
Chapter 7

Visualizing Software Variability

Steffen Thiel, Ciarán Cawley, and Goetz Botterweck

What you will learn in this chapter
• Core techniques in Information Visualization
• Using Visualization to support Software Variability
• Commercial and Prototype tools that utilize Visualization

1 Introduction

Many of the expected benefits of software product line (SPL) engineering rely on an

assumption that the additional up-front effort in domain engineering that establishes

the product line produces a long-term benefit. The expectation is that deriving

products from a product line during application engineering is more efficient than

traditional single system development. However, to benefit from these productivity

gains, it must be ensured that application engineering processes are performed as

efficiently as possible. This has proven to be extremely challenging with industrial-

sized product lines containing thousands of variation points, each of which can be

involved in numerous dependent relationships with various other parts of the

product line (e.g., [1, 2]). One method of addressing this challenge involves

S. Thiel (*)

Furtwangen University of Applied Sciences, Furtwangen, Germany

e-mail: steffen.thiel@hs-furtwangen.de

C. Cawley

Dublin Institute of Technology, Dublin, Ireland

e-mail: ciaran.cawley@dit.ie

G. Botterweck

Lero-The Irish Software Engineering Research Centre, University of Limerick,

Limerick, Ireland

e-mail: goetz.botterweck@lero.ie

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_7, © Springer-Verlag Berlin Heidelberg 2013

101

mailto:steffen.thiel@hs-furtwangen.de
mailto:ciaran.cawley@dit.ie
mailto:goetz.botterweck@lero.ie


supporting the SPL engineering activities by providing interactive tools that use, as

a central principle, visualization techniques appropriate for the comprehension of

large data sets and interrelationships.

Adopting visualization techniques in software product line engineering can aid

stakeholders by supporting essential work tasks and enhancing understandings of

large and complex product lines. This chapter presents visualization concepts,

approaches, and implementations that are used to manage the application engineer-

ing phase of the SPL process.

2 Concepts and Techniques

2.1 Visualization

There has been extensive research into information visualization and its

applications. Visualization has proven useful in enhancing cognition in numerous

ways and application domains [3, 4]. This is particularly the case in relation to

externalizing information, thus increasing the “memory” and “processing capacity”

available to users, also by supporting the search for information and by encoding

the information in a manipulable medium.

Visualization takes abstract data and gives it a form suitable for visual presenta-

tion. Such data can, for example, be explicitly collected from software or it can be

codified by software engineers utilizing their own implicit knowledge. In this case,

we often speak of software visualization, which can be seen as a subdiscipline

of information visualization [5]. With suitable techniques, such software visuali-

zations can also amplify cognition about large and complex data sets created and

used in industrial software product line engineering.

2.2 Visual Reference Model

Figure 7.1 shows a visual reference model introduced by Card et al. [3]. This

model provides a conceptual basis for many visualization approaches. Source
data is transformed into a format (data tables) from which visual abstractions

can be created. Various views can then operate over those abstractions, which

provide the user with a rich interface. By allowing user interaction with the view,
the different transformation steps can be altered in order to optimize the visualiza-

tion for specific user tasks. This concept of interactive visualization forms the

basis of many dynamic techniques aimed at providing cognitive support to

stakeholders.

102 S. Thiel et al.



Visualization techniques developed and discussed within the visualization com-

munity (e.g., [3–5]) can be leveraged to support variability management (e.g.,

[6–9]). By using such techniques, the expertise and experience of that community

can be brought to bear on the complexity challenges that exist in that domain.

Whereas most established variability management tools do not explicitly aim to

utilize such techniques and expertise, recent research tools in that area are

attempting to apply visualization concepts to their user interfaces.

2.3 Visualization Techniques

Fundamental visualization techniques and strategies that aim to support user cog-

nition when dealing with large and complex data sets include Focus+Context,
Details on Demand, Degree of Interest, Color Encoding and Iconography.

• Focus+Context describes the general ability to work at a focused level while

maintaining the overall context within which you work. A number of techniques

can be employed toward this goal such as fisheye (magnifying a specific area of a

much larger display), overview/outline windows (providing a contextual under-

standing of a given display), and distortion (e.g., transparency). An extensive

overview of these techniques is, for example, given in [3].

• Details on Demand refers to the facility whereby the stakeholder can choose to

display additional detailed information at a point where this data would be

useful. This point is decided by the user of the system. For instance, the ability

to expand/collapse branches within a tree display, incremental browsing of such
a tree and filtering, provides details on demand.

• Degree of Interest techniques highlight or expand relevant data with respect to

the user’s current point of interest. In particular, the degree of interest (as applied

to certain parts of the data) can change while the user is navigating the data.

• Color Encoding and Iconography both serve to encode information visually and

are used in conjunction with other techniques to provide additional data that can

be identified through visual queries—identifying a visual pattern that will be

used by a mental search strategy over a graphical visualization [3]. Examples

include a green tick, red X, or a familiar icon.

Fig. 7.1 Visual reference

model [3]

7 Visualizing Software Variability 103



3 Visualization Support for Software Variability

3.1 Representing Variability

In terms of how to represent and model variability, many SPL research approaches

for variability management and product configuration focus on features, often
represented by dedicated feature models (e.g., [10, 11]). Feature models usually
describe available configuration options of an SPL in terms of “prominent or

distinctive user-visible aspects, qualities, or characteristics” [11].

While viewing a product line as a collection of features has many advantages,

there are some problems as well. Some of the problems include the difficulty in

describing cross-cutting features and non-functional requirements, as well as the

problems that arise in linking a feature to a concrete component (or set of

components) that implement that feature.

3.2 Challenges and Approaches

There are numerous tasks to be performed by various stakeholders during the SPL

engineering processes of domain and application engineering (cf. Sect. 3.3). Plat-

form managers, domain engineers, product managers, application engineers,

developers, and even customers all take on different roles in the process and require

methodology and tool support that facilitates their specific tasks. In many of these

cases, a feature model alone is either too detailed or not detailed enough. Using

separate models allows different facets of the product line to be managed in a

focused manner and supports stakeholder and task-specific representation and

manipulation.

One approach to separating the different concerns of a software product line

while providing relationships between various elements could be to describe the

product line not only in terms of features but extend this description by taking

decisions and components into consideration. A decision model would then capture
a small number of high-level questions and provides an abstract, simplifying map

onto features. The implementation of features by software or hardware components

is then described by a component model.
Please note we use the concept of a decision model in the sense of a high-level

feature model that sets the major context of the configuration by answering major

questions such as if a particular product is “entry level” or if the product is planned

to be introduced in a specific market (e.g., US, Japanese, or European market). In

this sense, the decision model could be seen as containing the most important

questions someone has to ask before configuring the more detailed and fine-grained

feature model. This is different from other definitions of the term “decision model”

in the product line literature, for example, the definition provided in [6].

104 S. Thiel et al.



These three models—the decision, feature, and component (DFC) model—can

be used as a foundation to support variability visualization and product configura-

tion. One characteristic of the DFC model is that the three underlying models are

interrelated. For instance, making a decision might cause several features to

become selected, which in turn requires a number of components to be

implemented.

In the above approach, decisions provide a simplified high-level map onto

features and can be used to abstract from details by asking a few major questions

that are relevant for a particular stakeholder. A component model describes

components that implement the features. Making a decision can involve the selec-

tion of multiple features, each of which may require or exclude sets of other

features. These features in turn may require or exclude sets of components. Fur-
thermore, a relationship itself between two features may be implemented by a

component. More details of the underlying model are described in [7].

Visualization of the relationships within a feature model alone is challenging,

and numerous approaches have been proposed, ranging from filtered lists (e.g., [6])

to graph-based views (e.g., [12]) to methods of only showing the relationships on

demand (e.g., [7]). With multiple models in place, visualizing the relationships

between each of them becomes even more difficult. Presentation and manipulation

of the underlying data in the execution of specific tasks is impeded by their

multilayered interrelationships. For example, as mentioned above, making a deci-
sion can involve the selection of multiple features, each of which may require or

exclude sets of other features and components. In such scenarios, stakeholders need
to be presented with the relevant data using appropriate techniques. This will enable

them to understand the current state and the impact of various required changes.

Stakeholders also need to be able to make such changes with ease.

3.3 Task Support

The task of configuring a complete feature model can be reduced to a sequence of

configuration decisions on individual features. At a basic level, this involves the

ability to either select or eliminate a feature from the product under derivation

which, in turn, usually leads to the inclusion, exclusion, or configuration of related

components. Additionally, the ability to select or eliminate features in groups based
on higher-level requirements (decisions) is a fundamental task. Whereas these tasks

may seem basic, it is the knowledge and understanding (cognition) of the stake-

holder that allows these tasks to be performed correctly. Drawing on a variety of

research that has been carried out (e.g., [1, 2, 8]), we outline a set of simple

cognitive tasks that aim to support the activity of the primary task—namely, to

decide which features should be included and which should be excluded:

7 Visualizing Software Variability 105



1. Identify/locate a configuration decision
2. Understand the high-level impact of a decision inclusion (perception of scale and

nature of the impact—implements/requires/excludes)

3. Identify/locate a specific feature
4. Identify a specific feature’s context—parent feature, alternative/supporting

features, and sub-features
5. Understand the high-level impact of a feature selection—a specific feature’s

constraints (requires/excludes relationships)

6. Identify the state of a feature—selected/eliminated and why

Visualization approaches can support these cognitive tasks by providing an

interactive visual environment.

4 Visual Approaches and Implementations

As discussed, the comprehension and management of large sets of complex data

relationships is the primary challenge when presenting variability data. Most

approaches to date have utilized existing and well-known visual forms familiar to

the software engineering community. The most prevalent of these is the ubiquitous

“file explorer style” tree generally presented in the form of a static horizontal tree

with expandable and collapsible branches. Recent work such as [13] has expanded on

this visual form by introducing more dynamic tree structures and layouts. Other work

(e.g., [14]) has focused on leveraging various techniques from the visualization

community and utilizing alternative approaches not yet explored for this purpose.

When using visualization techniques for the handling and configuration of

variability models, we have to address the cognitive tasks discussed earlier (see

list in Sect. 3.3) with corresponding visual and interactive techniques. For instance,

a tool environment has to provide interactive techniques to locate a feature, to
understand a feature’s configuration state, or to understand the impact of making a

configuration decision.

Here, the resulting challenges are mostly related to the complexity and the scale

of the models. In other words, the visualization and interactive technique must

allow the stakeholder to handle large models and to focus on the relevant informa-

tion, while abstracting from irrelevant details. This can be, for instance, achieved by

techniques that allow to navigate on large models and to focus on elements for a

particular task (e.g., a set of currently focused features) and related information

(e.g., other elements in the model related to this feature set). A related challenge is

that there are multiple ways to structure a model (e.g., which hierarchy to choose,

how to modularize) and that the information structure that would be optimal for a

particular task is not necessarily identical to the main structure of the model. Since a

model is used for multiple tasks, visualizations and interactive techniques have to

provide a means to adapt to different usage contexts and to change the focused

aspects.

106 S. Thiel et al.



We will now look at particular approaches in more detail. In general, the

approaches and techniques to variability visualization can be divided into three

broad areas: two dimensional (2D), two and a half dimensional (2.5D), and three

dimensional (3D). General characteristics of these approaches and implementation

examples from a number of tools supporting variability management are described

in the following subsections. The examples are taken from both research and

commercially available tool suites.

4.1 2D Visualization

Using 2D approaches such as matrices and graphs to visualize feature models is the

normative way to allow feature exploration and model manipulation [6, 8]. More

recently, research tools are exploring the use of alternative tree layouts such as

dynamic space trees [9] and radial trees [13]. In conjunction with this, the use of

varying visualization techniques as described in Sect. 2 is being employed to aid

stakeholder cognition in variability management tasks.

4.1.1 Examples

The DOPLER tool suite [6] provides decision-oriented variability management

through a number of complimentary tools. One of these tools, the Configuration
Wizard, provides capabilities for product customization, requirements elicitation,

and configuration generation. Figure 7.2 shows the use of hierarchical tree

structures to display a set of decisions on the left and the decision hierarchy on

Fig. 7.2 DOPLER configuration wizard [6]

7 Visualizing Software Variability 107



the right. Figure 7.3 shows a more graphical representation of the tree structure.

Both visualizations of the model utilize simple iconography to encode selected

items (tick symbol icon) and items not yet configured (question mark icon).

The pure::variants tool suite [15, 16] is a commercially available product, which

provides a set of integrated tools that support various phases of the software product

line development and derivation process.

For creating and configuring a new software variant, the tool provides a Configu-
ration Editor (see Fig. 7.4). This editor employs a hierarchical “file explorer style”

horizontal tree to allow the browsing, selection, and de-selection of features

according to their constraints. Iconography is extensively used to identify element

types and feature state. Figure 7.5 shows a matrix visualization, which presents a

view of the variants identifying the different features available in each of the variants.

The research tool vivid [14] primarily explores the use of more dynamic and

interactive visualizations in order to provide cognitive support to stakeholders.

Figure 7.6 shows a horizontal tree visualization, which represents a variant’s

feature configuration. The visualization allows the stakeholder to incrementally

browse the tree structure automatically collapsing and expanding relevant branches

Fig. 7.3 DOPLER tree view [29]

108 S. Thiel et al.



Fig. 7.4 pure::variants configuration editor [16]

Fig. 7.5 pure::variants matrix view [16]

7 Visualizing Software Variability 109



as the stakeholder progresses. Animation of any visual changes to the display aids

the stakeholder in understanding the navigation path. Color encoding allows imme-

diate identification of the state of a particular feature.

The feature configuration tool S2T2 Configurator developed in earlier work by

Botterweck et al. [17] provides techniques for the configuration of complex feature

models and techniques for the joint visualization of feature and implementation

models. In [18] the approach was extended by “Feature Flow Maps” to visualize

product attributes, which result from configuration decisions, during product con-

figuration (see Fig. 7.7). For instance, the width of the lines indicates the price of the

product resulting from the current feature configuration. This visualization is

updated incrementally while the feature configuration process is completed.

4.1.2 Advantages and Limitations

The advantages of using visual representations such as lists, “file explorer style”

trees, and matrix tables are evident—they are generally familiar and intuitive to

stakeholders. However, when the variability that exists within a software product

line contains thousands of variation points, it becomes difficult to manage and

cognitively challenging to navigate.

Fig. 7.6 vivid tree view [14]

110 S. Thiel et al.



Using dynamic tree structures (as with vivid) and techniques such as animation,

degree of interest, and distortion, visualizations can provide cognitive support to aid

with such challenges. However, even with such additional aids, it can still be

challenging to configure variability for very large product lines. In the next two

sections, we show some examples of alternative visualizations being explored to

further enhance the cognitive support provided to stakeholders.

4.2 2.5D Visualization

2.5D visualization techniques use 3D visual attributes in a 2D display [19]. For

example, adding 3D attributes such as perspective (e.g., making certain objects

smaller to indicate distance) and occlusion (e.g., overlapping objects to indicate

layers) to a 2D display can be described as creating a 2.5D display. Work into the

Fig. 7.7 Feature flow maps [18]

7 Visualizing Software Variability 111



employment of such techniques uses static 3D planes on which representations of

features are presented in an animated interactive environment.

4.2.1 Example

Figure 7.8 shows a 2.5D visualization from the vivid prototype. To the left is a

simple list of decisions (high-level grouping of features). When a selection is made

within this supporting view, the main view displays the implementing features

along with all features that are required or excluded by them.

The view consists of three stacked planes. Each plane provides a circular

grouping of spheres. In the top plane, each sphere in the circle represents a grouping

of features. When any one of those groupings in the top plane is selected (by mouse

click), then all features that comprise that grouping are displayed in the middle

plane in a similar circular format. In the lower plane, all related (required/excluded)

features are displayed (for all features presented in the middle plane). The inner-

most circle on the lower plane identifies features that are directly related (required,

excluded) to features in the middle plane. In order of ascending radii, each

Fig. 7.8 vivid 2.5D view [14]

112 S. Thiel et al.



subsequent circle in the lower plane represents the transitive relationships that exist;

i.e., required features can further require and/or exclude other features.

By hovering the mouse over any sphere in any of the planes, a description of that

element will be displayed in the center of the plane. When a sphere is selected in

any plane, the circle on which it is presented will rotate so that sphere is brought to

the front with its description displayed underneath. These functions aim to imple-

ment Details on Demand.
Each sphere acts as a representation of a specific feature. A sphere may be color

encoded to visually identify its relationship to other variability artifacts (the feature

implements a decision or the feature is required/excluded by another feature).

Multiple windows (and multiple planes) are employed to separate and distribute

decisions, feature groupings, features, and relationships. Note that the lower plane

displays all related features for all the implementing features in the middle plane.

This allows an overview of the impact as a whole for this group of features. When a

single implementing feature is selected in the middle plane, the circles in the lower

plane rotate to ensure all related features are brought to the front while all other

features in the plane are distorted (made transparent) in order to highlight the ones

of interest. Animation is again used for all movements to preserve context.

4.2.2 Advantages and Limitations

The primary aim of the 2.5D approach is to increase the number of features and

relationships that can be represented at any given time within a fixed screen space

avoiding the need of panning and zooming across thousands of related on-screen

elements. This is achieved by utilizing a depth dimension and providing animated

movement and highlighting of relevant information to the foreground when

required. Focus+Context is a key consideration here.

The presence of a fixed on-screen space may reveal a limitation of this visuali-

zation: there will be a point where a very large number of features and relationships

may cause unwanted occlusion and selection difficulties. However, this situation

would only occur with extremely large and/or complex feature models. Testing and

usability studies are required to evaluate the effectiveness of this approach.

4.3 3D Visualization

Differing reports exist on the effectiveness of 3D visualizations to support software

engineering but literature suggests that there is acceptance that it can be effective in

specific instances (e.g., [20, 21]). Current work into the use of 3D primarily focuses

on the visualization of relationships instead of the elements that they relate [9].

Relationships are visualized as objects in a 3D space whose coordinates identify

elements within three different models, each model being mapped to one of the

three axes.

7 Visualizing Software Variability 113



4.3.1 Example

Figure 7.9 presents a 3D view which attempts to provide a self-contained represen-

tation of all the three models introduced in Sect. 3.2 (decisions, features, and
components) and their interrelationships. However, at any given time, only infor-

mation of interest is displayed.

Here, as in the 2.5D approach, multiple windows are employed to distribute the

information and provide the supporting decision view. The visualization consists of
a 3D space containing X, Y, and Z axes. Sequential lists of decisions, features, and
components are displayed along the Y-axis, X-axis, and Z-axis (moving away from

the observer), respectively.

The key idea here is that a point within this 3D space identifies a relationship

between all three models. In other words, a sphere plotted at a particular point will

identify that the feature labeled at its X-coordinate implements the decision labeled
at its Y-coordinate and is implemented by the component labeled at its Z-coordinate.
In Fig. 7.9, the stakeholder has highlighted the sphere that represents the

“Commodities” feature. However, in addition to this, by looking at the highlighted

labels on the axes, we can see that it also represents the “Export Documents”

decision that the feature implements and the “XTCM.I Include File” component

that implements the feature.

Fig. 7.9 vivid 3D view [14]

114 S. Thiel et al.



Focus+Context and Details on Demand are the main techniques guiding this

implementation. One goal is that all three models can be perceived to be

represented through the listings on each axis. However, the details of any part of

any model or its relationships are only displayed when required. For example, when

a decision is selected, there may be a number of implementing features. For each
implementing feature, a sphere is plotted in the 3D space as described above. Other

features required or excluded by those implementing features are similarly plotted

as spheres and are given a specific color encoding which allows a visual identifica-

tion of the required or excluded relationship.

Pan & Zoom are combined with rotation to allow a full world-in-hand manipu-

lation of the view in three dimensions allowing the stakeholder to position the view

depending on the information of interest.

4.3.2 Advantages and Limitations

One advantage argued with this visualization is that it provides a perception of a

software product line as a whole within a 3D configuration space while only

presenting data that is relevant at a given time. Visually, a stakeholder is enabled

to comprehend both the scale and nature of selecting a decision, feature, or

component. As such, selecting a decision for implementation will require a set of

implementing features but also require and exclude a large set of other features.
The impact of such a decision, including its nature and magnitude, will be immedi-

ately evident allowing the stakeholder to further investigate the details of the

impact.

As with the 2.5D visualization, the fixed on-screen space within a 3D configura-

tion may also be a limitation as there is a point at which a very large number of

features and relationships will cause unwanted occlusion and selection difficulties.

However, this situation would only occur with extremely large and/or complex

feature models. Again, testing and usability studies are required to evaluate the

effectiveness of this approach.

5 Related Work

Traditionally, many approaches that support feature configuration as part of product

line derivation use a hierarchical model. The visualization of hierarchical structures

has been studied extensively in the visualization literature, including node-link

techniques (e.g., [22]), space-filling techniques (e.g., Tree Maps [23]), and interac-

tive techniques that help to cope with very large models such as Focus+Context
(e.g., [24]).

Approaches focusing on multiple hierarchies are useful when visualizing the

relationships between features and other models as discussed above. Robertson

et al., for example, define polyarchies [25] as multiple hierarchies that share nodes.

7 Visualizing Software Variability 115



They describe the visualization design and a software architecture for displaying

polyarchy data from a set of hierarchical databases. They use animated transitions

when switching between the related hierarchies to allow the user to keep context.

Polyarchies are somewhat similar to the multiple related hierarchies found in some

product line configuration approaches but lack the intra-model relations and the

aspect of progressing configuration.

Moreover, a number of research tools which provide product line configuration

capabilities and apply visualization techniques exist in literature. Some of these

tools have already been discussed in the preceding section (e.g., [6, 14, 16, 18]).

Another example is the research prototype V-Visualize developed by Sellier and

Mannion [26], which visualizes configuration decisions with a force-directed layout.

Some approaches aim to visualize the variability in the artifacts which are

influenced by this variability. For instance, Kästner et al. [27] used color encoding

to indicate variability in program code.

In an earlier work, the authors presented Visit-FC, a configuration approach and

tool that indicates the configuration state of features by visual clues [28].

6 Summary

The mechanisms by which software variability is presented to a stakeholder

through visual representation and interactivity can have a substantial effect on

how efficiently the stakeholder can perform their required management tasks.

This becomes more and more evident as the size and complexity of the variability

increases. Many of today’s variability management tools use normative software

engineering user interface techniques to present, and provide management of, that

variability. For example, variability artifacts such as decisions, features, and

components can be presented in one-dimensional lists, as elements in a two-

dimensional matrix/spreadsheet, or as nodes in “file explorer” style trees that

provide grouping and allow selection/elimination from a variant model.

As industrial-sized product lines grow to the order of many thousands of varia-

tion points, these traditional techniques tend to be limited in the cognitive support

that they provide to stakeholders in relation to the performance of their tasks.

Information visualization techniques have proven useful in enhancing cognition

in numerous ways, and in recent work, these techniques are being employed with

the aim of increasing the cognitive support provided. Visualization strategies such

as Focus+Context, Degree of Interest, and Details on Demand in combination with

techniques such as Iconography, Color Encoding, and Distortion are being utilized

leveraging the work that has been carried out within the information visualization

community. Implementations using dynamic space trees, radial graphs, and more

explorative 2.5D and 3D techniques have been developed. Table 7.1 briefly

summarizes advantages and limitations of approaches discussed in this chapter.

116 S. Thiel et al.



7 Outlook

There are a variety of commercial and research tools that provide support for

variability management. Many of these are continuing in their development and

some are actively exploring the use of more novel presentation and interactive

techniques to improve their support for small- and large-scale variability projects.

In the immediate future, the use of dynamic graphs and, in particular, the use of

degree of interest trees seems to become more prevalent. There is also ongoing

work into the use of 2.5D and 3D strategies which aims to leverage more of the

visualization research that has been carried out to date.

References

1. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a case

study. J. Syst. Softw. 74, 173–194 (2005)

2. Steger, M., Tischer, C., Boss, B., Müller, A., Pertler, O., Stolz, W., Ferber, S.: Introducing PLA

at Bosch Gasoline Systems: experiences and practices. In: SPLC 2004, Boston, MA, pp. 34–50

(2004)

3. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualisation: Using

Vision to Think. Morgan Kaufmann, San Francisco, CA (1999)

4. Ware, C.: Information Visualisation: Perception for Design, 2nd edn. Morgan Kaufmann, San

Francisco, CA (2004)

5. Diehl, S.: Software Visualization – Visualizing the Structure, Behaviour, and Evolution of

Software. Springer, Heidelberg (2007)

6. Rabiser, R., Dhungana, D., Grünbacher, P.: Tool support for product derivation in large-scale

product lines: a wizard-based approach. Presented at the 1st International Workshop on

Visualisation in Software Product Line Engineering (ViSPLE 2007), Tokyo, Japan (2007)

7. Botterweck, G., Thiel, S., Nestor, D., Abid, S.B., Cawley, C.: Visual tool support for

configuring and understanding software product lines. Presented at the 12th International

Software Product Line Conference (SPLC08), Limerick, Ireland (2008)

8. Sinnema, M., Graaf, O. d., Bosch, J.: Tool support for COVAMOF. Presented at the Workshop

on Software Variability Management for Product Derivation – Towards Tool Support (2004)

Table 7.1 Overview of approaches

Example approaches Advantages Limitations

2D DOPLER [6] “Explorer” interaction style is

familiar to stakeholders

Limited on-screen space

pure::variants [15]

S2T2 Configurator [18]

vivid tree view [14]

2.5D vivid 2.5D view [14] Representation of a larger number

of elements (features) in a

limited space

Interaction requires training

3D vivid 3D view [14] Perception of product line

as a whole

Interaction requires training

Natural representation of scale

7 Visualizing Software Variability 117



9. Cawley, C., Healy, P., Thiel, S., Botterweck, G.: Research tool to support feature configuration

in software product lines. Presented at the 4th International Workshop on Variability

Modelling of Software-Intensive Systems (VaMoS) Linz, Austria (2010)

10. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models.

Presented at the Proceedings of the Third Software Product Line Conference, Boston, MA

(2004)

11. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering Insti-

tute, Carnegie Mellon University (1990)

12. Sellier, D., Mannion, M.: Visualizing product line requirement selection decisions. Presented

at the 1st International Workshop on Visualisation in Software Product Line Engineering

(ViSPLE 2007), Tokyo, Japan (2007)

13. Rabiser, R.: Flexible and user-centered visualization support for product derivation. Presented

at the 2nd International Workshop on Visualisation in Software Product Line Engineering

(ViSPLE), Limerick, Ireland (2008)

14. Cawley, C., Healy, P., Botterweck, G.: A discussion of three visualisation approaches to

providing cognitive support in variability management. Presented at the 2nd Conference on

Software Technologies and Processes (STeP), Furtwangen, Germany (2010)

15. Beuche, D.: Modeling and building software product lines with pure::variants. In: 12th

International Software Product Line Conference (SPLC 2008), Limerick, Ireland (2008)

16. pure-systems GmbH. Variant management with pure::variants. pure-systems GmbH (2006)

17. Botterweck, G., Janota, M., Schneeweiss, D.: A design of a configurable feature model

configurator. In: Proceedings of the 3rd International Workshop on Variability Modelling of

Software-Intensive Systems (VAMOS 09), pp. 165–168 (2009)

18. Schneeweiss, D., Botterweck, G.: Using flow maps to visualize product attributes during

feature configuration. In: VISPLE 2010, Jeju Island, Korea (2010)

19. Ware, C.: Designing with a 2 1/2D attitude. Inf. Des. J. 3, 255–262 (2001)

20. Ali, J.: Cognitive support through visualization and focus specification for understanding large

class libraries. J. Vis. Lang. Comput. 20(1), 50–59 (2009)

21. Risden, K., Czerwinski, M.P., Munzner, T., Cook, D.B.: An initial examination of ease of use

for 2D and 3D information visualizations of web content. Int. J. Hum. Comput. Stud. 53(5),

695–714 (2000)

22. Walker, J.Q.: A node-positioning algorithm for general trees. Softw. Pract. Exp. 20, 685–705

(1990)

23. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans.

Graph. 11, 92–99 (1992)

24. Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming, and focus

+context interfaces. ACM Comput. Surv. 41, 1–31 (2008)

25. Robertson, G., Cameron, K., Czerwinski, M., Robbins, D.: Polyarchy visualization:

visualizing multiple intersecting hierarchies. In: ACM CHI 2002 Conference on Human

Factors in Computing Systems, pp. 423–430 (2002)

26. Sellier, D., Mannion, M.: Visualizing product line requirement selection decisions. In: SPLC

(2), pp. 109–118 (2007)

27. Kästner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in source

code. Presented at the VISPLE 2008, Limerick, Ireland (2008)

28. Botterweck, G., Thiel, S., Cawley, C., Nestor, D., Preussner, A.: Visual configuration in

automotive software product lines. In: 2nd IEEE International Workshop on Software Engi-

neering Challenges in Automotive Domain (SECAD 2008), held in conjunction with IEEE

COMPSAC 2008, Turku, Finland (2008)

29. Rabiser, R.: Flexible and user-centered visualization support for product derivation. In:

Proceedings of the 12th International Software Product Line Conference (SPLC 2008), Second

Volume, 2nd International Workshop on Visualisation in Software Product Line Engineering

(ViSPLE 2008), Limerick, Ireland, pp. 323–328. Lero (2008)

118 S. Thiel et al.


	Chapter 7: Visualizing Software Variability
	1 Introduction
	2 Concepts and Techniques
	2.1 Visualization
	2.2 Visual Reference Model
	2.3 Visualization Techniques

	3 Visualization Support for Software Variability
	3.1 Representing Variability
	3.2 Challenges and Approaches
	3.3 Task Support

	4 Visual Approaches and Implementations
	4.1 2D Visualization
	4.1.1 Examples
	4.1.2 Advantages and Limitations

	4.2 2.5D Visualization
	4.2.1 Example
	4.2.2 Advantages and Limitations

	4.3 3D Visualization
	4.3.1 Example
	4.3.2 Advantages and Limitations


	5 Related Work
	6 Summary
	7 Outlook
	References


