ. In contrast, our factoring and RSA solutions allow
for much more flexibility.
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The description of our generic construction VCPoly follows.

KeyGen(1λ, f). Run κ
$← Gen(1λ) to obtain a one-way function Fκ : Xκ → Yκ

that is ring-homomorphic for K. Let f be encoded as the set of its coefficients
(f1, . . . , fl) ∈ Kl.

Generate the seed of a PRF, K
$← PRF.KG(1λ, �log d�,m), whose output

space is Xκ, the input of the one-way function. Choose a random generator

h
$← Xκ, and compute A = Fκ(h).

For i = 1 to l, compute Wi = hfi ·PRF.FK(i). LetW = (W1, . . . ,Wl) ∈ (Xκ)
l.

Output EKf = (f,W,A), PKf = A, SKf = K.

ProbGen(PKf , SKf ,x). Output σx = x and VKx=Fκ(PRF.CFEvalPoly(K,h(x))).
Compute(EKf , σx). Let EKf = (f,W,A) and σx = x. Compute y = f(x) =∑l

i=1 fi · hi(x) (over K) and V = Eval(κ,A,W, f, h(x)), and return σy =
(y, V ).

Verify(PKf ,VKx, σy). Parse σy as (y, V ). If y ∈ K and Fκ(V ) = Ay · VKx, then
output y, otherwise output ⊥.

The correctness of the scheme follows from the properties of the algebraic one-
way function and the correctness of PRF.CFEval.

Theorem 4. If (Gen, F ) is a family of algebraic one-way functions and PRF.F
is a family of pseudo-random functions then any PPT adversary A making at
most q = poly(λ) queries has negligible advantage AdvPubVer

A (VCPoly,F , q, λ).

Proof (Sketch). Here we provide a proof sketch of Theorem 4. We defer the
interested reader to the the full version of this work for the formal proof.

Consider the following hybrid games:

Game 0: this is the real security game.
Game 1: this is the same as Game 0 except that the challenger performs a

different evaluation of the algorithm ProbGen. Let x be the input asked by
the adversary. The challenger computes VKx =

∏l
i=1 PRF.FK(i)hi(x).

By correctness of PRF.CFEval, Game 1 is identically distributed as Game 0.

Game 2: this game proceeds as Game 1, except that the function PRF.Fk(i)
is replaced by a truly random function that on every i lazily samples a value

Ri
$← Xκ uniformly at random.

By the security of the pseudorandom function, it is not hard to see that
Game 2 is negligibly-close to Game 1.

To complete the proof of the theorem it remains to show that by the flexible
one-wayness of the algebraic OWF, any PPT adversary has at most negligible
advantage of winning in Game 2.

Assume by contradiction there exists a PPT adversary A that has non-
negligible probability ε of winning in Game 2. We show that from such A it
is possible to construct an efficient algorithm B that breaks the flexible one-
wayness of the algebraic one-way function with the same probability ε.
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B receives the pair (κ,A) as its input, where A ∈ Yκ, and proceeds as follows.

It chooses l random values W1, . . . ,Wl
$← Xκ, and it sets EKf = (f,W,A) and

PKf = A. Next, for i = 1 to l, B computes Zi = Fκ(Wi) · A−fi .
B runs A(PKf ,EKf ) and answers each query x as follows: it computes VKx =∏l
i=1 Z

hi(x)
i and returns VKx. By the homomorphic property of Fκ this compu-

tation of VKx is equivalent to the one made by the challenger in Game 2.
Finally, let x∗, σ̂y = (ŷ, V̂ ) be the output of A at the end of the game such that

Verify(PKf ,VKx∗ , σ̂y) = ŷ, ŷ �= ⊥ and ŷ �= f(x∗). By verification, this means that

Fκ(V̂ ) = Aŷ ·VKx∗ . Let y = f(x∗) ∈ K be the correct output of the computation,
and let V = Eval(κ,A,W, f, h(x)) be the proof as obtained by honestly running
Compute. By correctness of the scheme we have that Fκ(V ) = Ay ·VKx∗ . Hence,
we can divide the two verification equations and by the homomorphic property
of Fκ, we obtain Fκ(V̂ /V ) = Aδ where δ = ŷ − y �= 0. B outputs U = V̂ /V and
δ as a solution for the flexible one-wayness of Fκ(A).

Extensions of our Protocols. The techniques showed above can be further
extended in order to provide efficient solutions for the class of polynomials in
m variables and maximum degree d in each monomial, and for matrix multipli-
cations. We leave the description of these extensions for the full version of this
work [11].

5 Linearly-Homomorphic FDH Signatures

In this section we show a direct application of Algebraic Trapdoor One Way
Permutations (TDP) to build linearly-homomorphic signatures.

An Intuitive Overview of Our Solution. Our construction can be seen as
a linearly-homomorphic version of Full-Domain-Hash (FDH) signatures. Recall
that a FDH signature on a message m is F−1(H(m)) where F is any TDP
and H is a hash function modeled as a random oracle. Starting from this basic
scheme, we build our linearly homomorphic signatures by defining a signature
on a message m, tag τ and index i as σ = F−1(H(τ, i) ·G(m)) where F is now an
algebraic TDP, H is a classical hash function that will be modeled as a random
oracle and G is a homomorphic hash function (i.e, such that G(x) ·G(y) = G(x+
y)). Then, we will show that by using the special properties of algebraic TDPs
(in particular, ring-homomorphicity and flexible one-wayness) both the security
and the homomorphic property of the signature scheme follow immediately.

Precisely, if the algebraic TDP used in the construction is ring-homomorphic
for a ring K, then our signature scheme supports the message space Kn (for some
integer n ≥ 1) and all linear functions over this ring. Interestingly, by instanti-
ating our generic construction with our two algebraic TDPs based on Factoring
and RSA (see Section 3.1), we obtain schemes that are linearly-homomorphic for
arbitrary finite rings, i.e., Z2t or Ze, for any t ≥ 1 and any prime e. As we will
detail at the end of this section, previous solutions (e.g., [7,19,3,9,8,12,13,17])
could support only large fields whose size strictly depends on the security pa-
rameter. The only exception are the lattice-based schemes of Boneh and Freeman
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[9,8] that work for small fields, but are less efficient than our solution. In this
sense, one of our main contributions is to propose a solution that offers a great
flexibility as it can support arbitrary finite rings, both small and large, whose
characteristic can be basically chosen ad-hoc (e.g., according to the desired ap-
plication) at the moment of instantiating the scheme.

Our Scheme. The scheme is defined by the following algorithms.

Hom.KG(1λ,m, n) On input the security parameter λ, the maximum data set
size m, and an integer n ≥ 1 used to determine the message space M as we
specify below, the key generation algorithm proceeds as follows.

Run (κ, td)
$← Gen(1λ) to obtain an algebraic TDP, Fκ : Xκ → Xκ that

is ring-homomorphic for the field K. Next, sample n + 1 group elements

u, g1, . . . , gn
$← Xκ and choose a hash function H : {0, 1}∗ → Xκ.

The public key is set as VK = (κ, u, g1, . . . , gn, H), while the secret key
is the trapdoor SK = td.

The message space M = (K)n is the set of n-dimensional vectors whose
components are elements of K, while the set of admissible functions F is all
degree-1 polynomials over K with m variables and constant-term zero.

Hom.Sign(SK, τ,M, i) The signing algorithm takes as input the secret key SK,
a tag τ ∈ {0, 1}λ, a message M = (M1, . . . ,Mn) ∈ Kn and an index i ∈
{1, . . . ,m}. To sign, choose s $← K uniformly at random and use the trapdoor
td to compute

x = F−1κ (H(τ, i) · us ·
n∏

j=1

g
Mj

j )

and output σ = (x, s).
Hom.Ver(VK, τ,M, σ, f) To verify a signature σ = (x, s) on a message M ∈ M,

w.r.t. tag τ and the function f , the verification algorithm proceeds as follows.
Let f be encoded as its set of coefficients (f1, f2, . . . , fm). Check that all
values fi and Mj are in K and then check that the following equation holds

Fκ(x) =

m∏
i=1

H(τ, i)fi · us ·
n∏

j=1

g
Mj

j

If both checks are satisfied, then output 1 (accept), otherwise output 0 (re-
ject).

Hom.Eval(VK, τ, f,σ,M ,f) The public evaluation algorithm takes as input the
public key VK, a tag τ , a function f ∈ F encoded as (f1, . . . , fm) ∈ Km, a
vector of signatures σ = (σ1, . . . , σm) where σi = (xi, si), a vector of mes-
sages M = (M (1), . . . ,M (m)) and a vector of functions f = (f (1), . . . , f (m)).
If each signature σi is valid for the tag τ , the message M (i) and the func-
tion f (i), then the signature σ output by Hom.Eval is valid for the message
M = f(M (1), . . . ,M (m)). In order to do this, our algorithm first computes
s = f(s1, . . . , sm) =

∑m
i=1 fi · si (over K). Next, it defines:

A = (H(τ, 1), . . . , H(τ,m), u, g1, . . . , gn) ∈ Xm+n+1
κ ,
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Ω =

⎡⎢⎢⎣
f
(1)
1 · · · f

(1)
m s1 M

(1)
1 · · · M

(1)
n

...
...

...
...

f
(m)
1 · · · f (m)

m sm M
(m)
1 · · · M (m)

n

⎤⎥⎥⎦ ∈ Zm×m+n+1

and uses the Eval algorithm of the algebraic TDP to compute x=Eval(κ,A,x,
Ω, f). Finally, it outputs σ = (x, s).

We remark that our construction requires the Hom.Eval algorithm to
know the messages M (i) for which the signatures σi are supposed to verify
correctly. Moreover we stress that Hom.Eval needs to receive both f and
f as otherwise it would not be able to correctly perform the homomorphic
operations. Notice, however, that the value of the produced message does not
depend on f (this is needed essentially to run the Eval algorithm correctly).

Since our scheme follows the FDH paradigm, its security holds in the random
oracle model, however, following similar results for FDH signatures, in the full
version we propose a variant of our scheme that can be proven secure in the
standard model in the weaker security model of Q-time security, in which the
adversary is restricted to query signatures on at most Q different datasets, and
Q is a pre-fixed bound.

The security of our scheme follows from the following theorem. For lack of
space, its proof appears in the full version.

Theorem 5. If (Gen, F, Inv) is a family of algebraic trapdoor permutations and
H is modeled as a random oracle, then the linearly-homomorphic signature
scheme described above is secure.

Efficiency and Comparisons. The most attractive feature of our proposal is
that it allows for great variability of the underlying message space. In particular
our scheme allows to consider finite rings of arbitrary size without sacrificing
efficiency3. This is in sharp contrast with previous solutions which can either
support only large fields (whose size directly depends on the security parameter
e.g., [7,19,3,9,8,12,13,17]) or are much less efficient in practice [9,8].

Here we discuss in more details the efficiency of our scheme when instantiated
with our RSA and Factoring based Algebraic TDP. Since each signature σ =
(x, s) consists of an element x ∈ Z∗N and a value s in the field K, i.e., its size
is |σ| = |N | + |S| where |N | is the bit size of the RSA modulus and |S| is the
bit size of the cardinality S of K. Ignoring the cost of hashing, both signing and
verifying require one single multi-exponentiation (where all exponents have size
|S|) and one additional exponentiation. Thus the actual efficiency of the scheme
heavily depends on the size of |S|. For large values of |S| our scheme is no better
than previous schemes (such as the RSA schemes by Gennaro et al. [19] and by
Catalano, Fiore and Warinschi [13]). For smaller |S|, however, our schemes allow
for extremely efficient instantiations. If we consider for instance the binary field
F2, then generating a signature costs only (again ignoring the cost of hashing)

3 In fact, the exact size of the ring can be chosen ad-hoc (e.g., according to the desired
application) at the moment of instantiating the scheme.
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one square root extraction and a bunch of multiplications. Notice however that
for the specific N (i.e. N = pq where p = 2p′+ 1, q = 2q′ + 1 and p′, q′ are both
primes) considered in our instantiations, extracting square root costs one single
exponentiation (i.e., one just exponentiates to the power z = 2−1 mod p′q′).
Verification is even cheaper as it requires (roughly) m+ n multiplications.

As mentioned above, the only known schemes supporting small fields are those
by Boneh and Freeman [9,8]. Such schemes are also secure in the random oracle
model, but rely on the hardness of SIS-related problems over lattices. There, a
signature is a short vector σ in the lattice, whereas the basic signing operation is
computing a short vector in the intersection of two integer lattices. This is done
by using techniques from [22,10]. Even though the algebraic tools underlying our
scheme are significantly different with respect to those used in [9,8] and it is not
easy to make exact comparisons, it is reasonable to expect that taking a square
root in Z∗N is faster than state-of-the-art pre-image sampling for comparable
security levels.
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Abstract. Traditional definitions of the security of encryption schemes
assume that the messages encrypted are chosen independently of the
randomness used by the encryption scheme. Recent works, implicitly by
Myers and Shelat (FOCS’09) and Bellare et al (AsiaCrypt’09), and ex-
plicitly by Hemmenway and Ostrovsky (ECCC’10), consider randomness-
dependent message (RDM) security of encryption schemes, where the
message to be encrypted may be selected as a function—referred to as
the RDM function—of the randomness used to encrypt this particular
message, or other messages, but in a circular way. We carry out a system-
atic study of this notion. Our main results demonstrate the following:
– Full RDM security—where the RDM function may be an arbitrary

polynomial-size circuit—is not possible.
– Any secure encryption scheme can be slightly modified, by just per-

forming some pre-processing to the randomness, to satisfy bounded-
RDM security, where the RDM function is restricted to be a circuit
of a priori bounded polynomial size. The scheme, however, requires
the randomness r needed to encrypt a message m to be slightly
longer than the length of m (i.e., |r| > |m|+ω(log k), where k is the
security parameter).

– We present a black-box provability barrier to compilations of arbi-
trary public-key encryption into RDM-secure ones using just pre-
processing of the randomness, whenever |m| > |r|+ω(log k). On the
other hand, under the DDH assumption, we demonstrate the exis-
tence of bounded-RDM secure schemes that can encrypt arbitrarily
“long” messages using “short” randomness.

We finally note that the existence of public-key encryption schemes im-
ply the existence of a fully RDM-secure encryption scheme in an “ultra-
weak” Random-Oracle Model—where the security reduction need not
“program” the oracle, or see the queries made by the adversary to the
oracle; combined with our impossibility result, this yields the first exam-
ple of a cryptographic task that has a secure implementation in such a
weak Random-Oracle Model, but does not have a secure implementation
without random oracles.
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1 Introduction

Traditional definitions of secure encryption, including semantic (or CPA) secu-
rity and CCA security, address the problem of how to securely communicate
a message in the presence of a polynomially-bounded adversary that observes
encrypted messages. In the standard approach, it is assumed that the message,
the keys, and the randomness used to encrypt the message, are all chosen inde-
pendently.

More recently, new definitions have emerged that relax some of these inde-
pendence assumptions. Most notably, a line of work initiated independently by
Camenisch and Lysyanskaya [21] and by Black, Rogaway, and Shrimpton [14] ad-
dresses the problem of “key-dependent” messages (KDM): namely, they consider
the security of a public-key encryption scheme in a setting where the message
to be encrypted may (adversarially) depend on the secret-key. A variant of this
notion instead considers “circular” security: here, the adversary may observe a

“cycle” of q messages −→m encrypted using different keys (
−→
pk,

−→
sk), but where mi

may depend on the depends on the secret-key sk(i+1 mod q). One motivation
for studying key-dependence arises in the context of hard-drive encryption: you
want to encrypt your hard-drive, on which your secret-key is also found. Circular
security arises naturally in a situation when two parties want to share their se-
cret keys with each other (but not with the rest of the world): a natural solution
to the problem would be for player 1 to send an encrypted version of his secret
key using player 2’s public key, and vice versa. For this protocol to be secure,
circular security is needed. More recently, circular security has found important
applications in the context of fully-homomorphic encryptions (indeed, to date,
all known FHE schemes rely on the assumption that some underlying encryption
scheme is circularly secure).

We here focus on an alternative relaxation of the classic independence as-
sumptions, first implicitly considered by Myers and Shelat [36] and Bellare et al
[10], and explicitly by Hemmenway and Ostrovsky [31]: We study of the security
of encryption schemes in a scenario where the message to be encrypted may
be selected as a function—referred to as the RDM function—of the randomness
used to encrypt this particular message, or other messages, but in a circular way.
More precisely, in analogy with KDM security and circular security, we consider
two notions of randomness dependent message security.

– Randomness-dependent message (RDM) security: roughly speaking, a public-
key encryption scheme is said to be RDM-secure if indistinguishability of
ciphertexts holds even if the encrypted messages are chosen as a function of
the randomness used to encrypt this particular message.

– Circular randomness-dependent (circular-RDM) security: roughly speaking,
a public-key encryption scheme is said to be circular RDM-secure if indistin-
guishability of ciphertexts holds even if the encrypted messages are chosen
as a function of the randomness used to encrypt other messages, but in a
circular way. More precisely, we consider a scenario where q messages −→m are
encrypted using randomness −→r , where m1 is chosen as a function of rq and
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each other message mi is chosen as a function of ri−1 and the “previous”
ciphertext ci−1 = Encpk(mi−1, ri−1).

Why Care about Randomness-Dependent Message Security. We consider two
reasons to study RDM security:

1. involuntary RDM attacks: Implementations of secure protocols are prone to
programming mistakes; attacks exploiting such programming mistakes (e.g.,
buffer overflow attacks) have been demonstrated on secure protocols. At-
tacks of this type may allow an attacker to see encryptions of randomness
dependent messages, even if the original protocol chooses messages indepen-
dently of the randomness used to encrypt it. RDM security would block such
“involuntary” RDM attacks.

To prevent against these we need to be able to handle sufficiently general
classes of RDM functions that may be produced by the attackers.

2. voluntary RDM attacks As shown in the beautiful work by Myers and She-
lat [36], the possibility of encrypting the randomness used in other encryp-
tions, in a circular way, leads to new powerful techniques in the design of
encryption schemes. This techniques was further refined in a recent work
by Hohenberger, Lewko and Waters [33]. Another application is found in
the work of Hemmenway and Ostrovsky [31], that explicitly considers a
notion of circular randomness dependent “one-wayness” and show its use-
fulness for constructing injective trapdoor functions. In this context, the
protocol designer is “voluntarily” creating a (circular-)RDM attack. The
above-mentioned works either implicitly (as in [36] and [33]), or explicitly (as
in [31]) consider and design encryption schemes that are circular-RDM secure
for the specific randomness-dependent messages selected by their protocols.
Although for this particular application it suffices to consider specific RDM
functions, having general-purpose RDM-secure encryption schemes simplifies
the design and the security analysis of protocols.

Another motivation stems from non-black-box simulation techniques pio-
neered in the work by Barak [5]; in a variant of Barak’s simulation technique
due to [41], the simulator commits to its own code (that, in particular, con-
tains the randomness used for the commitment, and thus circularity arises).
In this particular application, the circularity could be broken, but having
general techniques for dealing with RDM security may simplify future ap-
plications.

Before explaining our result, let us also point out that RDM secure encryption
is very related to hedged encryption schemes introduced by Bellare et al [10]—
encryption schemes that remain secure as long as the joint message-randomness
distribution comes from a high-entropy source, that is independent of the public-
key of the encryption scheme (which in turn are very related to deterministic
encryption [8,11,15]; see [10] for more details). Hedged encryption schemes are
RDM-secure if restricting the attacker to using RDM functions that do not
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depend on the public-key.1 Our focus here is on notions of RDM security where
the RDM function may depend also on the public-key.

1.1 Our Results

Full RDM Security. Our first result shows that if the RDM function may be an
arbitrary polynomial-size circuit (chosen by the adversary), then RDM security,
as defined by Hemmenway and Ostrovsky [31], is impossible to achieve.

Theorem 1 (Informal Statement). There does not exist an encryption
scheme that is (fully) RDM-secure.

We next show that if there exists some polynomial q such that an encryption
scheme is q-circular RDM secure, then the encryption scheme is also RDM secure;
thus q-circular RDM security is impossible for all polynomials q.

Theorem 2 (Informal Statement). There does not exist an encryption
scheme that is (fully) q-circular RDM-secure for any polynomial q.

Bounded RDM Security. Since “unbounded” RDM security is impossible, we
consider RDM security with respect to restricted classes of RDM functions.

Our first positive result demonstrates that if the RDM function is restricted
to be a circuit of a priori polynomially bounded size, then any secure encryption
scheme can be modified to satisfy both RDM and circular-RDM security.

Theorem 3 (Informal Statement). Assume the existence of a secure public
key encryption scheme. Then, for every polynomial s, there exists an encryption
scheme Π that is RDM secure when restricting the RDM function to be computed
by a circuit of size at most s(k) where k is the security parameter. Additionally
Π is q-circular RDM secure for every polynomial q under the same restrictions
on the RDM function.

Theorem 3 is proven by modifying any secure encryption scheme to first “hash”
the randomness using a t-wise independent hash-function. The same transfor-
mation was previously used by Hemmenway and Ostrovsky [31] to transform
“lossy encryption schemes” [42], that can encrypt messages longer than the ran-
domness, into schemes that satisfy a notion of circular-RDM “one-wayness”2

(as opposed to semantic security) with respect to a particular circular-RDM
function (the identity function).

1 However, it is not clear in general whether hedged encryption schemes are circular
RDM secure, even if we restrict to RDM functions that do not depend on the public-
key.

2 The notion of q-circular RDM one-wayness of Hemmenway and Ostro-
vsky requires that no polynomial-time attacker can recover r1, r2, . . . rq given
Encpk(rq; r1),Encpk(r1; r2), . . . ,Encpk(rq−1; rq) except with negligible probability,
over the choice of pk and uniform r1, . . . rq.
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In order to encrypt a message m, our encryption scheme requires using |m|+
ω(log k) bits; that is, the randomness used to encrypt a message needs to be
sufficiently longer than the message being encrypted (as such, the encryption
scheme of Theorem 3 does not handle “the identity function” as an RDM func-
tion.) Our next positive result strictly strengthens the conclusion of Theorem 3
(but under a stronger assumption) and the results of [31]: the existence of lossy
trapdoor functions [43] implies the existence of both bounded RDM-secure and
bounded circular-RDM secure encryption schemes that can encrypt also “long”
messages using “short” randomness—the ratio between the message-length and
the randomness length is proportional to the lossiness of the trapdoor function.
Our construction mirrors a construction of hedged encryption of Bellare et al
[10]; roughly, the encryption is done by first “hashing” the message-randomness
pair and then applying a lossy trapdoor function to the hashed value. The key
difference is that we replace the use of univeral hashing (in the construction of
[10]) with t-wise independent hashing.3

Theorem 4 (Informal Statement). Assume the existence of “sufficiently”
lossy trapdoor functions (the existence of which are implied e.g., by the DDH
assumption). Then, for every polynomials s, l, there exists a l(k)-bit encryption
scheme Π using only k-bits of randomness that is RDM secure (and q-circular
RDM secure for every polynomial q), when restricting the RDM function to be
computed by a circuit of size at most s(k) where k is the security parameter.

To prove the above two theorems we develop several new information-theoretic
tools regarding t-wise independent hash functions, that may be of independent
interests. For instance, with very high probability, a t-wise independent hash
functions is a “good” randomness extractor for any min-entropy source with
with computationally-bounded leakage (mirroring a lemma of Trevisan-Vadhan
[44]). We also present “crooked” versions of such deterministic extraction lemmas
(mirroring the “crooked left-over-hash lemma of [25]).

An interesting question is whether any encryption schemes can be modified
by simply performing some pre-processing to the randomness (as in Theorem 3)
to become bounded RDM secure, but still handle long messages using short ran-
domness. At first sight, it may seem like we could use a pseudorandom generator
to “stretch” a small seed into the required long random string for the construc-
tion in Theorem 3. We have no attack against this construction. However, we
show that security reductions that only use the attacker and the RDM function
as a black-box—following [28], we refer to such reductions as strongly black-
box—cannot be used to demonstrate RDM security of encryption schemes with
perfect correctness and efficiently recognizable public-keys that can encrypt long
messages using short randomness, based on a falsifiable intractability assump-
tion [37]; for instance, this means that the El-Gamal crypto system cannot be

3 The construction of [10] actually requires universal hash permutations. As far as
we know, constructions of t-wise independent permutations are not known, which
requires us to further modify the scheme to guarantee correctness.



Randomness-Dependent Message Security 705

modified (by performing pre-processing to the randomness) to become bounded
RDM secure for long messages.

Theorem 5 (Informal statement). Assume the existence of one-way func-
tions secure against subexponential-sized circuits. For every polynomials m and
r such that m(k) ≥ r(k) + ω(log k), there exists a polynomial s such that for
every m(·)-bit encryption scheme Π with perfect correctness and efficiently rec-
ognizable public-keys that uses r(·) bits of randomness to encrypt a message,
s-bounded security of Π cannot be based on any falsifiable assumption using a
strongly black-box reduction, unless the assumption is false.

Let us point out that the reason Theorem 5 does not contradict Theorem 4 is
that in the construction used to prove Theorem 4, valid (“injective”) public-keys
are indistinguisbale from invalid (“lossy”) public-keys, and thus the schemes does
not have efficiently recognizable public-keys.

RDM Security beyond Encryption. We note that the notion of RDM security
applies not only to encryption but makes sense also in the context of more
general cryptographic protocols. For instance, the notion of RDM security di-
rectly extends to commitments—just as in the case of encryption, we here let
the RDM function select the messages to be committed to as a function of
the committer’s randomness. We remark that Theorem 1 readily extends also
to rule out (even computationally binding and computationally-hiding) RDM-
secure commitments. Additionally, Theorem 3 extends to show that any com-
mitment scheme in the CRS model can be turned into a bounded RDM secure
commitment scheme in the CRS model. However, Theorem 5 does not extend
to the setting to commitments—using a collision-resistant hash function, any
RDM secure commitment for short messages can be turned into a RDM-secure
commitment for long messages. The above results for commitment schemes can
be found in the full version of this work.

We leave an exploration of RDM security for other tasks (e.g., zero-knowledge
and witness indistinguishability—where the RDM function may select the state-
ment and witness to the proved as a function of the prover’s randomness, or
secure computation—where the RDM function may select a player’s input as a
function of his randomness) for future work.

On the Soundness of the Random-Oracle Methodology. Starting with the work
of Canetti, Goldreich and Halevi [22,23], there are several “uninstantiability re-
sults” for the random oracle model [7], showing schemes that are secure in the
random oracle model, but where every instantiation of random oracle with a
concrete (efficient) function leads to an insecure protocol (see e.g., [5,27,34]).
Another vein of work shows tasks (as opposed to schemes) that can be securely
implemented in the random oracle model, but for which there are no secure im-
plementations in the standard model (see e.g., [39,40,9]). As far as we know, all
these separations for tasks, however, make a relatively strong use of the random
oracle model; [39,9] rely on the security reduction “programming the random
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oracle”, and [40] relies on the security reduction “seeing all the queries to the
random oracle”. Thus, it is conceivable that a weaker usage of random oracles
may circumvent these uninstantiability results. For instance, Unruh [45] intro-
duced a weaker random oracle model where the adversarymay get an (inefficient)
non-uniform advice about the random oracle, and suggested that proofs of secu-
rity in this weaker random oracle model may still be “sound”. We here address
this question using RDM-secure encryption as a task.

We show that in the random-oracle model the existence of public-key en-
cryption schemes imply the existence of “fully” RDM secure encryption schemes
(i.e., without restricting the RDM function); our scheme is essentially identical
to the hedged encryption scheme of [10] (but the analysis is quite different given
the different security goals).4 Our use of the random oracle model is extremely
weak: we do not need to “program it”, or “see queries to it”, and security holds
even the attacker may get any inefficient non-uniform advice about it (as in
the model of [45]). (The only property we need of the random oracle is that it
acts as a klog k-wise indepedent hash function.) We refer to such a model as the
“ultra-weak” Random Oracle Model.

Theorem 6 (Informal Statement). Assume the existence of a secure public
key encryption scheme. Then, there exists a encryption scheme Π that is “fully”
RDM secure in the “ultra-weak” Random Oracle Model.

Theorem 6, combined with our impossibility result (Theorem 1), thus yields an
example of an arguably natural task (i.e., RDM-secure encryption) that can be
securely implemented in the ultra-weak random-oracle model, but not in the
standard model. Let us point out that a cruicial aspect of the security proof
of our RO-based scheme is that the RDM function is not allowed to query the
random oracle; in case we allow it to query the random oracle, our impossibility
result still holds.

1.2 Related Work

As mentioned in the introduction, (circular) RDM security was first implicitly
considered by Myers and Shelat [36] and explicitly by Hemmenway and Ostro-
vsky [31]. [36] [33] demonstrate semantic security of encryption schemes of a
specific type of circular RDM attack, but do not formally introduce a notion of
RDM security. Hemmenway and Ostrovsky [31] provide the first formal definition
of RDM-secure encryption schemes, but only investigate, and provide construc-
tions of, schemes satisfying the weaker notion of “circular-RDM one-wayness”.
As far as we know, we are the first to explicitely study the feasibility of satisfying
(circular-)RDM semantic security (as opposed to one-wayness). As mentioned
above, Bellare et al [10] study hedged encryption schemes that are closely related
to RDM-secure encryption schemes; such encryption schemes are RDM secure
if restricting the attacker to using RDM functions that do not depend on the

4 Hedged encryption exists also in the plain model so we cannot hope to get a sepa-
ration by directly appealing to the results of [10].
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public-key. Nevertheless, as mentioned, the constructions of both Bellare et al
and Hemmenway and Ostrovsky are very useful to us.

As mentioned in the introduction, the related notion of key-dependent mes-
sage (KDM) security was first introduced by Black, Rogaway, and Shrimpton
in 2002 [14], who demonstrated the possibility of achieving their definition in
the random-oracle model. The related notion of circular security (in which there
exists a cycle of ciphertexts where each message depends on the previous secret
key) was independently and concurrently introduced by Camenisch and Lysyan-
skaya [21], who also showed constructions in the random-oracle model. Follow-up
work considered message-dependent PRFs [30] and symmetric encryption [32,4]
in the standard model. In [29] barriers to constructing KDM secure schemes for
general classes of key-dependencies. In 2008, Boneh, Halevi, Hamburg, and Os-
trovsky presented the first KDM-secure public-key encryption scheme [16]; their
construction was based on the DDH assumption. Subsequent work developed
schemes that were KDM secure and CCA2 secure [20], KDM secure and resilient
to leakage on the secret key [6], circular secure under alternative assumptions
[17], and circular secure against larger classes of functions [18]. Recent work has
also shown that there exist schemes that are secure under standard definitions
but which are not 2-circular secure [1,24].

A separate, but related line of related work focuses on leakage-resilient en-
cryption (see e.g., [35,26,2,3,38,19]). In a sense, RDM security can be viewed as
a CPA security game where the attacker gets to see some leakage on the encryp-
tor’s randomness before selecting the messages; indeed, in our positive results,
this view will be instrumental.

Overview of the Paper. Some preliminaries are found in Section 2. We provide
formal definitions of RDM and circular RDM security in Section 3. Our impos-
sibility results regarding RDM and circular RDM security are found in Section
4. Finally, in Section 5 we present our positive results. The black-box unprov-
ability results are postponed to the full version. All full proofs are found in the
full version.

2 Preliminaries

For a distribution S, s ← S means that s is chosen according to distribution
S. For a set S, s ← S means that s is chosen uniformly from the set S. Un

denotes the uniform distribution over n-bit strings. For a probabilistic algorithm
A, A(x; r) denotes the output of A running on input x with randomness r;
A(x) denotes the output of A on input x with uniformly chosen randomness.
All logarithms are base 2 unless otherwise specified. We say that a function
ε : N→ [0, 1] is negligible if for every constant c ∈ N, ε(n) < k−c for sufficiently
large k.

The statistical difference between two probability distributions X,Y is defined
by Δ(X,Y ) = (1/2) ·

∑
x |Pr[x ← X ] − Pr[x ← Y ]|. X and Y are ε-close

if Δ(X,Y ) ≤ ε. The statistical difference between two ensembles {Xk}k and
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{Yk}k is a function δ defined by δ(k) = Δ(Xk, Yk). Two probability ensembles
are said to be statistically close if their statistical difference is negligible. We
also say Xk and Yk are statistically close if Δ(Xk, Yk) ≤ ε(k) for some negligible
function ε. Two ensembles {Xk}, {Yk} are computationally indistinguishable if
for every PPT distinguisher D, there exists a negligible function μ such that for
every k ∈ N,

|Pr[D(1k, Xk) = 1]− Pr[D(1k, Yk) = 1]| ≤ μ(k).

Themin-entropy of a random variableX , denotedH∞(X) is defined byH∞(X)=
− log(maxx Pr[x← X ]). A random variable X is a k-source if H∞(X) ≥ k.

A family of hash functions H = {h : S1 → S2} is t-wise independent if the
following two conditions hold:

1. ∀x ∈ S1, the random variable h(x) is uniformly distributed over S2, where
h← H.

2. ∀x1 �= · · · �= xt ∈ S1, the random variables h(x1), . . . , h(xt) are independent,
where h← H.

A function Ext{0, 1}n×{0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for every
k-source X over {0, 1}n, (Ud,Ext(X,Ud)) is ε-close to (Ud, Um).

Definition 1 (Public-Key Encryption). An l-bit public-key encryption
scheme consists of a triple Π = (Gen,Enc,Dec) of PPT algorithms where (i)
Gen takes a security parameter 1k as input and generates a pair of public and
secret key (pk, sk) ← Gen(1k), (ii) Enc takes a public key pk and a message m
in a message space {0, 1}l(k) as input and generates a ciphertext c← Encpk(m),
(iii) Dec is a deterministic algorithm that takes a secret key sk and a ciphertext
c as input and outputs m′ = Decsk(c), and (iv) there exists a negligible function
μ such that for every k ∈ N, for random (pk, sk)← Gen(1k),

Pr
[
∃m ∈ {0, 1}l(k)s.t.Decsk(Encpk(m)) �= m

]
≤ μ(k),

where the probability is taken over the randomness of Gen and the randomness
of the encryption. We say that Π has perfect correctness if the above condition
holds for μ(k) = 0.

Definition 2 (CPA and CCA Security). An l-bit public-key encryption
scheme Π = (Gen,Enc,Dec) is CPA-secure if for every probabilistic polynomial
time adversary A = (A1, A2), the ensembles {INDΠ

0 (A, k)}k and {INDΠ
1 (A, k)}k

are computationally indistinguishable, where

INDΠ
b (A, k) := (pk, sk)← Gen(1k)

(m0,m1, state)← A1(1
k, pk)

c← Encpk(mb)
o← A2(c, state)
Output o
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We say Π is CCA-secure if the above holds when A2 has access to a decryp-
tion oracle but is not allowed to query the decryption oracle with the challenge
ciphertext c.

Remark 1. In the above definition and for essentially all the results in this paper,
we consider a uniform polynomial-time attacker A. In case security holds against
also non-uniform polynomial-time attackers, we refer to the scheme as being non-
uniformly CPA/CCA secure. As is often the case, all our constructions in uniform
setting directly extend also to the case of non-uniform security (if assuming that
the underlying schemes are non-uniformly secure).

Note that the above definition assumes that messages encrypted are chosen in-
dependently of the randomness used by the encryption algorithm.

3 Definition of RDM Security

In this section, we formally define two notions of randomness-dependent message
security for encryption schemes.

Our first definition is essentially equivalent to the definition of RDM security
due to Hemmenway and Ostrovsky [31]. In this definition, messages are adver-
sarially chosen functions (after seeing the public key) of the randomness used
for encryption: we say the encryption scheme is secure if the adversary cannot
distinguish between encryptions of different functions of the randomness.

Definition 3. [RDM-Security] An l-bit public-key encryption scheme Π =
(Gen, Enc,Dec) is randomness-dependent message secure (RDM-secure) if for
every PPT adversary A = (A1, A2), the ensembles {RDMΠ

0 (A, k)}k∈N and
{RDMΠ

1 (A, k)}k∈N are computationally indistinguishable where

RDMΠ
b (A, k) := (pk, sk)← Gen(1k)

(f0, f1, state)← A1(1
k, pk)

r ← UR

c← Encpk(fb(r); r)
o ← A2(c, state)
Output o

and R is the encryption randomness length of Π. The RDM functions fb are
represented as circuits from {0, 1}|r| to {0, 1}l(k) We say Π is RDM-CCA-secure
if the above holds when A2 has access to a decryption oracle but is not allowed
to query the decryption oracle with the challenge ciphertext c.

We remark that by a standard hybrid argument, we can assume without loss
of generality that the adversary A1 always choose f1 to be a constant function
f1 = 0. As mentioned, Definition 3 is essentially identical to the notion of RDM
security defined by Hemmenway and Ostrovsky [31]: the definition of [31] is a
multi-message version of Definition 3 where the attacker gets to see a sequence
of encrypted messages (that may depend in a correlated way on the randomness
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used to encrypt them), and thus the definition of [31] implies Definition 3. (Look-
ing forward, since we are proving an impossibility result regarding Definition 3,
considering a weaker definition makes our results stronger.)

Consider a sequence of encryptions where messages are functions of the pre-
vious (but most recent) encryption randomness and ciphertext. Security in this
setting is guaranteed by CPA security, since encryption randomness is still in-
dependent of the messages. However if this dependency is circular, it is unclear
whether or not we have security. We now formally introduce this notion of cir-
cular randomness dependent message security.

Definition 4 (q-circular RDM Security). Let q : N→ N be efficiently com-
putable. An l-bit public-key encryption scheme Π = (Gen,Enc,Dec) is q-circular
RDM secure if for every PPT adversary A = (A1, A2), the following two ensem-
bles {CIRΠ

0 (A, k)}k∈N and {CIRΠ
1 (A, k)}k∈N are computationally indistinguish-

able, where

CIRΠ
b (A, k) := (pk, sk)← Gen(1k)

(f1
0 , f

2
0 , . . . , f

q(k)
0 , f1

1 , f
2
1 , . . . , f

q(k)
1 , state)← A1(1

k, pk)

r1, r2, . . . , rq(k) ← U
q(k)
R

c1 ← Encpk(f
1
b (r

q); r1)
for i = 2, . . . , q

ci ← Encpk(f
i
b(r

i−1, ci−1); ri)
o← A2(c̄, state)
Output o

and R is the encryption randomness length of Π. The RDM functions f i
b are rep-

resented as circuits as defined in Definition 3. c̄ denotes the vector (c1, c2, . . . cn).
Furthermore, Π is circular RDM secure if Π is kc-circular RDM secure for ev-
ery constant c. q-circular-CCA and circular-CCA RDM security are defined in
analogous way.

Remark 2. Note that by a hybrid argument, we can assume without loss of
generality that A always choose f i

1 = 0 for every i ∈ [q]. We will use this
observation later in the proof of Theorem 11.

We also define relaxations of RDM security and circular RDM security where
we restrict the RDM function to be computable by circuits of a priori bounded
size.

Definition 5. Let s : N → N be efficiently computable. An l-bit public key
encryption scheme Π is s-bounded RDM secure (resp., s-bounded (q-)circular
RDM secure) if Π is RDM secure (resp., (q-)circular RDM secure) under the
additional restriction that in the corresponding security game, the adversary A1

can only output RDM functions computable by circuits of size bounded by s(k).
CCA security is defined analogously.
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4 Impossibility Results

In this section we prove that both RDM-security and q-circular security are im-
possible to achieve. Throughout this section, we focus on bit-encryption schemes;
this only makes our results stronger. We first establish the impossibility result
on the RDM-secure encryption schemes; our techniques (of using pairwise inde-
pendent hashfunctions to signal a message) are similar to those used by Bellare
and Keelveedhi [12] in a different context.

Theorem 7. For every 1-bit encryption scheme Π = (Gen,Enc,Dec), Π is not
RDM-secure.

Proof. Let Π = (Gen,Enc,Dec) be a 1-bit encryption scheme. We construct a
PPT adversary A = (A1, A2) that breaks the RDM security of Π . The idea is
to use fb to signal the bit b in the RDMΠ

b experiment by pairwise independent
hash functions.

Fix a security parameter k ∈ N. Let C denotes the ciphertext space of Π for
the corresponding security parameter k, and let H = {h : C → {0, 1}} be a
pairwise independent hash function family that hashes ciphertexts to a bit. Our
adversary A uses h ← H to construct functions fb,h for b ∈ {0, 1} that signals
the bit b as follows.

– A1(1
k, pk): A1 samples h ← H and outputs (f0,h, f1,h, h), where for b ∈

{0, 1}, fb,h on input r, outputs a messagem ∈ {0, 1} such that h(Encpk(m, r))
= b if such an m exists; otherwise fb,h outputs m = 0.

– A2(c, h): A2 simply outputs one bit h(c).

To show that A breaks the RDM security of Π , it suffices to show the following
claim, which clearly implies RDMΠ

0 (A, k) and RDMΠ
1 (A, k) are distinguishable.

Claim. Pr[RDMΠ
b (A, k) = b] ≥ 3/4− negl(k) for b ∈ {0, 1}.

Proof. Note that the output of RDMΠ
b (A, k) is simply h(Encpk(fb(r), r)) where

(pk, sk)← Gen(1k), r ← U|r|, and h← H. The correctness of Π implies that,

Pr
pk,r

[Encpk(0, r) �= Encpk(1, r)] ≥ 1− negl(k). (1)

When this is the case, by the pairwise independence,

Pr
h
[∃ m s.t. h(Encpk(m, r)) = b] = 3/4.

It follows by an union bound that

Pr[RDMΠ
b (A, k) = b]

≥ Pr
pk,r,h

[(Encpk(0, r) �= Encpk(1, r)) ∧ (∃ m s.t. h(Encpk(m, r)) = b)]

≥ 3/4− negl(k).

�
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We proceed to establish the impossibility result on the circular RDM-secure
encryption schemes.

Theorem 8. For every 1-bit encryption scheme Π = (Gen,Enc,Dec), Π is
not q-circular RDM-secure for every efficiently computable and polynomially
bounded q.

We prove Theorem 8 by showing that in fact, circular RDM security implies
RDM security. Theorem 8 follows by combining Theorem 7 and 9.

Theorem 9. Let Π = (Gen,Enc,Dec) be a 1-bit encryption scheme, and q :
N → N be efficiently computable and polynomially bounded. If Π is q-circular
RDM-secure, then Π is RDM-secure.

Proof. (Sketch) The formal proof can be found in the full version; we here just
provide a proof sketch. Let us first sketch the proof for the special case that Π
has perfect correctness and that q = 2, to illustrate the idea behind the proof.
Suppose there exists a PPT adversary A that breaks the RDM security of Π , we
want to construct a PPT adversary B that breaks the 2-circular security of Π .

The idea is to letB simulate the attack ofA in the circular RDM security game
using the second message (in general, using the last message). More precisely,
recall that in the RDM security game RDMΠ

b , A generates RDM functions f0
and f1, and receives c = Encpk(fb(r); r). To simulate the attack of A in CIRπ

b ,
B generates f1

0 , f
2
0 , f

1
1 , f

2
1 in a way so that B will receive c̄ = (c1, c2) with

c2 = Encpk(fb(r
2); r2). Then B can output whatever A2 outputs on input c2,

and break the circular RDM security with the same advantage as A.
Now, the key observation is that the RDM function f2

b (r
1, c1) can in fact de-

crypt c1 to get the message f1
b (r

2) by checking whether c1 equals to Encpk(0, r
1)

or Encpk(1, r
1) (the perfect correctness implies Encpk(0, r

1) �= Encpk(1, r
1)

and the decryption will be always correct). Thus, B can let f1
b = fb and let

f2
b (r

1, c1) = f1
b (r

2), and by doing so B will receive c2 = Encpk(f
2
b (r

1, c1), r2) =
Encpk(fb(r

2), r2), as desired. This completes the proof of the special case.
We can readily extend the proof to the general q-circular RDM security, by

letting B set f1
b = fb and f i+1

b (ri, ci) = f i
b(r

i−1, ci−1) for i = 1, . . . , q−1. On the
other hand, imperfect correctness only causes negligible probability of decryption
errors, and thus only reduces the advantage of B by a negligible amount. �

5 Positive Results

5.1 Bounded RDM Security

In the previous sections we have seen that RDM security and circular RDM
security are impossible to achieve. In this section we see how we can achieve the
weaker notions of bounded RDM security and bounded circular RDM security.
In fact we achieve a stronger notion of RDM security which implies both of the
above.

This strong RDM security is in fact security in the presence of randomness
leakage (such that the leakage function size is a priori bounded by a polynomial)
which is available to the adversary when it chooses the messages to encrypt.
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Definition 6. For every s, p : N → N an l-bit public-key encryption scheme
Π = (Gen,Enc,Dec) is s-bounded p-strong RDM secure (BSRDM-secure) if for
every PPT adversary A = (A1, A2), the ensembles {BSRDMΠ

0 (A, k)}k∈N and
{BSRDMΠ

1 (A, k)}k∈N are computationally indistinguishable where

BSRDMΠ
b (A, k) := (pk, sk)← Gen(1k)

r ← UR

(f, state1)← A1(1
k, pk)

(m0,m1, state2)← A2(f(r), state1)
c← Encpk(mb; r)
o ← A3(c, state2)
Output o,

R is the encryption randomness length of Π and f : {0, 1}|r| → {0, 1}p(k) is
a function computed by a circuit of size at most s(k). CCA security is defined
analogously.

We show that any secure encryption scheme can be compiled to a bounded strong
RDM-secure encryption scheme (with “long” encryption randomness).

Theorem 10. Assume the existence of a CPA (resp., CCA) secure public key
encryption scheme. Then, there exists a l-bit s-bounded p-strong RDM-secure
(resp., RDM-CCA-secure) encryption scheme for every polynomial l, s and p.

We start by providing a construction that converts any secure encryption scheme
to bounded strong RDM secure encryption scheme. The main idea is that though
leakage degrades the randomness, the randomness is long enough to have enough
residual min-entropy so that the random bits necessary for encryption can be
extracted from it. The problem with this is that the extractor seed will have
to be part of the public key, and the adversary can choose a leakage function
after seeing the public key. Hence the leakage could be such that the seed always
fails to extract randomness from the source. This is where we exploit the fact
that the set of possible leakage functions is bounded: using a union bound, we
show that if the randomness used by the encryption scheme is long enough, then
with overwhelming probability a random seed can extract randomness from the
source resulting from any leakage function. The following lemma captures the
above idea.

Lemma 1. [Deterministic Extraction From Bounded Leakage Sources] Let F =

{f : {0, 1}n → {0, 1}�} be a class of (leakage) functions. Let H = {h : {0, 1}n →
{0, 1}m} be a t-wise independent hash function family. If{

t ≥ 2(m+ 
+ log |F|+ log(1/δ) + 3),

m ≤ n− 
− 3 log(1/ε)− log t− 5,

then with probability at least (1 − δ) over h← H, it holds that for every f ∈ F ,

Δ((f(Un), h(Un)), (f(Un), Um)) ≤ ε.
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The proof of the lemma can be found in the full version, and relies on the
ideas similar to those used by [44] to demonstrate deterministic extraction from
sources computable by bounded size circuits. We now see how we can get a
bounded-SRDM-secure encryption scheme from any secure encryption scheme.

The following transformation is essentially identical to the one used in [31]
but using different parameters and using a different analysis.5

Definition 7. For every polynomial s and p and encryption scheme Π =
(Gen,Enc,Dec), define a new encryption scheme Π ′ = (Gen′,Enc′,Dec′) as
follows:

– Gen′(1k) : (pk, sk) ← Gen(1k), hk ← Hk where Hk = {hk : {0, 1}R′(k) →
{0, 1}R(k)} is a t(k)-wise independent family of hash functions where R(.) is
the length of the randomness of Enc, R′(.) is the length of the randomness
of Enc′,

t(k) ≥ 2(R(k) + k + s(k) + p(k) + 3)

and
R′(k) = p(k) +R(k) + 3k + log t(k) + 5

Output ((pk, hk), sk).
– Enc′(pk,hk)

(m) : r ← UR′(k); output Encpk(m;hk(r)).

– Dec′sk(c) : output Decsk(c).

In the full version we show, by appealing to Lemma 1 that the above construction
transforms a CPA (resp., CCA) secure scheme to a bounded strong RDM (resp.,
CCA-RDM) secure scheme (thus implying Theorem 10).

Lemma 2. Let s, p be polynomials. Let Π be a CPA (resp., CCA) secure public
key encryption scheme, and Π ′ be the transformed encryption scheme obtained
from Definition 7. Then, Π ′ is s-bounded p-strong RDM (resp., CCA-RDM)
secure.

It is clear that bounded strong RDM security implies RDM security. Addition-
ally, in the full version we demonstrate that bounded strong RDM security im-
plies also bounded circular RDM security.

Theorem 11. For all l-bit public key encryption schemes Π = (Gen,Enc,Dec),
if Π is s-bounded l-strong RDM secure (resp., CCA-RDM secure) then Π is s-
bounded circular RDM secure (resp., CCA-RDM secure).

Full RDM Security in the Random Oracle Model. In the full version of this
paper, we demonstrate that the above scheme actually yeilds a fully (as opposed
to bounded) RDM secure encryption scheme in the random oracle model [7], if
replacing the t-wise independent hashfunction with a random oracle. Our use of

5 As mentioned in Section 1.2, the results of [31] require the underlying encryption
schemes to satisfy additional properties (e.g., “lossiness”) and the results established
about the resulting encryption scheme are very different.
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the random oracle model is extremely weak: we do not need to “program it”, or
“see queries to it”. Additionally, security holds even if the attacker may get any
inefficient non-uniform advice about the random oracle (as in the model of [45]).
The only property we need of the random oracle is that it acts as a klog k-wise
indepedent hash function (to be able to apply Lemma 1).

This result, combined with Theorem 7, show the existence of a task—RDM
secure encryption—that can be achieved in such an “ultra-weak” random oracle
model (assuming the existence of CPA secure encryption schemes), but cannot
be achieved in the plain model. As far as we know, this is the first separation
between tasks achievable in such a weak random oracle model, and the plain
model.

5.2 Bounded RDM Security with Short Randomness

The above construction yields strong bounded RDM-secure encryption schemes
where the length of the randomness is longer than the length of the message.
We now provide a construction of a bounded RDM-secure and bounded circular
RDM-secure encryption scheme that can encrypt arbitrarily long messages using
“short” randomness. This construction, however, relies on stronger cryptographic
assumption—namely, we require the existence of “lossy” trapdoor functions.

Definition 8 ([43]). A tuple (GenLossy,GenInj, F, invert)) is an (n, u)-lossy
trapdoor function if the following holds:

– (Injection mode) For every k ∈ N, Pr[(pk, sk) ← GenInj(1k) : x ← Un(k) :
invertsk(Fpk(x)) = x] = 1

– (Lossy mode) For every k ∈ N and pk ← GenLossy(1k), the size of the range
of Fpk(.) (which takes as input strings of length n(k)) is at most 2u(k).

– The following ensembles are computationally indistinguishable

{(pk, sk)← GenInj(1k) : pk}k∈N

{pk ← GenLossy(1k) : pk}k∈N

We turn to providing our construction of a bounded-RDM secure encryption
scheme that can encrypt also “long” messages using “short” randomness—the
ratio between the message-length and the randomness length is proportional
to the lossiness of the trapdoor function. Formally, we establish the following
theorem.

Theorem 12. Let l and R be the message length and randomness length param-
eters with R(k) ≥ k. Assuming the existence of (n, u)-lossy trapdoor functions
with n ≥ 3(l +R) and u ≤ R/8, then for every polynomial s, there exist a l-bit
s-bounded circular RDM secure encryption scheme with randomness length R.

In particular, assuming the DDH assumption holds, for every polynomial
l, R, s with R(k) ≥ k, there exist a l-bit s-bounded circular RDM secure en-
cryption scheme with randomness length R.
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We mention that the “in particular” part of the theorem follows by the DDH-
based construction of lossy trapdoor functions in [43]. Our construction is
closely related to the “pad-then-deterministic” construction of hedged encryp-
tion schemes of Bellare et al [10], where the encryption is done by first applying a
invertible universal hash permutation h to the message-randomness pair (m||r)
and then applying a lossy trapdoor function Fpk to the hashed value. Recall
that hedged encryption scheme already satisfy a notion of RDM security when
restricting to RDM functions that do not depend on the public-key. To deal
with RDM functions that depend on the public key, our key modification to
their scheme is to replace the use of univeral hashing with t-wise independent
hashing. However, since constructions of t-wise independent permutations are
not known, to deal with arbitrary t-wise independent hash functions, we further
modify the scheme to “pad” the message-randomness pair with a sufficiently
long sequence of 0’s.

Recall that the standard construction of t-wise independent hash functions is
a degree t − 1 univariate polynomial over a prime field, which is invertible by
the Berlekamp algorithm [13].

Definition 9. Let l, R, and s be the message length, randomness length, and
size parameters with R(k) ≥ k. Let (GenLossy,GenInj, F, invert) be an (n, u)-
lossy trapdoor function with public-key length v such that u ≤ R/8 and n =
3(l + R). Let t = 8(s + u + v + R) and Hn = {h : {0, 1}n → {0, 1}n} be
an invertible family of t(·)-wise independent hash functions. Define an l-bit s-
bounded (circular) RDM-secure encryption scheme Π = (Gen,Enc,Dec) with
randomness length R as follows6:

– Gen(1k) : (pk, sk)← GenInj(1k), h← Hn; output ((pk, h), (sk, h)).

– Enc(pk,h)(m) : r ← UR(k); output c = Fpk(h(m||r||02(l+R))).

– Dec(sk,h)(c) : output the first l(k) bits of h−1(invertsk(c)).

While our construction is bounded circular RDM secure, it is instructive to
first focus on the bounded RDM security. Recall the security of the [10] scheme
(which relies on a construction of deterministic encryption from [15]) relies on a
“crooked” version of leftover hash lemma [25], which asserts that when Fpk has
small range size (which is the case in the lossy mode) and the source (m||r) has
sufficient min-entropy and is independent of h, then Fpk(h(m||r)) is statistically
close to the “crooked” distribution Fpk(U|m|+|r|).

In our context, however, the adversary selects a s-bounded RDM function f
after seeing the public key, and thus the source (f(r)||r||02(l+R)) may be cor-
related with the hash function h (and also Fpk). We overcome this issue by
using t-wise independent hashing and proving a crooked version of the deter-
ministic extraction lemma from computationally bounded source of Trevisan
and Vadhan [44]. The lemma asserts that with overwhelming probability over

6 In fact, to achieve only bounded RDM security (as opposed to circular RDM secu-
rity), it suffices to, say, satisfy u ≤ R/5 and set t = 4(s+u+ v). We do not optimize
the parameters here.
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h ← H, the encryption Fpk(f(r)||r||02(l+R)) is statistically close to a corre-
sponding crooked distribution Fpk(Un) for every lossy function Fpk and every
s-bounded RDM function f . Therefore, the s-bounded RMD security follows by
switching to the lossy mode and applying the crooked deterministic extraction
lemma. We proceed to state the crooked deterministic extraction lemma and
prove the s-bounded RDM security of our scheme. The proof of Lemma 3 can
be found in the full version and follows similar techniques to those used by [44].

Lemma 3 (Crooked Deterministic Extraction). Let H = {h : {0, 1}n →
{0, 1}n} be a t-wise independent hash function family. Let F = {f : {0, 1}n →
Rf} be a family of functions where each f ∈ F has range Rf of size |Rf | ≤ 2m.
Let C be a family of distributions over {0, 1}n such that every X ∈ C has min-
entropy H∞(X) ≥ k. If{

t ≥ 2(m+ log |F|+ log |C|+ log(1/δ) + 3),

m ≤ k − 2 log(1/ε)− log t− 2,

then with probability at least (1 − δ) over h ← H, it holds that for every f ∈ F
and every X ∈ C,

Δ(f(h(X)), f(Un)) ≤ ε.

In the full version we show the following lemma, by appealing to Lemma 3.

Lemma 4. The l-bit encryption scheme Π = (Gen,Enc,Dec) constructed in
Definition 9 is correct and s-bounded RDM secure.

We now turn to prove also circular RDM security of our scheme. To do this,
we require the use of a generalized form of the above crooked deterministic
extraction lemma that also deals with leakage (just as our “plain” deterministic
extraction of leakage-source lemma, lemma 1).

Lemma 5. Let H = {h : {0, 1}n → {0, 1}n} be a t-wise independent hash
function family. Let F = {f : {0, 1}n → Rf} be a family of functions where
each f ∈ F has range Rf of size |Rf | ≤ 2m. Let G = {g : {0, 1}n → {0, 1}n} be
a family of functions. Let C be a family of distributions over {0, 1}n such that
every X ∈ C has min-entropy H∞(X) ≥ k. If{

t ≥ 2(2m+ log |F|+ log |G|+ log |C|+ log(1/δ) + 3),

m ≤ (k − 3 log(1/ε)− log t− 5)/2,

then with probability at least (1− δ) over h ← H, it holds that for every f ∈ F ,
g ∈ G, and X ∈ C,

Δ((f(g(X)), f(h(X))), (f(g(X)), f(Un))) ≤ ε.

In the full version we show the following lemma, by appealing to Lemma 5.

Lemma 6. The l-bit encryption scheme Π = (Gen,Enc,Dec) constructed in
Definition 9 is s-bounded circular RDM secure.
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Abstract. Several proofs initially presented by the author [2] were shown
to be incorrect in a recent work of Ostrovsky et al. [1]. In this notice we
summarize the errors and summarize the current state of the art after
taking into account the errors and subsequent work.

In TCC 2011 the author claimed several results about nearly round-optimal
black-box constructions of commitments secure against selective opening attacks
[2]. It was later shown by Ostrovsky et al. [1] (a proceedings version appears in
the current volume), that several of the proofs in [2] contained errors. Here we
restate the errors discovered by Ostrovsky et al. [1], and we summarize what
remains true from [2], as well as the current state of the art in light of the
revised theorems from [2] and subsequent work including [1].

Errors in [2]: (for details, we refer the reader to [1]

1. The proof of Theorem 1, which claimed several nearly round-optimal black-
box constructions, is incorrect as presented there. This is due to problems
with the hiding and binding properties of the constructions presented there.

2. Items 1 and 2 of Theorem 2, which claimed to rule out selective-opening se-
cure black-box constructions of 3-round parallel computational binding and
hiding commitments and 4-round parallel statistically binding commitments,
are incorrect. This is due to an incorrect implicit assumption that the sender
sends the last message in the commit phase.

Unaffected results: the proofs of the following theorems from [2] remain valid:

1. Item 3 of Theorem 2, stating that one can build constant-round stand-alone
statistically hiding commitments in a black-box way using constant-round
statistically binding parallel selective-opening secure commitments.

2. Corollary 1, stating that there is no black-box construction using one-way
permutations to build constant-round statistically binding parallel selective-
opening secure commitments.

3. Theorem 3, stating there exist no black-box constructions for constant-round
receiver public-coin protocols and or perfect binding protocols.

Item 4 of Theorem 2 of [2] regarding fully concurrent selective-opening security
also remains valid, but this is superseded by the results of [1] (see below).

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 721–722, 2013.
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Revised results: The following weakened statement of Theorem 2, Items 1 and
2 of [2] holds, using the original proof except removing the incorrect implicit
assumption that the sender sends the last message in the commit phase:

Theorem (Revision of Theorem 2 of [2]). There exist no black-box con-
structions of commitments that are parallel selective-opening secure with 2 rounds
and that are computationally binding and hiding, or with 3 rounds and that are
statistically binding.

The author was also able to give a different proof of Item 2 of Theorem 1 of [2],
which claimed a black-box construction of (t + 3) statistically-binding parallel
selective-opening secure commitments assuming t-round stand-alone statistically
hiding commitments, but this is superseded by the results of [4] (see below).

State of the art: For parallel selective opening security, Ostrovsky et al. [1] and
subsequent work of the author [4] gave the following black-box constructions:

1. 3-round computationally binding and hiding commitments, assuming appro-
priate stand-alone trapdoor commitment schemes [1] (this is optimal by the
revised theorem above).

2. (t + 2)-round statistically binding commitments, assuming the existence of
stand-alone t-round statistically hiding commitments [4]. (For the case t = 2
this is optimal by the above revised theorem.)

Ostrovsky et al. [1] also give other constructions with different round complexi-
ties under weaker assumptions and/or allowing interactive decommitment.

For concurrent security, it was proved in [1] that no secure black-box con-
structions exist with fully concurrent selective-opening security, although their
constructions (including their 3-round construction) are secure in a model they
term concurrent-with-barrier. We refer the reader to [1] for details.

Revised Manuscript: a revised (unrefereed) manuscript [3] is available on the
Cryptology ePrint archive containing the valid results from [2].
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