
Chapter 5

Variability Implementation

Jan Bosch and Rafael Capilla

What you will learn in this chapter
• Mechanisms to implement software variability

1 Introduction

Software variability is modeled, reasoned about, and discussed in many

organizations, but at some point, it needs to be realized in the software of a system

or product line. The subject of this chapter is to discuss the realization of variability

in a software system or software product line.

The realization of a variation point can be achieved by a variety of technologies

and approaches. Selecting the optimal approach is driven by two factors. The first is

the abstraction level at which the variation point is explored, ranging from the

architecture to the code level. The second is the stage in the life cycle at which the

variation point is bound, whether the binding is permanent as well as the stages

during which variants can be added to the variation point.

Choosing the right realization mechanism is of significant importance for two

reasons [1]. The first is that it often is difficult to change the selected mechanism

once it has been chosen. The reason for this is that variants are written to operate

with a specific mechanism. In addition, frequently, variants are written by other

organizational units or even other organizations altogether, as in the case of

software ecosystems [2], which complicates changing the selected mechanism.

J. Bosch (*)

Chalmers University of Technology, Gothenburg, Sweden

e-mail: jan@janbosch.com

R. Capilla

Rey Juan Carlos University, Móstoles, Madrid, Spain

e-mail: rafael.capilla@urjc.es

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_5, © Springer-Verlag Berlin Heidelberg 2013

75

mailto:jan@janbosch.com
mailto:rafael.capilla@urjc.es


The second reason is that over time, many variation points tend to be bound at later

and later times in the software development life cycle. A rigid realization mecha-

nism that complicates this process will cause tension in the organization and

inefficiencies in development.

Consequently, it is important to focus attention on variability realization. The

remainder of this chapter is organized as follows. The next section provides a

conceptual context of software variability management using the software life

cycle by discussing the software variability realization implications in the different

stages. The subsequent section discusses the abstraction levels at which variability

can be captured. This is followed by the main part of the chapter where we present the

different variability realization mechanisms. The chapter is closed by a discussion of

relative advantages and disadvantages of different mechanisms and a conclusion.

2 Introducing, Selecting, and Binding Variants

Software variability can be discussed at several levels of abstraction, but at some

point it needs to be implemented in the software system. For this, we need to have a

good understanding of the software variability life cycle. This life cycle is obvi-

ously related to the overall software development life cycle. Although one can have

different perspectives on the software development life cycle, in this chapter we

consider the following stages:

• Requirement specification. During this stage, the team aims to maximize the

clarity of what is to be built. There may be explicit requirements for variability,

but equally often decisions are taken as part of the requirement specification

process that reduces the required variability.

• Architecture design. The top-level breakdown of the system into its main

components is the stage where the first variation points can be, and often are,

introduced.

• Detailed design. Once the overall breakdown of the system is agreed and in

place, the focus can shift to the design of the individual components. At this

level, additional variation points can be introduced.

• Software development. Especially more narrowly defined variation points in the

system are implemented using code-level variation points.

• Compilation. The compilation stage is often where the first variation points are

bound to variants.

• Linking. During linking, especially higher-level variation points are often bound
to specific variants. Most bindings during compilation and linking are permanent

and cannot be changed in later stages.

• Installation/configuration. Assuming the software system is installed and

configured at the customer, binding of variation points takes place during

installation in response to settings selected by the customer installing the

product.

76 J. Bosch and R. Capilla



• Start-up. During system start-up, several variation points can be bound to

variants. Often, configuration files are used that are read during system start-

up to bind certain variants to the remaining variation points.

• Run-time. Finally, the variation points that are not permanently bound in earlier

stages can be bound and rebound during run-time. During installation and

especially start-up and run-time, the binding of variants to variation points is

often not permanent and can be rebound during at run-time.

During the software life cycle, a variation point evolves through a number of

phases. The first is the introduction of the variation point at a specific stage in the

life cycle. Frequently, this is in the earlier stages, but there are techniques that allow

for the late introduction of variation points in the system. The second stage is the

addition of one or more variants to the variation point. These variants capture

the differences in behavior that are required from the system. The third stage is the

binding of a variant to the variation point. At this point in the life cycle, the variant
bound to the variation point can still be rebound. The final stage, though not reached

by all variation points, is the permanent binding of the variant to the variation point.
A variation point is bound permanently in a life cycle phase if in all subsequent

phases it cannot be rebound to a different variant. At this point, the variation point,

for all purposes, has been removed from the system at that phase in the life cycle.

One aspect of variation points is them being open or closed. At a certain phase in

the software development life cycle, if variants can be added to a variation point, it

is considered to be open. Many variation points will, in a later phase, become

closed, meaning that the set of available variants can no longer be extended. This is

largely orthogonal to the binding of a variant to a variation point. For instance, in an

internet browser, a codec variation point can be bound to a particular variant, but

the user can still add new codecs (variants) to the browser.

The coding effort for implementing binding times of features to support dynamic

changes (e.g., system features that can be activated dynamically) can be reduced if

we adopt flexible approaches like the one described in [3], where code-level idioms

based on aspect-oriented languages can be used to avoid duplicate code for static

and dynamic binding and enhance maintainability as well.

There are more complicated cases that we will not discuss in this chapter,

including the reduction of the set of variants during progressive stages in the life

cycle due to constraining dependencies as well as cases where variation points are

permanently bound because of dependencies on other variation points and variants

where their selection limits the set of alternatives to one. As discussed in earlier

chapters, variation points and variants have dependencies on other variation points

and variants. As the designer or customer configures the system, choosing a variant

for one variation point will limit the set of possible variants for other variation

points. Occasionally, this can lead to situations where a variation point has no

remaining variants (e.g., the variability included in dead code will have no effect on

the selection and realization of those variants). This, however, does not necessarily

lead to an illegal configuration as the system configuration may not need the

functionality provided at the variation point.

5 Variability Implementation 77



3 Variability Abstraction Levels

Depending on the size of the functionality that is to be variable, different variability

abstraction levels can be identified at which reasoning about and realization of

software variability can take place. We identify the following three levels:

• Architecture. At the architecture level, the primary mechanism for variability is

the replacement of top-level components with other implementations of these

components or the binding of optional components depending on the context in

which the system is deployed.

• Component. At the component level, variability is often more pervasive and

complex and often this is the main level at which variability is modeled. This is

more concerned with extension points, superimposition1 of code, wrapping, and

other mechanisms that adjust the behavior of components.

• Code. At the code level, there is a large set of variability mechanisms available.

The main concern, however, is that the code-level mechanisms can be applied

for normal algorithmic implementation as well as for managing variation points.

Appreciating the differences between variation points at different levels of

abstraction is quite important as each level brings its own advantages and

disadvantages. Selecting the right level should be driven by the variability that is

specified in the requirement specification, the expected evolution of the variation

point, and the binding time of the variant to the variation point. In addition, specific

trace mechanisms should be defined to track the changes from one abstraction level

to another and vice versa, as managing the variations in one level (e.g., the

variability defined in the architecture does not mandate how this will be

implemented) is radically different from another level (e.g., different implementa-

tion mechanism can be used for coding variability at the code level) and the

modification of the structural variability (i.e., the variability defined in a feature

model representing the variants and variation points to describe system features)

impacts the lower levels or configurations files supporting allowed options.

4 Variability Realization Mechanisms

There are several techniques to implement the variability which is described in

feature models and each of these techniques is used in different stages of the life

cycle and is driven by the time when variants will be bounded (i.e., variability

realization). Basic variability enabling mechanisms are described in 1, 4, 5, such as

inheritance, parameterization, conditional compilation directives, dynamic

1 Superimposition of code is a black box component adaption technique that allows one to impose

predefined but configurable types of functionality on a reusable component. Using

superimposition, additional behavior is wrapped around existing behavior.

78 J. Bosch and R. Capilla



libraries, etc., but all these ways to implement variability in code are sometimes

driven or limited by the language, framework, or technology used.

To provide a perspective driven by software variability management needs, we

focus the discussion of variability realization mechanisms based on an earlier work

by one of the authors [6]. In Table 5.1 below, we present an overview of techniques

at different levels of abstraction and with binding times in different stages of the

software development life cycle.

4.1 Binary Component Replacement

Intent. The intent of binary component replacement during linking is to perma-

nently bind a specific component implementation. This allows the system to be

bound to specific components needed for a particular configuration of the overall

system. “Replacement” refers to a binary component that is specifically added for a

concrete product or configuration instance.

Solution. The binding to binary libraries can be done at compilation and linking

times prior to deployment. If linking is realized at run-time, the variability must

manage this binding internally to the system assuming all libraries are available.

Example. Dynamic libraries such as Apache modules can be uploaded and bound

at run-time when needed, whereas Linux kernel modules are linked before deploy-

ment when the kernel is recompiled.

Implications. This variability realization technique is easy to manage and to

implement with few consequences to the system, as security is an aspect well

covered in this case. By contrary, the unavailability of run-time libraries or incom-

patibility problems with existing version may cause severe problems.

4.2 Binary Component Selection

Intent. The intent of binary component selection is similar to selecting one compo-

nent among a set of existing alternatives, and the binding time for selecting a

component goes from installation to post-deployment time.

Solution. Dynamic components, libraries, and files are selected and bound

among several. The alternatives can be bound more statically at installation time

while they become more dynamic from start-up to post-deployment time, and

variability is often realized externally to the binaries.

Example. Like in the previous case, any dynamic library or configuration file

aimed to update the current system configuration or functionality fits under this

category. In this case, the variability is managed externally to the component but

some variants or system features can be defined in specific configuration files that

can be uploaded dynamically.

5 Variability Implementation 79



T
a
b
le

5
.1

V
ar
ia
b
il
it
y
re
al
iz
at
io
n
m
ec
h
an
is
m
s

A
b
st
ra
ct
io
n

le
v
el

B
in
d
in
g
ti
m
e

C
o
m
p
il
at
io
n

L
in
k
in
g

In
st
al
la
ti
o
n
/c
o
n
fi
g
u
ra
ti
o
n

S
ta
rt
-u
p

R
u
n
-t
im

e

A
rc
h
it
ec
tu
re

N
/A

B
in
ar
y
co
m
p
o
n
en
t

re
p
la
ce
m
en
t

B
in
ar
y
co
m
p
o
n
en
t

se
le
ct
io
n

B
in
ar
y
co
m
p
o
n
en
t

se
le
ct
io
n

B
in
ar
y
co
m
p
o
n
en
t
se
le
ct
io
n

C
o
m
p
o
n
en
t

V
ar
ia
n
t
co
m
p
o
n
en
t

sp
ec
ia
li
za
ti
o
n

O
p
ti
o
n
al

co
m
p
o
n
en
t

se
le
ct
io
n

C
o
d
e
fr
ag
m
en
t

su
p
er
im

p
o
si
ti
o
n

O
p
ti
o
n
al

co
m
p
o
n
en
t

se
le
ct
io
n

C
o
d
e
fr
ag
m
en
t

su
p
er
im

p
o
si
ti
o
n

O
p
ti
o
n
al

co
m
p
o
n
en
t

se
le
ct
io
n

V
ar
ia
n
t
co
m
p
o
n
en
t

im
p
le
m
en
t.

O
p
ti
o
n
al

co
m
p
o
n
en
t

se
le
ct
io
n

V
ar
ia
n
t
co
m
p
o
n
en
t

im
p
le
m
en
t.

O
p
ti
o
n
al

co
m
p
o
n
en
t
se
le
ct
io
n

C
o
d
e
fr
ag
m
en
t
su
p
er
im

p
o
si
ti
o
n

R
u
n
-t
im

e
v
ar
ia
n
t
co
m
p
o
n
en
t

sp
ec
ia
li
za
ti
o
n

V
ar
ia
n
t
co
m
p
o
n
en
t
im

p
le
m
en
ta
ti
o
n

C
o
d
e

C
o
n
d
it
io
n
o
n
co
n
st
an
t

C
o
d
e
fr
ag
m
en
t

su
p
er
im

p
o
si
ti
o
n

N
/A

N
/A

C
o
n
d
it
io
n
o
n
v
ar
ia
b
le

C
o
n
d
it
io
n
o
n
v
ar
ia
b
le

80 J. Bosch and R. Capilla



Implications. The implications are similar like in the previous case, but incom-

patibility problems of system features in system configuration or binary files may

arise if these have not been pre-checked before. For instance, an older version of

binary file is selected and such instance is incompatible with the existing version of

the system or application running.

4.3 Variant Component Specialization

Intent. The intent of variant component specialization is to adjust a component

implementation to the product architecture when the provided interfaces of a

component implementation representing a variant feature vary. Specialization

assumes a context-specific extension that is then developed for an individual

product/configuration instance.

Solution. Separating the interfacing parts into different classes facilitates the

interaction between components as we can decide what variant of the interfaced

component to include in the product architecture. The variability in this case is

bound externally but variants are realized at system design.

Example. A software using an enhanced security detection mechanism is only

used in certain cases under a set of predefined conditions.

Implications. Several implementations must coexist that can be selected

dynamically, sometimes at start-up time or at run-time.

4.4 Optional Component Selection

Intent. The intent of optional component selection is to include or exclude a

particular component implementation, often selected from a set of existing

alternatives.

Solution. System features are included or excluded as we separate the optional

behavior in a different class or component. The binding time for an optional

functionality goes from compilation to post-deployment time, as system features

can be added or modified at any time. Binding is done externally by configuration

management tools or by the compiler.

Example. A smart home system that adds or removes optional functionality for

different customers and at a different cost (e.g., the system can use different security

access methods). A basic package configured at compilation/linking time can be

modified later by, for instance, adding a new module at configuration time.

Implications. Decoupling optional behavior is not always easy and depends on

how the structural variability is defined and implemented in the system and the

dependencies among the variants.

5 Variability Implementation 81



4.5 Code Fragment Superimposition

Intent. The intent of code fragment superimposition is to impose predefined types of

functionality on a reusable component without directly affecting the source code.

Solution. With this solution, we superimpose product-specific behavior and

concern’s additional behavior is wrapped around existing behavior. In this case,

the binding is realized externally and variability is bound at compilation or linking

time, but run-time superimposition is also possible.

Example. Any crosscutting functionality (e.g., aspects) introduced in the system

functionality constitutes an example of superimposition (e.g., different authentica-

tion methods based on internal or external authentication systems and the user or

the system itself can select among one of these). At run-time, the Eclipse platform

offers a way to dynamically add or remove plug-ins that include new functionality

to the main platform.

Implications. Positively, superimposition enables that different concerns are

separated from the main functionality. However, understandability on how the

final code works becomes harder.

4.6 Run-Time Variant Component Specialization

Intent. It supports the selection between different specializations inside a compo-

nent implementation during run-time, as different requirements may demand such

capability.

Solution. The component implementation must provide a number of alternative

executions that can be switched at run-time. Different design patterns (e.g., strat-

egy, template method, or abstract factory) can be used to separate behavior into

several classes and use inheritance or polymorphism to implement the required

variability. In this case, the functionality for binding is internal.

Example. The case of a smart home system which provides sensors to detect

several data, such as temperature, humidity, smoke, or people. The fire detection

system can be activated at run-time to detect fire, as this is required to activate both

the home smoke detector and temperature sensors. Different classes provide such

functionality that is used by the smart home system control to activate the right

sensors in case of the presence of smoke and high temperature.

Implications. Some common functionality might be duplicated when the

variants must select between different specializations.

82 J. Bosch and R. Capilla



4.7 Variant Component Implementation

Intent. The intent of variant component implementation is to support several

implementations of one component architecture that can be chosen at any time

dynamically.

Solution. Several design patterns (e.g., strategy pattern, broker pattern, SOA

service-broker pattern, etc.) can be used to select between one or several

components with high flexibility and changeability. Variability is defined at design

time and variants cannot be added later. Variability is bound internally to the

system.

Example. Several e-mail protocols like POP and IMAP using the same interface

for connecting to the e-mail server.

Implications. The reusability of some code pieces may be low.

4.8 Condition on Constant

Intent. The intent of condition of constant is to support a way to enact one operation
from several available. It constitutes a refined version of variant component spe-

cialization and is often used to select between different compilation options.

Solution. Conditional #ifdef compilation directives can be used to implement the

variability at compilation time. The collection of variants depends on constants that

are used to bind the variants at compilation time.

Example. Any software package that uses compilation directives that are

selected before the package is installed in the system. Also, configuration execut-

able files are often used to determine the system environment and to drive the

selection of the compilation values.

Implications. Using #ifdef directives can be risky and difficult to maintain, in

particular when the installation of a software package involves additional packages

or modules, as the number of interdependencies may grow exponentially across

releases (e.g., the Linux kernel). Also, flexibility of the variability implemented

using this option decreases as the number of links and potential paths grow.

Moreover, variation points tend to be scattered as it becomes difficult to track

what parts of the system are affected by one variant.

4.9 Condition on Variable

Intent. The intent of condition on variable is to support several ways to perform an

operation but the choice can be rebound at run-time.

5 Variability Implementation 83



Solution. It replaces the condition on constant by a variable that changes its value
dynamically. In this particular case, new variants can be added during implementa-

tion and variability is bounded internally.

Example. Any program that wants to control the execution flow can use this

technique. Another example may refer to the selection of different web services at

run-time according to certain conditions that are stored in variables (i.e., variants in

the system) which determine the selection of a particular web service.

Implications. This is a very flexible technique where variants can be instantiated
dynamically. However, tracking the value of the variation points can be sometimes

difficult if variation points are spread throughout the code.

5 Selecting a Realization Mechanism

This chapter summarizes different variability implementation techniques from a

high-level point of view as different languages (e.g., object oriented versus

nonobject oriented) and design patterns can be used to implement each technique.

Hence, we did not restrict our description to a particular implementation technol-

ogy. Object-oriented classes, inheritance, variables supporting system features,

dynamic libraries, and so on, are examples of different ways to implement the

system variability, but selection of a mechanism is driven by the binding time at

which the variants are bound.

In general, multiple binding times are hard to combine, so we need to select

carefully which binding times we want to support in order to choose the right

variability implementation techniques that can be mixed in the code or supported by

a specific platform.

The selection of a preferred realization technique is driven by three factors: the

mapping to the problem domain variability, the need for late-stage openness, and

the expected system evolution.

Ideally, there is a direct, one-to-one mapping between a problem domain varia-

tion and a variation point in the solution domain. This significantly simplifies the

configuration process and it avoids complex defect detection and repair situations.

For instance, in a case where a problem domain variation is mapped to #ifdef

statements in every module of the system, it does not require much to make a

mistake in one module and have the resulting system act in unpredictable ways due

to misconfiguration. Deciding the variability realization technique needs one-to-

one map to the problem domain variation.

Second, depending on the system domain, there may be a significant need for

late-stage openness of the variation point to allow adding new variants. The

selection of the realization technique should explicitly consider the ability to add

variants at the required time as many realization techniques cause permanent

binding during the compilation and linking stage.

Finally, expected system evolution is an important factor in the selection of the

variability realization technique. In practice, the binding time of variation points

84 J. Bosch and R. Capilla



tends to be delayed to later stages in the life cycle, meaning that even though a

variation point may be bound permanently at compile time at this point in time, it is

not unreasonable to assume that over time the binding will take place at installation,

start-up, or run-time. Especially for variation points that have system-wide

implications, the cost of replacing the selected variability realization technique

may be very high and, consequently, it may be better to select a technique that

allows for late binding.

6 Outlook

Writing adaptable and evolvable software using variability techniques is not always

easy, as the modeling of large variability models is a complex and tedious task in

itself. Because customers today push software developers to provide more and more

configurable options, the external variability becomes more important, and this fact

drives the realization of the variability times closer to configuration, run-time, and

post-deployment times.

Systems that require run-time binding must implement the dynamic binding

condition and use dynamic variability implementation mechanisms in a controlled

manner to make the software more adaptable. However, only few variability

implementation techniques can be used to realize binding and rebinding during

execution time. Regarding the binding time of the variability realization

mechanisms, one could think in a post-deployment realization mechanism, suitable

for those systems that realize their variants once deployed. However, this new

binding is quite similar to the run-time mechanism, and the slight difference

between run-time and post-deployment perceived today is more subjective by

software engineers because the variability realization mechanisms for architecture,

component, and code are almost the same.

Finally, open variability models allow variants to be changed dynamically, but

such high evolvability of the structural variability is hard to implement and requires

additional codification to support the extensibility of the variability model.

References

1. Fritsch, C., Lehn, A., Strohm, T., Bosch, R.: Evaluating variability implementation

mechanisms. In: Proceedings of International Workshop on Product Line Engineering

(PLEES), pp. 59–64 (2002)

2. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th

International Software Product Line Conference (SPLC 2009), August 2009

3. Andrade, R., Ribeiro, M., Gasiunas, V., Sabatin, L., Rebêlo, H., Borba, P.: Assessing idioms for

implementing features with flexible binding times. In: CSMR 2011, pp. 231–240 (2011)

5 Variability Implementation 85



4. Amin, F., Mahmood, A.K., Oxley, A.: An analysis of object oriented variability implementation

mechanisms. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–4 (2011)

5. Myllymäki, T.: Variability management in software product lines. Tampere University of

Technology. Software Systems Laboratory, ARCHIMEDES (2001)

6. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques. Softw.

Pract. Exp. 35(8), 705–754 (2005)

86 J. Bosch and R. Capilla


	Chapter 5: Variability Implementation
	1 Introduction
	2 Introducing, Selecting, and Binding Variants
	3 Variability Abstraction Levels
	4 Variability Realization Mechanisms
	4.1 Binary Component Replacement
	4.2 Binary Component Selection
	4.3 Variant Component Specialization
	4.4 Optional Component Selection
	4.5 Code Fragment Superimposition
	4.6 Run-Time Variant Component Specialization
	4.7 Variant Component Implementation
	4.8 Condition on Constant
	4.9 Condition on Variable

	5 Selecting a Realization Mechanism
	6 Outlook
	References


