
Chapter 14

Variability in Power Plant Control Software

Masami Okamoto, Makoto Fujii, and Yoshihiro Matsumoto

What you will learn in this chapter
• We study how to successfully develop automatic start-and-stop control system

families for steam power plants.
• The formalization of the system semantics based on frequent field analysis

concerning operational modes, events, and other data of the operated devices.
• The basic schemes and the major features of the software product line described

in this industrial experience.
• How we evaluated the ROI of our software product line.

1 Introduction

The automatic start-up of large-scale fossil fuel-type power station from the cold

plant state until to the state where synchronization of rated generating capacity to

the power grid completes, accompanied by its shutdown, has been implemented by

TOSHIBA Corporation in 1968 at Hachinohe power station of Tohoku Electrical

Company (250 MW). This was the first automated power station in the world.

Lately, most utility companies are required to furnish electric power utility for both

base load and variable load. In daily operations of those utility companies, the

amount of generated electricity must be adjusted so as to meet variation of daily

power demands in timely manner each day. For example, the peak load within a day

reaches as much as twice the minimum load during the day.

M. Okamoto (*) • M. Fujii

Fuchu Complex, Toshiba Corporation, Fuchu-shi, Tokyo, Japan

e-mail: masami.okamoto@toshiba.co.jp; makoto2.fujii@toshiba.co.jp

Y. Matsumoto

The ASTEM Research Institute of Kyoto, Shimogyo-ku, Kyoto City, Kyoto, Japan

e-mail: yhm@mvg.biglobe.ne.jp

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_14, © Springer-Verlag Berlin Heidelberg 2013

203

mailto:masami.okamoto@toshiba.co.jp
mailto:makoto2.fujii@toshiba.co.jp
mailto:yhm@mvg.biglobe.ne.jp

To cope with those circumstances, it is required that (1) the reduction of start

time (the time span covering boiler ignition, steam-turbine acceleration, various

equipments buildup, and generator synchronization: see the lower part of Fig. 14.1),

(2) the reduction of stop time (the time span covering generator disconnection,

turbine stop, and boiler extinguishment), (3) the reduction of the number of the

operating personnel, (4) the reduction of start-up loss (the energy loss in fuel,

electrical power, and water flow spent during plant start-up), and (5) the enhance-

ment of equipment lifetime by reducing mechanical stress can be implemented.

In order to meet those requirements, an automatic plant start-and-stop control

system (hereafter called APSS system) was developed as one of the key solutions.

For putting the manufacturing of the APSS systems to commercial base, we

developed the framework, which enabled tailoring of application systems from a

variability-based software product line, called Electric Power Generation Software

Product Line (EPG-SPL) [1, 2]. This software product line realizes the customiza-

tion of variability by the interpretation of rules described with using a domain-

specific language, called Domain-Specific Language for Electric Power Generation

(DSL-EPG). EPG-SPL has been utilized by the EPG application development

teams to generate the application system for every power station that was ordered

by different electric power utility companies not only from Japan but also from

worldwide. The number of power stations built by the EPG-SPL adoptions by the

year of 2010 amounts more than 150 including up to 1,000 MW power stations.

Our accomplishment has been recognized by the participants of Software Prod-

uct Line Conference in 2007, and EPG-SPL was inducted into the Product Line Hall

of Fame of Software Engineering Institute/Carnegie Mellon University in 2008.

Air

Sea

Fuel

Air Heater

Cooling
water

G

Parallel In Increase
Power

Full Automation

BTG Automatic Start-up

P
Water

Condense
W. Clean-up

LP

Dea.

LP Heater
Clean-up

HP P

HP Heater
Clean-up

F

Ignition
Preparation

Boiler

Stack

Boiler
Ignition

Condenser. P

Start
Preparation

Turbine
Start-up

Turbine

Generator

Plant Start-up Process Flow

Filter

Fig. 14.1 Schematic illustration of power plant and plant start-up process flow

204 M. Okamoto et al.

2 Background

In the fossil fuel-type power stations, a set of boiler, steam turbine, electric power

generator, and several other subsystems are connected as shown in Fig. 14.1.

Figure 14.2 illustrates the configuration of a plant monitoring control system

(only a part is shown), which highlights the automatic control of a pump and the

valve associated with it.

The plant monitoring control system shown in Fig. 14.2 is connected in fault-

tolerance mode with a set of ten units of embedded type computers, and graphic

operators’ consoles. Each embedded computer is connected with a number of

device controllers and actuators through industrial Ethernet (100 Mbps).

The graphic operators’ console serves the following functions:

– Remote manipulation of plant control devices with using touch screen and

mouse

– Monitoring of plant status through graphic displays

– Audio–visual guidance for plant operations

– Audio–visual annunciation in case of plant abnormality

Plant
Automation

Software

WCP

APS Console

Operator Console

CRT

Controller

Pump Valve

Printer

Lamp

Buzzer / Speaker
Process Computer

Control PanelMonitoring
Software Performance

Calculation
SoftwareGraphical UI

Software
CRT Operation

Software

Fig. 14.2 Plant monitoring and control system

14 Variability in Power Plant Control Software 205

– Recording of plant events and status

– Plant performance monitoring

The major challenges that we encountered when we started APSS are

summarized in the following:

1. Complexity of plant dynamics and indeterminable plant disturbance: The

APSS’s design, devised in the 1960s, was a theory-based one, so to speak, for

example, main steam pressure value at some condition can be presumed with

using the values of fuel flow and feed water flow time. However, theory-based

presumption often failed because of the complexity of system dynamism and

external disturbance that we frequently suffer even in regular operating

conditions. In order to resolve these circumstances, we devised what we call

“man-simulation” scheme, where “man” means a plant operator, and computer

simulates operator’s behaviors in “man-simulation” scheme. The plant

operations can be interpreted as the sets of rules, where each rule defines a

relationship between a particular plant status, events, conditions, and operator’s

actions. APSS memorizes all these rules by learning operator’s behaviors. In the

execution stage, APSS monitors plant status, events, and conditions in real-time

base. Using the monitored results and the memorized rules, APSS selects one of

the operator’s behaviors that it learned previously and controls the target plant.

2. Customer’s collaboration: The collaboration by the customer, especially the

cooperative participation by the plant operators, was crucial to formally describe

operating procedures and actions at each plant start-and-stop step. In order to

establish solid bridge between plant operators and APSS developers, formal field

analysis described in Sect. 3 was conducted. The results of the field analysis

were presented with using the formal documents called “role description cards.”

The responsibility for the role description cards was shared both by the cus-

tomer, plant operators, and APSS developers. The role descriptions are

transformed to the descriptions in DSL-EPG as is described in Sect. 4.

3 Development of EPG-SPL

3.1 Field Analysis

Preceding the development of DSL-EPG, the field analysis, detailed in the follow-

ing, was conducted to classify plant properties into invariants and variants.

EPG plant is usually controlled through a central control room, where operators’

teams work on a rotating schedule. A team, in each shift, consists of one duty

supervisor, three group leaders, and several operators, organized as shown in

Fig. 14.3.

The duty supervisor monitors and supervises plant-operation processes, makes

high-level decision with regard to plant conditions, and provides direction to group

206 M. Okamoto et al.

leaders. The group leaders, each of who is responsible for a plant subsystem, check

up equipments and devices accommodated in the responsible subsystem and ask

operators to start operating steps.

3.2 SPL Approach

The field analysis for the development of DSL-EPG was made through the follow-

ing steps:

1. Developers of APSS system interviewed operators’ teams ten times, each after

plant start-up operation at the target power station, involving selected duty

supervisors, group leaders and operators, based on the operational guidance

prepared in the power utility companies. The result of each interview was

recorded in the formalized role description cards, which includes monitored

variables, plant and environmental conditions, and operational timing,

procedures, and actions that were undertaken.

2. The data collected and recorded in the formalized cards are classified according

to the roles of the supervisor, group leader, and operator, to bring out the timing

and logic charts exemplified in Figs. 14.4 and 14.5.

In the first part of Fig. 14.4, an exemplified logic diagram is shown, which is

used to identify plant master status (PMS) with the measured sensor values. In the

second part of Fig. 14.4, master control sequencers (MCS), which are produced by

the result of logical additions of one or more PMS values, are shown. For example,

MCS05 is produced by the result of logical addition of PMS001, PMS002, and

M
akin

g
 T

acit kn
o

w
led

g
e E

xp
licit

The duty supervisor

The group leaders

The operators

Fig. 14.3 Power plant operators’ team

14 Variability in Power Plant Control Software 207

PMS001 Boiler Firing

PMS003 Turbine Start
PMS004 parallel

PMS002 Steam Condition Ok

1B003 Main Steam temperature > 450 degC.
1B004 Main Steam pressure > 3.5 MPa PMS002 Steam Condition Ok

1B001 A Burner Firing ON .
1B002 B Burner Firing ON

PMS001 Boiler Firing

1T010 Turbine RPM > 20 rpm.
1T011 Turning Gear OFF

PMS003 Turbine Start

ignite inc. temp.

turbine start speed up

parallel in

1. Judging Plant Master Status (PMS)

2. Decide the combining condition of Master Control Sequencer (MCS)
MCS01 MCS02 MCS03 MCS04 MCS05

3. Instruct to Group Leader

Boiler Group

Turbine Group

Generator Group

Logical Addition

Logical Product

Logical
Complement

Fig. 14.4 Example of duty supervisor role description

1G020 Generator oil temperature normal
1G021 Generator cooling H2 normal MSD102 Generator Condition Ok

1T020 Turbine bearing oil temperature normal
1T021 Condenser vacuum normal MSD101 Turbine Condition Ok

1. Judging Multicondition Status Determiner (MSD)

2. Decide IF THEN rule on Operation Block (OB)

3. Instruct to OPERATION

MCS03 Turbine Start timing TANS

1T030 Turbine target rpm set CANS

PANSMSD101 Turbine Condition Ok
MSD102 Generator Condition Ok

WORKER ACTION : Turbine target rpm set
MESSAGE ACTION : (CRT) Turbine Start
VOICE ANNOUNCE ACTION : (VOICE) Turbine Start
LAMP ACTION : (CONSOLE) Turbine rpm display

BAD CONDITION MESSAGE : (TANS=ON and PANS =OFF) Precondition BAD
BAD COMPLETE MESSAGE : (WORKER ACTION and CANS=OFF) Complete condition BAD

OPERATION

IF THEN ELSE

TANS

CANS

PANS

PRECONDITION BAD

Logical
Addition

Logical
Product

Logical
Complement

Fig. 14.5 Example of group leader’s role description

208 M. Okamoto et al.

PMS003. In the third part of Fig. 14.4, the activities to be triggered by the respective

MCS are shown.

Each activity enclosed in a shaded box is initiated by the respective MCS. These

activities are conducted by the group leaders and operators.

The refinement of activity “turbine start,” defined in Fig. 14.4, is illustrated in

Fig. 14.5. In the first part of Fig. 14.5, it is shown that MSD101, the logical product

of 1T020, and 1T021, which are logical variables, triggers MSD101. In the second

part of Fig. 14.5, the “IF-THEN rule” that triggers OPERATION or PRECONDI-

TION BAD is illustrated. Each OPERATION is controlled by the shown logical

expression on the logical variables: TANS, CANS, and PANS (TANS corresponds

to trigger condition, CANS to post-condition, and PANS to precondition). As

shown in Fig. 14.5, OPERATION is refined into atomic actions: WORKER,

MESSAGE, VOICE ANNOUNCE, and LAMP. PRECONDITION BAD is refined

into several individual messages.

Using the duty supervisor role descriptions and group leader role descriptions

shown in Figs. 14.4 and 14.5, how to classify invariants from variants are analyzed.

The results of the analysis are summarized as follows:

1. Invariants

(a) The semantics of the EPG-SPL framework, which is described in Sect. 5

(b) The logical expression to define conditions for controlling every activities

(c) The operational semantics for APSS called SCIA, which is described in

Sect. 4

2. Variants

(a) The expressions used to identify variables in PMS, MCS, MSD, and OB

(b) The measured values to be used in the conditions defined in the logical

expressions

(c) The expressions used to identify actions

(d) The expressions used to identify messages

Each set of role descriptions is transformed to each table respectively in the way

as described below:

(a) The role descriptions of the duty supervisor shown in Fig. 14.4 are transformed

to the table called Master Control Status (MCS) and Plant Master Status (PMS).

(b) The role descriptions of group leader shown in Fig. 14.5 are transformed to the

table called Operation Block (OB) and Multicondition Status Determiner

(MSD).

(c) The role descriptions of operator, not shown in the Figs. 14.4 and 14.5, are

transformed to the table called Worker Control Driver (WCD).

14 Variability in Power Plant Control Software 209

4 APSS Framework

Status, Condition, Interaction, and Control (SCIA) is an operational semantics that

satisfies the execution of the component-based software architecture called APSS

framework shown in Fig. 14.11. The APSS framework allows building

hierarchically structured program components for implementing APSS systems.

In SCIA, the execution of every atomic component is concurrent and their coordi-

nation is expressed in terms of event-oriented architecture.

– Status is the state that is common to all plant start-up operations such as “Start

Preparation,” “Condense Water Clean-up,” “Low Pressure Heater Clean-up,”

“High Pressure Heater Clean-up,” “Ignition Preparation,” “Boiler Ignition,”

“Turbine Start-up,” “Synchronization,” and “Increase Power.”

– Condition is the logical variable defined by a logical expression that consists of

logical variables called events and logical operators. Logical composition of

atomic events, each of which denotes a deviation of input value from some

threshold values.

– Event is defined by interaction involves plant status, events, conditions, and

controls, and defines rules to activate or deactivate controls using logical

expressions that comprise status events and conditions.

– Control presents logical expressions to define preconditions, trigger conditions,

trap condition, and post-conditions that used to control corresponding actions.

Figure 14.6. illustrates an example of temporal relationship between status, trap

condition, trigger condition, precondition, post-condition, and control.

Table 14.1 illustrates an example of the semantic relationships between

conditions, variables, rules, and controls. The controller Cont.1521 can be activated

or deactivated by the result of logical conjunction between condition Cond.0311

trap

trigger

precondition

post-condition

status

control

If the trap condition becomes true,
the activity will be aborted

When the activity finishes
successfully, the post-condition
becomes true

If the timing, trigger and precondition are true, while trap condition is false,
activity can start.

Fig. 14.6 Timing chart [3]

210 M. Okamoto et al.

and Cond.0312, shown in Table 14.1. The activities to be performed by Cont.1521

are defined in Table 14.2.

DSL-EPG for the APSS system consists of the six kinds of fill-in-the-blank

formats, which are Plant Master Status (PMS), Multicondition Status Determiner

(MSD), Master Control Sequencer (MCS), Alarm Group (ALG), Operation Block

(OB), and Auxiliary Tables.

1. DSL-PMS: DSL for defining Plant Master Status (an example is shown in

Fig. 14.7): the logical tables to specify plant master status and to set system

flags such as boiler ignition, turbine start-up, synchronization, etc.

2. DSL-MCS: DSL for defining Master Control Sequencer (an example is shown in

Fig. 14.8): the decision tables that specify parameters that are used to choose

control sequence codes.

3. DSL-MSD: DSL for defining Multicondition Status Determiner (an example is

shown in Fig. 14.9): the logical tables that specify parameters used to select

processes to be activated.

4. DSL-ALG: DSL for defining Alarm Group definition: the logical tables that

specify alarming devices and how to drive those devices.

5. DSL-OB: DSL for defining Operation Block (an example is shown in

Fig. 14.10): the logical tables that are used to select the objective WCD and to

specify preconditions, post-conditions, and logical expressions.

Table 14.1 Conditions for controller initiation

Variables ID

Rules

1 2 3

Conditions Cond.0311 True False True False

Cond.0312 True False False True

Controls Cont.1521 Activates Deactivates Activates Activates

From Matsumoto 2009 [1]. ©2010 Taylor and Francis Group, LLC. With permission

Table 14.2 Definition of controller activities

Activities of: Cont.1521

Rules

1 2

Timing event (in regular

expression)

λ � e(Cond.0311 \ Cond.0312) λ � e(Cond.0311 \ Cond.0312)

Trigger event e(^L1) e(^L2)

Precondition (^V1 \ ^V2) (^V1 \ V2)

Trap (exit) condition ^(L1 \ ^L2) ^(L1 \ ^L2)

Activity a(V1) � a(^V2) a(^V1) � a(^V2)

Post-condition L1 \ ^L2 \ V1 \ ^V2 L1 \ ^L2 \ ^V1 \ ^V2

Note: X1, X2, Y1, and Y2 are exampled logical variables. a(·) represents action. For example,

a(Y1) represents action to operate Y1. e(·) represents event. For example e(X1) represents event to

be activated by X1. λ represents initiation event

From Matsumoto 2009 [1]. ©2010 Taylor and Francis Group, LLC. With permission

14 Variability in Power Plant Control Software 211

6. Auxiliary Table:

(a) I–O List: Input–Output List

(b) WCD: DSL for defining control of worker drivers

[IF]
Single Status
logic
(ANS)

[Then]
Action Block

Fig. 14.7 DSL-PMS

[IF]
Status matrix
logic

[THEN]
Trigger OB
table

Fig. 14.8 DSL-MCS

212 M. Okamoto et al.

Inside the APSS framework, seven software components (Process-scheduler,

ACP, EAC, BOC, WCP, CIS, and MAS) and three code storages (I/O-code base,

plant-code base, and worker-code base), shown in Fig. 14.11, are accommodated.

The APSS framework will be included as a constituent of the provisional machine

shown in Fig. 14.14.

The roles of those components are as follows:

– Process-scheduler: The role of Process-scheduler (PS) is the mediation between

other six framework components and the operating system. PS schedules,

monitors, and controls processes to drive processes called ACP, EAC, BOC,

WCP, CIS, and MAS.

– Contact Input Scan (CIS): Driven periodically by PS, CIS scans states of switch

contacts using the data provided by I/O-code base. Whenever any event (devia-

tion from the defined range or condition) is found, CIS sends action to EAC.

– Multiple Analog Scan (MAS): Driven periodically by PS, MAS scans states of

analog inputs using the data provided by I/O-code base. Whenever any event

(deviation from the defined range or condition) is found, MAS sends action to

EAC.

– Executive Action Control (EAC): EAC is activated periodically in the highest

priority, and receives actions sent from CIS and MAS. Accordingly, EAC

transfers to ACP, the names of the occurred actions and the identification

numbers of OB tables (OB assignment) that are related with the actions.

– Activity Control Processor (ACP): Driven by the messages from EAC, ACP

takes the codes of the assigned OB tables from the plant-code base and

interprets. As the result of interpretation, WCP or BCO is activated.

[IF]
Single Status
logic
(ANS)

[Then]
Action Block

Fig. 14.9 DSL-MSD

14 Variability in Power Plant Control Software 213

[IF]

3 Status logic

(TANS,PANS,CANS)

[Then]

Action Block

[ELSE]

Action Block

Fig. 14.10 DSL-OB

BCO

I/O list
APSS Descriptions
in DSL-EPG

Worker scripts

EPG language processor, and code generator for the APSS system

I/O-code base Plant-code base Worker-code base

ACP

EAC

WCP

CIS
MAS

A
P

S
S

 f
ra

m
ew

o
rk

Software platform

periodic read
interpret

trigger
Process-
scheduler

Fig. 14.11 APSS framework

214 M. Okamoto et al.

– Worker Control Processor (WCP): This is the process to drive various external

devices such as relays, switches, servo motors, or valve controllers. WCD

interprets the codes in the worker-code base and plant-code base assigned by

ACP and sends outputs to control external devices.

– Blocking Conditioning Output (BCO): This is the process to select and block

some outputs for the purposes of protection by interpreting the assigned

conditions from the I/O-code base and plant-code base.

In order to verify the function of APSS software, Toshiba has developed the

testing software environment shown in Fig. 14.12. The testing software environ-

ment implements the following subfunctions:

– Plant input SIMulation Program System (SIMPS): The function to apply time

sequential data to each input of APSS software.

– Output Value Monitor: The function to enable monitoring each output of APSS

software by using graphical method.

– Data Feedback Simulator: The function to simulate the feedback from output

data to input of APSS system based on the combination of software code. This

function is applied to verify the functions of some important part of the plant

such as main turbine.

These functions effectively work for verifying the APSS software functions, for

example, validity of data provided I/O-code base, activities, controlled by plant-

code base and process driven by worker-code base.

APSS framework

SIMPS Output
Value

Monitor

Data Feedback
Simulator

I/O-Code
base

Input Value Simulation

Plant-code
base

Worker-code
base

Fig. 14.12 Testing environment for APSS codes generated from DSL-EPG

14 Variability in Power Plant Control Software 215

5 Software Product Line

5.1 Product Line Scoping Supports Business Strategy [7]

The scoping [4, 5] of EPG-SPL has been decided based on the Toshiba Corporation’s

business strategy that defines market segments in the EPG world. The market

segments covered by the EPG-SPL are fossil fuel fired (coal fired, oil fired, or

liquefied natural gas fired) steam cycle, steam/gas combined-cycle and nuclear

power plants (e.g., boiling-water type) to be provided by public utility companies,

as well as by private companies. The EPG-SPL scope also includes other parameters

such as listed as follows:

1. Type of software platform

2. Type of EPG middleware

3. Type of DSL-EPG interpreter

4. Various specialties that are required depending on each market segment

5. Various specialties that are derived from the properties of customers, plant-

equipment manufacturers, and type of plant/control devices

6. Type of functionalities covered by the EPG-SPL

The functionalities covered by the EPG-SPL are plant-monitoring, plant-

performance calculation, APSS, man–machine interactions, plant-operational

graphics display. The EPG-SPL constituents are classified in accordance with

those EPG-SPL functionalities. It means that APSS is one of the EPG-SPL

constituents, and the operational semantics SCIA, described in Sect. 4, is the

semantics that specifically supports only APSS.

The model of EPG-SPL-code configuration is shown in Fig. 14.13. It comprises

four major parts: DSL-EPG-code generator, code based for the defined four market

segments, functional programs for DSL-EPG interpreter and specialties used for the

particular functionalities, and EPG middleware.

5.2 Architecture of EPG-SPL [8]

The architecture of EPG-SPL and how to use it is modeled in Fig. 14.14. The

invariants described in Sect. 3.2, e.g., the operational semantics (SCIA) for APSS,

commonly used logical expressions, and event-driven architecture, are classified in

accordance with the market segments and associated parameters, explained in

Sect. 5.1., and mounted on the repository described in the left edge of Fig. 14.14

through Meta Class format sheets. The variants described in Sect. 3.2, which are

variables in PMS, MCS, MSD, and OB, variables to identify actions, and variables

to identify messages, are input to the code generators through the DSL documents

shown in the top right corner of Fig. 14.14.

216 M. Okamoto et al.

COM.Drivers 2.0
Middlewares 3.0

RWM

Grf Interpriter 3.0
HMI Interpriter 3.1
PlantCtl.Interpriter 3.2
IO Interpriter 3.0
lication Programs

Model : Nuclear - BWR

Combined
Cycle

Fossil Fuel
(Coal)

Fossil Fuel
(Common)

Plant A

Plant C

Plant B

COM.Drivers 2.0
Middlewares 3.0

GT Life 3.2
Mnt.Mode

Grf Interpriter 3.0
HMI Interpriter 3.1
PlantCtl.Interpriter 3.2
IO Interpriter 3.0

Model : C/C - LNG

COM.Drivers 2.0
Middlewares 3.0

Coal Bunker Prg. 3.2

Grf Interpriter 3.0
HMI Interpriter 3.1
PlantCtl.Interpriter 3.2
IO Interpriter 3.0

Model : Fossil - Coal

Common

DS

Do
DS

Do
DSL

Documents

Code generation

Revision

Repository

Testing Environment

Testing

Fixing

Provisional Machine

Meta Classes

Target Plant

Other Plants

SCM System

Development

Registration

New Functional Program

Distribution

Nuclear
(BWR)

Code Generator

Configuration

Fig. 14.14 Architecture of EPG software product line

DSL-EPG Interpreter

Functional Program

EPG Middleware

Gas Turbine
Components
Lifetime Calculator

Turbine Maintenance
Mode Service

Coal Bunker
Monitor

Rod Worth
Minimizer

C
ode-base (F

ossil F
uel: C

oal)

C
ode-base (F

ossil F
uel: O

il)

C
ode-base (C

om
bined C

ycle)

C
ode-base (N

uclear P
ow

er)

Failover Controller

Transaction Controller

Communication DriverSystem Supervisor

User Process Scheduler

Monitoring Interpreter

Performance
Calculation Interpreter

APSS Interpreter

Man Machine
Interaction Interpreter

Graphic Control
Interpreter

DSL-EPG Code Generator

…

Specialities

Fig 14.13 Model of code configuration of the EPG-SPL

14 Variability in Power Plant Control Software 217

In case that we need to construct a whole set of codes to be released to a target

power plant, the plant-specific invariants defined by the meta-classes, described

using the Meta Class format sheets shown in the left-top part of Fig. 14.14, are put

into the EPG-SPL by the developers. The task called “configuration,” shown in

Fig. 14.14, selects the necessary sets of invariants, defined in the Meta Class format

sheets, from the repository, and put those invariant sets into the provisional machine

automatically. The provisional machine consists of code bases, interpreters, EPG

software framework core, platform and hardware. The interpreters can be made to

execute using all the defined variants and invariants using EPG middleware,

platform, and hardware, on the provisional machine. The codes system mounted

on the provisional machine can be tested using plant input SIMulation Program

System (SIMPS) by the human task “testing”.

In case that the codes released and deployed in the target plant should be

changed as results of maintenance, improvement or enhancement, contents of the

repository will be updated accordingly in order to match with the deployed codes

through human tasks “testing,” “fixing,” and “revision.” The fact that any revision

has been made will be announced to other plants by the human task “distribution.”

When any new invariant features are developed, those invariants can be uploaded to

the repository through human task “registration.”

6 Cost and Benefits

In order to manage and control cost and benefits during the development and

adoption of EPG-SPL, a guideline was developed [1, 2]. The guideline consists of

three kinds of tables shown in Tables 14.3, 14.4, and 14.5, namely ROI calculation

form, variable cost table, and fix cost table. Using this guideline, cost and benefits

are controlled so that shortage of return, to be entered in the bottom row of

Table 14.3, should never get into the red in each fiscal year.

The ordinal numbers shown in the top of every table identify the sequential order

of the fiscal years in the adoption stage. Usually, the corporate level of the company

defines the values such as standard interest rate (cost of capital), the tax rate, and the

depreciation. The number of shipments in fiscal year i, or n(i), means the number of

systems released and installed within this fiscal year, developed by the adoption of

EPG-SPL. The sales amount S(i) means the sum of customer’s payment within

fiscal year i.

The breakdowns of “variable cost” and “fixed cost” are listed respectively in

Tables 14.4 and 14.5. The explanations for every symbolized item are noted in the

rightmost columns.

In Table 14.4, the cost of maintenance, enhancement, and configuration

management required for running installed systems should be included in team

cost TC(i).

218 M. Okamoto et al.

The costs of activities, such as development of new items necessary to satisfy

individual customer’s requirements, development of additional assets, improve-

ment of the existing assets, and the development of sub-domain product lines,

Table 14.3 ROI calculation form

No. Item Symbol Notes

#1 Ordinal number i The “i” of the fiscal year when the product line is first

adopted is set 1

#2 Standard interest rate

(unit value)

SIR SIR is the value that is internal to the company. SIR

corresponds to the cost of capital, and its value is

defined a little higher than the cost of capital

#3 Tax rate (unit value) T –

#4 Number of shipment n(i) –

#5 Sales amount (¥) S(i) –

#6 Variable cost (¥) VC(i) The cost breakdown is shown in Table 14.4

#7 Marginal profit (¥) MP(i) MP(i) ¼ S(i) � VC(i)

#8 Fixed cost (¥) FC(i) The cost breakdown is shown in Table 14.5

#9 Profit (¥) P(i) P(i) ¼ MP(i) � FC(i)

#10 Profit after taxes (¥) PAT(i) PAT(i) ¼ P(i) * (1 � T)

#11 Depreciation (¥) DP(i) –

#12 Residual Value (¥) RV(i) –

#13 Cash in (¥) CI(i) CI(i) ¼ PAT(i) + DP(i) + RV(i)

#14 Additional investment

(for software) (¥)

IS(i) The cost breakdown is shown in Tables 14.4 and 14.5

#15 Additional investment

(for hardware) (¥)

IH(i) The cost breakdown is shown in Tables 14.4 and 14.5

#16 Cash out (¥) CO(i) CO(i) ¼ IS(i) + IH(i)

#17 Cash flow (¥) CF(i) CF(i) ¼ CI(i) � CO(i)

#18 Discount rate (unit

value)

DR(i) DR(i) ¼ 1/(1 + SIR)i

#19 Present value of cash

flow (¥)

PV(i) PV(i) ¼ CF(i) * DR(i)

#20 Shortage of Return (¥) SR(i) SR(i) ¼ (initial investment) � (sum of PV(1), . . ., and
PV(i))

From Matsumoto 2007 [2]. ©2010 IEEE. With permission

Table 14.4 Calculation of variable cost

No. Item Symbol Notes

#1 Ordinal number of fiscal year I –

#2 Cost spent for acquiring

products from outside

vendors (¥)

AC(i) –

#3 Cost spent for product

outsourcing (¥)

OC(i) –

#4 Cost spent by the domain

engineering team (¥)

TC(i) Develop additional assets, improve the existing

assets, and develop sub-domain product lines

#5 Variable cost (¥) VC(i) VC(i) ¼ AC(i) + OC(i) + TC(i)

From Matsumoto 2007 [2]. ©2010 IEEE. With permission

14 Variability in Power Plant Control Software 219

modification efforts (such as development of sub-domain EPG-SPL, and modifica-

tion of EPG-SPL adoption programs) should also be included in TC(i).

In Table 14.5, the organizational costs necessary for keeping the fixed activities

and tasks, such as the ones conducted by the fixed organizational elements should

be included in department expense DX(i).

Using VC(i) and FC(i) calculated in Tables 14.4 and 14.5, the shortage of the

return SR(i) should be calculated using the equation in the bottom row of

Table 14.3. This value suggests the residual return that should be recovered by

the cash flows in the residual years.

The guide addresses the following processes:

1. Time scale: The length of EPG-SPL life and the time span necessary for

conducting each stage should be estimated at the beginning of or in the early

stage of development. At every fiscal year in the adoption stage, its ordinal

number starting from the first year should be identified and entered in the row #1

of the tables.

2. PV calculation: The expected cash flows which could be obtained at every fiscal

year in the adoptions stage should be predicted at the end of development stage

at the row #19 of Table 14.3. And NPV (accumulation of the PVs) should be

calculated and used for getting SR(i) at the row #20 of Table 14.3.

3. Cost control in adoption stage: The cost limit for conducting adoption stage

could be determined using the calculated SR(i) described in item (2), so that the

cost limit should not exceed the NPV. The adoption stage should be managed

and controlled so that the actual cost should be less than the cost limit.

4. Renewal of SPL generation: If it becomes clear that the shortage of return will

not to be recovered within the predetermined EPG-SPL lifetime, EPG-SPL

adoption plan should be modified and improved totally. In our case, such an

overall improvement was made in 1982, 1988, 1993, and 1996, as is described

by Matsumoto 2007 [2].

7 Conclusion

In this chapter, major features of APSS system and the software family, including

DSL-EPG, its processor and EPG-SPL, which supports automatic code generation

for each APSS application, are introduced. The sets of rules for operating the plant,

Table 14.5 Calculation of fixed cost

No. Item Symbol Notes

#1 Depreciation (¥) DP(i) –

#2 Personnel cost (¥) PC(i) –

#3 Operative overheads (¥) OO(i) –

#4 Department expense (¥) DX(i) –

#5 Fixed cost (¥) FC(i) FC(i) ¼ DP(i) + PC(i) + OO(i) + DX(i)

From Matsumoto 2007 [2]. ©2010 IEEE. With permission

220 M. Okamoto et al.

where each rule defines a relationship between plant status, events, conditions, and

operator’s actions, are defined in the collaborative work participated by customers,

plant operators, and APSS developers. The variants included in each rules can be

specified, and described with using DSL-EPG. The DSL-EPG processor analyzes

those descriptions to generate application codes [9]. The paper also illustrates how

EPG-SPL, which comprises APSS, is structured and maintained from the viewpoint

of cost and benefit.

The text of this paper was mostly produced by the third author, one of the

original creators of the system covered by this paper, and was compiled with the

figures, tables and references by the first and second authors.

References

1. Matsumoto, Y.: Management and financial controls of a software product line adoption. In:

Kang, K.C., et al. (eds.) Applied Software Product Line Engineering, pp. 399–419. CRC Press,

Taylor Francis Group, Boca Raton, FL. 33497–2742 (2009)

2. Matsumoto, Y.: A guide for management and financial controls of product lines. In: Proceedings

of IEEE 11th International Software Product Line Conference, pp. 163–170 (2007)

3. Matsumoto, Y.: A method of software requirements definition in process control. In:

Proceedings of COMPSAC77, pp. 128–132 (1977)

4. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,

Reading, MA (2002)

5. Czarnecki, K., Eisennecker, U.W.: Generative Programming: Methods, Tools, and

Applications. Addison-Wesley, New York (2000)

6. IEEE Std 828-1988, IEEE Standard for Software Configuration Management Plans. Software

Engineering Standards Committee of the IEEE Computer Society (1998)

7. ISO/IEC DIS 26551, Software and systems engineering – Tools and methods for product line

requirements engineering. International Organization for Standardization/International

Electrotechnical Commission (2012)

8. ISO/IEC DIS 26555, Software and systems engineering – Tools and methods for product line

technicalmanagement. InternationalOrganization for Standardization/International Electrotechnical

Commission (2012)

9. Matsumoto, Y.: Mapping Dynamic Software Product Line Properties to the Current Toshiba

Software Product Line for Electric Power Generation, http://www5d.biglobe.ne.jp/~y-h-m/

Mapping_DSPL_Properties.pdf

14 Variability in Power Plant Control Software 221

http://www5d.biglobe.ne.jp/~y-h-m/Mapping_DSPL_Properties.pdf
http://www5d.biglobe.ne.jp/~y-h-m/Mapping_DSPL_Properties.pdf

	Chapter 14: Variability in Power Plant Control Software
	1 Introduction
	2 Background
	3 Development of EPG-SPL
	3.1 Field Analysis
	3.2 SPL Approach

	4 APSS Framework
	5 Software Product Line
	5.1 Product Line Scoping Supports Business Strategy [7]
	5.2 Architecture of EPG-SPL [8]

	6 Cost and Benefits
	7 Conclusion
	References

