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Abstract. Inferring genetic networks is of great importance in unlock-
ing gene behaviour, which in turn provides solutions for drug testing,
disease resistance, and many other applications. Dynamic network mod-
els provide room for handling noisy or missing prelearned data. This
paper discusses how Dynamic Bayesian Networks compare against coex-
pression networks as discussed by Zhang and Horvath [1]. These shall
be tested out on the genes of yeast Saccharomyces cerevisiae. A method
is then proposed to get the best out of the strengths of both models,
namely, the causality inference from Bayesian networks and the scoring
method from a modified version of Zhang and Horvath’s method.

1 Introduction

Biological processes, and by extension life, emerge from processes at the most
basic level of the cellular structure- genes and proteins. A highly structured
system of networks is responsible for information flow through the cell.

The central dogma of biology suggests mechanisms of information transfer in
biological networks. This requires for us to consider genes, proteins, and their
mutual interactions. DNA replication, transcription and translation are a few of
these processes via which information is transferred. Gene coexpression analysis
aims to provide increasingly reliable interaction models of biological systems.
We restrict our model to that of a system of genes interacting with each other
via expression. The nodes represent the individual genes, edges represent inter-
actions within the system. These networks may be directed or undirected, cyclic
or acyclic.

Gene expression studies usually start with microarray experiments where the
expression levels of thousands of genes can simultaneously be measured. Microar-
ray gene expression experiments are done with specimens of known heritage.
These are exposed to a controlled environment with variables like nutrition,
illumination, presence of various concentration of drugs. These experiments typ-
ically generate large matrices of gene expression levels. This data is usually quite
noisy and may have missing values.

This data is then used to answer questions about regulatory mechanisms of
gene expression. The authors demonstrate the performance of Bayesian Networks
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as compared to coexpression networks, validated against curated gene interaction
data.

2 Literature Review

A number of sophisticated methods which answer specific questions have been
developed and proposed through the past two decades. Groundbreaking work
by Spellman et al. in 1998 [2] on yeast genes using microarray hybridization
techniques opened the field of systems biology and made it possible to perform
scalable operations on genetic datasets. Applications ranging from the humble
yeast to the Human Genome Project ultimately aim to create a “Rosetta Stone”
to decipher the mystery that biological systems pose [3].

Approaches using Boolean Networks [4][5], and the next logical step Artificial
Neural Networks have been proposed [6]. Methods using independent component
analysis, and then self organized maps were used by Dragomir [7] were employed
to solve the problem of class discovery.

The model used here builds on the approach by Murphy and Mian in [8].
Their method deals with Bayesian (belief) Networks as discussed in [9]. It unifies
and generalizes models of boolean networks, Hidden Markov Models, and other
widely accepted models. Boolean networks and Hidden Markov Models can be
shown to be interconvertible with suitable assumptions of an intermediate state
vector. Markov chains come associated with an inherent transition matrix (T )
and if T (i, j) = 0, then this means that the system cannot make the transition
from state i to state j. This kind of representation is unsuitable for sparse,
discrete models- the kind we’re considering here. So, we do not consider Boolean
Networks or HMMs.

The use some or all of the aforementioned methods in yeast genes (those of the
Saccharomyces cerevisiae) is of specific interest because it is fully sequenced,
and widely researched. Bilu and Linial’s [10] work proposes a hierarchical clus-
tering through the metric “BLAST” which is a measure of similarity in genes.
A functional prediction is then performed so as to validate the clustered genes.

Yeast genes are studied using Bayesian Networks by Friedman, et al in [11].
This Bayesian Network is put through a validation of known experimental re-
sults. The procedure is suited to cell cycle expressions and is thus of direct
importance to our proposed method.

The system of coexpression networks inferred via a modification of the meth-
ods by Zhang and Horvath [1] for each timeframe is considered as an instance
in a Markov Chain. This is then collapsed into a Bayesian Network (as justified
above) using the networks discussed by Friedman et al in [11].

3 Study Data and Experimental Design

3.1 Study Data

As a consequence of the extensive nature of DNA microarray experiments, a
“genomic” viewpoint on gene expression is provided. Data from microarray



Comparison of Gene Co-expression Networks and Bayesian Networks 509

experiments on Saccharomyces cerevisiae by Spellman et al. is used here to
demonstrate the methods proposed. This dataset contains 76 gene expression
measurements of mRNA levels of 6177 S. cerevisiae ORFs. This data represents
six time series under different cell cycle synchronization methods. According
to Spellman et al. about 800 genes exist whose expression varies over different
stages of the cell cycle. This data contains about 6% missing values which shall
be dealt with slightly differently in the methods discussed below.

This data contains real values from the experiments. Usually, this is discretized
for most purposes into 3 categories: underexpressed (-1) baseline/normal (0) and,
overexpressed (1), depending on whether the gene is expressed lower than, similar
to, or greater than the control, respectively. The thresholds for such discretiza-
tion may be arrived at by setting the average from across the experimental data
or from other independent experiments.

3.2 Coexpression Networks

Coexpression networks treat each gene as an individual node and connections
between two such nodes depict the nature of interaction between the two genes.
These interactions depend on the complexity of the model chosen. For instance,
one could choose binary edges to denote presence (edge weight=1) or absence
(edge weight=0) of interaction. Softer thresholding methods enable us to define
weighted edges in the coexpression network. Adjacency functions which return
such weights need to be defined accordingly. The parameters for these are sought
using biologically motivated criteria, viz. the scale-free topology criterion[12,13].

Measures of Gene Similarity. Data is often taken in the form of raw expres-
sion levels where missing data usually results in loss of valuable information. A
modified version of the data is used in this case instead. Exploiting the temporal
nature of the time-series data, a noise eliminating curve-fit is implemented to
take care of missing values and to smoothen out noisy kinks. This results ina
relatively noiseless and more reliable correlation score. The similarity between
each pair of genes is denoted by the measure sij . The absolute value of the
Pearson correlation coefficient sij = |cor(i, j)|, or a shifted-and-scaled version

sij = 1+cor(i,j)
2 of it are often used here. The aim is to arrive at a similarity

measure lying between 0 and 1. The similarity matrix thus arrived at, is denoted
by S = [sij ]

The Adjacency Function. To transform the similarity matrix into an adja-
cency matrix, the adjacency function is applied. The choice of the adjacency
function decides whether we have soft (resulting in a weighted network) or hard
thresholding (resulting in an unweighted network). The adjacency function is
required to be a monotonically increasing function which maps the interval [0,1]
into [0,1]. Hard thresholding for example works as below:

aij = signum(sij, τ) ≡
{
1 if sij ≥ τ

0 if sij < τ
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Soft thresholding is implemented so as to mitigate the loss of information in-
curred by hard thresholding. Two types of soft thresholding methods are often
used: The sigmoid function

aij = sigmoid(sij , α, τ0) ≡ 1

1+e−α(sij−τ0)

and the power adjacency function

aij = power(sij , β) ≡ |sij |β

Opinion on methods of estimating parameters for these functions varies widely.
Methods suggesting the usage of p-value instead of the correlation coefficient
in order to impose a hard threshold are commonly used. For soft thresholding
methods, a detailed treatment using scale-free topology criteria is shown in [1]

Node Similarity/Dissimilarity. The coexpression analysis aims to identify
tightly connected subsets of nodes. Out of many dissimilarity measures defined
by authors, the toplogical overlap of two nodes [14] was shown to be useful
in biological networks. For unweighted networks, the measure can be shown as
below:

ωij =
lij+aij

min{ki,kj}+1−aij

where lij =
∑

aiuauj and ki =
∑

aiu. This may as well be extended to weighted
networks. Here, in the case of ωij = 1, the node with the lesser degree satisfies two
conditions: 1) all of its neighbors are also neighbors of the other node and 2) it is
connected to the other node. On the contrary, ωij = 0, if i and j are unconnected
and the two nodes do not share any neighbors. The topological overlap matrix
is thus Ω = |ωij | and is non-negative and symmetric. The dissimilarity measure
is simply dωij = 1−ωij. This matrix is the one which leads to distinctly clustered
gene modules.

3.3 Bayesian Networks

Friedman et al.’s method treats the data with no prior assumptions of biological
knowledge. It initially treats the measurements as independent samples from a
distribution, ignoring the temporal aspect of the measurement. This is compen-
sated by introducing an additional variable to denote the cell cycle phase. This
variable is of key significance in all the networks learned and is forced to be a
root in all the networks learned. This translates to the expression levels of the
genes being dependent on the cell cycle phase.

Mathematical Formalism. A Bayesian Network is a representation of a joint
probability distribution, comprising two components: the topological component
G is a directed acyclic graph (DAG) whose vertices correspond to the random
variables X1, ..., Xn and the second being Θ , the conditional distribution for
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each variable, given its parents in G. These components combined form a unique
distribution in the space of the random variables X1, ..., Xn. In association with
theMarkov Assumption, which states that each variableXi is independent of its
nondescendants, given its parents in G, the graph is a compact representation of
the joint probability distribution, thus economizing on the number of parameters.
The chain rule of probabilities and properties of conditional independencies help
us decompose this into the productform as below:

P (X1, ..., Xn) =
∏

P (Xi|PaG(Xi))

where PaG(Xi) is the set of parents of Xi in G. The conditional distributions
P (Xi|PaG(Xi)) for each variable Xi are denoted by parameters specified in θ.

In specifying the conditional probability distributions, it is usual for one to
represent the input random variables as continuous, discrete or mixed (in keeping
with our initial mention of how the expression data is represented and subse-
quently interpreted). Continuous variables are usually represented using multi-
variate linear Gaussian distributions as P (X |u1, ..., uk ∼ N(a0 +

∑
ai · ui, σ

2)).
Here the normally distributed random variable X ’s mean linearly depends on
the values of its parents. If all the variables have similar Gaussian conditional
distributions, then the joint distribution is a multivariate Gaussian. Discrete
variables can be represented by multinomial distributions. This makes the free
parameters exponential in the number of parents. Hybrid networks contain a
mixture of continuous and discrete variables. These are of little relevance here
and discussed in greater detail in Friedman et al.’s paper.

Learning Bayesian Networks. Learning a Bayesian Network can be stated
as a problem as follows. Given a training set D={X1, ..., Xn} of independent
instances of X , find a network B = < G,Θ > that best matches D. The problem
is that of an optimization in the space of directed acyclic graphs in. The number
of such graphs is superexponential in the number of variables involved.

An algorithm by Friedman, Nachman and Pe’er, called the Sparse Candidate
algorithm is an efficient search procedure which focuses on certain relevant re-
gions of the search space. We can identify a few key candidate parent node genes
based on local statistics (like correlation) and then restrict the search to only
those networks where these candidates are the parent nodes, thus slicing down
the search space considerably and quickly. Possible over-restriction of the search
space can be dodged by implementing an iterative search for the optimum set
of initial candidates. The descendents are then found after ascertaining these
candidates [8].

3.4 Experimental Design

The models arrived at using the above discussed methods are compared based on
their performance with respect to biological data that has been experimentally
validated. This provides a comparative study of how robust each method is, both
individually, as well as when compared to each other. The performance may be
based on the models’ ability to identify important topological structures and
causal patterns. Some of which are described below:
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Dominant Genes. Genes directly involved in initiation and control of cellular
cycles can be perceived as nodes of prime importance. Accuracy in predicting
properties of such nodes is a cursory measure of robustness of the model.

Prominent Motifs. Extending the previous argument further topologically, it
could be said that not just key nodes, but some motifs play an important role
in cellular processes. The degree of isomorphism of the cell cycles (which would
appear as subgraphs) identified by the methods with respect to the original mo-
tifs in the pre-validated data could be considered a more sophisticated extension
of the above metric.

Markov Relations. Functional relations which make biological sense can be
inferred using Markov chains as the criteria of identification. Functionally related
genes which can be represented as Markov chains are an important feature.
High confidence Markov relations have been known to concur with experimental
validation. More interestingly, among high confidence Markov chains, one can
often find conditional independence i.e. a group of highly correlated genes. [11]

Due to the extensive research performed on Saccharomyces cerevisiae, such
data is readily available in the works of Spellman, etc. Thus the two methods
are pitted head to head against each other. The validation is carried out for the
most prominent genes in the organism and subsequent inferences are made.

4 Implementation

A sample data-set consisting of 12 key genes 77 states of observation (with no
missing values) was used to test out most of the methods. This dataset required
no cleanup due to the choice of the genes. The main network inference was carried
out with the data of 6178 genes with 77 different observation states. This data
contains numerous missing values.

4.1 Data Cleaning

In inferring a Bayesian Network out of such an incomplete database as the
S.cerevisiae expression data, one is presented with a choice between ignoring
the missing values and adapting dynamic models. A compromise between these
two methods is chosen by using a modified dataset which now comprises of 58
observation instances instead of the original 77, the upper quartile of the missing
values being omitted. This subset is further trimmed to provide a complete
dataset without missing data for any of the constituent genes. This elminates the
requirement to assume the presence of any further fictitious nodes and simplifies
the complexity of the problem significantly.

Prevalidated interaction data is obtained from the “Saccharomyces Genome
Database”. The data of relevance here is in the form of arcs constituting respec-
tive gene names. This contains a few repeated interactions, which are eliminated.
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4.2 Bayesian Networks

The Bayesian networks can be formed using two approaches- score based struc-
ture learning algorithms like hill-climbing and Tabu search, and using constraint
based structure learning algorithms. Constraint-based algorithms offer flexibility
in setting thresholds for false positive, Type I statistical errors; but at the same
time their execution time is greater than that of score based structure learning
algorithms. Under similar values of α, the various constraint based algorithms
seem to perform equally in terms of predicting arcs. A precision-recall analysis
is done by observing the effect of varying α.

4.3 Coexpression Networks

The coexpression networks are formed using Pearson Correlation Coefficient or
Mutual Information based scores using a dynamically derived β (not to be con-
fused with the Type II statistical error). This method, unlike Bayesian Network
inference, is robust to missing data (as long as the data stays within statistically
significant margins). Here we adhere to the Pearson Correlation Coefficient based
methods and implement hard thresholding using random resampling methods by
bootstrapping the data. In doing so, we assume a Gaussian-like distribution of
the expression values (which it does resemble closely). The final clusters them-
selves are of little significance for this particular analysis and we focus merely
on the edges obtained.

Fig. 1. The network formed out of the 12 genes considered. This Bayesian
Network reflects the causal relationships exhibited in the gene cycles.

5 Inferences and Conclusions

5.1 Preliminary Inferences

Networks made using the toy dataset using coexpression analysis and Bayesian
Network models concur in their predictions and with the validated dataset. This
may be attributed to the small sample size of the subset chosen. The network
exhibited is as per Fig. 1.

The final network consisting of 2361 genes and 7182 edges are displayed in
the Pajek visualization as shown in Fig.2.
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Fig. 2. Network comprising 2361 genes of S.cerevisiae. A Pajek visualization of
the coexpression network.

Results of the Bayesian networks reveal the following key Markov relations in
particular as per Table 2.

Table 1. Performance statistics for the different models. Note that the terms
“precision” and “recall” are used in the context of the Bayesian Network being the
relevant data and the coexpression network is the retrieved data.

Set A Set B Precision Recall

Validated Data Bayesian Network 0.95 0.67

Validated Data Coexpression Network 0.62 0.53

Bayesian Network Coexpression Network 0.83 0.77

5.2 Validation and Inferences

We perform a precision-recall analysis between the 3 set of arcs: the prevalidated
data, the Bayesian Network, the coexpression network. (as shown in Table 1)
The Bayesian Network is seen to be a closer estimater of gene interactions than
the coexpression network due to superior precision and relatively higher recall.
Relations that are prominently expressed in the data appear in all 3 models. The
biological interpretations of the interactions are either spatial or functional in
nature. Despite this, few of the high confidence functional interactions predicted
may be considered false positives if arrived at using a Gaussian model, as it uses
correlation values. This problem does not arise in the multinomial model, whose
salient results are as per Table 2.
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Table 2. List of Top Markov Relations, Multinomial Experiment

Confidence Gene 1 Gene 2 Notes

1.0 YKL163W-PIR3 YKL164C-PIR1 Close locality on chromosome
0.985 PRY2 YKR012C Close locality on chromosome
0.985 MCD1 MSH6 Both bind to DNA during mitosis
0.98 PHO11 PHO12 Both nearly identical acid phosphatases
0.975 HHT1 HTB1 Both are histones
0.97 HTB2 HTA1 Both are histones
0.94 YNL057W YNL058C Close locality on chromosome
0.94 YHR143W CTS1 Homolog to EGT2 cell wall control, both

involved in cytokinesis
0.92 YOR263C YOR264W Close locality on chromosome
0.91 YGR086 SIC1 Homolog to mammalian nuclear ran pro-

tein, both involved in nuclear function
0.9 FAR1 ASH1 Both part of a mating type switch, ex-

pression uncorrelated
0.89 CLN2 SVS1 Function of SVS1 unknown
0.88 YDR033W NCE2 Homolog to transmembrame proteins

suggest both involved in protein secretion
0.86 STE2 MFA2 A mating factor and receptor
0.85 HHF1 HHF2 Both are histones
0.85 MET10 ECM17 Both are sulte reductases
0.85 CDC9 RAD27 Both participate in Okazaki fragment

processing

5.3 Conclusions

In this paper, a comparison has been made between Bayesian Network and
coexpression networks on the basis of performance in predicting the structure
of the expression network of the genome for baker’s yeast. This is done without
any prior knowledge of biology involved; in fact, biologically viable and plausible
interactions stem out of the predicted models. A more throughly biologically
supervised global topological treatment has been discarded in favor of learning
the finer interaction structure. Evidently, Bayesian networks emerge as a more
informative tool to determine the causal structure of such interactions.
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