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Preface

There are several books on product line engineering, but most of these books either

introduce specific product line techniques or include brief summaries of industrial

cases or researches. From these sources, it is difficult to gain a comprehensive

understanding of the various dimensions and aspects of software variability that

product line engineering practitioners and researchers must understand. The book

aims to address this gap by providing a comprehensive reference on the notion of

variability modeling in the context of software product line engineering, to give an

overview of the techniques proposed for variability modeling, and to give a general

perspective on software variability management. We believe that practitioners as

well as researchers and computer science students will gain a new insight into

software, software engineering, and variability in product line engineering.

The most important attribute of software is the “softness” of software, i.e., software

that is easy (cost-effective) to modify and adapt to evolving requirements or changing

operating environments, easy to port on different hardware or software platforms, and

easy to reuse for development of similar applications. The “softness” of software

cannot be attained without engineering it into software. In order to “embed” softness

into software, we need to understand the “space” of the commonality and variability of

a family of related systems (i.e., a product line) and its evolution, and then organize and

codify the knowledge gathered as a commonality and variability model. With this

understanding, we can engineer software applying various design principles and

embedding variation points that can later be bound with variants.

Once the initial variability of a software product line has been established and

implemented, the focus shifts towards evolution of the provided variability in

response to changes in the variability required from the software product line. Over

time, new products are added to a product line, old products are removed, and the

functionality that used to be highly differentiating and only used in the high-end

products of the product line commodities is included in all products, removing the

need for variation points. Thus, during evolution, the focus of variability management

is as much on removing unnecessary variability as it is on adding new variation points

in response to new needs. The focus on removing variability is important as the

complexity of hundreds or thousands of variation points can easily become unwieldy.
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One aspect contributing to the complexity of software variability management is

the dependencies between variation points and between the variants available at

each variation point. Where industrial software product lines frequently hold well

over 1,000 variation points, the total number of variants is even larger. The variants

cannot be freely selected independent of all other selected variants, but instead there

are dependencies that need to be respected. This leads to a situation where the

number of variation points is over a thousand, the number of variants a multiple of

that, and the number of dependencies between variants and between variation

points is of a similar or larger number. This explains the importance of intentional

management of software variability: even though the inherent complexity of

variability is already quite high, the total complexity easily becomes unmanageable

if not kept under control.

A final factor increasing the importance of software variability is concerned with

later binding of software variation points. Traditional pre-deployment configuration

of products allows for testing of the specific configuration as a safety net for

avoiding inconsistent configurations. However, run-time dynamicity is increasing

in importance for virtually all software-intensive systems. In those situations,

testing of the resulting configuration after a run-time change is complicated and

often only the most basic of system integrity is verified. The trend towards late

binding is indicative of the importance of software variability management even

outside the traditional area of software product lines and is now becoming impor-

tant for large software products that have significant installation time, startup time,

and run-time configuration taking place. Consequently, proper management of

variability avoiding inconsistent configurations at run-time through the use of

first-class models is particularly important.

Above, we have raised four reasons to stress the importance of software

variability management, i.e., modeling multiple products in a product line, evolu-

tion, complexity, and the shift towards later, even run-time, binding of variation

points. As is illustrated in the industrial experiences part of the book, there are no

theoretical problems without any bearing on industrial practice, but rather

challenges originating in industrial practice that the software engineering research

community has responded to. In our experience, mature software product lines may

have ten thousand variation points or more and the number of legal configurations

of products in the product line may number in the millions. Also, in our writing of

the book and the interaction with contributing authors, we are increasingly becom-

ing convinced that software variability management is evolving into a field of its

own, rather than a subfield of software product lines. In all systems where configu-

ration and run-time dynamism are important, software variability management

offers a powerful toolbox to deal with the resulting complexity, independent of

the system being part of a software product line or not.

From a software engineering research perspective, software variability manage-

ment represents a complex, multifaceted problem that intersects with several

traditional topics, including, among several others, software configuration manage-

ment, run-time dynamism, domain specific languages, modeling, and software

architecture. The field has borrowed techniques from these traditional fields, but

in return also contributes back with new insights, approaches, and techniques.
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The book is organized in four main parts which guide the reader into the various

aspects and dimensions on software variability. Each chapter briefly summarizes

“What you will learn in this chapter”; so expert and non-expert? Readers can easily
locate what topics they will find, but it also describes areas of practice for the

applicability of the concepts explained.

In Part I, we intentionally drive the reader to the major topics on software

variability modeling, but as we do not have a specific chapter for variability

management, the chapters included in this part should be seen as different sides

of the management perspective. First, we introduce the paradigm of software

product line engineering in Chap. 1, where Product Line Engineering is compared

with traditional Software Engineering and the role of software variability manage-

ment is highlighted for the current practice of product lines. We then explore

various dimensions of commonality and variability (C&V) in Chaps. 2 and 3,

separating C&V modeling into problem and solution space modeling, and

constraints specification. Managing traceability between various C&V models

and the notion of variability in time and space is also discussed. The dimension

of feature binding time, the implications of deciding a specific binding time, and its

importance for the software development life cycle are discussed in Chap. 4, which

also provides a renewed taxonomy of different binding times. Chapters 5 and 6

describe ways to implement and configure software variability. In Chap. 5 we

outline from a high-level perspective various mechanisms for implementing soft-

ware variability, and how variability implementation mechanisms affect the archi-

tecture, components, and code levels. We did not go into the specific

implementation details as many of the mechanisms described in the chapter depend

on the programming language selected. Once product line variability is embedded

into the product line asset (code) using various mechanisms, we should be able to

configure products from the asset. Chap. 6 focuses on processes of product deriva-

tion activities for pre- and post-deployment times, with special mention of the

configuration tasks of software products at run-time and reconfiguration activities.

Because of the complexity of C&V models and complex interrelationships among

them, visualizing the relationships between modeling elements is useful and

enhances understandability and maintainability. Techniques for visualization are

discussed in Chap. 7. Finally, we conclude this part of the book in Chap. 8 with a

description on how different life-cycle products are related to each other in terms of

variability when feature models are considered a first-class artifact for any product

line engineering process.

Part II of the book describes an overview of research and commercial tools, from

Chaps. 9–12. Three research tools, COVAMOF, PLUM, and FaMa, address differ-

ent aspects of variability management as they provide automatic support for

managing, configuring, and testing feature models with other related software

artifacts. The commercial tool pure::variants is a variability management suite

that evolves from the original FODA feature model to support the problem and

solution spaces for describing variant configurations.
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Part III shows the most practical viewpoint of the book as we collect three

different industry cases on how variability is managed in real industry projects.

Chapter 13 provides the view of Philips Healthcare Systems where product line

engineering is used extensively to manage the complexity and the diversity of the

Philips systems that rely on C&V and configuration properties of the Philips

Software Product Line (SPL). In Chap. 14 Toshiba researchers use a product line

strategy to describe the variability in power plants software for managing an

automatic control system where complex rules model the relationships between

events, conditions, and actions. Chapter 15 from BigLever Software focuses on

Second Generation Product Line Engineering (2GPLE) activities and tools and

applied to an industrial case at General Motors. In this chapter we can discover the

differences between traditional SPLE activities (first generation) and those

suggested for a second generation (2GPLE), where variability is described and

managed consitently and traceable across the full engineering life cycle and con-

figuration management is simplified.

Part IV concludes the book and encompasses six different chapters focused on

emerging topics about software variability that, currently, are under research. The

diversity of topics include dynamic software product lines, variability in autonomic

computing and web services, the relationship and role of variability in service-

oriented product lines, the impact and use of design decisions in conjunction with

variability models, and finally, how variability is realized using aspect orientation.

We believe that there are more interesting research topics that can be discussed with

more detail, but this part of the book provides and suggests the readers current and

future trends where variability can be applied to manage the diversity of products in

different types of systems or how other software engineering techniques can be also

applied with variability models and vice versa.

As authors and editors, we feel that the book presents an important contribution

both to the industrial practice of software product lines and software engineering

more broadly and to the software engineering research community. We have strived

to capture the current state of the art and state of practice in the chapters and to

indicate important, open research challenges as well as pitfalls for industrial

practitioners to be aware of. We hope that the book can serve as a platform for

the community of researchers and practitioners in software variability management,

allowing the community to develop the next set of solutions, techniques, and

methods to address this complicated and yet fascinating field in software

engineering.

Madrid, Spain Rafael Capilla

Gothenburg, Sweden Jan Bosch

Pohang, Republic of Korea Kyo-Chul Kang

January 2013
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Rick Rabiser, Johannes Kepler Universität Linz, Linz, Austria

Mark-Oliver Reiser, Technische Universität Berlin, Berlin, Germany

Steffen Thiel, Furtwangen University of Applied Sciences, Furtwangen, Germany

Salvador Trujillo, Ikerlan, Arrasate-Mondragón, Gipuzkoa, Spain

xi



.



List of Contributors

Paris Avgeriou Department of Computer Science, University of Groningen,

Groningen, The Netherlands

David Benavides University of Seville, Seville, Spain

Danilo Beuche pure-systems GmbH, Magdeburg, Germany

Jan Bosch Chalmers University of Technology, Gothenburg, Sweden

Goetz Botterweck Lero-The Irish Software Engineering Research Centre,

University of Limerick, Limerick, Ireland

Rafael Capilla Rey Juan Carlos University, Móstoles, Madrid, Spain
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Chapter 1

Software Product Line Engineering

Jan Bosch

What you will learn in this chapter
• Software product lines

1 Introduction

The competitive landscape of software-intensive companies is changing and

intensifying rapidly. The size and complexity of systems is increasing while the

speed of innovation is accelerating at the same time. In addition, the balance of

power is increasingly shifting to the customer and the ability of the customer to

demand products that specifically address that segment or, as an extreme case,

customer-specific adaptations to the products. This has lead to a situation where

many companies are stuck in a fire-fighting mode where the cost of developing new

products increases constantly due to increased size and complexity while, on the

other hand, the number of products and customer-specific adaptations required

increases constantly. This puts an unwieldy strain on the R&D organization, and

over time, this causes the competitive position of the company to deteriorate, as it is

unable to innovate in its product portfolio and processes due to the singular focus on

short-term deliverables for customers.

The forces described above are of course not unique or new in their generic form.

However, over the last decade, many industries have reached a threshold where just

improving existing R&D practices no longer allows the company to maintain its

competitive position. As it becomes increasingly obvious that just “working harder”

is not going to deliver the desired results, organizations reach a point where new

J. Bosch (*)

Chalmers University of Technology, Gothenburg, Sweden

e-mail: jan@janbosch.com
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ways need to be found to instead work smarter, i.e., find new ways of working

where the diverse demands on the company can be met more easily.

Over the last decade, many companies have found the notion of software product

lines to provide a set of work practices that allows them to drastically increase the

amount of R&D resources that focused on highly differentiating functionality and,

consequently, decreasing the investment in commoditized functionality. Software

product lines allow a family of products to share a common core, the platform,

while allowing for product-specific functionality being built on top of the platform.

Successful introduction of a software product line provides a significant oppor-

tunity for a company to improve its competitive position, but of course it is no

panacea. In several companies that we studied, the initially successful adoption of a

software product line eroded over time, and the benefits started to decrease and in

some cases turned into liabilities. When studying this development at several

companies, we identified that the lack of systematic software variability manage-

ment was the root cause for most of the identified problems. This insight lead to the

book that you are now reading: systematically managing the required and provided

variability in a software product line is critical to maintain the competitive advan-

tage that software product lines provide. In addition, it prepares the company and its

product line for the next stage in its evolution, such as the introduction of a software

ecosystem around a successful product line [1].

The remainder of this chapter is organized as follows. The next section is

concerned with introducing the basic concepts that constitute a software product

line. Then, we present an overview of the key challenges that we see in companies

that initially successfully deployed software product lines develop over time. The

subsequent section then analyses these challenges and introduces the notion of

software variability in the context of software product lines. Finally, Sect. 5

provides a summary of the discussion in this chapter and presents an outlook of

the remainder of the book.

2 Software Product Lines

Software product lines are concerned with sharing common functionality within a

family of products. Earlier approaches to software reuse had a tendency to focus

only on the technology aspects of reusing software assets and occasionally included

some process aspects. The key success factor of software product lines is that it

addresses business, architecture, process and organizational aspects of effectively

sharing software assets within a portfolio of products. This is sometimes referred to

as the BAPO model [4].

In the sections below, we introduce the software product line concept using the

BAPO model.

4 J. Bosch



2.1 Business and Strategy

The decision to introduce a new software product line is, obviously, a strategic

business decision. The company, either proactively and offensively or reactively as

a defensive strategy, adopts a product line approach. Although every company, and

consequently its strategy, is unique, one can identify a number of common reasons

for deciding on the introduction of software product line. The exact implementation

is based on the key drivers in the industry segment that the company is active in.

Below we present four typical strategic goals that an organization may have to

introduce a product line:

• Product portfolio diversity: The first and perhaps most common reason for

introducing a software product line is to be able to offer a much broader and

richer product portfolio against the same R&D investment. Especially in the case

where the market currently served by a small number of independently devel-

oped products can be much more effectively monetized by offering more

products serving smaller customer segments more accurately, the introduction

of the product line allows for effective sharing of functionality needed by all

products while allowing for product-specific functionality being built on top to

serve the specific market segment.

• Common user experience for products in the portfolio: A quite common, but less

publicized, alternative reason for introducing a software product line is to share

one major subsystem between the products in the portfolio. A typical example is

to share the UI framework and the generic menu structure and use cases between

the products. This allows for a common look and feel across the product

portfolio allowing for higher productivity of users that use different devices

from the same manufacturer.

• More customizable customer products: In some cases, the company is eager to

present the market with only one or a small number of products. However, in

order to serve the needs of all customers, the product needs to contain significant

amounts of variability. In this case, the company can internally use a software

product line approach and use automated configuration as a mechanism for

providing each customer with a possibly unique configuration and version of

the product.

• Higher-quality products due to reliable shared core: Especially in markets

where product quality is a major issue, creating the products from shared

components and based on a common architecture is a cost-effective mechanism

for increasing quality. As the architecture and shared components are used in

several products and configurations, their quality increases over time.

Although the above items provide the strategic arguments for introducing a

software product line, there are some advantages that are often ignored in the initial

decision process, but then recognized as important once the product line is in place.

• Improvements become available for all products at once: For new requirements

that need to be implemented in all products, one of the major advantages of

1 Software Product Line Engineering 5



software product lines is that once the new requirement is implemented in the

shared assets, it automatically becomes available for all products in the product

line. Especially in industries where regulation, protocols, or other cross cutting

requirements are common, this can provide a significant advantage.

• Improved productivity due to specialization of teams: Assuming R&D in the

organization is organized using component teams, the adoption of a software

product line can result in improved productivity as teams associated with a

shared component build up domain knowledge to an earlier unachievable level.

• Low opportunity cost of new product experiments: Software engineering often

focuses on efficiency, but of course the key success factor for any organization is

its ability to innovate. Successful innovation systems allow for promising ideas

to surface and then test these ideas with customers against the lowest possible

R&D investment. In the case of a software product line, the cost associated with

creating a new (prototype) product for testing with customers is much lower as

most of the required functionality is already available in the shared assets. This

will cause the company to run more new product experiments, resulting, over

time, in a more innovative and faster growing company.

Although engineers tend to focus on the efficiency aspects of software product

lines, the above clearly illustrates the relevance of the technology from a business

and strategy perspective. Both from the perspective of creating a competitive

differentiating position for the company as well as becoming more innovative,

software product lines, when deployed well, can provide a significant advantage.

2.2 Architecture and Technology

The second aspect of software product lines is the architecture and technology

choices underlying the software product line. There are several dimensions to be

considered, but the first is the scope of the shared assets in the product line versus

the amount of functionality covered in product-specific code. As illustrated in

Fig. 1.1, we can identify a typical evolution path for a product line from this

perspective. The model uses four stages:

• Standardized infrastructure: Starting from a set of independent products, the

first step for an organization is to standardize on the software acquired exter-

nally. Typically, these software components are infrastructural in nature.

Standardizing the infrastructure and having each product build on the same set

of components can achieve significant benefits.

• Platform: The second stage is the formation of a platform on top of the infra-

structure. An overloaded term, the platform refers here to a layer of functionality

that is common to all products within the product line. In this stage, software

variability often is a limited concern, as all products need the same functionality.

• Software product line: Once the value of sharing software between products is

established, there will be a tendency to put more functionality in the shared

6 J. Bosch



components. At this stage, also functionality that is used by a subset of the

products is put in the product line. Consequently, software variability manage-

ment, the topic of this book, starts to become a significant concern.

• Configurable product base: The most advanced stage is where a complete set of

products can be automatically derived from the common asset base. There is no

need anymore for product-specific development teams, as the products can be

derived automatically.

There are additional paths outlined in Fig. 1.1 on how a product line might

evolve. These are, however, not discussed in the chapter. Instead, we refer to [2] for

more details.

2.3 Process and Tools

Similar to the business and architecture approaches evolving through different

levels, also an organization’s approach to the development process tends to evolve

over time. Although there are top-down, metric-centric approaches to software

process, such as CMMI [3], a more fruitful way to describe process is by focusing

on the way individual teams can release their software to the product line.

independent
products

standardized
infrastructure

platform

product
population

software
product

line

configurable
product base

program of
product lines

software
ecosystem

Fig. 1.1 Evolution of a software product line
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The release process drives virtually all earlier steps in the process and will, to a

large extent, decide on the amount of coupling and, consequently, the coordination

required between different teams involved in the software product line. We identify

five levels of decoupling between teams in the software product line organization

that we describe below.

2.3.1 Integration-Centric Development

Many, if not most, software development companies apply an integration-centric

approach, in which the organization relies on the integration phase of the software

development lifecycle. During the early stages of the lifecycle, there is allocation of

requirements to the components. During the development phase, teams associated

with each component implement the requirements allocated to the component.

When the development of the components making up the system is finalized, the

development enters the integration phase, in which the components are integrated

into the overall system and system-level testing takes place. During this stage,

typically, many integration problems are found that need to be resolved by the

component teams.

If the component teams have not tested their components together during the

development phase, this phase may also uncover large numbers of problems that

require analysis, allocation to component teams, coordination between teams, and

requiring continuous retesting of all functionality as fixing one problem may

introduce others.

In response to the challenges discussed above, component teams often resort to

sharing versions of their software even though it is under development. Although

this offers a means of simplifying the integration phase, the challenge is that the

untested nature of the components being shared between component teams causes

significant inefficiency that could have been avoided if only more mature software

assets would be shared. One approach discussed frequently in this context is

continuous integration, but in our experience this often addresses the symptoms

but not the root causes of the lack of decoupling.

Although most organizations employing this approach utilize techniques like

continuous integration and inter-team sharing of code that is under development,

the process tends to be organized around the integration phase. This often means a

significant peak in terms of work hours and overtime during the weeks or some-

times months leading up to the next release of the product line and the products that

are part of it.

A challenge that often occurs in this context is lockstep evolution. When the

system or platform can only evolve in a lockstep fashion, this is often caused by

evolution of one asset having unpredictable effects on other, dependent assets. In

the worst case, with the increasing amount of functionality in the assets, the cycle

time at which the whole system is able to iterate may easily lengthen to the point

where the product or platform turns from a competitive advantage to a liability. The

root cause of the problem is the selection of interface techniques that do not
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sufficiently decouple components from each other. APIs may expose the internal

design of the component or be too detailed that causes many change scenarios to

require changes to the API as well.

Although the integration-oriented approach has its disadvantages, as discussed

above, it is the approach of choice when two preconditions are met. First, if

conditions exist that require a very deep integration between the components of a
system or a family of systems, e.g., due to severe resource constraints or challeng-

ing quality requirements, the integration-oriented approach is, de facto, the only

viable option. Second, if the release cycle of a system or family of systems is long,
e.g., 12–18 months, the amount of calendar time associated with the integration

phase is acceptable.

2.3.2 Release Groupings

In this approach, the development organization aims to break the system into

groups of components that are pre-integrated, i.e., a release group, whereas the

composition of the different release groups is performed using high decoupling

techniques such as SOA-style (service-oriented-architecture) interfaces. At the

level of a release group, the integration-centric approach is applied, whereas at

the inter-release group level coordination of development is achieved using peri-

odic releases of all release groups in the stack.

The process is now also different between the release groupings, but the same as

the previously discussed approach within the release grouping. The decoupling

allows the release groupings to be composed, with relatively few issues. This is

often achieved by more upfront work to design and publish the interface of each

release group before the start of the development cycle.

In some of the cases that we studied, the organization failed to realize that

processes needed to vary between and inside release groupings. This lead to several

consequences, including features that cross release groupings tend to be

underspecified before the start of development and need to be “worked out” during

the development by close interaction between the involved teams. This defeats the

purpose of release groupings and causes significant inefficiency in development.

The release grouping approach is particularly useful in situations where teams

responsible for different subsets of components are geographically dispersed.
Aligning release groupings with location is, in that case, an effective approach to

decreasing the inefficiencies associated with coordination over sites and time zones.

A second context is where the architecture covers a number of application domains

that require high integration within the application domain, but much less integra-
tion between application domains. For instance, a system consisting of video

processing and video storage functionality may require high integration between

the video processing components, but a relatively simple interface between the

storage on processing parts of the system. In this case, making each domain a

release grouping is a good design decision.
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2.3.3 Release Trains

In release trains, the decoupling is extended from groups of components to every

component in the system. All interfaces between components are decoupled to the

extent possible, and each component team can by and large work independently

during each iteration. The key coordination mechanism between the teams is an

engineering heartbeat that is common for the whole R&D organization. With each

iteration, e.g., every month, a release train leaves with the latest releases of all

production-quality components on the train. If a team is not able to finalize

development and validation of its component, the release management team does

not accept the component. Once the release team has collected all components that

passed the component quality gates, the next step is to build all the integrations for

the software product line. For those components that did not pass the component

quality gates, the last validated version is used. The integration validation phase has

two stages. During the first stage, each new release of each component is validated

in a configuration consisting of the last verified versions of all other components.

Component that do not pass this stage are excluded from the train. During the

second stage, the new versions of all components that passed the first stage are

integrated with the last verified versions of all other components, and integration

testing is performed for each of the configurations that are part of the product

family. In the case where integration problems are found during this stage, the

components at fault are removed from the release train. The release train approach

concludes each iteration with a validated configuration of components, even though

in the process a subset of the planned features may have been withdrawn due to

integration issues between components. The release train approach provides an

excellent mechanism for organizational decoupling by providing a heartbeat to the

engineering system that allows teams to synchronize on a frequent basis while

working independently during the iterations.

The key process challenges are the predevelopment cycle work around interface

specification and content commitment and the process around the acceptance or

rejection of components at the end of the cycle. In addition, especially when the

organization uses agile development approaches, sequencing the development of

new features such that dependent, higher level features are developed in the cycle

following the release of lower level features allows for significantly fewer ripple

effects when components are rejected.

The release train approach allows team to work independently from each other

during the development of the next release, but it still requires all teams to release at

the same point in time. The process of testing the new version of components

consists of two stages. First, each new version of a component is tested in the

context of the released versions of all other components. This verifies backward

compatibility. In the second stage, the new versions of all components are brought

together to verify the newly released functionality across component boundaries.

The release train approach is particularly suited for organizations that are

required to deliver a continuous stream of new functionality in their products or

10 J. Bosch



platform, either because new products are released with a high frequency or

because existing products are released or upgraded frequently with new functional-

ity. The organization has a business benefit from frequent releases of new function-

ality. Companies that provide web services provide a typical example of the latter

category. Customers expect a continuous introduction of new functionality in their

web services and expect a rapid turnaround on requests for new functionality. The

release train approach does require a relatively mature development organization
and infrastructure. For instance, the amount and complexity of validation and

testing that is required demands a high degree of test automation. In addition,

interface management and requirement allocation processes need to be mature in

order to achieve sufficient decoupling, backward compatibility, and independent

deployment of components.

2.3.4 Independent Deployment

The independent deployment approach assumes an organizational maturity that

does not require an engineering heartbeat (a heartbeat in the engineering system

allows teams to synchronize on a frequent basis while working independently

during iterations) including all the processes surrounding a release train. In this

approach, each team is free to release new versions of their component at their own

iteration speed. The only requirement is that the component provides backward

compatibility for all components dependent on it. In addition, the teams develop

and commit to roadmaps and plans. The lack of an organization-wide heartbeat

does not free any team from the obligation to keep their promises. However, the

validation of a component before being released is more complicated in this model

as any component team, at any point in time, may decide to release its latest version.

The perception in the organization easily becomes that there no longer is an

inter-team process for development as any team can develop and release at their

leisure. In practice, this is caused because the process is no longer a straightjacket

but provides more guardrails within which development takes place. The cultural

aspects of the software development organization, especially commitment culture

and never allowing deviations from backward compatibility requirements, need to

be deeply engrained and enforced appropriately.

As the process does not enforce joint releasing of components, any component

team can release at their own frequency and time. This requires an even higher

degree of automation and coverage of the testing framework in order to guarantee

the continued functioning of the overall system.

The independent deployment approach is particularly useful in cases where

different layers of the stack have very different “natural” iteration frequencies.
Typically, lower layers of the stack that are abstracting external infrastructure

iterate at a significantly lower frequency. This is both because the release frequency

of the external components typically is low, e.g., one or two releases per year, and

because the functionality captured in those lower layers often is quite stable and
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evolves more slowly. The higher layers of the software stack, including the product-

specific software, tend to iterate much more.

The key factor in the successful application of the independent deployment

approach is the maturity of the development organization. The processes

surrounding road mapping, planning, interface management and, especially, verifi-

cation and validation need to be mature and well supported by tools in order for the

model to be effective.

2.3.5 Open Ecosystem

The final approach discussed is an approach in which inter-organizational collabo-

ration is strived after. Successful software product lines are likely to become

platforms for external parties that aim to build their own solutions on top of the

platform provided by the organization. Although this can, and should, be consid-

ered as a sign of success, the software product line typically has not been designed

as a development platform, and providing access to external parties without

jeopardizing the qualities of the products in the product line is typically less than

trivial. Even if the product line architecture has been well prepared for acting as a

platform, the problem is that external developers often demand deeper access to the

platform than the product line organization feels comfortable to provide.

The typical approach to address this is often twofold. First, external parties that

require deep access to the platform are certified before access is given. Second, any

software developed by the certified external parties needs to get validated in the

context of the current version of the platform before being deployed and made

accessible to customers.

Although the aforementioned approach works fine in the traditional model,

modern software platforms increasingly rely on their community of users to provide

solutions for market niches that the platform organization itself is unable to provide.

The traditional certification approach is infeasible in this context, especially as the

typical case will contain no financial incentive for the community contributor and

the hurdles for offering contributions should be as low as possible. Consequently, a

mechanism needs to be put in place that allows software to exist within the platform

but to be sandboxed to an extent that minimizes or removes the risk of the

community-offered software affecting the core problem to any significant extent.

The open ecosystem development model allows unconstrained releasing of

components in the ecosystem not only by the organization owning the platform

but also by certified third parties as well prosumers and other community members

providing new functionality. Although few examples of this approach exist, it is

clear that a successful application of this approach requires run-time, automated

solutions for maintaining system integrity for all different configurations in which

the ecosystem is used.

As the ecosystem participants are independent organizations, no common pro-

cess approach can be enforced, except for gateways, such as security validation of

external applications. However, each limitation put in place causes hurdles for
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external developers that inhibit success of the ecosystem, so one has to be very

careful to rely on such mechanisms.

The open ecosystem model is a natural evolution from the release train and

independent deployment models when the organization decides to open up the
software product line to external parties, either in response to demands by these

parties or as a strategic direction taken by the company in order to drive adoption by
its customers.

The key in this model, however, is the ability to provide proper architectural

decoupling between the various parts of the ecosystem without losing integrity

from a customer perspective. In certain architectures and domains, the demand for

deep integration is such that, at this point in the evolution of the domain, achieving

sufficient decoupling is impossible, either because quality attributes cannot be met

or because the user experience becomes unacceptable in response to dynamic, run-

time composition of functionality.

Two areas where this approach is less desirable are concerned with the platform

maturity and the business model. Although the pull to open up any software product
line that enjoys its initial success in the market place, the product line architecture

typically goes through significant refactoring that can’t be hidden from the products

in the product line or the external parties developing on top of the platform defined

by the architecture. Consequently, any dependents on the product line architecture

are going to experience significant binary breaks and changes to the platform

interface. Finally, the transition from a product to a platform company easily causes

conflicts in the business models associated with both approaches. If the company is

not sufficiently financially established or the platform approach not deeply
ingrained in the business strategy, adopting the open ecosystem approach fails

due to internal organizational conflicts and mismatches.

2.4 Organization

The final dimension that we discuss in this section is how to organize around the

work of building the software product line and the products that it includes.

Although there are many different ways to organize, we present four standard

models of organizing development that cover and address most of the cases that

we have encountered in the industry. For each model, we present the applicability,

the advantages, and the disadvantages.

2.4.1 Development Department

The development department model imposes no permanent organizational structure

on the architects and engineers that are involved in the software product line. All

staff members can, in principle, be assigned to work with any type of asset within

the family. Typically, work is organized in projects that dynamically organize staff
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members in temporary networks. These projects can be categorized into domain

engineering projects and product (or system) engineering projects. In the former,

the goal of the project is the development of a new reusable asset or a new version

of it, e.g., a software component. The goal is explicitly not a system or product that

can be delivered to internal or external customers of the development department.

The product engineering projects are concerned with developing a system, either a

new or a new version, that can be delivered to a customer. Occasionally, extensions

to the reusable assets are required to fulfill the system requirements that are more

generally applicable than just the system under development. In that case, the result

of the product engineering project may be a new version of one or more of the

reusable assets, in addition to the deliverable system.

The development department model has, as most things in life, a number of

advantages and disadvantages. The primary advantage is simplicity and ease of

communication. Since all staff members are working within the same organiza-

tional context, come in contact with all parts of the system family and have contact

with the customers, the product line can be developed and evolved in a very

efficient manner with little organizational and administrative overhead. A second

advantage is that, assuming that a positive attitude towards reuse-based software

development exists within the department, it is possible to adopt a software product

line approach without changing the existing organization, which may simplify the

adoption process.

The primary disadvantage of this approach is that it is not scalable. When the

organization expands and reaches, e.g., around 30 staff members, it is necessary to

reorganize and to create specialized units. A second disadvantage is that typically

within organizations, staff members are, depending on the local culture, more

interested in either domain engineering or system engineering, i.e., it has higher

status in the informal organization to work with a particular type of engineering.

The danger is that the lower status type of engineering is not performed appropri-

ately. This may lead to highly general and flexible reusable components, but

systems that do not fulfill the required quality levels, or vice versa.

Summarizing, this approach has the following characteristics:

• Applicability: Smaller R&D organizations (less than 30 members) have a strong

project focus, rather than a product focus.

• Advantages: The approach excels in simplicity and easy of communication.

• Disadvantages: The main limitation of this approach is the lack of scalability. In

addition, the organization tends to prioritize product engineering or domain

engineering.

2.4.2 Business Units

The second organizational model that we discuss is organized around business

units. Each business unit is responsible for the development and evolution of one or

a few products in the software product line. The reusable assets in the product line
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are shared by the business units. The evolution of shared assets is generally

performed in a distributed manner, i.e., each business unit can extend the function-

ality in the shared assets, test it and make the newer version available to the other

business units. The initial development of shared assets is generally performed

through domain engineering projects. The project team consists of members from

all or most business units. Generally, the business units most interested in the

creation of, e.g., a new software component, put the largest amount of effort in

the domain engineering project, but all business units share, in principle, the

responsibility for all common assets.

Depending on the number and size of the business units and the ratio of shared

versus system-specific functionality in each system, we have identified three levels

of maturity, especially with respect to the evolution of the shared assets.

Unconstrained Model

In the unconstrained model, any business unit can extend the functionality of any

shared component and make it available as a new version in the shared asset base.

The business unit that performed the extension is also responsible for verifying that,

where relevant, all existing functionality is untouched and that the new functional-

ity performs according to specification.

A typical problem that companies using this model suffer from is that, typically,

software components are extended with too system-specific functionality. Either

the functionality has not been generalized sufficiently or the functionality should

have been implemented as system-specific code, but for internal reasons, e.g.,

implementation efficiency or system performance, the business unit decided to

implement the functionality as part of the shared component.

These problems normally lead to the erosion or degradation of the component,

i.e., it becomes, over time, harder and less cost-effective to use the shared compo-

nent, rather than developing a system-specific version of the functionality. As we

discussed in [2], some companies have performed component reengineering

projects in which a team consisting of members from the business units using the

component reengineers the component and improves its quality attributes to accept-

able levels. Failure to reengineer when necessary may lead to the situation where

the product line exists on paper, but where the business units develop and maintain

system-specific versions of all or most components in the product line, which

invalidates all advantages of a software product line approach, while maintaining

some of the disadvantages.

Asset Responsibles

Especially when the problems discussed above manifest themselves in increasing

frequency and severity, the first step to address these problems is to introduce asset

responsibles. An asset responsible has the obligation to verify that the evolution of
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the asset is performed according to the best interest of the organization as a whole,

rather than optimal from the perspective of a single business unit. The asset

responsible is explicitly not responsible for the implementation of new

requirements. This task is still performed by the business unit that requires the

additional functionality. However, all evolution should occur with the asset

responsible’s consent, and before the new version of the asset is made generally

accessible, the asset responsible will verify through regression testing and other

means that the other business units are at least not negatively affected by the

evolution. Preferably, new requirements are implemented in such a fashion that

even other business units can benefit from them. The asset responsible is often

selected from the business unit that makes most extensive and advanced use of the

component.

Although the asset responsible model, in theory at least, should avoid the

problems associated with the unconstrained model, in practice it often remains

hard for the asset responsible to control the evolution. One reason is that time-to-

market requirements for business units often are prioritized by higher management,

which may force the asset responsible to accept extensions and changes that do not

fulfill the goals, e.g., too system-specific. A second reason is that, since the asset

responsible does not perform the evolution him or herself, it is not always trivial to

verify that the new requirements were implemented as agreed upon with the

business unit. The result of this is that components still erode over time, although

generally at a lower pace than with the unconstrained model.

Mixed Responsibility

Often, with increasing size of the system family, number of staff, and business

units, some point is reached where the organization still is unwilling to adopt the

next model, i.e., domain engineering units, but wants to assign the responsibility for

performing the evolution assets to a particular unit. In that case, the mixed respon-

sibility model may be applied. In this model, each business unit is assigned the

responsibility for one or more assets, in addition to the product(s) the unit is

responsible for. The responsibility for a particular asset is generally assigned to

the business unit that makes the most extensive and advanced use of the component.

Consequently, most requests for changes and extensions will originate from within

the business unit, which simplifies the management of asset evolution. The other

business units have, in this model, no longer the authority to implement changes in

the shared component. Instead, they need to issue requests to the business unit

responsible for the component whenever an extension or change is required.

The main advantage of this approach is the increased control over the evolution

process. However, two potential disadvantages exist. First, since the responsibility

for implementing changes in the shared asset is not always located at the business

unit that needs those changes, there are bound to be delays in the development of

systems that could have been avoided in the approaches described earlier. Second,

each business unit has to divide its efforts between developing the next version of

16 J. Bosch



its product(s) and the evolution of the component(s) it is responsible for. Especially

when other business units have change requests, these may conflict with the

ongoing activities within the business unit and the unit may prioritize its own

goals over the goals of other business units. In addition, the business unit may

extend the components it is responsible for in ways that are optimized for its own

purposes, rather than for the organization as a whole. These developments may lead

to conflicts between the business units and, in the worst case, the abolishment of the

product line approach.

Conflicts

The way the software product line came into existence is, in our experience, an

important factor in the success or failure of a family. If the business units already

exist and develop their systems independently and, at some point, the software

product line approach is adopted because of management decisions, conflicts

between the business units are rather likely because giving up freedom that one

had up to that point in time is generally hard. If the business units exist, but the

product line gradually evolves because of bottom-up, informal cooperation between

staff in different business units, this is an excellent ground to build a product line

upon. However, the danger exists that when cooperation is changed from optional

to obligatory, tensions and conflicts appear anyhow. Finally, in some companies,

business units appear through an organic growth of the company. When expanding

the set of systems developed and maintained by the company, at some point, a

reorganization into business units is necessary. However, since the staff in those

units earlier worked together and used the same assets, both the product line and

cooperation over business units develop naturally, and this culture often remains

present long after the reorganization, especially when it is nurtured by management.

Finally, conflicts and tensions between business units must be resolved by manage-

ment early and proactively since they imply considerable risk for the success of the

product line.

The advantage of this model is that it allows for effective sharing of assets, i.e.,

software architectures and components, between a number of organizational units.

The sharing is effective in terms of access to the assets, but in particular the

evolution of assets (especially true for the unconstrained and the asset responsible

approaches). In addition, the approach scales considerably better than the develop-

ment department model, e.g., up to 100 engineers in the general case.

The main disadvantage is that, due to the natural focus of the business units on

systems (or products), there is no entity or explicit incentive to focus on the shared

assets. This is the underlying cause for the erosion of the architecture and

components in the system family. The timely and reliable evolution of the shared

assets relies on the organizational culture and the commitment and responsibility

felt by the individuals working with the assets.
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Summarizing, this approach has the following characteristics:

• Applicability: The approach works well for mid-sized R&D departments, e.g.,

up to 100 engineers.

• Advantages: The approach allows for effective sharing of software assets,

especially the cost of evolving assets. Also, it offers much better scalability

than the previous approach.

• Disadvantages: The main limitation of this approach is the lack of attention to

domain assets and the consequent higher rate of erosion.

2.4.3 Domain Engineering Unit

The third organizational model for software product lines is concerned with

separating the development and evolution of shared assets from the development

of concrete systems. The former is performed by a so-called domain engineering

unit, whereas the latter is performed by product engineering units.

The domain engineering unit model is typically applicable for larger

organizations, but requires considerable amounts of communication between the

product engineering units that are in frequent contact with the users of their

products and the domain engineering unit that has no direct contact with customers,

but needs a good understanding of the requirements that the product engineering

units have. Thus, one can identify flows in two directions, i.e., the requirements

flow from the product engineering units towards the domain engineering unit

and the new versions of assets, i.e., the software architecture and the components

of system family, are distributed by the domain engineering unit to the product

engineering units.

The domain engineering unit model exists in two alternatives, i.e., an approach

where only a single domain engineering unit exists and, secondly, an approach

where multiple domain engineering units exist. In the first case, the responsibility

for the development and evolution of all shared assets, i.e., the software architecture

and the components, is assigned to a single organizational unit. This unit is the sole

contact point for the product engineering units that construct their products based

on the shared assets.

The second alternative employs multiple domain engineering units, i.e., one unit

responsible for the design and evolution of the software architecture for the product

line and, for each architectural component (or set of related components), a

component engineering unit that manages the design and evolution of the

components. Finally, the product engineering units are, also in this alternative,

concerned with the development of products based on the assets. The main differ-

ence between the first and second alternatives is that in the latter, the level of

specialization is even higher and that product engineering units need to interact

with multiple domain engineering units.

Despite the skepticism in especially smaller organizations, the domain engineer-

ing unit model has a number of important advantages. First, as mentioned, it

18 J. Bosch



removes the need for n-to-n communication between the business units and reduces

it to 1-to-n communication. Second, whereas business units may extend

components with too product-specific extensions, the domain engineering unit is

responsible for evolving the components such that the requirements of all systems

in the product line are satisfied. In addition, conflicts can be resolved in a more

objective and compromise-oriented fashion. Finally, the domain engineering unit

approach scales up to much larger numbers of software engineering staff than the

aforementioned approaches.

Obviously, the model has some associated disadvantages as well. The foremost

is the difficulty of managing the requirements flow towards the domain engineering

unit, the balancing of conflicting requirements from different product engineering

units and the subsequent implementation of the selected requirements in the next

version of the assets. This causes delays in the implementation of new features in

the shared assets, which, in turn, delays the time-to-market of products. This may be

a major disadvantage of the domain engineering unit model since time-to-market is

the primary goal of many software development organizations. To address this, the

organization may allow product engineering units to, at least temporarily, create

their own versions of shared assets by extending the existing version with product-

specific features. This allows the product engineering unit to improve its time-to-

market while it does not expose the other product engineering units to immature and

instable components. The intention is generally to incorporate the product-specific

extensions, in a generalized form, into the next shared version of the component.

Summarizing, this approach has the following characteristics:

• Applicability: The domain engineering unit approach allows for significant

scalability up to hundreds of software engineers.

• Advantages: The advantages of the model are threefold. First, it reduces the n-to-
n communication in the previous model to 1-to-n. Second, it guarantees proper
attention both to domain and product engineering. Finally, it offers excellent

scalability.

• Disadvantages: Managing evolution and exchanging information between

domain and product engineering is inherently more complex. This can cause

slower time-to-market of new features.

2.4.4 Hierarchical Domain Engineering Units

There is an upper boundary on the size of an effective domain engineering unit

model. However, generally even before the maximum staff member size is reached,

often already for technical reasons, an additional level has been introduced in the

software product line. This additional layer contains one or more specialized

product lines that, depending on their size and complexity, can either be managed

using the business unit model or may actually require a domain engineering unit.

In the case that a specialized product line requires a domain engineering unit, we

have, in fact, instantiated the hierarchical domain engineering unit model that is the
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topic of this section. This model is only suitable for a large or very large organiza-

tion that has an extensive family of products. If, during the design or evolution of

the product line, it becomes necessary to organize the product line in a hierarchical

manner and a considerable number of staff members is involved in the product line,

then it may be necessary to create specialized domain engineering units that

develop and evolve the reusable assets for a subset of the products in the family.

The reusable product line assets at the top level are frequently referred to as a

platform and not necessarily identified as part of the product line. We believe,

however, that it is relevant to explicitly identify and benefit from the hierarchical

nature of these assets. Traditionally, platforms are considered as means to provide

shared functionality, but without imposing any architectural constraints. In practice,

however, a platform does impose constraints, and when considering the platform as

the top-level product line asset set, this is made more explicit and the designers of

specialized product lines and family members will derive from the software archi-

tecture rather than design it.

The advantages of this model include its ability to encompass large, complex

product lines and organize large numbers of engineers. None of the organizational

models discussed earlier scales up to the hundreds of software engineers that can be

organized using this model.

The disadvantages include the considerable overhead that the approach implies

and the difficulty of achieving agile reactions to changed market requirements.

Typically, a delicate balance needs to be found between allowing product engineer-

ing units to act independent, including the temporary creation of product-specific

versions of product line components, versus capitalizing on the commonalities

between products and requiring product engineering units to use shared versions

of components.

Summarizing, this approach has the following characteristics:

• Applicability: The hierarchical domain unit model scales up to many hundreds,

potentially thousands of engineers.

• Advantages: The approach allows for the management of very large product

families with very complex behavior and huge development departments.

• Disadvantages: The inherent consequence of the approach is that there is

significant organizational overhead and associated cost.

3 Key Longitudinal Challenges

As discussed in the introduction and business section, successful product lines have

an enormous impact on the revenue, profitability, and brand of the organization.

The success of the SPL approach caused two interesting patterns in the companies

that we have studied in our research. First, over time the scope of the SPL was

extended significantly from an initial small set of products to cover a much broader

set of products that cover a much broader set of functional and quality requirements.
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The reason for this was that the success in the market place allows and almost

demands from the company to significantly increase the scope of its product

portfolio as well as serve customer segments with unique requirements that it

could not have served without a SPL.

Second, as the SPL approach turned out so successful, earlier unrelated products

or product families, originating from other parts of the business or acquired through

mergers, were added to the original SPL, despite the lack of architectural alignment.

The reason for bringing earlier unrelated products under the umbrella of the SPL

was typically related to the overlap in domain functionality.

There were several consequences of these patterns, but one major factor was that

the amount of staff working in the software product line grew significantly, up to an

order of magnitude. Despite this increase, the fundamental approach to software

development in each of the case study companies was not adjusted to the new scale

of operations. Instead, there was strong implicit belief that the approach itself was a

core element of the success of the initiative, even when it became blindingly

obvious that the approach was very inefficient.

Although several problems can be identified, in this chapter we focus on three

key problems that occur in successful software product lines over extended periods

of time:

1. Coordination overhead: With increasing scope of the software product line and

the significant increase in the number of people working on it, the cost of

coordinating the efforts of teams, individuals, product derivation efforts,

roadmapping, integration of the platform, etc. increases exponentially to the

point that most staff spends most of its time coordinating through meetings,

email exchange, or other mechanisms and has rapidly decreasing amounts of

time dedicated to adding value to the products and shared assets in the software

product line.

2. Slow release cycles: In each of the case study companies, the shared part of the

software product line, i.e., the platform was integrated and released periodically

to the product teams that derived new or evolved existing products built on top of

the platform. With the increasing size and complexity of the overall SPL as well

as the platform, the cost of verifying all functional and quality requirements

became very high, and as a consequence, the release frequency tended to

decrease and slow to a point that it was below the “speed of the market”. This

caused the benefit of the SPL to turn into a liability as the SPL caused delays in

product releases.

3. High system-level error density: One of the main reasons for slow release cycles

was that many errors were only found during the integration stage as the

complexity of the platform and the SPL as a whole had reached a point where

teams and their architects were unable to predict the implications of their design

decisions and extensions on the overall system. Hence, the negative implications

were found late in the development cycle and could cause time-consuming

rework in the various components. This caused the integration stage to be long

and painful, putting a strong pressure on the organization to perform integration
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as infrequent as possible, reinforcing the aforementioned problem of slow

release cycles.

After carefully studying SPLs at a variety of companies over close to two

decades, our conclusion is that one can identify a single predominant root cause

for the discussed problems: lack of effective software variability management. Over
time, the number of variation points, the number of variants, and the dependencies

between all these increase to a point where the original business benefits of the

software product line erode to a level where the competitive advantage is no longer

present.

Although this may, at first sight, seem a technical issue, the business strategy, the

development process, the organization of R&D, and the culture of the R&D teams

all contributed to an evolution path where the number of software variability

dependencies between software assets increased, causing an increasing number of

points where teams, responsible for these assets, need to coordinate causing the

described problems as well as other concerns.

In the next section, we focus more on software variability and provide an initial

overview as a preparation for the rest of the book.

4 Software Variability

Over the last few decades, the software systems that we have used and built have

required and exhibited increasing variability, i.e., the ability of a software artifact to

vary its behavior at some point in its life cycle. We can identify two underlying

forces that drive this development. First, we see that variability in systems has

moved from mechanics and hardware to the software. Second, because of the cost

of reversing design decisions once these are taken, software engineers typically try

to delay such decisions to the latest phase in a system’s life cycle that is economi-

cally viable. An example of the first trend is car engine controllers. Most car

manufacturers now offer engines with different characteristics for a particular car

model. A new development is that frequently these engines are the same from a

mechanical perspective and differ only in the software of the car engine controller.

Thus, whereas previously the variation between different engine models was

incorporated through the mechanics and hardware, due to economies of scale that

exist for these artifacts, car developers have moved the variation to the software.

The second trend, i.e., delayed design decisions, can be illustrated through

software product families and the increasing configurability of software products.

Over the last decade, many organizations have identified a conflict in their software

development. On the one hand, the amount of software necessary for individual

products is constantly increasing. On the other hand, there is a constant pressure to

increase the number of software products put out on the market in order to better

service the various market segments. For many organizations, the only feasible way

forward has been to exploit the commonality between different products and to
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implement the differences between the products as variability in the software

artifacts. The product family architecture and shared product family components

must be designed in such a way that the different products can be supported,

whether the products require replaced components, extensions to the architecture

or particular configurations of the software components. Additionally, the software

product family must also incorporate variability to support likely future changes in

requirements and future generations of products. This means that when designing

the commonalities of a software product line, not all decisions can be taken.

Instead, design decisions are left open and determined at a later stage, e.g., when

constructing a particular product or during run-time of a particular product. This is

achieved through variability.

As this book is solely concerned with software variability management, it is

important to provide a definition of the term: software variability is the ability of a

software system or artifact to be efficiently extended, changed, customized, or

configured for use in a particular context. In the remainder of the book, we provide

more elaborate definitions of variability and introduce a wealth of techniques that

enable software developers to improve variability of software artifacts as well as

manage this variability over time.

As discussed earlier in this chapter, it is not a trivial task to effectively manage

variability in a software product family. We also see that engineers are seeking

variation mechanisms beyond those shipped with their development tools or that

are not supported by used software systems. The adoption of mechanisms such as

aspect-oriented programming and the popularity of generative and reflective

techniques in programming communities such as Java and .Net are evidence of this.

Essentially, by supporting variability, design decisions are pushed to a later stage

in the development. Rather than making specific design choices, the design choice

is made to allow for variability at a later stage. For example, by allowing users to

choose between different plug-ins for a media player, the media player designers

can avoid hardwiring the playback feature to a particular playback functionality (by

enabling the system to use plug-ins). Thus they can support new file formats after

the media player has been shipped to the end user.

Many factors influence the choices of how design decisions can be delayed.

Influencing factors include, for example, the type of software entity for which

variability is required, how long the design decision can be delayed, the cost of

delaying a design decision and the intended run-time environment. Another factor

to consider is that variability does not need to be represented only in the architecture

(i.e., the fundamental organization of a system embodied in its components, their

relationships to each other and to the environment and the principles guiding its

design and evolution) or the source code of a system. It can also be represented as

procedures during the development process, making use of various tools outside of

the actual system being built.

As the remainder of the book focuses on software variability management, we

have only provided a high-level introduction into the notion of software variability.

The next chapter introduces the subject in much more detail.
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5 Summary

The competitive landscape for companies building software-intensive systems is

changing and the pressure to outperform competitors is intensifying. The speed at

which innovations need to be pushed to market is increasing while the size and

complexity of the products is increasing as well. The resulting tension makes it

clear to most organizations that just “working harder” is not going to address the

issues and instead the organization needs to change its ways of working rather

fundamentally. Several companies have adopted the notion of software product

lines as an innovation that addresses the seemingly conflicting forces. Those that

were successful in the transition process typically reaped significant benefits in

terms of establishing or expanding market leadership, accelerated revenue growth,

and increased profitability.

Over time, however, successful product lines often start to suffer from several

problems, including expanding coordination overhead, slowing release cycles, and

increasing system-level error density. Based on our analysis we identified lacking

software variability management as the key underlying root cause. Over time, the

increasing number of variation points, variants, and dependencies between these

causes a web of complexity that causes a gradual reduction in competitiveness of

the organization that over time removes the advantages provided by the software

product line approach.

The key solution to addressing the aforementioned concerns is to significantly

improve and professionalize the way software variability is managed, both from a

problem domain and from a solution domain perspective. This has business,

architectural, process, and sometimes even organizational implications. The objec-

tive of this book is to provide a perspective on software variability management that

allows organizations to better understand their situation and to provide a set of

concrete techniques to address the concerns that surface in their R&D

organizations.
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Chapter 2

Variability Modeling

Kyo C. Kang and Hyesun Lee

What you will learn in this chapter
• The different aspects and viewpoints of variability modeling one needs to

consider in software product line engineering
• How these different viewpoints are interrelated to each other
• Variability modeling techniques

1 Introduction

The aim of this chapter is to provide a comprehensive description of the notion of

variability modeling in the context of software product line engineering and to give

an overview of the techniques proposed for variability modeling.

Since its first introduction in 1990, feature modeling [1] has been the most

popular technique to model commonality and variability (C&V) of products of a

product line. Commonalities and variabilities are modeled from the perspective of

product features, “stakeholder visible characteristics of products” in a product line

that are of stakeholders’ concern. For example, the fund transfer feature of a

banking system may be of interest to customers, i.e., a service feature, but how

the fund transfer happens may not be of interest to customers as long as it is done

securely. However, it will be an important concern for the designer of the system

and, when there are alternative ways, it is the responsibility of the designer to

choose the right one for the target system.

The original feature model, FODA [1], is a simple model with features that are

organized using “consists of” and “generalization/specialization” relationships
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using the AND/OR graph. Features are typed as mandatory, alternative, or optional

features to represent C&V. Attributes of a feature may also be documented.

As it has gained a wide acceptance both by practitioners and researchers, this

rather simple model was extended by many researchers introducing new modeling

primitives such as feature cardinality and XOR relationships. Various research

activities followed such as formal analysis of feature model, feature configuration,

generative programming, etc. Also, there are a wide variety of product lines FODA

and its extensions have been applied to, and it has been reported that C&V models

tend to become complex as the size of product line increases. This complexity of a

model is highly correlated with the complexity of the problem domain that is

modeled. However, it has been noticed that many different types of C&V informa-

tion, such as product goals as well as functional and design features, are all

integrated into a single model which makes a C&V model even more complex.

In this section, we explore various dimensions of C&V in product line engineer-

ing. We separate C&V modeling into problem and solution space modeling.

Problem space modeling is further refined to product goal, usage context, and

quality attribute C&V modeling. Also, solution space modeling is refined to

capability/service, operating environment, and design feature C&V modeling.

Relationships/traceability between these models is managed separately from these

models.

2 Concepts

The most important attribute of software is the “softness” of software, i.e., software

that is easy (cost effective) to modify and adapt to evolving requirements or

changing operating environments, easy to port on different hardware or software

platforms, and easy to reuse for development of similar applications. Softness of

software cannot be attained without engineering it into software. To embed softness

into software, there have been many software engineering principles and concepts

proposed, such as information hiding, program families, modularity, design

patterns, etc.

In order to apply these design principles and concepts, however, we need to

understand the commonality and variability (C&V) of the product line, i.e., a family

of products. We need to explore the “space” of C&V of the products in a product

line and potential evolution (“time”-dependent variability) of these products in the

future, and then organize and codify the knowledge gathered as a C&Vmodel. With

this understanding of C&V, we can engineer software applying various design

principles and embedding variation points that can later be bound with variants.

For example, design decisions (design features) that can change may be

encapsulated into software components applying the information hiding principle,

and each changeable decision (alternative design features) can be implemented as a

variant.
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In the following section, we explore different dimensions of variability of a

software product line.

3 Commonality and Variability Modeling: The Scope

C&V of a product line can be modeled in many different ways based on different

viewpoints (i.e., separation of different concerns). Largely, we can separate the

problem space from the solution space1 (see Fig. 2.1). For the problem space, user

goals and objectives, required quality attributes, and product usage contexts are

typically modeled in product line engineering. Within the solution space, C&V is

typically modeled for the functional dimension (i.e., capabilities, services), the

operating environmental dimension (e.g., operating systems, platform software,

etc.), and the design dimension (e.g., domain technologies). C&V explored and

modeled for these dimensions are materialized as software architectures,

components, variation points, and variants in the artifact space. Implementation

mechanisms such as inheritance, template, framework, macro, and generator may

be used to implement variation points and variants.

Fig. 2.1 Variability modeling space

1 The terms “problem” and “solution” are relative. A solution for one may be a problem for others

to solve. Requirements, which are considered “problems” to solve by designers, are “solutions” to

real-world problems. One may view features in the “solution” space as problems for asset

development in the artifact space.
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The goals and objectives modeled for a product line defines “problems” at their

highest level of abstraction to be addressed by the products of a product line, and

therefore, they drive derivation of capabilities and quality attributes, which in turn

may trigger derivation of other capabilities in the solution space. For example, the

goal of moving passengers between floors safely will require elevator “capabilities”

such as cabin moving, call handling, and door operation in addition to the obstacle

detection for safety, a quality attribute. Techniques for implementing capability

features are modeled as design features, each of which has associated quality

attributes. For example, different obstacle detection devices may have different

performance characteristics.

Typically, products used in different usage contexts require different capabilities

and/or different quality attributes. For example, elevators in a hospital require a

higher quality floor leveling feature than those in an office building to let wheel

chairs and other medical equipment rolled in and out of an elevator easily. A flash

memory for USB drivers needs a higher frequency data update than those built into

a camera, for example, as they may be pulled out anytime. It should be noted that

what derives decisions on quality requirements, operating environmental elements

(e.g., devices, software platforms used), and design techniques to use is not just

required capabilities but often the context in which the product is used. Analyzing

and understanding different product usage contexts are very important for success-

ful product line engineering.

What is important in the variability modeling is that:

• There are different market segments or user communities who may have differ-

ent goals and/or different product usage context

• Different goals or usage contexts may require different quality attributes or

capabilities

• Same capabilities may be implemented in different ways (design decisions),

which may have different quality characteristics

In variability modeling, we explore these different dimensions and model

relationships between modeling elements as shown in Fig. 2.1. In the following

section, we review techniques for variability modeling.

4 Modeling Techniques

4.1 Feature Modeling

Since feature modeling [1] was first introduced two decades ago, it has been widely

accepted by the software reuse and the software product line engineering (SPLE)

communities as a means for modeling C&V of a product line, i.e., a family of

products. This is because features are abstract concepts effectively supporting

communication among diverse stakeholders of a product line, and therefore, it is
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natural and intuitive for people to express commonality and variability (C&V) of

product lines in terms of features. Also, it has been recognized that the C&V

information codified by a feature model is most critical for developing reusable

software assets.

In practice, many feature-based approaches to SPLE use features as units of:

• Capability that is delivered to customers

• Requirement containers, i.e., units of requirement specification

• Product configuration and configuration management

• Development and delivery to customers

• Parameterization for reusable assets, i.e., parameters for instantiating reusable

assets

• Product management for different market segments

Furthermore, future products are typically discussed and described in terms of

features gathered from market surveys, individual customers, research labs, or

technology roadmaps.

The original feature model has very simple modeling primitives: structural

relationships (composition, generalization/specialization), alternativeness, option-

ality, and mutual dependencies (inclusion, exclusion). Textual description and

attributes of a feature may be defined. Also, the rationale for selection of an optional

or alternative feature may be added as a textual description. Figure 2.2 shows an

example of FODA feature model. This feature model describes a product line for

mobile phones. In Fig. 2.2, Video Call, Camera, Front Camera, and Back Camera
features are optionally selectable features. Resistive and Capacitive features are

alternatives and can be thought of as specializations of general Touch Screen
feature. As can be seen in the composition rule in Fig. 2.2, Front Camera feature

must be selected when Video Call is selected. Selection of alternative features,

Resistive and Capacitive, is made based on rationales shown in Fig. 2.2.

Fig. 2.2 A FODA feature model of a mobile phone product line
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For example, in case of buying a mobile phone, if a customer only concerns touch

accuracy, then s/he may want to select Resistive rather than Capacitive.
After the introduction of FODA, many researchers have extended the feature

model by adding new concepts for their researches [2–20], thereby resulting many

variations (see Fig. 2.3) and extensions are still continuing. For instance, FODA

was extended in [2] by introducing different viewpoints and grouping features into

capability features modeling C&V of functions and services provided by the

products, operating environment features modeling C&V of the environments in

which these products are deployed and interface with, and domain technology and

implementation techniques modeling important design decisions. A new relation-

ship type “implemented by” was introduced to connect capability features (the

functional dimension) with domain technology and implementation technique

features (the design dimension) that may be used to implement capability features.

Griss [3], Gurp [4], and Eriksson [5] made notational changes to the feature model

and also provided notations for expressing dependencies and feature binding time.

Hein [6] provided a UML-based modeling language. Czarnecki [7, 9, 10], Riebisch

[8], and Benavides [11] refined the alternative relationship of FODA to XOR and

OR relationships and also added the concept of cardinality allowing multiple

selection of a feature. Attributes of features are also included in the feature

model. Table 2.1 shows a summary of extensions made by each feature modeling

approach.

As we examined the applications of these feature modeling approaches, we

noticed that a feature model was often used to model different “concerns” of a

product line in one model without delineating them. These concerns include the

following: missions or business goals that need to be achieved by a product line,

Fig. 2.3 Feature modeling approaches
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functional capabilities provided by a product line, required nonfunctional properties

(quality attributes), operating environments in which products are deployed, major

design decisions to realize functional capabilities and achieve quality attributes, and

rationales for configuring features for a certain usage context. These concerns may

be classified as shown in Fig. 2.1.

This coexistence of multiple viewpoints2 in a single model naturally leads to the

following problems:

Table 2.1 Summary of feature modeling approaches

Feature modeling approach Extensions

FORM Feature Model [2] • Introducing different viewpoints: capability, operating

environment, domain technology, and implementation

technology

• Introducing a new relationship type implemented by

FeatuRSEB Feature Model [3] • Making notational change: alternative features ! variation

point feature and variant features

• Providing constraint (e.g., require) notation

• Providing binding time notation: reuse-time and use-time

binding

Van Gurp et al. Feature

Model [4]

• Introducing external features

• Refining the generalization/specialization relationship to

OR-specialization and XOR-specialization relationships

• Providing binding time notation: compile-time, link-time, and

run-time binding

PLUSS Feature Model [5] • Making notational changes:

– A group of alternative features ! single adaptors

– A group of optional features ! multiple adaptors

• Providing constraint notation

Hein et al. Feature Model [6] • Providing UML-based modeling language

• Introducing secondary structure for constraint (e.g., require)
dependencies

Generative Programming (GP)

Feature Model [7]

• Refining the alternative relationship to XOR and OR

relationships

Riebisch et al. Feature Model [8] • Introducing the concept of feature group and group cardinality

• Providing constraint notation

GP-Extended Feature Model [9] • Introducing the concept of feature cardinality

Cardinality-Based Feature

Model [10]

• Introducing the concept of feature cardinality, feature group,

and group cardinality

• Introducing a new relationship type feature diagram
reference

Benavides et al. Feature

Model [11]

• Including feature attributes in the feature model

2 For the same object, we can observe it from different angle, i.e., viewpoint, and extract different

information. For example, an orthopedic doctor’s view of human will be different from that of an

internist.
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• Analyzing, understanding, and defining the relationships between different

viewpoints are a big burden to product line analyst

• Relationships between different viewpoints are not always explicitly defined

• A feature model with multiple concerns tends to become very complex, making

it hard to comprehend and maintain

• The boundary between the problem space (features to capture the context of a

product line) and the solution space (features to capture the services and design

decisions of a product line) are not clearly distinguished

• Optimal configuration of products considering quality attributes is difficult

There is a need for a holistic approach [21] to feature modeling to alleviate these

difficulties by first exploring the feature space to identify different concerns and

divide it into subspaces based on different concerns and then to examine how they

are related to each other, enabling product line analysts to examine a broad

spectrum of concerns of a product line while focusing on specific concerns sepa-

rately. By delineating these concerns as distinct viewpoints, analysis of a product

line becomes thorough and systematic. This means that a product line analyst can

concentrate on a specific modeling space with a clearly defined viewpoint (i.e.,

concern) at a time and then analyze and model relationships between different

concerns later. An example of this holistic approach is shown in Sect. 5.

4.2 Decision Modeling

The decision modeling technique for modeling variability was introduced by [22].

A decision model consists of:

• Domain-related questions to be answered in developing products

• The set of possible answers/decisions to each question

• References to the affected artifacts and variation points, or references to the

affected decisions

• Descriptions of the effect on the assets for each decision, or descriptions of the

effects on the answer sets of the affected decisions

The decision modeling technique relates domain questions to other related

domain questions and then, ultimately, to domain solutions which are variation

points and/or variants. It focuses on capturing decisions to be made in configuring

products. The feature modeling, however, focuses on exploring, understanding, and

modeling the feature space (i.e., domain “questions”-problems and their solutions)

of a domain in terms of commonalities, variabilities, and relationships among them.

The rationale for each choice may be provided as textual description. Both

modeling techniques may be used to configure products of a product line.
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5 Variability Modeling: An Example

In this section, we further explore various dimensions of variability modeling

explained in Sect. 3 using an Elevator Control System (ECS) product line as

example [23, 24]. We will also see how these different dimensions are related to

each other. The feature modeling technique is used in the exploration.

5.1 Problem Space Exploration

The problem space includes features for goals/objectives, usage contexts, and

quality attributes of a product line as shown in Fig. 2.1. These features present

the concrete context of a product line, i.e., external forces that drive selection of

specific design decisions, i.e., architectures, algorithms, or implementation

techniques; these problem features are important to understand real-world

problems3 that the product line should address. That is, the problem space captures

the information of:

• Why is the product line required in the market?

• When is a certain product configuration used?

• What are the expected qualities of a specific product or the product line?

The answers to these questions should be captured in an exploitable form so that

we can establish clear traceability, not starting from functional product features, but

from real-world problems.

The problem space can be divided into three sub categories: goal/objective,

usage context, and quality attribute features. The goal/objective features represent

what a system should achieve in order to solve real-world problems. For example,

in the ECS product line, the real-world problem is as follows: as multistory

buildings are introduced and the number of floors increases, moving objects

between floors becomes difficult. In order to solve this real-world problem, the
goal/objective of ECS may be: “Move objects between different floors of a building

in an efficient way.” It is important to clearly define the goal as it implies the scope

of the product line. The above goal, for instance, can also be achieved by an

escalator. If it is not the intension and if we want to include only elevators, the

goal should be refined as: “Move objects between different floors of a building

vertically in an efficient way using a cage with doors” (see Fig. 2.4a). Through such
refinement iterations, product line analysts, market analysts, and developers can

establish an explicit boundary of a product line and can share a common under-

standing about the ultimate goal of the product line.

3 In this chapter, we did not cover modeling real-world problems but focused on “external factors”

derived from real-world problems that influence configuration of features in the solution space.
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The next category is usage context, which represents a set of circumstances

where a system is operated in. According to [25], usage contexts are any contextual

setting in which a product is deployed and used. We follow this definition and it

includes features about physical environments, user profiles, social or legal issues,

business concerns, etc. For example, depending on the types of objects carried by an

elevator, the usage context of ECS can be either a passenger elevator or a freight

elevator (as shown in Fig. 2.4b).

The last category is about quality attributes: goal/objective and usage context

features determine quality attribute features. Quality attribute features represent

nonfunctional requirements that a system should satisfy while meeting its func-

tional requirements. For example, for a passenger elevator, Safety and Usability
features are important, while, for a freight elevator, “car call cancelation” feature

may not be used for safety because of the weight of the load and the momentum of

the elevator. Figure 2.5 shows an example of quality attribute feature model.

We need to explore C&V along these dimensions, which essentially derive

decisions on required capabilities (functions) and various design choices.

In the following section, we discuss the solution space feature.

5.2 Solution Space Feature

The solution space captures functional, operational, and technical features that

should be implemented for a product line. Most feature modeling approaches in

the literature starts analyzing features that belong to this space, which can be

classified into four categories (i.e., capability, operating environment, domain

technology, implementation technique) according to FODA. It should be also

noted that the term “solution” does not mean design artifacts in the space; features

in this space are “solution decisions” for the problem space features, and these

Fig. 2.4 (a) A goal/objective feature model and (b) a usage context feature model of the ECS

product line
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solution decisions must be implemented as product line assets (e.g., components)

(The Artifact Space in Fig. 2.1). Figure 2.6 shows an example of solution space

features.

Firstly, the capability features represent end-user visible characteristics of sys-

tem such as service, operation, and function. For example, Speed, Capacity, Hall
Call Handling, and Motor Control in Fig. 2.6a are capability features of the ECS

product line. Secondly, the operating environment feature model captures C&V of

target environments where products are deployed and operated in/on. For example,

RTLinux, VxWorks, and WindowsCE in Fig. 2.6b are various real-time operating

systems of the ECS product line. There are various sensors for detecting weight and

leveling an elevator with building floors. Finally, design features represent design

decisions such as domain technologies and implementation techniques. For exam-

ple, in Fig. 2.6c, domain-specific algorithms such as Motor Control Method and

Weight Detection Method are design decisions that are only meaningful in the ECS

product line. Communication methods such as TCP and UDP represent concrete

implementation techniques for a product line but they are more general and can be

used in other product lines.

In the following section, we describe the relationships between these different

viewpoints.

5.3 Dependencies Between Different Variability Viewpoints

In the variability modeling discussed in this section, features in the problem space

drive decisions on features in the solution space. This means that the problem space

features set clear contexts for identifying the solution space features and, thus,

establishing explicit mapping between features in the two spaces. To model these

spaces, we identified four activities and their relationships as depicted in Fig. 2.7.

Fig. 2.5 A quality attribute feature model of the ECS product line
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These activities are iterative and the arrows in Fig. 2.7 show data flow, i.e., use of

work products at each activity. Each activity is briefly described below.

Organizing goal/objective features and usage context features from real-world

problems of a product line initiates the modeling process. Goal/objective features

specify the boundary of the product line and usage context features set specific

contexts for the product line. The organized goal/objective features and usage

context features are used as inputs to other activities.

In quality attribute feature modeling, quality requirements needed to achieve

goals/objectives under various usage contexts are identified and organized into a

quality attribute feature model. For example, the “safety” quality requirement of the

ECS product line is to achieve the goal/objective of moving passengers safely in

passenger elevators, and the “freight damage prevention” quality requirement is a

goal set for freight elevators.

The problem space features (i.e., goal/objective, usage context, and quality

attribute features) are used as primary inputs for the solution space feature modeling

activity. Functional requirements that support the goal/objective under various

usage contexts are identified as capability features. For example, theMotor Control
capability feature is defined to satisfy the goal/objective of carrying objects

between floors. The identified capability features may be refined further, and

relevant domain technology and implementation features are identified considering

Fig. 2.6 A solution space feature model of the ECS product line
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goals and quality features and modeled in a solution space feature model.

For example, leveling profile techniques that support the “smooth and comfortable

run” quality attribute are identified as domain technology features.

In the product line artifacts design and development activity, the identified

solution space features are implemented as product line artifacts including product

line architectures, objects, and code modules. Variabilities captured as optional/

alternative features in the solution space are embedded into the product line

artifacts using various variability realization techniques (e.g., macro, aspects,

etc.) [26–28].

In this section, we have examined the scope of variability. We will explore the

temporal variability of product line software in the next section.

6 Feature Binding Time: Variability in Temporal Dimension

So far, we have seen C&Vs in the spatial dimension only, i.e., what features are

common and what can vary. However, we should also explore C&Vs in the

temporal dimension, i.e., when variability occurs, which is generally known as

feature binding time. Generally, feature binding time has been looked at from the

software development lifecycle viewpoint [7, 29], in which the focus has been

given to the phase of the lifecycle at which a feature is incorporated into a product.

In product line engineering, however, there exists another dimension that we have

to consider, which we call feature binding state [12]. A feature may be included in

the asset or a product at any product line lifecycle phase, but their availability for
use can be determined at the time of inclusion or at any time after inclusion by

enabling or disabling the included feature. Activation of the available features may

Fig. 2.7 Variability modeling process
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be controlled to avoid a feature interaction problem.4 Thus, feature binding time

analysis with an additional viewpoint on feature binding state (which includes

inclusion and availability states) provides a more precise framework for feature

binding analysis.

For the purpose of temporal variability analysis, we can simplify the product line

lifecycle into four phases: asset development, product development, pre-operation,

and operation (run-time), shown as the vertical axis in Fig. 2.8. The horizontal axis

shows binding states. The example in Fig. 2.8 shows that bothFIRE and INTRUSION
features are included in assets, and they are available for use as soon as the assets are

included in a product. However, FLOOD and MESSAGE features are included

during the product development time as product-specific features, but their avail-

ability is determined at installation time. The PUMPING feature is included and

becomes available at operation time (i.e., run-time binding).

7 Discussion

After the FODA method [1] was published, there have been various efforts to

introduce different viewpoints for feature modeling based on their own experiences

[2, 10, 12–20]. These extensions include structural, configuration, binding, opera-

tional dependency, and traceability viewpoints. For the structural viewpoint [2, 10,

13, 14, 17–19], extended feature specification, feature relationships, and feature

categories [10, 13, 16–18] added strict or recommended constraints into a feature

model for helping product feature configuration in the configuration viewpoint.

Fig. 2.8 Feature binding time analysis

4 The problem of unexpected side effects when a feature is added to a set of features is generally

known as the feature interaction problem.
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Lee and Kang [12] extended a feature model by introducing feature binding unit

(i.e., groups of features bound together) with binding time and techniques. Fey et al.

[14–16, 19, 20] identified various operational dependencies between features, such

as activation dependency, modification dependency, etc. Kang et al. [2] defined

implementation relationship (i.e., a feature is necessary to implement another

feature) to model traceability between functional and design features. These

extensions, however, are limited to solution space modeling. Kang et al. [21]

extended the scope of feature modeling further to cover problem space modeling.

In FODA [1], it is stated that issues and decisions must be incorporated into a

feature model in order to provide the rationales for choosing options and selecting

among alternatives. However, how issues and decisions are modeled and how they

are related to (solution space) features was not explained. Kang et al. [21] modeled

issues and decisions as problem space features and explicitly captured the

relationships between problem space features and solution space features. These

relationships are used in product feature configuration.

In FOPLE [30], marketing and production plan (MPP) is introduced as rationales

for identifying and selecting product features. MPP can include goal/objective

features and usage context features (e.g., user profile and cultural/legal constraints

of MPP are similar to usage context features). In FOPLE, it is stated that MPP

provides quality attributes for architecture design and refinement. However, they do

not discuss howMPP provides different quality attributes and how quality attributes

affect selection of product features. In this chapter, we explicitly explain

relationships among usage context features, quality attribute features, and product

features.

Some researchers [31, 32] added a quality attribute viewpoint into feature model

and associated quality attributes with solution space features. Yu et al. [31] pro-

posed a goal model to capture stakeholder goals that may represent quality

attributes and associate goals to features. Thurimella et al. [32] suggested issue-

based variability model that combines rationale-based unified software engineering

model [33], and orthogonal variability model [34]. In their model, quality attributes

can be modeled as criteria for selecting product features. However, Yu et al. and

Thurimella et al. did not discuss how product-specific quality attributes are

identified. In [21], Kang et al. discussed how product-specific quality features are

identified from product usage context features and product quality requirements.

Some researchers [25, 35] proposed usage context viewpoint into feature model

and associate usage contexts with solution space features. Hartmann and Trew [35]

introduced a context variability model and define dependencies (i.e., requires,

excludes, and sets cardinality) between a context variability model and a feature

model. Lee and Kang [25] proposed usage context variability model and quality

attribute variability model and defined relationships among usage contexts, quality

attributes, and product features; selection of variant usage contexts eliminates

choices of variant quality attributes and those of variant product features, and

selection of variant quality attributes eliminates choices of variant product features,

which is similar to modeling discussed in this section. Kang et al. [21] adopted

usage context analysis introduced in these papers [25, 35], but, unlike these papers,
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they clearly defined boundaries and relationships between the problem space,

solution space, and artifact space.

Czarnecki et al. [10] suggested the concept of staged configuration, a process of

specifying a family member in stages where each stage eliminates configuration

choices, which can reduce the complexity of feature selection. Czarnecki et al. [36]

extended this idea and introduce multi-level configuration, a form of staged config-

uration where the choices available to each stage are represented by separate feature

models. In [36], it is stated that the criteria (e.g., geographical area or market

segment) used to distinguish between the multiple product lines can be captured

in a level-0 feature model, which is similar to usage context features discussed in

this section. Their approaches [10, 36] are in the context of software supply chains

[37] (i.e., each configuration stage is performed by different stakeholders in a

software supply chain). Kang et al. [21] suggested a product feature configuration

process that facilitates quality-based product configuration.

8 Summary and Outlook

This section introduces a holistic feature modeling method that enables product line

analysts to capture complex concerns of a product line into different viewpoints and

to decide product configuration systematically. Coexistence of multiple viewpoints

in a single model without delineating them resulted in a highly complex and

unmanageable feature model. The key idea in this section is the explicit separation

of problem space features from solution space features. The approach also provides

multiple viewpoints for each space so that a product line analyst can concentrate on

a specific modeling space with clearly defined viewpoints at a time and do not need

to consider other concerns. Relationships between these different viewpoints are

explicitly modeled and used in making configuration decisions.

In this chapter, we explored explicit connections between goals/objectives,

product usage contexts, quality attributes, and functional and design features. We

also explored feature binding time issues. We expect to see more formal treatments

of these subjects in a near future.
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Chapter 3

Variability Scope

Rafael Capilla

What you will learn in this chapter
• The importance of binding system options
• The notion of variability in space
• Variability constraints and dependencies
• Automation of variability scoping techniques

1 Introduction

A fundamental aspect of variability modelling and for software product line

engineering refers to the scope of the product portfolio that is to know the number

and type of the products to be produced. As software variability concerns with

multiple product development and multiple product configurations, there is a need

to delimit the scope of the products and determine the size of the domain in our

product line. Scoping identifies what products are “in” our product line and relies on

a set of allowed options described in the variability model to determine the list of

feasible products that can be built. Therefore, software engineers must define which

design choices and combinations of them will be valid for a given market segment.

There are many reasons (e.g. economic, business, technical) for delimiting the

scope of the SPL products and thereby the scope of the variability model. Each

reason must justify why a number of available choices must be out of the selection

and product configuration activities, as the high number of combinations in large

variability models, often belonging to industrial product lines, makes unmanage-

able and unfeasible the development and maintenance of a large set of software

products. Consequently, delimiting the number and type of products must be driven
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by the scope of valid options defined in the architecture. Such restrictions are often

based in a set constraint and dependency rules defined for the software artefacts and

used to prune the number and type of products we can develop. In this chapter we

will deal with notion of variability in space and with the reasons and technical

solutions used for bounding the design choices used to keep the SPL products under

control.

2 Scoping Activities

The need SPLs focus on specific market segments motivates domain scoping

activities. Therefore, domain scoping is considered one of the first SPL activities

used to delimit the number and type of products that will be inside the product line.

Scoping activities narrow the domain of the product portfolio for the success of

the SPL from a business and economic perspective. As a result, the scope of the

variable options is also delimited by rules and constraints aimed to reduce the

number and type of allowed products.

As discussed in [1], product portfolio analysis results are key to evaluating and

establishing the type of products we want to engineer. As the product line evolves,

the product portfolio may grow or change, and the variability implemented in the

architecture must be flexible enough to support new variations in a controlled

manner. Scoping activities also encompass the identification of requirements that

are common to all products and those ones that make the difference between SPL

products. Such activities will have a great impact on commonality and variability

analysis to identify the variable parts in the architecture and with reusability of

components and products in mind.

Moreover, market analysis activities are also carried as an early step before

launching the product line in order to determine the product portfolio and to

encompass which assets and products will be part of the product line. Therefore,

product variants are defined and modelled on the basis of scoping activities and

driven by economic and business reasons that keep the product line competitive.

Otherwise, the flexibility of variability models aimed to support a broad number

of products in the product line scope often relies on more technical activities and

current SPL capabilities, such as extensibility of variability models to support

evolution and product configuration and derivation tasks. Bosch [2] mentions

three different forms of scoping:

(i) Domain scoping aims at defining the boundaries of the domain where artefacts

and products will be used. Domain analysis techniques are often used to

delimit the scope of domain products and to derive the products from domain

models (see also Design Space Models for product line scoping [3]).

(ii) Product scoping defines the products that will be engineered, often under a

product line approach.

(iii) Asset scoping focuses on the identification of those reusable assets that will be
employed in the construction of the software products.
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These forms of scoping are used to constraint the number and type of options of

variability models in order to make them more manageable. The scoping activity is

fundamental for the product line strategy and economic benefits depend on how

well the scope is chosen (e.g. a large scope may waste the investment of assets while

a narrow scope may lead to not supporting reuse across all relevant products) [4].

Clements [5] states the importance of product line scope as a crucial activity for

bounding the limits of the product line and define what’s “in” and what’s “out.” Pro-

active approaches attempt to delimit the full scope of products when a product line is

launched from scratch, while reactive approaches deal more with the scope of new

products as the product line evolves and when new requirements appear. Scoping is

sometimes considered a fuzzy activity during variability modelling and product line

start-up, but several reasons motivate its importance in a product line context.

2.1 Reasons for Scoping

We can think in many reasons to enact scoping activities, but most of them may fall

into the following categories:

• Economic: As not all the products can be built, there is a strong need to reduce

the number and type of the assets and products because of economic reasons.

Sometimes a product is technically feasible but difficult to sell and hence, it

should not be included in the product line. For instance, an expensive product

supporting a large number of configurable options that many of them will never

be used. However, the case of a software product supporting only one single

variation could be included in a product line if it shares a large number of assets.

In other cases, a company can produce hundreds of products using a highly

customizable variability model but building and maintaining such huge number

of products will be highly costly (e.g. due to an excessive number of software

development hours). Consequently, only those configurable assets and products

that are worthy of value must be considered within the scope and a balance

between the cost supporting a large number of configurable options (i.e. more

products may lead to a broader scope) and a given pricing scheme must be

achieved for each particular customization strategy.

• Business/Strategic/Commercial: Many times the variability model can support

the development of a certain number of worthy configurable products, but

business, strategic or commercial reasons may suggest to, for instance, delay

its development. During scoping activities we do not restrict the scope of the

variants for those products that will not be engineered in a certain period of time.

Rather, we support such variations as part of the scope of the product line model

but we decide later if certain variants (often known as internal variability) will
be available in a new version of the product because the market demands new

features (e.g. activate a new feature in the software of a mobile phone that

remains hidden or unavailable in previous models of the SPL).
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• Technical: Delimiting the scope of products or assets is necessary for mainte-

nance reasons, as huge variability models are difficult to maintain and manage

and may also increase product derivation activities. We use constraints not

because the current technologies cannot support an infinite number of

combinations but because of technical and other business reasons. Some systems

that exhibit a large number of dependencies between their assets increase

maintenance effort (e.g. the dependency network between packages in Linux

kernels) and something similar may happen with variability models. Therefore,

it is desirable to keep the number of dependencies and constraints under control

and use tools for automating these tasks.

• Cultural/Political: Sometimes different configurable options are driven by cul-

tural factors such as the language of use in different countries, which may lead to

supporting a variety of languages in the GUI menu options of the product, while

the functionality of the software remains the same. Delivering a software

product in only a certain number of countries (e.g. due to political or military

reasons) is another form to delimit the scope of the variants.

2.2 Variability in Space

Once the product line assets and products are well scoped, we can say that the pair

variants and variation points defined in the variability model are ready to be used in

product configuration and derivation activities in order to produce the reusable

assets and the products in a given domain. The number and type of configurable

products are determined by the design options defined in the architecture and

implemented in the code assets. We refer to this as variability in space, where
product line artefacts and releases are engineered and configured from the same

variability model and belonging to a given domain.

Definition 3.1. Variability in space

Variability in space represents the set of products, releases and reusable assets

that can be derived and configured from a concrete variability model in a given

timeframe.

2.3 Notation for Binding Time

Variability in space provides the necessary ability to produce multiple products

through variant selection and takes advantage against single-system development

when several products and configurations must be engineered and put on time in the

market. As mentioned in [6], “feature declarations model the scope of variation in
the production line,” and the adoption of software mass customization must support

the complete scope of products on a predictable horizon. Also, depending on how
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flexible and extensible the variability model has been designed to support evolution,

new requirements should not be a problem if new design options and constraints can

be easily added without changing the structure of the variability model.

In addition, the scope of the variability model is not only limited by the

configurable options available but also by the constraint and dependency rules

that will determine which products are allowed or within the scope. Such

constraints must be described and implemented as part of the variability model,

such as we explain in next sections.

3 Variability Scope

Product line scoping in its different forms have a direct impact on bounding

variability. Because huge variability models applied in industrial product lines

offer a large number of possible combinations, the feasibility to build only a subset

of these products must rely on the limits established in the variability model to

support a reduced number of allowed products.

3.1 The Graphical Limits of FODA

Variability models often use FODA trees to provide a graphical representation of

the system features and how these interrelate with each other. A FODA tree

describes the system features in terms of mandatory, alternative and optional

variants which are also related using the notion of variation point. This hierarchy

forms a tree where the root node represents the type of products we want to build.

One weak aspect of FODA trees is how constraints between features, used to

delimit the variability in space, can be represented graphically. Also, representing

variation points to relate variants located in different parts of the FODA tree can

complicate the visualisation capabilities of the variability model, in particular in

large feature models. In FODA, it is commonly accepted to draw a direct line

associating two features to describe that there is a relationship between them, which

can be either a constraint or a dependency rule, but constraints and dependencies

are often managed separately from the graphical representation of the feature tree.

With FODA, structural dependencies are modelled graphically and configuration

constraints among optional and alternative features are specified separately to

reduce the complexity of the graphical representation. Both of them must share

the same name space. The same happens when we want to relate two or more

variants and group these under a common variation point. A circle or dotted line

surrounding the variants in the variation point is often used, but the logical formula

describing such relationship must be written out of the FODA tree.

Figure 3.1 shows an example of a feature tree where variation points are

surrounded by a dotted line and relationships between features are described
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using a solid line, but as mentioned, all this information must be described in textual

form apart from the graphical representation. Therefore, FODA trees are simple and

useful techniques to visualise the entire or a subset of the variability model, but the

rules and constraints that define the limits of the allowed products must be defined

and managed in a textual form. The existence of hundreds of features often makes

hard the proper visualisation of all the potential constraints used to delimit the

variability implemented in the product line products. For instance, in Fig. 3.1 we

show three sample types of relationships that can be used to define the scope of the

variability model, such as the following:

• Feature f1 excludes feature f 2.
• Feature f 2.3 has one requires relationship with feature f 3.1. For instance, a

feature cannot be activated if another feature has not been activated first. This

can be seen as a special case of, the “requires” dependency.

• A variation point VPx is defined to encapsulate and relate the alternative

features f 3.1 and f 3.2 using, for instance an OR logical connector and having

feature f 3 as parent of the relationship (e.g. VPf3 ¼ {f 3.1 OR f 3.2}).

Non-graphical representation techniques like matrixes can be also used to

describe the dependencies and constraints of features. In addition, languages

supporting rules and constraints constitute an interesting alternative as they can

be processed automatically by software.

3.2 Variation Points

A variation point defines a relationship between features of a feature model and

represents an area of a software system affected by variability. Variation points are

used to relate two or several features located in the feature tree, and from the same

parent or from different ones. Variation points encompass set of variants and other

variation points that are represented by a logical formula that uses logical

Feature tree Root node

f1
f2

f3

f3.1 f3.2

f2.1 f2.2 f2.3

Legend

Mandatory feature Optional feature Alternative feature

Excludes Requires Variation Point

Fig. 3.1 A FODA tree

example annotated with

different types of

relationships between

features
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connectors (e.g. OR, AND, XOR) to relate features. As not all the possible

combinations are valid, the scope defined for each variation points is restricted by

system constraints that limit the scope of products in space.

Variation points provide a flexible way to play with the scope of system features

by grouping them as related functionality, often implemented as subsystems. When

a variation point relates distinct functional parts of a system, the resultant area has a

broader scope and the variability implemented in related system functional parts

can be managed as a whole by means of such variation point. For instance, the

variability implemented in the architecture that manages the electronics of a car can

be used to describe the variations of both the Navigation subsystem while other

features describe the variability implemented in the Multimedia subsystem (i.e.

radio, DVD). Both subsystems can be integrated under one variation point

representing an integrated multimedia system which can be also managed using a

common control centre (e.g. the BMW’s iDrive system consists of a button that

manages all functions of the vehicle control system).

Variation points are often represented in feature trees as circles or boxes

surrounding the variants included in the variation point, but because this technique

may distort the representation of the feature model, variation points are better

described separately in text notation or grouped in tables. The distortion of feature

trees when using variation points can be reduced if we group subsystems or related

functionality from the same parent, as we can avoid crosscutting lines across the

feature tree. In huge variability models, it is rather difficult to avoid the existence of

variation points relating distant features located in the tree or belonging to different

parents, as in other case this may lead to a reorganisation of the whole variability

model.

Just to give an example, Fig. 3.2 shows an example of variation points belonging

to the same and to different parents. In the first case (left side of the figure), a

variation point is defined and comprises three different variants. In the second case

(right side of the figure), a variation point is defined to relate two distant features

containing the variants defined in the feature tree but belonging to two different

parents and depicted using a dotted circle line, as FODA lacks an explicit notation

to describe such cases. In both situations the variation point defines the scope of

certain functionality or related system features but this is managed differently. In

the second case the scope seems to be broader than the first case because the

functionality encompassed in the variation point shown in the right side of the

figure encompasses functionality that belongs to separated or different part of

the software product.

Because the scalability of the graphical representation of feature models is

sometimes limited to describe and/or visualise hundreds of variation points, we

need machine-processable techniques to solve this problem. However, most of

FODA implementations are machine processable, as described in the Appendix

of the FODA report, which includes a method of textual specification and also the

extensibility of the model.

From an architecture point of view, variation points can be annotated as UML

text notes and stereotypes in UML diagrams as no specific notation or neutral
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standard format exists to describe a variation point in the software architecture. This

lack is common to all UML modelling tools and specific tooling has to be used to

describe the variability of systems, in particular for industrial product lines where

hundreds of variants and variation points need to be defined. Hence, the constraint

and dependency rules used for delimiting the scope of the variability model can be

hardly represented in the architecture and specific variability modelling and man-

agement tools are required.

3.3 Variability Constraints

In a feature-oriented approach, features are usually not independent each other, and

the number and type of allowed products that can be technically and economically

produced in a product line is often restricted using requires and excludes constraints
(i.e. a kind of dependency). These variability constraints describe additional

relationships between product features that can be hardly represented in the feature

tree. Such dependencies can be applied either between variants and variation points

in order to restrict the number of feasible product variations and thereby the number

of product configurations.

• Requires dependency: It is used to represent that a variant Vx or a variation point

VPx needs another variant Vy or variation point VPy. A requires dependency

means that when a feature is selected the other must be present in the same

product.

• Excludes dependency: It is used to represent that variant Vx or a variation point

VPx excludes another variant Vy or variation point VPy. That is, an excludes

dependency means that two features cannot be present in the same product.

In FODA, an arrow between two variants or variation points labelled with

“requires” or “excludes” is enough to describe graphically such relationships, but

the high number of such constraints in large variability models makes that all these

rules must be processed automatically depending on the language used. Simple

if–then constructs are enough to describe these dependencies, but constraint

Root Root

Legend

Variation Point

Variant

Fig. 3.2 Variation points

belonging to the same and

different parents
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programming constitutes another alternative to describe the dependencies between

features.

Example 3.1. Requires and excludes dependencies using if–then
A feature fy is required if a feature fx is present

IF (fx) THEN fy

A feature fy is excluded if a feature fx is present

IF (fx) THEN NOT fy

A feature fz (e.g. a variant) is required if the variation point represented by

features fx AND fy is present

IF (fx AND fy) THEN fz

In addition, the requires and excludes dependencies can be defined statically

when product options are bounded before runtime or dynamically when such

dependencies define a runtime condition during product execution or as part of a

runtime reconfiguration process.

Example 3.2. Static and dynamic “requires” and “excludes” constraints

Static: During a software installation procedure, a software package requires

another package before it is installed. Hence, a static requires dependency is defined

and resolved.

Dynamic: During system execution, the software of an elevator checks the

maximum allowed weight before the user can press the button of a given floor. In

this case, a dynamic excludes dependency is realised at runtime when the maximum

weight is exceeded.

Variability models delimit the solution space using requires and excludes
dependencies to constraint the diversity of products, but these dependencies often

complicate the variability model due to a high number of interrelated relationships

between variants and variation points. As a consequence, the variability that is

coded in a given subsystem or product becomes less reusable and difficult to

decouple when the product options have dependencies to other system features.

3.4 Operational Dependencies

Feature dependencies have many implications in the development of product line

assets and products as these are used to delimit the scope of the structural

variability. However, other dependencies are possible. As mentioned in [7], opera-
tional dependencies represent implicit or explicit relationships between features

that happen during the operation of the system. This kind of dependencies can be

considered as different forms of requires and excludes dependencies but associated

to runtime properties rather than to those defined statically in the feature model.

Therefore, operational dependencies delimit the scope of execution features instead

of the scope of the number and type of products; however, they can be used to

configure products with different execution capabilities.
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Based on a previous work [7], we describe the following six operational

dependencies1:

• Usage dependency: It represents a feature that depends on other features for the

correct system functioning. For instance, the location of certain services in a

mobile phone depends on the correct functioning of the GPS system feature.

• Modification dependency: The behaviour of a feature might be modified by

another feature while it is in activation. For instance, the feature that activates

the Anti-lock braking system (ABS) in the car depends on the features

controlling the sensors of the wheel, and the ABS feature works differently

based on the information received from the sensors.

• Activation dependency: The activation of a feature depends of another feature,

and it can be classified into the following four categories:

– Exclusive-activation dependency: This dependency refers to features that

cannot be active at the same time.

– Subordinate-activation dependency: It represents a feature that can be active

while another feature is also active.

– Concurrent-activation dependency: Two or more features that are

subordinated to an active parent feature must be also active at the same

time (i.e. concurrently).

– Sequential-activation dependency: Some subordinators of a parent feature

must be active in sequence, and the parent feature will be active after the

completion of the sequence.

The complexity of modern software systems may lead to many expected and

unexpected situations where the status and operation mode of a system may change

and more operational dependencies may arise to deal with new situations when the

environment changes.

4 Automating Variability Scoping Checking

In large variability models, where hundreds of features are required, the number of

constraints and dependencies may become unmanageable and hence, automatic

mechanisms are necessary (1) to check that the right products will be produced, and

(2) to ensure the compatibility between hundreds of constraints and dependency

rules.

The automatic analysis of feature models can be used to check the scope of the

product line products and their different configurations based on the provided

variability in order to ensure the compatibility of hundreds of product constraints.

1 In this chapter we will consider operational dependencies as part of a previous work of one of the

co-authors of this book rather than a mere reference to the related work.
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As nicely described in [8], there are different techniques that can be used to check

the consistency of dependencies in feature model. In this chapter we summarise two

representative techniques used to automate the analysis of feature models.

• Propositional logic: It uses a propositional formula consisting of a set of

primitive variables related by logical connectors aimed to constraint the values

of the variables. A feature model can be mapped as a propositional formula and

then use SAT solvers2 to determine the satisfiability of the formula expressed

using first-order logic. The formula can be specified in Conjunctive Normal

Form (CNF) and uses three logical symbols, as connectors (i.e. ¬, ∧, ∨) that are

used by most SAT solvers. Features are mapped to variables in the propositional

formula and the relationships between features are described using several

formulas and including constraints.

• Constraint programming: Is a programming paradigm where relations between

variables are stated in the form of constraints. These constraints can be described

using Constraint Satisfaction Problems (CSPs) (e.g. A or B is true) where the

values for the variables are found and all constraints are satisfied. Conversely to

propositional formulas, a CSP solver can deal with numerical values in addition

to Boolean ones. Feature models can be mapped as CSP variables with values

TRUE or FALSE, while the relationships between features are defined as

constraints. A description of the usage of CSP solvers in the automated analysis

of feature models can be found in [9].

Table 3.1 shows an example on how constraints and dependencies of a feature

model can be expressed in propositional formulas and CSP.

5 Areas of Practice

Product line scoping is a key activity for the success of the product line. In the early

stages of the SPL phases, domain scoping is sometimes perceived a fuzzy task and

difficult to carry out. Hence, one first area of practice is to define clearly the scoping

Table 3.1 Mapping features

to propositional logic and

CSP notations

Feature relationship Propositional logic CSP

OR

P ¼ (X OR Y)

P $ (X ∧ Y) If (P > 0)

Sum (X, Y)

Else

X ¼ 0, Y ¼ 0

Excludes
X excludes Y

¬ (X ∧ Y) If (X > 0)

Y ¼ 0

Requires
X requires Y

A ! B If (X > 0)

Y > 0

2A SAT solver is a software that takes as input a propositional formula and determines if the

formula is satisfiable, that is there is a variable assignment that evaluates the formula to true. Input

formulas are often specified in Conjunctive Normal Form (CNF) notation [8].
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activities in the SPL approach used, not only at the process level but also in

variability modelling tasks. Some well-known SPL approaches like PuLSE [10]

have a domain scoping phase (i.e. PuLSE-Eco) used to identify the scope of the

product line and determine the product line members. Other approaches (Software

Engineering Institute’s Framework for Software Product Line Practice 5.03) com-

bine economic and business reasons to establish SPL scoping activities with more

technical activities focused on production constraints.

Closer to variability management techniques, staged configuration of feature

models are used to iteratively select features in order to reduce the variability in the

feature model [11]. This technical activity can be seen as a way to reduce the scope

of the final products during product derivation. In other cases, new features can be

added to enhance the functionality of a given product (e.g. the calculator product

line incrementally adds new functionality by adding features). Using this approach,

errors can be detected easily on each stage.

Another area of practice concerns with the evolution of the current asset and

product features. If variability models become too rigid to expand the scope for new

product line members, a reorganisation of the structural variability is needed,

maybe because the variability model is unable to support runtime changes. In

more flexible approaches, where runtime variability is supported, existing features

can be modified or new ones added affecting the scope of the product line.

6 Summary

Product line scoping is an important and challenging area to determine the allowed

product configurations that will belong to the product line. As discussed in the

chapter, there are several reasons (e.g. economic, business, technical, etc.) that

justify the need for product line scoping activities at various levels of abstraction

such as domain or product scoping.

We have described the notion of variability in space to refer to the number and

type of products to be produced from a given variability model and limit the scope

of the products in the product line. FODA and their successors (i.e. extended

notations of the original FODA) or constraint programming techniques are of

common use to describe variability models and to determine the valid product

configurations.

Finally, other forms of dependencies between features highlight these

relationships from a runtime perspective rather than from the structural point of

view, as many systems that use context information requires additional capabilities

to adapt themselves to a new environment, and variability that is managed at

execution time play an important role. Hence, these new dependencies must be

3 http://www.sei.cmu.edu/productlines/frame_report/index.html.
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able to address those runtime concerns among features that exploit runtime

conditions.

Figure 3.3 summarises the main reasons for SPL scoping activities and the

related techniques used to delimit the scope of variability models.

7 Outlook

Well-defined product line and variability scoping techniques are still needed.

However, feature models are widely used to describe the variability of software

systems, but other representation forms are required to accomplish the interrela-

tionships between hundreds of features. Hence, new ways to represent large

variability models and filtering techniques to describe a subset or a subsystem

containing variability are welcome. Moreover, the scalability of feature models

must be managed efficiently to expand or reduce the scope of the product line

variants and hence facilitate the evolution of the product line. New trends and

techniques in runtime variability models will help to support the dynamicity of

systems and ecosystems and represent dynamic relationships between features that

the structural variability cannot describe.
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Chapter 4

Binding Time and Evolution

Rafael Capilla and Jan Bosch

What you will learn in this chapter
• The notion of variability in time and binding time
• What a Feature Binding Unit is
• How binding time affects the evolution of products and architecture
• Open variability models

1 Introduction

Software variability, as a powerful mechanism that enables the construction of

different artifacts from a common architecture, enables the realization of variation

points and variants at different times or stages. The moment in which the variability

is bound to concrete design choices provides a flexible way to delay our design

decisions to later stages during the software development process. Because

supporting the evolution of variability models is critical for the success of the

product line, we introduce in this chapter the notion of binding time. However, for a

variety of reasons, different artifacts may require different times to realize their

design options, and the ability in which the product line core assets and products

match to concrete values at different binding times increases the flexibility of the

product line architecture configurable options.

The realization of the variability may affect both to the developer side and to the

client side as well, because the binding time happens at different stages of the
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development process, from design time to runtime. Hence, the evolution of product

line products using variability techniques is better supported with the selection of

different binding times. Variability plus binding time mechanisms are used to avoid

rigid architectural approaches that are difficult to evolve, and runtime binding

offers, for instance, quick adaptation of systems to new context conditions without

changing the architecture.

2 Variability in Time

In previous chapters, we learned that variability in space refers to the number and

type of products that are built under the scope of a particular software product line.

Such variations must be concretized at a given time to allow each particular product

configuration, so the architect, developer, or customer knows when the variability

will be realized to their concrete values.

As not all software systems have the same needs, variability in time [4] allows
you to select when the system must be configured and to delay your design

decisions to later stages in the software development process. It also refers to the

different versions of an artifact that are valid at different times [13]. Thus,

variability in time provides a powerful mechanism that software engineers use to

delay or advance the decisions implemented in the software architecture and adapt

their components and products at different stages in the software life cycle. The

flexibility gained to configure the software at different times increase developers

and customers’ satisfaction and reduces further product configuration effort.

2.1 Binding Time

The notion of variability in time is often known in software product line engineer-

ing as binding time. Binding time can be understood as a property of variation

points to delay the design decisions to a later stage, as new requirements or different

context conditions may require concretize the variability at any time after design

time.

Definition 4.1. Binding time

Is an attribute of variation points and/or variability technique used to delay the

architectural design decisions to later stages in the software development process?

2.2 Binding Time in the Software Development Process

Different kind of systems may require an adaptation to different context conditions,

and not all the software systems pose the same capabilities to react or change their

own configuration or system properties. Therefore, different binding times are

needed to respond to different adaptation demands. There is a wide variety of
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binding time choices to decide when system features can or must be configured and

according to the adaptation level desired. Some of the possible binding times

happen in the developer side, while others occur in the client side. Figure 4.1

shows the diversity of binding times, from design time to runtime. As we illustrate

in the figure, part of the variability can be defined and realized in the developer side

to configure the design choices earlier, while in other cases variability matches to

concrete values much later, often in the client side, such as what Fig. 4.1 shows [5].

At design time, all variants and variations points are defined in the software architec-
ture or in a complementary feature tree or table. During implementation time, the
variability described in the architecture must be implemented in the software components

(e.g., core assets in a product line) bymeans of a variety of programming techniques (e.g.,

parameters, class hierarchy, etc.). In other cases, binding timemay happen at compilation
and build time, where different software components can be selected according to

different needs to produce a different version of a software package (e.g., a recent version

of a math package that has to be installed in a Linux system or a new version of the Linux

kernel that has to be reconfigured and afterwards built linking all their modules). Finally,

the assembly time of products from the same or different suppliers may lead to bind and

integrate products at the end of a product line. Variability can be used to decide on the

selection of the products that will form part of a specific version.

In addition, variability can increase the flexibility of the configurable options if

these can be resolved more in advance, often in the client side, as we do not need to

ask developers to modify the variability model to support certain changes. In this

case, binding variants at configuration time introduce a degree of freedom that let

customers to configure a software product before execution. For instance, the

installation of a new operating system requires configuring the date, language,

and other O.S. features at the client side. Also, some systems need certain configu-

ration operations when the system is deployed (deployment time). This could be the
case of distributed systems, which need to configure IP addresses and server nodes,

when they are deployed. Configuring variants at start-up is one of the most common

used runtime binding. For instance, an operating system already preloaded in the

machine needs to configure certain system parameters and user preferences before

first start-up. Finally, the most flexible binding time occurs during the execution of

the system (runtime), which can be reconfigured itself with low or minimal human

intervention, and variability is dynamically bounded to the values according to

different context conditions.

Developer side

Implementation Build

Compilation Assembly Configuration Start-up

Deployment Runtime

Client side

Design

Fig. 4.1 Different binding times where variability can be realized
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2.3 Feature Binding Units

In a software product line, not all system features need to be activated at the same

time. Therefore, the need to accommodate the variability to different situations

means that not all of the features will be switched on/off concurrently. Different

binding times can be defined for the products and software components to allow

designers to activate or deactivate a concrete feature or group of them in different

moments also because one or more feature may pose one or several binding times.

Example 4.1. Activation of group of features

The variability implemented in an intelligent home system (IHS) covers a wide

range of areas from lightning to security. If variability is used to model the

activation and deactivation of IHS features, under normal circumstances, it may

happen that the heating system can be activated at runtime according to different

temperature conditions, while changing the password access of the door entrance

could be done only at configuration time. In this scenario, the same system exhibit

different binding times for different but related group of features.

During feature modeling, we need to define which features must be activated at a

given time and, hence, define the binding time for them. It is easier for implemen-

tation purposes to agree the same binding time for a related group of features,

preferably those that can be implemented in a single software component or class.

Some authors [10] use the term feature binding unit (FBU) as “to identify and bind
service features that represent a major functionality of a system that can be added
or removed as a service unit”.

The example on Fig. 4.2 represents part of the feature model of a Virtual Office of

the Future (VOF) system described in [9], where the red circles represent an FBU for

a group of related features with the same binding time. Pre- and post-conditions

determine static or dynamic binding of features to reconfigure the system according

different user needs. In dynamic scenarios, require and excludes rules relate depen-
dent features and help also to model when a certain feature must be activated or not.

Modeling feature binding as units has several advantages, among which we can

mention the following:

• Model groups of related features help to understand better how variants and

variation points are activated at the same time.

• Facilitates the understanding of the dependencies between features and the order

in which they are activated or tracked.

• Makes easier the implementation of the variability in the system which can be

also associated to hardware components.

• Facilitates consistency and feature management.
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2.4 Notation for Binding Time

Conversely to variation points and variants, where several authors have proposed

graphical and text notations to represent the variability in the architecture and

feature models [13, 14], binding time lacks explicit notation. In feature trees, the

binding time never appears, and only the FBUs attempt to describe graphically a

common binding time for a set of features. There are two simple ways to describe

the binding time of in the variability model.

(a) One way is to use a tabular form where the binding time appears in a single

column and is specified using plain text for a set of features, software compo-

nent, or architectural element.

(b) The second way is to annotate it graphically in the feature model or UML

design, and indicate when the variability occurs.

A tabular representation has the advantage to relate easily the binding time with

the provided variability and offer good precision to know when a variant or

variation point bind to concrete options. Including the binding time in UML

descriptions, like in [12], offers a quick view of the binding time in software

components or classes, but worst to decipher at finer grain levels, also because a

certain variant may pose more than binding times.
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Fig. 4.2 A feature model and binding units of a virtual office system [9]
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As variants and variation points are stereotyped in UML models with

<<variant>> and <<variation point>>, respectively, and have well-known

acronyms like “V” and “VP”, we advocate to use the acronym “BT” for the binding

time that is usually stereotyped with<<BT>> or<BindingTime>>. We prefer to

avoid the inclusion of binding times in feature trees as these are mostly used to

describe the structural variability, often at design time, rather than times where

variability is bound. Figure 4.3a, b shows an example on how the binding time is

shown using a graphical and tabular description.

Sometimes it is difficult to know if the binding time property must be attached to

an entire class, software component or to smaller elements like class attributes or

parameters. In the case of an entire class containing a portion of the system

variability which has the same FBU, we can use one single binding time for such

class or software component. In those cases where different variants have different

binding times, a tabular description seems more suitable than UML diagrams to

describe the binding time of the features. In Fig. 4.3, the UML description shows

that the multimedia class has two different binding times that affect the entire class.

In addition, the subclasses define two different binding times for two attributes, one

of these binds the Codec attribute at runtime while the other binds the SoftVersion
attribute at configuration time. Stereotyping the binding type (<<BT>>) in UML

diagrams gives some initial indication, but the tabular representation constitutes a

more detailed alternative to indicate when each feature binds to its values as well as

other complementary information.

VP Variant Parameter/
Attribute

BT Meaning Default

VP1 Variant3 P3:
TempSensor

Runtime Detects the room 
temperature

[16-40] 23

--- Variant4 P4: Lights Implemt.
Config.

High
Medium
Low

Medium

Value
space 

a

b

Fig. 4.3 (a) Graphical representation of the binding time. (b) Tabular representation of the

binding time
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2.5 Binding Time Implementation Mechanisms

Binding time and variability implementation mechanisms are closely related.

Depending on the moment in which variability is realized, we will need to use a

different implementation technique. In the following subsections, we discuss dif-

ferent techniques to realize variability at different times.

2.5.1 Pre-compilation Time

Before compilation time, variants and variation points can be described in a UML

diagram using stereotypes, tagged values, notes, or even OCL constraints to define

the pre- and post-conditions. As UML designs are static artifacts, they can only

describe which features or classes will change when the software architecture is

configured as product architecture. As mentioned in [13], to bind the values of

variants before compilation, certain techniques can be used like generative pro-

gramming [1] or model-driven architecture [9], which attempt to automate code

generation and give values for the variants selected to the available parameters.

Also, aspect-oriented programming [8] is another pre-compilation technique that

weaves different aspects or cross-cutting features in a program, and such aspects

may include their own variability (please refer to Chap. 14).

2.5.2 Compilation Time

Variability can be used to define conditional compilation of program modules,

where common compilation directives are separated from conditional compilation

sections. Compiler flags and code sections are examples where variability is

bounded at compilation time. The #ifdef directive is often used to define the

variations during compilation to expand the macros for each compilation option, as

code sections are included or excluded when the program compiles. Also, nested

#ifdef sentences may increase the complexity of the dependencies during com-

pilation. For instance, a Linux program that requires other Linux packages to be

installed may generate a complex dependency network based on different options

that are bound at compilation time, and all these options described using #ifdef
directives must have the same binding time. Other directives such as #include
can be used to define different options or files that will be included during

compilation. Users must be aware about side effects between incompatible compi-

lation options or when macros are expanded, similarly to incompatible variants or

constraints rules defined in feature models, as compilation may stop when a variant

that concretizes its value does not find the source (e.g., a file required which is not

present).
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Example 4.2. Binding at compilation time with #idfef

#ifdef unix
#include <unistd.h>
unlink(file);

#else
remove(file);

#endif

2.5.3 Link and Assembly Time

Software products can bind the variable options at multiple stages along the life

cycle, and hence, each variation point can be bound at a specific time. At build time,

the variation points and variants realize the dependencies between modules prior to

execution, and files are linked into an executable artifact. Usually, a Makefile

provides the sequence needed to link their files or static libraries. Variability offers

different alternatives to link the files by means of different linkage parameters.

Similar to the example given for compilation time, a Linux kernel that must be

recompiled and linked may use different linkage options that can be used by means

of parameters to select the binary files and define the order in which the files must be

linked. As Makefile generators are of common use, much of the variability that can

be introduced is set up with specific configuration programs.

Hence, Makefiles can be constructed automatically and based on environmental

variables (e.g., using a Configurator utility) before the made program is invoked.

Macros and flags defined as variants work equally or similarly when a program is

compiled. Resolving the variability at link time offers a flexible way to replace

modules before execution time, as the names and versions of the binaries can be

changed combining several Makefiles with other text configuration files to set the

link options to concrete values.

A similar form of binding time where products are integrated is known as

assembly time (e.g., a set of products are integrated at the end of a Software Product

Line). Assembly can be seen as another way to link binary modules, such as

software composition (i.e., composability), or even use generative approaches

where a script is executed to produce a final executable file or to incrementally

add new functionality by adding new features to an existing basic configuration.

During assembly time, the software engineer defines which functionality will be

added or removed into a concrete product version.

2.5.4 Configuration and Deployment Time

Configuring the variants after build and assembly time can be enacted in the

developer side or in the client side. During configuration time, those variable

options of a software system are configured before execution, during the first
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start-up or on every start-up. A program can read a configuration text file with the

concrete values without human intervention and set the values of the variants with

the right configuration values. Tools can be used to configure the software that is

going to be deployed (e.g., a new operating system uses an administration manage-

ment tool to set up certain parameters), or automatic configuration scripts can be

employed to upload the values of system features. For instance, we can use XML-

based scripts to add new features to a software and then instantiate the variants to

configure a new version of the product.

At deployment time (i.e., we assumed a software piece which has been already

configured), some variants may still need a value before its execution. This is, for

instance, the case of a distributed application that needs to set up a different IP

address for the server or host where it will be installed. In this case, a script reads

from the network interface or from the operating system network files the IP

assigned to the destination host, and sets the variant with the right IP address.

2.5.5 Start-Up and Runtime

Binding the variants at runtime is the most flexible way to set up the variants and

variation points. There are several forms where variants can be bound during

execution and according to different needs. One form is to use dynamic files or

libraries where one or several variants realize their values at runtime. For instance,

as mentioned in [3], the Apache server supports dynamic loading of modules that

can be linked statically at build time or dynamically at start-up. Sometimes, the

system needs to be restarted to assume the new configuration. In other cases, the

software locates a new version of or new functionality that has to be downloaded

and installed but no restart is needed. The variability implemented in the system

must support variants to locate the new software or library of the right or most

recent version, and such values will be bound during the execution of the system.

The order to load a new configuration is critical for the success of new software

installation to avoid incompatible configurations. The values of these variants must

be checked periodically to warn the user about the need to perform new operations

in the system.

Pure runtime binding usually affects those systems that need to readapt them-

selves to a new context environment (e.g., autonomic computing, ubiquitous

systems, self-adaptive, and self-healing systems, etc.). In this case, the values of

the variants supporting certain context information are monitored periodically as

they may change during runtime. Therefore, in case, a new configuration is

required; the middleware enacts the corresponding procedure to set the variants

with new values and perform certain reconfiguration operations that in most cases

happen without human intervention. If binding happens at runtime, we recommend

the use of binding time units to facilitate the implementation issues. Some addi-

tional effort must be done to provide purely runtime binding, but this extra effort is

necessary for certain critical systems to provide unattended configuration facilities.

4 Binding Time and Evolution 65



3 Multiple Binding Times

In complex software products, use of variability techniques in more than one

binding time is possible as different functional parts of the systems may bind

their variable options at different times. Also, the adaptation capabilities of certain

systems demand runtime binding of their configurable options and this situation

states the need for a transition between different binding times. For instance, an

autonomous system may reconfigure some system options at runtime and certain

software modules may go through a reconfiguration process and change its opera-

tional mode dynamically. Therefore, it is necessary to describe the possible

transitions between different binding modes. As described in [15], capabilities

and dynamic rebinding of multiple binding times are necessary to many of today’s

embedded system families that demand runtime adaptation and autonomous deci-

sion-making when context conditions change. In the era of post-deployment,

current mobile and service-based systems may need to rebind to software services

dynamically or be reconfigured at runtime.

Like in [15], Table 4.1 shows the transition between multiple binding times,

from static to dynamic. The transition column shows the possible outcomes when

multiple binding times occur. For a predominant binding time, we describe the

possible binding times that can be supported simultaneously.

As showed in the table of Fig. 4.3b, a certain feature may pose more than one

binding times which can be selected indistinctly according to different product

derivation needs or to increase the flexibility of the product line. Features may cross

from one binding time to another, but depending on how separate the two binding

times are, more implementation effort will be required. For instance, it does not

have much sense for a feature which realizes their values at design time to bind

these at runtime. A feature or a variant which realizes their values at both and

configuration and deployment times is more feasible as both binding times are

much closer and they can be managed with (semi)automatic procedures. The

transition between binding times using automatic mechanisms will require more

implementation effort in those case closer to runtime binding modes, from configu-

ration to pure runtime binding.

4 Open and Closed Variability Models

Evolution of variability models is directly related to the evolution of systems and

their architecture. Variability models cannot be seen as purely static descriptions of

systems’ variations, as they might change during the evolution of the system.

Variability cannot be used to predict unexpected changes in the future, but some

flexibility can be introduced to modify the structural variability for certain types of

systems that would require new variants or change the existing ones. Hence, the

modification of variants and variation points that affect the structural variability is

related to the concepts of open and closed variability models. Closed variability
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models do not allow the modification of their variants and variation points until a

redesign task is carried out. By contrary, open variability models allow adding

variation points with new variants at runtime. However, introducing new variation

points becomes more complicated as it requires some kind of human intervention to

redesign the variability model and, maybe, introduce new constraints.

As Lehman said in his software evolution law [11] “Variability has to undergo
continual and timely change, or a product family will risk losing the ability to
effectively exploit the similarities of its members”. Hence, the extensibility of

variability models is intrinsically related to open variability models able to change

the relationship of system’s features during the execution of the system. If a feature

model is modified during runtime, it must be redesigned and redrawn to reflect the

new changes and dependencies between variants and variation points.

The evolution of variability models attempt somehow to anticipate to future

requirements or to new situations that may occur at runtime. Hence, if a feature

model is modified (e.g., due to a new variant), the conflicts and constraints between

features must be resolved before the new variant can be used in order to lead to a

new feature model consistent with the current state of the system.

In this context, the required variability of a software system understood as the

provided variability evolves to initially non-predicted variability that could be

modified over time (Fig. 4.4). Software engineers attempt to increase the flexibility

and evolvability of feature models by pushing the binding time to runtime modes

and foresee beforehand where new variants and variation points can be needed.

5 Evolution of the Structural Variability

The evolution of open variability models is intimately related to the changes

performed over the structural variability, such as what we discuss in the next

subsections.

Requirements
Features

Design
Implementation
Configuration

Runtime

Required
variability

Provided
variability

Non-predicted
variability

Fig. 4.4 Evolution of

variability from design to

runtime binding
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5.1 Modification of Variants

Binding the variants and variation points at runtime is the most flexible form of

variability. The inclusion, removal, and modification of variants at runtime are not

trivial operations, but runtime variability becomes necessary for certain type of

systems. Predicting if a variant which has not been included initially in the feature

model can be needed later and requires additional implementation effort to manage

dynamic changes of the structural variability model without, when possible, human

intervention. We can find the following three situations.

Adding a new variant implies to know the place where the new variant will be

added in the feature model. We foresee two possibilities. If the variant will not be

part of an existing variation point, we can simply add it to the feature model and

also indicate if the variant will be optional or mandatory, as an alternative configu-

ration is often defined as part of a variation point. If the new variant will be part of a

variation point, we need to redefine the logical formula that connects the new

variant with the existing elements in the variation point. In addition, we may

need to check existing constraints rules before the variant can be added to avoid

incompatible configurations.

Removing an existing variant at runtime requires first to check if that variant will

be no longer needed by all product configurations. If the variant is classified as

optional, it shouldn’t be a problem to remove it. In the case the variant belongs to a

variation point, we will need to redefine the logical formula that relates the variants

with other features for that variation point. Additionally, if the variant being

removed has require or exclude constraint rules with other features, we will need

to revisit all the rules and modify them accordingly to the new situation.

Changing a variant may lead to three different situations. When the allowed

values of a variant vary (e.g., a new value or range, an existing value drops from the

list, etc.), we only need to replace the values with the new ones (e.g., using a

configuration file or parameters list). Another situation happens when a variant is

moved to a different location in the feature model. This case can be treated as a

removal operation of the variant and followed by an addition of the variant removed

to a different place. In the case one variant replaces another, the constraint rules and

compatibility type checks must be enacted, as the new variant does not change the

dependencies and the current structural shape of the feature tree.

Moreover, it might be necessary to carry out some additional type checking

when new variants are added or replaced, as using variants from different types in

the same variation point may cause conflicts. Imagine that a new feature belonging

to the car multimedia system is engaged with the features that describe the elec-

tronic control of the fuel system. Hence, we must define additional type checking

for features of different functional areas complementary to the basic types (e.g.,

string, Boolean, numerical). Part of this process can be done automatically, but

deciding which logical operator must connect a new variant with others is a manual

task.
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5.2 Modification of Variation Points

Modifying a variation point at runtime is harder than changing a variant, as it

requires the modification of the logical formula that relates other variants and

variation points.

Adding a variation point cannot be completely automated as the software

engineer has to decide how new the variants and/or variation points will be

connected using logical connectors that will define a new relationship between

features. Additionally, we will check the compatibility of the types between the

elements that will form the new variation point and check if new constraint rules

introduced with the new variation point are in conflict with existing ones.

Removing a variation point implies that the logical formula connecting their

underlying elements disappears. Hence, we need to check recursively if all the

underlying elements for that variant are no longer needed as well as the existing

constraints rules for where each of the removed features participated in. Removing

a variation point may not imply that one of the underlying features should be also

removed, as this can be still needed in the feature model and must be then relocated

in a different place (e.g., due to a require rule for that feature).
Changing a variation point may imply a big reorganization of the feature tree,

where variants and variation points can be moved individually to different

locations. If we move a whole variation point with its underlying elements, we

can consider this as a removal operation followed by an addition of the variation

point in a different place. In case we move single elements like variants, you should

refer to the discussion in Sect. 5.1. Moving an entire variation point as a whole does

not require type checking as the existing compatibility between all the elements is

kept the same as before the change is made. Only some additional constraint rule

checking can be needed to define new dependencies in the refactored feature tree.

The modification of variation points is much more complex than changing

variants in the feature model, as some manual tasks have to be done hampering

full automation operations during runtime. Certain design decisions, such as

selecting a new place in the feature tree to locate a variation point or defining

new logical formulas, are hard to automate. Also, complementary type checking to

basic types in features and constraint rule checking can be automated using

compatibility lists. The modification of the variability model at runtime is not

easy, but at least some automation can be possible to redesign the entire feature

model and redraw it at runtime to reflect the changes made.

However, depending of the implementation technique used, we may allow the

selection of more than one binding times and also decide how these changes can be

managed: manually, semiautomatically, or automatically.
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6 Areas of Practice

Planning the evolution of a product line implies not only the evolution of their

products and multiple versions but also how variability models can scale up,

evolving their feature models to incorporate new features or changing the existing

variability model to adapt it to new requirements.

The definition of evolution scenarios to support the inclusion and modification of

features is crucial, such as the case of a MobileMedia product line [2]. The approach

described in [6] discusses the case of a Multimedia Home Platform (MHP) which

requires late binding as such applications are characterized by constant domain

changes and rapid customization is often required. Hence, designing runtime

variation points is the solution proposed by the authors and based on a pattern

language for building, manipulating, and managing domain-specific runtime varia-

tion points efficiently. However, some drawbacks may arise, such as degraded

performance, increased memory consumption, and higher runtime complexity.

The notion of meta-variability as a superseding variability model able to manage

creation, removal, and modification of variants and variation that points on the fly

seems crucial, in particular for Dynamic Software Product Lines (DSPL). This

approach is discussed in [7], where a meta-variability model is used to support long-

lived evolution of product line products. In the aforementioned approach, an AGV-

automated transportation system (ATS) in DaimlerChrysler shows how variation

points and variants can be changed during runtime to anticipate changes in the

variability model.

Activating and deactivating features at runtime is another area of research,

which concerns more with product configuration rather than with the evolution of

feature models. Hence, those systems depending on different context conditions can

activate or deactivate their system features and often during system execution, but

such changes cannot be considered part of the evolution of variability models.

7 Summary

The notion of variability in time complements the notion of variability in space for

producing multiple versions of products as it introduces the time condition. Hence,

variability in time is implemented through different binding times that make

possible to configure your software products at different stages of the development

process. Such mechanism facilitates the evolution of both architecture and products

because it provides high flexibility to realize the variability of feature models at

different stages and hence to allow the necessary reaction to changes in the software

requirements or when context conditions change at runtime.

The most flexible binding happens during system execution but the additional

implementation effort required to change the binding time of a feature at runtime is

not suitable and affordable for all type of systems. Critical systems that require real-

time requirements are very dependent of context conditions, and they are the most
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suitable candidates to include explicit support for binding their features at more

than one time.

Conversely to static variability models, a clear enhancement of structural

variability is to support their own evolution under critical conditions that would

require open variability models, where new features can be added, removed, or

changed at runtime. In addition, such structural changes require depicting automat-

ically feature models to reflect the changes made and to provide mechanisms to

check and avoid incompatible configuration when the variability model is changed.

Current limitations from recent research show that modifying variation points is

harder than changing variants, as some manual intervention is required.

8 Outlook

New trends attempting to provide better ways to manage the evolution of variability

models will require more automation efforts to manage open variability models

and, in particular, to deal with changes in variation point. Variability models are

becoming more and more capable to support dynamic changes for certain types of

systems in order to enhance the flexibility of purely static future models.

Also, in order to facilitate the task of software engineers to decide which binding

times are more suitable, a categorization of application types and their functional

modules that are associated to possible binding times would be helpful to decide

which binding times are more suitable.

Finally, we need to clarify how much binding times are needed and desired for

each particular application, module, or variant and how often these should change

without decreasing performance and without increasing runtime complexity. All

these issues are good candidates to be explored for future work in order to improve

the evolution of variability related issues.
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Chapter 5

Variability Implementation

Jan Bosch and Rafael Capilla

What you will learn in this chapter
• Mechanisms to implement software variability

1 Introduction

Software variability is modeled, reasoned about, and discussed in many

organizations, but at some point, it needs to be realized in the software of a system

or product line. The subject of this chapter is to discuss the realization of variability

in a software system or software product line.

The realization of a variation point can be achieved by a variety of technologies

and approaches. Selecting the optimal approach is driven by two factors. The first is

the abstraction level at which the variation point is explored, ranging from the

architecture to the code level. The second is the stage in the life cycle at which the

variation point is bound, whether the binding is permanent as well as the stages

during which variants can be added to the variation point.

Choosing the right realization mechanism is of significant importance for two

reasons [1]. The first is that it often is difficult to change the selected mechanism

once it has been chosen. The reason for this is that variants are written to operate

with a specific mechanism. In addition, frequently, variants are written by other

organizational units or even other organizations altogether, as in the case of

software ecosystems [2], which complicates changing the selected mechanism.
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The second reason is that over time, many variation points tend to be bound at later

and later times in the software development life cycle. A rigid realization mecha-

nism that complicates this process will cause tension in the organization and

inefficiencies in development.

Consequently, it is important to focus attention on variability realization. The

remainder of this chapter is organized as follows. The next section provides a

conceptual context of software variability management using the software life

cycle by discussing the software variability realization implications in the different

stages. The subsequent section discusses the abstraction levels at which variability

can be captured. This is followed by the main part of the chapter where we present the

different variability realization mechanisms. The chapter is closed by a discussion of

relative advantages and disadvantages of different mechanisms and a conclusion.

2 Introducing, Selecting, and Binding Variants

Software variability can be discussed at several levels of abstraction, but at some

point it needs to be implemented in the software system. For this, we need to have a

good understanding of the software variability life cycle. This life cycle is obvi-

ously related to the overall software development life cycle. Although one can have

different perspectives on the software development life cycle, in this chapter we

consider the following stages:

• Requirement specification. During this stage, the team aims to maximize the

clarity of what is to be built. There may be explicit requirements for variability,

but equally often decisions are taken as part of the requirement specification

process that reduces the required variability.

• Architecture design. The top-level breakdown of the system into its main

components is the stage where the first variation points can be, and often are,

introduced.

• Detailed design. Once the overall breakdown of the system is agreed and in

place, the focus can shift to the design of the individual components. At this

level, additional variation points can be introduced.

• Software development. Especially more narrowly defined variation points in the

system are implemented using code-level variation points.

• Compilation. The compilation stage is often where the first variation points are

bound to variants.

• Linking. During linking, especially higher-level variation points are often bound
to specific variants. Most bindings during compilation and linking are permanent

and cannot be changed in later stages.

• Installation/configuration. Assuming the software system is installed and

configured at the customer, binding of variation points takes place during

installation in response to settings selected by the customer installing the

product.
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• Start-up. During system start-up, several variation points can be bound to

variants. Often, configuration files are used that are read during system start-

up to bind certain variants to the remaining variation points.

• Run-time. Finally, the variation points that are not permanently bound in earlier

stages can be bound and rebound during run-time. During installation and

especially start-up and run-time, the binding of variants to variation points is

often not permanent and can be rebound during at run-time.

During the software life cycle, a variation point evolves through a number of

phases. The first is the introduction of the variation point at a specific stage in the

life cycle. Frequently, this is in the earlier stages, but there are techniques that allow

for the late introduction of variation points in the system. The second stage is the

addition of one or more variants to the variation point. These variants capture

the differences in behavior that are required from the system. The third stage is the

binding of a variant to the variation point. At this point in the life cycle, the variant
bound to the variation point can still be rebound. The final stage, though not reached

by all variation points, is the permanent binding of the variant to the variation point.
A variation point is bound permanently in a life cycle phase if in all subsequent

phases it cannot be rebound to a different variant. At this point, the variation point,

for all purposes, has been removed from the system at that phase in the life cycle.

One aspect of variation points is them being open or closed. At a certain phase in

the software development life cycle, if variants can be added to a variation point, it

is considered to be open. Many variation points will, in a later phase, become

closed, meaning that the set of available variants can no longer be extended. This is

largely orthogonal to the binding of a variant to a variation point. For instance, in an

internet browser, a codec variation point can be bound to a particular variant, but

the user can still add new codecs (variants) to the browser.

The coding effort for implementing binding times of features to support dynamic

changes (e.g., system features that can be activated dynamically) can be reduced if

we adopt flexible approaches like the one described in [3], where code-level idioms

based on aspect-oriented languages can be used to avoid duplicate code for static

and dynamic binding and enhance maintainability as well.

There are more complicated cases that we will not discuss in this chapter,

including the reduction of the set of variants during progressive stages in the life

cycle due to constraining dependencies as well as cases where variation points are

permanently bound because of dependencies on other variation points and variants

where their selection limits the set of alternatives to one. As discussed in earlier

chapters, variation points and variants have dependencies on other variation points

and variants. As the designer or customer configures the system, choosing a variant

for one variation point will limit the set of possible variants for other variation

points. Occasionally, this can lead to situations where a variation point has no

remaining variants (e.g., the variability included in dead code will have no effect on

the selection and realization of those variants). This, however, does not necessarily

lead to an illegal configuration as the system configuration may not need the

functionality provided at the variation point.
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3 Variability Abstraction Levels

Depending on the size of the functionality that is to be variable, different variability

abstraction levels can be identified at which reasoning about and realization of

software variability can take place. We identify the following three levels:

• Architecture. At the architecture level, the primary mechanism for variability is

the replacement of top-level components with other implementations of these

components or the binding of optional components depending on the context in

which the system is deployed.

• Component. At the component level, variability is often more pervasive and

complex and often this is the main level at which variability is modeled. This is

more concerned with extension points, superimposition1 of code, wrapping, and

other mechanisms that adjust the behavior of components.

• Code. At the code level, there is a large set of variability mechanisms available.

The main concern, however, is that the code-level mechanisms can be applied

for normal algorithmic implementation as well as for managing variation points.

Appreciating the differences between variation points at different levels of

abstraction is quite important as each level brings its own advantages and

disadvantages. Selecting the right level should be driven by the variability that is

specified in the requirement specification, the expected evolution of the variation

point, and the binding time of the variant to the variation point. In addition, specific

trace mechanisms should be defined to track the changes from one abstraction level

to another and vice versa, as managing the variations in one level (e.g., the

variability defined in the architecture does not mandate how this will be

implemented) is radically different from another level (e.g., different implementa-

tion mechanism can be used for coding variability at the code level) and the

modification of the structural variability (i.e., the variability defined in a feature

model representing the variants and variation points to describe system features)

impacts the lower levels or configurations files supporting allowed options.

4 Variability Realization Mechanisms

There are several techniques to implement the variability which is described in

feature models and each of these techniques is used in different stages of the life

cycle and is driven by the time when variants will be bounded (i.e., variability

realization). Basic variability enabling mechanisms are described in 1, 4, 5, such as

inheritance, parameterization, conditional compilation directives, dynamic

1 Superimposition of code is a black box component adaption technique that allows one to impose

predefined but configurable types of functionality on a reusable component. Using

superimposition, additional behavior is wrapped around existing behavior.
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libraries, etc., but all these ways to implement variability in code are sometimes

driven or limited by the language, framework, or technology used.

To provide a perspective driven by software variability management needs, we

focus the discussion of variability realization mechanisms based on an earlier work

by one of the authors [6]. In Table 5.1 below, we present an overview of techniques

at different levels of abstraction and with binding times in different stages of the

software development life cycle.

4.1 Binary Component Replacement

Intent. The intent of binary component replacement during linking is to perma-

nently bind a specific component implementation. This allows the system to be

bound to specific components needed for a particular configuration of the overall

system. “Replacement” refers to a binary component that is specifically added for a

concrete product or configuration instance.

Solution. The binding to binary libraries can be done at compilation and linking

times prior to deployment. If linking is realized at run-time, the variability must

manage this binding internally to the system assuming all libraries are available.

Example. Dynamic libraries such as Apache modules can be uploaded and bound

at run-time when needed, whereas Linux kernel modules are linked before deploy-

ment when the kernel is recompiled.

Implications. This variability realization technique is easy to manage and to

implement with few consequences to the system, as security is an aspect well

covered in this case. By contrary, the unavailability of run-time libraries or incom-

patibility problems with existing version may cause severe problems.

4.2 Binary Component Selection

Intent. The intent of binary component selection is similar to selecting one compo-

nent among a set of existing alternatives, and the binding time for selecting a

component goes from installation to post-deployment time.

Solution. Dynamic components, libraries, and files are selected and bound

among several. The alternatives can be bound more statically at installation time

while they become more dynamic from start-up to post-deployment time, and

variability is often realized externally to the binaries.

Example. Like in the previous case, any dynamic library or configuration file

aimed to update the current system configuration or functionality fits under this

category. In this case, the variability is managed externally to the component but

some variants or system features can be defined in specific configuration files that

can be uploaded dynamically.
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Implications. The implications are similar like in the previous case, but incom-

patibility problems of system features in system configuration or binary files may

arise if these have not been pre-checked before. For instance, an older version of

binary file is selected and such instance is incompatible with the existing version of

the system or application running.

4.3 Variant Component Specialization

Intent. The intent of variant component specialization is to adjust a component

implementation to the product architecture when the provided interfaces of a

component implementation representing a variant feature vary. Specialization

assumes a context-specific extension that is then developed for an individual

product/configuration instance.

Solution. Separating the interfacing parts into different classes facilitates the

interaction between components as we can decide what variant of the interfaced

component to include in the product architecture. The variability in this case is

bound externally but variants are realized at system design.

Example. A software using an enhanced security detection mechanism is only

used in certain cases under a set of predefined conditions.

Implications. Several implementations must coexist that can be selected

dynamically, sometimes at start-up time or at run-time.

4.4 Optional Component Selection

Intent. The intent of optional component selection is to include or exclude a

particular component implementation, often selected from a set of existing

alternatives.

Solution. System features are included or excluded as we separate the optional

behavior in a different class or component. The binding time for an optional

functionality goes from compilation to post-deployment time, as system features

can be added or modified at any time. Binding is done externally by configuration

management tools or by the compiler.

Example. A smart home system that adds or removes optional functionality for

different customers and at a different cost (e.g., the system can use different security

access methods). A basic package configured at compilation/linking time can be

modified later by, for instance, adding a new module at configuration time.

Implications. Decoupling optional behavior is not always easy and depends on

how the structural variability is defined and implemented in the system and the

dependencies among the variants.
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4.5 Code Fragment Superimposition

Intent. The intent of code fragment superimposition is to impose predefined types of

functionality on a reusable component without directly affecting the source code.

Solution. With this solution, we superimpose product-specific behavior and

concern’s additional behavior is wrapped around existing behavior. In this case,

the binding is realized externally and variability is bound at compilation or linking

time, but run-time superimposition is also possible.

Example. Any crosscutting functionality (e.g., aspects) introduced in the system

functionality constitutes an example of superimposition (e.g., different authentica-

tion methods based on internal or external authentication systems and the user or

the system itself can select among one of these). At run-time, the Eclipse platform

offers a way to dynamically add or remove plug-ins that include new functionality

to the main platform.

Implications. Positively, superimposition enables that different concerns are

separated from the main functionality. However, understandability on how the

final code works becomes harder.

4.6 Run-Time Variant Component Specialization

Intent. It supports the selection between different specializations inside a compo-

nent implementation during run-time, as different requirements may demand such

capability.

Solution. The component implementation must provide a number of alternative

executions that can be switched at run-time. Different design patterns (e.g., strat-

egy, template method, or abstract factory) can be used to separate behavior into

several classes and use inheritance or polymorphism to implement the required

variability. In this case, the functionality for binding is internal.

Example. The case of a smart home system which provides sensors to detect

several data, such as temperature, humidity, smoke, or people. The fire detection

system can be activated at run-time to detect fire, as this is required to activate both

the home smoke detector and temperature sensors. Different classes provide such

functionality that is used by the smart home system control to activate the right

sensors in case of the presence of smoke and high temperature.

Implications. Some common functionality might be duplicated when the

variants must select between different specializations.
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4.7 Variant Component Implementation

Intent. The intent of variant component implementation is to support several

implementations of one component architecture that can be chosen at any time

dynamically.

Solution. Several design patterns (e.g., strategy pattern, broker pattern, SOA

service-broker pattern, etc.) can be used to select between one or several

components with high flexibility and changeability. Variability is defined at design

time and variants cannot be added later. Variability is bound internally to the

system.

Example. Several e-mail protocols like POP and IMAP using the same interface

for connecting to the e-mail server.

Implications. The reusability of some code pieces may be low.

4.8 Condition on Constant

Intent. The intent of condition of constant is to support a way to enact one operation
from several available. It constitutes a refined version of variant component spe-

cialization and is often used to select between different compilation options.

Solution. Conditional #ifdef compilation directives can be used to implement the

variability at compilation time. The collection of variants depends on constants that

are used to bind the variants at compilation time.

Example. Any software package that uses compilation directives that are

selected before the package is installed in the system. Also, configuration execut-

able files are often used to determine the system environment and to drive the

selection of the compilation values.

Implications. Using #ifdef directives can be risky and difficult to maintain, in

particular when the installation of a software package involves additional packages

or modules, as the number of interdependencies may grow exponentially across

releases (e.g., the Linux kernel). Also, flexibility of the variability implemented

using this option decreases as the number of links and potential paths grow.

Moreover, variation points tend to be scattered as it becomes difficult to track

what parts of the system are affected by one variant.

4.9 Condition on Variable

Intent. The intent of condition on variable is to support several ways to perform an

operation but the choice can be rebound at run-time.
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Solution. It replaces the condition on constant by a variable that changes its value
dynamically. In this particular case, new variants can be added during implementa-

tion and variability is bounded internally.

Example. Any program that wants to control the execution flow can use this

technique. Another example may refer to the selection of different web services at

run-time according to certain conditions that are stored in variables (i.e., variants in

the system) which determine the selection of a particular web service.

Implications. This is a very flexible technique where variants can be instantiated
dynamically. However, tracking the value of the variation points can be sometimes

difficult if variation points are spread throughout the code.

5 Selecting a Realization Mechanism

This chapter summarizes different variability implementation techniques from a

high-level point of view as different languages (e.g., object oriented versus

nonobject oriented) and design patterns can be used to implement each technique.

Hence, we did not restrict our description to a particular implementation technol-

ogy. Object-oriented classes, inheritance, variables supporting system features,

dynamic libraries, and so on, are examples of different ways to implement the

system variability, but selection of a mechanism is driven by the binding time at

which the variants are bound.

In general, multiple binding times are hard to combine, so we need to select

carefully which binding times we want to support in order to choose the right

variability implementation techniques that can be mixed in the code or supported by

a specific platform.

The selection of a preferred realization technique is driven by three factors: the

mapping to the problem domain variability, the need for late-stage openness, and

the expected system evolution.

Ideally, there is a direct, one-to-one mapping between a problem domain varia-

tion and a variation point in the solution domain. This significantly simplifies the

configuration process and it avoids complex defect detection and repair situations.

For instance, in a case where a problem domain variation is mapped to #ifdef

statements in every module of the system, it does not require much to make a

mistake in one module and have the resulting system act in unpredictable ways due

to misconfiguration. Deciding the variability realization technique needs one-to-

one map to the problem domain variation.

Second, depending on the system domain, there may be a significant need for

late-stage openness of the variation point to allow adding new variants. The

selection of the realization technique should explicitly consider the ability to add

variants at the required time as many realization techniques cause permanent

binding during the compilation and linking stage.

Finally, expected system evolution is an important factor in the selection of the

variability realization technique. In practice, the binding time of variation points
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tends to be delayed to later stages in the life cycle, meaning that even though a

variation point may be bound permanently at compile time at this point in time, it is

not unreasonable to assume that over time the binding will take place at installation,

start-up, or run-time. Especially for variation points that have system-wide

implications, the cost of replacing the selected variability realization technique

may be very high and, consequently, it may be better to select a technique that

allows for late binding.

6 Outlook

Writing adaptable and evolvable software using variability techniques is not always

easy, as the modeling of large variability models is a complex and tedious task in

itself. Because customers today push software developers to provide more and more

configurable options, the external variability becomes more important, and this fact

drives the realization of the variability times closer to configuration, run-time, and

post-deployment times.

Systems that require run-time binding must implement the dynamic binding

condition and use dynamic variability implementation mechanisms in a controlled

manner to make the software more adaptable. However, only few variability

implementation techniques can be used to realize binding and rebinding during

execution time. Regarding the binding time of the variability realization

mechanisms, one could think in a post-deployment realization mechanism, suitable

for those systems that realize their variants once deployed. However, this new

binding is quite similar to the run-time mechanism, and the slight difference

between run-time and post-deployment perceived today is more subjective by

software engineers because the variability realization mechanisms for architecture,

component, and code are almost the same.

Finally, open variability models allow variants to be changed dynamically, but

such high evolvability of the structural variability is hard to implement and requires

additional codification to support the extensibility of the variability model.
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Chapter 6

Variability Realization Techniques and Product
Derivation

Rafael Capilla

What you will learn in this chapter
• The notion of variability realization and product derivation.
• The relationship between binding time and product derivation.
• Automated product derivation approaches.

1 Introduction

One of the ultimate goals of the usage of variability techniques is to allow the

configuration of the software products under the product line approach. As different

binding times are possible, different variability implementation mechanisms can be

used to realize the variability at different stages in the software development

lifecycle. Once variability is defined in the architecture and implemented in code,

products can be configured at the end of the product line or even reconfigured at

runtime. Hence, the variability defined in the architecture can be instantiated for

configuring the product portfolio at different stages (e.g., pre-deployment, end of

SPL, installation, runtime). Besides, variability realization techniques are inti-

mately linked to the way and the moment products can be deployed, and several

alternatives can be chosen to select the best configuration and deployment strategy.

In this chapter, we will learn about variability realization techniques.
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2 Variability Realization

In the solution space, the provide variability is realized by instantiating their

variants and variation points in order to configure the products with the right and

allowed values. Therefore, the realization of the software products implies to know

at a certain time in the software development process which will be the values of the

configurable options defined in the architecture and implemented in the core assets

and products as well. Variability realization is intimately linked to product deriva-

tion, aimed to produce the concrete products once the values of the variants and

variation points are known.

Definition 6.1. Variability realization technique

It is the way in which the variants of any family member are realized using a

particular variability implementation technique at a given binding time.

The realization of concrete software products implies that the variable interfaces

between components must be known, in addition to the invariants described in the

architecture. The realization of the variability through the interfaces that may vary

is crucial to set the right links between software components, as these interfaces act

as a selector of the right component when more than one alternative exist. In

addition, the realization of the variability must check the compatibility of the

constraint rules, hundreds in commercial software, among the variants selected to

avoid incompatibilities during the product derivation.

Definition 6.2. Product derivation

It is a stage in the software product line life cycle where software products

become the resultant of a selection and configuration process of the variable design

options defined in a variability model.

The software engineer must decide when to realize the variable options, and the

flexibility provided by the existence of different binding times offers software

engineers a way to delay their design decisions to a later stage. In Fig. 6.1, we

organize the different product realization stages based on the moment in which

products are or will be deployed.

We have to mention that installation time is not a real post-deployment

variability realization stage as it is somehow in the middle, but we preferred to

classify the realization of the variability during product installation closer to post-

deployment time.

Fig. 6.1 Variability

realization stages before and

after deployment time
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An exhaustive taxonomy of variability realization techniques and the factors that

are relevant to implement variability can be found in [1], but the current trend in

software development for several application domains like self-adaptive systems

and service-based system pushes the realization of the variability to runtime modes.

In this chapter, we will distinguish three major development stages in which we can

realize the variability and according to most common binding times [2].

2.1 Product Derivation Activities

The ultimate goal of a product derivation process, as part of the SPL application

engineering lifecycle, is to produce a configurable or configured software product.

However, product configuration can be enacted at the beginning of the derivation

process at early binding times, or it can be also executed at a very late stage if a

product has to be reconfigured once deployed. Configuration is sometimes done to

select the variable options that will be included in a product before the variability is

realized to concrete values, while in other cases, a reconfiguration process happens at

the end of the product line or during system execution. Moreover, product configu-

ration and variability realization can also overlap at the same binding time if we

realize the variants at the same time these are selected. At the end of the derivation

process, products are installed and deployed in the physical nodes of the system.

As a summary, we show in Fig. 6.2 how these concepts are related and based on

the binding times where these activities happen. Initially, product configuration

starts by selecting the variable options that will be included in the product, and this

activity may happen at different binding times, in which the realization of the

variability will take place immediately after. Once the variable options match to

concrete values, the executables can be deployed. However, post-configuration

operations can be possible when the systems need to be reconfigured at post-

deployment time, and dynamic variability plays an important role for systems

that require runtime adaptation.

Figure 6.2 describes the major activities of a generic product derivation process.

Once the input requirements define the selection of the variants of a new product, a

product selection and configuration process chooses the right variants for configu-

ration purposes, and variants are realized according to a particular implementation

technique and the allowed values for those variants. Once the variability is realized

and the product already configured, installed, and deployed, any post-deployment

Product Selection
& Configuration

Variability
Realization

Product
Deployment

Product
Re-configuration

Fig. 6.2 Product derivation

activities. The runtime

reconfiguration of variants

may lead to the selection of

new variants and variation

points and, in some cases, to a

product redeployment phase
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activity or runtime reconfiguration of variants may lead to a new selection and

configuration of the variable options. In that case, the reconfigured product or the

new product (i.e., a different selection of the variable options can lead to different

products) can or must be deployed again, while in other situations, no new deploy-

ment is required (e.g., the case of dynamic variability used to, for instance, activate

a feature at runtime). The figure does not show testing activities that should be

carried out to validate the selected product configuration.

In addition to Fig. 6.2, we detail in Table 6.1 which tasks encompass each of

product derivation activities. For each of the major activities of Fig. 6.2, we provide

the subtasks that are commonly needed and the most suitable binding times under

which these tasks may happen.

2.2 Realization at Design Time

At design time, the realization of all variants and variation points is made at the

architecture level. The variants in the design are manually operated, as the

variability is considered statically in nature. Standard notations like UML offers

few mechanisms (e.g., stereotypes, tagged values) to describe the variability of a

feature model in the architecture, and the logical formulas describing relationships

between variants do not have a direct correspondence in UML diagrams and they

must be represented using a different notation or language. Therefore, the steps to

realize the variability at design time are:

(a) Selection of variants and variations points defined in the architecture.

(b) Selection of allowed values.

(c) Depiction of the product architecture by instantiating the variants with appro-

priate values for each single product.

In Fig. 6.3, we show an example of a UML diagram that belongs to the software

architecture of system X (left side of the figure) containing five variants and two

variation points. At design time, the software engineer selects the variants to realize

the construction of system X.1, and he/she derives the product architecture for that

system. In this case, variant 3 and variant 4 with their corresponding values have

been selected. Variation points and variants are selected and instantiated also for the

product architecture.

2.3 Pre-deployment Realization

Products can be configured in the customer site and afterwards installed and

deployed in the client side. When the variability of products is realized in the

customer site, the variants and variation points can be instantiated at different

binding times, depending on how the product is built and configured. At implemen-

tation time, the variability can be implemented in variables and the alternatives and
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constraints described are often described as if-then-else constructions or using

constraint programming. The realization of the variability depends on how this is

implemented. For instance, the realization of the variants can be done statically in

the code changes or more dynamically using dynamic libraries containing the

configurable options. If we use an object-oriented approach, variability can be

implemented using inheritance to separate the common functionality in

superclasses from other variable option defined in subclasses which can be

instantiated during the derivation process.

Example 6.1. Variability specialization through OO inheritance

The 3D scene of a virtual reality (VR) system is composed by 3D objects that
constitute a hierarchy where objects are successively decomposed in polygons
starting from a root object or node. Because the 3D database contains several
megabytes and the time for loading the 3D scene during first start-up can delay
several minutes, the way in which this hierarchy is organized at the architecture
and implementation is critical, as some objects may appear initially hidden or
might be unnecessary to show all the details of some of these 3D objects. Therefore,
arranging and organizing this hierarchy in a particular form is quite important to
reduce the start-up time. In this example, we used a particular object hierarchy
(tested using simulation) to reduce the start-up time of the 3D scene and the
variability techniques based on inheritance were used to group objects with com-
mon behavior [3].

In addition, at compilation and link or build times, directives expanding program

macros, variables and compiler flags {e.g., #ifdef, #include, #define}, and
Makefiles linking the programmodules in a specific order are instantiated to produce

different configurations or versions of the same product. For instance, a compilation

variable can be used to discriminate a stand-alone version from a distributed one or

add a security module not present in a different release. Makefiles use variables to

make more flexible link and build options when generating the binaries, such as

shown in the following code are certain flags that are stored in variables:

VP1= {Var1}XOR {Var2} XOR {Var3}

Software
Architecture X

Class A Class B

Var1

Var2

Var3
Var4

Var5

VP2 = {Var5} OR {Var6}

Product
Architecture X.1

Class A

Var3

Value1="MPEG-4" Value2="GSM1"

Var4

Class B

Fig. 6.3 Variability realization at design time
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CC¼g++
CFLAGS¼�c -Wall
LDFLAGS¼
SOURCES¼main.cpp hello.cpp factorial.cpp
OBJECTS¼$(SOURCES:.cpp¼.o)
EXECUTABLE¼hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:
$(CC) $(CFLAGS) $< �o $@

Moreover, the idea of staged variability fosters the composition of features that

can be added or removed to derive different product configurations (e.g., a scientific

calculator has several versions of the same products and the product line approach

used composed new functionality by selecting new variants). The software engineer

selects and deselects features of each new version of the product. Hence, stage

configuration becomes an important process applied in an SPL for configuring

software products and where people make the right configuration choices at differ-

ent stages. As described in [4], staged configuration of feature models constitutes a

stepwise refinement of the variability model.

In some cases, this refinement leads to a specialization where groups of features

are selected during the product configuration process and yields a specialized

feature model. Specialization can be seen as a subset of the overall set of

configurations and often done via transformations. In this context, baseline

architectures play an important role for specialization and derivation processes as

new product releases are yield as a result of successive stepwise refinement by

adding and removing features from the baselines or from a concrete product

configuration. Then, extensibility of the architecture becomes crucial to synthesize

different product configurations or release products for different platforms.

2.4 Post-deployment Realization

The configuration of the variability and product realization in the customer site

(post-deployment activities) often involves installation and post-deployment

procedures where products are configured and deployed on behalf of a set of

configurable options (e.g., parameters) that tailor the product to a specific environ-

ment or user preferences.

More dynamically, products may change the configuration of their variable

options during start-up (e.g., first start-up or on every start-up) time as a system

operator can configure certain variable options. For instance, the installation of a
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new version of an operating system allows users to configure certain parameters of

the target machine (e.g., language, screen resolution) or to select between two

different preinstalled versions. On every start-up, the variability can be stored in

configuration files (e.g., XML files) or local databases that are uploaded

dynamically (e.g., a new user profile that has assigned new privileges). Other

situations may deal with the dynamic upload of software modules or libraries that

affect to the system configuration, as in some cases, the system needs to be restarted.

Finally, during system execution, the selection of variants happens while the

system is running. The ability to select a new variant or to activate/deactivate

features is considered a pure runtime variability realization (e.g., an adaptive

system that realizes a reconfiguration of certain design options) which often

happens at post-deployment time.

As a brief summary, we have to mention that depending on the concrete binding

time and on the implementation language selected, the variability realization

technique would be different (e.g., parameterization, inheritance, dynamic libraries,

user-configurable options, etc.), and runtime variability realization techniques

require more complexity and implementation effort.

3 Automated Derivation and Runtime Reconfiguration

The automation of product derivation and configuration tasks is quite important for

certain variability management and product derivation operations. As some systems

deal with runtime concerns, automating product deployment is increasingly inter-

esting for such systems that require unattended and autonomous manual operations.

Usually, product configuration is perceived as a manual activity but dynamic

SPL approaches attempt to manage the automatic activation and configuration of

system features or perform an automatic redeployment once the system has been

reconfigured dynamically. Some systems with stringent requirements require strict

runtime adaptation of their systems options, while in others, it can be a semiauto-

matic human-guided procedure (e.g., a pluggable smart home system able to plug

new software modules automatically and the variability is configured manually

afterwards before launching the new functionality).

The automation of product derivation processes can be achieved following a

generative approach or a specific model-driven development (MDD) where models

are transformed before the final variability realization mechanism realizes the

design choices. The input for such automatic process is a feature model or UML

model that requires some kind of transformation before the variants are selected.

For instance, in [5], an SPL derivation approach, built on the top of Rational Rose

RT, provides automated support for developing multiple SPL views in UML and

using the feature model as the unifying view.

One important topic in today’s automation techniques for product configuration

is automatic deployment. As systems or part of them are installed and deployed

periodically (e.g., due to the installation of critical updates or because a new

hardware is plugged and a reconfiguration operation is needed to support the new
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functionality), there is an increasing demand to provide some degree of automation.

Therefore, automating configuration and derivation processes in conjunction with

deployment activities facilitates the task of software engineers, as many system

configuration and installation procedures could be enacted unattended and auto-

matically. In this scenario, software variability can play a key role to handle a set of

configurable options that can be managed in automatic mode at runtime.

Some authors [6] suggest a model-driven engineering approach using variability

mechanisms under a product line context to automate the customization and

deployment of software products. This approach advocates the use of transforma-

tion languages such as ATLAS Transformation Language (ATL) and Acceleo,

which extends the capabilities of the GenArch1 software product line tool in

order to transform software processes based on the Eclipse Process Framework2

(EPF) to jPDL workflow language specifications and enable the deployment and

execution of such processes. A feature model is used to specify the variability of

these software processes and a product derivation tool allows the selection of the

relevant features from an existing process, enabling automatic derivation from the

software process to a workflow specification. Model-to-model transformations

(M2M) facilitate the translation from an EPF specification of an automatic

customized process to jPDL elements. Such automatic procedures often exploit

model-driven engineering techniques to realize the transformations from high-level

models (e.g., a UML specification) to code assets. Another technique which can be

used is generation, which realizes stepwise refinements from baselines.

Consequently, the automation of product derivation and configuration activities

requires additional coding effort to support automatic management of the variable

options, as these configurable choices are sometimes handled by an automatic

procedure, while in other cases, the ultimate goal is to leave some of these design

choices to be modified by the user at runtime and post-deployment time.

Reconfiguring products at runtime may require in some cases to restructure the

entire or a subset of the variability model. Reorganizing the structural variability

model at runtime is challenging and hard, but this topic is out of the scope of this

chapter. However, other runtime reconfiguration operations may imply automatic

activation and deactivation of certain system features in order to meet new context

conditions. Any runtime reconfiguration demands automatic redeployment

mechanisms to meet the runtime condition, as well as additional runtime checks

(even if a system changes its operational mode for some time) to ensure that the new

configuration is the right one and properly set. Autonomic computing, pervasive

and context-aware systems, service-based systems, and self-*systems are the most

suitable candidates for runtime reconfiguration operations supporting variability.

Other systems demand reconfigurable operations when new modules are plugged

and unplugged and dynamic libraries or software modules can be selected automat-

ically or with minimal human intervention using variable and configurable options.

In those more complex cases, policies for runtime changes must be used to manage

1 http://www.teccomm.les.inf.puc-rio.br/genarch/
2 http://www.eclipse.org/epf/
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the different situations that might arise during the selection of different configurable

options and to detect incompatible product configurations.

4 Areas of Practice

4.1 Tooling

Several tools and approaches have been developed to support SPL derivation

activities. From a methodological point of view, the “ConIPF Variability Modeling

Framework” (COVAMOF) derivation process [7] describes the practical realization

of variability for product families through a set of steps that go from the feature

model to the component implementation and each of these levels are associated to

COVAMOF variability views which capture the dependencies and relationships of

the variability model. COVAMOF uses XML-based feature models and #ifdef
constructs to describe and mange the variability information. The COVAMOF

derivation process first configures the product to bind the variations and then

realizes the product on the SPL artifacts in order to make effective the values of

the variants.

Cirilo et al. [8] compares how three SPL tools (i.e. CIDE, pure::variants,

GenArch+) use configuration knowledge to compose the product line variability

to derive the SPL products. This knowledge, used in configurable product lines,

defines the implementation and composition of the variability for product deriva-

tion tasks. The comprehension of this configuration knowledge is crucial to under-

stand domain-specific abstractions which are used for modeling coarse-grained

variability and describe the relationships between SPL variability and code assets,

annotations in feature models, and fine-grained variability implemented in class

attributes and methods.

4.2 Experiences

In several industrial experiences, configuration and variability realization processes

become relevant for product derivation. One early experience in the automotive

domain [9] enables product derivation through the selection of combined variants

aimed to support the right product configuration.

The well-known Koala model for handling the diversity of software products in

the consumer electronics domain [10] is a clear example where the size and

complexity of software products increasingly growing required a robust variability

model able to handle this diversity. The Koala model proposes a strict separation

between component and configuration development, as component builders do not

make assumptions about the configurations in which components will be used.
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Each component provides its functionality through a well-defined set of interfaces

(e.g., the signal of a TV tuner is fed by a high-end input processor (HIP) that

decodes luminance and color signals which are the inputs to a high-end output

processor (HOP). All these devices are controlled by software drivers using a serial

IC2 bus, as each driver requires, and IC2 interface that must be bound to an IC2

service during system configuration. A configuration in Koala is a set of

components connected to form a product. In Koala, static binding is used during

compilation running at configuration time.

In addition, the Koalish modeling language extends Koala and used for

automating the product individuals in configurable software product families

(CSPFs) [11]. Koalish is built on Koala and adds new variation mechanisms for

selecting and configuring the type of parts of components, including constraints for

specific individuals. In Koalish, configurations are sets of component and interface

instances, and the relations describing which component instances are part of other

component instances. The authors introduce the notion of valid configuration as not

all possible configurations represent a system. On this basis, the WeCoTin is a

prototype configurator tool operating on the product configurator modeling lan-

guage (PCML) in order to ease the configuration of software product lines and

feature models [12]. Reinforcing previous proposals, other authors [13] describe an

analysis of the derivation process in two software companies for configurable

software product families, from requirements to product delivery.

Regarding automatic product derivation, an experience using multi-agent

systems (MAS) under a product line approach is described in [14], where a

model-based product derivation tool (GenArch) is proposed for use in the applica-

tion engineering lifecycle. GenArch consists basically of three steps: (1) automatic

models construction, (2) artifact synchronizations, and (3) product derivation,

which comprises customization and composition of the SPL architecture.

5 Summary

Evolution is an important aspect for today’s software systems, and software

variability reduces the barrier for systems that have to evolve more dynamically.

Hence, feature models must be ready to support the selection and unselection of

features and configuration operations during product derivation and deployment

activities.

In this chapter, we have discussed the characteristics of major variability reali-

zation and derivation activities. Product derivation tasks can be organized

according to pre- and post-deployment binding times, as this separation of concerns

is easier to understand when and where (i.e., developer and customer sites) products

can be realized. In addition, the categorization of derivation activities becomes

important to know which kind of subtasks and which binding times can be used in

any derivation process using variability.
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The utility to realize the derivation at different binding times will depend in

many cases of the type of systems we want to build and deploy, as not all software

systems may require to support runtime concerns.

The areas of practice described in the chapter are several and show representa-

tive types of systems and applications in various areas that exploit variability

realization techniques in different ways and with different binding times, as some

of them have different deployment and configuration requirements.

6 Outlook

No one doubts about the importance of product derivation and deployment

activities for variability management. In this context, automating reconfiguration

and redeployment activities for critical and real-time systems is crucial, as systems

using context information are more and more frequent. Systems using variable

options evolve much better in dynamic contexts compared to those others than use

more rigid approaches.

Finally, regarding the variety of variability realization techniques, we did not

want to describe detailed examples on how each variability realization technique

can be implemented, as this depends on the language or platform used. Rather, we

preferred to provide an overview of the most common techniques used, organized

around the time in which variants can be bound.
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Chapter 7

Visualizing Software Variability

Steffen Thiel, Ciarán Cawley, and Goetz Botterweck

What you will learn in this chapter
• Core techniques in Information Visualization
• Using Visualization to support Software Variability
• Commercial and Prototype tools that utilize Visualization

1 Introduction

Many of the expected benefits of software product line (SPL) engineering rely on an

assumption that the additional up-front effort in domain engineering that establishes

the product line produces a long-term benefit. The expectation is that deriving

products from a product line during application engineering is more efficient than

traditional single system development. However, to benefit from these productivity

gains, it must be ensured that application engineering processes are performed as

efficiently as possible. This has proven to be extremely challenging with industrial-

sized product lines containing thousands of variation points, each of which can be

involved in numerous dependent relationships with various other parts of the

product line (e.g., [1, 2]). One method of addressing this challenge involves
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supporting the SPL engineering activities by providing interactive tools that use, as

a central principle, visualization techniques appropriate for the comprehension of

large data sets and interrelationships.

Adopting visualization techniques in software product line engineering can aid

stakeholders by supporting essential work tasks and enhancing understandings of

large and complex product lines. This chapter presents visualization concepts,

approaches, and implementations that are used to manage the application engineer-

ing phase of the SPL process.

2 Concepts and Techniques

2.1 Visualization

There has been extensive research into information visualization and its

applications. Visualization has proven useful in enhancing cognition in numerous

ways and application domains [3, 4]. This is particularly the case in relation to

externalizing information, thus increasing the “memory” and “processing capacity”

available to users, also by supporting the search for information and by encoding

the information in a manipulable medium.

Visualization takes abstract data and gives it a form suitable for visual presenta-

tion. Such data can, for example, be explicitly collected from software or it can be

codified by software engineers utilizing their own implicit knowledge. In this case,

we often speak of software visualization, which can be seen as a subdiscipline

of information visualization [5]. With suitable techniques, such software visuali-

zations can also amplify cognition about large and complex data sets created and

used in industrial software product line engineering.

2.2 Visual Reference Model

Figure 7.1 shows a visual reference model introduced by Card et al. [3]. This

model provides a conceptual basis for many visualization approaches. Source
data is transformed into a format (data tables) from which visual abstractions

can be created. Various views can then operate over those abstractions, which

provide the user with a rich interface. By allowing user interaction with the view,
the different transformation steps can be altered in order to optimize the visualiza-

tion for specific user tasks. This concept of interactive visualization forms the

basis of many dynamic techniques aimed at providing cognitive support to

stakeholders.
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Visualization techniques developed and discussed within the visualization com-

munity (e.g., [3–5]) can be leveraged to support variability management (e.g.,

[6–9]). By using such techniques, the expertise and experience of that community

can be brought to bear on the complexity challenges that exist in that domain.

Whereas most established variability management tools do not explicitly aim to

utilize such techniques and expertise, recent research tools in that area are

attempting to apply visualization concepts to their user interfaces.

2.3 Visualization Techniques

Fundamental visualization techniques and strategies that aim to support user cog-

nition when dealing with large and complex data sets include Focus+Context,
Details on Demand, Degree of Interest, Color Encoding and Iconography.

• Focus+Context describes the general ability to work at a focused level while

maintaining the overall context within which you work. A number of techniques

can be employed toward this goal such as fisheye (magnifying a specific area of a

much larger display), overview/outline windows (providing a contextual under-

standing of a given display), and distortion (e.g., transparency). An extensive

overview of these techniques is, for example, given in [3].

• Details on Demand refers to the facility whereby the stakeholder can choose to

display additional detailed information at a point where this data would be

useful. This point is decided by the user of the system. For instance, the ability

to expand/collapse branches within a tree display, incremental browsing of such
a tree and filtering, provides details on demand.

• Degree of Interest techniques highlight or expand relevant data with respect to

the user’s current point of interest. In particular, the degree of interest (as applied

to certain parts of the data) can change while the user is navigating the data.

• Color Encoding and Iconography both serve to encode information visually and

are used in conjunction with other techniques to provide additional data that can

be identified through visual queries—identifying a visual pattern that will be

used by a mental search strategy over a graphical visualization [3]. Examples

include a green tick, red X, or a familiar icon.

Fig. 7.1 Visual reference

model [3]
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3 Visualization Support for Software Variability

3.1 Representing Variability

In terms of how to represent and model variability, many SPL research approaches

for variability management and product configuration focus on features, often
represented by dedicated feature models (e.g., [10, 11]). Feature models usually
describe available configuration options of an SPL in terms of “prominent or

distinctive user-visible aspects, qualities, or characteristics” [11].

While viewing a product line as a collection of features has many advantages,

there are some problems as well. Some of the problems include the difficulty in

describing cross-cutting features and non-functional requirements, as well as the

problems that arise in linking a feature to a concrete component (or set of

components) that implement that feature.

3.2 Challenges and Approaches

There are numerous tasks to be performed by various stakeholders during the SPL

engineering processes of domain and application engineering (cf. Sect. 3.3). Plat-

form managers, domain engineers, product managers, application engineers,

developers, and even customers all take on different roles in the process and require

methodology and tool support that facilitates their specific tasks. In many of these

cases, a feature model alone is either too detailed or not detailed enough. Using

separate models allows different facets of the product line to be managed in a

focused manner and supports stakeholder and task-specific representation and

manipulation.

One approach to separating the different concerns of a software product line

while providing relationships between various elements could be to describe the

product line not only in terms of features but extend this description by taking

decisions and components into consideration. A decision model would then capture
a small number of high-level questions and provides an abstract, simplifying map

onto features. The implementation of features by software or hardware components

is then described by a component model.
Please note we use the concept of a decision model in the sense of a high-level

feature model that sets the major context of the configuration by answering major

questions such as if a particular product is “entry level” or if the product is planned

to be introduced in a specific market (e.g., US, Japanese, or European market). In

this sense, the decision model could be seen as containing the most important

questions someone has to ask before configuring the more detailed and fine-grained

feature model. This is different from other definitions of the term “decision model”

in the product line literature, for example, the definition provided in [6].
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These three models—the decision, feature, and component (DFC) model—can

be used as a foundation to support variability visualization and product configura-

tion. One characteristic of the DFC model is that the three underlying models are

interrelated. For instance, making a decision might cause several features to

become selected, which in turn requires a number of components to be

implemented.

In the above approach, decisions provide a simplified high-level map onto

features and can be used to abstract from details by asking a few major questions

that are relevant for a particular stakeholder. A component model describes

components that implement the features. Making a decision can involve the selec-

tion of multiple features, each of which may require or exclude sets of other

features. These features in turn may require or exclude sets of components. Fur-
thermore, a relationship itself between two features may be implemented by a

component. More details of the underlying model are described in [7].

Visualization of the relationships within a feature model alone is challenging,

and numerous approaches have been proposed, ranging from filtered lists (e.g., [6])

to graph-based views (e.g., [12]) to methods of only showing the relationships on

demand (e.g., [7]). With multiple models in place, visualizing the relationships

between each of them becomes even more difficult. Presentation and manipulation

of the underlying data in the execution of specific tasks is impeded by their

multilayered interrelationships. For example, as mentioned above, making a deci-
sion can involve the selection of multiple features, each of which may require or

exclude sets of other features and components. In such scenarios, stakeholders need
to be presented with the relevant data using appropriate techniques. This will enable

them to understand the current state and the impact of various required changes.

Stakeholders also need to be able to make such changes with ease.

3.3 Task Support

The task of configuring a complete feature model can be reduced to a sequence of

configuration decisions on individual features. At a basic level, this involves the

ability to either select or eliminate a feature from the product under derivation

which, in turn, usually leads to the inclusion, exclusion, or configuration of related

components. Additionally, the ability to select or eliminate features in groups based
on higher-level requirements (decisions) is a fundamental task. Whereas these tasks

may seem basic, it is the knowledge and understanding (cognition) of the stake-

holder that allows these tasks to be performed correctly. Drawing on a variety of

research that has been carried out (e.g., [1, 2, 8]), we outline a set of simple

cognitive tasks that aim to support the activity of the primary task—namely, to

decide which features should be included and which should be excluded:

7 Visualizing Software Variability 105



1. Identify/locate a configuration decision
2. Understand the high-level impact of a decision inclusion (perception of scale and

nature of the impact—implements/requires/excludes)

3. Identify/locate a specific feature
4. Identify a specific feature’s context—parent feature, alternative/supporting

features, and sub-features
5. Understand the high-level impact of a feature selection—a specific feature’s

constraints (requires/excludes relationships)

6. Identify the state of a feature—selected/eliminated and why

Visualization approaches can support these cognitive tasks by providing an

interactive visual environment.

4 Visual Approaches and Implementations

As discussed, the comprehension and management of large sets of complex data

relationships is the primary challenge when presenting variability data. Most

approaches to date have utilized existing and well-known visual forms familiar to

the software engineering community. The most prevalent of these is the ubiquitous

“file explorer style” tree generally presented in the form of a static horizontal tree

with expandable and collapsible branches. Recent work such as [13] has expanded on

this visual form by introducing more dynamic tree structures and layouts. Other work

(e.g., [14]) has focused on leveraging various techniques from the visualization

community and utilizing alternative approaches not yet explored for this purpose.

When using visualization techniques for the handling and configuration of

variability models, we have to address the cognitive tasks discussed earlier (see

list in Sect. 3.3) with corresponding visual and interactive techniques. For instance,

a tool environment has to provide interactive techniques to locate a feature, to
understand a feature’s configuration state, or to understand the impact of making a

configuration decision.

Here, the resulting challenges are mostly related to the complexity and the scale

of the models. In other words, the visualization and interactive technique must

allow the stakeholder to handle large models and to focus on the relevant informa-

tion, while abstracting from irrelevant details. This can be, for instance, achieved by

techniques that allow to navigate on large models and to focus on elements for a

particular task (e.g., a set of currently focused features) and related information

(e.g., other elements in the model related to this feature set). A related challenge is

that there are multiple ways to structure a model (e.g., which hierarchy to choose,

how to modularize) and that the information structure that would be optimal for a

particular task is not necessarily identical to the main structure of the model. Since a

model is used for multiple tasks, visualizations and interactive techniques have to

provide a means to adapt to different usage contexts and to change the focused

aspects.
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We will now look at particular approaches in more detail. In general, the

approaches and techniques to variability visualization can be divided into three

broad areas: two dimensional (2D), two and a half dimensional (2.5D), and three

dimensional (3D). General characteristics of these approaches and implementation

examples from a number of tools supporting variability management are described

in the following subsections. The examples are taken from both research and

commercially available tool suites.

4.1 2D Visualization

Using 2D approaches such as matrices and graphs to visualize feature models is the

normative way to allow feature exploration and model manipulation [6, 8]. More

recently, research tools are exploring the use of alternative tree layouts such as

dynamic space trees [9] and radial trees [13]. In conjunction with this, the use of

varying visualization techniques as described in Sect. 2 is being employed to aid

stakeholder cognition in variability management tasks.

4.1.1 Examples

The DOPLER tool suite [6] provides decision-oriented variability management

through a number of complimentary tools. One of these tools, the Configuration
Wizard, provides capabilities for product customization, requirements elicitation,

and configuration generation. Figure 7.2 shows the use of hierarchical tree

structures to display a set of decisions on the left and the decision hierarchy on

Fig. 7.2 DOPLER configuration wizard [6]
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the right. Figure 7.3 shows a more graphical representation of the tree structure.

Both visualizations of the model utilize simple iconography to encode selected

items (tick symbol icon) and items not yet configured (question mark icon).

The pure::variants tool suite [15, 16] is a commercially available product, which

provides a set of integrated tools that support various phases of the software product

line development and derivation process.

For creating and configuring a new software variant, the tool provides a Configu-
ration Editor (see Fig. 7.4). This editor employs a hierarchical “file explorer style”

horizontal tree to allow the browsing, selection, and de-selection of features

according to their constraints. Iconography is extensively used to identify element

types and feature state. Figure 7.5 shows a matrix visualization, which presents a

view of the variants identifying the different features available in each of the variants.

The research tool vivid [14] primarily explores the use of more dynamic and

interactive visualizations in order to provide cognitive support to stakeholders.

Figure 7.6 shows a horizontal tree visualization, which represents a variant’s

feature configuration. The visualization allows the stakeholder to incrementally

browse the tree structure automatically collapsing and expanding relevant branches

Fig. 7.3 DOPLER tree view [29]
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Fig. 7.4 pure::variants configuration editor [16]

Fig. 7.5 pure::variants matrix view [16]
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as the stakeholder progresses. Animation of any visual changes to the display aids

the stakeholder in understanding the navigation path. Color encoding allows imme-

diate identification of the state of a particular feature.

The feature configuration tool S2T2 Configurator developed in earlier work by

Botterweck et al. [17] provides techniques for the configuration of complex feature

models and techniques for the joint visualization of feature and implementation

models. In [18] the approach was extended by “Feature Flow Maps” to visualize

product attributes, which result from configuration decisions, during product con-

figuration (see Fig. 7.7). For instance, the width of the lines indicates the price of the

product resulting from the current feature configuration. This visualization is

updated incrementally while the feature configuration process is completed.

4.1.2 Advantages and Limitations

The advantages of using visual representations such as lists, “file explorer style”

trees, and matrix tables are evident—they are generally familiar and intuitive to

stakeholders. However, when the variability that exists within a software product

line contains thousands of variation points, it becomes difficult to manage and

cognitively challenging to navigate.

Fig. 7.6 vivid tree view [14]
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Using dynamic tree structures (as with vivid) and techniques such as animation,

degree of interest, and distortion, visualizations can provide cognitive support to aid

with such challenges. However, even with such additional aids, it can still be

challenging to configure variability for very large product lines. In the next two

sections, we show some examples of alternative visualizations being explored to

further enhance the cognitive support provided to stakeholders.

4.2 2.5D Visualization

2.5D visualization techniques use 3D visual attributes in a 2D display [19]. For

example, adding 3D attributes such as perspective (e.g., making certain objects

smaller to indicate distance) and occlusion (e.g., overlapping objects to indicate

layers) to a 2D display can be described as creating a 2.5D display. Work into the

Fig. 7.7 Feature flow maps [18]
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employment of such techniques uses static 3D planes on which representations of

features are presented in an animated interactive environment.

4.2.1 Example

Figure 7.8 shows a 2.5D visualization from the vivid prototype. To the left is a

simple list of decisions (high-level grouping of features). When a selection is made

within this supporting view, the main view displays the implementing features

along with all features that are required or excluded by them.

The view consists of three stacked planes. Each plane provides a circular

grouping of spheres. In the top plane, each sphere in the circle represents a grouping

of features. When any one of those groupings in the top plane is selected (by mouse

click), then all features that comprise that grouping are displayed in the middle

plane in a similar circular format. In the lower plane, all related (required/excluded)

features are displayed (for all features presented in the middle plane). The inner-

most circle on the lower plane identifies features that are directly related (required,

excluded) to features in the middle plane. In order of ascending radii, each

Fig. 7.8 vivid 2.5D view [14]
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subsequent circle in the lower plane represents the transitive relationships that exist;

i.e., required features can further require and/or exclude other features.

By hovering the mouse over any sphere in any of the planes, a description of that

element will be displayed in the center of the plane. When a sphere is selected in

any plane, the circle on which it is presented will rotate so that sphere is brought to

the front with its description displayed underneath. These functions aim to imple-

ment Details on Demand.
Each sphere acts as a representation of a specific feature. A sphere may be color

encoded to visually identify its relationship to other variability artifacts (the feature

implements a decision or the feature is required/excluded by another feature).

Multiple windows (and multiple planes) are employed to separate and distribute

decisions, feature groupings, features, and relationships. Note that the lower plane

displays all related features for all the implementing features in the middle plane.

This allows an overview of the impact as a whole for this group of features. When a

single implementing feature is selected in the middle plane, the circles in the lower

plane rotate to ensure all related features are brought to the front while all other

features in the plane are distorted (made transparent) in order to highlight the ones

of interest. Animation is again used for all movements to preserve context.

4.2.2 Advantages and Limitations

The primary aim of the 2.5D approach is to increase the number of features and

relationships that can be represented at any given time within a fixed screen space

avoiding the need of panning and zooming across thousands of related on-screen

elements. This is achieved by utilizing a depth dimension and providing animated

movement and highlighting of relevant information to the foreground when

required. Focus+Context is a key consideration here.

The presence of a fixed on-screen space may reveal a limitation of this visuali-

zation: there will be a point where a very large number of features and relationships

may cause unwanted occlusion and selection difficulties. However, this situation

would only occur with extremely large and/or complex feature models. Testing and

usability studies are required to evaluate the effectiveness of this approach.

4.3 3D Visualization

Differing reports exist on the effectiveness of 3D visualizations to support software

engineering but literature suggests that there is acceptance that it can be effective in

specific instances (e.g., [20, 21]). Current work into the use of 3D primarily focuses

on the visualization of relationships instead of the elements that they relate [9].

Relationships are visualized as objects in a 3D space whose coordinates identify

elements within three different models, each model being mapped to one of the

three axes.
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4.3.1 Example

Figure 7.9 presents a 3D view which attempts to provide a self-contained represen-

tation of all the three models introduced in Sect. 3.2 (decisions, features, and
components) and their interrelationships. However, at any given time, only infor-

mation of interest is displayed.

Here, as in the 2.5D approach, multiple windows are employed to distribute the

information and provide the supporting decision view. The visualization consists of
a 3D space containing X, Y, and Z axes. Sequential lists of decisions, features, and
components are displayed along the Y-axis, X-axis, and Z-axis (moving away from

the observer), respectively.

The key idea here is that a point within this 3D space identifies a relationship

between all three models. In other words, a sphere plotted at a particular point will

identify that the feature labeled at its X-coordinate implements the decision labeled
at its Y-coordinate and is implemented by the component labeled at its Z-coordinate.
In Fig. 7.9, the stakeholder has highlighted the sphere that represents the

“Commodities” feature. However, in addition to this, by looking at the highlighted

labels on the axes, we can see that it also represents the “Export Documents”

decision that the feature implements and the “XTCM.I Include File” component

that implements the feature.

Fig. 7.9 vivid 3D view [14]
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Focus+Context and Details on Demand are the main techniques guiding this

implementation. One goal is that all three models can be perceived to be

represented through the listings on each axis. However, the details of any part of

any model or its relationships are only displayed when required. For example, when

a decision is selected, there may be a number of implementing features. For each
implementing feature, a sphere is plotted in the 3D space as described above. Other

features required or excluded by those implementing features are similarly plotted

as spheres and are given a specific color encoding which allows a visual identifica-

tion of the required or excluded relationship.

Pan & Zoom are combined with rotation to allow a full world-in-hand manipu-

lation of the view in three dimensions allowing the stakeholder to position the view

depending on the information of interest.

4.3.2 Advantages and Limitations

One advantage argued with this visualization is that it provides a perception of a

software product line as a whole within a 3D configuration space while only

presenting data that is relevant at a given time. Visually, a stakeholder is enabled

to comprehend both the scale and nature of selecting a decision, feature, or

component. As such, selecting a decision for implementation will require a set of

implementing features but also require and exclude a large set of other features.
The impact of such a decision, including its nature and magnitude, will be immedi-

ately evident allowing the stakeholder to further investigate the details of the

impact.

As with the 2.5D visualization, the fixed on-screen space within a 3D configura-

tion may also be a limitation as there is a point at which a very large number of

features and relationships will cause unwanted occlusion and selection difficulties.

However, this situation would only occur with extremely large and/or complex

feature models. Again, testing and usability studies are required to evaluate the

effectiveness of this approach.

5 Related Work

Traditionally, many approaches that support feature configuration as part of product

line derivation use a hierarchical model. The visualization of hierarchical structures

has been studied extensively in the visualization literature, including node-link

techniques (e.g., [22]), space-filling techniques (e.g., Tree Maps [23]), and interac-

tive techniques that help to cope with very large models such as Focus+Context
(e.g., [24]).

Approaches focusing on multiple hierarchies are useful when visualizing the

relationships between features and other models as discussed above. Robertson

et al., for example, define polyarchies [25] as multiple hierarchies that share nodes.
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They describe the visualization design and a software architecture for displaying

polyarchy data from a set of hierarchical databases. They use animated transitions

when switching between the related hierarchies to allow the user to keep context.

Polyarchies are somewhat similar to the multiple related hierarchies found in some

product line configuration approaches but lack the intra-model relations and the

aspect of progressing configuration.

Moreover, a number of research tools which provide product line configuration

capabilities and apply visualization techniques exist in literature. Some of these

tools have already been discussed in the preceding section (e.g., [6, 14, 16, 18]).

Another example is the research prototype V-Visualize developed by Sellier and

Mannion [26], which visualizes configuration decisions with a force-directed layout.

Some approaches aim to visualize the variability in the artifacts which are

influenced by this variability. For instance, Kästner et al. [27] used color encoding

to indicate variability in program code.

In an earlier work, the authors presented Visit-FC, a configuration approach and

tool that indicates the configuration state of features by visual clues [28].

6 Summary

The mechanisms by which software variability is presented to a stakeholder

through visual representation and interactivity can have a substantial effect on

how efficiently the stakeholder can perform their required management tasks.

This becomes more and more evident as the size and complexity of the variability

increases. Many of today’s variability management tools use normative software

engineering user interface techniques to present, and provide management of, that

variability. For example, variability artifacts such as decisions, features, and

components can be presented in one-dimensional lists, as elements in a two-

dimensional matrix/spreadsheet, or as nodes in “file explorer” style trees that

provide grouping and allow selection/elimination from a variant model.

As industrial-sized product lines grow to the order of many thousands of varia-

tion points, these traditional techniques tend to be limited in the cognitive support

that they provide to stakeholders in relation to the performance of their tasks.

Information visualization techniques have proven useful in enhancing cognition

in numerous ways, and in recent work, these techniques are being employed with

the aim of increasing the cognitive support provided. Visualization strategies such

as Focus+Context, Degree of Interest, and Details on Demand in combination with

techniques such as Iconography, Color Encoding, and Distortion are being utilized

leveraging the work that has been carried out within the information visualization

community. Implementations using dynamic space trees, radial graphs, and more

explorative 2.5D and 3D techniques have been developed. Table 7.1 briefly

summarizes advantages and limitations of approaches discussed in this chapter.
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7 Outlook

There are a variety of commercial and research tools that provide support for

variability management. Many of these are continuing in their development and

some are actively exploring the use of more novel presentation and interactive

techniques to improve their support for small- and large-scale variability projects.

In the immediate future, the use of dynamic graphs and, in particular, the use of

degree of interest trees seems to become more prevalent. There is also ongoing

work into the use of 2.5D and 3D strategies which aims to leverage more of the

visualization research that has been carried out to date.
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Chapter 8

Variability in the Software Product Line Life
cycle

Kyo C. Kang, Hyesun Lee, and Jaejoon Lee

What you will learn in this chapter
• Understand the software product line life cycle
• Understand the issues in variability management

1 Introduction

Product line (PL) engineering is a software engineering paradigm, which guides

organizations toward the development of products from core assets rather than the

development of products one by one from scratch [1–3]. Two major activities of PL

software engineering are core asset development (i.e., PL engineering) and product

development (i.e., application engineering) using the core assets.

For the core asset development, PL requirements are essential inputs. These

inputs, though critical, are not sufficient for PL asset development; a Marketing and

Production Plan (MPP), which includes guidelines/plans on what features are to be

packaged in products, how these features will be delivered to customers, and how

the products will evolve in the future. Therefore, it is essential to include a

marketing perspective into the PL variability analysis and explores requirements

and design issues from the marketing perspective [4, 5]. With an MPP, reuse is not

opportunistic; it is carefully planned for specific product and market(s).

Once commonalities and variabilities (C&V) of market needs and their

requirements are analyzed and modeled, this information is used to develop soft-

ware assets, i.e., architectures and components, with appropriate variation points
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and variants. Once software assets have been developed for a PL, the product

development phase involves adaptation and instantiation of these assets for a

product. (Asset management is an ongoing process, which includes C&V analysis,

and reengineering and refactoring of software assets.)

One of the most difficult and critical tasks in product line engineering is

variability management. Various product line lifecycle products, including models,

architectures, and components, have C&Vs, which are related vertically among

elements within each lifecycle product and horizontally across different lifecycle

products. C&Vs must be explored and modeled thoroughly and their consistencies

must be maintained while PL evolves. As lifecycle products and their C&Vs are

related vertically and horizontally, it is very difficult and also costly to manage and

maintain their consistency.

Variability management from the perspective of MPP is the key aspect for

managing variabilities of assets because assets are instantiated, adapted, and

integrated to support MPP based on market needs. “Features” are abstractions of

capabilities or functions that the customer wants/needs. Therefore, feature is the

unit of delivery and also the unit of configuration and variability management

In this chapter, we explore various issues of C&V across the entire PL life cycle.

As a starting point, Sect. 2 describes PL engineering activities and their inputs/

outputs. The elements of MPP are explained and illustrated in Sect. 3 using an

elevator controller example described in the box below, and Sect. 4 includes a

discussion on how product line “problems” are modeled. The solution space

modeling is included in Sect. 5, followed in Sect. 6 by a discussion of how product

line artifacts such as architecture and components are designed based on the

solution space models. Sections 7 and 8 include a discussion and conclude this

chapter, respectively. It should be noted that the Feature-Oriented Reuse Method

(FORM) has been used throughout the chapter for the purpose of illustration of

various issues in product line variability management.

2 PL Lifecycle Activities: An Overview

PL engineering consists of two major engineering processes: PL asset development

and product/application development. (See Fig. 8.1 for activities and their

relationships.) The PL asset development consists of activities for analyzing PL

problems (analyzing market needs, developing a marketing and product plan

(MPP)); modeling C&V of the PL problems (goals aimed to be achieved by the

products, product usage contexts, required quality attributes, etc.); solution

modeling which includes exploration and modeling capabilities required by PL

products and modeling PL requirements, exploring and modeling important design

decisions that have significant quality implications, including domain technologies,

COTS, external devices, etc.; and developing PL asset architectures and

components based on the analysis results. The product development phase consists

of a number of activities for analyzing product goals and usage contexts, analyzing

product requirements and configuring the product (i.e., variability instantiation,
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Fig. 8.1 PL engineering process and variability analyses
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i.e., feature selection), selecting an appropriate architecture and components, and

making necessary adaptations to the selected architecture and components, and

generating/developing the product.

Elevator Example.

Elevator control systems are very familiar to everyone and it is easy to

understand their behavior from an end user’s perspective. However, the

internal control and complex interfaces with external devices make it hard to

build reliable and reusable software. Elevator products can largely be classi-

fied into passenger elevator or freight elevator depending on their main

purpose of use. Since passenger elevators have a goal of carrying passengers

comfortably, services or devices for comfortable ride are required. Of passen-

ger elevators, those used in hospitals require more stringent floor leveling

requirements and a low speed profile for patients on a wheelchair, while

elevators in office buildings are less stringent on floor leveling but require a

high speed profile. On the other hand, freight elevators do not necessarily

require comfortable ride. They instead focus on carrying heavy loads safely,

which requires special operational functions and devices for handling heavy

loads. As can be seen, there is a wide range of quality requirements, which

requires us to select various techniques, devices, and algorithms.

Analyzing the targeted markets and developing an MPP is the starting point for

launching a PL. The diversity of market needs drives the development of a family of

products, which is reflected in a marketing plan and product plan (MPP). Therefore,

MPP serves as a key driver in PL asset development and variability management.

In C&V modeling, product features from MPP, which include functional (e.g.,

capabilities, services) and nonfunctional (e.g., product goals, product usage

contexts, quality attributes) features, are organized into an initial C&V model

(We use feature model for illustration. Other modeling techniques such as decision

modeling may also be used.) which is refined through product line requirements

analysis and then extended further with design features (i.e., operating environ-

ment, domain technology, and implementation technique features) as we follow the

asset engineering activities. During PL requirements analysis [6], we elicit and

organize PL requirements in terms of a PL use case model (variability expressed in

terms of<extends> and<includes> stereotypes) and a PL object model, which are

used in architecture modeling and component development.

The conceptual architecture design activity allocates features to architectural

components and specifies data and control dependencies between architectural

components. The result is a “conceptual architecture.1 ” A design object model

1 The conceptual architecture describes a system in terms of abstract, high-level components and

relationships between them.
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must be developed based on the conceptual architecture, feature model, PL

requirements, and other information such as commercial off-the-shelf (COTS)

components and design patterns [7] that are relevant to the PL.

The conceptual architecture is refined into “process and deployment architectures2”

by allocating components to concurrent processes and network nodes, considering

whether to replicate each process or not, and definingmethods of interactions between

processes. Then the component design activity refines the process and deployment

architectures into concrete components by using the design object model.

The MPP provides quality attributes for the architecture design and refinement.

For example, the user profile information (i.e., the skill levels and computing

environments of potential users) in the MPP is useful in determining the quality

attributes (i.e., usability, scalability, etc.) required for the architecture design of the

products targeted for each market segment. Also, the MPP is used in exploring

design alternatives in the component design for feature delivery method support,

feature interaction problem3 resolution, etc.

The PL engineering processes are iterative and incremental, and repeat until we

come to a design that has enough details for implementation. (The arrows in Fig. 8.1

show data flows, i.e., work products generated and used by each activity.) Details of

each PL asset development activity are illustrated in the following section.

3 Problem Analysis

Problem analysis starts by exploring the market and developing a marketing and

product plan for a product line. This activity initiates PL asset development; anMPP

sets a specific context for PL analysis and reuse exploration in the PL. Products

developed without consideration of user’s needs and their capabilities and how they

will be marketed will not be “sold.” Functionality alone does not sell. Products must

be configurable to meet the needs of and services required by users. Variation points

embedded into the PL assets and mechanisms used to implement variants must be

able to support the marketing and product plan effectively and efficiently.

3.1 Elements of MPP

The first part of an MPP is a marketing plan, which includes a market analysis with

a C&V assessment of a market, and a marketing strategy for realizing business

opportunities in the market (see the left portion of Fig. 8.2). The market analysis

2 The process architecture represents a concurrency structure in terms of concurrent processes (or

tasks) to which functional elements are allocated; the deployment architecture shows an allocation

of processes to hardware resources.
3When products are developed with integration of components implementing various features,

these features may interact with each other. The problem of unexpected side effects when a feature

is added to a set of features is generally known as the feature interaction problem.
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includes, for each market segment, a C&V assessment of needs, an analysis of

potential users, cultural and legal constraints, the time to market, and the price

range. Identifying market segments and needs of each market segment may be an

iterative process. For example, we may start with the entire elevator systems market

but then quickly realize that there are features specific only to elevators in office

buildings or to freight elevators. We then focus on analyzing features peculiar to

each market segment.

The marketing strategy initially includes an outline of product delivery methods

with the information on how products will be delivered to customers and other

business considerations. For example, customers may start with products with only

core features but then add other features incrementally. Incremental features may

be added to the products over the network. If this is the marketing strategy, the

product delivery method and variability management method must be able to

support this strategy.

Once the marketing plan part of the MPP has been defined, it is important to

spend some effort to identify the characteristics of products in a PL in terms of

features and develop a plan for incorporating the features. A product plan includes

product features and product feature delivery methods (see the right portion of

Fig. 8.2).

Product features are distinctive characteristics of products of a PL. They are

largely classified into functional and nonfunctional features. Functional features

include services, which are often considered marketable units or units of increment

in a PL, or operations, which are internal functions of products that are needed to

provide services. For example, automatic control, manual control, and VIP service

features in elevator PL are functional features. Nonfunctional features include end-

user visible application characteristics that cannot be identified in terms of services

or operations, but as presentation, capacity, quality attribute, usage, cost, etc. For

example, safety, reliability, and fault tolerance are important quality attributes for

the elevator PL.

Fig. 8.2 Elements of a

marketing and product plan
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A product feature delivery method defines how product features will be “sold” or

delivered to the customers and users, and how they will be installed and maintained.

The product delivery method must support the marketing strategy. Some features

may be prepackaged in all products as “standard features,” and others may be

selected at the product negotiation time. There may yet be other features that are

specific to a customer and are built into the custom-made product.

3.2 Marketing and Product Planning: A ECS Product Line
Example

Market segments affect engineering of assets for the ECS product line. For the

purpose of illustration, we assume that the company’s marketing strategy is to

target the high-rise office building market with high-end products, the general

hospital market with mid-level products, and the apartment market with low-end

products, based on an analysis of market competitiveness.

Table 8.1 provides/is an example of MPP for the ECS PL. (The actual MPP

should be a document describing all elements identified in Sect. 3.1; a simplified

example is shown in this paper for illustration of the concept.) The user/maintainer

profiles for each market segment are as follows:

• High-end market segment of high-rise office building uses: Dedicated engineers

with computer science background are available for maintenance. The comput-

ing environment is distributed over the network and maintainers can access the

system remotely.

• Mid-level market segment of general hospital uses: No computer skill is

assumed for maintainer and ECS software should run on PCs they already have.

• Low-end market segment of household uses: No computer skill is assumed for

maintainer and ECS software should run on PCs they already have.

The laws and the cultural traits of each country must also be identified in the

marketing plan. For example, standards related to earthquake resilience, fire

standards, electrical wiring rule, etc., may vary from country to country. Also, the

safety and reliability requirements (e.g., the doors must remain open in case of a fire

event) may be different.

Since the high-rise office building ECS has many customer-specific

requirements, the “feature selection” method is chosen to adapt and integrate the

requirements at the product delivery time. For the general hospital ECS and the

apartment ECS, “prepackaged” method with a user-friendly interface is adopted for

the users who do not have any computer knowledge.

The product delivery methods are refined to product feature delivery methods,

which can be looked at from what features are allowed (feature coverage), when

they are incorporated into the product (feature binding time: product build time,

product delivery/installation time, or runtime), and how the feature incorporation is

made (feature binding techniques: framework, template, load-table, plug-ins, etc.)

[8–10]. For example, the apartment ECS have a closed set of features and the feature
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binding occurs at product build time in order to support the prepackaged product

delivery method. For the high-rise office building ECS, however, customers may

select any features from a predefined list, and feature binding occurs at product

installation time using a load table that contains parameter values for instantiation.

4 Problem Modeling

Features in the problem model represent the concrete context of products of a

product line, i.e., external forces that drive selection of specific architectures,

implementation algorithms, or implementation techniques; these features are

important to understand real world problems that the product line should address.

That is, the problem space captures the information of:

Table 8.1 A marketing and product plan example for an ECS PL

Marketing and product plan for ECS product line

Market

segments High-rise office building General hospital Apartment

User/

maintainer

profile

Dedicated engineers with

computer science

backgrounds

No computer knowledge is

assumed

No computer

knowledge is

assumed

Product

delivery

method

Feature selection from a

predefined set of

features (feature

selection method)

Prepackaged method Prepackaged method

Legal

constraints

Because elevator is part of a building, it must comply with standards relating to

earthquake resilience, fire standards, electrical wiring rule, etc.

Product

features

Call handling, indication

handling, door control,

motor control, hall call

cancellation, car call

cancellation, emergency

driving, group

management, etc.

Call handling, indication

handling, door control,

motor control, hall call

cancellation, car call

cancellation, emergency

driving, hospital

emergency, etc.

Call handling,

indication

handling, door

control, motor

control, etc.

Quality

attributes

Door safety, usability,

efficiency, emergency

safety

Door safety, usability,

smooth and comfortable

run, position accuracy,

emergency safety

Door safety,

usability

Product

feature

binding

time

Product delivery time Product build time Product build time
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• Why is the product line required in the market?

• When is a certain product configuration used?

• What are the expected qualities of the product line?

The answers to these questions should be captured in an exploitable form so that

we can establish clear traceability, not starting from product functional features, but

from the context of a product line.

The problem space can be divided into three disjoint viewpoints: goal/objective,

usage context, and quality attribute.

4.1 Goals/Objectives and Usage Contexts Modeling

Organizing goal/objective features and usage context features from real world

problems of a product line initiates the modeling process. Goal/objective features

specify the boundary and scope of the product line and usage context features set

specific contexts for the product line. Figure 8.3 shows an example of them.

Our experience shows that we could explore the following areas while analyzing

goals/objectives of a product line; (1) real world problems that the product line

addresses, (2) other product lines that address the problems in a similar but different

ways, (3) potential benefits that can be accrued from other product lines, and (4) key

nonfunctional properties of the product line (e.g., comfortability, efficiency, etc.)

that should be achieved. This information is used as an important input for the usage

context feature modeling.

Next we analyze the usage context of a product line. The usage context features

are to capture various usage contexts of products of the product line. For example,

we identified usage context features Passenger and Freight and each usage context
defines the objects to be carried by an elevator. (See Carrying Object in Fig. 8.3.) If
we select Passenger, the scope of the ECS product line is restricted to Passenger-
ECS products and irrelevant features are removed from selectable ones. If we look

further into the product usage, we may be able to identify more specific product

usages where different quality attributes and/or functions are needed. For example,

an elevator in a hospital may carry patients on wheelchairs, and floor leveling and

emergency button are important features. (See Hospital in Fig. 8.3 and quality

features in Table 8.2.)

With the identified goal/objective and usage context features, the next activity is

to analyze quality attribute features.

4.2 Quality Attributes Modeling

In this activity, we analyze quality requirements of a product line and model them

as quality attribute features. We can use software requirements specification (SRS),

quality requirements document, etc., as inputs of this activity. Suppose, for
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example, that one of the quality requirements of ECS is: “If the doors of a cage

detect a certain level of friction when the doors are closing, the ECS should open

them immediately.” From this statement, we can identify the quality attribute

feature Door Safety. Figure 8.4 shows an example of quality attribute feature

model.

Goal/objective and usage context features that we identified in the previous

activity have specific quality implications. If a set of goal/objective and usage

context features are selected for a product configuration, these features require a

certain set of quality attribute features for the product configuration (i.e., the set of

selected goal/objective and usage context features drive the quality attribute

features). We can represent this relation explicitly using a table. For example, in

Table 8.2, when we select the usage context feature Passenger, the quality attribute
features Door Safety and Usability should be included in a product configuration;

this is because user safety and convenience should be guaranteed for passenger ECS

products. (See the second row in Table 8.2.) If the usage context feature Hospital
(which is a specialization of Passenger) is selected, the additional quality attribute

features Smooth and Comfortable Run and Position Accuracy should be included in

Fig. 8.3 A goal/objective and usage context feature model of the ECS PL

Table 8.2 Relationship between goal/objective, usage context, and quality attribute features of

the ECS PL

Quality attribute features

Goal/objective and usage

context features

Door

safety Usability

Smooth and

comfortable run

Position

accuracy

{Passenger} V V O O

{Passenger, hospital} V V V V

{Passenger, skyscraper} V V O O

V (required), O (selectable)
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a product configuration for moving patients on wheelchairs or beds safely. (See the

third row in Table 8.2.)

The goal/objective, usage context, and quality attribute features capture the

problem space of a product line. In the next activity, we analyze the solution space.

5 Solution Modeling

5.1 Capabilities/Services and Design Decisions Modeling

We analyze the solution space to satisfy requirements captured by the problem

space features. The solution space includes features of the capability/service (e.g.,

driving services, operations, etc.) and design decision viewpoints (e.g., position
control, speed profile, etc.). Figure 8.5 shows an example of solution space features.

After we finish feature modeling for the problem and solution spaces, we

establish mappings between the problem and solution space feature models. Details

are in [11].

5.2 Relationships Between Problem Space Features and Solution
Space Features

Goal/objective and usage context features may require specific capability features.

We can capture these relationships using a table. In Table 8.3, for example, the

usage context feature Hospital requires context-specific functional requirements

such as “when a patient triggers an emergency alarm, the ECS should call nurses/

doctors and stop the elevator in the nearest floor.” Therefore, when we select the

Fig. 8.4 A quality attribute feature model of the ECS PL
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usage context feature Hospital, the required capability features (e.g., medical
emergency) must be included in a product configuration and irrelevant features

(e.g., large capacity for car) must be removed from selectable features. (See the

third row in Table 8.3.)

For each quality attribute feature, we should also establish a mapping to the

solution space. A capability or a design feature may work for or against each quality

attribute feature, and we capture the “strength” of this relation using qualitative

measures such as strongly support (++), weakly support (+), hurt (�), and break
(��) [12]. This relation is represented using a table as shown in Table 8.4: the table

shows relationships between quality attribute features and solution space features in

the ECS product line. The design decision feature Absolute Position strongly (i.e., ++)
supports the quality attribute feature Position Accuracy and hurts (i.e.,�) the quality

attribute feature Low Cost, whereas the design decision feature Relative Position
weakly (i.e., +) supports both Position Accuracy and Low Cost. If the quality attribute
feature Position Accuracy has the highest priority for an ECS product, both of the

Fig. 8.5 A solution feature model of the ECS PL

Table 8.3 Relationship between goal/objective, usage context, and capability/service features of

the ECS PL

Capability/service

features

Goal/objective and

usage context features

Medical

emergency

Double-

deck

Door

hold

Low speed

(about 60 m/min)

Large capacity for car

(about 3,000–5,000 kg)

{Passenger} O O O O X

{Passenger, hospital} V O V O X

{Passenger,

skyscraper}

O V O X X

V (required), X (excluded), O (selectable)
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design decision features Absolute Position and Relative Position may be selected,

although Absolute Position hurts Low Cost. However, if the quality attribute features
Position Accuracy and Low Cost have the same priority, then only Relative Position
can be selected.

5.3 PL Requirements Analysis

During the PL requirements analysis, functionalities that PL products must provide

are captured using a set of models such as a use case model, an object model, etc.

[6] A use case model defines interactions between the user and the system; an object

model defines allocation of responsibilities. Other models may also be included

depending on the domain that a PL is in. Based on this information, a PL component

design provides a realization of common functions that can be used across the PL

products.

Figure 8.6 shows a use case model of the ECS PL. Each of use case may embed

optional/alternative features in the solution space. When we establish the mapping

relation, we propose two different types of variability embedded in domain objects,

and they are external and internal variability types. In Fig. 8.6, a UML stereotype-

based notation introduced by Lee et al. [13] is used for expressing these two types.

Other UML-based variability mechanisms such as [14] may also be used.

The external-variability type denotes that an associated use case is entirely

related to the specified feature and inclusion/exclusion of the use case depends on

the selection result of the feature. For example, ‘<<�Car Call Handling>>’ in the

Process Car Calls use case in Fig. 8.6 indicates that the inclusion of the Process
Car Call use case depends on the selection result of the optional feature Car Call
Handling. In other words, if Car Call Handling is selected for a product configura-

tion, the Process Car Call use case should be included in a product; otherwise it

should be removed from the product configuration.

The internal variability type means that a corresponding feature is partially

related to the associated use case and specifics on how the feature is related to the

use case can be found by looking inside of the use case. For example, “<<○Hall
Call Cancellation>>” in the Process Hall Calls use case in Fig. 8.6 means that

Process Hall Calls is related to the optional feature Hall Call Cancellation, and if

we select or not select Hall Call Cancellation, the internal interaction(s) of the

Process Hall Calls use case changes.

Table 8.4 Relationship between quality attribute and solution space features of the ECS PL

Quality attribute features

Solution space features Position accuracy Low cost

Calculation Absolute position (optional) ++ �
Relative position (optional) + +

Compensation of current position + �
++ (strongly support), + (weakly support), � (hurt), �� (break)
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In object modeling, we first identify domain objects, which are candidate-

reusable objects derived from the feature models based on the guidelines proposed

in [11]. Then variabilities captured as optional/alternative features in the solution

space are embedded into the object model.

Figure 8.7 shows an example of mappings between solution space features and

domain objects. We also use the external and internal variability types. For exam-

ple, “<<�Car Call Handling>>” in the Car Call Handler domain object in

Fig. 8.7 indicates that if Car Call Handling is selected for a product configuration,

the Car Call Handler object should be included in a product; otherwise it should be
removed from the product configuration. For another example, ‘<<○Car Call
Cancellation>>’ in the Car Call Handler domain object in Fig. 8.7 means that if

we select or unselect Car Call Cancellation, the internal implementation of the Car
Call Handler object changes.

Once the feature model is refined and PL requirement models are developed, this

information is used to refine the MPP as described in Fig. 8.1. Since the initial MPP

only contains delivery methods for functional and nonfunctional features, product

feature delivery methods for design features (e.g., operating environment features)

should be developed during the refinement.

6 Artifact Modeling

After we establish the problem and solution space feature models and their

relations, the next activity is to develop product line artifacts based on the feature

models. During this activity, the identified solution space features are implemented

as product line artifacts including product line architectures and asset

implementation.

Fig. 8.6 A product line use case model of the ECS PL
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6.1 Architecture Design

In FORM [15], architecture design starts with identifying high-level conceptual

components and specifying data and control dependencies among them. During the

architecture design activity, the MPP is used as a key design driver. For example,

the conceptual architecture for the high-rise office building ECS (see the conceptual

architecture in Fig. 8.8.) consists of three major components (i.e., Call Handler,
Cage Operation Manager, and Safety Manager) and the Safety Manager compo-

nent is added to meet the quality requirement Emergency Safety. The Safety
Manager monitors various safety related sensors (e.g., smoke sensor) and when

an emergency situation (e.g., fire, earthquake) is detected, it notifies users via Safety
Supervision System and sends the emergency status to the Call Handler and the

Cage Operation Manager. The Call Handler receives call requests and schedules

floors to visit and the Cage Operation Manager controls various external objects
(e.g., door, motor) in elevator cars. When they receive the emergency status, they

follow predefined emergency strategy.

The next step is to refine the conceptual architecture into process and deploy-

ment architectures. The bottom portion of Fig. 8.8 shows the process architecture

for the Call Handler component of the conceptual architecture. During the

Fig. 8.7 Solution space features and domain objects mappings of the ECS PL
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refinement, the quality attributes from the MPP are used for architectural style

selection and evaluation [16]. For example, “Independent Component” architec-

tural style [16] is selected, and Scheduler is designed to schedule a group of

elevators, while each instance of Service Manager is designed to control each

individual elevator of the group so that efficiency elevator management is achieved

(i.e., they addresses the efficiency requirement).

6.2 Asset Implementation

Once conceptual architectures are refined into process and deployment

architectures, the architectural components are then refined into concrete

components. The PL component design consists of specifications of components

and relationships among them. Figure 8.9 includes the component specification of

the Hall Call Handler component and relationships with other components using

UML.

For the component design, the product feature delivery methods in the MPP

should be taken into consideration. For example, the use of FORM macro language

(i.e., $IF(;$HallCallCancellation)[–]) in the component specification

of the Hall Call Handler component in Fig. 8.9 is to support the prepackaged

feature delivery method of the general hospital ECS. When the Hall Call Cancel-
lation feature (in Fig. 8.5) is selected as one of prepackaged features in the general

Fig. 8.8 Architecture design and refinement for the high-rise office building ECS
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hospital ECS, code segments related to the Hall Call Cancellation feature are

incorporated into the product at product build time.

Depending on the nature of extensions required for product specific features,

techniques such as code generation, encapsulation, parameterization, framework,

template, etc. may be used. For example, the Service Manager component in

Fig. 8.8 that encapsulates various elevator control policies (e.g., VIP driving,

Emergency driving) may be specified using a formal specification technique (e.g.,

Statechart specification), from which the program code may be generated after

formal verification. Whenever new features are added, the feature interaction

specification is modified and tested for correctness and new updated program

code for the component is generated.

7 Discussion

In order to develop reusable core assets for a product line, PL software engineering

must have an ability to exploit commonality and manage variability. A feature-

oriented approach to commonality and variability analysis has been used for PL

software engineering both in industry and academia, since the idea of feature-

oriented analysis (i.e., Feature-Oriented Domain Analysis (FODA) [8]) was first

introduced in 1990 by the Software Engineering Institute.

There are several reasons why FODA has been used extensively compared to

other domain analysis techniques. The first reason is that feature is an effective

communication “medium” among different stakeholders. It is often the case that

customers and engineers speak of product characteristics in terms of “features the

product has and/or delivers.” They communicate requirements or functions in terms

Fig. 8.9 Component specification for Hall Call Handler
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of features, and such features are distinctively identifiable functional abstractions to

be implemented, tested, delivered, and maintained. We believe that features are

essential abstractions that both customers and developers understand and should be

first class objects in PL asset development. The second reason is that FODA is an

effective way to identify variability (and commonality) among different products in

a PL. It is natural and intuitive to express variability in terms of features. When we

say “the features of a specific product,” we use the term “features” as distinctive

characteristics or properties of a product that differ from others or from earlier

versions. The last reason is that the feature model can provide a basis for develop-

ing, parameterizing, and configuring various reusable assets (e.g., PL requirement

models, PL architectures, and reusable code components). In other words, the

model plays a central role not only in the development of the reusable assets but

also in the management and configuration of multiple products in a PL.

Notice that we have not discussed variability in product engineering. It is our

opinion that variability of product line must be managed through product line asset

engineering; otherwise there will be a proliferation of product versions. Features

that are specific only to a product also need to be incorporated into the product

through the variability mechanism of the asset management to avoid reworks that

may happen when other features of the product evolve.

8 Summary and Outlook

We have explored variability issues over the product line life cycle starting from

market analysis through component design to product instantiation. The marketing

issues must be studied thoroughly and engineering feasibility of the envisioned

products must be analyzed carefully before PL asset development starts.

One of the most important aspects of variability management is managing the

explicit horizontal and vertical connections among PL assets including MPP,

architecture, and components using various variability models and maintaining

their consistencies. Here, the horizontal connection means variability relationships

between PL lifecycle products such as MPP, PL architecture, and components,

while the vertical connection means relationships between elements of each

lifecycle product.

With this connection, marketing, which has traditionally focused only on secur-

ing and expanding the market share and on sales strategies, is forced to become

more “product aware” and think about how features will be packaged, delivered,

and maintained, who will perform these activities, and what the pricing

implications are with various alternative approaches. This marketing-oriented per-

spective can be very effective in uncovering critical quality attributes required for

product line architecture and component design. By tightly coupling the marketing

with asset development, we can develop PL assets that will support the business

goals and satisfy the needs of customers.
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In this chapter, we explored explicit connections between business goals/

objectives, product usage contexts, quality attributes, and functional and design

features. We expect to see more formal treatments of these subjects in a near future.
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Chapter 9

COVAMOF

Jan Bosch, Sybren Deelstra, and Marco Sinnema

What you will learn in this chapter
• The basic concepts of COVAMOF and its supportive tool suite.
• Experiences from the practical application of COVAMOF.

1 Introduction

The COVAMOF tool suite is part of an elaborate variability management frame-

work. The framework was specifically developed to deal with aspects of variability

management that go beyond formal specification of relations between variation

points. The tool suite was constructed as a proof of concept research tool and used

to validate the framework in industry. The following sections explain the key

difference with respect to traditional variability management approaches and

show how the COVAMOF tool suite is used. Throughout this chapter, we use

examples from a product line for Intelligent Traffic Systems.
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2 COVAMOF Variability Management Framework

The key difference of the COVAMOF Variability Management Framework in

comparison to other approaches is in how it deals with informal knowledge. An

example of using informal knowledge can be found in ALPR development for large

tolling projects at Dacolian B.V. The derivation of high-performance ALPR

products is a complicated task, where trade-offs have to be made to deal with the

dependencies between the various configuration options. These trade-offs used to

be available as tacit knowledge in expert minds or as informal graphs like Fig. 9.1.

As a result, only a few experts were capable of performing a directed optimization

during the configuration process. Moreover, their knowledge was hard to capture in

formalized dependencies.

COVAMOF addressed this issue through its use of variation points and

dependencies as first-class entities. The variation points (Fig. 9.2) provide a view

on the variability provided by the product family. These variation points specify for

each variant or value the actions that should be taken in order to effectuate a choice.

These actions can be specified formally, for example, for automatic component

selection by a tool, or informally in natural language, for example, a guideline for

manual steps that should be taken by the software engineers. Variation points that

have no effectuation specified are realized by variation points on a lower level of

abstraction (e.g., variation in the design realizing the variation in the product

features). Such realizations are represented by realization relations between varia-

tion points and contain rules that describe how a selection of variation points
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Fig. 9.1 In the ALPR products of Dacolian B.V., the correct rate (%CORRECT) and error rate

(%ERROR) are a result of choosing a configuration of explicit variation points and as such pose a

dependency on these variations points for a given maximum processing time (the four lines).
Graphs of measurements like the one above capture the informal knowledge on the effect of

varying maximum processing time on this interaction of these dependencies
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directly depends on the selection of the variation points in a higher level of

abstraction.

Also modeling dependencies as first-class entities allow for specifying that

relations exist without knowing or writing down all the details of its nature.

Treating dependencies as objects furthermore enables storing additional informa-

tion (see also Fig. 9.5) such as measurements and descriptions of how choices at a

variation point influence the dependency and how choices influence multiple

dependencies. This information is modeled by the COVAMOF reference data
elements, the type of an association, and dependency interaction, respectively.
See also the meta-model for dependencies in Fig. 9.3. For more information on

the details of a COVAMOF variability model, see [1].

Fig. 9.2 Variability in COVAMOF is modeled by five types of variation points (large circles),
where the triangles represent the possible variants. The optional variation points (white marker)
allow for selecting no variant and variant variation points (square marker) allow for selecting

multiple variants in one product. For value variation points, a specific value should be selected

within the specified range
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Fig. 9.3 Dependencies in the COVAMOF Meta-model: dependency entities contain one or more

associations to variation points and zero or more Reference Data elements. The dependency
interaction entities specify relations between two or more dependency elements
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3 Examples and Recommended Areas of Practice

With the key aspect of the COVAMOF framework in mind, this section explains in

what way the COVAMOF tool suite contributes to the daily work of software

engineers. The COVAMOF tool suite is implemented as Add-Ins for Microsoft

Visual Studio and provides integrated variability views on the active Solution,

which contains the product family artifacts. Examples of those artifacts are the

source files (e.g., C, C++, and C#), start-up configuration files, and XML-based

feature models. The variability information in these artifacts is either directly

interpreted from language constructs (such as #ifdef) or from special constructs

of the COVAMOF variability language XVL within the source files.

For domain engineering, the COVAMOF Variability Assessment Method can be

used to construct a model of the variability that is provided by the product family

[2]. To assist the engineer during that process, the COVAMOF tool suite provides a

graphical model editor, visualized in the left part of Fig. 9.4. To edit the details of

individual COVAMOF model entities, the engineer can use the property editor

shown in the right part of Fig. 9.4. Basic verification of the model is offered by

automatic consistency checking.

In addition to this generic model editor, COVAMOF also provides specialized

views that address specific tasks. Examples of these specialized views are the

Dependency Editor and the Derivation Assistant. The Dependency Editor is used

to maintain the references to documented and tacit knowledge related to

dependencies and dependency interactions. In Fig. 9.5, we show how the view is

used to model the example from Fig. 9.1.

The COVAMOF tool suite not only supports engineers in specifying the

variability provided by the software, but with help of the specialized Derivation

Assistant, engineers are assisted to configure the individual products as well. The

derivation functionality in COVAMOF supports an iterative configuration process.

In this process, the inference engine calculates any implied choices based on the

information specified by realization relations and formal dependencies. Where

complex dependencies are involved, the tool provides hints on how to continue.

These hints assist the engineer to converge towards a solution that addresses all

customer requirements. To develop a product, the application engineer needs to

follow the following steps:

• Product Definition. In this first step, the engineer creates a new Product entity in

the variability model, by opening the Product view and typing the product and

customer name in the “Name” and “Customer” input fields. After clicking the

“New” button, COVAMOF stores his product in the active Solution of Visual

Studio, and the engineer can start to configure his product.

• Product Configuration. To start the actual configuration, the engineer selects the
Product entity from the available products drop-down menu in the COVAMOF

toolbar. From that point, COVAMOF is in configure mode, and additional

configuration information about the product at hand is shown in both variability

views (see also the middle-right section in Fig. 9.6).
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Fig. 9.4 Domain engineering with COVAMOF, as plug-in for Microsoft Visual Studio

Fig. 9.5 Domain engineering in COVAMOF-VS—maintaining the dependencies and associated

interactions. The screenshot shows how the dependency interaction presented in Fig. 9.1 is

captured through a combination of formal entities (left panel) and informal knowledge (graph in

the bottom-right corner)
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During the Product Configuration step, the engineer binds one or more varia-

tion points to new values or variants based on the customer requirements. In

order to bind these variation points, he marks the new variants or specifies the

new values in the variation point view. The order in which variation points are

bound is dynamically determined by the realization relations and dependencies

in the variability model. To specify requirements on dependency values, he

clicks the respective dependency in the configure view, which allows to set a

minimum and maximum value. This view will also show the inferred depen-

dency value of the configuration at hand, which may be a specific value or may

be the value “unknown.” In the first case, requirements are automatically verified

and where necessary, the tool warns the user. In the latter case, a test is required

to determine the value.

After a test, when the result has been fed back to COVAMOF, the measured

value will show in the configuration view. For convergence to an acceptable

configuration, the engineer can use the hints shown in the Derivation Assistant

(see also the bottom-right corner in Fig. 9.6).

• Product Realization. In order to get a complete software product, the Product has

to be realized to the point where it can be installed and executed. In COVAMOF,

the product is realized by pressing the Realize button in the toolbar of

Fig. 9.6 Application engineering in COVAMOF-VS
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COVAMOF. As a result, COVAMOF executes the effectuation actions specified

in the variability model for each of the variants that are selected for the Product

entity.

• Product Testing. The goal of the testing phase is to determine whether the

product meets both the functional and the nonfunctional requirements. When,

during testing, the realized product appears to satisfy all requirements, the

software product can be packed and shipped to the customer. Otherwise, one

or more additional iterations of a Product Configuration and Product Realization

steps are required. In any case, the values of the dynamically analyzable

dependencies that have been determined during the test are fed back into the

variability model as Reference Data. In this way, the COVAMOF variability

model is gradually enriched and improved to provide better estimated values

during Product Configuration steps in the future.

4 Results and Lessons Learned

Although we explained that the tool suite is useful both in domain and application

engineering, the benefits of the tool were only validated for application engineering.

To learn about the effects of the use of COVAMOF, an experiment was conducted

early in 2004 [3]. During the experiment, engineers were asked to derive several

products from a product line, some with, and some without, the use of the

COVAMOF tool suite. The experiment showed that indeed both experts and

novices were able to derive their product faster with the tools aid, particularly

because they required less iterations (see Fig. 9.7). Rather than discussing the

experiment and its results in this chapter, however, we will share three interesting

observations on the tools use.

• Although the number of product iterations and thus total derivation time

decreases with COVAMOF, NonExperts spent significantly more time in the

configuration step of each iteration when using the tool suite. The cause of this

difference most likely lies in the amount of existing background knowledge of

the participants. As NonExperts lack relevant background knowledge, without

COVAMOF, they oftentimes resort to guessing during the configuration step.

With COVAMOF, however, they require time to study the suggestions provided

by the tool.

• Being an expert can be a drawback at first. From practice, we knew that several

experts can have conflicting insights; where one would think the effect of a change

would be positive, another expert can think the exact opposite. These effects are

taken into account when creating COVAMOF variability models but can also be

experienced firsthand during the product derivation process. Some experts will

first deviate from the hints provided by COVAMOF, as they believe from their

own frame of reference that they should do otherwise. When studying the test

results, they will be surprised to see that the original hints were in fact correct.
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An important effect of the tool’s use is that it improves knowledge sharing, as

differences between insights of experts now become visible.

• Users have very different ways to tackle a configuration problem. This was

clearly visible during the experiment both with and without using COVAMOF.

On the one hand, for example, COVAMOF-VS calculates a ranking of

VariationPoints that is based on the impact property of associations. This is

the most likely best order in which the selection at VariationPoints should be

changed. One participant would instead first exclude a few of the other

possibilities prior to following the order suggested by COVAMOF. On the

other hand, without COVAMOF, some participants would rigorously change

choices to determine the effect of changes, while others would only marginally

change them.

Fig. 9.7 The effect of the COVAMOF tool suite on the number of iterations during product

derivation
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5 Outlook

The COVAMOF tool suite was developed up to the point where it would suffi-

ciently serve its purpose of proofing the feasibility and value of the COVAMOF

Variability Management Framework. Naturally, there are several ways where the

tool suite and framework can be improved:

• Including scale: The first improvement is directly related to the last observation

in the previous section. While the tool currently suggests that the value of certain

variation points have to be increased, an easy extension is to include the scale of

the change as well.

• Test integration: Since test effort is usually the largest step in deriving products

using COVAMOF, a significant improvement would be a tighter integration of

COVAMOF and automatic test suites. Viable expansions are launching tests

directly from the tool and storing their results automatically as Reference Data in

the COVAMOF variability model.

• Automatic configuration: The way that the use of the COVAMOF tool suite is

depicted in this chapter is a situation where it is used to assist engineers during

product derivation, that is, through consistency checking, configuration guid-

ance, and automatic inference. This automatic inference is currently based on

formalized knowledge. Once a better test integration is achieved, the tool can be

extended so that it also uses the fuzzy rules, hints, and intermediate test results to

derive a product automatically.

• Language integration: Currently, variation points are embedded in source code

by annotation. The COVAMOF variability modeling elements could also be

incorporated as first-class entities in (programming) languages.

• Runtime adaptability: With the previous improvement in place, dependencies

can also be checked on runtime, and the system can be reconfigured using

variation points [4].

Even without these improvements, however, COVAMOF can already contribute

to more than it was initially intended. Parts of the framework are being used in

industry today. You can download the tool suite and related research papers at the

Tool website [5].
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Chapter 10

PLUM: Product Line Unified Modeler Tool

Cristina López and Jason X. Mansell

What you will learn in this chapter
• The concepts underlying the PLUM tool
• Using PLUM for variability management

1 Introduction

PLUM1 [1] is a tool suite for the design, implementation, and management of

product lines that follow a Model-Driven Software Development approach. PLUM

is a domain agnostic tool suite. It aims to provide an integrated set of tools which

support adopting Product Line Engineering (PLE) approach in any domain.

With PLUM, the variability of the domain products is captured in what is called

a Decision Model. Decision Modeling implies analyzing domain variability in

terms of decisions and establishing dependencies among them (this is further

detailed in Chap. 2). This technique, which comes from previous European research

projects such as FAMILIES,2 CAFÈ,3 and ESAPS4 finds in PLUM its latest

implementation for PLE automation support. Decision Modeling is an approach

alternative to Feature Modeling [2]. While Feature Modeling represents all the

possible elements of the domain in terms of features, Decision Modeling [3] only

focuses in the variable elements, representing them with decisions/questions. In this

C. López • J.X. Mansell (*)

Fundación TECNALIA Research & Innovation, Derio, Bizkaia, Spain
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1 PLUM tool, http://www.tecnalia.com/plum
2 FAMILIES ITEA research project, http://www.esi.es/Families/
3 CAFÈ ITEA research project, http://www.hitech-projects.com/euprojects/cafe/
4 ESAPS research project, http://www.esi.es/esaps/
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way, PLUM differs from Feature Modeling approaches implemented in well-

known commercial tools like pure::variants5 or Gears.6

PLUM is based on Eclipse,7 which facilitates the integration of tools in the same

framework. PLUM uses a wide range of well-established Eclipse technologies,

including, but not only restricted to, the Eclipse Modeling Framework [4], GMF [5]

for graphical asset editors, EMF Validation Framework, OCL [6] for Decision

Model’s dependency engine, BIRT8 for reporting valuable PLE metrics, the

Modeling Workflow Engine (MWE)9 for the execution of model transformations,

ModelBus10 to allow clients to ask for product generation at a remote server, and

SVN11 for version control and for obtaining historical metrics. The transformation

languages supported are Xpand212 and Xtend, previously parts of the OAW proj-

ect13 but now integrated in the Eclipse Modeling Project.

2 PLUM Implementation Process

In this chapter we will guide the reader in the use of PLUM to implement a software

product line. To illustrate the utilization of PLUM, we will use the example from

the “Airbus Simplified Doors and Slides Control System (SDSCS)” case study, in

which Tecnalia cooperated with Airbus and EADS. As a first step we present the

actual process for defining a software product line. Then we will follow this process

in the execution of the SDSCS case study.

As any other variability tool, the success of using PLUM depends on three

principles: the knowledge of the specific domain, the adequate use of the tool,

and variability management background (in other words, previous experience

dealing with variability). The adoption of a PLE approach requires a high invest-

ment of effort and cost, but the benefits obtained afterwards are very well known as

reported in [7].

The initial phase on the implementation of a product line is performed by the

Domain Engineer in what is called Domain Analysis. The Domain Engineer will be

responsible of determining the domain concepts that are going to be used to build

the PLE. The Domain Engineer identifies the variability, as well as the

dependencies among the elements of the product line, in order to implement the

5 pure::variants, http://www.pure-systems.com/
6 Big lever, gears, http://www.biglever.com/
7 Eclipse, http://www.eclipse.org/
8 Business intelligence and reporting tools, http://www.eclipse.org/birt/phoenix/
9Modeling Workflow Engine, http://www.eclipse.org/modeling/emft/?project¼mwe
10ModelBus, http://www.modelbus.org
11 Subversion, http://subversion.tigris.org/, http://subversion.apache.org/
12 Xpand, http://www.eclipse.org/modeling/m2t/?project¼xpand
13Open Architecture Ware, http://www.eclipse.org/workinggroups/oaw/
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corresponding Decision Model(s) that captures the mentioned knowledge.

Figure 10.1 gives an overview of how the roles that are part of the PLUM

implementation process are related to each other.

As a result of the Domain Engineer’s work, a Domain Model is created. A

Decision Model is a set of decisions and dependencies that represent all possible

dimensions of variation of the product line products. This Decision Model serves as

the basis for creating the product line architecture. It includes the variability points

that provide the architecture of the required logic that enables producing all the

products aligned to the Decision Model. This architectural knowledge is captured

by the Transformation Engineer in the Flexible Components, which are “smart”
components capable of managing the variability of the Decision Model and con-

sider the commonalities by embedding this domain knowledge in the form of

transformation rules (e.g., IF-ELSE statements).

The mechanism used to actually configure a specific product from the product

line is called Application Model. The Application Engineer is responsible of

creating as many Application Models as necessary to represent the wide range of

products of the family and fulfill the product line requirements. The Application

Model is an instance of a Decision Model in which the variability has been resolved

by giving value to each of the decisions of the model, in other words, by “making

decisions.”

Finally, the Execution Engineer is the person who defines and executes the

Workflows in order to generate the products. TheWorkflow is a file that enumerates

the sequence of steps that have to be executed, establishing the necessary

relationships among the Application Models and the Flexible Components, in

order to generate the desired products. The products can be of diverse nature,

from compiled code (e.g., Java, C), Programmable Logic Controller code, HTML

code, XML models, documentation, UML models, etc. In the SDSCS case study,

the goal is to obtain UML models representing the architecture of the aircraft. The

implementation process of the SDSCS case study is depicted in Fig. 10.2.

Quality Engineer

Variation points
Transformation Engineer

Domain Engineer

Application Engineer

AA
Model new product through requirements

Knowledge encapsulation

Execution Engineer

interpretation for product

Product deployment

Productsgeneration

Management, metrics and reports

DD

Fig. 10.1 Roles in PLUM
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In order to get additional information about the PLUM development process,

check the tool user manual online [8]. Examples explaining how to use the tool and

how to define the different assets of a PLUM project are also available in the tool

web site, under the documentation section [9]. In the following section, we intro-

duce a case study that exemplifies the described implementation process and the

PLUM assets that have to be created.

3 Airbus Simplified Doors and Slides Control System

This case study is related to the system components that are necessary to include in

an aircraft in order to ensure the pressurization of the cabin thorough the correct

management of the doors systems. The Doors and Slides Control System of an

Airbus is mainly composed by passenger doors, emergency doors, cargo doors, the

sensors and actuators associated to them, and the circuitry and components that

internally manage the signals received by the sensors and actuators. Currently the

safety standards require a strict manufacturing process in which a component-based

approach is used but in which each provider supplies components with different

response times and more important different failure rates. The design of the aircraft

must accomplish an error safety objective in order to fulfill the standardized safety

Fig. 10.2 PLUM implementation process overview
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requirements. What determines the total failure rate of the aircraft is the sum of the

individual failure rates of the sensors, actuators, warning lights, and related internal

elements that compound the system. The components of the system are of different

suppliers, which offer diverse failure rates for each of the components, so, for

example, Supplier A may offer a failure rate of 2e�8 for a pressure sensor, while the

Supplier B’s sensor has 5e�07. The key of the aircraft design relies on encountering

the balance between the supplier failure rates per component and the number of

sensors of each kind that are necessary in the system to reach the regulated safety

objectives.

The example at hand is a simplified version of the Doors and Slides Control

System. So for instance, the example establishes that an aircraft model must have

the same supplier for all the components. Each supplier has a general failure rate

associated. Therefore, the supplier selected will determine the minimum and

maximum number of components that the system may have in order to fulfill the

safety objective. Once the supplier is chosen, the number of sensors, actuators, and

warning lights selected will also establish the number of internal components

(RDC, CPIOM, etc.)14 that the systems tolerate. Furthermore, the example also

considers the model and layout of the aircraft, characteristics of the systems that

decide the total number of doors and indeed the number of associated sensors,

actuators, and warning lights allowed. These properties of the SDSCS problem, and

how they relate to each other, are outlined in Fig. 10.3.

3.1 Creating the Decision Model

The Decision Engineer performs the Domain Analysis to extract the variability and

commonalities and therefore create the associated Decision Model. Based on the

results of this analysis of the SDSCS example, the variability as well as the

dependencies among the variations is captured in PLUM in the manner that

Fig. 10.3 depicts.

The Decision Model defined in the case study is divided into three groups:

Model, Supplier, and Fuselage. The first group, “Model,” contains decisions related

to the family model and layout of the aircraft, which affect the total number of doors

of the aircraft. The “Has high comfort layout” decision is only visible when the

“A350-1000” model is selected in the previous decision (“Choose Model”). This

behavior has been implemented by adding a dependency between both decisions

and associating a “Validity Action” that controls the visibility of the affected

decision. The group “Supplier” contains a decision to choose the component

supplier of the whole system. The value selected in the “Choose the component

14 There are different internal HW/SW components that are connected to the sensors and actuators.

RDC stands for Remote Data Concentrator, whereas CPIOM stands for Core Processor Input/

Output Mode.
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supplier” decision determines the number of sensor, actuator, and warning light

components that the system can accommodate, which is calculated taking the

average failure rate of the supplier. The last group, “Fuselage,” contains a subgroup

named “Doors Equipment” which is composed of decisions that allow selecting the

desired number of sensors, actuators, and warning lights. These decisions are of

type “Min Max,” which defines the minimum and maximum bounds of an Integer

value.

The Decision Model must not only consider all the possible dimensions of

variation of the domain but also the relationships between the elements. The object

“Dependency” is used to represent these relationships and “Action” prepositions

are attached to the dependencies to implement the desired behavior (defined with

OCL [6]). There is a wide range of predefined Actions to choose from (described in

Fig. 10.3 Decision Model of the SDSCS case study
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detail here [8]) and are mainly used to guide the Application Engineer in the

decision-making process when defining a new product. These dependencies and

actions are used not only to guide the resolution making process but also to ensure

model compliance and prevent the Application Engineer from committing any

error. Additionally, the underlying OCL language gives an extra support to define

complex conditions and constraints within the dependencies among the decisions.

Some dependencies have been defined in the model to implement the described

behavior as can be seen at the bottom of Fig. 10.3. These dependencies contain

“Min Max Values” Actions that with the support of OCL queries are used to change

the range of selectable elements in the “Doors Equipment” subgroup depending on

the supplier previously chosen. For instance, if Supplier A is selected, the number of

Pressure Sensors for a cargo door must be between two (min) and four (max); in

others words, the door can have two, three, or four pressure sensors. Otherwise, if

Supplier C is selected, the number of Pressure Sensors for a cargo door must be

obligatorily four, due to the high failure rate of the selected supplier.

3.2 Resolving the Application Models

As depicted in Fig. 10.2, we have defined two product configurations using the

Application Models: A350-800 and A350-1000.

For simplification, the values selected in both models are depicted in Fig. 10.4,

instead of explained with text. The configuration of the A350-800 is on the left side

of the figure, while the configuration of the A350-1000 is on the right side. In order

to give values to the Application Model, the user navigates through the model

decisions and, with the help of a properties window, establishes the answers to the

different questions that are part of the model. The checkboxes of the Application

Model decisions indicate that the decision has been made and hence has a value,

which is shown after the decision name. Comparing the aircraft configurations

illustrated in Fig. 10.4, it is easy to see that the answers of the decisions are different

in each case.

3.3 Creating the Flexible Components

The Flexible Components contains the reusable information of the product line.

These components are capable of managing the variability described in the Deci-

sion Models, interpret the values given by the Application Model, and reuse the

commonalities of the domain-defining transformation rules (a transformation is just

a piece of code that maps one type of concepts to another type of concepts). The

Flexible Components transformations can be either Model-to-Text or Model-to-

Model transformations. The languages chosen to implement these transformations

are Xpand and Xtend, respectively [10], both part of the Eclipse Modeling Project.
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For the understanding of the example, it is not worthwhile explaining in detail the

logic behind the implementation of these Flexible Components.

On the right side of Fig. 10.3, it is explained how the elements that the final

system architecture must contain are calculated depending on the Application

Models decision values. The transformations of the Flexible Components are

programmed following this logic. Knowing this and taking into account the deci-

sion values depicted in Fig. 10.4, we know that the design of the A350-800 aircraft

should have 8 Pax & Emergency doors, 2 Cargo doors, 38 sensors in total, 19

RDCs, and 5 CPIOMs. On the other hand, the design of the A350-1000 aircraft

should have instead 10 Pax & Emergency doors, 2 Cargo doors, 19 sensors, 10

RDCs, and 3 CPIOMs. The transformations are coded in such a way that, given the

input from the Application Models, a new UML model is created, following the

logic behind the variability points explained at the right side of Fig. 10.3.

3.4 Execution of the Product Line

Being at this stage, it is the responsibility of the Execution Engineer to launch the

execution of the product line project. In the case study at hand, the results generated

by the product line are UMLmodels implementing the simplified architecture of the

Doors and Slides Control System of the aircraft. The UML models generated are

Fig. 10.4 Application Model resolution comparison
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not created from scratch. As depicted in Fig. 10.2, the PLUM product line receives

as input the Aircraft Specification, which internally contains, among others, a UML

containing all the possible dimensions of variation of the use case. Then, after the

execution of the product line, a new version of the UML model with the variability

solved is generated taking into consideration the decisions made in the Application

Model. Figure 10.5 illustrates an extract of the UML models obtained for each of

the product configuration (Application Models) described above. Comparing both

models, it is quite straightforward to see how the results differ from one configura-

tion to another. This output is correctly obtained; thanks to the transformation rules

that are defined in the Flexible Components as mentioned before.

4 Success Stories

PLUM has proven successful so far in very different domains. Even though this

chapter addresses the PLUM tool, actually the way it is provided to the market is by

means of technological transfer, that is, the PLE approach is introduced within the

culture of the target organization, with PLUM just being a tool to automate the PLE

process. The PLUM tool has undergone implementations in the following domains:

Fig. 10.5 Extract of the product line execution results of UML models
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enterprise resource planning (ERP) [11], manufacturing (PLCs), avionics (UML

modeling and transformations) [12], content providers (content manager and web

generation automation) [13], and requirements management (requirement-guided

reasoning) [14, 15]. Basically we are talking of any field where companies need to

increase productivity, reduce risks, and industrialize software production.

The major added value that is identified by the customers that have used the

PLUM, among others, is that since it is fully Eclipse based, it allows the easy

integration with another tools and the implementation of new enhancements by the

customer. Once the tool has been deployed within the company, they are not

married to the tool provider and the consequent restrictions. This means, in other

words, that they do not totally depend on the tool provider in order to integrate new

functionalities.

The major issues the adopters identify as potential improvements are directly

linked to user interfaces and customer oriented, such as the use of a natural

language at Decision Model level, the ability for the tool to learn (based on the

user reasoning when defining decision models as well as variability/dependencies),

scalability issues, and one which is considered as the next generation of PLUM, the

capability of specifying Domain-Specific Languages (elements, images, etc.) which

can be used as an add-on to the Decision Model.

5 Outlook

The effort of the PLUM development team is devoted to improve the user experi-

ence when working with the tool and minimize the impact of adopting new

technologies. One way to achieve this, and our goal for the near future, is to provide

an interface intelligent enough to self-adapt its capabilities to the domain at hand.

The basic idea behind this self-adaptation is that the tool should have a capability of

enabling each company adopting it to define their own DSL which will be directly

mapped to the actual PLUM underlying technology. We are confident that, with

effort, this could become a reality in the coming years.

One key improvement of the tool support will provide full bidirectional trace-

ability from decision to variations points in order to enable the automation of

maintenance efforts and easy the evolution of the product line.
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Chapter 11

FaMa

David Benavides, Pablo Trinidad, Antonio Ruiz-Cortés, and Sergio Segura

What you will learn in this chapter
• The scope of the automated analysis of variability models.
• How to use a tool for the automated analysis of variability models.
• A product line architecture to build analysis tools.

1 Introduction

Extracting relevant information from variability models is an important task to

support decision-making in product line development and product configuration.

Examples of questions that can arise during development are:

• Which are the products that contain a certain subset of features?

• Does the variability model contain any errors, i.e. contradictory information?

• How many products are we able to build?

• How much does it cost to produce a certain product?

Answering the above questions can be a tedious and error-prone task, and it is

infeasible to perform manually with large-scale models; so it requires to be

automated.

Using tools for the Automated Analysis of Variability Models (AAVM, see

Definition 11.1) is part of the life of software product line developers. As an

example of such tools, we present in this chapter the FeAture Model Analyser

(FaMa) Tool Suite. It is an ecosystem of tools that focuses on the most used

variability modelling languages: feature models. It contains several software tools

some of which are:

D. Benavides (*) • P. Trinidad • A. Ruiz-Cortés • S. Segura

University of Seville, Seville, Spain

e-mail: benavides@us.es; ptrinidad@us.es; aruiz@us.es; sergiosegura@us.es

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_11, © Springer-Verlag Berlin Heidelberg 2013

163

mailto:benavides@us.es
mailto:ptrinidad@us.es
mailto:aruiz@us.es
mailto:sergiosegura@us.es


• FaMa Framework: a customizable analysis framework.

• FaMa Test Suite: a set of implementation-independent test cases to test feature

model analysis tools such as those created by the FaMa Framework.

• FaMa Integrations: a set of developments to integrate FaMa Framework into

other tools such as Moskitt Feature Modeler.

• BeTTy Framework: Betty [1] is a highly configurable framework supporting

benchmarking and functional testing of variability model analysis tools.

The tool suite is under LGPL v3 licence and can be found at http://www.isa.us.

es/fama. In this chapter we focus on FaMa Framework, the masterpiece in the

puzzle of tools provided by the ecosystem.

1.1 Definitions and Examples

Definition 11.1. Automated analysis of variability models

The Automated Analysis of Variability Models (AAVM) is about the automated

extraction of information from variability models using automated mechanisms to

assist decision-making in PL development or life cycle. This is a key activity in

variability management because it allows checking and extracting information from

the variability model which is central in the development of a PL.

Example 11.1. Example of analysis operations

Let’s think about a feature model as a possible variability model. A feature

model can be analysed automatically extracting valuable information from it. For

instance, dead features could be automatically detected. Dead features are features

that are represented in the model but can never be part of a concrete product because

model internal inconsistencies. At the time of writing this book, there are 30

different analysis operations reported in the literature [2].

2 FaMa Framework

FaMa Framework (FW) is a product line of tools to analyse variability models. It

mainly performs analysis operations transforming a variability model into a suitable

logic, which is used to reason about the model using off-the-shelf logic solvers.

FaMa FW is developed as a product line, which contains many variant features. For

example, there exist different variability meta-models (a.k.a. feature model dialects)

and file-formats, several analysis operations (a.k.a. questions) to be performed over

them. These questions are answered using different reasoners or logic solvers, each
of them performing better or worse for a kind of model, which is determined by the

reasoner selectors. Since some analysis operations can take long time to solve, the

framework provides for several transformations to improve the response time.

Figure 11.1 represents a feature model of the FaMa FW. It offers a wide variety

of variant features, such as meta-models, logic reasoners, analysis operations,
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transformations and reasoner selectors. A product in FaMa FW product line is

therefore a selection of the variant features that are useful for a certain context, such

as a CASE tool for PL, a product configuration tool or a reconfigurable smart home.

2.1 FaMa Architecture

FaMa FW has a component-based architecture as shown in Fig. 11.2. Every variant

feature is built as an independent component or FaMa Extension. These extensions
can be classified as follows:

• Meta-models: support different FM representations and file formats.

• Reasoners: map a feature model into a concrete logic. This logical representation

is used to solve analysis operations.

• Questions: interfaces that define the available analysis operations independently

of the specific reasoners that answer them.

• Criteria selectors: select the most efficient reasoner for a particular question and

a given feature model.

• Transformations: transform a feature model into an equivalent one in terms of

products but easier to analyse in terms of performance.

Fig. 11.2 FaMa Framework architecture
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A FaMa FW product is customised selecting a valid set of FaMa Extensions that

comes together with the FaMa Core, which is the common and mandatory part of

the architecture among different FaMa FW products. It mainly communicates meta-

model and reasoner components through mappings, registers the available

questions and use criteria selectors to search for the reasoners that may answer

the question a user demands. All this process is performed independently of specific

components, avoiding any kind of coupling among them. We can build our own

customised FaMa FW product selecting the components we are interested in. We

assume that the SPL developers, as end-users, are not interested in the internal

aspects. To this purpose, FaMa FW just wants to analyse feature models with the

best performance. We provide FaMa Facade as a transparent way to integrate

FaMa FW into existing systems. It is a stable facade that hides the complexity of

FaMa Core into a unique interface. It is designed to reduce the changes that are

carried to users; so a new extension can be deployed while the façade remains

unaffected.

FaMa FW aims to be integrated into existing CASE tools. Eclipse has become a

standard in CASE tool development. FaMa Core and Extensions are OSGi-compli-

ant [3] which is a requirement for being Eclipse-compliant. FaMa FW not only uses

this technology as an alternative to support componentization but also provides for

its own componentization technology that permits it to work as a standalone

application wherever OSGi is not available.

3 Examples and Recommended Areas of Practice

FaMa FW has been designed to be an important piece of third-party products. It

provides for an API offered as an OSGi bundle and a Java library distribution. At

date, it has been used in four kinds of products:

• Feature Modeling Tools: Incorporating analysis capabilities to visual editors and

other CASE tools that use VMs somehow. Moskitt Feature Modeller [4], an

Eclipse-based visual editor of feature models is an example of it.

• Product Configurators: Providing product configuration capabilities to validate

feature selections and to assist end user by propagating user decision and

suggesting corrections for invalid configurations. These products usually use a

fixed feature model. FaMa Debian Package and ISA Packager use FaMa FW for

this purpose.

• Dynamic Systems Reconfiguration: Restoring and reconfiguring dynamic

systems such as smart homes [5] and TV broadcasting systems [6] whenever

errors happen or system preferences change. FaMa Lite for Smart Homes

supports the decision of the features to activate or deactivate services whenever

a new feature is deployed or an existing one fails.

• Fast Prototyping Framework: Building tools for the development of new variant

features for FaMa FW PL. We have developed the BeTTy Framework [1] and
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the FaMa Test Suite and FaMa Random Generator to test the functionality and

performance of FaMa FW reasoners and FaMa SDK, an environment to develop

new variant features.

For a first contact to FaMa FW, it is recommended to use its console interface. It

permits a complete interaction with all the elements in the infrastructure and may be

used to evaluate its capabilities. Next, we show an example of how to specify an FM

using our file-format and how to use FaMa FW from the console and a Java

application as a library.

3.1 An Example Input Feature Model for FaMa FW

FaMa FW supports several feature meta-models and also offers a plain-text format

to represent all the kinds of relationships that can be found in the bibliography. The

example below describes the FM in Fig. 11.1 in a textual format.

Notice that a FM is divided into hierarchical relationships and cross-tree

constraints. Any relationship follows the next syntax:

Parent: [min_card,max_card] {Child1 Child2 . . .};
This cardinality-based relationship allows the definition of mandatory ([1,1])

and optional ([0,1]) relationships for a one-child relationship and alternative ([1,1]),

or ([1,N]) and set relationships for a multiple-child relationship. Constraints can

represent require and exclude constraints and any other constraint that can be

represented in terms of a Boolean constraint. Although there is a full support for

extended feature models, allowing working with attributes, this example avoids

them for the sake of simplicity.

Example 11.2. A definition of a FM using FaMa plain-text format

%Relationships

FaMaFW: Core Metamodels [Transformations] Reasoners

ReasonerSelectors Questions;

Core: [1,1]{Standalone OSGi};

Metamodels: [1,3]{FaMaFeatureMetamodel FaMaAttributedFM

AnotherFM};

Transformations: [1,2]{AtomicSet Attributed2Basic};

Reasoners: [1,5]{JavaBDD Sat4j Choco Reified Attributed};

ReasonerSelectors: [1,2]{Default OptimalSelector};

Questions: [1,23]{Valid Products Errors ValidProduct Explanation

[. . .]};

%Constraints

FaMaAttributedFM REQUIRES Attributed;

Explanation REQUIRES Reified;
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3.2 Using FaMa Console

FaMa console is a recommended way to give the first steps to learn the scope and

capabilities AAVM provides. You only need to download the last available distri-

bution and execute the main Java jar file and the console will be automatically

launched. Example 11.3 shows an example of interaction that loads the FM in

Example 11.2, validates it and counts the number of products the FM describes.

Example 11.3. Interacting with FAMA FW through its console

C:>java – jar FaMaSDK-1.1.0.jar
Welcome to FaMa shell
$>load fama-fm.fama
Loading model. . .
Loaded!!
$>valid
Model is valid
$>#products
Number of products: 87240

3.3 Using FaMa Façade

FaMa FW is also a Java library that can be integrated in third-party tools through

FaMa Façade. It hides FaMa FW insides offering a simple facade to interact in a

question–answer manner. Since a change on it will make all the coupled products

change, the facade must provide a stable set of interfaces that mainly consists of

question interfaces and a feature meta-model at choice. One of the advantages of

using this facade is that new versions of reasoners, reasoner selectors and meta-

models may reach end-users with no adaptation on their applications since there is

no need to couple to them.

Example 11.4. Java code to analyse the previous FM

// Instantiating FAMA Framework facade
QuestionTrader qt ¼ new QuestionTrader();

// Loads a FM from a file
VariabilityModel fm ¼ qt.openFile("fama-fm.fama");
qt.setVariabilityModel(fm);

// Validates the FM and then counts its products
ValidQuestion vq ¼ (ValidQuestion)

qt.createQuestion("Valid");
qt.ask(vq);
if (vq.isValid()) {
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NumberOfProductsQuestion npq ¼
(NumberOfProductsQuestion) qt.

createQuestion("#Products");
qt.ask(npq);
System.out.println("The number of products is: "

+ npq.getNumberOfProducts());
} else {

System.out.println("Your feature model is not
valid");

}
The façade is also available as an OSGi service providing the same interface the

facade does.

4 Results and Lessons Learned

After 4 years of development, 12 FaMa Extension projects and 7 products that are

used by 20 institutions, we have learned many things regarding PL development

[7]. Those conclusions that have surprised us most are summarised next and we

expect they serve to build other SPLs:

• PL is a growth concept rather than specific architectures: Many people explore

books for finding the silver-bullet architecture for PL. We do not have to search

for brand new architectures for PL, but using whole-life architectures and apply

innovative PL management procedures.

• Analysing core and variant helped on defining a stable core: We built FaMa FW

aiming that transferring new results in AAVM does not mean delivering new and

incompatible versions every month. A thorough study in AAVM commonalities

and waiting for the right moment when we had all the needed background to

make stable decisions helped on defining stable interfaces that have suffered no

changes since their definition.

• Deploying brand new features transparently to end-users is possible: In our

context there are much functionality that just improves the performance of our

tool such as reasoners, transformations and reasoner selectors. We have defined

a solution that delivers new features to end-users while their existing systems

suffer no change at all.

• Open-source and SPL are compatible concepts: open-source helps on

disseminating FaMa FW. Managing a SPL is complex; even more if third

party contributors are involved in the project. Using an adequate architecture

reduces coupling among projects and allow reducing the collateral effects new

projects might produce. However, critical parts such as the core and facade must

be under the control of only one party to ensure the maintainability of the SPL.

• Using tools instead of processes: dealing with a large amount of components is

not a trivial task. Incorporating Maven and SVN have reduced a large amount of
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errors we had in the beginning to synchronise project versions by hand. We have

also used the own FaMa FW to build tools to manage our SPL such as FaMa

Benchmark to compare the performance of our reasoners, FaMa Test Suite to

test every reasoner prior a delivery and FaMa itself to analyse dependences

among variant features.

5 Outlook

The area of automated analysis has recently reached 20 years of existence [2].

Although the area is mature enough and technology transfer for production is ready

(FaMa is an example on this direction), some challenges remain open and will be

explored and leveraged in the following years. One of them is the introduction and

exploitation of attributes inside variability models such as cost, time, versions, etc.

This will bring a new generation of automated analysis tools. FaMa already

includes some of those features but some investigation and practical use cases are

need to complement the current state of the practice.

We will see in the future also how analysis tools will be integrated into product

line development ecosystems: the research community has mainly built variability

model analysis tools as stand-alone prototypes that have hardly been integrated as

part of large-scope CASE tools. FaMa has also made some steps forward but more

will come in the future.

A key issue in variability model analysis tools is performance. The community is

investigating this but new results will be released in the following years. The

BeTTy framework is one of our main contributions in this direction. Refer to

FaMa’s web page at http://www.isa.us.es/fama for any further information.
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Chapter 12

pure::variants

Danilo Beuche

What you will learn in this chapter
• The underlying concepts of the pure::variants tool
• Examples using pure::variants

1 Introduction

This chapter provides a comprehensive description of the tool pure::variants. The

pure::variants tool [1] is a commercial variant and variability management suite. Its

goal is to provide a uniform way to express and relate variability and variant

information throughout the life cycle of a product line. It has been designed to

complement existing development tools and provide necessary links between those

tools in order to support efficient development of variant-rich systems. Thus pure::

variants does not replace existing tools such as requirements management tools,

IDEs, or test tools but extends them.

2 pure::variants Overview

This section is split into a brief overview of pure::variants based on a product line

workflow, a description of the underlying concepts of pure::variants, the provided

variability meta-model, and the tool architecture.

The following walk-through gives a rough outline how pure::variants can be

used in a holistic approach. It introduces some key terms used in pure::variants and
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use a fictive example to illustrate possible use cases along the product line devel-

opment life cycle.

2.1 A Brief Walkthrough

Variability and variant-related information is produced and used throughout the

development of product line core assets and the use of these assets in product

development. Variability does not start at architecture level and does not end with

source code. It covers all phases of product (line) development from portfolio and

product management over engineering to testing and product deployment. In

general, standard development tools do not provide the necessary means to handle

variability and connect the related aspects to a common concept for expressing and

exchanging variability and variant knowledge. The pure::variants tool suite has

been designed and developed to close this gap by complementing existing tools to

enable efficient product line development.

In a typical pure::variants use case portfolio and product managers express the

intended and planned product commonalities and variabilities in feature models by
assignment of features to products in variant models. Each variant model is used to

capture a single product’s configuration. This can be done in pure::variants directly

or by using company-specific spread sheets in an application like Excel for

instance. In the latter case pure::variant models are generated and updated from/

to external data sources using its integrated synchronization capabilities.

The walkthrough starts at the specification level. In order to achieve reuse for

requirements among products in a product line, requirements shall be selectable

based on the needs of the individual products. Feature models like the one shown in

Fig. 12.1 can be used to add variation points to the reusable requirements through an

integration with the respective requirements management tool (e.g., Rational

DOORS, Microfocus CaliberRM, PTC Integrity Requirements . . .). Figure 12.2

shows a sample requirements document in DOORS which is annotated with

variability information used by pure::variants to generate product variant-specific

requirement specifications from the reusable “master” requirements.

Usually the detail level of the product definitions provided in pure::variants by

the product management’s feature models is not sufficient for a full product

configuration. Thus additional variability models are created and connected to the

existing models. This allows for stepwise refinement of variability and variant

information and allows separating ownership of related information fragments.

For example, product Line architects can connect flexible architecture

descriptions expressed in UML or DSL models to variability models in pure::

variants. In case of UML, pure::variants provides off-the-shelf integration with a

number of leading UML tools like Rational Rhapsody, Enterprise Architect, and

most EMF-based tools like Papyrus, Topcased, and Rational Software Architect.

Figure 12.3 shows a simple UML state machine annotated with pure::variants

restrictions to mark variation points in UML.
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On source code level, software developers can attach selection rules and/or

processing instructions to source code assets, configuration files, etc. For instance,

Fig. 12.4 shows a feature model (left) and a family model representing source

structures (right). The highlighted boxes on the right show rules which link the

existence (i.e., selection) to the existence of the boxed features on the left.

If the provided out-of-the-box processing capabilities are not sufficient, pure::

variants allows to create new custom transformation modules to generate code, e.g.,
using the integrated Java or JavaScript interfaces or by running external programs.

Last but not least, tests can be handled like any other artifact in pure::variants.

This means that based on feature selections pure::variants derives variant-specific

test plans and also configures tests if necessary. Furthermore pure::variants can link

test results and change requests to its model elements for a number of lifecycle tools

such as PTC Integrity, Rational ClearQuest, Jira, or Bugzilla. This gives the users a

quick way to check the state of the product line and product variant development.

While in several cases variability information can be stored directly in the assets

(for instance in UML model as profiled constraints, see Fig. 12.3), this is not always

Fig. 12.1 pure::variants feature model sample

Fig. 12.2 Requirements reuse in DOORS with pure::variants
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possible. Therefore pure::variants provides a generic model type called family
model for that purpose. For instance, in case of source code assets it can be used

to store rules for selecting the proper file set (see marked rules in Fig. 12.4). In the

pure::variants EMF integration, for instance, family models are used to store

information about variation points in EMF models and thus can support any EMF

meta-model without changes to the original meta model.

Of course, since introduction of product line engineering often does not start on a

green field and happens incrementally, often pure::variants is deployed only in a

specific activity of the development process such as management of source code

assets. Due to the modular nature of pure::variants model structures, the set of

activities in which pure::variants is used can be extended easily.

Fig. 12.3 Representing variation points in UML with pure::variants

Fig. 12.4 Connecting assets with features in pure::variants using restrictions
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2.2 Basic Concepts

The pure::variants tool uses a uniform meta-model to express variability in the

problem space (feature models) and solution space (family models) and a related

meta-model to describe variant configurations (variability instantiation informa-

tion), the variant description models.
The derivation/instantiation of variant description models creates instances of

the feature and family models which no longer contain variations, i.e., describe a

single variant. The instances are represented in so-called variant result models and
can be further processed either internally by pure::variants’ integrated model and

asset transformation or used by external tools (Fig. 12.5).

Since all pure::variants meta-models are generic by nature, they can (and have

to) be tailored to represent variability-related information from different domains.

In practice this means that pure::variants’ extensions for tool connections usually

add information to the meta-model, for instance, to introduce specific element types

representing tool-related assets.

All artifacts (models, additional assets) in pure::variants are organized in Variant
Projects. A product line may be composed of multiple variant projects containing

data, e.g., separated by the ownership or development activity the assets relate to.

Projects are either stored using a file-based approach or a database approach. In

case of file storage, sharing models happens using external version control systems

such as Subversion, Mercurial, Rational ClearCase, etc. In case of database storage,

pure::variants provides an integrated version management. In both cases model

compare and merge is supported with a graphical user interface.

pkg Model Types

Application Problem Domain

Solution Family Domain

Concrete Solution Domain

Problem Domain

Family Models

Result ModelVariant Description Models

Feature Models

Fig. 12.5 pure::variants model types and main dependencies
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2.3 Variability Meta Model

The pure::variants meta-model is an evolution of the original FODA feature models,

providing additional semantics such as default selection state, freely definable variation

group cardinality, arbitrary attributes, element types, or constraints in various forms.

The predefined variation group cardinalities are provided according to the

common feature model concepts: optional, alternative, or and mandatory elements,

If the standard cardinalities are not sufficient, the freely defined cardinalities allow

definition of sets of arbitrary integer range definitions such as “1,[4-8],10.”

The attributes concept (see Fig. 12.6 for a structural overview) allows users to

define attributes with constant values, with values selected by rules (called restrictions)

and with calculated values. Opposed to fixed attributes (values/calculations defined

at feature/family modeling time, actual value is selected/calculated automatically at

variant configuration time) the values of variable attributes have to be entered

at variant model configuration time to allow variant-specific user-defined values.

Directed relations provide a simple way to express element-to-element relations

such as conflicts and requires. In addition to relations, textual model constraints can

be used to express complex configuration knowledge. Constraints can query all

relevant properties (element existence, attribute values) of the related models.

Currently pure::variants provides two constraint languages: a Prolog-based dialect

and pvSCL, a subset of OMG Object Constraint Language (OCL).

2.4 Tool Architecture

The concrete internal architecture of pure::variants (see Fig. 12.7) is complementing

the meta-model so that it provides the necessary flexible yet powerful and efficient

infrastructure for handling complex variant management projects.

class Meta Model

«abstract»
RestrictedObject

+ id:  String
+ name:  String

+ isPermitted() : boolean

Restriction

- expression:  String = true

Attribute

+ fixed:  boolean
+ type:  String = ps:string

+ getValue() : any

«abstract»
AttributeValue

- type:  String = ps:string

+ getValue() : any

AttributeConstant

- value:  String

+ getValue() : any

AttributeCalculation

- language:  String = pvSCL
- script:  String

+ getValue() : any

0..*

1..*

0..*

1

Fig. 12.6 Attributes in the pure::variants meta model
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The pure::variants architecture is a client/server architecture where the server is

responsible for model management, access control, and model storage. The server

is accessed by clients sharing a common core API for both the Java language and

the .NET language. The main user interface is implemented as a set of Eclipse

plugins. The Eclipse infrastructure is also used to provide a large set of extension

points and service interfaces. This allows users to add complex views for models,

consistency checks, transformation modules, importer, and exporter. pure::variants

also provides interfaces to other elements in the Eclipse ecosystem such as BIRT

(reporting) and the Eclipse Modelling Framework (for reading and writing pure::

variants models in EMF-based applications). For integration with other tools which

are not based on Eclipse, pure::variants provides a set of APIs and components

based on Java (Swing) and Microsoft .NET which can be easily embedded into

standard tools. These APIs provide a similar user experience as the main Eclipse

client. The API of pure::variants’ Java core and the Eclipse plugins are public and

can be used by anyone to extend or customize pure::variants.

3 Examples and Recommended Areas of Practice

pure::variants is being used in a wide range of domains and use case. In most cases

it has been used in the area of embedded software development projects in domains

such as automotive industry, automation, mobile phone software, or consumer

electronics. It has been used also for research purposes by a number of institutions,

e.g., for testing [2] or dealing with qualitative measures for product lines [3].

Fig. 12.7 pure::variants internal architecture
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In most industry projects the number of features in a project ranges from a few

dozens to several hundreds. The number of variation points in total is usually in the

range of four to ten times the number of features in the project.

Publically documented industrial applications of pure::variants include an auto-

motive product line using model-based development with MATLAB Simulink and

pure::variants [2] and the application of pure::variants as part of a product line

migration for frequency converter products [3].

Naturally, the performance of pure::variants has an impact on the use cases in

which it can be successfully applied. The tool can handle large models with several

ten thousands of elements even on today’s typical desktop computers/laptops

easily. Thus since in almost all cases this is above the required amount of elements,

pure::variants does not impose a technical limitation. And in cases of extreme

variability, often structuring into a hierarchy of variability domains solves perfor-

mance issues in a natural way.

4 Results and Lessons Learned

The following paragraphs give some insights based on experiences with pure::

variants in industrial applications.

4.1 Integration Concepts and Capabilities

A key factor for the quick acceptance of pure::variants turns out to be the deepness

of integrations. Since pure::variants does not replace traditional development tools,

the level of integration and ease of use of the integration with the existing tool chain

is crucial. Especially in complex scenarios and/or if users are rarely confronted with

variability information maintenance and use, a deep integration is the best fit. An

example is the pure::variants for Simulink integration where most activities (crea-

tion of variation points in models, assignment of elements to variation points) can

be done inside MATLAB Simulink. This decision was based on experiences with

users of a predecessor version of this integration. In this special case the current

integration provides lesser functionality in terms of variability modeling

capabilities than the former pure::variants Connector for Simulink but fits the

existing workflows much better.

However, this integration also provides a way to maintain almost all data within

pure::variants. The variability modelers thought it to be more natural to keep

everything in pure::variants so that all variability information can be kept in

pure::variants. This created challenges in terms of keeping data consistent between

two different worlds.
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4.2 PLE Adoption Strategies

Since green field starts are a rarity in current product line engineering projects,

pure::variants has to provide the necessary concepts to support migration of

existing assets into product line assets. Especially in migration scenarios where

parts of the whole development are migrating only product by product, this creates a

number of challenges for tools. Taking in new products, which are clones of others,

with automatic generation of variation points from it right is possible. However, this

requires in many cases investment in creation of the proper tool (extension) for the

specific use case and also manual refactoring as part of the migration.

4.3 Scalability and Performance

For most activities users demand interactive or near interactive operation of pure::

variants. However, variability information can grow very quickly, and not every-

thing which works well for small models can be applied for larger models such as

automatic problem solving (BDD and SAT solvers have exponential growth of

resource usage). Users have to make a compromise between available functionality

and size of data being handled. Users do not always seem to accept the (unavoid-

able) loss of functionality and/or performance when the amount of information to

be handled grows.

4.4 Out-of-the-Box vs. Flexible Customization

Another key point to learn was that almost no two customers have similar enough

tool chains and processes. Therefore almost all integrations contain more or less

complex customization capabilities in terms of the data model, deployed variation

point concepts, etc. One-right-way-to-do-it solutions usually break with the second

or third customer.

However, it is also obvious that too many customization points slow down the

speed of migration.

4.5 Complexity vs. Simplicity

For most customers pure::variants provides more capabilities in terms of modeling

flexibility and ways to express and use variability and other information than

required. This leads to certain barriers when starting with pure::variants, since a

lot of decision whose consequences are not yet known have to be made.
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5 Outlook

The pure::variants suite shows how the concept of variability modeling based on

feature models can be applied throughout all activities of the product line develop-

ment. Integration with existing tools and support of incremental migration are some

of its strength.

Future developments will not only bring more and more powerful integrations

with development tools but also improved support for migration of legacy systems

to product lines and better support for collaboration and coordination of the

concurrent domain and application engineering.

More information about pure::variants itself plus demonstrations and tutorials

for its integrations as well as a freely downloadable Community Edition can be

found in [1].
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Chapter 13

Philips Healthcare Compositional Diversity Case

Frank van der Linden

What you will learn in this chapter
• The complexity of our systems leads to a hierarchical, local, and heterogeneous

variability management solution.
• The present state of the art both in research and in tooling is still lacking good

solutions supporting this.

1 Introduction

The aim of this chapter is to provide a comprehensive description of the issues on

variability management within the development of the product line of Philips

Healthcare. Many issues originate from distributed and heterogeneous develop-

ment. Solutions are sought in localization and hierarchical variability.

The remainder of this chapter is structured as follows in Sect. 2, the context of

the product lines within Philips is described, especially it shows the organizational

and business context of the product line development. In Sect. 3 the evolutionary

growth of the product line development towards a large distributed development is

sketched. It describes the distributed development process—inner source—for

sharing of product line knowledge and assets. Section 4 describes several diversity

aspects originating from the distributed organization, the evolution, and the

incorporation of third-party assets. Important elements are hierarchy and localiza-

tion of variability. Although no definite solution for local variability is available,

some theory developed 15 years ago is used to illustrate how localization will

support distributed variability management. In Sect. 5, an example shows how local

variability management was used for TV-set development. In Sect. 6, the variability
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issue at Philips healthcare is described. Unlike the TV-set development, an own

proprietary tool implementation is no option. A heterogeneous hierarchical solution

is found, including default configurations at several levels in the hierarchy. It is

explained that different mechanisms are needed at different levels and parts of the

hierarchy. In addition, default configurations are available at several levels of the

hierarchy. These originate from the use of different levels of abstraction and from

the needs of different disciplines. Especially several domain-specific languages are

in use. In Sect. 7, variability management supports for the own domain-specific

languages at different places in the hierarchy. The underlying mechanisms are

similar, but these languages differ for each set of components they apply to.

Proprietary tooling is available to couple them. In Sect. 8, several measured

advantages of the present set of methods, tools, and techniques are provided. In

Sect. 9, the achievements are summarized. Finally in Sect. 10, an outlook is given.

It provides some information in the way the Philips platform evolves. In addition it

provides some information for possible future directions of research for local

variability management.

2 Industrial Context

Philips is a global company with a focus on health and well being. It is a global

leader creating value through meaningful innovations and improving lives with

sense and simplicity. Philips Healthcare is a division of Philips that provides

products in medical imaging systems, home healthcare solutions, patient care,

and clinical informatics, and it provides services around these systems. The

healthcare division of Philips is almost 100 years old. In 1998 the development

was done at two sites. Since then it has grown to globally 34 sites in 2011. Presently

software development within Philips Healthcare involves more than 2,000

developers worldwide. This development is structured around product groups,

although there is an increasing need for cross product group reuse. Consequently,

Philips Healthcare has initiated in 1996 a product line initiative to provide the core

functionality to all application groups. An account on this can be found in [1],

Chap. 15. The core functionalities of the platform developed by a separate domain

engineering group are: storing, retrieving, distribution, processing, and viewing

medical images in 2D, 3D, and 4D. However, presently the platform also provides

other functionality that support medical diagnosis, treatment, and measurements.

After several years of product line introduction, the domain engineering group

became the bottleneck for innovation. Many departments were asking new or

updated features, and the limited size of the domain engineering group was not

able to deal with all these requests in time. The solution was found in the applica-

tion of open source principles within the company: inner source [2, 3]. This

involves open access by all application developers worldwide to all development

information and source code of the platform software. This use of inner source was

successful: application engineering groups are involved in domain features that are
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important for them. It led to lower pressure for domain engineering and faster

deployment of new features.

Within the platform development of Philips Healthcare, variability development

and configuration are done distributed and heterogeneous, a practice that is already

described elsewhere. For distributed variability and configuration, i.e., there are

several places that introduce variability and similar for configuring, see [4]. For the

heterogeneity, i.e., use of diverse mechanisms for different parts of and no common

global variability model, see [5]. Commodification [6] leads increasingly to

components from third parties to be integrated, each of them having their own

variability model [7, 8], leading even to more heterogeneity. Several partial

solutions for this are proposed in the literature. For instance, Elsner et al. [7]

propose an environment for configuring different models from different vendors.

Several others, [9–11], propose different ways to compose several feature trees.

Some papers describe the solutions for keeping the variability local to components

[12, 13]. However, a practical solution is not yet available. In this chapter, the

present heterogeneous situation is sketched and the main issues are discussed.

3 SPL Approach

Within Philips Healthcare there is a central group providing domain engineering.

They deliver the Medical Imaging Platform (MIP) determining the architecture,

interfaces, information models, common components, methodologies for dealing

with common quality issues, and tooling, including configuration, collaboration,

and test tools. More than 20 application engineering groups around the world use

this platform. Some of these groups make imaging products for a diversity of

modalities: ultrasound, X-ray, or MRI. Some of these groups make imaging

products aimed at different markets for diagnosis or intervention. Some groups

make monitoring systems, e.g., measuring and ECG signals from the heart. Other

groups make hospital IT systems dealing with remote viewing, diagnosis, advanced

image processing, or storage, retrieve, and exchange of the images.

The development is supported by virtual teams that are set up, involving people

with a similar organizational role from different departments. These teams deal

with all kinds of cross-cutting issues, such as diverse aspects of the architecture,

information models, tooling, change control, roadmaps, requirements, and tests.

The MIP architecture is a product line layered reference architecture

standardizing component middleware such as the GUI, workflow, data handling,

image rendering, printing, reporting, and field service. The MIP platform mission is

to run anywhere with excellent interoperability. To enforce the platform stability,

the architecture determines many interfaces and several information models. The

dark boxes in the layers represent interfaces. Components in these layers support

several of these interfaces. One of the standard interfaces is a configuration inter-

face that allows setting values to diversity parameters. The most important layers

are (bottom to top; see Fig. 13.1):
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• System components—these are mainly third-party components providing the

basic system services, including operating system and UI primitives. This

layer is constantly growing, including increasing third-party solutions for quality

aspects, or configuration tooling. In addition, this layer shields away the details

of these components and gives a uniform access to system resources, indepen-

dent on its implementation.

• Middleware components—these are mainly in-house developments, but the

amount of third-party components is rising here as well. These components

provide the basic functionality described above: image processing, distribution

storage, rendering, viewing, measurements, UI widgets, and icons. This layer

also provides basic standardized quality solutions for several important qualities,

such as remote maintenance support, availability, security, and privacy. Within

this layer several integrated components (IC) are defined that encapsulate a

default configuration of a group of related components.

• Business-specific components—these are mainly in-house components’

healthcare-related services. These involve integrated support for specific

procedures, including the workflow support, and screen layouts. In addition

this layer has tooling for configuration support of components of the level

below. For several subsystems there are graphical, domain-specific languages

that describe which sets of components can be connected, and in which ways.

These languages are connected to tools that support actual configuring; they are

discussed in Sect. 7. Also this layer provides several integrated components that

encapsulate a default configuration of a group of related components.

• Products—these are the final applications, combining several services of the

business-specific components’ layer together. These products are mainly devel-

oped by the application engineering groups. However, the domain engineering

group provides a “semifinal” Philips Medical Workspot (PMW) that is a system

on its own, involving a default configuration of lower layer functionality.

In each layer, the components group and organize components at lower layers to

perform specific functionality. Each layer has a subdivision of internal layers as

well.

Products

System 
Components

Business Specific 
Components

Middleware
Components

System 
Components

Middleware
Components

Business Specific 
Components

Products
Fig. 13.1 MIP—high-level

architecture
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Application engineering groups discuss their roadmaps with the domain engi-

neering group. This leads to a roadmap for domain engineering, prioritizing the new

features in, and adaptation to the platform. In addition, the domain engineering

group needs to serve problem reports and change requests from the application

engineering groups. As the number of application engineering departments is very

large, the platform team cannot fulfill all change requests in time. To deal with this

situation, an inner source model is introduced [2, 3]. The essence is that all

available information from all domain assets is available. This includes binaries,

source code, configuration tooling, test scripts, test results, and documentation. If an

application needs a new feature, there are several ways to obtain it

• If it is part of a platform release, it can be used immediately.

• If it is already in development, the user can take the component, the department

can be a testing site for it, or even it can help further development of the

software, increasing its development speed.

• If there is no component available, the department can issue a change request,

and if nobody else takes it, the department can do the development itself.

The platform defines the reference architecture for all applications. It defines a

Hierarchical structure of subsystems, layers, and components. The hierarchy is a

key in comprehending the architecture and its details. It is an important carrier for

communication between different teams. The hierarchical structure defines units of

reuse and for the distribution of work.

Variability management is supported by a collection of default configurations

that are organized hierarchically along the layers. The medical imaging platform

consists of a hierarchy of components that can be configured separately. However,

for related components, at a given layer in the architecture, integrated components

(IC) deliver default configurations. These default configurations are combined in a

default way into the PMW. Figure 13.2 gives a simplified architecture involving

configurations. For the MIP, it shows only the Business-specific layer and some

products in the Product layer. Components are depicted as dark boxes. Integrated

components are shown in dashed shapes combining several components. Arrows

mean the use of an (integrated) component including the assignment of configura-

tion values. Note that an integrated component can have configuration parameters

as well. Configuring an integrated component leads to consistent set of configura-

tion values for the involved components.

Application groups can use the PWM unaltered, meaning that they do not have

to configure the lower layers; see Product 1 in Fig. 13.2. The developers only need

to provide configuration values at the PMW level. However, the PMW configura-

tion may be too restricted for some products. Each developer is allowed to override

the default configuration and select other (integrated) components. Configuration

tooling helps to select the right parts. In addition the inner source tooling helps to

disseminate configuration knowledge via discussion forums. For instance, Product
2 in Fig. 13.2 needs another integrated component and also another configuration of

a components selected by the PMW. Note that circumventing the PMW is also

possible for (integrated) components at the Middleware layer.
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4 Diversity, Hierarchy, and Localization

Variability is just one aspect of diversity. It is important to deal with all aspects of

diversity in a coherent way. These different aspects are [12, 13]:

• Commonality, what is common to all applications

• Variability, how can the applications differ

• Configuration, consistent selection of variants for an actual application

Commonality and variability define the scope of the product line. These are

determined and designed during domain engineering. Configurations are designed

during application engineering. However, it is an important task for domain engi-

neering to support application engineering, to provide variation management, and

to ease the configuration activity. Variation management involves the availability

of diversity models, tools, methods, and default configurations.

As the product line architecture is often hierarchical component based, the

components, at different layers of the architecture, play an important role in the

diversity. A component often has its own diversity—incorporating its own com-

monality, variability, and configurations. To enhance comprehensibility and

configurability, the component should hide parts of its diversity and abstracts

away from it [4]. For instance, the component diversity can internally be described

in resource use (memory, processing, bandwidth, etc.) externally it may show

diversity only in terms of services provided. This means that ideally there should

be abstract diversity interfaces between components, showing the internal diversity

in a reduced and abstract form. However, for such interfaces, no solution proposed

up to now is satisfactory. Several papers, mentioned in the introduction, discuss this

issue. They propose a configuration link between different feature models [9, 11],
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Fig. 13.2 MIP semifinal: Philips Medical Workspot
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having just a single feature as interface [10] or model fragments [5]. However, none

provides convincingly both abstracting and hiding.

An additional concern in a hierarchical environment is that both top-down and

bottom-up configuration should be possible [4, 12]. Development and configuring

proceed partially top-down and partially bottom-up. Top-down configuring, from

architecture to lower layer component, is necessary when dealing with concerns of

system (quality) requirements and the exploitation of commonality. Bottom-up

configuration, from existing component to complex compositions, is needed when

dealing with concerns of existing legacy or COTS assets, subdisciplines, distributed

development, or system (hardware) parameters.

Local diversity is a means to decouple configuration decisions from each other,

and enables to start configuring everywhere in the structure allowing top-down,

bottom-up, or even middle-out configuration procedures [13]. Having diversity

local was a prerequisite to the notions of product populations or composable
systems instead of decomposing them [14].

We ourselves have proposed a component-based diversity model [13]. At that

time, there was not much standard notation available for dealing with diversity. In

any case, abstraction was served by the restriction that a variant at a certain level of

the hierarchy is only related to variation points at the level below. This leads to

invisibility of any variant or configuration at the level below. Hiding was served by

local diversity: only relationships exist between the diversity at succeeding levels of
the hierarchy, i.e., between a component and its subcomponents only.

Figure 13.3, based on [13], describes the way local variability can help in a

hierarchical system. This figure is adapted to the UML and OVM notation, the

original was drawn before UML became standard software design notation. At the

top row a component at a certain level in the hierarchy is shown, at the bottom its

subcomponents. At the left-hand side the commonality is presented, and at the

right-hand side the variability. The right–left direction is the direction of increasing

the abstraction and hiding. The left-hand side provides commonality information, in

this case structural UML diagrams. At the right-hand side, the variability is shown.

In this case, it is an extended UML diagram, incorporating all variants and a

connected OVM model. We can imagine other format here as well.

At the top left-hand side, we see that component A has three subcomponents: B,

C, and D, in a certain configuration and call structure. Also external interfaces are

represented. At the right-hand side the variability of the component A is shown. It

has two variants of subcomponent B, each with a different call structure. The

variability in the subcomponents is not visible at the commonality level of A. At

the bottom left of Fig. 13.3, the commonality of each of the subcomponents is

shown. This should incorporate enough information to develop A. Each of the

subcomponents has their own variability, which is here only partially shown for B1.

Local diversity keeps the design within a hierarchy comprehensible. If all

diversity would be present in a single model, then each level of the hierarchy

multiplies the complexity of this model. Different levels in the hierarchy will

have different parts of the variability, at their own abstraction levels. However, in

practice, for lower levels, only commonality information is needed. Similarly, for
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higher levels, only specific variants may need to be known. In addition, in a single

model, it may be hard to share common parts of the diversity model, as there are no

clear “module” boundaries. Localization implies that in case of shared

subcomponents, the diversity has to be designed only once.

Localizing also supports both top-down and bottom-up development. In a top-

down way, we proceed according to 1!2!3, in Fig. 13.3. Start with a top level

component. Develop its commonality, next its variability, and subsequently

develop the subcomponents. In a bottom-up way, we proceed according to

3!2!1, in Fig. 13.3. Start with several low level, existing, components for

specific task. They together determine the variability at their level. Extracting the

commonality makes them available to be used is several configurations, which lead

to variability of a higher level component. Similarly, configuration can proceed top-

down following the 1!2!3 path, and bottom-up following the 3!2!1 path.

Figure 13.3 is just an ad hoc notation, improving the one of [13]. To make it

really useful, several questions need to be answered. For instance, for the boxes at

the left-hand side, we need “commonality of the diversity model,” whatever that

may mean. The UML diagram only provides a possible view on this. There are

several questions to be answered: is it only an abstract (smaller) version of the right-

side model? Does it contain features, variation points, or variants, or something

else? Can it be used as a diversity interface? How to interpret the links in Fig. 13.3

for diversity models both for left–right (1, 3) and top-right–bottom-left (2)?
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5 Koala

The ideas of the previous section found their way into Koala [14, 15]. This was used

in the development of TV-sets within Philips. Also in Koala hiding is performed by

linking variability only between components and subcomponents; see Fig. 13.4 for

a typical Koala component diagram.

Koala components have several provided and required interfaces. These are

shown as a square with a triangle, pointing in the direction of the call. The

component implementation consists of modules, which are pieces of code, without

formal interfaces, like “m” in Fig. 13.4. Any relevant code of the component will be

in modules, including glue code to translate between interfaces. Part of the func-

tionality may be delegated to subcomponents, with interfaces—“Ci” in Fig. 13.4.

Pieces of code may be used as wrappers to translate between interfaces; they appear

at several places in Fig. 13.4. A specific diversity interface is used to exchange

information between a component and its surrounding component. A diversity

interface is like a normal interface. It has function calls to extract diversity

parameters from the surrounding component. The parameters in these function

calls are to communicate internal diversity parameters to the external component.

The main mechanism to provide abstraction translates values between subcompo-

nent and component diversity interfaces. A module may be present to translate the

internal variability values into those that are presented at the interface. For specific

situations a standard translation mechanism is present: the variant selection module

“S” in Fig. 13.4 selects between the call of either “C2” or “C3” based on the value of

a specific variable.

C

C1

C2 C3

mS

Provided interface 

Module = glue codeCoded diversity 
delegation

Wrapper

Diversity interface
Requires parameter 
values from 
environment

Standard variant 
selection

Required interface

Fig. 13.4 Koala component—with subcomponents
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Koala abstracts away from binding times. A component developer does not need

to know when external diversity, or the diversity of subcomponents, is bound.

Koala computes the configuration at compilation time, evaluating as much as

possible the function calls. As certain (or all) parameters are defined to be constant,

such static evaluation may give definite values for complex expressions and fixed

selections for branches. The Koala pre-compiler will replace the expressions by

these values and discard code for nonselected branches. This leads to very compact

code, which is an important requirement in TV-set development. Evaluation at

compilation time is not restricted to diversity interfaces, leading to very compact

executable code, which was extremely important at the moment Koala was devel-

oped. Especially the diversity interface calls are used to select certain

subcomponents. In practice, this means that only the relevant subcomponents will

be selected for compilation and binding, again leading to minimal code. In cases

that require dynamic selection of subcomponents, the pre-compilation evaluation

will not lead to a specific choice of subcomponent to be selected. In that case,

specific “if”-statements or branches will be generated for selecting at run-time, and

all involved subcomponents will be compiled and linked.

In the example of Fig. 13.4, the variant selection module “S” needs a Boolean

value to select between calls to “C2” or “C3.” This value is obtained via the diversity

delegation module from the diversity interface of the component “C.” If the

environment provides a fixed value “false,” the only calls to “C3” will be selected,

and “C2” will not be part of the configuration. In the case that the value cannot be

computed at compile time, both components will be integrated. Note that a fixed

value may be originating from a fixed value in the surrounding component, but it

may also be based on calls to other components in the configuration.

The component developer does not see any difference between binding at

compilation or at run-time. For instance, for the variant selection module “S” in

Fig. 13.4 when the value of the variable is computable at compile time, only one of

the modules C2 or C3 will be compiled and linked. If the value cannot be determined

at compile time, both are compiled and linked, and the generated “if”-statement

selects which call should be made.

6 Variability at Philips Healthcare

For Philips Healthcare, the Koala solution was not usable as its maintenance could

not be outsourced and third-party solutions could not be easily integrated. However

the locality of diversity, as explained above, was necessary to keep the diversity

manageable. A study was performed using the orthogonal variability model (OVM)

[16] for variability modeling. OVM provides a low-level decomposition of the

diversity model. In fact each variation point and its variants can be seen as separate

variants. However, diversity constraints can be laid between any pair of variation

points and/or variants. There is no mechanism provided for information hiding or

abstraction.
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For the platform the .Net framework is used to ease connecting components at

run-time. In principle, binding above component level is done at initialization time

or at run-time. For this the standard .Net tooling is available. In this way the

components can be, and are, developed independent of each other. Therefore

their diversity is also developed independent from each other, and only part of

the diversity is exposed to external components. In most cases a component has a

list of configuration parameters, for which standard tooling is made available for

setting them in a consistent way.

As the MIP platform is very large, we selected for the OVM case study a service

at the Business-specific component layer. This service deals with the hospital

workflow of making images of a patient. The most important variation points are

related to components in the middleware components layer, and are the following:

• Location—dealing with the place where the viewing will be performed.

Examples of variants are: intervention room, control room, office, and remote.

• Tasks—dealing with the activity the workflow supports. Examples of variants

are: prepare data, review, real-live viewing, and archiving.

• Environment—dealing with the system in which the service works. Its variants

are related to the kind of imaging equipment involved, its hardware, and

operating system.

• Language—dealing with the language of the people working with the equip-

ment. Example variants are US English, German, and Chinese.

• User—dealing with the role of the person executing the workflow. Example

variants are clinician, technician, and radiologist.

Unfortunately the model became too complex, as there is too much interrelation

between variants and variation points, for instance, in Fig. 13.5, a part of this model

dealing with location and task. It has two variation points and six variants, but it

already involves six requires/excludes relationships. It was diagnosed as that there

is too much implicit knowledge available in the system and architecture, and a

refinement of variability is necessary. It can be observed that the relationships

chosen here are related to the products layer, whereas the model deals with the

Fig. 13.5 OVM model of imaging workflow
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business-specific layer in the architecture hierarchy. However, it is unclear how to

avoid this situation.

Other means of modeling and local diversity were used to solve this problem.

We have defined a diversity hierarchy; see below. In addition default configurations

were defined at many levels in the hierarchy. These are the integrated components

and the PMW itself, which are described above. In a way the default configurations

can be regarded as the common diversity at that level of the hierarchy. This also

expresses itself in the situation that there are several integrated components involv-

ing the same components, and even the PMW has several flavors; see Fig. 13.6,

showing several semifinals to be used by different products.

Configuration can be done at each level for the hierarchy with elements of the

level below. But if there is a default configuration available, this can be used

unaltered. Bottom-up default, or standard, configurations are built. These can be

combined in higher level configurations. However, to keep the platform flexible,

default setting may be overridden top-down, traversing the hierarchical layers. This

is also shown at the left-hand side of Fig. 13.6. Special tools, often supporting

domain-specific languages, are used to ease configuration for a specific element in

the hierarchy. Here, heterogeneity comes in. Different elements at the same hierar-

chical level deal with different aspects of the system leading to different domain-

specific languages. However, the languages are similar, and the same proprietary

tooling is used for all of them. Each language can configure dedicated groups of

components, and only certain connections are allowed. These connections relate to

actual binding of interfaces; for more details see below.

A growing part of the platform consists of third-party components. Such a

component often comes with its own configuration mechanism, adding to the

heterogeneity. However, locality helps to focus only on the neighboring elements

in the hierarchy. At any time, during development and configuration, only a small

set of configuration mechanisms are relevant.
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Note that the heterogeneity is not regarded as a problem. Heterogeneity might be

seen as an increase of complexity. However, it decreases complexity, as only the

configuration parameters and mechanisms that are needed for the specific part of the

system, at the right level of abstraction, need to be modeled. If a uniform solution

was selected, a single monolithic model has to be used to deal with any local

configuration issue. This also relates to experiences in other technical fields. For

instance, in the car industry, a wheel has different variation mechanisms and

parameters than a dashboard, but the car manufactures are able to deal with this.

For local diversity, see Sect. 4, the architecture hierarchy needed to be refined.

Each architecture layer has its own components, calling components at lower layers

in the hierarchy. However, each component has its own internal configuration

parameters, and it is related to a set of specific other components acting together

for a specific piece of functionality. We have called these sets of components a

component suite. These are collections in between components and subsystems. An

integrated component is usually a configuration for a specific component suite. If

we look at the hierarchy for variability, MIP identifies to at least the following set of

layers:

1. Component parameters—diversity: enumerated lists, strings, Boolean, or

numeric values.

2. Components—350 different components in MIP. Diversity: often a configura-

tion file with <50 parameter-value pairs.

3. Component suite—18 different default configurations, each with about 50

parameters, called integrated components. Diversity often solved via a

domain-specific language; see Sect. 7.

4. MIP platform—several (<10) default platform configurations for different kind

of applications, called platform flavors. Diversity solved via a domain-specific

language; see Sect. 7.

5. Application product line platform—several (~30) in different application

domains. Diversity solved by own configuration means.

6. Application product—many (>1,000) products. Diversity solved by own con-

figuration means.

Each of these will be discussed below. Note that layers 1–4 deal with the domain

components, layers 5 and 6 are at the application engineering site, where often own

platforms are developed and components are introduced, on top of the MIP plat-

form (cf. Fig. 13.6). This means that there may be more levels at the application site

hierarchy.

Note that in the list above we see that at different levels different mechanisms are

used for variability management. This has several causes. Different levels of the

hierarchy deal with different levels of abstraction. At component level these can be

usually easily expressed as configuration values for simple types. However, at

different levels of the hierarchy, the configuring has to deal with more or less

complex subcomponent configurations. Consequently, domain-specific languages

are more expressive to determine the configurations. As several subsystems have

different disciplines involved, and different aspects or different abstraction levels

13 Philips Healthcare Compositional Diversity Case 197



are relevant, there is a need for several domain-specific languages. Finally the

development (especially at levels 5 and 6) is distributed, and partially based on

legacy code. It takes too much effort, with too low added value, to fix a single

mechanism for all. Of course, every department is free to change their own

configuration mechanism. Especially a move towards a domain-specific language

is encouraged. As people performing configuration at a certain level in the hierar-

chy may have problems with lower layer configuration mechanisms, it is crucial to

have default configurations. Using them will lead to a workable solution. If the

quality, like performance, is not good enough, fine tuning by configuring at limited

parts of lower layers is a second step, leading to situations as shown in Fig. 13.6,

Product 2.

Configuration tooling is part of the platform. Therefore, the application engi-

neering groups can apply the same mechanism (component parameters, domain-

specific languages, and integrated components) for their own systems.

7 Domain-Specific Languages

The diverse domain-specific languages in use are supported by domain-specific

editors. These are all part of the platform. Figure 13.7 shows a screen shot of the

editor for one of the languages. Although not visible in Fig. 13.7, different groups of

components are distinguished by their own color, and their role in the configuration

is also expressed by the default position of the component in the layout. The

relevant component lists, asset base, are available in a hierarchical view at the

left-hand side. Additional views are available for setting parameters (component
properties), whenever a component is selected.

Configuration, from scratch, proceeds by dragging components from the asset

base into the configuration pane. Connections are drawn, and are only allowed if

interfaces match. For each component, the specific parameters may be set any time

it is selected. In most cases, configuration does not proceed from scratch. Instead an

earlier version of the configuration is used, or an integrated component. A variation

of the configuration is made by adding or removing components, redirecting

connections, or setting the configuration at components lower in the hierarchy.

The results of such a configuration will be a component at a higher level in the

hierarchy. It can be used in this way to build up higher levels. Note that the default

configurations are available as inputs to the editor. This means that when

adaptations are necessary, the developer can still proceed from the default configu-

ration, adapt it, and save it. The domain-specific language can be easily translated in

executables code, since the configuration mainly consists of linking calls between

components. In this way, the developer can have fast validation of the adaptations.

Whenever a lower level of the hierarchy need to be (re-)configured, the relevant

editor can be called via the selection of the appropriate element. The resulting editor

may be either a new domain-specific editor or an editable parameter-value list. For

instance, in Fig. 13.7, at the right-hand side, an editor shows the attributes of a
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selected component. Certain of these components are interface to a group of lower

level components, e.g., a component suite. In that case, an editor of that specific

configuration can be called via the corresponding element in the component

property list. The domain-specific languages and editors are mainly proprietary

build, as there was no commercial solution available that fulfills the hierarchy

requirements. The editors may spawn an executable version of the configuration,

which means that the configuration can be tested immediately, without leaving the

editors. This eases reconfiguration as unwanted behaviour can be repaired easlity.

8 Cost and Benefits

The benefit of software product line engineering is high. Without it we would not

have been able to produce in time the amount of diverse products we presently

have, with the right quality. As we are working already on software product lines

for more than 15 years, it is difficult to quantify. Note that the platform and its

architecture are in continuous evolution. These are continuous actions on the

increase of the quality and also on the integration of third-party solutions, freeing

our own resources for innovation.

Fig. 13.7 Domain-specific editor
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In any case, several metrics on the development performance are measured

continuously, giving insight in our own performance. At least the following results

are obtained in our development:

• To build a reusable component, it costs about 1.6 times the effort for a compo-

nent with the same functionality for a single product. This means that reuse

already pays off if there are two or more users. Since most platform components

are used by more than ten departments, the development effort is reduced by a

factor of 6. This also incorporates the own single product components in the

different application groups.

• Since 1996, we were able to integrate several additional companies that are now

presently users of the MIP platform.

• The time-to-market is reduced by more than 50 %, since the platform function-

ality only need to be configured, and both application and domain engineering

development can concentrate on new features.

• The product defect density reduces much faster than before, e.g., <50 % lower

after 6 months than without software product line engineering. This is caused by

the fact that the platform has many diverse users leading to many different tests.

• The maintenance cost is reduced by more than ~60 %, because the products have

many similar parts, the maintenance personnel can serve many different

products, and changes in new products are usually not disruptive.

• The products have a common look and feel, since they are all build on the same

user interface components. This serves the clients, since they do not need to train

the operators for each product anew.

9 Results and Lessons Learned

After 15 years of product line development in Philips Healthcare, it is the only way

to proceed. More than 20 groups are dependent on the MIP platform, and they can

only efficiently build products if the platform configuration is comprehensible. As

the amount of third-party software in our products is growing, configuration has to

deal with external diversity mechanisms, in cooperation with those of our own.

Over time a heterogeneous, hierarchical, and local variability management has

grown. This is the only way to deal with the complexity of the platform and the

large amount of applications that are built on it. Most of the configuration tooling is

still own proprietary, since there is not yet a good commercial offering for it.

Different mechanisms are used at different levels of the hierarchy. These originate

from the diverse background of the development population, but also from the

different levels of abstraction and the needs of the diverse disciplines. Tooling

exists to connect configuration at several levels in the hierarchy, whenever neces-

sary. This is not always needed, as there are several default configurations, aiding

higher level configuration.
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Configuration is both done in bottom-up and top-down ways. Bottom-up, default

or standard, configurations are built that can be use unaltered at higher layers. Top-

down, specific parts of a pre-configuration can be accessed and altered according to

specific wishes.

10 Outlook

The MIP platform is in continuous evolution incorporating more third-party

elements, and it is to be expected that configuration support will increasingly rely

on third-party solutions as well. In order to deal with the configuration complexity,

a hierarchical, local, and heterogeneous solution is crucial. Diverse levels of the

hierarchy need diverse abstractions to work with. In addition, several disciplines

have their own requests. This situation will stay, and only become more complex,

not less. In particular, monolithic solutions will not work.

As can be observed in the discussion above, there is not much information about

the interfaces between diversity at different layers in the hierarchy. These interfaces

are needed to link the different levels of abstraction involved. However, we do not

have a good idea how such interface should look like, and there is not much

publication in this field. In the solutions used within Philips, the translation between

levels of abstraction is mainly performed through actual code without many

guidelines. This is a good issue for future research, as we may need more automa-

tion to navigate through the diversity hierarchy.
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Chapter 14

Variability in Power Plant Control Software

Masami Okamoto, Makoto Fujii, and Yoshihiro Matsumoto

What you will learn in this chapter
• We study how to successfully develop automatic start-and-stop control system

families for steam power plants.
• The formalization of the system semantics based on frequent field analysis

concerning operational modes, events, and other data of the operated devices.
• The basic schemes and the major features of the software product line described

in this industrial experience.
• How we evaluated the ROI of our software product line.

1 Introduction

The automatic start-up of large-scale fossil fuel-type power station from the cold

plant state until to the state where synchronization of rated generating capacity to

the power grid completes, accompanied by its shutdown, has been implemented by

TOSHIBA Corporation in 1968 at Hachinohe power station of Tohoku Electrical

Company (250 MW). This was the first automated power station in the world.

Lately, most utility companies are required to furnish electric power utility for both

base load and variable load. In daily operations of those utility companies, the

amount of generated electricity must be adjusted so as to meet variation of daily

power demands in timely manner each day. For example, the peak load within a day

reaches as much as twice the minimum load during the day.
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To cope with those circumstances, it is required that (1) the reduction of start

time (the time span covering boiler ignition, steam-turbine acceleration, various

equipments buildup, and generator synchronization: see the lower part of Fig. 14.1),

(2) the reduction of stop time (the time span covering generator disconnection,

turbine stop, and boiler extinguishment), (3) the reduction of the number of the

operating personnel, (4) the reduction of start-up loss (the energy loss in fuel,

electrical power, and water flow spent during plant start-up), and (5) the enhance-

ment of equipment lifetime by reducing mechanical stress can be implemented.

In order to meet those requirements, an automatic plant start-and-stop control

system (hereafter called APSS system) was developed as one of the key solutions.

For putting the manufacturing of the APSS systems to commercial base, we

developed the framework, which enabled tailoring of application systems from a

variability-based software product line, called Electric Power Generation Software

Product Line (EPG-SPL) [1, 2]. This software product line realizes the customiza-

tion of variability by the interpretation of rules described with using a domain-

specific language, called Domain-Specific Language for Electric Power Generation

(DSL-EPG). EPG-SPL has been utilized by the EPG application development

teams to generate the application system for every power station that was ordered

by different electric power utility companies not only from Japan but also from

worldwide. The number of power stations built by the EPG-SPL adoptions by the

year of 2010 amounts more than 150 including up to 1,000 MW power stations.

Our accomplishment has been recognized by the participants of Software Prod-

uct Line Conference in 2007, and EPG-SPL was inducted into the Product Line Hall

of Fame of Software Engineering Institute/Carnegie Mellon University in 2008.
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Fig. 14.1 Schematic illustration of power plant and plant start-up process flow
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2 Background

In the fossil fuel-type power stations, a set of boiler, steam turbine, electric power

generator, and several other subsystems are connected as shown in Fig. 14.1.

Figure 14.2 illustrates the configuration of a plant monitoring control system

(only a part is shown), which highlights the automatic control of a pump and the

valve associated with it.

The plant monitoring control system shown in Fig. 14.2 is connected in fault-

tolerance mode with a set of ten units of embedded type computers, and graphic

operators’ consoles. Each embedded computer is connected with a number of

device controllers and actuators through industrial Ethernet (100 Mbps).

The graphic operators’ console serves the following functions:

– Remote manipulation of plant control devices with using touch screen and

mouse

– Monitoring of plant status through graphic displays

– Audio–visual guidance for plant operations

– Audio–visual annunciation in case of plant abnormality

Plant
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Software

WCP

APS Console

Operator Console

CRT

Controller

Pump Valve

Printer

Lamp

Buzzer / Speaker
Process Computer

Control PanelMonitoring
Software Performance 

Calculation
SoftwareGraphical UI

Software
CRT Operation 

Software

Fig. 14.2 Plant monitoring and control system
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– Recording of plant events and status

– Plant performance monitoring

The major challenges that we encountered when we started APSS are

summarized in the following:

1. Complexity of plant dynamics and indeterminable plant disturbance: The

APSS’s design, devised in the 1960s, was a theory-based one, so to speak, for

example, main steam pressure value at some condition can be presumed with

using the values of fuel flow and feed water flow time. However, theory-based

presumption often failed because of the complexity of system dynamism and

external disturbance that we frequently suffer even in regular operating

conditions. In order to resolve these circumstances, we devised what we call

“man-simulation” scheme, where “man” means a plant operator, and computer

simulates operator’s behaviors in “man-simulation” scheme. The plant

operations can be interpreted as the sets of rules, where each rule defines a

relationship between a particular plant status, events, conditions, and operator’s

actions. APSS memorizes all these rules by learning operator’s behaviors. In the

execution stage, APSS monitors plant status, events, and conditions in real-time

base. Using the monitored results and the memorized rules, APSS selects one of

the operator’s behaviors that it learned previously and controls the target plant.

2. Customer’s collaboration: The collaboration by the customer, especially the

cooperative participation by the plant operators, was crucial to formally describe

operating procedures and actions at each plant start-and-stop step. In order to

establish solid bridge between plant operators and APSS developers, formal field

analysis described in Sect. 3 was conducted. The results of the field analysis

were presented with using the formal documents called “role description cards.”

The responsibility for the role description cards was shared both by the cus-

tomer, plant operators, and APSS developers. The role descriptions are

transformed to the descriptions in DSL-EPG as is described in Sect. 4.

3 Development of EPG-SPL

3.1 Field Analysis

Preceding the development of DSL-EPG, the field analysis, detailed in the follow-

ing, was conducted to classify plant properties into invariants and variants.

EPG plant is usually controlled through a central control room, where operators’

teams work on a rotating schedule. A team, in each shift, consists of one duty

supervisor, three group leaders, and several operators, organized as shown in

Fig. 14.3.

The duty supervisor monitors and supervises plant-operation processes, makes

high-level decision with regard to plant conditions, and provides direction to group
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leaders. The group leaders, each of who is responsible for a plant subsystem, check

up equipments and devices accommodated in the responsible subsystem and ask

operators to start operating steps.

3.2 SPL Approach

The field analysis for the development of DSL-EPG was made through the follow-

ing steps:

1. Developers of APSS system interviewed operators’ teams ten times, each after

plant start-up operation at the target power station, involving selected duty

supervisors, group leaders and operators, based on the operational guidance

prepared in the power utility companies. The result of each interview was

recorded in the formalized role description cards, which includes monitored

variables, plant and environmental conditions, and operational timing,

procedures, and actions that were undertaken.

2. The data collected and recorded in the formalized cards are classified according

to the roles of the supervisor, group leader, and operator, to bring out the timing

and logic charts exemplified in Figs. 14.4 and 14.5.

In the first part of Fig. 14.4, an exemplified logic diagram is shown, which is

used to identify plant master status (PMS) with the measured sensor values. In the

second part of Fig. 14.4, master control sequencers (MCS), which are produced by

the result of logical additions of one or more PMS values, are shown. For example,

MCS05 is produced by the result of logical addition of PMS001, PMS002, and
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Fig. 14.3 Power plant operators’ team
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PMS001 Boiler Firing

PMS003 Turbine Start
PMS004 parallel 

PMS002 Steam Condition Ok

1B003 Main Steam temperature > 450 degC.
1B004 Main Steam pressure > 3.5 MPa PMS002 Steam Condition Ok

1B001 A Burner Firing      ON .
1B002 B Burner Firing      ON

PMS001 Boiler Firing

1T010 Turbine RPM  > 20 rpm.
1T011 Turning Gear         OFF

PMS003 Turbine Start

ignite inc. temp.

turbine start speed up

parallel in

1. Judging Plant Master Status (PMS)

2. Decide the combining condition of Master Control Sequencer (MCS)
MCS01 MCS02 MCS03 MCS04 MCS05

3. Instruct to Group Leader

Boiler Group

Turbine Group

Generator Group

Logical Addition

Logical Product

Logical 
Complement

Fig. 14.4 Example of duty supervisor role description

1G020 Generator oil temperature normal
1G021 Generator cooling H2 normal MSD102 Generator Condition Ok

1T020 Turbine bearing oil temperature normal
1T021 Condenser vacuum normal MSD101 Turbine Condition Ok

1. Judging Multicondition Status Determiner (MSD)

2. Decide  IF THEN rule  on Operation Block (OB)

3. Instruct to OPERATION

MCS03    Turbine Start timing         TANS

1T030      Turbine target rpm set         CANS

PANSMSD101 Turbine Condition Ok
MSD102 Generator Condition Ok

WORKER ACTION :  Turbine target rpm set 
MESSAGE ACTION :  (CRT) Turbine Start
VOICE ANNOUNCE ACTION :  (VOICE) Turbine Start
LAMP ACTION  :  (CONSOLE) Turbine rpm display 

BAD CONDITION MESSAGE : (TANS=ON and PANS =OFF) Precondition BAD
BAD COMPLETE MESSAGE : (WORKER ACTION and CANS=OFF) Complete condition BAD

OPERATION

IF THEN ELSE

TANS

CANS

PANS

PRECONDITION BAD

Logical
Addition

Logical
Product

Logical 
Complement

Fig. 14.5 Example of group leader’s role description
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PMS003. In the third part of Fig. 14.4, the activities to be triggered by the respective

MCS are shown.

Each activity enclosed in a shaded box is initiated by the respective MCS. These

activities are conducted by the group leaders and operators.

The refinement of activity “turbine start,” defined in Fig. 14.4, is illustrated in

Fig. 14.5. In the first part of Fig. 14.5, it is shown that MSD101, the logical product

of 1T020, and 1T021, which are logical variables, triggers MSD101. In the second

part of Fig. 14.5, the “IF-THEN rule” that triggers OPERATION or PRECONDI-

TION BAD is illustrated. Each OPERATION is controlled by the shown logical

expression on the logical variables: TANS, CANS, and PANS (TANS corresponds

to trigger condition, CANS to post-condition, and PANS to precondition). As

shown in Fig. 14.5, OPERATION is refined into atomic actions: WORKER,

MESSAGE, VOICE ANNOUNCE, and LAMP. PRECONDITION BAD is refined

into several individual messages.

Using the duty supervisor role descriptions and group leader role descriptions

shown in Figs. 14.4 and 14.5, how to classify invariants from variants are analyzed.

The results of the analysis are summarized as follows:

1. Invariants

(a) The semantics of the EPG-SPL framework, which is described in Sect. 5

(b) The logical expression to define conditions for controlling every activities

(c) The operational semantics for APSS called SCIA, which is described in

Sect. 4

2. Variants

(a) The expressions used to identify variables in PMS, MCS, MSD, and OB

(b) The measured values to be used in the conditions defined in the logical

expressions

(c) The expressions used to identify actions

(d) The expressions used to identify messages

Each set of role descriptions is transformed to each table respectively in the way

as described below:

(a) The role descriptions of the duty supervisor shown in Fig. 14.4 are transformed

to the table called Master Control Status (MCS) and Plant Master Status (PMS).

(b) The role descriptions of group leader shown in Fig. 14.5 are transformed to the

table called Operation Block (OB) and Multicondition Status Determiner

(MSD).

(c) The role descriptions of operator, not shown in the Figs. 14.4 and 14.5, are

transformed to the table called Worker Control Driver (WCD).
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4 APSS Framework

Status, Condition, Interaction, and Control (SCIA) is an operational semantics that

satisfies the execution of the component-based software architecture called APSS

framework shown in Fig. 14.11. The APSS framework allows building

hierarchically structured program components for implementing APSS systems.

In SCIA, the execution of every atomic component is concurrent and their coordi-

nation is expressed in terms of event-oriented architecture.

– Status is the state that is common to all plant start-up operations such as “Start

Preparation,” “Condense Water Clean-up,” “Low Pressure Heater Clean-up,”

“High Pressure Heater Clean-up,” “Ignition Preparation,” “Boiler Ignition,”

“Turbine Start-up,” “Synchronization,” and “Increase Power.”

– Condition is the logical variable defined by a logical expression that consists of

logical variables called events and logical operators. Logical composition of

atomic events, each of which denotes a deviation of input value from some

threshold values.

– Event is defined by interaction involves plant status, events, conditions, and

controls, and defines rules to activate or deactivate controls using logical

expressions that comprise status events and conditions.

– Control presents logical expressions to define preconditions, trigger conditions,

trap condition, and post-conditions that used to control corresponding actions.

Figure 14.6. illustrates an example of temporal relationship between status, trap

condition, trigger condition, precondition, post-condition, and control.

Table 14.1 illustrates an example of the semantic relationships between

conditions, variables, rules, and controls. The controller Cont.1521 can be activated

or deactivated by the result of logical conjunction between condition Cond.0311

trap

trigger

precondition

post-condition

status

control

If the trap condition becomes true,
the activity will be aborted

When the activity finishes
successfully, the post-condition
becomes true

If the timing, trigger and precondition are true, while trap condition is false,
activity can start.

Fig. 14.6 Timing chart [3]
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and Cond.0312, shown in Table 14.1. The activities to be performed by Cont.1521

are defined in Table 14.2.

DSL-EPG for the APSS system consists of the six kinds of fill-in-the-blank

formats, which are Plant Master Status (PMS), Multicondition Status Determiner

(MSD), Master Control Sequencer (MCS), Alarm Group (ALG), Operation Block

(OB), and Auxiliary Tables.

1. DSL-PMS: DSL for defining Plant Master Status (an example is shown in

Fig. 14.7): the logical tables to specify plant master status and to set system

flags such as boiler ignition, turbine start-up, synchronization, etc.

2. DSL-MCS: DSL for defining Master Control Sequencer (an example is shown in

Fig. 14.8): the decision tables that specify parameters that are used to choose

control sequence codes.

3. DSL-MSD: DSL for defining Multicondition Status Determiner (an example is

shown in Fig. 14.9): the logical tables that specify parameters used to select

processes to be activated.

4. DSL-ALG: DSL for defining Alarm Group definition: the logical tables that

specify alarming devices and how to drive those devices.

5. DSL-OB: DSL for defining Operation Block (an example is shown in

Fig. 14.10): the logical tables that are used to select the objective WCD and to

specify preconditions, post-conditions, and logical expressions.

Table 14.1 Conditions for controller initiation

Variables ID

Rules

1 2 3 .....

Conditions Cond.0311 True False True False

Cond.0312 True False False True

Controls Cont.1521 Activates Deactivates Activates Activates

From Matsumoto 2009 [1]. ©2010 Taylor and Francis Group, LLC. With permission

Table 14.2 Definition of controller activities

Activities of: Cont.1521

Rules

1 2

Timing event (in regular

expression)

λ � e(Cond.0311 \ Cond.0312) λ � e(Cond.0311 \ Cond.0312)

Trigger event e(^L1) e(^L2)

Precondition (^V1 \ ^V2) (^V1 \ V2)

Trap (exit) condition ^(L1 \ ^L2) ^(L1 \ ^L2)

Activity a(V1) � a(^V2) a(^V1) � a(^V2)

Post-condition L1 \ ^L2 \ V1 \ ^V2 L1 \ ^L2 \ ^V1 \ ^V2

Note: X1, X2, Y1, and Y2 are exampled logical variables. a(·) represents action. For example,

a(Y1) represents action to operate Y1. e(·) represents event. For example e(X1) represents event to

be activated by X1. λ represents initiation event

From Matsumoto 2009 [1]. ©2010 Taylor and Francis Group, LLC. With permission
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6. Auxiliary Table:

(a) I–O List: Input–Output List

(b) WCD: DSL for defining control of worker drivers

[ IF ]
Single Status 
logic
(ANS)

[ Then ]
Action Block

Fig. 14.7 DSL-PMS

[ IF ]
Status matrix 
logic

[ THEN ]
Trigger OB 
table

Fig. 14.8 DSL-MCS
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Inside the APSS framework, seven software components (Process-scheduler,

ACP, EAC, BOC, WCP, CIS, and MAS) and three code storages (I/O-code base,

plant-code base, and worker-code base), shown in Fig. 14.11, are accommodated.

The APSS framework will be included as a constituent of the provisional machine

shown in Fig. 14.14.

The roles of those components are as follows:

– Process-scheduler: The role of Process-scheduler (PS) is the mediation between

other six framework components and the operating system. PS schedules,

monitors, and controls processes to drive processes called ACP, EAC, BOC,

WCP, CIS, and MAS.

– Contact Input Scan (CIS): Driven periodically by PS, CIS scans states of switch

contacts using the data provided by I/O-code base. Whenever any event (devia-

tion from the defined range or condition) is found, CIS sends action to EAC.

– Multiple Analog Scan (MAS): Driven periodically by PS, MAS scans states of

analog inputs using the data provided by I/O-code base. Whenever any event

(deviation from the defined range or condition) is found, MAS sends action to

EAC.

– Executive Action Control (EAC): EAC is activated periodically in the highest

priority, and receives actions sent from CIS and MAS. Accordingly, EAC

transfers to ACP, the names of the occurred actions and the identification

numbers of OB tables (OB assignment) that are related with the actions.

– Activity Control Processor (ACP): Driven by the messages from EAC, ACP

takes the codes of the assigned OB tables from the plant-code base and

interprets. As the result of interpretation, WCP or BCO is activated.

[ IF ]
Single Status 
logic
(ANS)

[ Then ]
Action Block

Fig. 14.9 DSL-MSD
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[ IF ]

3 Status logic

(TANS,PANS,CANS)

[ Then ]

Action Block

[ ELSE ]

Action Block

Fig. 14.10 DSL-OB

BCO

I/O list
APSS Descriptions 
in DSL-EPG 

Worker scripts

EPG language processor, and code generator for the APSS system

I/O-code base Plant-code base Worker-code base

ACP

EAC

WCP

CIS
MAS

A
P

S
S

  f
ra

m
ew

o
rk

Software platform

periodic read
interpret

trigger
Process-
scheduler

Fig. 14.11 APSS framework
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– Worker Control Processor (WCP): This is the process to drive various external

devices such as relays, switches, servo motors, or valve controllers. WCD

interprets the codes in the worker-code base and plant-code base assigned by

ACP and sends outputs to control external devices.

– Blocking Conditioning Output (BCO): This is the process to select and block

some outputs for the purposes of protection by interpreting the assigned

conditions from the I/O-code base and plant-code base.

In order to verify the function of APSS software, Toshiba has developed the

testing software environment shown in Fig. 14.12. The testing software environ-

ment implements the following subfunctions:

– Plant input SIMulation Program System (SIMPS): The function to apply time

sequential data to each input of APSS software.

– Output Value Monitor: The function to enable monitoring each output of APSS

software by using graphical method.

– Data Feedback Simulator: The function to simulate the feedback from output

data to input of APSS system based on the combination of software code. This

function is applied to verify the functions of some important part of the plant

such as main turbine.

These functions effectively work for verifying the APSS software functions, for

example, validity of data provided I/O-code base, activities, controlled by plant-

code base and process driven by worker-code base.

APSS framework

SIMPS Output
Value

Monitor

Data Feedback
Simulator

I/O-Code
base

Input Value Simulation

Plant-code
base

Worker-code
base

Fig. 14.12 Testing environment for APSS codes generated from DSL-EPG
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5 Software Product Line

5.1 Product Line Scoping Supports Business Strategy [7]

The scoping [4, 5] of EPG-SPL has been decided based on the Toshiba Corporation’s

business strategy that defines market segments in the EPG world. The market

segments covered by the EPG-SPL are fossil fuel fired (coal fired, oil fired, or

liquefied natural gas fired) steam cycle, steam/gas combined-cycle and nuclear

power plants (e.g., boiling-water type) to be provided by public utility companies,

as well as by private companies. The EPG-SPL scope also includes other parameters

such as listed as follows:

1. Type of software platform

2. Type of EPG middleware

3. Type of DSL-EPG interpreter

4. Various specialties that are required depending on each market segment

5. Various specialties that are derived from the properties of customers, plant-

equipment manufacturers, and type of plant/control devices

6. Type of functionalities covered by the EPG-SPL

The functionalities covered by the EPG-SPL are plant-monitoring, plant-

performance calculation, APSS, man–machine interactions, plant-operational

graphics display. The EPG-SPL constituents are classified in accordance with

those EPG-SPL functionalities. It means that APSS is one of the EPG-SPL

constituents, and the operational semantics SCIA, described in Sect. 4, is the

semantics that specifically supports only APSS.

The model of EPG-SPL-code configuration is shown in Fig. 14.13. It comprises

four major parts: DSL-EPG-code generator, code based for the defined four market

segments, functional programs for DSL-EPG interpreter and specialties used for the

particular functionalities, and EPG middleware.

5.2 Architecture of EPG-SPL [8]

The architecture of EPG-SPL and how to use it is modeled in Fig. 14.14. The

invariants described in Sect. 3.2, e.g., the operational semantics (SCIA) for APSS,

commonly used logical expressions, and event-driven architecture, are classified in

accordance with the market segments and associated parameters, explained in

Sect. 5.1., and mounted on the repository described in the left edge of Fig. 14.14

through Meta Class format sheets. The variants described in Sect. 3.2, which are

variables in PMS, MCS, MSD, and OB, variables to identify actions, and variables

to identify messages, are input to the code generators through the DSL documents

shown in the top right corner of Fig. 14.14.

216 M. Okamoto et al.



COM.Drivers   2.0
Middlewares     3.0 

RWM 

Grf Interpriter    3.0
HMI Interpriter   3.1
PlantCtl.Interpriter 3.2 
IO Interpriter 3.0 
lication Programs 

Model : Nuclear - BWR

Combined
Cycle 

Fossil Fuel
(Coal) 

Fossil Fuel
(Common)

Plant A

Plant C

Plant B

COM.Drivers   2.0
Middlewares     3.0 

GT Life  3.2 
Mnt.Mode 

Grf Interpriter    3.0
HMI Interpriter   3.1
PlantCtl.Interpriter 3.2 
IO Interpriter 3.0 

Model : C/C - LNG

COM.Drivers   2.0
Middlewares     3.0 

Coal Bunker Prg.  3.2

Grf Interpriter    3.0
HMI Interpriter   3.1
PlantCtl.Interpriter 3.2
IO Interpriter 3.0

Model : Fossil - Coal

Common

DS

Do
DS

Do
DSL 

Documents 

Code generation 

Revision

Repository

Testing Environment

Testing

Fixing

Provisional Machine

Meta Classes

Target Plant

Other Plants

SCM System

Development

Registration

New Functional Program

Distribution

Nuclear
(BWR) 

Code Generator

Configuration

Fig. 14.14 Architecture of EPG software product line

DSL-EPG Interpreter

Functional Program

EPG Middleware

Gas Turbine 
Components 
Lifetime Calculator

Turbine Maintenance 
Mode Service

Coal Bunker 
Monitor

Rod Worth 
Minimizer

C
ode-base (F

ossil F
uel: C

oal)

C
ode-base (F

ossil F
uel: O

il)

C
ode-base (C

om
bined C

ycle)

C
ode-base (N

uclear P
ow

er)

Failover Controller

Transaction Controller

Communication DriverSystem Supervisor

User Process Scheduler

Monitoring Interpreter

Performance 
Calculation Interpreter

APSS Interpreter

Man Machine 
Interaction Interpreter

Graphic Control 
Interpreter

DSL-EPG Code Generator

…

Specialities

Fig 14.13 Model of code configuration of the EPG-SPL

14 Variability in Power Plant Control Software 217



In case that we need to construct a whole set of codes to be released to a target

power plant, the plant-specific invariants defined by the meta-classes, described

using the Meta Class format sheets shown in the left-top part of Fig. 14.14, are put

into the EPG-SPL by the developers. The task called “configuration,” shown in

Fig. 14.14, selects the necessary sets of invariants, defined in the Meta Class format

sheets, from the repository, and put those invariant sets into the provisional machine

automatically. The provisional machine consists of code bases, interpreters, EPG

software framework core, platform and hardware. The interpreters can be made to

execute using all the defined variants and invariants using EPG middleware,

platform, and hardware, on the provisional machine. The codes system mounted

on the provisional machine can be tested using plant input SIMulation Program

System (SIMPS) by the human task “testing”.

In case that the codes released and deployed in the target plant should be

changed as results of maintenance, improvement or enhancement, contents of the

repository will be updated accordingly in order to match with the deployed codes

through human tasks “testing,” “fixing,” and “revision.” The fact that any revision

has been made will be announced to other plants by the human task “distribution.”

When any new invariant features are developed, those invariants can be uploaded to

the repository through human task “registration.”

6 Cost and Benefits

In order to manage and control cost and benefits during the development and

adoption of EPG-SPL, a guideline was developed [1, 2]. The guideline consists of

three kinds of tables shown in Tables 14.3, 14.4, and 14.5, namely ROI calculation

form, variable cost table, and fix cost table. Using this guideline, cost and benefits

are controlled so that shortage of return, to be entered in the bottom row of

Table 14.3, should never get into the red in each fiscal year.

The ordinal numbers shown in the top of every table identify the sequential order

of the fiscal years in the adoption stage. Usually, the corporate level of the company

defines the values such as standard interest rate (cost of capital), the tax rate, and the

depreciation. The number of shipments in fiscal year i, or n(i), means the number of

systems released and installed within this fiscal year, developed by the adoption of

EPG-SPL. The sales amount S(i) means the sum of customer’s payment within

fiscal year i.

The breakdowns of “variable cost” and “fixed cost” are listed respectively in

Tables 14.4 and 14.5. The explanations for every symbolized item are noted in the

rightmost columns.

In Table 14.4, the cost of maintenance, enhancement, and configuration

management required for running installed systems should be included in team

cost TC(i).
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The costs of activities, such as development of new items necessary to satisfy

individual customer’s requirements, development of additional assets, improve-

ment of the existing assets, and the development of sub-domain product lines,

Table 14.3 ROI calculation form

No. Item Symbol Notes

#1 Ordinal number i The “i” of the fiscal year when the product line is first

adopted is set 1

#2 Standard interest rate

(unit value)

SIR SIR is the value that is internal to the company. SIR

corresponds to the cost of capital, and its value is

defined a little higher than the cost of capital

#3 Tax rate (unit value) T –

#4 Number of shipment n(i) –

#5 Sales amount (¥) S(i) –

#6 Variable cost (¥) VC(i) The cost breakdown is shown in Table 14.4

#7 Marginal profit (¥) MP(i) MP(i) ¼ S(i) � VC(i)

#8 Fixed cost (¥) FC(i) The cost breakdown is shown in Table 14.5

#9 Profit (¥) P(i) P(i) ¼ MP(i) � FC(i)

#10 Profit after taxes (¥) PAT(i) PAT(i) ¼ P(i) * (1 � T)

#11 Depreciation (¥) DP(i) –

#12 Residual Value (¥) RV(i) –

#13 Cash in (¥) CI(i) CI(i) ¼ PAT(i) + DP(i) + RV(i)

#14 Additional investment

(for software) (¥)

IS(i) The cost breakdown is shown in Tables 14.4 and 14.5

#15 Additional investment

(for hardware) (¥)

IH(i) The cost breakdown is shown in Tables 14.4 and 14.5

#16 Cash out (¥) CO(i) CO(i) ¼ IS(i) + IH(i)

#17 Cash flow (¥) CF(i) CF(i) ¼ CI(i) � CO(i)

#18 Discount rate (unit

value)

DR(i) DR(i) ¼ 1/(1 + SIR)i

#19 Present value of cash

flow (¥)

PV(i) PV(i) ¼ CF(i) * DR(i)

#20 Shortage of Return (¥) SR(i) SR(i) ¼ (initial investment) � (sum of PV(1), . . ., and
PV(i))

From Matsumoto 2007 [2]. ©2010 IEEE. With permission

Table 14.4 Calculation of variable cost

No. Item Symbol Notes

#1 Ordinal number of fiscal year I –

#2 Cost spent for acquiring

products from outside

vendors (¥)

AC(i) –

#3 Cost spent for product

outsourcing (¥)

OC(i) –

#4 Cost spent by the domain

engineering team (¥)

TC(i) Develop additional assets, improve the existing

assets, and develop sub-domain product lines

#5 Variable cost (¥) VC(i) VC(i) ¼ AC(i) + OC(i) + TC(i)

From Matsumoto 2007 [2]. ©2010 IEEE. With permission
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modification efforts (such as development of sub-domain EPG-SPL, and modifica-

tion of EPG-SPL adoption programs) should also be included in TC(i).

In Table 14.5, the organizational costs necessary for keeping the fixed activities

and tasks, such as the ones conducted by the fixed organizational elements should

be included in department expense DX(i).

Using VC(i) and FC(i) calculated in Tables 14.4 and 14.5, the shortage of the

return SR(i) should be calculated using the equation in the bottom row of

Table 14.3. This value suggests the residual return that should be recovered by

the cash flows in the residual years.

The guide addresses the following processes:

1. Time scale: The length of EPG-SPL life and the time span necessary for

conducting each stage should be estimated at the beginning of or in the early

stage of development. At every fiscal year in the adoption stage, its ordinal

number starting from the first year should be identified and entered in the row #1

of the tables.

2. PV calculation: The expected cash flows which could be obtained at every fiscal

year in the adoptions stage should be predicted at the end of development stage

at the row #19 of Table 14.3. And NPV (accumulation of the PVs) should be

calculated and used for getting SR(i) at the row #20 of Table 14.3.

3. Cost control in adoption stage: The cost limit for conducting adoption stage

could be determined using the calculated SR(i) described in item (2), so that the

cost limit should not exceed the NPV. The adoption stage should be managed

and controlled so that the actual cost should be less than the cost limit.

4. Renewal of SPL generation: If it becomes clear that the shortage of return will

not to be recovered within the predetermined EPG-SPL lifetime, EPG-SPL

adoption plan should be modified and improved totally. In our case, such an

overall improvement was made in 1982, 1988, 1993, and 1996, as is described

by Matsumoto 2007 [2].

7 Conclusion

In this chapter, major features of APSS system and the software family, including

DSL-EPG, its processor and EPG-SPL, which supports automatic code generation

for each APSS application, are introduced. The sets of rules for operating the plant,

Table 14.5 Calculation of fixed cost

No. Item Symbol Notes

#1 Depreciation (¥) DP(i) –

#2 Personnel cost (¥) PC(i) –

#3 Operative overheads (¥) OO(i) –

#4 Department expense (¥) DX(i) –

#5 Fixed cost (¥) FC(i) FC(i) ¼ DP(i) + PC(i) + OO(i) + DX(i)

From Matsumoto 2007 [2]. ©2010 IEEE. With permission
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where each rule defines a relationship between plant status, events, conditions, and

operator’s actions, are defined in the collaborative work participated by customers,

plant operators, and APSS developers. The variants included in each rules can be

specified, and described with using DSL-EPG. The DSL-EPG processor analyzes

those descriptions to generate application codes [9]. The paper also illustrates how

EPG-SPL, which comprises APSS, is structured and maintained from the viewpoint

of cost and benefit.

The text of this paper was mostly produced by the third author, one of the

original creators of the system covered by this paper, and was compiled with the

figures, tables and references by the first and second authors.
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Chapter 15

Second-Generation Product Line Engineering:
A Case Study at General Motors

Rick Flores, Charles Krueger, and Paul Clements

What you will learn in this chapter
• An introduction to the basic concepts of the factory paradigm of product line

engineering, including feature declarations, feature profiles, shared assets,
variation points, and configurator

• The characterization of first-generation vs. second-generation product line
engineering (2GPLE)

• How 2GPLE is being applied at General Motors and why the 2GPLE concepts
have been critically important: How it has led to the creation of new roles and
responsibilities, how organizational units at different levels and in different
domain areas are cooperatively building PLE models that will all work together
to define a vehicle

1 Introduction

This chapter is the story of a product line engineering effort under way at General

Motors. The product line involves the electronic control systems placed aboard

vehicles during manufacturing. These control systems include electrical

components (sensors and actuators), electronic control units laid out in a given

topology around the car, wires and data networks to connect the components

appropriately, and the software that runs it—all loaded correctly onto each vehicle.

This story focuses on a particular set of aspects:
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• How solving this product line engineering problem requires every dimension of

what has come to be called the second-generation approach to product line

engineering.

• How a very small but consistent set of product line constructs are proving to be

adequate to provide the necessary expressive power for this product line.

• How the automation that is required to power the product line solution depends

not only on its own technical capabilities but also on vendor business

partnerships that allow it to work seamlessly with a variety of lifecycle engi-

neering tools that store artifacts in proprietary formats—artifacts that need to

have variation points injected into them.

These aspects are made compelling because of the unprecedented complexity

involved in this product line. If these solutions work here, it is unlikely they will be

found wanting anywhere else.

2 Overview of Product Line Engineering

Systems and software product line engineering, often abbreviated as product line
engineering (PLE), refers to the disciplined production of a portfolio of related

products using a shared set of assets and a common means of production. The

products in the portfolio are related by the features they have in common with each

other; the variations among the products are also expressed as variations in the

features they offer. The products can be

• Software

• Systems in which software runs or

• Non-software products that have software-representable artifacts (such as

requirements, engineering models, or development plans) associated with them

In all cases, PLE works with the “soft” artifacts associated with the products and

their production. PLE, then, includes and extends software product line

engineering.

The key strategy behind PLE is to capitalize on commonality and manage

variation in order to reduce the time, effort, cost, and complexity of creating and

maintaining a product line of similar software systems:

• Capitalize on commonality through consolidation and sharing within the asset

inputs, thereby avoiding duplication and divergence.

• Manage variation by clearly defining the variation points and decision model for

exercising the variation points, thereby making the location, rationale, and

dependencies for variation explicit.

The essence of PLE—for systems, software, and for manufacturing—is the

focus on the single system rather than the many products. The “system” in this

case consists of the production line, which enables the rapid production of any

version of any of the products in the portfolio. A production line consists of a
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collection of software assets, a set of feature profiles that define the products, and
the configurator that applies a feature profile to the assets in order to produce each

product in the portfolio. Once the production line is established, products are

instantiated rather than manually created.

PLE stands in contrast to classical product-centric development, in which each

individual product is developed and evolved independently from other products, or

(at best) starts out as a cloned copy of a similar product that is then changed to suit

the new product’s specific needs. Product-centric development takes very little

advantage of the commonalities among products in a portfolio.

3 Basic PLE Concepts: The Factory Paradigm

PLE can be described in terms of the following five concepts:

• Feature declarations are parameters that express the diversity in a product line.

Feature declarations are analogous to the choices that are available to you when

you buy a new car: Two door or four door? Sport package, luxury package, or

economy package? Moon roof? Feature declarations typically express the cus-

tomer-visible diversity among the products in a product line.

• Feature profiles are used to select and assign values to the feature declaration

parameters for the purpose of instantiating a product. A feature profile is associated

with each product and reflects the actual choices you make: Two door with sport

package but no moon roof or four door with luxury package and moon roof.

• Systems and software assets are configurable artifacts—such as models, source

code, requirements, and test cases—engineered to be shared across the product

line. They are the building blocks of the products in the product line. Assets can

be whatever assets are representable with software and either compose a product

or support the creation of a product.

• Variation points define the variations in the system and software assets used to

build products. Feature declarations are mapped to these variation points, and a

feature profile is mapped to the choices made at each variation point when

building a product.

• Configurator is the automation that takes the feature choices reflected in a

feature profile for a product and applies them to the variation points in the

assets, so as to produce instances of the assets that are the building blocks of

the product being built. It is possible to perform this step manually, but the task

quickly becomes unmanageable without an automated tool. An example of an

industry-leading configurator is Gears by BigLever Software [8], which GM

chose to power its PLE effort.

An analogy with factory-base manufacturing serves to illuminate the concepts.

Manufacturers have long used analogous engineering techniques to create a product

line of similar products using a common factory that assembles and configures parts

designed to be reused across the varying products in the product line. For example,

automotive manufacturers can now create thousands of unique variations of one car
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model using a single pool of carefully architected parts and one factory specifically

designed to configure and assemble those parts.

In PLE, the configurator is the factory and the assets represent the factory’s

supply chain. Figure 15.1 illustrates.

4 First-Generation PLE

Product line engineering now has roots that span at least five decades, going back at

least as far as Parnas’s seminal paper on product families for software in 1976 [11].

Examining the rich historical legacy of this community reveals patterns of evolu-

tion in the state of the art and practice.

“Generations” are hard to pin down precisely and do not have rigid boundaries,

but that does not prevent the concept from being useful. We can identify the Baby

Boomer, Gen-X, Gen-Y, Tween, and Millennium Generations. Fighter aircraft are

generally thought to be in their fifth generation [6] and programming languages in

their fourth or fifth (opinions vary) [21]. Current standards for mobile broadband

devices are known as 4G.

In the same spirit, we characterize some of the early and long-standing

approaches to product line engineering as first generation. First-generation PLE

(1GPLE) includes, among other things:

• A strong dichotomy between domain engineering and application engineering, or

core asset development and product development. Application engineering

Fig. 15.1 A production line. Feature profiles drive instantiation of assets’ variation points, which

are exercised by the configurator (here, Gears) to produce product-ready instances
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(or product development) is often said to include creating any assets used in a single

product and promoting them to core assets only if subsequently used in more.

• Explicit inclusion of non-software artifacts in the collection of core assets, but

with an unmistakable emphasis on software (under the umbrella of an all-

encompassing software architecture) as the principal kind of core asset.

• Focus on features as the language to describe a product line’s domain and a way

to discriminate products from each other.

• Acknowledgment of configuration management as an essential practice under

PLE but without a strong distinction between core asset CM and product CM.

These approaches have yielded a rich legacy of product line success, as

evidenced by a plethora of case studies [3, 4, 9, 13, 16]. The newer approaches

we describe in this chapter build on them. These newer approaches came about

because of situations where more robust methods are needed to (among other

things) deal with very large-scale product lines. “Scale” can refer to size, complex-

ity, and number in terms of products, core assets, lifecycle phases involved, and

evolutionary revisions over time.

5 Second-Generation PLE

PLE has been evolving a new set of concepts and technology that has been referred

to as second-generation product line engineering (2GPLE). This characterization
represents seen-in-practice extensions to the earlier paradigm that was centered

mainly on core asset production and product derivation.

Second-generation PLE can be said to comprise five aspects. None of these

facets of 2GPLE are incompatible with or contradict earlier approaches to software

product line engineering [4, 13, 19]—indeed, all five are mentioned as possible. The

difference is that in 2GPLE they have emerged in a central role, essential to support

large-scale practice. The five facets of 2GPLE are:

• Reliance on features as the lingua franca to express product differences in all

phases of the life cycle

• Consistent and traceable variation management in artifacts across the full engi-

neering life cycle

• A simplified configuration management model that maintains versioning of

assets, not products or asset instantiations

• Feature models with encapsulating constructs to facilitate hierarchical product

lines and cooperative feature model development across organizational

boundaries

• Industrial-strength automation

GM could not accomplish its product line engineering goals without each one of

these. We will discuss each in turn here and show how each is put into play at GM in

the second half of this chapter.
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5.1 Features as the Lingua Franca to Express Product
Differences Across the Life Cycle

The concept of a feature as applied to families of software systems is thought to date

to feature-oriented domain analysis methods, beginning with FODA [7]. In that

work, the authors adopted the definition of feature right out of an ordinary dictio-

nary: “A prominent or distinctive user-visible aspect, quality, or characteristic of a

software system or systems,” and this definition still serves us well in the 2GPLE

world. The property of being visible to the user is perhaps the central notion; the

choices a buyer can make when purchasing a new car is a helpful analogy.

Referring again to the manufacturing paradigm, the set of features to be

exhibited by the product under construction drives the manufacturing process:

The features determine which parts should be used in the product, how they should

go together, and how they should be tailored to fit the product. All of the assets that

go into building products will include variation points that will be exercised based

on the features the product under construction needs to have.

The concept of “feature” allows a consistent abstraction to be employed when

making choices from vehicle configuration all the way down to the deployment of

software components onto an electronics architecture. As we will see, GM is

elevating what they call a bill-of-features to the role of communication vehicle

between business, product marketing, and engineering units. The goal is to use this

to express and automatically derive content for vehicles in terms of desired features

and capabilities, rather than describing vehicles in terms of its bill-of-materials—

that is, its listing of parts and pieces. Although a bill-of-materials will still be

needed for manufacturing, the vision of GM’s PLE effort is that the bill-of-

materials for a vehicle’s electronics is generated from its bill-of-features.

The product line literature is rife with feature modeling languages and

constructs, few of which have seen industrial application. The GM experience is

providing a compelling argument that a very small and simple set of feature

modeling constructs suffices for describing all of the necessary feature information

for large and complex product lines.

To capture features, here is the set of feature-modeling constructs (provided by

Gears) that GM is using for its product line work. These constructs have evolved

over 10 years based on experience in ever-larger and more complex industrial

applications. The set of constructs has remained stable and small. They are:

• Feature declarations are parameters that express the diversity in the product line

for a system or subsystem. Feature declarations typically express the customer-

visible diversity among the products in a product line.

Feature declarations have types. When a feature is chosen for inclusion in a

product, it must be given a value consistent with its type. Table 15.1 shows the

feature types supported by Gears.

• Feature assertions describe constraints and dependencies among the feature

declarations. Feature assertions in Gears express REQUIRES or EXCLUDES
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relations. They express the constraint that a feature (or combination of features),

if present, either requires or excludes the presence of another feature (or combi-

nation of features). For example, an assertion could express the need for soft-

ware-actuated brakes to be present whenever the park assist option is on the

vehicle or the need for certain switches to be present if certain lights are

installed.

• Feature profiles are used to select and assign values to the feature declaration

parameters for the purpose of instantiating a product. A feature profile is

associated with a product and reflects the actual choices you make: Two door

with sport package but no moon roof or four door with luxury package and moon

roof. The values assigned in feature profiles must satisfy the constraints and

dependencies expressed by the assertions in the feature declarations.

• Assets are the abstraction for systems and software artifacts in a production line.

They are the building blocks of the products in the product line. Assets may be

requirements, architecture and design documents, source code files, calibration

sets, test cases, and so forth—artifacts from any phase of the development life

cycle.

• Variation points encapsulate the variations in the assets used to build products.

Feature declarations are mapped to these variation points, and a feature profile is

mapped to the choices made at each variation point when building a product. In

Gears, a variation point is instantiated from one or more variants, one of which

will “stand in” for the variation point when a feature profile is used to build a

product. A variant can “stand in” as is (in which case, the variation is accom-

plished by choosing which variant to use), or it can “stand in” after being

transformed by applying a match-substitution pattern expressed in the regular-

expression language of Perl. Also encapsulated within each variation point is the

logic, expressed as a sequence of rules, that maps feature values to the different

instantiations of that variation point.

There are three more Gears constructs that come into play in hierarchical product

lines; these will be discussed shortly.

Figure 15.1 illustrates how this small set of constructs give us the concept of a

production line (the part of the figure inside the red box). Assets are built and

maintained on the left; each is endowed with one or more variation points (indicated

by the gear symbol). Feature profiles determine how the assets are instantiated

Table 15.1 Gears feature types

Boolean True, false

Integer, Float Signed or unsigned numeric value

String Character string delimited by double quotes

Character Single character delimited by single quotes

Enumeration Select exactly one value from subordinate features

Set Select zero or more values from subordinate features

Record Select all values from subordinate features

Atom Named member/value of a set or enumeration
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(by exercising their variation points) to produce product-ready artifacts. Under this

paradigm, organizations become production-centric rather than product centric.

5.2 Consistent Variation Management in Artifacts Across the Full
Engineering Life Cycle

The 2GPLE paradigm treats artifacts across the full engineering life cycle as equals,

as current applications of product line engineering are demanding it.

It has long been a stated tenet of product line practice that core assets include

more than software. For example, the Software Engineering Institute’s Framework

for Product Line Practice [14] states that “architecture, requirements specifications,

testing-related artifacts, budgets, schedules, plans, and production infrastructure

can all constitute core assets.” However, a complete systems and software PLE

lifecycle solution requires more than just a statement of eligibility. It requires

consistent treatment of the artifacts’ variation points under the production infra-

structure, so that a full set of demonstrably consistent supporting artifacts can be

systematically generated for each product. The alternative, trying to translate

between the different representations and characterizations of features and

variations across the boundaries between stages in the life cycle, is untenable.

To illustrate, imagine that a requirements engineering team has embraced

a PLE requirements management technique based on tagging requirements in a

requirements database with attributes that differentiate feature variations in

requirements. Further, the design team has adopted a UML tool and has embraced

inheritance as the mechanism for managing PLE design variations. The develop-

ment team is using a FODA [7] feature model drawn in a graphical editor, plus

#ifdefs, build flags and configuration management branches to manage implemen-

tation variations. Finally, the test team has adopted clone-and-own of test plan

sections, stored in appropriately named file system directories to manage their PLE

test plan variations. Now imagine what would be needed to create a complete PLE

lifecycle solution that integrates into a larger business process model. How do the

requirements database attributes and tagged requirements relate and trace to the

subtypes and supertypes in the design models? How do these attributes and

supertypes relate and trace to the #ifdef flags, CM branches, FODA features, and

test case clone directories? Trying to translate between the different representations

and characterizations of features and variations creates dissonance at the boundaries

between stages in the life cycle.

To resolve this quagmire, a key aspect of 2GPLE is not just inclusion of non-

software artifacts, but consistent and traceable treatment.

The artifacts to support this process include requirements, system architectures

and designs, source code implementation, calibration parameters, test cases, and

documentation. Some of the documentation could be for suppliers, who will

provide some of the necessary software and hardware components. At a company
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such as GM, the long-term goal can be that all of these are endowed with variation

points, which can be exercised to correspond to feature choices.

Common representation of variation points is key to achieving traceability

from requirements to deployment. Traceability is of great concern for GM. Every

requirement needs to be traceable to one or more design elements that satisfy

that requirements, and each design element should be traceable back to one or

more requirements that it satisfies. Each design element needs to be traceable

forward to its implementation and vice versa. Each requirement needs to be

traceable to one or more test cases that validate whether or not the requirement is

satisfied in the final product. Managing all of these artifacts consistently, by tying

their variations to features, is the key to achieving this.

5.3 CM That Maintains Assets, Not Products or Asset
Instantiations

Configuration management (CM) for a product line must allow the rapid recon-

struction of any product version that may have been built using various versions of

the PLE assets and development/operating environment. This capability is essential

for rapid response to and remediation of any anomalies that arise in the field.

The most important aspect of CM in 2GPLE is that the full superset of available

PLE assets (and not the individual products or systems) are managed under CM. A

new version of a product is not derived from a previous version of the same product,

but from the shared superset of PLE assets themselves.

Contrast this to product-centric CM, illustrated in Fig. 15.2. Suppose a defect is

discovered in Product B after it has been deployed, and the defect is traced back to

product B’s requirements. The Product B team fixes the defect and redeploys. But

Product B’s requirements might have been borrowed from Product A’s

requirements, and Product N’s code might have been borrowed from (defective)

product B’s. By the time all of the potential dependencies have been run to ground

to make sure the defect is eliminated from every place it might occur in n products,
n(n � 1) interactions have occurred, for an O(n2) complexity.

By contrast, using the scheme shown in Fig. 15.1, the requirements defect will be

fixed in the asset, not the products. The affected products will be regenerated. This

is an O(n) proposition. All that is required to reconstruct any product version is to

store the temporal context for that product version. A temporal context is a vector of

assets and the version of each that was used to build a version of product.
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5.4 Product Lines Across Organizational Boundaries

For PLE to work at large organizations, it may be impractical to have a single

organizational unit tasked with the care and feeding of the shared PLE assets [17].

Certainly having one global collection of feature declarations for an entire produc-

tion line is impractical. (At GM, a single feature model for a car would comprise a

few thousand features and have to be shared among thousands of engineers.)

Further, subsystem engineers have no interest or need to see all of the feature

diversity in other subsystems. For example, engineers for an automotive transmis-

sion system do not need to see feature abstractions that capture the diversity in the

entertainment or GPS navigation system. It makes no sense to comingle them.

It makes much more sense to modularize the feature model in a way that

corresponds to the organizational structure of the enterprise. Although these

structures can change over time [5], they make an excellent starting point and let

the organization begin to adopt PLE using familiar units.

At GM, a vehicle is composed from a set of integration areas (such as safety or
human–vehicle integration), which assemble combinations of subsystems, which

are in turn composed of functional elements, which are implemented by

compositions of software components and calibrations that are loaded onto hard-

ware components arranged in one or more physical architecture topologies. At each

level in this decomposition—which is not necessarily hierarchical—engineers are

assigned responsibility for managing the artifacts and configurations at that level,

all of which are imbued with rich and numerous kinds of variation. Assembling a

vehicle from the most primitive elements would simply be intractable. By contrast,

a vehicle is more like a system of systems [10], which is managed as a product line

of product lines. At GM the nesting is at least four levels deep.

Requirements
Engineers Requirements

Engineers
Requirements

Engineers

Architects

Developers Developers Developers

Source Code
Source Code

Design
Models

Design
Models

Requirements Requirements

Test Cases
Test Cases

Architects Architects

Product A Product B Product N. . .

Test Cases

Source Code

Design
Models

Requirements

Quality
Assurance

Quality
Assurance

Quality
Assurance

Fig. 15.2 A product-centric perspective with O(n2) complexity
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Each of these units represents a domain, by which we mean a body of knowledge

[7]. Integration areas and subsystems are part of the fabric of the company. Building

a subsystem for a vehicle, or combining subsystems in an integration area, or

implementing a functional element requires specialized knowledge. In a PLE

context, that specialized knowledge becomes knowledge about the variations that

are possible, and the result is a number of product lines that each contribute

instances to the overall vehicle product line.

Because some of the domains are quite large (as are the bodies of knowledge

they embody), domains have sub-domains, and their product lines are the result of

still finer grained nested product lines. (Section 8 will show an example of this

nesting.) Features at the highest level of the hierarchy include things that vehicle

customers would resonate with, such as daytime running lights or lane keep assist,

while “features” take on a different meaning at the lower levels. Here, features

represent a variation of a lower level “product” (such as a component that

implements one of the available varieties of cruise control) being offered up to

higher level product lines. But the whole chain starts at the highest level with the

Bill-of-Features for the vehicle, each of which causes a cascade of lower level

choices to be made. At every level, the same small and elegant set of concepts

presented earlier work to capture the inherent variation. This lets engineers work

largely independently within the confines of their own organizational units and

domain expertise.

A hierarchical product line constitutes an architecture-like construct, in that

there are interfaces and relationships among the nested product lines. There is the

parent–child relationship for product lines that typically mirrors the

system–subsystem decomposition in the vehicle architecture. Product line features

can be partitioned, encapsulated, and scoped within the primary subsystems that

realize the features. Features can also be shared among product lines by establishing

an import relationship, which is crucial for establishing feature constraints and asset

variation points among interrelated subsystems (e.g., a high-end flavor of cruise

control that slows the car if there’s traffic ahead requires a flavor of the braking

system that supports braking via software command).

Gears provides three more constructs that facilitate the interfacing and coordi-

nation between levels in the hierarchical product line: mixins, matrices, and

imported production lines.

• Mixins. Although many feature declarations will fall cleanly into the realm of

one asset or another, there are many cases where a feature declaration applies to

two or more assets. For example, the automotive platform (Buick Regal? Chevy

Cruze? Cadillac CTS?) and the region for which the vehicle is being marketed

(North America? Brazil? China?) constitute features that determine how an asset

should be configured at many levels: Integration area, subsystem, functional

element, component. Rather than duplicating the same feature declaration in

multiple assets, Gears provides the mixin abstraction to allow creation of a

feature declaration in one place and then “mix it into” the feature declarations

of multiple assets, by reference.
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Mixins are more than a convenience to avoid typing of feature declarations.

They also encapsulate, in a single location, the feature profiles for the feature

declaration parameters. Having a single location for the feature profiles prevents

inconsistencies when composing assets to create a complete system.

Imagine, for example, that we need the lane-keep-assist option to be supported

by two assets. If this option were declared independently in both assets, it would

be possible to inadvertently create a system where one asset assumed that the

feature was supported and the other asset assumed it was not supported. Using

mixins, there is a single feature profile for the lane-keep-assist option that is

“mixed into” both assets. It is either true for both assets or false for both.

• Matrices. A Gears production line is the “virtual factory” that knows how to

build products by configuring assets in accordance with selected feature profiles.

To build a product, you need to tell Gears what feature profile to use for each

asset and each mixin in the production line. A matrix is a table showing the

choices to build a complete and consistent product. Each row specifies one

product. Each column specifies a choice of feature profile for a mixin or an

asset (Fig. 15.3).

A complete product instance is “actuated” by actuating every asset and nested

production line column that has an entry for that product. Each asset and nested

production line is actuated according to its cell value in the row. If an asset

imports a mixin, the mixin feature profile to be used is determined by its cell

value in that row.

Some products may not need all of the assets. For example, low-end products

in a production line may not include “luxury” assets that are aimed at high-end

products. Each matrix allows you to include or exclude individual mixins and

assets to accommodate such product diversity.

• Imported production lines. Gears allows you to create a hierarchy of production

lines by nesting one production line into another production line. In order to use

a production line as a nested production line, it must first be imported. An

imported production line will be added as a column in the matrices for the

importing production line, just like an asset or mixin. For example, engineers at

GM have defined a production line for the safety integration area. In order to

provide a safety package to a vehicle, the safety production line must include

specifically configured subsystems from a number of subsystems (such as body

and active safety), which are their own production lines. A subsystem production

line, in turn, can import production lines corresponding to functional elements,

and so forth.

Fig. 15.3 A Gears matrix, with three rows for three products. The “Global” and “Showroom”

columns show feature profile choices for mixins; the last four columns show feature profile choices

for assets.

234 R. Flores et al.



Hierarchical product lines are not new in the product line literature [2], but

GM is turning out to be the largest (and deepest) realization seen in practice.

Also, hierarchical product lines are not needed just because the product line is

large. We know of another product line of multi-million-line systems with

equally astronomical product variation. However, their products are structured

as a set of a dozen or so major subsystems with limited influence on each other in

terms of variation selection. That is, choosing features for one subsystem does

not have much influence on the features of the other subsystems, obviating the

need for a hierarchical production line.

5.5 Industrial-Strength Automation

The last ingredient in 2GPLE is a configurator employed to maintain configurations

and translate feature profiles into assets with their variation points exercised in

prescribed ways. The tooling needs to be able to support the construction and

management of feature models (including feature declarations, assertions, and

profiles), assets and their variation points, support hierarchical production lines,

and map from feature choices to asset instances (in Gears, this is the job of the

matrices). Further, it needs to either provide version control for the models and

artifacts or (even better) work seamlessly on top of the user’s own choice of change

management system.

A major requirement for the tooling is that it supports the specification and

selection of variation in assets and artifacts from across the entire spectrum of the

product life cycle. This means that in addition to working with open-format

artifacts, the tool will have to support variation proprietary-format artifacts such

as IBM Rational DOORS requirements modules, Microsoft Word documents, and

Excel spreadsheets, build files for Make or Ant, Rhapsody UML models, and many

more.

Gears supports these and more using bridges. A bridge is a piece of software that

“knows” the other-tool representation and presents a “product-line-aware” user

interface for that tool that allows product line engineers to insert variation points

in the artifacts maintained by that tool.

First-generation approaches always discussed the need for automation; second-

generation approaches require it, and it must interface with other system and

software engineering tools.

6 A Mega-scale Product Line at GM

General Motors is the largest automotive manufacturer in the world [1]. In 2011 it

sold over nine million vehicles, produced (with its partners) in 31 countries around

the world. That works out to over 1,000 vehicles rolling off assembly lines every
hour.
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The product line we describe is built under the Next-Generation Tools (NGT)

initiative at General Motors. GM introduced NGT to tackle the complexity brought

on by (among other things) the introduction of hybrid and alternative-fuel vehicles

and new “active safety” features that require intricate and unprecedented orchestra-

tion among vehicle subsystems. Product line engineering is a key ingredient of

NGT.

General Motors may well represent the most challenging domain in all of

product line engineering. We characterize it as mega-scale PLE due to the fact

that engineers must deal with multiple product line characteristics that measure in

the millions although, as we will see, even this term’s implied order of magnitude

fails by a wide margin to do justice to the problem space:

• The vehicles are complex. As a group, GM vehicles comprise some 300

engineered subsystems such as brakes, exterior lighting, interior lighting, entry

controls, and many more. The Chevrolet Volt runs approximately ten million

lines of code [12], which is several million more than either the Boeing 787 or

the F-35 Joint Strike Fighter 13 (Fig. 15.4).

• The variation among vehicles is enormous. GM builds over 60 models under

seven brands and divisions. The vehicles may be internal combustion, electric,

or both. Customer-visible options include everything from power windows to

“lane keep assist” (a system to help the car stay in the correct highway lane).

These options, and many dozens more, fundamentally affect the electronics and

software aboard the vehicle.

Legislation, not to mention cultural preferences, in the 150+ countries where

GM does business also imposes feature constraints. To choose one of many

dozens of examples, there are complex interactions between the vehicle’s

exterior lights (low beam headlights, high beam headlights, tail lamps, brake

lights, parking lights, daytime running lights, front fog lamps, rear fog lamps,

cornering lamps, reversing lamps, and hazard flashers) in terms of which lights

are allowed, disallowed, or required to come on with which others. The “lead me

to my car” feature makes lights come on or flash when the driver presses a button

on the key fob. Which lights come on, whether they flash or not, and how long

they stay on all are specific to the region and (of course) what exterior lights are

Fig. 15.4 Chevy Volt: Ten

million lines of code, nicely

packaged (© GM Company)
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actually on the vehicle. The electronics aboard every car has to get that behavior
right for that car.

A simple thought experiment helps to grasp the astronomical magnitude of

the variation involved. We can think of vehicle rolling off an assembly line as

the result of making a very large set of yes-or-no decisions. The set of all

possible vehicles results from all possible combinations of those yes-or-no

choices. The size of that product space is 2x, where x is the number of decisions.

If x > 260, then the product space comprises more combinations than the

number of atoms in the observable universe 21. For GM, x is in the low

thousands. (The number of variants that GM actually produces is much less

than that, obviously—a number in the low tens of thousands.)

• Feature interaction abounds. The lighting example above illustrates interactions

within a subsystem (exterior lighting), but other features require complex

interactions among completely different subsystems. For example, the presence

of “park assist” (a feature to help park the car) requires the presence of a sensor

to gauge the car’s position relative to the parking space. In some cars this will be

a sonar detector, while on others it will be a camera. Park assist also requires

brakes that accept software control, and some versions of park assist require

particular versions of steering controls. Thus, the presence of a customer-visible

feature can affect multiple subsystems, requiring communication and coordina-

tion among the subsystems on the car, and among the groups that are responsible

for the subsystems involved.

• The product line must be in lockstep with current and future model years. GM
has to plan their production years in advance. Features that won’t be in the

showroom for 3–5 years are already part of today’s engineering. And the entire

product line marches in unwavering lockstep with the calendar, fixed and

unforgiving, which defines each new model year. This means that the product

line infrastructure must support concurrent engineering streams for each of the

fixed yearly cadences, as well as concurrent development cadences for release

cycles scheduled every 6 weeks throughout the year. There may be as many as

15 active, concurrent engineering baselines that engineers must contribute to and

coordinate among.

Another thought experiment illustrates the astronomical combinatorics of the

temporal dimension. Each of the 300 or so GM subsystems will typically

undergo enhancements or fixes within ten or more cadences within a 2-year

period, resulting in 10300 possible subsystem version combinations. As with the

number of feature combinations, this also vastly exceeds the 1080 atoms in the

observable universe [18].

• Consistency and traceability across the life cycle are required. Each vehicle is

the result of an engineering process that spans requirements, design, implemen-

tation, calibration, layout and interconnection of electronic control units (ECUs),

allocation of software to the ECU network, production of a manufacturing bill-

of-materials, and testing. Each of the artifacts must be consistent with each

other, in that they must all be accurate with respect to the vehicle to which they
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apply. Further, that consistency must be demonstrable through feature interde-

pendency constraints as well as traceability among lifecycle phases.

• The organization is very large. Ultimately up to 5,000 engineers will be directly

working on artifacts that are part of the product line, some in roles newly defined

expressly to support the PLE effort.

The emergence of hybrid and alternative fuel vehicles and new active safety

features, which dramatically increase the amount of product line diversity, plus the

new economic reality in the automotive industry that leaves little margin for

technical error, drove GM to plan to overhaul its engineering tools and processes.

The result is the Next-Generation Tools (NGT) initiative.

7 GM’s Approach for Mega-scale PLE

This section describes in greater detail how GM has adopted 2GPLE as their

technical roadmap for the future.

7.1 GM’s Architectural Decomposition

GM’s architectural strategy plays a key role in how it is rolling out PLE. The

strategy is one of logical decomposition as a way to gain control over the complex-

ity of building a vehicle’s electronics and a way to allot the thousands of engineers

into organizational units with clearly scoped roles and responsibilities.

• Functional architecture. First, a vehicle consists of a number of domains. These
are “containers” for capturing the requirements necessary to describe the elec-

tronics terms applicable to an entire vehicle. Domains define areas of related

functionality. For example, Powertrain is a domain, as is HVAC (heating,

ventilation, and air conditioning).

Orthogonal to domains are integration areas. Integration areas can be thought
of knowledge areas for satisfying high-level stakeholder requirements for

vehicles. Requirements here span domains. For example, Noise and Vibration

is an integration area; it “touches” any domain that can contribute noise or

vibration to the occupants’ driving experience: Powertrain, Body, Chassis,

HVAC, and more.

GM refers to integration areas and domains together as its functional archi-
tecture. The functional architecture provides the overarching structure to host

the hierarchical PLE models. Each domain or integration area team will build the

PLE models for their area of concern in corresponding part of the functional

architecture hierarchy. Figure 15.5 illustrates.

• Implementation architecture. Domains comprise subsystems. Subsystems repre-

sent physical systems on vehicles. There are subsystems for brakes, external
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lighting, internal lighting, entry and egress, and many more. Subsystems have

their own requirements, which must permit the subsystems to play their proper

role in the domains and (in turn) integration areas that need them. Subsystem

designers in turn decompose their subsystems into functions, and functions into

functional elements, and write requirements for each. Components are units of

implementation that satisfy the requirements for functions and functional

elements. Components are arranged in a decomposition hierarchy; leaf nodes

are components; higher nodes (which are just aggregations of their descendants

in the tree) are called compositions. Components may be software components

or hardware components, depending on how the functional elements are

satisfied. GM calls this component structure (with components mapped to the

functional elements they satisfy) its implementation architecture.
• Deployment architecture. Next, the components have to be assigned a place in

the onboard electronic architecture topology. Software components need to be

assigned to an electronic control unit (ECU), and hardware components have to

be assigned a spot in the topology. The selection of a topology from a small

number available, the assignment of ECUs to spots in the topology, and the

assignment of software to ECUs all constitute what GM calls its deployment
architecture.

• Vehicle application architecture. Finally, the components need to be laid out on

a vehicle. This architecture determines where the ECUs are stationed, and the

type, position, and routing of the wire harnesses to connect the sensors,

actuators, and ECUs.

These architectures—functional, implementation, deployment, and vehicle

application—institutionalize and add structure to concepts that are deeply ingrained

in the organizational and technical fabric at GM. For instance, there are centers of

deep expertise in brakes and lighting and keyed/keyless entry systems and dozens

of other domains. As part of PLE adoption, these centers are not going to be

Fig. 15.5 Tool view of GM’s functional architecture, showing some of the integration areas and

domains
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discarded in favor of a massive reorganization involving the reorientation, reas-

signment, and retraining of some 4,000–5,000 engineers.

In order to maintain the functional architecture and its rich set of decomposition

structures, the hierarchical production line approach of 2GPLE is needed. Integra-

tion areas, domains, subsystems, and functional elements can all be represented

with their own production line, importing the production line of smaller, child units.

Software components and ECUs can be represented as assets within the production

line at the appropriate decomposition level. Across all levels, requirements, design

models, and specifications can also be represented as assets. The result is a small

and nondisruptive change from the organizational schemes that GM has employed

successfully for years.

7.2 Roles

GM’s embrace of 2GPLE has led to the creation of a few new and refined

engineering roles that have come about as a direct result of piloting their hierarchi-

cal product line. The major PLE roles and their broad responsibilities vis-a-vis

maintaining the PLE models and artifacts include:

• Feature Owner. Feature owners take ownership of GM features (customer-

visible features such as cruise control or lane keep assist or hundreds of others

that are visible and bring value to car owners). These features are, in a sense,

abstractions. They only become tangible when realized by concrete artifacts:

requirements, functions, software components, electronic control units, and

wiring. In GM’s PLE environment, each of those artifacts will also embody

variation. It is the feature owner’s job to make sure that all of those artifacts in

“supporting roles” are adequate and correctly provide the feature to GM’s

customers.

A feature owner is the main technical contact to external teams who need to

know about the feature from the point of view of assembling a vehicle from this

and other features. This engineer is the recognized expert for the functional area

regarding the feature’s required variants, the system constraints it imposes, and

how it integrates onto a vehicle platform.

• Functional Architect. This engineer owns a specific area of the functional

architecture and as such establishes ownership and boundaries between sys-

tem-level assets. Together, the functional architects maintain the functional

architecture taxonomy introduced above.

With the advent of the NGT 2GPLE effort, functional architects have taken on

a new and critical role. Together, they are the keepers and centralized owners of

all of the PLE models. Their job is to ensure that the PLE models produced

inside their assigned area by feature owners, asset owners, and others are

consistent, fit together, and represent best PLE practice.
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Functional architects are each assigned a domain, which will involve several

subsystems. As PLE practices are introduced into each domain, functional

architects will actually build the PLE models, working with feature owners

who are the subject matter experts in each area. For example, the functional

architects will mine the feature owners’ knowledge about what constitute the

features in an area, what profiles (choices of feature combinations) they should

provide, and what feature combinations require or exclude other feature

combinations. For example, the feature owner for the wipers and washers

knows that rear wipers cannot be installed on any vehicle with a rear window

that slides open; the functional architect will capture this with an “EXCLUDES”

assertion between the rear window type and the wiper/washer configuration.

Under this scheme, the feature owners remain the subject matter experts about

their features; the functional architects translate (or help the feature owners

translate) that knowledge into well-structured and consistent PLE models.

The PLE models built with Gears for each domain or subsystem take the form

of production lines that are then combined by importing them into an overarch-

ing production line for the entire vehicle, making full use of the cross-organiza-

tional, hierarchical product line aspect of 2GPLE.

• Product Line Integration Engineer. This is another new role at GM, brought

about by PLE. This engineer collaborates with Vehicle Product Teams in the

selection of a “bill-of-features” for a vehicle being planned. The product line

integration engineer also collaborates with the feature owners in the identifica-

tion of the top-level subsystem production line “products” that will be offered up

to vehicles. The vehicle team for a vehicle will need the services and advice of a

team of product line integration engineers, who together will put together the

bill-of-features for that vehicle’s electronics system. When the bill-of-features

for a vehicle is created, the product line integration engineers will be at the table.

For example, the vehicle team for the Buick Verano wants to understand what

kind of climate control options they can offer with the car (or, to put it another

way, what climate control features are eligible for the Verano’s bill-of-features,

and what the downstream implications are of each). The product line integration

engineer responsible for heating, ventilation, and air conditioning (HVAC)

systems will offer up various automatic and manual climate control systems. If

a vehicle might 1 day be powered by hybrid or next-generation energy and

propulsion systems, this might mandate another kind of HVAC system.

The vehicle teams aren’t interested in the details of the features’

implementations, but only in how the features will appear to the customer and

how they interact with each other. The product line integration engineers, then,

manage subsystem “products” that are exposed at the vehicle and bill-of-features

level.

• Asset Owner. These engineers manage various kinds of assets across their life

cycle, and establish variation points in the assets. A requirements engineer is one

kind of asset owner. Their responsibilities include migrating requirements from

legacy requirements assets (mostly Word documents) into DOORS and, along

the way, imbuing those requirements with variation points that support features.
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Asset owners, including requirements engineers, are responsible for modeling

the features that their assets make available to the consumers of those assets, and

the variations in those features. These features are often strongly suggested, if

not identified outright, in existing technical specifications. Thus, feature creation

is more of an identification and extraction process, as opposed to an invention

process. This helps things go more smoothly and predictably.

Figure 15.6 shows how these roles relate to the PLE concepts discussed

previously.

7.3 Organizational Adoption

Launching and institutionalizing [15] this approach at GM has required significant

investment over the last 2 years or more, and that investment is ongoing. There has

been a group of champions and advocates of the PLE approach throughout the

effort. Early on, they sponsored a 2-week workshop to show how the approach

(using Gears in concert with DOORS) could tame the requirements for a major

subsystem, with variations clearly identified and managed. This pilot effort pro-

duced more strong advocates and steered GM towards their current tooling

approach.

After that followed a steady series of workshops and technical meetings with

senior engineers to work out how to apply the concepts at GM; the eventual results

of these meetings include the architectures and roles described above, plus a vision

of how features could be used across all of the architectures to describe variation.

All the while, the champions practiced internal evangelizing, advocating the

approach to management and engineers alike. One-day requirement workshops

Fig. 15.6 PLE constructs and roles at GM
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were held with subsystem owners to duplicate the results of the first 2-week

workshop.

The latter part of 2011 saw the launch of a series of some two dozen Bill-of-
Features Workshops. These workshops bring together a small group of feature

owners and subsystem experts in a particular area—for example, interior lighting.

They spend a day learning the PLE approach and then actually using Gears to model

the features in their domain. An important goal is to have participants experience

the “PLE epiphany,” when they see how 2GPLE and the NGT tool suite will help

them do their jobs better.

At the start of 2012, after 2 years of establishing buy-in, GM launched a series of

training courses. The course series kicks off with a short introduction to PLE at GM

and continues with 1-day classroom courses in each of the tools and how they will

be used. In concert with the training is the establishment of resources to help

engineers once they go back to their desks: Discussion boards, FAQ lists, help

desks, and the like. The Bill-of-Features Workshops have continued, with the

features created for the domains and subsystems being used to provide a full pallet

of vehicle-level variation choices, plus create variation points in assets such as

requirements specifications. Thus, the features and profiles in the middle of

Fig. 15.6 are being used to inform the product (vehicle) assemblies at the top and

the requirements assets at the bottom. The PLE roles identified earlier are all

carrying out their respective responsibilities using features as the lingua franca
for what they do.

Answers to recurring questions are being captured and stored in a “GM PLE

Cookbook,” which will include a set of patterns and anti-patterns for good practice,

a list of FAQs, and a set of naming conventions for product line objects shared

across organizations. This will represent a trove of practical knowledge not usually

divulged in the product line literature, as well as another aid to institutionalization

at GM.

7.4 What Is the End Game?

One of GM’s senior electronics engineers characterizes the electronics division’s

job this way: “We build silver boxes,” he said, “load software in them, and wire

them together.” If they can do that correctly for every vehicle they build, their job is

done.

Whatever PLE and NGT can do to help achieve that purpose is a win for GM.

The long-term vision is to create a bill-of-features for a vehicle (which manifests as

a vehicle-level feature profile in Gears) and automatically derive as much as

feasible of the bill-of-materials for that vehicle, including requirements, designs,

models, software, calibration data, tests, documentation, allocation of software to

hardware, wiring diagrams, and so forth. That vision is years away from being

achieved.
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However, short of that, there are some intermediate steps that GM is working

towards. Examples include

• Migrating all requirements to incorporate Gears variation points that formalize

feature-based variations in the system, subsystem, and component requirements

• Generating calibration files and values that will need to be loaded onto the

electronics modules or

• Given a set of features on a car and the components that need to be onboard to

support those features, generating a list of all of the digital signals that the serial

networks will have to accommodate

Longer term goals include calculating certain additive nonfunctional properties

of the electronics, such as weight or generated heat or cost.

Even short of this capability, GM is already getting value out of their PLE efforts

even before they have started producing instantiated engineering artifacts. Just

defining an internally consistent vehicle with consistent versions of subsystems,

functional elements, components, and hardware allocations represents a very big

step in managing the complexity at hand. To be able to do this in an end-to-end

fashion under the auspices of fully interoperating tool suite is a capability not

available at GM before now. The automation—in this case, Gears—can do a

semantic check on the feature model and report anomalies, such as the fact that

this vehicle is supposed to support the lane-keep-assist feature but the instrument

cluster chosen for it doesn’t have the correct display for that feature, or the chosen

physical architecture topology cannot support the serial data communication

required.

8 Example: Daytime Running Lights

We conclude by illustrating some of the points in this chapter through an example,

which necessarily must be a small one. A daytime running light (DRL) is a “lighting
device on the front of a roadgoing motor vehicle, installed in pairs, automatically

switched on when the vehicle is moving forward, emitting white, yellow, or amber

light to increase the conspicuity of the vehicle during daylight conditions” [20].

8.1 DRL Requirements

DRLs are considered a feature at GM; they’re certainly visible to the user. But not

all cars have them. DRLs are required equipment in Canada, Norway, and Sweden,

prohibited in Japan and China and optional in the USA, Europe, Australia, and the

rest of the world. (Region of sale turns out to be a major discriminator among

features, permitting or precluding a plethora of other features.)
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In vehicles that have them, DRLs can be “implemented” by lamps dedicated to

that purpose, or by front turn signal lamps, reduced intensity low beam headlamps,

full intensity low beam headlamps, parking lamps, or a combination of parking

lamps and dedicated lamps.

Just as there are many ways to realize DRLs, there are many choices for how the

customer can turn them on and off (including none at all, leaving it up to the car to

do so automatically). There is a thicket of requirements concerning when DRLs

may, must, and may not be on. For example, in Europe, DRLs must switch off

automatically when the front fog lamps (if the car has front fog lamps) or headlamps

are switched on, except when the headlamps are “used to give intermittent luminous

warnings at short intervals”—that is, flashed.

These and other impinging factors consume page after page in the requirements

document for the exterior lighting subsystem, of which DRLs are a member. These

requirements are rife with information about what requirements apply under what

conditions and be used to identify variations in the DRL feature.

Besides being a feature by themselves, DRLs play a part in other features as

well. Some realizations of the “Lead me to my car” feature flash the DRLs when the

key fob is pressed. Police vehicles have turn-everything-on features, which include

dedicated DRLs if the car is so equipped. Cornering lamps, another feature, can

only come on under certain conditions and affect DRLs if they share output devices.

8.2 Modeling DRLs

The feature owner for DRLs is responsible for understanding how the DRL feature

is realized, the variations it includes, and any variant capabilities required because

of its appearance in other features.

Figure 15.7 shows a preliminary feature model for DRLs. The feature model

captures the output type (what lamps on the vehicle can be used), if and how DRLs

can be disabled, and how DRLs are integrated with the car’s headlamp controls turn

signals, respectively.

Fig. 15.7 Feature model for daytime running lights
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Figure 15.8 shows how the output type subfeature is expanded to take into

account all the possibilities. The output type is modeled as a set; a vehicle can

have any number of ways of realizing the DRL feature, or none at all.

However, if a vehicle realizes the DRL feature with low-intensity headlamps,

then it cannot realize it with high-intensity headlamps as well and vice versa. An

assertion captures this:

NOT DRL_Algo.DRL_OutputType >¼ {ReducedIntLBHeadLamps,
FullIntLBHeadLamps}

This says that the OutputType set cannot include both of the indicated values; in

Gears, the symbol “>¼” (when used in an expression involving sets) means “is a

superset of.”

The DRL feature owner builds these feature models in Gears, under the

conventions and standards developed by the functional architects, and in particular

the functional architect for the exterior lighting domain. He or she will also build a

matrix for the DRL feature model that specifies a small number of flavors of the

DRL feature that can be made available to Product Line Integration Engineers

working to assemble vehicles from features.

Simultaneously, requirement engineers who own the requirements for this fea-

ture work to turn the DRL requirements into a Gears asset, with variation points that

(when exercised) produce requirements that correspond to the requirements needed

for each case.

8.3 DRLs and Deployment

Those responsible for choosing a deployment architecture are another kind of

asset owner; their asset is the set of ECUs needed for the features on board, and

the variation points they can provide based on features and feature combinations

chosen. These variation points include basic network topology (currently two are

available; more may be added), how many ECUs will populate a topology, what

the choice of ECU hardware will be, and the allocation of software components

to each ECU.

Fig. 15.8 Partial expansion of the OutputType feature of DRLs

246 R. Flores et al.



8.4 DRLs and Other Features

Feature owners for other features that interact with DRLs (such as the lead-me-to-

my-car feature owner) will need to reference DRLs in their feature models and

profiles. They will coordinate with the DRL feature owner, under the auspices of

the functional architects for the including domain or domains, to make sure that the

DRL feature can be referenced, by importing the DRL domain-level mixin into

their domain production line.

Other domains than exterior lighting will need the same ways to refer to DRL in

their feature models. For instance, the switches that turn DRLs on and off are part of

the Body domain, whereas any indication that DRLs are on are part of the Displays

domain.

8.5 DRLs and the Vehicle

Finally, those defining a vehicle type and the myriad of features combinations that

GM wishes to offer with it, can do so by importing all of the domains’ and

integration areas’ production lines, adding the highest layer to the product line

hierarchy. They will also define a matrix of “products” for each vehicle, defining

combinations of features in concert with each other.

9 Outlook

The guiding PLE vision at GM is the ability to engineer vehicles—across the full

life cycle—according to a “bill-of-features” rather than the traditional “bill-of-

materials.” Although still very much a work in progress, the GM experience has

already revealed a number of lessons about mega-scale product line engineering.

First, the product line experience at General Motors can be seen as intensively

applying aspects of what has been called Second-Generation Product Line Engi-

neering. This new perspective brings the following ideas, which previous

approaches always allowed but never stressed, to the forefront:

• A focus on features as the “lingua franca” of variation and product selection; the

“bill-of-features” replaces the “bill-of-materials” as the key engineering artifact

for product derivation. At GM, functional architects and feature owners cooper-

ate to capture the features in Gears models across domains and subsystems and

integration areas. Vehicle-level engineers can choose from the profiles provided

from across the functional architecture, and asset owners design and install

variation points in their assets that are expressed in terms of those very same

features.
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• Treatment of artifacts across the entire life cycle completely consistently with

each other, and consistently with the software, as first-class components of the

product line and the derived products. At GM, requirements and calibration sets

are the near-term artifact targets, with, wiring data and source code components

on the horizon.

• An emphasis on high-quality automation at the center of a production line, to

quickly turn a bill-of-features into a set of instantiated lifecycle assets. At GM,

this automation takes the form of the Gears configurator, working at all levels of

the functional architecture and in separate groups, from vehicle-level engineers,

down through domains and subsystems, as well as assets.

• A CM and PLE approach geared to multi-baseline multiproduct management in

a way to reduce the order of complexity from O(n2) to O(n). GM has embraced

this configuration management paradigm by only managing the shared assets

and not their auto-configured instances.

• Taking multi-organizational management in stride, by providing feature model

concepts such as mixins and imported (hierarchical) production lines, to reflect

the structure of engineering activities and domain knowledge present in an ultra-

large organization. This is perhaps the most overarching aspect of the GM story.

PLE would not have worked at GM by overthrowing their longstanding multi-

level functional architecture and corresponding organizational hierarchy. Such a

radical departure from their current way of thinking about and organization to

build vehicles would probably have ruled out any attempt at a large-scale PLE

effort; the organizational change would have been too forbidding. Instead, they

are able to apply PLE at every level and in every group of their functional

architecture and make their PLE models work together using the Gears

constructs of mixins, matrices, and imported production lines.

GM’s PLE approach embodies a compelling need for each one of these

characteristics. They have embraced feature-based variation at all levels of their

product line to the extent that they are transitioning from an organization dominated

by subsystem owners to one where feature owners play the key role.

Second, the GM experience also validates that a small set of consistent concepts

is sufficient to model product lines of inordinate complexity. Features (declarations,

types, assertions, and profiles), assets (that embody features, as well as variation

points), mixins, and matrices constitute a production line, the “factory” that turns

feature choices into asset instances. Allowing production lines to import other

production lines gives us unlimited hierarchy, which can map to any organizational

structure in which specialized bodies of knowledge are encapsulated throughout, no

matter how many levels deep.

Third, one of the most important aspects of PLE and GM is the application of

consistent variation management in artifacts from all across the life cycle (the

second bullet above). In order to accomplish this, the automation engine has to

embody business partnerships with important tool vendors.

Future work involves continuing the march towards the ultimate “end game”:

Generating a complete bill-of-materials for a vehicle by startingwith its bill-of-features.
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Ultimately, GM may investigate merging PLE with product lifecycle management

(PLM), which is the technology used in vehicle manufacturing. That would

represent a convergence with repercussions across the entire manufacturing industry.
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Part IV

Emerging and Research Topics in Software
Variability



Chapter 16

Dynamic Software Product Lines

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid

What you will learn in this chapter
• The importance of dynamic software product lines.
• The role of software product lines in adaptive systems.
• The underpinnings of dynamic software product lines.

1 Introduction1

In emerging domains such as ubiquitous computing, service robotics, unmanned

space and water exploration, and medical and life-support devices, software is

becoming increasingly complex with extensive variation in both requirements

and resource constraints throughout its lifetime. This is partly due to the dynamic

nature of modern computing and network environments and the way they are used

and partly due to the need to survive evolution of the same. For example, computing
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and communication resources, user requirements, and interface mechanisms

between software and hardware devices such as sensors can change dynamically

at runtime. As a result, a higher degree of adaptability is demanded from software

systems. At the same time, developers face growing pressure to deliver high-quality

software with extensive functionality, on tight deadlines, more economically.

This challenge is by now widely recognized and has led to a significant number

of different efforts to achieve (self-)adaptation properties in software systems.

Examples for this are self-adapting systems [1], autonomous systems [2], agent-

based systems [3], reflective middleware, emergent systems, etc. All these

approaches share a common underlying goal: to make software systems more

flexible than ever before. In this chapter aim at a discussing a particular subclass

of approaches addressing this goal, which borrows essential ideas from product line

engineering to achieve flexibility at runtime and, hence, is called dynamic software
product lines [4].

Software product lines (SPL) have been successful in coping with varying

requirements by allowing the derivation of product variants from a common asset

base. However, to cope with the challenges discussed above, dynamic SPLs (DSPL)
aim at producing software capable of adapting both to fluctuations and evolution in

user needs and resource constraints at runtime. DSPLs may bind variation points

initially when software is launched to adapt to the current environment as well as

during operation to adapt to changes in the environment.

Although traditional SPL engineering recognizes that variation points are bound

at different stages of development, and possibly also at runtime, the main body of

research focuses on binding variation points at the latest at system startup. Tradi-

tional approaches to software product line engineering focus in their methods and

techniques on this scenario. In contrast, DSPL engineers typically aren’t concerned

with pre-runtime variation points. However, they recognize that in practice mixed

approaches might be viable, where some variation points related to the

environment’s static properties are bound before runtime and others related to the

dynamic properties are bound at runtime [4].

1.1 Product Lines

Henry Ford (1863–1947), founder of the Ford Motor Company, is often viewed as

the father of factory automation and the use of assembly lines, which he introduced

and expanded in his factories between 1908 and 1913 in building his Model T line

of motorcars.

Ford is famously quoted as saying that “Any customer can have a car painted any

colour [sic] that he wants so long as it is black” [5]. He is noted for his introduction of

mass production and the assembly line. What is less known is that this was achieved

through the use of interchangeable parts, based on earlier ideas by Honor Blanc and

Eli Whitney, which significantly streamlined the process over previous approaches

where parts were often incompatible and one difference in a product meant that the
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entire development process had to be restarted. The result was economies of scale

and a line of motor cars that were affordable, built quickly, and to a high quality

standard, even if the choice of colors, etc., was extremely limited.

Ford’s ideas have been influential in the development of the idea of using

product lines sometimes called Product Family Engineering or Product Line Engi-

neering (PLE), which affords economies of scope. As Greenfield et al. point out:

“Economies of scale arise when multiple identical instances of a single design are

produced collectively, rather than individually. Economies of scope arise when

multiple similar but distinct designs and prototypes are produced collectively,

rather than individually” [6]. Economies of scope imply mass customization.

Mass customization is defined as “producing goods and services to meet individual

customer’s needs with near mass production efficiency” [7].

PLE provides an alternative to mass production in order to create customized

products as similar variants of the mass produced products; that is, reusing core

assets (a “platform”) to develop similar products for a market segment. Its key aim

is to create an underlying architecture of an organization’s product platform, based

on commonality and variation. Product variants can then be derived from the basic

product family, reusing common components and using various combinations to

create a variety of products.

The use of product lines involves engineering new products in such a way that it

is possible to predictably reuse product components and offer variability and choice

while simultaneously decreasing costs and development lead time. The software

development community has caught on to the usefulness of the approach with the

idea of Software Product Lines.

1.2 Software Product Lines

The Software Engineering Institute defines a Software Product Line (SPL) as “a set

of software-intensive systems that share a common, managed set of features

satisfying the specific needs of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed way” [8]. The

approach has been successfully used to develop a wide variety of product lines in a

number of different domains, ranging from avionics over medical equipment to

information systems, in a wide variety of organizations, ranging from five

developers to more than a thousand.

Consistently, strong achievements in terms of time-to-market, cost reduction,

and quality improvement have been achieved. The interested reader is directed to

the Product Line Hall of Fame [9]. In-depth discussions of product lines case

studies are given in many literature sources like [10].

Fundamental to product line engineering is a shift from a single system point-of-

view to an integrated understanding of a set of products. As a result, the differences

or variations among products become a primary concern. Thus management of

variation—so-called variability management—is a core capacity of PLE. The idea
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is to separate all products in the product line into three parts and to manage them

throughout development:

• Commonality: artifacts, which are common to all products in the product line.

On the requirements side these are common requirements; in the implementation

this results in common components.

• Reusable variation: aspects that are common to some, but not all, products in the

product line. This is the powerhouse of product line engineering; by providing a

low-effort mechanism with predictable properties, it is easy to assemble new

products by reusing existing assets.

• Product specifics: no matter how well designed a product line is, there will

always be requirements that are specific to individual products. Here, it is key

not to waste any effort on generic development for aspects that will be used only

once.

In addition to variability management, a second key principle of product line

engineering is the use of a twin-lifecycle approach. We separate development into

domain engineering and application engineering (cf. Fig. 16.1). Domain engineer-

ing is responsible for an analysis of the product line as a whole and for producing

any common and (reusable) variable parts. Application engineering is then respon-

sible for, for all aspects peculiar to individual products, such as the derivation of

product requirements, the selection and integration of reusable parts, and possibly

the production and integration of product-specific parts. Both life cycles can rely on

fundamentally different processes (e.g., agile application engineering combined

with plan-driven domain engineering).

The Software Product Line approach has received increased attention as a means

of coping with product diversity, especially as software engineers and developers

are faced with increasing pressure to deliver high-quality software with more

functionality on strict release deadlines ever more economically.

Fig. 16.1 The product line engineering process
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Traditional product line engineering supports the binding of variability (i.e., the

selection of the variations to be exhibited in a specific product) at different points in

time: the so-called binding time. However, the focus was always on development

time binding, ranging from the design stage to the moment of initialization of the

system, with a strong focus on preprocessing, compiling, and linking. In the light of

the need for a higher degree of adaptability, the need arose to provide variation also

at runtime. This is the main characteristic of a system that qualifies as a DSPL, as

we will further discuss in the next section.

2 DSPL

Dynamic Software Product Lines (DSPL) may be viewed as an area of research

where we try to apply ideas developed in the SPL community like variability

modeling, common assets shared by product variants, and automated product

derivation to build software that adapts dynamically to fluctuations in user needs,

environmental conditions, and resource constraints at runtime [4].

Relying on product line ideas and transferring them to the realm of runtime

adaptation is one approach to build self-managed systems, i.e., software systems,

which can modify their own behavior with respect to changes in their operating

environment and thus adapt at runtime to the changing environment. Such systems

are becoming more essential for complex network management, for use in

unmanned space and underwater exploration, for complex medical and life support

devices.

The central shift from the traditional view of software product lines to dynamic

software product lines is that variation points are bound at runtime. First, when

software is launched to adapt it to the current situation and subsequently to re-bind

variation during operation to adapt the software to changes in the situation.

Thus, DSPL is basically not concerned with pre-runtime variation points. How-

ever, it recognizes that in practice mixed approaches may be viable, where some

variation points related to static properties of the environment of use are bound

before runtime, while others related to the dynamic properties are bound at runtime.

Examples of approaches that seek to unify pre-runtime and runtime variation points

into the same development framework are EASy-Producer [11] or CAPucine [12].

Both use aspect weaving as their primary mechanism for variability.

If a dynamic software product line is only variable at runtime, it will be

perceived as a single adaptive system. On the other hand, if also development

time binding is involved, it will still be perceived as a product line, where some or

all products are adaptive systems. Some approaches support such a combination of

binding times, even for the same variability, thus avoiding the need to duplicate the

implementation of features [11, 13, 14].

Transferring product line concepts to the dynamic situation mostly focuses on

the aspect of variability management. Variability management is on the one hand

responsible to model the variability that is supported by the product line and on the
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other hand responsible for mapping this to the level of implementation, i.e., to

determine what implementation impact a certain variability has. This can be readily

transferred to the level of runtime binding by introducing a model that makes the

potential variation explicit and supports the mapping to implementation

consequences at runtime. Along the lines of traditional product lines, this model

is a discrete model, mapping out certain alternatives and optional characteristics,

and relating them to implementation consequences, just as existing approaches to

product line variability do. Due to its importance, we regard the existence of such

an explicit variability model as a defining piece for a DSPL. Actually, we will refer

to any approach that relies on variation management at runtime for dynamic

adaptation as a DSPL.

In dynamic software product lines, monitoring the current situation and

controlling the adaptation are central tasks. This may be performed manually by

an operator or by the user, or automatically performed by the application or by

generic middleware. In this aspect, the DSPL approach is less restrictive than other

approaches to adaptive systems like autonomous computing [2] or self-adaptive

systems [1], etc., which demand that the system is able to autonomously perform

the data gathering and decision making. Another difference is that the models that

guide these variabilities are akin to product line variability models, although

evaluated at runtime. This excludes certain ways of dealing with adaptation. As a

DSPL we explicitly do not take into account cases where the whole system needs to

be halted and restarted in order to perform an adaptation, no matter how flexible it

seems (like [15]).

Evolution has been a concern in traditional SPL research. It is recognized that it

is in general impossible to foresee all functionality or variability that will be needed

in an SPL up-front, so evolution must be expected. In application areas such as

those mentioned above it becomes more and more important to be able to evolve

both the functionality and the adaptation capabilities of deployed systems. Here,

DSPL can help. On a first level a DSPL is able to adapt to varying circumstances at

runtime. Thus, it can, for example, address evolution needs that are created by

changes in the environment. However, despite these capabilities the basic range of

variability, which is supported typically remains fixed. However, approaches that

combine DSPL with open variability (i.e., variability is identified, but dynamically

more alternatives of realizing a variability can be added) may have an answer,

which enables to dynamically extend the scope of the DSPL at runtime. The details

of how to do this while providing certain correctness guarantees are still to date a

challenging research problem.

It is worth noting that although Dynamic Software Product Lines are built on

central ideas of SPL, there are also differences. For example, the focus on under-

standing the market and let the market drive the variability analysis may not be so

relevant to DSPL, where concern is about adaptation to variations in individual

needs and situations rather than market forces. Also reconfiguring a running

product has additional challenges compared to configuring a new product instance,

like pausing the execution and transferring state.
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Dynamic Software Product Lines is an emerging and promising area of research

with clear overlaps to other areas of research besides SPL, notably:

• Research related to self-* (adapting/managing/healing. . .) systems and auto-

nomic computing is also concerned with situation monitoring and adaptation

decision making [1], and DSPL may be seen as one among several approaches to

building such systems

• Agent-based software engineering [3] and multi-agent systems, which focus on

the use of agents and organizations (communities) of agents as the main

abstractions

DSPL brings to this arena a number of techniques, which have proven very

successful in a different, but strongly related field. This supports the expectation

that these techniques can also contribute to the general research direction of

adaptive and runtime-flexible systems.

3 Conclusion

We have presented the notion of dynamic software product line (DSPL). In sum-

mary, to qualify as a DSPL we envision a system, which was developed based on

(some) SPL principles and has the following properties:

• Dynamic (runtime) variability: (re-)configuration and binding happen at

runtime, changing the binding several times during the lifetime of the system

• Dealing with changes in the environment or triggered by users (e.g., changes in

functional and/or quality requirements)

• The system can be seen as a product line where the running system switches at

runtime from one variant to another

• It uses a variability management approach for identifying the different possible

runtime variants

• An integrated model of the various runtime variations of the system exists

(comparable to a domain model for a design-time product line)

• An architecture exists that describes the architectural variation that may happen

(comparable to a reference architecture in classical PLE)

DSPL is suited to develop systems, which are adaptable at runtime by manual

intervention, as well as autonomic or self-adaptive systems. In the latter case it is

also necessary to address context or situation awareness and automatic adaptation

reasoning and decision-making.

At this point there exists a small, but growing community, which aims to take the

DSPL way to transfer existing knowledge and solutions to the realm of adaptive

systems. First surveys exist that capture the state of the field [16, 17], which is at

this point still rather fragmented. One of the most important challenges at this point

is probably to address open runtime variability, i.e., variations that are not foreseen
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at development time, but need to be integrated at runtime. This might provide a

pathway for dynamic evolution of product lines.
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Chapter 17

Variability in Autonomic Computing

Carlos Cetina and Vicente Pelechano

What you will learn in this chapter
• That it is possible to use variability models to support building autonomic

systems from system design to execution.
• The role that variability models can play in the reference model for autonomic

control.

1 Introduction

Autonomic Computing transfers maintenance responsibilities to the software itself.

By automating tasks such as installation, healing, or updating, system operation is

simplified at the expense of increasing its internal complexity [1]. A system with

autonomic capabilities installs, configures, tunes, and maintains its own

components at run-time. Overall, an autonomic system must function consistently

and reliably in the absence of detailed human involvement by means of fulfilling

some externally defined purpose [2, 3]. This chapter shows how variability models

can be used to provide a richer semantic base for the run-time decision-making

related to Autonomic Computing.
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2 Motivational Example

Variability models enable to specify not only current features of a system but also

potential features since they may be activated in the future. In response to changes

in the context, the system itself can query these variability models in order to

determine the necessary modifications to its architecture. For instance, a smart

home system can trigger the activation of both In Home Detection and Occupancy
Simulation features when all the inhabitants leave the home.

Autonomic computing capabilities can address some of the adaptation and

reconfiguration challenges of the Smart Home domain [4]. First, because of its

nature as a shared environment, different users use the same room over time. Each

user has its own preferences for the room, which should be adjusted to improve the

quality of their stay; second, the preferences of the users change depending on the

activity performed (e.g., the users usually have different preferences when they are

watching a movie than when they are working). In particular, to reduce this

configuration effort, the following autonomic capabilities can be provided:

• Self-configuring. New kinds of devices can be incorporated to the system. For

example, when a new movement/presence detector is added to a home location,

the different smart home services such as security or lighting control should

automaticallymake use of it without requiring configuration actions from the user.

• Self-healing. When a device is removed or fails, the system should adapt itself in

order to offer its services using alternative components to reduce the impact of

the loss of the device. For example, if an alarm fails, the Smart Home can make

the home lights blink as a replacement for the failed alarm.

• Self-adaptation. The needs of users are different and change over time. The

system should adjust its services in order to fulfill user preferences. For example,

when all users leave home, services in the home should be reorganized to give

priority to security.

In fact, the autonomic community is more and more identifying a system as

autonomic only if it exhibits more than one of the self-management properties

described earlier.

3 Autonomic Computing Through Variability Models

To achieve autonomic computing, variability models can provide support to auto-

nomic system engineers from system design to execution. At design time (see top of

Fig. 17.1), it is possible to take advantage of current variability and context

modeling techniques in order to specify the context and architecture of the system,

and how the system architecture can be adapted to manage context changes.

Furthermore, this stage also benefits from the whole range of typical gains

brought by SPL approaches (i.e., reuse and automation). In fact, it is also possible

to take advantage of current techniques for variability analysis (see Chap. 11) in
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order to conduct a thorough analysis of the models for the purpose of validating the

autonomic behavior.

At run-time (see bottom of Fig. 17.1), the variability knowledge can be used to

support Autonomic Computing. In this way, the modeling effort made at design

time is not only useful for producing the system but also for providing autonomic

behavior during execution. To enable autonomic behavior, the system must evolve

from one configuration to another by itself. Since the reconfiguration is driven by

variability models at run-time, a Model-based Reconfiguration Engine is required.

MoRE [5] is an implementation of this Model-based Reconfiguration Engine that

uses the variability models to determine how the system should move from a

consistent architecture to another consistent architecture by means of reconfigura-

tion actions. These reconfiguration actions modify the system components accord-

ingly. Specifically, MoRE defines how a set of components cooperate to change

from one configuration of the product line to another.

3.1 Process to Achieve Autonomic Computing

Figure 17.1 presents an overview of the process to achieve autonomic computing

through variability models. Specifically, this process features six steps. For each

one of these steps, the following information is provided: name of the step, a brief

description, and tool support.

Fig. 17.1 Overview of the process
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• Step 1. Specifies the variability of the reconfigurable system.

Description. The design of an autonomic system is guided by scope, commonal-

ity, and variability (SCV) analysis [6]. SCV captures key characteristics of

the reconfigurable system, including its (1) scope, which defines the domain

of the system, (2) commonalities, which describe the attributes that come up

across all feasible configurations of the system, and (3) variabilities, which

describe the attributes unique to the different configurations of the system.

Tool Support. MOSKitt (http://www.moskitt.org) is a free Modeling platform,

built on Eclipse. This modeling platform provides editors for several

modeling languages such as Feature models, BPMN or UML, as well as

code generation capabilities.

• Step 2. Specifies the context of the reconfigurable system.

Description. The context of the reconfigurable systems is specified by means of

the OWL language. This language provides a vocabulary for describing

system context knowledge and for specifying conditions in the context. The

fulfillment of these context conditions triggers a set of changes in the variants

that conform the system configuration.

Tool Support. Protégé-OWL (http://protege.stanford.edu) is a free open source

ontology editor and knowledge-base framework. An OWL ontology may

include descriptions of classes, properties, and their instances. Given such

an ontology, the knowledge-based framework specifies how to derive its

logical consequences, i.e., facts not literally present in the ontology, but

entailed by the ontology instances.

• Step 3. Analyzes the reconfigurations before performing them.

Description. The configurations resulting from the simultaneous fulfillment of

context conditions are validated at design time. This enables us not only to

obtain a valid–invalid tag for each configuration but also to know the reasons

why a particular configuration is invalid. Given this information, either the

variability constrains or the context conditions can be updated to achieve a

specification free of invalid configurations that can be used at run-time.

Tool Support. FaMa is a framework for automated analysis of feature models

that integrates some of the most commonly used logic representations and

solvers proposed in the literature. This framework enables to determine if a

system configuration is valid (according to variability constraints), and it can

also provide explanations about invalid configurations.

• Step 4. Debugs the run-time reconfigurations.

Description. Given the fact that not all potential run-time failures can be

anticipated during system design [7], it is possible to set up MoRE with a

debugging-enabled reconfiguration strategy. This strategy keeps the history

of system configurations. Therefore, the suggestion is to use this strategy as

long as the system is under development.

Tool Support. MoRE featuring a debugging-enabled reconfiguration strategy.
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• Step 5. Keeps track of the reconfigurations.

Description. In the context of experimentation, MoRE can store trace entries

about the reconfigurations. This provides information for a posterior analysis,

which ranges from context conditions to reconfiguration plans.

Tool Support. MoRE featuring the reconfiguration tracker.

• Step 6. To deploy the system in the target platform.

Description. Once the development is finished, there is no interest in debugging

information any longer. Therefore, MoRE can be set up with another recon-

figuration strategy which lacks debugging support but achieves better

performance.

Tool Support. MoRE featuring a performance-oriented reconfiguration strategy.

Although some of the steps that conform the process to apply the approach can be

skipped (for instance, variability analysis or reconfiguration debugging), the recom-

mendation is to perform all of them. Thewhole process (as is proposed in this section)

is conceived to achieve a system free of unexpected reconfigurations at run-time.

4 Run-Time Platform for Variability Models

To achieve autonomic computing, it is also required an execution platform for

variability models at run-time. In particular, MoRE is a model-based version of the

reference model for autonomic control, which is called the Monitor, Analyze, Plan,

Execute (MAPE) loop [8]. The overall reconfiguration steps are outlined in Fig. 17.2.

A context monitor uses the run-time state as input to check context conditions. If any

of these conditions is fulfilled, then MoRE queries the run-time models about the

necessary modifications to the architecture. Given the model response, MoRE

elaborates reconfiguration actions which (1) modify the system architecture and

(2) maintain the consistency between the models and the architecture.

The above model-based version of IBM’s reference model for autonomic control

makes an intensive use of models. Context events and system variability are

represented by models. Context events are represented by means of OWL

ontologies, and system variability is captured by means of variability models. For

performing the system reconfiguration, information is extracted from these models.

Different model query technologies are used at run-time by MoRE depending on

the models involved. MoRE uses SPARQL for OWL manipulation and Eclipse

Model Query (EMFMQ) for variability model manipulation.

Finally, the reconfiguration of the system is performed by executing reconfigu-

ration actions that deal with the activation/deactivation of components and the

creation/destruction of channels among components. Although the general

approach is not platform dependent, MoRE takes advantage of the concrete plat-

form to implement the reconfiguration actions. MoRE makes use of the OSGi

framework [9] for implementing the reconfiguration actions by means of the
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OSGi capabilities to install, start, restart, and uninstall components without having

to restart the entire system.

5 Results

The presented work has been validated from three different perspectives (1)

scalability of the approach, (2) reliability-based risk of run-time reconfigurations,

and (3) degree of autonomic behavior achieved as follows.

Scalability of the approach. The introduced model-based reconfiguration is still

subject to the same efficiency requirements as the rest of the system because the

execution of the reconfiguration impacts the overall system performance. There-

fore, it is interesting analyzing to what extent system performance could be affected

using complex models at run-time. Experimentation results show that the approach

gathers the necessary knowledge from the run-time models to perform the recon-

figuration without drastically affecting the system response.

Reliability-based risk of run-time reconfigurations. The presented approach

encompasses systems that are capable of modifying their own behavior with respect

to changes in their operating environment by using run-time reconfigurations.

However, a failure in these reconfigurations can directly impact the user experi-

ence. Thus, it is important to assess the reliability-based risk of run-time

reconfigurations, which depends on both the probability that the software product

will fail in the operational environment (availability) and the consequences of

malfunctioning (severity). Experimentation revealed that the reconfigurations

achieved a high level of reliability.

Degree of autonomic behavior achieved. To determine the level of autonomic

behavior that can be achieved, it is possible to obtain theoretical results about the

autonomic behavior specified by variability models at run-time. Furthermore, users

can be asked whether or not they considered the system reaction to be adequate

Fig. 17.2 Overview of the run-time reconfiguration
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taking into account the defined context events. Experimentation reveals that accep-

tance for the reconfiguration scenarios was high. Most of the users considered the

behavior provided to be a good response to the context events.

To evaluate the above concerns, a Smart Hotel case study has been developed

(see http://www.autonomichomes.com). The Smart Hotel reconfigures its services

according to changes in the surrounding context. In particular, a hotel room changes

its features depending on users’ activities to make their stay as pleasant as possible.

6 Outlook

Autonomic Computing plays a key role in simplifying the use of systems by

reducing the need for maintenance. Variability models at run-time turn out as an

important contribution to the field of autonomic computing providing

metainformation to drive autonomic decision-making. This is done by means of a

planned reuse of the efforts invested at the SPL. The benefits are immediate, as the

design knowledge and existing variability knowledge can be reused at run-time.

The run-time variability models support the autonomic behavior of systems when

triggered by changes in the environment. This approach has been applied to an

application in the smart-homes domain, obtaining valuable validation of the

approach. Finally, the details about variability models supported by MoRE, the

underlying technology and data that support the results can be found at [10].
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Chapter 18

Variability in Web Services

Matthias Galster and Paris Avgeriou

What you will learn in this chapter
• Why service-based systems need special treatment of variability
• What types of variability can exist in service-based systems
• How we can address variability in service-based systems

1 Introduction

Service-based computing and associated development paradigms, including ser-

vice-oriented architecture (SOA), web services, or the idea of “Software as a

Service,” have gained significant attention in software engineering industry and

research. The aim of this chapter is to provide an introduction to variability in

service-based systems. Within this chapter, we use the term “service-based” for

systems that are largely or entirely built from web services [4], with SOA as the

primary architectural style.

To briefly illustrate variability in service-based systems, let us consider the

example of an online travel agency that communicates with various external

businesses (such as airlines, hotel companies, rental car companies) to obtain

airfares, hotel prices, etc., and to make reservations. Web services provide a

standardized way to exchange information between the online travel agency and

the information systems of these external businesses. In case a web service of an
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airline becomes unavailable, a web service of a different airline that offers the

desired flight can be used. In this example, variability could be expressed in a

variation point for selecting an airline web service. Variants (or options of alterna-
tive services) in this case would be the different airline web services.

In this chapter, we first provide a brief introduction of service-based systems.

Then, we motivate and illustrate variability in service-based systems in a real-world

example from the e-government domain and argue why variability handling is

useful. We will discuss why service-based systems need special treatment with

regard to variability and explore how variability in service-based systems could be

addressed.

2 Service-Based Systems

Service-based systems are distributed systems that are built from loosely coupled

software services. Services are autonomous, platform-independent computational

elements that can be described, published, discovered, orchestrated, and

programmed using standard protocols for building interoperating applications

[1]. Services are developed independent from a particular technology, for exam-

ple, could be implemented in Java or .NET, as long as they comply with

standards and protocols. For example, in local e-government, a municipality

can use services offered by the central government, such as a citizen registry,

or services to support the processing of taxes. In service-based systems, a service

registry enables service consumers to discover, bind, and assemble available

services, often at runtime. A service infrastructure (such as an Enterprise Service

Bus) connects services to service consumers. Service consumers query the

registry and compose applications using a service or a composition of services.

Consequently, service-based systems facilitate interoperability and reuse within

and across different systems.

Individual services usually correspond to business functions and provide func-

tionality to a large number of anonymous users (end users or other software

artifacts), often distributed across organizations [5]. Thus, service-based systems

support flexible environments and infrastructures for adaptable business processes.

However, the reusability of individual services and service-based systems is deter-

mined by their ability to support the variability required to adjust them to different

contexts. This means, if services or service-based systems cannot adapt to changing

situations and contexts, they can only be reused in a very limited scope. Therefore,

enhancing variability in service-based systems and providing methods that help

explicitly model and manage variability facilitates highly reusable and configurable

services and service-based systems.
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3 Variability in Service-Based Systems

Before discussing variability in service-based systems, we present an industrial case

from the e-government domain to motivate and illustrate variability in service-

based systems: the implementation of national laws in local municipalities in the

Netherlands. The national government may approve a law, which then is

implemented in municipalities. In the Netherlands, there are more than 400

municipalities; each municipality would implement the law including processes

and software systems that help implement the law autonomously. Differences

between municipalities are too big to have solutions as one product for all

municipalities, yet not too big to be covered by one generic solution to cover

possible variants.

A concrete example for this phenomenon is the implementation of the Dutch

Law for Social Support (known as the Wet Maatschappelijke Ondersteuning—

WMO law). This law mandates rules for providing social support to citizens, such

as domestic care. The responsibility and the execution of the WMO law lie with the

municipalities. This means, even though the law has been approved by the Dutch

national government, the solutions chosen to implement this law differ substantially

between municipalities. Variability must cope with static variability (originating

from differences between municipalities) but also dynamic variability (i.e., changes

to the WMO law once a solution is deployed) and the evolution of the system in its

environment. Throughout Dutch e-government initiatives, the “Software as a Ser-

vice” (or SaaS) model is used. As a result, software providers offer solutions for the

WMO law as software services, in a municipality-independent way. To cover the

needs of as many municipalities as possible, the SaaS must be customizable to

fulfill variations in business processes, functionality, and quality requirements of

municipalities.

As discussed in the previous section, service-based systems provide some degree

of flexibility by definition. However, it is difficult to build generic service-based

systems that can be adapted in different organizations and changing situations.

Even the eight fundamental design principles of service-orientation do not consider

variability as a key issue when designing service-based systems [6]. Thus, there is a

need for handling variability in service-based systems [12] for the following

reasons:

• It helps meet Quality of Service and optimize quality attributes. When a cur-

rently deployed service does not perform adequately, it can be replaced by a

better performing service. This means, configurations of service-based systems

can be changed. In e-government, there are multiple vendors for the same

software service. Due to the regulated nature of e-government, these services

have to provide the same functionality but may differ in terms of reliability or

performance. Based on these differences, services can be selected.

• It can enhance the availability of the system. When a service becomes unavail-

able, an alternative service with the same functionality can be used.
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• It allows for runtime flexibility. This means, rebinding of services can be

performed at runtime, potentially automatically when needed.

• It allows to handle different instances of one service-based system in different

organizations and versions and to adjust the system to operate in diverse

environments. This means, in Dutch e-government, the same system could be

used in multiple municipalities.

• Individual services are usually not designed with variability in mind to make

services highly customizable. By handling variability, artifacts in service-based

systems (such as specifications and models) can be designed with variability for

planned and enforced reuse [15].

• Related to a more technical aspect, if variability is not handled systematically

and parts of a service-based system are adapted in an uncontrolled manner,

interoperability problems occur [10]: Other parts of the system affected by the

adaptation might not be adjusted properly. For example, in the case of the WMO

law, many external parties (such as health care providers, doctors) are involved

in completing a business process. If a service is changed in an unsystematic

manner, it might not work with these external parties anymore.

3.1 Why Service-Based Systems Need Special Variability
Treatment

Service-based computing includes its own design paradigm and design principles,

design patterns, a distinct architectural model (SOA), technologies, and

frameworks [6]. Thus, in this section, we explore why service-based systems are

different compared to traditional reuse-based paradigms (such as product line

engineering, component-based development, or object orientation) and therefore

need special “treatment” with regard to variability.

• Dynamic execution environment: The most significant difference to other reuse-

based paradigms is that the dynamic execution environment of service-based

systems allows changing systems at runtime. This means, services can be

replaced or reconfigured while the system is running [18]. Product lines, for

example, focus on compile-time support. Consequently, to fully support

variability in service-based systems, events that occur in such systems must be

linked to rules to reason about alternatives [7]. This is particularly true in the

context of a volatile, distributed service composition in which services can

change, fail, become temporarily unavailable, or disappear.

• Different levels of abstraction: Service-based systems usually comprise different

levels, i.e., a business process level, the architecture level, and a service level

with the actual implementation. Each of these three levels might again comprise

different levels or descriptions (e.g., the architecture level usually consists of

different architecture views and/or layers). The alignment of business and IT is a

key concern in service-based systems, more than in other domains. This means,
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variability must be traceable through all these levels and variation points in one

level need to be translated into variation points in other levels to ensure business/

IT alignment. This also means that variability in service-based systems occurs at

different levels of abstraction. For example, variability might be provided

through parameter values used to invoke a service (service level), or by replacing

complete services (architecture level), or by changing the sequence in a

workflow (business process level).

• Nature of individual services: Another difference lies in the nature of individual
services. Services as computational units must accommodate the challenge of

meeting requirements for each organization that might use them while crossing

boundaries between organizations. This means, when handling variability in

service-based systems, there is no centralized authority that handles variability

concerns in the individual parts of the system. Also, a high heterogeneity in

customer requirements occurs due to anonymous service users. As a result, the

range of possible variations between services and service-based systems might

be very broad and extremely difficult to anticipate.

• Organizational issues: Organizational differences occur as services and service-
based systems are no longer developed, integrated, and released in a centrally

synchronized way [14]. Instead, services are developed and deployed indepen-

dently and separately in a networked environment. Developers need to consider

the integration of services, third-party applications, organization-specific

systems, and legacy systems. Thus, rather than self-contained and isolated

software development, service-based systems extend towards enterprise level

collaborative exchange of services and components over networks. Therefore

(and similar as stated in the previous paragraph), coordinating variability

concerns is problematic during service-based development.

• Quality attributes: Quality attributes (e.g., performance, maintainability, secu-

rity, reliability) in service-based systems are more diverse than in other domains

and difficult to achieve [8].

3.2 Types of Variability in Service-Based Systems

As mentioned in the previous section, there are different reasons why service-based

systems require special treatment with regard to variability. This also means that

there are particular types of variability in service-based systems that may not occur

in other types of systems. In this section, we therefore discuss types of variability

that exist in service-bases systems. However, rather than providing a complete

taxonomy, we provide an overview of basic types as well as where variability might

occur in service-based systems. Please also note that we do not discuss variability

based on technological aspects. A good overview in this regard has been presented

by Robak and Franczyk [16]. From a high-level perspective, we differentiate two

categories of variability:

18 Variability in Web Services 273



1. Variability inside a service, with services as reusable units that can be adapted

for different contexts [2]. In the e-government case, one example of variability

inside a service is a difference in quality requirements of municipalities with

regard to response time.

2. Variability in the service-based architecture (i.e., the composition of services).

In the e-government case, examples for variability in the service-based system

are different situations in which a service for assessing the need for a wheelchair

through a government authority is called, or is not called, based on local

regulations in the municipality.

Going into more detail of the first category, variability inside a service, the

following types of variability can be found:

• Variability in parameters required by a service [20]: The type of data sent at

service invocation can vary. For example, data sent to a service might be a single

variable or an array of variables. This type of variability is usually expressed in

Web Service Definition Language (WSDL) documents.

• Variability in parameter values [11]: The value of a parameter used at invocation

might vary. For example, the age requirement for a wheelchair subsidized by a

municipality differs between municipalities.

• Variability in the protocols [20]: Different protocols might be used by clients to

communicate with services.

On the other hand, more detailed types of the second category, i.e. variability in a

service-based architecture, include the following:

• Logic variability [2, 20]: A service includes operations for providing a certain

functionality. The logic is the algorithm or logical procedure used in the

operations of the service. A service can provide different logics depending on

the requested functionality.

• Variability in the web service flow [2, 17]: A web service flow is a composition

of service using a process-based approach. It specifies sets of tasks which are

executed by the participants of a process. Additionally, a web service flow

defines the execution order of tasks, the data exchange among the participants,

and business rules. Web service flow variability expresses that services can be

alternatively or optionally executed in a workflow, in different orders. This type

of variability is described in Business Process Execution Language (BPEL)

specifications for business process models and service flows. A detailed discus-

sion of variability in a web service flow, which also considers technical and

implementation aspects (e.g., message exchange), can be found in [17]. The

service flow has two abstractions: the service and the related business process.

Services are modeled as sets of operations, while the business process defines a

flow of activities. Each activity is implemented by executing an operation on a

service. Variation points affect the description of the flow needed to perform a

set of ordered operations (see variability model in [11]).

• Composition variability [2]: The business process consists of several services to

fulfill end user needs. For one service in the workflow, there may be more than
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one possible service interface which implements the service with different

implementation logics or quality attributes. Variability occurs in selecting the

most appropriate service.

• Variability in quality attributes: Quality attributes might vary from one system to

another. For example, one municipality might have higher privacy or perfor-

mance requirements than another one. This type of variability might be specified

in Web Service Level Agreement (WSLA) specifications for web service level

agreements between the service consumer and the service provider [11]. This

type of variability is most difficult to handle and even a major challenge in

software product lines.

4 How to Address Variability in Service-Based Systems

We consider three major strategies for addressing variability in service-based

systems. First, as currently argued by many authors, we could adopt product line

approaches in the service domain [13]. Referring to the types of variability from the

previous section, this strategy can be applied for handling variability in the compo-

sition of a service-based system if services are treated as features.

Second, as product lines focus on feature and decision models, we can apply new

methods and concepts—beyond the product line domain. This strategy has not yet

been thoroughly explored. Examples for this strategy include modeling variability

from a pattern point of view [20]. Here, pattern approaches can be used to describe

variation points. Again, referring to variability types from the previous section, this

strategy could be applied for variability in quality attributes.

Third, we can combine existing methods from the product line domain and

concepts based on the specific requirements of service-based systems. For example,

to support variability at the architecture level of service-based systems, new

viewpoints for the product line architecture could be introduced. This strategy

could be applied to variability in BPEL, WSDL, or WSLA specifications;

variability in parameters requirements by a service and actual parameters;

variability in protocols and logic; as well as variability in the web service flow.

In the remainder of this section, we first list principles for how to address

variability. Then, we discuss handling variability by utilizing product line

paradigms together with traditional web service development (third strategy) as

the strategy that is followed most. The other two strategies are omitted due to lack

of space.

4.1 General Principles

The four following principles, as general guidelines, can be used to address

variability in service-based systems [3]:
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1. Recognize commonalities and variations across the scope of multiple service-

based products within and across an organization. In the e-government example,

commonalities and variations occur due to differences in business processes,

local regulations, and infrastructures.

2. Leverage the recognized commonalities by building “core assets” that exist in all

product variants, including services across product variants with established

points of variation. In the e-government example, core asset services are services

that are required in all municipalities, such as billing citizens for obtaining a

wheelchair.

3. Address enterprise integration needs that service-based systems must offer.

Integration must take variability into consideration. Integration could encompass

many systems and involves sharing services across systems. For example, in

municipalities, existing legacy systems or third-party software (such as enter-

prise resource planning systems or data base systems) must be integrated.

Legacy systems and third-party software occur in all municipalities but vary

between municipalities.

4. Address end-user needs for variation within the service-based system. For

example, municipalities can select services as needed to accommodate unique

workflows.

4.2 Product Lines and Web Service Development

As mentioned at the beginning of this section, using the product line paradigm to

address variability in service-based systems has been the most popular strategy so

far [19] as service-based systems and product lines share certain commonalities [3].

A technical comparison between the variability in product lines and variability in

service-oriented computing is given by Chang and Kim [2].

Recently, Sun et al. proposed a framework and a tool suite for modeling and

managing variability of web service-based systems [18]. This framework addresses

runtime and design-time variability and is an extension of COVAMOF.

COVAMOF was originally developed to manage variability in software product

lines. Sun et al. use UML diagrams and a specifically developed UML profile to

model variability. This work builds on VxBPEL an extension of BPEL to support

variability in web-based systems [12]. VxBPEL has extra XML elements to support

the expression of variation points and variants in a BPEL process. An example of a

VxBPEL fragment to code a variation point is shown in Fig. 18.1 (adapted from

[12]). Variation points can be placed inside a BPEL process at any place where a

single activity can be placed.

VxBPEL supports service replacement, different service parameters, and chang-

ing system composition. Compared to Sun et al., VxBPEL variability is only

modeled in the implementation layer rather than at higher levels of abstraction.

Sun et al. make full use of COVAMOF to model variability also at the architectural

level to help understand the composition of a service-based system.
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In the example of WMO implementation, the VxBPEL fragment above could

contain a VariationPoint name¼“PersonalBudget”. This variation

point expresses variability in the way the personal budget of a citizen who applies

for societal support is determined. Variants for this variation point are Variant
name¼“Inhouse” and Variant name¼“External”. Based on the selected
variant, either a service for in-house processing of the personal budget is invoked or

the request for budgeting is sent to an external provider.

5 Outlook

Handling variability in service-intensive systems enables systems which are highly

adaptable and reusable in different environments. Handling variability helps con-

struct systems that do not only reuse services but can be reused as a whole. In this

chapter, we highlighted the need for and benefit of variability handling in service-

based systems. Moreover, types of variability as it might occur in service-intensive

systems were discussed as well as how variability could be addressed.

To further leverage variability in service-oriented systems and web services,

new tools would need to be created that support the concepts discussed in this

chapter. Moreover, to facilitate dynamic service variability, “self-adaptive” and

“plug-and-play” architectures can be investigated. Recently, utilizing dynamic

product lines in a service-oriented context has been explored [9].

Fig. 18.1 VxBPEL fragment

to code a variation point

(adapted from [12])
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Chapter 19

Service-Oriented Product Lines

Jaejoon Lee and Gerald Kotonya

What you will learn in this chapter
• What are the views on features and services as engineering concepts
• How third-party service providers are involved in service-oriented product lines
• What to consider to design service-oriented product lines

1 Introduction

Dynamic reconfiguration approaches in the literature have focused on specific

problems of each application area (e.g., context awareness [1], autonomous soft-

ware component version control, etc.), and development of reusable and

dynamically reconfigurable core assets has not been fully investigated. As such, a

research theme that addresses development issues for reusable and dynamically

reconfigurable core assets has emerged and it is called dynamic software product

lines (DSPLs) [2].

When an application domain of DSPL is built upon services and service-oriented

architecture, we call it a service-oriented product line (SOPL) [3–5]. For example,

an application area for SOPL approaches is that of virtual offices [3]. Virtual

Offices (VO) are equipped with many business peripherals that have various

services that interact with each other and respond to their environment in order to

assist office workers. In this chapter, we identify some challenges that we experi-

enced during the development of a SOPL.

First of all, we need to understand the different engineering goals between

software product line engineering (SPLE) and service-orientation (SO). The main

engineering goal of SPLE is the development of core assets that enable systematic
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reuse. In the analysis phase, SPLE attempts to identify the common and variable

aspects of systems and determine those requirements common to the entire product

line and those specific to product line products. Product line architecture and

components are designed to provide an infrastructure, by which various products

of the product line can be instantiated efficiently. For the deployment and mainte-

nance of a product, ensuring valid and operating environment relevant product

configuration is the foremost concern, as invalid configuration may result in a

system crash or malfunction.

On the other hand, SO aims at achieving system agility to cope with rapidly

changing business environments by providing runtime flexibility. The key idea of

SO is to provide an agile and flexible way for developing systems through a

dynamic runtime architecture that allows services to be added on demand. The

service-oriented architecture is the conceptual structure for realizing this vision [6].

The process of identifying and defining how services are orchestrated into an

application is the major focus of the analysis phase in SO. A service broker provides

runtime support for service discovery and selection. As such, key development

issues include design considerations and constraints for the efficient, dependable,

and correct matching between service consumers and providers.

Due to these differences, we ask ourselves the following questions when we

develop a SOPL:

(i) Is it about developing reusable services to increase reusability of a service-based

system?

(ii) Is it about using a service-oriented architecture style to enhance runtime

flexibility of a product line?

(iii) Is it about adapting feature analysis to supplement service identification

techniques (e.g., ontology)?

(iv) Is it about incorporating variation points into services to control service

configuration more explicitly?

In the next section we identify and discuss a number of challenges related to

these questions.

2 Challenges for Building a SOPL

Among various difficulties we experienced when developing the aforementioned

SOPL, we discuss four challenges in the following to answer the above questions by

first contrasting the concepts from the two different literatures (i.e., SPLE and SO)

and then introducing our experiences.
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2.1 Features Versus Services

As these two different notions (i.e., features and services) are used as key engineer-

ing drivers for SPLE and SO, respectively, we first need to understand their

definitions and how they are analyzed. This challenge is related to the questions

(i) and (iii). Features are “abstractions” of user or developer visible characteristics

of a product line [7]. The idea of feature orientation for analyzing commonality and

variability of a product line appeals to many product line engineers as features are

an effective “media” for supporting communication among diverse stakeholders of

a product line [7]. Products are typically discussed and described in terms of

features gathered from market surveys, individual customers, research labs, or

technology roadmaps. Therefore, it is natural and intuitive for people to express

commonality and variability of product lines in terms of features and a feature

model is used to provide a basis for a later development, parameterization, and

configuration of various reusable assets (e.g., product line requirement models,

reference architectural models, and reusable code components).

On the other hand, a service in SO is described as a collection of capabilities,

grouped together with the functional context of the service [6]. The service contains

the logic required to carry out these capabilities and provides a service contract that

describes which of these capabilities is available for invocation. The advertisement

and discovery of services is a key principle of SO and an integral part of the service-

oriented architecture model. In the model, service providers publish descriptions of

the services they provide to a registry. These services are then advertised by the

registry for service consumers to discover.

Recently, service ontologies are increasingly being used to automate the adver-

tisement and discovery of services [8]. Ontology allows the consumer and providers

to share a common set of terms for describing service qualities and constraints.

Also, service descriptions include a service-level agreement (SLA). An SLA

concerns the terms and conditions of service provision and use, i.e., what a

consumer can expect from a provider and restrictions on what a consumer can

demand from a provider.

In summary, features are used to identify commonality and variability of a

product line and to configure reusable assets, whereas services are used to identify

a collection of functionalities together with SLA of providers and specify ontology

for automated service advertisement and discovery.

2.2 Dynamic Characteristics of Service-Based Systems

This challenge is related to the question (ii). Service-based systems are distributed

and composed from numerous services that can be discovered and replaced at

runtime. This dynamic characteristic of SO is closely related to terms Quality of

Service (QoS) and dynamic service orchestrations.
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Traditionally, QoS has been associated with telephony and computer network-

ing. QoS may be required for certain applications, such as voice over IP (VoIP),

which have requirements on the data flowing across the network (such as latency,

jitter, number of dropped packets, etc.). In service-based systems, qualities are

considered to be constraints over the functionality of a service and it is important

that mechanisms are in place for ensuring expected system qualities at runtime [9].

In SPLE, quality issues are usually addressed statically during the design and

implementation of a system. Static quality management approaches rely on

predicting the properties of a system based on the properties of its constituent

components [9]. By simply applying static prediction of resource usage for devel-

oping a service-based system, however, a product might not have the resources to

function correctly at a certain level of system quality at runtime. To address this

issue, we first statically define QoS in terms of features with a maximum limit of

available resources for each product and use this information when the product starts

negotiating with service providers for selection of available services at runtime.

In order to automate the advertisement, discovery, and negotiation of services,

participants in a service-based system must share a common set of terms for

describing service qualities and constraints [9]. A standard description method

facilitates processes such as service advertisement, discovery, selection, composi-

tion, substitution, negotiation, and runtime service monitoring.

In summary, most SPLE approaches focus on configuring product line variations

before deployment and do not consider dynamic service composition. One way to

address the problem is to distinguish between statically configured services (i.e.,

static services) and dynamic services during the feature analysis phase. A static

service means that its configuration is determined for each consumer before

deployment, whereas a dynamic service is not included in a product configuration

but must be searched and bound into the product at runtime using the service-

oriented architecture.

2.3 Involvement of Third-Party Service Providers

This challenge is also related to question (ii). SPLE promotes a systematic reuse

within an organization and did not usually consider external organizations for

developing reusable assets. The most similar form of third-party involvement

might be the use of Commercial Off-The-Shelf (COTS) components. In SO, how-

ever, this is one of the main drivers that make the approach attractive and leads to

three initiatives (1) service negotiations, which refer to communication processes

that further coordination and cooperation [10], (2) service monitoring, which is a

further process used to detect service failures and SLA violations at runtime [11],

and (3) service reputation, which is about collaborative mechanisms for addressing

trust issues between such parties and help to distinguish between low and high-

quality service providers [11]. To support these, we could use a QoS-aware frame-

work [4] that provides automated runtime support for service discovery, negotiation,

282 J. Lee and G. Kotonya



monitoring, and service provider rating. The QoS awareness would allow the

consumer to handle recovery from SLA violations, service failures, and runtime

environment limitations by renegotiating and substituting problematic services.

These aspects of dynamic service acquisition from third-party service providers

are not considered in traditional SPLE approaches and should be incorporated into

SOPL methods. For instance, we could consider the marketing perspectives to

decide which services should be left out for third-party service providers. That is,

a service might be determined to be searched and bound into the system at runtime,

but not developed as core assets, due to budget constraints, the time-to-market, and

the availability of in-house expertise.

2.4 Design Considerations for SOPLs

This challenge is related to the question (iv). In SO, nonfunctional QoS properties

are the main criteria for distinguishing providers in an emerging service marketplace

where multiple providers supply functionally equivalent services (i.e., those that

implement a common service type). Service providers therefore need a standard

method for describing the nonfunctional characteristics of the services they offer. A

number of ontology-based initiatives have been proposed to reduce the ambiguity of

describing nonfunctional attributes and to allow for better service selection.

However, from the SPLE point of view, it is also important to be able to specify a

product-specific configuration explicitly so that a consumer can have tailored prod-

uct configuration. For example, if it is specified that a feature is not included in a

product configuration, the associated services should not be bound into the product

even though the service providers are available at runtime. To achieve this, we need

to clarify the design goals for developing such systems. The goals include supports

for (1) late binding of networked services, (2) third-party service providers, (3)

dynamic product reconfiguration, and (4) product line variation control.

For the former two design goals, we should provide SLA enabled service-

oriented architecture. The service-oriented architecture style can provide a basis

for supporting the late binding (i.e., runtime) of services. Also the capability of

reasoning about SLA is essential for selecting the most appropriate service provides

at runtime. The latter two design goals require a “dynamic product reconfigurator”

for the design of product line architecture. That is, we need a separate component

that can change a product configuration at runtime while maintaining its integrity.

2.5 Design and Implementation Techniques

In addition to the dynamic changes supported by the service-oriented architecture

(i.e., discovery and binding of services at runtime), we also need to design and

develop product line components to support dynamic reconfiguration. While the

selection of appropriate binding techniques depends both on binding time and
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quality attributes (e.g., flexibility) required for the SOPL, it is important that we are

able to control the variations of a SOPL. Delaying binding time to a later phase of

the life cycle (e.g., runtime) may provide more flexibility, but applicable imple-

mentation techniques are limited and they usually require more performance

overheads. Therefore, it is important to consider such trade-offs when selecting

appropriate component binding techniques.

For example, we can simply enable or disable accesses to certain services by

using load tables and/or authentication-based access control techniques [12], if we

can decide a product configuration of the SOPL at the start-up time. In the VO

product line, for instance, the load table technique is used to determine the avail-

ability of user localization services: Access Point- or RFID-based. When the system

starts to execute, it refers to the load table to determine which features should be

made available to the user. If the user is a manager, she/he should be able to use the

RFID-based user localization service, while a guest user can only use Access Point-

based one. This means that the guest user cannot access some services (e.g., RFID-

based user localization service) though they are available at runtime. In addition to

those techniques, we can use dynamic binding of objects, menus, and plug-ins [13]

techniques to bind components at runtime. For example, an appropriate printing

proxy component is bound at runtime depending on the type of an available printing

service provider at runtime. Figure 19.1 depicts this concept.

3 Outlook

Current product line approaches have focused on the development of statically

configured products using core assets with static configuration of variation points.

However, there’s increasing demand for dynamic product reconfiguration in vari-

ous application areas. An intuitive and elegant way to address the problem is to fuse

service orientation with product line engineering. However, this poses several

Component A Component B

Binding techniques for start-up time
(e.g., macro processing, load table, etc.)

Binding techniques for runtime
(e.g., Dynamic binding of objects, plug-ins, etc.)

call m1

m1()

m1() m1()

Fig. 19.1 Component binding techniques
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problems. In this chapter, we have discussed the challenges that need to be

addressed in order to develop effective service-oriented product lines.

To address the challenges, we should consider ways to (1) identify appropriate

dynamic services, (2) adapt feature analysis to supplement service identification

techniques, (3) adapt service orientation to enhance runtime flexibility of a product

line, and (4) incorporate variation points into services to control product line

configurations more explicitly. While the feature analysis can be used to identify

and model product line variability, the resulting feature model can also be used to

identify dynamic services. The system integration and deployment are different

from statically configured products and should be supported by a service brokerage

framework that provides runtime support for product line service discovery, nego-

tiation, and QoS monitoring. Also we should further explore ways to decide the

service granularity for enhancing reusability and to incorporate consumer context

monitoring for improving quality assurance.

References

1. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable context-sensitive

middleware for pervasive computing. Pervasive Computing July/September, 33–40 (2002)

2. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. IEEE

Comput. 41(4), 93–95 (2008)

3. Lee, J., Muthig, D., Naab, M.: An approach for developing service oriented product lines. In:

Proceedings of the 12th International Software Product Line Conference (SPLC 2008),

Limerick, Ireland, 8–12 Sept 2008, pp. 275–284

4. Kotonya, G., Lee, J., Robinson, D.: A consumer-centred approach for service-oriented product

line development. In: Proceedings of WICSA2009, pp. 211–220 (2009)

5. Lee, J., Kotonya, G.: Combining service orientation with product line engineering. IEEE

Software May/June, 35–41 (2010)

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-Hall,

Upper Saddle River, NJ (2005)

7. Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line

Software Engineering. In: LNCS, vol. 2319, pp. 62–77. Springer, Heidelberg (2002)

8. Dobson, G., Lock, R., Sommerville, I.: QoSOnt: a QoS ontology for service-centric systems.

In: EUROMICRO-SEAA, pp. 80–87. IEEE Computer Society (2005)

9. Lunders, F., et al.: Using software component models and services in embedded real-time

systems. In: Proceedings of 40th Annual Hawaii International Conference on System Sciences

(HICSS’07) (2007)

10. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang, J.: Autonomous service level

agreement negotiation for service composition provision. Future Generat. Comput. Syst. 23(6),
748–759 (2007)
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Chapter 20

Software Variability and Design Decisions

Rafael Capilla and Jan Bosch

What you will learn in this chapter
• Understand variability models as decision models
• How design decisions can be entangled with variability models

1 Introduction

In today’s Software Product Line practice, variability models (often known as

feature models) can be considered and understood as decision modes in which

software engineers decide and select the best or more suitable design choices

implemented in the form as configurable option to deliver the right products.

A variability model, as used today, describes the system options in terms of

features that can be customized with valid values and selected to deploy different

product configurations. Hence, software engineers need to think about the number

and type of product configurations that will be offered to the customer. In other

cases, late binding times and variability realization mechanism allow end users to

make the final decisions, some of them at configuration and runtime, to configure

the product to their own needs. Examples of such configurable design options are

the language, the appearance of the interface, start-up options, different user

profiles with different privileges, etc.

In this emerging research chapter we discuss two different perspectives. The first

one that considers variability models as a decision model [1]. The second extends
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variability models with design decisions that are able to explain the decision-

making activity using feature models as input and in the context of SPLs.

2 Variability Model as a Decision Model

Variability models used in product lines, or more technically feature models, are in

practice considered a kind of decision model where the structural variability of a set

of related products is perceived as a decision model where the configurable options

are the design alternatives for product configuration tasks. However, several types

of decisions can be made when building and realizing the variability of a software

system, such as we summarize in Table 20.1.

Using variability models as decision modes can be a complicated activity due to

the large number of features and constraints. Also, scalability and traceability

problems are common in complex feature models in order to realize the provided

variability. As mentioned in [2] “A decision model is defined as a model that
captures variability in a product line in terms of open decisions and possible
resolutions.” In addition, visualizing all the design choices of a variability model

and their corresponding decisions as well is still challenging, as contemporary

graphical representations are sometimes hard to manage and to display all the

features at the same time. Hence, to ease the decision-making process of, for

instance, feature selection will depend many times on how easy features can be

offered and visualized to the user, as large feature model tree will hamper the

decisions to be made, and taking into account the interdependencies between

decisions and features. One way to simplify the decision-making process using

variability model is to filter that part of the feature model in which we need to make

decisions, i.e., introduce different approaches to add hierarchy, and show to the user

only that subset of features that will be selected or configured in that part of the

decision tree. For instance, feature models can be split at the subsystem level and a

software engineer with limited responsibility over a subset of a system will only

manage that part of the variability model, and then make decisions in the scope of a

subset of the system’s functionality.

In addition, variability management and rationale management share some

similarities, such as stated in [3], where rationale management is combined with

variability management to enhance variability modeling in software product line

engineering. Such similarities can be defined between variation points, variability

dependencies, constraint dependencies, and orthogonal variability models with

rationale management, and use this rationale to enhance variability management

activities (e.g., variability identification, product derivation, etc.).

In [4], a decision-oriented variability modeling language (DoVML) is proposed

to support the modeling aspects of variability using decisions and relate these

decisions with the assets of the solution space. In this approach, dependencies

between decisions are described using visibility and validity conditions. Visibility

conditions distinguish the relevant decisions for the user and guide him/her in the
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Table 20.1 Relationship between types of design decisions and variability

Decision type Effects on feature model Development stage Description

Add-modify a

variant/

variation point

Variants and the logical

formula relating

variants and variation

points

Modeling/design

the structural

variability

Design decisions and their

rationale are captured

at design time to

explain feature

modeling activities

Add-modify a

dependency/

constraint

Requires and excludes

relationships and other

if-then-else relations

delimiting the type and

scope of the variability

model

Modeling/design

the structural

variability

Design decisions and their

rationale are captured

at design time to

explain feature

modeling activities

Define allowed

values for

features

Variants, variation points

including those in

already defined

relationships and

constraints

Implementation Design decisions can be

extended to

incorporate

implementation or

technical decisions

more closely to code

Feature selection Variants Configuration Decisions affecting the

configuration are used

to explain how and

why a product will be

built

Feature realization Instantiate the variants

with right and allowed

values or activate/

deactivate variants.

Resolve the logical

formula of variation

points

Configuration and

deployment

Decisions affecting the

configuration and

deployment activities

are used to explain

how, why, and where

products are built and

deployed

Feature

reconfiguration

Because of a runtime

change, features can be

modified during

system execution

Runtime

reconfiguration

and

redeployment

Runtime decisions, often

deferred to a late stage,

are more difficult to

capture and manage as

they might vary during

system execution.

Hence, a limited set of

runtime decisions

describing the runtime

choices must be

defined to manage a

certain degree of

unexpected variability

Binding Binding time

implementation

mechanism

From design to

implementation

Decisions affecting the

binding time might

change this to leverage

the flexibility of the

SPL and allow

rebinding late

decisions
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product derivation process. The aforementioned approach has been implemented in

a variability modeling tool called DecisionKing.

3 Approaches Combining Variability with Design Decisions

To date, very few approaches have considered the inclusion of design decisions in

variability models as a way to explain the decisions made for product configuration

operations in a product line context and in feature modeling activities as well.

3.1 Design Decisions and Feature Models

Feature models are in practice decision model in which decisions are made for (1)

model the structural variability of features and their dependencies and (2) select the

right configurable options during product derivation. As described in [5], design

decisions are entangled as XML descriptions in a Feature Oriented Model Driven
Development (FOMDD), which is a blend of Feature-oriented Programming (FOP)

and Model-Driven Development (MDD). In this approach, products in a software

product line are synthesized using MDD and scripting by composing features to

create models that are transformed into executables.

A stepwise refinement process selects and composes features incrementally from

a base architecture to increase the functionality of a software product, and the

design decisions extend the expressiveness of the model by recording key architec-

tural knowledge (AK) such as the decision issue, decision description, a status, and

constraints among other items. Also, relationships and dependencies to other

decisions or software requirements can be included as a list of elements in the

XML description of the decision that uses the Graph eXchange Language (GXL)

meta-model to depict the synthesis architecture. The synthesis architecture is

represented using GXL and XAK to specify the extensions and to support the

refinement of XML documents for product-line extensibility. This composition is

supported by the AHEAD approach [6].

In [7], the authors present a model to manage the variability of a SPL using

design rationale and capture the rationale behind the variability in order to explain

the reasons of a design step. They propose a variability design rationale view to

encompass the cognitive aspects and the assumptions of the variability definition

and to automate the verification of the design rationale of SPLs.

From our point of view, entangling the design decisions and the rationale in code

descriptions may obscure the documentation of both code and decisions. Therefore,

we prefer to keep both artifacts separate and manage them as different but related

artifacts. In software architecture, feature models are often represented in a separate

model from UML diagrams and it is hard to include the design decisions as textual

information in feature models (except if we use XML-based representations like in
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[5] to explain the stepwise refinements made during product configuration and/or

derivation). Hence, as practical guideline, we suggest to use a tabular form of

representation to relate design decisions with features, and manage these separately

in order to describe better the underpinning decisions using features.

3.2 Design Decisions in a Product Line Context

Other approaches attempt to relate architectural knowledge (i.e., design decisions

and its rationale among others) in Software Product Lines. Some approaches [8]

compare the meta-models of two architectural decision management tools (i.e.,

ADDSS and PAKME) to provide the necessary extensions for supporting product

line-specific requirements and the relationships between design decisions and

variability models. As a consequence, the proposed meta-model links variation

points, variants and the binding time description with the description of the design

decisions made in the product line. Decisions for the entire SPL and for concrete

products are discriminated when a particular variability model is resolved, and to

estimate the impact of SPL features in the reasoning activity.

An interesting comparison of five representative decisionmodeling approaches in

product lines is described in [9], which provides a nice summary of how thesemodels

combine variability issues of featuremodels with decisionmodeling in the context of

software product lines. We can deduct that the design decisions made using

variability models are based on various elements, such as cardinality of features,

constraints and dependency rules between features, compatibility of data types and

artifacts (e.g., features are combined using variation points and based on a certain

similarity and compatibility degree according to the functionality of a specific

system unit), product derivation information (e.g., decisions made based on a

common binding time), visibility of features (e.g., features that are activated or not

based on the provided variability in a given moment or for a concrete product), etc.

4 Outlook

Few approaches deal with design decisions for SPL and in particular linked to

feature models. The complexity of large variability models to assist software

engineers for making the right decisions for product derivation, configuration,

and deployment task may hamper to enrich such models with knowledge about

design decisions. Also, once the structural variability is defined, the majority of the

design decisions affect to product instantiation issues, except in open variability

models where the feature model could be modified, even at runtime.

However, these runtime decisions affecting the selection of variants and varia-

tion points are more difficult to manage and track, and the effort to introduce

runtime decision-making mechanism is bigger. Hence, we believe that this
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emerging research topic in the software variability management research area

seems attractive as a way to introduce the knowledge about the design decisions

that can be used to explain the selection and reconfiguration of variability models.
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Chapter 21

Variability and Aspect Orientation

Kwanwoo Lee

What you will learn in this chapter
• The relationship between variability and aspect orientation
• How variability is realized using aspect orientation

1 Introduction

Variability is an inherent property of software product lines. In software product

line engineering, variability must be systematically described and managed

throughout all development activities. Variability in a software product line is

often analyzed and modeled in terms of features. Optional or alternative features

in a feature diagram [1, 2] represent units of variations in requirements. However,

realizing a feature may affect several parts of core assets (e.g., architectures or

implementation components) instead of being localized.

There are two reasons for this: the first reason is a unit of features does not

always correspond to that of components, i.e., the code implementing a particular

feature may be scattered across multiple components. Second, features are not

independent entities. If dependencies or interactions among features are hard-

coded in several components implementing their related features, variations of

feature dependency caused by feature variation (i.e., addition or deletion) may

cause significant changes to many components. The above reasons make it difficult

to realize the variability of a software product line in terms of features.

Aspect-oriented programming (AOP) [3] is a good candidate for handling the

crosscutting problem, as it provides effective mechanisms for encapsulating
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crosscutting concerns into separate modular units called aspects. This chapter

describes how aspect orientation can help realizing variability and presents areas

of practice that are relevant to the topic with discussion of benefits and possible

problems.

2 Relationship Between Variability and Aspect Orientation

Variability identified in terms of features can be classified into two categories:

modular features and crosscutting features, depending on the impact on their

implementation.

Definition 21.1. Modular feature

A feature is modular if its implementation can be confined to a single modular

component.

Definition 21.2. Crosscutting feature

A feature is crosscutting if its implementation spans multiple modular

components.

Modular features can be implemented as modular components such as classes in

object-oriented programming. Suppose, for example, diesel and gasoline engines

are alternative features of an automobile product line. Each of them can be

implemented independently from the other. On the other hand, crosscutting features

have widespread impacts on multiple modular components. For example, safety

policies employed by automobile products can have widespread impact on multiple

control components, such as Engine, Brake, and Airbag components.

AOP supports separation of crosscutting features, whose implementation results

in modification of several modular units (e.g., classes), from features that can well

be encapsulated into modular units. This separation of concerns improves adapt-

ability and configurability of product line assets, as the concerns that affect multiple

modular units can be encapsulated into separate modular units, called aspects.

Definition 21.3. Aspect

An aspect is a separate modular unit encapsulating any crosscutting concern,

which would otherwise be scattered across multiple components.

AOP languages, such as AspectJ [3] which is an aspect-oriented extension to

Java, support the encapsulation of crosscutting features into new modular units—

the aspects—through new composition mechanisms, such as pointcut advice. The

pointcut mechanism is used to capture points where crosscutting concerns need to

be inserted. A crosscutting concern to be inserted is defined through the advice
mechanism.

Example 21.1. Aspectual implementation of a crosscutting feature

Suppose for example a simple drawing tool has a crosscutting feature, i.e.,

UpdateDisplay—the Display in the figure editor must be updated whenever the
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state of each Shape instance changes. Implementing this feature in an object-

oriented style leads to scattered Display.update() calls throughout the set and

move methods of the Line and Point classes. Using AspectJ, the crosscutting

concern can be effectively modularized into a single modular unit. That is, the

DisplayUpdate aspect modularizes the scattered Display.update() calls using the

pointcut-advice mechanism of AspectJ. The pointcut ShapeUpdated (lines 2 and 3)
captures the call to methods of Shape subclasses (i.e., the Line and Point classes),
where the method name starts with “set” or is “move.” Whereas, the after advice

(lines 4–6) inserts Display.update() after the join points specified at the pointcut

ShapeUpdated.

Shape

Line Point

Display

Display
Update

-p1 : Point
-p2 : Point
+getP1() : Point
+getP2() : Point
+setP1(Point)
+setP2(Point)
+move(int,int)

-x : int
-y : int
+getX() : int
+getY() : int
+setX(int)
+setY(int)
+move(int,int)

+move (int,int)+update()

1. public aspect DisplayUpdate {

2. pointcut ShapeUpdated(Shape s):

3. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)));

4. after(Shape s): ShapeUpdated(s) {

5. Display.update(s);

6. }

7. }

Realizing crosscutting features using AOP makes it easy to trace between

features and their implementation units. If features are independent of each other,

their variations (i.e., inclusion or exclusion) do not cause problems. However, if

they are not, their variation may cause changes to the implementation or side effects

in the behavior of other features.

Definition 21.4. Operational feature dependency

Operational feature dependencies are implicitly or explicitly created

relationships between features in such a way that the behavior or implementation

of one feature affects that of other features.

Operational feature dependencies [4] have significant implications on

variability. If the code for dependencies between features is embedded into feature

implementation modules, a feature variation will affect the modules implementing
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other features. This problem, known as optional feature problem [5], mainly comes

from a lack of understanding of operational feature dependencies and scattering

dependency-related code across feature implementation modules.

Example 21.2. Operational feature dependency between ShapeColor and

UpdateDisplay
Suppose for example the optional feature ShapeColor in the figure editor

example extends the Shape class with a color attribute and corresponding getter

and setter methods. However, introducing this feature affects the existing

DisplayUpdate aspect that implements the UpdateDisplay feature to reflect the

proper update of a display when a Shape’s color changes. Line 9 indicates the code

realizing the dependency between ShapeColor andUpdateDisplay. This implies the

DisplayUpdate aspect has to be changed according to the selection of the

ShapeColor feature.

1. public aspect ShapeColor {

2. private Color Shape.color;

3. public Color Shape.getColor() {return color;}

4. public void Shape.changeColor(Color c) {color¼c;}

5. }

6. public aspect DisplayUpdate {

7. pointcut ShapeUpdated():

8. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)) ||

9. call(* Shape+.changeColor(..)));
10. after(Shape s): ShapeUpdated(s) {

11. Display.update(s);

12. }

13. }

One effective way of handling the variability issue related to operational feature

dependency is separating dependency aspects from the implementation of features.

AOP can help isolating dependency aspects between feature implementation

modules as it provides effective mechanisms for extending a noninvasive way of

crosscutting issues.

Example 21.3. Aspectual separation of the operational feature dependency

between ShapeColor and UpdateDisplay
The code snippet below shows how the operational dependency between

ShapeColor and UpdateDisplay can be separated from the DisplayUpdate aspect.

The DisplayUpdate aspect (lines 1–6) defines only the core functionality (line 4) of
the UpdateDisplay feature, which will be inserted at the join-points specified by the
abstract pointcut ShapeUpdated (line 2). The DependencyWithShapeColor aspect
(lines 7–11) defines the operational dependency between ShapeColor and

UpdateDisplay by overriding the abstract pointcut. The NoDependencyWith-
ShapeColor aspect implements the default dependency between DispayUpdate
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and Shape instances. During the application engineering phase, one of the aspects

can be configured according to the selection of the ShapeColor feature.

1. public abstract aspect DisplayUpdate {

2. protected abstract pointcut ShapeUpdated(Shape s);

3. after(Shape s): ShapeUpdated(s) {

4. Display.update(s);

5. }

6. }

7. public aspect DependencyWithShapeColor extends DisplayUpdate {

8. protected pointcut ShapeUpdated(Shape s):

9. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)) ||

10. call(* Shape+.changeColor(..)));
11. }

12. public aspect NoDependencyWithShapeColor extends DisplayUpdate {

13. protected pointcut ShapeUpdated():

14. target(s) && (call(* Shape+.set*(..)) || call(* Shape+.move(..)));

15. }

With the understanding of operational feature dependencies and AOP

mechanisms, variability of a product line can be effectively handled.

3 Recommended Areas of Practice

This section describes two practice areas applying AOP to improve feature

modularity and independence.

3.1 Modularization of Crosscutting Features

As described earlier, AOP by nature provides powerful mechanisms for

encapsulating crosscutting concerns. With the help of AOP mechanisms, crosscut-

ting features can be effectively modularized into aspectual components.

There have been several attempts to apply AOP in the development of industrial

or non-trivial problems. Alves et al. [6] apply AOP in the development of mobile

game product lines. They evaluate their approach in the context of an industrial-

strength mobile game product line. Kästner et al. [7] refactor the embedded

database system Berkeley DB into a software product line and evaluate the suit-

ability of AspectJ for modularizing feature implementations. They report several

limitations on the modularization of features when using the AspectJ language,
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such as the increasing of coupling between aspects and classes due to the strong

dependency of aspect pointcuts and implementation details of the base code. Zhang

and Jacobsen conducted aspect-oriented refactoring of CORBA implementations

[8]. Their results indicate that they were able to significantly reduce the complexity

of the CORBA architecture with negligible performance overhead.

Quality attributes are the crosscutting concerns that have application-wide

impact across modular components. Since separating and encapsulating them can

help program understanding and improve adaptability, several efforts have been

made to modularize quality attributes using AOP. Viega et al. [9] built an aspect-

oriented extension to the C programming language to separate security policies

from C programs. This approach allows developers to write the core functionality

of the application, while a security expert focuses on specifying security properties.

Szentiványi and Nadjm-Tehrani [10] proposed an approach to improve perfor-

mance of fault-tolerant services using AspectJ. In this approach, an application-

specific synchronization mechanism is defined as the separate aspects, which are

alternatives of a general synchronization mechanism directly supported by the

middleware. By using application-specific synchronization aspects, around 40 %

of original overhead caused by a general synchronization mechanism could be

reduced.

3.2 Separation of Feature Dependencies

Modularizing crosscutting features does not guarantee that feature implementation

modules are independent. The optional feature problem may occur when optional

features are not independent.

Kästner et al. [5] elaborated the impact of the optional feature problem in two

case studies (i.e., Berkely DB and FAME-DBMS) and surveyed different solutions

to the problem and their trade-offs. One effective way of handling the problem is to

remove code implementing feature dependencies from the modular

implementations of related features. The idea is to extract the code responsible

for the dependency into a separate module, called derivative module [11]. The

derivative module is included in the generation process to restore the original

behavior if and only if both original implementation modules are selected.

Lee et al. [12] also addressed the problem by separating feature dependencies

from feature implementations using AOP techniques. Specifically, they proposed

aspect-oriented implementation patterns for feature dependencies, which are

repeatable well-known patterns for the implementation of feature dependencies.

The optional feature problem is closely related to research in the field of feature

interactions [13]. Feature interactions can cause unexpected behavior when two

optional features are combined. For example, in a home integration system (HIS)

product line, the Fire Control feature opens the water main and turns sprinklers on

when a fire is detected. If the Flood Control feature, which shuts off the water main

to a home in the event of a flood, is added to the HIS with the Fire Control feature,

298 K. Lee



the Flood Control and Fire Control features may cause an undesirable side effect

(e.g., the Flood Control feature disturbs the Fire Control feature by shutting off the

water main before the fire is under control). Handling feature interactions may

cause significant changes to product line assets if interaction-related code is

scattered across many implementation modules. Therefore, interaction related

code should be separated from feature implementation for flexible feature

composition.

4 Outlook

Variability may have crosscutting concerns. This chapter explained the

relationships between variability and crosscutting concerns, and described how

variability having crosscutting concerns can be effectively modularized using

aspect-orientation mechanisms. Overall, aspect orientation becomes a valuable

instrument in modularizing crosscutting variability.

However, AOP has several limitations, some of which include pointcut fragility

and code readability. As pointed out in [7], the pointcut language of AspectJ has

language limitations, such as the statement extension problem and pointcut fragil-

ity, which constrain the identification and definition of interaction points between

class modules and aspect modules. These limitations can be alleviated by making

the interaction points explicit in an abstract way. For example, crosscutting pro-

gramming interfaces [14] can be used to clarify the separation of base and

extensions.

In addition, aspects may be too small modular units. A fine-grained fragmenta-

tion of product line assets increases the complexity of managing variability. Nev-

ertheless, substantial research addressing the above-mentioned limitations still is

necessary before this relatively new paradigm can be applied on a broad scale in

various industrial domains.
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Fundación TECNALIA Research & Innovation, Derio, Bizkaia, Spain
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