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Preface

It is our pleasure to welcome you to the fifth International Symposium on Engi-
neering Secure Software and Systems. This event in a maturing series of symposia
attempts to bridge the gap between the scientific communities from software en-
gineering and security with the goal of supporting secure software development.
The parallel technical sponsorship from ACM SIGSAC (the ACM interest group
in security) and ACM SIGSOFT (the ACM interest group in software engineer-
ing) demonstrates the support from both communities and the need for providing
such a bridge.

Security mechanisms and the act of software development usually go hand
in hand. It is generally not enough to ensure correct functioning of the security
mechanisms used. They cannot be “blindly” inserted into a security-critical sys-
tem, but the overall system development must take security aspects into account
in a coherent way. Building trustworthy components does not suffice, since the
interconnections and interactions of components play a significant role in trust-
worthiness. Lastly, while functional requirements are generally analyzed care-
fully in systems development, security considerations often arise after the fact.
Adding security as an afterthought, however, often leads to problems. Ad hoc de-
velopment can lead to the deployment of systems that do not satisfy important
security requirements. Thus, a sound methodology supporting secure systems
development is needed.

The conference program includes two major keynotes from Laurie Williams
(NC State University) on why we need a science for software security, and George
Danezis (Microsoft Research) on privacy-enhancing technologies, as well as a set
of research and idea papers. In response to the call for papers, 62 papers were
submitted. The Program Committee selected 15 contributions (24%), presenting
new research results on engineering secure software and systems. These include
two idea papers, giving a concise account of new ideas in the early stages of
research.

Many individuals and organizations have contributed to the success of this
event. First of all, we would like to express our appreciation to the authors
of the submitted papers and to the Program Committee members and external
referees, who provided timely and relevant reviews. Many thanks go to the Steer-
ing Committee for supporting this series of symposia, and to all the members
of the Organizing Committee for their tremendous work and for excelling in their



VI Preface

respective tasks. The DistriNet research group of the KU Leuven did an excellent
job with the website and the advertising for the conference. Finally, we owe
gratitude to ACM SIGSAC/SIGSOFT, IEEE TCSP and LNCS for continuing
to support us in this series of symposia.

December 2012 Jan Jürjens
Benjamin Livshits

Riccardo Scandariato
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Control-Flow Integrity in Web Applications

Bastian Braun, Patrick Gemein, Hans P. Reiser, and Joachim Posegga

Institute of IT-Security and Security Law (ISL), University of Passau
{bb,hr,jp}@sec.uni-passau.de, pgemein@gmx.de

Abstract. Modern web applications frequently implement complex con-
trol flows, which require the users to perform actions in a given order.
Users interact with a web application by sending HTTP requests with
parameters and in response receive web pages with hyperlinks that
indicate the expected next actions. If a web application takes for
granted that the user sends only those expected requests and parameters,
malicious users can exploit this assumption by crafting harming requests.
We analyze recent attacks on web applications with respect to user-
defined requests and identify their root cause in the missing explicit
control-flow definition and enforcement. Based on this result, we provide
our approach, a control-flow monitor that is applicable to legacy as well
as newly developed web applications. It expects a control-flow definition
as input and provides guarantees to the web application concerning the
sequence of incoming requests and carried parameters. It protects the
web application against race condition exploits, a special case of control-
flow integrity violation. Moreover, the control-flow monitor supports
modern browser features like multi-tabbing and back button usage. We
evaluate our approach and show that it induces a negligible overhead.

1 Introduction

Over the past two decades, the web has evolved from a simple delivery mechanism
for static content to an environment for powerful distributed applications. In
spite of these advances, remote interactions between users and web applications
are still handled using the stateless HTTP protocol, which has no protocol
level session concept. Handling session state is fully left to the web application
developer or to high-level web application frameworks.

Web applications often include complex control flows that span a series of
multiple distributed interactions. The application developer usually expects the
user to follow the intended control flow. However, if a web application does not
carefully ensure that interactions adhere to the intended control flow, attackers
can easily abuse the web application by using unexpected interactions. Several
known attacks have exploited this kind of vulnerability in the past. The attacks’
impact ranges from sending more free SMS text messages than actually allowed
[1], over unauthorized access to user accounts [2,3,4], up to shopping expensive
goods with arbitrarily low payments [5].

This paper presents novel approaches for avoiding problems related to control-
flow integrity in web applications. The specific contributions are as follows.

J. Jürjens, B. Livshits, and R. Scandariato (Eds.): ESSoS 2013, LNCS 7781, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 B. Braun et al.

First, we define a formal language for specifying explicitly the control flow of
a web application; Second, we define a control mechanism that makes sure that
only client requests that comply with the control-flow specification are executed;
Third, we integrate the control mechanism in a framework based on the Model-
View-Controller (MVC) model, making our approach both easy to use for newly
developed applications and easy to integrate in already existing applications.
Finally, we show that our approach is effective and practical by demonstrating
that it enables the removal of several kinds of real-world security problems, while
having a low run-time overhead.

This paper is structured as follows. The next section provides an in-depth
discussion of technical aspects of control-flow integrity in web applications and
explains known attacks and vulnerabilities. Section 3 presents novel approaches
for controlling flow integrity at the server-side. Section 4 analyzes the benefits
of our approach and evaluates the performance of our prototype. Section 5
compares our approach to related work, and Section 6 concludes.

2 Web Application Control Flow

In this section, we investigate in more detail the problem of control-flow integrity
of web applications, analyze several real-world attacks, and discuss their root
causes.

2.1 Technical Background

In a typical web application, the user’s web browser interacts with the remote
application by sending HTTP requests. HTTP is a stateless protocol without
session concept [6]. This means that each request is independent of all others.
The protocol does not inherently link one request to the next. Dynamic web
applications, however, have workflows that are composed of multiple steps, which
corresponds to multiple HTTP requests from the user to the web application.
For each step, the client receives a web page with hyperlinks that offer possible
next steps to a user. Upon clicking a link, the user’s browser sends a particular
HTTP request to the web application, which then performs actions in order to
progress to the next step in the workflow. The actions are defined by the URI [7]
of the HTTP request, the request parameters, and the server-side session record.

2.2 The Attacks

Several kinds of attacks exploit the fact that attackers can craft arbitrary re-
quests instead of clicking on provided hyperlinks. Real-world examples of control-
flow integrity violations are race conditions, manipulated HTTP parameters,
unsolicited request sequences, and the compromising use of the browser’s “back”
button.

Race Conditions. In order to exploit race conditions [8] in web applications,
attackers can send several crafted requests almost in parallel. If the web
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application does not handle concurrent requests by proper synchronisation, the
actual application semantics can be changed in this way. In one real-world
example, a web application provided an interface to send a limited number of
SMS text messages per day [1]. The web application first checked the current
amount of sent messages (time-of-check), then delivered the message according
to the received request, and finally updated the number of sent messages in
the database (time-of-use). Attackers were able to send more messages than
allowed by the web application by crafting a number of HTTP requests, each
containing the receiver and text of the message to be sent. These requests
were sent almost in parallel and the multi-threaded web application processed
the incoming requests concurrently. This way, the attacker exploited the fact
that the messages were sent before the respective database entry was updated,
leading to the delivery of all requested messages. The developers’ underlying
assumption was that users finish one transmission process before sending the
next message and do not request one operation of the workflow several times in
parallel.

HTTP Parameter Manipulation. HTTP requests can contain parameters in
addition to the receiving host, path, and resource. As the parameters are sent
by the client, the user can control the parameters’ values and which parameters
are sent to the web application. Wang et al. [5] found a bunch of logic flaws in
well-known merchant systems and Cashier-as-a-Service (CaaS) services. These
flaws allowed them to buy any item for the price of the cheapest item in the
store. In 2011, the Citigroup faced an attack on their customers’ data [4]. The
attackers were able to access names, credit card numbers, e-mail addresses and
transaction histories. All the attackers had to do was simply changing the HTTP
parameters in the web browser. By automation, they obtained confidential data
of more than 200,000 customers.

Unsolicited Request Sequences. Attackers can not only modify the requests’
parameters but also craft requests to any method of the web application.
Besides manipulated HTTP parameters, web applications might face unexpected
requests to any method. For instance, in another given scenario by Wang et al.
[5], a malicious shopper was able to add items to her cart between checkout
and payment. She was only charged the value of her cart at checkout time. The
recently added items were not invoiced.

Compromising Use of the “Back” Button. Current web browsers are fitted
with a so-called “back” button. It is meant to navigate back to the last visited
web page. Depending on the configuration, the last request either has to be
repeated in order to display the page or the content is loaded from the browser’s
local storage (“cache”). In the context of a workflow, the user takes one step back
which in some cases is unwanted and also undetectable by the web application.
In fact, the usage of this button usually invokes the last action again rather
than rolling back the last changes. Hallé et al. [9] describe related navigation
errors.
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2.3 Root Causes

All described attacks share common root causes. Web application developers
assume that users first request one of possibly several application entry points,
e.g. the base directory at http://www.example.com. Upon the first request, the
web application sends a given response containing a set of hyperlinks or a redirect
instruction to the user. As users tend to click on hyperlinks in order to navigate
through the application, developers might assume that only the given requests
will be accessed next. However, the user is technically not bound to click on one
of the provided hyperlinks but she can still send requests that are not provided
within this response. Sent requests can differ from provided hyperlinks in terms
of addressed methods and HTTP parameters. Vulnerable web applications fail
to handle unintended user behavior in terms of sequences of requests.

More formally, web application developers implement implicit control-flow
graphs. In each state, sending a request leads to a subsequent state in the graph.
Executing a step corresponds to changing the server-side state. Control-flow
weaknesses occur if an attacker is able to address at least one method, i.e. cause
a state-changing action, that is not meant to be addressed in the respective
session state. In the respective control-flow graph, this transition does not exist
due to the developer’s assumption that the request does not happen at that time.
Vice versa, a web application implementing a control-flow graph with transitions
for all requests in every state is not susceptible to control-flow weaknesses.

Control-flow weaknesses cannot be overcome with usual access control means.
The attack vectors include only requests that are in the scope of the user’s rights.
Access control mechanisms prevent users from accessing sensitive API methods
at all time while control-flow integrity protection prohibits access to regular API
methods at the wrong time.

Existing web applications enforce the intended control flow based on session-
contained parameters. This allows only the implicit definition of workflows. The
previous actions are assumed to set the parameters and, thus, allow the execution
of next actions. The actual workflows are not explicitly determined preventing
the proper assessment of enabled workflows. The central and explicit definition
of facilitated workflows provides guarantees of request sequences to the relying
web application. One crucial aspect of reliable request sequences are controlled
HTTP parameters as we have shown by the attacks in Section 2.2.

3 Preserving Control-Flow Integrity

The attacks described in Section 2.2 are caused by user actions that violate given
control flows. This section provides detailed information of how we prevent an
unintended action from getting executed and, thus, from violating the integrity
of a control flow.

3.1 Technical Background

For every web application, the application developer knows the intended control
flow. This control flow can be denoted as a sequence of actions. Considering each

http://www.example.com


Control-Flow Integrity in Web Applications 5

action as a transition in a graph, we finally obtain the control-flow graph of the
web application. So, the application developer deploys the control-flow graph of
the web application.

Fig. 1. The Design Pattern of MVC-
based Web Applications

The enforcement of the intended con-
trol flow requires a central entity that
takes care of each incoming request. The
popular Model-View-Controller architec-
ture provides such an entity by design
(see Figure 1). Every request has to
pass the application’s controller, which
encapsulates the business logic. The con-
troller consists of several classes, each
containing various methods. Therefore,
one action of a control flow in our def-
inition language is defined as <class

name>.<method name>. From a granular-
ity view, this is appropriate because a
request addresses one method. In sum, a
control-flow graph is given as a sequence
of methods of controller classes.

3.2 Protection Goals

Our approach protects web applications from malicious users that perform
attacks using arbitrary request sequences. As a side effect, the approach protects
honest users against Cross-Site Request Forgery (CSRF) attacks to some extent
because attackers have to follow the intended control flow to finally commit their
abusive request. In more detail, our approach has the following goals:

– Upon each incoming request, the monitor shall determine the control-flow
context of this request and take a decision whether the request is permitted. If
the monitor allows the request to pass, it updates the context accordingly.
– The approach must be usable with state-of-the-art browser features, including
the use of a back button as well as multiple browser tabs (multi-tabbing) for the
same session. Each tab shall be permitted to use a different control flow.
– The monitor must prevent race conditions for actions that might serve as a
target for an attacker. These actions can be specified in the control-flow graph.
– The monitor must be able to control HTTP parameters and their values.
– All web applications have unclassified resources such as “About us” infor-
mation. These resources shall be accessible without restrictions, independent of
ongoing workflows.

3.3 Enforcing Control-Flow Integrity

In this section, we provide details how we achieve the above-mentioned goals.
We propose an architecture based on explicit control-flow specification and
server-side control-flow enforcement. The central control-flow monitor combines
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several mechanisms to enforce control-flow integrity. We show that all user
interactions are intercepted and checked by our control-flow monitor. Besides
simple checks that sequences of requests are compatible with sequences in the
control-flow graph, several situations require dedicated treatment, as explained
in the following.

Back Button Support. A widespread feature of modern browsers is the back
button that allows the user to view the last web page again. As users are used to
click that button whenever they feel like revisiting the last page, we implemented
support for this step in our monitor. Therefore, the control-flow monitor records
the trace of steps of the user. A request is considered a step backwards if it
addresses the last method and this method is not meant as a next step in the
control-flow graph. However, the control-flow monitor by default prohibits the
backwards traversal due to the issues described in Section 2.2. Instead, the usage
of the back button has to be allowed in the control-flow graph for each step.

Multi-tabbing Support. Modern web browsers usually allow several tabs in
the same window. As these tabs share the client-side data, e.g. cookies [10],
across all instances, they are hardly distinguishable from the server side. Hence,
without multi-tabbing support, actions in one tab would violate the control flow
in another. In order to overcome this drawback, the control-flow monitor inserts
client-side identifiers for different tabs to tell them apart. This way, each tab can
be treated individually though logged in at the same web application.

Race Condition Prevention. The monitor prevents the exploitation of race
condition vulnerabilities (see Section 2.2), by disabling parallel execution of
susceptible actions. In general, these are actions that add, update, or delete
data after reading. We achieve this goal with a locking mechanism. The control-
flow monitor creates a temporary lock named by the session ID of the user.
This means race condition protection on session level. Moreover, protection on
control-flow and user level is possible by using a control-flow ID and the user
ID respectively. Even a system-wide protection can be implemented using one
unique ID file for all users.

Parameter Validation. The client-side manipulation of HTTP parameters can
lead to unintended application states (see Section 2.2). Thus, request parameters
have to be checked for validity on the server side before they are processed. Instead
of leaving this task to each method, the control-flow monitor provides means to
centrally enforce given parameter properties. First, the data type of each param-
eter can be defined. As a side effect, this feature also mitigates injection attacks
(XSS, SQLi) that need to transmit control characters. Second, parameters can be
marked as “write once read many” (WORM). This allows to set the parameter’s
value once but not change it afterwards, meaning that this value is immutable for
the rest of the session. This provides an invariant guarantee to the web application.
One use case is the user ID that is supposed to not change during a session. Third,
parameter names can be excluded for given workflows. This feature can protect
web applications from unintended data manipulation. For instance, it prevents
the setting of control flow-invariant parameters.
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Definition of Uncritical Methods. All web applications contain uncritical
methods. Accessing these methods does not harm the application’s control-
flow integrity. For instance, a chat function can be allowed beside the enforced
workflow. Similarly, AJAX calls that update the user’s view but do not change
the application’s state can also be allowed.

Control-Flow Definition. In this section, we provide details on the syntax of
the control-flow graph definition language. The following clauses and operators
can be combined recursively.

Method1 → Method2 — After accessing Method1, the user is allowed to access
Method2.
(Method1|Method2)— The user is allowed to access Method1 or Method2 in the
first place, but she is not allowed to change her decision after clicking the back
button.
(&Method1|&Method2) — Like above but the user is allowed to change her
decision after clicking the back button – denoted by the & symbol.
@Method{x} — The user is allowed to access Method repeatedly. It is possible to
define a maximum number x of allowed executions.
?Method — The back button support for Method is enabled, i.e. the user can
navigate one step backwards after having called this method.
!Method — The race condition protection is active for this method. As long as
this method is executed, no other protected method is executed in the context
of the same session, user account, or system-wide (see above).
Method[+par1=type1,*par2=type2] — Only parameters par1 and par2 are
allowed for Method where they can be sent via POST (+) or GET (*) and
have data types type1 and type2 respectively. Predefined data types include
bool, numeric, and string. A policy for the whole control flow can be set by
addParameterTypeGlobal("*par=type").
addForbiddenParameters("par") — Parameter par must not occur in the
whole control flow.
addParametersGlobal("par") — Parameter par can be set once but is im-
mutable afterwards.

The nesting of clauses allows for defining complex control-flow policies.
We provide simple examples in Section 3.5 and a more sophisticated case in
Section 4.

3.4 The Implementation

For implementing our control flow monitor, several challenges need to be ad-
dressed. Most importantly, the monitor has to be integrated into an application
framework, which can be a complex task especially for existing applications. In
addition, handling race conditions and multitabbing also deserve more detailed
attention.
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Fig. 2. Implemented Modification of the
Design Pattern of MVC-based Web Appli-
cations w.r.t. Figure 1

Integration into Web Applica-
tions. We implemented our control-
flow monitor as a PHP module. It
is run by the router (see Figure 2)
before the controller class is called.
This strategic position makes sure
that, first, all requests have to pass
our control-flow monitor before being
processed by the web application and,
second, the monitor is easy to integrate
into existing web applications.

As a proof of concept, we inte-
grated the monitor into a web applica-
tion that is based on the CodeIgniter
framework [11]. In fact, the only change on an existing web application affects
the one line of code that calls the responsible controller. This line has to be
slightly modified to include our monitor (see Listing 1.1).

include (APPPATH. ’ c o n t r o l l e r s / ’ .$RTR−>f e t c h d i r e c t o r y ( ) .$RTR
−> f e t c h c l a s s ( ) . ’ . php ’ ) ;

//must be changed to
AOP: : p roce s s (APPPATH. ’ c o n t r o l l e r s / ’ .$RTR−>f e t c h d i r e c t o r y ( ) .

$RTR−>f e t c h c l a s s ( ) . ’ . php ’ ,
$ SESSION [ ’ ’ atom parentFramework ’ ’ ]−>getCacheFolderName

( ) ) ;

Listing 1.1. Dynamic Inclusion of Controller Classes in the CodeIgniter Framework [11]

We use Aspect Oriented Programming (AOP) to inject the control-flow
monitor as a processing step into the call sequence of all controllers. This allows
the developer to apply changes on the application the same way as if there were
no control-flow monitor.

Multi-tabbing Support. As explained before, multi-tabbing requires the
unique identification of tabs. This identification is implemented in JavaScript.
Moreover, a tab handler is implemented on server side as part of the control-
flow monitor. The JavaScript code triggers an AJAX message whenever a tab is
opened, closed, or a tab switch is performed by the user. A tab switch message
by the client makes the tab handler change the tab context on server side.
When the user opens a new tab by clicking on the “open link in new tab”
option in the browser, this tab is assigned a session-unique identifier. We use
the window.name property of the window DOM object to store the identifier.
An AJAX request transmits the new identifier to the tab handler. The new tab
is assigned the advanced position in the control-flow graph while the first tab
holds the former position. Both tabs then run the same control flow, however,
it is enforced individually, i.e. a control-flow violation in one tab has no effect
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on the other tab as the respective tab record is duplicated when the new tab is
opened.

The control-flowmonitor stores flow-related information per tab, i.e. the active
control-flow graph that is currently enforced in this tab and the respective
position in the graph. The user’s session ID and other high level information
is still stored in the session record. This allows, for instance, to consider several
products in different tabs, then add some of them in the same shopping cart and
finally check out in one tab that starts the checkout control flow.

An attacker stripping or manipulating the embedded tracking code can not
trick the system to gain advantages. The code only signals the current tab to the
web application. A manipulation would cause the web application to assign the
next request to a different tab. This, however, is equivalent to perform the request
in the respective tab. The intended action is only executed if the request is allowed
there. Then, however, the attacker has not increased his scope of action. In all
other cases, the manipulation leads to voiding the current control flow.

Race Condition Prevention. Whenever a protected method is executed, the
control-flow monitor tries to create a file with the current session ID. If this
creation fails due to an existing file with the same name, the request is not
processed and an error page is displayed. After processing the protected method,
the file lock is released again. This allows the next protected method to be
executed.

The race condition protection mechanism does not prevent the processing of
unprotected methods, e.g. in a different tab. The fine granularity of the locking
makes sure that a single locked method has no impact on the usability of other
sessions of the user or the interactions of other users.

3.5 Simple Examples

In this section, we show the usage of our control-flow definition language. We
give examples with respect to the real-world scenarios in Section 2.2 but assume
a simplified technical implementation to keep the control flows simple and clear.
We give details on the application of our control-flow monitor in the context of
the Amazon checkout process in Section 4.

Preventing Race Conditions in SMS Delivery. In the first example [1],
attackers managed to bypass the delivery limit of an SMS portal by exploiting
a race condition vulnerability. We assume the following control flow to send
an SMS: First, the user requests the SMS input form. Then, after entering
all necessary information, the user submits the form. The related control-flow
definition ensures that, first, the input form has to be accessed before the
submission, and, second, the submission must be protected against race condition
attacks, see Listing 1.2.

SMS. showForm −> !SMS. validateAndSendForm

Listing 1.2. Control-Flow Definition to Protect SMS Delivery from Race Conditions
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The control-flow definition allows access to the method validateAndSendForm

only after requesting showForm. This prevents the attacker from sending the
message information directly to the delivery gateway. Of course, a capable
attacker might send the requests to the showForm method in an automated
fashion. However, as the validateAndSendForm method is protected against
race condition attempts, e.g. on user level, the attacker’s requests will only be
processed sequently. This avoids sending more messages than actually allowed.

Prevent Adding Items to the Shopping Cart between Checkout and
Payment. A more complex example is given by Wang et al. [5]. After requesting
the checkout, the user was able to add more items to her shopping cart. These
items were not charged. In order to prevent this sequence of requests, the
checkout workflow has to be properly defined. The method that adds goods
to the cart must not be accessible during this workflow. The respective control
flow definition is given in Listing 1.3.

Checkout . l og In
−> Payment . chooseMethod
−> Payment . v a l i d a t eS t a tu s
−> Checkout . completeOrder

Listing 1.3. Control-Flow Definition to Prevent Adding Items after Checkout

After the authentication, i.e. login, the user chooses her favorite payment
method and is redirected to a payment service provider. The actions on the
payment service provider’s site are not part of the definition because they
happen on a different domain that is not controlled by the same control-flow
monitor. The next request within the scope of the definition is the payment
status validation after the user’s return. Finally, the order is completed, the
goods are shipped to the user, and the cart is reset. During the whole process,
no addition of items to the cart is granted.

4 Discussion and Evaluation

In this section, we discuss the properties of our control-flow monitor. We show
that it produces a negligible overhead and evaluate the protection goals defined
in Section 3.2. Finally, we explain its possible application scenarios and limits.

4.1 Performance Evaluation

As described in Section 3.4, the control-flow monitor is applied between the
router and the controller of the web application. It examines the received HTTP
request with respect to the requested method and the parameters and checks
these against a given policy. This application overhead is independent of the
web application’s execution time. The delay relates to the complexity of the
given policy, though.
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We used Xdebug (version 2.1.2) [12] to determine the control-flow monitor’s
overhead in a virtual machine with Debian 6 as the operating system and
Apache2 as the web server with PHP 5.5.3.3-7 on an Intel Core-i7-2600 (Intel-
VT activated) with 3.4 GHz and 2 GB RAM. For evaluation purposes, we
implemented the checkout process of Amazon. Therefore, we analyzed the control
flow on amazon.com by hand and derived the control-flow definition given
in Listing 1.4. Note that the controller and method names are simplified for
readability reasons. The control-flow definition does not allow usage of the back
button because Amazon prohibits it, too.

1 Login . index
2 −> ( Address . chooseEx i s t ing | Address . addNew)
3 −> Shipping . p r e f e r en c e s
4 −> ( ( Payment . chooseEx i s t ing

|Payment . addNewCreditCard )
|Payment . addNewDebitCard )

5 −> ( B i l l i n g . chooseEx i s t ing | B i l l i n g . addNew)
6 −> Order . placeOrder

Listing 1.4. Definition of Amazon’s Checkout Control Flow

Table 1. Overhead caused by the control flow monitor in ms

Runs
Step 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th avg

1 8.9 8.2 8.4 10.2 11.0 8.7 8.2 9.4 8.3 7.7 8.9

2 10.2 9.9 9.3 9.8 10.1 9.8 9.0 8.2 9.5 9.1 9.5

3 10.1 9.2 10.9 8.6 9.6 8.2 9.5 9.0 9.0 8.4 9.2

4 8.3 10.1 10.0 10.2 9.4 9.8 10.3 7.8 10.6 9.0 9.6

5 8.8 11.0 10.1 8.3 8.4 10.0 8.6 7.9 7.7 9.8 9.1

6 10.0 8.5 8.1 8.5 8.4 8.4 9.6 9.7 8.0 10.4 9.0

Fig. 3. Performance Evaluation of the
Amazon Checkout Process

We measured the runtime overhead
ten times and computed the average
for each step in the control flow (see
Table 1). The respective graph shows
a peak in the fourth state due to
the triple branching (see Figure 3).
Branches, namely alternative paths
through the control flow, cause most
of the overhead, the earlier a branch
occurs the bigger its overhead. This
is the reason why step 2 causes more
overhead than step 5. We assume that
some overhead can be saved by a more efficient policy parsing algorithm. Overall,
the induced delay ranges between 8.9 and 9.6 milliseconds per request. We
consider this an acceptable effort with respect to the security gain. In order to

amazon.com
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determine the monitor’s scalability to several user sessions, we set up 100 parallel
user sessions and repeated the measurement. While the overall response time
increased, we found out that there is no measurable difference to the scenario
with only one user in terms of the monitor’s overhead.

There is a one-time overhead for the generation of the temporary controller
class file (see Section 3.4). This overhead occurs once whenever a new controller
class is added or an existing class is modified. The first call on this class takes 60%
to 90% more time than the subsequent calls. For usability concerns, this overhead
can be neglected because the web application provider could easily initiate an
appropriate request, thus, preventing all users from facing the mentioned delay.

4.2 Discussion

In this section, we evaluate our findings with respect to the protective goals
defined in Section 3.2. We have to note that the monitor is responsible for control-
flow integrity while other tasks like session management and user authentication
are handled by the framework in place.

Every incoming HTTP request has to pass the router in the assumed
MVC architecture. So, all requests are finally processed by our control-flow
monitor. Our security evaluation showed that in fact all requests are treated by
the monitor and accepted or rejected appropriately. The control-flow monitor
achieves complete protection against maliciously crafted requests as well as
erroneous navigation attempts.

However, the protection level depends on the sound definition of control flows.
The definition has to be provided by the application developer. The implications
from this fact are twofold. First, the definition requires a deep knowledge of
the web application and its methods. The knowledge and understanding of
the web application must already exist to implement and maintain the web
application. This allows developers to provide more accurate control flow policies
than automatic approaches. So, we consider this a feasible task for an expert.
Second, the necessary policy definition efforts stay within reasonable bounds.
The class.method-based policy language abstracts from the implementation of
functional modules but is still close to the web application’s architecture. In order
to estimate the complexity in real world use cases, we crafted the control flow
policy for the checkout of the open source shop Magento [13] (see Listing 1.5).

Mage Checkout CartControl ler . indexAction −>
Mage Checkout OnepageControl ler . indexAction −>
Mage Checkout OnepageControl ler . s av eB i l l i n gAc t i on −>
Mage Checkout OnepageControl ler . saveSh ipp ingAct ion −>
Mage Checkout OnepageControl ler . saveShippingMethodAction −>
Mage Checkout OnepageControl ler . savePaymentAction −>
Mage Checkout OnepageControl ler . rev iewAct ion −>
Mage Checkout OnepageControl ler . su cce s sAct ion

Listing 1.5. Control-Flow Definition of the Magento [13] Online Shop
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Our control-flow monitor provides multi-tabbing and back button support,
thus proves usable with modern browser features. This increases usability and
ensures acceptance by end users. This way, security is not achieved at the expense
of a limited user experience.

To the best of our knowledge, our approach is the first to effectively protect
against race condition exploits. The control-flow monitor allows the flexible
definition of the protection level, ranging from control flow-based over user-level
up to system-wide protection.

Policies on HTTP parameters can be defined including both GET and POST
parameters. Policy rules can apply in terms of data type, the limitation on a
single value assignment, and the exclusion of parameters for given workflows.
Our parameter control means are suitable to prevent the attacks described in
Section 2.2.

The definition of uncritical methods allows control-flow integrity to focus
on a comprehensible set of relevant method calls. For instance, there can be
unhindered access to pictures because they are not part of the business logic.
Confidential data can be protected by access control means. AJAX requests can
be divided into state-changing and other requests. The state-changing requests
can be covered by the control-flow definition, the others are excluded and pass
the control-flow monitor. As AJAX requests also call server-side methods, their
control-flow definition is straightforward with respect to the web application’s
control flow.

Our approach is easily applicable at development phase though one of
its most advantageous features is its usability with legacy web applications.
We implemented a PHP-based proof of concept. Nevertheless, a Java-based
implementation can be achieved with acceptable effort, e.g. by a J2EE filter.
Even non-MVC-based web applications can be equipped with the monitor.
However, the integration causes more overhead if a central request handler is
missing. Then, all calls on server-side actions have to be intercepted separately.

The control-flow monitor does not aim at replacing the web application’s
business logic. As a matter of fact, it provides reasonable and reliable guarantees
concerning the sequence of requests and properties of provided parameters. The
web application still has to make sure that user generated content fits the
expected information. For instance, a sequence of requests containing semantic
garbage but matching the defined control flow will still succeed to finally request
the intended method.

5 Related Work

The Open Web Application Security Project (OWASP) coined the term Failure
to Restrict URL Access [14] to describe a similar vulnerability as our control-
flow weakness. However, it is more focused on access control flaws that can be
exploited by Forced Browsing attacks [15] to find a deep link [16] to a high
privilege web page. Workflows and control-flow integrity play a tangential role
in the description.
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To the best of our knowledge, there is no work with a similar scope of
protection and a comparable feature set. The approaches that restrict the web
application’s request surface towards the user are considered most similar to
our approach. They limit the accepted requests to a predefined set and prevent
arbitrary navigation by users. This is either achieved by issuing tickets to access
server-side resources [17] which, by design, inhibits multitabbing and back button
support as well as page reloads, or by defining pairs of steps that can be executed
in order [9] where the first step serves as a gatekeeper to the second step. The
latter approach does not allow to define complete workflows explicitly what we
identified as a crucial point.

Other approaches aim at detecting unintended or unusual server states [18],
combinations of such server states and code execution points [19] or code
execution paths that lead to the violation of application invariants [20] or
input/output invariants [21]. These approches infer the intended application
states during a training phase or by static code analysis. They do not intend to
make workflows explicit and control the interactions with users.

Malicious users not only craft individual HTTP requests or manipulate
request headers to achieve their goals. Depending on the business logic of the
web application, changes on the client-side JavaScript code can cause damage to
the application provider. Existing approaches replicate client-side computation
on server-side to detect deviations [22,23], statically analyze JavaScript to
determine the expected sequence of requests [24], or check the web application
for exploitable HTTP parameter pollution vulnerabilities [25].

An attacker exploiting a race condition vulnerability [8] can execute one
function more often than intended by the application developer. Paleari et al. [1]
describe an approach to detect race condition vulnerabilities in web applications.

6 Conclusion

We explained the complex problem of control-flow vulnerabilities and showed
its high practical relevance by real-world examples, i.e. existing vulnerabilities
and attacks. We identified the root causes in the modular addressability of web
applications together with the implicit and scattered definition of workflows. Our
solution overcomes this problem by the explicit definition and enforcement of in-
tended workflows. To the best of our knowledge, it is the first approach that covers
the whole bandwidth of related vulnerabilities, including race conditions, HTTP
parameter manipulation, unsolicited request sequences, and the compromising
use of the back button. Moreover, it is the first approach that properly handles
client-side features like back button usage and multitabbing. We showed that this
approach can prevent all described attacks and causes negligible overhead.

In sum, we provided a thorough approach that is applicable to existing and
newly developed web applications and provides guarantees to the developer
concerning the sequences of incoming requests as well as the format and values of
parameters. This allows to separate web application semantics and control-flow
integrity. As a side effect, the presented approach mitigates Cross-Site Request
Forgery (CSRF) and injection (XSS, SQLi) attacks.
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Abstract. System administrators frequently use Intrusion Detection
and Prevention Systems (IDPS) and host security mechanisms, such as
firewalls and mandatory access control, to protect their hosts from re-
mote adversaries. The usual techniques for placing network monitoring
and intrusion prevention apparatuses in the network do not account for
host flows and fail to defend against vulnerabilities resulting from minor
modifications to host configurations. Therefore, despite widespread use
of these methods, the task of security remains largely reactive. In this pa-
per, we propose an approach to automate a minimal mediation placement
for network and host flows. We use Intrusion Prevention System (IPS)
as a replacement for certain host mediations. Due to the large number of
flows at the host level, we summarize information flows at the composite
network level, using a conservative estimate of the host mediation. Our
summary technique reduces the number of relevant network nodes in our
example network by 80% and improves mediation placement speed by
87.5%. In this way, we effectively and efficiently compute network-wide
defense placement for comprehensive security enforcement.

1 Introduction

Many security administrators rely on network monitoring and Intrusion Detec-
tion and Prevention Systems (IDPS) to protect the hosts in their networks from
remote adversaries. An Intrusion Detection System (IDS) inspect information
flows to detect any malicious activity while Intrusion Prevention Systems (IPS)
block remote access when such malicious activity is detected. When an IDS de-
tects a malicious packet, either it may log the packet, allowing an administrator
to take further action, or it may drop the packet to protect the receiving host
process. Intrusion prevention systems can detect malware in packets and block
denial of service attacks.

Despite widespread use of IDPSs and the deployment of host security mech-
anisms such as host firewalls and mandatory access control, the task of security
practitioners is still reactive, responding to vulnerabilities as adversaries iden-
tify them. The IDPS can be classified as network based or host based, where

J. Jürjens, B. Livshits, and R. Scandariato (Eds.): ESSoS 2013, LNCS 7781, pp. 17–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



18 N. Talele et al.

the former monitors the network for suspicious activity and the latter monitors
a single host for malicious activity. We highlight two key reasons for the lack
of security methods. First, network based monitoring is inherently incomplete,
as only certain threats can be identified and/or blocked at the network without
creating false positives. For example, only known malware is blocked by the net-
work based IPS, so that no valid functionality is accidentally blocked. Second,
systems do not coordinate network monitoring with host defenses, resulting in
security loopholes. For example, the host may overlook remote threats that a
network based IPS cannot block, or a compromised process may propagate a
remote threat to another host.

In order to pro actively block remote adversaries, one must defend against all
adversary accesses. We wish to monitor only a small number of mediation points
so as to minimize resource costs. Researchers have previously explored methods
to compute minimal cost placements for network based IPS configurations. These
methods only focus on network flows [2,38,4] or utilize heuristic models of po-
tential host vulnerabilities, as in methods for computing attack graphs [28,16,33],
to guide placement choices. Security under these frameworks rely on heuristic
models of possible attacks (e.g., host scans [26]), which may miss previously un-
seen attacks and remain vulnerable to minor host configuration changes. More
specifically, we identify two major limitations in the current models of attacks:
(1) they do not account for the hierarchical structure of network-connected re-
sources into subnets, hosts, and individual processes to represent possible attack
paths and (2) they fail to account for network defenses, such as labeled network
connections [15,31,21].

Rather than just computing a minimal placement for network based IPS, we
compute minimal mediation placements for the network and host flows. Such
mediation must account for both the network based IPS as described above as
well as the host mediation necessary to enforce a set of security properties. In
this paper, we develop a method that utilizes the available security policies on
commodity operating systems and networks to compute mediation placements
which automatically block adversary access to security-critical data. Our new
method, which places mediators based on authorized data flows and security
policies at the network and host levels, yields robust defense. We find that those
defenses that cannot be enforced by network based IPS must be implemented by
host mediation. The proposed method produces this necessary host mediation,
given the IPS capabilities and constraints.

We implement a two-stage algorithm for computing network-wide mediation
placement. The idea behind this method is that, where possible, our method re-
places host mediation with network based IPS and vice versa. In the first stage,
we compute conservative host mediation for a worst-case set of remote threats
for the hosts. Our mediation suffices to protect the hosts in any deployment
without network defenses. In the second stage, we summarize data flows within
each host by utilizing the conservative host mediation. We observed that host
data flow summaries built from conservative host mediations reduce the number
of nodes in the example network graph by over 80% and the number of edges
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by more than 60%. Using these summaries, the automated network-wide medi-
ation placement time for the example network is reduced by 87.5% when the
summaries are produced in advance, which is feasible in many cases. This result
demonstrates the feasibility of automated, comprehensive, network-wide defense
placement.

Contributions: The first contribution of this paper is combining the host data
flow graphs as computed in [23] with the network data flow and generating a
hierarchical encapsulated graph model representing information flows in both
network and host in order to compute near minimal defense placement for the
entire network. The second contribution is the optimization in the conservative
host mediation placement, where the method replaces the host mediation with
network based IPS wherever possible. And the third contribution of this paper
is summarization of the data flow graph for each host utilizing the conservative
host mediation in order to make our mediation placement technique feasible in
large networks.

The remainder of the paper is organized as follows. Section 2 provides back-
ground on network defenses and host security mechanisms, and defines the me-
diation placement problem. Section 3 defines an information flow problem whose
solution is also a solution for the mediation placement problem. Section 4 out-
lines the design of our method. Section 5 describes the evaluation platform and
experimental results. Section 6 concludes the paper and identifies future work.

2 Background

In this section, we explain the need for mediation placement in networks of hosts
and incorporate available security policies in the production of such placements.

2.1 Network Scenario

Figure 1 shows a typical modern networked application. Such applications consist
of servers and their clients, where clients may be deployed in either wired or
wireless networks. In many cases, clients and servers perform security-critical
processing, assuming that the application data is protected from unauthorized
modification or leakage and application data is available when necessary.

However, networked applications face a variety of threats. First, remote ad-
versaries may launch attacks on processes that are accessible to the network at
large. These processes often include custom programs such as PHP web appli-
cations on servers and unprivileged applications on clients with network access.
Many system compromises now start by attacks on unprivileged processes. Sec-
ond, processes on hosts within the network may launch attacks against other
hosts. Such attacks may focus on system services by exploiting trust among
hosts inside the network (and unauthenticated network protocols) or leverage
the openness of wireless networks. Third, remote adversaries who are able to
compromise an unprivileged process or trick users into installing untrusted data
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Fig. 1. Example Networked Application

may launch local exploits against more privileged processes to install root kits
or obtain administrator privileges. Unfortunately, the number and variety of
possible local exploits available to adversaries is beyond enumeration at present.

A security problem occurs when an adversary can execute a sequence of op-
erations that results in access to unauthorized data or excessive use of data
processing resources. Remote adversaries use access to available networks to
find hosts with vulnerabilities necessary to obtain these goals. Modern systems
block many trivial vulnerabilities, yet adversaries often find short sequences of
compromises, including combinations of the unprivileged networked processes
and local exploits described above, that lead to security breaches. As a re-
sult, security practitioners must block all attack paths [28,33,36], but the variety
of possible attack paths (even short ones) has proven too complex for manual
configuration.

2.2 Network Defense Placement Problem

A common method for protecting hosts from adversaries is IDPS. IDS can see all
the network connections being utilized1 and examine the transmitted network
packets. Firewalls [5] now support powerful forms of deep-packet inspection to
compare contents to attack signatures.

The common view asserts that proper defense placement depends on the type
of network. In wired networks, IPS are often placed at network edges because
all traffic must enter or leave via this choke-point. For wireless networks, IPS
are placed on each node because other nodes in the wireless network may be
untrusted. However, such placements may not effectively limit adversaries and/or

1 Some uses of IPsec hide addressing information, but IDS is often placed where such
information can be obtained, such as gateways.
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may result in redundant monitoring. For wired networks, defenses at the edges
ignores threats internal to the network, so if an adversary can compromise a
single process on a single host they can then launch further attacks undetected.
For wireless networks, per node monitoring may be unnecessary in some cases
because certain kinds of attacks can be prevented at the edges. For example, a
distributed denial of service attack can be thwarted external to the cell. In both
types of networks, local exploits are invisible to the network based intrusion
detection infrastructure, meaning the IDS placement has only a limited view of
possible attack paths.

With the widespread deployment of mandatory access control (MAC) in com-
modity systems over the last ten years [32,30,40,37], adversary access within
hosts can be restricted, although such restrictions do not block all adversary
attack paths on the host. This MAC enforcement has been used primarily to
confine network-facing daemons to prevent compromised root process from com-
promising the system at large. However, such enforcement does not prevent local
exploits. Windows Mandatory Integrity Control [22] (MIC) is designed to prevent
untrusted code (e.g., downloaded from the Internet) from modifying privileged
resources, but does not prevent adversaries from tricking victims into reading
untrusted data or upgrading untrusted code. As a result, we advocate develop-
ment of a method to compute IPS placements that account for the host and
network configurations.

Related Work: Many efforts have been made to verify the data flow in a
policy [9,12,19,20], especially with the intention to assist in policy design and
identification of unauthorized operation on network components. There are also
many attack graph based methods to verify the network policies [13,33] which,
as discussed above are heuristic based methods and may fail to represent the ac-
tual host behavior. However, the composed behavior of these arbitrary policies in
hosts and networks is complex to analyze and the policies may interact in unpre-
dictable ways. Researchers have recently explored methods to place minimal but
comprehensive network defenses automatically by solving graph problems, such
as vertex cover and multicuts [2,38,4,29]. While these problems are computa-
tionally complex in general, efficient greedy algorithms exist to produce effective
solutions. Again, these methods make broad assumptions about the host that
may misrepresent the actual attack paths within the host.

Project Goal: Our goal is to develop a method that computes comprehensive
and minimal mediation placement for networks of hosts. Such method must uti-
lize the host security policies in addition to those in the network to provide an
accurate model of adversary access. Further, this method must account for the
possible mediation capabilities in both network devices and on the hosts them-
selves. As discussed above, finding the minimal solution is difficult for known
methods for general security policies, so the method must also leverage practical
insights to produce effective approximate solutions.
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3 Information Flow Problem

In this section, we show that the network and host mediation placement problem
can be expressed as an information flow problem. Traditionally, an information
flow problem is defined as follows:

Definition 1. An information flow problem, I = (G,L,M), consists of the
following concepts:

1. A directed data flow graph G = (V,E) consisting of a set of nodes V con-
nected by edges E.

2. A lattice L= {L,�}. For any two levels li, lj ∈ L, li � lj means that li ‘can
flow to’ lj.

3. A level mapping function M : V → PL where PL is the power set of L (i.e.,
each node is mapped either to a set of levels in L or to ∅).

4. The lattice imposes security constraints on the information flows enabled by
the data flow graph. Each pair u, v ∈ V s.t. [u ↪→G v ∧ (∃lu ∈ M(u), lv ∈
M(v). lu ��L lv)], where ↪→G means there is a path from u to v in G,
represents an information flow error.

It has been shown that information flow errors in programs [25] and MAC poli-
cies [14,35,3] can be automatically found using such a model.

However, resolving such information flow errors has been a complex manual
task. In general, information flow errors can be resolved by changing the data
flow graph (e.g., removing nodes and/or edges) or addingmediation to change the
level of data propagated by information flows. However, changing the data flow
graph is difficult in practice because it implies a change in the operations a system
may perform, which may prevent one or more components from functioning
correctly.

Researchers have developed methods to generate minimal mediation to au-
tomatically resolve information flow errors by independently proposing graph-
cut-based solutions for MAC policies of programs [17,18] and systems [34]. A
graph-cut solution identifies a minimum cost set of mediators R defined as
R = {((u, v), l) | (u, v) ∈ E ∧ l ∈ L}, where edge (u, v) is a cut-edge and l is the
data security level sent by u to v due to mediation, resulting in the mapping
Mv = v → l being assigned to the edge’s destination v. That is, each cut-edge
relabels the information received by v from u to l. This set of cut-edges in R
resolves all information flow errors in the information flow problem I, according
to the Cut-Mediation Equivalence [18].

In a recent paper [23], we extended the basic graph cut problem to account for
the integration of independent components into a composite and coherent data
flow graph. The method also accounted for the constrained ability of partially
trusted components to mediate information flows, and proposed a strategy for
placing mediation that implemented a classical integrity model [6]. In general,
the information flow policy may be a partially ordered set of permissions, and
therefore an optimal mediation solution requires us to solve a multicut problem.



Using Security Policies to Automate Placement 23

In light of the intractability of multicut [7], we apply a greedy method to produce
an approximate solution.

We find that by solving this information flow problem, we can also produce
a network defense placement. Further, by accounting for host and network data
flows comprehensively, we produce a network defense placement that accounts
for attack paths more accurately. However, the unwieldy size of the combined
host and network data flows make obtaining these solutions computationally
infeasible. Indeed, the data flow graph for each host consists of 2000–3000 nodes
and 6000–12000 edges. Given that our greedy multicut graph cut algorithm runs
in O(|L| · n3) where n is the number of nodes in the data flow graph, only
networks with a modest number of hosts can be considered in practice. In this
paper, we develop an approximate (greedy) solution along with host summaries
for network defense placement that accurately accounts for network and host
data flows.

Assumptions. The key assumption in this work is that the devices, operating
systems, and programs that enforce security policies, do so correctly. This is a
significant assumption given the size and complexity of such components, but
it is also a standard assumption in modern computing systems. Specifically, we
assume that the devices, operating systems, and programs that enforce security
policies satisfy the reference monitor concept [1], which requires that a reference
validation mechanism (i.e., MAC enforcement) “must always be invoked” upon a
security-sensitive operation, “must be tamper proof,” and must be “small enough
to be subject to analysis and tests, the completeness of which can be assured,”
which implies correctness. The reference monitor concept is certainly the goal of
several commodity reference validation mechanisms, although they do not meet
the latter of these requirements.

4 Design

In this section, we design a method for computing mediation placements for net-
work and host data flows. First, we compute the conservative mediator placement
required for each unique host configuration in the network. Second, we produce
summaries of the resultant host information flows, accounting for the placed me-
diation. Third, these summaries are used to produce a more feasible information
flow problem

4.1 Host Mediation

In the first step, we describe a method to compute a conservative host mediation
that would protect the host when there is no network defense. Our fundamen-
tal task is to constrain the information flow problem to the union of sufficient
subproblems, as we use a graph-cut method described in [24] to compute these
sub mediations.

A host is defined by its internal data flows and network connections. Many
commodity systems are now deployed with mandatory access control (MAC)
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policies [32,30,37,40]. MAC policies define the legal operations of subjects on
objects in the host. We compute the internal data flow graph among subjects and
objects of a host from its MAC policy using well-known techniques [39,14,35,3].

In addition to the host data flows, some subjects in the host may have access
to the network. The combination of the MAC policy data flows and network
data flows for host subjects forms the host data flow graph G = (V,E). The
network access is represented by sets of input and output nodes, I ⊆ V and
O ⊆ V respectively, and edges that identify which MAC policy subject nodes
can access the network nodes. For the computation of individual host mediation,
each element in I has an indegree of 0, and each element of O has an outdegree
of 0. For many firewall rules, the port uniquely identifies the MAC policy subject
that can access the network, but for some client ports such connections may be
ambiguous. These must be identified before analysis.

To produce an information flow problem, we must produce a lattice policy
and map the lattice levels to the appropriate nodes in the data flow graph using
a mapping function, see Definition 1. For OS distributions which specialize in
single applications (e.g., web server, database, etc.), we associate lattice levels
with the kernel and application labels in the MAC policy by specifying such
mapping functions [23]. The input nodes are mapped to the lattice level for the
expected input data. Typically, we assign the input nodes to the level for remote
adversaries because most network inputs are untrusted. The input node mapping
must represent the worst-case scenario for the host, as there is no network based
defenses at this stage.

In Section 3, we stated that a solution consists of a set of mediator edges
R = {((u, v), l) where (u, v) ∈ E and l ∈ L} and finding such a solution is a
multicut problem [7] for a general lattice. Finding a minimal solution to the
Information Flow problem is NP-hard. For this reason, we employ a greedy
algorithm rather than attempting to obtain an exactly minimal solution to the
information flow problem. The greedy method solves a min-cut problem [10]
for each prohibited pair of lattice levels and outputs the union of these cuts.
If we have k such pairs, then the greedy solution obtained is no greater than
k times the optimal cut. The reason for this is that the optimal cut can be
no smaller than the size of the minimal cut for an individual pair, and the
algorithm makes k such cuts. We solve the sub problems by topologically sorting
the lattice to take advantage by reuse of solutions, as described in [23]. By solving
the corresponding information flow problem, we obtain a host mediation R at
the program entry points (i.e., program instructions that invoke the system call
library [13]) necessary to protect host processes from the specified remote threats.
By construction, our greedy algorithm contains, for each prohibited lattice level
pair, a set of edges whose deletion separates the corresponding nodes in the
network graph.

4.2 Host Summaries

In this section, we use the host mediation placement to summarize the flows
within the hosts to reduce the size of the network-wide information flow problem.
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A summary of a host data flow graph consists of the data flows from the host’s
input nodes to its output nodes and shows how data received by this host is
propagated to other hosts via its output. We define the function Reach(S, T ) =
{(s, t) | s ∈ S, t ∈ T, s �= t ∧ (s ↪→G t)}. In general, the data flows through a
directed graph G can be summarized as G′ = (V ′, E′), where V ′ = I ∪ O and
E′ = Reach(I, O).

To accurately capture information flows through a host, we must also account
for the mapping function M , which defines where data of particular security
levels host imports, and the host mediator placementR computed in the previous
section, which defines where the security level of the data on a particular data
flow is changed. Since the mapping function and mediators affect the security
level of the data the host produces, our summary must take these into account2.

First, we leverage the knowledge that the mapping function M : V → PL

identifies a set of nodes A ⊆ V that are mapped to lattice levels in L. Secondly,
application of a mediator also changes the information flows through the host.
A mediator ((x, y), l) ∈ R does two things: (1) it filters the flow through edge
(x, y) ∈ E in the graph and (2) it maps a new level l ∈ L to the node y. That is,
a mediator causes the receiving node of an edge to receive data mapping to the
lattice level of the mediator. As a result, we retain the mediator edges (Rx, Ry)
in the summary. This results in the following definition of a summary graph.

Definition 2. For graph G given the input sets I, O, Rx, Ry and A such that Rx

and Ry are sets of source and target nodes of mediator edges in R respectively.
A summarized data flow graph G′ is a directed graph G′ = (V ′, E′), where
V ′ = I∪O∪A∪Rx∪Ry and E′ = Reach(I, O)∪Reach(Rx, Ry)∪Reach(I, Rx)∪
Reach(Ry, A) ∪Reach(A,O).

That is, the outputs are either based on the input data (edges in Reach(I, O)) or
based on the mapped data (edges in Reach(A,O)) which may be combined with
some input data and mediators (edges in Reach(I, Rx) and Reach(Ry, A)). Note
that if there is a flow from node i ∈ I and a flow from node a ∈ A that merge at
some node x �∈ O, the correct output flows will still be produced. Either there is
a path from x to node o ∈ O causing Reach(I, O)∪Reach(A,O) to include edges
(i, o) and (a, o) replicating the merge, or neither reaches a node in O meaning
that no edges are produced. Figure 2 represents the summarization of a host
graph where all the relevant paths from inputs to mediators and mapped nodes,
and from mapped nodes to outputs are retained.

The claim is that the summarized data flow graph includes all the edges
necessary to compute the output information flow of the host accurately.

Theorem 3. The summarized data flow graph G′ constructed using Definition 2
for a directed graph G with a particular mapping function M , lattice L, and set
of mediators R produces the same information flows to all nodes in O as G,
regardless of the security levels mapped to the inputs nodes I.

2 When data of different security levels is combined, the resultant security level is the
least-upper bound of the input levels, as defined by Denning’s Lattice Model [8].
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Fig. 2. Graph Summarization: Where the box represents the security level mapping to
the node, green is trusted and red is untrusted. The blue nodes are nodes which can
be selected for mediation(Rx).

Proof. The information flows that reach nodes in O in G are a combination
of flows propagated from the inputs to the outputs (Reach(I, O)), flows from
the mapped nodes and mediators to the outputs (Reach(A,O)), flows from in-
puts to the mediator nodes (Reach(I, Rx)), and flows from mediator nodes to
other mapped nodes (Reach(Ry, A)). As long as we include all the relevant flows
that alter the security level while computing the summary graph G′, the flows
Reach(I, O) and Reach(A,O) will capture only the flows to the nodes in O in
summary graph G′.

4.3 Network-Wide Mediation Placement

Given the summarized data flow graphs for each host and the network policies
that define the data flows among hosts, it is possible to compute a IPS placement.
The goal is to replace the host mediation with network IPS wherever possible
such that this replacement reduces the overall number of mediators required. To
do so, we compute a cut solution for an information flow problem built from the
composition of network and summarized host data flows. The composite result is
guaranteed to require no more than the number of mediators in the conservative
host mediation for all network hosts.

We solve the IPS placement problem by building a second information flow
problem covering the network flows and summarized hosts (see Definition 1).
The data flow graph of this information flow problem is now a combination of
summarized host data flow graphs (from the previous section) and the network
data flows that connect hosts. The network data flows are derived from the pos-
sible network connections in the particular network type (e.g., wired or cellular)
and the firewall policies of the network (e.g., edge servers) and hosts.

The recursive method for composing the hierarchical model for network and
host data flows is presented in Algorithm 1. The algorithm performs a postorder
precessing where the parent node can only be processed after the child nodes in
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order to add the required edges. As networks of hosts are organized hierarchically
and flows between hosts or networks are encapsulated, we use an encapsulated,
hierarchical graph model to represent the composite data flow graph [27,11]. An
advantage of such a graph model is that we can plug summaries of hosts and even
networks into a data flow graph easily. The input and output nodes of child host
are projected at the parent node to provide an interface with the external world.
The child elements are connected as per the network configuration provided. For
instance all hosts are interconnected in the wireless networkNetwork 3, while in
the wired network Network 1 all child hosts are not necessarily interconnected
and communicate as defined by the topology.

Algorithm 1. Generate Hierarchical Network Graph

Input: host contains all the allowed policy flows in a host and net conf contains the
allowed flows by firewall and network configuration files

Output: Hierarchical network graph model Network M
1: function Gen Network Graph(host, net conf)
2: //Recursively build all child hosts
3: N = host.Children.Count;
4: for i = 0 to N do
5: Network M.child[i] = Gen Network Graph(host.child[i]);
6: end for
7: //Process parent node: Generate Network Edges
8: Add interface for child I/O ports
9: for (all u, v in Network M.V ) do
10: if ((u, v) ∈ host.flows and (u, v) ∈ net conf.flows then
11: Network M.E = Network M.E ∪ (u, v);
12: end if
13: end for
14: Network M.Graph = M(Network M, L); //lattice mapping function.
15: Summarize(Network M); //Summarize host graph
16: end function

We configure the lattice and mapping function for the information flow prob-
lem as follows. Since network devices are not really visible to the hosts, they do
not introduce any new lattice levels or mappings3. However, we do need to know
the sources of network adversaries in order to map the threats (i.e., adversarial
security levels) to their actual network locations.

We note that not all network devices may be capable of mediating all host re-
quirements. For example, a network IPS may scan for known malware, but a host
process that is accessible to an adversary must protect itself from any malicious
input, known or unknown. To express such limitations in solving information flow
problems, we forbid certain edges from being mediators [23]. Such constraints
associate an edge with a lattice level and prevent any mediator assigned to that
edge from declassifying data above that lattice level.

3 Of course, we may want to place mediation to protect the network devices, but that
is not the focus in this paper.
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As a result, the set of network devices may not be capable of realizing a
given solution to the information flow problem. Thus, we retain the possibility of
using the host mediators in addition to network IPS to solve the information flow
problem. These two sets of locations are the only possible mediation locations for
this information flow problem. In the worst-case, the conservative host mediation
produced in the previous section will be used to protect the system, but we apply
network IPS where it reduces the cost of host mediation.

To compute a network-wide mediator placement, we solve the information
flow problem above by computing a set of mediators that resolve all information
flow errors for the network-wide data flow graph. Using the summarized data
flow graphs and the conservative host mediations computed in Section 4.1, we
see that the method shifts host mediation to network IPS where possible. R is
the union of all the conservative host mediations for all the systems hosts in
the network. Since we computed R using the worst-case input mapping, R is a
solution to the network-wide information flow problem. The claim is that any
network IPS that leverages the above solution to this information flow problem
only reduces the amount of overall mediation required.

Theorem 4. Given a conservative host mediation for a set of hosts R consisting
of T edges, a mediation placement can be found that solves the information
flow problem containing these hosts in a network data flow graph constructed as
described above and the number of mediators in that solution is less than |T |.
Proof. A cut problem is created for each lattice level li ∈ L mediated by the
conservative host mediations R, resulting in |LR| cut problems for LR ⊆ L levels
mediated total. A conservative host mediation has a set of edges Ti that mediate
to level li. Note that this set forms a valid cut solution of size |Ti| for the cut
problem to li. Thus, the union of these cut solutions is a valid multicut that

resolve all information flow errors of size
∑|LR|

i=1 |Ti|. However, any solution of
edges Si for lattice level li must be of size |Si| ≤ |Ti|, because the cut problem
solution is exact. Thus, the sum of these sizes of the cut solutions for each level
li, |Si|, must be no greater than |T |.

5 Evaluation

In this section, we describe the prototype implementation for a sample networked
application. We base the analysis of individual host mediation on our previous
work [23] with a new hierarchical modeling and host summarization module
implemented in C++. Figure 1 shows the experimental setup with 16 hosts
in a sample network configuration. The network hosts include a collection of
web servers, database servers, and web clients. Each of the network host is a
VM that runs the Linux 2.6.31-23-generic kernel and enforce SELinux refpolicy
2.20120725 [32] with different module configurations. Each host policy is different
and supports distinct set applications. The web server VM runs an Apache web
server and web application, database VM runs MySQL and, client VMs run a web
browser. Network 1 and 2 are both wired networks with one at a higher security
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Table 1. Impact of summarization on individual host graphs

Host type Nodes Edges Nodes Edges Reduction Reduction Time
(G) (G) (G′) (G′) Nodes Edges (sec)

Web Server(5) 2050 6660 309 2509 85% 62.3% 192.1

Database Server(2) 2578 10071 359 2179 86% 78.3% 267.26

Web Client(8) 2978 11499 479 2332 84% 79.7% 302.57

Table 2. Performance gain with summarized hosts for sample networked application

Network Nodes Edges Mediators Time(min)

Before Summarization 39,235 145,476 4,745 34.19

After Summarization 6,176 36,031 4,745 4.27

Reduction Percentage 84.2% 75.2% N/A 87.5%

level than the other. The hosts in Network 2 are not directly connected to each
other and communicate via the network node, while some hosts in network 1 can
directly talk to each other. Network 3 is a wireless network in which all nodes
may communicate with each other as one would expect in a situation where
signals are broadcast into a public space.

We use individual firewall (iptables) rules to determine a host’s interactionwith
the outer world and the network configuration files to determine the overall organi-
zation of hosts in this networked application. We now describe the impact of sum-
marization on the computation of network-wide mediation placement considering
the optimizations from the conservative host mediation. We also demonstrate the
joint optimized analysis of host mediations and network IPS.

We compute the summary graph for our hosts as described in Section 4.2.
Table 1 shows the reduction in the graph for individual hosts on computing the
host summary with conservative mediation placement. For each of the hosts, the
number of nodes are reduced by over 80% and the number of edges are reduced
by over 60%. We incorporate the conservative mediation placement, since only
about 10% of the nodes can be removed without it, as nearly all processes may
be capable of performing some kind of mediation. Table 1 specifies the average
time needed for generating the summary graph for each kind of host. The sum-
marization needs to be computed only once after which the summarized host
can be reused multiple times for analyzing in different network environments.

Table 2 shows the impact of summarization on computing time for mediation
placement. We compute a mediation placement before and after host summariza-
tion and find an 87.5% reduction in the placement analysis time for the example
network. The total number of mediation placements is 4745, out of which only
613 mediators are unique. A unique mediator is counted only once even if it is
used in different hosts. A program may appear in multiple hosts, thus filtering
such repetition gives us a reduction of 87% in terms of the effort required for
deploying the mediators.

Table 3 shows the average reduction in the host mediation for each type
of host when network IPS is available. It also shows average time required to
generate the conservation mediations for each type of host. In this example,
we aim to compute the necessary mediation to block denial of service attacks
as an information flow problem. The conservative host mediation shows the
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Table 3. Mediator placement: conservative vs in a network

Host type Mediators Mediators Time-Conservative
(Conservative) (Network) mediators (sec)

Web Server(5) 258 214 62.86

Database Server(2) 308 229 80.55

Web Client(8) 429 283 93.55

number of program entry points necessary to block paths from the network
inputs to protect the application (e.g., web server, database, web clients) and
system resources (e.g., critical kernel files). We assume that the network IPS can
block application-specific malware directed at the application over the network.
As only a small number of paths exists directly from the network to these ap-
plications, and because malware may compromise system processes by passing
through applications, we can block only a fraction of the threats with network
IPS, even with complete malware detection at the IDS. This result can help
system administrator identify what defenses are needed in the host and what
can be entrusted to network in a particular configuration. The experiment can
be performed on various network states at static time and it is part of future
work to adapt the analysis to handle dynamic network. The method determines
the placement, such that no untrusted data can reach a trusted object without
going through the appropriate mediator, enforcement of which has to satisfy the
reference monitor concept as expressed in Section 3.

6 Conclusion

In this paper, we proposed a method for computing a minimal placement for
network defenses among network and host flows. While networks with multiple
hosts can have many flows, we demonstrated a feasible approach which views
network IPS as a replacement for certain host mediations. We designed an al-
gorithm based on summarization of host flows and a conservative estimate of
the required host mediation that reduced the size of the information flow prob-
lem by more than 80% and mediation placement computation time by 87.5% in
our prototype network. Thus, our method provides automated network-wide de-
fense placements which comprehensively enforce security. We also observe that
hosts performing similar functionality with similar security requirements use
mediations at the same entry points. Our experimental results indicate that
the redundancy in networks of systems offer future opportunities for host based
summarization.
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Abstract. Inline reference monitoring instruments programs in order
to enforce a security policy at runtime. This technique has become an
essential tool to mitigate inherent security shortcomings of mobile plat-
forms like Android. Unfortunately, rewriting all calls to security-relevant
methods requires significant space and time, in particular if this process
is performed on the phone. This work proposes a novel approach to inline
reference monitoring that abstains from caller-site instrumentation even
in the case where the monitored method is part of a sealed library. To
that end we divert the control flow towards the security monitor by mod-
ifying references to security-relevant methods in the Dalvik Virtual Ma-
chine’s internal bytecode representation. This method is similar in spirit
to modifying function pointers and effectively allows callee-site rewriting.
Our initial empirical evaluation demonstrates that this approach incurs
minimal runtime overhead.

Keywords: Android, inline reference monitoring, sealed libraries.

1 Introduction

Mobile devices nowadays store a plethora of sensitive information about our
private and business life. Often, this information can be accessed in predefined
locations like an address book, photo folders, etc., where an attacker can eas-
ily locate them. However, this information is often not properly protected. For
example, on Android users have no choice but to grant an app all requested
permissions at install time, and these permissions cannot be revoked later on.
At the same time, these permissions are coarse-grained and hard to understand
for the average user. In the past, several incidents have been reported, where pri-
vate information was deliberately leaked to the servers of an app. Even widely
used apps like Facebook, LinkedIn, and WhatsApp used to clandestinely send
the phone’s whole address book to their servers to mine for possible contacts.

Inline reference monitoring [5] enforces a security policy at runtime by rewrit-
ing the original program to check the policy before executing security-critical
operations. In contrast, external reference monitors [11,2,6] require changes to
the firmware of a mobile phone and thus have limited practicability. Recently,
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several variants of inline reference monitoring [1,9,3] have been proposed to mit-
igate the shortcomings of Android’s security system. While some enforce more
general security policies, all of them allow dynamic permission revocation in or-
der to regain control over the sensitive data accessible to apps. Untrusted apps
are rewritten to invoke a security monitor before each security-sensitive opera-
tion, which is typically a call to a method defined in Android’s system libraries.
The monitor checks whether the (current) security policy allows the attempted
operation: In the positive case it lets the original call proceed, while a negative
decision blocks the security-sensitive operation. In the latter case, it returns a
mock value to prevent the app’s termination due to an exception, if necessary.
This variant of inline reference monitoring is called caller-site rewriting, as any
call to a security-sensitive operation must be instrumented.

An alternative reference monitor style, called callee-site rewriting is far less
invasive, as it only instruments the entry of the security-sensitive method itself
instead of all the invocation points. On top of that, it also monitors calls that are
not statically determinable, such as reflective calls or calls from the Java Native
Interface (JNI). Unfortunately, callee-site rewriting is not feasible for almost all
security-relevant code, which is often defined in sealed libraries (i.e. which cannot
be modified) and loaded before any client code executes. Thus static rewriting
of these libraries is impossible.

Our contribution is that we enable callee-site rewriting for sealed libraries.
We achieve this by diverting control flow in the virtual machine. This insight is
based on the observation that the VM-internal data structures that represent the
libraries in memory are modifiable. Therefore, it is possible to alter the control
flow by modifying the reference to the library method’s bytecode, which reroutes
a call to this method to another piece of bytecode. For the purpose of inline
reference monitoring, we relay an invocation of a security-relevant method to a
method that checks whether the security policy allows the original invocation.
If this is not the case, we simply return (a mock value); otherwise we invoke the
original method with the original parameters. As we are altering references to
Java bytecode, we have access to all the parameters of the original method call
when checking the security policy, just like the caller-site instrumentation does.
At the same time, if an app invokes the security-relevant method from JNI or
via reflection, we will still monitor this call as it jumps into the monitor, as well.
We are not aware of any previous work that modified references to bytecode in
a virtual machine in order to divert control flow to a different functionality.

In more detail, we make the following contributions:

1. We propose to rewrite references to the bytecode of security-relevant meth-
ods in-memory in order to achieve the same effects as callee-site rewriting
does. To that end, we invoke a native method at program entry that di-
verts control flow from security-sensitive methods to our monitor methods.
We achieve this by modifying the reference to the bytecode of the security-
sensitive method and storing the original reference inside the monitor, which
effectively makes the original method available to our monitor only.
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2. Our in-memory callee-site rewriting only requires minimal instrumentation
of an app that needs to be protected by a security policy. In practice, all
entry points to the program need to ensure that the references have already
been altered. Otherwise, a piece of native code is invoked that modifies these
references.

3. In-memory rerouting of security-sensitive methods allows dynamic policy
updates and is more efficient than static program rewriting, as it only alters
the references of methods that the policy currently protects. Static rewriting
would either need to instrument all potentially security-relevant methods
or to re-instrument whenever the policy is modified. On top of that, our
technique is less invasive, which facilitates on-the-phone instrumentation and
minimizes possible conflicts with the original application.

4. We demonstrate the feasibility of our proposed technique by a prototypical
implementation. Initial micro-benchmarks show that the dynamic overhead
of this technique is minimal and negligible in a practical application.

2 Background

Runtime policy enforcement for third-party applications cannot be easily in-
tegrated into unmodified Android systems. Android’s security concept strictly
isolates different applications installed on the same device to prevent apps from
interfering with each other at runtime. Furthermore, applications cannot gain
elevated privileges to observe the behavior of other applications. Communication
between apps is only possible via Android’s inter-process communication (IPC)
mechanism. However, such communication requires both parties to cooperate,
rendering this channel unsuitable for a generic runtime monitor.

Recently, several approaches tackled this problem by following an approach
pioneered by Erlingsson and Schneider [5] called inline reference monitor (IRM).
The basic idea is to rewrite an untrusted application such that the code that
monitors the application is directly embedded into its code. To this end, IRM
systems incorporate a rewriter or inliner component that injects additional se-
curity checks, called guards, at critical points into the application bytecode. A
guard can be injected into the control flow at different positions, but clearly, such
a guard should be executed before the critical functionality is executed. There
are two semantically equivalent approaches to IRM, as presented in Figure 1:
Caller-site-rewriting (a) adds the guard before every critical call, while callee-
site rewriting (b) injects the guard into the entry of the critical function itself.
The latter is usually more efficient, since the guard only needs to be injected
once. Unfortunately, Android’s system libraries are sealed so that inlining the
guards into a library is impossible. In order to achieve the same effect as tradi-
tional callee-site rewriting we divert all function calls from the security-critical
library method to our security guard (see Figure 1(c)). Once the guard allows
the execution, the original library function is invoked. This redirection, however,
incurs an additional method call.
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call foo()

call foo()

call foo()

call foo()

Fig. 1. Rewriting approaches

The injected security guards can now efficiently enforce a security policy. To
actually enforce a policy, the monitor may suppress or alter calls to security-
relevant functionality, or even terminate the program if necessary.

In the IRM context, a policy is typically specified by means of a security au-
tomaton that defines which sequences of security-relevant events are acceptable.
Such policies have been shown to express exactly the policies enforceable by run-
time monitoring [12]. Ligatti et al. differentiate security automata by their ability
to enforce policies as they manipulate the trace of the program [10]. Some IRM
systems [5,4] implement truncation automata, which can only terminate the pro-
gram if it deviates from the policy. However, this is often undesirable in practice.
Ligatti et al. [10] formulate the notion of edit automata, which can transform
the program trace by inserting or suppressing events. Monitors based on edit
automata are able to react gracefully to policy violations, e.g. by suppressing an
undesired method call and returning a mock value, while allowing the program
execution to continue.

On top of providing an elegant security policy enforcement mechanism, a
key aspect of IRM-based security solutions is ease of deployment. User’s need
to be able to install the security system without requiring expert knowledge
(e.g. gaining root access or changing the smartphone firmware). Our prior work
AppGuard [1] demonstrates that rewriting apps directly on the phone and subse-
quently installing the instrumented apps is possible without modifying the base
operating system or requiring root access.

3 Implementation

Our approach is based on diverting function calls to system libraries to func-
tions in our own library that first perform a security check. The diversion is
achieved by replacing the reference to a method’s bytecode in the VM’s internal
representation (e.g. a virtual method table) with the reference to our security
guard. Our security guards reside in an external library which is dynamically
loaded on application startup. Therefore, we do not need to reinstrument the
app when the security policy is modified. Additionally, we store the original ref-
erence in order to access the original function later on, e.g., in case the security
check grants the permission to execute the security-critical method. In order
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public class Main {
public static void main(String[] args) {

A.foo(); // calls A.foo()

MethodHandle A_foo = Instrumentation.replaceMethod(
"Lcom/test/A;->foo()", "Lcom/test/B;->bar()");

A.foo(); // calls B.bar()

Instrumentation.callOriginalMethod(A_foo); // calls A.foo()
}

}

Fig. 2. Example illustrating the functionality of the instrumentation library

to ensure instrumentation of security-sensitive methods before their execution,
we create an application class that becomes the superclass of the existing ap-
plication class1. Our new class contains a static initializer, which is the very
first code executed upon application startup. The initializer loads our native
C-library using System.loadLibrary().

Invocations of security-critical methods do not need to be rewritten statically.
Instead, we use Java Native Interface (JNI) calls at runtime to replace the refer-
ences to each of the functions to be monitored. More precisely, we call the JNI
method GetMethodID() which takes a method’s signature, and returns a pointer
to the internal data structure describing that method. This data structure con-
tains a reference to the bytecode instructions associated with the method, as well
as metadata such as the method’s argument types or the number of registers. In
order to redirect the control flow to our guard method, we overwrite the reference
to the instructions such that it points to the instructions of the security guard’s
method instead. Additionally, we adjust the intercepted method’s metadata to
be compatible with the guard method’s code. In particular, we adjust the num-
ber of registers to the guard method’s number of registers. This approach works
for pure Java methods as well as methods with a native implementation.

We illustrate how to replace a method using the functionality provided by our
instrumentation library in Figure 2. Calling Instrumentation.replaceMethod()
replaces the instruction reference of method foo() of class com.test.A with the
reference to the instructions of method bar() of class com.test.B. It returns the
original reference, which we store in a variable A_foo. Therefore, subsequently
calling A.foo() will invoke B.bar() instead. The original method can still be in-
voked by Instrumentation.callOriginalMethod(A_foo). Note that the han-
dle A_foo will be a secret of the security policy in practice, therefore the original
method can not be invoked directly by the instrumented app.

Our approach relies only on the layout of Dalvik’s internal data structure for
methods, which has not changed since the initial version of Android. However,

1 In case no application class exists, we register our class as the application class.
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Table 1. Runtime comparison with micro-benchmarks for normal function calls and
guarded function calls with policies disabled as well as the introduced runtime overhead

Function Call Original Call Guarded Call Overhead

Socket-><init>() 0.0186ms 0.0212 ms 21.4%
ContentResolver->query() 19.5229 ms 19.4987 ms 0.8%
Camera->open() 74.498 ms 79.476 ms 6.4%

our instrumentation system could easily be adapted if the layout were to change
in future versions of Android.

We are not aware of any possibility to bypass or disable our instrumentation in
Java code, as this code is strongly typed. It can even handle cases like reflection or
externally loaded libraries, which have not been instrumented. However, native
code could potentially alter the references we modified, but it wouldn’t know
the original references, as our native code executes first. Native code could also
modify the guard’s bytecode instructions or data structures, which is out of the
scope of our approach.

4 Evaluation

In the following we present the results of our experimental evaluation. We mea-
sure the performance overhead of our call diversion approach through several
micro-benchmarks (cf. Table 1.) All benchmarks have been executed on a Google
Galaxy Nexus smartphone running Android version 4.1.1 (Jelly Bean). The
smartphone has a dual-core 1.2 GHz ARM CPU from Texas Instruments (OMAP
4460) and 1GB of RAM. Our techniques require no custom firmware, which al-
lows widespread deployment. We envision a instrumentation process similar to
our previous work [1], where a third-party app can be rewritten directly on the
phone. The rewriting process adds code to load the policy classes and executes
native code that modifies the references to methods that need to be monitored.

For the evaluation of the runtime overhead we chose to conduct time mea-
surements on three method calls with different runtime complexity, namely
Socket-><init>(), ContentResolver->query(), and Camera->open(). We
measured time using the System->nanoTime() function. One measurement cy-
cle consists of x iterations over the particular function call inside a loop, where
x = 25 for Camera->open(), x = 500 for ContentResolver->query(), and
x = 10000 for Socket-><init>(). We executed each cycle 10 times per bench-
mark. Table 1 reports the median runtime for the original function, for the rewrit-
ten function with disabled policies (i.e., we directly call the original function),
and, finally, the runtime overhead in percent. We do not report the overhead
with enabled policies as this would result in negative overhead as the original
methods would not be executed.

During the evaluation we found that in a few cases the monitored calls were
faster than the original calls, even though we explicitly invoke garbage collection
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before each cycle to minimize its distortion. These cases are clearly outliers, pos-
sibly due to the operating system’s scheduling strategies for other apps running
on the same phone. The reported median overhead abstracts from such effects
and is always positive. While the relative overhead may seem high, the absolute
value is almost negligible and does not adversely affect the application’s perfor-
mance, in particular as any realistic program only invokes a limited number of
security-sensitive methods. The micro-benchmarks give a worst-case approxima-
tion of the overhead incurred by a program that would only invoke protected
functionality.

5 Related Work

In order to overcome the limitations regarding Android’s security system, re-
searchers have proposed several approaches, most of which require modifica-
tions to the Android platform. Nauman et al. [11] present a modification of
the Android software stack called Apex that enables dynamic permission re-
vocations. Conti et al. [2] go one step further with CRePE that integrates a
context-related policy enforcement mechanism into the Android software stack.
Fragkaki et al [6] recently presented an external reference monitor approach to
enforce coarse grained secrecy and integrity policies called SORBET. In contrast
to all these approaches, our intention was to be able to deploy the system to un-
modified stock Android phones. The major drawback of modifying the firmware
and platform code is that it requires rooting the device, which may void the
user’s warranty. Besides, there is no general Android system but a plethora of
vendor-specific variants that would need to be supported and maintained across
OS updates. Moreover, a bug in the implementation of the new security fea-
tures may be exploited and thus void all the benefits of the approach. Finally,
most users typically lack the expertise to conduct firmware modifications and
therefore abstain from installing modified Android versions on their phone.

Recently, several researchers proposed security frameworks for third party
apps that do not rely on modifying the stock Android firmware. A concurrent
approach called Aurasium [13] rewrites low-level function pointers of the libc li-
brary in order to intercept interactions between the application and the OS. Most
of the functionality that is protected by Android’s permission system depends
on such system calls and, thus, can be prevented at this level. Their approach
can even detect an application that tries to perform security-relevant operations
directly from native code, however, only as long as it does not re-implement the
libc functionality. However, the parameters of the original Java requests need to
be recovered from the system calls’ low-level byte arrays in order to differentiate
security-relevant from benign requests, which may be error-prone and break in
the next version of Android at Google’s discretion. Similarly, mock return values
are difficult to inject at this low level. In contrast, we designed our system to
intercept high-level Java calls, which allows for more flexible policies. In partic-
ular, we are able to inject arbitrary mock return values, e.g., a proxy object that
only gives access to certain data if a policy prohibits to execute a method. Fur-
thermore, we are able to intercept security-relevant methods that do not depend
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on the libc library. While the idea of modifying function pointers for IRM has
been exemplified by Aurasium, our technique extends this idea to redirecting
control flow in a virtual machine.

Another recent research [9] called Dr. Android and Mr. Hide places the refer-
ence monitor into a separate application. This allows to remove all permissions
from the monitored application, as all calls to sensitive functionality are done
in the monitoring app. It is fail-safe by default as it prevents both reflection
and native code from executing such functionality. This approach, however, has
some major drawbacks: If a security policy depends on state of the monitored
application, it incurs high complexity as all relevant data must be marshaled
to the monitor. Besides, the monitor may not yet be initialized when the app
attempts to perform security-relevant operations. The marshaling of arguments
and return values may also degrade application performance. Finally, a bug in
the monitor may again lead to privilege escalation, as the monitor delegates the
original call and must therefore have the permissions of all monitored apps.

Davis et al. present with I-ARM-DROID [3] another inline reference monitor
based approach to enforce security policies. Their approach does not allow the
instrumentation of applications on the phone so far, however, it supports to
instrument calls to any Java method and covers reflective JAVA calls.

In our previous work [1] we presented AppGuard, a practical approach for
enforcing fine-grained and stateful security policies on Android apps without
requiring changes to the stock Android firmware. It provides a quick mitigation
technique for upcoming security vulnerabilities and allows on-the-phone instru-
mentation of apps. Besides the instrumentation of any Java method and efficient
handling of reflective method calls, AppGuard has the smallest runtime overhead
of all mentioned approaches. AppGuard proved its feasibility in a real world set-
ting by enforcing several policies on real apps from Google Play. It has already
been downloaded more than 500,000 times and was recently asked to join the
invite-only Samsung store.

Our idea builds on the notion of diverting the control flow for binary appli-
cations as exemplified by, e.g., the Seccomp sandbox on Linux platforms [7], or
Detours [8] on Windows NT.

6 Conclusions

We presented an efficient new approach to inline reference monitoring for An-
droid apps. Our call diversion approach follows the idea of callee-site rewriting
and heavily reduces the number of changes that have to be performed during
app instrumentation. Furthermore, it reduces the runtime of the inlining process
and facilitates on-the-phone instrumentation. Our approach allows for dynamic
updates of security policies as only references to bytecode need to be changed.
We demonstrated the feasibility of the approach through an experimental eval-
uation and are now working on merging this approach with our prior work on
AppGuard.
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Abstract. Android applications that manage sensitive data such as
email and files downloaded from cloud storage services need to protect
their data from malware installed on the phone. While prior security
analyses have focused on protecting system data such as GPS locations
from malware, not much attention has been given to the protection of ap-
plication data. We show that many popular commercial applications in-
correctly use Android authorization mechanisms leading to attacks that
steal sensitive data. We argue that formal verification of application be-
haviors can reveal such errors and we present a formal model in ProVerif
that accounts for a variety of Android authorization mechanisms and
system services. We write models for four popular applications and an-
alyze them with ProVerif to point out attacks. As a countermeasure, we
propose Authzoid, a sample standalone application that lets applications
define authorization policies and enforces them on their behalf.

1 Introduction

The Android operating system seeks to foster a rich ecosystem of third-party ap-
plications. Users may download apps from reputable stores managed by Google
and Amazon or directly from app developers.1 This leaves users vulnerable to
malware masquerading as genuine apps. Consequently, Android provides strong
runtime isolation, running each application process in a separate Dalvik virtual
machine, and giving each a private storage area. Isolated applications may still
share files and data, for example using external storage or using an inter-app mes-
saging mechanism called intents. While some apps freely share and collaborate
with others, those holding sensitive data are tempered by the need for security
and integrity. Android therefore provides authorization mechanisms which let
an app control which other apps, if any, can read or write its data.

System Permissions. Android protects its system resources through permis-
sions which are granted by the user at installation time and accompany the
app throughout its lifetime. The Android SDK defines about 130 built-in per-
missions of which some forty are signature/system permissions and are reserved
for the operating system or apps installed by the device manufacturer [28]. The
rest can be requested by an app in its application manifest, an XML file which

� Work performed while visiting INRIA.
1 It is estimated that the average Android phone in 2012 has 32 apps installed [24].
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is prepared by the developer and stored in its application package (APK) file.
When an app attempts to access a system API function at run time, Android
first checks if the requestor has the required permission. If it doesn’t, a security
exception is thrown.

Some examples of regular permissions are: READ_EXTERNAL_STORAGE and
WRITE_EXTERNAL_STORAGE permissions to read or write to the phone’s shared
disk (referred to informally as the SD card since its default mount point
is /mnt/sdcard/ [21]), INTERNET to open network sockets, and READ_LOGS2

to access the system log. Some examples of system permissions are:
INSTALL_PACKAGES to install new applications, BRICK to disable the phone com-
pletely, and DELETE_CACHE_FILES to clear the cache directories of other apps.

Application-level Authorization. In addition to install-time permissions, Android
provides a variety of other authorization mechanisms. Activities can filter which
intents will be directed to them based on the intent’s content or requested action.
Content providers and services can be made available only to applications which
have certain permissions. Authorization may seem seamless to the user, but due
to the variety of tools available and the details of the OS, it can be technically
messy and sometimes can even be bypassed.

Consider, for example, a user who installs Dropbox (www.dropbox.com), uses
it to download a PDF file from the cloud, and opens it with Adobe Reader
(adobe.com/products/reader.html).3 The user would assume that during the
transaction Adobe Reader got temporary read access to the file and nothing
more. As we discuss later, that is not the case at all: Adobe Reader and (up until
API level 16) all of the applications on the phone can read the file indefinitely
afterwards. Many can modify it too.

Our Contribution. There are many ways in which applications get authoriza-
tion wrong or fail to enforce authorization properly. They fail primarily because
they don’t define the policy they are trying to enforce and (likely) didn’t use a
full model of the environment during testing. Proper modeling of the environ-
ment and the application’s behavior would reveal attacks on the authorization
mechanism.

Our contribution in this work is threefold. First, we present a unified pic-
ture of the Android authorization tools, something not previously presented in
a single work. Second, we show how many popular sharing applications on the
market fail to get authorization right and publish a formal model of the An-
droid authorization tools and environment which allows us to reveal attacks.
We publish the model so that others can use and extend it to test their apps.
Third, we present Authzoid, a sample authorization app which properly imple-
ments the authorization tools that the apps got wrong. The code can act as
a source code module to be included as is or as a starting point for develop-
ers who want to get authorization right. Both code and model are found at:
http://prosecco.gforge.inria.fr/Essos/pv/.

2 Changed to signature/system/development permission in API level 16.
3 The most popular PDF reader on Google Play as of Oct 2012.

READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE
/mnt/sdcard/
INTERNET
READ_LOGS
INSTALL_PACKAGES
BRICK
DELETE_CACHE_FILES
www.dropbox.com
adobe.com/products/reader.html
http://prosecco.gforge.inria.fr/Essos/pv/
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The rest of this paper is organized as follows. Section 2 explains the An-
droid authorization tools. Section 3 discusses our attacker model, gives techni-
cal descriptions of the sharing applications surveyed, and explains the attacks
against them. Section 4 contains our formal model for Android authorization
tools, environment, and the applications studied. Section 5 discusses the Auth-
zoid app and its major features. Section 6 contains related work and Section 7
concludes.

2 Authorization for Android Applications

Android applications are composed of four kinds of run time entities:

Activities correspond to windows and allow for user interaction via a GUI.
Content Providers provide SQL-like interfaces to queryable data.
Broadcast Receivers listen for broadcast messages from other application

components, the operating system, or other applications.
Services run in the background and provide long term functionality without

providing a user interface.

Applications exchange messages via intents which contain a URI data field and
strings, URIs, or key-value pairs in extra fields. They are routed by an Android
component called Binder between the run time entities. During routing, the
Activity Manager writes the action, sender, recipient, and data field (but not
the extra fields) to the log.

Each runtime entity may use a variety of authorization mechanisms to con-
trol access to its data and functionality. In the rest of this section we review
the five authorization mechanisms available and explain their usage, strengths,
and weaknesses. For each mechanism, we give an example of how it is used
in a popular application currently available from the Android Market. Some
apps use a combination of the mechanisms below to enable a variety of user
policies.

Android Permissions. Android’s SDK includes about 130 permissions, but an
app may extend them with its own permissions by adding them to its manifest
file. Apps can use permissions to enforce authorization in one of two ways.

First, content providers, activities, services, and broadcast receivers can spec-
ify that only applications with a certain permission may access them. For ac-
tivities and services, this prevents applications without the permission from
invoking or binding to them. For content providers, separate read and write
permissions may be given. For broadcast receivers, it prevents the delivery of
broadcasts from apps without the permission. The filtering is done automat-
ically by Binder based on the app’s manifest file (android:permission for
activities, services, and broadcast receivers and android:readPermission and
android:writePermission for content providers) or as defined programmati-
cally if they are configured in code.

android:permission
android:readPermission
android:writePermission
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Example: K-9 Email (code.google.com/p/k9mail/) uses the custom permis-
sions com.fsck.k9.permission.READ_ATTACHMENT to protect its attachments
content provider. Its email messages content provider protects read access with
READ_MESSAGES and write access with DELETE_MESSAGES. GMail (gmail.com)
and Yahoo! Mail (mail.yahoo.com) (discussed below) use a similar strategy.

Second, apps can use the system API to discover whether it, the app which
called it, or another app has a particular permission (using checkPermission()

or checkCallingPermission()), regardless of its type. They can then make
programmatic decisions based on the results.

Example: Some plug-in libraries (ex. ACRA (code.google.com/p/acra/)) pro-
grammatically investigate which permissions are available to their host applica-
tions before attempting actions which require particular permissions (ex. reading
the log and sending internet data).

URI Permissions The content provider read and write manifest permissions give
blanket read and write access. Alternatively, a content provider can give specific
read or write query access to a single content URI under its authority. The URI
permission can be granted programmatically using grantUriPermission()or by
sending an intent to the recipient with the FLAG_GRANT_READ_URI_PERMISSION

or FLAG_GRANT_WRITE_URI_PERMISSION flags set. URI permissions can be dele-
gated by recipients. Intent-granted URI permissions are valid until the recipient
app closes or is killed. Programmatically-granted ones are valid until revoked
using revokeUriPermission().

Binder enforces URI permissions by tracking the grants, revokes, and intents
sent, so the URI does not need to be secret. Also, since intents can be routed by
capability, the sender may not know which app received the permission.

Depending on whether the content URI refers to a database row, a file,
or both, the recipient can use a content resolver request to read or write the
corresponding rows or file. If the URI is opened as a file using openFile(),
the content provider returns an open file descriptor for it and Binder assigns
ownership of it to the recipient.

Example: Users can open an attachment from K-9 Email with an external viewer.
When this happens, K-9 Email sends an intent to the viewer with a content

URI for the attachment and the URI read permission flag set. The recipient can
then use a content resolver to resolve the URI to an open file descriptor. GMail
and Yahoo! Mail employ a similar strategy.

The use of open file descriptors leads to some technical inconveniences. First,
since a file descriptor is a hard link to the file and is owned by the recipient,
the sender can’t close the file descriptor or delete the file until the recipient
closes it. Second, if two application hold open file descriptors for the same file
(i.e. they both requested the same URI), they cause read/read and read/write
conflicts and race conditions. Third, only a few classes in the Java file API
support file descriptors, making it impossible to perform random access reads

code.google.com/p/k9mail/
com.fsck.k9.permission.READ_ATTACHMENT
READ_MESSAGES
DELETE_MESSAGES
gmail.com
mail.yahoo.com
checkPermission()
checkCallingPermission()
code.google.com/p/acra/
content
grantUriPermission()
FLAG_GRANT_READ_URI_PERMISSION
FLAG_GRANT_WRITE_URI_PERMISSION
revokeUriPermission()
content
openFile()
content
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or writes to the file and making rewinding difficult. Because of these issues,
some applications immediately make local copies of files passed to them by URI
(ex. Adobe Reader) or don’t enable updates to such files (ex. Jota Text Editor
(sites.google.com/site/aquamarinepandora/home/jota-text-editor)).

Private Storage. Every Android application is given its own user name, group
name, and home directory. The home directories are protected by Linux file and
directory permissions and by default no app can read or write the home directory
of another. Apps can override the default settings to make files or directories
world readable, writable, or executable using setReadable(), setWritable(),
and setExecutable(). Then any other app can read, write, or execute the files
or directories. If an app makes a file world readable in order to share it, it may
include a long random string in the path to make it hard for unintended apps to
guess the path name. This technique turns the path name into a secret, so the
app must ensure that only the intended recipient gets the path name.

Example: Unlike most apps which keep all files in private storage private, Google
Drive (drive.google.com) (discussed below) selectively sets path read and ex-
ecute permissions to enable others to read files in its private storage.

External Storage (SD Card). Most Android devices have a shared storage space
for files or data (the SD card). Read and write access to the SD card require the
permissions mentioned above. Many applications (ex. the camera, the default
browser’s downloads folder) use the SD card for storing files that are either too
large to keep in private storage or that are meant to be available for other apps
to use. Aside from the read and write permissions, Android does not enforce
access control on the SD card, so any application can read, write, or delete any
file on it. Authorization can be enforced on the SD card using encryption or
message authentication codes (MAC).

Example: The password storage app 1Password (agilebits.com/onepassword)
stores its encrypted password database on external storage. It doesn’t share
passwords directly with other apps, instead using the clipboard to copy and
paste passwords. Encryption protects the contents of the password database
and MACs protect its integrity.

Web Sharing. Some apps place data to be shared on a public web site and send
the URL for the data to another app via an intent. Often the URL contains
a long random string to make it difficult to guess, turning the URL into a
secret. Another option is to protect the URL using web-based application or
user authentication such as OAuth [14].

Example: MyTracks (www.google.com/mobile/mytracks/) uses GPS informa-
tion to track where the device has gone, including distance traveled, speed, and
elevation change. When sharing a “track” from MyTracks with another app, it
first uploads a custom map to Google Maps and then sends a web URL with a
long random part to the recipient via an intent.

sites.google.com/site/aquamarinepandora/home/jota-text-editor
setReadable()
setWritable()
setExecutable()
drive.google.com
agilebits.com/onepassword
www.google.com/mobile/mytracks/
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Summary. The authorization tools listed show the variety of mechanisms avail-
able. It’s not clear if any or all of the tools are sufficient to achieve a satisfactory
authorization policy. The applications that we study in the next section use dif-
ferent combinations of the tools to enforce authorization, but each suffer from
attacks and weaknesses that demonstrate that using them correctly is not sim-
ple. In some, the tools are used incorrectly; in others, features of the Android
environment defeat the app’s authorization policy.

3 Applications and Attacks

To investigate how popular applications use the authorization tools of Section
2 to enforce their security goals, we study four apps: two Email clients and two
Cloud File Storage applications. We explain each application’s authorization
mechanism and explain how an attacker may defeat it.

3.1 Authorization Goals and Attacker Model

Since the apps we examine don’t specify authorization policies in their docu-
mentation, we define a minimal one for the purposes of our study. Our minimal
policy contains just one confidentiality rule and one integrity rule:

Confidentiality. An app may read a file only if it owns it or if the owner and
the user have authorized the reading.

Integrity. An app may modify a file only if it owns it or if the owner and the
user have authorized the modification.

The policy can be enforced by many authorization mechanisms, including those
listed in Section 2.

Regarding the attacker model, we first assume that the Android protec-
tion mechanisms are enforced according to their specification (i.e. the phone
isn’t “rooted”, giving arbitrary power to an app). Next, we make the same
assumption that Android does regarding app isolation: that apps are mutu-
ally suspicious. The attacker is assumed to be (1) installed on the phone, (2)
capable of performing polynomial time programmatic tasks, and (3) in pos-
session of a set of authorization-related permissions that seem may seem in-
nocuous: READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE (51% of popular
applications request it), READ_LOGS (6% of popular applications request it4),
and INTERNET (77% of popular applications request it) [10]. Any series of ac-
tions which such an attacker can take to contravene the authorization policy
defined above is an attack.

4 As of Oct 2011, READ_LOGS was the ninth most popular dangerous Android permis-
sion requested. In API level 16, it was converted to a system/signature/development
permission, so access to it on the most recent devices is significantly reduced.

READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE
READ_LOGS
INTERNET
READ_LOGS
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3.2 Study of Sharing Applications

We now consider four popular Android applications which enforce authorization
using the mechanisms defined in Section 2. The applications are chosen because
they illustrate the use of a variety of mechanisms and are representative of classes
of apps.

GMail downloads attachments to its private storage area and manages them
via a content provider which is protected by custom permissions READ_GMAIL and
WRITE_GMAIL. The permissions are signature level permissions, so only Google
applications can request them [7]. GMail allows the user to open an attachment
using an outside document viewer by sending an intent containing a URI read
permission. Applications which behave similar to GMail include the built in
Android Email application and K-9 Mail.

Attacks: The use of a protected content provider ensures that only applications
sent the URI permission can read the file. However, some recipient viewers imme-
diately make a copy of any file sent to them by URI. For example, Adobe Reader
copies any file it shows to the SD card in the downloads directory, making it
readable by an attacker (confidentiality).

Yahoo! Mail has a content provider which is protected by a custom signature
permission (com.yahoo.mobile.client.android.permissions.YAHOO_INTER_
APP). Yahoo! lets the user open attachments using URI permissions, just like
GMail. However, downloaded attachments are stored on the SD card, so they
are readable by any application with READ_EXTERNAL_STORAGE. The MailDroid
(groups.google.com/group/maildroid) application behaves similarly.

Attacks: Since Yahoo! stores all downloaded attachments on the SD card, an
attacker can read them (confidentiality). The application does not check for
downloaded file integrity, so once on the SD card they may be modified by an
attacker as well (integrity).

Google Drive offers two mechanisms for sharing files on the phone.
First, the on-phone app lists the files and directories on the cloud and

downloads one when the user requests to view or share it. Files can’t be up-
dated on the phone. A downloaded file is placed in a new, randomly named
directory in a document cache directory located in Google Drive’s private stor-
age (/data/data/com.google.android.apps.docs/cache/). The new direc-
tory contains just one file and is world readable and executable. The file is made
world readable and all the directories above the randomly named directory are
world executable, letting any app open the file, but not list the directory names
under cache. The file path is sent to the target as the data field of an intent.

Second, apps can access Google Drive via a web service interface which is
protected by SSL and OAuth 2.0. An app receives an API identifier which it
can use to obtain file read and write tokens. An app can download files via their
names or identifiers and send updates back over the web.

READ_GMAIL
WRITE_GMAIL
com.yahoo.mobile.client.android.permissions.YAHOO_INTER_APP
com.yahoo.mobile.client.android.permissions.YAHOO_INTER_APP
READ_EXTERNAL_STORAGE
groups.google.com/group/maildroid
/data/data/com.google.android.apps.docs/cache/
cache
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Attacks: With respect to the on-phone app, the directory path is a secret since
any application which knows it can open the file. Activity Manager, however,
prints the data fields of all intents to the log, so the path is printed as well. An
attacker which has READ_LOGS permission can discover the path and read the
file (confidentiality).

Dropbox lists the files and directories in the cloud and downloads them on
demand. The files are stored on the SD card in a directory called scratch.
When sharing a file, it is first stored in the scratch directory and then the path
and filename are sent via an intent.

Downloaded files can be opened for reading and editing, but are not checked
for integrity after downloading. When opening a file, the user chooses which file
viewer to use; if the viewer saves a new version, it is uploaded to the cloud. Saves
are monitored until the authorized viewer closes or loses focus. Dropbox ignores
saves by other applications, even when an authorized viewer is working.

When sharing a file for attachment to an email, the file is uploaded (if neces-
sary) and a web URL is provided in the intent as an extra. The URL provides
read only access to the file and includes a random string to make guessing harder.

Attacks: Since downloaded files are stored on the SD card, they are readable by
an attacker (confidentiality). Unauthorized saves are not automatically uploaded
to the cloud, but since there is no integrity check, an attacker can tamper with a
file and subsequent views of the file on the phone will show the tampered version.
If a viewer unknowingly saves a tampered version, the attacker’s modifications
will reach the cloud (integrity).

3.3 Discussion

Our study of four popular and well-regarded applications illustrates the difficulty
in getting even a simple authorization policy right. Many applications place
sensitive data on public external storage. Some use unguessable directory names
in private storage, but these names may leak into the shared system log. Still
others may themselves correctly implement access control, but may be let down
by the applications with which they share files.

Simple technical tricks aren’t sufficient against a dedicated adversary. Wuala
(wuala.com) tries to place shared files on the SD card for only a few sec-
onds. However, due to Android’s application life cycle, a malicious app can
monitor the SD card and breach confidentiality during that gap. Boxcryptor
(boxcryptor.com) encrypts files on the SD card and decrypts them just in time
for the recipient. Such uses of encryption are limited by key management, that
is, how to securely transfer a secret key to the recipient. Google Drive’s example
shows that transferring secret keys by intent is not always secure. Keys derived
from passphrases are hard to keep secret, as shown by Belenko and Sklyarov [3].
Even if encryption keys are shared securely, file storage applications often misuse
encryption and integrity algorithms and expose their plaintext to attackers [4].

READ_LOGS
scratch
wuala.com
boxcryptor.com
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We advocate a unified comprehensive approach to the implementation of
application-level authorization. Rather than suggest point-fixes to prevent
specific attacks, we show how to write formal models that precisely capture
authorization policies and relevant parts of the execution environment. By auto-
matically analyzing such models, we can both find attacks and gain confidence
in the mechanisms used to enforce the policy.

4 Formal Model

As shown above, implementing even a minimal authorization policy requires an
analysis of the authorization tools as well as the environment. Modeling can
help such an analysis by including relevant parts of the Android authorization
tools and the operating system. Developers can then create a model of their
application, run it inside the Android model, and use automated tools to dis-
cover attacks. In this section we describe the building of such a model using
ProVerif [5]. We show illustrative snippets of its parts: (a) the authorization pol-
icy, (b) the Android authorization tools, (c) parts of the Android OS, and (d)
the sharing application. We then use the model to discover attacks in the mod-
els of the applications surveyed. ProVerif is well suited for our needs since (1) it
enables the definition of authorization policies using Horn clauses and commu-
nication using the applied pi calculus; (2) it can model enforcement mechanisms
that use secret and fresh file or path names and cryptography; and (3) it lets us
analyze the models against an unbounded adversary.

Policy Language. The snippet below implements the minimal authorization pol-
icy from Section 3.1. It allows an app to read or write files only if it is the file’s
owner or if it receives authorization from the owner and the user. Lines 1–2 are
a horn clause saying that if an application (a1) and a user (u) own a resource
(r), then a1 is authorized to read r. Lines 3–4 enable another application (a2) to
receive read authorization from the owners (a1 and u). The parallel write rules
are omitted due to space considerations.

clauses forall u:Principal, a1:appid, a2:appid, r:resource;1

owners(r, u, a1) -> readAuthorized(a1, r).2

clauses forall u:Principal, a1:appid, a2:appid, r:resource;3

owners(r, u, a1) && userAuthorizedRead(u, a2, r) -> readAuthorized(a2, r).4

Android Authorization Tools. We implement the following Android authoriza-
tion tools:

Permissions are included via a androidPerm type which is populated with
permissions that can be granted by the user during installation.

URI Permissions are included via a uri type which refers to a file resource.
Resolution is modeled using a lookup table of uri and resource pairs.

androidPerm
uri
uri
resource
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Private Storage is modeled by using a path type which refers to a location
only accessible by the owner. If the path is declared world readable, writable,
or executable, others can access it too. Fresh path names may be world
readable, but only can be accessed if the requestor knows the path’s name.

SD Card is modeled as a file system process which enables the storage or re-
trieval of objects based on path and filename objects stored in a lookup
table.

Web Sharing is parallel to private storage, but without the need for setting
path permissions.

The following snippet shows how file and log read permissions are handled (par-
allel file write clauses are elided). Lines 5–7 define the Android permission type,
the permission to read the SD card (externalRead), and the permission to read
the log (logRead). Lines 8–9 allow an application a to read a file with name
f, path p, and any file and path permissions fp and pp if (1) a has the exter-
nal read permission and (2) the file is on the SD card. Lines 10–11 allow an
application a to read all files in its own private space (private(a)). Lines 12–14
allow an application a to read a file in another application o’s private space if
its path permissions (pp) are set to world executable (isWorldExecutable) and its
file permissions (fp) are set to world readable (isWorldReadable). Line 15 allows
an application a to read the log if it has logRead.

type androidPerm.5

fun externalRead() : androidPerm.6

fun logRead() : androidPerm.7

clauses forall a:appid, l:location, p:path, f:filename, pp:filePerms, fp:filePerms;8

hasPermission(a, externalRead()) -> canReadFile(a, sdcard(), p, pp, f, fp).9

clauses forall a:appid, l:location, p:path, f:filename, pp:filePerms, fp:filePerms;10

canReadFile(a, private(a), p, pp, f, fp).11

clauses forall o:appid, a:appid, p:path, f:filename, pp:filePerms, fp:filePerms;12

isWorldExecutable(pp) && isWorldReadable(fp) ->13

canReadFile(a, private(o), p, pp, f, fp).14

clauses forall a:appid; hasPermission(a, logRead()) -> canReadLog(a).15

Android OS Elements. We include processes for the following authorization re-
lated Android processes:

File System process which enables applications to read, write, and list files on
the SD card based on path and file name. The file system allows access to
files in private storage by the owner and by others which know the path
name if the permissions are set correctly.

Content Provider process which enables applications to resolve URIs and
thereby read or write files which they refer to.

Binder process which handles the granting of URI permissions, both from the
owner and via delegation. Binder writes entries in the log.

Log process which gives permission-based read and write access to the log.

path
path
filename
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Permission Granting process which enables the user to grant permissions to
processes.

The following snippet shows three parts of file system’s code in the model. Lines
16–17 listen for file read requests (readFile) and check the application is regis-
tered. Lines 18–19 retrieve the file based on its location (l), path (p), and file
name (f), check if a is able to read it, and return it to a if it is able. Lines 20–22
listen for requests to list the files in a directory path. Line 23 allows it if the
path is world readable. Lines 24–27 allow an application to list all files on the
SD card if the requestor has externalRead permission.

let FileSystem() = (!in (filesystem,readFile(a, l, p, f));16

get apps(=a) in17

get files(=l, =p, pp, =f, fp, r) in18

if canReadFile(a, l, p, pp, f, fp) then out(return(a), r))19

| (!in (filesystem,listFile(a, l, p));20

get apps(=a) in21

get files(=l, =p, pp, f, fp, r) in22

if isWorldReadable(pp) then out (return(a), f))23

| (!in (filesystem,listSDCard(a));24

get apps(=a) in25

get files(=sdcard(), p, pp, f, fp, r) in26

if hasPermission(a, externalRead()) then out (return(a), (p, f))).27

Testing Application. We implement a single process for each sharing application.
The process registers the application, specifies how files are added, and specifies
how files are shared with other applications (“open with”).

The following snippet shows the Dropbox application. Line 28 defines the
Dropbox application id as private (not known to the attacker initially). Line
29 is the header for the process. Lines 30–31 register Dropbox in the applica-
tions table (apps, definition elided) and publish the name of its private storage
(private(dropbox)) and its web storage (web(dropbox)) by sending their values
on the free channel pub (definitions of private, web, and pub are elided). This
simulates an attacker knowing the application’s root directory and web domain,
but not knowing the paths below them where files are found. Lines 32–34 define
a new file’s contents (r), its file name f, and its path p; assigns ownership of the
file to Dropbox (line 33, using the assume function which is elided); and inserts
it in the files table (definition elided) on the web (web(dropbox)) where it stays
until downloaded. The noPerms() terms are used to model file and path read,
write, and execute permissions. Lines 35–40 model a user opening a file. Lines
35–36 receive an openWith command and download a file from Dropbox’s web
space (path p, path permissions pp, file name f, file permissions fp, file contents
r). Line 37–38 select an application a and authorize it to read. Line 39 stores
the file on the SD card in the files table with no explicit file or path permissions
(noPerms). Line 40 returns the path and file name to the requestor by an explicit
intent (explicitintent(a)).
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free dropbox : appid [private].28

let Dropbox(u:Principal) =29

(insert apps(dropbox);30

out (pub, (private(dropbox), web(dropbox))))31

| (!new r:resource; new f:filename; new p:path;32

if assume(owners(r, u, dropbox)) then33

insert files(web(dropbox), p, noPerms(), f, noPerms(), r))34

| (!in (openWith, ());35

get files(=web(dropbox), p, pp, f, fp, r) in36

get apps(a) in37

if assume(userAuthorizedRead(user, a, r)) then38

insert files(sdcard(), p, noPerms(), f, noPerms(), r); (*readable by attacker*)39

out (explicitintent(a), (p, f))).40

Discovery of Attacks. By combining the testing application’s model with the en-
vironment and authorization code, we can check two types of queries in ProVerif:

1. Checks that proper authorization is reachable. ProVerif should show traces
by which a user can properly authorize an app to read and write a file.

2. Checks that an attacker can’t read or write files without proper authoriza-
tion.

The first queries check that authorization is possible under the model. We expect
to see traces of the sort: “The file is readable by the attacker if the user has sent
a read URI permission to the attacker” or “A file in private storage is readable
by the attacker if the application makes the file world readable, the path world
executable, and sends an intent to the attacker with the path to file.” Those
represent valid authorization paths in the model.

The second queries ensure that there are no other ways to read or write files
aside from the authorization paths defined. If ProVerif finds any such paths,
they are attacks. For example, ProVerif points out that line 39 above leaks the
file to the attacker since it is allowed to read files on the SD card.

5 Authzoid Implementation

As shown above, the proper use of the authorization tools in Android re-
quires careful design and analysis. In this section we describe our implemen-
tation of Authzoid, an app that lets file owners define authorization policies
and then enforces them on their behalf. Authzoid uses the authorization tools
explained in Section 2 to enable a wide variety of policies, including ones
far richer than the minimal policy defined in Section 3.1. Authzoid is use-
ful as a sample implementation of proper authorization, fixing the mistakes
of the apps discussed above and can be useful as a starting point for devel-
opers who want to get authorization right. Its source code can be found at:
http://prosecco.gforge.inria.fr/Essos/pv/.

http://prosecco.gforge.inria.fr/Essos/pv/
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Authzoid offers three application-facing interfaces: file submission, policy def-
inition, and file retrieval. It manages file versions and authorization checks
internally.

Submission Interface. Applications can submit files to Authzoid for storage using
an intent with a custom action. The intent can contain a file to share or a content
URI to resolve. Files can be submitted as new or as updates to existing files.

If submitted as new, Authzoid retrieves the name of the submitting appli-
cation via the Android API and stores it in its private storage area. A private
database indexes the files by their original file name or URI and submitting ap-
plication. The new file is assigned a new version number which is returned to
the submitter. The submitter may optionally include a permission as a string
extra. If included, any application with the given permission may later read or
modify the file (see below).

If submitted as an update, the file must be accompanied by the name of
the owner, the file’s original path and file name, and a version number which
indicates the last version of the file the submitter saw. Authzoid first checks if the
submitter is authorized to update the file (see below). If not, an authorization
failure message is returned. If the update is authorized, but the version number
submitted is smaller than the current version number in the database, the update
is rejected with an explanatory message. Otherwise, the file is copied in to private
storage and the database is updated. Authzoid generates a new version number
which it stores in the database and sends it back to the submitter.

Policy Definition. By default, only the application which submitted a file (its
owner) can read or write it. Authzoid enables owners to share the file via URI
permissions, by adding another app to the file’s read and write access control list,
or by retrieving a read-only randomized path name (similar to Google Drive).
Groups of apps can be added by setting a permission on the file; then any
application with the permission can read or write the file.

Retrieval Interface. An app can request a file from Authzoid by sending an
intent with owner’s name, the file’s original path, and name. For each request,
Authzoid queries its access control matrix to see if the requestor is authorized
to read the file. If the read is approved, Authzoid checks if a copy of the latest
version of the file is already in the cache. If not, it generates a new directory
under its private filecache directory with a 128-bit random name and puts a
copy of the file in it. The file and random directory are set to be world readable
and the directory is set to be world executable. Whether new or existing, the
full file path of the file are returned to the requestor using an intent with the
full path in an extra.

When an application resolves a URI using Authzoid’s content provider, the
content provider makes a new copy of the file, opens a new file descriptor on it,
deletes the file using the Java file API, and then returns the file descriptor. This
prevents read/read conflicts on the file. Since the file descriptor acts as a hard
link, the Android OS will preserve the contents of the file until the recipient
closes the file descriptor or is killed.

filecache


Towards Unified Authorization for Android 55

Folder listings can be requested by sending the owner’s name and the path
via an intent. Authzoid checks its access control matrix to see if the requestor is
the owner or authorized to list the directory. If authorized, a listing of all files
and directories in and under the given directory is sent back via an intent as a
string array extra.

Authzoid is the first Android app that provides a unified authorization service
enabling file sharing between Android apps. Using ProVerif, we verified that
Authzoid is secure against the class of attacks captured in our formal model.
This should not be interpreted as a formal theorem however, since our model
of both Android is abstract and incomplete, and may hide other attacks. Still,
our analysis presents a first step towards formal security analysis for Android
applications. Our models are public and may be extended for more sophisticated
analysis.

6 Related Work

Research on Android’s security infrastructure includes studies on how permis-
sions are enforced [17], used [2], and misused or attacked [10,12,18,22]. Some
try to secure Android applications against attackers by performing static or dy-
namic analysis of apps (ex. [16,8,20]). Xu, et al. [29] developed Aurasium, a
tool that uses static analysis and code injection to detect or prevent privilege
escalation attacks. Like Authzoid, Aurasium does not require modifications to
the operating system. Conti, et al. [11] developed CRePE, a system capable of
enforcing rule based context aware security policies. Naumann, et al. [23] ex-
tended Android permission with custom user defined constraints. None of the
above work includes formal analysis or verification.

Research on formalization of the Android stack and API includes Chaud-
huri [9] who gave a formal model of a subset of the Android communication
system; Enck, et al. [15] who developed TaintDroid to track the flow of sensitive
information between Android apps (extended by Shreckling, et al. [25] with more
complicated, dynamic run time policies); and Armando, et al. [1] who presented
a more complete model of the Android middleware using types.

With respect to formalizations for secure sharing of resources, Blanchet and
Chaudhuri [6] developed a formally verified protocol for secure file sharing on
untrusted storage (a tool which could be used to secure Android’s SD card) and
Fragkaki, et al. [19] gave formal typing rules to explain Android’s security model.
Similar to our work, Fragkaki et al. described Sorbet, a modification to Android
which enforces secrecy and integrity properties written by app developers. In
contrast, Authzoid is developed to enable the easy specification of authorization
policies and relies upon existing Android mechanisms without requiring changes
to the operating system.

Since many Android apps are distributed free and make money from in-app
ads, work has been done to determine how ad libraries operate and whether they
pose privacy or authorization risks. Dietz, et al. [13] developed Quire which en-
abled advertisers to prevent app based ad fraud. Stevens, et al. [27] investigated
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the behavior of thirteen ad libraries and showed how their requirements cause
app developers to request more permissions than necessary (permission bloat).
As a remedy to permission bloat, Shekhar, et al. [26] implemented AdSplit, a
mechanism to separate ad libraries from individual apps.

7 Conclusion

Many Android apps attempt to enforce authorization policies for sharing re-
sources, but fail due to misuse of the Android authorization tools or due to
actions by external entities. We can discover authorization attacks by using
ProVerif to model a relevant subset of the Android authorization tools and en-
vironment and use it to examine the behavior of sharing applications. We also
describe Authzoid, an application which lets app developers specify authoriza-
tion policies for sharing and enforces them using built-in Android tools. Future
extensions to Authzoid include work on making an encrypted cache on the SD
card and enabling it to proxy OAuth based web sharing.
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Abstract. Usage control is concerned with how data is used after access
to it has been granted. In existing usage control enforcement frameworks,
policies are assumed to exist and the derivation of implementation-level
policies from specification-level policies has not been looked into. This
work fills this gap. One challenge in the derivation of policies is the
absence of clear semantics of high-level domain-specific constructs like
data and action. In this paper we present a model-based refinement of
these constructs. Using this refinement, we translate usage control poli-
cies from the specification to the implementation level. We also provide
methodological guidance to partially automate this translation.

1 Introduction

Usage control systems provide means to specify and enforce policies about the
future usage of data. Usage control requirements have been enforced for various
policy languages [1–8], at [9–18] and across [19] different layers of abstraction in
various types of systems [20,21]. The focus there has been on the implementation
of policy monitors. How policies are specified, translated or instantiated, has not
been addressed. The challenge is that system implementations of usage control
policies might not always adequately reflect end user requirements. This is due
to several reasons, one of which is the problem of mapping concepts in the end
user’s domain to technical events and artifacts. For instance, the semantics of
basic operators such as “copy” or “delete”, which are fundamental for specifying
usage control policies, tend to vary according to domain context and can be
mapped to different sets of system events. This might wrongly allow events
that should have been inhibited and block those that should have been allowed.
Thus, in the absence of clear semantics of actions in an application context, it
is impossible to define and enforce usage control requirements in a way that is
unambiguous. This is the problem that we address in this paper.

We present a model-based policy derivation that combines usage control en-
forcement with data and action refinement. Policies are supposed to be spec-
ified by end users and translated using technical details provided by a more
sophisticated user whom we call the power user. The translation process is
semi-automated because it requires intervention from power users at specific
points. One use case is from a web-based social network (WBSN) where an end
user Alice would like to exercise control over copies of her data by other users.
She would specify “do not copy my photos” in a user-friendly way. This policy
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would then be translated, deployed and enforced at all client-side machines that
access Alice’s data. We show the step-by-step translation of this policy in the
rest of this paper. It is organized along five steps:

Step 1: Specification of policies We start with an overview of a policy language
[19] that is used to express constraints on the future usage of data (“don’t copy
photos,” “delete document after 30 days,” “play video at most 5 times,” etc.)
These requirements are called specification-level policies.
Step 2: Refinement of actions We express specification-level policies in terms of
high-level actions like “delete” or “copy.” For enforcement, we must refine these
actions into their technical counterparts. Intuitively, the semantics of actions
vary according to the domain context. Therefore any solution that caters to
the semantics of actions must address the problem at the domain level. We
recap a domain-specific meta-model from the literature [22] that distinguishes
between abstract and concrete events and refine the former to the latter (no
formal semantics have been given to the refinements in the foundational work).
Step 3: Semantics of action refinement We combine the usage control model and
the domain meta-model to specify the formal semantics of action refinement.
Step 4: From specification-level policies to ECA rules Implementation-level
policies are rules of event-condition-action (ECA) form that execute an action
when a trigger event takes place and the respective condition evaluates to true.
As real systems cannot look into the future, the condition part of the ECA
rules must be expressed in past tense. We provide a methodological guidance for
automated transformation of specification-level policies to ECA rules.
Step 5: Example translation We present the translation of our example policy
“don’t copy photos” for enforcement in multiple systems.

We have deliberately not considered the dynamic nature of systems in this paper;
systems structures are assumed to be static. Though unrealistic, this assumption
is reasonable to narrow the scope for initial results.

This work provides semantics to abstract constructs in end-user policies by
modeling the basis for such semantics. It is not possible to check the correctness
of the semantics that adhere to our meta-model if they indeed correspond to the
idea in the end user’s mind. Hence we do not discuss any theorems to check if
the semantics given by the power user are indeed correct.

Problem. In sum, we tackle two problems in this paper. The first one is the fun-
damental problem of the lack of semantics of high-level actions in usage control
policies. The second one concerns the problem of transforming specification-level
policies to implementation-level policies in an automated manner.

Solution. We present a model-based translation schema for high-level actions,
taking into account the different representations of data and the potential data
flow through a concrete system.

Contribution. We are not aware of any work that provides a semi-automated
translation of specification-level usage control policies into implementation-level
policies in a generic, domain- and system-independent way.
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Organization. In §2 we recap a usage control model and a domain meta-model
from the literature which we combine in §3 for action refinement. §4 backs our
work with a detailed example. §5 puts our work in context and §6 concludes.

2 Background
Step 1: Specification of usage control policies. End user policies are ex-
pressed in OSL (originally described in [6]), a policy specification language that
combines classical propositional operators with future-time temporal and cardi-
nality operators. To specify and enforce policies on abstract data, the original
usage control model was extended to distinguish between data (photo, song
etc.) and its technical representations called containers (files, windows, records
etc.) [19]. Enforcement of policies on data is done through data flow tracking.
Possible data flows are defined by a transition relation on system states; actual
data flows are monitored on the grounds of this relation. Formally, we consider
systems (P, Data, Event, Container , Σ, σi, �) where P is a set of principals, Data
is a set of data elements, Event is the set of events, Container is a set of data
containers, Σ is the set of states of the system with σi being the initial state,
and � is the state transition function. System states are defined by a tuple of
three mappings between data, containers and container identifiers: a storage
function of type Container → P(Data) that reflects which container stores what
data; an alias function of type Container → P(Container) that captures the
fact that some containers may implicitly get updated whenever other containers
do; and a naming function that provides names for containers and that is of
type F → Container , where F is a set of identifiers. The system’s state space is
defined as Σ = (Container → P(Data)) × (Container → P(Container)) × (F →
Container) with the initial state σi = (∅,∅,∅). Trace = N → (Σ × P(Event))
captures both events and the information state at a moment in time. Transi-
tions between two states are given by � : Σ × P(Event) → Σ. At any given
point of time, the state of the system is computed using a recursive func-
tion states : (Trace × N) → Σ which in turn is defined as states(t, 0 ) = σi and
n > 0 ⇒ states(t, n) = �(states(t, n − 1 ), t(n − 1 )).

Policies are expressed in terms of parameterized events on data and con-
tainer. Each event belongs to the set Event ⊆ EventName × (ParamName →
ParamValue). Data and containers are parameter values, belonging to disjoint
sets Data and Container. Events are classified as dataUsage when they apply to
a data object (reserved parameter obj) and containerUsage if they apply to a
container object. The specification language is Φ+ (+ for future), distinguishing
between purely propositional (Ψ) and temporal and cardinality operators:

Ψ ::= true | false |E(Event) | T (Event) | not(Ψ) |and(Ψ, Ψ) | or(Ψ, Ψ) | implies(Ψ, Ψ)
Φ+ ::= Ψ | not(Φ+) | and(Φ+, Φ+) | or(Φ+, Φ+) | implies(Φ+, Φ+) |
until(Φ+, Φ+) | after(N, Φ+) | within(N, Φ+) | during(N, Φ+) | always(Φ+) |
repmax(N, Ψ) | replim(N,N,N, Ψ) | repuntil(N, Ψ, Φ+)

As events might be modified or blocked for enforcement, distinction between
attempted/desired and actual events is needed. Formulas of the form E(·) and
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T(·) denote actual and desired events; not, and, or , implies have their intuitive
semantics; until is the weak until from LTL; the always operator is intuitive;
after(n, a) is true if a becomes true after n time steps; within(n, a) is true if a
holds true at least once in n timepsteps, whereas during(n, a) is true only when
a is constantly true in n timesteps. repmax(n, a) specifies that a must be true
at most n times in the future; replim(l, m, n, a) specifies lower(l) and upper(m)
bounds on repetitions of a in n timesteps and repuntil(n, a, b) limits the maximal
number of times a holds until b holds.

Sometimes, it is convenient to specify policies not in terms of events but in
terms of states a system must or must not enter. E.g., our example policy in §1,
“don’t copy photos,” would mean that in an operating system, all sequences of
system calls corresponding to “copy” actions must be inhibited. But infinitely
many such sequences can achieve the effect of “copy,” and it is infeasible to
come up with a complete list of all of them. Instead, the same requirement can
be expressed as, “data must not leave a specific set of containers.” To allow this
type of policies, three operators Φi have been added to Φ+ [9, 19]:

Φi ::= isNotIn(Data, PContainer) | isCombinedWith(Data, Data) |
isOnlyIn(Data, PContainer)

where isNotIn(Data,PContainer) is true if data is not in a specific set of con-
tainers; isCombinedWith(Data, Data) is true if two data items are stored in the
same container; and isOnlyIn(Data,PContainer) is true if data is only in a spec-
ified set of containers. The extended language is Φ+

i = Φ+ ∪ Φi with semantics
|=+

i ⊆ (Trace × N) × Φ+
i .

ECA rules, that we need for system-level enforcement, are specified in the past
temporal logic Φ− with added state-based operators, Φi . The extended past-time
OSL is Φ−

i = Φ− ∪ Φi with semantics |=−
i ⊆ (Trace × N) × Φ−

i .
Φ− ::= Ψ | not−(Φ−) | and−(Φ−, Φ−) | or−(Φ−, Φ−) | implies−(Φ−, Φ−) |

since−(Φ−, Φ−) | before−(N, Φ−) | within−(N, Φ−) | during−(N, Φ−) |
always−(Φ−) | repmax−(N, Ψ) | replim−(N,N,N, Ψ) | repsince−(N, Ψ, Φ−)

since−(a, b) is true if b has been true ever since a happened; before−(n, a) is true
if a was true n time steps ago; within−, during− and always− are intuitive, given
the semantics of their future-time duals. repmax−(n, a) specifies that a has been
true at most n times in the past; replim−(l, m, n, a) specifies a lower(l) and an up-
per limit(m) upon repetitions of a in the last n timesteps; and repsince−(n, a, b)
specifies that b has been true at most n times since a became true.
Step 2: Refinement of actions. In the usage control model of step 1, both
abstract actions and their technical counterparts are called events. But to re-
fine actions, we must be able to distinguish between action (copy, delete etc.)
and its technical representations (generic copy file or delete file; or more specif-
ically, read, write, unlink systems calls in unix). Our domain meta-model [22],
reproduced in Fig. 1, distinguishes among user-intelligible high-level actions on
data like “copy photo” at the platform-independent (PIM) layer; correspond-
ing implementation-independent technical representations (called transform-
ers) like “take screenshot” at the platform-specific (PSM) layer; and the specific
implementations of these transformers like “getImage()” function in the X11
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windowing system at the implementation-specific (ISM) layer. Mappings be-
tween various components at different layers in the model provide the semantics
of a high level action in terms of a number of mapped transformers. As an exam-
ple, the meta-model is instantiated for the refinement of copy in WBSN domain
(Figure 2). The “copy photo” part of Alice’s WBSN policy would be refined in
this model as “copy&paste DOM element” and “screenshot of window” at the
PSM layer; and at the ISM layer as “copy cmd on HTML element” in Firefox web
browser and as “getImage” function on a drawable in X11 windowing system.

P.I.M.

I.S.M.

P.S.M.

PSM Container

ActionData

PSM SysteminPSM Transformer

ISM Transformer

in

out

ISM Container ISM System

Fig. 1. The Domain Meta-model
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Fig. 2. A WBSN instance of Fig 1

The concepts of data and action (PIM layer) and containers and transformers
(PSM and ISM layers) are also present in the usage control model, with some
differences. Firstly, the above usage control model uses the term event to refer to
both actions and transformers. In the domain meta-model, there is a clear dis-
tinction between the two. Secondly, in the domain meta-model, these constructs
have been grouped according to the level of technical detail they encompass.
Thus data and action form the PIM part whereas container and transformer
form the ISM part in the meta-model. Thirdly, to systematically reach from
elements of PIM to ISM, another layer of detail that maps the two, called the
PSM layer, is introduced in the meta-model. This is motivated by the systematic
translation requirement that the platform-specific result of a transformer on a
container must remain the same, irrespective of the implementations. For exam-
ple, deleting a file can be achieved in many ways. But by defining it as “overwrite
file with random bytes OR remove file” at the PSM level narrows down the in-
terpretation of deleting a file irrespective of the file system implementations.

The presentation of the domain meta-model [22] also contains a model-based,
semi-automated approach to policy translation. However, that work discusses
initial results at a high level and does not explain the exact relationship between
actions and transformers. Actions are mapped to transformers using UML as-
sociations, but no semantics has been given to these associations. So we do not
know what high-level actions like copy mean in terms of transformers. For exam-
ple, looking at the system calls executed in a Unix operating system, we cannot
know if a copy action has indeed taken place because we do not know if copy
corresponds to the set or the sequence of these system calls. Even if we know
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that it is the sequence, we do not know how the sequence is to be interpreted:
if the system calls must happen one after the other or if some other executions
can take place between any two of them. Reference [22] also does not relate
high-level actions to system states: the authors only mention a refinement of
the former in terms of the latter for cases where transformer-based refinements
are not sufficient; they do not explain how this refinement is achieved (step 3b
below). To address these issues, we combine this domain meta-model with the
usage control model of step 1 to use the concept of system states and the se-
mantics of language in terms of traces to formally refine actions and translate
specification-level policies.

3 A Combined Model

Data is the set of all data, Action is the set of all actions, PSMContainer is the set
of all PSM containers, PSMTransformer is the set of all PSM transformers and
so on. Event is the set of all actions and transformers at all levels in the domain
model: Event = (Action ∪ PSMTransformer ∪ ISMTransformer). Associations
between the elements of these sets are functions. So, dataPotentiallyIn : Data →
P(PSMContainer) maps data to a set of PSM containers that potentially store
that data and containerImplementedAs : PSMContainer → P(ISMContainer)
gives a further refinement of PSM container in terms of a set of ISM containers
that actually store data. Additionally, transformers are functions that modify
respective containers:

PSMTransformer : PPSMContainer → PPSMContainer
ISMTransformer : P ISMContainer → P ISMContainer

Function inputContainer : PSMTransformer �→ PPSMContainer gives all con-
tainers modified by a PSM transformer. inputContainer is overloaded to get
input containers of ISM transformers. While the refinement of data is straight-
forward, actions can be refined in two ways: SETrefmnt maps an action to a set
of PSM transformers with the intuitive semantics that any one of the mapped
transformers corresponds to the high-level action; SEQrefmnt maps an action to
a sequence of PSM transformers: all of the specified transformers in the particu-
lar sequence correspond to the high-level action. As PSM and ISM transformers
can be further refined, both within and across their respective levels in the
meta-model, their refinement functions are overloaded to express both of these
refinements. SETrefmnt and SEQrefmnt express intra-level refinements

SETrefmnt : PSMTransformer → PPSMTransformer
SETrefmnt : ISMTransformer → P ISMTransformer
SEQrefmnt : PSMTransformer → seq PSMTransformer
SEQrefmnt : ISMTransformer → seq ISMTransformer

and, crossSETrefmnt and crossSEQrefmnt express inter-level refinements.
crossSETrefmnt : Action → PPSMTransformer
crossSETrefmnt : PSMTransformer → P ISMTransformer
crossSEQrefmnt : Action → seq PSMTransformer
crossSEQrefmnt : PSMTransformer → seq ISMTransformer
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In a specific domain model, the PSM level talks about the static, design-time
system while the ISM level talks about the concrete system at the runtime.

Data Storage. The storage function in the usage control model tells which con-
tainer stores what data. For the translation of actions on specific data, we need
the reverse relationship; we need to know where a specific data is stored in a par-
ticular moment in time. Function dataActuallyIn : Data × Σ →P ISMContainer
gives this information:
∀ d ∈ Data; t ∈ Trace; n ∈ N; σ ∈ Σ • σ = states(t, n) ∧

dataActuallyIn(d, σ) = {c ∈ ISMContainer | d ∈ σ.1(c)}
where σ.1 denotes the projection on the first component of σ.
Remember that formulas of the form E(·) and T(·) denote actual and desired
events in the OSL. Therefore, refinement of actions corresponds to the translation
of OSL formulas of the form E(·) and T(·). A high-level action is refined in two
ways: firstly, in terms of sets/sequences of transformers using function τev;
secondly, in terms of system states using function τstate. We combine both
refinements to get the complete refinement of a high-level action.
Step 3a: Action Refinement using Transformers. As it is impossible to
predict the length of executions between any two members of a sequence of trans-
formers in real systems, we allow arbitrary executions between any two members
of a sequence of applicable transformers in SEQrefmnt. This introduces liveness
in our action refinement definitions. Because indefinite past can be checked in a
running system as opposed to indefinite future, we first translate a specification-
level policy from future to past tense and then execute action refinement. For
this reason, our action refinement functions act on, and are formalized, using
past-time OSL operators. A translation function τp : Φ+ → Φ− that works along
the lines of the methodological guidance provided in [22], translates a formula
in Φ+ to another in Φ−. To express indefinite past, we use eventually−, se-
mantically equivalent to not−(always−(not−)) in the language Φ−

i . Intuitively,
eventually−(ϕ) is true if the formula ϕ was true at least once in the past.

τev : Φ−×Σ→Φ− translates an action into sets/sequences of transformers that
are further refined using πev : Φ− × Σ → Φ−. The system state (Σ) provides the
knowledge of data storage in specific containers and is filled in by the “higher”
translation function τaction , defined later in this paper.

We refine high-level actions by taking into account all representations of data
in a concrete system. Therefore, only those transformers that modify contain-
ers where data may reside, refine the corresponding high-level action. If the
data on which an action operates, cannot be stored in a particular container,
all transformers that operate on this container are left out of the refinement
process. For example, a copy action is refined into the set {copyFile(file), take-
Screenshot(window)} at the PSM level. When the data is a song and the pol-
icy addresses copy(song), the action is refined into set {copyFile(file)} rather
than {copyFile(file), takeScreenshot(window)}. This is because the other trans-
former operates on windows where a song cannot be stored. In this example,
{copyFile(file)} is the set of applicable transformers. The set of applicable
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transformers for a data (appTransformer : Data �→ PPSMTransformer) is com-
puted as follows:

∀ d ∈ Data • appTransformer(d) =
{t ∈ PSMTransformer | inputContainer(t) ⊆ dataPotentiallyIn(d)}

Using set and sequence mappings from action to PSM transformers that mod-
ify potential storage of data object of the action (via ran SEQrefmnt(e) ∩
appTransformer(d) etc.), we compute action refinement upto the lowest level
in the platform-specific model (ran is the standard operation for sequences [23]
that gives the set of objects which are elements of the sequence)

∀ s ∈ Trace; x ∈ N; σ ∈ Σ • σ = states(s, x) ⇒
∀ d ∈ Data; e ∈ Event; {t1, .., tn} ∈ P(PSMTransformer); ϕ ∈ Φ− •
τev(E(e, {(obj , d)}), σ) = ϕ ⇔
ϕ = and−(τev(E(tn , {(obj , d)}), σ), eventually−(and−(τev(E(tn−1, {(obj , d)}), σ),

...eventually−(τev(E(t1, {(obj , d)}), σ))...))) ∧
({t1, .., tn} = ran SEQrefmnt(e) ∩ appTransformer(d) ∨
{t1, .., tn} = ran crossSEQrefmnt(e) ∩ appTransformer(d))

∨ ϕ = or−(τev(E(t1, {(obj , d)}), σ), or−(τev(E(t2, {(obj , d)}), σ),
..., τev(E(tn, {(obj , d)}), σ))) ∧

({t1, ..., tn} = SETrefmnt(e) ∩ appTransformer(d) ∨
{t1, ..., tn} = crossSETrefmnt(e) ∩ appTransformer(d))

∨ ϕ = πev(E(e, {(obj , d)}), σ)
πev further refines these transformers till the ISM level. Meanings of sequence
and set refinement remain the same. From all the possible input containers,
mapped transformers act on only those containers that indeed store the specific
data object (c ∈ inputContainer(t) ∩ dataActuallyIn(d, σ)):

∀ s ∈ Trace; x ∈ N; σ ∈ Σ • σ = states(s, x) ∧
∀ d ∈ Data; e ∈ Event; {t1, .., tn} ∈ P(ISMTransformer); t ∈ {t1, .., tn};
c ∈ (inputContainer(t) ∩ dataActuallyIn(d, σ)); ϕ ∈ Φ− •
πev(E(e, {(obj , d)}), σ) = ϕ ⇔
ϕ = and−(E(tn , {(obj , c)}), eventually−(and−(E(tn−1, {(obj , c)}),

...eventually−(E(t1, {(obj , c)}))...))) ∧ 〈t1, .., tn〉 = crossSEQrefmnt(e)
∨ ϕ = or−(E(t1, {(obj , c)}), or−(E(t2, {(obj , c)}), ..., E(tn, {(obj , c)}))) ∧

{t1, ..., tn} = crossSETrefmnt(e)
∨ ϕ = false

Step 3b: Action Refinement Using State. We have seen in §2 that express-
ing the semantics of high level actions in terms of sets/sequences of transformers
might not be the best approach in many cases because one high-level action
can be refined to infinitely many sequences of transformers at the system level.
To address this issue, we define another refinement of action, τstate, using state-
based operators of Φi . This translation captures the state a system reaches when
a high-level action is executed on some data. The power user models the exe-
cution of each action and defines the resultant state as a StateFormula for each
high-level action. Intuitively, when no resultant state is defined for an action, its
state-based translation is false.
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To define the set of all possible events that can occur in a concrete sys-
tem, event declarations were introduced in [6]. These event declarations are
purely syntactic and are given by EventDecl == EventName × EventClass ×
(ParamName �→PParamValue). To express the state-based refinement of an ac-
tion, we modify this event declaration by adding StateFormula to it. Thus, an
event declaration is given by the event name, the event class, a partial function
that defines the name and possible values of each possible parameter and, the
resultant state formula that gives the state-based refinement of the event.

EventDecl ==
EventName × EventClass × (ParamName → PParamValue) × StateFormula

The relationship between an action and its declaration is bijective. For the
state-based translation of action, a function getStateFormula fetches the resul-
tant state from the declaration of the specific action:

getStateFormula : Action → StateFormula
∀ a ∈ Action; ed ∈ EventDecl • getStateFormula(a) = ed.4 ⇔ a.1 = ed.1

The resultant state formula for an action is statically defined, before the ac-
tion is used to specify policies. Actual data objects and their containers are
known only when a policy is deployed in a concrete system. So resultant state
formulas must address all potential data and their containers. To specify po-
tential data in the state-based formula, we use variables which are substituted
by actual data when a policy is specified. To specify containers that potentially
store data, we extend the language Φi to include state-based operators on PSM
containers. At runtime, respective ISM containers are extracted via function
containerImplementedAs, introduced in the beginning of §3.

PSM Containers in state-based operators. To specify PSM containers in
state-based operators, we classify ISM containers according to the PSM contain-
ers they implement. So each ISM container belongs to a container class that is a
PSM container. Function getContainerClass : ISMContainer → PSMContainer
extracts the class of a container using function containerImplementedAs:

∀ c ∈ ISMContainer ; cl ∈ PSMContainer •
getContainerClass(c) = cl ⇔ c ∈ containerImplementedAs(cl)

We extend the language by overloading two operators with PSM contain-
ers: isNotIn(Data,PPSMContainer) and isOnlyIn(Data,PPSMContainer). In-
tuitively, isNotIn(d, Cl) is true if data d is not in any container whose class is
in set Cl. This operator is useful for defining state-based refinement of actions
like copy or print. For example, if print is refined as not(isNotIn(d, {printcont}))
where printcont represents the class of printer containers. When data d flows into
any container that belongs to this class, the enforcement infrastructure would
recognize a print. Similarly, isOnlyIn(d, Cl) is true when data is restricted to
specific classes of containers. This is useful to express semantics of weak deletion
where data is not actually deleted but only quarantined. We did not find any
use case where the semantics of isCombinedWith(d, d) need to be specified using
container classes. The new operators are added to the language Φi :
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Φi ::= isNotIn(Data, P ISMContainer) | isNotIn(Data, PPSMContainer) |
isOnlyIn(Data,P ISMContainer) | isOnlyIn(Data, PPSMContainer) |
isCombinedWith(Data, Data)

The semantics of Φi is |=i⊆ (Trace × N) × Φi , shown in Figure 3.

Variables in OSL. Resultant state formulas are expressed in terms of potential
data and their containers because actual data and their containers are known
only when a policy is deployed in a concrete system. To specify state formulas
with potential data items, we introduce variables in the language. Only variable
data is needed; potential containers are specified using PSM containers. In case
of isCombinedWith, the first data is variable, the second data is given by the
power user. The respective language is Φiv .

Var ::= V (N1)
VarData == Var ∪ Data
Φiv ::= isNotIn(VarData, P ISMContainer) | isNotIn(VarData, PPSMContainer) |

isOnlyIn(VarData, P ISMContainer) | isOnlyIn(VarData, PPSMContainer) |
isCombinedWith(VarData, Data)

Elements from Φiv are instantiated into elements from Φi using substitution.
Finally, the refinement of actions in terms of states is achieved using τstate :

Φ− →Φ−
i . When an action is refined, the variable in the respective state formula

is substituted by the value of the obj parameter of the action.
∀ a ∈ Action; d ∈ Data; ϕ ∈ Φiv; vd ∈ VarData •
τstate(E(a, {(obj , d)})) =

{
ϕ[d/vd] if(ϕ = getStateFormula(a))
false otherwise

We have defined the refinement of a high-level action in terms of sets/se-
quences of transformers (using function τev) and in terms of system states (us-
ing function τstate). We now combine both functions to express the “complete”
refinement of a high-level action, given by τaction : (Φ− ×Σ)→Φ−

i . Intuitively, at
least one of the refinements is needed to express a high-level action in a concrete
system. Hence the disjunction (or−) over the refinements (Figure 4).

Step 4: From specification-level policies to enforcement mechanisms
Policy specification and translation is semi-automated with two roles of users: the

∀ t ∈ Trace; n ∈ N; ϕ ∈ Φi ; σ ∈ Σ • (t, n) |=i ϕ ⇔ σ = states(t, n) ∧
∃ d ∈ Data, C ∈ P ISMContainer • ϕ = isNotIn(d, C ) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′) ⇒ (c′ /∈ C )
∃ d ∈ Data, Cl ∈ PPSMContainer • ϕ = isNotIn(d, Cl) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′) ⇒ (getContainerClass(c′) /∈ Cl)
∨ ∃ d ∈ Data, C ∈ P ISMContainer • ϕ = isOnlyIn(d, C ) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′) ⇒ (c′ ∈ C )
∨ ∃ d ∈ Data, Cl ∈ PPSMContainer • ϕ = isOnlyIn(d, Cl) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′) ⇒ (getContainerClass(c′) ∈ Cl)
∨ ∃ d1, d2 ∈ Data • ϕ = isCombinedWith(d1, d2) ∧

∃ c′ ∈ ISMContainer • d1 ∈ σ.1(c′) ∧ d2 ∈ σ.1(c′)

Fig. 3. Semantics of Φi
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∀ t ∈ Trace; n ∈ N; σ ∈ Σ • σ = states(t, n) ∧
∀ d ∈ Data; a ∈ Action; ψ ∈ Φ−; ϕ ∈ Φ−

i • τaction(ψ, σ) = ϕ ⇔
ψ ∈ {true, false} ∧ (ϕ = ψ)
∨ ψ = E(a) ∧ (ϕ = or−(τstate(E(a)), τev(E(a), σ)))
∨ ψ = T (a) ∧ (ϕ = or−(τstate(T (a)), τev(T (a), σ)))
∨ ∃ χ ∈ Φ− • ψ ∈ {not(χ), not−(χ)} ∧ (ϕ = not−(τaction(χ, σ)))
∨ ∃ χ, ξ ∈ Φ− • ψ ∈ {or(χ, ξ), or−(χ, ξ)} ∧ (ϕ = or−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃ χ, ξ ∈ Φ− • ψ ∈ {and(χ, ξ), and−(χ, ξ)} ∧ (ϕ = and−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃ χ, ξ ∈ Φ− • ψ ∈ {implies(χ, ξ), implies−(χ, ξ)} ∧ (ϕ = implies−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃ χ, ξ ∈ Φ− • ψ = since−(χ, ξ) ∧ (ϕ = since−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = before−(i , χ) ∧ (ϕ = before−(i , τaction(χ, σ)))
∨ ∃ χ ∈ Φ− • ψ = always−(χ) ∧ (ϕ = always−(τaction(χ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = within−(i , χ) ∧ (ϕ = within−(i , τaction(χ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = during−(i , χ) ∧ (ϕ = during−(i , τaction(χ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = repmax−(i , χ) ∧ (ϕ = repmax−(i , τaction(χ, σ)))
∨ ∃ l , x, y ∈ N; χ ∈ Φ− • ψ = replim−(l , x, y, χ) ∧ (ϕ = replim−(l , x, y, τaction(χ, σ)))
∨ ∃ i ∈ N; χ, ξ ∈ Φ− • ψ = repsince−(i , χ, ξ) ∧ (ϕ = repsince−(i , τaction(χ, σ), τaction(ξ, σ)))

Fig. 4. Definition of τaction

end user specifies usage control policies with constructs and templates defined
by the more sophisticated power user §1.

In the first step, τp translates a future-time formula into another past-time
formula [22]. In the second step, action refinement takes place. After action
refinement, we get a complex, nested formula that is broken down to subformulas
(Fischer Ladner closure) in the third step and each subformula is then mapped
to the condition part of one ECA rule in the fourth step. Thus we get a
set of ECA rules corresponding to one specification-level policy. One high-level
policy can be enforced in many ways (allow/modify/inhibit/delay). For example,
Alice’s policy “don’t copy photo” can be enforced by inhibiting every copy event;
it can be enforced by modifying the original photo with one that shows an error
message; it can also be enforced by delaying the event until a permission for
copying has been granted by Alice. For this reason, the action part of ECA rules
cannot be specified automatically. The generic format of ECA rules at the end
of step 4 is as follows (where c is one subformula)

Event: any
Condition : c
Action: ALLOW/ MODIFY / INHIBIT/ DELAY

Intuitively, (later configured) action takes place when the corresponding condi-
tion c is true, irrespective of the trigger event. To limit the set of trigger events
for each rule, whenever c is of the form and−(E(e), x) or and−(T(e), x) where
x is an OSL formula, we move e to the trigger event part and only x is checked
in the condition part of the ECA rule.

Event: e
Condition : x
Action: ALLOW/ MODIFY / INHIBIT/ DELAY

All the steps described above are automated. In the fifth step, the power user
manually specifies the enforcement mechanism. We now describe in detail the
translation of the example policy introduced in §1.
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4 Example Translation

Step 5: The partial domain model with transformer-based refinement of “copy
photo” is shown Figure 5. The distinction between set and sequence refine-
ments of events is shown via links with arrowheads representing SETrefmnts and
links with AND(S) gate -head representing SEQrefmnts. For state-based action
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Fig. 5. Example domain model

refinement, state formula is defined in the event declaration. Copy in this context
means data flows in clipboard containers; hence the respective state formula is
not−(isNotIn(x , clipboard)) where x is variable data and clipboard is the class of
clipboard containers.

In our implementation, “don’t copy photos” is specified by Alice in a block
editor that uses the Open Blocks Java library [24]. When the data is sent to
another user Bob, the respective policy is delivered to the policy translation
point (PTP) which immediately translates and deploys the policy.

In the runtime, when policies are deployed, only concrete containers exist.
So in our implementation, data is identified by the initial container in which
it appears in the concrete system. With our usage control infrastructure, it is
possible to track multiple representations of the same data at and across different
abstract layers in a system. Hence, the PTP knows that Alice’s photo is received
by Bob at the web browser level in the initial container “img profile” in Firefox; is
stored in “myphoto.jpg” in the cache folder and rendered in window “0x1a00005”
in X11.

The policy is always(not(E(copy, {(obj, img profile)}))) in OSL. It is of the
form always(ϕ) where ϕ = not(E(copy, {(obj, img profile)})). τp gives us the
past-time condition to be checked in the respective ECA rules. τp(always(ϕ)) =
and−(before−(1, τp(ϕ)since−START), not−(τp(ϕ))) where START denotes the
policy activation event [22]. This means that the respective ECA rule is triggered
when ϕ has always been true since the policy was activated, except the current
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time-step. As ϕ = not(E(copy, {(obj, img profile)})), the ECA rule is triggered
when E(copy, {(obj, img profile)}) is true.

The next step is action refinement as described in §3. τaction(E(copy, {(obj,
img profile)}), σ), where σ is the current state, works as follows: State-based
refinement is achieved by substituting variable x with img profile in the state
formula:
τstate(E(copy, {(obj, img profile)})) = not−(isNotIn(img profile, clipboard))
Applying τev, copy is refined to {copy&paste,screenshot,copyFile} because these
transformers operate on {domEle,window,file} where photo is potentially stored
(crossSETrefmnt(copy) ∩ appTransformer(photo) = {copy&paste, screenshot,
copyFile}); πev refines each of these transformers till the ISM level. Note that, of
the sequence 〈open, read, write, close〉, write is not included in action refinement
because it does not operate on the file that stores photo (inputContainer(write)∩
dataActuallyIn(myphoto.jpg, σ) = ∅). Finally,

τaction(E(copy, {(obj , img profile)}), σ)
= or−(not−(isNotIn(img profile, clipboard)),

or−(E(copy cmd, {(obj , img profile)}), or−(E(getImage, {(obj , 0x1a00005)}),
(and−(E(close, {(obj , myphoto.jpg)}), eventually−(and−(E(read, {(obj ,

myphoto.jpg)}), eventually−(E(open, {(obj , myphoto.jpg)})))))))))

In the third step, following subformulas are computed:
ϕ1 = not−(isNotIn(img profile, clipboard))
ϕ2 = E(copy cmd, {(obj, img profile)})
ϕ3 = E(getImage, {(obj, 0x1a00005)})
ϕ4 = and−(E(close, {(obj, myphoto.jpg)}), eventually−(and−(E(read, {(obj,

myphoto.jpg)}), eventually−(E(open, {(obj, myphoto.jpg)})))))
In the fourth step, generic ECA rules, as described above, are generated for
each subformula. ϕ2 and ϕ3 are of the form and−(E(e), true). So respective e
becomes the trigger event as described above, and the condition part of the
respective ECA rules is true. The specific action to be taken in each ECA rule
is manually specified in the fifth step.

5 Related Work

The goal of this work is to automate the refinement of policies in the context of
usage control. Policy refinement has been the focus of research since quite some
time [25] and in the recent years, there have been various attempts towards
automating it. Solutions have been based on refining policies using resource hi-
erarchies [26], commitment (obligations) analysis [27], goal decomposition [28],
data classification [29] and also from different perspectives viz. conflict preven-
tion, where the focus has more been on the translation of constraints [30]. In [31]
and [32], ontology-based refinement techniques are described for semi-automated
translation of access control policies. In our work, such ontologies could be used
at each level of the meta-model. In [33], authors have proposed a resource hier-
archy meta-model for translating domain-specific elements in XACML policies
for virtual organizations to generate corresponding resource-level policies. This
is similar to our work in terms of the approach. However, the policies are refined



Model-Based Usage Control Policy Derivation 71

from the abstract level (users, resources and applications) to the logical level
(user ids, resource addresses and computational commands like read/write); fur-
ther technical representations of policy elements in concrete systems are not
considered. Another work which is quite similar to ours in terms of approach is
described in [34]. This paper focuses on action decomposition in a policy refine-
ment framework. Subjects perform operations on targets (services and devices)
which are specified at a high level. Using a system model and a set of refinement
rules, actions are decomposed and one higher level policy is refined into multiple
policies. However, all elements (both abstract and concrete) of the system model
are at the same level; which makes this approach similar to the ontology-based
refinement. Also, in the last stage of refinement, policies are transformed into
ECA rules. How this transformation is achieved is however not specified.

In almost all of the work on policy refinement, there has been some kind of
distinction between the abstract entities at high level and the corresponding
technical entities at lower levels. This approach of capturing details of a system
with several levels of abstraction has been addressed in many architecture frame-
works [35–37] and is also common in the embedded systems domain [38–40].
We have adopted a model-based approach which is analogous to the MDA
viewpoints [41] with varying level of details at the computation-independent,
platform-independent and platform-specific levels. A minor difference with the
MDA approach is in the naming of the different layers. We have combined this
approach with usage control concepts to refine policies.

The contribution w.r.t. to reference [22] is detailed out in §2, step 2.

6 Conclusion and Future Work

This paper describes a model-based policy refinement for usage control en-
forcement. Through this work, we have addressed the fundamental problem of
the lack of semantics of actions like copy or delete. Additionally, we have pro-
vided a methodological guidance for transforming specification-level policies into
implementation-level policies that configure enforcement mechanisms at different
layers of abstraction. This helps translate policies in an automated manner.

For precise semantics of action refinement, we have combined an existing do-
main meta-model with a usage control model from the literature. The combined
model captures both the static (all possible cases) and dynamic (one particular
case with runtime information) aspects of concrete systems. The refinement of
actions in this combined model is twofold: actions are refined to sets/sequences
of low-level transformers and also to state-based formulas that describe the stor-
age of data in containers. Refinement of actions is used to give semantics to
specification-level policies in terms of a set of system traces. We have also pro-
vided methodological guidance to automate the policy translation: when future-
time policies are translated to their past-time equivalents, the complex formula
with all action refinements is decomposed into subformulas and mapped to the
condition part of ECA rules.

It is hard to establish a notion of correctness between the semantics of low-
level and high-level policies because the semantics of high-level propositions is
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not precisely defined but rather exists in the (end) user’s mind. In fact, we see
our translation procedure as a way to define the semantics of high-level policies
by assigning machine-level events and state changes to high-level actions.

We have deliberately introduced a limitation in this paper: we have not con-
sidered the dynamic nature of systems. Adaptive policy translation is a topic
of ongoing work. Another topic of current investigation is the evolution of poli-
cies [42] since we have not considered the fact that specification-level policies
may also change from one receiver to another in a distributed setup.
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Abstract. Automatic model checking can be employed to verify that
security properties are fulfilled by a system model. However, since se-
curity requirements constrain most, if not all, functional modules of a
system, such a proof needs to consider nearly all of the system’s control
and data flows. For complex real-life applications, that leads to a large
state space to be explored effectively restricting the applicability of a
model checker. To deal with this problem, we advocate a compositional
approach utilizing the features of our model-based engineering technique
SPACE. Both functional behavior and security-related aspects are spec-
ified using UML 2 activities. Further, we supplement each activity with
an interface behavior description which will be extended by a security
contract modeling certain security properties to be fulfilled by the activ-
ity. This enables us to verify application-level security properties by using
contracts instead of their respective activities in model checker runs so
that the number of states to be checked is significantly reduced. The ap-
proach is exemplified by an Android application example in which one’s
location must only be shared with certain recipients.

1 Introduction

An often underestimated reason for vulnerabilities and risks in application-level
security is that development flaws in real-life software systems are overlooked.
For instance, Iyer et al. [1] found out that 18% of all vulnerabilities listed in
the Bugtraq database resulted from design errors. To avoid such development
flaws, we extended our model-based approach SPACE for the development of
reactive systems [2] and its tool-set Arctis [3] to support also the creation of
secure software [4]. Engineering with SPACE and Arctis profits from the fact
that models are a clearer and more concise way to express a system than tradi-
tional program code. That makes it easier to keep track of the system behavior.
Moreover, due to its formal semantics [5], one can verify by syntactic inspection
and model checking that application-level security goals are kept by the system
model [6]. Finally, SPACE uses automatic code generation guaranteeing that the
implementation is a correct realization of the model [2]. Thus, we can be sure
that also the executed code complies with the proven security properties.

J. Jürjens, B. Livshits, and R. Scandariato (Eds.): ESSoS 2013, LNCS 7781, pp. 75–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



76 L.A. Gunawan and P. Herrmann

Security-aware
system specification

Library of
basic security primitives 

and security mechanisms

Functional
Design & Analysis

Model
Transformation

Code 
Generation

Domain specific 
libraries

System 
specification Asset 

Valuation

 Weakness &Threat 
Identification

risk is bearable

Countermeasure 
Design & Integration

risk is NOT bearable

Risk
Assessment

4

Executable 
Code

1

2

3

Security Analysis

Fig. 1. Security-enhanced Development Method (taken from [4])

While model checking can be executed with a high degree of automatism, its
weak point is the state explosion problem [7] which, in effect, constitutes the
limiting factor for applying it to large systems. That is especially relevant if one
wants to prove security requirements that often define and constrain all func-
tional modules of a system such that its whole state space has to be considered
(see [8]).

To tackle the state explosion problem, we advocate compositional verification
that is already used to verify properties related to the functionality [3] and
reliability [9] of a system. Here, we utilize the model composition mechanism
of SPACE in which behavior is specified by an arbitrary number of UML 2
activities [10]. Like Petri-nets, those are graphs modeling behavior as a flow
of tokens between the vertices via the edges. Activities are coupled with one
another by call behavior actions that we call building blocks. From one viewpoint,
a building block refers to a particular behavior expressed by an activity. From
the other viewpoint, a designator of a block may be incorporated in another
activity, and by so-called pins, tokens may flow between activities. Further, a
building block is amended with a behavioral interface description specifying the
order of token flows through its pins. One advantage of the approach is a high
degree of reuse. A block modeling recurrent behavior can be created once and
stored in a library. Thereafter, by adding its designator to other activities in a
drag and drop fashion, the behavior modeled by the block can easily be added to
various system models. According to our experience, on average 70% of a system
model corresponds to building blocks taken from assorted libraries [5].

The other advantage of using building blocks is compositional verification [3].
Here, when proving that an activity fulfills a certain property, we can replace
the activity of each of its building blocks by the block’s behavioral interface
description. As the interface description usually models a much simpler func-
tionality than the activity, the number of states to be checked is vastly reduced
(see, e.g., [9]). To use compositional verification also for the proof of security
properties, however, we have to extend the behavioral interface descriptions by
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Fig. 2. The Location Application

so-called security contracts modeling security properties to be fulfilled by a block.
In the model checker runs, we can then use these block-wise security properties
to verify that the overall system fulfills the system-wide ones.

Our approach facilitates the cooperation of application domain engineers with
security experts (see Fig. 1). In a first step, the domain engineers develop a sys-
tem specification utilizing blocks from the domain specific libraries. When the
model passes all checks for functional correctness [3], it is handed over to the
security experts who subject it to a security analysis. The outcome of this analy-
sis is an amended system specification containing only application-level security
risks that seem bearable. In a final step, the extended model is automatically
transformed to executable code in a two-step process.

In the context of security analysis, the verification of system security prop-
erties is used to detect potential flaws in the design which make the system
vulnerable against malicious attacks threatening its assets. Of course, such flaws
form a formidable risk for the system and the obvious countermeasure is to
change the system model such that its behavior fulfills the security properties.

2 Location Application – An Example

The system specification of our example is depicted in Fig. 2. It is an Android
application that allows one to share one’s current location, but only to a set of in-
tended recipients, i.e., friends. The specification consists of four building blocks
implementing various functionalities. The graphical user interface (UI) block
mui:MainUI handles the user’s input and displays relevant information for the
user on the device interface. Block c: Communication handles the exchange of
messages with peer applications running on other devices. This block encapsu-
lates the XMPP Client Android block which allows one to transmit messages
through an XMPP server. The current location of a device executing this appli-
cation is reported by block lu: LocationUpdate. Finally, block pl: Proximity Logic
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is responsible to manage location sharing, e.g., to respond to a location request
from a friend. It contains three inner blocks as shown in Fig. 3.

The Petri-net like semantics of the UML activities models states as tokens
resting in token places and state transitions as moving tokens along directed
activity edges [10]. In SPACE, all behavior follows the run-to-completion charac-
teristics [5]. This means, transitions are triggered by observable events, namely,
the reception of signals and the expiration of local timers, and completed by
reaching a stable state from which the next transition may be carried out.

The location application in Fig. 2 begins with a token flowing from the ini-
tial node (•) and activating the UI block. Thereafter, the system waits until
the device user enters the necessary credentials to use an XMPP server. As
soon as the credentials are received, a token carrying the data (in an object
of type Login) moves from pin login to the starting pin of the communica-
tion block. Upon successful login, the application proceeds by initiating block
lu: LocationUpdate to obtain the present geographical location. Subsequently, a
token carrying the location data emits from pin started of block lu and passes
through a fork node which duplicates the token. One token is directed to pin
start of block pl: Proximity Logic, while the other one is forwarded to pin ready
of the UI block. Updates on the current position are reported by block lu via
pin loc and consumed by block pl through pin newLoc.

The specification shown in Fig. 2 also includes behavior that handles unsuc-
cessful credential verification and an input from the user to stop the application.
However, for brevity we do not detail this here, but rather focus on the location
sharing functionality which is handled mainly by block Proximity Logic.

As depicted on the left side of Fig. 3, block Proximity Logic becomes active
when a token carrying location data flows from parameter node start and passes
through a fork node. The downward pointing edge leaving the fork node shows
that a token with the location data initializes block h:MessageHandler. The
other outgoing edge indicates that the Java operation getFriendList is executed.
The output of this operation is a list of friends which is stored locally. This list
is forwarded to a fork node with three outgoing edges, one of which initializes
block g: ReqGenerator. The second one sends the list of friends to block h while
the third directs a token through a merge node (�) to a timer which is started.
When the timer expires, block g generates location requests, one for each friend
in the list, and emits them one-by-one via pin aReq. A token flowing through pin
done indicates that all requests have been yielded and the next batch of requests
can be generated when the timer expires again.

The inner block b:ReactiveBuffer decouples message reception from message
handling and, hence, is used to buffer messages while block h is busy processing
one message. A message is received through pin add of the buffer. When the
buffer is empty, it is emitted immediately via pin out ; otherwise, it is buffered.
Invoking pin next will get either the subsequent message in the buffer (via pin
out) or an indication that the buffer is empty (pin empty). Three types of mes-
sages are buffered and handled, namely, generated requests, requests from peer
applications running in different devices, and responses to the generated requests.
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Fig. 3. Block Proximity Logic

A message is received by the message handler block via pin in. Depending on
the message type and additional constraints, one of the following four alternative
behaviors is taken: (1) If the message is a generated request, it is emitted via
pin outReq. (2) If the message is a request from a person in the friend list, a
response containing the latest location is created and emitted via pin outResp.
(3) If the message is a response to a generated request and the friend’s location
is near, a notification is emitted via pin info (4) For all other cases, the message
is dropped. In addition, a token is emitted via the output pin next which after
a certain latency guaranteed by a timer leads to obtaining the subsequent mes-
sage from the buffer. The flows via the pins outReq, outResp and info of building
block h are forwarded to the pins of the same name of the block Proximity Logic
such that outgoing requests and responds are further sent to the communication
block while notifications are forwarded to the UI block (see Fig. 2).

3 Interface Contracts

Except for system-level blocks like the one in Fig. 2, building blocks are sup-
plemented with behavioral interface descriptions. As modeling technique for the
interface behavior, we use so-called External State Machines (ESMs) [11] that
specify the possible ordering of events visible on the activity pins. The ESM of
the block ReqGenerator is depicted on the right side of Fig. 3. It shows that
this block starts by receiving a token through pin init and entering state idle.
Thereafter, the block can receive a token via pin generate upon which it will
emit requests, one at a time, via pin aReq. After having generated requests to a
list of recipients, the block returns to state idle emitting a token via pin done.
Later, the next batch of requests can be created upon receiving a new generate
event. The transitions labeled with / show that block ReqGenerator allows its
surrounding block, in our case the Proximity Logic, to terminate it anytime.

An ESM must be respected both by the activity and its environment in order
to guarantee a correct interaction between them. Such property can be verified
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automatically by a model checker due to the formal semantics of the activities [5].
As mentioned in the introduction, the ESMs enable compositional verification
of a system specification: After proving that an activity and its corresponding
ESM are consistent, we can represent the blocks of an enclosing activity by their
ESMs instead of their activities when model checking that the enclosing activity
fulfills certain properties.

Compositional verification is also applied for the verification of reliability and
dependability issues. Since the reliability of systems is often guaranteed by us-
ing several instances of a critical component and the ESMs are not suited to
describe the interface behavior of such multi-instance components, we extended
them with auxiliary variables which can be used in transition guards and ef-
fects. The resulting interface descriptions are named Extended External State
Machines (EESMs) [12]. Further, an extension of the EESMs enables us to spec-
ify indeterministic interface behavior following from component failures, e.g.,
non-responsiveness or a reset to the initial state. In consequence, we could re-
duce the number of states to be model checked by several orders of magnitude
(see [9]). This encouraging result has lead us to use compositional verification
also for security properties which will be discussed in the following.

4 Modeling Security-Relevant Aspects

A highly relevant asset of applications running on modern smartphones is the
phone’s location which can be retrieved by the built-in GPS receiver or by tri-
angulation of WiFi base stations. Of course, the location data must not leak to
unauthorized principals since that would violate the privacy of the phone user
and might also be a severe risk for her/his personal safety. Thus, with respect to
application-level security we have to avoid that an erroneous system layout may
lead to the unauthorized transmission of the location information. In the exam-
ple presented in Sect. 2, for instance, we have to guarantee a security property P
expressing that “one’s geographical position may only be sent to one’s friends”.

As described in [3], the semantics of the SPACE approach and its tool-set
Arctis is based on Leslie Lamport’s Temporal Logic of Actions (TLA) [13]. This
enables us to specify security properties like P by abstract system specifications
or invariants in TLA and use the model checker TLC [14] to verify that they are
fulfilled by the TLA representation of a SPACE model.

A suitable notation for the security contracts used to add security properties
to the interface contracts are the EESMs [12]. They allow to insert additional
variables and constants in transition guards and effects. As an example, we list
the EESM of the block Proximity Logic in Fig. 4. It uses three control states,
i.e., the initial state (•), idle and pl active. Besides of the pin identifiers similar
to those used in the ESMs (see Sect. 3), a transition can be provided by a guard
consisting of a logical predicate framed by square brackets as well as operations
on the variables which are described using Java-like statements in lined boxes.
The EESM in Fig. 4 contains a variable v loc storing the current location of the
own device. The initial transition is carried out during system start and leads
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Fig. 4. Security Contract expressed as an EESM

from the initial state to idle. In its effect part, the variable v loc is set to an
initial value expressed by the constant IV. The activation of the block takes
place when a token containing the current location as a parameter l reaches
the pin start. The corresponding transition switches the control state from idle
to pl active. Further, it demands that l is indeed location information which is
described in the transition guard and sets the variable v loc to l . The block can
only be terminated implicitly by closing down the overall system which, like in
the ESMs, is expressed by the transition /. Here, the control state is set back to
idle again and v loc to the initial value IV.

Particularly interesting for the security proof of property P are the transitions
outResp and outReq since the tokens leaving through them contain the messages
to be sent by the communication block. The transition outResp uses a parameter
resp specifying the message to be sent in the token. According to the guard of the
transition, resp is a triple containing the address from the friends list expressed
by the constant FList as the recipient address t (to). The sender address f (from)
contains the user’s address which is described by the constant ME while the
content c includes the device’s location data which is stored in the variable v loc.
The transition outReq is similar with the exception that the message content is a
request (expressed by the constant REQ) asking the recipient for its geographical
position. Thus, the EESM specifies that all messages passing pins outResp and
outReq have a friend as a recipient address.

EESMs can be automatically transformed into specifications in TLA+ [13],
the notation of TLA and the input language of the model checker TLC (see [12]).
TLA is a linear-time temporal logic in which state transition systems are speci-
fied using variables for the states and actions (i.e., predicates on pairs of states)
for the transitions. The TLA+ specification of the EESM of the block Proximity
Logic is listed in Fig. 5. It uses the variables state denoting the current control
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module EESMProximityLogic

extends Naturals
variables state, v loc
constants FList ,ME ,REQ ,LOC , IV

Init
Δ
= state = “ idle” ∧ v loc = IV

start(l)
Δ
= state = “ idle” ∧ l ∈ LOC ∧ state ′ = “pl active” ∧ v loc′ = l

newLoc(l)
Δ
= state = “pl active” ∧ l ∈ LOC ∧ v loc′ = l ∧ unchanged state

incReq(req)
Δ
= state = “pl active” ∧ req .t = ME ∧ req .c = REQ

∧ unchanged 〈 state, v loc 〉
incResp(resp)

Δ
= state = “pl active” ∧ resp.t = ME ∧ resp.c ∈ LOC

∧ unchanged 〈 state, v loc 〉
outReq(req)

Δ
= state = “pl active” ∧ req .t ∈ FList ∧ req .f = ME ∧ req .c = REQ

∧ unchanged 〈 state, v loc 〉
outResp(resp)

Δ
= state = “pl active” ∧ resp.t ∈ FList ∧ resp.f = ME

∧ resp.c = v loc ∧ unchanged 〈 state, v loc 〉
implicit termination

Δ
= state = “pl active” ∧ state ′ = “ idle” ∧ v loc′ = IV

Fig. 5. Security Contract expressed as a TLA+ specification

state of the EESM as well as the additional variable v loc. Init is a predicate
specifying the beginning state of the block, i.e., idle. The other seven definitions
model the transitions of the EESM in form of actions. Here, a simple variable
identifier refers to the state before carrying out an action, whereas an identifier
marked by a prime symbol (′) points to the state after its execution. For exam-
ple, before triggering the action start, the variable state is equal to idle while
afterwards it carries the value pl active. Further, this action is only enabled if
its parameter l is of type LOC and the variable v loc in the next state is l .

5 Compositional Verification

In TLA, the verification, that an application specification Spec fulfills a secu-
rity property P , corresponds to the implication proof Spec ⇒ P . To carry out
this proof, we transform the SPACE model of the application into TLA+ spec-
ifications of the activities and EESMs that are coupled with each other in a
constraint-oriented way (see [15]), forming the system specification Spec. The
security property P is modeled as an abstract system specification or an invari-
ant in TLA+ as well. As discussed above, a system-level activity can contain
any number of building blocks referring to other activities which in turn may
encapsulate other activities (see Fig. 2 and Fig. 3 as an example). Reflecting
that constraint-oriented composition corresponds to conjoining TLA formulas,
Spec is defined as the conjunction of the TLA+ specifications of all activities
modeling the application:
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Spec � As ∧
∧

b∈BlocksAb (1)

Here, Blocks is the set of all building blocks, while Ab denotes the TLA+ spec-
ification of the activity referenced by block b. With As , we refer to the system
activity. For our location application in Fig. 2, As corresponds to activity Loca-
tion App while the set Blocks contains eight elements, namely, mui, c, lu, pl, h, b,
g, and x. The first four elements refer to the activities MainUI, Communication,
LocationUpdate, and Proximity Logic respectively (see Fig. 2). The elements h, b
and g point to the activities enclosed by the block pl (see Fig. 3), while x marks
the activity XMPPClient which is enclosed by the communication block c.

To prove Spec ⇒ P by compositional verification, we have to conduct two
major steps. First, we verify that all activities Ab (except the one on system
level) are consistent with their corresponding EESMs. To clarify this proof, we
perceive a system specification as a tree of activities. Here, an activity Ab is the
parent of another activity Ac if the designator of the building block c referring
to Ac is enclosed in Ab . The system activity As forms the root of this tree, while
those activities not containing any building blocks are the leaves.

We prove now for every activityAb in the tree except for the root that it fulfills
its EESM Eb whereupon we represent its children activities by their EESMs:

Ab ∧
∧

c∈Children(b)Ec ⇒ Eb (2)

Proving equation (2) for all activities except for the system activity is sufficient
since one can deduce by induction that all activities fulfill also the equation

Ab ∧
∧

c∈Descendants(b)Ac ⇒ Eb (3)

in which Descendants refer to all the descendants of an activity in the tree. The
starting step of the induction is the verification that equation (3) follows from (2)
for all leaves of the tree. This proof is trivial since the leaf activities do not have
any descendants at all. In the inductive step, we have to verify that an activity
Ab fulfilling equation (2) also guarantees equation (3) as long as (3) holds also
for all of its children. Likewise, this proof is easy since the descendants of the
children of Ab are also its own descendants. Therefore,

∀k ∈ Children(b) : Ab ∧
∧

c∈Descendants(b)Ac ⇒ Ek

holds and equation (3) can be directly deduced from (2).
In TLA, a verification of equation (2) is achieved by employing a refinement

mapping [16], i.e., a mapping between the state spaces ofAb and Eb guaranteeing
that an initial state of Ab is mapped to an initial state of Eb , and that a TLA
action of Ab is either mapped to an action in Eb or to a stuttering step in
which the variables in Eb do not change. The refinement mapping proof can
be automated by the model checker TLC, whereat the use of the EESMs of
Ab ’s children keeps the number of states to check low. We cannot detail the
verification process here, but the proofs are similar to the ones presented in [12].
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One of the EESM proofs in our location example was Apl ∧ Eg ∧ Eh ∧ Eb ⇒
Epl stating that the activity Proximity Logic in Fig. 3 fulfills its EESM that is
depicted in Fig. 4.

In the second major proof-step, we use the EESMs of the children of the root
activity As to verify the security property P :

As ∧
∧

c∈Children(s)Ec ⇒ P (4)

From this equation and the fact that the children of As are blocks in the system
specification Spec, we can infer Spec ⇒ P since for all the children ofAs equation
(3) holds as well. For the proof of equation (4), we use the model checker TLC
which again profits from using the EESMs of the inner blocks instead of their
activities such that the number of states to be checked can be reduced in all of
our TLC model checker runs.

An excerpt of the TLA+ specification of our location application is depicted
in Fig. 6, in particular, ALocationApp ∧ Emui ∧ Ec ∧ E lu ∧ Epl ⇒ P . Variables
and constants used in the specification are declared in the section Variables
and Constants Declaration. Most of them represent the variables and constants
defined in the EESMs, including the ones modeling security related aspects.

module Location App

Variables and Constants Declaration
variables pl state, c state,mui state, lu state, pl v loc, c v out , c v enOut , c v enLgn
constants FList ,ME ,REQ ,LOC , IV ,Any ,Ciphertext ,Login

Using the EESMs of Inner Blocks

mui
Δ
= instance EESMMainUI with state ← mui state

c
Δ
= instance EESMCommunication with state ← c state, v out ← c v out ,

v enOut ← c v enOut , v enLgn ← c v enLgn,Recepient ← FList ∪Any

lu
Δ
= instance EESMLocationUpdate with state ← lu state

pl
Δ
= instance EESMProximityLogic with state ← pl state, v loc ← pl v loc

System Actions

pl outResp(resp)
Δ
= pl !outResp(resp) ∧ c !send(resp)

∧ unchanged 〈mui state, lu state 〉
. . .

TLA+ System Specification

Init
Δ
= pl !Init ∧ c !Init ∧ mui !Init ∧ lu !Init

Next
Δ
=

∨ ∃ r ∈ [t :FList ∪ Any, f : {ME} ∪ Any, c : {REQ} ∪ LOC ∪Any ] : pl outResp(r)
∨ . . .
vars

Δ
= 〈 pl state, c state,mui state, lu state, pl v loc, c v out , c v enOut , c v enLgn 〉

Spec
Δ
= Init ∧�[Next ]〈vars〉

P Δ
= �((c v out = IV ) ∨ (c v out .c ∈ LOC ⇒ c v out .t ∈ FList))

Fig. 6. Excerpt from the TLA+ specification of the Location App
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The section Using the EESMs of Inner Blocks contains four instantiation state-
ments used to couple TLA+ specifications into the system description. For
instance, in the last statement, module EESMProximityLogic (see Fig. 5) is
instantiated and denoted as pl . Here, the variables state and v loc of the in-
stantiated module are respectively substituted by variables pl state and pl v loc
of the application specification. Likewise, all the constants in the EESM are in-
stantiated, albeit implicitly since they are substituted with constants of the same
name. By the other three statements, the EESMs of the block instances mui ,
c, and lui are composed. The instances enable us to refer to EESM transitions
by 〈instance〉!〈EESM transition〉 (e.g., pl !outResp(resp)). These references are
used to specify events in an enclosing activity as exemplified in Fig. 6 by the
section labeled with System Actions. The TLA action pl outResp(resp) defines
that response resp emitted by block Proximity Logic (pl !outResp(resp)) is sent
by block Communication (c !send(resp)) which, among others, stores a mes-
sage sent to another station in the auxiliary variable1 c v out . Moreover, the
unchanged statement points out that the blocks MainUI and LocationUpdate
are not involved in the action and do not change their variables.

In section TLA+ System Specification of Fig. 6, the TLA+ specification mod-

eling block LocationApp is written as the so-called canonical formula Spec Δ
=

Init ∧ �[Next ]〈vars〉. It expresses that the initial state of the application fulfills
the predicate Init and that every state change follows one of the system actions
which are disjuncts of the next state relation Next . By [. . .]〈vars〉, one models
that stuttering steps in which the list of variables vars do not change are also
allowed.

The security property P , i.e., “one’s locations are only sent to one’s friends”
is expressed by the TLA invariant that is listed in the bottom part of Fig. 6.
It states that at all times the variable c v out storing the messages sent to
other recipients carries either the initial value IV (i.e., no message has been
sent yet) or that a sent message containing location information is sent to the
address of a friend. We use the TLC model checker to verify both, P and the
security property “the credentials used to login to an XMPP server are sent via
a secure communication channel”. The performance issues of the model checker
runs proving these two security properties will be discussed below.

6 Model Checking Performance

To evaluate the advantage of employing EESMs for verification of security prop-
erties, we compare the result of model checking the example application with
two approaches: The first one is the compositional technique described above,
i.e., proving formula (4) for the system block Location App in Fig. 2 and formula
(2) for the eight inner blocks mui, c, lu, pl, h, b, g, and x. The other one is the
direct method in which the TLA+ specifications of all activities of the system
are used, i.e., equation (1).

1 Auxiliary variables do not influence the behavior of a system but support verification.
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Table 1. Verification effort: compositional approach vs. direct approach

compositional 
approach

Number of elements for each set

states (largest)

time (total)

states

time

states (x largest)
direct 
approach 

time (x total)

1 047 503

▪ buffer size = 2

12 sec

19.45 x

224 sec

18.67 x

6 248

984 53 855 823 174 6 568 677

2 sec 44 sec 331 sec

> 25 M -

6.35 x > 30 x -

-

-

6 sec

3 x

> 2 hours

>  163 x

1 2 3 4

states (total)

states (x total)

1 204 56 200 837 810 6 630 076

5.19 x 18.64 x > 29 x -

We model checked the compositional and direct approaches on a 2.4 GHz,
8 GB personal computer. The result is presented in Tab. 1. Both versions use
the same sets representing various types of data (e.g., FList denotes a list of
friends). Since TLC works by generating behaviors that satisfy a specification,
we needed to declare the elements of those sets. We used the same elements for
each set in the specifications of both approaches and decided to use the size of a
set as the parameter to compare the verification effort. Further, one restriction,
i.e., a maximum buffer size, was required since, otherwise, the specifications re-
lated to the reactive buffer would have infinitely many reachable states due to
arbitrarily many sequences of messages stored by the buffer. For the composi-
tional approach, we present three types of data in Tab. 1: The values in the first
row, obtained from proving formula (2) for block pl: Proximity Logic, show the
largest number of states created in a single model checker run reflecting the max-
imum amount of memory needed. In the second row, we simply add the number
of states checked in all nine runs. Similarly, the total amount of time to model
check all nine blocks is shown in the third row. These values are compared with
the respective number of states and verification time of the direct approach.

Observing Tab. 1, we see that the number of states found by the model checker
for the direct version is much higher compared to the compositional version.
In consequence, also the execution time of the model checker runs grew. For
example, using sets consisting of two elements, the state space of the direct
version is more than 18 times larger than the composed version’s. Further, it also
takes about 18 times longer to verify the direct version than the compositional
one. Moreover, the state and time differences between the compositional and the
direct verification increase with a growing set size. Indeed, the direct approach
effectively fails when the set size reaches the value 4 while the compositional
verification is still manageable in a few minutes.

Altogether, these results confirm our experience with functional and reliability
checks mentioned above that utilizing the SPACE building blocks and their
interface descriptions for model checking effectively reduces the state explosion
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problem. Thus, it helps to make automatic analysis more feasible for real-life
systems. In addition, the effort to verify systems that are developed with already
proven blocks is further reduced since ensuring the conformity of a block to its
interface contract only needs to be done once.

7 Related Work

Various methods have been proposed to support the development of secure sys-
tems. UMLsec [17] is a UML profile that is used to incorporate security-related
information such as fair exchange and secure communication links in various
UML diagrams. SecureUML [18] is a modeling language tailored to integrate
Role-Based Access Control policies into application models defined with the
UML. Similarly, integration of Mandatory Access Control with UML is proposed
in [19]. Approaches based on aspect-orientation, modeling security mechanisms
as aspects which are automatically weaved in at joint points of a specification,
have also been proposed (see, e.g., [20,21,22,23]). The CORAS approach [24] de-
fines a modeling language to support security risk analysis for systems designed
with UML. Its UML diagrams are mainly devoted to model the various steps of
a security analysis while the purpose of ours is to express system behavior.

Since systems are usually composed from numerous parts, specifying secu-
rity aspects in the components and verifying system-wide security properties
has been the focus of a number of approaches. To support the development
of security-critical applications, Moebius et al. proposed SecureMDD, a model-
driven technique that includes verification of application-specific properties [25].
For large systems, they take an incremental approach for which some functional-
ity is added in every step such that security proof needs to be repeated in every
iteration [26]. In contrast, in our approach functional behaviors are composed in
a constraint-oriented way. Deng et al. proposed a method to model security sys-
tem architectures and verify whether required security constraints are assured by
the composition of the components [27]. However, unlike our work, it employs a
top-down approach. Security policies are specified as application-wide constraint
patterns which are further decomposed onto the individual components of the
system. In [28], Khan et al. present a framework to construct compositional se-
curity contracts based on the required and ensured security properties exposed
by the atomic components. Although the contracts help engineers to character-
ize the security aspects of a composed system, the framework does not include
validation whether the contracts fulfill the security requirements of the system.
Other work that aims to address security issues in software systems consisting
of simpler components can be found in [29,30,31].

8 Conclusion

In this paper, we introduced security contracts that encapsulate both functional
and security aspects of a building block. Due to the formal semantics of the con-
tracts, model checking can be employed to ensure that the contracts and their
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corresponding blocks are consistent. Furthermore, we showed that such contracts
enable compositional verification of application-level security properties which
significantly reduces the number of states to be checked and, consequently, also
the verification time. On the whole, these behavior and security interface descrip-
tions facilitate model-based development of secure systems: Security mechanisms
enclosed in building blocks [4,6] are easily integrated with blocks modeling other
functionalities, and both kinds of blocks can be (re-)used in various application
designs. The security contracts specify security properties fulfilled by the blocks.

Currently, we are investigating in separating the development of the security
contracts from using them in proofs of system-wide security properties. This sup-
ports the nature of SPACE-based system engineering that building blocks are
often developed independently from the applications and stored in libraries. To
achieve that, we need to find a way that relevant security aspects of a block can
be anticipated, modeled in a security contract, and proven without knowing the
applications using the block. As a solution, we consider to employ application
domain-oriented information security ontologies stating relevant assets, vulner-
abilities and threats (see also [32]). For example, an ontology for Android may
contain passwords and location information as typical assets of Android devices
and leaking them as a typical confidentiality threat. Based on that, a security
expert might annotate the building blocks of the Android library by security
contracts addressing the elements of this ontology. Moreover, an ontology may
contain a list of system-wide security properties to be fulfilled by systems of that
domain (e.g., an Android device may never send a password to anybody).

Like the security contracts which are represented by EESMs, one can also de-
fine the system-wide security properties in a more comprehensible syntax than
plain TLA+ effectively reducing the required expertise in formal methods. This
complements our experience with functional system development in which engi-
neers analyze their models by just pushing a button which leads to a message
containing that everything is correct or a list of errors in an easily understand-
able format. Further, the trace towards a state violating a property is animated
directly on the SPACE models [3] such that the engineer does not need to un-
derstand the formalism of the model checker running in the background at all.
We want to achieve a similar procedure for the verification of security properties.
By describing the system security properties in an easily understandable way,
at least basic security protection can be done directly by the domain engineers
without involving the security experts in excess of the creation of the building
block security contracts. This will ease the development of more secure software.
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Abstract. The increasing official use of security protocols for electronic
voting deepens the need for their trustworthiness, hence for their for-
mal verification. The impossibility of linking a voter to her vote, of-
ten called voter privacy or ballot secrecy, is the core property of many
such protocols. Most existing work relies on equivalence statements in
cryptographic extensions of process calculi. This paper provides the first
theorem-proving based verification of voter privacy and overcomes some
of the limitations inherent to process calculi-based analysis. Unlinkability
between two pieces of information is specified as an extension to the In-
ductive Method for security protocol verification in Isabelle/HOL. New
message operators for association extraction and synthesis are defined.
Proving voter privacy demanded substantial effort and provided novel
insights into both electronic voting protocols themselves and the anal-
ysed security goals. The central proof elements are described and shown
to be reusable for different protocols with minimal interaction.

Keywords: E-voting, Trustworthy Voting System, Privacy, Security
Protocols, Formal Methods.

1 Introduction

The use of electronic voting (e-voting) for official elections is on the rise across the
world. Security protocols claiming properties that protect voters and guarantee
regular elections require formal scrutiny because of their sensitive nature. Voters
are asked to trust, in particular, election officials regarding the handling of their
votes. With e-voting, they are asked to trust a security protocol with special
goals. One key goal of e-voting protocols is to hide the way a particular voter
votes. Most recent efforts [17] to advance formal verification are based on process
equivalence. Despite substantial progress, issues remain regarding simplification
of protocol models or termination of supporting tools.
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The benefits of specifying privacy in an interactive theorem prover have never
been explored until now. Isabelle [15], a generic theorem prover, is flexible enough
when used with higher-order logic to allow new classes of security properties to
be analysed in the framework provided by the Inductive Method [3]. Its exten-
sions for dealing with voter privacy are described and demonstrated on a classical
protocol in the sequel of this manuscript. They required new proof techniques
and lines of reasoning, whose development in turn demanded substantial effort.
Nevertheless, their application to other protocols is expected to be straightfor-
ward, as has been the case for the confidentiality argument [14] for example,
with most of the proof scripts adapted for new protocols without significant ef-
fort. Automated tools are ideal for checking conjectures about protocols quickly.
However, the interactive nature of the Inductive Method pays back, also with
e-voting, with a greater support to the analyst’s understanding of the protocol
entanglements than what automated tools offer today.

The most notable findings in this area stem from formalising the protocols
with a process algebra and encoding the privacy properties by process equiv-
alence [10]. As detailed below, process equivalence supports a notion of indis-
tinguishability between two situations where a voter voted, respectively, for two
different candidates. This implies that an observer cannot discern the two situ-
ations being formalised. In line with the operational semantics of the protocols
specified by the Inductive Method, we develop an operational encoding of pri-
vacy based on unlinkability of voter with vote, focusing on the associations that
an active attacker can derive from intercepting the protocol traffic. For example,
if Alice sent her vote for Bob to the election administrator as a clear-text, then
the attacker would build the association Alice-Bob.

However, actual protocol messages are complicated nestings of advanced cryp-
tographic operations (which are still assumed to be reliable), so that the at-
tacker’s inspection is far from straightforward. This inspection is formalised by
the innovative association analyser operator aanalz — naming is coherent with
the existing lingo. Also, the attacker can intelligently merge associations when
they have at least an element in common, similarly to an investigator relating
Alice to a crime scene because she wears the same shoe size as that of a shoeprint
in the scene. This merge is formalised by the innovative association synthesiser
operator asynth. When it is impossible to build, by means of analysis and then
synthesis, an association that features both voter and vote, then there is un-
linkability of voter with vote, hence the protocol enforces voter privacy (about
their vote). Conversely, the protocol violates voter privacy, irrespectively of how
many other voters cast that vote.

An outline of the indistinguishability and unlinkability approaches to mod-
elling privacy (§2) leads to our extensions to the Inductive Method to account
for privacy specification and analysis (§3). These extensions are then demon-
strated on a classical e-voting protocol known as FOO [12] through its inductive
specification (§4) and verification of voter privacy (§5). Conclusions and future
work end the manuscript (§6).
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2 Modelling Privacy

Voter privacy (also known as ballot secrecy) is generally [9,10] defined as follows:
how a particular voter voted is not revealed to anyone. Votes may or may not
be published at the end of an election, so it is not the confidentiality of the vote
in itself that matters but its association with the voter who cast it. In other
words, the way a voter votes should not be discoverable by anyone, even after
vote count. A caveat on this definition is the exclusion of the corner case where
all voters vote identically.

2.1 Indistinguishability

A common way of modelling privacy involves showing the indistinguishability
between two situations:

1. Voter Va votes x and Voter Vb votes y
2. Voter Va votes y and Voter Vb votes x

Indistinguishability here means that when Va and Vb swap their votes, no party
(including trusted parties running the election) can tell situations 1 and 2 apart.

Formal analysis is often performed in cryptographic extensions of process
calculi, with the applied pi calculus [2] being most typical. Automated tools
such as ProVerif [7] or, more recently, AKiSs [9] can be used to assist with such
analysis.

ProVerif is used to check protocols represented by processes modelled in the
applied pi calculus. It does not restrict the number of protocol sessions. A
stronger condition than observational equivalence between processes is checked.
Since the validity criterion is an under-approximation, spurious attacks may
be found in some cases. There is no risk for flawed protocols to be deemed
correct, but correct protocols may be invalidated by the tool because of the ap-
proximation. Various approaches to checking voter privacy have been presented.
Notably, Kremer and Ryan [13] presented an analysis with some manual parts.
In 2008 [11], a fully automatic verification was done. However, a translation al-
gorithm was used without formal proof of correctness. The next year, Delaune,
Kremer and Ryan published a detailed analysis in which the number of voters
is fixed, with a partially automated privacy proof [10]. New cryptographic prim-
itives can be added easily to the tool via equational theories, but the resulting
processes may not terminate in some cases.

AKiSs, the most recent automated tool able to check privacy automatically,
is also based on equivalence properties. However, a new kind of cryptographic
process calculus is used and a different type of process equivalence is checked,
called trace equivalence. Under- and over-approximations of trace equivalence
are used to detect flawed protocols and validate correct ones, respectively. The
set of supported cryptographic primitives is broader than in ProVerif. For a
specific class of processes, called determinate, a precise verification can be done.
However, not all e-voting protocols fall in this class, in which case one of the
approximations must be used. The number of sessions must be bounded as it
has critical impact on the computational cost.
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2.2 Unlinkability

In contrast to the indistinguishability modelling of privacy, an operational view
reflects the natural threat model of an attacker monitoring all network traffic
and using the data she can extract to associate a voter with a vote. An outline
of this approach and comparison with the one based on indistinguishability first
appeared in our recent position paper [8]. Initially, the attacker decomposes each
individual message, and records all plaintexts and ciphertexts for which keys are
available. She can also associate these with the intended recipient agent of the
message. For each protocol event whereby an agent sends a message to another
agent, this analysis gives the attacker a set of (components of) messages, namely
an association. Moreover, if the communication channel is not anonymous, then
the attacker can also extend the association just gathered by storing the identity
of the sender.

However, it is not sufficient to inspect in isolation each of the messages sent
in the traffic. A voter’s identity V may appear near an element m that is later
to be extracted again, this time in conjunction with the vote Nv. In this case,
such a common element m provides the link between voter V and vote Nv. An
attacker monitoring the network sees messages as discrete entities and can exploit
the shared context of elements extracted from one given message. This process
of combining sets of associations builds up an association synthesis. When all
possible protocol scenarios are taken into account, establishing voter privacy
boils down to inspecting the synthesised set for the presence of a voter’s vote.

The only pieces of information that should not be treated as a possible link
to synthesise new associations are those that can be linked to all voters, such
as the name of the precise election officials that a protocol prescribes. Because
their identities appear in each and every protocol session, using one of them
as a link would lead to the synthesis of insignificant, that is, privacy-irrelevant,
associations. For example, an investigator will not call up every human being as
suspect of murder simply upon the basis that everyone could pull a trigger. We
shall see that with the FOO protocol, the administrator and the collector are
omnipresent, hence must be ruled out to synthesise significant associations.

Without setting bounds on the number of agents, sessions, or message nesting
depth, the number of different associations that the attacker can synthesise is
very large. Precisely, an unbounded number of associations can be derived by
observing a full trace, due to the fact that its length is unbounded. This size limits
the tool support that traditional finite-state search can offer. As experienced
before with other goals [3], inductive reasoning bypasses the size constraints also
with the analysis of associations.

3 Specifying Unlinkability in Isabelle/HOL

3.1 Isabelle/HOL and the Inductive Method

Isabelle is a generic interactive theorem prover supporting many logics. The
most commonly used one, HOL, allows formalisation and proof of predicates in
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higher-order logic. Automated reasoning tools are available, but the user must
still define the line of reasoning and guide the proving process. A file-based
hierarchy of theories is available. All theorems from parent theories are available
when those theories are imported in the current one.

The Inductive Method for security protocol verification was introduced in
Paulson’s paper [16] and later applied widely, notably to electronic payment [5],
non-repudiation [6], certified e-mail [3] and multicast protocols [14]. Its central
idea is the use of mathematical induction to model security protocols and their
properties. The proofs are also done by induction. A specification of the standard
Dolev-Yao threat model, common cryptographic primitives and their properties
are provided. All seminal elements of the Inductive Method reside in three the-
ory files. Message describes messages and agents, Event specifies network event
datatypes and Public contains the lemmas relevant to cryptographic keys and
initial states.

Because of the nature of induction, both the number of protocol sessions
and participating agents are unbounded. This allows detection of interleaving or
replay attacks. The threat model is incarnated by a special agent called Spy, who
sees all protocol messages, decrypts whatever she can, and participates actively
by sending anything she can build from parts previously obtained. The Spy’s
capabilities are subsumed by an inductive rule called Fake:

| Fake: [[evsf ∈ ns public; X ∈ synth (analz (knows Spy evsf ))]]
=⇒ Says Spy B X # evsf ∈ ns public

Protocol steps are also modelled as inductive rules with pre- and postconditions.
Security properties are proven by checking that inductive theorem statements
hold over all possible network histories (traces).

Available network events are Says, Gets and Notes. The latter represents
internal storage of a message by an agent. Says A B X represents the sending of
message X by agent A to agent B. Delivery does not have to happen, but when
it does, this is denoted using Gets.

The message operators are as follows:

– analz formalises the breaking-up of messages without cryptanalysis. Plain-
text is only extracted when the relevant decryption key is part of the knowl-
edge of the agent applying the operator.

– parts returns all message building blocks ; it can be seen as analz expanded
with cryptanalysis.

– synth applied to a set of message returns the set of compound messages.

Asymmetric cryptography is available through functions priEK and pubEK for
private and public encryption keys, and then priSK and pubSK for private and
public signing keys. Each of them takes the proprietor agent as a parameter. A
private key of a given operation mode is required to decrypt a message encrypted
with the corresponding public key, and conversely.

Agent knowledge, formalised by the function knows, maps an agent and a list
of network events to a set of messages: the knowledge that the agent can extract
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from this trace. Agents already know some elements (those in initState) such as
keys before a protocol even begins.

A hands-on, step by step guide to using the Inductive Method can be found
in a recent paper [4].

3.2 Extensions for Unlinkability

The analysis of associations requires a new message operator, analzplus. It is built
on the traditional analz message operator, endowed with an external message
set providing extra decryption keys:

inductive set
analzplus :: msg set ⇒ msg set ⇒ msg set
for H :: msg set and ks :: msg set
where
Inj [intro,simp]: X ∈ H =⇒ X ∈ analzplus H ks

| Fst : {|X ,Y |} ∈ analzplus H ks =⇒ X ∈ analzplus H ks
| Snd : {|X ,Y |} ∈ analzplus H ks =⇒ Y ∈ analzplus H ks
| Decrypt [dest ]: [[Crypt K X ∈ analzplus H ks; Key (invKey K ) ∈ analzplus H ks]]

=⇒ X ∈ analzplus H ks
| Decrypt2 [dest ]: [[Crypt K X ∈ analzplus H ks; Key (invKey K ) ∈ ks]]

=⇒ X ∈ analzplus H ks

In particular, the new operator is useful to formalise everything, namely the set
of all message components, that the attacker can extract from a single message
sent in the traffic by hammering it with the entire knowledge she has acquired
on an entire trace. For a message X and a trace evs, this set can be defined as
analzplus {X } (analz (knows Spy evs)).

Using analzplus, the message association analyser aanalz can be defined induc-
tively. Only Says events influence it. Indeed, each Gets message reception event
follow a message sending event Says, and Notes events correspond to private
recording of data by agents:

primrec aanalz :: agent => event list => msg set set
where
aanalz Nil : aanalz A [] = {}

| aanalz Cons:
aanalz A (ev # evs) =
(if A = Spy then
(case ev of
Says A ′ B X ⇒
(if A ′ ∈ bad then aanalz Spy evs
else if isAnms X

then insert ({Agent B} ∪ (analzplus {X } (analz(knows Spy evs))))
(aanalz Spy evs)

else insert ({Agent B} ∪ {Agent A ′} ∪
(analzplus {X } (analz(knows Spy evs)))) (aanalz Spy evs))

| Gets A ′ X ⇒ aanalz Spy evs
| Notes A ′ X ⇒ aanalz Spy evs)
else aanalz A evs)
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The definition indicates, among other aspects, that only the attacker can anal-
yse associations. Also, she will neglect the associations created by compromised
agents, thus including those that she may have created, by sending out specific
messages. It can also be seen that the sender identity is extracted only for mes-
sages that are not sent anonymously. The isAnms predicate holds of messages
with a specific form that we conventionally interpret to signify anonymity.

The association synthesiser asynth can be introduced now. Its definition is not
tied to aanalz, but it will always be used in conjunction with it for our purposes.
Specifically, we will examine the contents of the set asynth (aanalz Spy evs),
where evs is a generic protocol history. The asynth operator introduces a new
association as the union of association sets that share a common element:

inductive set
asynth :: msg set set ⇒ msg set set
for as :: msg set set
where
asynth Build [intro]: [[a1 ∈ as; a2 ∈ as; m ∈ a1 ; m ∈ a2 ;

m �= Agent Adm; m �= Agent Col ]]
=⇒ a1 ∪ a2 ∈ asynth as

As noted above, the definition insists that the common element is not a piece
of information that can be linked to all voters — for instance, the name of
election officials since they appear in every step. The version below can be used
for protocols that define two election officials, here called Adm and Col, in line
with the subsequent case study.

4 Modelling the FOO Protocol in the Inductive Method

The well-known Fujioka, Okamoto and Ohta (FOO) [12] protocol features two
election officials called administrator and collector and involves bit commitments
as well as blind signatures. The specification of its protocol steps follows after a
description of some extensions.

Blind signatures are a cryptographic primitive often found in e-voting proto-
cols, and in particular in the FOO protocol. We specify them for the first time in
the Inductive Method, as an inductive rule in the protocol model. The Spy gains
knowledge of a plain signature if she knows the corresponding blinded signature
and blinding factor, modelled as a symmetric key:

| Unblinding :
[[evsb ∈ foo; Crypt (priSK V ) BSBody ∈ analz (spies evsb);
BSBody = Crypt b (Crypt c (Nonce N )); b ∈ symKeys; Key b ∈ analz (spies evsb)]]
=⇒ Notes Spy (Crypt (priSK V ) (Crypt c (Nonce N ))) # evsb ∈ foo

Anonymous channels are specified by defining a function to replace Says when
needed. We are conventionally defining an anonymous message by means of a
precise message format — the actual message is prepended with a constant
number:
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consts anms :: nat
definition Anms :: [agent , agent , msg ] ⇒ event where
Anms A B X ≡ Says A B {|Number anms, X |}

Administrator and collector are introduced as translations Adm and Col of spe-
cific agents. We now turn to the actual protocol steps and their model.

4.1 FOO Protocol Steps and Inductive Protocol Model

The FOO protocol features six phases that give rise to as many protocol steps
and corresponding inductive rules.

1. Preparation: The voter V picks a vote Nv, builds Nvc using the commitment
key c, and blinds this vote commitment using the blinding factor b. V then
signs the blinded commitment and sends it to the administrator along with
V ’s identity.

| EV1 :
[[evs1 ∈ foo; V �= Adm; V �= Col ; c ∈ symKeys; Key c /∈ used evs1 ;
b ∈ symKeys; Key b /∈ used evs1 ; b �=c; Nonce Nv /∈ used evs1 ]]
=⇒ Says V Adm {|Agent V , Crypt (priSK V ) (Crypt b (Crypt c (Nonce Nv)))|}

# Notes V (Key c) # Notes V (Key b) # evs1 ∈ foo

2. Administration: Upon reception of a signed, blinded commitment, the ad-
ministrator opens it and checks that the quoted agent name is equal to the
signer of the blind signature. If such is the case and the agent has not voted
before, the administrator returns the message to V , now signed by the for-
mer. The administrator also records V ’s name.

| EV2 :
[[evs2 ∈ foo; V �= Adm; V �= Col ; Notes Adm (Agent V ) /∈ set evs2 ;
Gets Adm {|Agent V , Crypt (priSK V ) BSBody |} ∈ set evs2 ;
BSBody = Crypt P R; ∀ X Y . MPair X Y /∈ parts{BSBody}]]
=⇒ Says Adm V (Crypt (priSK Adm) BSBody)

# Notes Adm (Agent V ) # evs2 ∈ foo

3. Voting: If V obtained the administrator’s reply, V unblinds it and sends the
resulting plain signature to the collector over an anonymous channel.

| EV3 :
[[evs3 ∈ foo; Says V Adm {|Agent V ,
Crypt (priSK V ) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs3 ;
Gets V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce Nv)))) ∈ set evs3 ]]
=⇒ Anms V Col (Crypt (priSK Adm) (Crypt c (Nonce Nv))) # evs3 ∈ foo

4. Collecting: The collector checks the signature and publishes the enclosed vote
commitment Nvc on a bulletin board, provided that it was not published
before and that all votes have been received.
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| EV4 :
[[evs4 ∈ foo; V �= Adm; V �= Col ; Says Col Col CX /∈ set evs4 ;
Gets Col {|Number anms, Crypt (priSK Adm) CX |} ∈ set evs4 ;
CX = Crypt P R; ∀ X Y . MPair X Y /∈ parts{CX }]]
=⇒ Says Col Col CX # evs4 ∈ foo

5. Opening: Once Nvc has appeared on the bulletin board, V sends c over an
anonymous channel so that Nv can be revealed.

| EV5 :
[[evs5 ∈ foo; Says V Adm {|Agent V ,
Crypt (priSK V ) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs5 ;
Gets Col (Crypt c (Nonce Nv)) ∈ set evs5 ; Key c ∈ analz (knows V evs5 );
c /∈ range shrK ; c ∈ symKeys]]
=⇒ Anms V Col (Key c) # evs5 ∈ foo

6. Counting: Upon reception of V ’s key, the collector publishes Nv on the con-
dition that the key be identical to c.

| EV6 :
[[evs6 ∈ foo; Gets Col {|Number anms, Key c|} ∈ set evs6 ;
Gets Col (Crypt c (Nonce Nv)) ∈ set evs6 ;
Says Col Col (Nonce Nv) /∈ set evs6 ]]
=⇒ Says Col Col (Nonce Nv) # evs6 ∈ foo

5 Proving Voter Privacy for FOO

5.1 Main Results

The following theorem, foo V privacy asynth, is the culmination of the entire
proof process and states that the FOO protocol guarantees voter privacy to all
honest voters that started the protocol. More precisely, assume that the regular,
honest voter V sent the administrator a message in line with the first step of the
protocol, containing a blinded commitment on the vote Nv. Also assume that
this very vote is in the message set of association syntheses. Then the name of
V is not in that set:

theorem foo V privacy asynth:
[[Says V Adm {|Agent V , Crypt (priSK V ) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ (asynth (aanalz Spy evs));
Nonce Nv ∈ a; V /∈ bad ; V �= Adm; V �= Col ; evs ∈ foo]]
=⇒ Agent V /∈ a

Before turning to the proof itself, we focus on the most important proof ele-
ments, which are mainly results about associations.

A fundamental result is foo V privacy aanalz, which looks similar to the
foo V privacy asynth theorem. However, whereas the latter is a statement about
asynth, hence about association synthesis, the former only considers aanalz, that
is associations arising from individual messages. Whenever an honest voter per-
formed the first step of the protocol, the voter’s identity and vote cannot be
found in the same association:
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theorem foo V privacy aanalz :
[[Says V Adm {|Agent V , Crypt (priSK V ) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ (aanalz Spy evs); Nonce Nv ∈ a; V /∈ bad ; evs ∈ foo]]
=⇒ Agent V /∈ a

The lemma called asynth insert is a direct consequence of the definition of
asynth quoted in 3.2. By introducing the various cases that an application of
asynth may imply, it provides a useful rewrite rule for expressions involving the
operator name:

lemma asynth insert :
a ∈ asynth(insert a1 as) =⇒
(a=a1 ∨
a ∈ asynth as ∨
(∃ a2 m. a2 ∈ as ∧ a = a1 ∪ a2 ∧ m ∈ a1 ∧ m ∈ a2 ∧

m �= Agent Adm ∧ m �= Agent Col))

The next three theorems allow more precise reasoning about messages that con-
tain encryption. They are all concerned with the situation where a message
yields an association set containing at least one ciphertext. They are necessary
for dealing with situations where protocol messages are not completely specified.
For instance, an agent may have to transmit an encrypted commitment with-
out even being able to check that the commitment is actually about a vote. In
those situations, protocol step specification must model agents’ limited knowl-
edge when dealing with sealed messages. However, even when the complete con-
tents of a ciphertext is not known, a number of scenarios can be distinguished.
Various encryption key values and partial knowledge of the ciphertext contents
lead to contradictions. Possible configurations are therefore made explicit in the
following results.

Lemma aanalz PR states constraints about the possible forms of a generic
ciphertext appearing in any association. Its conclusion is expressed as a conjunc-
tion between two predicates that are themselves disjunctions. The first conjunct
relates to the presence of an agent name in the association. If the name of the
collector appears in the association and any nonce (a vote) is an atomic compo-
nent of R, then no agents that are both honest and different from the collector
can also be in a. The second conjunct states that if any nonce is part of the
association, then the Spy must be able to decrypt the ciphertext and no agent
name can be an atomic component of R:

lemma aanalz PR:
[[a ∈ aanalz Spy evs; Crypt P R ∈ a; evs ∈ foo]] =⇒
(Agent Col /∈ a ∨
(Agent V ∈ a −→ V ∈ bad ∨ V = Col) ∨
(Nonce Nv /∈ parts {R})) ∧
((Nonce Nv /∈ a) ∨
(Key (invKey P) ∈ analz (spies evs) ∧ Agent V /∈ parts {R}))

Then, lemma aanalz AdmPR V Nparts relates to the specific case when a cipher-
text signed by the administrator is in an association. It establishes a disjunction:
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either no nonce is an atomic component of the ciphertext’s body, or the Spy can-
not open the ciphertext inside the signature, or there is no regular, honest agent
name in the association:

lemma aanalz AdmPR V Nparts:
[[a ∈ aanalz Spy evs; Crypt (priSK Adm) (Crypt P R) ∈ a; evs ∈ foo]]
=⇒ Nonce Nv /∈ parts {R} ∨

Key (invKey P) /∈ analz (knows Spy evs) ∨
(Agent V ∈ a −→ V ∈ bad ∨ V = Adm ∨ V = Col)

Finally, lemma aanalz Adm is still about associations containing a ciphertext.
Like foo V privacy aanalz, it binds the variables involved in a version of the first
step of the protocol. Assume an association contains the name of an honest agent
who already sent a message corresponding to step one. Also assume it contains
a ciphertext Crypt P R, and that the nonce from step one is in parts of R.
If the name of the collector is absent from the association, then the following
conclusions hold:

– If P is neither the signing key of the voter mentioned in the precondition nor
the signing key of the administrator, then it must be the blinding factor;

– If P is the administrator’s signing key, then the body of the ciphertext
is exactly the body of the message signed by the voter in the bound first
message:

lemma aanalz Adm:
[[Says V Adm {|Agent V , Crypt (priSK V ) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ aanalz Spy evs; Agent Col /∈ a; Agent V ∈ a; V /∈ bad ;
Crypt P R ∈ a; Nonce Nv ∈ parts {R}; evs ∈ foo]]
=⇒ (P = priSK V ∨ P = priSK Adm ∨ P = b) ∧

(P �= priSK Adm ∨ R = Crypt b (Crypt c (Nonce Nv)))

5.2 Proof of the Main Theorem

Proving privacy by foo V privacy asynth is done, as usual in the Inductive
Method, by induction on the protocol model. Every protocol step generates
a subgoal. When all subgoals are closed, the theorem is proven. Developing the
proof required considerable effort. After eliminating redundancies and stream-
lining, it was reduced to about 170 steps. It will be shown that despite its length,
the proving strategy is general, hence reusable for different protocols.

Induction and simplification leaves us with seven subgoals: the six protocols
steps, plus Fake. The Fake is closed thanks to the classical reasoner blast. Its
proof is simple because messages sent by dishonest agents do not yield associ-
ations. Intuitively, the goal of the Spy is to extract plausible associations, not
make up new ones. However, it keeps its traditional Dolev-Yao attacker role
and influences all usual theorems proven for the protocol ; those are used in the
privacy proof.

The subgoal arising from EV1 is first simplified by remarking that fresh
keys (the blinding factor and commitment key) can never be known to the



102 D. Butin, D. Gray, and G. Bella

Spy — they cannot yet be in the set analz (knows Spy evs1). We then per-
form a case split about the agent Va involved in the version of the first protocol
step generated by this subgoal. If Va is dishonest (a member of the bad set),
then the message it sent yields no new association and the subgoal concludes
thanks to the inductive hypothesis. If Va is an honest agent, we must apply, for
the first time, asynth insert. This lemma is of constant use throughout the proof
because it allows us to split the asynth set. For instance, this stage of the proof
features the following precondition:

a ∈ asynth (insert
{{|Agent Va, Crypt (priSK Va) (Crypt ba (Crypt ca (Nonce Nva)))|},
Agent Va, Crypt (priSK Va) (Crypt ba (Crypt ca (Nonce Nva))),
Agent Va, Agent Adm, Crypt ba (Crypt ca (Nonce Nva))}
(aanalz Spy evs1))

Let us call X the set such that a ∈ asynth (insert X (aanalz Spy evs1)).
Applying asynth insert leaves us with three possibilities:

1. a = X.
2. a ∈ asynth (aanalz Spy evs1).
3. There exists a2 in aanalz Spy evs1 and an element m such that a is the

union of a2 and X and m is both in X and in a2.

The inductive hypothesis tells us that Nv is in a and X contains no nonces,
so the first disjunct is excluded. The second disjunct is eliminated thanks to
the lemma nv fresh a2, not quoted here, which states that fresh nonces do not
appear in association syntheses.

If a is a union, more precision is required. First, if the agent V from the
inductive hypothesis and the agent Va introduced by the induction are dif-
ferent, then V /∈ X and therefore V must be in a2. Since Nv is also in a2,
foo V privacy aanalz leads us to a contradiction.

Otherwise, V = Va. If Nv and Nva are equal, Nv must be fresh like Nva. The
auxiliary lemma aanalz traffic, according to which elements in associations which
are not agent names must have appeared in the traffic, solves this case (fresh
elements never appeared in network traffic). On the other hand, if Nv �= Nva, the
element in common m can be any of the elements in X . We appeal to another
lemma, association Nv. It is specifically tailored for this subgoal, used only here,
and shows that an association containing a nonce can not contain also any of the
possibilities for m listed here except for V. Together with foo V privacy aanalz,
that takes care precisely of the case m = V, this solves the subgoal.

The use of asynth insert to split the association synthesis is a technique used
for all subgoals of the theorem. It turns out that the third disjunct generates the
bulk of the proving work for the remaining subgoals. We will therefore focus on
it. It requires taking a close look at the structure of sets in aanalz.

Subgoals arising from protocol steps two and four are much larger than the
other ones because of the generic specification of the steps. For instance, in the
second protocol step, the administrator has received a signed ciphertext from
the voter. The administrator can extract the ciphertext from the signature, but
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has no means in general to look inside. We only assume that it is possible to
know that the ciphertext contains no more than one atomic component, by
inspecting its length. However, the precise nature of the plaintext is unknown
in general and this generality in the specification of the inductive step explains
the additional complexity of the proof. It is necessary if the precondition is to
be realistic. Likewise, in step four, the collector receives a signed ciphertext that
he cannot open in general. The concrete consequence in terms of association
syntheses is that potential common elements m are not listed explicitly in the
goal preconditions. Instead of belonging to a finite set of bound variables, only
partial information is known about them. For instance, we may only know that
an element m can be deduced from some ciphertext via analzplus. By contrast,
for non-generic protocol steps, we obtain an explicit set and the proof is much
easier.

A number of results about elements in aanalz are available, such as aanalz PR
and aanalz Adm. These theorems are stated with weak premises and offer a
number of conclusions as disjunctions. The most systematic proof strategy is
therefore to perform case splits about the ciphertext contained in aanalz. As
this is done, one can reason more precisely about encryption keys and plain-
texts until a contradiction is reached thanks to the aforementioned results. One
crucial distinction is whether the name of the collector appears in the associa-
tion. If such is the case, the elements in aanalz arose from the collection step
EV4. Conversely, if Agent Col /∈ a2, the association set in the precondition was
generated by another protocol step. The encryption key P from the ciphertext
Crypt P R, assumed to be in an association, is then compared in turn to the
voter’s signing key, the administrator’s signing key, and to the blinding factor.
Contradictions are reached in every case. The value of the payload R is also
compared with the voter’s blinded vote commitment Crypt b (Crypt c (Nonce
Nv)). Those different situations obviously refer to various ciphertext values nat-
urally generated by the protocol steps. In essence, the proving strategy amounts
to zooming in sufficiently into the various possible association configurations to
uncover contradictions that are not apparent at a more general level.

The outline of this proving strategy is not dependent of a given protocol. Let
us recall the important steps:

1. For every subgoal, split the association syntheses set asynth using
asynth insert.

2. The subgoals arising from explicit protocol steps are straightforward to close
because the set of potential common elements m becomes explicit as well.

3. For more general subgoals, case splits about the possible values of initially
generic ciphertexts are combined with lemmas describing their structure in
associations in a systematic way.

5.3 Proof of the Supporting Theorems

Rather than describing the full proof of every theorem required for the privacy
one, we focus on aanalz PR due to space constraints. It is of constant use in the



104 D. Butin, D. Gray, and G. Bella

privacy proof, appearing in it eleven times, and its proof exemplifies the kind
of reasoning required for the other supporting theorems. Recall its statement
from earlier (5.1) ; it constrains the form of elements of aanalz that contain a
ciphertext.

As expected, complications arise again from the generic steps, namely EV2
and EV4. As the other subgoals are easier to prove, let us concentrate on EV2,
as the proof for EV4 is similar.

We require the following subsidiary results in addition to standard lemmas
from the existing Inductive Method framework:

– analzplus into parts : Elements in the set analzplus X ks (recall ks is the
external key set) are in parts X.

– no pairs : If a message contains only atomic components and already contains
an agent name in its parts set, a number of other elements cannot be in the
parts set.

– analzplus Nv : Assume an analzplus Q (analz H) set contains a ciphertext and
a nonce. If parts Q contains only atomic components, then the decryption
key of the ciphertext must be in analz (insert Q H).

The case where the administrator (Adm) is dishonest is closed easily. Else, we
must distinguish cases on the basis of the origin of the association in the inductive
hypothesis. The first possibility is that it was generated by the EV2 message
introduced by the induction. In that case, the key P in the aanalz PR theorem
statement could either be the administrator’s signing key, or the encryption key
of the ciphertext that he signed. A third possibility is that the entire Crypt P R
is embedded deeper in the signed ciphertext. Let us examine each possibility in
turn.

In the first case, we must show that an agent name (either the collector or a
regular voter) and a nonce cannot be present in analzplus R at the same time.
This is shown by combining analzplus into parts and no pairs. In the second case,
the ciphertext Crypt P R from the theorem precondition is exactly the ciphertext
Crypt Pa Ra signed by the administrator in this version of the second protocol
step. Disentangling the precondition conjunction leads to the same scenario and
an additional one that entails proving that if the inverse of key P is known to
the attacker in the first place, it is all the more known to her after getting hold
of R.

If Crypt P R is embedded in the ciphertext generated by the administrator,
we must perform a few additional case splits but the line of reasoning is the
same, with the additional use of analzplus Nv.

Even though specifying the possible forms of elements in aanalz requires in-
specting a number of scenarios, the proving process is straightforward once some
crucial building blocks are established. Notably, the three subsidiary results we
listed earlier (analzplus into parts and so on) are stated without any reference to
the FOO protocol — they are protocol-independent and can be reused directly.
A submission of our Isabelle theories to the online Archive of Formal Proofs [1]
is being prepared.
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6 Conclusion

We have presented the first interactive theorem proving-based analysis of voter
privacy. It offers an independent and complementary means of investigation to
consolidated work based on process equivalence, ultimately contributing to the
trustworthiness of voting systems. Privacy is modelled as an unlinkability prop-
erty between a voter and her ballot. Extensions to the Inductive Method are
implemented in Isabelle/HOL to specify associations between elements and com-
binations of associations that share a common element.

The initial proof development effort was significant, but a coherent line of rea-
soning emerges from the proof. This general strategy and a number of protocol-
independent results about the new operators support the case of re-usability for
other e-voting protocols. Interactive proofs entail a level of clarity about protocol
scenarios that is unavailable from automatic tools. The inductive nature of our
specification eliminates termination issues or inherent size limitations. While the
benefits of automated tools are clear, our approach sheds a complementary light
on voter privacy by its operational view.

A more general version of the asynth operator, allowing unbounded associa-
tion synthesis, is needed. Other privacy-type properties such as receipt-freeness
and coercion-resistance ought to be specified in the Inductive Method. Addi-
tionally, e-voting protocols that are not amenable to analysis in the process
equivalence model must be studied in our framework to investigate its domain
of applicability. We would also like to program some of the recurring proof steps
as ML tactics.
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Abstract. Confidentiality is an important concern in today’s informa-
tion society: electronic payment and personal data should be protected
appropriately. This holds in particular for multi-threaded applications,
which are generally seen the future of high-performance computing. Multi-
threading poses new challenges to data protection, in particular, data
races may be exploited in security attacks. Also, the role of the sched-
uler is seminal in the multi-threaded context.

This paper proposes a new notion of confidentiality for probabilistic
and non-probabilistic multi-threaded programs, formalized as scheduler-
specific probabilistic observational determinism (SSPOD), together with
verification methods. Essentially, SSPOD ensures that no information
about the private data can be derived either from the public data, or from
the probabilities of the public data being changed. Moreover, SSPOD
explicitly depends on a given (class of) schedulers.

Formally, this is expressed by using two conditions: (i) each publicly
visible variable individually behaves deterministically with probability
1, and (ii) for every trace considering all publicly visible variables, there
always exists a matching trace with equal probability. We verify these
conditions by a clever combination of new and existing algorithms over
probabilistic Kripke structures.

1 Introduction

Confidentiality plays a crucial role in the development of applications dealing
with private data, such as Internet banking, medical information systems, and
authentication systems. These systems need to enforce strict protection of private
data, like credit card details, medical records, etc. The key idea is that secret
information should not be derivable from public data. For example, the program
if (h > 0) then l := 0 else l := 1, where h is a private variable and l is a
public variable1, is considered insecure, because we can derive the value of h
from the value of l. If private data is not sufficiently protected, users refuse
to use such applications. Using formal means to establish confidentiality is a
promising way to gain the trust of users.

1 For simplicity, throughout this paper, we consider a simple two-point security lattice,
where the data is divided into two disjoint subsets, of private (high) and public (low)
security levels, respectively.
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Possibilistic programs. With the trend of multiple cores on a chip and massively
parallel systems like general purpose graphic processing units, multi-threading
is becoming more standard. Existing confidentiality properties, such as nonin-
terference [12] and observational determinism [31,15] are not suitable to ensure
confidentiality for multi-threaded programs. They only consider input-output
behavior, and ignore the role of schedulers, while multi-threaded programs al-
low all interactions between threads and intermediate results to be observed
[31,15,14]. Thus, new methods have to be developed for an observational model
where an attacker can access the full code of the program, observe the traces
of public data, and limit the set of possible program traces by selecting a
scheduler.

Because of the exchange of intermediate results, to ensure confidentiality
for multi-threaded programs, it is necessary to consider the whole execution
traces, i.e., the sequences of states that occur during the execution of the pro-
gram [31,24]. Besides, due to the interactions between threads, the traces of a
multi-threaded program depend on the scheduler that is used to execute the
program. Therefore, a program’s confidentiality is only guaranteed under a par-
ticular scheduler, while a different scheduler might make the program reveal
secret information, as illustrated by the following example.

{if (h > 0) then l1 := 1 else l2 := 1}∣∣∣∣{l1 := 1; l2 := 1}∣∣∣∣{l2 := 1; l1 := 1},

where
∣∣∣∣ is the parallel operator. Under a nondeterministic scheduler, the se-

cret information cannot be derived, because the traces in the cases h > 0 and
h ≤ 0 are the same. However, under a scheduler that always executes the left-
most thread first, the secret information is revealed by observing whether l1 is
updated before l2, i.e., when l1 is updated before l2, the attacker knows that
h > 0. However, this program is considered secure by observational determinism
[31,15].

Taking into account the effect of schedulers on confidentiality, we proposed a
definition of scheduler-specific observational determinism (SSOD) for possibilistic
multi-threaded programs [14]. Basically, a program respects SSOD if (SSOD-1)
for any initial state, traces of each public variable are stuttering-equivalent, and
(SSOD-2) for any two initial states I and I ′ that are indistinguishable w.r.t.
the public variables, for every trace starting in I, there exists a trace that is
stuttering equivalent w.r.t. all public variables, starting in I ′.

SSOD is scheduler-specific, since traces model the runs of a program under
a particular scheduler. When the scheduling policy changes, some traces cannot
occur, and also, some new traces might appear ; thus the new set of traces may
not respect our requirements. For example, the above program is accepted by
SSOD w.r.t. the nondeterministic scheduler, but is rejected under the scheduler
that always executes the leftmost thread first.

Probabilistic programs. To extend our earlier results, this paper also considers
programs that have probabilistic behaviors. For probabilistic programs, some
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threads might be more likely to be executed than others. This opens up the
possibility of probabilistic attacks, as in the following example.

if (h > 0) then {l1 := 1 || l2 := 1} else {l1 := 1 || l2 := 1}.

This program is secure under a nondeterministic scheduler. However, consider
a scheduler that, when h > 0, picks thread l1:=1 first with probability 3/4;
otherwise, it chooses between the threads with equal probabilities. With this
scheduler, we can learn information about h from the probabilities of public
data traces. However, the program is still accepted by SSOD w.r.t. this scheduler,
because SSOD only considers the existence of traces, not its probability.

To detect vulnerabilities to probabilistic attacks, we define scheduler-specific
probabilistic-observational determinism (SSPOD). This formalizes the observa-
tional determinism property for probabilistic multi-threaded programs, executed
under a probabilistic scheduler. Basically, a program respects SSPOD if (SSPOD-
1) for any initial state, each public variable individually behaves deterministically
with probability 1, and (SSPOD-2) for any two initial states I and I ′ that are
indistinguishable w.r.t. the public variables, for every trace starting in I, there
exists a trace that is stuttering equivalent w.r.t. all public variables, starting in
I ′, and the probabilities of these two matching traces are the same.

The first condition of SSPOD requires that all public variable traces indi-
vidually evolve deterministically. Requiring only that a stuttering-equivalent
public variable trace exists is not sufficient to guarantee confidentiality for multi-
threaded programs, as extensively discussed in [31,14]. The first condition avoids
leakage of private information based on the observation of public data traces.
The second condition of SSPOD requires the existence of a public data trace with
equal probabilities. This existential condition avoids refinement attacks where
an attacker chooses an appropriate scheduler to control the set of possible traces.
The second condition is also sufficient to ensure that any difference in the relative
order of updates is coincidental, and thus no private information can be deduced
from it. In addition, SSPOD also guarantees that no private information can be
derived from the probabilistic distribution of traces, because indistinguishable
traces occur with the same probabilities.

Notice that the question which classes of schedulers appropriately model
real-life attacks is orthogonal to our results: our definition is parametric on the
scheduler. In Section 5, we compare SSPOD with the existing formalizations of
confidentiality properties for probabilistic programs [30,24,25], and argue that
they are either unsuitable to the multi-threaded context, or very restrictive.

Verification. Besides formalizing the property, the paper also discusses how to
verify SSPOD. The traditional way to check information flow properties is by
using a type system. However, as discussed in [14], type systems are not suited
to verify existential properties, as the one in SSPOD. Besides, type systems
that have been proposed to enforce confidentiality for multi-threaded programs
are often very restrictive. This restrictiveness makes the application program-
ming become impractical; many intuitively secure programs are rejected by this
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approach, i.e., h := l; l := h. Instead, in [14], we proposed to use a different ap-
proach for SSOD, encoding the information flow property as a temporal logic
property. This idea is based on the use of self-composition [6,15], and allows us
to verify the information flow property via model checking. However, the result
is rather complex, and thus its verification cannot be handled efficiently by the
existing model-checking tools.

Therefore, this paper proposes more efficient algorithms to verify our defini-
tion. For this purpose, programs are modeled as probabilistic Kripke structures.
For both conditions of SSPOD, we present a verification approach, a clever com-
bination of new and existing algorithms. The first condition is checked by remov-
ing all stuttering loops, except the self-loops in final states, and then verifying
stuttering equivalence. Verification of stuttering equivalence is implemented by
checking whether there exists a functional bisimulation between the executions
of the Kripke structure and a witness trace. This is a new algorithm, that is
also relevant outside the security context, e.g., as in partial-order reduction for
model checking, because stuttering equivalence is a fundamental concept in the
theory of concurrent and distributed systems. SSOD-1 can be also verified by
a variant of this algorithm. SSPOD-2 is implemented by removing stuttering
steps, thereby reducing the problem into an equivalence problem for probabilis-
tic languages [29,11,16]. This approach gives a precise verification method for
observational determinism. Furthermore, the model checking procedure is also
able to produce a counter-example to synthesize attacks for insecure programs,
i.e., for programs that fail either of the conditions of SSPOD (similar as in [21]).

Currently, we are implementing our verification techniques in the symbolic
model checker LTSmin [7]. SSPOD-1 has been implemented, and we will adapt
the existing implementation of [16] for SSPOD-2. Once the implementation is
finished, we will apply the tool to case studies.

Organization of the Paper. Section 2 presents the preliminaries. Then, Sec-
tion 3 formalizes the SSPOD property, and Section 4 presents its verification.
Section 5 discusses related work. Section 6 concludes, and discusses future work.

2 Preliminaries

2.1 Basics

Sequences. Let X be an arbitrary set. The sets of all finite sequences, and all
sequences of X are denoted by X∗, and Xω, respectively. The empty sequence is
denoted by ε. Given a sequence σ ∈ X∗, we denote its last element by last(σ). A
sequence ρ ∈ X∗ is called a prefix of σ, denoted by ρ � σ, if there exists another
sequence ρ′ ∈ Xω such that ρρ′ = σ.

Probability distributions. A probability distribution μ over a set X is a function
μ ∈ X → [0, 1], such that the sum of the probabilities of all elements is 1, i.e.,∑

x∈X μ(x) = 1 over a set X . If X is uncountable, then
∑

x∈X μ(x) = 1 implies
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that μ(x) > 0 for countably many x ∈ X . We denote by D(X) the set of all
probability distributions over X . The support of a distribution μ ∈ D(X) is the
set supp(μ) = {x ∈ X | μ(x) > 0} of all elements with a positive probability.
For an element x ∈ X , we denote by 1x the probability distribution that assigns
probability 1 to x and 0 to all other elements.

2.2 Probabilistic Kripke Structures

We consider probabilistic Kripke structures (PKS) that can be used to model se-
mantics of probabilistic programs in a standard way [13]. PKSs are like standard
Kripke structures [17], except that each transition c → μ leads to a probability
distribution μ over the next states, i.e., the probability to end up in state c′ is
μ(c′). Each state may enable several probabilistic transitions, modeling different
execution orders to be determined by a scheduler. For technical convenience, our
PKSs label states with arbitrary-valued variables from a set Var , rather than
with Boolean-valued atomic propositions. Thus, each state c is labeled by a la-
beling function V (c) : Var → Val that assigns a value V (c)(v) ∈ Val to each
variable v ∈ Var . We assume that Var is partitioned into sets of low variables
L and high variables H , i.e., Var = L ∪H , with L ∩ H = ∅.
Definition 1 (Probabilistic Kripke structure). A probabilistic Kripke
structure A is a tuple 〈S, I,Var ,Val , V,→〉 consisting of (i) a set S of states,
(ii) an initial state I ∈ S, (iii) a finite set of variables Var, (iv) a countable
set of values Val, (v) a labeling function V : S → (Var → Val), (vi) a
transition relation →⊆ S × D(S). We assume that → is non-blocking, i.e.,
∀c ∈ S. ∃μ ∈ D(S). c → μ.

A PKS is fully probabilistic if each state has at most one outgoing transition,
i.e., if c → μ and c → μ′ implies μ = μ′. Given a set Var ′ ⊆ Var , the projection
A |Var′ of A on Var ′, restricts the labeling function V to labels in Var ′. Thus, we
obtain A |Var′ from A by replacing V by V |Var′ : S → (Var ′ → Val).

Semantics of probabilistic programs. A program C over a variable set Var can be
expressed as a PKS A in a standard way: The states of A are tuples 〈C, s〉 con-
sisting of a program fragment C and a valuation s : Var → Val . The transition
relation → follows the small-step semantics of C. If a program terminates in a
state c, we include a special transition c → 1c, ensuring that A is non-blocking.

Paths and traces. A path π in A is an infinite sequence π = c0c1c2 . . . such
that (i) ci ∈ S, c0 = I, and (ii) for all i ∈ N, there exists a transition ci → μ
with μ(ci+1) > 0. We define Path(A) as the set of all infinite paths of A; and
Path∗(A) = {π′ � π | π ∈ Path(A)} as the set of all finite paths in Path(A).

The trace T of a path π records the valuations along π. Formally, T = trace(π)
= V (c0)V (c1)V (c2) . . .. Trace T is a lasso iff it ends in a loop, i.e., if T = T0 . . . Ti

(Ti+1 . . . Tn)
ω, where (Ti+1 . . . Tn)

ω denotes a loop. Let Trace(A) denote the set
of all infinite traces of A. Two states c and c′ are low-equivalent, denoted c =L c′,
iff V (c) |L = V (c′) |L .
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2.3 Probabilistic Schedulers

A probabilistic scheduler is a function that implements a scheduling policy [24],
i.e., that decides with which probabilities the threads are selected. To make our
security property applicable for many schedulers, we give a general definition.
We allow a scheduler to use the full history of computation to make decisions:
given a path ending in some state c, a scheduler chooses which of the probabilistic
transitions enabled in c to execute. Since each transition results in a distribution,
a probabilistic scheduler returns a distribution of distributions2.

Definition 2. A scheduler δ for PKS A = 〈S, I,Var ,Val , V,→〉 is a function
δ : Path∗(A) → D(D(S)), such that, for all finite paths π ∈ Path∗(A), δ(π)(μ) >
0 implies last(π) → μ.

The effect of a scheduler δ on a PKS A can be described by a PKS Aδ: the set of
states of Aδ is obtained by unrolling the paths in A, i.e., SAδ

= Path∗(A) such
that states of Aδ contain a full history of execution. Besides, the unreachable
states of A under the scheduler δ are removed by the transition relation →δ.

Definition 3. Let A = 〈S, I,Var ,Val , V,→〉 be a PKS and let δ be a scheduler
for A. The PKS associated to δ is Aδ = 〈Path∗(A), I,Var ,Val , Vδ,→δ〉, where
Vδ : Path∗(A) × Var → Val is given by Vδ(π) = V (last(π)), and the transition
relation is given by π →δ μ iff μ(πc) =

∑
ν∈supp(δ(π)) δ(π)(ν) · ν(c) for all π, c.

Since all nondeterministic choices in A have been resolved by δ, Aδ is fully
probabilistic. The probability P (π) given to a finite path π = π0π1 . . . πn is
determined by δ(π0)(π1) ·δ(π0π1)(π2) · · ·δ(π0π1 . . . πn−1)(πn). The probability of
a finite trace T is obtained by adding the probabilities of all paths associated with
T . Based on this observation, we can associate a probability space (Ω,F ,Pδ)
over sets of traces. Following the standard definition, we set Ω = (Var → Val)ω ,
F contains all measurable sets of traces, and Pδ : F → [0, 1] is a probability
measure on F . Thus, Pδ(X) is the probability that a trace inside set X ∈ F
occurs. We refer to [27] for technical details. Notice that Ω and F depend only
on A, not on Aδ.

2.4 Stuttering-Free PKSs and Stuttering Equivalence

Stuttering steps and stuttering equivalence [22,15] are the basic ingredients of
our confidentiality properties. In the non-probabilistic case, a stuttering step
is a transition c → c′ that leaves the labels unchanged, i.e., V (c′) = V (c). In
the probabilistic scenario, a transition stutters if, with positive probability, at
least one of the reached states has the same label. A stuttering-free PKS allows
stuttering transitions only as the self-loops in final states.

2 Thus, we assume a discrete probability distribution over the uncountable set D(S);
only the countably many transitions occurring in A can be scheduled with a positive
probability.
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Definition 4 (Stuttering-free PKS). A stuttering step is a transition c → μ
with V (c) = V (c′) for some c′ ∈ supp(μ). A PKS is called stuttering-free if for
all stuttering steps c → μ, we have that μ = 1c and no other transition leaving
from c, i.e., if c → μ′, this implies μ = μ′.

Two sequences are stuttering equivalent if they are the same after we remove
adjacent occurrences of the same label, e.g., (aaabcccd)ω and (abbcddd)ω .

Definition 5 (Stuttering equivalence). Let X be a set. Stuttering equiva-
lence, denoted ∼, is the largest equivalence relation over Xω ×Xω such that for
all T, T ′ ∈ Xω,a, b ∈ X: aT ∼ bT ′ ⇒ a = b ∧ (T ∼ T ′ ∨ aT ∼ T ′ ∨ T ∼ bT ′).
A set Y ⊆ X is closed under stuttering equivalence if T ∈ Y ∧ T ∼ T ′ imply
T ′ ∈ Y .

3 Scheduler-Specific Probabilistic-Observational
Determinism

A program is confidential w.r.t. a particular scheduler iff no secret information
can be derived from the observation of public data traces, the order of public
data updates, or from the probabilities of traces. This is captured formally by
the definition of scheduler-specific probabilistic-observational determinism.

As shown in [31,14], to be secure, a multi-threaded program must enforce an
order on the accesses to a single low variable, i.e., the sequence of operations
performed at a single low variable is deterministic. Therefore, SSPOD’s first
condition requires that for any initial state, traces of each low variable that do
not end in a non-final stuttering loop are stuttering equivalent with probability
1. This condition ensures that no secret information can be derived from the
observation of public data traces, because when all low variables individually
evolve deterministically, the values of low variables do not depend on the values
of high variables. However, a consequence of SSPOD’s first condition is that
harmless programs such as l:=0||l:=1 are also rejected.

SSPOD also requires that, given any two initial low-equivalent states I and
I ′, for every trace starting in I, there exists a trace that is stuttering equivalent
w.r.t. all low variables, starting in I ′, and the probabilities of these two matching
traces are the same. This condition ensures that secret information cannot be
derived from the relative order of updates of any two low variables, or from any
probabilistic attack, because there is always a matching trace with the same
probability of occurrence.

Let (Ω,F ,Pδ) denote the probability space of Aδ with an initial state I.
Notice that the probability of a trace to end up in a non-final stuttering loop
is 0, because a non-final loop must contain at least one state with a transition
that goes out of the loop; thus, it contains a transition with a probability less
than 1. Thus, if X is a set of traces that ends in a non-final stuttering loop and
are closed under stuttering equivalence, Pδ[X ] might be 0. Therefore, SSPOD is
formally defined as follows.
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Definition 6 (SSPOD). Given a scheduler δ, a program C respects SSPOD
w.r.t. L and δ, iff for any initial state I,

SSPOD-1 For any l ∈ L, let X ∈ F be any set of traces closed under stuttering
equivalence w.r.t. l, we have Pδ[X ] = 1 or Pδ[X ] = 0.

SSPOD-2 For any initial state I ′ that is low-equivalent with I, for all sets of
traces X ∈ F that are closed under stuttering equivalence w.r.t. L, we have
Pδ[X ] = P′

δ[X ], where (Ω,F ,P′
δ) denote the probability space of Aδ with I ′.

Program C is scheduler-specific probabilistic-observational deterministic w.r.t. a
set of schedulers Δ if it is so w.r.t. any scheduler δ ∈ Δ.

4 Verification of SSPOD

This section discusses how we algorithmically verify the two conditions of SS-
POD. As mentioned above, we use a combination of new and existing algorithms.
Moreover, the new algorithm is general, and also applicable in other, non-security
related contexts. We assume that data domains are finite and schedulers use fi-
nite memory. Therefore, the algorithms work only on finite fully probabilistic
PKSs, which can be viewed as finite Markov Chains.

4.1 Verification of SSPOD-1

Algorithm. Given a program C, and a scheduler δ, SSPOD-1 requires that
after projecting Aδ on any low variable l, all traces that do not stutter forever
in a non-final stuttering loop must be stuttering equivalent with probability 1.
To verify this, we pick one arbitrary trace and ensure that all other traces are
stuttering equivalent to this trace. Concretely, for each l ∈ L, we carry out the
following steps.

SSPOD-1 on l
1: Project Aδ on l, yielding Aδ |l .
2: Remove all stuttering loops in Aδ |l .
3: Re-establish the self-loops for final states of Aδ |l . This yields a

stuttering-loop free PKS, denoted Rδ |l .
4: Check whether all traces of Rδ |l are stuttering equivalent by:

4.1: Choose a witness trace by:
4.1.1: Take an arbitrary lasso T of Rδ |l .
4.1.2: Remove stuttering steps and minimize T .

4.2: Check stuttering trace equivalence between Rδ |l and T by check-
ing if there exists a functional bisimulation between them.

This algorithm works, since we transform the probabilistic property SSPOD-1
into a possibilistic one. Key insight is that the probability of a trace that stutters
forever in a non-final stuttering loop is 0. Therefore, after removing all non-final
stuttering loops, it is sufficient to determine whether all traces are stuttering
equivalent.



Confidentiality for Probabilistic Multi-threaded Programs 115

To perform Step 1, we label every state with the value of l in that state. To
remove the stuttering loops in Step 2, we use a classical algorithm for finding
strongly connected components w.r.t. stuttering steps [1], and collapse these
components into a single state. To ensure that the transition relation remains
non-blocking, Step 3 re-establishes the self-loops for final states.

Step 4.1.1 is implemented via a classical cycle-detection algorithm based on
depth-first search (Appendix A of [20]). The initial state of a lasso is also the
initial state of PKS. The algorithm essentially proceeds by picking arbitrary next
steps, and terminates when it hits a state that was picked before. Step 4.1.2 is
done via the standard strong bisimulation reduction. For example, the minimal
form of a lasso abb(cb)ω is a(bc)ω. This minimal lasso is called the witness
trace.

Step 4.2 checks stuttering trace equivalence between a PKS A and the witness
trace T by checking if there exists a functional bisimulation between them, i.e.,
a bisimulation that is a function, thus mapping each state in A to a single state
in T . This is done by exploring the state space of A in a breadth-first search
(BFS) order and building the mapping Map during exploration. We name each
state in T by a unique symbol u ∈ U , i.e., ui denotes Ti. Let succ(T, u) denote
the successor of u on T .

We map the A’s initial state to u0, i.e., Map[init state] = u0. Each iteration of
the algorithm examines the successors of the state stored in the variable current .
Assume that Map[current ] is u, consider a successor c ∈ succ(A, current). The
potential map of c is u if current → c is a stuttering transition; otherwise,
it is succ(T, u). The algorithm returns false , i.e., continue = false, if (i) c
and potential map have different valuations, (ii) c is a final state of A, while
potential map is not the final state of T , or (iii) c has been checked before, but
its mapped state is not potential map.

If none of these cases occurs and c was not checked before, c is added to Q ,
and mapped to potential map. Basically, a state c of A is mapped to u, i.e.,
Map[c] = u, iff the trace from the initial state to state c in A and the prefix of
T upto u are stuttering equivalent.

Let c ∼V c′ denote that c and c′ have the same valuation, i.e., V (c) = V (c′);
final(A, c) denote that c is a final state in A; and final(T, u) denote that u is
the final state in T . The algorithm also uses a FIFO queue Q of frontier states.
The termination of Algorithm 4.2 follows from the termination of BFS over a
finite A.

4.2: Stuttering Trace Equivalence(A, T )
for all states c ∈ S do Map[c] := ⊥;
continue := true;
Q := empty queue(); enqueue(Q , init state);
Map[init state] := u0; // u0 is T0

while !empty(Q) ∧ continue do
current := dequeue(Q);
u := Map[current ];
for all states c ∈ succ(A, current) do
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Fig. 1. Step 1 - Step 4.1

potential map := (c ∼V current) ? u : succ(T, u);
case c �∼V potential map � continue := false;

[] final(A, c) ∧ ¬final(T, potential map) � continue := false;
[] Map[c] = ⊥ � enqueue(Q , c);

Map[c] := potential map;
[] Map[c] �= potential map � continue := false;

return continue;

Example 1. Figure 1 illustrates Step 1 - Step 4.1 on a PKS A consisting of 10
states. Step 1 projects A on a low variable l. The symbols a, b, c etc. denote
state contents, i.e., states with the same value of l are represented by the same
symbol. Step 2 removes all stuttering loops, while Step 3 re-establishes the self-
loops for final states. Step 4.1 takes an arbitrary trace of A and then minimizes
it. Each state of the witness trace T is denoted by a unique symbol ui. Figure 2
illustrates Step 4.2. Initially, all states of A are mapped to a special symbol ⊥
that indicates unchecked states. To keep states readable, we skip the valuation.
Next, state 0 is enqueued, and mapped to u0. Next, the algorithm examines all
unchecked successors of state 0, i.e., states 1, 2, 3. Each of them follows a non-
stuttering step, thus their potential maps are all u1. Since states 1, 2, and 3 have
the same valuation as potential map, i.e., b, they are all enqueued, and mapped
to u1. Next, the successor of state 1, i.e., state 4, is considered. The transition
1 → 4 is non-stuttering, thus potential map = u2. State 4 has the same valuation
as potential map, but it is a final state of A, while potential map is not the final
state of T . Thus, continue = false . The PKS A and the witness trace T are not
stuttering trace equivalent, because there exists a trace that stutters in state 4
forever. The algorithm terminates.

Theorem 1. Algorithm 4.2 returns true iff there exists a bisimulation between
A and T .

Proof. See Appendix B of [20].
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Overall Correctness. Step 1 only changes the labels of states of a PKS. Thus,
the probability space of the PKS is unchanged. Hence, after projecting Aδ on
l, we can reformulate SSPOD-1 in terms of Aδ |l . Let (Ω,F ,Pδ,l) denote the
probability space of Aδ |l . First, we reformulate SSPOD-1, which talks about
projected traces in A, in terms of the traces in the projected Aδ,l

Theorem 2. For any l ∈ L, and for a set of traces X ∈ F that are closed under
stuttering equivalence, if Pδ,l[X ] = 1 or Pδ,l[X ] = 0, then SSPOD-1 holds.

Proof. See Appendix C of [20].

The key step (Step 2) in our algorithm is the reduction of a probabilistic property
to a non-probabilistic property: after removing all stuttering loops, if all traces
of Aδ |l are stuttering equivalent, then Pδ,l[X ] = 1. Thus, SSPOD-1 holds. The
correctness of this step follows from a result from Baier and Kwiatkowska [5]:
whenever all fair traces of a PKS fulfill a certain property ϕ, then ϕ holds
with probability 1. In our context, we define the fairness of traces w.r.t. non-
stuttering transitions. A non-stuttering transition is enabled in a state Ti iff
there exists a finite sequence of transitions from Ti that leads to Tj such that
V (Tj) �= V (Ti). A non-stuttering transition is said to be taken in a state Ti of
T iff ∃j > 0. Ti �= Ti+j . A trace is strongly fair w.r.t. non-stuttering transitions
if given that a non-stuttering transition is enabled infinitely often, it is taken
infinitely often. Thus, a trace that stutters in a non-final stuttering loop forever
is unfair. Let Fair (A) denote the set of fair traces of Trace(A). Applying the
result from [5], we obtain:

Theorem 3. Given a finite Aδ |l and a set of traces X ∈ F that are closed
under stuttering equivalence and do not stutter forever in a non-final stuttering
loop, if ∀T, T ′ ∈ Fair (Aδ |l). T ∼ T ′, then Pδ,l[X ] = 1.

We show that after removing all stuttering loops, and re-establishing the self-
loops for final states, the set of fair traces of A is preserved.
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Theorem 4. Given a PKS A, let R denote the PKS that is obtained after re-
moving all stuttering loops and re-establishing the self-loops for final states. Then
Fair (A) = Trace(R).

Proof. See Appendix D of [20].

Combining these results, we obtain.

Theorem 5. For any l ∈ L, if all traces of Rδ |l are stuttering equivalent, then
SSPOD-1 holds.

Overall Complexity. Step 1 labels every state of A by the value of l in that
state. This is done in time complexity O(n), where n is the number of states of
A. Step 2 uses an O(m)-algorithm to find the strongly connected components,
where m is the number of transitions of A. The time complexity of Step 4.1 is
also O(m). The core of Step 4.2 is the BFS algorithm, whose running time is
O(n+m). Therefore, for a single low variable l, the total time complexity of the
verification is linear in the size of A, i.e., O(n+m), and for any initial state, the
total complexity of the verification of SSPOD-1 (for all l ∈ L) is |L| O(n+m).

4.2 Verification of SSPOD-2

Algorithm. SSPOD-2 states that, given a program C, for any two initial low-
equivalent states I and I ′, if we project on the set of low variables L, the prob-
abilistic languages arising from the executions of I and I ′ should be the same.
A number of efficient algorithms for checking equivalence between probabilistic
languages have been developed, the classical ones in [10,29], and the improved
variants in [11,16]. However, none of the existing algorithms exactly fit our pur-
poses, since either they do not abstract from stuttering steps [29,11,16], or they
consider a different variation of probabilistic language inclusion [10].

Therefore, to verify SSPOD-2, our algorithm first transforms the PKS into an
equivalent one, without stuttering steps, and then we use the latest and most
efficient algorithm from Kiefer et al. [16] to check equivalence of these proba-
bilistic languages. The basic idea of this algorithm is to present the language
of a PKS by a polynomial in which each monomial presents an input word of
the language and the coefficient of the monomial represents the weight of the
word, i.e., the probability of the execution of the word. This method reduces the
language equivalence problem to polynomial identity testing.

SSPOD-2
1: Project both Aδ and A′

δ (modeling the executions starting in I and I ′)
on the set L, yielding Aδ |L and A′

δ |L .
2: Remove all stuttering steps from Aδ |L and A′

δ |L , yielding stuttering-
free PKSs Rδ |L and R′

δ |L .
3: Check the equivalence of the stuttering-free probabilistic languages

between Rδ |L and R′
δ |L , using Kiefer et al. [16].
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Overall Correctness. After projecting both Aδ and A′
δ on L, we can refor-

mulate SSPOD-2 in terms of Aδ |L and A′
δ |L . Let (Ω,F ,Pδ,L) and (Ω,F ,P′

δ,L)
denote the probability space of Aδ |L and A′

δ |L , respectively.

Theorem 6. SSPOD-2 holds iff for all sets of traces X ∈ F that are closed
under stuttering equivalence, we have Pδ,L[X ] = P′

δ,L[X ].

Proof. See Appendix E of [20].

Let R denote a stuttering-free PKS that is obtained by applying Step 2 on a
given A. Let PA and PR be the probabilistic transition functions of A and R,
respectively. Step 2 removes all stuttering steps by changing PA to PR given by
the following equations.

PR(c, c′) =

{
PA(c, c′) if V (c) �= V (c′)∑

c′′:V (c)=V (c′′) PA(c, c′′) PR(c′′, c′) otherwise.

Thus, for non-stuttering steps, PA and PR are the same; for stuttering steps, PR
accumulates the probabilities of moving to c′ via some stuttering steps c → c′′.
Thus, PR accounts for the transition probabilities of stuttering steps in A into
the transition probabilities of non-stuttering steps in R. Therefore, removing
stuttering steps does not change the probabilities of sets of traces that are closed
under stuttering equivalence.

Theorem 7. Let X ∈ F be a set of traces that are closed under stuttering
equivalence, then PA[X ] = PR[X ].

Combining all results, it is obvious that to check SSPOD-2, we can check for
probabilistic language equivalence between Rδ |L and R′

δ |L .

Overall Complexity. Step 1 is done in time complexity O(n), where n is
the number of states of two PKSs. Step 2 essentially calculates a reachability
probability, and is defined as a system of n linear equations over n variables.
This equation system can be solved in O(n3). Step 3 can be done in O(nm),
where m is the number of transitions [16]. Thus, the overall complexity is O(n3)
for each pair I and I ′.

5 Related Work

The idea of observational determinism originates from Roscoe [23], who was
the first to identify the need for determinism to ensure confidentiality for con-
current processes. This observation has resulted in several subtly different def-
initions of observational determinism for possibilistic multi-threaded programs
(e.g., [31,15,28,14]), see [14] for a detailed comparison. Notice that, SSOD is the
only one to consider the effect of schedulers on confidentiality.

When programs have probabilistic behaviors, to prevent information leakage
under probabilistic attacks, several notions of probabilistic noninterference have
been proposed [30,24,25]. The first is from Volpano and Smith [30]. It is based
on a lock-step execution of probability distributions on states, i.e., given any
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two initial states that are indistinguishable w.r.t. low variables, the executions
of the program from these two initial states, after projecting out high variables,
are exactly the same. As shown by Sabelfeld and Sands [24], this definition is
not precise, and overly restrictive. Sabelfeld and Sands’s definition of probabilis-
tic noninterference is based on a partial probabilistic low-bisimulation [24], which
requires that given any two initial states that are indistinguishable w.r.t. low vari-
ables, for any trace that starts in an initial state, there exists a trace that starts
in the other initial state and passes through the same equivalence classes of states
at the same time, with the same probability. This definition is restrictive w.r.t.
timing, i.e., it cannot accommodate threads whose running time depends on high
variables. Thus, it rejects many harmless programs, while SSPOD accepts, such
as if (h > 0) then {l1 := 3; l1 := 3; l2 := 4} else {l1 := 3; l2 := 4}.

To overcome these limitations, Smith proposes to use a weak probabilistic
bisimulation [25]. Weak probabilistic bisimulation allows two traces to be equiv-
alent when they reach the same outcome, but one runs slower than the other.
However, this still demands that any two bisimilar states must reach indistin-
guishable states with the same probability. This condition of probabilistic bisim-
ulation is more restrictive than SSPOD, because when trace occurrences do not
depend on high variables, probabilistic noninterference still rejects the program.

Moreover, all bisimulation-based definitions mentioned above do not require
the deterministic behavior of each low variable. However, we insist that a multi-
threaded program must enforce a deterministic orderings on the accesses to low
variables, see [14]. Finally, probabilistic noninterference [24,25] also put restric-
tions on unreachable states, e.g., l := 1; if (l == 0) then l := h else skip is
secure but rejected, because the bisimulation also considers the case when the
conditional statement is executed from an unreachable state where l equals 0,
see [8]. Mantel et al. [18] overcome this limitation by explicitly using assump-
tions and guarantees about how threads access the shared memory. Notice that
SSPOD does not have this property, thus SSPOD is less restrictive.

Mantel et al. [19] also consider the effect of schedulers on confidentiality.
However, their observational model is different from ours. They assume that the
attacker can only observe the initial and final values of low variables on traces.
Thus, their definitions of confidentiality are noninterference-like.

Palamidessi et al., Chen et al., Smith, and Zhu et al. [2,3,4,9,26,32] investigate
a quantitative notion of information leakage for probabilistic systems. Quanti-
tative analysis offers a method to compute bounds on how much information is
leaked. This information can be used to compare with the threshold, and thus
suggesting whether the program is accepted or not. Therefore, we can tolerate
the minor leakage. Thus, this line of researches is complementary to ours.

6 Conclusion

Summary. This paper introduces the notion of scheduler-specific probabilistic
observational determinism, together with an algorithmic verification technique.

SSPOD captures the notion of confidentiality for probabilistic multi-
threaded programs. The definition extends an earlier proposal for possibilistic
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confidentiality of such programs, and makes it usable in a larger context. It is im-
portant to consider probabilistic multi-threaded programs, because this captures
the realistic behavior of programs.

We also propose an algorithmic verification technique for it. The verification is
using a combination of new and existing algorithms. The new algorithm solves
a standard problem, which makes it applicable also in a broader context. We
believe that the idea of adapting known model checking algorithms will also be
appropriate for other security properties, such as integrity and availability.

Future Work. We see several directions for future work. We plan to continue
the study of other security properties, i.e., anonymity, integrity, and availability.
We believe that our algorithmic approach is also appropriate to efficiently and
precisely verify these security properties.

Further, we also plan to relax our definitions of confidentiality by quantifying
the information flow and determining how much information is being leaked.
The existing models of quantitative analysis do not address which measure is
suitable to quantify information leakage for multi-threaded programs, thus a new
approach has to be developed.
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Abstract. A KPU is a replacement for a standard CPU that natively
runs encrypted machine code on encrypted data in registers and memory
– a ‘crypto-processor unit’, in other words. Its computations are opaque
to an observer with physical access to the processor but remain mean-
ingful to the owner of the computation. In theory, a KPU can be run
in simulation and remain as secure (or otherwise) as in hardware. Any
block cipher with a block-size of about a word is compatible with this
developing technology, the long-term aim of which is to make it safe to
entrust data-oriented computation to a remote environment.

Hardware is arranged in a KPU to make the chosen cipher behave
as a mathematical homomorphism with respect to computer arithmetic.
We describe the architecture formally here and show that ‘type-safe’
programs run correctly when encrypted.

1 Introduction

A KPU is a replacement for a standard CPU (‘central processor unit’) that na-
tively runs encrypted machine code on encrypted data in registers and memory.
The term ‘KPU’ is derived from ‘crypto-processor’, and while the latter has been
used for several hardware-based units aimed at helping overall system security
(see, for example, [3, 10, 15]), we mean it in the literal sense of a complete gen-
eral purpose processor that has been architected to perform all its computations
encrypted. Any block cipher is compatible provided that the block-size is not
impractical – it dictates the physical size of an information word. The technology
is aimed at allowing data-oriented applications such as fluid dynamics computa-
tions, image processing, even cryptography, to run in an insecure environment
in relative security.

An observer can recognize control flow (jumps, branches, etc.), but the mean-
ing of the data is hidden by the encryption. An observer may see the calculation

43 # 43 = 21234089

but that it represents 1 + 1 = 2 is known only to the owner of the computation.
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Everything a programmer needs to know about a KPU is summarized in Box 1.
The machine code is an encrypted form of the standard RISC [11] instruction
set. The interested reader will find an ‘on the metal’ instruction format in the
patent [1], which sets out design rules that result in a correctly working KPU,
whatever the block cipher chosen, plus a reference implementation.

This paper deals with correctness.
Box 1. A KPU is a CPU that natively
processes mixed encrypted and unen-
crypted data in general purpose regis-
ters and memory. It executes encrypted
RISC machine code instructions on:

– encrypted data and data addresses,
– unencrypted program addresses.

Instructions must be programmed with
encryption type in mind. Arithmetic
instructions apply to encrypted data,
jumps to unencrypted program ad-
dresses. But . . .

– memory load/store instructions
are polymorphic: they copy data
whether encrypted or unencrypted.

As well as setting out the KPU de-
sign and design principles, we show
that a KPU running an encrypted
machine code programruns ‘correct-
ly’: it generates machine states that
are encryptions of themachine states
expected in an ordinary RISC CPU
running the correspondingunencryp-
ted machine code program.The only
proviso is that the running program
does not ‘break the conventional a-
partheidbetweenprogramanddata’,
whichwe characterize as type-safe for
a KPU (also known as ‘crypto-safe’)
below.Thatmeans in particular that
a compiler for the KPU needs to be
run outside of the KPU.

Definition 1. A program is type-safe for a KPU (‘crypto-safe’) if those KPU
machine instructions that work on encrypted data always get encrypted data on
which to work during execution of the program, while those instructions that work
on unencrypted data always get unencrypted data on which they can work.

The need for such a notion arises from the fact that a mix of encrypted and
unencrypted data is always circulating inside a KPU and through memory and
registers. While data and data addresses are encrypted, program addresses are
not. More generally, program address encryption needs to be different from data
and data address encryption, but we will suppose the program address encryp-
tion is null for the purposes of this exposition. On the one hand the distinction
is physically mandated: the circuit that updates the program counter is distinct
from the circuit that does the general arithmetic, so the encryptions may be
different without interfering. On the other hand the two encryptions ought to be
different for cryptographic reasons: the usual change in the program counter from
cycle to cycle is an increment by 4 on a 32-bit machine, so valuable information
could be garnered were the counter to be observed.

Type-safety in the KPU is explored in more detail in [2]. The special KPU
RISC+CRYPT assembly is a typed language, and those assembly language pro-
grams that type-check correctly are shown in [2] to be type-safe for the KPU.

This paper is structured as follows: first, a top-down view of KPU design is
given in Section 2 and 3, then we give a description of a RISC CPU in Section 4,
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Fig. 1. An abstract view of a processor
with transition function μ, sending inputs
i to peripherals and receiving responses o
when treating instruction x.

Fig. 2. Adding imaginary codecs D, E that
cancel with D ◦ E = I to an abstract pro-
cessor. μ′ marks out a processor that works
with encrypted state and I/O.

detailing a KPU further in Section 5. We compare the two in Section 6, ultimately
deriving the asserted ‘correct’ correspondence between the behaviours.

2 Overview

This section gives a high-level view of KPU design principles. A current-day CPU
can be regarded in the abstract as a finite state machine μ with inputs o and
outputs i that can be visualized as a black-box as in Fig. 1. The state σ managed
by the state machine consists of the registers of the CPU. That may consist of a
32-bit value at each of approximately 32 registers within the processor, while the
inputs and outputs constitute the processor’s communications with peripherals
(counting ‘random access memory’ – RAM – as a peripheral). We view the
processor outputs i as ‘inputs’ (commands) to the peripherals and the processor
inputs o as ‘outputs’ (responses) from the peripherals.

Formally, on the nth clock cycle, the processor is executing the instruction x,
say, and effects the following transformation:

μx(σn, o) = (σn+1, i)

where μ is the ‘state transition function’, here written subscripted by the in-
struction x being executed. Where convenient we shall write μ(−, x,−) for μx.

One may introduce encryption into this picture by imagining codecs on both
sides of the processor, as shown in Fig. 2. Encryption is denoted by units labelled
E and decryption by units labelled D, with the composition D◦E being the iden-
tity. Nothing changes from the point of view of the processor μ. It sees the same
states as always since the pair of codecs in the state feedback loop cancel out –
they might as well not be there at all as far as the processor is concerned. If it
sees the same inputs o as always, it produces the same outputs i. It is only up to
us to provide appropriately encrypted inputs at left in order that the processor
continue to see the same o and x on the right of the decoder D.

The mathematical content of the above paragraph is as follows. Letting σ′

be the encrypted state, with D(σ′) = σ, and x′ be the encrypted instruction,
with D(x′) = x, we see that the dotted lines in Fig. 2 delimit a processor with
transition function μ′, related to μ by
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(D ×D) ◦ μ′
x′ = μx ◦ (D ×D) (1)

That is, it makes the following transition on the nth cycle:

μ′
x′(σ′

n, o
′) = (σ′

n+1, i
′)

where i′ and o′ are respectively encrypted inputs to/outputs from peripherals.
When we provide the appropriate sequence of inputs o and o′ respectively, the

two systems evolve as one. So if one builds a machine with transition function
μ′ instead of μ, it will behave perfectly correctly, but inputs and outputs and
states will be encrypted. How can one build it?

It turns out that if we lay out any standard RISC processor hardware design
without integrating too early the computer arithmetic part, then it can be done.
Though we will not work through the design transformation, it means pushing
the imaginary codecs in the diagram of Fig. 2 deeper and deeper into the hard-
ware until they meet up and cancel. As imaginary codecs are ‘pushed through’
each combinatorial logic unit inside the CPU, they leave behind on the draw-
ing board a unit with altered functionality bearing the same relationship to the
original as the altered transition function μ′ bears to its original μ via (1).

We will describe this transformed design mathematically, and prove it runs
correctly. The presentation is necessarily abstract, but all the details left out can
be filled in from the instruction manual [8] for a RISC processor.

3 KPU versus RISC CPU

In this section, we aim to sketch out the relation that holds between a KPU
(crypto-processor) and a reference RISC CPU when running the same program.
By the end of the paper we will have proved the result that is only stated here.

A RISC CPU has just five parts:R,

P

μ

io

n σn+1σ

p

R

M

x

Fig. 3. Adding heap memory M , program
counter p, program memory P and registers
R to the abstract picture of a CPU

p, M , P , μ. The internal state is rep-
resented by the component R, a vec-
tor consisting of the contents of the 32
32-bit general registers. The compo-
nents M , P , p are external to the pro-
cessor chip. The first, M , represents
the read-write memory area, and the
second, P , represents the read-only
program memory area. The third, p,
is considered peripheral to the CPU
here for the purposes of this expo-
sition, whereas in terms of physical
design and proximity it is most cer-
tainly an internal component. It is the

program counter register content. The processor needs to refer to this value ev-
ery cycle in order to fetch the right instruction from memory for decoding. A
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Fig. 4. Designing a KPU by ‘pushing through’ cancelling pairs of imaginary codecs
into a CPU abstract schematic. Dotted lines demarcate KPU components

finite state machine transition function μ representing combinatorial logic in the
processor completes the list. Fig. 3 shows their relationship, refining Fig. 1.

A KPU, abstractly, has the corresponding altered parts R′, p′, M ′, P ′ and
μ′ respectively, as shown in Fig. 4, where the derivation by ‘pushing through’
imaginary codec pairs in Fig. 3 is illustrated. KPU data memory M ′ behaves just
like CPU memory M containing encrypted data at encrypted addresses (byte-
wise access is implemented via arithmetic on full words) because the imaginary
codec on input to M decodes both address and data lines. The KPU’s program
memory P ′ behaves like the CPU memory P with encrypted instructions stored
at unencrypted addresses. The KPU registers R′ behave like CPU registers R
with encrypted data stored at unencrypted locations – the imaginary codec on
input to R decodes data but not index lines. Thus ordinary register and memory
components are used in a KPU.

We set both KPU and CPU up initially so that encrypted program instruc-
tions lie in memory in a KPU at precisely those addresses where the corre-
sponding unencrypted program instructions lie in a CPU. That is, P (p) is the
instruction at program address p in the CPU and P ′(p) is the encryption of that
instruction at the same program address p in the KPU. Let D stand for the
instruction decryption function, then

P (p) = D(P ′(p)) (2)

holds initially. Moreover, we consider the program areas P and P ′ to be read-
only, so (2) stays that way through program execution.

Let the value in the program counter register pc be pn and p′n respectively
in CPU and KPU after n cycles. The program counter starts off pointing to the
same entry point in both CPU and KPU:
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p0 = p′0 (3)

Now let D stand for the data decryption function. Let a′ be a typical (encrypted)
memory address, corresponding to the unencrypted memory address a, with
D(a′) = a. Let Mn be the state of the CPU heap data memory area after n
instruction cycles when an unencrypted program is running in a reference RISC
CPU, while M ′

n is the state of the KPU heap data memory area after n cycles
when the corresponding encrypted program runs in the KPU. Thus Mn(a) is
the content of the memory cell with address a in the CPU, while M ′

n(a
′) is the

content of the memory cell with corresponding address a′ in the KPU.
Similarly let Rn and R′

n be the states of the general purpose registers in the
CPU and KPU respectively, and let ρ be the index that picks out the ρth register
in both CPU and KPU. Thus Rn(ρ) is the content of the ρth register in the CPU
on the nth cycle, while R′

n(ρ) is the content of the ρth register in the KPU on
the nth cycle. Memory and registers start out in equivalent states:

M0(a) = D(M ′
0(a

′)) (4)

R0(ρ) = D(R′
0(ρ)) (5)

We are now able to state the result that this paper aims at.

Theorem 1. For a type-safe (aka ‘crypto-safe’) program running in both CPU
and KPU, provided the program loader sets up equivalent initial states as specified
by (2–5), the states obtained thereafter are the same modulo encryption:

Mn(a) = D(M ′
n(a

′)) (6)

Rn(ρ) = D(R′
n(ρ)) (7)

pn = p′n (8)

In the following pages both CPU and KPU are described as satisfying determin-
istic systems of recursion equations that are transformed to one another via a
relation extending (6–8), which proves Theorem 1.

In practice, the initial conditions (4–5) need hold only for those addresses
and registers that are read before they are written during execution. Since it
should never be the case that an application program reads dynamic memory
before writing it, we can forget about (4) in practice, except for the encrypted
addresses a′ of the (encrypted) read-only constants that the program loader
embeds in memory prior to program execution. Likewise, registers should not be
read before written, so one may forget about (5) with the exception of register
number ρ = 0, which is fixed at zero in a RISC machine, and which may well be
read first by programs which rely on that.

To illustrate the predictive power of Theorem 1 we prove an immediate corol-
lary. The special instruction register ir in a CPU always contains a copy

xn = P (pn) (9)
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of the instruction xn found at address pn (the program counter contents at cycle
n) in the CPU program memory area P , and in the KPU it contains a copy

x′
n = P ′(p′n) (9′)

of the instruction x′
n at address p′n in the KPU program memory area P ′.

Corollary 1. The ir contents xn in a CPU and x′
n in a KPU at cycle n always

correspond during runs of a type-safe machine code program (and its encryption,
respectively) in CPU and KPU, modulo the encryption. That is:

xn = D(x′
n)

Proof. That is by virtue of (2) and (8) with (9) and (9′).

Note that the decryption function D implicitly varies from place to place. We
should write DP (P

′(p′)) and DM (M ′
n(a

′)), but we take the subscripts as read.

4 Formal Description of a RISC CPU

This section provides the abstract view of a reference RISC CPU that serves as a
basis for comparison with a KPU (crypto-processor). It is a succinct description,
and therefore necessarily dense, but we hope that familiarity with the real-life
model leaves the reader able to concentrate on the special features.

The first special feature is that we view memory and program counter as
separate to the CPU proper, working in parallel as an independent, joint com-
municating process that receives requests i and returns responses o. Requests i
emitted by the processor are of type I, responses o received are of type O, and
these I/O commands refer to memory elements sited at addresses of type D.

The type D is a general type for data words (32-bit binary values, in practice),
so we are saying that addresses are just one kind of data and the processor does
not inherently know the difference, which is true. The processor may also, in
principle, confuse data addresses and program addresses because they look the
same, nevertheless we choose to pick out and name the subset P of instruction
addressesP ⊆ D in order to make certain type expressions look more meaningful
to the reader. We also set X to be the type of program instructions. Again, in
practice, this is just another special subset X ⊆ D of the type D of 32-bit data
words, but we pick it out and name it in order to enhance readability here.

Set R = D32, then the registers state R in a RISC CPU comes from domain
R, the program counter value p comes from domain P, memory outputs o from
domain O, memory inputs i from domain I, program instructions x from domain
X. On the nth cycle, the transition effected by the CPU is as follows:

μ : R×X×O → R× I

(Rn+1, in) = μ(Rn, xn, on) (10)
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The reason why the request in to memory and the response on on different sides
of the equation get the same subscript is that memory (via cache) reacts within
one cycle, and the suffix merely denotes that cycle. This view is apparently
simplistic – in reality memory accesses sometimes take longer than a single cycle
to complete even though programs are carefully arranged by the compiler so that
never has an effect – but it simplifies the presentation. Without it, we would have
to split the transition function into two halves, one to emit the request and one
to treat the response, and the technicality would obscure the main issues.

Requests i : I emitted by the CPU and responses o : O received by the CPU
have the forms below:

I = D×D � D � P � �

i = a!d | a? | ↑p | φ
O = D � �

o = d | φ
Requests of the form a!d and a? are, respectively, write and read requests to
memory for accesses at address a. The request ↑p is directed to the program
counter, commanding it change to program address p. Request φ is ‘no request’.
The empty response φ is received in every case except a read request a? to
memory, when the datum d at address a is received in response.

We need to formalise the memory and program counter behaviour in terms of
requests and responses. Let Mn : D → D be the data memory at cycle n, and P :
P → X be the program memory – which we suppose read-only, hence constant
during a program run. The following equations define memory and program
counter behaviour according to ordinary intuition. Memory changes according
to a write request in = a!d as in (11) and responds to a read request in = a?
as in (12). The program counter changes in response to a jump request in = ↑p
as in (13), otherwise it is incremented each cycle by the size of an instruction
word, which we abbreviate as ‘4’ to avoid too much confusing generality:

Mn+1(a) =

{
d in = a!d

Mn(a) otherwise
(11)

on =

{
Mn(a) in = a?

φ otherwise
(12)

pn+1 =

{
p in = ↑p
pn + 4 otherwise

(13)

The behaviour of memory and program counter in (11–13) above in conjunction
with (10) and also the statement (9) that the nth program instruction is fetched
from program memory at the address given by the program counter on the nth
cycle completely specifies RISC CPU behaviour. It remains only to refine the
processor transition function μ of (10) to detail the behaviour per instruction.

The specification of μ may be extracted from the manual [8]. The cases are
each predicated on the functionality Λ of an Arithmetic Logic Unit (ALU) and
Ξ of a Sign Extension Unit (SEU) within the RISC CPU (the SEU is responsible
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for the embedding of 16-bit numbers in 32-bit space). For each function code ι,
Λι produces a ‘result and carry’ pair from two operands:

Λι : D ×D → D ×D Ξ : D → D

We will not go through each RISC instruction here. Here are three exemplars:

1. The instruction xn = addiu ρ1 ρ2 k invokes the following transition, where
π1 is the projection to the first of the pair of outputs from the ALU:

Rn+1(ρ) =

{
π1(Λadd(Rn(ρ2), Ξ(k))) 0 �= ρ = ρ1

Rn(ρ) otherwise
(14)

on = in = φ

The ‘0 �= ρ1’ expresses that, in a RISC CPU, register zero contains an im-
mutable (zero) value, so writing to it does nothing. Otherwise, the instruction
adds k to the content of register ρ2 and writes the result in register ρ1.

2. A jump and link instruction xn = jal p invokes the following transition:

Rn+1(ρ) =

{
pn + 4 ρ = ra

Rn(ρ) otherwise
(15)

in = ↑p, on = φ

We have simplified here – in reality only 26 bits of the jump target address p
are supplied in the instruction, the top bits being filled in from the instruction
address pn. The address pn+4 of the next instruction is written to the ra
(‘return address’) register.

3. A load word instruction xn = lw ρ1 k(ρ2) invokes the following transition:

Rn+1(ρ) =

{
d 0 �= ρ = ρ1

Rn(ρ) otherwise
(16)

in = a? where a = π1(Λadd(Rn(ρ2), Ξ(k)))

d = Mn(a)on = d

This instruction fetches from memory at a location a offset by k from the
address in register ρ2, and writes to register ρ1.

One may have confidence the full specification is correct as it runs RISC machine
code correctly.

5 Formal Description of a KPU

This section describes a KPU (crypto-processor). There are two differences with
respect to a RISC CPU: modified general purpose ALU and SEU components.
The rest consists of exactly the RISC CPU specification set out in Section 4,
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which is carefully written for the purpose, being predicated on ALU and SEU
functionalities without making any requirements of them.

We denote the domain of encrypted data words for the KPU as D′. It can
be that D′ takes up more bits than D (the space of unencrypted data words).
One practical choice has D as the space of 32-bit words, and D′ (a subspace of)
64-bit words, which fits well with block ciphers such as DES [14] and Blowfish
[13]. Nevertheless, we will assume here that elements of D′ take up the same
number of bits as elements of D, in order to avoid minor technical adjustments.

Thus a KPU is obtained by taking the ordinary RISC CPU design of Section 4
and replacing the ALU and SEU, with functionalities Λι and Ξ respectively, with
units that have modified functionalities

Λ′
ι′ : D

′ ×D′ → D′ ×D′ Ξ ′ : D′ → D′

that are designed to satisfy certain equational ‘correctness’ conditions derived
from the following architectural facts about a RISC processor:

(i) the first output of the ALU drives the 32-bit arithmetic result;
(ii) the second ALU output drives the top part in 64-bit arithmetic results;
(iii) when appropriate, a non-zero second ALU output triggers a program branch;
(iv) the SEU output produces a 32-bit result from a 16-bit input.

Because of that wiring in the processor, the required relation (1) between original
and modified transition functions μ, μ′ specified in Section 3 in conjunction with
the detailed instruction functionalities (Section 4) then determines that (17-20)
below must hold. Connection (i) determines (19), (ii) forces (20) and (iii) forces
(18), while (iv) forces (17). Here π2 is the projection to the second of the pair
of outputs from the ALU or modified ALU, δ0 is the function that returns true
at 0, and false otherwise, ι0 is an ALU function code for a comparison operator,
such as less than, ι1 is a function code for an arithmetic operation with one
significant output, such as addition, ι2 is an ALU function code for an arithmetic
operation with two significant outputs, such as multiplication, and ι′0, ι′1, ι′2 are
the analogues for the modified ALU.

D ◦Ξ ′ = Ξ ◦ D (17)

δ0 ◦ π2 ◦ Λ′
ι′0

= δ0 ◦ π2 ◦ Λι0 ◦ (D ×D) (18)

D ◦ π1 ◦ Λ′
ι′1

= π1 ◦ Λι1 ◦ (D ×D) (19)

(D ×D) ◦ Λ′
ι′2

= Λι2 ◦ (D ×D) (20)

Constructing new ALU and SEU to satisfy (17-20) makes D into a homomor-
phism from the arithmetic structure (D, Ξ, Λ) to (D′, Ξ ′, Λ′). The decryption
function D thus represents a ‘fully homomorphic cipher’, by construction, with
respect to the arithmetic operations in an ALU. Although fully homomorphic
encryption was thought for many years to be difficult or impossible to achieve,
until [5], the construction here is trivially easy to accomplish because it is the
homomorphic image of the ALU and SEU that is constructed given an arbitrary
encryption, not the encryption given the arithmetic.
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Formalising the argument requires a little more description of an (‘abstract’)
KPU. Let X′ be the space of encrypted instructions, let R′ = (D′ �P)32 be the
space of vectors of values in the general purpose registers, and let

I′ = D′×(D′ �P) � D′ � P � �

i′ = a′!d′, a′!p | a′? | ↑ p | φ
O′ = (D′ �P) � �

o′ = d′, p | φ
respectively be the space of encrypted memory and program counter change
requests emitted and the space of encrypted responses received.

What is the reason for the ‘abstract’ qualifier? The values in registers and
memory here can be thought of as carrying an extra marker that distinguishes
between encrypted data or data addresses in D′ and unencrypted program ad-
dresses in P. That can be seen where we write D′ �P (the disjoint union of two
sets), instead of D′ ∪ P (the ordinary non-disjoint union of two sets). We will
need the markers in order to extend decryption D to O′ → O and I′ → I in
Section 6. Afterwards, we will drop the markers and get an ‘ordinary’ KPU.

Definition 2. A (abstract) KPU is a RISC CPU with the ALU and SEU changed
as per (17–20). The modified transition function μ′ : R′ ×X′ ×O′ → R′ × I′:

(R′
n+1, i

′
n) = μ′(R′

n, x
′
n, o

′
n) (10′)

is obtained by replacing Ξ by Ξ ′ and Λ by Λ′ in each of the defining equations
for μ per instruction in the reference RISC CPU (see Section 4).

The nth instruction x′
n : X′ executed by the KPU is the one whose address is

in the KPU’s program counter p′ : P on the nth cycle, retrieved from program
memory P ′ : P → X′, as stated in (9′). That is, x′

n = P ′(p′n).
Memory M ′ and program counter p′ in a KPU function exactly as memory

M and program counter p do in a RISC CPU. That is, they satisfy (11–13) with
M ′ : D′ → (D′ �P) substituted for M and p′ : P for p:

M ′
n+1(a

′) =

{
θ i′n = a′!θ
M ′

n(a
′) otherwise

(11′)

o′n =

{
M ′

n(a
′) i′n = a′?

φ otherwise
(12′)

p′n+1 =

{
p′ i′n = ↑p′
p′n + 4 otherwise

(13′)

for addresses a′:D′ and possible data θ = d′:D′, p′:P.
Certain type-safety requirements arise in order that (10′) be valid. For exam-

ple, the functionality for an instruction addiu′ ρ1 ρ2 k′ is as follows in a KPU,
replacing Ξ by Ξ ′ and Λ by Λ′ in the corresponding CPU equation (14):

R′
n+1(ρ) =

{
π1(Λ

′
add(R

′
n(ρ2), Ξ

′(k′))) 0 �= ρ = ρ1

R′
n(ρ) otherwise

(14′)

o′n = i′n = φ
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for k′ : D′ and R′
n(ρ2) : D

′. The k′ in addiu′ ρ1 ρ2 k′ will be the encryption of
some value k, with D(k′) = k. That is a compile-time type-safety requirement:
data embedded in the KPU instruction must be encrypted. Moreover, (14′) is
only valid when R′

n(ρ2) contains an encrypted value – that is, at run-time, the
addiu′ ρ1 ρ2 k′ instruction gets an encrypted value in the register with index
ρ2 (and puts one in the register with index ρ1). The functionality (15′) for the
instruction jal′ p in a KPU is unchanged from the functionality (15) for jal p in
a CPU. However, the functionality for an instruction lw′ ρ1 k′(ρ2) is as follows
in a KPU, replacing Ξ by Ξ ′ and Λ by Λ′ in the CPU equation (16):

R′
n+1(ρ) =

{
d′ 0 �= ρ = ρ1

R′
n(ρ) otherwise

(16′)

i′n = a′? where a′ = π1(Λ
′
add(R

′
n(ρ2), Ξ

′(k′)))
d′ = M ′

n(a
′)o′n = d′

The k′ embedded in the instruction at compile-time must be the encryption
of some value k, and at run-time the register with index ρ2 must contain an
encrypted value – to which k is then added, under the encryption. Other in-
structions generate their own type-safety requirements. See [2] for the list.

In summary, a KPU has the same design as the reference RISC CPU, but
with a different ALU and SEU dropped in. As a result, different values circulate
as data and data addresses. Certain type-safety requirements with respect to
encrypted versus unencrypted data types are generated as a result of the swap.
One might suspect that something goes wrong when encrypted values are used
as indirect memory references, or in other complicated circumstances, but that
is not the case: in the next section we will prove that the circulating data is not
nonsense, but an encrypted version of what would circulate inside a RISC CPU.

6 Correspondence of a Running KPU to a RISC CPU

For readability, we extend the decryption function D to the encrypted instruc-
tion space X′ by mapping the instruction addiu′ ρ1 ρ2 k′ to addiu ρ1 ρ2 D(k′),
and so on. That is to say, encrypted instructions embed an encrypted opcode
and encrypted embedded data, but unencrypted register indices (and program
addresses), and decryption consists of mapping the opcode and embedded data,
while leaving register indices and program addresses untouched.

We also extend D to encrypted request space I′ and response space O′ as
follows, taking i′ : I′ to i : I and o′ : O′ to o : O:

o =

⎧⎪⎨
⎪⎩
D(d′) o′ = d′

p′ o′ = p′

φ o′ = φ

i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D(a′)!D(d′) i′ = a′!d′

D(a′)!p′ i′ = a′!p′

D(a′)? i′ = a′?
↑p′ i′ = ↑p′
φ i′ = φ
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for a′ : D′, d′ : D′, p′ : P. I.e., unencrypted program addresses embedded in re-
quests and responses are left untouched, and encrypted data and data addresses
are decrypted. That now allows us to derive equation (1) formally:

Proposition 1. The transition function μ′ of the (abstract) KPU is a homo-
morphic image of the transition function μ of the reference RISC CPU:

μ ◦ (D ×D ×D) = (D ×D) ◦ μ′ (21)

Proof. By consideration of μ(−, x,−) and μ′(−, x′,−) case-by-case for each dif-
ferent instruction x and its encrypted analogue x′. That requires checking the
specifications given in full in [1] and partially set out in three exemplars here
(14–16, 14′–16′), and agreeing that they are related via (17–20).

Equation (1) is (21) rewritten. Now we are in position to prove Theorem 1:

Theorem 2. Suppose that (2) holds, i.e., P (p) = D(P ′(p)) at program ad-
dresses p of a type-safe program in P and P ′. Then the following relations hold
on cycle n between the register states R, memory states M , and I/O i, o of a
(abstract) KPU and the reference RISC CPU, provided that they hold at cycle 0:

pn = p′n (22)

Rn = D ◦R′
n (23)

Mn ◦ D = D ◦M ′
n (24)

on = D(o′n) (25)

in = D(i′n) (26)

Proof. By induction, given equations (10–13) and (10′–13′) and the homomor-
phism (21). Type-safety means that each of the specifications for the different
functional parts of the modified ALU within the KPU gets the kind of values
that are expected (in D′ or in P, as appropriate), allowing (21) to hold.

Theorem 1 follows as a corollary, on dropping the type markers on register
and memory contents to get an ‘ordinary’ KPU. In the latter, encrypted and
unencrypted data can hypothetically be confused, but the program running is
safe from that by hypothesis (type-safe, or ‘crypto-safe’), so it never happens.

7 Related Work

Sagedy [12] pursues the same ideas as motivated KPU design, but does not show
that codecs can be discarded or recognize the mathematics allowing it. And
while the relation of the mathematics to Gentry’s discovery of homomorphic
encryption [5] is evident, it played no part in KPU development.

Theoretical work that may be relevant to KPU technology in future includes
that on ‘oblivious ram machines’ [6, 7], where the sequence of memory accesses is
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Fig. 5. Schematic of a pipelined KPU implementation. Pathways and units through
which encrypted data flows are in light shading. The two combinatorial logic units
which differ from the standard MIPS RISC processor units are in solid fill.

not related to the program input. In a KPU, the sequence is as deterministic as in
a CPU, albeit encrypted, and one can envisage signalling using recurring access
counts, for example. That becomes of interest if one is induced to run a program
that has been Trojaned before encryption, in which case such signals might be
used to give away the encryption. Note that KPU memory is ordinary RAM in
every respect, however – it merely holds encrypted data – so the relevance is
orthogonal to the particularity that a KPU is involved.

More directly relevant are hardware offerings, such as IBM’s Hardware Secu-
rity Module (HSM), which provides a small secure sandpit memory. Only one
process has access to the sandpit, and that process excludes any other process
from running at the same time (so observing it via software is not possible).
When the process leaves the processor, memory is flushed to the sandpit, and
recovered again at next entry. Physical probes can see the unencrypted data. A
KPU, in contrast, admits multiple processes, indeed observers, with full access
– a keyless design can safely be run as a software simulation. But there is noth-
ing to prevent someone adding a HSM to a KPU design, and gaining security
advantages from both, so these alternatives should not be regarded as exclusive.
In particular, we may envisage a keyed KPU design with a HSM that holds the
keys for an integrated combined codec and ALU/SEU (the units in solid fill in
Fig. 5) in a secure area on the processor chip, thereby allowing different KPU
encryptions to be dynamically configured in hardware for different processes.

Lie et al. have developed a hardware processor architecture [9] with memory
that is divided into areas that are only accessible to processes executed from
within the compartment. A virtual XOM machine is possible but the underly-
ing hardware needs to support a unique private key, private memory, and traps
on cache misses (a KPU design also benefits from modifications of this kind).
For efficient operation, hardware assistance for fast symmetric cipher encryp-
tion (such as DES3) is also required. In other words, a XOM machine by design
decrypts the encrypted instruction and data stream internally and thus has an
intrinsic vulnerability to physical probes. The XOM design is ‘missing the trick’
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of the KPU design principle – that it suffices to only change the arithmetic in the
processor in order to change the encryption of all the data and data addresses
at once, without doing any encryption.

The CryptoPage architecture [4] by Duc and Keryell is a whole-processor solu-
tion that has some commonalities with the KPU design presented here. Indeed,
conversations between those authors and the first author of this paper took place
in 2006, and the visualization in Fig. 2 is owed to those conversations. However,
CryptoPage appears to stop short of the complete design transformation that
produces a KPU. Instead, only the memory area in a CryptoPage processor is
protected via encryption, and it is the address space that is encrypted. Data in
memory may be encrypted via exogenous hardware units. The design is not in-
tended to be proof against hardware probes, though it has the same objective as
a KPU – namely, protecting the running program against unwanted observation
or tampering by the operators of the computer system. The CryptoPage archi-
tecture builds on the HIDE [16] bus and cache architecture, which randomizes
memory accesses via dynamic cache remapping, so that the same access repeated
looks different the second time. The architecture could usefully be incorporated
in a KPU, preventing a trojan program signalling to an outside observer via
repeated memory accesses.

8 Conclusion

This paper has described how a KPU (‘general purpose crypto-processor’) may
run encrypted but otherwise ordinary RISC machine code, storing encrypted
data and addresses in memory and registers without any encryption or decrypt-
ion necessarily taking place. When that is the case, security is not compromised
if the KPU is run in simulation because there is no covert ‘decrypted form’ of
the encrypted data for probes to uncover. The technology promises security for
programs in a remote environment, protecting data and results from the opera-
tors. A KPU design is compatible with other hardware-based security solutions,
which may be advantageously combined with it.

9 Future Work

We have not discussed here any details of an ALU implementation for a KPU,
and we continue to investigate the security properties of many design schemes
that produce the modified arithmetics required. Modular keyless solutions, which
embed encrypted arithmetic without internal codecs, have readily computed ci-
pher strengths and their design is a question of trading off the desired strength
against size and complexity. The keyed hardware-only designs that we are inves-
tigating integrate the ALU with codecs that use keys kept safe in one of IBM’s
security modules when not in use.
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Abstract. Many prior trust management frameworks provide authorization log-
ics for specifying policies based on distributed trust. However, to implement a se-
curity protocol using these frameworks, one usually resorts to a general-purpose
programming language. To reason about the security of the entire system, one
must study not only policies in the authorization logic, but also hard-to-analyze
implementation code.

This paper proposes DKAL�, a language for constructing executable specifica-
tions of authorization protocols. Protocol and policy designers can use DKAL�’s
authorization logic for expressing distributed trust relationships, and its small
rule-based programming language to describe the message sequence of a proto-
col. Importantly, many low-level details of the protocol (e.g., marshaling formats
or management of state consistency) are left abstract in DKAL�, but sufficient
details must be provided in order for the protocol to be executable.

We formalize the semantics of DKAL�, giving it an operational semantics and
a type system. We prove various properties of DKAL�, including type soundness
and a decidability property for its underlying logic. We also present an interpreter
for DKAL�, mechanically verified for correctness and security. We evaluate our
work experimentally on several examples.

1 Introduction

Despite many years of successful research in protocol design, federated cloud services
continue to be plagued by flaws in the design and implementation of critical autho-
rization protocols. For example, recent work by Wang et al. [24] reveals authorization
errors in a variety of federated online payment services. Among other reasons, Wang et
al. argue that the ad hoc implementation of such services obscures the delicate proto-
cols on which they are based, making the design and implementation of these protocols
difficult to analyze for vulnerabilities. We propose to address such difficulties by pro-
viding a domain-specific language to concisely specify authorization protocols so that
the protocol design is evident (and suitable for security analysis) and executable.

To illustrate, consider the following scenario. An online retailer W wishes to use
a third-party payment provider P (e.g., PayPal) to process payments. As Wang et al.
report, many of the existing tools used to build such a website are often buggy, with no
clear specification of the protocol they implement.
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c© Springer-Verlag Berlin Heidelberg 2013
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Informally, we would like to start by specifying that the retailer W trusts P to
process payments. Prior authorization logics allow such trust relationships to be ex-
pressed concisely; e.g., in infon logic [13], one might write a policy for W stat-
ing that it is safe to conclude that a principal c paid n for order oid, if P said so:
∀c, oid, n. P said Paid(c, oid, n) =⇒Paid(c, oid, n).

However, the means to arrive at a specific authorization protocol based on this trust
relationship alone is unclear. Even a simple protocol involves several rounds of com-
munication between a customer C, the website W , and the payment provider P . For
example, the protocol in Figure 1 involves five steps: (1) a customer C requests to pur-
chase some item i for a price n; (2) the retailer W requests C to provide a certificate
from PayPal (P ) authorizing C’s payment; (3) C forwards the payment request to P ;
(4) P authorizes the payment from C to W and issues a certificate confirming the pay-
ment; (5) W , relying on a trust relationship with P , concludes that the payment has
indeed been processed and ends the protocol by returning a confirmation to C.

Typically, one implements such protocols in a general-purpose programming lan-
guage, where one makes queries to a trust management engine (e.g., SecPAL [3]) to
determine if access to a protected resource is to be permitted. While this approach pro-
vides flexibility, it leaves the design of the authorization protocol unclear, and opens
the door to vulnerabilities due to improper protocol design or other mundane program-
ming errors. Of course, such errors can be detected by using semi-automated program
verification tools, but this demands considerable expertise. Besides, even for experts, a
methodology in which the protocol design is made evident by construction, facilitates
simpler analysis.

Fig. 1. A simple protocol for processing online payments

To address these problems, we propose DKAL�, a domain-specific language for exe-
cutable specifications of authorization protocols. We formalize the semantics of DKAL�

and implement a verified interpreter using F�, a verification-oriented dialect of ML.
DKAL� programs include three conceptual components: the quantified primal infon
logic (QPIL) for expressing distributed trust relationships; a small rule-based program-
ming language for describing message flow of protocols; and finally, DKAL� programs
may embed F� expressions, the host language of our interpreter—one can use this facil-
ity to evaluate arithmetic expressions, connect to databases, etc. Thus, having designed a
protocol in DKAL�, one may readily obtain an executable implementation in F�. Once in
F�, the source code can, in principle, be directly analyzed for high-level security proper-
ties using F�’s type system and related tools such as the Crypto Verification Toolkit [6].
However, in this work, we take DKAL� programs as specifications, and our interpreter is
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proven to faithfully implement the specification, regardless of any end-to-end security
objective that the DKAL� programmer may have had in mind.

Figure 2 shows an example of DKAL� code, a policy specified by each of the three
principals in our online retail scenario. DKAL� programs are a collection of rules, each
of which can be thought of as handlers that cause specific actions to occur in response to
events that meet certain conditions. Actions include sending messages (send), forward-
ing messages (fwd), a logging facility (log), generating fresh identifiers (with fresh), and
introducing new information (learn) to the principal’s QPIL knowledge base. Conditions
have two forms: when e is satisfied if the principal has received a message that matches
the pattern constructed by the term e; the condition if e is satisfied if the proposition
constructed by the term e is derivable in QPIL. Terms include the form eval(e), where e
is an F� expression evaluated by the interpreter; variables (e.g., i, n); constants (e.g., W,
P); and constructed terms (Buy(i, n), etc.).

(∗ CUSTOMER’s (C) policy ∗)
C1:
when C said Click(i, n) then
send W (C said Buy(i, n))
log (C said Init(W, i, n))

C3:
when C said Init(w, i, n)
when w said Pay(C, oid, i, n) as m1
then send P (C said Auth(w, oid, n))

fwd P m1

(∗ PAYPAL’s (P) policy ∗)
P4 :
when c said Auth(w, oid, n)
when w said Pay(c, oid, i, n)
if eval(checkBalance ”c” ”n”) then
send w (P said Paid(c, oid, n))
where checkBalance = (∗ F∗ code ∗)

(∗ Website’s (W) policy ∗)
W2:
when c said Buy(i, n)
if eval(checkPrice(”i”,”n”)) then
with fresh oid
send c (W said Pay(c, oid, i, n))
log (W said Pay(c, oid, i, n))
where checkPrice = (∗ F∗ code ∗)

W5:
when W said Pay(c,oid,i,n)
if Paid(c, oid, n) then
send c (W said Confirm(oid,i,n))

W6:
when P said x as i then
learn i

W7:
learn ∀p,oid,n.

P said Paid(p, oid, n)
=⇒Paid(p, oid, n)

Fig. 2. A DKAL� policy implementing the online retail protocol

Rules C1,W2, C3, P4,W5 correspond to the steps (1)-(5) in Figure 1: (1) Rule C1

initiates the protocol in response to a click issued by the customer. C sends a Buy mes-
sage to the website W . C also logs an Init message to indicate that she has initiated the
transaction. (2) After receiving the Buy message, W applies rule W2 to request a pay-
ment certificate. W checks the price of the item (by calling an F� function), and sends
a message Pay to C requesting payment. W also logs a message to keep track of the
transaction currently underway. (3) Once C gets such a message from W and checks
her log for the Init message, she applies rule C3 to forward a payment request to P .
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(4) Rule P4 is P ’s policy that authorizes the payment by sending a Paid message to the
website W (after checking and updatingC’s balance, using F�). (5) If W receives a Paid
message, she uses her trust assumption in P (W6 and W7), and a decision procedure for
QPIL to conclude that the item is paid, and sends a confirmation message to C (W5).

This paper makes several technical contributions.

(i) We formalize the design of DKAL� and analyze the central entailment relation
of QPIL. We give an operational semantics and a type system for DKAL� and prove
that execution is insensitive to the order of rule evaluation. Our semantics provides the
formal basis on which to analyze DKAL� policies.

(ii) We provide an interpreter for DKAL� in F�. We mechanically check with F� that
our interpreter soundly implements the formal semantics of DKAL�, including a veri-
fied implementation of a decision procedure for QPIL. Our interpreter includes a veri-
fied protocol based on public-key cryptography for establishing message authenticity,
where we can mechanically check that recipients only accept authentic messages. Using
refinement type checking, we show how to securely embed and evaluate F� terms within
DKAL�, allowing a DKAL� protocol to easily and safely interface with its environment.

(iii) We report on an experimental evaluation of DKAL� by developing a suite of 8 ex-
amples. Our experience indicates that DKAL� specifications can be terse, conveying the
important high-level aspects of a distributed security protocol, while leaving many of
the low-level details necessary to produce an executable implementation to our verified
interpreter.

2 QPIL: Quantified Primal Infon Logic

We first review QPIL, Gurevich and Neeman’s primal infon logic with quantifiers. Gure-
vich and Neeman introduced QPIL pragmatically, because of its combination of feasi-
bility and expressivity. But QPIL is arguably one of two intrinsic logics of information
(used by arbitrary principals for communication and reasoning) [4]. Our formulation
differs from theirs in that we pay close attention to binders to facilitate a mechanically
verified implementation of its decision procedure.

Syntax. QPIL has two basic concepts. The first is infon, a formula which represents
a unit of information (which may be learned, communicated, etc.). The second is evi-
dence—an infon i may be accompanied by a term t which serves as evidence for the
validity of i. The form of evidence is left abstract; e.g., an infon i may be accompanied
by a digital signature to serve as evidence that it was communicated by a principal p;
or, it may represent a proof tree recording a derivation of i from some set of hypotheses
according to the inference rules of the logic.

The syntax of QPIL is shown below. Predicates Q and constants c are subscripted
with their types, although we elide the subscripts when the types are unimportant. Types
include booleans and integers (and other common types), principals, and a distinguished
type for evidence terms, ev. The terms include variables x, y, z and constants c (tagged)
with their types. Later (Section 4) we add embedded F� terms to the term language.

Infons i include the true infon �; the application of a predicate symbol Q to a se-
quence of terms t; a conjunction form i ∧ j; an implication form i ⇒ j; the form
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p said i, which is the modal operator of speech applied to an infon; and finally justified
infons, Ev t i, which associates an evidence term t with an infon i. Note that when a
principal sends Ev t i, he is merely asserting that t is evidence for i, and the receiver
of the message, if he desires so, can check t. An example of an authorization is the
infon: Bob said CanRead(Alice,"file.txt"). QPIL includes quantified infons ι, where
an infon i may be preceded by a sequence of binders for universally quantified vari-
ables x:τ . The use of quantifiers allows for more general and flexible policies such as:
∀(x:prin). Bob said Trusted(x) =⇒ CanRead(x, "file.txt"). Quantified infons may also
be justified by associating them with evidence using Ev t ι. Unless explicitly mentioned,
we blur the distinction between quantified infons and infons.

Syntax of QPIL

Meta-variables: x, y, z variables;Qτ̄ predicates; cτ constants

type τ ::= bool | int | prin | ev term p, t ::= x | cτ
infon i, j ::= � | Qτ̄ t̄ | i ∧ j | i ⇒ j quantified infon ι ::= i | Ev t ι | ∀x:τ.i

| p said i | Ev t i type context Γ ::= · | x:τ | Γ, Γ
infon set M,K ::= ι

Typing. QPIL has three typing judgments (shown below): Γ � ι for quantified infons;
Γ � i for infons; and Γ � t : τ for terms, where the typing context Γ maps variables
to their types. Intuitively, Γ � ι ensures that the variables of ι appear in Γ at suitable
types. The typing judgments also rely on a well-formedness judgment for the context:
we write Γ ok for an environment where no variable appears twice, and Γ (x) for the
type τ such that Γ contains x : τ .

Typing terms and infons

Γ ok
Γ � cτ : τ

Γ ok
Γ � x : Γ (x)

Γ ok
Γ � �

Γ, x:τ � i

Γ � ∀x:τ.i
∀i.Γ � ti : τi
Γ � Qτ̄ t̄

Γ � i Γ � j

Γ � i ∧ j

Γ � i Γ � j

Γ � i ⇒ j

Γ � p : prin Γ � i

Γ � p said i
Γ � t : ev Γ � ι

Γ � Ev t ι

The typing rules for terms are straightforward—constants are typed using their sub-
scripts, and variables by the typing context. The rules for infons are straightforward,
with only one subtle point to mention. The last rule is overloaded to apply to both jus-
tified infons and justified quantified infons.

Entailment. We define an entailment relation for QPIL, a Hilbert-style calculus defining
the inference rules of the logic. Our formulation relies on the notion of a prefix π, a
possibly empty sequence of terms t of type prin. We write π i to mean i when π is
empty, or t said (π′ i) when π = t, π′. The calculus includes two relations, K;Γ � ι
for quantified infons and K;Γ � i for infons. The context in each of these relations
includes an infostrate, K , a set of infons, representing a principal’s knowledge, and a
typing context Γ . We write K ok for an infostrate where for each ι ∈ K we have · � ι,
i.e., K is a set of well-typed closed infons. We write K;Γ ok for (K ok and Γ ok).
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Entailment relations: K;Γ � ι and K;Γ � i

K;Γ ok Γ � π �
K;Γ � π � T

K;Γ ok ι ∈ K ι ≡α ι′ Γ � ι′

K;Γ � ι′
Hyp-K

K;Γ � π i K;Γ � π j

K;Γ � π(i ∧ j)
∧-I

K;Γ � π(i ∧ j)

K;Γ � π i
∧-E1

K;Γ � π(i ∧ j)

K;Γ � π j
∧-E2

Γ � π i K;Γ � π j

K;Γ � π(i ⇒ j)
⇒-WI

K;Γ � π(i ⇒ j)
K;Γ � π i

K;Γ � π j
⇒-E

K;Γ � π (Ev t ι)

K;Γ � π ι
Ev-E

K;Γ, x:τ � i

K;Γ � ∀x:τ.i Q-I
K;Γ � ∀x:τ.j ∀i.Γ � ti : τi

K;Γ � j[t/x]
Q-E

The inference rule (T) allows well-typed infon π� to be derived from any well-
formed context. The rule (Hyp-K) allows using infostrate hypotheses ι ∈ K , but only
after they have been suitably α-converted to ι′, to avoid the bound names of ι′ clashing
with the names in the context. The premise Γ � ι′ guarantees no name clashing. The
definition of alpha equivalence, ι ≡α ι′, is standard and elided due to space constraints.

The rule (∧-I) is an introduction rule for conjunctions, with (∧-E1) and (∧-E2) the
corresponding elimination rules. The modality π distributes over the conjuncts.

The rule (⇒-WI) is the weak introduction rule for implications, and the rule (⇒-E)
is the usual elimination form. The weak form of implication is characteristic of primal
infon logic—it allows deriving π(i ⇒ j) only if π j can already be derived. This may
seem pointless, except for two reasons: (1) this weak form of implication lends itself
to an efficient linear-time decision procedure, at least for the propositional primal infon
logic; and (2) in the case of authorization, a principal may know the conclusion π j, but
may be willing to share only a weaker part π (i ⇒ j) with another principal.

The rule (Ev-E) is the elimination form for evidence—note that the only way of
introducing justified infons is by hypothesis or by elimination. Finally, we have (Q-I)
and (Q-E) for introducing and eliminating quantifiers.

With these definitions, we can state and prove our first lemma, namely that entailment
derives only well-typed infons.

Lemma 1 (Entailment is well-typed). For all K,Γ, ι, if K;Γ � ι then Γ � ι.

Decidability of QPIL. There exists a complete decision procedure for QPIL entailment.
Gurevich and Neeman [13] present a linear-time algorithm for the multiple derivability
problem for propositional primal infon logic (PIL). It relies on a sub-formula property
of PIL entailment, namely that the derivation K; · � i only uses the sub-formulas of
K, i. QPIL exhibits an analogous property. We refer the reader to a companion technical
report for the full development [16].

While the existence of a complete decision procedure for QPIL is useful, the rest of
DKAL� is designed so that it may also be used with other, more powerful authorization
logics, e.g., the full infon logic with a more standard form of implication introduction.
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3 The Design and Semantics of DKAL�

We now define DKAL�, a rule-based language for specifying the communication pat-
terns in an authorization protocol. DKAL� artifacts are, simultaneously, programs, poli-
cies and specifications—we use the terms interchangeably, unless explicitly noted oth-
erwise. This section introduces DKAL�’s syntax and semantics, relying on our online
retail scenario for illustrative examples.

Syntax of DKAL�. The display below shows the syntax of DKAL�. A program R is a
finite set of rules, each of the form (C then A). The semantics of DKAL� executes a
program by evaluating the guards C of each rule against a principal’s local configu-
ration, and applying the actions A of only those rules whose guards are satisfied. The
local configuration P of a principal p is a triple (K,M,R). It includes (1) an infostrate,
K , which is a monotonically increasing set of infons, representing p’s knowledge; (2)
a message store, M (also a set of infons), which p may use to retain messages that it
receives; and, (3) the program R itself. The global configuration G is the parallel com-
position of configurations (p, P ), one for each principal p. We give a message-passing
semantics for DKAL� in which the reduction of a local configuration P causes infons to
be sent to other principals.

Syntax of DKAL� (with syntactic sugar on the right)

program R ::= C then A | R R | ·
local cfg. P ::= (K,M,R)
global cfg. G ::= (p, P ) | G ‖ G
guards C ::= upon ι as x | if ι | C C | ·
actions A ::= send p ι | fwd p ι | drop ι

| learn ι | with fresh x A | A A
infon i ::= . . . | x
typing ctxt. Γ ::= . . . | x:infon | x:qinfon

when ι then A = upon Ev x ι as m
then (A, drop m)

for fresh x and m
log ι = send Self ι

Guards come in two flavors. The guard (upon ι as x) is a pattern which checks
whether a message matching ι is present in the principal’s message store M and binds
the message to x if matched. We extend the syntax of infons i so that they may contain
pattern variables x. Evaluating an upon condition requires computing a substitution σ
for the pattern variables such that σ ι is in the message store M . In order to ensure that
pattern variables are properly used, we extend our syntax of typing environments Γ to
include bindings for variables typed as infons and quantified infons (qinfon).

Guards also include boolean conditions of the form (if ι). Evaluating this guard
involves a call to a decision procedure of QPIL to check that the infon ι is derivable
from the principal’s knowledge K . If derivable, the actions of the rule are applied;
otherwise the rule is inactive. This kind of guard does not bind pattern variables.

Actions include (send p ι), which sends ι to p authenticated by the sender; (fwd p ι),
which forwards a previously received message to p; (drop ι), which deletes a message
from M ; (learn ι), which adds an infon to the knowledge K; and, finally, a construct
(with fresh x A) to generate fresh identifiers. In writing examples, we also use the syn-
tactic sugar shown at the right of the display, where Self is a principal constant for the
local principal.
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Operational semantics of DKAL� The operational semantics of DKAL�, deriving from
semantics of ASMs, are carefully set up to ensure a few properties. We discuss these
properties informally here, motivating various elements of the design—we formalize
these properties in the metatheory study of Section 3.

State Consistency. We desire a semantics with a consistent notion of state updates.
To achieve this, we have a message passing semantics for global configurations. But,
the reduction of each principal’s configuration P is given using a big-step reduction in
which all applicable actions from the rules in P are computed atomically, with respect
to an unchanging local state. Big steps of local evaluation are interleaved with messages
being exchanged among the principals, modifying their local states.

Determinism. We aim to ensure that the semantics of a program is independent of the
order of execution of the rules in a program R. We achieve this by evaluating the set of
actions computed from a set of rules in a canonical order.

We begin by presenting the big-step evaluation of local configurations, P ⇓p A,
where a local configuration P for a principal p evaluates to a set of actions A. The rule
(Ev) picks a rule C thenA from the rule set and evaluates its guard C. Guard evaluation
produces a set of substitutions σ̄ = {σ1, . . . , σn} of the free variables in C such that
the conditions σiC are satisfied. The actions [[σi A]] are added to the actions computed
from the evaluation of the other rules in the program. Here, the function [[A]] interprets
a set of actions A by introducing fresh integer constants in the actions A, as required by
the (with fresh x A) construct.

The evaluation of guards is given by the function holdsp KM C, which computes a
set of substitutions. Evaluation of multiple guards involves composing the substitutions
returned by the evaluation of each guard.

Local rule evaluation: P ⇓p A

Ev
(K,M, (R1, R2)) ⇓p A′ holdsp K M C = σ

(K,M, (R1, (C then A),R2)) ⇓p A′ ∪i [[σiA]]
EvEmp

(K,M, ·) ⇓p {}

[[·]] : A → A
[[A]] = A when (with fresh x A′) �∈ A
[[A,with fresh x A′]] = [[A]], [[A′[cint/x]]] for c fresh

holdsp : K ×M × C → 2σ

holdsp KM (upon ι as x) = {(σ, x �→ σι) | σι ∈ M ∧ � σι ∧ domσ = FV(ι)}
holdsp KM (if ι) = {id | K; · � ι}
holdsp KM · = {id}
holdsp KM (C1, C2) = {(σ2 ◦ σ1) | σ1 ∈ holdsp K M C1 ∧ σ2 ∈ holdsp KM (σ1 C2)}

Evaluation of an (upon ι as x) guard returns every substitution σ such that a well-
typed message σι can be found in the store M . Our verified implementation ensures
that messages that match patterns are always properly justified, should they contain any
evidence. For (if ι), we require that the infon ι be derivable from the hypotheses in the
infostrate K . Note that, unlike for the evaluation of (upon ι as x), the semantics requires
the infon ι to be a closed term for rule evaluation to succeed.

We now define G −→ G′, a small-step reduction relation for global configurations.
The single rule in the semantics (GoP) picks a principal p and evaluates the rules of p to
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obtain a set of actions A, and then applies these actions atomically to the configuration
G. In order to ensure that the effect of applying the actions is independent of the order
of evaluation of the rules, we require that all the (drop i) actions in A precede all the
other actions. We do this through a unary operator on actions, order(A), that reorders a
set of actions A according to a partial order in which all the (drop ι) actions come first.

Reduction semantics of global configurations: G −→ G′

GoP
P ⇓p A

G1 ‖ (p, P ) ‖ G2 −→ app (G1 ‖ (p, P ) ‖ G2) p (order(A))

order : A → A
order(A) = A1, A2 where A1 = {drop ι|drop ι ∈ A} and A2 = A \ A1

app : G → p → A → G
app G p · = G
app (G1 ‖ G ‖ G2) p A = G1 ‖ (app1G p A) ‖ G2

app G p (A,A′) = let G′ = app G p A in let G′′ = app G′ p A′ in G′′

app1 : (p× P ) → p → A → (p× P )
app1 (p, (K,M,R)) p (drop ι) = (p, (K, (M \ {ι}), R))
app1 (p, (K,M,R)) p (learn ι) = (p, ((K, ι),M,R))
app1 (q′, (K,M,R)) p (fwd q ι) = (q′, (K, (M, ι), R))
app1 (q′, (K,M,R)) p (send q ι) = (q′, (K, (M,Ev t ι), R))

The definition of app(G, p,A) applies a set of actions A according to this partial
order. We use app1(G, p,A) in the base cases to apply a single action, following the
syntax given in section 3. Note that, when p sends or forwards a message and to model
the network imperfectness, the actual recipient q′ may not be the intended principal q.

A type system for DKAL�. We provide a type system to ensure that the reduction of
DKAL� programs is well-behaved, i.e., that configurations remain well-typed as reduc-
tion proceeds, and that that rule evaluation is deterministic.

Arbitrary DKAL� programs may execute in undesirable ways. For example,
an ill-scoped program may inject ill-typed infons into the infostrate, poten-
tially allowing nonsensical terms to become derivable. Consider the example pro-
gram upon (∀(p:principal). ALICE said x) as m then learn x. When evaluating this program
against a message store M that contains the infon ∀(p:principal). ALICE said Good(p),
the upon condition is satisfiable, with σ = [x �→ Good(p)]. However, applying the
action σ(learn x) results in adding the term Good(p) to the infostrate, which is clearly
ill-formed—the variable p has escaped its scope.

Our type system is designed to rule out this and other undesirable behaviors. After
defining several judgments on rules, actions and guards, it defines a judgment G ok
for well-formedness of a global configuration G. Space constraints prevent us from
presenting the full details of the type system here—the companion technical report
contains the full development [16].

Theorem 1 ensures that well-formedness of a configuration is preserved under reduc-
tion. The corresponding progress property (that a well-formed configuration can always
make a step) is trivial, since identity steps (G −→ G) are always possible. Theorem 2
ensures that the order of evaluation of rules in a local configuration does not matter.
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Theorem 1 (Type soundness). Given a configuration G such that G ok, if G −→ G′

then G′ ok.

Theorem 2 (Determinism of local rule evaluation). Given a configuration G, a local
configuration (p, P ) such that G ‖ (p, P ) ok and A1, A2 such that P ⇓p A1 and
P ⇓p A2; then app((G ‖ (p, P )), p, A1) = app((G ‖ (p, P )), p, A2).

4 A Verified Interpreter for DKAL�

This section describes our verified interpreter for DKAL�, implemented in F�, a vari-
ant of ML with a more expressive type system. F� allows programmers to write down
precise specifications using dependent types where types depend on values. F�’s type
checker makes use of an SMT solver to automatically discharge proofs of these specifi-
cations. F� enables general-purpose programming, with recursion and effects; it has li-
braries for concurrency, networking, cryptography, and interoperability with other .NET
languages. After typechecking, F� is compiled to .NET bytecode, with runtime support
for proof-carrying code.

We present selected elements of the mostly ML-like code of our interpreter (slightly
simplified for the paper), discussing F�-specific constructs as they arise. We refer the
reader to Swamy et al. [22] for full definition of F�. The full code of our verified inter-
preter is available from http://dkal.codeplex.com.

We highlight three key elements of our interpreter:

A Verified Decision Procedure for QPIL. We formalize the QPIL entailment relation
using a collection of inductive types in F�. We then implement a unification-based,
backwards chaining decision procedure for QPIL and prove it sound, i.e., that it only
constructs valid entailments.

Authenticity of Infons. Whereas the previous sections left the evidence terms associ-
ated with an infon abstract, in our interpreter evidence terms are represented as digital
signatures. By relying on previously developed verified libraries for cryptography, we
prove a correspondence property on execution traces of DKAL� configurations.

Secure Embedding of F� in DKAL�. We show how to securely implement the (eval e)
construct, where the term e is an F� expression embedded within DKAL�. By relying on
the type checker of F�, we show that embedded terms can safely be executed without
breaking the invariants of the rest of the interpreter. This mechanism significantly broad-
ens the scope of DKAL�, empowering programmers with a powerful general-purpose
programming language when needed, and allowing a DKAL� protocol to seamlessly
integrate within the context of a larger secure system.

As is usual in ML, our interpreter defines DKAL� syntax using a collection of al-
gebraic types. We separate the syntax of quantified infons (polyterm) from infons, but,
unlike in Section 2, we use a single type term to represent both terms t and infons i.
This representation is flexible in that it allows terms and infons to be represented by
a single type term, but it allows malformed terms to be constructed. We recover well-
formedness by expressing the typing judgment for QPIL using inductive types (see the
companion technical report [16]).

http://dkal.codeplex.com
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Verifying a decision procedure for QPIL entailment. We show below our mechanical
formalization of QPIL entailment and the implementation of its decision procedure.
We define two mutually recursive inductive types, entails and polyentails. The type
entails K G i corresponds to the judgment K;Γ |= i, and polyentails K G i corresponds
to the judgment K;Γ |= ι (from Section 2).

type prefix = list term
logic function Prefix : prefix → term → term
assume ∀i. (Prefix [] i) = i
assume ∀p pi i. (Prefix (p::pi) i) = (Prefix pi (App SaidInfon [p; i]))

type entails ::
infostrate ⇒ vars ⇒ term ⇒ P =

| Entails And Elim1: K:infostrate →G:vars
→ i:term → j:term → pi:prefix
→ entails K G

(Prefix pi (App AndInfon [i; j]))
→ entails K G (Prefix pi j)

| . . .

and polyentails ::
infostrate ⇒ vars ⇒ polyterm ⇒ P =
| Entails Hyp Knowledge :

K:infostrate →G:vars →okCtx K G
→ i:polyterm{In i K} → i’:polyterm
→alphaEquiv i i’ → polytyping G i’
→polyentails K G i’

| . . .

The code above illustrates two features of F�. First, we define the notion of an infon
i with a quotation prefix π (written π i in Section 2). A quotation prefix is simply a
list of terms and we define a function symbol Prefix to attach a prefix to term. This
function is axiomatized by the assume equations, allowing the SMT solver underlying
F�’s typechecker to reason about applications of the Prefix function symbol. Using this
construct, we can define the constructor Entails And Elim1, which corresponds to the
rule (∧-E1).

The constructor Entails Hyp Knowledge corresponds to the rule (Hyp-K), with the
relation okCtx representing the well-formedness of the context and alphaEquiv corre-
sponding to the relation ≡α. The premise ι ∈ K from (Hyp-K) is represented by the
ghost refinement type i:polyterm{In i K}, another feature of F�. This is the type of a
polyterm i for which the property In i K is derivable by the SMT solver, without the pro-
grammer to supply a (lengthy) constructive proof.

With the above types as our specification, we implement and prove sound a
unification-based, goal-directed proof search procedure to (partially) decide QPIL en-
tailment. Our algorithm is implemented by the function derivePoly, whose signature is
shown below. The type says that in an infostrate K, given a quantified infon goal with
free variables included in the set U, if successful in proving the goal, the function returns
a substitution s whose domain includes the variables in U such that the substitution s
applied to the goal is derivable from K.

val derivePoly: K:infostrate →U:vars → goal:polyterm
→option (s:substitution{Includes U (Domain s)} ∗ polyentails K [] (PolySubst goal s))

The completeness of QPIL comes from [7]. We aim to extend our implementation to
include a complete algorithm.

Main interpreter loop. The top-level of our interpreter is the infinite loop shown in
the code below. At a high level, given a program represented by a list of rules rs, the
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interpreter computes and applies all enabled actions, and then, unless the actions cause
a change to the local state, blocks waiting for new messages before looping.

let rec run (rs:list rule) = let actions = allEnabledActions rs in
let stateChanged = applyAllActions actions in
if stateChanged then run rs else (block until messages received(); run rs)

Conceptually, the function allEnabledActions implements the local rule evaluation judg-
ments P ⇓p A, while applyAllActions implements message dispatch over the network,
corresponding to the global transition step in the semantics of Section 3. Recall that
in our semantics the local configuration of a process, in addition to the rule set, in-
volves two components: the infostrate K and the message store M . We represent
each of these using mutable state and globally scoped references. Each interpreter also
has a single global constant, me:principal, the name of principal on whose behalf the
interpreter runs.

We also axiomatize rules corresponding to the holds function of Section 3, and prove
that the interpreter can apply only actions that have satisfiable guard conditions. As
such, we prove a soundness property for our interpreter—the set of actions executed
by the interpreter is a subset of the actions that may be executed in the operational
semantics of Section 3. A limitation, as in the case of the decision procedure, is that
we do not prove completeness of our interpreter, i.e., we do not prove that all enabled
actions are indeed computed and applied.

Authenticity of communications. As discussed earlier, the semantics of DKAL� pre-
sented in Section 3 is clearly insecure—a principal p can freely forge an infon. How-
ever, our setup hints at a solution: justified infons, terms of the form Ev t i carry evidence
terms t that can be used to convince a recipient of the authenticity of the infon. In this
section, we instantiate t using digital signatures.

Our goal is to prove an authenticity property by analyzing execution traces of a
DKAL� protocol running in the presence of a Dolev-Yao network adversary. Informally,
we relate an event recording the receipt of a message Ev t (q said ι) by an honest
participant p at step k in an execution trace, to a corresponding event at step k′ < k
recording the sending of the message Ev t (q said ι) by q, unless the signing key of q has
been compromised, i.e., a standard correspondence property on traces [25] to establish
the authenticity of communications.

We set up the verification of this property following a methodology due to Gordon
and Jeffrey [12], and later in RCF [5] and F�. The basic idea is to augment the dynamic
semantics of the programming language with a facility to accumulate protocol events
in an abstract log, and to prove trace properties by analyzing the abstract log.

Broadly, we record the sending of messages by adding an event (Sent p i) to the log
when p sends a message i, and when receiving a message, through the use of a verified
library of cryptographic primitives, we attempt to prove that the corresponding Sent
event is in the log, unless the key of p has been leaked to the attacker.

We give a flavor of the main elements in our proof in the companion technical re-
port [16]—the constructions are essentially standard; the reader may consult Swamy et
al. [22] for more details about our cryptographic libraries.
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Embedding F� in DKAL�. Our interpreter provides a simple and elegant solution to
extend DKAL� with more general-purpose programming facilities. The example in Sec-
tion 1 embeds an F� expression checkBalance "c""n" within a DKAL� protocol using
the eval construct. When evaluating the if-condition, the interpreter executes the eval’d
term by calling the F� function checkBalance defined along with the policy. Once in F�,
we have the power of a full-fledged programming language at our disposal—we query
a database to check if the customer has sufficient funds, update the database, and return
the result (an infon) to the eval context.

Of course, one may be concerned that eval’ing an arbitrary F� term may be dan-
gerous, e.g., it may inappropriately access internal data structures of the interpreter, or
it could accept improperly signed messages, etc. However, because the eval’d term is
statically typed by F�, we ensure that it never breaks any such critical invariants.

When evaluating the F� function, the interpreter passes in a variable environment as
an argument, which contains bindings for each of the pattern variables in scope at the
point where the eval’d term is defined. In the future, we plan to exploit this idiom at a
larger scale, aiming to build and deploy full-fledged cloud services using this DKAL�/F�

hybrid language.

Experimental evaluation. The table below shows 8 examples we developed using
DKAL�. Configuration files contain cryptography keys and communication ports for
principals. Each principal stores her policies in a DKAL� file. The DKAL� file is com-
piled to F� for the interpreter to evaluate the rules. We measure the sizes of configuration
files (column Config), the DKAL� files (column DKAL), and the resulting F� files (column
F�). All numbers are line counts of files.

Name Description Config DKAL F�

Hello world Two parties exchange hello messages. 13 14 45
Ping-Pong Two parties bounce messages. 13 10 54
File system A system restricting file accesses. 15 18 89
Calculator Integer arithmetic. 27 27 115
Turing Machine A simulator of Turing machines. 22 40 121
Rumors Four principals spread messages. 32 22 144
Retail Our online retail example in the Intro. 25 59 195
Clinical Trials Checking that a physician can conduct a trial. 57 86 296

These examples cover diverse scenarios, ranging from simple message exchanges,
to authorization, arithmetic, simulating turing machines, and online retailing. “Hello
world” and “Pingpong” are simple message exchanges. “File system” has user U send a
justified message U said Ask(‘‘f.txt’’, U, ‘‘read’’) to the file system to request file access
and responds if authorized. “Calculator” implements integer arithmetic, demonstrating
the eval construct. “Turing Machine” simulates turing machines. It uses DKAL� policies
to control state transitions. “Rumors” involves trust management among four parties.
“Retail” is our example in Section 1.

Our most complex example is “Clinical Trials”, which simulates a pharmaceutical
company hiring an independent research organization to conduct a clinical trial be-
fore releasing a new drug. This scenario was originally discussed by Blass et al.[9].
Briefly, the research organization hires sites such as hospitals or labs to execute the
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trial. Each site finds appropriate patients and assigns physicians to work with them. We
use DKAL� to specify a protocol to enforce patient privacy: patient records are guarded
by a key manager, which gives only authorized physicians the keys to access patient
records. The protocol involves four message exchanges among the principals and rea-
soning about integer arithmetic and authorization delegation. We tie the abstract DKAL�

specification to a concrete implementation of messages and wire formats through the
use of standard cryptographic protocols for authentication, but with implementations
that are verified (in a symbolic model) against the abstract DKAL� specifications. The
arithmetic reasoning is performed by embedded F� expressions.

5 Related Work

The design of DKAL� is informed by a long line of work on abstract state machines
(ASMs), also called evolving algebras or dynamic structures [14], and especially by
the work on applications of the specification language AsmL [15] and the ASM-based
Spec Explorer tool [10]. More directly, DKAL� derives from its predecessor Eviden-
tial DKAL [9]. Evidential DKAL extends the authorization logic DKAL [13] with a
construct similar to our Ev t ι. The evidential nature of DKAL is related to Necula’s
proof-carrying code [20] that was followed by proof-carrying authentication [2] and
more recently by evidence-based audit [23] and code-carrying authorization [19].

Our work improves on Evidential DKAL in a number of ways. First, we formulate
QPIL in a manner suitable for mechanical verification—the prior formulation is informal
in its treatment of quantifiers and variables. Next, although Evidential DKAL suggests
incorporating an ASM-based language, it does not formalize this language—our seman-
tics is novel. Our verified implementation and embedding of F� in DKAL� is new. In the
process of our verification, we found and fixed several bugs in the prior formulation,
including one serious bug related to ill-scoped variables.

Our authorization logic QPIL is related to many prior logics used in a variety of trust
management systems. These are too numerous to discuss exhaustively here—Chapin
et al. [11] provide a useful survey. One representative however is SD3 [18], where the
problem of deciding authorization by means of solving a query on a distributed database
is studied. SD3 has a certified evaluator, which is related to our verified decision proce-
dure for QPIL. Both systems not only decide the validity of a query, but also construct
a proof witness. SD3 requires an additional proof checking step, whereas our system
statically guarantees that we construct only valid proofs.

Another line of related work includes programming languages that are combined
with authorization logics. For example, Aura [17] is a dependently typed functional
programming language whose type system embeds the authorization logic DCC [1].
Aura programmers build constructive proofs of authorization before performing secu-
rity sensitive operations, whereas we provide a decision procedure within the runtime,
and allow the embedding of F� terms in the specification.

Compiling DKAL� to F� allows the possibility of using F�’s verification-oriented
type system to prove various properties of the protocol implementation. Thus DKAL�

stands to benefit both from the extensive study of properties of abstract protocol mod-
els and the automated verification of protocol implementations. This line of work, too
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extensive to discuss in detail here, is covered thoroughly by a recent survey on protocol
verification [8].

Our approach to embedding F� terms inside DKAL� compiling the result to F� for in-
terpretation is a weak form of meta-programming. It is related to template Haskell [21]
in that after code generation, we typecheck the resulting program as a normal F� pro-
gram before interpretation. However, unlike template Haskell, we do not support exe-
cution of embedded F� code when generating F� from DKAL�. As such our approach
is similar to inlining assembly instructions by many C compiler, with additional type-
checking before execution.

Conclusions. DKAL� is a language that allows for the specification and execution of
distributed authorization protocols.We have formalized DKAL�, giving it an operational
semantics and a type system. We have also built a DKAL� interpreter, mechanically ver-
ified to soundly implement its semantics. Protocol designers can use our formalization
to describe and analyze their authorization policies, while programmers can use our
verified interpreter to deploy them.
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Abstract. Advanced information processing technologies are often ap-
plied to large profiles and result in detailed behavior analysis. Moreover,
under the pretext of increased personalization and strong accountability,
organizations exchange information to compile even larger profiles. How-
ever, the user is unaware about the amount and type of personal data
kept in profiles, partially due to advanced interactions between multiple
organizations during service consumption.

In this paper, a formal approach to inspect privacy and trust in ad-
vanced electronic services is presented. It allows to express access and pri-
vacy policies of service providers. Also, the privacy properties of multiple
authentication technologies are formally modeled. From this, meaningful
privacy properties can be extracted based on varying trust assumptions.
Feedback is rendered through automated reasoning, useful for both users
and system designers. To demonstrate its practicability, the approach is
applied to the design of a travel reservation system.

Keywords: privacy, trust, electronic services, modeling.

1 Introduction

Electronic services evolve from straightforward interactions between a user and a
service provider, to complex web services in which multiple organizations are in-
volved. For instance, even in a simple e-shop, multiple organizations are involved,
namely the online shop, a bank (i.e., an organization that handles payments) and
a delivery service (i.e., an organization that delivers the ordered items). Personal
attributes are released to each of these service providers, and users are unaware
of the profiles that are kept by each organization. Although organizations should
only request the attributes that are required to offer the personalized service, of-
ten much more information is collected. First, during authentication, much more
information is usually released than strictly necessary. For instance, if an organi-
zation only accepts adults whose date of birth is certified in an X.509 certificate,
all attributes in that certificate are exposed to the service provider. At least the
public key is unique which implies that all transactions by the same user are
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linkable. Moreover, many certificates include uniquely identifying information.
Second, some service providers may collude to extend profiles indirectly. Based
on information gathered by other organizations, users can be discriminated. For
instance, higher prices can be proposed to rich people. Similarly, poor people
can be excluded. Note further that not all organizations are equally trustworthy.

In response to this, collection, traffic and processing of data is subject to pri-
vacy legislation. The US privacy act of 1974 is a legal framework that defines
the principles of fair information practices. One of the principles is openness
and transparency. It means that individuals must know what data is collected
and for what purpose. The European Union Directive 95/94/EC extends the
US privacy act with the principle of explicit consent. Organizations realize this
through their privacy policies that users must acknowledge beforehand. These
legal frameworks provide the principles to which systems must adhere. In accor-
dance with this legislation, privacy requirements are gathered that must be satis-
fied by the realized system. General principles [10] can be applied during system
design to fulfill these rules. Organizations also enforce their privacy guidelines for
system design [4]. Some of them deploy decision support tools that assist devel-
opers during system design [14]. General design principles only guide designers
during system design. Unfortunately, they are inadequate to analyze systems
and extract conclusions to users and designers about the privacy-friendliness.
Therefore, other approaches are required.

Contribution. This paper presents a formal approach to model attributes that
are collected, stored and possibly shared by organizations. Fulfilling access con-
trol conditions and service interactions lead to the release of personal information
to other organizations that are not always equally trusted. Our approach formally
models different types of policies supported by service providers, namely (a) ac-
cess control policies, (b) storage policies, (c) distribution policies and (d) output
policies. Also, our approach formally models the privacy properties of currently
available credential systems. Based on the policies and credential technology used,
the profiles that can be compiled by each organization can be composedwith alter-
native trust assumptions. More specifically, our approach enables to extract (au-
tomatically) different types of feedback, that are useful for both users and system
designers. For instance, based on different trust assumptions by stakeholders, the
impact on profiles is automatically derived. Similarly, the approach allows to eval-
uate the impact of alternative credential technologies on the data in profiles.

The rest of this paper is structured as follows. An overview of existing privacy
modeling approaches is presented in Section 2. Section 3 gives a general overview
of the approach. Next, the approach is applied to the design of a travel reservation
system in Section 4. Section 5 evaluates the approach. The paper ends with
conclusions.

2 Related Work

Analyzing the privacy of a system is not an easy task. Diaz et al. [8] use the car-
dinality of the anonymity set as a measure of the degree of anonymity, based on
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information theoretic principles. Serjantov et al. [16] propose some modifications
to this approach. They apply a probability distribution on the possible origin
or destination of a given message, instead of anonymity sets. These approaches
present a theoretical framework for analyzing existing systems, but tend to be
difficult to apply in practice. Moreover, there is no direct support for the design
of new systems.

Barth et al. [1] propose a framework to express privacy policies at corporate
and legislation level using a temporal logic. Their approach can also be used
to verify the compliance of different – maybe conflicting – policies. However,
they focus on the impact of temporal properties on privacy. Tschantz et al. [18]
present a formal approach to reason about the acceptibility of data collection.
More specifically, they inspect if personal information that is collected, stored
and/or (eventually) distributed really serves certain goals. For instance, they
inspect if data that is collected by a doctor really serves the patient’s treatment.
In contrast, our approach more focuses on the profiles that can be built when
personal information is released. Hence, both approaches are complementary.
Other approaches focus on the design of privacy-friendly applications, such as
approaches that are based on the privacy by design principle [4,14]. These in-
corporate elements that allow to take privacy into account from the very early
stage in the design process. Such approaches situate at the project management
level and only specify the design process and not the system that is designed.
To design the system itself, a lower level approach is required. This can be part
of a general design process.

Sindre et al. [17] use misuse cases to derive security and privacy requirements.
Deng et al. [7] present a privacy threat analysis framework to fulfill privacy
requirements. The authors also apply misuse cases but with a larger focus on
privacy, while in the former, privacy is less prominent and considered as one of the
security objectives. A risk-assessment technique prioritizes the privacy threats.
These threats determine the privacy requirements and the privacy objectives to
pursue.

Naessens et al. [12] present a methodology for designing controlled anony-
mous applications. Their methodology not only takes the privacy concerns of the
user into account, but also the concerns of other stakeholders, such as account-
ability and the personalization of services. The methodology allows to express
anonymity and control requirements at a very high abstraction level. Anonymity
properties can be derived from a conceptual model. Their approach enables also
the semi-automatic selection of privacy enhancing technologies to realize the
objectives. Finally, resolution strategies to resolve requirement conflicts are pro-
posed as well. However, the approach lacks formal support. Moreover, advanced
services in which multiple organizations are involved cannot easily be modeled.

Besides the application layer, privacy also involves lower communication lay-
ers. Veeningen et al. [19] present a deductive system to analyze privacy at the
protocol level. They represent data in a three-layer model that includes the
messages that are exchanged, their content, and their context. Such approaches
enable a very detailed analysis. However, it requires model concepts that are
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not intuitive. Furthermore, at this level it is difficult to model relational aspects
(e.g., trust) between stakeholders.

3 General Overview of the Approach

Figure 1 gives an overview of the major concepts when modeling a particular
system (or application). Each system consists of a user and a set of organiza-
tions. An organization can be a credential issuer and/or a service provider. A
service provider offers one or more services that can be consumed by individuals,
possibly after disclosing personal attributes. The attributes that are released can
either be non-asserted or asserted by a trusted organization (i.e., the credential
issuer). For instance, attributes that are filled in by the user in a registration form
are non-asserted. In contrast, credentials can be used to prove certain personal
properties. Based on the attributes that are collected and linked, pseudonymous
or identifiable profiles can be compiled. A policy is assigned to each service. It
consists of (a) the attributes that must be released (or proved) before the service
can be accessed (i.e., the access policy), (b) the set of data that is stored by the
service provider (i.e., the storage policy), (c) the set of data that is released to
other organizations (i.e., the distribution policy) and (d) the output policy (e.g.,
issued credentials). This information can typically be extracted from the privacy
policies that are currently used by many electronic services.

Fig. 1. Modeling electronic services

Next to the application itself, authentication technologies and trust relations
are formally modeled. A formal representation of different authentication tech-
nologies is developed. The formal modeling focuses on the attributes that are
released and linkabilities that are introduced when using a specific credential
technology for fulfilling the access policy. For instance, if a user must only prove
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to be older than 18, only that fact is disclosed when using Idemix credential
technology. However, much more info is released when using an X.509 certificate
that contains additional personal attributes. Not only the exact date of birth,
but also all the other attributes are visible to the service provider. Finally, each
user can assign a level of trust to each organization involved in the system. For
instance, highly trusted organizations are obeying their privacy policies, whereas
untrusted organizations may share (or sell) the collected profiles with other or-
ganizations (although this is not always mentioned in their privacy policy).

The model facilitates automated reasoning using first-order logic. Note that
the IDP system [20] was selected for the realization. It is a knowledge-based tool
that allows to find solutions that fulfill a specific system specification. IDP is a
declarative language that extends typed first-order logic allowing inductive def-
initions [6]. The latter improves the expressiveness and simplifies modeling [11]
compared to classic first-order logic. IDP is used to automatically extract dif-
ferent types of feedback about the user’s privacy that are useful for different
stakeholders, such as the user and the system designer. The rest of this section
is structured as follows. First, we focus on the type of feedback that can be ex-
tracted from a system specification for designers and end-users. Next, the basic
concepts are formally defined after which an overview is given of the types of
credential technologies and policies that are supported.

Automated Feedback Generation. The approach supports different types
of feedback relevant for in-depth inspection of the user’s privacy. The feedback
can be classified according to three classes:

– Information Spreading reflects the amount and type of information that
is released towards each organization. Organizations gather information dur-
ing electronic service consumption and store it in profiles. A profile keeps
information that is linked to the same individual. Profiles can eventually be
merged.

– Organization Behavior shows the impact of collaborating organizations
on the user’s privacy. Collaboration can lead to discrimination. For instance,
an insurance company can discriminate patients based on information ob-
tained from a commercial e-health provider. However, collaborations may
also have benefits for the user. For instance, data from a social network
profile can be forwarded to ease registration procedures (this improves the
user-experience). Changes in the business landscape, such as two organiza-
tions that merge, also influence the user’s privacy (e.g., their profiles are also
merged).

– User Behavior feedback depicts the impact of the decisions/strategies ap-
plied by the user on his privacy and trust. For instance, two e-shops can
offer the same e-book at the same price but can apply different privacy poli-
cies. Similarly, using an anonymous e-cash system for electronic payments
is often more privacy-friendly than using a debit card. Sometimes, multiple
alternatives for authentication are possible. For instance, proving to be a
resident of Brussels using an anonymous credential is more privacy-friendly
than using an identity card (with X.509 certificate technology).
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Furthermore, the approach allows to detect violations against ruling policies, or
to detect conflicts between policies at different levels (e.g., corporate level policies
conflict with governmental policies) or between different stakeholders (e.g., user
policies conflict with service policies). Also, changes in policies at different levels
(e.g., governmental, corporate, service specific) are covered by this approach. The
model’s formal policy rules can be adapted in accordance to the changes in policies.

Basic Terminology. E defines the set of stakeholders. E consists of the user
u ∈ U ⊂ E and multiple organizations o ∈ O ⊂ E. Each organization can offer a
set of services, and multiple organizations can offer the same service. Therefore,
Σ ⊆ S ×O represents the set of all service instances, with S the set of services.
a ∈ A defines an attribute, with A the set of all attributes related to the user.
Note that the actual attribute values are abstracted and only reflect the type of
information they contain. For instance, the attribute eye color represents data
of type eye color. Some attributes refer to characteristics of the user (e.g., the
user’s first name, second name, date of birth, eye color, and a pseudonym of
the user’s favorite chat application), while others are related to technological
identifiers or parameters in the system (e.g., an IP-address) or environmental
context (e.g., the location).

Organizations can store the attributes that are collected during service con-
sumption in a profile, bundling related attributes. For instance, a profile can
contain attributes revealed during transactions under the same pseudonym.
P ⊆ A×E defines a profile, with E the stakeholder asserting the attributes. An
attribute in a profile is considered asserted if an organization vouches for its cor-
rectness. Attributes that are considered non-asserted are supposed to originate
from the user and their correctness is not vouched for by a trusted organization.
For instance, a user’s e-mail address is asserted if the service provider can verify
its correctness. For that purpose, the user was obliged to click on a unique link
he received in a special e-mail message. Formally, (ae-mail, o) ∈ P depicts an e-
mail address that is asserted by organization o while (ae-mail, u) ∈ P represents
the non-asserted variant. Profiles can be identifiable or pseudonymous:

– A profile P is identifiable if ∃I ∈ I : ∀a ∈ I, ∃e ∈ E : (a, e) ∈ P , with
identifiable set I ⊆ A and I the set of all identifiable sets. These sets repre-
sent combinations of attributes that are required to sufficiently identify an
individual person [15]. The term sufficiently is less restrictive than uniquely.
For instance, someone’s first name and surname can be considered to form
an identifiable set, although, it is not unlikely to find two people with the
same first name and surname.

– A profile P is pseudonymous, if ∃N ∈ N : ∀a ∈ N, ∃e ∈ E : (a, e) ∈ P , with
pseudonymous set N ⊆ A and N the set of all pseudonymous sets. These sets
contain attributes that form a unique combination. All data that is associated
with it, can be linked. For instance, the set of attributes that represents the
fingerprint of a browser [9] can be considered as a pseudonymous set.

A profile P where ∀a ∈ I, ∃o ∈ O : (a, o) ∈ P is asserted identifiable. Similarly, a
profile can be asserted pseudonymous. Multiple profiles can share a pseudonym or
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identifiable set. In this case all these profiles can be linked and merged together.
A profile is anonymous if it is not identifiable, nor pseudonymous.

Authentication Technologies. Users mostly need to authenticate before they
can consume a service. Authentication technologies T are classified into claim-
based technologies and network-based technologies. In the former case, users au-
thenticate using credentials that contain a set of attributes, such as anonymous
credentials [13,3], certificates (e.g., X.509), or a username/password combina-
tion. Note that, compared to the other claim-based technologies, anonymous
credentials enable the user to remain anonymous during authentication unless
identifiable attributes are requested. To support accountability, authentication
technologies allow to verify the authenticity of the credential’s content (e.g., a
digital signature guarantees that the content is authentic). c ∈ C ⊆ 2A ×O × T
defines a credential. The definition comprises a set of attributes {a, . . . } ∈ 2A,
the issuer o ∈ O, and the technology t ∈ T . Credentials are kept in the user’s
credential wallet W . Note that W can grow (e.g., after service consumption).

Network-based authentication technologies instead, are based on user profiles
P that are managed by organizations. These can be accessed by the user and
possibly external organizations. Usually, this requires authentication by one or
more stakeholders E and possibly also the user’s consent (e.g., she has to ac-
cept a profile access request). Hence, often these technologies are combined with
claim-based authentication mechanisms. For instance, a user accesses a music
stream service via his favorite social network account. Therefore, he needs to
authenticate to the social network using his account name and password. Conse-
quently, the music stream service gets read access to the public part of the user’s
social network profile and also the visible part of data of his friends in his social
network. Furthermore, the application can update the music listening history in
his profile that is shared among his social network friends.

Policies. Organizations enforce policies to access their services. These contain
rules that define the conditions under which a service can be used. The policy
rule-types that are considered in this ontology are preconditions, post conditions,
data storage, and data distribution. Preconditions specify the attributes that
must be revealed to an organization and the properties that must be fulfilled.
It also includes whether data must be asserted. For instance, the user needs to
reveal his name and date of birth to the MusicStreamInc and prove to be older
than 18 before he is able to stream music to his computer. His age must be
asserted and requires the consumer to use his identity card. Post conditions are
causal rules that describe the output of services. For instance, the music stream
subscription service issues a credential to a user. This credential provides access
to the complete library of rock music. Data storage rules define the data that
is stored in one or more profiles owned by the organization. Data distribution
rules specify to which parties data is forwarded.

Each policy applies to a service (s, o) ∈ Σ and is represented as δ(s,o) ∈ Δo,
with Δo the set of all policies of organization o. Possibly, alternative conditions
for service access exist. For instance, during subscription the user can choose
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between twodifferent social networks fromwhich personal information is obtained.
Different attributes are revealed to MusicStreamInc depending on the selection.
Each policy is a disjunction of alternative sub-policies δ(s,o) ≡ δ1(s,o) ∨ . . . ∨ δn(s,o),
with n ∈ N0.

Trust Relations. The data that organizations exchange depend on their trust
relations. Users and organizations often have conflicting requirements. The for-
mer want minimal data disclosure. This view is based on the data minimization
principle (i.e., to reveal the least amount of personal information). The more
data a user reveals, the higher the risk to harm his privacy. The latter are profit
driven and therefore they are often interested in building large profiles. This en-
ables them to improve the level of personalization and make their applications
more attractive to the user. Different trust relations are applied in this ontology:

– Users Need to Trust Organizations. We focus on storage trust relation
RS ⊆ O and distribution trust relation RD ⊆ O. Typically, organizations
specify this behavior in a privacy policy that is publicly accessible to their
users. Users have to accept it before they are granted access to the orga-
nization’s services. Consequently, it is convenient to specify the user trust
towards the organization’s o ∈ O policy set Δo. We assume that users do
not trust other organizations by default (o /∈ RS and o /∈ RD). This means
that users really opt-in new organizations o ∈ O in RS and RD. Expressing
that a user trusts one of these policies assumes that only the specified data is
affected by the services. We assume that untrusted organizations will store
or forward all data that can be retrieved. For instance, an organization’s
policy can stipulate that the organization only obtains the user’s name from
his electronic identity card that uses the X.509 technology. If o ∈ RS , then
only the name is stored by the organization. Else, all the attributes of the
user’s certificate are retrieved and stored, although the policy might specify
it differently.

– Interactions Require also the Trust From Organizations Towards
Users. If data is not asserted, users can provide false information to or-
ganizations. For instance, they can enter an incorrect name and address at
registration. To exclude inaccurate data, organizations can oblige users to
provide asserted data. These trust relations are specified implicitly in the or-
ganization’s access policy. The trust relation is defined as RΣ ⊆ A×O×Σ =
{(a, oa, (s, os)) | (s, os) ∈ Σ and a precondition rule of δ(s,os) specifies that
oa asserts attribute a}.

– Finally, Trust Is Often Required Between Interacting Organiza-
tions. Two types of interactions are defined, namely (1) an organization
can accept credentials issued by another organization or (2) an organization
can forward data to another organization. Both are implicit in the organiza-
tion’s policies. The former are expressed in the access policy while the latter
are expressed in the data distribution rules of the policy. The definition of
this trust relation is RO ⊆ O ×O = {(o1, o2) | Δo1 specifies a rule where o1
accepts credentials or profiles from o2, or forwards data to o2}.
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4 A Travel Reservation System

The approach is validated through the modeling of a travel reservation system.
First, we give an overview of the system. Next, the system is modeled. Finally,
we focus on valuable feedback that can be extracted from the model.

4.1 Scenario and Setup

A student wants to use an online travel reservation system to book a touristic
trip. The travel agency offers triple-packs including the flight, hotel, and a theme
park visit. Each item can also be booked separately. The latter requires users to
access the web services of the airline company, the hotel chain and the theme park
directly. Special reductions are offered at the theme park’s website to students
and loyal hotel guests. The airline company and the theme park belong to the
same holding. They collaborate to increase efficiency. The student believes that
the travel reservation system stores (and can forward) all data released to that
organization (even when specified differently in its privacy policy). Also, he has
only limited trust in the hotel chain (i.e., he assumes that it stores all collected
data). Before he books his trip, he wants to have an insight on the profiles that
can be built by the organizations when using a specific booking strategy (fb1 ).
Furthermore, he wants to know the most privacy-preserving strategy to book the
theme park tickets (fb2 ). Finally, he checks whether he remains unidentifiable
by the theme park when taking a student offer (fb3 ).

Services and organizations. The user u ∈ U and the organizations O = {otravel,
oair, ohotel, opark, ogov, ouniv} are the stakeholders in the system. Note that the
holding only supports collaboration between the airline company and the amuse-
ment park. The government ogov issues governmental electronic identity cards
and electronic driving licenses, while an educational institution ouniv issues the
electronic student card. Table 1 gives an overview of the authentication tech-
nologies together with the attributes that are included. All credentials are X.509
certificates except the hotel’s rewards membership credential crew, which is a

Table 1. Travel reservation system authentication

Credential x
cx

a ∈ A Issuer

eID eID name, address, citizenship, DoB, profession, SSN ogov
Driving license driv name, address, citizenship, DoB ogov
Student card stud name, address, DoB, institute, study ouniv

Hotel rewards rew reward id ohotel

Profile x
Px

A× E Owner

Hotel rewards rew (reward id, ohotel), (name, u), (e-mail, ohotel),
(DoB, u), (rewards status, ohotel)

ohotel
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username/password combination. The latter gives access to a membership ac-
count Prew. The services Σ are split in two groups Σ′ and Σ′′, with Σ = Σ′∪Σ′′.
The former are directly accessible by consumers (i.e., Σ′ = {(book, otravel),
(book, oair), (book, ohotel), (book, opark), (reduction, opark)}) while the latter can
only be accessed by the travel agency (i.e., Σ′′ = {(book ext, oair), (book ext,
ohotel), (book ext, opark)}).

Policies and trust relations. The travel agency (book, otravel) defines that a con-
sumer must at least prove his name and address before it can book a triple-pack

Table 2. Travel reservation system policies model of the user accessible services

(s, o) i δi(s,o)
(book, otravel) 1,2 reveal(name, address, citizenship, DoB) from ceID1 or cdriv2

reveal(e-mail, flight destination, date of travel, diet, hotel loca-
tion, room type, date of arrival, date of departure) from u

reveal(reward id) from crew
forward(name, address, citizenship, DoB, e-mail, flight desti-
nation, date of travel, diet) to oair scope (book ext, oair)

forward(name, address, citizenship, DoB, e-mail, hotel loca-
tion, room type, reward id, date of arrival, date of departure)
to ohotel scope (book ext, ohotel)

forward(e-mail, date of visit) to opark scope (book ext, opark)

(book, ohotel) 1 reveal(name, address, citizenship, DoB) from ceID
reveal(reward id) from crew
reveal(e-mail, hotel location, room type, date of arrival, date of
departure) from u

store(name, address, citizenship, DoB, e-mail, hotel location,
room type, reward id, date of arrival, date of departure )

output(chotel) by ohotel

(book, oair) 1 reveal(name, address, citizenship, DoB) from ceID
reveal(e-mail, flight destination, date of travel, diet) from u
store(name, address, citizenship, DoB, e-mail, flight destina-
tion, date of travel)

output(cair) by oair

(book, opark) 1 reveal(e-mail, date of visit) from u
store(e-mail, date of visit)
output(cpark) by opark

(reduction, opark) 1 reveal(e-mail, date of visit) from u
reveal(name, address, DoB) from cstud
store(name, address, DoB, e-mail, date of visit)
output(cpark) by opark

2 reveal(e-mail, date of visit) from u
reveal(reward id) from crew
reveal(rewards status) from Prew

store(reward id, e-mail, date of visit)
forward(reward id) to ohotel scope (get rewards status, ohotel)
output(cpark) by opark
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Table 3. Travel reservation system policies model of the services that are accessible
for external organizations

(s, o) i δi(s,o)
(book ext, ohotel) 1 reveal( name, address, citizenship, DoB, rewards id, e-mail, hotel

location, room type, date of arrival, date of departure) from
otravel

store(name, address, citizenship, DoB, e-mail, hotel location,
room type, reward id, date of arrival, date of departure)

output(chotel) by ohotel

(book ext, oair) 1 reveal(name, address, citizenship, DoB, e-mail, flight destination,
date of travel, diet) from otravel

store(name, address, citizenship, DoB, e-mail, flight destination,
date of travel)

output(cair) by oair

(book ext, opark) 1 reveal(e-mail, date of visit) from otravel
store(e-mail, date of visit)
output(cpark) by opark

using the (book ext, o) service. Those attributes must be asserted by the gov-
ernment using an electronic identity card or driving license. Other attributes,
such as his e-mail address and flight destination do not need to be asserted.
Only personal data that is strictly necessary to obtain a plane voucher cplane,
a hotel voucher chotel, and a theme park voucher cpark are forwarded to the re-
spective organizations . The airline company and hotel chain require at least the
user’s name and his address when tickets are booked directly using (book, oair)
and (book, ohotel). These must be asserted by the government via the identity
card. Other attributes, such as the user’s e-mail address, hotel location, and
flight destination are non-asserted. All attributes are stored by both organiza-
tions. Optionally, tourists can also define diet preferences. Both organizations
issue a voucher to the consumer after a successful reservation. A theme park
visit (book, opark) only requires the user’s e-mail address and the date of visit
(non-asserted). The visitor gets an entry voucher. All his attributes are stored.
Tourists get a reduction when they can prove to be a student or to be silver
members in the hotel’s rewards program. When the student uses his student
card to fulfill the preconditions, the theme park obtains the name, address, and
date of birth (DoB) that are asserted by the student’s school. The consumer
can also opt to prove to be a silver member. If so, he is redirected to the hotel
chain where he needs to login in with his password. After a successful login,
the user’s rewards status is forwarded to the theme park. Attributes that are
released to get a reduction are stored by the theme park. Table 2 and 3 give a
formal overview of the policies that are applied in the travel reservation system.

Multiple trust assumptions can be applied. RS = {oair, opark} means that the
user trusts the storage policies of the airline company and theme park.RD = {oair,
ohotel, opark} means that the user trusts the distribution policies of the organiza-
tions included in RD. Note that it is quite trivial to modify these sets.
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4.2 Feedback

To demonstrate the expressive power of our approach, a set of queries are per-
formed on the formal model, namely fb1, fb2 and fb3.

Table 4. Travel reservation system user profiles based on the user trust in organizations

Profile Owner Attributes Asserted

P eID
(book,otravel)

otravel name, address, citizenship, DoB, profession, SSN ogov
reward id ohotel
e-mail, flight destination, date of travel, diet, hotel
location, room type, date of arrival, date of depar-
ture

u

P driv
(book,otravel)

otravel name, address, citizenship, DoB ogov
reward id ohotel
e-mail, flight destination, date of travel, diet, hotel
location, room type, date of arrival, date of depar-
ture

u

P(book,ohotel) ohotel name, address, citizenship, DoB, profession, SSN ogov
reward id ohotel
e-mail, hotel location, room type, date of arrival,
date of departure

u

P(book,oair) oair name, address, citizenship, DoB ogov
e-mail, flight destination, date of travel, diet u

P(book,opark) opark e-mail, date of visit u

P stud
(reduction,opark)

opark name, address, DoB ouniv

e-mail, date of visit u

P rewards
(reduction,opark)

opark reward id, rewards status ohotel
e-mail, date of visit u

P eID
(book ext,ohotel)

ohotel name, address, citizenship, DoB, profession, SSN ogov
reward id ohotel
e-mail, flight destination, date of travel, diet, hotel
location, room type, date of arrival, date of depar-
ture

u

P driv
(book ext,ohotel)

ohotel name, address, citizenship, DoB ogov
reward id ohotel
e-mail, flight destination, date of travel, diet, hotel
location, room type, date of arrival, date of depar-
ture

u

P(book ext,oair) oair name, address, citizenship, DoB ogov
e-mail, flight destination, date of travel, diet u

P(book ext,opark) opark e-mail, date of visit u

fb1: User profiles. The end-user and/or designer can get an overview of the
information spreading in the system. Details are provided in Table 4. Each service

consumption (s, o) leads to a profile δ
(i)
(s,o) containing the attributes gathered by

the service. The specific booking strategy has an impact on the type and amount
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of attributes that are part of the profile. P eID
(book,otravel)

and P driv
(book,otravel)

show
the attributes in the profile when the identity card or the driving license are
used, respectively. The student only has very limited trust in the travel agency’s
storage policy and therefore the profile contains all attributes that are released to
that organization. Among others, a social security number (SSN) and profession
are added to P eID

(book,otravel)
as these are the attributes of the X.509 certificate in

the eID card.
The travel agency needs to forward attributes to the airline company, hotel

chain, and theme park. In return, vouchers are issued. The student assumes that
the travel agency forwards all data that is gathered. The profiles P(book ext,oair)

and P(book ext,opark) only contain the attributes that are specified in the respective
storage policies, as the tourist trusts their storage policies. The profile that is
kept by the hotel chain contains all data that is released by the user. Using the
driver’s license for authentication leaks less information than using the eID card.
More specifically, the user’s SSN and profession are stored in the profile when
the eID is used. The profiles P(book,oair), P(book,ohotel), and P(book,opark) list the
set of attributes that are collected if the travel agency does not mediate in the
bookings. All profiles comply with the specified storage policies, except the one
owned by the hotel. The hotel keeps the user’s SSN and profession. Note further,
that the strategy that is selected to get a reduction at the theme park also has
an impact on the attributes in the profile.

fb2: Impact of reduction on privacy. Selecting a specific booking strategy can
have an impact on the user’s privacy. If the travel agency is used, authenticating
with the driver’s license better protects the privacy than using an eID card.
However, the travel agency still collects a lot of valuable personal data. No data
is released to the travel agency in case of direct bookings, but this compels the
consumer to use his identity card for the hotel and airplane booking. Hence, the
user’s SSN is revealed to both organizations. The latter is a unique identifier
to which a lot of information can be linked. If a student wants a reduction, he
must book directly. At first glance, using the rewards membership seems the
most privacy-friendly option as only the user’s e-mail address and reward id are
revealed. In contrast, the user’s e-mail address, name and address are revealed
if the student card is used. However, the theme park and the airline company
belong to the same holding and exchange data. The profiles from the airline
company and theme park can be linked by means of the user’s e-mail address.
Thus, the theme park also knows the user’s name and address. Hence, using the
student card is slightly more privacy-friendly.

fb3: Reductions are identifiable. Verifying if the student can remain unidentifi-
able towards the theme park when booking a voucher at reduced price is done
by a query based on identifiable sets. The identifiable sets in our system are
I = {I1, I2}, with I1 = {name} and I2 = {address} where name comprises
the user’s name and surname. Note that the user or designer can define what
is identifiable. Note that the union I3 = I1 ∪ I2 is also an identifiable set. A
user is unidentifiable to an organization if the following two conditions are met.
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First, the organization owns no identifiable profile. Second, the organization
contains no pseudonymous set that is shared with an identifiable profile of a
collaborating organization. According to these conditions, the first condition is
met only when the student uses his reward id. However, the second condition is
not fulfilled. To explain this, the pseudonymous sets N1 = {e-mail} is required.
N1 ⊆ P(book,oair) ∩ P rewards

(reduction,opark)
and I3 ⊂ P(book,oair) (profile is identifiable).

Hence, booking at reduced price is identifiable.

5 Evaluation

The presented approach is holistic in the sense that a wide range of authentica-
tion technologies, multiple service policies and trust assumptions, and advanced
interactions are supported. The formal approach facilitates the concrete realiza-
tion using existing first-order logic tools. These enable the automatic extraction
of feedback to inspect the user’s privacy. IDP was selected for the realization [5]
and was applied to the travel agency scenario. To evaluate the privacy, different
types of automated feedback are used. Therefore, profiles of each organization –
that are based on the service policies and the user’s trust relations – are compiled.
These profiles are examined for linkage with pseudonyms and identities. The re-
sults are part of the feedback [5]. Because of the amount of data, the output
lacks readability. The view on privacy in this approach is from the user’s view-
point because it is based on the user’s trust assumptions. Other aspects in the
model that have an impact on information spreading are collaboration between
organizations and the used authentication technologies. Only the information
spreading is considered by this approach and not the goal of the collection of
data. Therefore, other complementary approaches [18] can be used. The model
provides a static view on the privacy. Consequently, sequences of events over time
that influence the user’s privacy cannot be expressed. However, this significantly
reduces the search space for finding results on different types of feedback. Fur-
thermore, stronger conclusions are possible when omitting time because these
conclusions are not restricted to a finite time-domain.

Systems are modeled from a single-user viewpoint. This enables to abstract
the actual values of attributes (included in credentials and profiles). For instance,
John lives in New York is a real-world proposition. Our modeling approach ab-
stracts the actual values of the attributes name and city. However, a mapping
table that contains tuples (attribute type, attribute value) can easily be added
to instantiate attributes in case it is not feasible to abstract away the attribute
value. Abstracting attribute values may also complicate the modeling of graph
structures. For instance, a friend can be part of a user’s social network. A pred-
icate MemberOf(Friendlist, Friend) can be used to express this property.

Real-world service policies describe how organizations deal with personal data.
The service policy specifications in our approach consider the same information
specified in formal rules. Although, such policies are often vague and insufficient
to extract the exact behavior of organizations, there exist policy specification
languages that facilitate service providers to express their policies in detail. For
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instance, CARL [2] can be used to express access control requirements. Here,
the model’s service policy rules can be extracted automatically.

The approach supports different types of modifications in the system. Changes
in service policies can be handled automatically in case they are specified in lan-
guages such as CARL. Otherwise, modifications in the service policies require
manual interventions. Other types of changes, such as organization collabora-
tions and newly added organizations are also added manually to the model. For
instance, adding a new organization o to the system involves adding the new
organization to the set of stakeholders E and the set of organizations O. New
services are added to the sets Σ and S and new service policies of organization
o are added to Δo.

Future research will focus on the integration in design tools, for instance for
the compliance verification of service policies with corporate level and govern-
mental policies. This approach can also be applied to end-user applications. For
instance, a browser plug-in to inspect if the data that is revealed complies with
the user defined policy, such as his SSN that must be kept hidden. This involves
an on-line model of the system that can be consulted from the browser plug-in.
Furthermore, improving the readability of the feedback output is future work.

6 Conclusions

This paper presented a formal approach to model advanced electronic services
in which multiple organizations are involved. Once a system is modeled, the
designer and/or end-user can inspect privacy properties based on varying trust
assumptions. By the design of a travel reservation system, we show the feasibility
of the approach and demonstrate how different types of feedback are extracted
from the formal model.
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Abstract. This paper describes SecProve, a prototype tool we are de-
veloping for checking application-specific security properties of C code,
together with our vision of how such a tool can be used by a programmer
to maintain security of code during its development.

Keywords: security, verification, security properties, support for assur-
ance, security best practices, code security, application-specific security.

1 Introduction

Many serious vulnerabilities in systems arise from security violations in software.
Unfortunately, software testing, the most common approach to detecting security
violations, provides by itself little confidence that a program is secure. Although
formal verification could significantly increase confidence in the security of soft-
ware, it is viewed as too technically difficult, costly, and time consuming. Hence,
demonstrating that a program is secure remains a challenging problem.

Recently, a number of powerful commercial tools, called static analyzers, have
been introduced to address the problem of software security. Based on research in
static analysis and similar techniques (see, e.g., [11], [10]), static analyzers, such
as Coverity [1] and CodeSonar [8], detect application-independent errors (often
called “code vulnerabilities”) which do not depend on the application. Examples
are null pointer dereferences, format string problems, integer range errors, and
buffer overflows. Static analyzers have been applied to a large number of C, Java,
C++, and C# programs and are estimated to have detected tens of thousands
of bugs, most of which traditional software testing would not have found. Static
analyzers have been highly successful because they are automatic and easy to
use—applying the tools requires neither special skills nor special training.

To date, researchers and commercial tool vendors have largely ignored a sec-
ond important class of security errors—application-specific errors—i.e., viola-
tions of security properties specific to the application. Examples include illegal
data flows and failure of a program to sanitize memory areas after processing sen-
sitive data in those areas. Gary McGraw, a leading computer security authority,
estimates that, of the large number of security errors in current programs, ap-
proximately 50% belong to this second class [16]. However, detecting application-
specific errors can be extremely difficult. Unlike application-independent errors,
which static analysis tools can detect automatically and without user guidance,
before a tool can detect application-specific errors, the developer must first define
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the security properties of interest. Specifying these properties can be difficult,
especially if the developer must express them in an unfamiliar language or logic.

This paper describes SecProve, a process and prototype tool, whose goal is to
detect application-specific security violations in programs automatically. Unlike
our earlier research [14,15], which used a model-based approach to verify the
security of software, SecProve does not rely on a formal security model. Instead,
it automatically checks a program for desired security properties and notifies
the developer when a security violation is detected. An important feature of
our approach is that SecProve checks for security violations as the developer is
writing the program. Another important feature is that SecProve facilitates the
specification of security properties by providing the developer with a set of tem-
plates. To make analysis by SecProve feasible, we assume that the C program to
be analyzed is developed following best coding practices, e.g., no pointer arith-
metic, no GOTOs, and no statements used as expressions. This paper reviews
major concepts on which SecProve is based, including two—forward propagation
of assertions and incremental compilation—supporting analysis of code during
development, describes the SecProve process and tool support for developing
secure code, presents an example to illustrate how the tool works, and concludes
by describing our progress and future plans.

2 Background

Application-Specific Security Properties. Most application-specific secu-
rity properties of code fall into well-known classes, such as sanitization, data
flow, data influence, data integrity, data separation, access control, and non-
bypassibility. The security properties proved of the certified software application
in [14,15] include, for example, sanitization and data separation.

Unlike application-independent security properties, application-specific prop-
erties must be defined by the developer. Doing so requires detailed knowledge
of the code design. For example, to define a sanitization property, the developer
must identify the variables or memory areas to be sanitized, places in the code
requiring their sanitization as a precondition, and the name of the procedure that
implements sanitization. As noted above, to specify a desired security property
in SecProve, the developer fills in a template. As an example, a template for
specifying a sanitization property might provide slots for the property’s ID; the
data type of the item(s) to be sanitized; a sanitization predicate; a sanitization
routine plus areas it sanitizes; and names of procedures that have sanitization of
certain memory areas as a precondition, together with the relevant set of memory
areas. Any class of security properties may further divide into subclasses, each
with its own template. For data flow, for example, two subclasses are forbidden
flows between two variables, and flows between two variables restricted to flow
through a third variable.

LEMA. LEMA [3,4] is an abstract language for representing an imperative
program in an intermediate form useful for reasoning about the program. It is
basically a strongly typed language of while programs with support for pro-
cedures and annotation with assertions. The LEMA translator converts LEMA
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procedures and assertions into state machines and candidate invariants defined
in the language of the PVS theorem prover [18]. Type checking of LEMA pro-
grams and assertions is done in PVS; checking of candidate invariants is done
using either the PVS theorem prover or any SMT solver supported in PVS.
As illustrated in Section 4, LEMA notation resembles the notation of PASCAL
rather than C notation. For example, equality in LEMA is represented by “=”
rather than “==”, and assignment by “:=” rather than “=”.

Assertion Propagation. Reasoning about imperative programs is generally
done through the propagation of assertions in the code. Either weakest precondi-
tions (resulting in backward propagation) or strongest postconditions (resulting
in forward propagation) are computed, with loops handled using loop invariants.
To avoid existential quantifiers in forward propagation, logical variables may be
introduced. Though loop invariants can sometimes be found automatically, in
general, the problem of finding loop invariants sufficient for proving desired pro-
gram properties is undecidable. Our initial focus is straight line code, including
code with unwindable loops, because proving security properties about simple
straight line code has proven extremely useful (see, e.g., [14,15]). Generating as-
sertions automatically for such code is possible using either backward or forward
propagation.

Backward propagation, typically used to verify that code satisfies a given
postcondition provided it satisfies a given precondition, is the most frequently
used technique for verifying the functional correctness of programs. However,
forward propagation, used for example by [17,12], has advantages for verifying
security properties. Establishing these properties can require the verification of
a set of desired code assertions derived from a property specification, rather
than verification of a limited set of postconditions which can be backward prop-
agated. Because assertions generated by forward propagation are known to be
valid, they can be used to check desired code assertions in a procedure even be-
fore the procedure code is complete. Given that our goal is to provide feedback
to the programmer about security violations as soon as possible during code
development, our approach is to use forward propagation to the extent feasible.

Incremental Parsing. To better support analysis of code as it is developed, we
plan to support code changes while minimizing any re-analysis of the unchanged
portion of the code. To do this, we will build on existing results in incremental
parsing, as described, for example, in [13,7].

3 Approach to Tool Support

As described above, our goal is to create tool support for specifying desired
application-specific security properties of software and for checking the code
during development for property violations. The central idea is to base the code
analysis on code assertions, i.e., assertions annotating the code. SecProve will
support analysis of source code in the C language (and potentially other imper-
ative languages). Often source code, especially C code, is not formatted to fully
support annotation: for example, there may be multiple commands on a line,
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and some constructs may represent both commands and expressions. For this
reason, SecProve uses an intermediate LEMA representation of the source code
during code analysis.

LEMA code is formatted so that a new line begins at every point in the
code where a change in the program state may occur, e.g., after an assignment,
a procedure call, or a change in control location after a test. In analogy with
an assert statement in C code, any assertion associated with a line of LEMA
code refers to the program state when that line is reached—and before it is
executed. In SecProve, code assertions associated with lines in the intermediate
LEMA representation of C code derive from one of three sources: 1) assertions
and contracts which the developer has included with the C code, 2) security
properties specified by the developer, and 3) inference from the (LEMA) code
itself. Because the number of assertions associated with a given line of LEMA
code may be very large, SecProve does not interleave the assertions with the
LEMA code, but keeps them in a separate database. Nor does SecProve ever
modify or annotate the developer’s C code.

Assertions that a code developer includes in source code typically express
facts that the developer desires to be true at certain points in the code during
execution. Alternatively, the developer may use assertions to specify desired
contracts for functions or procedures. A compiler can use such assertions to
specify checks to be done during execution, and halt execution when they fail. In
contrast, the assertions used for code analysis in SecProve fall into two categories:

– desired assertions, including assertions which, if proved to hold, guarantee
specific security properties; and

– valid assertions derived from the code or from verification of some desired
assertion.

In SecProve, tool support will:

– Maintain a database of information about the code and its desired security
properties, for use in analyzing the code with respect to the properties;

– Provide the software developer with templates for specifying common classes
of application-specific security properties;

– Compute code assertions of two classes, Class 1 and Class 2—where Class 1
assertions either do not require checking or have already been checked, and
Class 2 assertions still require checking—and enter the assertions in the
database to support code analysis;

– Provide theorem proving support for checking Class 2 assertions; and
– Provide feedback to the developer about the state of the code development

and analysis, including traceability information from the intermediate rep-
resentation to the original source code to connect any detected property
violation to its point of origin in the source code.

Information about the code to be maintained in the database includes the ab-
stract syntax tree and control flow graph of the LEMA code; traceability in-
formation from LEMA code to source code; code assertions represented either
directly or, when the potential number of assertions is very large (for exam-
ple, in the case of assertions about data flow or data influence), in some more
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compact tabular form; dependencies among assertions; any needed verification
conditions; and so on. Information about desired security properties of the code
will be represented in the database as instantiated property templates.

For code analysis, the following assertions will be automatically generated:

– For a given property or set of properties, desired code assertions which, if
valid, ensure that the property is not violated;

– Assertions which can be deduced as valid from the code itself; and
– A desired precondition and a postcondition, valid upon verification of the

desired precondition, for every procedure call in the code, and derived by
instantiating the precondition and postcondition in the procedure’s contract
with the actual parameters in the procedure call.

Class 2 assertions guaranteeing a particular security property can be generated
as soon as that property has been specified and entered in the database. Class
1 assertions obtained by forward propagation through the LEMA code can be
entered into the database during translation of source code to LEMA code, as
can those Class 2 assertions that are preconditions of procedure calls.

The database will be used to provide both 1) the information needed by a
theorem prover or SMT solver to check the validity of the Class 2 assertions and,
if possible, convert them to Class 1 and 2) the information needed to display the
current state of the code development and analysis to the developer, and to ac-
cept input (property specifications and new code) to the analysis tools through
a GUI. Figure 1 illustrates our concept of the developer’s view of an Eclipse-like
GUI. Code analysis—which entails modifying the database and validity check-
ing of assertions—will occur only upon user request through the GUI, because
it can be expensive computationally. To handle the potential explosion in the
number of assertions available for theorem proving, the developer can constrain
the analysis—e.g., by focusing on certain predicates and variables.

Because a programmer may make changes at arbitrary points in the C source
code during its development, the SecProve database (see [9]) is designed to fa-
cilitate such code changes. The database associates an unchanging unique line
ID (distinct from the line number) with each line of LEMA code when it is
first generated from the C code. Each piece of information associated with a
particular line of code—such as C source line number, LEMA code line num-
ber, variable scope information, or Class 1 or 2 assertion—is associated in the
database with the unique line identifier of that line of code. Thus, for example,
assertions associated with a line of LEMA code that is replaced or deleted will
become inaccessible. A change in the C code will produce a corresponding change
in the LEMA representation, and may require re-analysis of the code. To mini-
mize the re-analysis effort, the stored procedures which manage the database will
maintain as much of the information associated with unaltered lines of LEMA
code as possible.

4 Example: Checking a Sanitization Property

This section illustrates how a developer would use SecProve to check a san-
itization property and a developer-supplied contract for a simple C program.
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Figure 1 illustrates the current design of the SecProve GUI. The middle up-
per window of the GUI displays the current C code, which is not yet complete:
the function get input is only a stub, and no code yet exists for the functions
processing and write random. Because it is incomplete, this program will not
compile. SecProve, by contrast, can analyze this (partial) program.

SecProve provides two methods for developers to specify desired properties:
1) contracts and assertions placed directly in the C code (described later in this
section), and 2) templates for specifying application-specific security properties.
Displayed in the lower right corner of Figure 1 is a sanitization property template.
In the example, the security property of interest is that sanitized(partition)
holds whenever the procedure process data begins execution. To define this
property using the template, the developer provides: 1) a name for the prop-
erty (sanitize partition); 2) the name of a routine that performs sanitization
(cleanup), together with the set of global variables or formal parameters it san-
itizes ({partition}); 3) the data type subject to sanitization (int [10], i.e.,
integer arrays of size 10); 4) the name of a predicate that indicates whether
a data area of the given data type is sanitized (sanitized); and 5) a list of
those procedures requiring as a precondition that certain data areas are sanitized
(process data), together with the set of global variables or formal parameters
assumed sanitized ({partition}). The template can be instantiated as many
times as necessary to cover every data area for which sanitization is a concern,
e.g., because it may hold sensitive data.

As noted in Section 3, SecProve supports developer-supplied annotations
in the form of function contracts and assertions at individual lines of code.
While C assert statements can be used to annotate individual lines of code,
SecProve, like Boogie [5], provides two further annotation constructs, requires
and ensures, to respectively capture contract preconditions and postconditions.
SecProve expects a contract for a C function, if provided by the developer, to
appear immediately after the opening curly brace for the function body. Plac-
ing the contract at the beginning of the function allows the contract to be used
in analysis as early as possible, including situations in which the code for the
function is incomplete or missing entirely. A function with only a function dec-
laration and a contract is called a stub. Contracts associated with stubs can be
used in the analysis of other routines, with proof that the stub satisfies its con-
tract postponed until the code for the stub is developed. The example C code
in Figure 1 includes a developer-supplied contract ensures(sanitized(parti-
tion)) for process data indicating that sanitized(partition) is desired to
hold at the end of process data. SecProve automatically generates a header
file, security predicates.h, containing trivial definitions (returning true) for
requires and ensures. From the property templates, SecProve automatically
generates trivial definitions in security predicates.h for any predicates (e.g.,
sanitized) declared in property specifications, so that the developer can use
these predicates in annotations. This header file allows the C code to compile.
To allow ensures annotations to refer to both the beginning and ending values
of a variable passed to a routine as an actual parameter, SecProve automatically
adds to the header file the declaration of a variable x save for each global variable
or formal parameter x in the program. This variable refers to x’s value when a
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Fig. 1. Conceptual SecProve GUI showing sanitization example

routine is first entered. Thus, in the C program in Figure 1, partition save can
be (and is) used in the get input stub ensures(partition== partition save)

to indicate that get input does not change the value of partition. Because this
is a stub, no proof is required until the stub is expanded to include code.

The first step of SecProve’s verification process is to translate the C code into
an equivalent program in LEMA. The GUI displays the LEMA representation
of the C code in the window in the upper right corner. To display all of the
sanitization-relevant code in Figure 1 at the same time, the LEMA representation
of get input has been removed and portions of the LEMA representation of
other procedures have been replaced by ellipses. During the generation of the
LEMA intermediate representation, information is added to the database (e.g.,
about the developer-supplied assertions and contracts). The security properties
specified using the templates are also added to the database. Each property is
assigned a unique property ID used as a key in the database to associate the
property with assertions that will be generated from the property.

Next, for each specified property, the assertion generator processes the prop-
erty specification and associates, with both the property and appropriate code
locations, Class 2 assertions which, if they all hold, are sufficient to guaran-
tee the property. All assertions are stored in the database by associating (but
not interleaving) them with the LEMA code. The specification of property
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sanitize partition implies that, for satisfying it, sanitized(partition) is a
required precondition for process data. Hence, SecProve will associate a Class
2 assertion stating sanitized(partition)with the call to process data on line
L3 of main (and, similarly for any other calls to process data in the program).
The assertion generator also enters Class 2 assertions corresponding to any
developer-provided contracts and assertions. In the example, to ensure that the
developer-provided contract for process data is satisfied, SecProve must check
that partition has been sanitized at line L8 of process data, and for this pur-
pose will associate a Class 2 assertion (call it B) stating sanitized(partition)
with line L8 of process data in the database.

Because the specification of the property sanitize partition designates
cleanup as its sanitization routine and {partition} as the set of global vari-
ables or parameters sanitized by cleanup (and because the C-to-LEMA trans-
lator transforms the C code global variable partition into a local variable of
the top level LEMA procedure program that is passed to all other LEMA pro-
cedures as a parameter), the assertion generator associates a Class 1 assertion
stating sanitized(partition)with any line of code (outside of cleanup itself)
that immediately follows a call to cleanup, including line L8 in process data.
Also, because partition is considered “not sanitized” when it is first defined, a
Class 1 assertion stating NOT(sanitized(partition)) is associated with line L0
in program. In the code outside cleanup, code locations immediately following
places where the value of partition may be changed are tagged with a Class 1
assertion stating NOT(sanitized(partition)). Thus, in process data, such
assertions are associated with L4 (follows an assignment to partition on L3)
and with L7 (follows a call to processing on L6). Note that because the behav-
ior of processing with respect to partition is unknown, it must be assumed
that partition is not sanitized after processing executes.

Let A be the Class 1 assertion associated with line L8 in process data. Since
A is equivalent to the Class 2 assertion B at L8 of process data, B can be
converted to Class 1 and marked as proved. This proves that the developer-
supplied contract for process data holds. The dependency of B’s Class 1 status
on A is recorded in the database so that if updates to the code eliminate A, B
will revert to Class 2 in the database.

By forward propagation of the Class 1 assertion stating NOT(sanitized(par-
tition)) associated with line L0 in program, the assertion generator associates
equivalent Class 1 assertions both with line L1 of program, which calls main, and
line L0 of main. Forward propagation of this latter assertion associates equiva-
lent Class 1 assertions with L1 and L2 of main on the first pass through the loop,
and similarly with L3 of main, because get input does not change partition.
But the generated Class 1 assertion at L3 refutes the Class 2 assertion stating
sanitized(partition) associated with L3 (see above) generated from the spec-
ification of sanitize partition. The lower left window of Figure 1 displays, as
(LEMA) feedback to the developer, details of the resulting property violation,
including a trace of the assertions that lead to the violation. Clicking on a line of
LEMA code presents the user with a menu allowing additional feedback, e.g., a
display of associated assertions and highlighting corresponding lines of C code.
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5 Related Work

Most related work on application-specific security properties relates to data flow.
The seminal work of Bergeretti et al. [6] provides rules for generating assertions
about data flow and information flow in while programs. Amtoft et al. [2] auto-
matically compute data flow assertions and contracts for SPARK Ada programs.
The RESIN system, described in [19], facilitates developer specification of de-
sired data flow properties; unlike in our approach, these specifications are used
for runtime checking.

6 Progress and Future Work

Implemented to date are a C-to-LEMA translator for a significant subset of
C with restricted use of pointers and loops, a database schema in MySQL [9],
and theorem proving support using PVS. We also have a conceptual design
for the GUI, plus designs for assertion generation techniques and for stored
procedures to exercise the database during computation and analysis of the
LEMA code. Future work includes 1) full integration of the prototype tools; 2)
implementation of assertion generation from property specifications, code, and
developer annotations; 3) support for handling pointers and unbounded loops;
and 4) support for developer use of library routines.

Acknowledgements. We thank Prof. Wei Ding of the University of Mas-
sachusetts, Boston, who designed the database schema to fit our requirements
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Abstract. In this paper we report a preliminary analysis of the source
code of over 30 different exploit kits which are the main tool behind drive-
by-download attacks. The analysis shows that exploit kits make use of
a very limited number of vulnerabilities and in a rather unsophisticated
fashion. Their key strength is rather their ability to support “customers”
in avoiding detection, monitoring traffic, and managing exploits.

Keywords: exploit kits, web threats, malware analysis.

1 Introduction

Over the last few years, the volume of web-borne malware significantly increased.
According to various security reports [1,10] malicious URLs attacking browsers
and their add-ons constitute the majority of all Internet threats. They exploit
vulnerabilities in the web browsers and their add-ons in order to download mal-
ware executable onto the victim machine. This kind of attack is called drive-by-
download [11]. In the worst cases compromised clients behind a company firewall
can be used to wreak havoc on critical systems. In the best ones, they lay the
basis for a large malware infrastructure that can be used for identity theft or
banking fraud.

Drive-by downloads are managed by a so called exploit kit (or exploit pack)
- a server application delivering malware instead of web content [12]. Its key
feature is that in order to deploy it a “customer” of this tool does not need to
be more expert in web technologies than a lousy system administrator. One only
need to pay the developer of the kit for the code and possibly other services
(such as obfuscation). These characteristics ultimately increase the number of
possible attackers and the risks for the community at large.

1.1 Our Goals and Contribution

In this paper we explore the leaked source code for some popular exploit kits.
In our analysis we pursued the following goals:
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– Study the functional aspects of exploit kits and offer a taxonomy for the
routines implemented in them;

– Classify the exploit delivery mechanisms;
– Uncover web crawler evasion techniques that are used by exploit kits.
– Understand the user interface of an exploit kit, find out what data it provides

and what management capabilities are available to the customer.
– Investigate the code re-use in various exploit kits and determine if there is

a common code base used by malware authors.
– Study the methods of code protection mechanisms that are aimed to prevent

unauthorized code distribution and complicate the analysts’ work.

The results of our study are quite surprising. We expected exploit delivery mech-
anisms to be sophisticated - to work as snipers, performing a careful study of the
remote machine and then delivering only the right exploit to the right victim.
While the study is performed by most kits, its results are not used in a significant
way to select the exploit. Instead the attack is performed in machine-gun style.
It seems that the main purpose of victim fingerprinting is to make statistics
and “dashboards” of traffic and malware installations. In other words exploit
kits’ main target is to “improve the customer experience”. A large number of
successfull infections is expected to come by large volumes of traffic instead of
sophisticated attacks.

2 Related Works

Very few papers have examined exploit kits as a class of software artefacts. Most
studies on infiltrations (such as those by Savage, Paxson and their groups [4,9])
usually focus on a single tool and try to reconstruct the whole food chain from
the web-user to the final bad guy monetizing the result. For example, Motoyama
et al. [9] analyzed the private messages exchanged in 6 underground forums.
They analyzed whether sellers did re-use the same ID, whether transactions
were moderated, or reputation systems were in place. A similar study focusing
on the Chinese sites has been done in [13]. Yet they did not consider analyzing
the actual malware posted on those forums. Franklin et al. [4] and Herley et al. [8]
have analyzed (with opposite conclusions) the whole chain for spam and malware
goods distribution but have not considered the individual artefacts at the start
of the chain. Grier et al. [6] described the landscape of exploit kits and malware
families, with more detailed focus on the latter. Their main result is a statistical
analysis that shows which exploit kits are used to distribute which malware on
what kind of traffic. For example, the authors determined that modern exploit
kits deliver 32 different malware families including, ZeroAccess, SpyEye and Zeus
as ones of the most famous. But there were no analysis of exploit kit technologies
as much.

Only the author of [7] did study exploitation capabilities of the popular mal-
ware toolkits. However, the paper only considers a small number of instances
and does not provide a comparison of their features as software artefacts. Our
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Fig. 1. Scheme of drive-by-download attack

perspective is to take a wider look and investigate the structure of the crime-
ware packs. Another paper in which the actual instances have been considered
is the work by Cova et al.[3] which focuses on fishing kits.

3 Background

An exploit kit is a software tool traded on the black market and used by cy-
bercriminals to perform drive-by-download attacks. From an implementation
point of view an exploit kit is an HTTP server-side application, that, based on
request headers, returns a page with an appropriate set of exploits. Its main
purpose is silently downloading and executing malware on the victim machine
by taking advantage of browser vulnerabilities. Errors in applied programming
interfaces or memory corruption based vulnerabilities allow an exploit to inject a
set of instructions (called shellcode) into the victim process. Shellcode on its turn
downloads a malware executable to the victim’s hard drive and executes it. The
executable that gets installed on the target system is completely independent
from the exploit pack (see [6] for a distribution of malware families provisioned
by the different exploit kits). An owner can “arm” it with any malicious appli-
cation of her choice.

Fig. 1 depicts the generic scenario of drive-by-download attack [11]. A vic-
tim visits a compromised web site, from which she gets redirected to the ex-
ploit kit page. Various ways of redirection are possible: an <iframe> tag, a
JavaScript based page redirect etc. The malicious web page then returns an
HTML document, containing exploits, which are usually hidden in an obfuscated
JavaScript code. If at least one exploit succeeds, then a victim gets infected.
Successful exploitation means, that the shellcode injected has finished flawlessly
and hence accomplished its task - to download and execute a malicious program.
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How successful an exploit kit is depends on such factors as an operating system
version, type and version of a browser and its add-ons, presence of security
measures.

Apart from the exploits a kit has an administrative panel - a dashboard that
provides statistics and allows a user to configure the tool. Even the earliest kits
such as Mpack and IcePack had this feature [12].

Exploit kits are usually constructed from open-source components such as an
Apache web server, a PHP server-side scripting engine and a MySQL database.

In order to protect users from drive-by-download attack, two main strategies
are normally deployed:

1. Protect end users with malware scanners and other security means which
intercept the malware on the fly or stop the exploit from completing;

2. Build black lists of URLs (such as those behind Google Safe Browsing). These
lists are constructed by security web crawlers, which instead of indexing
the site content, check the web page with malware scanners or analyze its
behavior in a sandbox. In fact this can be done by the search engine’s robots
in addition to traditional content indexing.

These two defence mechanisms determine the presence of yet another feature of
an exploit kit: detection evasion. In this sense a kit can implement the following
self-protection measures:

– Code obfuscation, deployed in order to fail malware scanners’ signatures and
heuristics. For example the Black Hole exploit kit [5] applies a polymorphic
obfuscation algorithm to its malicious JavaScript code.

– Checking itself with antiviruses to find out whether the signature for the
current obfuscation scheme already exists and whether it is time to update
the obfuscation algorithm.

– Restricting search robots activity by disallowing indexing policy in the
“robots.txt” file.

– Mimicking an innocent web page when encountering an unsupported user
agent (search robots, downloading software, etc.).

– Looking itself up in the black lists of URLs and IP addresses (like Google
Safe Browsing) and, if found, rebind itself to another server/domain.

Finally, an exploit kit is a software product in itself and therefore must have some
features of legitimate software such as source code protection, licensing, binding
to single server/domain, etc. For example the Fragus exploit kit is protected
with a commercial tool IonCube1, which also makes it impossible to run the kit
under the domain/server [2] that is different from the customer’s.

To better understand the idea of exploit kit let’s consider the following exam-
ple: a user running Firefox 1.0.4 with Adobe Reader v.8.1.1 under the Windows
XP opens a web page from a compromised server. An invisible iframe (left by
the hacker) loads a page from another web server hosting the Eleonore 1.4.4mod
exploit kit. On the server side a corresponding PHP script parses the client’s

1 www.ioncube.com, checked on 14 Aug 2012

www.ioncube.com
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HTTP request headers and retrieves the following information: name and version
of the browser (Firefox 4.0), name and version of operating system (Windows
XP). Based on that the PHP script selects the set of exploits such as one for
CVE-2005-2265 vulnerability (targeting Firefox 1.0.4). The exploits selected are
wrapped in the JavaScript code, which then gets obfuscated and returned to
the client. If the exploit succeeds (if nothing stops it from executing), then the
shellcode takes control over the browser’s execution. It calls the URLDownload-
ToFile (Urlmon.dll) and then WinExec (Kernel32.dll) functions to download and
execute an instance of Zeus trojan that is stored on the attacker’s web server.
Once the shellcode makes the request to the exploit kit server (to retrieve the
trojan), the corresponding PHP script adds the successful exploitation record to
the database and returns the contents of the binary. The owner of this malicious
server in the administrative panel can see how many visitors were lured to the
malicious page and how many of them were infected.

The features that we have listed above are the capabilities of an exploit kit
that could be implemented. Whether they are really used in real-world tools and
if yes then to what extent - is the question that we try to answer in this paper.

4 Collected Data

To collect the data for analysis two sources of information were used:

– A list of exploit packs, available at Contagio Malware Dump 2 security blog.
– Advertising and leaked code on various black hat forums.

Altogether we identified information for more than 70 exploit kits and out of
those we were able to successfully deploy 33 instances of 24 families. Our seman-
tics of successful is that the kit installs, runs, and is able to deliver a prototype
malware of our choice to an appropriate client. We are now running a more
sophisticated experiment in which we benchmark whether all claims about num-
ber of successful installations by the exploit kit developer in terms of successful
installation are correct. The full list of deployed kits is presented in Table 2. Our
collection includes the most famous products on the black market, according to
the reports of Kaspersky Lab [12], Sophos [5] and Symantec [2].

Among all deployed exploit kits there is one that we can not yet fully analyse
- Crimepack v.3.1.3. It was obfuscated with a powerful commercial protector
named IonCube for which, to our knowledge, there is no good deobfuscation
tool. But we were still able to extract some information from Crimepack using
black box analysis of the deployed sample.

Figure 2 shows the connections between an exploit kit and some related enti-
ties such as the victim, the malware scanner or security crawler and the devel-
oper.

All the kits in our collection were written in PHP and were designed to work
in bundle with MySQL database. They present the following key architectural
components:

2 http://contagiodump.blogspot.it/2010/06/

overview-of-exploit-packs-update.html, checked on 14 Aug 2012.

http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html
http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html


186 V. Kotov and F. Massacci

Fig. 2. Exploit kit use cases

Offensive Component which is responsible for analyzing and ultimately at-
tacking vulnerable machines;

Defensive Component that protects the toolkit from detection by malware
scanner (such as obfuscation of pages);

Management Component which supplies the reporting and configuration
components of an exploit kit to support the customer;

Protection Mechanisms , which includes means of protection applied to an
exploit kit for preventing unauthorized distribution and complicating the
process of reverse engineering.

5 Offensive Component

To identify the operation of the offensive routes we performed code inspection,
debugging and sandboxed code execution. The offensive routine consists mainly
of two parts. The first one occurs on the request of the web client, when a
victim gets redirected to the bad page. If the exploit is successful, the second
part is activated on shellcode request after it has taken control over the target
application.

The first part consists of the following steps:

1. User agent detection determines operating system (OS) and user agent (UA)
used by the victim.

2. IP blocking blocks a visitor on the next visit (based on IP address).
3. UA validation - If the OS or the UA are not supported do either of the

following actions:
– output an innocent looking page like “Site is under construction”, and

provide the response status 200 (OK);
– redirect a visitor to another page or web site by specifying its address in

the “Location” header of the server response;
– output an error page and provide the response status of error (e.g. 404);
– deliver anyhow some exploits in the hope that the client is vulnerable.

4. Exploits selection - Select the subset of exploits for the determined OS and
UA or follow corresponding execution branch.
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Table 1. Presence of the offensive routine steps

Step Present (%) Absent (%)

User agent detection 100% 0
IP blocking 79% 21%
UA Validation 88% 12%
Exploits selection 82% 15%
Exploits obfuscation 82% 18%
Executable Delivery 100% 0%

5. Exploits obfuscation - Obfuscate the generated malformed HTML page. By
this we mean the on-line obfuscation, when the attacking page goes through
some transformations that change its appearance.

The second part has only one step, which is:

1. Delivery of malware executable - returns the malware executable file and as
a follow up updates the successful exploitation statistics.

Each exploit kit largely follows the proposed scenario, irrespective of the year
of deployment: Icepack kit appeared in 2007, while Phoenix is a comparatively
recent product, its 3.1 update was released in 2012. Therefore we conjecture that
the functional architecture is essentially stable.

A summary of the findings is shown in Table 1. The full analysis of the server
side attack scenario can be found in Table 2. The results do not sum up to 100%
as in some cases it was not possible to ascertain exactly what the kit does. Out
of these results we can make some conclusions:

1. 88% of exploit kits perform user agent validation, which means that if a
browsing robot wants to detect an attack it must send a user agent string
of a vulnerable browser (Internet Explorer 6 under Windows XP is going
to work for every kit analyzed) or, on the other hand, a user can change
the user agent string to an unsupported one (e.g. wget under OpenBSD) in
order to “trick” the kit and avoid infection.

2. 64% of exploit kits perform both IP blocking and Exploits selection, which
complicates the analysis of a kit in the wild. Offensive capabilities of an
exploit kit in the wild can only be revealed from different IP addresses and
using different user agent strings.

3. All exploit kits in our collection have a separate piece of code responsible
for executable delivery. Thus, exploit kits can keep an accurate score of the
machines that were actually infected.

4. In a surprisingly large number of cases (36%), irrespective of the result of
the UA validation, the exploit kit will anyhow throw some attacks. The UA
validation code does not seem to be used in a significant way to select the
exploit appropriately.

In terms of vulnerability analysis the picture was surprising: among the 70+
exploit kits that we had identified only a bit more than 110 vulnerabilities are
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Table 2. Full data set and offensive component analysis results

Name Version IP Block. UA Detec. UA Valid. Follow-up Sel. Obf.
0x88 UNK

√ √ √
ATTACK

√ √
adpack UNK1

√ √ √
INNOCENT

√ √
adpack UNK2

√ √
NONE

armitage 1.0 beta
√ √ √

INNOCENT
√ √

bleeding life 2
√ √

INNOCENT
√

crimepack 3.1.3
√ √ √

INNOCENT UNK
√

cry217 UNK
√ √

NONE
eleonore 1.2

√ √ √
ATTACK

√ √
eleonore 1.4.4 mod

√ √ √
ATTACK

√ √
firepack 0.18

√ √ √
ERROR

√ √
firepack UNK

√ √ √
INNOCENT

√ √
fragus 1.0

√ √ √
ATTACK

√ √
fragus black

√ √ √
ATTACK

√ √
gpack UNK

√ √ √
INNOCENT

√ √
icepack platinum beta

√ √ √
EMPTY

√ √
icepack platinum

√ √ √
INNOCENT

√ √
el fiesta 1.0

√ √
INNOCENT

√ √
el fiesta 1.8

√ √ √
INNOCENT

√ √
life UNK

√ √
NONE

mpack 0.81
√ √ √

INNOCENT
√ √

mpack 0.86
√ √ √

INNOCENT
√ √

mpack 0.91
√ √ √

INNOCENT
√ √

mpack 0.99
√ √ √

INNOCENT
√ √

mypolysploit 1.0
√ √

ATTACK
√ √

neon UNK
√ √ √

ATTACK
√ √

nuke UNK
√ √

INNOCENT
√ √

phoenix 2.3
√ √ √

INNOCENT
√

rds 2.0
√ √

NONE
√

salo UNK
√ √

ATTACK
√

seo UNK
√ √

INNOCENT
√ √

shaman’s dream 2.0
√ √ √

ATTACK
√ √

unique UNK
√ √ √

INNOCENT
√ √

yes 2.0
√ √

REDIRECT
√ √

Explanation of the table columns:

Name - name of an exploit kit;
Version - exploit kit version or UNK if we could not determine it;
IP Block. - presence if IP blocking: YES (

√
) or NO.

UA detec. - detection of the user agent: YES (
√
) or NO.

UA valid. - user agent validation, i.e. an action taken if a user agent is not supported: INNOCENT
| REDIRECT | ERROR | ATTACK | NONE, where INNOCENT means an innocent looking
page; REDIRECT - a redirection provided is “Location” header; ERROR - an error page;
ATTACK - throw some exploits; NONE - if no action is taken.

Sel. - presence of exploit selection: YES(
√
) if, based on user agent information, execution path of

the kit changes, otherwise NO.
Obf. - presence of exploit obfuscation: YES(

√
) or NO.

actually exploited. An average exploit kit had around 10 exploits (μ = 11.1)
which are not always fresh. Table 3 shows the mean number of exploits of certain
age over the sample of 30 kits. Age of an exploit was calculated relatively to the
year this kit first appeared. On average, most exploits are aimed at 1 and 2 years
old vulnerabilities, which may imply that malware authors prefer to use public
exploits, rather than private ones. An alternative explanation is that the time
to market a reliable piece of code exploiting commodity software is significant.

The affected software is also very limited, showing a preference among exploit
kit developers for easy exploits based on popular software. Figure 3 shows how
many vulnerabilities affecting a given software are present in the overall sample.
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Table 3. Average number of exploits by age

6 y.o. 5 y.o. 4 y.o. 3 y.o. 2 y.o. 1 y.o. 0 y.o.
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Distribution of Exploited Software

The figure shows a number of exploit kits (vertical axis) that exploit par-
ticular software or class of software (horizontal axis). Player denotes various
video/audio players (such as Real Player, Quick Time etc.), Windows includes
exploits for components of Windows operating system, Other denotes various
other types of exploited software (such as components of Microsoft Visual Stu-
dio, audio/video format converters, messengers etc).

Fig. 3. Preferred Software for Exploits

The entry ’Player’ denotes various proprietary or open source video/audio
players (such as Real Player, Quick Time etc.), while ’Windows’ includes ex-
ploits for various components of Windows operating system of different ver-
sions. The category ’Other’ denotes various other types of exploited software
(such as components of Microsoft Visual Studio, audio/video format converters,
messengers etc).

5.1 Defensive Component

Defensive means of exploit kits include IP blocking, payload obfuscation, crawlers
evasion and active measures such as checking itself in various virus databases
to catch the time, when it got recognized by the malware scanners in order to
update the obfuscation scheme.

As we mentioned, IP blocking and obfuscation are popular measures routinely
deployed in the offensive component.
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Crawlers evasion can be implemented in two ways (not mutually exclusive):

1. Settings the specific indexing policy in a “robots.txt” file, which may keep
search robots from collecting the information about malicious pages of an
exploit kit;

2. Match a user agent string in HTTP request against known crawlers.

To find possible evasion techniques, we searched for the “robots.txt” in exploit
kit files and the indexing policy it defines; we also looked for known crawler
user agent strings (“Googlebot”, “Yahoo!”, “Bingbot”, “YandexBot”, etc.) from
UserAgentString.com and scan through all source files for their presence. If found
- analyse the context in which the string appears.

Out of this analysis we found that the large majority of exploit kits analyzed
do not pay attention to crawler evasion. There are just few cases:

1. Crimepack 3.1.3, Eleanore 1.4.4 mod and both versions of Fragus have
robots.txt that disallows any indexing.

2. Firepack has a list of crawlers’ names.
3. 0x88 looks for the “bot” substring in user agent name in HTTP request

header.

To determine whether virus database checks were done by the exploit kit, we
performed the following checks:

1. String search for the strings “virustotal” (a virus scan web service3) and
“virtest” (a popular anonymous virus scan web service4), that can locate
the code snippets responsible for virus database checks.

2. Looking at administrative panels of exploit kit to find the pieces of user
interface that might indicate the presence of the virus database checks.

No exploit kit (except Crimepack 3.1.3 for which it is unknown) checks itself in
the virus databases. However, we have not examined the source of Black Hole
exploit kit. So we cannot confirm [5], which reports that it has the ability to
check itself against two virus scan services.

Figure 4 shows a Venn diagram where the explicit number of items in each
subset is represented by the number of crosses. Whether a kit may use or not the
IP Blocking, an overwhelming majority uses obfuscation. Therefore the absence
of obfuscation in a page seems a good indication that the page is unlikely to be
malicious.

6 Management Component

The customer-oriented part of an exploit kit should provide an access to visits
and exploitation statistics and offer some settings to manage the toolkit.

A step-by-step work flow can not be proposed here, because the customer
handles the exploit kit by an interactive user interface. The main use cases are
the following:

3 http://www.virustotal.com, checked on 14 Aug 2012
4 http://www.virtest.com, checked on 14 Aug 2012

http://www.virustotal.com
http://www.virtest.com
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The figure shows a Venn diagram of the defences implemented in the exploit kits
analyzed. The number of items in each subset is represented by the number of
crosses.

Fig. 4. Venn diagram of defensive capabilities

1. Installation - Install the exploit kit, i.e. allocate all resources needed for
successful run.

2. Authentication - Authenticate exploit kit user.
3. Control Cockpit which normally includes

– site visit statistics;
– successfull exploitation statistics;
– exploit kit settings;

Since we dealt with leaked code, the analysis of the installation step can only be
preliminary, because automated installers might have been removed after setting
up the kit. Therefore we can not say whether an automatic installer supposed
to come with the software or not.

Authentication is present in every admin panel, so we do not discuss it further
in detail.

The two important functions of customer oriented component are statistics
reporting and settings. All kits feature some basic setting up and statistics, and
a more fine grained classification is reported below:

1. Toolkit statistics includes the information about the exploit kit’s work: total
visits, exploited systems, browsers and operating systems.

2. Market statistics includes the information that helps a customer to man-
age her interaction with related markets (e.g. traffic market). The typical
information of this type are referers5 and/or countries.

3. Exploit statistics allows a customer to track the effectiveness of individual
exploits.

We have similar three grades metric for the settings, that can be offered to the
customer:

5 A URL from which the victim came. It can be determined from the HTTP header
“Referer”.
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The figure shows a magic quadrant depicting the exploit kits in the statis-
tics/settings coordinate axes.
The grades for the settings axis:

Basic allows a customer to change her credentials and replace malware exe-
cutable

ASU (Advanced single-user gives a customer more flexibility (manage ex-
ploits, build black lists by country, referer etc.)

AMU (Advanced multi-user) provides the settings for multi-user environ-
ment.

The grades for statistics axis:

Toolkit includes the information about the exploit kit’s work: total visits, ex-
ploited systems and browsers etc.

Market statistics includes the information that helps a customer to manage
her interaction with related markets (e.g. traffic market).

Exploit statistics allows a customer to track the effectiveness of individual
exploits.

Fig. 5. Statistics/Settings Quadrant

1. Basic settings - allows a customer to change her credentials and replace
malware executable.

2. Advanced single-user settings (ASU) - allows a customer to enable/disable
exploits or/and add new ones or/and manage block lists (IP, referrers, coun-
tries) etc.

3. Advanced multi-user settings (AMU) - provides the settings for multi-user
environment, i.e. customizable user profiles.

To perform this analysis we need to have a look at every administrative panel
of our exploit kit collection and enumerate the reported statistics and the con-
figuration options that are offered to the customer.

In Figure 5 we provide a magic quadrant depicting the exploit kits in the
statistics/settings coordinate axes. The number inside the circle is a count of
exploit kits that fell upon the corresponding point in the quadrant.
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It can be seen that the majority of exploit kits analyzed produce advanced
statistics, but offer the simplest settings possible. From statistics/settings per-
spective Crimepack, Fragus and Shaman’s Dream are the most advanced. The
conjecture is that the closer an exploit kit is to the top right corner of the quad-
rant the higher is its potential of supporting complex business models. In other
words the advanced statistics and settings allow customers to

– keep track of the traffic they actually received, possibly to match it against
what they may have bought in order to avoid waste of money in useless
traffic,

– learn which exploits contribute more to the victim infecting process in order
disable the bad ones (or detectable ones) and so forth.

This gives a customer a high level of flexibility in organizing the infection process
and ways of its monetizing. Top right corner is the place where the Black Hole
exploit kit would have been placed.

7 Code Protection

Presence of protection in an exploit kit source code can be detected based on one
of the two features: (1) there is a byte code and markers of the commercial tools
(Zend Guard6 or IonCube) or (2) the code is put through some permutations
and then executed. Otherwise the code is clear to read.

In summary our findings are reported below:

– Crimepack 3.1.3 - is the only kit in our collection that uses IonCube.
– Neon, Life and FirepackUNK use Zend Guard.
– 0x88, Eleonore 1.4.4 mod, El Fiesta 1.0 and Unique use various ad-hoc meth-

ods of protection.
– Other kits (25) do not use any code protection.

Yet these results can not be taken as conclusive because we were dealing with
leaked sources. For example, Fragus exploit kit, according to [2] is obfuscated
with IonCube, while we obtained a clean version. All conclusions that are made
from this analysis can give only general idea of the code protection within exploit
kits. One of the reason the Black Hole exploit kit is not included in the study is
that we could not fully restore the source code.

8 Code Re-use

Investigating the cases of code re-use could help us to better understand the
production of an exploit kit. To address this question we use a token-based
copy-paste detector phpcpd7. It reveals the snippets of repeating code among
multiple PHP scripts.

6 http://www.zend.com/en/products/guard/ , checked on 14 Aug 2012
7 https://github.com/sebastianbergmann/phpcpd/, checked on 14 Aug 2012

http://www.zend.com/en/products/guard/
https://github.com/sebastianbergmann/phpcpd/
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Table 4. Numbers and functionality of code re-use cases per pair

Kit1 Kit2 # of matches Repeated Code Functionality

0x88 life 7 Admin. panel routines, obfuscation, database functions
fragus icepack 5 Obfuscation
adpack gpack 3 User agent detection, database functions
armitage icepack 3 User agent detection
mpack 0x88 3 Obfuscation
rds 0x88 3 Admin. panel routines, obfuscation, database functions
eleonore shaman 2 User agent detection, obfuscation
firepack icepack 2 Obfuscation
nuke seo 2 Admin. panel routines, user agent detection
yes icepack 2 User agent detection
lefiesta fragus 1 Obfuscation
neon armitage 1 Array of countries names
salo adpack 1 Obfuscated array of countries names

The detected re-used code can be divided into three groups:

1. the code repeated among different versions of the same exploit kit;
2. the code, that corresponds to open source libraries, that are used by different

kits;
3. the code repeated in different families of exploit kits.

The first group of code is not interesting because the results of the analysis were
predictable. The kits of the same family have a lot of common code.

In the second group the only open source PHP library that we have found in
our collection was Geo IP8 which allows to determine the country by IP address.
This library is frequently used in exploit kits to provide country related statistics.

The third group of repeated code snippets consists of the those appearing
in the different exploit kit families. The summary of code re-use cases between
different families of exploit kits is shown in Table 4.

The highest volumes of “copy-paste” can be found at (0x88, life) and (fra-
gus, icepack) pairs. Interestingly there is a code obfuscation algorithm that was
implemented in 5 different kits (Mpack, Fragus, RDS, Life and 0x88).

In our collection there are total of 24 exploit kit families, since the number of
possible pairs is C2

24 = 24!
2!(24−2)! = 276 and the number of pairs with at least one

repeated snippet is 13, then the rate of code re-use (based on token analysis) is
13/276 = 0.047. This means that based on analysis of the PHP language tokens
similarity there is no common code base that is used by the malware authors. We
can use the above observation to conclude that the market is also fragmented
with multiple kit providers.

9 Conclusion

In this paper we have reported the first analysis of exploit kits as software
artefacts. We have collected information on 70+ popular tools for malware

8 http://php.net/manual/en/book.geoip.php, checked on 14 Aug 2012

http://php.net/manual/en/book.geoip.php
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distribution. Out of those we have been able to successfully deploy and test
30+ kits. They have been further analyzed.

In order to understand the nature of the class we have collected a set of leaked
source code files of previously private exploit kits. Each of them we have tried
to deploy, and those that we succeeded to run were selected for analysis. We
used a combination of analysis techniques such as static and dynamic reverse
engineering.

The result of the work can be summarized as follows:

– Exploit kits have very similar functionality, largely following the work flow
described in this paper. The victim is fingerprinted (user agent and operating
system information together with IP address are collected partly for exploit
selection and partly for statistical purposed), a set of moderately old exploits
is provisioned within an obfuscated web page in order to download and
execute a malware program. Very few vulnerabilities are exploited.

– Exploit kits use IP blocking, user agent validation and code obfuscation.
Very rarely they try to evade web crawlers.

– Most exploit kits provide customers with statistics and settings, allowing
them to customize a toolkit and track its activity. A customer can use them
to interact with other types of black markets - traffic, malware executables,
hosting services, etc.

– Results of token based copy-paste analysis show that the kits analyzed seem
to be written mostly independently one from another, without a common
code base.

– Some exploit kits use commercial code protection (e.g. Crimepack), which
means that malware authors expect to get significant amounts of money
from the crimeware toolkit sales.

We expect the exploit kit technology to evolve further in direction of detection
evasion and enhancement of the customer’s experience. The evidence of this we
can see already in the latest kits, such as Black Hole v.2. The little emphasis
on exploit delivery seems to imply that a better protection can stem from large
scale detection rather than individual protection.
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Abstract. With the rise of the web as a dominant application platform, web se-
curity vulnerabilities are of increasing concern. Ideally, the web application de-
velopment process would detect and correct these vulnerabilities before they are
released to the public. This research aims to quantify the effectiveness of soft-
ware developers at security code review as well as determine the variation in ef-
fectiveness among web developers. We hired 30 developers to conduct a manual
code review of a small web application. The web application supplied to devel-
opers had seven known vulnerabilities, including three different types: Cross-Site
Scripting, Cross-Site Request Forgery, and SQL Injection. Our findings include:
(1) none of the subjects found all confirmed vulnerabilities, (2) more experience
does not necessarily mean that the reviewer will be more accurate or effective,
and (3) reports of false vulnerabilities were significantly correlated with reports
of valid vulnerabilities.

1 Introduction

With the widespread adoption of and reliance on the Internet, web applications are play-
ing an increasing role in our everyday life. With such a large user base, web applications
have become a prime target for attackers who wish to hijack websites or to steal user
information. Unfortunately, it is common for these applications to be susceptible to at-
tacks. Web application vulnerabilities primarily result from bugs in application-specific
code. These arise due to a widespread lack of expertise about web security among de-
velopers, and frequently involve departures from coding best practices.

Ideally, web applications would be free of vulnerabilities and therefore secure. While
it is difficult to determine whether any vulnerabilities remain in an application, it is
generally believed that an application is more secure when it has fewer vulnerabilities.
It is therefore common for software developers and companies to make efforts to find
and eliminate vulnerabilities in their software. Two common ways of accomplishing this
are by manually reviewing source code and by using automated tools that are capable
of identifying vulnerabilities.

In this study we focus on one of these techniques: manual code review. Specifically,
we aim to measure the effectiveness of manual code review of web applications for
improving their security. We used a labor outsourcing site to hire 30 web developers

J. Jürjens, B. Livshits, and R. Scandariato (Eds.): ESSoS 2013, LNCS 7781, pp. 197–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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with varying amounts of security experience to conduct a security code review of a
simple web application. These developers were asked to perform a line-by-line code
review of the application and submit a report of all security vulnerabilities found. Using
the data we collected:

– We quantified the effectiveness of developers at security code review.
– We estimated the optimal number of independent reviewers to hire to achieve a

desired degree of confidence that all bugs will be found.
– We measured the extent to which developer demographic information and experi-

ence can be used to predict effectiveness at security code review.

These results may help hiring managers and developers in determining how to best
allocate resources when securing their web applications.

2 Goals

In this work, we conduct an exploratory analysis of software developers’ effectiveness
in conducting security code review. We are interested in determining: (1) how effective
developers are at conducting code reviews and the degree of variation among them, (2)
the optimal number of independent reviewers to hire, and (3) whether we can predict in
advance which developers will be most effective at performing a security review.

2.1 Effectiveness

Our research measures how well developers conduct security code review. In particular,
we are interested in how effective they are at finding exploitable vulnerabilities in a
PHP web application, and how much the effectiveness varies between reviewers. We
are interested in answering the following questions:

1. What fraction of the vulnerabilities can we expect to be found by a single security
reviewer?

2. Are some reviewers significantly more effective than others?
3. How much variation is there between reviewers?

2.2 Optimal Number of Reviewers

Depending on the distribution of reviewer effectiveness, we want to determine the best
number of reviewers to hire. Intuitively, if more reviewers are hired, then a larger per-
centage of vulnerabilities will be found, but we want to determine the point at which
an additional reviewer is unlikely to uncover any additional vulnerabilities. This would
be useful for determining the best allocation of resources (money) in the development
of a web application. Specifically, we will address the following questions to find the
optimal number of reviewers.

4. Will multiple independent code reviewers be significantly more effective than a
single reviewer?

5. If so, how much more effective?
6. How many reviewers are needed to find most or all of the bugs in a web application?
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2.3 Predicting Effectiveness

We asked each reviewer about the following factors, which we hoped might be associ-
ated with reviewer effectiveness:

– Application comprehension
– Self-assessed confidence in the review
– Education level
– Experience with code reviews
– Name and number of security-related certifications
– Experience in software/web development and computer security
– Confidence as a software/web developer and as a security expert
– Most familiar programming languages

Identifying the relationship between reviewers’ responses to these questions and their
success at finding bugs during code review may provide insight into what criteria or
factors would be most predictive of a successful security review.

3 Experimental Methodology

To assess developer effectiveness at security code review, we first reviewed a single
web application for security vulnerabilities. We then hired 30 developers through an
outsourcing site and asked each of them to perform a manual line-by-line security re-
view of the code. After developers completed their reviews, we asked them to tell us
about their experience and qualifications. Finally, we counted how many of the known
vulnerabilities they found.

3.1 Anchor CMS

We used an existing open-source web application for the review, Anchor CMS. Anchor
CMS is written in PHP and JavaScript and uses a MySQL database. We chose this
application for our study due to (1) the presence of known vulnerabilities in the code,
(2) its size, which was substantial enough to be nontrivial but small enough to allow
security review at a reasonable cost, and (3) its relatively permissive license, which let
us anonymize the code, as described below.

There are currently four release versions of Anchor. We chose to have reviewers
review the third release, version 0.6, instead of the latest version. This version had more
known vulnerabilities while still having comparable functionality to the latest version.

To prepare and anonymize the code for review, we modified the Anchor CMS source
code in two ways. First, we removed the Anchor name and all branding. We renamed
it TestCMS, a generic name that wouldn’t be searchable online. We did not want de-
velopers to view Anchor CMS’s bug tracker or any publicly reported vulnerabilities;
we wanted to ensure they reviewed the code from scratch with no preconceptions. Our
anonymization included removal of “Anchor” from page titles, all relevant images and
logos, and all instances of Anchor in variable names or comments.

Once the code was anonymized, we modified the code in two ways to increase the
number of vulnerabilities in it. This was done in order to decrease the role of random
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noise in our measurements of reviewer effectiveness and to increase the diversity of vul-
nerability types. First, we took one vulnerability from a prior release of Anchor (version
0.5) and forward-ported it into our code. After this modification, the web application
had three Cross-Site Scripting vulnerabilities known to us and no Cross-Site Request
Forgery protection throughout the application.

Second, we carefully introduced two SQL injection vulnerabilities. To ensure these
were representative of real SQL injection vulnerabilities naturally seen in the wild, we
found similarly structured CMS applications on security listing websites (SecList.org),
analyzed them, identified two SQL injection vulnerabilities in them, adapted the vul-
nerable code for Anchor, and introduced these vulnerabilities into TestCMS. The result
is a web application with six known vulnerabilities. Our procedures were designed to
ensure that these vulnerabilities are reasonably representative of the issues present in
other web applications.

These six known vulnerabilities are exploitable by any visitor to the web application;
he need not be a registered user. Additionally, the vulnerabilities are due solely to bugs
in the PHP source code of the application. For example, we do not consider problems
such as Denial of Service attacks or insecure password policies to be exploitable vulner-
abilities in this study. Although these issues were not included in our list of six known
vulnerabilities, we did not classify such reports as incorrect. Section 4.1 contains more
details on how we handled such reports. Lastly, any vulnerabilities in the administrative
interface were explicitly specified as out of scope for this study.

3.2 oDesk

oDesk is an outsourcing site that can be used to hire freelancers to perform many tasks,
including web programming, development, and quality assurance. We chose oDesk be-
cause it is one of the most popular such sites, and because it gave us the most control
over the hiring process; oDesk allows users to post jobs (with any specifications, pay-
ments, and requirements), send messages to users, interview candidates, and hire mul-
tiple people for the same job [1]. We used oDesk to publicize our study, hire developers
that met our requirements, and pay our subjects for their work.

3.3 Subject Population and Selection

We recruited subjects for our experiment by posting our job on oDesk. We specified
that respondents needed to be experienced in developing PHP applications in order to
comprehend and work with our codebase, and they should have basic web security
knowledge. We screened all applicants by asking them about how many times they
have previously conducted a code review, a security code review, a code review of
a web application, and a security code review of a web application. We also asked
four multiple-choice quiz questions to test their knowledge of PHP and security. Each
question showed a short snippet of code and asked whether the code was vulnerable,
and if so, what kind of vulnerability it had; there were six answer choices to select
from. We accepted all respondents who scored 25% or higher on the screening test.
This threshold was chosen because it allowed us to have a larger sample size, while still
ensuring some minimum level of knowledge and understanding of security issues.
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3.4 Task

We gave participants directions on how to proceed with the code review, an example
vulnerability report, and the TestCMS codebase. The instructions specified that no au-
tomated code review tools should be used. Also, the developers were told to spend 12
hours on this task; this number was calculated based upon a baseline of 250 lines of code
per hour, as suggested by OWASP [2]. We designed a template that participants were
instructed to use to report each vulnerability. The template has the following sections
for the developer to fill in accordingly:

1. Vulnerability Type
2. Vulnerability Location
3. Vulnerability Description
4. Impact
5. Steps to Exploit

The type and location gave us basic information about the vulnerability. The template
included “Vulnerability Description” and “Impact” sections in order to deter developers
from using automated tools; it would be more challenging to successfully fill out these
sections if a tool was used as opposed to a manual review. The last section, “Steps to Ex-
ploit”, was intended to encourage developers to report only exploitable vulnerabilities
as opposed to poor security practices in the code.

The developers were asked to review only a subset of the code given to them. In par-
ticular, we had them review everything but the administrative interface and the client-
side code. They reviewed approximately 3500 lines of code in total. We specified our
interest only in exploitable vulnerabilities. In return, we paid them $20/hour for a total
of $240 for the completed job. This fixed rate leaves the relationship between compen-
sation and reviewer effectiveness an area for future work.

3.5 Data Analysis Approach

Before the study, we scoured public vulnerability databases and Anchor’s bug tracker
to identify all known vulnerabilities in TestCMS. This allowed us to identify a “ground
truth” enumeration of vulnerabilities, independent of those the reviewers were able to
find. We manually analyzed each participant’s report and evaluated the accuracy and
correctness of all bugs they reported, which we describe in more detail in Section 4.1.
After running statistical tests on the data, we were able to quantify how well developers
conducted their reviews.

3.6 Threats to Validity

oDesk Population. As stated previously, we hired developers through the oDesk out-
sourcing website. This limits our population to registered oDesk users, as opposed to
the population of all web developers or security reviewers. If the population of oDesk
users differs significantly from the population of all web developers or security review-
ers, then our results will not necessarily generalize to this larger population. However,
given the success of oDesk, the population we study is interesting in its own right, and,
at the very least, relevant to anyone hiring security reviewers using oDesk.
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Artificial Vulnerabilities. As mentioned in Section 3.1, we introduced two SQL Injec-
tion vulnerabilities. Adding these artificial vulnerabilities creates an artificially flawed
codebase where the application’s original developer did not introduce all of the bugs.
These artificial vulnerabilities could bias the results since it may make the code review
easier or harder than reviewing a “naturally buggy” application. The changes made to
the codebase were modeled after vulnerabilities found in other CMSs, which we hope
will serve to minimize the artificiality of the codebase by ensuring that real web devel-
opers made the same mistakes before.

Static Analysis Tools. Using an outsourcing website to conduct our experiment re-
stricted our ways of verifying how developers performed the review. This was con-
sidered when designing the experiment; we required specific and detailed information
about each vulnerability reported. Requiring this information forced the developer to
fully understand the vulnerability and how it affects the application, thereby minimiz-
ing the possibility that a reviewer would use static analysis tools and maximizing our
ability to detect the use of static analysis tools. While there was no guarantee that de-
velopers completed their reviews manually, we assumed that all vulnerability reports
completed sufficiently and accurately were a result of a manual code review and conse-
quently we included them in our results.

Security Experts vs. Web Developers. We hired 30 reviewers for this study, some
of whom specialized in security while others were purely web developers. Despite the
use of a screening test, it is possible that web developers guessed correctly or that the
screening questions asked about vulnerabilities that were significantly easier to detect
than those found in a real application. In this case, web developers would be at a dis-
advantage. Security experts have a better understanding of the attacks, how they work,
and how attackers can use them. It is possible that our screening process was too lenient
and caused us to include web developers who are not security experts and would not
get hired in the wild for security review. This could bias our results when measuring
variability and effectiveness, but we anticipate that people hired to perform a security
review in the wild may also include web developers who are not specialists in security.

Difficulties of Anchor Code and Time Frame. We found that the design of An-
chor’s source code made it particularly challenging to understand. It is neither well-
documented nor well-structured. With the 12 hours that the reviewers had, results might
not be the same as if the code were better-designed. The developers may not find all the
vulnerabilities or they may give us many false positives. We have no way to verify that
each person we hired spent the full 12 hours requested on the security review task,
or that this was an accurate reflection of the amount of time they would spend on a
real-world security review. If either of these conditions fails to hold, it could limit the
applicability of our results.

Upshot. All empirical studies have limitations, and ours is no exception. Our hope,
however, is that this study will encourage future studies with fewer or different
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limitations and that ultimately, multiple different but related empirical studies will,
when taken together, give us a better understanding of the questions we study.

4 Results

4.1 Vulnerability Report Classification

In order to understand the developers’ code reviews and provide results, we first had to
classify each vulnerability report submitted. We place each vulnerability report into one
of four categories: valid vulnerability, invalid vulnerability, weakness, or out of scope.
A valid vulnerability corresponds to an exploitable vulnerability in the web application.
If a developer identified one of the vulnerabilities we knew about or her steps to ex-
ploit the reported vulnerability worked, then this would be classified as valid. We made
no judgments on how well she described the vulnerability. Additionally, if the devel-
oper identified a known vulnerability, but her steps to exploit it were incorrect, it was
still classified as valid. When tallying the correctly reported vulnerabilities, each valid
vulnerability added to this tally.

An invalid vulnerability is a report that specifies some code as being vulnerable when
in fact it is not. We verified that an invalid vulnerability was invalid by attempting to
exploit the application using the steps the developer provided, as well as looking in the
source code. When tallying the number of falsely reported vulnerabilities, each invalid
vulnerability added to the tally. Both valid and invalid vulnerabilities were included in
the tally of total reported vulnerabilities.

The weakness category describes reports that could potentially be security concerns,
but are either not exploitable vulnerabilities or are not specific to this web application;
for example, any reports of a denial of service attack or insecure password choice are
considered weaknesses. Weaknesses contributed to the total number of reports each
developer submitted, but were considered neither correct nor false. Reports involving
vulnerabilities in the administrative interface were placed in the out of scope category,
as we asked developers not to report these vulnerabilities. Reports in this category as
well as duplicate reports were ignored; they were not considered when counting the
developer’s total reports, valid reports, or invalid reports.

As we manually checked through all reports from all developers, we encountered
one valid vulnerability reported by multiple reviewers that was not known to us when
preparing the experiment. Therefore, we adjusted all other totals and calculations to
take into account all seven known vulnerabilities (as opposed to the six vulnerabilities
initially known to us). This new vulnerability is an additional Cross-Site Scripting vul-
nerability, raising the number of known Cross-Site Scripting vulnerabilities in TestCMS
to four.

4.2 Reviewer Effectiveness

We measured the relative effectiveness of each developer by counting the total number
of valid reports from that developer and calculating the fraction of reports that were
valid. We looked at how many vulnerabilities were found and which specific vulnera-
bilities were found most and least commonly. One out of the four Cross-Site Scripting
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Fig. 1. The number of vulnerabilities found by individual developers

Table 1. The proportion of developers who reported each vulnerability

Cross-Site Scripting 1 37%
Cross-Site Scripting 2 73%
Cross-Site Scripting 3 20%
Cross-Site Scripting 4 30%
SQL Injection 1 37%
SQL Injection 2 20%
Cross-Site Request Forgery 17%

vulnerabilities was found by the majority of subjects, while only 17% of the reviewers
found the lack of Cross-Site Request Forgery protection. Table 1 shows the percentage
of developers who reported each vulnerability. The average number of correct vulnera-
bilities found was 2.33 with a standard deviation of 1.67. Figure 1 shows a histogram
of the number of vulnerabilities found by each developer. This data shows that some
reviewers are more effective than others, which addresses questions (2) and (3) in Sec-
tion 2. The histogram also shows that none of the developers found more than five of
the seven vulnerabilities and about 20% did not find any vulnerabilities.

4.3 Correlated Vulnerabilities

It is also interesting to note that there were cases where finding a specific vulnera-
bility is strongly correlated to finding another specific vulnerability. Table 2 contains
pairs that were significantly correlated, which is shown by their corresponding corre-
lation coefficient (r) and p-value. The first three rows of Table 2 show vulnerabilities
that were in a concentrated area in the code; this may be the reason for the corre-
lation. The correlation between the two SQL Injection vulnerabilities may be due to
the type of attack; developers may have been specifically looking for SQL Injection
vulnerabilities.
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Table 2. Pairs of vulnerabilities for which finding one correlates with finding the other

Pair r p-value
(XSS 1, XSS 2) .4588 .0108
(XSS 1, SQLI 1) .5694 .0010
(XSS 2, SQLI 1) .4588 .0108
(XSS 4, SQLI 2) .4001 .0285
(SQLI 1, SQLI 2) .4842 .0067

Fig. 2. The percentage of reported vulnerabilities that were correct

4.4 Reviewer Variability

While the average number of correct vulnerabilities found is relatively low, this is not
indicative of the total number of vulnerabilities reported by each developer. The aver-
age number of reported vulnerabilities is 6.29 with a standard deviation of 5.87. Fig-
ure 2 shows a histogram of the fraction of vulnerabilities reported that were correct.
There is a bimodal distribution, with one sizable group of reviewers having a very high
false positive rate and another group with a very low false positive rate. We find sig-
nificant variation in reviewer accuracy, which is relevant to questions (2) and (3) in
Section 2.

Figure 3 shows the relationship between the number of correct vulnerabilities found
and the number of false vulnerabilities reported. This relationship has a correlation co-
efficient of .3951 with a p-value of .0307. This correlation could be explained by the
idea that the more closely a developer examines the code, the more possible vulnerabili-
ties he finds, where this includes both correct vulnerabilities and false vulnerabilities. It
may also reflect the level of certainty that a particular reviewer feels he must have before
reporting a vulnerability. It is also somewhat similar to the trade-off in static analysis
tools: when it detects fewer false alarms (false vulnerabilities), it also detects fewer true
vulnerabilities; if calibrated differently, the tool may find more true vulnerabilities, at
the cost of more false vulnerabilities.
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Fig. 3. The relationship between correctly reported vulnerabilities and falsely reported vulnera-
bilities

4.5 Optimal Number of Reviewers

In order to determine the optimal number of reviewers, we simulated hiring various
numbers of reviewers. In each simulation, we randomly chose X reviewers, where
0 ≤ X ≤ 30, and combined all reports from these X reviewers. This is represen-
tative of hiring X independent reviewers. For a single trial within the simulation, if
this combination of reports found all seven vulnerabilities, then the trial was consid-
ered a success; if not, it was considered a failure. We conducted 1000 trials for a single
simulation and counted the fraction of successes; this estimates the probability of find-
ing all vulnerabilities with X reviewers. Figure 4 shows the probability of finding all
vulnerabilities based on the number of developers hired. For example, 10 reviewers
have approximately an 80% chance of finding all vulnerabilities, 15 reviewers have ap-
proximately a 95% chance of finding all vulnerabilities, and it is probably a waste of
money to hire more than 20 reviewers. These results answer questions (4), (5), and (6) in
Section 2.

4.6 Demographic Relationships

Our results did not indicate any correlations between self-reported demographic infor-
mation and reviewer effectiveness. None of the characteristics listed in Appendix A had
a statistically significant correlation with the number of correct vulnerabilities reported.

Typical hiring practices include evaluation of a candidate based on his education,
experience, and certifications, but according to this data it does not have a significant
impact on the effectiveness of the developer’s review. We were surprised to find these
criteria to be of little use in predicting developer effectiveness in our experimental data.
One possible explanation for these results stems from application expectations; know-
ing how a system works may cause the reviewer to overlook how the system can be
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Fig. 4. A graph showing the probability of finding all vulnerabilities depending on the number of
reviewers hired

used in a way that diverges from the specification [3]. Reviewers with less experience
may not fully understand the system, but might be able to more readily spot deficiencies
because they have no preconceived notion of what constitutes correct functionality.

Unfortunately, the design of our study did not allow us to assess the relationship
between performance on the screening test and effectiveness at finding vulnerabilities,
due to our anonymization procedure. We divorced the identities of participants and all
information used in the hiring process from the participants’ delivered results in order
to eliminate possible reputation risk to subjects. We leave for future work the possibility
of developing and evaluating a screening test that can predict reviewer effectiveness.

The only significant correlation found was between the number of years of expe-
rience in computer security and the accuracy of the developer’s reports. We define
accuracy as the fraction of correctly reported vulnerabilities out of the total reported
vulnerabilities. Figure 5 shows this relationship with a correlation coefficient of -0.4141
and a p-value of .0229. While this is statistically significant in our dataset, it is not what
would be expected because it indicates that the more years of experience a developer
has, the lower the developer’s accuracy.

We did not find significant correlations between the number of correct vulnerabilities
reported and developer experience with software development, web development, or
computer security. Table 3 shows the p-values for these tests.

We found a positive correlation between the number of previous web security re-
views and the number of correct reports, which may be considered marginally signifi-
cant. The correlation coefficient is .3117 and p =.0936. Figure 6 shows this relationship.
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Fig. 5. The relationship between years of experience in computer security and accuracy of reports.
Accuracy is defined as the fraction of correctly reported vulnerabilities out of the total number of
reported vulnerabilities.

Table 3. The p-values for correlation tests between experience in different areas and the number
of correct vulnerabilities reported

Area of Experience p-value

Software development 0.6346
Web development 0.8839
Computer security 0.3612

4.7 Limitations of Statistical Analysis

A limitation of our data is that the experiment was performed with only 30 subjects.
This sample size is not large enough to detect weak relationships.

5 Related Work

To our knowledge, there has been no previous research studying the effectiveness of
developers at security code review. However, there have been many studies regarding
the evaluation and effectiveness of code inspections. Our discussion of related work
falls into three categories: code review effectiveness, methods of detecting web security
vulnerabilities, and a comparison of manual code reviews to static analysis tools.

Code Review Effectiveness. One of the largest drawbacks to conducting code in-
spections is the time-consuming and cumbersome nature of the task. This high cost
has motivated a number of studies investigating general code inspection performance
and effectiveness [4–6]. Hatton [7] found a relationship between the total number of
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Fig. 6. The correlation between the number of previously conducted security code reviews and
the number of correctly reported vulnerabilities

defects in a piece of code and the number of defects found in common by teams of in-
spectors. The authors gave the inspectors a program written in C with 62 lines of code;
the inspectors were told to find any parts of the code that would cause the program to
fail. From this research, the authors were able to predict the total number of defects. A
subsequent paper by the same author [8] found that checklists had no significant effect
on the effectiveness of a code inspection. Other studies have explored whether there
are relationships between specific factors, such as review rate or the presence of main-
tainability defects, and code inspection performance [9, 10]. These experiments were
carried out on general-purpose software and were not focused on security vulnerabili-
ties, whereas our work focuses on security vulnerabilities in web applications.

Static Detection of Web Security Vulnerabilities. Most current techniques for detect-
ing web security vulnerabilities are automated tools for static analysis. There has been
work that has compared different tools and documented their differences. Bau et al. [11]
showed that black-box web application vulnerability scanners do not perform well when
detecting advanced and second-order forms of Cross-Site Scripting and SQL Injection.
While it is more time-consuming, this may be remedied by manual code inspection. Ad-
ditionally, there have been many publications evaluating and proposing new automated
tools for detecting web security vulnerabilities [12–17]. Our work focuses on detecting
web security vulnerabilities in a web application by manually reviewing code as opposed
to using automated tools; we do not compare the reviewers’ effectiveness to that of static
analysis tools, though this would be a good topic for future work.

Comparing Code Review Techniques and Automated Testing. In addition to re-
search into specific techniques for code inspection, testing, and static analysis, a number
of studies have compared the effectiveness of different techniques. Basili and Selby [18]
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compared the effectiveness of code reading by stepwise abstraction, functional test-
ing, and structural testing. They found that when the experiment was performed with
professional programmers, code reading detected more faults than either functional or
structural testing. The experiments were performed on software written in procedu-
ral languages, but none were network-facing applications. Jones [19] showed that no
single method out of formal design inspection, formal code inspection, formal quality
assurance, and formal testing was highly efficient in detecting and removing defects; a
combination of all four methods yielded the highest efficiency. When only one method
was used, the highest efficiency for removing defects was achieved by formal design
inspection followed by formal code inspection. When we conducted our experiment,
we did not specify how the developers should review the code as long as they did not
use any automated tools. Finifter and Wagner [20] compared the effectiveness of black-
box testing and manual code review for web applications, also limiting their scope to
security vulnerabilities. While manual source code review was found to be more effec-
tive than automated black-box testing, black-box testing discovered vulnerabilities not
found through the manual source code review.

6 Conclusion and Future Work

We designed an empirical study to ask and answer fundamental questions about the ef-
fectiveness of and variation in manual source code review for security. We hired 30 sub-
jects to perform security code review of a web application with known vulnerabilities.
The subjects analyzed the code and prepared vulnerability reports following a provided
template. A post-completion survey gave us data about their personal experience in web
programming and security and their confidence in their vulnerability reports.

Our results revealed that years of experience and education were not useful in pre-
dicting how well a subject was able to complete the code review. We also found that the
subject’s own opinion of how well they performed showed no correlation with how ef-
fective their report was. In general, we found the overall effectiveness of our reviewers
to be quite low. Twenty percent of the reviewers in our sample found no true vulnera-
bilities, and no developer found more than five out of the seven known vulnerabilities.

No self-reported metric proved to be useful in predicting reviewer effectiveness, leav-
ing as an open question the best way to select freelance security reviewers that one has
no previous experience with. The difficulty in predicting reviewer effectiveness in ad-
vance supports anecdotal reports that the most effective way to evaluate a freelancer is
by their performance on previously assigned tasks.

It would be interesting to study whether these results apply to other populations and
to evaluate whether performance on our screening test correlates with reviewer effec-
tiveness. It would also be interesting to compare the effectiveness of manual security
review to that of other techniques, such as automated penetration testing tools. We leave
these as open problems for future work.

Acknowledgments. We give special thanks to Aimee Tabor and the TRUST program
staff. This work was supported in part by TRUST (Team for Research in Ubiquitous
Secure Technology) through NSF grant CCF-0424422, by the AFOSR under MURI



An Empirical Study on the Effectiveness of Security Code Review 211

award FA9550-12-1-0040, and by a National Science Foundation Graduate Research
Fellowship. Any opinions, findings, conclusions, or recommendations expressed here
are those of the authors and do not necessarily reflect the views of the entities that
provided funding.

A Demographic and Other Factors

We tested the following demographic and other factors for correlation with number of
correctly reported vulnerabilities. None were statistically significant.

– Self-reported level of understanding of the web application
– Percentage of vulnerabilities the developer thought they identified
– Years of experience in software development
– Years of experience in web development
– Years of experience in computer security
– Developer’s confidence in the review
– The number of security reviews previously conducted by the developer
– The number of web security reviews previously conducted by the developer
– Self-reported level of expertise on computer security
– Self-reported level of expertise on software development
– Self-reported level of expertise on web development
– Self-reported level of expertise on web security
– Education
– Number of security-related certifications
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Abstract. Security vulnerabilities in the web applications that we use to shop, 
bank, and socialize online expose us to exploits that cost billions of dollars each 
year.  This paper describes the design and implementation of AspectShield, a 
system designed to mitigate the most common web application vulnerabilities 
without requiring costly and potentially dangerous modifications to the source 
code of vulnerable web applications. 

AspectShield uses Aspect Oriented Programming (AOP) techniques to 
mitigate XSS and SQL Injection vulnerabilities in Java web applications. AOP 
is a programming paradigm designed to address cross-cutting concerns like 
logging that affect many modules of a program.  AspectShield uses the Fortify 
Source Code Analyzer to identify vulnerabilities, then generates aspects that 
weave in code that mitigates Cross-Site Scripting and SQL Injection 
vulnerabilities.  At runtime, the application executes the protective aspect code 
to mitigate security issues when a block of vulnerable code is executed. 

AspectShield was tested with three enterprise scale Java web applications.  
It successfully mitigated SQL Injection and Cross-Site Scripting vulnerabilities 
without significantly affecting performance. The use of AspectShield in these 
enterprise level applications shows that AOP can effectively mitigate the two 
top vulnerabilities of web applications in a cost and time effective manner. 

Keywords: cross site scripting, xss, sql injection, SQLI, application security, 
aspect oriented programming, AOP, aspect, java, web application security. 

1 Introduction 

Most web applications contain security vulnerabilities. A recent paper shows that 
71% of education, 58% of social networking, and 51% of retail websites are exposed 
to a serious vulnerability every day [2], and that 64% of websites have at least one 
information leakage vulnerability [3].  

Securing web applications is an important but complicated task for any development 
team. While new applications can be designed with security in mind, a significant 
fraction of software consists of legacy applications that were not designed to be secure. 
This paper describes AspectShield, a system that can be applied to both new and legacy 
web applications to mitigate some of the most common vulnerabilities without 
modifying the source code of those applications. 
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In theory, legacy web applications can be rewritten to be secure.  However, 
vulnerability remediation is expensive, with estimates of the cost of remediating a 
single security vulnerability ranging from $160 to $11,000 per vulnerability, 
depending on the type of vulnerability and its interaction with other code [22].  Web 
application security consultant Jeremy Grossman noted "The struggle is how do you 
deal with an enormous number of sites riddled with vulnerabilities? You can't just 
recode them. It's a dollars and cents issue."  

Modification of legacy web applications also introduces the risk of altering the 
behavior of the application and introducing new defects [21].  Many organizations 
prefer to avoid modifying legacy applications where possible.  Development teams 
are often afraid of modifying legacy applications, which unfortunately exacerbates the 
problem by reducing experience with the legacy application, sometimes to the point 
where no one who remains in the organization understands the application’s design or 
code [21].  

We designed AspectShield to mitigate vulnerabilities while avoiding the risk of 
altering application behavior and avoiding the cost of remediating vulnerabilities 
through alteration of the source code. This protection is implemented using Aspect 
Oriented Programming (AOP) techniques. The use of AOP allows for security logic 
to be developed independently of business logic. This separation of concerns 
produces a code base uncluttered by logging, input validation, access control, and 
error handling logic.  While AspectShield does not modify application source code, it 
must have access to the source code in order to identify vulnerabilities and to 
recompile the application while weaving in vulnerability mitigating aspects generated 
by AspectShield.   

We chose to use AspectJ in this paper, as it is a mature implementation of AOP, 
that has been in development by the Eclipse Foundation for over a decade.  AspectJ 
is the most widely used AOP system for the Java programming language.  An 
AspectJ aspect is composed of two major pieces:  
 

1. The pointcut of an aspect is a pointer to well-defined sections of the 
application’s source code (join points). In our system, a well-defined piece of 
code can be the name of a vulnerable method name with a particular 
signature. 

2. The advice of an aspect defines the specific logic that is to be applied at each 
join point identified by a corresponding pointcut. There are three types of 
advice called before, after, and around that execute this logic before, after, or 
instead of the join point. The AspectShield system uses the around advice to 
execute validation algorithms in place of vulnerable sections of code 
identified by the Fortify SCA.  

Aspects are woven into the byte code of the application at compile time, while the 
advice logic is executed at runtime at each block of code identified by pointcuts of the 
aspects. 

The remainder of this paper is composed of the following sections. Section 2 will 
describe how the creation of the vulnerability mitigation aspects is accomplished. 
Section 3 will describe the design of an AspectShield aspect. Section 4 will go into 
detail about the algorithms used to mitigate SQL Injection and XSS attacks. Section 5 
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will provide the validation and results of an AspectShield implementation on several 
open source projects. Sections 6, 7, and 8 will describe related work, future work, and 
conclusions, respectively.   

2 Generating the Security Aspects 

AspectShield consists of three major steps: use of an external static analysis tool, 
vulnerability location based on the output of static analysis tools, and generation of 
aspects to mitigate the vulnerabilities and weaving of the aspects into the locations of 
the vulnerabilities.  

2.1 Step 1 - Source Code Analysis 

We first locate vulnerabilities using the Fortify Source Code Analyzer (SCA) static 
analysis tools. Fortify SCA is the winner of the 2011 CODiE awards for “Best 
Security Solution” [32] and identifies more vulnerabilities than any other detection 
method.  The tool scans the web application source code for vulnerabilities, 
generating an XML report as output.  Counts of vulnerabilities of each type found by 
Fortify SCA for the three open source web applications we used in this study are 
shown in Table 1 below.  We ignored vulnerability reports of other types for this 
paper, though we plan to study them in future work. 

Table 1. Fortify SCA Results 

Application Analyzed XSS Vulnerabilities SQLI Vulnerabilities 
Alfresco ECM 10 12 
Apache OfBiz 869 737 
JadaSite E-Commerce 11 76 

2.2 Step 2 – Analyzing the SCA Results 

Fortify SCA reports detailed information about vulnerabilities, including category, file 
location, and line number. When we analyzed the Fortify SCA reports for a number of 
web applications, we found that the root causes of XSS and SQL Injection 
vulnerabilities were a  small set of functions. Functions identified as root causes 
include executeQuery() for SQL Injection and 
request.getParameter()for XSS. We compiled a list of potentially vulnerable 
functions, which were stored in XML files that AspectShield uses to generate 
pointcuts to mitigate the vulnerabilities.  The resulting XML files contained nine 
functions where the static analysis tool found XSS vulnerabilities and eight different 
definitions that correspond to potential SQL Injection vulnerabilities. For each of the 
functions, information such as the function name, number of parameters, and 
parameter types was recorded.  If additional functions are discovered in the future, 
they can be added to the XML configuration files. 
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When AspectShield starts, it parses reports of XSS and SQL Injection 
vulnerabilities from the XML output of Fortify SCA.  AspectShield asks the user to 
select a mitigation type for each vulnerability, which is applied by weaving in an 
aspect to apply that mitigation using the location information found in the SCA 
output. 

2.3 Step 3 – Running the Aspect Generator  

For each vulnerability reported by Fortify SCA, the user will be prompted to select 
a mitigation type. Different types of mitigations are available for XSS and SQL 
Injection vulnerabilities.  AspectShield is designed to be used by a developer with 
prior experience with the application that was analyzed. As it is possible for users to 
select an incorrect mitigation, this user should be the person responsible for the 
security of the application and have training in security coding and best practices. 
Unfortunately, there is no universal input validation or encoding technique that 
could be applied to all vulnerabilities, so AspectShield must ask the user for 
assistance.  

For XSS vulnerabilities, an AspectShield user will be provided with a list of 14 
options that range from various types of encoding to whitelisting. These options are 
implemented using the OWASP Enterprise Security Application Programming 
Interface (ESAPI) library [9]. ESAPI is a free, open source library of security controls 
that is widely used by organizations ranging from American Express to the World 
Bank.  It is BSD licensed, enabling  AspectShield to use it without introducing 
licensing issues for commercial software.  ESAPI features that we use to mitigate 
XSS include JavaScript, CSS, HTML, and other types of encoding, along with 
whitelist rulesets for validating data types such as email addresses and alphanumeric 
data. AspectShield also allows the user to provide a custom regular expression for 
validating input, since no library can anticipate every data type accepted by web 
applications.  

For SQL Injection vulnerabilities, a user will be provided with the option to encode 
the SQL query for either the Oracle or MySQL dialects of SQL. This limitation arises 
from the fact that the ESAPI library only supports these two dialects of SQL. While 
encoding is the only option available to the user for mitigating SQL Injection, 
AspectShield implements additional measures to prevent exploitation of SQL 
Injection vulnerabilities. These measures include the removal of multiple queries, 
tautology detection, and the removal of SQL comments before a SQL query is 
executed. 

Once the user selects the mitigations to implement for each vulnerability, 
AspectShield uses its pointcut and advice templates to generate two aspects for XSS 
and SQL Injection mitigation. Each selected mitigation is written to a map that is 
defined and populated in the corresponding aspect’s constructor. The advice logic 
identified in the advice template will then reference this map to determine which type 
of mitigation should be applied based on the location of the join point.  

Once the aspects have been generated, the application is ready to be recompiled 
with AspectJ to weave in the aspects.  AspectShield provides a static JAR file  
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containing the mitigation algorithms that will be linked into the application during 
recompilation. The implementation of these algorithms is defined in the following 
section. 

3 AspectShield Design 

In order to generate the SQL Injection and XSS mitigation aspects, we created 
templates for the pointcut and corresponding advice for each of the vulnerable 
methods that are intercepted to mitigate vulnerabilities. 

The pointcut template contains placeholders for the method name, the method 
signature, the pointcut designator, and a within string. All of the pointcuts in 
AspectShield use the “call” designator, which allows a method to be intercepted 
whenever it is called. The within string placeholder will be replaced with a list of 
names of files in which the method should be intercepted. The method name and 
parameters will be retrieved from AspectShield’s XML configuration files 
describing potentially vulnerable functions. With the pointcut template created, it 
will be used to create join points for all of the pieces of code where vulnerabilities 
were reported.  
 

 

Fig. 1. Example of an AspectJ pointcut 

An aspect’s advice will be executed at every join point matched by the pointcut in 
the application’s source code. The around advice used in this implementation 
executes code in place of the join point it operates over. Since it can have a return 
value, it must be given a return type (Figure 2).  
 

 

Fig. 2. Example of an AspectJ Advice 
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Inside of the around advice, the original join point can be executed using the 
proceed function which takes the same arguments as the join point. Much like the 
pointcut template defined above, the advice template contains placeholders that are 
populated when AspectShield is executed. The advice will have a corresponding 
name equal to the pointcut that it will execute upon. Depending on whether the aspect 
being created is for XSS or SQL Injection mitigation, the advice will make a call to 
the appropriate validation algorithm that will do the mitigation. The algorithm will be 
provided the original, potentially malicious, parameters for each join point and will 
return a safe value.  

The advice also contains logic to determine whether or not the user elected to 
provide mitigation for a particular join point. In the event that the call to the 
mitigation algorithm fails, the advice will execute its proceed() method with the 
pointcut’s default parameters in order to maintain the application’s normal 
execution flow. This ensures that AspectShield will not break any of the 
application’s functionality. AspectShield’s first priority is to maintain application 
functionality even in the unlikely event that its mitigation algorithm fails, as 
security fixes should not break the application. However, if desired, the tool could 
easily be modified to prevent the code from executing in this scenario. The advice 
also logs each mitigation using the log4j logger, so a user can detect when a 
mitigation attempt fails.  

4 SQL Injection & XSS Mitigation Results 

This section describes the algorithms that are invoked by the XSS and SQL Injection 
mitigation aspects. Both aspects have similar success criteria for application 
performance, correct execution of application code, and vulnerability mitigation. 
When an AspectShield aspect is invoked at runtime, it will receive the potentially 
malicious input and the mitigation type to be applied as parameters. 

4.1 The SQL Injection Mitigation Algorithm 

There are three primary choices of mitigation technique for SQL injection 
vulnerabilities. The first is to use parameterized queries or prepared statements. This 
method ensures that the attacker is not able to modify the query that is being 
executed. A second approach is to use stored procedures, where the queries are stored 
in the database itself and then called by the application when needed. To implement 
either of these approaches in legacy code, significant work is required. The approach 
taken in this implementation is to escape all user supplied input before executing any 
query.  

SQL Injection mitigation will be accomplished by the SQL Injection mitigation 
algorithm when it is invoked by the SQL Injection aspect. The library used to encode 
all input is the ESAPI encoder library that can do encoding for Oracle or MySQL 
dialects. The steps of the SQL Injection mitigation algorithm are:  



 Eliminating SQL Injection and Cross Site Scripting Using AOP 219 

 

1. The SQL Injection aspect generated in the previous section will call its 
doSQLInjectionFix() method, passing it the query that needs to be 
validated and the encoding type specified when the user ran AspectShield to 
generate the aspects. 

2. The validator will then test the query for any comments and remove them if 
found. The query will be passed to the JSQL Parser library that will parse the 
query and return a list of expressions that the query contains.  

3. Each expression in the query will be encoded using either the MySQL or 
Oracle encoder depending on the choice made by the user when 
AspectShield was run.  

4. Each expression will be tested to determine if it is a tautology, as SQL 
Injection exploits frequently use tautologies while normal SQL queries do 
not. This is done by using the Java ScriptEngineManager’s Javascript engine 
to evaluate the expression’s value. If the result is always true, the expression 
is marked as a tautology and removed from the original query.  

5. Once all expressions are encoded and tautologies removed, the query is 
reconstructed using the safe values and returned to the SQL Injection 
mitigation aspect.  

6. When the aspect receives the newly safe version of the query, it will invoke 
it’s proceed() method and pass it the new, safe value. 

The mitigation algorithm was timed at each step and performance was evaluated for 
three case study projects. In the event that the algorithm fails due to an inability to 
parse the query or for any other reason, it will catch any exceptions, log the failure 
using a logj4 logger, and return the original query passed in. The original query 
passed into the algorithm is returned so that if the algorithm fails, the application’s 
normal execution flow will not be affected.  

4.2 The XSS Mitigation Algorithm 

The difficulty in preventing XSS comes from the fact that such a large number of 
attack vectors exists. An attacker could potentially steal the session of a victim, 
manipulate files on the victim’s computer, record all keystrokes the victim makes in a 
web application, or probe a company’s intranet where the victim is located [52]. 
Appropriate validation and encoding can address most reflected and stored XSS 
vulnerabilities. The algorithms described in this section use the ESAPI encoder and 
validator libraries to perform escaping and encoding of dangerous data. 

The XSS mitigation aspect contains pointcuts that intercept functions, such as 
getparameter() from the request object and println() that were identified 
by the Fortify SCA. At each join point, the aspect’s advice logic will implement either 
encoding or whitelisting on the value intercepted by each pointcut. The process is 
outlined in the steps below: 

1. The advice will call a doXSSFix() method for each join point. The 
method will be passed the intercepted parameter, as well as the type of fix to 
implement as chosen by the user during the aspect generation phase. 
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2. Depending on the type of fix the user selected for the join point, the XSS 
Validator will apply either encoding for the chosen format or validation 
using a whitelist. The user has the option to choose from several types of 
encoding or whitelist provided by the ESAPI library [53] [54]. 

3. If the desired mitigation is a whitelist, the algorithm will check the input 
against a particular regular expression.  If the input fails to match, the code 
will remove any characters that do not match the desired character set.  

4. If the desired mitigation is a particular type of encoding (CSS, JavaScript, 
HTML, etc…), the ESAPI library will be used to encode the input.  

5. The last step is for the XSS Validator to return the resulting string back to 
the aspect’s advice. The advice will then call the proceed()  method and pass 
it the encoded string.  

The most difficult aspect of implementing the XSS validator algorithm was to catch 
all possible exceptions that the ESAPI encoder and validator classes can throw. In the 
event that an exception occurs, AspectShield handles it gracefully to ensure that no 
functionality of the web application is broken. The algorithm also supports different 
types of input such as String and byte arrays in order to support all possible join 
points identified by the SCA. 

5 Validation and Results 

This section describes the evaluation of the work. The evaluation will show that 
AspectShield successfully mitigates both SQL Injection and XSS vulnerabilities 
without altering source code or breaking application functionality. The evaluation will 
also show that the libraries and algorithms used to eliminate two of the most 
important web application vulnerabilities are not only functional but also do not 
impact application performance by more than an average of 1.99ms per request. Both 
of the aspects generated by this program will be evaluated in a live environment 
because they will be built into and executed as part of each of the three case study 
applications chosen. 

5.1 Identifying the Case Study Applications 

Since we used AspectJ for AspectShield, our case studies are web applications written 
in Java. Our other selection criteria for applications included availability of source 
code, application size of at least 300 classes, support of MySQL or Oracle databases, 
and developer activity. Websites such as FreshMeat.net, SourceForge.net, and 
GitHub.com were searched to find suitable candidates.  

The first project selected was a popular open source enterprise content 
management framework called Alfresco. This program has over 140,000 community 
members, over 2000 enterprise customers, and over 3,000,000 downloads [43]. This 
application was chosen because as a content management application, it has many 
points of entry that could potentially be exploited by hackers.  
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The second project chosen was Apache’s OfBiz. This application is one of the 
Apache Software Foundation’s projects and is one of the best open source ERP and 
E-Commerce implementations. OfBiz was chosen because of its use in E-Commerce, 
where these types of applications are heavily targeted because they contain personal 
information such as addresses and credit card information.  

The last project chosen was a less well known application called JadaSite, which is 
another open source E-Commerce framework. This project was chosen because it 
makes heavy use of newer web technologies such as AJAX and WYSIWYG user 
interfaces. 

5.2 Methods for Validating AspectShield 

We perform three types of validation for AspectShield. First, we evaluate the 
algorithms and libraries invoked by aspects at each join point. Second, each of the 
aspects will be evaluated as part of the Alfresco, OfBiz, and JadaSite applications. 
The first method for evaluation is to determine the functionality of the utility class the 
aspects call at each join point, the XSS Validator library, and the SQL Injection 
Validator library. Third, we create unit tests for each of the libraries’ methods with 
JUnit4, and then running a stress test to measure the performance of the libraries. 

5.3 SQL Mitigation Algorithm JUnit Results 

For the initial set of tests, a list of twenty-one SQL queries was executed fifty times 
for both the ESAPI MySQL and Oracle encoders. None of the queries exceeded 300 
characters.  The list contained different types of malicious content that could result in 
exploits ranging from injection of scripts to bypassing login forms. After the JUnit4 
test was executed, the log file that contained the results of each query test was 
analyzed. The result showed several promising indicators that the desired results were 
achieved in both successfully mitigating SQL Injection and doing so in less than 5ms 
on average. The results of the log file provided information such as removal of 
comments from the query and tautology detection and removal. One such example is 
on the SQL query “SELECT * FROM Users WHERE ((Username='1' or '1' = '1'))/*') 
AND (Password=MD5('password')))”. This query contains a comment that would 
bypass the password checking for login validation as well as a tautology, ‘1’ = ‘1’, 
that would also bypass login checks. This query was successfully mitigated by 
removing the comment entirely and replacing the tautology with an expression that 
would evaluate to false.  

The second characteristic of SQL Injection Validator execution that was analyzed 
was the execution time for each of the query validations (Figure 3). Data was 
collected from the log file, then the maximum, minimum, average, median, and mode 
were all calculated. The longest execution time was 33ms, and the shortest was 1ms. 
The average query validation time was only 5.79ms, and the most common time, the 
mode, was 5ms. The fact that the longest execution period was only 33ms was very 
encouraging considering that it was much shorter than the average request. 
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Fig. 3. SQL Mitigation Algorithm execution time 

5.4 XSS Mitigation Algorithm JUnit Results 

The evaluation results for testing the XSS Validator contained a considerably larger 
amount of information because of the many different mitigations that are available to 
the user. However, the 13 different categories can be split into two separate categories 
that had similar results. The “encoding” category consists of mitigations that use the 
ESAPI encoder library, which simply encodes the input characters according the 
context in which they would be used. The second and generally more involved 
category is “whitelist”, where user input is compared to a regular expression string. 
The results for both can be found in the table below: 

 
Validation Type Average (ms) Max (ms) Min (ms) Median (ms) 

HTML Attribute Encode 0.04 13 0 0 
Email Whitelist 3.1 197 0 1 
Alpha Numeric Whitelist 3.3 199 0 1 
URL Encoding 0.09 6 0 0 
SSN Whitelist 3.06 199 0 1 
Zip Code Whitelist 3.22 196 0 1 
Credit Card Validation 4.53 229 0 1 
HTML Encoding 0.05 11 0 0 
CSS Encoding 0.03 1 0 0 
Alpha Whitelist 3.3 209 0 1 
Javascript Encoding 0.08 47 0 0 
IP Address Whitelist 3.08 198 0 1 

 
As shown above, the items in the “encoding” category had significantly lower 

average and maximum execution times. The lowest of these was for CSS encoding, 
which only took a third of a millisecond, and the highest was 47ms for the JavaScript 

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Encoding Type

SQL Validator Execution Time

1st Quartile

Min

Median

Max

3rd Quartile



 Eliminating SQL Injection and Cross Site Scripting Using AOP 223 

 

encoding of a string. The longest execution time belonged to credit card validation, 
which took almost a quarter of a second at 229ms. The reason that this function takes 
so long to execute is because the ESAPI validator evaluates the string to see if it 
matches several different credit card patterns and computes the Luhn checksum, 
which is used to validate credit card numbers. 

5.5 Results of Integration with Case Study Applications 

The final part of the evaluation process was to test the aspects with three case study 
applications running in a live environment. The difficulty of this validation step 
comes from the fact that the vulnerabilities identified by the SCA are scattered 
throughout the application and the path to each of these can be difficult to reach since 
all the projects are enterprise scale applications. Therefore, the chosen approach is to 
only evaluate the execution of join points that are easily reachable by a typical user of 
the application. When doing this step, the aspect generation program must either be 
extracted into a JAR or included in the build path of each of the applications so that 
the XSS and SQL Injection Validators as well as required libraries such as the JSQL 
Parser can be referenced.  

For the OfBiz project, 22 join points were evaluated and the execution time and 
result were analyzed. Each join point was able to execute successfully and with 
similar time to the JUnit4 execution data explained above. Out of the 22 join points 
evaluated, 16 were possible XSS vulnerabilities with whitelist validation and 6 
applied SQL encoding. Since the Alfresco project consists of multiple projects with 
different contexts, the “repository” project was chosen for execution since it 
contained a fairly large portion of the vulnerabilities identified. This project contained 
11 SQL Injection and 4 XSS vulnerabilities. Both of the aspects executed as expected, 
except one in the SQL Injection category, where a table creation statement was not 
supported by the JSQL Parser. However, even though the query was not supported, 
the program still executed normally, because the SQL Injection Validator returns the 
original value if query validation fails. The JadaSite project had no issue executing 
any of the 8 XSS and 14 SQL Injection join points that were tested. 

5.6 Evaluation – OWASP Webgoat Project 

To provide an extra layer of validation using an application with which most 
professionals in the web application security field are familiar, AspectShield was 
applied to the OWASP WebGoat version 5.2 project. WebGoat is a deliberately 
insecure Java web application that is designed to teach web application security. It 
contains a number of purposefully implemented vulnerabilities, including several 
SQL Injection and XSS vulnerabilities.  

Fortify SCA was used to locate these vulnerabilities.  Using the Aspect Generator, 
aspects were created to implement mitigations at runtime by intercepting potentially 
malicious user input. The application was compiled and deployed with the generated 
aspects, and then each of the XSS and SQL Injection modules were tested. 
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The two modules tested manually were Injection flaws and XSS. For SQL 
Injection, several types of queries such as insert, update, and delete were executed as 
well as inputs with multiples queries and tautologies. All of the queries attempted to 
execute would normally exploit the application but were successfully mitigated with 
AspectShield. For XSS vulnerabilities, the fixes specified to the XSS aspect during 
the generation of the aspects were to do Javascript encoding on various inputs. The 
aspect successfully mitigated reflected, stored, and DOM based XSS attacks that 
would normally succeed in the modules associated with that type of vulnerability.  

5.7 Evaluation Conclusion 

Evaluation showed that AspectShield successfully prevented the exploitation of XSS 
and SQL INJECTION vulnerabilities in three case study Java web applications, as 
well as in the OWASP WebGoat application. JUnit testing of both the SQL 
INJECTION and XSS mitigation algorithms proved that the implementation would 
not significantly affect application performance or interrupt execution flow. The 
implementation of the vulnerability mitigation aspects across three enterprise level 
web applications showed that the implementation can easily be applied to existing 
code and successfully mitigate attacks.  

6 Related Works 

6.1 AOP and Security 

Security with AOP has been the subject of study in several different publications [6], 
[7], [8]. Some of the papers that influenced this work include the work done by Robin 
C. Laney and Janet van der Linden [7], where the authors were able to leverage the 
power of AOP in order to make significant changes to legacy applications. This was 
particularly interesting, because often programmers are assigned the task to 
implement some improvement to a piece of software that has not been modified for 
several years and has little documentation. The authors showed that programmers can 
use AOP to evolve legacy code and leave behind digital signatures that reduce the 
likelihood of breaking existing functionality while enhancing the application overall. 
In the work done by Minhuan Huang, Lufeng Zhang, and Chunlei Wang [8], they 
created a fully functional library that implements security features across an 
application using AOP. Although their library mostly focused on encryption and 
decryption, it showed how security could be implemented using AOP. 

Seinturier and Hermosillo wrote a paper which relates closely to this work [9]. 
Their tool, AProSec, detects inputs to a web application using aspects to intercept 
potential XSS and SQL Injection attacks. Their aspects then either warn the user or 
reject the potentially harmful data input. Their approach was unique in that they wrote 
aspects that implement security detection functionality in a web application server’s 
native libraries without having to modify the web application server code or write 
their own. Some of their concepts such as intercepting request and response 
parameters were leveraged in the creation of aspects in this research. Another 
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framework created by Zhi Jian Zhu and Mohammad Zulkernine uses AOP for 
intrusion detection for some of the most common attacks in the Web Application 
Security Consortium [23]. The AspectShield tool takes this approach in a different 
direction by intercepting vulnerable code detected by the SCA and than fixing 
harmful inputs during run time.  

While we were making final revisions of this paper for publication, we discovered 
a paper describing the implementation of a system similar to AspectShield that had 
been published after we completed the version of this paper that we submitted for 
publication. This paper describes the creation of an Eclipse IDE plug-in that does 
automatic discovery of weaknesses in the application code and with the assistance of 
the developer, remediates them with AOP [24]. The plug in also makes use of the 
ESAPI libraries created by OWASP and generates aspects based off of user selected 
validation and encoding techniques.  

6.2 Security with AOP for SQL Injection 

When looking at the most prevalent web application security vulnerabilities, injection 
is typically at the top of the list at every reliable source. SQL Injection tends to be the 
most harmful of these and it is ranked as the second most common form of attack on 
web applications [10]. One of the most extensive works of research done by V. 
Shanmughaneethi, Yagna Pravin, and Emilin Shyni uses aspects to analyze a SQL 
query for potentially malicious content [10]. This tool uses aspects which call web 
services to analyze queries and create errors in order to prevent malicious SQL from 
being executed. This is a good approach in theory, but the authors do not specifically 
discuss the implications of making web service calls with respect to performance and 
reliability of these web services.  

In his book [11], Justin Clarke briefly discusses how AOP can be leveraged to hot-
patch applications that are vulnerable to SQL Injection at runtime. He recommends 
using one of the AOP implementations such as AspectJ and Spring AOP to implement 
checks for insecure dynamic SQL libraries. Most of the references, such as Clarke’s 
book, offer a few sentences on how the paradigm could be used but do not reference 
any concrete implementations. Even solutions that do provide concrete 
implementations, such as the Shanmughaneethi paper, only work as far as identifying 
vulnerabilities but don’t do much to mitigate them.  

6.3 Security with AOP for XSS 

AOP can be used to mitigate and in some cases eliminate XSS vulnerabilities in web 
applications. This is especially true when the application in question would require a 
complete re-write in order to achieve security [23]. According to OWASP, the best 
two ways to prevent XSS is to escape all untrusted data based on the content of the 
web page and to do whitelist validation on user inputs [21]. Using AOP, a developer 
can create aspects to intercept incoming and outgoing data that would be displayed to 
the user and apply either escaping or whitelisting without modifying the existing 
source code. Mece and Kodra [24] were able to create a XSS validation aspect that 
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does whitelisting of user inputs. Their “validator” aspect treated all strings that were 
not alphanumeric as potentially dangerous and denied them. While this is certainly a 
very safe approach, applying such restrictions onto an existing application would 
almost certainly break functionality because many applications require inputs much 
more complicated than just an alphanumeric string.  

There have been multiple studies with the intent to use AOP to eliminate XSS 
vulnerabilities [28] [29] [30]. However, most of these simply discuss the idea of using 
aspects in order to achieve security and very few have working implementations. Of 
the papers with implementations, the implementations are simple ones such as regular 
expression whitelisting of input that just demonstrate the potential usefulness of the 
AOP paradigm without offering in-depth solutions.  

7 Future Works 

There are a number of features and improvements that can be added to AspectShield 
to make it a more effective security tool and provide a better overall user experience. 
The first is to extend the program to support mitigation of additional types of 
vulnerabilities. We intend to examine the possibility of adding additional mitigations 
for the remaining vulnerabilities of the OWASP Top 10. Along with support for 
mitigation of a wider range of threats, it would also be helpful to create a graphical 
user interface for the aspect generator program in order to improve user experience.  

A second potential area of improvement is to extend AspectShield to other 
programming languages. One challenge will be finding a suitable AOP 
implementation for each additional programming language to be supported. Since the 
implementation for each language would be different, new template files, function 
definitions, and libraries for mitigating vulnerabilities would need to be created for 
each programming language.  

A third area for future work would be to extend the program to support multiple 
static analysis tools.  Different automated static analysis tools find different 
vulnerabilities in source code. Additional plans for future work include an Eclipse 
plug-in that does the mitigation aspect generation automatically, and a multi language 
API for creating all parts of the security aspect generation process.  

8 Conclusions 

Two of the most common vulnerabilities in web applications are SQL Injection and 
Cross-Site Scripting. Thousands of web applications process personally identifiable 
information such as SSNs, credit card numbers, and addresses every day, and many of 
these applications have a significant number of SQL INJECTION and XSS 
vulnerabilities that can be exploited by a malicious user. The AspectShield tool 
described in this paper creates aspects that prevent malicious content from being 
executed or stored in Java web applications using the results of the Fortify Source 
Code Analyzer and the users’ choice of mitigation technique. The most significant 
feature of the approach identified is creation of the AspectShield tool, which does 
mitigation of vulnerabilities without the need to modify potentially fragile source code.  
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Our approach was to apply the AOP paradigm to execute validator classes at the 
locations of the vulnerabilities identified by Fortify SCA. This modular approach to 
implementing security allows the developers to use separation of concerns where they 
can apply any future security algorithms to a single location. When the user executes 
AspectShield, they will be given a choice of fixes to implement for each of the 
vulnerabilities detected by the static analysis tool. The two resulting aspects, one for 
XSS and the other for SQL Injection, contain pointcuts and advices that will isolate 
join points throughout the applications’ source code and weave in the necessary code 
that will ensure the mitigation of these vulnerabilities. 

In order to evaluate the success of the aspects created, WebGoat and three 
enterprise level open source Java web applications were chosen as case studies. These 
applications are from the E-Commerce, content management, ERP, and document 
management categories. AspectShield generated vulnerability mitigation aspects 
based on static analysis of these applications. Evaluation consisted of unit tests using 
the JUnit testing framework, integration of aspects into each project, and testing the 
mitigation aspects as part of the running applications. The evaluation proved that each 
of the aspects not only mitigate XSS and SQL INJECTION attacks but also do it very 
efficiently with most execution times being less than 10 milliseconds. The low 
execution time of the aspects’ at each join point is significant because it is very 
important that the introduction of the security code did not heavily affect the 
execution time of the original applications.  

In conclusion, this paper describes the implementation of a program that generates 
XSS and SQL INJECTION mitigation aspects that can be applied to mitigate 
vulnerabilities in both new and legacy web applications using information from static 
source code analysis. The main advantage of this approach compared to others 
evaluated that it does not require any modification to legacy code and provides a 
centralized location for the application’s security logic. The evaluation of generated 
aspects with three enterprise level projects provides a great level of confidence that 
the approach is both valid and effective at mitigating some of the most prevalent 
threats to web application security. 
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Definition 1. should read as follows: 

A program is type-safe for a KPU (‘crypto-safe’) if those KPU machine 
instructions that work on encrypted data always get encrypted data on 
which to work during execution of the program, while those instructions 
that work on unencrypted data always get unencrypted data on which they 
can work, and (‘alias-safe’) every read from an encrypted address is from 
the exact same encryption of that address that was last written to. 

 
The article uses just ‘type-safe’ or ‘crypto-safe’ throughout, understanding that the 
program code under consideration is always already ‘alias-safe’ in its own right. 
 

 
 
 

 

__________________________________________________ 

The original online version for this chapter can be found at 
http://dx.doi.org/10.1007/978-3-642-36563-8_9 
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Swamy, Nikhil 139

Talele, Nirupama 17
Teutsch, Jason 17

von Styp-Rekowsky, Philipp 33

Wagner, David 197
Walden, James 213


	Title
	Preface
	Organization
	Table of Contents
	Secure Programming
	Control-Flow Integrity in Web Applications
	Introduction
	Web Application Control Flow
	Technical Background
	The Attacks
	Root Causes

	Preserving Control-Flow Integrity
	Technical Background
	Protection Goals
	Enforcing Control-Flow Integrity
	The Implementation
	Simple Examples

	Discussion and Evaluation
	Performance Evaluation
	Discussion

	Related Work
	Conclusion
	References

	Using Security Policies to Automate Placementof Network Intrusion Prevention
	Introduction
	Background
	Network Scenario
	Network Defense Placement Problem

	Information Flow Problem
	Design
	Host Mediation
	Host Summaries
	Network-Wide Mediation Placement

	Evaluation
	Conclusion
	References

	Idea: Callee-Site Rewritingof Sealed System Libraries
	Introduction
	Background
	Implementation
	Evaluation
	Related Work
	Conclusions
	References


	Policies
	Towards Unified Authorization for Android
	Introduction
	Authorization for Android Applications
	Applications and Attacks
	Authorization Goals and Attacker Model
	Study of Sharing Applications
	Discussion

	Formal Model
	Authzoid Implementation
	Related Work
	Conclusion
	References

	Model-Based Usage Control Policy Derivation
	Introduction
	Background
	A Combined Model
	Example Translation
	Related Work
	Conclusion and Future Work
	References

	Compositional Verificationof Application-Level Security Properties
	Introduction
	Location Application – An Example
	Interface Contracts
	Modeling Security-Relevant Aspects
	Compositional Verification
	Model Checking Performance
	Related Work
	Conclusion
	References


	Proving
	Towards Verifying Voter Privacythrough Unlinkability
	Introduction
	Modelling Privacy
	Indistinguishability
	Unlinkability

	Specifying Unlinkability in Isabelle/HOL
	Isabelle/HOL and the Inductive Method
	Extensions for Unlinkability

	Modelling the FOO Protocol in the Inductive Method
	FOO Protocol Steps and Inductive Protocol Model

	Proving Voter Privacy for FOO
	Main Results
	Proof of the Main Theorem
	Proof of the Supporting Theorems

	Conclusion
	References

	Confidentiality for Probabilistic Multi-threadedPrograms and Its Verification
	Introduction
	Preliminaries
	Basics
	Probabilistic Kripke Structures
	Probabilistic Schedulers
	Stuttering-Free PKSs and Stuttering Equivalence

	Scheduler-Specific Probabilistic-Observational Determinism
	Verification of SSPOD
	Verification of SSPOD-1
	Verification of SSPOD-2

	Related Work
	Conclusion
	References

	A Fully Homomorphic Crypto-Processor Design
	Introduction
	Overview
	KPU versus RISC CPU
	Formal Description of a RISC CPU
	Formal Description of a KPU
	Correspondence of a Running KPU to a RISC CPU
	Related Work
	Conclusion
	Future Work
	References


	Formal Methods
	DKAL: Constructing ExecutableSpecifications of Authorization Protocols
	Introduction
	qpil: Quantified Primal Infon Logic
	The Design and Semantics of dkal
	A Verified Interpreter for dkal
	Related Work
	References

	A Formal Approach for Inspecting Privacyand Trust in Advanced Electronic Services
	Introduction
	Related Work
	General Overview of the Approach
	A Travel Reservation System
	Scenario and Setup
	Feedback

	Evaluation
	Conclusions
	References

	Idea: Writing Secure C Programs with SecProve
	Introduction
	Background
	Approach to Tool Support
	Example: Checking a Sanitization Property
	Related Work
	Progress and Future Work
	References


	Analyzing
	Anatomy of Exploit Kits
	Introduction
	Our Goals and Contribution

	Related Works
	Background
	Collected Data
	Offensive Component
	Defensive Component

	Management Component
	Code Protection
	Code Re-use
	Conclusion
	References

	An Empirical Study on the Effectivenessof Security Code Review
	Introduction
	Goals
	Effectiveness
	Optimal Number of Reviewers
	Predicting Effectiveness

	Experimental Methodology
	Anchor CMS
	oDesk
	Subject Population and Selection
	Task
	Data Analysis Approach
	Threats to Validity

	Results
	Vulnerability Report Classification
	Reviewer Effectiveness
	Correlated Vulnerabilities
	Reviewer Variability
	Optimal Number of Reviewers
	Demographic Relationships
	Limitations of Statistical Analysis

	Related Work
	Conclusion and Future Work
	References

	Eliminating SQL Injection and Cross Site ScriptingUsing Aspect Oriented Programming
	Introduction
	Generating the Security Aspects
	Step 1 - Source Code Analysis
	Step 2 – Analyzing the SCA Results
	Step 3 – Running the Aspect Generator

	AspectShield Design
	SQL Injection & XSS Mitigation Results
	The SQL Injection Mitigation Algorithm
	The XSS Mitigation Algorithm

	Validation and Results
	Identifying the Case Study Applications
	Methods for Validating AspectShield
	SQL Mitigation Algorithm JUnit Results
	XSS Mitigation Algorithm JUnit Results
	Results of Integration with Case Study Applications
	Evaluation – OWASP Webgoat Project
	Evaluation Conclusion

	Related Works
	AOP and Security
	Security with AOP for SQL Injection
	Security with AOP for XSS

	Future Works
	Conclusions
	References


	Erratum: A Fully Homomorphic Crypto-ProcessorDesign
	Author Index



