
Chapter 15

Second-Generation Product Line Engineering:

A Case Study at General Motors

Rick Flores, Charles Krueger, and Paul Clements

What you will learn in this chapter
• An introduction to the basic concepts of the factory paradigm of product line

engineering, including feature declarations, feature profiles, shared assets,
variation points, and configurator

• The characterization of first-generation vs. second-generation product line
engineering (2GPLE)

• How 2GPLE is being applied at General Motors and why the 2GPLE concepts
have been critically important: How it has led to the creation of new roles and
responsibilities, how organizational units at different levels and in different
domain areas are cooperatively building PLE models that will all work together
to define a vehicle

1 Introduction

This chapter is the story of a product line engineering effort under way at General

Motors. The product line involves the electronic control systems placed aboard

vehicles during manufacturing. These control systems include electrical

components (sensors and actuators), electronic control units laid out in a given

topology around the car, wires and data networks to connect the components

appropriately, and the software that runs it—all loaded correctly onto each vehicle.

This story focuses on a particular set of aspects:
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• How solving this product line engineering problem requires every dimension of

what has come to be called the second-generation approach to product line

engineering.

• How a very small but consistent set of product line constructs are proving to be

adequate to provide the necessary expressive power for this product line.

• How the automation that is required to power the product line solution depends

not only on its own technical capabilities but also on vendor business

partnerships that allow it to work seamlessly with a variety of lifecycle engi-

neering tools that store artifacts in proprietary formats—artifacts that need to

have variation points injected into them.

These aspects are made compelling because of the unprecedented complexity

involved in this product line. If these solutions work here, it is unlikely they will be

found wanting anywhere else.

2 Overview of Product Line Engineering

Systems and software product line engineering, often abbreviated as product line
engineering (PLE), refers to the disciplined production of a portfolio of related

products using a shared set of assets and a common means of production. The

products in the portfolio are related by the features they have in common with each

other; the variations among the products are also expressed as variations in the

features they offer. The products can be

• Software

• Systems in which software runs or

• Non-software products that have software-representable artifacts (such as

requirements, engineering models, or development plans) associated with them

In all cases, PLE works with the “soft” artifacts associated with the products and

their production. PLE, then, includes and extends software product line

engineering.

The key strategy behind PLE is to capitalize on commonality and manage

variation in order to reduce the time, effort, cost, and complexity of creating and

maintaining a product line of similar software systems:

• Capitalize on commonality through consolidation and sharing within the asset

inputs, thereby avoiding duplication and divergence.

• Manage variation by clearly defining the variation points and decision model for

exercising the variation points, thereby making the location, rationale, and

dependencies for variation explicit.

The essence of PLE—for systems, software, and for manufacturing—is the

focus on the single system rather than the many products. The “system” in this

case consists of the production line, which enables the rapid production of any

version of any of the products in the portfolio. A production line consists of a
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collection of software assets, a set of feature profiles that define the products, and
the configurator that applies a feature profile to the assets in order to produce each

product in the portfolio. Once the production line is established, products are

instantiated rather than manually created.

PLE stands in contrast to classical product-centric development, in which each

individual product is developed and evolved independently from other products, or

(at best) starts out as a cloned copy of a similar product that is then changed to suit

the new product’s specific needs. Product-centric development takes very little

advantage of the commonalities among products in a portfolio.

3 Basic PLE Concepts: The Factory Paradigm

PLE can be described in terms of the following five concepts:

• Feature declarations are parameters that express the diversity in a product line.

Feature declarations are analogous to the choices that are available to you when

you buy a new car: Two door or four door? Sport package, luxury package, or

economy package? Moon roof? Feature declarations typically express the cus-

tomer-visible diversity among the products in a product line.

• Feature profiles are used to select and assign values to the feature declaration

parameters for the purpose of instantiating a product. A feature profile is associated

with each product and reflects the actual choices you make: Two door with sport

package but no moon roof or four door with luxury package and moon roof.

• Systems and software assets are configurable artifacts—such as models, source

code, requirements, and test cases—engineered to be shared across the product

line. They are the building blocks of the products in the product line. Assets can

be whatever assets are representable with software and either compose a product

or support the creation of a product.

• Variation points define the variations in the system and software assets used to

build products. Feature declarations are mapped to these variation points, and a

feature profile is mapped to the choices made at each variation point when

building a product.

• Configurator is the automation that takes the feature choices reflected in a

feature profile for a product and applies them to the variation points in the

assets, so as to produce instances of the assets that are the building blocks of

the product being built. It is possible to perform this step manually, but the task

quickly becomes unmanageable without an automated tool. An example of an

industry-leading configurator is Gears by BigLever Software [8], which GM

chose to power its PLE effort.

An analogy with factory-base manufacturing serves to illuminate the concepts.

Manufacturers have long used analogous engineering techniques to create a product

line of similar products using a common factory that assembles and configures parts

designed to be reused across the varying products in the product line. For example,

automotive manufacturers can now create thousands of unique variations of one car
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model using a single pool of carefully architected parts and one factory specifically

designed to configure and assemble those parts.

In PLE, the configurator is the factory and the assets represent the factory’s

supply chain. Figure 15.1 illustrates.

4 First-Generation PLE

Product line engineering now has roots that span at least five decades, going back at

least as far as Parnas’s seminal paper on product families for software in 1976 [11].

Examining the rich historical legacy of this community reveals patterns of evolu-

tion in the state of the art and practice.

“Generations” are hard to pin down precisely and do not have rigid boundaries,

but that does not prevent the concept from being useful. We can identify the Baby

Boomer, Gen-X, Gen-Y, Tween, and Millennium Generations. Fighter aircraft are

generally thought to be in their fifth generation [6] and programming languages in

their fourth or fifth (opinions vary) [21]. Current standards for mobile broadband

devices are known as 4G.

In the same spirit, we characterize some of the early and long-standing

approaches to product line engineering as first generation. First-generation PLE

(1GPLE) includes, among other things:

• A strong dichotomy between domain engineering and application engineering, or

core asset development and product development. Application engineering

Fig. 15.1 A production line. Feature profiles drive instantiation of assets’ variation points, which

are exercised by the configurator (here, Gears) to produce product-ready instances

226 R. Flores et al.



(or product development) is often said to include creating any assets used in a single

product and promoting them to core assets only if subsequently used in more.

• Explicit inclusion of non-software artifacts in the collection of core assets, but

with an unmistakable emphasis on software (under the umbrella of an all-

encompassing software architecture) as the principal kind of core asset.

• Focus on features as the language to describe a product line’s domain and a way

to discriminate products from each other.

• Acknowledgment of configuration management as an essential practice under

PLE but without a strong distinction between core asset CM and product CM.

These approaches have yielded a rich legacy of product line success, as

evidenced by a plethora of case studies [3, 4, 9, 13, 16]. The newer approaches

we describe in this chapter build on them. These newer approaches came about

because of situations where more robust methods are needed to (among other

things) deal with very large-scale product lines. “Scale” can refer to size, complex-

ity, and number in terms of products, core assets, lifecycle phases involved, and

evolutionary revisions over time.

5 Second-Generation PLE

PLE has been evolving a new set of concepts and technology that has been referred

to as second-generation product line engineering (2GPLE). This characterization
represents seen-in-practice extensions to the earlier paradigm that was centered

mainly on core asset production and product derivation.

Second-generation PLE can be said to comprise five aspects. None of these

facets of 2GPLE are incompatible with or contradict earlier approaches to software

product line engineering [4, 13, 19]—indeed, all five are mentioned as possible. The

difference is that in 2GPLE they have emerged in a central role, essential to support

large-scale practice. The five facets of 2GPLE are:

• Reliance on features as the lingua franca to express product differences in all

phases of the life cycle

• Consistent and traceable variation management in artifacts across the full engi-

neering life cycle

• A simplified configuration management model that maintains versioning of

assets, not products or asset instantiations

• Feature models with encapsulating constructs to facilitate hierarchical product

lines and cooperative feature model development across organizational

boundaries

• Industrial-strength automation

GM could not accomplish its product line engineering goals without each one of

these. We will discuss each in turn here and show how each is put into play at GM in

the second half of this chapter.
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5.1 Features as the Lingua Franca to Express Product
Differences Across the Life Cycle

The concept of a feature as applied to families of software systems is thought to date

to feature-oriented domain analysis methods, beginning with FODA [7]. In that

work, the authors adopted the definition of feature right out of an ordinary dictio-

nary: “A prominent or distinctive user-visible aspect, quality, or characteristic of a

software system or systems,” and this definition still serves us well in the 2GPLE

world. The property of being visible to the user is perhaps the central notion; the

choices a buyer can make when purchasing a new car is a helpful analogy.

Referring again to the manufacturing paradigm, the set of features to be

exhibited by the product under construction drives the manufacturing process:

The features determine which parts should be used in the product, how they should

go together, and how they should be tailored to fit the product. All of the assets that

go into building products will include variation points that will be exercised based

on the features the product under construction needs to have.

The concept of “feature” allows a consistent abstraction to be employed when

making choices from vehicle configuration all the way down to the deployment of

software components onto an electronics architecture. As we will see, GM is

elevating what they call a bill-of-features to the role of communication vehicle

between business, product marketing, and engineering units. The goal is to use this

to express and automatically derive content for vehicles in terms of desired features

and capabilities, rather than describing vehicles in terms of its bill-of-materials—

that is, its listing of parts and pieces. Although a bill-of-materials will still be

needed for manufacturing, the vision of GM’s PLE effort is that the bill-of-

materials for a vehicle’s electronics is generated from its bill-of-features.

The product line literature is rife with feature modeling languages and

constructs, few of which have seen industrial application. The GM experience is

providing a compelling argument that a very small and simple set of feature

modeling constructs suffices for describing all of the necessary feature information

for large and complex product lines.

To capture features, here is the set of feature-modeling constructs (provided by

Gears) that GM is using for its product line work. These constructs have evolved

over 10 years based on experience in ever-larger and more complex industrial

applications. The set of constructs has remained stable and small. They are:

• Feature declarations are parameters that express the diversity in the product line

for a system or subsystem. Feature declarations typically express the customer-

visible diversity among the products in a product line.

Feature declarations have types. When a feature is chosen for inclusion in a

product, it must be given a value consistent with its type. Table 15.1 shows the

feature types supported by Gears.

• Feature assertions describe constraints and dependencies among the feature

declarations. Feature assertions in Gears express REQUIRES or EXCLUDES
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relations. They express the constraint that a feature (or combination of features),

if present, either requires or excludes the presence of another feature (or combi-

nation of features). For example, an assertion could express the need for soft-

ware-actuated brakes to be present whenever the park assist option is on the

vehicle or the need for certain switches to be present if certain lights are

installed.

• Feature profiles are used to select and assign values to the feature declaration

parameters for the purpose of instantiating a product. A feature profile is

associated with a product and reflects the actual choices you make: Two door

with sport package but no moon roof or four door with luxury package and moon

roof. The values assigned in feature profiles must satisfy the constraints and

dependencies expressed by the assertions in the feature declarations.

• Assets are the abstraction for systems and software artifacts in a production line.

They are the building blocks of the products in the product line. Assets may be

requirements, architecture and design documents, source code files, calibration

sets, test cases, and so forth—artifacts from any phase of the development life

cycle.

• Variation points encapsulate the variations in the assets used to build products.

Feature declarations are mapped to these variation points, and a feature profile is

mapped to the choices made at each variation point when building a product. In

Gears, a variation point is instantiated from one or more variants, one of which

will “stand in” for the variation point when a feature profile is used to build a

product. A variant can “stand in” as is (in which case, the variation is accom-

plished by choosing which variant to use), or it can “stand in” after being

transformed by applying a match-substitution pattern expressed in the regular-

expression language of Perl. Also encapsulated within each variation point is the

logic, expressed as a sequence of rules, that maps feature values to the different

instantiations of that variation point.

There are three more Gears constructs that come into play in hierarchical product

lines; these will be discussed shortly.

Figure 15.1 illustrates how this small set of constructs give us the concept of a

production line (the part of the figure inside the red box). Assets are built and

maintained on the left; each is endowed with one or more variation points (indicated

by the gear symbol). Feature profiles determine how the assets are instantiated

Table 15.1 Gears feature types

Boolean True, false

Integer, Float Signed or unsigned numeric value

String Character string delimited by double quotes

Character Single character delimited by single quotes

Enumeration Select exactly one value from subordinate features

Set Select zero or more values from subordinate features

Record Select all values from subordinate features

Atom Named member/value of a set or enumeration
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(by exercising their variation points) to produce product-ready artifacts. Under this

paradigm, organizations become production-centric rather than product centric.

5.2 Consistent Variation Management in Artifacts Across the Full
Engineering Life Cycle

The 2GPLE paradigm treats artifacts across the full engineering life cycle as equals,

as current applications of product line engineering are demanding it.

It has long been a stated tenet of product line practice that core assets include

more than software. For example, the Software Engineering Institute’s Framework

for Product Line Practice [14] states that “architecture, requirements specifications,

testing-related artifacts, budgets, schedules, plans, and production infrastructure

can all constitute core assets.” However, a complete systems and software PLE

lifecycle solution requires more than just a statement of eligibility. It requires

consistent treatment of the artifacts’ variation points under the production infra-

structure, so that a full set of demonstrably consistent supporting artifacts can be

systematically generated for each product. The alternative, trying to translate

between the different representations and characterizations of features and

variations across the boundaries between stages in the life cycle, is untenable.

To illustrate, imagine that a requirements engineering team has embraced

a PLE requirements management technique based on tagging requirements in a

requirements database with attributes that differentiate feature variations in

requirements. Further, the design team has adopted a UML tool and has embraced

inheritance as the mechanism for managing PLE design variations. The develop-

ment team is using a FODA [7] feature model drawn in a graphical editor, plus

#ifdefs, build flags and configuration management branches to manage implemen-

tation variations. Finally, the test team has adopted clone-and-own of test plan

sections, stored in appropriately named file system directories to manage their PLE

test plan variations. Now imagine what would be needed to create a complete PLE

lifecycle solution that integrates into a larger business process model. How do the

requirements database attributes and tagged requirements relate and trace to the

subtypes and supertypes in the design models? How do these attributes and

supertypes relate and trace to the #ifdef flags, CM branches, FODA features, and

test case clone directories? Trying to translate between the different representations

and characterizations of features and variations creates dissonance at the boundaries

between stages in the life cycle.

To resolve this quagmire, a key aspect of 2GPLE is not just inclusion of non-

software artifacts, but consistent and traceable treatment.

The artifacts to support this process include requirements, system architectures

and designs, source code implementation, calibration parameters, test cases, and

documentation. Some of the documentation could be for suppliers, who will

provide some of the necessary software and hardware components. At a company
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such as GM, the long-term goal can be that all of these are endowed with variation

points, which can be exercised to correspond to feature choices.

Common representation of variation points is key to achieving traceability

from requirements to deployment. Traceability is of great concern for GM. Every

requirement needs to be traceable to one or more design elements that satisfy

that requirements, and each design element should be traceable back to one or

more requirements that it satisfies. Each design element needs to be traceable

forward to its implementation and vice versa. Each requirement needs to be

traceable to one or more test cases that validate whether or not the requirement is

satisfied in the final product. Managing all of these artifacts consistently, by tying

their variations to features, is the key to achieving this.

5.3 CM That Maintains Assets, Not Products or Asset
Instantiations

Configuration management (CM) for a product line must allow the rapid recon-

struction of any product version that may have been built using various versions of

the PLE assets and development/operating environment. This capability is essential

for rapid response to and remediation of any anomalies that arise in the field.

The most important aspect of CM in 2GPLE is that the full superset of available

PLE assets (and not the individual products or systems) are managed under CM. A

new version of a product is not derived from a previous version of the same product,

but from the shared superset of PLE assets themselves.

Contrast this to product-centric CM, illustrated in Fig. 15.2. Suppose a defect is

discovered in Product B after it has been deployed, and the defect is traced back to

product B’s requirements. The Product B team fixes the defect and redeploys. But

Product B’s requirements might have been borrowed from Product A’s

requirements, and Product N’s code might have been borrowed from (defective)

product B’s. By the time all of the potential dependencies have been run to ground

to make sure the defect is eliminated from every place it might occur in n products,
n(n � 1) interactions have occurred, for an O(n2) complexity.

By contrast, using the scheme shown in Fig. 15.1, the requirements defect will be

fixed in the asset, not the products. The affected products will be regenerated. This

is an O(n) proposition. All that is required to reconstruct any product version is to

store the temporal context for that product version. A temporal context is a vector of

assets and the version of each that was used to build a version of product.
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5.4 Product Lines Across Organizational Boundaries

For PLE to work at large organizations, it may be impractical to have a single

organizational unit tasked with the care and feeding of the shared PLE assets [17].

Certainly having one global collection of feature declarations for an entire produc-

tion line is impractical. (At GM, a single feature model for a car would comprise a

few thousand features and have to be shared among thousands of engineers.)

Further, subsystem engineers have no interest or need to see all of the feature

diversity in other subsystems. For example, engineers for an automotive transmis-

sion system do not need to see feature abstractions that capture the diversity in the

entertainment or GPS navigation system. It makes no sense to comingle them.

It makes much more sense to modularize the feature model in a way that

corresponds to the organizational structure of the enterprise. Although these

structures can change over time [5], they make an excellent starting point and let

the organization begin to adopt PLE using familiar units.

At GM, a vehicle is composed from a set of integration areas (such as safety or
human–vehicle integration), which assemble combinations of subsystems, which

are in turn composed of functional elements, which are implemented by

compositions of software components and calibrations that are loaded onto hard-

ware components arranged in one or more physical architecture topologies. At each

level in this decomposition—which is not necessarily hierarchical—engineers are

assigned responsibility for managing the artifacts and configurations at that level,

all of which are imbued with rich and numerous kinds of variation. Assembling a

vehicle from the most primitive elements would simply be intractable. By contrast,

a vehicle is more like a system of systems [10], which is managed as a product line

of product lines. At GM the nesting is at least four levels deep.

Requirements
Engineers Requirements

Engineers
Requirements

Engineers

Architects

Developers Developers Developers

Source Code
Source Code

Design
Models

Design
Models

Requirements Requirements

Test Cases
Test Cases

Architects Architects

Product A Product B Product N. . .

Test Cases

Source Code

Design
Models

Requirements

Quality
Assurance

Quality
Assurance

Quality
Assurance

Fig. 15.2 A product-centric perspective with O(n2) complexity
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Each of these units represents a domain, by which we mean a body of knowledge

[7]. Integration areas and subsystems are part of the fabric of the company. Building

a subsystem for a vehicle, or combining subsystems in an integration area, or

implementing a functional element requires specialized knowledge. In a PLE

context, that specialized knowledge becomes knowledge about the variations that

are possible, and the result is a number of product lines that each contribute

instances to the overall vehicle product line.

Because some of the domains are quite large (as are the bodies of knowledge

they embody), domains have sub-domains, and their product lines are the result of

still finer grained nested product lines. (Section 8 will show an example of this

nesting.) Features at the highest level of the hierarchy include things that vehicle

customers would resonate with, such as daytime running lights or lane keep assist,

while “features” take on a different meaning at the lower levels. Here, features

represent a variation of a lower level “product” (such as a component that

implements one of the available varieties of cruise control) being offered up to

higher level product lines. But the whole chain starts at the highest level with the

Bill-of-Features for the vehicle, each of which causes a cascade of lower level

choices to be made. At every level, the same small and elegant set of concepts

presented earlier work to capture the inherent variation. This lets engineers work

largely independently within the confines of their own organizational units and

domain expertise.

A hierarchical product line constitutes an architecture-like construct, in that

there are interfaces and relationships among the nested product lines. There is the

parent–child relationship for product lines that typically mirrors the

system–subsystem decomposition in the vehicle architecture. Product line features

can be partitioned, encapsulated, and scoped within the primary subsystems that

realize the features. Features can also be shared among product lines by establishing

an import relationship, which is crucial for establishing feature constraints and asset

variation points among interrelated subsystems (e.g., a high-end flavor of cruise

control that slows the car if there’s traffic ahead requires a flavor of the braking

system that supports braking via software command).

Gears provides three more constructs that facilitate the interfacing and coordi-

nation between levels in the hierarchical product line: mixins, matrices, and

imported production lines.

• Mixins. Although many feature declarations will fall cleanly into the realm of

one asset or another, there are many cases where a feature declaration applies to

two or more assets. For example, the automotive platform (Buick Regal? Chevy

Cruze? Cadillac CTS?) and the region for which the vehicle is being marketed

(North America? Brazil? China?) constitute features that determine how an asset

should be configured at many levels: Integration area, subsystem, functional

element, component. Rather than duplicating the same feature declaration in

multiple assets, Gears provides the mixin abstraction to allow creation of a

feature declaration in one place and then “mix it into” the feature declarations

of multiple assets, by reference.
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Mixins are more than a convenience to avoid typing of feature declarations.

They also encapsulate, in a single location, the feature profiles for the feature

declaration parameters. Having a single location for the feature profiles prevents

inconsistencies when composing assets to create a complete system.

Imagine, for example, that we need the lane-keep-assist option to be supported

by two assets. If this option were declared independently in both assets, it would

be possible to inadvertently create a system where one asset assumed that the

feature was supported and the other asset assumed it was not supported. Using

mixins, there is a single feature profile for the lane-keep-assist option that is

“mixed into” both assets. It is either true for both assets or false for both.

• Matrices. A Gears production line is the “virtual factory” that knows how to

build products by configuring assets in accordance with selected feature profiles.

To build a product, you need to tell Gears what feature profile to use for each

asset and each mixin in the production line. A matrix is a table showing the

choices to build a complete and consistent product. Each row specifies one

product. Each column specifies a choice of feature profile for a mixin or an

asset (Fig. 15.3).

A complete product instance is “actuated” by actuating every asset and nested

production line column that has an entry for that product. Each asset and nested

production line is actuated according to its cell value in the row. If an asset

imports a mixin, the mixin feature profile to be used is determined by its cell

value in that row.

Some products may not need all of the assets. For example, low-end products

in a production line may not include “luxury” assets that are aimed at high-end

products. Each matrix allows you to include or exclude individual mixins and

assets to accommodate such product diversity.

• Imported production lines. Gears allows you to create a hierarchy of production

lines by nesting one production line into another production line. In order to use

a production line as a nested production line, it must first be imported. An

imported production line will be added as a column in the matrices for the

importing production line, just like an asset or mixin. For example, engineers at

GM have defined a production line for the safety integration area. In order to

provide a safety package to a vehicle, the safety production line must include

specifically configured subsystems from a number of subsystems (such as body

and active safety), which are their own production lines. A subsystem production

line, in turn, can import production lines corresponding to functional elements,

and so forth.

Fig. 15.3 A Gears matrix, with three rows for three products. The “Global” and “Showroom”

columns show feature profile choices for mixins; the last four columns show feature profile choices

for assets.
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Hierarchical product lines are not new in the product line literature [2], but

GM is turning out to be the largest (and deepest) realization seen in practice.

Also, hierarchical product lines are not needed just because the product line is

large. We know of another product line of multi-million-line systems with

equally astronomical product variation. However, their products are structured

as a set of a dozen or so major subsystems with limited influence on each other in

terms of variation selection. That is, choosing features for one subsystem does

not have much influence on the features of the other subsystems, obviating the

need for a hierarchical production line.

5.5 Industrial-Strength Automation

The last ingredient in 2GPLE is a configurator employed to maintain configurations

and translate feature profiles into assets with their variation points exercised in

prescribed ways. The tooling needs to be able to support the construction and

management of feature models (including feature declarations, assertions, and

profiles), assets and their variation points, support hierarchical production lines,

and map from feature choices to asset instances (in Gears, this is the job of the

matrices). Further, it needs to either provide version control for the models and

artifacts or (even better) work seamlessly on top of the user’s own choice of change

management system.

A major requirement for the tooling is that it supports the specification and

selection of variation in assets and artifacts from across the entire spectrum of the

product life cycle. This means that in addition to working with open-format

artifacts, the tool will have to support variation proprietary-format artifacts such

as IBM Rational DOORS requirements modules, Microsoft Word documents, and

Excel spreadsheets, build files for Make or Ant, Rhapsody UML models, and many

more.

Gears supports these and more using bridges. A bridge is a piece of software that

“knows” the other-tool representation and presents a “product-line-aware” user

interface for that tool that allows product line engineers to insert variation points

in the artifacts maintained by that tool.

First-generation approaches always discussed the need for automation; second-

generation approaches require it, and it must interface with other system and

software engineering tools.

6 A Mega-scale Product Line at GM

General Motors is the largest automotive manufacturer in the world [1]. In 2011 it

sold over nine million vehicles, produced (with its partners) in 31 countries around

the world. That works out to over 1,000 vehicles rolling off assembly lines every
hour.
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The product line we describe is built under the Next-Generation Tools (NGT)

initiative at General Motors. GM introduced NGT to tackle the complexity brought

on by (among other things) the introduction of hybrid and alternative-fuel vehicles

and new “active safety” features that require intricate and unprecedented orchestra-

tion among vehicle subsystems. Product line engineering is a key ingredient of

NGT.

General Motors may well represent the most challenging domain in all of

product line engineering. We characterize it as mega-scale PLE due to the fact

that engineers must deal with multiple product line characteristics that measure in

the millions although, as we will see, even this term’s implied order of magnitude

fails by a wide margin to do justice to the problem space:

• The vehicles are complex. As a group, GM vehicles comprise some 300

engineered subsystems such as brakes, exterior lighting, interior lighting, entry

controls, and many more. The Chevrolet Volt runs approximately ten million

lines of code [12], which is several million more than either the Boeing 787 or

the F-35 Joint Strike Fighter 13 (Fig. 15.4).

• The variation among vehicles is enormous. GM builds over 60 models under

seven brands and divisions. The vehicles may be internal combustion, electric,

or both. Customer-visible options include everything from power windows to

“lane keep assist” (a system to help the car stay in the correct highway lane).

These options, and many dozens more, fundamentally affect the electronics and

software aboard the vehicle.

Legislation, not to mention cultural preferences, in the 150+ countries where

GM does business also imposes feature constraints. To choose one of many

dozens of examples, there are complex interactions between the vehicle’s

exterior lights (low beam headlights, high beam headlights, tail lamps, brake

lights, parking lights, daytime running lights, front fog lamps, rear fog lamps,

cornering lamps, reversing lamps, and hazard flashers) in terms of which lights

are allowed, disallowed, or required to come on with which others. The “lead me

to my car” feature makes lights come on or flash when the driver presses a button

on the key fob. Which lights come on, whether they flash or not, and how long

they stay on all are specific to the region and (of course) what exterior lights are

Fig. 15.4 Chevy Volt: Ten

million lines of code, nicely

packaged (© GM Company)
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actually on the vehicle. The electronics aboard every car has to get that behavior
right for that car.

A simple thought experiment helps to grasp the astronomical magnitude of

the variation involved. We can think of vehicle rolling off an assembly line as

the result of making a very large set of yes-or-no decisions. The set of all

possible vehicles results from all possible combinations of those yes-or-no

choices. The size of that product space is 2x, where x is the number of decisions.

If x > 260, then the product space comprises more combinations than the

number of atoms in the observable universe 21. For GM, x is in the low

thousands. (The number of variants that GM actually produces is much less

than that, obviously—a number in the low tens of thousands.)

• Feature interaction abounds. The lighting example above illustrates interactions

within a subsystem (exterior lighting), but other features require complex

interactions among completely different subsystems. For example, the presence

of “park assist” (a feature to help park the car) requires the presence of a sensor

to gauge the car’s position relative to the parking space. In some cars this will be

a sonar detector, while on others it will be a camera. Park assist also requires

brakes that accept software control, and some versions of park assist require

particular versions of steering controls. Thus, the presence of a customer-visible

feature can affect multiple subsystems, requiring communication and coordina-

tion among the subsystems on the car, and among the groups that are responsible

for the subsystems involved.

• The product line must be in lockstep with current and future model years. GM
has to plan their production years in advance. Features that won’t be in the

showroom for 3–5 years are already part of today’s engineering. And the entire

product line marches in unwavering lockstep with the calendar, fixed and

unforgiving, which defines each new model year. This means that the product

line infrastructure must support concurrent engineering streams for each of the

fixed yearly cadences, as well as concurrent development cadences for release

cycles scheduled every 6 weeks throughout the year. There may be as many as

15 active, concurrent engineering baselines that engineers must contribute to and

coordinate among.

Another thought experiment illustrates the astronomical combinatorics of the

temporal dimension. Each of the 300 or so GM subsystems will typically

undergo enhancements or fixes within ten or more cadences within a 2-year

period, resulting in 10300 possible subsystem version combinations. As with the

number of feature combinations, this also vastly exceeds the 1080 atoms in the

observable universe [18].

• Consistency and traceability across the life cycle are required. Each vehicle is

the result of an engineering process that spans requirements, design, implemen-

tation, calibration, layout and interconnection of electronic control units (ECUs),

allocation of software to the ECU network, production of a manufacturing bill-

of-materials, and testing. Each of the artifacts must be consistent with each

other, in that they must all be accurate with respect to the vehicle to which they
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apply. Further, that consistency must be demonstrable through feature interde-

pendency constraints as well as traceability among lifecycle phases.

• The organization is very large. Ultimately up to 5,000 engineers will be directly

working on artifacts that are part of the product line, some in roles newly defined

expressly to support the PLE effort.

The emergence of hybrid and alternative fuel vehicles and new active safety

features, which dramatically increase the amount of product line diversity, plus the

new economic reality in the automotive industry that leaves little margin for

technical error, drove GM to plan to overhaul its engineering tools and processes.

The result is the Next-Generation Tools (NGT) initiative.

7 GM’s Approach for Mega-scale PLE

This section describes in greater detail how GM has adopted 2GPLE as their

technical roadmap for the future.

7.1 GM’s Architectural Decomposition

GM’s architectural strategy plays a key role in how it is rolling out PLE. The

strategy is one of logical decomposition as a way to gain control over the complex-

ity of building a vehicle’s electronics and a way to allot the thousands of engineers

into organizational units with clearly scoped roles and responsibilities.

• Functional architecture. First, a vehicle consists of a number of domains. These
are “containers” for capturing the requirements necessary to describe the elec-

tronics terms applicable to an entire vehicle. Domains define areas of related

functionality. For example, Powertrain is a domain, as is HVAC (heating,

ventilation, and air conditioning).

Orthogonal to domains are integration areas. Integration areas can be thought
of knowledge areas for satisfying high-level stakeholder requirements for

vehicles. Requirements here span domains. For example, Noise and Vibration

is an integration area; it “touches” any domain that can contribute noise or

vibration to the occupants’ driving experience: Powertrain, Body, Chassis,

HVAC, and more.

GM refers to integration areas and domains together as its functional archi-
tecture. The functional architecture provides the overarching structure to host

the hierarchical PLE models. Each domain or integration area team will build the

PLE models for their area of concern in corresponding part of the functional

architecture hierarchy. Figure 15.5 illustrates.

• Implementation architecture. Domains comprise subsystems. Subsystems repre-

sent physical systems on vehicles. There are subsystems for brakes, external
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lighting, internal lighting, entry and egress, and many more. Subsystems have

their own requirements, which must permit the subsystems to play their proper

role in the domains and (in turn) integration areas that need them. Subsystem

designers in turn decompose their subsystems into functions, and functions into

functional elements, and write requirements for each. Components are units of

implementation that satisfy the requirements for functions and functional

elements. Components are arranged in a decomposition hierarchy; leaf nodes

are components; higher nodes (which are just aggregations of their descendants

in the tree) are called compositions. Components may be software components

or hardware components, depending on how the functional elements are

satisfied. GM calls this component structure (with components mapped to the

functional elements they satisfy) its implementation architecture.
• Deployment architecture. Next, the components have to be assigned a place in

the onboard electronic architecture topology. Software components need to be

assigned to an electronic control unit (ECU), and hardware components have to

be assigned a spot in the topology. The selection of a topology from a small

number available, the assignment of ECUs to spots in the topology, and the

assignment of software to ECUs all constitute what GM calls its deployment
architecture.

• Vehicle application architecture. Finally, the components need to be laid out on

a vehicle. This architecture determines where the ECUs are stationed, and the

type, position, and routing of the wire harnesses to connect the sensors,

actuators, and ECUs.

These architectures—functional, implementation, deployment, and vehicle

application—institutionalize and add structure to concepts that are deeply ingrained

in the organizational and technical fabric at GM. For instance, there are centers of

deep expertise in brakes and lighting and keyed/keyless entry systems and dozens

of other domains. As part of PLE adoption, these centers are not going to be

Fig. 15.5 Tool view of GM’s functional architecture, showing some of the integration areas and

domains
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discarded in favor of a massive reorganization involving the reorientation, reas-

signment, and retraining of some 4,000–5,000 engineers.

In order to maintain the functional architecture and its rich set of decomposition

structures, the hierarchical production line approach of 2GPLE is needed. Integra-

tion areas, domains, subsystems, and functional elements can all be represented

with their own production line, importing the production line of smaller, child units.

Software components and ECUs can be represented as assets within the production

line at the appropriate decomposition level. Across all levels, requirements, design

models, and specifications can also be represented as assets. The result is a small

and nondisruptive change from the organizational schemes that GM has employed

successfully for years.

7.2 Roles

GM’s embrace of 2GPLE has led to the creation of a few new and refined

engineering roles that have come about as a direct result of piloting their hierarchi-

cal product line. The major PLE roles and their broad responsibilities vis-a-vis

maintaining the PLE models and artifacts include:

• Feature Owner. Feature owners take ownership of GM features (customer-

visible features such as cruise control or lane keep assist or hundreds of others

that are visible and bring value to car owners). These features are, in a sense,

abstractions. They only become tangible when realized by concrete artifacts:

requirements, functions, software components, electronic control units, and

wiring. In GM’s PLE environment, each of those artifacts will also embody

variation. It is the feature owner’s job to make sure that all of those artifacts in

“supporting roles” are adequate and correctly provide the feature to GM’s

customers.

A feature owner is the main technical contact to external teams who need to

know about the feature from the point of view of assembling a vehicle from this

and other features. This engineer is the recognized expert for the functional area

regarding the feature’s required variants, the system constraints it imposes, and

how it integrates onto a vehicle platform.

• Functional Architect. This engineer owns a specific area of the functional

architecture and as such establishes ownership and boundaries between sys-

tem-level assets. Together, the functional architects maintain the functional

architecture taxonomy introduced above.

With the advent of the NGT 2GPLE effort, functional architects have taken on

a new and critical role. Together, they are the keepers and centralized owners of

all of the PLE models. Their job is to ensure that the PLE models produced

inside their assigned area by feature owners, asset owners, and others are

consistent, fit together, and represent best PLE practice.
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Functional architects are each assigned a domain, which will involve several

subsystems. As PLE practices are introduced into each domain, functional

architects will actually build the PLE models, working with feature owners

who are the subject matter experts in each area. For example, the functional

architects will mine the feature owners’ knowledge about what constitute the

features in an area, what profiles (choices of feature combinations) they should

provide, and what feature combinations require or exclude other feature

combinations. For example, the feature owner for the wipers and washers

knows that rear wipers cannot be installed on any vehicle with a rear window

that slides open; the functional architect will capture this with an “EXCLUDES”

assertion between the rear window type and the wiper/washer configuration.

Under this scheme, the feature owners remain the subject matter experts about

their features; the functional architects translate (or help the feature owners

translate) that knowledge into well-structured and consistent PLE models.

The PLE models built with Gears for each domain or subsystem take the form

of production lines that are then combined by importing them into an overarch-

ing production line for the entire vehicle, making full use of the cross-organiza-

tional, hierarchical product line aspect of 2GPLE.

• Product Line Integration Engineer. This is another new role at GM, brought

about by PLE. This engineer collaborates with Vehicle Product Teams in the

selection of a “bill-of-features” for a vehicle being planned. The product line

integration engineer also collaborates with the feature owners in the identifica-

tion of the top-level subsystem production line “products” that will be offered up

to vehicles. The vehicle team for a vehicle will need the services and advice of a

team of product line integration engineers, who together will put together the

bill-of-features for that vehicle’s electronics system. When the bill-of-features

for a vehicle is created, the product line integration engineers will be at the table.

For example, the vehicle team for the Buick Verano wants to understand what

kind of climate control options they can offer with the car (or, to put it another

way, what climate control features are eligible for the Verano’s bill-of-features,

and what the downstream implications are of each). The product line integration

engineer responsible for heating, ventilation, and air conditioning (HVAC)

systems will offer up various automatic and manual climate control systems. If

a vehicle might 1 day be powered by hybrid or next-generation energy and

propulsion systems, this might mandate another kind of HVAC system.

The vehicle teams aren’t interested in the details of the features’

implementations, but only in how the features will appear to the customer and

how they interact with each other. The product line integration engineers, then,

manage subsystem “products” that are exposed at the vehicle and bill-of-features

level.

• Asset Owner. These engineers manage various kinds of assets across their life

cycle, and establish variation points in the assets. A requirements engineer is one

kind of asset owner. Their responsibilities include migrating requirements from

legacy requirements assets (mostly Word documents) into DOORS and, along

the way, imbuing those requirements with variation points that support features.
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Asset owners, including requirements engineers, are responsible for modeling

the features that their assets make available to the consumers of those assets, and

the variations in those features. These features are often strongly suggested, if

not identified outright, in existing technical specifications. Thus, feature creation

is more of an identification and extraction process, as opposed to an invention

process. This helps things go more smoothly and predictably.

Figure 15.6 shows how these roles relate to the PLE concepts discussed

previously.

7.3 Organizational Adoption

Launching and institutionalizing [15] this approach at GM has required significant

investment over the last 2 years or more, and that investment is ongoing. There has

been a group of champions and advocates of the PLE approach throughout the

effort. Early on, they sponsored a 2-week workshop to show how the approach

(using Gears in concert with DOORS) could tame the requirements for a major

subsystem, with variations clearly identified and managed. This pilot effort pro-

duced more strong advocates and steered GM towards their current tooling

approach.

After that followed a steady series of workshops and technical meetings with

senior engineers to work out how to apply the concepts at GM; the eventual results

of these meetings include the architectures and roles described above, plus a vision

of how features could be used across all of the architectures to describe variation.

All the while, the champions practiced internal evangelizing, advocating the

approach to management and engineers alike. One-day requirement workshops

Fig. 15.6 PLE constructs and roles at GM
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were held with subsystem owners to duplicate the results of the first 2-week

workshop.

The latter part of 2011 saw the launch of a series of some two dozen Bill-of-
Features Workshops. These workshops bring together a small group of feature

owners and subsystem experts in a particular area—for example, interior lighting.

They spend a day learning the PLE approach and then actually using Gears to model

the features in their domain. An important goal is to have participants experience

the “PLE epiphany,” when they see how 2GPLE and the NGT tool suite will help

them do their jobs better.

At the start of 2012, after 2 years of establishing buy-in, GM launched a series of

training courses. The course series kicks off with a short introduction to PLE at GM

and continues with 1-day classroom courses in each of the tools and how they will

be used. In concert with the training is the establishment of resources to help

engineers once they go back to their desks: Discussion boards, FAQ lists, help

desks, and the like. The Bill-of-Features Workshops have continued, with the

features created for the domains and subsystems being used to provide a full pallet

of vehicle-level variation choices, plus create variation points in assets such as

requirements specifications. Thus, the features and profiles in the middle of

Fig. 15.6 are being used to inform the product (vehicle) assemblies at the top and

the requirements assets at the bottom. The PLE roles identified earlier are all

carrying out their respective responsibilities using features as the lingua franca
for what they do.

Answers to recurring questions are being captured and stored in a “GM PLE

Cookbook,” which will include a set of patterns and anti-patterns for good practice,

a list of FAQs, and a set of naming conventions for product line objects shared

across organizations. This will represent a trove of practical knowledge not usually

divulged in the product line literature, as well as another aid to institutionalization

at GM.

7.4 What Is the End Game?

One of GM’s senior electronics engineers characterizes the electronics division’s

job this way: “We build silver boxes,” he said, “load software in them, and wire

them together.” If they can do that correctly for every vehicle they build, their job is

done.

Whatever PLE and NGT can do to help achieve that purpose is a win for GM.

The long-term vision is to create a bill-of-features for a vehicle (which manifests as

a vehicle-level feature profile in Gears) and automatically derive as much as

feasible of the bill-of-materials for that vehicle, including requirements, designs,

models, software, calibration data, tests, documentation, allocation of software to

hardware, wiring diagrams, and so forth. That vision is years away from being

achieved.
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However, short of that, there are some intermediate steps that GM is working

towards. Examples include

• Migrating all requirements to incorporate Gears variation points that formalize

feature-based variations in the system, subsystem, and component requirements

• Generating calibration files and values that will need to be loaded onto the

electronics modules or

• Given a set of features on a car and the components that need to be onboard to

support those features, generating a list of all of the digital signals that the serial

networks will have to accommodate

Longer term goals include calculating certain additive nonfunctional properties

of the electronics, such as weight or generated heat or cost.

Even short of this capability, GM is already getting value out of their PLE efforts

even before they have started producing instantiated engineering artifacts. Just

defining an internally consistent vehicle with consistent versions of subsystems,

functional elements, components, and hardware allocations represents a very big

step in managing the complexity at hand. To be able to do this in an end-to-end

fashion under the auspices of fully interoperating tool suite is a capability not

available at GM before now. The automation—in this case, Gears—can do a

semantic check on the feature model and report anomalies, such as the fact that

this vehicle is supposed to support the lane-keep-assist feature but the instrument

cluster chosen for it doesn’t have the correct display for that feature, or the chosen

physical architecture topology cannot support the serial data communication

required.

8 Example: Daytime Running Lights

We conclude by illustrating some of the points in this chapter through an example,

which necessarily must be a small one. A daytime running light (DRL) is a “lighting
device on the front of a roadgoing motor vehicle, installed in pairs, automatically

switched on when the vehicle is moving forward, emitting white, yellow, or amber

light to increase the conspicuity of the vehicle during daylight conditions” [20].

8.1 DRL Requirements

DRLs are considered a feature at GM; they’re certainly visible to the user. But not

all cars have them. DRLs are required equipment in Canada, Norway, and Sweden,

prohibited in Japan and China and optional in the USA, Europe, Australia, and the

rest of the world. (Region of sale turns out to be a major discriminator among

features, permitting or precluding a plethora of other features.)
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In vehicles that have them, DRLs can be “implemented” by lamps dedicated to

that purpose, or by front turn signal lamps, reduced intensity low beam headlamps,

full intensity low beam headlamps, parking lamps, or a combination of parking

lamps and dedicated lamps.

Just as there are many ways to realize DRLs, there are many choices for how the

customer can turn them on and off (including none at all, leaving it up to the car to

do so automatically). There is a thicket of requirements concerning when DRLs

may, must, and may not be on. For example, in Europe, DRLs must switch off

automatically when the front fog lamps (if the car has front fog lamps) or headlamps

are switched on, except when the headlamps are “used to give intermittent luminous

warnings at short intervals”—that is, flashed.

These and other impinging factors consume page after page in the requirements

document for the exterior lighting subsystem, of which DRLs are a member. These

requirements are rife with information about what requirements apply under what

conditions and be used to identify variations in the DRL feature.

Besides being a feature by themselves, DRLs play a part in other features as

well. Some realizations of the “Lead me to my car” feature flash the DRLs when the

key fob is pressed. Police vehicles have turn-everything-on features, which include

dedicated DRLs if the car is so equipped. Cornering lamps, another feature, can

only come on under certain conditions and affect DRLs if they share output devices.

8.2 Modeling DRLs

The feature owner for DRLs is responsible for understanding how the DRL feature

is realized, the variations it includes, and any variant capabilities required because

of its appearance in other features.

Figure 15.7 shows a preliminary feature model for DRLs. The feature model

captures the output type (what lamps on the vehicle can be used), if and how DRLs

can be disabled, and how DRLs are integrated with the car’s headlamp controls turn

signals, respectively.

Fig. 15.7 Feature model for daytime running lights
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Figure 15.8 shows how the output type subfeature is expanded to take into

account all the possibilities. The output type is modeled as a set; a vehicle can

have any number of ways of realizing the DRL feature, or none at all.

However, if a vehicle realizes the DRL feature with low-intensity headlamps,

then it cannot realize it with high-intensity headlamps as well and vice versa. An

assertion captures this:

NOT DRL_Algo.DRL_OutputType >¼ {ReducedIntLBHeadLamps,
FullIntLBHeadLamps}

This says that the OutputType set cannot include both of the indicated values; in

Gears, the symbol “>¼” (when used in an expression involving sets) means “is a

superset of.”

The DRL feature owner builds these feature models in Gears, under the

conventions and standards developed by the functional architects, and in particular

the functional architect for the exterior lighting domain. He or she will also build a

matrix for the DRL feature model that specifies a small number of flavors of the

DRL feature that can be made available to Product Line Integration Engineers

working to assemble vehicles from features.

Simultaneously, requirement engineers who own the requirements for this fea-

ture work to turn the DRL requirements into a Gears asset, with variation points that

(when exercised) produce requirements that correspond to the requirements needed

for each case.

8.3 DRLs and Deployment

Those responsible for choosing a deployment architecture are another kind of

asset owner; their asset is the set of ECUs needed for the features on board, and

the variation points they can provide based on features and feature combinations

chosen. These variation points include basic network topology (currently two are

available; more may be added), how many ECUs will populate a topology, what

the choice of ECU hardware will be, and the allocation of software components

to each ECU.

Fig. 15.8 Partial expansion of the OutputType feature of DRLs

246 R. Flores et al.



8.4 DRLs and Other Features

Feature owners for other features that interact with DRLs (such as the lead-me-to-

my-car feature owner) will need to reference DRLs in their feature models and

profiles. They will coordinate with the DRL feature owner, under the auspices of

the functional architects for the including domain or domains, to make sure that the

DRL feature can be referenced, by importing the DRL domain-level mixin into

their domain production line.

Other domains than exterior lighting will need the same ways to refer to DRL in

their feature models. For instance, the switches that turn DRLs on and off are part of

the Body domain, whereas any indication that DRLs are on are part of the Displays

domain.

8.5 DRLs and the Vehicle

Finally, those defining a vehicle type and the myriad of features combinations that

GM wishes to offer with it, can do so by importing all of the domains’ and

integration areas’ production lines, adding the highest layer to the product line

hierarchy. They will also define a matrix of “products” for each vehicle, defining

combinations of features in concert with each other.

9 Outlook

The guiding PLE vision at GM is the ability to engineer vehicles—across the full

life cycle—according to a “bill-of-features” rather than the traditional “bill-of-

materials.” Although still very much a work in progress, the GM experience has

already revealed a number of lessons about mega-scale product line engineering.

First, the product line experience at General Motors can be seen as intensively

applying aspects of what has been called Second-Generation Product Line Engi-

neering. This new perspective brings the following ideas, which previous

approaches always allowed but never stressed, to the forefront:

• A focus on features as the “lingua franca” of variation and product selection; the

“bill-of-features” replaces the “bill-of-materials” as the key engineering artifact

for product derivation. At GM, functional architects and feature owners cooper-

ate to capture the features in Gears models across domains and subsystems and

integration areas. Vehicle-level engineers can choose from the profiles provided

from across the functional architecture, and asset owners design and install

variation points in their assets that are expressed in terms of those very same

features.
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• Treatment of artifacts across the entire life cycle completely consistently with

each other, and consistently with the software, as first-class components of the

product line and the derived products. At GM, requirements and calibration sets

are the near-term artifact targets, with, wiring data and source code components

on the horizon.

• An emphasis on high-quality automation at the center of a production line, to

quickly turn a bill-of-features into a set of instantiated lifecycle assets. At GM,

this automation takes the form of the Gears configurator, working at all levels of

the functional architecture and in separate groups, from vehicle-level engineers,

down through domains and subsystems, as well as assets.

• A CM and PLE approach geared to multi-baseline multiproduct management in

a way to reduce the order of complexity from O(n2) to O(n). GM has embraced

this configuration management paradigm by only managing the shared assets

and not their auto-configured instances.

• Taking multi-organizational management in stride, by providing feature model

concepts such as mixins and imported (hierarchical) production lines, to reflect

the structure of engineering activities and domain knowledge present in an ultra-

large organization. This is perhaps the most overarching aspect of the GM story.

PLE would not have worked at GM by overthrowing their longstanding multi-

level functional architecture and corresponding organizational hierarchy. Such a

radical departure from their current way of thinking about and organization to

build vehicles would probably have ruled out any attempt at a large-scale PLE

effort; the organizational change would have been too forbidding. Instead, they

are able to apply PLE at every level and in every group of their functional

architecture and make their PLE models work together using the Gears

constructs of mixins, matrices, and imported production lines.

GM’s PLE approach embodies a compelling need for each one of these

characteristics. They have embraced feature-based variation at all levels of their

product line to the extent that they are transitioning from an organization dominated

by subsystem owners to one where feature owners play the key role.

Second, the GM experience also validates that a small set of consistent concepts

is sufficient to model product lines of inordinate complexity. Features (declarations,

types, assertions, and profiles), assets (that embody features, as well as variation

points), mixins, and matrices constitute a production line, the “factory” that turns

feature choices into asset instances. Allowing production lines to import other

production lines gives us unlimited hierarchy, which can map to any organizational

structure in which specialized bodies of knowledge are encapsulated throughout, no

matter how many levels deep.

Third, one of the most important aspects of PLE and GM is the application of

consistent variation management in artifacts from all across the life cycle (the

second bullet above). In order to accomplish this, the automation engine has to

embody business partnerships with important tool vendors.

Future work involves continuing the march towards the ultimate “end game”:

Generating a complete bill-of-materials for a vehicle by startingwith its bill-of-features.
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Ultimately, GM may investigate merging PLE with product lifecycle management

(PLM), which is the technology used in vehicle manufacturing. That would

represent a convergence with repercussions across the entire manufacturing industry.
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