
Chapter 8

Variability in the Software Product Line Life

cycle

Kyo C. Kang, Hyesun Lee, and Jaejoon Lee

What you will learn in this chapter
• Understand the software product line life cycle
• Understand the issues in variability management

1 Introduction

Product line (PL) engineering is a software engineering paradigm, which guides

organizations toward the development of products from core assets rather than the

development of products one by one from scratch [1–3]. Two major activities of PL

software engineering are core asset development (i.e., PL engineering) and product

development (i.e., application engineering) using the core assets.

For the core asset development, PL requirements are essential inputs. These

inputs, though critical, are not sufficient for PL asset development; a Marketing and

Production Plan (MPP), which includes guidelines/plans on what features are to be

packaged in products, how these features will be delivered to customers, and how

the products will evolve in the future. Therefore, it is essential to include a

marketing perspective into the PL variability analysis and explores requirements

and design issues from the marketing perspective [4, 5]. With an MPP, reuse is not

opportunistic; it is carefully planned for specific product and market(s).

Once commonalities and variabilities (C&V) of market needs and their

requirements are analyzed and modeled, this information is used to develop soft-

ware assets, i.e., architectures and components, with appropriate variation points

K.C. Kang (*) • H. Lee

Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

e-mail: kck@postech.ac.kr; compial@postech.ac.kr

J. Lee

School of Computing and Communications, Lancaster University, Lancaster, UK

e-mail: j.lee3@lancaster.ac.uk

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_8, © Springer-Verlag Berlin Heidelberg 2013

119

mailto:kck@postech.ac.kr
mailto:compial@postech.ac.kr
mailto:j.lee3@lancaster.ac.uk

and variants. Once software assets have been developed for a PL, the product

development phase involves adaptation and instantiation of these assets for a

product. (Asset management is an ongoing process, which includes C&V analysis,

and reengineering and refactoring of software assets.)

One of the most difficult and critical tasks in product line engineering is

variability management. Various product line lifecycle products, including models,

architectures, and components, have C&Vs, which are related vertically among

elements within each lifecycle product and horizontally across different lifecycle

products. C&Vs must be explored and modeled thoroughly and their consistencies

must be maintained while PL evolves. As lifecycle products and their C&Vs are

related vertically and horizontally, it is very difficult and also costly to manage and

maintain their consistency.

Variability management from the perspective of MPP is the key aspect for

managing variabilities of assets because assets are instantiated, adapted, and

integrated to support MPP based on market needs. “Features” are abstractions of

capabilities or functions that the customer wants/needs. Therefore, feature is the

unit of delivery and also the unit of configuration and variability management

In this chapter, we explore various issues of C&V across the entire PL life cycle.

As a starting point, Sect. 2 describes PL engineering activities and their inputs/

outputs. The elements of MPP are explained and illustrated in Sect. 3 using an

elevator controller example described in the box below, and Sect. 4 includes a

discussion on how product line “problems” are modeled. The solution space

modeling is included in Sect. 5, followed in Sect. 6 by a discussion of how product

line artifacts such as architecture and components are designed based on the

solution space models. Sections 7 and 8 include a discussion and conclude this

chapter, respectively. It should be noted that the Feature-Oriented Reuse Method

(FORM) has been used throughout the chapter for the purpose of illustration of

various issues in product line variability management.

2 PL Lifecycle Activities: An Overview

PL engineering consists of two major engineering processes: PL asset development

and product/application development. (See Fig. 8.1 for activities and their

relationships.) The PL asset development consists of activities for analyzing PL

problems (analyzing market needs, developing a marketing and product plan

(MPP)); modeling C&V of the PL problems (goals aimed to be achieved by the

products, product usage contexts, required quality attributes, etc.); solution

modeling which includes exploration and modeling capabilities required by PL

products and modeling PL requirements, exploring and modeling important design

decisions that have significant quality implications, including domain technologies,

COTS, external devices, etc.; and developing PL asset architectures and

components based on the analysis results. The product development phase consists

of a number of activities for analyzing product goals and usage contexts, analyzing

product requirements and configuring the product (i.e., variability instantiation,

120 K.C. Kang et al.

Fig. 8.1 PL engineering process and variability analyses

8 Variability in the Software Product Line Life cycle 121

i.e., feature selection), selecting an appropriate architecture and components, and

making necessary adaptations to the selected architecture and components, and

generating/developing the product.

Elevator Example.

Elevator control systems are very familiar to everyone and it is easy to

understand their behavior from an end user’s perspective. However, the

internal control and complex interfaces with external devices make it hard to

build reliable and reusable software. Elevator products can largely be classi-

fied into passenger elevator or freight elevator depending on their main

purpose of use. Since passenger elevators have a goal of carrying passengers

comfortably, services or devices for comfortable ride are required. Of passen-

ger elevators, those used in hospitals require more stringent floor leveling

requirements and a low speed profile for patients on a wheelchair, while

elevators in office buildings are less stringent on floor leveling but require a

high speed profile. On the other hand, freight elevators do not necessarily

require comfortable ride. They instead focus on carrying heavy loads safely,

which requires special operational functions and devices for handling heavy

loads. As can be seen, there is a wide range of quality requirements, which

requires us to select various techniques, devices, and algorithms.

Analyzing the targeted markets and developing an MPP is the starting point for

launching a PL. The diversity of market needs drives the development of a family of

products, which is reflected in a marketing plan and product plan (MPP). Therefore,

MPP serves as a key driver in PL asset development and variability management.

In C&V modeling, product features from MPP, which include functional (e.g.,

capabilities, services) and nonfunctional (e.g., product goals, product usage

contexts, quality attributes) features, are organized into an initial C&V model

(We use feature model for illustration. Other modeling techniques such as decision

modeling may also be used.) which is refined through product line requirements

analysis and then extended further with design features (i.e., operating environ-

ment, domain technology, and implementation technique features) as we follow the

asset engineering activities. During PL requirements analysis [6], we elicit and

organize PL requirements in terms of a PL use case model (variability expressed in

terms of<extends> and<includes> stereotypes) and a PL object model, which are

used in architecture modeling and component development.

The conceptual architecture design activity allocates features to architectural

components and specifies data and control dependencies between architectural

components. The result is a “conceptual architecture.1 ” A design object model

1 The conceptual architecture describes a system in terms of abstract, high-level components and

relationships between them.

122 K.C. Kang et al.

must be developed based on the conceptual architecture, feature model, PL

requirements, and other information such as commercial off-the-shelf (COTS)

components and design patterns [7] that are relevant to the PL.

The conceptual architecture is refined into “process and deployment architectures2”

by allocating components to concurrent processes and network nodes, considering

whether to replicate each process or not, and definingmethods of interactions between

processes. Then the component design activity refines the process and deployment

architectures into concrete components by using the design object model.

The MPP provides quality attributes for the architecture design and refinement.

For example, the user profile information (i.e., the skill levels and computing

environments of potential users) in the MPP is useful in determining the quality

attributes (i.e., usability, scalability, etc.) required for the architecture design of the

products targeted for each market segment. Also, the MPP is used in exploring

design alternatives in the component design for feature delivery method support,

feature interaction problem3 resolution, etc.

The PL engineering processes are iterative and incremental, and repeat until we

come to a design that has enough details for implementation. (The arrows in Fig. 8.1

show data flows, i.e., work products generated and used by each activity.) Details of

each PL asset development activity are illustrated in the following section.

3 Problem Analysis

Problem analysis starts by exploring the market and developing a marketing and

product plan for a product line. This activity initiates PL asset development; anMPP

sets a specific context for PL analysis and reuse exploration in the PL. Products

developed without consideration of user’s needs and their capabilities and how they

will be marketed will not be “sold.” Functionality alone does not sell. Products must

be configurable to meet the needs of and services required by users. Variation points

embedded into the PL assets and mechanisms used to implement variants must be

able to support the marketing and product plan effectively and efficiently.

3.1 Elements of MPP

The first part of an MPP is a marketing plan, which includes a market analysis with

a C&V assessment of a market, and a marketing strategy for realizing business

opportunities in the market (see the left portion of Fig. 8.2). The market analysis

2 The process architecture represents a concurrency structure in terms of concurrent processes (or

tasks) to which functional elements are allocated; the deployment architecture shows an allocation

of processes to hardware resources.
3When products are developed with integration of components implementing various features,

these features may interact with each other. The problem of unexpected side effects when a feature

is added to a set of features is generally known as the feature interaction problem.

8 Variability in the Software Product Line Life cycle 123

includes, for each market segment, a C&V assessment of needs, an analysis of

potential users, cultural and legal constraints, the time to market, and the price

range. Identifying market segments and needs of each market segment may be an

iterative process. For example, we may start with the entire elevator systems market

but then quickly realize that there are features specific only to elevators in office

buildings or to freight elevators. We then focus on analyzing features peculiar to

each market segment.

The marketing strategy initially includes an outline of product delivery methods

with the information on how products will be delivered to customers and other

business considerations. For example, customers may start with products with only

core features but then add other features incrementally. Incremental features may

be added to the products over the network. If this is the marketing strategy, the

product delivery method and variability management method must be able to

support this strategy.

Once the marketing plan part of the MPP has been defined, it is important to

spend some effort to identify the characteristics of products in a PL in terms of

features and develop a plan for incorporating the features. A product plan includes

product features and product feature delivery methods (see the right portion of

Fig. 8.2).

Product features are distinctive characteristics of products of a PL. They are

largely classified into functional and nonfunctional features. Functional features

include services, which are often considered marketable units or units of increment

in a PL, or operations, which are internal functions of products that are needed to

provide services. For example, automatic control, manual control, and VIP service

features in elevator PL are functional features. Nonfunctional features include end-

user visible application characteristics that cannot be identified in terms of services

or operations, but as presentation, capacity, quality attribute, usage, cost, etc. For

example, safety, reliability, and fault tolerance are important quality attributes for

the elevator PL.

Fig. 8.2 Elements of a

marketing and product plan

124 K.C. Kang et al.

A product feature delivery method defines how product features will be “sold” or

delivered to the customers and users, and how they will be installed and maintained.

The product delivery method must support the marketing strategy. Some features

may be prepackaged in all products as “standard features,” and others may be

selected at the product negotiation time. There may yet be other features that are

specific to a customer and are built into the custom-made product.

3.2 Marketing and Product Planning: A ECS Product Line
Example

Market segments affect engineering of assets for the ECS product line. For the

purpose of illustration, we assume that the company’s marketing strategy is to

target the high-rise office building market with high-end products, the general

hospital market with mid-level products, and the apartment market with low-end

products, based on an analysis of market competitiveness.

Table 8.1 provides/is an example of MPP for the ECS PL. (The actual MPP

should be a document describing all elements identified in Sect. 3.1; a simplified

example is shown in this paper for illustration of the concept.) The user/maintainer

profiles for each market segment are as follows:

• High-end market segment of high-rise office building uses: Dedicated engineers

with computer science background are available for maintenance. The comput-

ing environment is distributed over the network and maintainers can access the

system remotely.

• Mid-level market segment of general hospital uses: No computer skill is

assumed for maintainer and ECS software should run on PCs they already have.

• Low-end market segment of household uses: No computer skill is assumed for

maintainer and ECS software should run on PCs they already have.

The laws and the cultural traits of each country must also be identified in the

marketing plan. For example, standards related to earthquake resilience, fire

standards, electrical wiring rule, etc., may vary from country to country. Also, the

safety and reliability requirements (e.g., the doors must remain open in case of a fire

event) may be different.

Since the high-rise office building ECS has many customer-specific

requirements, the “feature selection” method is chosen to adapt and integrate the

requirements at the product delivery time. For the general hospital ECS and the

apartment ECS, “prepackaged” method with a user-friendly interface is adopted for

the users who do not have any computer knowledge.

The product delivery methods are refined to product feature delivery methods,

which can be looked at from what features are allowed (feature coverage), when

they are incorporated into the product (feature binding time: product build time,

product delivery/installation time, or runtime), and how the feature incorporation is

made (feature binding techniques: framework, template, load-table, plug-ins, etc.)

[8–10]. For example, the apartment ECS have a closed set of features and the feature

8 Variability in the Software Product Line Life cycle 125

binding occurs at product build time in order to support the prepackaged product

delivery method. For the high-rise office building ECS, however, customers may

select any features from a predefined list, and feature binding occurs at product

installation time using a load table that contains parameter values for instantiation.

4 Problem Modeling

Features in the problem model represent the concrete context of products of a

product line, i.e., external forces that drive selection of specific architectures,

implementation algorithms, or implementation techniques; these features are

important to understand real world problems that the product line should address.

That is, the problem space captures the information of:

Table 8.1 A marketing and product plan example for an ECS PL

Marketing and product plan for ECS product line

Market

segments High-rise office building General hospital Apartment

User/

maintainer

profile

Dedicated engineers with

computer science

backgrounds

No computer knowledge is

assumed

No computer

knowledge is

assumed

Product

delivery

method

Feature selection from a

predefined set of

features (feature

selection method)

Prepackaged method Prepackaged method

Legal

constraints

Because elevator is part of a building, it must comply with standards relating to

earthquake resilience, fire standards, electrical wiring rule, etc.

Product

features

Call handling, indication

handling, door control,

motor control, hall call

cancellation, car call

cancellation, emergency

driving, group

management, etc.

Call handling, indication

handling, door control,

motor control, hall call

cancellation, car call

cancellation, emergency

driving, hospital

emergency, etc.

Call handling,

indication

handling, door

control, motor

control, etc.

Quality

attributes

Door safety, usability,

efficiency, emergency

safety

Door safety, usability,

smooth and comfortable

run, position accuracy,

emergency safety

Door safety,

usability

Product

feature

binding

time

Product delivery time Product build time Product build time

126 K.C. Kang et al.

• Why is the product line required in the market?

• When is a certain product configuration used?

• What are the expected qualities of the product line?

The answers to these questions should be captured in an exploitable form so that

we can establish clear traceability, not starting from product functional features, but

from the context of a product line.

The problem space can be divided into three disjoint viewpoints: goal/objective,

usage context, and quality attribute.

4.1 Goals/Objectives and Usage Contexts Modeling

Organizing goal/objective features and usage context features from real world

problems of a product line initiates the modeling process. Goal/objective features

specify the boundary and scope of the product line and usage context features set

specific contexts for the product line. Figure 8.3 shows an example of them.

Our experience shows that we could explore the following areas while analyzing

goals/objectives of a product line; (1) real world problems that the product line

addresses, (2) other product lines that address the problems in a similar but different

ways, (3) potential benefits that can be accrued from other product lines, and (4) key

nonfunctional properties of the product line (e.g., comfortability, efficiency, etc.)

that should be achieved. This information is used as an important input for the usage

context feature modeling.

Next we analyze the usage context of a product line. The usage context features

are to capture various usage contexts of products of the product line. For example,

we identified usage context features Passenger and Freight and each usage context
defines the objects to be carried by an elevator. (See Carrying Object in Fig. 8.3.) If
we select Passenger, the scope of the ECS product line is restricted to Passenger-
ECS products and irrelevant features are removed from selectable ones. If we look

further into the product usage, we may be able to identify more specific product

usages where different quality attributes and/or functions are needed. For example,

an elevator in a hospital may carry patients on wheelchairs, and floor leveling and

emergency button are important features. (See Hospital in Fig. 8.3 and quality

features in Table 8.2.)

With the identified goal/objective and usage context features, the next activity is

to analyze quality attribute features.

4.2 Quality Attributes Modeling

In this activity, we analyze quality requirements of a product line and model them

as quality attribute features. We can use software requirements specification (SRS),

quality requirements document, etc., as inputs of this activity. Suppose, for

8 Variability in the Software Product Line Life cycle 127

example, that one of the quality requirements of ECS is: “If the doors of a cage

detect a certain level of friction when the doors are closing, the ECS should open

them immediately.” From this statement, we can identify the quality attribute

feature Door Safety. Figure 8.4 shows an example of quality attribute feature

model.

Goal/objective and usage context features that we identified in the previous

activity have specific quality implications. If a set of goal/objective and usage

context features are selected for a product configuration, these features require a

certain set of quality attribute features for the product configuration (i.e., the set of

selected goal/objective and usage context features drive the quality attribute

features). We can represent this relation explicitly using a table. For example, in

Table 8.2, when we select the usage context feature Passenger, the quality attribute
features Door Safety and Usability should be included in a product configuration;

this is because user safety and convenience should be guaranteed for passenger ECS

products. (See the second row in Table 8.2.) If the usage context feature Hospital
(which is a specialization of Passenger) is selected, the additional quality attribute

features Smooth and Comfortable Run and Position Accuracy should be included in

Fig. 8.3 A goal/objective and usage context feature model of the ECS PL

Table 8.2 Relationship between goal/objective, usage context, and quality attribute features of

the ECS PL

Quality attribute features

Goal/objective and usage

context features

Door

safety Usability

Smooth and

comfortable run

Position

accuracy

{Passenger} V V O O

{Passenger, hospital} V V V V

{Passenger, skyscraper} V V O O

V (required), O (selectable)

128 K.C. Kang et al.

a product configuration for moving patients on wheelchairs or beds safely. (See the

third row in Table 8.2.)

The goal/objective, usage context, and quality attribute features capture the

problem space of a product line. In the next activity, we analyze the solution space.

5 Solution Modeling

5.1 Capabilities/Services and Design Decisions Modeling

We analyze the solution space to satisfy requirements captured by the problem

space features. The solution space includes features of the capability/service (e.g.,

driving services, operations, etc.) and design decision viewpoints (e.g., position
control, speed profile, etc.). Figure 8.5 shows an example of solution space features.

After we finish feature modeling for the problem and solution spaces, we

establish mappings between the problem and solution space feature models. Details

are in [11].

5.2 Relationships Between Problem Space Features and Solution
Space Features

Goal/objective and usage context features may require specific capability features.

We can capture these relationships using a table. In Table 8.3, for example, the

usage context feature Hospital requires context-specific functional requirements

such as “when a patient triggers an emergency alarm, the ECS should call nurses/

doctors and stop the elevator in the nearest floor.” Therefore, when we select the

Fig. 8.4 A quality attribute feature model of the ECS PL

8 Variability in the Software Product Line Life cycle 129

usage context feature Hospital, the required capability features (e.g., medical
emergency) must be included in a product configuration and irrelevant features

(e.g., large capacity for car) must be removed from selectable features. (See the

third row in Table 8.3.)

For each quality attribute feature, we should also establish a mapping to the

solution space. A capability or a design feature may work for or against each quality

attribute feature, and we capture the “strength” of this relation using qualitative

measures such as strongly support (++), weakly support (+), hurt (�), and break
(��) [12]. This relation is represented using a table as shown in Table 8.4: the table

shows relationships between quality attribute features and solution space features in

the ECS product line. The design decision feature Absolute Position strongly (i.e., ++)
supports the quality attribute feature Position Accuracy and hurts (i.e.,�) the quality

attribute feature Low Cost, whereas the design decision feature Relative Position
weakly (i.e., +) supports both Position Accuracy and Low Cost. If the quality attribute
feature Position Accuracy has the highest priority for an ECS product, both of the

Fig. 8.5 A solution feature model of the ECS PL

Table 8.3 Relationship between goal/objective, usage context, and capability/service features of

the ECS PL

Capability/service

features

Goal/objective and

usage context features

Medical

emergency

Double-

deck

Door

hold

Low speed

(about 60 m/min)

Large capacity for car

(about 3,000–5,000 kg)

{Passenger} O O O O X

{Passenger, hospital} V O V O X

{Passenger,

skyscraper}

O V O X X

V (required), X (excluded), O (selectable)

130 K.C. Kang et al.

design decision features Absolute Position and Relative Position may be selected,

although Absolute Position hurts Low Cost. However, if the quality attribute features
Position Accuracy and Low Cost have the same priority, then only Relative Position
can be selected.

5.3 PL Requirements Analysis

During the PL requirements analysis, functionalities that PL products must provide

are captured using a set of models such as a use case model, an object model, etc.

[6] A use case model defines interactions between the user and the system; an object

model defines allocation of responsibilities. Other models may also be included

depending on the domain that a PL is in. Based on this information, a PL component

design provides a realization of common functions that can be used across the PL

products.

Figure 8.6 shows a use case model of the ECS PL. Each of use case may embed

optional/alternative features in the solution space. When we establish the mapping

relation, we propose two different types of variability embedded in domain objects,

and they are external and internal variability types. In Fig. 8.6, a UML stereotype-

based notation introduced by Lee et al. [13] is used for expressing these two types.

Other UML-based variability mechanisms such as [14] may also be used.

The external-variability type denotes that an associated use case is entirely

related to the specified feature and inclusion/exclusion of the use case depends on

the selection result of the feature. For example, ‘<<�Car Call Handling>>’ in the

Process Car Calls use case in Fig. 8.6 indicates that the inclusion of the Process
Car Call use case depends on the selection result of the optional feature Car Call
Handling. In other words, if Car Call Handling is selected for a product configura-

tion, the Process Car Call use case should be included in a product; otherwise it

should be removed from the product configuration.

The internal variability type means that a corresponding feature is partially

related to the associated use case and specifics on how the feature is related to the

use case can be found by looking inside of the use case. For example, “<<○Hall
Call Cancellation>>” in the Process Hall Calls use case in Fig. 8.6 means that

Process Hall Calls is related to the optional feature Hall Call Cancellation, and if

we select or not select Hall Call Cancellation, the internal interaction(s) of the

Process Hall Calls use case changes.

Table 8.4 Relationship between quality attribute and solution space features of the ECS PL

Quality attribute features

Solution space features Position accuracy Low cost

Calculation Absolute position (optional) ++ �
Relative position (optional) + +

Compensation of current position + �
++ (strongly support), + (weakly support), � (hurt), �� (break)

8 Variability in the Software Product Line Life cycle 131

In object modeling, we first identify domain objects, which are candidate-

reusable objects derived from the feature models based on the guidelines proposed

in [11]. Then variabilities captured as optional/alternative features in the solution

space are embedded into the object model.

Figure 8.7 shows an example of mappings between solution space features and

domain objects. We also use the external and internal variability types. For exam-

ple, “<<�Car Call Handling>>” in the Car Call Handler domain object in

Fig. 8.7 indicates that if Car Call Handling is selected for a product configuration,

the Car Call Handler object should be included in a product; otherwise it should be
removed from the product configuration. For another example, ‘<<○Car Call
Cancellation>>’ in the Car Call Handler domain object in Fig. 8.7 means that if

we select or unselect Car Call Cancellation, the internal implementation of the Car
Call Handler object changes.

Once the feature model is refined and PL requirement models are developed, this

information is used to refine the MPP as described in Fig. 8.1. Since the initial MPP

only contains delivery methods for functional and nonfunctional features, product

feature delivery methods for design features (e.g., operating environment features)

should be developed during the refinement.

6 Artifact Modeling

After we establish the problem and solution space feature models and their

relations, the next activity is to develop product line artifacts based on the feature

models. During this activity, the identified solution space features are implemented

as product line artifacts including product line architectures and asset

implementation.

Fig. 8.6 A product line use case model of the ECS PL

132 K.C. Kang et al.

6.1 Architecture Design

In FORM [15], architecture design starts with identifying high-level conceptual

components and specifying data and control dependencies among them. During the

architecture design activity, the MPP is used as a key design driver. For example,

the conceptual architecture for the high-rise office building ECS (see the conceptual

architecture in Fig. 8.8.) consists of three major components (i.e., Call Handler,
Cage Operation Manager, and Safety Manager) and the Safety Manager compo-

nent is added to meet the quality requirement Emergency Safety. The Safety
Manager monitors various safety related sensors (e.g., smoke sensor) and when

an emergency situation (e.g., fire, earthquake) is detected, it notifies users via Safety
Supervision System and sends the emergency status to the Call Handler and the

Cage Operation Manager. The Call Handler receives call requests and schedules

floors to visit and the Cage Operation Manager controls various external objects
(e.g., door, motor) in elevator cars. When they receive the emergency status, they

follow predefined emergency strategy.

The next step is to refine the conceptual architecture into process and deploy-

ment architectures. The bottom portion of Fig. 8.8 shows the process architecture

for the Call Handler component of the conceptual architecture. During the

Fig. 8.7 Solution space features and domain objects mappings of the ECS PL

8 Variability in the Software Product Line Life cycle 133

refinement, the quality attributes from the MPP are used for architectural style

selection and evaluation [16]. For example, “Independent Component” architec-

tural style [16] is selected, and Scheduler is designed to schedule a group of

elevators, while each instance of Service Manager is designed to control each

individual elevator of the group so that efficiency elevator management is achieved

(i.e., they addresses the efficiency requirement).

6.2 Asset Implementation

Once conceptual architectures are refined into process and deployment

architectures, the architectural components are then refined into concrete

components. The PL component design consists of specifications of components

and relationships among them. Figure 8.9 includes the component specification of

the Hall Call Handler component and relationships with other components using

UML.

For the component design, the product feature delivery methods in the MPP

should be taken into consideration. For example, the use of FORM macro language

(i.e., $IF(;$HallCallCancellation)[–]) in the component specification

of the Hall Call Handler component in Fig. 8.9 is to support the prepackaged

feature delivery method of the general hospital ECS. When the Hall Call Cancel-
lation feature (in Fig. 8.5) is selected as one of prepackaged features in the general

Fig. 8.8 Architecture design and refinement for the high-rise office building ECS

134 K.C. Kang et al.

hospital ECS, code segments related to the Hall Call Cancellation feature are

incorporated into the product at product build time.

Depending on the nature of extensions required for product specific features,

techniques such as code generation, encapsulation, parameterization, framework,

template, etc. may be used. For example, the Service Manager component in

Fig. 8.8 that encapsulates various elevator control policies (e.g., VIP driving,

Emergency driving) may be specified using a formal specification technique (e.g.,

Statechart specification), from which the program code may be generated after

formal verification. Whenever new features are added, the feature interaction

specification is modified and tested for correctness and new updated program

code for the component is generated.

7 Discussion

In order to develop reusable core assets for a product line, PL software engineering

must have an ability to exploit commonality and manage variability. A feature-

oriented approach to commonality and variability analysis has been used for PL

software engineering both in industry and academia, since the idea of feature-

oriented analysis (i.e., Feature-Oriented Domain Analysis (FODA) [8]) was first

introduced in 1990 by the Software Engineering Institute.

There are several reasons why FODA has been used extensively compared to

other domain analysis techniques. The first reason is that feature is an effective

communication “medium” among different stakeholders. It is often the case that

customers and engineers speak of product characteristics in terms of “features the

product has and/or delivers.” They communicate requirements or functions in terms

Fig. 8.9 Component specification for Hall Call Handler

8 Variability in the Software Product Line Life cycle 135

of features, and such features are distinctively identifiable functional abstractions to

be implemented, tested, delivered, and maintained. We believe that features are

essential abstractions that both customers and developers understand and should be

first class objects in PL asset development. The second reason is that FODA is an

effective way to identify variability (and commonality) among different products in

a PL. It is natural and intuitive to express variability in terms of features. When we

say “the features of a specific product,” we use the term “features” as distinctive

characteristics or properties of a product that differ from others or from earlier

versions. The last reason is that the feature model can provide a basis for develop-

ing, parameterizing, and configuring various reusable assets (e.g., PL requirement

models, PL architectures, and reusable code components). In other words, the

model plays a central role not only in the development of the reusable assets but

also in the management and configuration of multiple products in a PL.

Notice that we have not discussed variability in product engineering. It is our

opinion that variability of product line must be managed through product line asset

engineering; otherwise there will be a proliferation of product versions. Features

that are specific only to a product also need to be incorporated into the product

through the variability mechanism of the asset management to avoid reworks that

may happen when other features of the product evolve.

8 Summary and Outlook

We have explored variability issues over the product line life cycle starting from

market analysis through component design to product instantiation. The marketing

issues must be studied thoroughly and engineering feasibility of the envisioned

products must be analyzed carefully before PL asset development starts.

One of the most important aspects of variability management is managing the

explicit horizontal and vertical connections among PL assets including MPP,

architecture, and components using various variability models and maintaining

their consistencies. Here, the horizontal connection means variability relationships

between PL lifecycle products such as MPP, PL architecture, and components,

while the vertical connection means relationships between elements of each

lifecycle product.

With this connection, marketing, which has traditionally focused only on secur-

ing and expanding the market share and on sales strategies, is forced to become

more “product aware” and think about how features will be packaged, delivered,

and maintained, who will perform these activities, and what the pricing

implications are with various alternative approaches. This marketing-oriented per-

spective can be very effective in uncovering critical quality attributes required for

product line architecture and component design. By tightly coupling the marketing

with asset development, we can develop PL assets that will support the business

goals and satisfy the needs of customers.

136 K.C. Kang et al.

In this chapter, we explored explicit connections between business goals/

objectives, product usage contexts, quality attributes, and functional and design

features. We expect to see more formal treatments of these subjects in a near future.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,

Boston, MA (2001)

2. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software

Development Process. Addison Wesley, Boston, MA (1999)

3. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-Line

Approach. Addison-Wesley, Boston, MA (2000)

4. Kang, K., Donohoe, P., Koh, E., Lee, K., Lee, J.: Using a marketing and product plan as the key

design driver for product line asset development. In: 2nd International Software Product Line

Conference, pp. 19–22 (2002)

5. Chastek, G., Donohoe, P., Kang, K., Thiel, S.: Product line analysis: a practical introduction.

Technical report CMU/SEI-2001-TR-001, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA (2001)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Boston, MA (1995)

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain

analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21, Software Engineer-

ing Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990

8. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.

Addison-Wesley, Boston, MA (2000)

9. Simos, M., et al.: Software technology for adaptable reliable systems (STARS). Organization

domain modeling (ODM) guidebook, version 2.0. Technical report, STARS-VC-A025/001/00,

Lockheed Martin Tactical Defense Systems, Manassas, VA (1996)

10. Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for product line

software engineering. In: Gacek, C. (ed.) ICSR-7. LNCS, vol. 2319, pp. 62–77 (2002)

11. Lee, K., Kang, K.C.: Usage context as key driver for feature selection. In: Bosch, J., Lee, J.

(eds.) SPLC 2010. LNCS, vol. 6287, pp. 32–46 (2010)

12. Lee, H., Choi, H., Kang, K.C., Kim, D., Lee, Z.: Experience report on using a domain model-

based extractive approach to software product line asset development. In: Edwards, S.H.,

Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 137–149 (2009)

13. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based

Software Architectures. Addison-Wesley, Boston, MA (2005)

14. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse

method with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

15. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,

Boston, MA (1998)

16. Kang, K.C., Lee, K., Lee, J., Kim, S.: Feature oriented product line software engineering:

principles and guidelines. In: Itoh, K., Kumagai, S., Hirota, T. (eds.) Domain Oriented Systems

Development: Practices and Perspectives. Gordon Breach Science, UK (2002)

8 Variability in the Software Product Line Life cycle 137

	Chapter 8: Variability in the Software Product Line Life cycle
	1 Introduction
	2 PL Lifecycle Activities: An Overview
	3 Problem Analysis
	3.1 Elements of MPP
	3.2 Marketing and Product Planning: A ECS Product Line Example

	4 Problem Modeling
	4.1 Goals/Objectives and Usage Contexts Modeling
	4.2 Quality Attributes Modeling

	5 Solution Modeling
	5.1 Capabilities/Services and Design Decisions Modeling
	5.2 Relationships Between Problem Space Features and Solution Space Features
	5.3 PL Requirements Analysis

	6 Artifact Modeling
	6.1 Architecture Design
	6.2 Asset Implementation

	7 Discussion
	8 Summary and Outlook
	References

