
Chapter 3

Variability Scope

Rafael Capilla

What you will learn in this chapter
• The importance of binding system options
• The notion of variability in space
• Variability constraints and dependencies
• Automation of variability scoping techniques

1 Introduction

A fundamental aspect of variability modelling and for software product line

engineering refers to the scope of the product portfolio that is to know the number

and type of the products to be produced. As software variability concerns with

multiple product development and multiple product configurations, there is a need

to delimit the scope of the products and determine the size of the domain in our

product line. Scoping identifies what products are “in” our product line and relies on

a set of allowed options described in the variability model to determine the list of

feasible products that can be built. Therefore, software engineers must define which

design choices and combinations of them will be valid for a given market segment.

There are many reasons (e.g. economic, business, technical) for delimiting the

scope of the SPL products and thereby the scope of the variability model. Each

reason must justify why a number of available choices must be out of the selection

and product configuration activities, as the high number of combinations in large

variability models, often belonging to industrial product lines, makes unmanage-

able and unfeasible the development and maintenance of a large set of software

products. Consequently, delimiting the number and type of products must be driven

R. Capilla (*)

Rey Juan Carlos University, Móstoles, Madrid, Spain

e-mail: rafael.capilla@urjc.es

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_3, © Springer-Verlag Berlin Heidelberg 2013

43

mailto:rafael.capilla@urjc.es


by the scope of valid options defined in the architecture. Such restrictions are often

based in a set constraint and dependency rules defined for the software artefacts and

used to prune the number and type of products we can develop. In this chapter we

will deal with notion of variability in space and with the reasons and technical

solutions used for bounding the design choices used to keep the SPL products under

control.

2 Scoping Activities

The need SPLs focus on specific market segments motivates domain scoping

activities. Therefore, domain scoping is considered one of the first SPL activities

used to delimit the number and type of products that will be inside the product line.

Scoping activities narrow the domain of the product portfolio for the success of

the SPL from a business and economic perspective. As a result, the scope of the

variable options is also delimited by rules and constraints aimed to reduce the

number and type of allowed products.

As discussed in [1], product portfolio analysis results are key to evaluating and

establishing the type of products we want to engineer. As the product line evolves,

the product portfolio may grow or change, and the variability implemented in the

architecture must be flexible enough to support new variations in a controlled

manner. Scoping activities also encompass the identification of requirements that

are common to all products and those ones that make the difference between SPL

products. Such activities will have a great impact on commonality and variability

analysis to identify the variable parts in the architecture and with reusability of

components and products in mind.

Moreover, market analysis activities are also carried as an early step before

launching the product line in order to determine the product portfolio and to

encompass which assets and products will be part of the product line. Therefore,

product variants are defined and modelled on the basis of scoping activities and

driven by economic and business reasons that keep the product line competitive.

Otherwise, the flexibility of variability models aimed to support a broad number

of products in the product line scope often relies on more technical activities and

current SPL capabilities, such as extensibility of variability models to support

evolution and product configuration and derivation tasks. Bosch [2] mentions

three different forms of scoping:

(i) Domain scoping aims at defining the boundaries of the domain where artefacts

and products will be used. Domain analysis techniques are often used to

delimit the scope of domain products and to derive the products from domain

models (see also Design Space Models for product line scoping [3]).

(ii) Product scoping defines the products that will be engineered, often under a

product line approach.

(iii) Asset scoping focuses on the identification of those reusable assets that will be
employed in the construction of the software products.

44 R. Capilla



These forms of scoping are used to constraint the number and type of options of

variability models in order to make them more manageable. The scoping activity is

fundamental for the product line strategy and economic benefits depend on how

well the scope is chosen (e.g. a large scope may waste the investment of assets while

a narrow scope may lead to not supporting reuse across all relevant products) [4].

Clements [5] states the importance of product line scope as a crucial activity for

bounding the limits of the product line and define what’s “in” and what’s “out.” Pro-

active approaches attempt to delimit the full scope of products when a product line is

launched from scratch, while reactive approaches deal more with the scope of new

products as the product line evolves and when new requirements appear. Scoping is

sometimes considered a fuzzy activity during variability modelling and product line

start-up, but several reasons motivate its importance in a product line context.

2.1 Reasons for Scoping

We can think in many reasons to enact scoping activities, but most of them may fall

into the following categories:

• Economic: As not all the products can be built, there is a strong need to reduce

the number and type of the assets and products because of economic reasons.

Sometimes a product is technically feasible but difficult to sell and hence, it

should not be included in the product line. For instance, an expensive product

supporting a large number of configurable options that many of them will never

be used. However, the case of a software product supporting only one single

variation could be included in a product line if it shares a large number of assets.

In other cases, a company can produce hundreds of products using a highly

customizable variability model but building and maintaining such huge number

of products will be highly costly (e.g. due to an excessive number of software

development hours). Consequently, only those configurable assets and products

that are worthy of value must be considered within the scope and a balance

between the cost supporting a large number of configurable options (i.e. more

products may lead to a broader scope) and a given pricing scheme must be

achieved for each particular customization strategy.

• Business/Strategic/Commercial: Many times the variability model can support

the development of a certain number of worthy configurable products, but

business, strategic or commercial reasons may suggest to, for instance, delay

its development. During scoping activities we do not restrict the scope of the

variants for those products that will not be engineered in a certain period of time.

Rather, we support such variations as part of the scope of the product line model

but we decide later if certain variants (often known as internal variability) will
be available in a new version of the product because the market demands new

features (e.g. activate a new feature in the software of a mobile phone that

remains hidden or unavailable in previous models of the SPL).

3 Variability Scope 45



• Technical: Delimiting the scope of products or assets is necessary for mainte-

nance reasons, as huge variability models are difficult to maintain and manage

and may also increase product derivation activities. We use constraints not

because the current technologies cannot support an infinite number of

combinations but because of technical and other business reasons. Some systems

that exhibit a large number of dependencies between their assets increase

maintenance effort (e.g. the dependency network between packages in Linux

kernels) and something similar may happen with variability models. Therefore,

it is desirable to keep the number of dependencies and constraints under control

and use tools for automating these tasks.

• Cultural/Political: Sometimes different configurable options are driven by cul-

tural factors such as the language of use in different countries, which may lead to

supporting a variety of languages in the GUI menu options of the product, while

the functionality of the software remains the same. Delivering a software

product in only a certain number of countries (e.g. due to political or military

reasons) is another form to delimit the scope of the variants.

2.2 Variability in Space

Once the product line assets and products are well scoped, we can say that the pair

variants and variation points defined in the variability model are ready to be used in

product configuration and derivation activities in order to produce the reusable

assets and the products in a given domain. The number and type of configurable

products are determined by the design options defined in the architecture and

implemented in the code assets. We refer to this as variability in space, where
product line artefacts and releases are engineered and configured from the same

variability model and belonging to a given domain.

Definition 3.1. Variability in space

Variability in space represents the set of products, releases and reusable assets

that can be derived and configured from a concrete variability model in a given

timeframe.

2.3 Notation for Binding Time

Variability in space provides the necessary ability to produce multiple products

through variant selection and takes advantage against single-system development

when several products and configurations must be engineered and put on time in the

market. As mentioned in [6], “feature declarations model the scope of variation in
the production line,” and the adoption of software mass customization must support

the complete scope of products on a predictable horizon. Also, depending on how

46 R. Capilla



flexible and extensible the variability model has been designed to support evolution,

new requirements should not be a problem if new design options and constraints can

be easily added without changing the structure of the variability model.

In addition, the scope of the variability model is not only limited by the

configurable options available but also by the constraint and dependency rules

that will determine which products are allowed or within the scope. Such

constraints must be described and implemented as part of the variability model,

such as we explain in next sections.

3 Variability Scope

Product line scoping in its different forms have a direct impact on bounding

variability. Because huge variability models applied in industrial product lines

offer a large number of possible combinations, the feasibility to build only a subset

of these products must rely on the limits established in the variability model to

support a reduced number of allowed products.

3.1 The Graphical Limits of FODA

Variability models often use FODA trees to provide a graphical representation of

the system features and how these interrelate with each other. A FODA tree

describes the system features in terms of mandatory, alternative and optional

variants which are also related using the notion of variation point. This hierarchy

forms a tree where the root node represents the type of products we want to build.

One weak aspect of FODA trees is how constraints between features, used to

delimit the variability in space, can be represented graphically. Also, representing

variation points to relate variants located in different parts of the FODA tree can

complicate the visualisation capabilities of the variability model, in particular in

large feature models. In FODA, it is commonly accepted to draw a direct line

associating two features to describe that there is a relationship between them, which

can be either a constraint or a dependency rule, but constraints and dependencies

are often managed separately from the graphical representation of the feature tree.

With FODA, structural dependencies are modelled graphically and configuration

constraints among optional and alternative features are specified separately to

reduce the complexity of the graphical representation. Both of them must share

the same name space. The same happens when we want to relate two or more

variants and group these under a common variation point. A circle or dotted line

surrounding the variants in the variation point is often used, but the logical formula

describing such relationship must be written out of the FODA tree.

Figure 3.1 shows an example of a feature tree where variation points are

surrounded by a dotted line and relationships between features are described

3 Variability Scope 47



using a solid line, but as mentioned, all this information must be described in textual

form apart from the graphical representation. Therefore, FODA trees are simple and

useful techniques to visualise the entire or a subset of the variability model, but the

rules and constraints that define the limits of the allowed products must be defined

and managed in a textual form. The existence of hundreds of features often makes

hard the proper visualisation of all the potential constraints used to delimit the

variability implemented in the product line products. For instance, in Fig. 3.1 we

show three sample types of relationships that can be used to define the scope of the

variability model, such as the following:

• Feature f1 excludes feature f 2.
• Feature f 2.3 has one requires relationship with feature f 3.1. For instance, a

feature cannot be activated if another feature has not been activated first. This

can be seen as a special case of, the “requires” dependency.

• A variation point VPx is defined to encapsulate and relate the alternative

features f 3.1 and f 3.2 using, for instance an OR logical connector and having

feature f 3 as parent of the relationship (e.g. VPf3 ¼ {f 3.1 OR f 3.2}).

Non-graphical representation techniques like matrixes can be also used to

describe the dependencies and constraints of features. In addition, languages

supporting rules and constraints constitute an interesting alternative as they can

be processed automatically by software.

3.2 Variation Points

A variation point defines a relationship between features of a feature model and

represents an area of a software system affected by variability. Variation points are

used to relate two or several features located in the feature tree, and from the same

parent or from different ones. Variation points encompass set of variants and other

variation points that are represented by a logical formula that uses logical

Feature tree Root node

f1
f2

f3

f3.1 f3.2

f2.1 f2.2 f2.3

Legend

Mandatory feature Optional feature Alternative feature

Excludes Requires Variation Point

Fig. 3.1 A FODA tree

example annotated with

different types of

relationships between

features

48 R. Capilla



connectors (e.g. OR, AND, XOR) to relate features. As not all the possible

combinations are valid, the scope defined for each variation points is restricted by

system constraints that limit the scope of products in space.

Variation points provide a flexible way to play with the scope of system features

by grouping them as related functionality, often implemented as subsystems. When

a variation point relates distinct functional parts of a system, the resultant area has a

broader scope and the variability implemented in related system functional parts

can be managed as a whole by means of such variation point. For instance, the

variability implemented in the architecture that manages the electronics of a car can

be used to describe the variations of both the Navigation subsystem while other

features describe the variability implemented in the Multimedia subsystem (i.e.

radio, DVD). Both subsystems can be integrated under one variation point

representing an integrated multimedia system which can be also managed using a

common control centre (e.g. the BMW’s iDrive system consists of a button that

manages all functions of the vehicle control system).

Variation points are often represented in feature trees as circles or boxes

surrounding the variants included in the variation point, but because this technique

may distort the representation of the feature model, variation points are better

described separately in text notation or grouped in tables. The distortion of feature

trees when using variation points can be reduced if we group subsystems or related

functionality from the same parent, as we can avoid crosscutting lines across the

feature tree. In huge variability models, it is rather difficult to avoid the existence of

variation points relating distant features located in the tree or belonging to different

parents, as in other case this may lead to a reorganisation of the whole variability

model.

Just to give an example, Fig. 3.2 shows an example of variation points belonging

to the same and to different parents. In the first case (left side of the figure), a

variation point is defined and comprises three different variants. In the second case

(right side of the figure), a variation point is defined to relate two distant features

containing the variants defined in the feature tree but belonging to two different

parents and depicted using a dotted circle line, as FODA lacks an explicit notation

to describe such cases. In both situations the variation point defines the scope of

certain functionality or related system features but this is managed differently. In

the second case the scope seems to be broader than the first case because the

functionality encompassed in the variation point shown in the right side of the

figure encompasses functionality that belongs to separated or different part of

the software product.

Because the scalability of the graphical representation of feature models is

sometimes limited to describe and/or visualise hundreds of variation points, we

need machine-processable techniques to solve this problem. However, most of

FODA implementations are machine processable, as described in the Appendix

of the FODA report, which includes a method of textual specification and also the

extensibility of the model.

From an architecture point of view, variation points can be annotated as UML

text notes and stereotypes in UML diagrams as no specific notation or neutral

3 Variability Scope 49



standard format exists to describe a variation point in the software architecture. This

lack is common to all UML modelling tools and specific tooling has to be used to

describe the variability of systems, in particular for industrial product lines where

hundreds of variants and variation points need to be defined. Hence, the constraint

and dependency rules used for delimiting the scope of the variability model can be

hardly represented in the architecture and specific variability modelling and man-

agement tools are required.

3.3 Variability Constraints

In a feature-oriented approach, features are usually not independent each other, and

the number and type of allowed products that can be technically and economically

produced in a product line is often restricted using requires and excludes constraints
(i.e. a kind of dependency). These variability constraints describe additional

relationships between product features that can be hardly represented in the feature

tree. Such dependencies can be applied either between variants and variation points

in order to restrict the number of feasible product variations and thereby the number

of product configurations.

• Requires dependency: It is used to represent that a variant Vx or a variation point

VPx needs another variant Vy or variation point VPy. A requires dependency

means that when a feature is selected the other must be present in the same

product.

• Excludes dependency: It is used to represent that variant Vx or a variation point

VPx excludes another variant Vy or variation point VPy. That is, an excludes

dependency means that two features cannot be present in the same product.

In FODA, an arrow between two variants or variation points labelled with

“requires” or “excludes” is enough to describe graphically such relationships, but

the high number of such constraints in large variability models makes that all these

rules must be processed automatically depending on the language used. Simple

if–then constructs are enough to describe these dependencies, but constraint

Root Root

Legend

Variation Point

Variant

Fig. 3.2 Variation points

belonging to the same and

different parents

50 R. Capilla



programming constitutes another alternative to describe the dependencies between

features.

Example 3.1. Requires and excludes dependencies using if–then
A feature fy is required if a feature fx is present

IF (fx) THEN fy

A feature fy is excluded if a feature fx is present

IF (fx) THEN NOT fy

A feature fz (e.g. a variant) is required if the variation point represented by

features fx AND fy is present

IF (fx AND fy) THEN fz

In addition, the requires and excludes dependencies can be defined statically

when product options are bounded before runtime or dynamically when such

dependencies define a runtime condition during product execution or as part of a

runtime reconfiguration process.

Example 3.2. Static and dynamic “requires” and “excludes” constraints

Static: During a software installation procedure, a software package requires

another package before it is installed. Hence, a static requires dependency is defined

and resolved.

Dynamic: During system execution, the software of an elevator checks the

maximum allowed weight before the user can press the button of a given floor. In

this case, a dynamic excludes dependency is realised at runtime when the maximum

weight is exceeded.

Variability models delimit the solution space using requires and excludes
dependencies to constraint the diversity of products, but these dependencies often

complicate the variability model due to a high number of interrelated relationships

between variants and variation points. As a consequence, the variability that is

coded in a given subsystem or product becomes less reusable and difficult to

decouple when the product options have dependencies to other system features.

3.4 Operational Dependencies

Feature dependencies have many implications in the development of product line

assets and products as these are used to delimit the scope of the structural

variability. However, other dependencies are possible. As mentioned in [7], opera-
tional dependencies represent implicit or explicit relationships between features

that happen during the operation of the system. This kind of dependencies can be

considered as different forms of requires and excludes dependencies but associated

to runtime properties rather than to those defined statically in the feature model.

Therefore, operational dependencies delimit the scope of execution features instead

of the scope of the number and type of products; however, they can be used to

configure products with different execution capabilities.

3 Variability Scope 51



Based on a previous work [7], we describe the following six operational

dependencies1:

• Usage dependency: It represents a feature that depends on other features for the

correct system functioning. For instance, the location of certain services in a

mobile phone depends on the correct functioning of the GPS system feature.

• Modification dependency: The behaviour of a feature might be modified by

another feature while it is in activation. For instance, the feature that activates

the Anti-lock braking system (ABS) in the car depends on the features

controlling the sensors of the wheel, and the ABS feature works differently

based on the information received from the sensors.

• Activation dependency: The activation of a feature depends of another feature,

and it can be classified into the following four categories:

– Exclusive-activation dependency: This dependency refers to features that

cannot be active at the same time.

– Subordinate-activation dependency: It represents a feature that can be active

while another feature is also active.

– Concurrent-activation dependency: Two or more features that are

subordinated to an active parent feature must be also active at the same

time (i.e. concurrently).

– Sequential-activation dependency: Some subordinators of a parent feature

must be active in sequence, and the parent feature will be active after the

completion of the sequence.

The complexity of modern software systems may lead to many expected and

unexpected situations where the status and operation mode of a system may change

and more operational dependencies may arise to deal with new situations when the

environment changes.

4 Automating Variability Scoping Checking

In large variability models, where hundreds of features are required, the number of

constraints and dependencies may become unmanageable and hence, automatic

mechanisms are necessary (1) to check that the right products will be produced, and

(2) to ensure the compatibility between hundreds of constraints and dependency

rules.

The automatic analysis of feature models can be used to check the scope of the

product line products and their different configurations based on the provided

variability in order to ensure the compatibility of hundreds of product constraints.

1 In this chapter we will consider operational dependencies as part of a previous work of one of the

co-authors of this book rather than a mere reference to the related work.

52 R. Capilla



As nicely described in [8], there are different techniques that can be used to check

the consistency of dependencies in feature model. In this chapter we summarise two

representative techniques used to automate the analysis of feature models.

• Propositional logic: It uses a propositional formula consisting of a set of

primitive variables related by logical connectors aimed to constraint the values

of the variables. A feature model can be mapped as a propositional formula and

then use SAT solvers2 to determine the satisfiability of the formula expressed

using first-order logic. The formula can be specified in Conjunctive Normal

Form (CNF) and uses three logical symbols, as connectors (i.e. ¬, ∧, ∨) that are

used by most SAT solvers. Features are mapped to variables in the propositional

formula and the relationships between features are described using several

formulas and including constraints.

• Constraint programming: Is a programming paradigm where relations between

variables are stated in the form of constraints. These constraints can be described

using Constraint Satisfaction Problems (CSPs) (e.g. A or B is true) where the

values for the variables are found and all constraints are satisfied. Conversely to

propositional formulas, a CSP solver can deal with numerical values in addition

to Boolean ones. Feature models can be mapped as CSP variables with values

TRUE or FALSE, while the relationships between features are defined as

constraints. A description of the usage of CSP solvers in the automated analysis

of feature models can be found in [9].

Table 3.1 shows an example on how constraints and dependencies of a feature

model can be expressed in propositional formulas and CSP.

5 Areas of Practice

Product line scoping is a key activity for the success of the product line. In the early

stages of the SPL phases, domain scoping is sometimes perceived a fuzzy task and

difficult to carry out. Hence, one first area of practice is to define clearly the scoping

Table 3.1 Mapping features

to propositional logic and

CSP notations

Feature relationship Propositional logic CSP

OR

P ¼ (X OR Y)

P $ (X ∧ Y) If (P > 0)

Sum (X, Y)

Else

X ¼ 0, Y ¼ 0

Excludes

X excludes Y
¬ (X ∧ Y) If (X > 0)

Y ¼ 0

Requires

X requires Y
A ! B If (X > 0)

Y > 0

2A SAT solver is a software that takes as input a propositional formula and determines if the

formula is satisfiable, that is there is a variable assignment that evaluates the formula to true. Input

formulas are often specified in Conjunctive Normal Form (CNF) notation [8].

3 Variability Scope 53



activities in the SPL approach used, not only at the process level but also in

variability modelling tasks. Some well-known SPL approaches like PuLSE [10]

have a domain scoping phase (i.e. PuLSE-Eco) used to identify the scope of the

product line and determine the product line members. Other approaches (Software

Engineering Institute’s Framework for Software Product Line Practice 5.03) com-

bine economic and business reasons to establish SPL scoping activities with more

technical activities focused on production constraints.

Closer to variability management techniques, staged configuration of feature

models are used to iteratively select features in order to reduce the variability in the

feature model [11]. This technical activity can be seen as a way to reduce the scope

of the final products during product derivation. In other cases, new features can be

added to enhance the functionality of a given product (e.g. the calculator product

line incrementally adds new functionality by adding features). Using this approach,

errors can be detected easily on each stage.

Another area of practice concerns with the evolution of the current asset and

product features. If variability models become too rigid to expand the scope for new

product line members, a reorganisation of the structural variability is needed,

maybe because the variability model is unable to support runtime changes. In

more flexible approaches, where runtime variability is supported, existing features

can be modified or new ones added affecting the scope of the product line.

6 Summary

Product line scoping is an important and challenging area to determine the allowed

product configurations that will belong to the product line. As discussed in the

chapter, there are several reasons (e.g. economic, business, technical, etc.) that

justify the need for product line scoping activities at various levels of abstraction

such as domain or product scoping.

We have described the notion of variability in space to refer to the number and

type of products to be produced from a given variability model and limit the scope

of the products in the product line. FODA and their successors (i.e. extended

notations of the original FODA) or constraint programming techniques are of

common use to describe variability models and to determine the valid product

configurations.

Finally, other forms of dependencies between features highlight these

relationships from a runtime perspective rather than from the structural point of

view, as many systems that use context information requires additional capabilities

to adapt themselves to a new environment, and variability that is managed at

execution time play an important role. Hence, these new dependencies must be

3 http://www.sei.cmu.edu/productlines/frame_report/index.html.

54 R. Capilla

http://www.sei.cmu.edu/productlines/frame_report/index.html


able to address those runtime concerns among features that exploit runtime

conditions.

Figure 3.3 summarises the main reasons for SPL scoping activities and the

related techniques used to delimit the scope of variability models.

7 Outlook

Well-defined product line and variability scoping techniques are still needed.

However, feature models are widely used to describe the variability of software

systems, but other representation forms are required to accomplish the interrela-

tionships between hundreds of features. Hence, new ways to represent large

variability models and filtering techniques to describe a subset or a subsystem

containing variability are welcome. Moreover, the scalability of feature models

must be managed efficiently to expand or reduce the scope of the product line

variants and hence facilitate the evolution of the product line. New trends and

techniques in runtime variability models will help to support the dynamicity of

systems and ecosystems and represent dynamic relationships between features that

the structural variability cannot describe.

References

1. Pohl, K., Böckle, G., Van der Linden, F.: Software Product Line Engineering: Foundations,

Principles, and Techniques. Springer, Heidelberg (2005)

Business
Commercial

Economic

Technical

Advanced FM
visual

capabilities

Machine-
processable
constraints

Runtime feature
dependencies

Others

SPL scoping
processes

Variability Model

Fig. 3.3 Drivers and techniques for SPL variability scoping activities

3 Variability Scope 55



2. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product Line

Approach. Addison-Wesley, Reading, MA (2000)

3. Tekinerdogan, B., Aksit, M.: Managing variability in product line scoping using design space

models. In: Software Variability Management Workshop, Ankara, Turkey, pp. 5–12. Univer-

sity of Twentepp (2003)

4. Schmid, K.: A comprehensive product line scoping approach and its validation. In: ICSE’02,

pp. 593–610. ACM DL (2002)

5. Clements, P.: On the importance of product line scope. In: Software Product-Family Engi-

neering, 4th International Workshop, PFE 2001, Bilbao, Spain. LNCS, vol. 2290, pp. 70–78.

Springer (2001)

6. Krueger, C.: Easing the transition to software mass customization. In: Software Product-

Family Engineering, 4th International Workshop, PFE 2001, Bilbao, Spain. LNCS, vol.

2290, pp. 282–293. Springer (2001)

7. Lee, K., Kang, K.C.: Feature dependency analysis for product line component design. In: ICSR

2004. LNCS, vol. 3107, pp. 69–85. Springer (2004)

8. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years

later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

9. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: Using Java CSP Solvers in the

automated analysis of feature models. In: GTTSE 2005. LNCS, vol. 4143, pp. 399–408.

Springer (2005)

10. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud,

J.-M.: PuLSE: a methodology to develop software product lines. In: SSR 1999, pp. 122–131

(1999)

11. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In: SPLC

2004. LNCS, vol. 3154, pp. 266–283. Springer (2004)

56 R. Capilla


	Chapter 3: Variability Scope
	1 Introduction
	2 Scoping Activities
	2.1 Reasons for Scoping
	2.2 Variability in Space
	2.3 Notation for Binding Time

	3 Variability Scope
	3.1 The Graphical Limits of FODA
	3.2 Variation Points
	3.3 Variability Constraints
	3.4 Operational Dependencies

	4 Automating Variability Scoping Checking
	5 Areas of Practice
	6 Summary
	7 Outlook
	References


