
Chapter 21

Variability and Aspect Orientation

Kwanwoo Lee

What you will learn in this chapter
• The relationship between variability and aspect orientation
• How variability is realized using aspect orientation

1 Introduction

Variability is an inherent property of software product lines. In software product

line engineering, variability must be systematically described and managed

throughout all development activities. Variability in a software product line is

often analyzed and modeled in terms of features. Optional or alternative features

in a feature diagram [1, 2] represent units of variations in requirements. However,

realizing a feature may affect several parts of core assets (e.g., architectures or

implementation components) instead of being localized.

There are two reasons for this: the first reason is a unit of features does not

always correspond to that of components, i.e., the code implementing a particular

feature may be scattered across multiple components. Second, features are not

independent entities. If dependencies or interactions among features are hard-

coded in several components implementing their related features, variations of

feature dependency caused by feature variation (i.e., addition or deletion) may

cause significant changes to many components. The above reasons make it difficult

to realize the variability of a software product line in terms of features.

Aspect-oriented programming (AOP) [3] is a good candidate for handling the

crosscutting problem, as it provides effective mechanisms for encapsulating

K. Lee (*)

Department of Information Systems Engineering, Hansung University, Seongbuk-gu, Seoul,

Republic of Korea

e-mail: kwlee@hansung.ac.kr

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_21, © Springer-Verlag Berlin Heidelberg 2013

293

mailto:kwlee@hansung.ac.kr

crosscutting concerns into separate modular units called aspects. This chapter

describes how aspect orientation can help realizing variability and presents areas

of practice that are relevant to the topic with discussion of benefits and possible

problems.

2 Relationship Between Variability and Aspect Orientation

Variability identified in terms of features can be classified into two categories:

modular features and crosscutting features, depending on the impact on their

implementation.

Definition 21.1. Modular feature

A feature is modular if its implementation can be confined to a single modular

component.

Definition 21.2. Crosscutting feature

A feature is crosscutting if its implementation spans multiple modular

components.

Modular features can be implemented as modular components such as classes in

object-oriented programming. Suppose, for example, diesel and gasoline engines

are alternative features of an automobile product line. Each of them can be

implemented independently from the other. On the other hand, crosscutting features

have widespread impacts on multiple modular components. For example, safety

policies employed by automobile products can have widespread impact on multiple

control components, such as Engine, Brake, and Airbag components.

AOP supports separation of crosscutting features, whose implementation results

in modification of several modular units (e.g., classes), from features that can well

be encapsulated into modular units. This separation of concerns improves adapt-

ability and configurability of product line assets, as the concerns that affect multiple

modular units can be encapsulated into separate modular units, called aspects.

Definition 21.3. Aspect

An aspect is a separate modular unit encapsulating any crosscutting concern,

which would otherwise be scattered across multiple components.

AOP languages, such as AspectJ [3] which is an aspect-oriented extension to

Java, support the encapsulation of crosscutting features into new modular units—

the aspects—through new composition mechanisms, such as pointcut advice. The

pointcut mechanism is used to capture points where crosscutting concerns need to

be inserted. A crosscutting concern to be inserted is defined through the advice
mechanism.

Example 21.1. Aspectual implementation of a crosscutting feature

Suppose for example a simple drawing tool has a crosscutting feature, i.e.,

UpdateDisplay—the Display in the figure editor must be updated whenever the

294 K. Lee

state of each Shape instance changes. Implementing this feature in an object-

oriented style leads to scattered Display.update() calls throughout the set and

move methods of the Line and Point classes. Using AspectJ, the crosscutting

concern can be effectively modularized into a single modular unit. That is, the

DisplayUpdate aspect modularizes the scattered Display.update() calls using the

pointcut-advice mechanism of AspectJ. The pointcut ShapeUpdated (lines 2 and 3)
captures the call to methods of Shape subclasses (i.e., the Line and Point classes),
where the method name starts with “set” or is “move.” Whereas, the after advice

(lines 4–6) inserts Display.update() after the join points specified at the pointcut

ShapeUpdated.

Shape

Line Point

Display

Display
Update

-p1 : Point
-p2 : Point
+getP1() : Point
+getP2() : Point
+setP1(Point)
+setP2(Point)
+move(int,int)

-x : int
-y : int
+getX() : int
+getY() : int
+setX(int)
+setY(int)
+move(int,int)

+move (int,int)+update()

1. public aspect DisplayUpdate {

2. pointcut ShapeUpdated(Shape s):

3. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)));

4. after(Shape s): ShapeUpdated(s) {

5. Display.update(s);

6. }

7. }

Realizing crosscutting features using AOP makes it easy to trace between

features and their implementation units. If features are independent of each other,

their variations (i.e., inclusion or exclusion) do not cause problems. However, if

they are not, their variation may cause changes to the implementation or side effects

in the behavior of other features.

Definition 21.4. Operational feature dependency

Operational feature dependencies are implicitly or explicitly created

relationships between features in such a way that the behavior or implementation

of one feature affects that of other features.

Operational feature dependencies [4] have significant implications on

variability. If the code for dependencies between features is embedded into feature

implementation modules, a feature variation will affect the modules implementing

21 Variability and Aspect Orientation 295

other features. This problem, known as optional feature problem [5], mainly comes

from a lack of understanding of operational feature dependencies and scattering

dependency-related code across feature implementation modules.

Example 21.2. Operational feature dependency between ShapeColor and

UpdateDisplay
Suppose for example the optional feature ShapeColor in the figure editor

example extends the Shape class with a color attribute and corresponding getter

and setter methods. However, introducing this feature affects the existing

DisplayUpdate aspect that implements the UpdateDisplay feature to reflect the

proper update of a display when a Shape’s color changes. Line 9 indicates the code

realizing the dependency between ShapeColor andUpdateDisplay. This implies the

DisplayUpdate aspect has to be changed according to the selection of the

ShapeColor feature.

1. public aspect ShapeColor {

2. private Color Shape.color;

3. public Color Shape.getColor() {return color;}

4. public void Shape.changeColor(Color c) {color¼c;}

5. }

6. public aspect DisplayUpdate {

7. pointcut ShapeUpdated():

8. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)) ||

9. call(* Shape+.changeColor(..)));
10. after(Shape s): ShapeUpdated(s) {

11. Display.update(s);

12. }

13. }

One effective way of handling the variability issue related to operational feature

dependency is separating dependency aspects from the implementation of features.

AOP can help isolating dependency aspects between feature implementation

modules as it provides effective mechanisms for extending a noninvasive way of

crosscutting issues.

Example 21.3. Aspectual separation of the operational feature dependency

between ShapeColor and UpdateDisplay
The code snippet below shows how the operational dependency between

ShapeColor and UpdateDisplay can be separated from the DisplayUpdate aspect.

The DisplayUpdate aspect (lines 1–6) defines only the core functionality (line 4) of
the UpdateDisplay feature, which will be inserted at the join-points specified by the
abstract pointcut ShapeUpdated (line 2). The DependencyWithShapeColor aspect
(lines 7–11) defines the operational dependency between ShapeColor and

UpdateDisplay by overriding the abstract pointcut. The NoDependencyWith-
ShapeColor aspect implements the default dependency between DispayUpdate

296 K. Lee

and Shape instances. During the application engineering phase, one of the aspects

can be configured according to the selection of the ShapeColor feature.

1. public abstract aspect DisplayUpdate {

2. protected abstract pointcut ShapeUpdated(Shape s);

3. after(Shape s): ShapeUpdated(s) {

4. Display.update(s);

5. }

6. }

7. public aspect DependencyWithShapeColor extends DisplayUpdate {

8. protected pointcut ShapeUpdated(Shape s):

9. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)) ||

10. call(* Shape+.changeColor(..)));
11. }

12. public aspect NoDependencyWithShapeColor extends DisplayUpdate {

13. protected pointcut ShapeUpdated():

14. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)));

15. }

With the understanding of operational feature dependencies and AOP

mechanisms, variability of a product line can be effectively handled.

3 Recommended Areas of Practice

This section describes two practice areas applying AOP to improve feature

modularity and independence.

3.1 Modularization of Crosscutting Features

As described earlier, AOP by nature provides powerful mechanisms for

encapsulating crosscutting concerns. With the help of AOP mechanisms, crosscut-

ting features can be effectively modularized into aspectual components.

There have been several attempts to apply AOP in the development of industrial

or non-trivial problems. Alves et al. [6] apply AOP in the development of mobile

game product lines. They evaluate their approach in the context of an industrial-

strength mobile game product line. Kästner et al. [7] refactor the embedded

database system Berkeley DB into a software product line and evaluate the suit-

ability of AspectJ for modularizing feature implementations. They report several

limitations on the modularization of features when using the AspectJ language,

21 Variability and Aspect Orientation 297

such as the increasing of coupling between aspects and classes due to the strong

dependency of aspect pointcuts and implementation details of the base code. Zhang

and Jacobsen conducted aspect-oriented refactoring of CORBA implementations

[8]. Their results indicate that they were able to significantly reduce the complexity

of the CORBA architecture with negligible performance overhead.

Quality attributes are the crosscutting concerns that have application-wide

impact across modular components. Since separating and encapsulating them can

help program understanding and improve adaptability, several efforts have been

made to modularize quality attributes using AOP. Viega et al. [9] built an aspect-

oriented extension to the C programming language to separate security policies

from C programs. This approach allows developers to write the core functionality

of the application, while a security expert focuses on specifying security properties.

Szentiványi and Nadjm-Tehrani [10] proposed an approach to improve perfor-

mance of fault-tolerant services using AspectJ. In this approach, an application-

specific synchronization mechanism is defined as the separate aspects, which are

alternatives of a general synchronization mechanism directly supported by the

middleware. By using application-specific synchronization aspects, around 40 %

of original overhead caused by a general synchronization mechanism could be

reduced.

3.2 Separation of Feature Dependencies

Modularizing crosscutting features does not guarantee that feature implementation

modules are independent. The optional feature problem may occur when optional

features are not independent.

Kästner et al. [5] elaborated the impact of the optional feature problem in two

case studies (i.e., Berkely DB and FAME-DBMS) and surveyed different solutions

to the problem and their trade-offs. One effective way of handling the problem is to

remove code implementing feature dependencies from the modular

implementations of related features. The idea is to extract the code responsible

for the dependency into a separate module, called derivative module [11]. The

derivative module is included in the generation process to restore the original

behavior if and only if both original implementation modules are selected.

Lee et al. [12] also addressed the problem by separating feature dependencies

from feature implementations using AOP techniques. Specifically, they proposed

aspect-oriented implementation patterns for feature dependencies, which are

repeatable well-known patterns for the implementation of feature dependencies.

The optional feature problem is closely related to research in the field of feature

interactions [13]. Feature interactions can cause unexpected behavior when two

optional features are combined. For example, in a home integration system (HIS)

product line, the Fire Control feature opens the water main and turns sprinklers on

when a fire is detected. If the Flood Control feature, which shuts off the water main

to a home in the event of a flood, is added to the HIS with the Fire Control feature,

298 K. Lee

the Flood Control and Fire Control features may cause an undesirable side effect

(e.g., the Flood Control feature disturbs the Fire Control feature by shutting off the

water main before the fire is under control). Handling feature interactions may

cause significant changes to product line assets if interaction-related code is

scattered across many implementation modules. Therefore, interaction related

code should be separated from feature implementation for flexible feature

composition.

4 Outlook

Variability may have crosscutting concerns. This chapter explained the

relationships between variability and crosscutting concerns, and described how

variability having crosscutting concerns can be effectively modularized using

aspect-orientation mechanisms. Overall, aspect orientation becomes a valuable

instrument in modularizing crosscutting variability.

However, AOP has several limitations, some of which include pointcut fragility

and code readability. As pointed out in [7], the pointcut language of AspectJ has

language limitations, such as the statement extension problem and pointcut fragil-

ity, which constrain the identification and definition of interaction points between

class modules and aspect modules. These limitations can be alleviated by making

the interaction points explicit in an abstract way. For example, crosscutting pro-

gramming interfaces [14] can be used to clarify the separation of base and

extensions.

In addition, aspects may be too small modular units. A fine-grained fragmenta-

tion of product line assets increases the complexity of managing variability. Nev-

ertheless, substantial research addressing the above-mentioned limitations still is

necessary before this relatively new paradigm can be applied on a broad scale in

various industrial domains.

References

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain

analysis (FODA) feasibility study. Technical report, SEI, Carnegie Mellon University,

Pittsburgh, PA (1990)

2. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In: Proc.

SPLC 2004, pp. 266–283 (2004)

3. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C. Lopes, C., Loingtier, J.-M., Irwin, J.:

Aspect-oriented programming. In: Proc. ECOOP 1997, pp. 220–242 (1997)

4. Lee, K., Kang, K.C.: Feature dependency analysis for product line component design. In: Proc.

ICSR 2004, Madrid, Spain, pp. 69–85. Springer (2004)

5. Kästner, C., Apel, S., ur Rahman, S., Rosenmüller, M., Batory, D., Saake, G.: On the impact of

the optional feature problem: analysis and case studies. In: Proc. SPLC 2009, pp. 181–190

(2009)

21 Variability and Aspect Orientation 299

6. Alves, V., Matos, Jr., P., Cole, L., Borba, P., Ramalho, G.: Extracting and evolving mobile

games product lines. In: Proc. SPLC 2005, pp. 70–81 (2005)

7. Kästner, C., Apel, S., Batory, D.: A case study implementing features using AspectJ. In: Proc.

SPLC 2007, pp. 223–232 (2007)

8. Zhang, C., Jacobsen, H.-A.: Refactoring middleware with aspects. IEEE Trans. Parallel Distr.

Syst. 14(11), 1–16 (2003)

9. Viega, J., Bloch, J.T., Chandra, P.: Applying aspect-oriented programming to security. Cutter

IT Journal 14(2):31–39, February 2001

10. Szentiványi, D., Nadjm-Tehrani, S.: Aspects for improvement of performance in fault-tolerant

software. In: Proc. PRDC 2004, pp. 283–291 (2004)

11. Liu, J., Batory, D., Lengauer, C.: Feature-oriented refactoring of legacy applications. In: Proc.

ICSE 2006, pp. 112–121 (2006)

12. Lee, K., Botterweck, G., Thiel, S.: Aspectual separation of feature dependencies for flexible

feature composition. In: Proc. COMPSAC 2009, pp. 45–52 (2009)

13. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction – a critical

review and considered forecast. Comput. Netw. 41(1), 115–141 (2003)

14. William, G., Shonie, M., Sullivan, K., Song, Y., Tewari, N., Cai, Y., Rajan, H.: Modular

software design with crosscutting interfaces. IEEE Softw. 23(1), 51–60 (2006)

300 K. Lee

	Chapter 21: Variability and Aspect Orientation
	1 Introduction
	2 Relationship Between Variability and Aspect Orientation
	3 Recommended Areas of Practice
	3.1 Modularization of Crosscutting Features
	3.2 Separation of Feature Dependencies

	4 Outlook
	References

