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Preface

There are several books on product line engineering, but most of these books either
introduce specific product line techniques or include brief summaries of industrial
cases or researches. From these sources, it is difficult to gain a comprehensive
understanding of the various dimensions and aspects of software variability that
product line engineering practitioners and researchers must understand. The book
aims to address this gap by providing a comprehensive reference on the notion of
variability modeling in the context of software product line engineering, to give an
overview of the techniques proposed for variability modeling, and to give a general
perspective on software variability management. We believe that practitioners as
well as researchers and computer science students will gain a new insight into
software, software engineering, and variability in product line engineering.

The most important attribute of software is the “softness” of software, i.e., software
that is easy (cost-effective) to modify and adapt to evolving requirements or changing
operating environments, easy to port on different hardware or software platforms, and
easy to reuse for development of similar applications. The “softness” of software
cannot be attained without engineering it into software. In order to “embed” softness
into software, we need to understand the “space” of the commonality and variability of
a family of related systems (i.e., a product line) and its evolution, and then organize and
codify the knowledge gathered as a commonality and variability model. With this
understanding, we can engineer software applying various design principles and
embedding variation points that can later be bound with variants.

Once the initial variability of a software product line has been established and
implemented, the focus shifts towards evolution of the provided variability in
response to changes in the variability required from the software product line. Over
time, new products are added to a product line, old products are removed, and the
functionality that used to be highly differentiating and only used in the high-end
products of the product line commodities is included in all products, removing the
need for variation points. Thus, during evolution, the focus of variability management
is as much on removing unnecessary variability as it is on adding new variation points
in response to new needs. The focus on removing variability is important as the
complexity of hundreds or thousands of variation points can easily become unwieldy.
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One aspect contributing to the complexity of software variability management is
the dependencies between variation points and between the variants available at
each variation point. Where industrial software product lines frequently hold well
over 1,000 variation points, the total number of variants is even larger. The variants
cannot be freely selected independent of all other selected variants, but instead there
are dependencies that need to be respected. This leads to a situation where the
number of variation points is over a thousand, the number of variants a multiple of
that, and the number of dependencies between variants and between variation
points is of a similar or larger number. This explains the importance of intentional
management of software variability: even though the inherent complexity of
variability is already quite high, the total complexity easily becomes unmanageable
if not kept under control.

A final factor increasing the importance of software variability is concerned with
later binding of software variation points. Traditional pre-deployment configuration
of products allows for testing of the specific configuration as a safety net for
avoiding inconsistent configurations. However, run-time dynamicity is increasing
in importance for virtually all software-intensive systems. In those situations,
testing of the resulting configuration after a run-time change is complicated and
often only the most basic of system integrity is verified. The trend towards late
binding is indicative of the importance of software variability management even
outside the traditional area of software product lines and is now becoming impor-
tant for large software products that have significant installation time, startup time,
and run-time configuration taking place. Consequently, proper management of
variability avoiding inconsistent configurations at run-time through the use of
first-class models is particularly important.

Above, we have raised four reasons to stress the importance of software
variability management, i.e., modeling multiple products in a product line, evolu-
tion, complexity, and the shift towards later, even run-time, binding of variation
points. As is illustrated in the industrial experiences part of the book, there are no
theoretical problems without any bearing on industrial practice, but rather
challenges originating in industrial practice that the software engineering research
community has responded to. In our experience, mature software product lines may
have ten thousand variation points or more and the number of legal configurations
of products in the product line may number in the millions. Also, in our writing of
the book and the interaction with contributing authors, we are increasingly becom-
ing convinced that software variability management is evolving into a field of its
own, rather than a subfield of software product lines. In all systems where configu-
ration and run-time dynamism are important, software variability management
offers a powerful toolbox to deal with the resulting complexity, independent of
the system being part of a software product line or not.

From a software engineering research perspective, software variability manage-
ment represents a complex, multifaceted problem that intersects with several
traditional topics, including, among several others, software configuration manage-
ment, run-time dynamism, domain specific languages, modeling, and software
architecture. The field has borrowed techniques from these traditional fields, but
in return also contributes back with new insights, approaches, and techniques.
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The book is organized in four main parts which guide the reader into the various
aspects and dimensions on software variability. Each chapter briefly summarizes
“What you will learn in this chapter”; so expert and non-expert? Readers can easily
locate what topics they will find, but it also describes areas of practice for the
applicability of the concepts explained.

In Part I, we intentionally drive the reader to the major topics on software
variability modeling, but as we do not have a specific chapter for variability
management, the chapters included in this part should be seen as different sides
of the management perspective. First, we introduce the paradigm of software
product line engineering in Chap. 1, where Product Line Engineering is compared
with traditional Software Engineering and the role of software variability manage-
ment is highlighted for the current practice of product lines. We then explore
various dimensions of commonality and variability (C&V) in Chaps. 2 and 3,
separating C&V modeling into problem and solution space modeling, and
constraints specification. Managing traceability between various C&V models
and the notion of variability in time and space is also discussed. The dimension
of feature binding time, the implications of deciding a specific binding time, and its
importance for the software development life cycle are discussed in Chap. 4, which
also provides a renewed taxonomy of different binding times. Chapters 5 and 6
describe ways to implement and configure software variability. In Chap. 5 we
outline from a high-level perspective various mechanisms for implementing soft-
ware variability, and how variability implementation mechanisms affect the archi-
tecture, components, and code levels. We did not go into the specific
implementation details as many of the mechanisms described in the chapter depend
on the programming language selected. Once product line variability is embedded
into the product line asset (code) using various mechanisms, we should be able to
configure products from the asset. Chap. 6 focuses on processes of product deriva-
tion activities for pre- and post-deployment times, with special mention of the
configuration tasks of software products at run-time and reconfiguration activities.
Because of the complexity of C&V models and complex interrelationships among
them, visualizing the relationships between modeling elements is useful and
enhances understandability and maintainability. Techniques for visualization are
discussed in Chap. 7. Finally, we conclude this part of the book in Chap. 8 with a
description on how different life-cycle products are related to each other in terms of
variability when feature models are considered a first-class artifact for any product
line engineering process.

Part II of the book describes an overview of research and commercial tools, from
Chaps. 9-12. Three research tools, COVAMOF, PLUM, and FaMa, address differ-
ent aspects of variability management as they provide automatic support for
managing, configuring, and testing feature models with other related software
artifacts. The commercial tool pure::variants is a variability management suite
that evolves from the original FODA feature model to support the problem and
solution spaces for describing variant configurations.
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Part III shows the most practical viewpoint of the book as we collect three
different industry cases on how variability is managed in real industry projects.
Chapter 13 provides the view of Philips Healthcare Systems where product line
engineering is used extensively to manage the complexity and the diversity of the
Philips systems that rely on C&V and configuration properties of the Philips
Software Product Line (SPL). In Chap. 14 Toshiba researchers use a product line
strategy to describe the variability in power plants software for managing an
automatic control system where complex rules model the relationships between
events, conditions, and actions. Chapter 15 from BigLever Software focuses on
Second Generation Product Line Engineering (2GPLE) activities and tools and
applied to an industrial case at General Motors. In this chapter we can discover the
differences between traditional SPLE activities (first generation) and those
suggested for a second generation (2GPLE), where variability is described and
managed consitently and traceable across the full engineering life cycle and con-
figuration management is simplified.

Part IV concludes the book and encompasses six different chapters focused on
emerging topics about software variability that, currently, are under research. The
diversity of topics include dynamic software product lines, variability in autonomic
computing and web services, the relationship and role of variability in service-
oriented product lines, the impact and use of design decisions in conjunction with
variability models, and finally, how variability is realized using aspect orientation.
We believe that there are more interesting research topics that can be discussed with
more detail, but this part of the book provides and suggests the readers current and
future trends where variability can be applied to manage the diversity of products in
different types of systems or how other software engineering techniques can be also
applied with variability models and vice versa.

As authors and editors, we feel that the book presents an important contribution
both to the industrial practice of software product lines and software engineering
more broadly and to the software engineering research community. We have strived
to capture the current state of the art and state of practice in the chapters and to
indicate important, open research challenges as well as pitfalls for industrial
practitioners to be aware of. We hope that the book can serve as a platform for
the community of researchers and practitioners in software variability management,
allowing the community to develop the next set of solutions, techniques, and
methods to address this complicated and yet fascinating field in software
engineering.

Madrid, Spain Rafael Capilla
Gothenburg, Sweden Jan Bosch
Pohang, Republic of Korea Kyo-Chul Kang

January 2013
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Variability Management



Chapter 1
Software Product Line Engineering

Jan Bosch

What you will learn in this chapter
e Software product lines

1 Introduction

The competitive landscape of software-intensive companies is changing and
intensifying rapidly. The size and complexity of systems is increasing while the
speed of innovation is accelerating at the same time. In addition, the balance of
power is increasingly shifting to the customer and the ability of the customer to
demand products that specifically address that segment or, as an extreme case,
customer-specific adaptations to the products. This has lead to a situation where
many companies are stuck in a fire-fighting mode where the cost of developing new
products increases constantly due to increased size and complexity while, on the
other hand, the number of products and customer-specific adaptations required
increases constantly. This puts an unwieldy strain on the R&D organization, and
over time, this causes the competitive position of the company to deteriorate, as it is
unable to innovate in its product portfolio and processes due to the singular focus on
short-term deliverables for customers.

The forces described above are of course not unique or new in their generic form.
However, over the last decade, many industries have reached a threshold where just
improving existing R&D practices no longer allows the company to maintain its
competitive position. As it becomes increasingly obvious that just “working harder”
is not going to deliver the desired results, organizations reach a point where new

J. Bosch (<)
Chalmers University of Technology, Gothenburg, Sweden
e-mail: jan@janbosch.com

R. Capilla et al. (eds.), Systems and Software Variability Management, 3
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4 J. Bosch

ways need to be found to instead work smarter, i.e., find new ways of working
where the diverse demands on the company can be met more easily.

Over the last decade, many companies have found the notion of software product
lines to provide a set of work practices that allows them to drastically increase the
amount of R&D resources that focused on highly differentiating functionality and,
consequently, decreasing the investment in commoditized functionality. Software
product lines allow a family of products to share a common core, the platform,
while allowing for product-specific functionality being built on top of the platform.

Successful introduction of a software product line provides a significant oppor-
tunity for a company to improve its competitive position, but of course it is no
panacea. In several companies that we studied, the initially successful adoption of a
software product line eroded over time, and the benefits started to decrease and in
some cases turned into liabilities. When studying this development at several
companies, we identified that the lack of systematic software variability manage-
ment was the root cause for most of the identified problems. This insight lead to the
book that you are now reading: systematically managing the required and provided
variability in a software product line is critical to maintain the competitive advan-
tage that software product lines provide. In addition, it prepares the company and its
product line for the next stage in its evolution, such as the introduction of a software
ecosystem around a successful product line [1].

The remainder of this chapter is organized as follows. The next section is
concerned with introducing the basic concepts that constitute a software product
line. Then, we present an overview of the key challenges that we see in companies
that initially successfully deployed software product lines develop over time. The
subsequent section then analyses these challenges and introduces the notion of
software variability in the context of software product lines. Finally, Sect. 5
provides a summary of the discussion in this chapter and presents an outlook of
the remainder of the book.

2 Software Product Lines

Software product lines are concerned with sharing common functionality within a
family of products. Earlier approaches to software reuse had a tendency to focus
only on the technology aspects of reusing software assets and occasionally included
some process aspects. The key success factor of software product lines is that it
addresses business, architecture, process and organizational aspects of effectively
sharing software assets within a portfolio of products. This is sometimes referred to
as the BAPO model [4].

In the sections below, we introduce the software product line concept using the
BAPO model.
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2.1 Business and Strategy

The decision to introduce a new software product line is, obviously, a strategic
business decision. The company, either proactively and offensively or reactively as
a defensive strategy, adopts a product line approach. Although every company, and
consequently its strategy, is unique, one can identify a number of common reasons
for deciding on the introduction of software product line. The exact implementation
is based on the key drivers in the industry segment that the company is active in.
Below we present four typical strategic goals that an organization may have to
introduce a product line:

Product portfolio diversity: The first and perhaps most common reason for
introducing a software product line is to be able to offer a much broader and
richer product portfolio against the same R&D investment. Especially in the case
where the market currently served by a small number of independently devel-
oped products can be much more effectively monetized by offering more
products serving smaller customer segments more accurately, the introduction
of the product line allows for effective sharing of functionality needed by all
products while allowing for product-specific functionality being built on top to
serve the specific market segment.

Common user experience for products in the portfolio: A quite common, but less
publicized, alternative reason for introducing a software product line is to share
one major subsystem between the products in the portfolio. A typical example is
to share the UI framework and the generic menu structure and use cases between
the products. This allows for a common look and feel across the product
portfolio allowing for higher productivity of users that use different devices
from the same manufacturer.

More customizable customer products: In some cases, the company is eager to
present the market with only one or a small number of products. However, in
order to serve the needs of all customers, the product needs to contain significant
amounts of variability. In this case, the company can internally use a software
product line approach and use automated configuration as a mechanism for
providing each customer with a possibly unique configuration and version of
the product.

Higher-quality products due to reliable shared core: Especially in markets
where product quality is a major issue, creating the products from shared
components and based on a common architecture is a cost-effective mechanism
for increasing quality. As the architecture and shared components are used in
several products and configurations, their quality increases over time.

Although the above items provide the strategic arguments for introducing a

software product line, there are some advantages that are often ignored in the initial
decision process, but then recognized as important once the product line is in place.

Improvements become available for all products at once: For new requirements
that need to be implemented in all products, one of the major advantages of
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software product lines is that once the new requirement is implemented in the
shared assets, it automatically becomes available for all products in the product
line. Especially in industries where regulation, protocols, or other cross cutting
requirements are common, this can provide a significant advantage.

o Improved productivity due to specialization of teams: Assuming R&D in the
organization is organized using component teams, the adoption of a software
product line can result in improved productivity as teams associated with a
shared component build up domain knowledge to an earlier unachievable level.

» Low opportunity cost of new product experiments: Software engineering often
focuses on efficiency, but of course the key success factor for any organization is
its ability to innovate. Successful innovation systems allow for promising ideas
to surface and then test these ideas with customers against the lowest possible
R&D investment. In the case of a software product line, the cost associated with
creating a new (prototype) product for testing with customers is much lower as
most of the required functionality is already available in the shared assets. This
will cause the company to run more new product experiments, resulting, over
time, in a more innovative and faster growing company.

Although engineers tend to focus on the efficiency aspects of software product
lines, the above clearly illustrates the relevance of the technology from a business
and strategy perspective. Both from the perspective of creating a competitive
differentiating position for the company as well as becoming more innovative,
software product lines, when deployed well, can provide a significant advantage.

2.2 Architecture and Technology

The second aspect of software product lines is the architecture and technology
choices underlying the software product line. There are several dimensions to be
considered, but the first is the scope of the shared assets in the product line versus
the amount of functionality covered in product-specific code. As illustrated in
Fig. 1.1, we can identify a typical evolution path for a product line from this
perspective. The model uses four stages:

e Standardized infrastructure: Starting from a set of independent products, the
first step for an organization is to standardize on the software acquired exter-
nally. Typically, these software components are infrastructural in nature.
Standardizing the infrastructure and having each product build on the same set
of components can achieve significant benefits.

e Platform: The second stage is the formation of a platform on top of the infra-
structure. An overloaded term, the platform refers here to a layer of functionality
that is common to all products within the product line. In this stage, software
variability often is a limited concern, as all products need the same functionality.

e Software product line: Once the value of sharing software between products is
established, there will be a tendency to put more functionality in the shared
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Fig. 1.1 Evolution of a software product line

components. At this stage, also functionality that is used by a subset of the
products is put in the product line. Consequently, software variability manage-
ment, the topic of this book, starts to become a significant concern.

e Configurable product base: The most advanced stage is where a complete set of
products can be automatically derived from the common asset base. There is no
need anymore for product-specific development teams, as the products can be
derived automatically.

There are additional paths outlined in Fig. 1.1 on how a product line might
evolve. These are, however, not discussed in the chapter. Instead, we refer to [2] for
more details.

2.3 Process and Tools

Similar to the business and architecture approaches evolving through different
levels, also an organization’s approach to the development process tends to evolve
over time. Although there are top-down, metric-centric approaches to software
process, such as CMMI [3], a more fruitful way to describe process is by focusing
on the way individual teams can release their software to the product line.
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The release process drives virtually all earlier steps in the process and will, to a
large extent, decide on the amount of coupling and, consequently, the coordination
required between different teams involved in the software product line. We identify
five levels of decoupling between teams in the software product line organization
that we describe below.

2.3.1 Integration-Centric Development

Many, if not most, software development companies apply an integration-centric
approach, in which the organization relies on the integration phase of the software
development lifecycle. During the early stages of the lifecycle, there is allocation of
requirements to the components. During the development phase, teams associated
with each component implement the requirements allocated to the component.
When the development of the components making up the system is finalized, the
development enters the integration phase, in which the components are integrated
into the overall system and system-level testing takes place. During this stage,
typically, many integration problems are found that need to be resolved by the
component teams.

If the component teams have not tested their components together during the
development phase, this phase may also uncover large numbers of problems that
require analysis, allocation to component teams, coordination between teams, and
requiring continuous retesting of all functionality as fixing one problem may
introduce others.

In response to the challenges discussed above, component teams often resort to
sharing versions of their software even though it is under development. Although
this offers a means of simplifying the integration phase, the challenge is that the
untested nature of the components being shared between component teams causes
significant inefficiency that could have been avoided if only more mature software
assets would be shared. One approach discussed frequently in this context is
continuous integration, but in our experience this often addresses the symptoms
but not the root causes of the lack of decoupling.

Although most organizations employing this approach utilize techniques like
continuous integration and inter-team sharing of code that is under development,
the process tends to be organized around the integration phase. This often means a
significant peak in terms of work hours and overtime during the weeks or some-
times months leading up to the next release of the product line and the products that
are part of it.

A challenge that often occurs in this context is lockstep evolution. When the
system or platform can only evolve in a lockstep fashion, this is often caused by
evolution of one asset having unpredictable effects on other, dependent assets. In
the worst case, with the increasing amount of functionality in the assets, the cycle
time at which the whole system is able to iterate may easily lengthen to the point
where the product or platform turns from a competitive advantage to a liability. The
root cause of the problem is the selection of interface techniques that do not
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sufficiently decouple components from each other. APIs may expose the internal
design of the component or be too detailed that causes many change scenarios to
require changes to the API as well.

Although the integration-oriented approach has its disadvantages, as discussed
above, it is the approach of choice when two preconditions are met. First, if
conditions exist that require a very deep integration between the components of a
system or a family of systems, e.g., due to severe resource constraints or challeng-
ing quality requirements, the integration-oriented approach is, de facto, the only
viable option. Second, if the release cycle of a system or family of systems is long,
e.g., 12-18 months, the amount of calendar time associated with the integration
phase is acceptable.

2.3.2 Release Groupings

In this approach, the development organization aims to break the system into
groups of components that are pre-integrated, i.e., a release group, whereas the
composition of the different release groups is performed using high decoupling
techniques such as SOA-style (service-oriented-architecture) interfaces. At the
level of a release group, the integration-centric approach is applied, whereas at
the inter-release group level coordination of development is achieved using peri-
odic releases of all release groups in the stack.

The process is now also different between the release groupings, but the same as
the previously discussed approach within the release grouping. The decoupling
allows the release groupings to be composed, with relatively few issues. This is
often achieved by more upfront work to design and publish the interface of each
release group before the start of the development cycle.

In some of the cases that we studied, the organization failed to realize that
processes needed to vary between and inside release groupings. This lead to several
consequences, including features that cross release groupings tend to be
underspecified before the start of development and need to be “worked out” during
the development by close interaction between the involved teams. This defeats the
purpose of release groupings and causes significant inefficiency in development.

The release grouping approach is particularly useful in situations where teams
responsible for different subsets of components are geographically dispersed.
Aligning release groupings with location is, in that case, an effective approach to
decreasing the inefficiencies associated with coordination over sites and time zones.
A second context is where the architecture covers a number of application domains
that require high integration within the application domain, but much less integra-
tion between application domains. For instance, a system consisting of video
processing and video storage functionality may require high integration between
the video processing components, but a relatively simple interface between the
storage on processing parts of the system. In this case, making each domain a
release grouping is a good design decision.
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2.3.3 Release Trains

In release trains, the decoupling is extended from groups of components to every
component in the system. All interfaces between components are decoupled to the
extent possible, and each component team can by and large work independently
during each iteration. The key coordination mechanism between the teams is an
engineering heartbeat that is common for the whole R&D organization. With each
iteration, e.g., every month, a release train leaves with the latest releases of all
production-quality components on the train. If a team is not able to finalize
development and validation of its component, the release management team does
not accept the component. Once the release team has collected all components that
passed the component quality gates, the next step is to build all the integrations for
the software product line. For those components that did not pass the component
quality gates, the last validated version is used. The integration validation phase has
two stages. During the first stage, each new release of each component is validated
in a configuration consisting of the last verified versions of all other components.
Component that do not pass this stage are excluded from the train. During the
second stage, the new versions of all components that passed the first stage are
integrated with the last verified versions of all other components, and integration
testing is performed for each of the configurations that are part of the product
family. In the case where integration problems are found during this stage, the
components at fault are removed from the release train. The release train approach
concludes each iteration with a validated configuration of components, even though
in the process a subset of the planned features may have been withdrawn due to
integration issues between components. The release train approach provides an
excellent mechanism for organizational decoupling by providing a heartbeat to the
engineering system that allows teams to synchronize on a frequent basis while
working independently during the iterations.

The key process challenges are the predevelopment cycle work around interface
specification and content commitment and the process around the acceptance or
rejection of components at the end of the cycle. In addition, especially when the
organization uses agile development approaches, sequencing the development of
new features such that dependent, higher level features are developed in the cycle
following the release of lower level features allows for significantly fewer ripple
effects when components are rejected.

The release train approach allows team to work independently from each other
during the development of the next release, but it still requires all teams to release at
the same point in time. The process of testing the new version of components
consists of two stages. First, each new version of a component is tested in the
context of the released versions of all other components. This verifies backward
compatibility. In the second stage, the new versions of all components are brought
together to verify the newly released functionality across component boundaries.

The release train approach is particularly suited for organizations that are
required to deliver a continuous stream of new functionality in their products or
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platform, either because new products are released with a high frequency or
because existing products are released or upgraded frequently with new functional-
ity. The organization has a business benefit from frequent releases of new function-
ality. Companies that provide web services provide a typical example of the latter
category. Customers expect a continuous introduction of new functionality in their
web services and expect a rapid turnaround on requests for new functionality. The
release train approach does require a relatively mature development organization
and infrastructure. For instance, the amount and complexity of validation and
testing that is required demands a high degree of test automation. In addition,
interface management and requirement allocation processes need to be mature in
order to achieve sufficient decoupling, backward compatibility, and independent
deployment of components.

2.3.4 Independent Deployment

The independent deployment approach assumes an organizational maturity that
does not require an engineering heartbeat (a heartbeat in the engineering system
allows teams to synchronize on a frequent basis while working independently
during iterations) including all the processes surrounding a release train. In this
approach, each team is free to release new versions of their component at their own
iteration speed. The only requirement is that the component provides backward
compatibility for all components dependent on it. In addition, the teams develop
and commit to roadmaps and plans. The lack of an organization-wide heartbeat
does not free any team from the obligation to keep their promises. However, the
validation of a component before being released is more complicated in this model
as any component team, at any point in time, may decide to release its latest version.

The perception in the organization easily becomes that there no longer is an
inter-team process for development as any team can develop and release at their
leisure. In practice, this is caused because the process is no longer a straightjacket
but provides more guardrails within which development takes place. The cultural
aspects of the software development organization, especially commitment culture
and never allowing deviations from backward compatibility requirements, need to
be deeply engrained and enforced appropriately.

As the process does not enforce joint releasing of components, any component
team can release at their own frequency and time. This requires an even higher
degree of automation and coverage of the testing framework in order to guarantee
the continued functioning of the overall system.

The independent deployment approach is particularly useful in cases where
different layers of the stack have very different “natural” iteration frequencies.
Typically, lower layers of the stack that are abstracting external infrastructure
iterate at a significantly lower frequency. This is both because the release frequency
of the external components typically is low, e.g., one or two releases per year, and
because the functionality captured in those lower layers often is quite stable and
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evolves more slowly. The higher layers of the software stack, including the product-
specific software, tend to iterate much more.

The key factor in the successful application of the independent deployment
approach is the maturity of the development organization. The processes
surrounding road mapping, planning, interface management and, especially, verifi-
cation and validation need to be mature and well supported by tools in order for the
model to be effective.

2.3.5 Open Ecosystem

The final approach discussed is an approach in which inter-organizational collabo-
ration is strived after. Successful software product lines are likely to become
platforms for external parties that aim to build their own solutions on top of the
platform provided by the organization. Although this can, and should, be consid-
ered as a sign of success, the software product line typically has not been designed
as a development platform, and providing access to external parties without
jeopardizing the qualities of the products in the product line is typically less than
trivial. Even if the product line architecture has been well prepared for acting as a
platform, the problem is that external developers often demand deeper access to the
platform than the product line organization feels comfortable to provide.

The typical approach to address this is often twofold. First, external parties that
require deep access to the platform are certified before access is given. Second, any
software developed by the certified external parties needs to get validated in the
context of the current version of the platform before being deployed and made
accessible to customers.

Although the aforementioned approach works fine in the traditional model,
modern software platforms increasingly rely on their community of users to provide
solutions for market niches that the platform organization itself is unable to provide.
The traditional certification approach is infeasible in this context, especially as the
typical case will contain no financial incentive for the community contributor and
the hurdles for offering contributions should be as low as possible. Consequently, a
mechanism needs to be put in place that allows software to exist within the platform
but to be sandboxed to an extent that minimizes or removes the risk of the
community-offered software affecting the core problem to any significant extent.

The open ecosystem development model allows unconstrained releasing of
components in the ecosystem not only by the organization owning the platform
but also by certified third parties as well prosumers and other community members
providing new functionality. Although few examples of this approach exist, it is
clear that a successful application of this approach requires run-time, automated
solutions for maintaining system integrity for all different configurations in which
the ecosystem is used.

As the ecosystem participants are independent organizations, no common pro-
cess approach can be enforced, except for gateways, such as security validation of
external applications. However, each limitation put in place causes hurdles for
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external developers that inhibit success of the ecosystem, so one has to be very
careful to rely on such mechanisms.

The open ecosystem model is a natural evolution from the release train and
independent deployment models when the organization decides to open up the
software product line to external parties, either in response to demands by these
parties or as a strategic direction taken by the company in order to drive adoption by
its customers.

The key in this model, however, is the ability to provide proper architectural
decoupling between the various parts of the ecosystem without losing integrity
from a customer perspective. In certain architectures and domains, the demand for
deep integration is such that, at this point in the evolution of the domain, achieving
sufficient decoupling is impossible, either because quality attributes cannot be met
or because the user experience becomes unacceptable in response to dynamic, run-
time composition of functionality.

Two areas where this approach is less desirable are concerned with the platform
maturity and the business model. Although the pull to open up any software product
line that enjoys its initial success in the market place, the product line architecture
typically goes through significant refactoring that can’t be hidden from the products
in the product line or the external parties developing on top of the platform defined
by the architecture. Consequently, any dependents on the product line architecture
are going to experience significant binary breaks and changes to the platform
interface. Finally, the transition from a product to a platform company easily causes
conflicts in the business models associated with both approaches. If the company is
not sufficiently financially established or the platform approach not deeply
ingrained in the business strategy, adopting the open ecosystem approach fails
due to internal organizational conflicts and mismatches.

2.4 Organization

The final dimension that we discuss in this section is how to organize around the
work of building the software product line and the products that it includes.
Although there are many different ways to organize, we present four standard
models of organizing development that cover and address most of the cases that
we have encountered in the industry. For each model, we present the applicability,
the advantages, and the disadvantages.

2.4.1 Development Department

The development department model imposes no permanent organizational structure
on the architects and engineers that are involved in the software product line. All
staff members can, in principle, be assigned to work with any type of asset within
the family. Typically, work is organized in projects that dynamically organize staff
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members in temporary networks. These projects can be categorized into domain
engineering projects and product (or system) engineering projects. In the former,
the goal of the project is the development of a new reusable asset or a new version
of it, e.g., a software component. The goal is explicitly not a system or product that
can be delivered to internal or external customers of the development department.
The product engineering projects are concerned with developing a system, either a
new or a new version, that can be delivered to a customer. Occasionally, extensions
to the reusable assets are required to fulfill the system requirements that are more
generally applicable than just the system under development. In that case, the result
of the product engineering project may be a new version of one or more of the
reusable assets, in addition to the deliverable system.

The development department model has, as most things in life, a number of
advantages and disadvantages. The primary advantage is simplicity and ease of
communication. Since all staff members are working within the same organiza-
tional context, come in contact with all parts of the system family and have contact
with the customers, the product line can be developed and evolved in a very
efficient manner with little organizational and administrative overhead. A second
advantage is that, assuming that a positive attitude towards reuse-based software
development exists within the department, it is possible to adopt a software product
line approach without changing the existing organization, which may simplify the
adoption process.

The primary disadvantage of this approach is that it is not scalable. When the
organization expands and reaches, e.g., around 30 staff members, it is necessary to
reorganize and to create specialized units. A second disadvantage is that typically
within organizations, staff members are, depending on the local culture, more
interested in either domain engineering or system engineering, i.e., it has higher
status in the informal organization to work with a particular type of engineering.
The danger is that the lower status type of engineering is not performed appropri-
ately. This may lead to highly general and flexible reusable components, but
systems that do not fulfill the required quality levels, or vice versa.

Summarizing, this approach has the following characteristics:

e Applicability: Smaller R&D organizations (less than 30 members) have a strong
project focus, rather than a product focus.

* Advantages: The approach excels in simplicity and easy of communication.

* Disadvantages: The main limitation of this approach is the lack of scalability. In
addition, the organization tends to prioritize product engineering or domain
engineering.

2.4.2 Business Units

The second organizational model that we discuss is organized around business
units. Each business unit is responsible for the development and evolution of one or
a few products in the software product line. The reusable assets in the product line
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are shared by the business units. The evolution of shared assets is generally
performed in a distributed manner, i.e., each business unit can extend the function-
ality in the shared assets, test it and make the newer version available to the other
business units. The initial development of shared assets is generally performed
through domain engineering projects. The project team consists of members from
all or most business units. Generally, the business units most interested in the
creation of, e.g., a new software component, put the largest amount of effort in
the domain engineering project, but all business units share, in principle, the
responsibility for all common assets.

Depending on the number and size of the business units and the ratio of shared
versus system-specific functionality in each system, we have identified three levels
of maturity, especially with respect to the evolution of the shared assets.

Unconstrained Model

In the unconstrained model, any business unit can extend the functionality of any
shared component and make it available as a new version in the shared asset base.
The business unit that performed the extension is also responsible for verifying that,
where relevant, all existing functionality is untouched and that the new functional-
ity performs according to specification.

A typical problem that companies using this model suffer from is that, typically,
software components are extended with too system-specific functionality. Either
the functionality has not been generalized sufficiently or the functionality should
have been implemented as system-specific code, but for internal reasons, e.g.,
implementation efficiency or system performance, the business unit decided to
implement the functionality as part of the shared component.

These problems normally lead to the erosion or degradation of the component,
i.e., it becomes, over time, harder and less cost-effective to use the shared compo-
nent, rather than developing a system-specific version of the functionality. As we
discussed in [2], some companies have performed component reengineering
projects in which a team consisting of members from the business units using the
component reengineers the component and improves its quality attributes to accept-
able levels. Failure to reengineer when necessary may lead to the situation where
the product line exists on paper, but where the business units develop and maintain
system-specific versions of all or most components in the product line, which
invalidates all advantages of a software product line approach, while maintaining
some of the disadvantages.

Asset Responsibles
Especially when the problems discussed above manifest themselves in increasing

frequency and severity, the first step to address these problems is to introduce asset
responsibles. An asset responsible has the obligation to verify that the evolution of
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the asset is performed according to the best interest of the organization as a whole,
rather than optimal from the perspective of a single business unit. The asset
responsible is explicitly not responsible for the implementation of new
requirements. This task is still performed by the business unit that requires the
additional functionality. However, all evolution should occur with the asset
responsible’s consent, and before the new version of the asset is made generally
accessible, the asset responsible will verify through regression testing and other
means that the other business units are at least not negatively affected by the
evolution. Preferably, new requirements are implemented in such a fashion that
even other business units can benefit from them. The asset responsible is often
selected from the business unit that makes most extensive and advanced use of the
component.

Although the asset responsible model, in theory at least, should avoid the
problems associated with the unconstrained model, in practice it often remains
hard for the asset responsible to control the evolution. One reason is that time-to-
market requirements for business units often are prioritized by higher management,
which may force the asset responsible to accept extensions and changes that do not
fulfill the goals, e.g., too system-specific. A second reason is that, since the asset
responsible does not perform the evolution him or herself, it is not always trivial to
verify that the new requirements were implemented as agreed upon with the
business unit. The result of this is that components still erode over time, although
generally at a lower pace than with the unconstrained model.

Mixed Responsibility

Often, with increasing size of the system family, number of staff, and business
units, some point is reached where the organization still is unwilling to adopt the
next model, i.e., domain engineering units, but wants to assign the responsibility for
performing the evolution assets to a particular unit. In that case, the mixed respon-
sibility model may be applied. In this model, each business unit is assigned the
responsibility for one or more assets, in addition to the product(s) the unit is
responsible for. The responsibility for a particular asset is generally assigned to
the business unit that makes the most extensive and advanced use of the component.
Consequently, most requests for changes and extensions will originate from within
the business unit, which simplifies the management of asset evolution. The other
business units have, in this model, no longer the authority to implement changes in
the shared component. Instead, they need to issue requests to the business unit
responsible for the component whenever an extension or change is required.

The main advantage of this approach is the increased control over the evolution
process. However, two potential disadvantages exist. First, since the responsibility
for implementing changes in the shared asset is not always located at the business
unit that needs those changes, there are bound to be delays in the development of
systems that could have been avoided in the approaches described earlier. Second,
each business unit has to divide its efforts between developing the next version of
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its product(s) and the evolution of the component(s) it is responsible for. Especially
when other business units have change requests, these may conflict with the
ongoing activities within the business unit and the unit may prioritize its own
goals over the goals of other business units. In addition, the business unit may
extend the components it is responsible for in ways that are optimized for its own
purposes, rather than for the organization as a whole. These developments may lead
to conflicts between the business units and, in the worst case, the abolishment of the
product line approach.

Conflicts

The way the software product line came into existence is, in our experience, an
important factor in the success or failure of a family. If the business units already
exist and develop their systems independently and, at some point, the software
product line approach is adopted because of management decisions, conflicts
between the business units are rather likely because giving up freedom that one
had up to that point in time is generally hard. If the business units exist, but the
product line gradually evolves because of bottom-up, informal cooperation between
staff in different business units, this is an excellent ground to build a product line
upon. However, the danger exists that when cooperation is changed from optional
to obligatory, tensions and conflicts appear anyhow. Finally, in some companies,
business units appear through an organic growth of the company. When expanding
the set of systems developed and maintained by the company, at some point, a
reorganization into business units is necessary. However, since the staff in those
units earlier worked together and used the same assets, both the product line and
cooperation over business units develop naturally, and this culture often remains
present long after the reorganization, especially when it is nurtured by management.
Finally, conflicts and tensions between business units must be resolved by manage-
ment early and proactively since they imply considerable risk for the success of the
product line.

The advantage of this model is that it allows for effective sharing of assets, i.e.,
software architectures and components, between a number of organizational units.
The sharing is effective in terms of access to the assets, but in particular the
evolution of assets (especially true for the unconstrained and the asset responsible
approaches). In addition, the approach scales considerably better than the develop-
ment department model, e.g., up to 100 engineers in the general case.

The main disadvantage is that, due to the natural focus of the business units on
systems (or products), there is no entity or explicit incentive to focus on the shared
assets. This is the underlying cause for the erosion of the architecture and
components in the system family. The timely and reliable evolution of the shared
assets relies on the organizational culture and the commitment and responsibility
felt by the individuals working with the assets.
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Summarizing, this approach has the following characteristics:

e Applicability: The approach works well for mid-sized R&D departments, e.g.,
up to 100 engineers.

e Advantages: The approach allows for effective sharing of software assets,
especially the cost of evolving assets. Also, it offers much better scalability
than the previous approach.

* Disadvantages: The main limitation of this approach is the lack of attention to
domain assets and the consequent higher rate of erosion.

2.4.3 Domain Engineering Unit

The third organizational model for software product lines is concerned with
separating the development and evolution of shared assets from the development
of concrete systems. The former is performed by a so-called domain engineering
unit, whereas the latter is performed by product engineering units.

The domain engineering unit model is typically applicable for larger
organizations, but requires considerable amounts of communication between the
product engineering units that are in frequent contact with the users of their
products and the domain engineering unit that has no direct contact with customers,
but needs a good understanding of the requirements that the product engineering
units have. Thus, one can identify flows in two directions, i.e., the requirements
flow from the product engineering units towards the domain engineering unit
and the new versions of assets, i.e., the software architecture and the components
of system family, are distributed by the domain engineering unit to the product
engineering units.

The domain engineering unit model exists in two alternatives, i.e., an approach
where only a single domain engineering unit exists and, secondly, an approach
where multiple domain engineering units exist. In the first case, the responsibility
for the development and evolution of all shared assets, i.e., the software architecture
and the components, is assigned to a single organizational unit. This unit is the sole
contact point for the product engineering units that construct their products based
on the shared assets.

The second alternative employs multiple domain engineering units, i.e., one unit
responsible for the design and evolution of the software architecture for the product
line and, for each architectural component (or set of related components), a
component engineering unit that manages the design and evolution of the
components. Finally, the product engineering units are, also in this alternative,
concerned with the development of products based on the assets. The main differ-
ence between the first and second alternatives is that in the latter, the level of
specialization is even higher and that product engineering units need to interact
with multiple domain engineering units.

Despite the skepticism in especially smaller organizations, the domain engineer-
ing unit model has a number of important advantages. First, as mentioned, it
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removes the need for n-to-n communication between the business units and reduces
it to 1-to-n communication. Second, whereas business units may extend
components with too product-specific extensions, the domain engineering unit is
responsible for evolving the components such that the requirements of all systems
in the product line are satisfied. In addition, conflicts can be resolved in a more
objective and compromise-oriented fashion. Finally, the domain engineering unit
approach scales up to much larger numbers of software engineering staff than the
aforementioned approaches.

Obviously, the model has some associated disadvantages as well. The foremost
is the difficulty of managing the requirements flow towards the domain engineering
unit, the balancing of conflicting requirements from different product engineering
units and the subsequent implementation of the selected requirements in the next
version of the assets. This causes delays in the implementation of new features in
the shared assets, which, in turn, delays the time-to-market of products. This may be
a major disadvantage of the domain engineering unit model since time-to-market is
the primary goal of many software development organizations. To address this, the
organization may allow product engineering units to, at least temporarily, create
their own versions of shared assets by extending the existing version with product-
specific features. This allows the product engineering unit to improve its time-to-
market while it does not expose the other product engineering units to immature and
instable components. The intention is generally to incorporate the product-specific
extensions, in a generalized form, into the next shared version of the component.

Summarizing, this approach has the following characteristics:

e Applicability: The domain engineering unit approach allows for significant
scalability up to hundreds of software engineers.

e Advantages: The advantages of the model are threefold. First, it reduces the n-to-
n communication in the previous model to 1-to-n. Second, it guarantees proper
attention both to domain and product engineering. Finally, it offers excellent
scalability.

* Disadvantages: Managing evolution and exchanging information between
domain and product engineering is inherently more complex. This can cause
slower time-to-market of new features.

2.4.4 Hierarchical Domain Engineering Units

There is an upper boundary on the size of an effective domain engineering unit
model. However, generally even before the maximum staff member size is reached,
often already for technical reasons, an additional level has been introduced in the
software product line. This additional layer contains one or more specialized
product lines that, depending on their size and complexity, can either be managed
using the business unit model or may actually require a domain engineering unit.
In the case that a specialized product line requires a domain engineering unit, we
have, in fact, instantiated the hierarchical domain engineering unit model that is the
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topic of this section. This model is only suitable for a large or very large organiza-
tion that has an extensive family of products. If, during the design or evolution of
the product line, it becomes necessary to organize the product line in a hierarchical
manner and a considerable number of staff members is involved in the product line,
then it may be necessary to create specialized domain engineering units that
develop and evolve the reusable assets for a subset of the products in the family.

The reusable product line assets at the top level are frequently referred to as a
platform and not necessarily identified as part of the product line. We believe,
however, that it is relevant to explicitly identify and benefit from the hierarchical
nature of these assets. Traditionally, platforms are considered as means to provide
shared functionality, but without imposing any architectural constraints. In practice,
however, a platform does impose constraints, and when considering the platform as
the top-level product line asset set, this is made more explicit and the designers of
specialized product lines and family members will derive from the software archi-
tecture rather than design it.

The advantages of this model include its ability to encompass large, complex
product lines and organize large numbers of engineers. None of the organizational
models discussed earlier scales up to the hundreds of software engineers that can be
organized using this model.

The disadvantages include the considerable overhead that the approach implies
and the difficulty of achieving agile reactions to changed market requirements.
Typically, a delicate balance needs to be found between allowing product engineer-
ing units to act independent, including the temporary creation of product-specific
versions of product line components, versus capitalizing on the commonalities
between products and requiring product engineering units to use shared versions
of components.

Summarizing, this approach has the following characteristics:

e Applicability: The hierarchical domain unit model scales up to many hundreds,
potentially thousands of engineers.

* Advantages: The approach allows for the management of very large product
families with very complex behavior and huge development departments.

e Disadvantages: The inherent consequence of the approach is that there is
significant organizational overhead and associated cost.

3 Key Longitudinal Challenges

As discussed in the introduction and business section, successful product lines have
an enormous impact on the revenue, profitability, and brand of the organization.
The success of the SPL approach caused two interesting patterns in the companies
that we have studied in our research. First, over time the scope of the SPL was
extended significantly from an initial small set of products to cover a much broader
set of products that cover a much broader set of functional and quality requirements.
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The reason for this was that the success in the market place allows and almost
demands from the company to significantly increase the scope of its product
portfolio as well as serve customer segments with unique requirements that it
could not have served without a SPL.

Second, as the SPL approach turned out so successful, earlier unrelated products
or product families, originating from other parts of the business or acquired through
mergers, were added to the original SPL, despite the lack of architectural alignment.
The reason for bringing earlier unrelated products under the umbrella of the SPL
was typically related to the overlap in domain functionality.

There were several consequences of these patterns, but one major factor was that
the amount of staff working in the software product line grew significantly, up to an
order of magnitude. Despite this increase, the fundamental approach to software
development in each of the case study companies was not adjusted to the new scale
of operations. Instead, there was strong implicit belief that the approach itself was a
core element of the success of the initiative, even when it became blindingly
obvious that the approach was very inefficient.

Although several problems can be identified, in this chapter we focus on three
key problems that occur in successful software product lines over extended periods
of time:

1. Coordination overhead: With increasing scope of the software product line and
the significant increase in the number of people working on it, the cost of
coordinating the efforts of teams, individuals, product derivation efforts,
roadmapping, integration of the platform, etc. increases exponentially to the
point that most staff spends most of its time coordinating through meetings,
email exchange, or other mechanisms and has rapidly decreasing amounts of
time dedicated to adding value to the products and shared assets in the software
product line.

2. Slow release cycles: In each of the case study companies, the shared part of the
software product line, i.e., the platform was integrated and released periodically
to the product teams that derived new or evolved existing products built on top of
the platform. With the increasing size and complexity of the overall SPL as well
as the platform, the cost of verifying all functional and quality requirements
became very high, and as a consequence, the release frequency tended to
decrease and slow to a point that it was below the “speed of the market”. This
caused the benefit of the SPL to turn into a liability as the SPL caused delays in
product releases.

3. High system-level error density: One of the main reasons for slow release cycles
was that many errors were only found during the integration stage as the
complexity of the platform and the SPL as a whole had reached a point where
teams and their architects were unable to predict the implications of their design
decisions and extensions on the overall system. Hence, the negative implications
were found late in the development cycle and could cause time-consuming
rework in the various components. This caused the integration stage to be long
and painful, putting a strong pressure on the organization to perform integration
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as infrequent as possible, reinforcing the aforementioned problem of slow
release cycles.

After carefully studying SPLs at a variety of companies over close to two
decades, our conclusion is that one can identify a single predominant root cause
for the discussed problems: lack of effective software variability management. Over
time, the number of variation points, the number of variants, and the dependencies
between all these increase to a point where the original business benefits of the
software product line erode to a level where the competitive advantage is no longer
present.

Although this may, at first sight, seem a technical issue, the business strategy, the
development process, the organization of R&D, and the culture of the R&D teams
all contributed to an evolution path where the number of software variability
dependencies between software assets increased, causing an increasing number of
points where teams, responsible for these assets, need to coordinate causing the
described problems as well as other concerns.

In the next section, we focus more on software variability and provide an initial
overview as a preparation for the rest of the book.

4 Software Variability

Over the last few decades, the software systems that we have used and built have
required and exhibited increasing variability, i.e., the ability of a software artifact to
vary its behavior at some point in its life cycle. We can identify two underlying
forces that drive this development. First, we see that variability in systems has
moved from mechanics and hardware to the software. Second, because of the cost
of reversing design decisions once these are taken, software engineers typically try
to delay such decisions to the latest phase in a system’s life cycle that is economi-
cally viable. An example of the first trend is car engine controllers. Most car
manufacturers now offer engines with different characteristics for a particular car
model. A new development is that frequently these engines are the same from a
mechanical perspective and differ only in the software of the car engine controller.
Thus, whereas previously the variation between different engine models was
incorporated through the mechanics and hardware, due to economies of scale that
exist for these artifacts, car developers have moved the variation to the software.
The second trend, i.e., delayed design decisions, can be illustrated through
software product families and the increasing configurability of software products.
Over the last decade, many organizations have identified a conflict in their software
development. On the one hand, the amount of software necessary for individual
products is constantly increasing. On the other hand, there is a constant pressure to
increase the number of software products put out on the market in order to better
service the various market segments. For many organizations, the only feasible way
forward has been to exploit the commonality between different products and to
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implement the differences between the products as variability in the software
artifacts. The product family architecture and shared product family components
must be designed in such a way that the different products can be supported,
whether the products require replaced components, extensions to the architecture
or particular configurations of the software components. Additionally, the software
product family must also incorporate variability to support likely future changes in
requirements and future generations of products. This means that when designing
the commonalities of a software product line, not all decisions can be taken.
Instead, design decisions are left open and determined at a later stage, e.g., when
constructing a particular product or during run-time of a particular product. This is
achieved through variability.

As this book is solely concerned with software variability management, it is
important to provide a definition of the term: software variability is the ability of a
software system or artifact to be efficiently extended, changed, customized, or
configured for use in a particular context. In the remainder of the book, we provide
more elaborate definitions of variability and introduce a wealth of techniques that
enable software developers to improve variability of software artifacts as well as
manage this variability over time.

As discussed earlier in this chapter, it is not a trivial task to effectively manage
variability in a software product family. We also see that engineers are seeking
variation mechanisms beyond those shipped with their development tools or that
are not supported by used software systems. The adoption of mechanisms such as
aspect-oriented programming and the popularity of generative and reflective
techniques in programming communities such as Java and .Net are evidence of this.

Essentially, by supporting variability, design decisions are pushed to a later stage
in the development. Rather than making specific design choices, the design choice
is made to allow for variability at a later stage. For example, by allowing users to
choose between different plug-ins for a media player, the media player designers
can avoid hardwiring the playback feature to a particular playback functionality (by
enabling the system to use plug-ins). Thus they can support new file formats after
the media player has been shipped to the end user.

Many factors influence the choices of how design decisions can be delayed.
Influencing factors include, for example, the type of software entity for which
variability is required, how long the design decision can be delayed, the cost of
delaying a design decision and the intended run-time environment. Another factor
to consider is that variability does not need to be represented only in the architecture
(i.e., the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its
design and evolution) or the source code of a system. It can also be represented as
procedures during the development process, making use of various tools outside of
the actual system being built.

As the remainder of the book focuses on software variability management, we
have only provided a high-level introduction into the notion of software variability.
The next chapter introduces the subject in much more detail.
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5 Summary

The competitive landscape for companies building software-intensive systems is
changing and the pressure to outperform competitors is intensifying. The speed at
which innovations need to be pushed to market is increasing while the size and
complexity of the products is increasing as well. The resulting tension makes it
clear to most organizations that just “working harder” is not going to address the
issues and instead the organization needs to change its ways of working rather
fundamentally. Several companies have adopted the notion of software product
lines as an innovation that addresses the seemingly conflicting forces. Those that
were successful in the transition process typically reaped significant benefits in
terms of establishing or expanding market leadership, accelerated revenue growth,
and increased profitability.

Over time, however, successful product lines often start to suffer from several
problems, including expanding coordination overhead, slowing release cycles, and
increasing system-level error density. Based on our analysis we identified lacking
software variability management as the key underlying root cause. Over time, the
increasing number of variation points, variants, and dependencies between these
causes a web of complexity that causes a gradual reduction in competitiveness of
the organization that over time removes the advantages provided by the software
product line approach.

The key solution to addressing the aforementioned concerns is to significantly
improve and professionalize the way software variability is managed, both from a
problem domain and from a solution domain perspective. This has business,
architectural, process, and sometimes even organizational implications. The objec-
tive of this book is to provide a perspective on software variability management that
allows organizations to better understand their situation and to provide a set of
concrete techniques to address the concerns that surface in their R&D
organizations.
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Chapter 2
Variability Modeling

Kyo C. Kang and Hyesun Lee

What you will learn in this chapter

e The different aspects and viewpoints of variability modeling one needs to
consider in software product line engineering

e How these different viewpoints are interrelated to each other

o Variability modeling techniques

1 Introduction

The aim of this chapter is to provide a comprehensive description of the notion of
variability modeling in the context of software product line engineering and to give
an overview of the techniques proposed for variability modeling.

Since its first introduction in 1990, feature modeling [1] has been the most
popular technique to model commonality and variability (C&V) of products of a
product line. Commonalities and variabilities are modeled from the perspective of
product features, “stakeholder visible characteristics of products” in a product line
that are of stakeholders’ concern. For example, the fund transfer feature of a
banking system may be of interest to customers, i.e., a service feature, but how
the fund transfer happens may not be of interest to customers as long as it is done
securely. However, it will be an important concern for the designer of the system
and, when there are alternative ways, it is the responsibility of the designer to
choose the right one for the target system.

The original feature model, FODA [1], is a simple model with features that are
organized using “consists of”’ and “generalization/specialization” relationships
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using the AND/OR graph. Features are typed as mandatory, alternative, or optional
features to represent C&V. Attributes of a feature may also be documented.

As it has gained a wide acceptance both by practitioners and researchers, this
rather simple model was extended by many researchers introducing new modeling
primitives such as feature cardinality and XOR relationships. Various research
activities followed such as formal analysis of feature model, feature configuration,
generative programming, etc. Also, there are a wide variety of product lines FODA
and its extensions have been applied to, and it has been reported that C&V models
tend to become complex as the size of product line increases. This complexity of a
model is highly correlated with the complexity of the problem domain that is
modeled. However, it has been noticed that many different types of C&V informa-
tion, such as product goals as well as functional and design features, are all
integrated into a single model which makes a C&V model even more complex.

In this section, we explore various dimensions of C&V in product line engineer-
ing. We separate C&V modeling into problem and solution space modeling.
Problem space modeling is further refined to product goal, usage context, and
quality attribute C&V modeling. Also, solution space modeling is refined to
capability/service, operating environment, and design feature C&V modeling.
Relationships/traceability between these models is managed separately from these
models.

2  Concepts

The most important attribute of software is the “softness” of software, i.e., software
that is easy (cost effective) to modify and adapt to evolving requirements or
changing operating environments, easy to port on different hardware or software
platforms, and easy to reuse for development of similar applications. Softness of
software cannot be attained without engineering it into software. To embed softness
into software, there have been many software engineering principles and concepts
proposed, such as information hiding, program families, modularity, design
patterns, etc.

In order to apply these design principles and concepts, however, we need to
understand the commonality and variability (C&V) of the product line, i.e., a family
of products. We need to explore the “space” of C&V of the products in a product
line and potential evolution (“time”-dependent variability) of these products in the
future, and then organize and codify the knowledge gathered as a C&V model. With
this understanding of C&V, we can engineer software applying various design
principles and embedding variation points that can later be bound with variants.
For example, design decisions (design features) that can change may be
encapsulated into software components applying the information hiding principle,
and each changeable decision (alternative design features) can be implemented as a
variant.
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Fig. 2.1 Variability modeling space

In the following section, we explore different dimensions of variability of a
software product line.

3 Commonality and Variability Modeling: The Scope

C&V of a product line can be modeled in many different ways based on different
viewpoints (i.e., separation of different concerns). Largely, we can separate the
problem space from the solution space' (see Fig. 2.1). For the problem space, user
goals and objectives, required quality attributes, and product usage contexts are
typically modeled in product line engineering. Within the solution space, C&V is
typically modeled for the functional dimension (i.e., capabilities, services), the
operating environmental dimension (e.g., operating systems, platform software,
etc.), and the design dimension (e.g., domain technologies). C&V explored and
modeled for these dimensions are materialized as software architectures,
components, variation points, and variants in the artifact space. Implementation
mechanisms such as inheritance, template, framework, macro, and generator may
be used to implement variation points and variants.

! The terms “problem” and “solution” are relative. A solution for one may be a problem for others
to solve. Requirements, which are considered “problems” to solve by designers, are “solutions” to
real-world problems. One may view features in the “solution” space as problems for asset
development in the artifact space.
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The goals and objectives modeled for a product line defines “problems” at their
highest level of abstraction to be addressed by the products of a product line, and
therefore, they drive derivation of capabilities and quality attributes, which in turn
may trigger derivation of other capabilities in the solution space. For example, the
goal of moving passengers between floors safely will require elevator “capabilities”
such as cabin moving, call handling, and door operation in addition to the obstacle
detection for safety, a quality attribute. Techniques for implementing capability
features are modeled as design features, each of which has associated quality
attributes. For example, different obstacle detection devices may have different
performance characteristics.

Typically, products used in different usage contexts require different capabilities
and/or different quality attributes. For example, elevators in a hospital require a
higher quality floor leveling feature than those in an office building to let wheel
chairs and other medical equipment rolled in and out of an elevator easily. A flash
memory for USB drivers needs a higher frequency data update than those built into
a camera, for example, as they may be pulled out anytime. It should be noted that
what derives decisions on quality requirements, operating environmental elements
(e.g., devices, software platforms used), and design techniques to use is not just
required capabilities but often the context in which the product is used. Analyzing
and understanding different product usage contexts are very important for success-
ful product line engineering.

What is important in the variability modeling is that:

e There are different market segments or user communities who may have differ-
ent goals and/or different product usage context

« Different goals or usage contexts may require different quality attributes or
capabilities

¢ Same capabilities may be implemented in different ways (design decisions),
which may have different quality characteristics

In variability modeling, we explore these different dimensions and model
relationships between modeling elements as shown in Fig. 2.1. In the following
section, we review techniques for variability modeling.

4 Modeling Techniques

4.1 Feature Modeling

Since feature modeling [1] was first introduced two decades ago, it has been widely
accepted by the software reuse and the software product line engineering (SPLE)
communities as a means for modeling C&V of a product line, i.e., a family of
products. This is because features are abstract concepts effectively supporting
communication among diverse stakeholders of a product line, and therefore, it is



2 Variability Modeling 29

Mobile Phone

— Legend —
%N o
Optional
Call Camera Message Screen o
o : e A Lo
x(___;x\ Alternative
Voice Video  Front Back < * —
Normal Touch
Composed-of
Call Call  Camera Camera (Non-Touch  Screen Fa
Screwn) Generalization
ags M\ s g .
Composition Rule: S iR ISpecialization
Video Call requires Front Camera ¥

Resistive Capacitive

Rationale:
Resistive — Relatively cheaper, more accurate
Capacitive — Multi-touch support available

Fig. 2.2 A FODA feature model of a mobile phone product line

natural and intuitive for people to express commonality and variability (C&V) of
product lines in terms of features. Also, it has been recognized that the C&V
information codified by a feature model is most critical for developing reusable
software assets.

In practice, many feature-based approaches to SPLE use features as units of:

« Capability that is delivered to customers

» Requirement containers, i.e., units of requirement specification

¢ Product configuration and configuration management

» Development and delivery to customers

« Parameterization for reusable assets, i.e., parameters for instantiating reusable
assets

¢ Product management for different market segments

Furthermore, future products are typically discussed and described in terms of
features gathered from market surveys, individual customers, research labs, or
technology roadmaps.

The original feature model has very simple modeling primitives: structural
relationships (composition, generalization/specialization), alternativeness, option-
ality, and mutual dependencies (inclusion, exclusion). Textual description and
attributes of a feature may be defined. Also, the rationale for selection of an optional
or alternative feature may be added as a textual description. Figure 2.2 shows an
example of FODA feature model. This feature model describes a product line for
mobile phones. In Fig. 2.2, Video Call, Camera, Front Camera, and Back Camera
features are optionally selectable features. Resistive and Capacitive features are
alternatives and can be thought of as specializations of general Touch Screen
feature. As can be seen in the composition rule in Fig. 2.2, Front Camera feature
must be selected when Video Call is selected. Selection of alternative features,
Resistive and Capacitive, is made based on rationales shown in Fig. 2.2.
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Fig. 2.3 Feature modeling approaches

For example, in case of buying a mobile phone, if a customer only concerns touch
accuracy, then s/he may want to select Resistive rather than Capacitive.

After the introduction of FODA, many researchers have extended the feature
model by adding new concepts for their researches [2-20], thereby resulting many
variations (see Fig. 2.3) and extensions are still continuing. For instance, FODA
was extended in [2] by introducing different viewpoints and grouping features into
capability features modeling C&V of functions and services provided by the
products, operating environment features modeling C&V of the environments in
which these products are deployed and interface with, and domain technology and
implementation techniques modeling important design decisions. A new relation-
ship type “implemented by” was introduced to connect capability features (the
functional dimension) with domain technology and implementation technique
features (the design dimension) that may be used to implement capability features.
Griss [3], Gurp [4], and Eriksson [5] made notational changes to the feature model
and also provided notations for expressing dependencies and feature binding time.
Hein [6] provided a UML-based modeling language. Czarnecki [7, 9, 10], Riebisch
[8], and Benavides [11] refined the alternative relationship of FODA to XOR and
OR relationships and also added the concept of cardinality allowing multiple
selection of a feature. Attributes of features are also included in the feature
model. Table 2.1 shows a summary of extensions made by each feature modeling
approach.

As we examined the applications of these feature modeling approaches, we
noticed that a feature model was often used to model different “concerns” of a
product line in one model without delineating them. These concerns include the
following: missions or business goals that need to be achieved by a product line,
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Table 2.1 Summary of feature modeling approaches

Feature modeling approach Extensions

FORM Feature Model [2] « Introducing different viewpoints: capability, operating
environment, domain technology, and implementation
technology

« Introducing a new relationship type implemented by
FeatuRSEB Feature Model [3]  « Making notational change: alternative features — variation
point feature and variant features
* Providing constraint (e.g., require) notation
* Providing binding time notation: reuse-time and use-time

binding
Van Gurp et al. Feature * Introducing external features
Model [4] * Refining the generalization/specialization relationship to

OR-specialization and XOR-specialization relationships
* Providing binding time notation: compile-time, link-time, and
run-time binding
PLUSS Feature Model [5] » Making notational changes:
— A group of alternative features — single adaptors
— A group of optional features — multiple adaptors
* Providing constraint notation
Hein et al. Feature Model [6] * Providing UML-based modeling language
« Introducing secondary structure for constraint (e.g., require)

dependencies
Generative Programming (GP)  « Refining the alternative relationship to XOR and OR
Feature Model [7] relationships

Riebisch et al. Feature Model [8] < Introducing the concept of feature group and group cardinality
* Providing constraint notation
GP-Extended Feature Model [9] < Introducing the concept of feature cardinality

Cardinality-Based Feature * Introducing the concept of feature cardinality, feature group,
Model [10] and group cardinality
* Introducing a new relationship type feature diagram
reference
Benavides et al. Feature * Including feature attributes in the feature model
Model [11]

functional capabilities provided by a product line, required nonfunctional properties
(quality attributes), operating environments in which products are deployed, major
design decisions to realize functional capabilities and achieve quality attributes, and
rationales for configuring features for a certain usage context. These concerns may
be classified as shown in Fig. 2.1.

This coexistence of multiple viewpoints® in a single model naturally leads to the
following problems:

2 For the same object, we can observe it from different angle, i.e., viewpoint, and extract different
information. For example, an orthopedic doctor’s view of human will be different from that of an
internist.
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* Analyzing, understanding, and defining the relationships between different
viewpoints are a big burden to product line analyst

¢ Relationships between different viewpoints are not always explicitly defined

e A feature model with multiple concerns tends to become very complex, making
it hard to comprehend and maintain

¢ The boundary between the problem space (features to capture the context of a
product line) and the solution space (features to capture the services and design
decisions of a product line) are not clearly distinguished

» Optimal configuration of products considering quality attributes is difficult

There is a need for a holistic approach [21] to feature modeling to alleviate these
difficulties by first exploring the feature space to identify different concerns and
divide it into subspaces based on different concerns and then to examine how they
are related to each other, enabling product line analysts to examine a broad
spectrum of concerns of a product line while focusing on specific concerns sepa-
rately. By delineating these concerns as distinct viewpoints, analysis of a product
line becomes thorough and systematic. This means that a product line analyst can
concentrate on a specific modeling space with a clearly defined viewpoint (i.e.,
concern) at a time and then analyze and model relationships between different
concerns later. An example of this holistic approach is shown in Sect. 5.

4.2 Decision Modeling

The decision modeling technique for modeling variability was introduced by [22].
A decision model consists of:

¢ Domain-related questions to be answered in developing products

e The set of possible answers/decisions to each question

» References to the affected artifacts and variation points, or references to the
affected decisions

» Descriptions of the effect on the assets for each decision, or descriptions of the
effects on the answer sets of the affected decisions

The decision modeling technique relates domain questions to other related
domain questions and then, ultimately, to domain solutions which are variation
points and/or variants. It focuses on capturing decisions to be made in configuring
products. The feature modeling, however, focuses on exploring, understanding, and
modeling the feature space (i.e., domain “questions”-problems and their solutions)
of a domain in terms of commonalities, variabilities, and relationships among them.
The rationale for each choice may be provided as textual description. Both
modeling techniques may be used to configure products of a product line.
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5 Variability Modeling: An Example

In this section, we further explore various dimensions of variability modeling
explained in Sect. 3 using an Elevator Control System (ECS) product line as
example [23, 24]. We will also see how these different dimensions are related to
each other. The feature modeling technique is used in the exploration.

5.1 Problem Space Exploration

The problem space includes features for goals/objectives, usage contexts, and
quality attributes of a product line as shown in Fig. 2.1. These features present
the concrete context of a product line, i.e., external forces that drive selection of
specific design decisions, i.e., architectures, algorithms, or implementation
techniques; these problem features are important to understand real-world
problems” that the product line should address. That is, the problem space captures
the information of:

e Why is the product line required in the market?
e When is a certain product configuration used?
¢ What are the expected qualities of a specific product or the product line?

The answers to these questions should be captured in an exploitable form so that
we can establish clear traceability, not starting from functional product features, but
from real-world problems.

The problem space can be divided into three sub categories: goal/objective,
usage context, and quality attribute features. The goal/objective features represent
what a system should achieve in order to solve real-world problems. For example,
in the ECS product line, the real-world problem is as follows: as multistory
buildings are introduced and the number of floors increases, moving objects
between floors becomes difficult. In order to solve this real-world problem, the
goal/objective of ECS may be: “Move objects between different floors of a building
in an efficient way.” It is important to clearly define the goal as it implies the scope
of the product line. The above goal, for instance, can also be achieved by an
escalator. If it is not the intension and if we want to include only elevators, the
goal should be refined as: “Move objects between different floors of a building
vertically in an efficient way using a cage with doors” (see Fig. 2.4a). Through such
refinement iterations, product line analysts, market analysts, and developers can
establish an explicit boundary of a product line and can share a common under-
standing about the ultimate goal of the product line.

3In this chapter, we did not cover modeling real-world problems but focused on “external factors”
derived from real-world problems that influence configuration of features in the solution space.
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Fig. 2.4 (a) A goal/objective feature model and (b) a usage context feature model of the ECS
product line

The next category is usage context, which represents a set of circumstances
where a system is operated in. According to [25], usage contexts are any contextual
setting in which a product is deployed and used. We follow this definition and it
includes features about physical environments, user profiles, social or legal issues,
business concerns, etc. For example, depending on the types of objects carried by an
elevator, the usage context of ECS can be either a passenger elevator or a freight
elevator (as shown in Fig. 2.4b).

The last category is about quality attributes: goal/objective and usage context
features determine quality attribute features. Quality attribute features represent
nonfunctional requirements that a system should satisfy while meeting its func-
tional requirements. For example, for a passenger elevator, Safety and Usability
features are important, while, for a freight elevator, “car call cancelation” feature
may not be used for safety because of the weight of the load and the momentum of
the elevator. Figure 2.5 shows an example of quality attribute feature model.

We need to explore C&V along these dimensions, which essentially derive
decisions on required capabilities (functions) and various design choices.

In the following section, we discuss the solution space feature.

5.2 Solution Space Feature

The solution space captures functional, operational, and technical features that
should be implemented for a product line. Most feature modeling approaches in
the literature starts analyzing features that belong to this space, which can be
classified into four categories (i.e., capability, operating environment, domain
technology, implementation technique) according to FODA. It should be also
noted that the term “solution” does not mean design artifacts in the space; features
in this space are “solution decisions” for the problem space features, and these
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Fig. 2.5 A quality attribute feature model of the ECS product line

solution decisions must be implemented as product line assets (e.g., components)
(The Artifact Space in Fig. 2.1). Figure 2.6 shows an example of solution space
features.

Firstly, the capability features represent end-user visible characteristics of sys-
tem such as service, operation, and function. For example, Speed, Capacity, Hall
Call Handling, and Motor Control in Fig. 2.6a are capability features of the ECS
product line. Secondly, the operating environment feature model captures C&V of
target environments where products are deployed and operated in/on. For example,
RTLinux, VxWorks, and WindowsCE in Fig. 2.6b are various real-time operating
systems of the ECS product line. There are various sensors for detecting weight and
leveling an elevator with building floors. Finally, design features represent design
decisions such as domain technologies and implementation techniques. For exam-
ple, in Fig. 2.6¢c, domain-specific algorithms such as Motor Control Method and
Weight Detection Method are design decisions that are only meaningful in the ECS
product line. Communication methods such as TCP and UDP represent concrete
implementation techniques for a product line but they are more general and can be
used in other product lines.

In the following section, we describe the relationships between these different
viewpoints.

5.3 Dependencies Between Different Variability Viewpoints

In the variability modeling discussed in this section, features in the problem space
drive decisions on features in the solution space. This means that the problem space
features set clear contexts for identifying the solution space features and, thus,
establishing explicit mapping between features in the two spaces. To model these
spaces, we identified four activities and their relationships as depicted in Fig. 2.7.
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These activities are iterative and the arrows in Fig. 2.7 show data flow, i.e., use of
work products at each activity. Each activity is briefly described below.

Organizing goal/objective features and usage context features from real-world
problems of a product line initiates the modeling process. Goal/objective features
specify the boundary of the product line and usage context features set specific
contexts for the product line. The organized goal/objective features and usage
context features are used as inputs to other activities.

In quality attribute feature modeling, quality requirements needed to achieve
goals/objectives under various usage contexts are identified and organized into a
quality attribute feature model. For example, the “safety” quality requirement of the
ECS product line is to achieve the goal/objective of moving passengers safely in
passenger elevators, and the “freight damage prevention” quality requirement is a
goal set for freight elevators.

The problem space features (i.e., goal/objective, usage context, and quality
attribute features) are used as primary inputs for the solution space feature modeling
activity. Functional requirements that support the goal/objective under various
usage contexts are identified as capability features. For example, the Motor Control
capability feature is defined to satisfy the goal/objective of carrying objects
between floors. The identified capability features may be refined further, and
relevant domain technology and implementation features are identified considering
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goals and quality features and modeled in a solution space feature model.
For example, leveling profile techniques that support the “smooth and comfortable
run” quality attribute are identified as domain technology features.

In the product line artifacts design and development activity, the identified
solution space features are implemented as product line artifacts including product
line architectures, objects, and code modules. Variabilities captured as optional/
alternative features in the solution space are embedded into the product line
artifacts using various variability realization techniques (e.g., macro, aspects,
etc.) [26-28].

In this section, we have examined the scope of variability. We will explore the
temporal variability of product line software in the next section.

6 Feature Binding Time: Variability in Temporal Dimension

So far, we have seen C&Vs in the spatial dimension only, i.e., what features are
common and what can vary. However, we should also explore C&Vs in the
temporal dimension, i.e., when variability occurs, which is generally known as
feature binding time. Generally, feature binding time has been looked at from the
software development lifecycle viewpoint [7, 29], in which the focus has been
given to the phase of the lifecycle at which a feature is incorporated into a product.
In product line engineering, however, there exists another dimension that we have
to consider, which we call feature binding state [12]. A feature may be included in
the asset or a product at any product line lifecycle phase, but their availability for
use can be determined at the time of inclusion or at any time after inclusion by
enabling or disabling the included feature. Activation of the available features may
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be controlled to avoid a feature interaction problem.* Thus, feature binding time
analysis with an additional viewpoint on feature binding state (which includes
inclusion and availability states) provides a more precise framework for feature
binding analysis.

For the purpose of temporal variability analysis, we can simplify the product line
lifecycle into four phases: asset development, product development, pre-operation,
and operation (run-time), shown as the vertical axis in Fig. 2.8. The horizontal axis
shows binding states. The example in Fig. 2.8 shows that both FIRE and INTRUSION
features are included in assets, and they are available for use as soon as the assets are
included in a product. However, FLOOD and MESSAGE features are included
during the product development time as product-specific features, but their avail-
ability is determined at installation time. The PUMPING feature is included and
becomes available at operation time (i.e., run-time binding).

7 Discussion

After the FODA method [1] was published, there have been various efforts to
introduce different viewpoints for feature modeling based on their own experiences
[2, 10, 12-20]. These extensions include structural, configuration, binding, opera-
tional dependency, and traceability viewpoints. For the structural viewpoint [2, 10,
13, 14, 17-19], extended feature specification, feature relationships, and feature
categories [10, 13, 16—18] added strict or recommended constraints into a feature
model for helping product feature configuration in the configuration viewpoint.

*The problem of unexpected side effects when a feature is added to a set of features is generally
known as the feature interaction problem.
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Lee and Kang [12] extended a feature model by introducing feature binding unit
(i.e., groups of features bound together) with binding time and techniques. Fey et al.
[14-16, 19, 20] identified various operational dependencies between features, such
as activation dependency, modification dependency, etc. Kang et al. [2] defined
implementation relationship (i.e., a feature is necessary to implement another
feature) to model traceability between functional and design features. These
extensions, however, are limited to solution space modeling. Kang et al. [21]
extended the scope of feature modeling further to cover problem space modeling.

In FODA [1], it is stated that issues and decisions must be incorporated into a
feature model in order to provide the rationales for choosing options and selecting
among alternatives. However, how issues and decisions are modeled and how they
are related to (solution space) features was not explained. Kang et al. [21] modeled
issues and decisions as problem space features and explicitly captured the
relationships between problem space features and solution space features. These
relationships are used in product feature configuration.

In FOPLE [30], marketing and production plan (MPP) is introduced as rationales
for identifying and selecting product features. MPP can include goal/objective
features and usage context features (e.g., user profile and cultural/legal constraints
of MPP are similar to usage context features). In FOPLE, it is stated that MPP
provides quality attributes for architecture design and refinement. However, they do
not discuss how MPP provides different quality attributes and how quality attributes
affect selection of product features. In this chapter, we explicitly explain
relationships among usage context features, quality attribute features, and product
features.

Some researchers [31, 32] added a quality attribute viewpoint into feature model
and associated quality attributes with solution space features. Yu et al. [31] pro-
posed a goal model to capture stakeholder goals that may represent quality
attributes and associate goals to features. Thurimella et al. [32] suggested issue-
based variability model that combines rationale-based unified software engineering
model [33], and orthogonal variability model [34]. In their model, quality attributes
can be modeled as criteria for selecting product features. However, Yu et al. and
Thurimella et al. did not discuss how product-specific quality attributes are
identified. In [21], Kang et al. discussed how product-specific quality features are
identified from product usage context features and product quality requirements.

Some researchers [25, 35] proposed usage context viewpoint into feature model
and associate usage contexts with solution space features. Hartmann and Trew [35]
introduced a context variability model and define dependencies (i.e., requires,
excludes, and sets cardinality) between a context variability model and a feature
model. Lee and Kang [25] proposed usage context variability model and quality
attribute variability model and defined relationships among usage contexts, quality
attributes, and product features; selection of variant usage contexts eliminates
choices of variant quality attributes and those of variant product features, and
selection of variant quality attributes eliminates choices of variant product features,
which is similar to modeling discussed in this section. Kang et al. [21] adopted
usage context analysis introduced in these papers [25, 35], but, unlike these papers,
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they clearly defined boundaries and relationships between the problem space,
solution space, and artifact space.

Czarnecki et al. [10] suggested the concept of staged configuration, a process of
specifying a family member in stages where each stage eliminates configuration
choices, which can reduce the complexity of feature selection. Czarnecki et al. [36]
extended this idea and introduce multi-level configuration, a form of staged config-
uration where the choices available to each stage are represented by separate feature
models. In [36], it is stated that the criteria (e.g., geographical area or market
segment) used to distinguish between the multiple product lines can be captured
in a level-0 feature model, which is similar to usage context features discussed in
this section. Their approaches [10, 36] are in the context of software supply chains
[37] (i.e., each configuration stage is performed by different stakeholders in a
software supply chain). Kang et al. [21] suggested a product feature configuration
process that facilitates quality-based product configuration.

8 Summary and Outlook

This section introduces a holistic feature modeling method that enables product line
analysts to capture complex concerns of a product line into different viewpoints and
to decide product configuration systematically. Coexistence of multiple viewpoints
in a single model without delineating them resulted in a highly complex and
unmanageable feature model. The key idea in this section is the explicit separation
of problem space features from solution space features. The approach also provides
multiple viewpoints for each space so that a product line analyst can concentrate on
a specific modeling space with clearly defined viewpoints at a time and do not need
to consider other concerns. Relationships between these different viewpoints are
explicitly modeled and used in making configuration decisions.

In this chapter, we explored explicit connections between goals/objectives,
product usage contexts, quality attributes, and functional and design features. We
also explored feature binding time issues. We expect to see more formal treatments
of these subjects in a near future.
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Chapter 3
Variability Scope

Rafael Capilla

What you will learn in this chapter

e The importance of binding system options

e The notion of variability in space

o Variability constraints and dependencies

» Automation of variability scoping techniques

1 Introduction

A fundamental aspect of variability modelling and for software product line
engineering refers to the scope of the product portfolio that is to know the number
and type of the products to be produced. As software variability concerns with
multiple product development and multiple product configurations, there is a need
to delimit the scope of the products and determine the size of the domain in our
product line. Scoping identifies what products are “in” our product line and relies on
a set of allowed options described in the variability model to determine the list of
feasible products that can be built. Therefore, software engineers must define which
design choices and combinations of them will be valid for a given market segment.

There are many reasons (e.g. economic, business, technical) for delimiting the
scope of the SPL products and thereby the scope of the variability model. Each
reason must justify why a number of available choices must be out of the selection
and product configuration activities, as the high number of combinations in large
variability models, often belonging to industrial product lines, makes unmanage-
able and unfeasible the development and maintenance of a large set of software
products. Consequently, delimiting the number and type of products must be driven
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by the scope of valid options defined in the architecture. Such restrictions are often
based in a set constraint and dependency rules defined for the software artefacts and
used to prune the number and type of products we can develop. In this chapter we
will deal with notion of variability in space and with the reasons and technical
solutions used for bounding the design choices used to keep the SPL products under
control.

2 Scoping Activities

The need SPLs focus on specific market segments motivates domain scoping
activities. Therefore, domain scoping is considered one of the first SPL activities
used to delimit the number and type of products that will be inside the product line.
Scoping activities narrow the domain of the product portfolio for the success of
the SPL from a business and economic perspective. As a result, the scope of the
variable options is also delimited by rules and constraints aimed to reduce the
number and type of allowed products.

As discussed in [1], product portfolio analysis results are key to evaluating and
establishing the type of products we want to engineer. As the product line evolves,
the product portfolio may grow or change, and the variability implemented in the
architecture must be flexible enough to support new variations in a controlled
manner. Scoping activities also encompass the identification of requirements that
are common to all products and those ones that make the difference between SPL
products. Such activities will have a great impact on commonality and variability
analysis to identify the variable parts in the architecture and with reusability of
components and products in mind.

Moreover, market analysis activities are also carried as an early step before
launching the product line in order to determine the product portfolio and to
encompass which assets and products will be part of the product line. Therefore,
product variants are defined and modelled on the basis of scoping activities and
driven by economic and business reasons that keep the product line competitive.

Otherwise, the flexibility of variability models aimed to support a broad number
of products in the product line scope often relies on more technical activities and
current SPL capabilities, such as extensibility of variability models to support
evolution and product configuration and derivation tasks. Bosch [2] mentions
three different forms of scoping:

(i) Domain scoping aims at defining the boundaries of the domain where artefacts
and products will be used. Domain analysis techniques are often used to
delimit the scope of domain products and to derive the products from domain
models (see also Design Space Models for product line scoping [3]).

(i) Product scoping defines the products that will be engineered, often under a
product line approach.

(iii) Asset scoping focuses on the identification of those reusable assets that will be
employed in the construction of the software products.
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These forms of scoping are used to constraint the number and type of options of
variability models in order to make them more manageable. The scoping activity is
fundamental for the product line strategy and economic benefits depend on how
well the scope is chosen (e.g. a large scope may waste the investment of assets while
a narrow scope may lead to not supporting reuse across all relevant products) [4].

Clements [5] states the importance of product line scope as a crucial activity for
bounding the limits of the product line and define what’s “in” and what’s “out.” Pro-
active approaches attempt to delimit the full scope of products when a product line is
launched from scratch, while reactive approaches deal more with the scope of new
products as the product line evolves and when new requirements appear. Scoping is
sometimes considered a fuzzy activity during variability modelling and product line
start-up, but several reasons motivate its importance in a product line context.

2.1 Reasons for Scoping

We can think in many reasons to enact scoping activities, but most of them may fall
into the following categories:

e Economic: As not all the products can be built, there is a strong need to reduce
the number and type of the assets and products because of economic reasons.
Sometimes a product is technically feasible but difficult to sell and hence, it
should not be included in the product line. For instance, an expensive product
supporting a large number of configurable options that many of them will never
be used. However, the case of a software product supporting only one single
variation could be included in a product line if it shares a large number of assets.
In other cases, a company can produce hundreds of products using a highly
customizable variability model but building and maintaining such huge number
of products will be highly costly (e.g. due to an excessive number of software
development hours). Consequently, only those configurable assets and products
that are worthy of value must be considered within the scope and a balance
between the cost supporting a large number of configurable options (i.e. more
products may lead to a broader scope) and a given pricing scheme must be
achieved for each particular customization strategy.

* Business/Strategic/Commercial: Many times the variability model can support
the development of a certain number of worthy configurable products, but
business, strategic or commercial reasons may suggest to, for instance, delay
its development. During scoping activities we do not restrict the scope of the
variants for those products that will not be engineered in a certain period of time.
Rather, we support such variations as part of the scope of the product line model
but we decide later if certain variants (often known as internal variability) will
be available in a new version of the product because the market demands new
features (e.g. activate a new feature in the software of a mobile phone that
remains hidden or unavailable in previous models of the SPL).
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e Technical: Delimiting the scope of products or assets is necessary for mainte-
nance reasons, as huge variability models are difficult to maintain and manage
and may also increase product derivation activities. We use constraints not
because the current technologies cannot support an infinite number of
combinations but because of technical and other business reasons. Some systems
that exhibit a large number of dependencies between their assets increase
maintenance effort (e.g. the dependency network between packages in Linux
kernels) and something similar may happen with variability models. Therefore,
it is desirable to keep the number of dependencies and constraints under control
and use tools for automating these tasks.

» Cultural/Political: Sometimes different configurable options are driven by cul-
tural factors such as the language of use in different countries, which may lead to
supporting a variety of languages in the GUI menu options of the product, while
the functionality of the software remains the same. Delivering a software
product in only a certain number of countries (e.g. due to political or military
reasons) is another form to delimit the scope of the variants.

2.2 Variability in Space

Once the product line assets and products are well scoped, we can say that the pair
variants and variation points defined in the variability model are ready to be used in
product configuration and derivation activities in order to produce the reusable
assets and the products in a given domain. The number and type of configurable
products are determined by the design options defined in the architecture and
implemented in the code assets. We refer to this as variability in space, where
product line artefacts and releases are engineered and configured from the same
variability model and belonging to a given domain.

Definition 3.1. Variability in space

Variability in space represents the set of products, releases and reusable assets
that can be derived and configured from a concrete variability model in a given
timeframe.

2.3 Notation for Binding Time

Variability in space provides the necessary ability to produce multiple products
through variant selection and takes advantage against single-system development
when several products and configurations must be engineered and put on time in the
market. As mentioned in [6], “feature declarations model the scope of variation in
the production line,” and the adoption of software mass customization must support
the complete scope of products on a predictable horizon. Also, depending on how
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flexible and extensible the variability model has been designed to support evolution,
new requirements should not be a problem if new design options and constraints can
be easily added without changing the structure of the variability model.

In addition, the scope of the variability model is not only limited by the
configurable options available but also by the constraint and dependency rules
that will determine which products are allowed or within the scope. Such
constraints must be described and implemented as part of the variability model,
such as we explain in next sections.

3 Variability Scope

Product line scoping in its different forms have a direct impact on bounding
variability. Because huge variability models applied in industrial product lines
offer a large number of possible combinations, the feasibility to build only a subset
of these products must rely on the limits established in the variability model to
support a reduced number of allowed products.

3.1 The Graphical Limits of FODA

Variability models often use FODA trees to provide a graphical representation of
the system features and how these interrelate with each other. A FODA tree
describes the system features in terms of mandatory, alternative and optional
variants which are also related using the notion of variation point. This hierarchy
forms a tree where the root node represents the type of products we want to build.

One weak aspect of FODA trees is how constraints between features, used to
delimit the variability in space, can be represented graphically. Also, representing
variation points to relate variants located in different parts of the FODA tree can
complicate the visualisation capabilities of the variability model, in particular in
large feature models. In FODA, it is commonly accepted to draw a direct line
associating two features to describe that there is a relationship between them, which
can be either a constraint or a dependency rule, but constraints and dependencies
are often managed separately from the graphical representation of the feature tree.
With FODA, structural dependencies are modelled graphically and configuration
constraints among optional and alternative features are specified separately to
reduce the complexity of the graphical representation. Both of them must share
the same name space. The same happens when we want to relate two or more
variants and group these under a common variation point. A circle or dotted line
surrounding the variants in the variation point is often used, but the logical formula
describing such relationship must be written out of the FODA tree.

Figure 3.1 shows an example of a feature tree where variation points are
surrounded by a dotted line and relationships between features are described
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example annotated with
different types of
relationships between
features

Legend
/ Mandatory feature () Optional feature N\ Alternative feature

<~ Excludes —— Requires ¢ Variation Point

using a solid line, but as mentioned, all this information must be described in textual
form apart from the graphical representation. Therefore, FODA trees are simple and
useful techniques to visualise the entire or a subset of the variability model, but the
rules and constraints that define the limits of the allowed products must be defined
and managed in a textual form. The existence of hundreds of features often makes
hard the proper visualisation of all the potential constraints used to delimit the
variability implemented in the product line products. For instance, in Fig. 3.1 we
show three sample types of relationships that can be used to define the scope of the
variability model, such as the following:

» Feature f1 excludes feature f2.

» Feature f2.3 has one requires relationship with feature f3./. For instance, a
feature cannot be activated if another feature has not been activated first. This
can be seen as a special case of, the “requires” dependency.

e A variation point VP, is defined to encapsulate and relate the alternative
features f3.1/ and f3.2 using, for instance an OR logical connector and having
feature f3 as parent of the relationship (e.g. VP = {£3.1 OR £3.2}).

Non-graphical representation techniques like matrixes can be also used to
describe the dependencies and constraints of features. In addition, languages
supporting rules and constraints constitute an interesting alternative as they can
be processed automatically by software.

3.2 Variation Points

A variation point defines a relationship between features of a feature model and
represents an area of a software system affected by variability. Variation points are
used to relate two or several features located in the feature tree, and from the same
parent or from different ones. Variation points encompass set of variants and other
variation points that are represented by a logical formula that uses logical
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connectors (e.g. OR, AND, XOR) to relate features. As not all the possible
combinations are valid, the scope defined for each variation points is restricted by
system constraints that limit the scope of products in space.

Variation points provide a flexible way to play with the scope of system features
by grouping them as related functionality, often implemented as subsystems. When
a variation point relates distinct functional parts of a system, the resultant area has a
broader scope and the variability implemented in related system functional parts
can be managed as a whole by means of such variation point. For instance, the
variability implemented in the architecture that manages the electronics of a car can
be used to describe the variations of both the Navigation subsystem while other
features describe the variability implemented in the Multimedia subsystem (i.e.
radio, DVD). Both subsystems can be integrated under one variation point
representing an integrated multimedia system which can be also managed using a
common control centre (e.g. the BMW’s iDrive system consists of a button that
manages all functions of the vehicle control system).

Variation points are often represented in feature trees as circles or boxes
surrounding the variants included in the variation point, but because this technique
may distort the representation of the feature model, variation points are better
described separately in text notation or grouped in tables. The distortion of feature
trees when using variation points can be reduced if we group subsystems or related
functionality from the same parent, as we can avoid crosscutting lines across the
feature tree. In huge variability models, it is rather difficult to avoid the existence of
variation points relating distant features located in the tree or belonging to different
parents, as in other case this may lead to a reorganisation of the whole variability
model.

Just to give an example, Fig. 3.2 shows an example of variation points belonging
to the same and to different parents. In the first case (left side of the figure), a
variation point is defined and comprises three different variants. In the second case
(right side of the figure), a variation point is defined to relate two distant features
containing the variants defined in the feature tree but belonging to two different
parents and depicted using a dotted circle line, as FODA lacks an explicit notation
to describe such cases. In both situations the variation point defines the scope of
certain functionality or related system features but this is managed differently. In
the second case the scope seems to be broader than the first case because the
functionality encompassed in the variation point shown in the right side of the
figure encompasses functionality that belongs to separated or different part of
the software product.

Because the scalability of the graphical representation of feature models is
sometimes limited to describe and/or visualise hundreds of variation points, we
need machine-processable techniques to solve this problem. However, most of
FODA implementations are machine processable, as described in the Appendix
of the FODA report, which includes a method of textual specification and also the
extensibility of the model.

From an architecture point of view, variation points can be annotated as UML
text notes and stereotypes in UML diagrams as no specific notation or neutral
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standard format exists to describe a variation point in the software architecture. This
lack is common to all UML modelling tools and specific tooling has to be used to
describe the variability of systems, in particular for industrial product lines where
hundreds of variants and variation points need to be defined. Hence, the constraint
and dependency rules used for delimiting the scope of the variability model can be
hardly represented in the architecture and specific variability modelling and man-
agement tools are required.

3.3 Variability Constraints

In a feature-oriented approach, features are usually not independent each other, and
the number and type of allowed products that can be technically and economically
produced in a product line is often restricted using requires and excludes constraints
(i.e. a kind of dependency). These variability constraints describe additional
relationships between product features that can be hardly represented in the feature
tree. Such dependencies can be applied either between variants and variation points
in order to restrict the number of feasible product variations and thereby the number
of product configurations.

e Requires dependency: It is used to represent that a variant V, or a variation point
VP, needs another variant V, or variation point VP,. A requires dependency
means that when a feature is selected the other must be present in the same
product.

e Excludes dependency: It is used to represent that variant V, or a variation point
VP, excludes another variant V, or variation point VP,. That is, an excludes
dependency means that two features cannot be present in the same product.

In FODA, an arrow between two variants or variation points labelled with
“requires” or “excludes” is enough to describe graphically such relationships, but
the high number of such constraints in large variability models makes that all these
rules must be processed automatically depending on the language used. Simple
if-then constructs are enough to describe these dependencies, but constraint
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programming constitutes another alternative to describe the dependencies between
features.

Example 3.1. Requires and excludes dependencies using if—then

A feature fy is required if a feature fx is present

IF (fx) THEN fy

A feature fy is excluded if a feature fx is present

IF (fx) THEN NOT fy

A feature fz (e.g. a variant) is required if the variation point represented by
features fx AND fy is present

IF (fx AND fy) THEN fz

In addition, the requires and excludes dependencies can be defined statically
when product options are bounded before runtime or dynamically when such
dependencies define a runtime condition during product execution or as part of a
runtime reconfiguration process.

Example 3.2. Static and dynamic “requires” and “excludes” constraints

Static: During a software installation procedure, a software package requires
another package before it is installed. Hence, a static requires dependency is defined
and resolved.

Dynamic: During system execution, the software of an elevator checks the
maximum allowed weight before the user can press the button of a given floor. In
this case, a dynamic excludes dependency is realised at runtime when the maximum
weight is exceeded.

Variability models delimit the solution space using requires and excludes
dependencies to constraint the diversity of products, but these dependencies often
complicate the variability model due to a high number of interrelated relationships
between variants and variation points. As a consequence, the variability that is
coded in a given subsystem or product becomes less reusable and difficult to
decouple when the product options have dependencies to other system features.

3.4 Operational Dependencies

Feature dependencies have many implications in the development of product line
assets and products as these are used to delimit the scope of the structural
variability. However, other dependencies are possible. As mentioned in [7], opera-
tional dependencies represent implicit or explicit relationships between features
that happen during the operation of the system. This kind of dependencies can be
considered as different forms of requires and excludes dependencies but associated
to runtime properties rather than to those defined statically in the feature model.
Therefore, operational dependencies delimit the scope of execution features instead
of the scope of the number and type of products; however, they can be used to
configure products with different execution capabilities.



52 R. Capilla

Based on a previous work [7], we describe the following six operational
dependencies':

» Usage dependency: It represents a feature that depends on other features for the
correct system functioning. For instance, the location of certain services in a
mobile phone depends on the correct functioning of the GPS system feature.

* Modification dependency: The behaviour of a feature might be modified by
another feature while it is in activation. For instance, the feature that activates
the Anti-lock braking system (ABS) in the car depends on the features
controlling the sensors of the wheel, and the ABS feature works differently
based on the information received from the sensors.

e Activation dependency: The activation of a feature depends of another feature,
and it can be classified into the following four categories:

— Exclusive-activation dependency: This dependency refers to features that
cannot be active at the same time.

— Subordinate-activation dependency: It represents a feature that can be active
while another feature is also active.

— Concurrent-activation dependency: Two or more features that are
subordinated to an active parent feature must be also active at the same
time (i.e. concurrently).

— Sequential-activation dependency: Some subordinators of a parent feature
must be active in sequence, and the parent feature will be active after the
completion of the sequence.

The complexity of modern software systems may lead to many expected and
unexpected situations where the status and operation mode of a system may change
and more operational dependencies may arise to deal with new situations when the
environment changes.

4 Automating Variability Scoping Checking

In large variability models, where hundreds of features are required, the number of
constraints and dependencies may become unmanageable and hence, automatic
mechanisms are necessary (1) to check that the right products will be produced, and
(2) to ensure the compatibility between hundreds of constraints and dependency
rules.

The automatic analysis of feature models can be used to check the scope of the
product line products and their different configurations based on the provided
variability in order to ensure the compatibility of hundreds of product constraints.

!In this chapter we will consider operational dependencies as part of a previous work of one of the
co-authors of this book rather than a mere reference to the related work.
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Table 3.1 Mapping features

. = Feature relationship Propositional logic CSP
to propositional logic and

CSP notations OR P=XAY) If(P>0)

P=(XORY) Sum (X, Y)
Else
X=0,Y=0

Excludes “(XAY) If (X > 0)
X excludes Y Y=0
Requires A—B If(X >0
X requires Y Y >0

As nicely described in [8], there are different techniques that can be used to check
the consistency of dependencies in feature model. In this chapter we summarise two
representative techniques used to automate the analysis of feature models.

» Propositional logic: It uses a propositional formula consisting of a set of
primitive variables related by logical connectors aimed to constraint the values
of the variables. A feature model can be mapped as a propositional formula and
then use SAT solvers” to determine the satisfiability of the formula expressed
using first-order logic. The formula can be specified in Conjunctive Normal
Form (CNF) and uses three logical symbols, as connectors (i.e. —, A, V) that are
used by most SAT solvers. Features are mapped to variables in the propositional
formula and the relationships between features are described using several
formulas and including constraints.

e Constraint programming: Is a programming paradigm where relations between
variables are stated in the form of constraints. These constraints can be described
using Constraint Satisfaction Problems (CSPs) (e.g. A or B is true) where the
values for the variables are found and all constraints are satisfied. Conversely to
propositional formulas, a CSP solver can deal with numerical values in addition
to Boolean ones. Feature models can be mapped as CSP variables with values
TRUE or FALSE, while the relationships between features are defined as
constraints. A description of the usage of CSP solvers in the automated analysis
of feature models can be found in [9].

Table 3.1 shows an example on how constraints and dependencies of a feature
model can be expressed in propositional formulas and CSP.

5 Areas of Practice

Product line scoping is a key activity for the success of the product line. In the early
stages of the SPL phases, domain scoping is sometimes perceived a fuzzy task and
difficult to carry out. Hence, one first area of practice is to define clearly the scoping

2 A SAT solver is a software that takes as input a propositional formula and determines if the
formula is satisfiable, that is there is a variable assignment that evaluates the formula to true. Input
formulas are often specified in Conjunctive Normal Form (CNF) notation [8].
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activities in the SPL approach used, not only at the process level but also in
variability modelling tasks. Some well-known SPL approaches like PuLSE [10]
have a domain scoping phase (i.e. PULSE-Eco) used to identify the scope of the
product line and determine the product line members. Other approaches (Software
Engineering Institute’s Framework for Software Product Line Practice 5.0%) com-
bine economic and business reasons to establish SPL scoping activities with more
technical activities focused on production constraints.

Closer to variability management techniques, staged configuration of feature
models are used to iteratively select features in order to reduce the variability in the
feature model [11]. This technical activity can be seen as a way to reduce the scope
of the final products during product derivation. In other cases, new features can be
added to enhance the functionality of a given product (e.g. the calculator product
line incrementally adds new functionality by adding features). Using this approach,
errors can be detected easily on each stage.

Another area of practice concerns with the evolution of the current asset and
product features. If variability models become too rigid to expand the scope for new
product line members, a reorganisation of the structural variability is needed,
maybe because the variability model is unable to support runtime changes. In
more flexible approaches, where runtime variability is supported, existing features
can be modified or new ones added affecting the scope of the product line.

6 Summary

Product line scoping is an important and challenging area to determine the allowed
product configurations that will belong to the product line. As discussed in the
chapter, there are several reasons (e.g. economic, business, technical, etc.) that
justify the need for product line scoping activities at various levels of abstraction
such as domain or product scoping.

We have described the notion of variability in space to refer to the number and
type of products to be produced from a given variability model and limit the scope
of the products in the product line. FODA and their successors (i.e. extended
notations of the original FODA) or constraint programming techniques are of
common use to describe variability models and to determine the valid product
configurations.

Finally, other forms of dependencies between features highlight these
relationships from a runtime perspective rather than from the structural point of
view, as many systems that use context information requires additional capabilities
to adapt themselves to a new environment, and variability that is managed at
execution time play an important role. Hence, these new dependencies must be

3 http://www.sei.cmu.edu/productlines/frame_report/index.html.
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Fig. 3.3 Drivers and techniques for SPL variability scoping activities

able to address those runtime concerns among features that exploit runtime
conditions.

Figure 3.3 summarises the main reasons for SPL scoping activities and the
related techniques used to delimit the scope of variability models.

7 Outlook

Well-defined product line and variability scoping techniques are still needed.
However, feature models are widely used to describe the variability of software
systems, but other representation forms are required to accomplish the interrela-
tionships between hundreds of features. Hence, new ways to represent large
variability models and filtering techniques to describe a subset or a subsystem
containing variability are welcome. Moreover, the scalability of feature models
must be managed efficiently to expand or reduce the scope of the product line
variants and hence facilitate the evolution of the product line. New trends and
techniques in runtime variability models will help to support the dynamicity of
systems and ecosystems and represent dynamic relationships between features that
the structural variability cannot describe.

References

1. Pohl, K., Bockle, G., Van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)



56

10.

11.

R. Capilla

. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product Line

Approach. Addison-Wesley, Reading, MA (2000)

. Tekinerdogan, B., Aksit, M.: Managing variability in product line scoping using design space

models. In: Software Variability Management Workshop, Ankara, Turkey, pp. 5-12. Univer-
sity of Twentepp (2003)

. Schmid, K.: A comprehensive product line scoping approach and its validation. In: ICSE’02,

pp. 593-610. ACM DL (2002)

. Clements, P.: On the importance of product line scope. In: Software Product-Family Engi-

neering, 4th International Workshop, PFE 2001, Bilbao, Spain. LNCS, vol. 2290, pp. 70-78.
Springer (2001)

. Krueger, C.: Easing the transition to software mass customization. In: Software Product-

Family Engineering, 4th International Workshop, PFE 2001, Bilbao, Spain. LNCS, vol.
2290, pp. 282-293. Springer (2001)

. Lee, K., Kang, K.C.: Feature dependency analysis for product line component design. In: ICSR

2004. LNCS, vol. 3107, pp. 69-85. Springer (2004)

. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years

later: a literature review. Inf. Syst. 35(6), 615-636 (2010)

. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: Using Java CSP Solvers in the

automated analysis of feature models. In: GTTSE 2005. LNCS, vol. 4143, pp. 399-408.
Springer (2005)

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud,
J.-M.: PuLSE: a methodology to develop software product lines. In: SSR 1999, pp. 122-131
(1999)

Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In: SPLC
2004. LNCS, vol. 3154, pp. 266-283. Springer (2004)



Chapter 4
Binding Time and Evolution

Rafael Capilla and Jan Bosch

What you will learn in this chapter

e The notion of variability in time and binding time

e What a Feature Binding Unit is

e How binding time affects the evolution of products and architecture
* Open variability models

1 Introduction

Software variability, as a powerful mechanism that enables the construction of
different artifacts from a common architecture, enables the realization of variation
points and variants at different times or stages. The moment in which the variability
is bound to concrete design choices provides a flexible way to delay our design
decisions to later stages during the software development process. Because
supporting the evolution of variability models is critical for the success of the
product line, we introduce in this chapter the notion of binding time. However, for a
variety of reasons, different artifacts may require different times to realize their
design options, and the ability in which the product line core assets and products
match to concrete values at different binding times increases the flexibility of the
product line architecture configurable options.

The realization of the variability may affect both to the developer side and to the
client side as well, because the binding time happens at different stages of the
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development process, from design time to runtime. Hence, the evolution of product
line products using variability techniques is better supported with the selection of
different binding times. Variability plus binding time mechanisms are used to avoid
rigid architectural approaches that are difficult to evolve, and runtime binding
offers, for instance, quick adaptation of systems to new context conditions without
changing the architecture.

2 Variability in Time

In previous chapters, we learned that variability in space refers to the number and
type of products that are built under the scope of a particular software product line.
Such variations must be concretized at a given time to allow each particular product
configuration, so the architect, developer, or customer knows when the variability
will be realized to their concrete values.

As not all software systems have the same needs, variability in time [4] allows
you to select when the system must be configured and to delay your design
decisions to later stages in the software development process. It also refers to the
different versions of an artifact that are valid at different times [13]. Thus,
variability in time provides a powerful mechanism that software engineers use to
delay or advance the decisions implemented in the software architecture and adapt
their components and products at different stages in the software life cycle. The
flexibility gained to configure the software at different times increase developers
and customers’ satisfaction and reduces further product configuration effort.

2.1 Binding Time

The notion of variability in time is often known in software product line engineer-
ing as binding time. Binding time can be understood as a property of variation
points to delay the design decisions to a later stage, as new requirements or different
context conditions may require concretize the variability at any time after design
time.

Definition 4.1. Binding time
Is an attribute of variation points and/or variability technique used to delay the
architectural design decisions to later stages in the software development process?

2.2 Binding Time in the Software Development Process

Different kind of systems may require an adaptation to different context conditions,
and not all the software systems pose the same capabilities to react or change their
own configuration or system properties. Therefore, different binding times are
needed to respond to different adaptation demands. There is a wide variety of
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Fig. 4.1 Different binding times where variability can be realized

binding time choices to decide when system features can or must be configured and
according to the adaptation level desired. Some of the possible binding times
happen in the developer side, while others occur in the client side. Figure 4.1
shows the diversity of binding times, from design time to runtime. As we illustrate
in the figure, part of the variability can be defined and realized in the developer side
to configure the design choices earlier, while in other cases variability matches to
concrete values much later, often in the client side, such as what Fig. 4.1 shows [5].

At design time, all variants and variations points are defined in the software architec-
ture or in a complementary feature tree or table. During implementation time, the
variability described in the architecture must be implemented in the software components
(e.g., core assets in a product line) by means of a variety of programming techniques (e.g.,
parameters, class hierarchy, etc.). In other cases, binding time may happen at compilation
and build time, where different software components can be selected according to
different needs to produce a different version of a software package (e.g., a recent version
of a math package that has to be installed in a Linux system or a new version of the Linux
kernel that has to be reconfigured and afterwards built linking all their modules). Finally,
the assembly time of products from the same or different suppliers may lead to bind and
integrate products at the end of a product line. Variability can be used to decide on the
selection of the products that will form part of a specific version.

In addition, variability can increase the flexibility of the configurable options if
these can be resolved more in advance, often in the client side, as we do not need to
ask developers to modify the variability model to support certain changes. In this
case, binding variants at configuration time introduce a degree of freedom that let
customers to configure a software product before execution. For instance, the
installation of a new operating system requires configuring the date, language,
and other O.S. features at the client side. Also, some systems need certain configu-
ration operations when the system is deployed (deployment time). This could be the
case of distributed systems, which need to configure IP addresses and server nodes,
when they are deployed. Configuring variants at start-up is one of the most common
used runtime binding. For instance, an operating system already preloaded in the
machine needs to configure certain system parameters and user preferences before
first start-up. Finally, the most flexible binding time occurs during the execution of
the system (runtime), which can be reconfigured itself with low or minimal human
intervention, and variability is dynamically bounded to the values according to
different context conditions.
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2.3 Feature Binding Units

In a software product line, not all system features need to be activated at the same
time. Therefore, the need to accommodate the variability to different situations
means that not all of the features will be switched on/off concurrently. Different
binding times can be defined for the products and software components to allow
designers to activate or deactivate a concrete feature or group of them in different
moments also because one or more feature may pose one or several binding times.

Example 4.1. Activation of group of features

The variability implemented in an intelligent home system (IHS) covers a wide
range of areas from lightning to security. If variability is used to model the
activation and deactivation of IHS features, under normal circumstances, it may
happen that the heating system can be activated at runtime according to different
temperature conditions, while changing the password access of the door entrance
could be done only at configuration time. In this scenario, the same system exhibit
different binding times for different but related group of features.

During feature modeling, we need to define which features must be activated at a
given time and, hence, define the binding time for them. It is easier for implemen-
tation purposes to agree the same binding time for a related group of features,
preferably those that can be implemented in a single software component or class.
Some authors [10] use the term feature binding unit (FBU) as “to identify and bind
service features that represent a major functionality of a system that can be added
or removed as a service unit”.

The example on Fig. 4.2 represents part of the feature model of a Virtual Office of
the Future (VOF) system described in [9], where the red circles represent an FBU for
a group of related features with the same binding time. Pre- and post-conditions
determine static or dynamic binding of features to reconfigure the system according
different user needs. In dynamic scenarios, require and excludes rules relate depen-
dent features and help also to model when a certain feature must be activated or not.

Modeling feature binding as units has several advantages, among which we can
mention the following:

* Model groups of related features help to understand better how variants and
variation points are activated at the same time.

¢ Facilitates the understanding of the dependencies between features and the order
in which they are activated or tracked.

* Makes easier the implementation of the variability in the system which can be
also associated to hardware components.

¢ Facilitates consistency and feature management.
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Fig. 4.2 A feature model and binding units of a virtual office system [9]

2.4 Notation for Binding Time

Conversely to variation points and variants, where several authors have proposed
graphical and text notations to represent the variability in the architecture and
feature models [13, 14], binding time lacks explicit notation. In feature trees, the
binding time never appears, and only the FBUs attempt to describe graphically a
common binding time for a set of features. There are two simple ways to describe
the binding time of in the variability model.

(a) One way is to use a tabular form where the binding time appears in a single
column and is specified using plain text for a set of features, software compo-
nent, or architectural element.

(b) The second way is to annotate it graphically in the feature model or UML
design, and indicate when the variability occurs.

A tabular representation has the advantage to relate easily the binding time with
the provided variability and offer good precision to know when a variant or
variation point bind to concrete options. Including the binding time in UML
descriptions, like in [12], offers a quick view of the binding time in software
components or classes, but worst to decipher at finer grain levels, also because a
certain variant may pose more than binding times.
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Fig. 4.3 (a) Graphical representation of the binding time. (b) Tabular representation of the
binding time

As variants and variation points are stereotyped in UML models with
<<variant>> and <<variation point>>, respectively, and have well-known
acronyms like “V” and “VP”, we advocate to use the acronym “BT” for the binding
time that is usually stereotyped with <<BT>> or <BindingTime>>. We prefer to
avoid the inclusion of binding times in feature trees as these are mostly used to
describe the structural variability, often at design time, rather than times where
variability is bound. Figure 4.3a, b shows an example on how the binding time is
shown using a graphical and tabular description.

Sometimes it is difficult to know if the binding time property must be attached to
an entire class, software component or to smaller elements like class attributes or
parameters. In the case of an entire class containing a portion of the system
variability which has the same FBU, we can use one single binding time for such
class or software component. In those cases where different variants have different
binding times, a tabular description seems more suitable than UML diagrams to
describe the binding time of the features. In Fig. 4.3, the UML description shows
that the multimedia class has two different binding times that affect the entire class.
In addition, the subclasses define two different binding times for two attributes, one
of these binds the Codec attribute at runtime while the other binds the SoftVersion
attribute at configuration time. Stereotyping the binding type (<<BT>>) in UML
diagrams gives some initial indication, but the tabular representation constitutes a
more detailed alternative to indicate when each feature binds to its values as well as
other complementary information.
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2.5 Binding Time Implementation Mechanisms

Binding time and variability implementation mechanisms are closely related.
Depending on the moment in which variability is realized, we will need to use a
different implementation technique. In the following subsections, we discuss dif-
ferent techniques to realize variability at different times.

2.5.1 Pre-compilation Time

Before compilation time, variants and variation points can be described in a UML
diagram using stereotypes, tagged values, notes, or even OCL constraints to define
the pre- and post-conditions. As UML designs are static artifacts, they can only
describe which features or classes will change when the software architecture is
configured as product architecture. As mentioned in [13], to bind the values of
variants before compilation, certain techniques can be used like generative pro-
gramming [1] or model-driven architecture [9], which attempt to automate code
generation and give values for the variants selected to the available parameters.
Also, aspect-oriented programming [8] is another pre-compilation technique that
weaves different aspects or cross-cutting features in a program, and such aspects
may include their own variability (please refer to Chap. 14).

2.5.2 Compilation Time

Variability can be used to define conditional compilation of program modules,
where common compilation directives are separated from conditional compilation
sections. Compiler flags and code sections are examples where variability is
bounded at compilation time. The #ifdef directive is often used to define the
variations during compilation to expand the macros for each compilation option, as
code sections are included or excluded when the program compiles. Also, nested
#ifdef sentences may increase the complexity of the dependencies during com-
pilation. For instance, a Linux program that requires other Linux packages to be
installed may generate a complex dependency network based on different options
that are bound at compilation time, and all these options described using #ifdef
directives must have the same binding time. Other directives such as #include
can be used to define different options or files that will be included during
compilation. Users must be aware about side effects between incompatible compi-
lation options or when macros are expanded, similarly to incompatible variants or
constraints rules defined in feature models, as compilation may stop when a variant
that concretizes its value does not find the source (e.g., a file required which is not
present).
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Example 4.2. Binding at compilation time with #idfef

#ifdef unix
#include <unistd.h>
unlink (file) ;

#else
remove (file) ;

#endif

2.5.3 Link and Assembly Time

Software products can bind the variable options at multiple stages along the life
cycle, and hence, each variation point can be bound at a specific time. At build time,
the variation points and variants realize the dependencies between modules prior to
execution, and files are linked into an executable artifact. Usually, a Makefile
provides the sequence needed to link their files or static libraries. Variability offers
different alternatives to link the files by means of different linkage parameters.
Similar to the example given for compilation time, a Linux kernel that must be
recompiled and linked may use different linkage options that can be used by means
of parameters to select the binary files and define the order in which the files must be
linked. As Makefile generators are of common use, much of the variability that can
be introduced is set up with specific configuration programs.

Hence, Makefiles can be constructed automatically and based on environmental
variables (e.g., using a Configurator utility) before the made program is invoked.
Macros and flags defined as variants work equally or similarly when a program is
compiled. Resolving the variability at link time offers a flexible way to replace
modules before execution time, as the names and versions of the binaries can be
changed combining several Makefiles with other text configuration files to set the
link options to concrete values.

A similar form of binding time where products are integrated is known as
assembly time (e.g., a set of products are integrated at the end of a Software Product
Line). Assembly can be seen as another way to link binary modules, such as
software composition (i.e., composability), or even use generative approaches
where a script is executed to produce a final executable file or to incrementally
add new functionality by adding new features to an existing basic configuration.
During assembly time, the software engineer defines which functionality will be
added or removed into a concrete product version.

2.5.4 Configuration and Deployment Time
Configuring the variants after build and assembly time can be enacted in the

developer side or in the client side. During configuration time, those variable
options of a software system are configured before execution, during the first
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start-up or on every start-up. A program can read a configuration text file with the
concrete values without human intervention and set the values of the variants with
the right configuration values. Tools can be used to configure the software that is
going to be deployed (e.g., a new operating system uses an administration manage-
ment tool to set up certain parameters), or automatic configuration scripts can be
employed to upload the values of system features. For instance, we can use XML-
based scripts to add new features to a software and then instantiate the variants to
configure a new version of the product.

At deployment time (i.e., we assumed a software piece which has been already
configured), some variants may still need a value before its execution. This is, for
instance, the case of a distributed application that needs to set up a different IP
address for the server or host where it will be installed. In this case, a script reads
from the network interface or from the operating system network files the IP
assigned to the destination host, and sets the variant with the right IP address.

2.5.5 Start-Up and Runtime

Binding the variants at runtime is the most flexible way to set up the variants and
variation points. There are several forms where variants can be bound during
execution and according to different needs. One form is to use dynamic files or
libraries where one or several variants realize their values at runtime. For instance,
as mentioned in [3], the Apache server supports dynamic loading of modules that
can be linked statically at build time or dynamically at start-up. Sometimes, the
system needs to be restarted to assume the new configuration. In other cases, the
software locates a new version of or new functionality that has to be downloaded
and installed but no restart is needed. The variability implemented in the system
must support variants to locate the new software or library of the right or most
recent version, and such values will be bound during the execution of the system.
The order to load a new configuration is critical for the success of new software
installation to avoid incompatible configurations. The values of these variants must
be checked periodically to warn the user about the need to perform new operations
in the system.

Pure runtime binding usually affects those systems that need to readapt them-
selves to a new context environment (e.g., autonomic computing, ubiquitous
systems, self-adaptive, and self-healing systems, etc.). In this case, the values of
the variants supporting certain context information are monitored periodically as
they may change during runtime. Therefore, in case, a new configuration is
required; the middleware enacts the corresponding procedure to set the variants
with new values and perform certain reconfiguration operations that in most cases
happen without human intervention. If binding happens at runtime, we recommend
the use of binding time units to facilitate the implementation issues. Some addi-
tional effort must be done to provide purely runtime binding, but this extra effort is
necessary for certain critical systems to provide unattended configuration facilities.
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3 Multiple Binding Times

In complex software products, use of variability techniques in more than one
binding time is possible as different functional parts of the systems may bind
their variable options at different times. Also, the adaptation capabilities of certain
systems demand runtime binding of their configurable options and this situation
states the need for a transition between different binding times. For instance, an
autonomous system may reconfigure some system options at runtime and certain
software modules may go through a reconfiguration process and change its opera-
tional mode dynamically. Therefore, it is necessary to describe the possible
transitions between different binding modes. As described in [15], capabilities
and dynamic rebinding of multiple binding times are necessary to many of today’s
embedded system families that demand runtime adaptation and autonomous deci-
sion-making when context conditions change. In the era of post-deployment,
current mobile and service-based systems may need to rebind to software services
dynamically or be reconfigured at runtime.

Like in [15], Table 4.1 shows the transition between multiple binding times,
from static to dynamic. The transition column shows the possible outcomes when
multiple binding times occur. For a predominant binding time, we describe the
possible binding times that can be supported simultaneously.

As showed in the table of Fig. 4.3b, a certain feature may pose more than one
binding times which can be selected indistinctly according to different product
derivation needs or to increase the flexibility of the product line. Features may cross
from one binding time to another, but depending on how separate the two binding
times are, more implementation effort will be required. For instance, it does not
have much sense for a feature which realizes their values at design time to bind
these at runtime. A feature or a variant which realizes their values at both and
configuration and deployment times is more feasible as both binding times are
much closer and they can be managed with (semi)automatic procedures. The
transition between binding times using automatic mechanisms will require more
implementation effort in those case closer to runtime binding modes, from configu-
ration to pure runtime binding.

4 Open and Closed Variability Models

Evolution of variability models is directly related to the evolution of systems and
their architecture. Variability models cannot be seen as purely static descriptions of
systems’ variations, as they might change during the evolution of the system.
Variability cannot be used to predict unexpected changes in the future, but some
flexibility can be introduced to modify the structural variability for certain types of
systems that would require new variants or change the existing ones. Hence, the
modification of variants and variation points that affect the structural variability is
related to the concepts of open and closed variability models. Closed variability
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Fig. 4.4 Evolution of
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models do not allow the modification of their variants and variation points until a
redesign task is carried out. By contrary, open variability models allow adding
variation points with new variants at runtime. However, introducing new variation
points becomes more complicated as it requires some kind of human intervention to
redesign the variability model and, maybe, introduce new constraints.

As Lehman said in his software evolution law [11] “Variability has to undergo
continual and timely change, or a product family will risk losing the ability to
effectively exploit the similarities of its members”. Hence, the extensibility of
variability models is intrinsically related to open variability models able to change
the relationship of system’s features during the execution of the system. If a feature
model is modified during runtime, it must be redesigned and redrawn to reflect the
new changes and dependencies between variants and variation points.

The evolution of variability models attempt somehow to anticipate to future
requirements or to new situations that may occur at runtime. Hence, if a feature
model is modified (e.g., due to a new variant), the conflicts and constraints between
features must be resolved before the new variant can be used in order to lead to a
new feature model consistent with the current state of the system.

In this context, the required variability of a software system understood as the
provided variability evolves to initially non-predicted variability that could be
modified over time (Fig. 4.4). Software engineers attempt to increase the flexibility
and evolvability of feature models by pushing the binding time to runtime modes
and foresee beforehand where new variants and variation points can be needed.

S Evolution of the Structural Variability

The evolution of open variability models is intimately related to the changes
performed over the structural variability, such as what we discuss in the next
subsections.
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5.1 Modification of Variants

Binding the variants and variation points at runtime is the most flexible form of
variability. The inclusion, removal, and modification of variants at runtime are not
trivial operations, but runtime variability becomes necessary for certain type of
systems. Predicting if a variant which has not been included initially in the feature
model can be needed later and requires additional implementation effort to manage
dynamic changes of the structural variability model without, when possible, human
intervention. We can find the following three situations.

Adding a new variant implies to know the place where the new variant will be
added in the feature model. We foresee two possibilities. If the variant will not be
part of an existing variation point, we can simply add it to the feature model and
also indicate if the variant will be optional or mandatory, as an alternative configu-
ration is often defined as part of a variation point. If the new variant will be part of a
variation point, we need to redefine the logical formula that connects the new
variant with the existing elements in the variation point. In addition, we may
need to check existing constraints rules before the variant can be added to avoid
incompatible configurations.

Removing an existing variant at runtime requires first to check if that variant will
be no longer needed by all product configurations. If the variant is classified as
optional, it shouldn’t be a problem to remove it. In the case the variant belongs to a
variation point, we will need to redefine the logical formula that relates the variants
with other features for that variation point. Additionally, if the variant being
removed has require or exclude constraint rules with other features, we will need
to revisit all the rules and modify them accordingly to the new situation.

Changing a variant may lead to three different situations. When the allowed
values of a variant vary (e.g., a new value or range, an existing value drops from the
list, etc.), we only need to replace the values with the new ones (e.g., using a
configuration file or parameters list). Another situation happens when a variant is
moved to a different location in the feature model. This case can be treated as a
removal operation of the variant and followed by an addition of the variant removed
to a different place. In the case one variant replaces another, the constraint rules and
compatibility type checks must be enacted, as the new variant does not change the
dependencies and the current structural shape of the feature tree.

Moreover, it might be necessary to carry out some additional type checking
when new variants are added or replaced, as using variants from different types in
the same variation point may cause conflicts. Imagine that a new feature belonging
to the car multimedia system is engaged with the features that describe the elec-
tronic control of the fuel system. Hence, we must define additional type checking
for features of different functional areas complementary to the basic types (e.g.,
string, Boolean, numerical). Part of this process can be done automatically, but
deciding which logical operator must connect a new variant with others is a manual
task.
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5.2 Modification of Variation Points

Modifying a variation point at runtime is harder than changing a variant, as it
requires the modification of the logical formula that relates other variants and
variation points.

Adding a variation point cannot be completely automated as the software
engineer has to decide how new the variants and/or variation points will be
connected using logical connectors that will define a new relationship between
features. Additionally, we will check the compatibility of the types between the
elements that will form the new variation point and check if new constraint rules
introduced with the new variation point are in conflict with existing ones.

Removing a variation point implies that the logical formula connecting their
underlying elements disappears. Hence, we need to check recursively if all the
underlying elements for that variant are no longer needed as well as the existing
constraints rules for where each of the removed features participated in. Removing
a variation point may not imply that one of the underlying features should be also
removed, as this can be still needed in the feature model and must be then relocated
in a different place (e.g., due to a require rule for that feature).

Changing a variation point may imply a big reorganization of the feature tree,
where variants and variation points can be moved individually to different
locations. If we move a whole variation point with its underlying elements, we
can consider this as a removal operation followed by an addition of the variation
point in a different place. In case we move single elements like variants, you should
refer to the discussion in Sect. 5.1. Moving an entire variation point as a whole does
not require type checking as the existing compatibility between all the elements is
kept the same as before the change is made. Only some additional constraint rule
checking can be needed to define new dependencies in the refactored feature tree.

The modification of variation points is much more complex than changing
variants in the feature model, as some manual tasks have to be done hampering
full automation operations during runtime. Certain design decisions, such as
selecting a new place in the feature tree to locate a variation point or defining
new logical formulas, are hard to automate. Also, complementary type checking to
basic types in features and constraint rule checking can be automated using
compatibility lists. The modification of the variability model at runtime is not
easy, but at least some automation can be possible to redesign the entire feature
model and redraw it at runtime to reflect the changes made.

However, depending of the implementation technique used, we may allow the
selection of more than one binding times and also decide how these changes can be
managed: manually, semiautomatically, or automatically.
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6 Areas of Practice

Planning the evolution of a product line implies not only the evolution of their
products and multiple versions but also how variability models can scale up,
evolving their feature models to incorporate new features or changing the existing
variability model to adapt it to new requirements.

The definition of evolution scenarios to support the inclusion and modification of
features is crucial, such as the case of a MobileMedia product line [2]. The approach
described in [6] discusses the case of a Multimedia Home Platform (MHP) which
requires late binding as such applications are characterized by constant domain
changes and rapid customization is often required. Hence, designing runtime
variation points is the solution proposed by the authors and based on a pattern
language for building, manipulating, and managing domain-specific runtime varia-
tion points efficiently. However, some drawbacks may arise, such as degraded
performance, increased memory consumption, and higher runtime complexity.
The notion of meta-variability as a superseding variability model able to manage
creation, removal, and modification of variants and variation that points on the fly
seems crucial, in particular for Dynamic Software Product Lines (DSPL). This
approach is discussed in [7], where a meta-variability model is used to support long-
lived evolution of product line products. In the aforementioned approach, an AGV-
automated transportation system (ATS) in DaimlerChrysler shows how variation
points and variants can be changed during runtime to anticipate changes in the
variability model.

Activating and deactivating features at runtime is another area of research,
which concerns more with product configuration rather than with the evolution of
feature models. Hence, those systems depending on different context conditions can
activate or deactivate their system features and often during system execution, but
such changes cannot be considered part of the evolution of variability models.

7 Summary

The notion of variability in time complements the notion of variability in space for
producing multiple versions of products as it introduces the time condition. Hence,
variability in time is implemented through different binding times that make
possible to configure your software products at different stages of the development
process. Such mechanism facilitates the evolution of both architecture and products
because it provides high flexibility to realize the variability of feature models at
different stages and hence to allow the necessary reaction to changes in the software
requirements or when context conditions change at runtime.

The most flexible binding happens during system execution but the additional
implementation effort required to change the binding time of a feature at runtime is
not suitable and affordable for all type of systems. Critical systems that require real-
time requirements are very dependent of context conditions, and they are the most
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suitable candidates to include explicit support for binding their features at more
than one time.

Conversely to static variability models, a clear enhancement of structural
variability is to support their own evolution under critical conditions that would
require open variability models, where new features can be added, removed, or
changed at runtime. In addition, such structural changes require depicting automat-
ically feature models to reflect the changes made and to provide mechanisms to
check and avoid incompatible configuration when the variability model is changed.
Current limitations from recent research show that modifying variation points is
harder than changing variants, as some manual intervention is required.

8 Outlook

New trends attempting to provide better ways to manage the evolution of variability
models will require more automation efforts to manage open variability models
and, in particular, to deal with changes in variation point. Variability models are
becoming more and more capable to support dynamic changes for certain types of
systems in order to enhance the flexibility of purely static future models.

Also, in order to facilitate the task of software engineers to decide which binding
times are more suitable, a categorization of application types and their functional
modules that are associated to possible binding times would be helpful to decide
which binding times are more suitable.

Finally, we need to clarify how much binding times are needed and desired for
each particular application, module, or variant and how often these should change
without decreasing performance and without increasing runtime complexity. All
these issues are good candidates to be explored for future work in order to improve
the evolution of variability related issues.
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Chapter 5
Variability Implementation

Jan Bosch and Rafael Capilla

What you will learn in this chapter
e Mechanisms to implement software variability

1 Introduction

Software variability is modeled, reasoned about, and discussed in many
organizations, but at some point, it needs to be realized in the software of a system
or product line. The subject of this chapter is to discuss the realization of variability
in a software system or software product line.

The realization of a variation point can be achieved by a variety of technologies
and approaches. Selecting the optimal approach is driven by two factors. The first is
the abstraction level at which the variation point is explored, ranging from the
architecture to the code level. The second is the stage in the life cycle at which the
variation point is bound, whether the binding is permanent as well as the stages
during which variants can be added to the variation point.

Choosing the right realization mechanism is of significant importance for two
reasons [1]. The first is that it often is difficult to change the selected mechanism
once it has been chosen. The reason for this is that variants are written to operate
with a specific mechanism. In addition, frequently, variants are written by other
organizational units or even other organizations altogether, as in the case of
software ecosystems [2], which complicates changing the selected mechanism.
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The second reason is that over time, many variation points tend to be bound at later
and later times in the software development life cycle. A rigid realization mecha-
nism that complicates this process will cause tension in the organization and
inefficiencies in development.

Consequently, it is important to focus attention on variability realization. The
remainder of this chapter is organized as follows. The next section provides a
conceptual context of software variability management using the software life
cycle by discussing the software variability realization implications in the different
stages. The subsequent section discusses the abstraction levels at which variability
can be captured. This is followed by the main part of the chapter where we present the
different variability realization mechanisms. The chapter is closed by a discussion of
relative advantages and disadvantages of different mechanisms and a conclusion.

2 Introducing, Selecting, and Binding Variants

Software variability can be discussed at several levels of abstraction, but at some
point it needs to be implemented in the software system. For this, we need to have a
good understanding of the software variability life cycle. This life cycle is obvi-
ously related to the overall software development life cycle. Although one can have
different perspectives on the software development life cycle, in this chapter we
consider the following stages:

* Requirement specification. During this stage, the team aims to maximize the
clarity of what is to be built. There may be explicit requirements for variability,
but equally often decisions are taken as part of the requirement specification
process that reduces the required variability.

e Architecture design. The top-level breakdown of the system into its main
components is the stage where the first variation points can be, and often are,
introduced.

e Detailed design. Once the overall breakdown of the system is agreed and in
place, the focus can shift to the design of the individual components. At this
level, additional variation points can be introduced.

e Software development. Especially more narrowly defined variation points in the
system are implemented using code-level variation points.

» Compilation. The compilation stage is often where the first variation points are
bound to variants.

e Linking. During linking, especially higher-level variation points are often bound
to specific variants. Most bindings during compilation and linking are permanent
and cannot be changed in later stages.

o [Installation/configuration. Assuming the software system is installed and
configured at the customer, binding of variation points takes place during
installation in response to settings selected by the customer installing the
product.
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e Start-up. During system start-up, several variation points can be bound to
variants. Often, configuration files are used that are read during system start-
up to bind certain variants to the remaining variation points.

e Run-time. Finally, the variation points that are not permanently bound in earlier
stages can be bound and rebound during run-time. During installation and
especially start-up and run-time, the binding of variants to variation points is
often not permanent and can be rebound during at run-time.

During the software life cycle, a variation point evolves through a number of
phases. The first is the introduction of the variation point at a specific stage in the
life cycle. Frequently, this is in the earlier stages, but there are techniques that allow
for the late introduction of variation points in the system. The second stage is the
addition of one or more variants to the variation point. These variants capture
the differences in behavior that are required from the system. The third stage is the
binding of a variant to the variation point. At this point in the life cycle, the variant
bound to the variation point can still be rebound. The final stage, though not reached
by all variation points, is the permanent binding of the variant to the variation point.
A variation point is bound permanently in a life cycle phase if in all subsequent
phases it cannot be rebound to a different variant. At this point, the variation point,
for all purposes, has been removed from the system at that phase in the life cycle.

One aspect of variation points is them being open or closed. At a certain phase in
the software development life cycle, if variants can be added to a variation point, it
is considered to be open. Many variation points will, in a later phase, become
closed, meaning that the set of available variants can no longer be extended. This is
largely orthogonal to the binding of a variant to a variation point. For instance, in an
internet browser, a codec variation point can be bound to a particular variant, but
the user can still add new codecs (variants) to the browser.

The coding effort for implementing binding times of features to support dynamic
changes (e.g., system features that can be activated dynamically) can be reduced if
we adopt flexible approaches like the one described in [3], where code-level idioms
based on aspect-oriented languages can be used to avoid duplicate code for static
and dynamic binding and enhance maintainability as well.

There are more complicated cases that we will not discuss in this chapter,
including the reduction of the set of variants during progressive stages in the life
cycle due to constraining dependencies as well as cases where variation points are
permanently bound because of dependencies on other variation points and variants
where their selection limits the set of alternatives to one. As discussed in earlier
chapters, variation points and variants have dependencies on other variation points
and variants. As the designer or customer configures the system, choosing a variant
for one variation point will limit the set of possible variants for other variation
points. Occasionally, this can lead to situations where a variation point has no
remaining variants (e.g., the variability included in dead code will have no effect on
the selection and realization of those variants). This, however, does not necessarily
lead to an illegal configuration as the system configuration may not need the
functionality provided at the variation point.
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3 Variability Abstraction Levels

Depending on the size of the functionality that is to be variable, different variability
abstraction levels can be identified at which reasoning about and realization of
software variability can take place. We identify the following three levels:

e Architecture. At the architecture level, the primary mechanism for variability is
the replacement of top-level components with other implementations of these
components or the binding of optional components depending on the context in
which the system is deployed.

e Component. At the component level, variability is often more pervasive and
complex and often this is the main level at which variability is modeled. This is
more concerned with extension points, superimposition' of code, wrapping, and
other mechanisms that adjust the behavior of components.

e Code. At the code level, there is a large set of variability mechanisms available.
The main concern, however, is that the code-level mechanisms can be applied
for normal algorithmic implementation as well as for managing variation points.

Appreciating the differences between variation points at different levels of
abstraction is quite important as each level brings its own advantages and
disadvantages. Selecting the right level should be driven by the variability that is
specified in the requirement specification, the expected evolution of the variation
point, and the binding time of the variant to the variation point. In addition, specific
trace mechanisms should be defined to track the changes from one abstraction level
to another and vice versa, as managing the variations in one level (e.g., the
variability defined in the architecture does not mandate how this will be
implemented) is radically different from another level (e.g., different implementa-
tion mechanism can be used for coding variability at the code level) and the
modification of the structural variability (i.e., the variability defined in a feature
model representing the variants and variation points to describe system features)
impacts the lower levels or configurations files supporting allowed options.

4 Variability Realization Mechanisms

There are several techniques to implement the variability which is described in
feature models and each of these techniques is used in different stages of the life
cycle and is driven by the time when variants will be bounded (i.e., variability
realization). Basic variability enabling mechanisms are described in 1, 4, 5, such as
inheritance, parameterization, conditional compilation directives, dynamic

! Superimposition of code is a black box component adaption technique that allows one to impose
predefined but configurable types of functionality on a reusable component. Using
superimposition, additional behavior is wrapped around existing behavior.
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libraries, etc., but all these ways to implement variability in code are sometimes
driven or limited by the language, framework, or technology used.

To provide a perspective driven by software variability management needs, we
focus the discussion of variability realization mechanisms based on an earlier work
by one of the authors [6]. In Table 5.1 below, we present an overview of techniques
at different levels of abstraction and with binding times in different stages of the
software development life cycle.

4.1 Binary Component Replacement

Intent. The intent of binary component replacement during linking is to perma-
nently bind a specific component implementation. This allows the system to be
bound to specific components needed for a particular configuration of the overall
system. “Replacement” refers to a binary component that is specifically added for a
concrete product or configuration instance.

Solution. The binding to binary libraries can be done at compilation and linking
times prior to deployment. If linking is realized at run-time, the variability must
manage this binding internally to the system assuming all libraries are available.

Example. Dynamic libraries such as Apache modules can be uploaded and bound
at run-time when needed, whereas Linux kernel modules are linked before deploy-
ment when the kernel is recompiled.

Implications. This variability realization technique is easy to manage and to
implement with few consequences to the system, as security is an aspect well
covered in this case. By contrary, the unavailability of run-time libraries or incom-
patibility problems with existing version may cause severe problems.

4.2 Binary Component Selection

Intent. The intent of binary component selection is similar to selecting one compo-
nent among a set of existing alternatives, and the binding time for selecting a
component goes from installation to post-deployment time.

Solution. Dynamic components, libraries, and files are selected and bound
among several. The alternatives can be bound more statically at installation time
while they become more dynamic from start-up to post-deployment time, and
variability is often realized externally to the binaries.

Example. Like in the previous case, any dynamic library or configuration file
aimed to update the current system configuration or functionality fits under this
category. In this case, the variability is managed externally to the component but
some variants or system features can be defined in specific configuration files that
can be uploaded dynamically.
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Implications. The implications are similar like in the previous case, but incom-
patibility problems of system features in system configuration or binary files may
arise if these have not been pre-checked before. For instance, an older version of
binary file is selected and such instance is incompatible with the existing version of
the system or application running.

4.3 Variant Component Specialization

Intent. The intent of variant component specialization is to adjust a component
implementation to the product architecture when the provided interfaces of a
component implementation representing a variant feature vary. Specialization
assumes a context-specific extension that is then developed for an individual
product/configuration instance.

Solution. Separating the interfacing parts into different classes facilitates the
interaction between components as we can decide what variant of the interfaced
component to include in the product architecture. The variability in this case is
bound externally but variants are realized at system design.

Example. A software using an enhanced security detection mechanism is only
used in certain cases under a set of predefined conditions.

Implications. Several implementations must coexist that can be selected
dynamically, sometimes at start-up time or at run-time.

4.4 Optional Component Selection

Intent. The intent of optional component selection is to include or exclude a
particular component implementation, often selected from a set of existing
alternatives.

Solution. System features are included or excluded as we separate the optional
behavior in a different class or component. The binding time for an optional
functionality goes from compilation to post-deployment time, as system features
can be added or modified at any time. Binding is done externally by configuration
management tools or by the compiler.

Example. A smart home system that adds or removes optional functionality for
different customers and at a different cost (e.g., the system can use different security
access methods). A basic package configured at compilation/linking time can be
modified later by, for instance, adding a new module at configuration time.

Implications. Decoupling optional behavior is not always easy and depends on
how the structural variability is defined and implemented in the system and the
dependencies among the variants.
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4.5 Code Fragment Superimposition

Intent. The intent of code fragment superimposition is to impose predefined types of
functionality on a reusable component without directly affecting the source code.

Solution. With this solution, we superimpose product-specific behavior and
concern’s additional behavior is wrapped around existing behavior. In this case,
the binding is realized externally and variability is bound at compilation or linking
time, but run-time superimposition is also possible.

Example. Any crosscutting functionality (e.g., aspects) introduced in the system
functionality constitutes an example of superimposition (e.g., different authentica-
tion methods based on internal or external authentication systems and the user or
the system itself can select among one of these). At run-time, the Eclipse platform
offers a way to dynamically add or remove plug-ins that include new functionality
to the main platform.

Implications. Positively, superimposition enables that different concerns are
separated from the main functionality. However, understandability on how the
final code works becomes harder.

4.6 Run-Time Variant Component Specialization

Intent. It supports the selection between different specializations inside a compo-
nent implementation during run-time, as different requirements may demand such
capability.

Solution. The component implementation must provide a number of alternative
executions that can be switched at run-time. Different design patterns (e.g., strat-
egy, template method, or abstract factory) can be used to separate behavior into
several classes and use inheritance or polymorphism to implement the required
variability. In this case, the functionality for binding is internal.

Example. The case of a smart home system which provides sensors to detect
several data, such as temperature, humidity, smoke, or people. The fire detection
system can be activated at run-time to detect fire, as this is required to activate both
the home smoke detector and temperature sensors. Different classes provide such
functionality that is used by the smart home system control to activate the right
sensors in case of the presence of smoke and high temperature.

Implications. Some common functionality might be duplicated when the
variants must select between different specializations.
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4.7 Variant Component Implementation

Intent. The intent of variant component implementation is to support several
implementations of one component architecture that can be chosen at any time
dynamically.

Solution. Several design patterns (e.g., strategy pattern, broker pattern, SOA
service-broker pattern, etc.) can be used to select between one or several
components with high flexibility and changeability. Variability is defined at design
time and variants cannot be added later. Variability is bound internally to the
system.

Example. Several e-mail protocols like POP and IMAP using the same interface
for connecting to the e-mail server.

Implications. The reusability of some code pieces may be low.

4.8 Condition on Constant

Intent. The intent of condition of constant is to support a way to enact one operation
from several available. It constitutes a refined version of variant component spe-
cialization and is often used to select between different compilation options.

Solution. Conditional #ifdef compilation directives can be used to implement the
variability at compilation time. The collection of variants depends on constants that
are used to bind the variants at compilation time.

Example. Any software package that uses compilation directives that are
selected before the package is installed in the system. Also, configuration execut-
able files are often used to determine the system environment and to drive the
selection of the compilation values.

Implications. Using #ifdef directives can be risky and difficult to maintain, in
particular when the installation of a software package involves additional packages
or modules, as the number of interdependencies may grow exponentially across
releases (e.g., the Linux kernel). Also, flexibility of the variability implemented
using this option decreases as the number of links and potential paths grow.
Moreover, variation points tend to be scattered as it becomes difficult to track
what parts of the system are affected by one variant.

4.9 Condition on Variable

Intent. The intent of condition on variable is to support several ways to perform an
operation but the choice can be rebound at run-time.
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Solution. It replaces the condition on constant by a variable that changes its value
dynamically. In this particular case, new variants can be added during implementa-
tion and variability is bounded internally.

Example. Any program that wants to control the execution flow can use this
technique. Another example may refer to the selection of different web services at
run-time according to certain conditions that are stored in variables (i.e., variants in
the system) which determine the selection of a particular web service.

Implications. This is a very flexible technique where variants can be instantiated
dynamically. However, tracking the value of the variation points can be sometimes
difficult if variation points are spread throughout the code.

5 Selecting a Realization Mechanism

This chapter summarizes different variability implementation techniques from a
high-level point of view as different languages (e.g., object oriented versus
nonobject oriented) and design patterns can be used to implement each technique.
Hence, we did not restrict our description to a particular implementation technol-
ogy. Object-oriented classes, inheritance, variables supporting system features,
dynamic libraries, and so on, are examples of different ways to implement the
system variability, but selection of a mechanism is driven by the binding time at
which the variants are bound.

In general, multiple binding times are hard to combine, so we need to select
carefully which binding times we want to support in order to choose the right
variability implementation techniques that can be mixed in the code or supported by
a specific platform.

The selection of a preferred realization technique is driven by three factors: the
mapping to the problem domain variability, the need for late-stage openness, and
the expected system evolution.

Ideally, there is a direct, one-to-one mapping between a problem domain varia-
tion and a variation point in the solution domain. This significantly simplifies the
configuration process and it avoids complex defect detection and repair situations.
For instance, in a case where a problem domain variation is mapped to #ifdef
statements in every module of the system, it does not require much to make a
mistake in one module and have the resulting system act in unpredictable ways due
to misconfiguration. Deciding the variability realization technique needs one-to-
one map to the problem domain variation.

Second, depending on the system domain, there may be a significant need for
late-stage openness of the variation point to allow adding new variants. The
selection of the realization technique should explicitly consider the ability to add
variants at the required time as many realization techniques cause permanent
binding during the compilation and linking stage.

Finally, expected system evolution is an important factor in the selection of the
variability realization technique. In practice, the binding time of variation points
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tends to be delayed to later stages in the life cycle, meaning that even though a
variation point may be bound permanently at compile time at this point in time, it is
not unreasonable to assume that over time the binding will take place at installation,
start-up, or run-time. Especially for variation points that have system-wide
implications, the cost of replacing the selected variability realization technique
may be very high and, consequently, it may be better to select a technique that
allows for late binding.

6 Outlook

Writing adaptable and evolvable software using variability techniques is not always
easy, as the modeling of large variability models is a complex and tedious task in
itself. Because customers today push software developers to provide more and more
configurable options, the external variability becomes more important, and this fact
drives the realization of the variability times closer to configuration, run-time, and
post-deployment times.

Systems that require run-time binding must implement the dynamic binding
condition and use dynamic variability implementation mechanisms in a controlled
manner to make the software more adaptable. However, only few variability
implementation techniques can be used to realize binding and rebinding during
execution time. Regarding the binding time of the variability realization
mechanisms, one could think in a post-deployment realization mechanism, suitable
for those systems that realize their variants once deployed. However, this new
binding is quite similar to the run-time mechanism, and the slight difference
between run-time and post-deployment perceived today is more subjective by
software engineers because the variability realization mechanisms for architecture,
component, and code are almost the same.

Finally, open variability models allow variants to be changed dynamically, but
such high evolvability of the structural variability is hard to implement and requires
additional codification to support the extensibility of the variability model.
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Chapter 6
Variability Realization Techniques and Product
Derivation

Rafael Capilla

What you will learn in this chapter

e The notion of variability realization and product derivation.

e The relationship between binding time and product derivation.
e Automated product derivation approaches.

1 Introduction

One of the ultimate goals of the usage of variability techniques is to allow the
configuration of the software products under the product line approach. As different
binding times are possible, different variability implementation mechanisms can be
used to realize the variability at different stages in the software development
lifecycle. Once variability is defined in the architecture and implemented in code,
products can be configured at the end of the product line or even reconfigured at
runtime. Hence, the variability defined in the architecture can be instantiated for
configuring the product portfolio at different stages (e.g., pre-deployment, end of
SPL, installation, runtime). Besides, variability realization techniques are inti-
mately linked to the way and the moment products can be deployed, and several
alternatives can be chosen to select the best configuration and deployment strategy.
In this chapter, we will learn about variability realization techniques.
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In the solution space, the provide variability is realized by instantiating their
variants and variation points in order to configure the products with the right and
allowed values. Therefore, the realization of the software products implies to know
at a certain time in the software development process which will be the values of the
configurable options defined in the architecture and implemented in the core assets
and products as well. Variability realization is intimately linked to product deriva-
tion, aimed to produce the concrete products once the values of the variants and
variation points are known.

Definition 6.1. Variability realization technique
It is the way in which the variants of any family member are realized using a
particular variability implementation technique at a given binding time.

The realization of concrete software products implies that the variable interfaces
between components must be known, in addition to the invariants described in the
architecture. The realization of the variability through the interfaces that may vary
is crucial to set the right links between software components, as these interfaces act
as a selector of the right component when more than one alternative exist. In
addition, the realization of the variability must check the compatibility of the
constraint rules, hundreds in commercial software, among the variants selected to
avoid incompatibilities during the product derivation.

Definition 6.2. Product derivation

It is a stage in the software product line life cycle where software products
become the resultant of a selection and configuration process of the variable design
options defined in a variability model.

The software engineer must decide when to realize the variable options, and the
flexibility provided by the existence of different binding times offers software
engineers a way to delay their design decisions to a later stage. In Fig. 6.1, we
organize the different product realization stages based on the moment in which
products are or will be deployed.

We have to mention that installation time is not a real post-deployment
variability realization stage as it is somehow in the middle, but we preferred to
classify the realization of the variability during product installation closer to post-
deployment time.
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An exhaustive taxonomy of variability realization techniques and the factors that
are relevant to implement variability can be found in [1], but the current trend in
software development for several application domains like self-adaptive systems
and service-based system pushes the realization of the variability to runtime modes.
In this chapter, we will distinguish three major development stages in which we can
realize the variability and according to most common binding times [2].

2.1 Product Derivation Activities

The ultimate goal of a product derivation process, as part of the SPL application
engineering lifecycle, is to produce a configurable or configured software product.
However, product configuration can be enacted at the beginning of the derivation
process at early binding times, or it can be also executed at a very late stage if a
product has to be reconfigured once deployed. Configuration is sometimes done to
select the variable options that will be included in a product before the variability is
realized to concrete values, while in other cases, a reconfiguration process happens at
the end of the product line or during system execution. Moreover, product configu-
ration and variability realization can also overlap at the same binding time if we
realize the variants at the same time these are selected. At the end of the derivation
process, products are installed and deployed in the physical nodes of the system.

As a summary, we show in Fig. 6.2 how these concepts are related and based on
the binding times where these activities happen. Initially, product configuration
starts by selecting the variable options that will be included in the product, and this
activity may happen at different binding times, in which the realization of the
variability will take place immediately after. Once the variable options match to
concrete values, the executables can be deployed. However, post-configuration
operations can be possible when the systems need to be reconfigured at post-
deployment time, and dynamic variability plays an important role for systems
that require runtime adaptation.

Figure 6.2 describes the major activities of a generic product derivation process.
Once the input requirements define the selection of the variants of a new product, a
product selection and configuration process chooses the right variants for configu-
ration purposes, and variants are realized according to a particular implementation
technique and the allowed values for those variants. Once the variability is realized
and the product already configured, installed, and deployed, any post-deployment
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activity or runtime reconfiguration of variants may lead to a new selection and
configuration of the variable options. In that case, the reconfigured product or the
new product (i.e., a different selection of the variable options can lead to different
products) can or must be deployed again, while in other situations, no new deploy-
ment is required (e.g., the case of dynamic variability used to, for instance, activate
a feature at runtime). The figure does not show testing activities that should be
carried out to validate the selected product configuration.

In addition to Fig. 6.2, we detail in Table 6.1 which tasks encompass each of
product derivation activities. For each of the major activities of Fig. 6.2, we provide
the subtasks that are commonly needed and the most suitable binding times under
which these tasks may happen.

2.2 Realization at Design Time

At design time, the realization of all variants and variation points is made at the
architecture level. The variants in the design are manually operated, as the
variability is considered statically in nature. Standard notations like UML offers
few mechanisms (e.g., stereotypes, tagged values) to describe the variability of a
feature model in the architecture, and the logical formulas describing relationships
between variants do not have a direct correspondence in UML diagrams and they
must be represented using a different notation or language. Therefore, the steps to
realize the variability at design time are:

(a) Selection of variants and variations points defined in the architecture.

(b) Selection of allowed values.

(c) Depiction of the product architecture by instantiating the variants with appro-
priate values for each single product.

In Fig. 6.3, we show an example of a UML diagram that belongs to the software
architecture of system X (left side of the figure) containing five variants and two
variation points. At design time, the software engineer selects the variants to realize
the construction of system X.1, and he/she derives the product architecture for that
system. In this case, variant 3 and variant 4 with their corresponding values have
been selected. Variation points and variants are selected and instantiated also for the
product architecture.

2.3 Pre-deployment Realization

Products can be configured in the customer site and afterwards installed and
deployed in the client side. When the variability of products is realized in the
customer site, the variants and variation points can be instantiated at different
binding times, depending on how the product is built and configured. At implemen-
tation time, the variability can be implemented in variables and the alternatives and
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Fig. 6.3 Variability realization at design time

constraints described are often described as if-then-else constructions or using
constraint programming. The realization of the variability depends on how this is
implemented. For instance, the realization of the variants can be done statically in
the code changes or more dynamically using dynamic libraries containing the
configurable options. If we use an object-oriented approach, variability can be
implemented using inheritance to separate the common functionality in
superclasses from other variable option defined in subclasses which can be
instantiated during the derivation process.

Example 6.1. Variability specialization through OO inheritance

The 3D scene of a virtual reality (VR) system is composed by 3D objects that
constitute a hierarchy where objects are successively decomposed in polygons
starting from a root object or node. Because the 3D database contains several
megabytes and the time for loading the 3D scene during first start-up can delay
several minutes, the way in which this hierarchy is organized at the architecture
and implementation is critical, as some objects may appear initially hidden or
might be unnecessary to show all the details of some of these 3D objects. Therefore,
arranging and organizing this hierarchy in a particular form is quite important to
reduce the start-up time. In this example, we used a particular object hierarchy
(tested using simulation) to reduce the start-up time of the 3D scene and the
variability techniques based on inheritance were used to group objects with com-
mon behavior [3].

In addition, at compilation and link or build times, directives expanding program
macros, variables and compiler flags {e.g., #ifdef, #include, #define}, and
Makefiles linking the program modules in a specific order are instantiated to produce
different configurations or versions of the same product. For instance, a compilation
variable can be used to discriminate a stand-alone version from a distributed one or
add a security module not present in a different release. Makefiles use variables to
make more flexible link and build options when generating the binaries, such as
shown in the following code are certain flags that are stored in variables:
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CC=g++

CFLAGS=—c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp
OBJECTS=S$ (SOURCES: .cpp=.0)
EXECUTABLE=hello

all: $(SOURCES) $ (EXECUTABLE)

$ (EXECUTABLE) : $ (OBJECTS)
$(CC) $ (LDFLAGS) $ (OBJECTS) -o S@

.CpPp.O:
$(CC) $(CFLAGS) $< —o %@

Moreover, the idea of staged variability fosters the composition of features that
can be added or removed to derive different product configurations (e.g., a scientific
calculator has several versions of the same products and the product line approach
used composed new functionality by selecting new variants). The software engineer
selects and deselects features of each new version of the product. Hence, stage
configuration becomes an important process applied in an SPL for configuring
software products and where people make the right configuration choices at differ-
ent stages. As described in [4], staged configuration of feature models constitutes a
stepwise refinement of the variability model.

In some cases, this refinement leads to a specialization where groups of features
are selected during the product configuration process and yields a specialized
feature model. Specialization can be seen as a subset of the overall set of
configurations and often done via transformations. In this context, baseline
architectures play an important role for specialization and derivation processes as
new product releases are yield as a result of successive stepwise refinement by
adding and removing features from the baselines or from a concrete product
configuration. Then, extensibility of the architecture becomes crucial to synthesize
different product configurations or release products for different platforms.

2.4 Post-deployment Realization

The configuration of the variability and product realization in the customer site
(post-deployment activities) often involves installation and post-deployment
procedures where products are configured and deployed on behalf of a set of
configurable options (e.g., parameters) that tailor the product to a specific environ-
ment or user preferences.

More dynamically, products may change the configuration of their variable
options during start-up (e.g., first start-up or on every start-up) time as a system
operator can configure certain variable options. For instance, the installation of a
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new version of an operating system allows users to configure certain parameters of
the target machine (e.g., language, screen resolution) or to select between two
different preinstalled versions. On every start-up, the variability can be stored in
configuration files (e.g., XML files) or local databases that are uploaded
dynamically (e.g., a new user profile that has assigned new privileges). Other
situations may deal with the dynamic upload of software modules or libraries that
affect to the system configuration, as in some cases, the system needs to be restarted.

Finally, during system execution, the selection of variants happens while the
system is running. The ability to select a new variant or to activate/deactivate
features is considered a pure runtime variability realization (e.g., an adaptive
system that realizes a reconfiguration of certain design options) which often
happens at post-deployment time.

As a brief summary, we have to mention that depending on the concrete binding
time and on the implementation language selected, the variability realization
technique would be different (e.g., parameterization, inheritance, dynamic libraries,
user-configurable options, etc.), and runtime variability realization techniques
require more complexity and implementation effort.

3 Automated Derivation and Runtime Reconfiguration

The automation of product derivation and configuration tasks is quite important for
certain variability management and product derivation operations. As some systems
deal with runtime concerns, automating product deployment is increasingly inter-
esting for such systems that require unattended and autonomous manual operations.

Usually, product configuration is perceived as a manual activity but dynamic
SPL approaches attempt to manage the automatic activation and configuration of
system features or perform an automatic redeployment once the system has been
reconfigured dynamically. Some systems with stringent requirements require strict
runtime adaptation of their systems options, while in others, it can be a semiauto-
matic human-guided procedure (e.g., a pluggable smart home system able to plug
new software modules automatically and the variability is configured manually
afterwards before launching the new functionality).

The automation of product derivation processes can be achieved following a
generative approach or a specific model-driven development (MDD) where models
are transformed before the final variability realization mechanism realizes the
design choices. The input for such automatic process is a feature model or UML
model that requires some kind of transformation before the variants are selected.
For instance, in [5], an SPL derivation approach, built on the top of Rational Rose
RT, provides automated support for developing multiple SPL views in UML and
using the feature model as the unifying view.

One important topic in today’s automation techniques for product configuration
is automatic deployment. As systems or part of them are installed and deployed
periodically (e.g., due to the installation of critical updates or because a new
hardware is plugged and a reconfiguration operation is needed to support the new
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functionality), there is an increasing demand to provide some degree of automation.
Therefore, automating configuration and derivation processes in conjunction with
deployment activities facilitates the task of software engineers, as many system
configuration and installation procedures could be enacted unattended and auto-
matically. In this scenario, software variability can play a key role to handle a set of
configurable options that can be managed in automatic mode at runtime.

Some authors [6] suggest a model-driven engineering approach using variability
mechanisms under a product line context to automate the customization and
deployment of software products. This approach advocates the use of transforma-
tion languages such as ATLAS Transformation Language (ATL) and Acceleo,
which extends the capabilities of the GenArch' software product line tool in
order to transform software processes based on the Eclipse Process Framework?
(EPF) to jPDL workflow language specifications and enable the deployment and
execution of such processes. A feature model is used to specify the variability of
these software processes and a product derivation tool allows the selection of the
relevant features from an existing process, enabling automatic derivation from the
software process to a workflow specification. Model-to-model transformations
(M2M) facilitate the translation from an EPF specification of an automatic
customized process to jJPDL elements. Such automatic procedures often exploit
model-driven engineering techniques to realize the transformations from high-level
models (e.g., a UML specification) to code assets. Another technique which can be
used is generation, which realizes stepwise refinements from baselines.

Consequently, the automation of product derivation and configuration activities
requires additional coding effort to support automatic management of the variable
options, as these configurable choices are sometimes handled by an automatic
procedure, while in other cases, the ultimate goal is to leave some of these design
choices to be modified by the user at runtime and post-deployment time.

Reconfiguring products at runtime may require in some cases to restructure the
entire or a subset of the variability model. Reorganizing the structural variability
model at runtime is challenging and hard, but this topic is out of the scope of this
chapter. However, other runtime reconfiguration operations may imply automatic
activation and deactivation of certain system features in order to meet new context
conditions. Any runtime reconfiguration demands automatic redeployment
mechanisms to meet the runtime condition, as well as additional runtime checks
(even if a system changes its operational mode for some time) to ensure that the new
configuration is the right one and properly set. Autonomic computing, pervasive
and context-aware systems, service-based systems, and self-*systems are the most
suitable candidates for runtime reconfiguration operations supporting variability.
Other systems demand reconfigurable operations when new modules are plugged
and unplugged and dynamic libraries or software modules can be selected automat-
ically or with minimal human intervention using variable and configurable options.
In those more complex cases, policies for runtime changes must be used to manage

! http://www.teccomm.les.inf.puc-rio.br/genarch/
2 http://www.eclipse.org/epf/
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the different situations that might arise during the selection of different configurable
options and to detect incompatible product configurations.

4 Areas of Practice

4.1 Tooling

Several tools and approaches have been developed to support SPL derivation
activities. From a methodological point of view, the “ConIPF Variability Modeling
Framework” (COVAMOF) derivation process [7] describes the practical realization
of variability for product families through a set of steps that go from the feature
model to the component implementation and each of these levels are associated to
COVAMOF variability views which capture the dependencies and relationships of
the variability model. COVAMOF uses XML-based feature models and #ifdef
constructs to describe and mange the variability information. The COVAMOF
derivation process first configures the product to bind the variations and then
realizes the product on the SPL artifacts in order to make effective the values of
the variants.

Cirilo et al. [8] compares how three SPL tools (i.e. CIDE, pure::variants,
GenArch®) use configuration knowledge to compose the product line variability
to derive the SPL products. This knowledge, used in configurable product lines,
defines the implementation and composition of the variability for product deriva-
tion tasks. The comprehension of this configuration knowledge is crucial to under-
stand domain-specific abstractions which are used for modeling coarse-grained
variability and describe the relationships between SPL variability and code assets,
annotations in feature models, and fine-grained variability implemented in class
attributes and methods.

4.2 Experiences

In several industrial experiences, configuration and variability realization processes
become relevant for product derivation. One early experience in the automotive
domain [9] enables product derivation through the selection of combined variants
aimed to support the right product configuration.

The well-known Koala model for handling the diversity of software products in
the consumer electronics domain [10] is a clear example where the size and
complexity of software products increasingly growing required a robust variability
model able to handle this diversity. The Koala model proposes a strict separation
between component and configuration development, as component builders do not
make assumptions about the configurations in which components will be used.
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Each component provides its functionality through a well-defined set of interfaces
(e.g., the signal of a TV tuner is fed by a high-end input processor (HIP) that
decodes luminance and color signals which are the inputs to a high-end output
processor (HOP). All these devices are controlled by software drivers using a serial
IC2 bus, as each driver requires, and IC2 interface that must be bound to an IC2
service during system configuration. A configuration in Koala is a set of
components connected to form a product. In Koala, static binding is used during
compilation running at configuration time.

In addition, the Koalish modeling language extends Koala and used for
automating the product individuals in configurable software product families
(CSPFs) [11]. Koalish is built on Koala and adds new variation mechanisms for
selecting and configuring the type of parts of components, including constraints for
specific individuals. In Koalish, configurations are sets of component and interface
instances, and the relations describing which component instances are part of other
component instances. The authors introduce the notion of valid configuration as not
all possible configurations represent a system. On this basis, the WeCoTin is a
prototype configurator tool operating on the product configurator modeling lan-
guage (PCML) in order to ease the configuration of software product lines and
feature models [12]. Reinforcing previous proposals, other authors [13] describe an
analysis of the derivation process in two software companies for configurable
software product families, from requirements to product delivery.

Regarding automatic product derivation, an experience using multi-agent
systems (MAS) under a product line approach is described in [14], where a
model-based product derivation tool (GenArch) is proposed for use in the applica-
tion engineering lifecycle. GenArch consists basically of three steps: (1) automatic
models construction, (2) artifact synchronizations, and (3) product derivation,
which comprises customization and composition of the SPL architecture.

S Summary

Evolution is an important aspect for today’s software systems, and software
variability reduces the barrier for systems that have to evolve more dynamically.
Hence, feature models must be ready to support the selection and unselection of
features and configuration operations during product derivation and deployment
activities.

In this chapter, we have discussed the characteristics of major variability reali-
zation and derivation activities. Product derivation tasks can be organized
according to pre- and post-deployment binding times, as this separation of concerns
is easier to understand when and where (i.e., developer and customer sites) products
can be realized. In addition, the categorization of derivation activities becomes
important to know which kind of subtasks and which binding times can be used in
any derivation process using variability.
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The utility to realize the derivation at different binding times will depend in
many cases of the type of systems we want to build and deploy, as not all software
systems may require to support runtime concerns.

The areas of practice described in the chapter are several and show representa-
tive types of systems and applications in various areas that exploit variability
realization techniques in different ways and with different binding times, as some
of them have different deployment and configuration requirements.

6 Outlook

No one doubts about the importance of product derivation and deployment
activities for variability management. In this context, automating reconfiguration
and redeployment activities for critical and real-time systems is crucial, as systems
using context information are more and more frequent. Systems using variable
options evolve much better in dynamic contexts compared to those others than use
more rigid approaches.

Finally, regarding the variety of variability realization techniques, we did not
want to describe detailed examples on how each variability realization technique
can be implemented, as this depends on the language or platform used. Rather, we
preferred to provide an overview of the most common techniques used, organized
around the time in which variants can be bound.
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Chapter 7
Visualizing Software Variability

Steffen Thiel, Ciaran Cawley, and Goetz Botterweck

What you will learn in this chapter

e Core techniques in Information Visualization

e Using Visualization to support Software Variability

e Commercial and Prototype tools that utilize Visualization

1 Introduction

Many of the expected benefits of software product line (SPL) engineering rely on an
assumption that the additional up-front effort in domain engineering that establishes
the product line produces a long-term benefit. The expectation is that deriving
products from a product line during application engineering is more efficient than
traditional single system development. However, to benefit from these productivity
gains, it must be ensured that application engineering processes are performed as
efficiently as possible. This has proven to be extremely challenging with industrial-
sized product lines containing thousands of variation points, each of which can be
involved in numerous dependent relationships with various other parts of the
product line (e.g., [1, 2]). One method of addressing this challenge involves

S. Thiel (<)
Furtwangen University of Applied Sciences, Furtwangen, Germany
e-mail: steffen.thiel@hs-furtwangen.de

C. Cawley
Dublin Institute of Technology, Dublin, Ireland
e-mail: ciaran.cawley@dit.ie

G. Botterweck

Lero-The Irish Software Engineering Research Centre, University of Limerick,
Limerick, Ireland

e-mail: goetz.botterweck@lero.ie

R. Capilla et al. (eds.), Systems and Software Variability Management, 101
DOI 10.1007/978-3-642-36583-6_7, © Springer-Verlag Berlin Heidelberg 2013


mailto:steffen.thiel@hs-furtwangen.de
mailto:ciaran.cawley@dit.ie
mailto:goetz.botterweck@lero.ie

102 S. Thiel et al.

supporting the SPL engineering activities by providing interactive tools that use, as
a central principle, visualization techniques appropriate for the comprehension of
large data sets and interrelationships.

Adopting visualization techniques in software product line engineering can aid
stakeholders by supporting essential work tasks and enhancing understandings of
large and complex product lines. This chapter presents visualization concepts,
approaches, and implementations that are used to manage the application engineer-
ing phase of the SPL process.

2 Concepts and Techniques

2.1 Visualization

There has been extensive research into information visualization and its
applications. Visualization has proven useful in enhancing cognition in numerous
ways and application domains [3, 4]. This is particularly the case in relation to
externalizing information, thus increasing the “memory” and “processing capacity”
available to users, also by supporting the search for information and by encoding
the information in a manipulable medium.

Visualization takes abstract data and gives it a form suitable for visual presenta-
tion. Such data can, for example, be explicitly collected from software or it can be
codified by software engineers utilizing their own implicit knowledge. In this case,
we often speak of software visualization, which can be seen as a subdiscipline
of information visualization [5]. With suitable techniques, such software visuali-
zations can also amplify cognition about large and complex data sets created and
used in industrial software product line engineering.

2.2 Visual Reference Model

Figure 7.1 shows a visual reference model introduced by Card et al. [3]. This
model provides a conceptual basis for many visualization approaches. Source
data is transformed into a format (data tables) from which visual abstractions
can be created. Various views can then operate over those abstractions, which
provide the user with a rich interface. By allowing user interaction with the view,
the different transformation steps can be altered in order to optimize the visualiza-
tion for specific user tasks. This concept of interactive visualization forms the
basis of many dynamic techniques aimed at providing cognitive support to
stakeholders.
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Visualization techniques developed and discussed within the visualization com-
munity (e.g., [3-5]) can be leveraged to support variability management (e.g.,
[6-9]). By using such techniques, the expertise and experience of that community
can be brought to bear on the complexity challenges that exist in that domain.
Whereas most established variability management tools do not explicitly aim to
utilize such techniques and expertise, recent research tools in that area are
attempting to apply visualization concepts to their user interfaces.

2.3 Visualization Techniques

Fundamental visualization techniques and strategies that aim to support user cog-
nition when dealing with large and complex data sets include Focus+Context,
Details on Demand, Degree of Interest, Color Encoding and Iconography.

» Focus+Context describes the general ability to work at a focused level while
maintaining the overall context within which you work. A number of techniques
can be employed toward this goal such as fisheye (magnifying a specific area of a
much larger display), overview/outline windows (providing a contextual under-
standing of a given display), and distortion (e.g., transparency). An extensive
overview of these techniques is, for example, given in [3].

e Details on Demand refers to the facility whereby the stakeholder can choose to
display additional detailed information at a point where this data would be
useful. This point is decided by the user of the system. For instance, the ability
to expand/collapse branches within a tree display, incremental browsing of such
a tree and filtering, provides details on demand.

e Degree of Interest techniques highlight or expand relevant data with respect to
the user’s current point of interest. In particular, the degree of interest (as applied
to certain parts of the data) can change while the user is navigating the data.

e Color Encoding and Iconography both serve to encode information visually and
are used in conjunction with other techniques to provide additional data that can
be identified through visual queries—identifying a visual pattern that will be
used by a mental search strategy over a graphical visualization [3]. Examples
include a green tick, red X, or a familiar icon.
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3 Visualization Support for Software Variability

3.1 Representing Variability

In terms of how to represent and model variability, many SPL research approaches
for variability management and product configuration focus on features, often
represented by dedicated feature models (e.g., [10, 11]). Feature models usually
describe available configuration options of an SPL in terms of “prominent or
distinctive user-visible aspects, qualities, or characteristics” [11].

While viewing a product line as a collection of features has many advantages,
there are some problems as well. Some of the problems include the difficulty in
describing cross-cutting features and non-functional requirements, as well as the
problems that arise in linking a feature to a concrete component (or set of
components) that implement that feature.

3.2 Challenges and Approaches

There are numerous tasks to be performed by various stakeholders during the SPL
engineering processes of domain and application engineering (cf. Sect. 3.3). Plat-
form managers, domain engineers, product managers, application engineers,
developers, and even customers all take on different roles in the process and require
methodology and tool support that facilitates their specific tasks. In many of these
cases, a feature model alone is either too detailed or not detailed enough. Using
separate models allows different facets of the product line to be managed in a
focused manner and supports stakeholder and task-specific representation and
manipulation.

One approach to separating the different concerns of a software product line
while providing relationships between various elements could be to describe the
product line not only in terms of features but extend this description by taking
decisions and components into consideration. A decision model would then capture
a small number of high-level questions and provides an abstract, simplifying map
onto features. The implementation of features by software or hardware components
is then described by a component model.

Please note we use the concept of a decision model in the sense of a high-level
feature model that sets the major context of the configuration by answering major
questions such as if a particular product is “entry level” or if the product is planned
to be introduced in a specific market (e.g., US, Japanese, or European market). In
this sense, the decision model could be seen as containing the most important
questions someone has to ask before configuring the more detailed and fine-grained
feature model. This is different from other definitions of the term “decision model”
in the product line literature, for example, the definition provided in [6].
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These three models—the decision, feature, and component (DFC) model—can
be used as a foundation to support variability visualization and product configura-
tion. One characteristic of the DFC model is that the three underlying models are
interrelated. For instance, making a decision might cause several features to
become selected, which in turn requires a number of components to be
implemented.

In the above approach, decisions provide a simplified high-level map onto
features and can be used to abstract from details by asking a few major questions
that are relevant for a particular stakeholder. A component model describes
components that implement the features. Making a decision can involve the selec-
tion of multiple features, each of which may require or exclude sets of other
features. These features in turn may require or exclude sets of components. Fur-
thermore, a relationship itself between two features may be implemented by a
component. More details of the underlying model are described in [7].

Visualization of the relationships within a feature model alone is challenging,
and numerous approaches have been proposed, ranging from filtered lists (e.g., [6])
to graph-based views (e.g., [12]) to methods of only showing the relationships on
demand (e.g., [7]). With multiple models in place, visualizing the relationships
between each of them becomes even more difficult. Presentation and manipulation
of the underlying data in the execution of specific tasks is impeded by their
multilayered interrelationships. For example, as mentioned above, making a deci-
sion can involve the selection of multiple features, each of which may require or
exclude sets of other features and components. In such scenarios, stakeholders need
to be presented with the relevant data using appropriate techniques. This will enable
them to understand the current state and the impact of various required changes.
Stakeholders also need to be able to make such changes with ease.

3.3 Task Support

The task of configuring a complete feature model can be reduced to a sequence of
configuration decisions on individual features. At a basic level, this involves the
ability to either select or eliminate a feature from the product under derivation
which, in turn, usually leads to the inclusion, exclusion, or configuration of related
components. Additionally, the ability to select or eliminate features in groups based
on higher-level requirements (decisions) is a fundamental task. Whereas these tasks
may seem basic, it is the knowledge and understanding (cognition) of the stake-
holder that allows these tasks to be performed correctly. Drawing on a variety of
research that has been carried out (e.g., [1, 2, 8]), we outline a set of simple
cognitive tasks that aim to support the activity of the primary task—namely, to
decide which features should be included and which should be excluded:
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1. Identify/locate a configuration decision

2. Understand the high-level impact of a decision inclusion (perception of scale and
nature of the impact—implements/requires/excludes)

3. Identify/locate a specific feature

4. Identify a specific feature’s context—parent feature, alternative/supporting
features, and sub-features

5. Understand the high-level impact of a feature selection—a specific feature’s
constraints (requires/excludes relationships)

6. Identify the state of a feature—selected/eliminated and why

Visualization approaches can support these cognitive tasks by providing an
interactive visual environment.

4 Visual Approaches and Implementations

As discussed, the comprehension and management of large sets of complex data
relationships is the primary challenge when presenting variability data. Most
approaches to date have utilized existing and well-known visual forms familiar to
the software engineering community. The most prevalent of these is the ubiquitous
“file explorer style” tree generally presented in the form of a static horizontal tree
with expandable and collapsible branches. Recent work such as [13] has expanded on
this visual form by introducing more dynamic tree structures and layouts. Other work
(e.g., [14]) has focused on leveraging various techniques from the visualization
community and utilizing alternative approaches not yet explored for this purpose.

When using visualization techniques for the handling and configuration of
variability models, we have to address the cognitive tasks discussed earlier (see
list in Sect. 3.3) with corresponding visual and interactive techniques. For instance,
a tool environment has to provide interactive techniques to locate a feature, to
understand a feature’s configuration state, or to understand the impact of making a
configuration decision.

Here, the resulting challenges are mostly related to the complexity and the scale
of the models. In other words, the visualization and interactive technique must
allow the stakeholder to handle large models and to focus on the relevant informa-
tion, while abstracting from irrelevant details. This can be, for instance, achieved by
techniques that allow to navigate on large models and to focus on elements for a
particular task (e.g., a set of currently focused features) and related information
(e.g., other elements in the model related to this feature set). A related challenge is
that there are multiple ways to structure a model (e.g., which hierarchy to choose,
how to modularize) and that the information structure that would be optimal for a
particular task is not necessarily identical to the main structure of the model. Since a
model is used for multiple tasks, visualizations and interactive techniques have to
provide a means to adapt to different usage contexts and to change the focused
aspects.
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Fig. 7.2 DOPLER configuration wizard [6]

We will now look at particular approaches in more detail. In general, the
approaches and techniques to variability visualization can be divided into three
broad areas: two dimensional (2D), two and a half dimensional (2.5D), and three
dimensional (3D). General characteristics of these approaches and implementation
examples from a number of tools supporting variability management are described
in the following subsections. The examples are taken from both research and
commercially available tool suites.

4.1 2D Visualization

Using 2D approaches such as matrices and graphs to visualize feature models is the
normative way to allow feature exploration and model manipulation [6, 8]. More
recently, research tools are exploring the use of alternative tree layouts such as
dynamic space trees [9] and radial trees [13]. In conjunction with this, the use of
varying visualization techniques as described in Sect. 2 is being employed to aid
stakeholder cognition in variability management tasks.

4.1.1 Examples

The DOPLER tool suite [6] provides decision-oriented variability management
through a number of complimentary tools. One of these tools, the Configuration
Wizard, provides capabilities for product customization, requirements elicitation,
and configuration generation. Figure 7.2 shows the use of hierarchical tree
structures to display a set of decisions on the left and the decision hierarchy on
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Fig. 7.3 DOPLER tree view [29]

the right. Figure 7.3 shows a more graphical representation of the tree structure.
Both visualizations of the model utilize simple iconography to encode selected
items (tick symbol icon) and items not yet configured (question mark icon).

The pure::variants tool suite [15, 16] is a commercially available product, which
provides a set of integrated tools that support various phases of the software product
line development and derivation process.

For creating and configuring a new software variant, the tool provides a Configu-
ration Editor (see Fig. 7.4). This editor employs a hierarchical “file explorer style”
horizontal tree to allow the browsing, selection, and de-selection of features
according to their constraints. Iconography is extensively used to identify element
types and feature state. Figure 7.5 shows a matrix visualization, which presents a
view of the variants identifying the different features available in each of the variants.

The research tool vivid [14] primarily explores the use of more dynamic and
interactive visualizations in order to provide cognitive support to stakeholders.
Figure 7.6 shows a horizontal tree visualization, which represents a variant’s
feature configuration. The visualization allows the stakeholder to incrementally
browse the tree structure automatically collapsing and expanding relevant branches
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as the stakeholder progresses. Animation of any visual changes to the display aids
the stakeholder in understanding the navigation path. Color encoding allows imme-
diate identification of the state of a particular feature.

The feature configuration tool S272 Configurator developed in earlier work by
Botterweck et al. [17] provides techniques for the configuration of complex feature
models and techniques for the joint visualization of feature and implementation
models. In [18] the approach was extended by “Feature Flow Maps” to visualize
product attributes, which result from configuration decisions, during product con-
figuration (see Fig. 7.7). For instance, the width of the lines indicates the price of the
product resulting from the current feature configuration. This visualization is
updated incrementally while the feature configuration process is completed.

4.1.2 Advantages and Limitations

The advantages of using visual representations such as lists, “file explorer style”
trees, and matrix tables are evident—they are generally familiar and intuitive to
stakeholders. However, when the variability that exists within a software product
line contains thousands of variation points, it becomes difficult to manage and
cognitively challenging to navigate.
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Fig. 7.7 Feature flow maps [18]

Using dynamic tree structures (as with vivid) and techniques such as animation,
degree of interest, and distortion, visualizations can provide cognitive support to aid
with such challenges. However, even with such additional aids, it can still be
challenging to configure variability for very large product lines. In the next two
sections, we show some examples of alternative visualizations being explored to
further enhance the cognitive support provided to stakeholders.

4.2 2.5D Visualization

2.5D visualization techniques use 3D visual attributes in a 2D display [19]. For
example, adding 3D attributes such as perspective (e.g., making certain objects
smaller to indicate distance) and occlusion (e.g., overlapping objects to indicate
layers) to a 2D display can be described as creating a 2.5D display. Work into the
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employment of such techniques uses static 3D planes on which representations of
features are presented in an animated interactive environment.

4.2.1 Example

Figure 7.8 shows a 2.5D visualization from the vivid prototype. To the left is a
simple list of decisions (high-level grouping of features). When a selection is made
within this supporting view, the main view displays the implementing features
along with all features that are required or excluded by them.

The view consists of three stacked planes. Each plane provides a circular
grouping of spheres. In the top plane, each sphere in the circle represents a grouping
of features. When any one of those groupings in the top plane is selected (by mouse
click), then all features that comprise that grouping are displayed in the middle
plane in a similar circular format. In the lower plane, all related (required/excluded)
features are displayed (for all features presented in the middle plane). The inner-
most circle on the lower plane identifies features that are directly related (required,
excluded) to features in the middle plane. In order of ascending radii, each
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subsequent circle in the lower plane represents the transitive relationships that exist;
i.e., required features can further require and/or exclude other features.

By hovering the mouse over any sphere in any of the planes, a description of that
element will be displayed in the center of the plane. When a sphere is selected in
any plane, the circle on which it is presented will rotate so that sphere is brought to
the front with its description displayed underneath. These functions aim to imple-
ment Details on Demand.

Each sphere acts as a representation of a specific feature. A sphere may be color
encoded to visually identify its relationship to other variability artifacts (the feature
implements a decision or the feature is required/excluded by another feature).

Multiple windows (and multiple planes) are employed to separate and distribute
decisions, feature groupings, features, and relationships. Note that the lower plane
displays all related features for all the implementing features in the middle plane.
This allows an overview of the impact as a whole for this group of features. When a
single implementing feature is selected in the middle plane, the circles in the lower
plane rotate to ensure all related features are brought to the front while all other
features in the plane are distorted (made transparent) in order to highlight the ones
of interest. Animation is again used for all movements to preserve context.

4.2.2 Advantages and Limitations

The primary aim of the 2.5D approach is to increase the number of features and
relationships that can be represented at any given time within a fixed screen space
avoiding the need of panning and zooming across thousands of related on-screen
elements. This is achieved by utilizing a depth dimension and providing animated
movement and highlighting of relevant information to the foreground when
required. Focus+Context is a key consideration here.

The presence of a fixed on-screen space may reveal a limitation of this visuali-
zation: there will be a point where a very large number of features and relationships
may cause unwanted occlusion and selection difficulties. However, this situation
would only occur with extremely large and/or complex feature models. Testing and
usability studies are required to evaluate the effectiveness of this approach.

4.3 3D Visualization

Differing reports exist on the effectiveness of 3D visualizations to support software
engineering but literature suggests that there is acceptance that it can be effective in
specific instances (e.g., [20, 21]). Current work into the use of 3D primarily focuses
on the visualization of relationships instead of the elements that they relate [9].
Relationships are visualized as objects in a 3D space whose coordinates identify
elements within three different models, each model being mapped to one of the
three axes.
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4.3.1 Example

Figure 7.9 presents a 3D view which attempts to provide a self-contained represen-
tation of all the three models introduced in Sect. 3.2 (decisions, features, and
components) and their interrelationships. However, at any given time, only infor-
mation of interest is displayed.

Here, as in the 2.5D approach, multiple windows are employed to distribute the
information and provide the supporting decision view. The visualization consists of
a 3D space containing X, Y, and Z axes. Sequential lists of decisions, features, and
components are displayed along the Y-axis, X-axis, and Z-axis (moving away from
the observer), respectively.

The key idea here is that a point within this 3D space identifies a relationship
between all three models. In other words, a sphere plotted at a particular point will
identify that the feature labeled at its X-coordinate implements the decision labeled
at its Y-coordinate and is implemented by the component labeled at its Z-coordinate.
In Fig. 7.9, the stakeholder has highlighted the sphere that represents the
“Commodities” feature. However, in addition to this, by looking at the highlighted
labels on the axes, we can see that it also represents the “Export Documents”
decision that the feature implements and the “XTCM.I Include File” component
that implements the feature.
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Focus+Context and Details on Demand are the main techniques guiding this
implementation. One goal is that all three models can be perceived to be
represented through the listings on each axis. However, the details of any part of
any model or its relationships are only displayed when required. For example, when
a decision is selected, there may be a number of implementing features. For each
implementing feature, a sphere is plotted in the 3D space as described above. Other
features required or excluded by those implementing features are similarly plotted
as spheres and are given a specific color encoding which allows a visual identifica-
tion of the required or excluded relationship.

Pan & Zoom are combined with rotation to allow a full world-in-hand manipu-
lation of the view in three dimensions allowing the stakeholder to position the view
depending on the information of interest.

4.3.2 Advantages and Limitations

One advantage argued with this visualization is that it provides a perception of a
software product line as a whole within a 3D configuration space while only
presenting data that is relevant at a given time. Visually, a stakeholder is enabled
to comprehend both the scale and nature of selecting a decision, feature, or
component. As such, selecting a decision for implementation will require a set of
implementing features but also require and exclude a large set of other features.
The impact of such a decision, including its nature and magnitude, will be immedi-
ately evident allowing the stakeholder to further investigate the details of the
impact.

As with the 2.5D visualization, the fixed on-screen space within a 3D configura-
tion may also be a limitation as there is a point at which a very large number of
features and relationships will cause unwanted occlusion and selection difficulties.
However, this situation would only occur with extremely large and/or complex
feature models. Again, testing and usability studies are required to evaluate the
effectiveness of this approach.

5 Related Work

Traditionally, many approaches that support feature configuration as part of product
line derivation use a hierarchical model. The visualization of hierarchical structures
has been studied extensively in the visualization literature, including node-link
techniques (e.g., [22]), space-filling techniques (e.g., Tree Maps [23]), and interac-
tive techniques that help to cope with very large models such as Focus+Context
(e.g., [24]).

Approaches focusing on multiple hierarchies are useful when visualizing the
relationships between features and other models as discussed above. Robertson
et al., for example, define polyarchies [25] as multiple hierarchies that share nodes.
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They describe the visualization design and a software architecture for displaying
polyarchy data from a set of hierarchical databases. They use animated transitions
when switching between the related hierarchies to allow the user to keep context.
Polyarchies are somewhat similar to the multiple related hierarchies found in some
product line configuration approaches but lack the intra-model relations and the
aspect of progressing configuration.

Moreover, a number of research tools which provide product line configuration
capabilities and apply visualization techniques exist in literature. Some of these
tools have already been discussed in the preceding section (e.g., [6, 14, 16, 18]).
Another example is the research prototype V-Visualize developed by Sellier and
Mannion [26], which visualizes configuration decisions with a force-directed layout.

Some approaches aim to visualize the variability in the artifacts which are
influenced by this variability. For instance, Kéastner et al. [27] used color encoding
to indicate variability in program code.

In an earlier work, the authors presented Visit-FC, a configuration approach and
tool that indicates the configuration state of features by visual clues [28].

6 Summary

The mechanisms by which software variability is presented to a stakeholder
through visual representation and interactivity can have a substantial effect on
how efficiently the stakeholder can perform their required management tasks.
This becomes more and more evident as the size and complexity of the variability
increases. Many of today’s variability management tools use normative software
engineering user interface techniques to present, and provide management of, that
variability. For example, variability artifacts such as decisions, features, and
components can be presented in one-dimensional lists, as elements in a two-
dimensional matrix/spreadsheet, or as nodes in “file explorer” style trees that
provide grouping and allow selection/elimination from a variant model.

As industrial-sized product lines grow to the order of many thousands of varia-
tion points, these traditional techniques tend to be limited in the cognitive support
that they provide to stakeholders in relation to the performance of their tasks.
Information visualization techniques have proven useful in enhancing cognition
in numerous ways, and in recent work, these techniques are being employed with
the aim of increasing the cognitive support provided. Visualization strategies such
as Focus+Context, Degree of Interest, and Details on Demand in combination with
techniques such as Iconography, Color Encoding, and Distortion are being utilized
leveraging the work that has been carried out within the information visualization
community. Implementations using dynamic space trees, radial graphs, and more
explorative 2.5D and 3D techniques have been developed. Table 7.1 briefly
summarizes advantages and limitations of approaches discussed in this chapter.
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Table 7.1 Overview of approaches

Example approaches Advantages Limitations
2D  DOPLER [6] “Explorer” interaction style is Limited on-screen space
pure::variants [15] familiar to stakeholders

S2T?2 Configurator [18]
vivid tree view [14]

2.5D vivid 2.5D view [14] Representation of a larger number Interaction requires training

of elements (features) in a

limited space
3D vivid 3D view [14] Perception of product line Interaction requires training
as a whole
Natural representation of scale
7 Outlook

There are a variety of commercial and research tools that provide support for
variability management. Many of these are continuing in their development and
some are actively exploring the use of more novel presentation and interactive
techniques to improve their support for small- and large-scale variability projects.
In the immediate future, the use of dynamic graphs and, in particular, the use of
degree of interest trees seems to become more prevalent. There is also ongoing
work into the use of 2.5D and 3D strategies which aims to leverage more of the
visualization research that has been carried out to date.

References

—

. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a case

study. J. Syst. Softw. 74, 173—-194 (2005)

. Steger, M., Tischer, C., Boss, B., Miiller, A., Pertler, O., Stolz, W., Ferber, S.: Introducing PLA

at Bosch Gasoline Systems: experiences and practices. In: SPLC 2004, Boston, MA, pp. 34-50
(2004)

. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualisation: Using

Vision to Think. Morgan Kaufmann, San Francisco, CA (1999)

. Ware, C.: Information Visualisation: Perception for Design, 2nd edn. Morgan Kaufmann, San

Francisco, CA (2004)

. Diehl, S.: Software Visualization — Visualizing the Structure, Behaviour, and Evolution of

Software. Springer, Heidelberg (2007)

. Rabiser, R., Dhungana, D., Griinbacher, P.: Tool support for product derivation in large-scale

product lines: a wizard-based approach. Presented at the 1st International Workshop on
Visualisation in Software Product Line Engineering (ViSPLE 2007), Tokyo, Japan (2007)

. Botterweck, G., Thiel, S., Nestor, D., Abid, S.B., Cawley, C.: Visual tool support for

configuring and understanding software product lines. Presented at the 12th International
Software Product Line Conference (SPLCO08), Limerick, Ireland (2008)

. Sinnema, M., Graaf, O. d., Bosch, J.: Tool support for COVAMOF. Presented at the Workshop

on Software Variability Management for Product Derivation — Towards Tool Support (2004)



118

9.

10.

11.

12.

14.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

S. Thiel et al.

Cawley, C., Healy, P., Thiel, S., Botterweck, G.: Research tool to support feature configuration
in software product lines. Presented at the 4th International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS) Linz, Austria (2010)

Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models.
Presented at the Proceedings of the Third Software Product Line Conference, Boston, MA
(2004)

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering Insti-
tute, Carnegie Mellon University (1990)

Sellier, D., Mannion, M.: Visualizing product line requirement selection decisions. Presented
at the 1st International Workshop on Visualisation in Software Product Line Engineering
(ViSPLE 2007), Tokyo, Japan (2007)

. Rabiser, R.: Flexible and user-centered visualization support for product derivation. Presented

at the 2nd International Workshop on Visualisation in Software Product Line Engineering
(ViSPLE), Limerick, Ireland (2008)

Cawley, C., Healy, P., Botterweck, G.: A discussion of three visualisation approaches to
providing cognitive support in variability management. Presented at the 2nd Conference on
Software Technologies and Processes (STeP), Furtwangen, Germany (2010)

. Beuche, D.: Modeling and building software product lines with pure::variants. In: 12th

International Software Product Line Conference (SPLC 2008), Limerick, Ireland (2008)
pure-systems GmbH. Variant management with pure::variants. pure-systems GmbH (2006)
Botterweck, G., Janota, M., Schneeweiss, D.: A design of a configurable feature model
configurator. In: Proceedings of the 3rd International Workshop on Variability Modelling of
Software-Intensive Systems (VAMOS 09), pp. 165-168 (2009)

Schneeweiss, D., Botterweck, G.: Using flow maps to visualize product attributes during
feature configuration. In: VISPLE 2010, Jeju Island, Korea (2010)

Ware, C.: Designing with a 2 1/2D attitude. Inf. Des. J. 3, 255-262 (2001)

Alj, J.: Cognitive support through visualization and focus specification for understanding large
class libraries. J. Vis. Lang. Comput. 20(1), 50-59 (2009)

Risden, K., Czerwinski, M.P., Munzner, T., Cook, D.B.: An initial examination of ease of use
for 2D and 3D information visualizations of web content. Int. J. Hum. Comput. Stud. 53(5),
695-714 (2000)

Walker, J.Q.: A node-positioning algorithm for general trees. Softw. Pract. Exp. 20, 685-705
(1990)

Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans.
Graph. 11, 92-99 (1992)

Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming, and focus
+context interfaces. ACM Comput. Surv. 41, 1-31 (2008)

Robertson, G., Cameron, K., Czerwinski, M., Robbins, D.: Polyarchy visualization:
visualizing multiple intersecting hierarchies. In: ACM CHI 2002 Conference on Human
Factors in Computing Systems, pp. 423-430 (2002)

Sellier, D., Mannion, M.: Visualizing product line requirement selection decisions. In: SPLC
(2), pp- 109-118 (2007)

Kastner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in source
code. Presented at the VISPLE 2008, Limerick, Ireland (2008)

Botterweck, G., Thiel, S., Cawley, C., Nestor, D., Preussner, A.: Visual configuration in
automotive software product lines. In: 2nd IEEE International Workshop on Software Engi-
neering Challenges in Automotive Domain (SECAD 2008), held in conjunction with IEEE
COMPSAC 2008, Turku, Finland (2008)

Rabiser, R.: Flexible and user-centered visualization support for product derivation. In:
Proceedings of the 12th International Software Product Line Conference (SPLC 2008), Second
Volume, 2nd International Workshop on Visualisation in Software Product Line Engineering
(ViSPLE 2008), Limerick, Ireland, pp. 323-328. Lero (2008)



Chapter 8
Variability in the Software Product Line Life
cycle

Kyo C. Kang, Hyesun Lee, and Jaejoon Lee

What you will learn in this chapter
e Understand the software product line life cycle
e Understand the issues in variability management

1 Introduction

Product line (PL) engineering is a software engineering paradigm, which guides
organizations toward the development of products from core assets rather than the
development of products one by one from scratch [1-3]. Two major activities of PL
software engineering are core asset development (i.e., PL engineering) and product
development (i.e., application engineering) using the core assets.

For the core asset development, PL requirements are essential inputs. These
inputs, though critical, are not sufficient for PL asset development; a Marketing and
Production Plan (MPP), which includes guidelines/plans on what features are to be
packaged in products, how these features will be delivered to customers, and how
the products will evolve in the future. Therefore, it is essential to include a
marketing perspective into the PL variability analysis and explores requirements
and design issues from the marketing perspective [4, 5]. With an MPP, reuse is not
opportunistic; it is carefully planned for specific product and market(s).

Once commonalities and variabilities (C&V) of market needs and their
requirements are analyzed and modeled, this information is used to develop soft-
ware assets, i.e., architectures and components, with appropriate variation points
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and variants. Once software assets have been developed for a PL, the product
development phase involves adaptation and instantiation of these assets for a
product. (Asset management is an ongoing process, which includes C&V analysis,
and reengineering and refactoring of software assets.)

One of the most difficult and critical tasks in product line engineering is
variability management. Various product line lifecycle products, including models,
architectures, and components, have C&Vs, which are related vertically among
elements within each lifecycle product and horizontally across different lifecycle
products. C&Vs must be explored and modeled thoroughly and their consistencies
must be maintained while PL evolves. As lifecycle products and their C&Vs are
related vertically and horizontally, it is very difficult and also costly to manage and
maintain their consistency.

Variability management from the perspective of MPP is the key aspect for
managing variabilities of assets because assets are instantiated, adapted, and
integrated to support MPP based on market needs. “Features” are abstractions of
capabilities or functions that the customer wants/needs. Therefore, feature is the
unit of delivery and also the unit of configuration and variability management

In this chapter, we explore various issues of C&V across the entire PL life cycle.
As a starting point, Sect. 2 describes PL engineering activities and their inputs/
outputs. The elements of MPP are explained and illustrated in Sect. 3 using an
elevator controller example described in the box below, and Sect. 4 includes a
discussion on how product line “problems” are modeled. The solution space
modeling is included in Sect. 5, followed in Sect. 6 by a discussion of how product
line artifacts such as architecture and components are designed based on the
solution space models. Sections 7 and 8 include a discussion and conclude this
chapter, respectively. It should be noted that the Feature-Oriented Reuse Method
(FORM) has been used throughout the chapter for the purpose of illustration of
various issues in product line variability management.

2 PL Lifecycle Activities: A