
Chapter 6

Variability Realization Techniques and Product

Derivation

Rafael Capilla

What you will learn in this chapter
• The notion of variability realization and product derivation.
• The relationship between binding time and product derivation.
• Automated product derivation approaches.

1 Introduction

One of the ultimate goals of the usage of variability techniques is to allow the

configuration of the software products under the product line approach. As different

binding times are possible, different variability implementation mechanisms can be

used to realize the variability at different stages in the software development

lifecycle. Once variability is defined in the architecture and implemented in code,

products can be configured at the end of the product line or even reconfigured at

runtime. Hence, the variability defined in the architecture can be instantiated for

configuring the product portfolio at different stages (e.g., pre-deployment, end of

SPL, installation, runtime). Besides, variability realization techniques are inti-

mately linked to the way and the moment products can be deployed, and several

alternatives can be chosen to select the best configuration and deployment strategy.

In this chapter, we will learn about variability realization techniques.

R. Capilla (*)

Rey Juan Carlos University, Móstoles, Madrid, Spain

e-mail: rafael.capilla@urjc.es

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_6, © Springer-Verlag Berlin Heidelberg 2013

87

mailto:rafael.capilla@urjc.es

2 Variability Realization

In the solution space, the provide variability is realized by instantiating their

variants and variation points in order to configure the products with the right and

allowed values. Therefore, the realization of the software products implies to know

at a certain time in the software development process which will be the values of the

configurable options defined in the architecture and implemented in the core assets

and products as well. Variability realization is intimately linked to product deriva-

tion, aimed to produce the concrete products once the values of the variants and

variation points are known.

Definition 6.1. Variability realization technique

It is the way in which the variants of any family member are realized using a

particular variability implementation technique at a given binding time.

The realization of concrete software products implies that the variable interfaces

between components must be known, in addition to the invariants described in the

architecture. The realization of the variability through the interfaces that may vary

is crucial to set the right links between software components, as these interfaces act

as a selector of the right component when more than one alternative exist. In

addition, the realization of the variability must check the compatibility of the

constraint rules, hundreds in commercial software, among the variants selected to

avoid incompatibilities during the product derivation.

Definition 6.2. Product derivation

It is a stage in the software product line life cycle where software products

become the resultant of a selection and configuration process of the variable design

options defined in a variability model.

The software engineer must decide when to realize the variable options, and the

flexibility provided by the existence of different binding times offers software

engineers a way to delay their design decisions to a later stage. In Fig. 6.1, we

organize the different product realization stages based on the moment in which

products are or will be deployed.

We have to mention that installation time is not a real post-deployment

variability realization stage as it is somehow in the middle, but we preferred to

classify the realization of the variability during product installation closer to post-

deployment time.

Fig. 6.1 Variability

realization stages before and

after deployment time

88 R. Capilla

An exhaustive taxonomy of variability realization techniques and the factors that

are relevant to implement variability can be found in [1], but the current trend in

software development for several application domains like self-adaptive systems

and service-based system pushes the realization of the variability to runtime modes.

In this chapter, we will distinguish three major development stages in which we can

realize the variability and according to most common binding times [2].

2.1 Product Derivation Activities

The ultimate goal of a product derivation process, as part of the SPL application

engineering lifecycle, is to produce a configurable or configured software product.

However, product configuration can be enacted at the beginning of the derivation

process at early binding times, or it can be also executed at a very late stage if a

product has to be reconfigured once deployed. Configuration is sometimes done to

select the variable options that will be included in a product before the variability is

realized to concrete values, while in other cases, a reconfiguration process happens at

the end of the product line or during system execution. Moreover, product configu-

ration and variability realization can also overlap at the same binding time if we

realize the variants at the same time these are selected. At the end of the derivation

process, products are installed and deployed in the physical nodes of the system.

As a summary, we show in Fig. 6.2 how these concepts are related and based on

the binding times where these activities happen. Initially, product configuration

starts by selecting the variable options that will be included in the product, and this

activity may happen at different binding times, in which the realization of the

variability will take place immediately after. Once the variable options match to

concrete values, the executables can be deployed. However, post-configuration

operations can be possible when the systems need to be reconfigured at post-

deployment time, and dynamic variability plays an important role for systems

that require runtime adaptation.

Figure 6.2 describes the major activities of a generic product derivation process.

Once the input requirements define the selection of the variants of a new product, a

product selection and configuration process chooses the right variants for configu-

ration purposes, and variants are realized according to a particular implementation

technique and the allowed values for those variants. Once the variability is realized

and the product already configured, installed, and deployed, any post-deployment

Product Selection
& Configuration

Variability
Realization

Product
Deployment

Product
Re-configuration

Fig. 6.2 Product derivation

activities. The runtime

reconfiguration of variants

may lead to the selection of

new variants and variation

points and, in some cases, to a

product redeployment phase

6 Variability Realization Techniques and Product Derivation 89

activity or runtime reconfiguration of variants may lead to a new selection and

configuration of the variable options. In that case, the reconfigured product or the

new product (i.e., a different selection of the variable options can lead to different

products) can or must be deployed again, while in other situations, no new deploy-

ment is required (e.g., the case of dynamic variability used to, for instance, activate

a feature at runtime). The figure does not show testing activities that should be

carried out to validate the selected product configuration.

In addition to Fig. 6.2, we detail in Table 6.1 which tasks encompass each of

product derivation activities. For each of the major activities of Fig. 6.2, we provide

the subtasks that are commonly needed and the most suitable binding times under

which these tasks may happen.

2.2 Realization at Design Time

At design time, the realization of all variants and variation points is made at the

architecture level. The variants in the design are manually operated, as the

variability is considered statically in nature. Standard notations like UML offers

few mechanisms (e.g., stereotypes, tagged values) to describe the variability of a

feature model in the architecture, and the logical formulas describing relationships

between variants do not have a direct correspondence in UML diagrams and they

must be represented using a different notation or language. Therefore, the steps to

realize the variability at design time are:

(a) Selection of variants and variations points defined in the architecture.

(b) Selection of allowed values.

(c) Depiction of the product architecture by instantiating the variants with appro-

priate values for each single product.

In Fig. 6.3, we show an example of a UML diagram that belongs to the software

architecture of system X (left side of the figure) containing five variants and two

variation points. At design time, the software engineer selects the variants to realize

the construction of system X.1, and he/she derives the product architecture for that

system. In this case, variant 3 and variant 4 with their corresponding values have

been selected. Variation points and variants are selected and instantiated also for the

product architecture.

2.3 Pre-deployment Realization

Products can be configured in the customer site and afterwards installed and

deployed in the client side. When the variability of products is realized in the

customer site, the variants and variation points can be instantiated at different

binding times, depending on how the product is built and configured. At implemen-

tation time, the variability can be implemented in variables and the alternatives and

90 R. Capilla

T
a
b
le

6
.1

T
as
k
s
en
co
m
p
as
si
n
g
p
ro
d
u
ct

d
er
iv
at
io
n
ac
ti
v
it
ie
s

A
ct
iv
it
y

T
as
k
s

B
in
d
in
g
ti
m
e

D
es
cr
ip
ti
o
n

P
ro
d
u
ct

d
er
iv
at
io
n

P
ro
d
u
ct

co
n
fi
g
u
ra
ti
o
n

F
ro
m

d
es
ig
n
to

ru
n
ti
m
e

P
ro
d
u
ct

d
er
iv
at
io
n
co
m
p
ri
se
s
th
e
m
ai
n
fo
u
r
ac
ti
v
it
ie
s

d
es
cr
ib
ed

in
F
ig
.
6
.1

in
o
rd
er

to
b
u
il
d
a
so
ft
w
ar
e

p
ro
d
u
ct
.
P
ro
d
u
ct

d
er
iv
at
io
n
is
in
ti
m
at
el
y
re
la
te
d

to
v
ar
ia
b
il
it
y
re
al
iz
at
io
n
te
ch
n
iq
u
es

V
ar
ia
b
il
it
y
re
al
iz
at
io
n

P
ro
d
u
ct

d
ep
lo
y
m
en
t

P
ro
d
u
ct

in
st
al
la
ti
o
n

P
ro
d
u
ct

re
co
n
fi
g
u
ra
ti
o
n

P
ro
d
u
ct

co
n
fi
g
u
ra
ti
o
n

S
el
ec
ts
th
e
v
ar
ia
n
ts
to

b
e

in
cl
u
d
ed

in
th
e
p
ro
d
u
ct

C
o
n
fi
g
u
ra
ti
o
n
ti
m
e

P
ro
d
u
ct

co
n
fi
g
u
ra
ti
o
n
d
ea
ls
w
it
h
th
e
se
le
ct
io
n
o
f
th
e

v
ar
ia
b
le

o
p
ti
o
n
s
at

d
if
fe
re
n
t
b
in
d
in
g
ti
m
es
.
E
x
cl
u
d
es

an
d
re
q
u
ir
es

ru
le
s
m
u
st
b
e
ch
ec
k
ed

C
o
n
fi
g
u
re

th
e
al
lo
w
ed

v
al
u
es

P
re
-d
ep
lo
y
m
en
t

C
h
ec
k
d
ep
en
d
en
cy

ru
le
s

P
o
st
-d
ep
lo
y
m
en
t

S
ta
rt
-u
p

V
ar
ia
b
il
it
y
re
al
iz
at
io
n

In
st
an
ti
at
e
th
e
v
al
u
es

ac
co
rd
in
g
to

th
e
v
ar
ia
b
il
it
y
im

p
le
m
en
ta
ti
o
n

te
ch
n
iq
u
es

u
se
d

F
ro
m

d
es
ig
n
to

ru
n
ti
m
e

T
h
e
v
ar
ia
n
ts
m
at
ch

to
co
n
cr
et
e
an
d
al
lo
w
ed

v
al
u
es
.

R
u
le
s
d
el
im

it
in
g
th
e
sc
o
p
e
o
f
p
ro
d
u
ct
s
m
u
st
b
e
ru
n

C
h
ec
k
co
n
st
ra
in
t
ru
le
s

P
ro
d
u
ct

d
ep
lo
y
m
en
t

P
ro
d
u
ct

in
st
al
la
ti
o
n

In
st
al
la
ti
o
n
an
d
d
ep
lo
y
m
en
t

ti
m
es
,
as

n
o
fu
rt
h
er

b
in
d
in
g
ti
m
e
is
co
n
si
d
er
ed

In
st
al
la
ti
o
n
co
m
p
ri
se
s
th
e
n
o
d
es

w
h
er
e
th
e
sy
st
em

fu
n
ct
io
n
al
it
y
w
il
l
b
e
d
ep
lo
y
ed

an
d
m
ay
b
e
so
m
e
p
o
st
-

co
n
fi
g
u
ra
ti
o
n
ac
ti
v
it
ie
s

N
o
d
e
se
le
ct
io
n

P
ro
d
u
ct

re
co
n
fi
g
u
ra
ti
o
n

P
ro
d
u
ct

co
n
fi
g
u
ra
ti
o
n

F
ro
m

d
es
ig
n
to

ru
n
ti
m
e

R
ec
o
n
fi
g
u
ra
ti
o
n
p
ro
ce
d
u
re
s
m
ay

le
ad

to
a
fe
ed
b
ac
k
fr
o
m

ru
n
ti
m
e
to

v
ar
ia
b
il
it
y
se
le
ct
io
n
an
d
re
al
iz
at
io
n
,
an
d

p
ro
d
u
ct

re
d
ep
lo
y
m
en
t
ac
ti
v
it
ie
s
as

w
el
l

V
ar
ia
b
il
it
y
re
al
iz
at
io
n

P
ro
d
u
ct

d
ep
lo
y
m
en
t

6 Variability Realization Techniques and Product Derivation 91

constraints described are often described as if-then-else constructions or using

constraint programming. The realization of the variability depends on how this is

implemented. For instance, the realization of the variants can be done statically in

the code changes or more dynamically using dynamic libraries containing the

configurable options. If we use an object-oriented approach, variability can be

implemented using inheritance to separate the common functionality in

superclasses from other variable option defined in subclasses which can be

instantiated during the derivation process.

Example 6.1. Variability specialization through OO inheritance

The 3D scene of a virtual reality (VR) system is composed by 3D objects that
constitute a hierarchy where objects are successively decomposed in polygons
starting from a root object or node. Because the 3D database contains several
megabytes and the time for loading the 3D scene during first start-up can delay
several minutes, the way in which this hierarchy is organized at the architecture
and implementation is critical, as some objects may appear initially hidden or
might be unnecessary to show all the details of some of these 3D objects. Therefore,
arranging and organizing this hierarchy in a particular form is quite important to
reduce the start-up time. In this example, we used a particular object hierarchy
(tested using simulation) to reduce the start-up time of the 3D scene and the
variability techniques based on inheritance were used to group objects with com-
mon behavior [3].

In addition, at compilation and link or build times, directives expanding program

macros, variables and compiler flags {e.g., #ifdef, #include, #define}, and
Makefiles linking the programmodules in a specific order are instantiated to produce

different configurations or versions of the same product. For instance, a compilation

variable can be used to discriminate a stand-alone version from a distributed one or

add a security module not present in a different release. Makefiles use variables to

make more flexible link and build options when generating the binaries, such as

shown in the following code are certain flags that are stored in variables:

VP1= {Var1}XOR {Var2} XOR {Var3}

Software
Architecture X

Class A Class B

Var1

Var2

Var3
Var4

Var5

VP2 = {Var5} OR {Var6}

Product
Architecture X.1

Class A

Var3

Value1="MPEG-4" Value2="GSM1"

Var4

Class B

Fig. 6.3 Variability realization at design time

92 R. Capilla

CC¼g++
CFLAGS¼�c -Wall
LDFLAGS¼
SOURCES¼main.cpp hello.cpp factorial.cpp
OBJECTS¼$(SOURCES:.cpp¼.o)
EXECUTABLE¼hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:
$(CC) $(CFLAGS) $< �o $@

Moreover, the idea of staged variability fosters the composition of features that

can be added or removed to derive different product configurations (e.g., a scientific

calculator has several versions of the same products and the product line approach

used composed new functionality by selecting new variants). The software engineer

selects and deselects features of each new version of the product. Hence, stage

configuration becomes an important process applied in an SPL for configuring

software products and where people make the right configuration choices at differ-

ent stages. As described in [4], staged configuration of feature models constitutes a

stepwise refinement of the variability model.

In some cases, this refinement leads to a specialization where groups of features

are selected during the product configuration process and yields a specialized

feature model. Specialization can be seen as a subset of the overall set of

configurations and often done via transformations. In this context, baseline

architectures play an important role for specialization and derivation processes as

new product releases are yield as a result of successive stepwise refinement by

adding and removing features from the baselines or from a concrete product

configuration. Then, extensibility of the architecture becomes crucial to synthesize

different product configurations or release products for different platforms.

2.4 Post-deployment Realization

The configuration of the variability and product realization in the customer site

(post-deployment activities) often involves installation and post-deployment

procedures where products are configured and deployed on behalf of a set of

configurable options (e.g., parameters) that tailor the product to a specific environ-

ment or user preferences.

More dynamically, products may change the configuration of their variable

options during start-up (e.g., first start-up or on every start-up) time as a system

operator can configure certain variable options. For instance, the installation of a

6 Variability Realization Techniques and Product Derivation 93

new version of an operating system allows users to configure certain parameters of

the target machine (e.g., language, screen resolution) or to select between two

different preinstalled versions. On every start-up, the variability can be stored in

configuration files (e.g., XML files) or local databases that are uploaded

dynamically (e.g., a new user profile that has assigned new privileges). Other

situations may deal with the dynamic upload of software modules or libraries that

affect to the system configuration, as in some cases, the system needs to be restarted.

Finally, during system execution, the selection of variants happens while the

system is running. The ability to select a new variant or to activate/deactivate

features is considered a pure runtime variability realization (e.g., an adaptive

system that realizes a reconfiguration of certain design options) which often

happens at post-deployment time.

As a brief summary, we have to mention that depending on the concrete binding

time and on the implementation language selected, the variability realization

technique would be different (e.g., parameterization, inheritance, dynamic libraries,

user-configurable options, etc.), and runtime variability realization techniques

require more complexity and implementation effort.

3 Automated Derivation and Runtime Reconfiguration

The automation of product derivation and configuration tasks is quite important for

certain variability management and product derivation operations. As some systems

deal with runtime concerns, automating product deployment is increasingly inter-

esting for such systems that require unattended and autonomous manual operations.

Usually, product configuration is perceived as a manual activity but dynamic

SPL approaches attempt to manage the automatic activation and configuration of

system features or perform an automatic redeployment once the system has been

reconfigured dynamically. Some systems with stringent requirements require strict

runtime adaptation of their systems options, while in others, it can be a semiauto-

matic human-guided procedure (e.g., a pluggable smart home system able to plug

new software modules automatically and the variability is configured manually

afterwards before launching the new functionality).

The automation of product derivation processes can be achieved following a

generative approach or a specific model-driven development (MDD) where models

are transformed before the final variability realization mechanism realizes the

design choices. The input for such automatic process is a feature model or UML

model that requires some kind of transformation before the variants are selected.

For instance, in [5], an SPL derivation approach, built on the top of Rational Rose

RT, provides automated support for developing multiple SPL views in UML and

using the feature model as the unifying view.

One important topic in today’s automation techniques for product configuration

is automatic deployment. As systems or part of them are installed and deployed

periodically (e.g., due to the installation of critical updates or because a new

hardware is plugged and a reconfiguration operation is needed to support the new

94 R. Capilla

functionality), there is an increasing demand to provide some degree of automation.

Therefore, automating configuration and derivation processes in conjunction with

deployment activities facilitates the task of software engineers, as many system

configuration and installation procedures could be enacted unattended and auto-

matically. In this scenario, software variability can play a key role to handle a set of

configurable options that can be managed in automatic mode at runtime.

Some authors [6] suggest a model-driven engineering approach using variability

mechanisms under a product line context to automate the customization and

deployment of software products. This approach advocates the use of transforma-

tion languages such as ATLAS Transformation Language (ATL) and Acceleo,

which extends the capabilities of the GenArch1 software product line tool in

order to transform software processes based on the Eclipse Process Framework2

(EPF) to jPDL workflow language specifications and enable the deployment and

execution of such processes. A feature model is used to specify the variability of

these software processes and a product derivation tool allows the selection of the

relevant features from an existing process, enabling automatic derivation from the

software process to a workflow specification. Model-to-model transformations

(M2M) facilitate the translation from an EPF specification of an automatic

customized process to jPDL elements. Such automatic procedures often exploit

model-driven engineering techniques to realize the transformations from high-level

models (e.g., a UML specification) to code assets. Another technique which can be

used is generation, which realizes stepwise refinements from baselines.

Consequently, the automation of product derivation and configuration activities

requires additional coding effort to support automatic management of the variable

options, as these configurable choices are sometimes handled by an automatic

procedure, while in other cases, the ultimate goal is to leave some of these design

choices to be modified by the user at runtime and post-deployment time.

Reconfiguring products at runtime may require in some cases to restructure the

entire or a subset of the variability model. Reorganizing the structural variability

model at runtime is challenging and hard, but this topic is out of the scope of this

chapter. However, other runtime reconfiguration operations may imply automatic

activation and deactivation of certain system features in order to meet new context

conditions. Any runtime reconfiguration demands automatic redeployment

mechanisms to meet the runtime condition, as well as additional runtime checks

(even if a system changes its operational mode for some time) to ensure that the new

configuration is the right one and properly set. Autonomic computing, pervasive

and context-aware systems, service-based systems, and self-*systems are the most

suitable candidates for runtime reconfiguration operations supporting variability.

Other systems demand reconfigurable operations when new modules are plugged

and unplugged and dynamic libraries or software modules can be selected automat-

ically or with minimal human intervention using variable and configurable options.

In those more complex cases, policies for runtime changes must be used to manage

1 http://www.teccomm.les.inf.puc-rio.br/genarch/
2 http://www.eclipse.org/epf/

6 Variability Realization Techniques and Product Derivation 95

http://www.teccomm.les.inf.puc-rio.br/genarch/
http://www.eclipse.org/epf/

the different situations that might arise during the selection of different configurable

options and to detect incompatible product configurations.

4 Areas of Practice

4.1 Tooling

Several tools and approaches have been developed to support SPL derivation

activities. From a methodological point of view, the “ConIPF Variability Modeling

Framework” (COVAMOF) derivation process [7] describes the practical realization

of variability for product families through a set of steps that go from the feature

model to the component implementation and each of these levels are associated to

COVAMOF variability views which capture the dependencies and relationships of

the variability model. COVAMOF uses XML-based feature models and #ifdef
constructs to describe and mange the variability information. The COVAMOF

derivation process first configures the product to bind the variations and then

realizes the product on the SPL artifacts in order to make effective the values of

the variants.

Cirilo et al. [8] compares how three SPL tools (i.e. CIDE, pure::variants,

GenArch+) use configuration knowledge to compose the product line variability

to derive the SPL products. This knowledge, used in configurable product lines,

defines the implementation and composition of the variability for product deriva-

tion tasks. The comprehension of this configuration knowledge is crucial to under-

stand domain-specific abstractions which are used for modeling coarse-grained

variability and describe the relationships between SPL variability and code assets,

annotations in feature models, and fine-grained variability implemented in class

attributes and methods.

4.2 Experiences

In several industrial experiences, configuration and variability realization processes

become relevant for product derivation. One early experience in the automotive

domain [9] enables product derivation through the selection of combined variants

aimed to support the right product configuration.

The well-known Koala model for handling the diversity of software products in

the consumer electronics domain [10] is a clear example where the size and

complexity of software products increasingly growing required a robust variability

model able to handle this diversity. The Koala model proposes a strict separation

between component and configuration development, as component builders do not

make assumptions about the configurations in which components will be used.

96 R. Capilla

Each component provides its functionality through a well-defined set of interfaces

(e.g., the signal of a TV tuner is fed by a high-end input processor (HIP) that

decodes luminance and color signals which are the inputs to a high-end output

processor (HOP). All these devices are controlled by software drivers using a serial

IC2 bus, as each driver requires, and IC2 interface that must be bound to an IC2

service during system configuration. A configuration in Koala is a set of

components connected to form a product. In Koala, static binding is used during

compilation running at configuration time.

In addition, the Koalish modeling language extends Koala and used for

automating the product individuals in configurable software product families

(CSPFs) [11]. Koalish is built on Koala and adds new variation mechanisms for

selecting and configuring the type of parts of components, including constraints for

specific individuals. In Koalish, configurations are sets of component and interface

instances, and the relations describing which component instances are part of other

component instances. The authors introduce the notion of valid configuration as not

all possible configurations represent a system. On this basis, the WeCoTin is a

prototype configurator tool operating on the product configurator modeling lan-

guage (PCML) in order to ease the configuration of software product lines and

feature models [12]. Reinforcing previous proposals, other authors [13] describe an

analysis of the derivation process in two software companies for configurable

software product families, from requirements to product delivery.

Regarding automatic product derivation, an experience using multi-agent

systems (MAS) under a product line approach is described in [14], where a

model-based product derivation tool (GenArch) is proposed for use in the applica-

tion engineering lifecycle. GenArch consists basically of three steps: (1) automatic

models construction, (2) artifact synchronizations, and (3) product derivation,

which comprises customization and composition of the SPL architecture.

5 Summary

Evolution is an important aspect for today’s software systems, and software

variability reduces the barrier for systems that have to evolve more dynamically.

Hence, feature models must be ready to support the selection and unselection of

features and configuration operations during product derivation and deployment

activities.

In this chapter, we have discussed the characteristics of major variability reali-

zation and derivation activities. Product derivation tasks can be organized

according to pre- and post-deployment binding times, as this separation of concerns

is easier to understand when and where (i.e., developer and customer sites) products

can be realized. In addition, the categorization of derivation activities becomes

important to know which kind of subtasks and which binding times can be used in

any derivation process using variability.

6 Variability Realization Techniques and Product Derivation 97

The utility to realize the derivation at different binding times will depend in

many cases of the type of systems we want to build and deploy, as not all software

systems may require to support runtime concerns.

The areas of practice described in the chapter are several and show representa-

tive types of systems and applications in various areas that exploit variability

realization techniques in different ways and with different binding times, as some

of them have different deployment and configuration requirements.

6 Outlook

No one doubts about the importance of product derivation and deployment

activities for variability management. In this context, automating reconfiguration

and redeployment activities for critical and real-time systems is crucial, as systems

using context information are more and more frequent. Systems using variable

options evolve much better in dynamic contexts compared to those others than use

more rigid approaches.

Finally, regarding the variety of variability realization techniques, we did not

want to describe detailed examples on how each variability realization technique

can be implemented, as this depends on the language or platform used. Rather, we

preferred to provide an overview of the most common techniques used, organized

around the time in which variants can be bound.

References

1. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.

Softw. Pract. Exp. 35(8), 705–747 (2005)

2. Fritsch, C., Lehn, A., Strohm, T., Bosch, R.: Evaluating variability implementation

mechanisms. In: Proceedings of International Workshop on Product Line Engineering

(PLEES), pp. 59–64 (2002)

3. Capilla, R., Martı́nez, M.: Software architectures for designing virtual reality applications. In:

1st European Workshop on Software Architectures (EWSA). LNNC, vol. 3047, pp. 135–147.

Springer (2004)

4. Czarnecki, C., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In: 3rd

International Conference on Software Product Lines (SPLC). LNCS, vol. 3154, pp. 266–283.

Springer (2004)

5. Gomaa, H., Shin, M.E.: Automated software product line engineering and product derivation.

In: Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS),

p. 285 (2007)

6. Araújo Aleixo, F., Aranha Freire, M., Camara dos Santos, W., Kulesza, U.: Automating the

variability management, customization, and deployment of software processes: a model driven

approach. In: ICEIS 2010. LNBIP, vol. 73, pp. 372–387. Springer (2011)

7. Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF derivation process. In: International

Conference on Software Reuse (ICSR). LNCS, vol. 4039, pp. 101–114. Springer (2006)

98 R. Capilla

8. Cirilo, E., Nunes, I., Garcı́a, A., de Lucena, C.J.P.: Configuration knowledge of software

product lines: a comprehensive study. In: Proceedings of the 2nd International Workshop on

Variability & Composition (VARICOMP), pp. 1–5. ACM DL (2011)

9. Thiel, S., Ferber, S., Fischer, T., Hein, A., Schlick, M.: A case study in applying a product line

approach for car periphery supervision systems. In: Proceedings of In-Vehicle Software 2001

(SP-1587), pp. 43–55 (2001)

10. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala component model for

consumer electronics software. IEEE Comput. 33(3), 78–85 (2000)

11. Asikainen, T., Soininen, T., Männistö, T.: A Koala-based approach for modelling and

deploying configurable software product families. In: Proceedings of the 5th International

Workshop on Product Family Engineering (PFE-5). LNCS, vol. 3014, pp. 225–249. Springer

(2003)

12. Asikainen, T., Männistö, T., Soininen, T.: Using a configurator for modelling and configuring

software product lines based on feature models. In: Männistö, T., Bosch, J. (eds.) Proceedings

of Software Variability Management for Product Derivation – Towards Tool Support, a

Workshop in SPLC 2004, pp. 24–35. Helsinki University of Technology, Espoo, Finland

(2004)

13. Raatkainen, M., Soinien, T., Männistö, T., Mattila, A.: Characterizing configurable software

product families and their derivation. Softw. Process Improv. Pract. 10(1), 41–60 (2005)

14. Cirilo, E., Nunes, I., Kulesza, U., Nunes, C., de Lucena, C.J.P.: Automatic product derivation

of multi-agent systems product lines. In: Proceedings of the ACM Symposium on Applied

Computing (SAC), pp. 731–732. ACM DL (2009)

6 Variability Realization Techniques and Product Derivation 99

	Chapter 6: Variability Realization Techniques and Product Derivation
	1 Introduction
	2 Variability Realization
	2.1 Product Derivation Activities
	2.2 Realization at Design Time
	2.3 Pre-deployment Realization
	2.4 Post-deployment Realization

	3 Automated Derivation and Runtime Reconfiguration
	4 Areas of Practice
	4.1 Tooling
	4.2 Experiences

	5 Summary
	6 Outlook
	References

