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Abstract. Time series motif is a previously unknown pattern appearing 
frequently in a time series. An efficient motif discovery algorithm for time 
series would be useful as a tool for summarizing massive time series databases 
as well as many other advanced time series data mining tasks. In this paper, we 
propose a new efficient algorithm, called EP-BIRCH, for finding motifs in large 
time series datasets. This algorithm is more efficient than MK algorithm and 
stable to the changes of input parameters and these parameters are easy to be 
determined through experiments. The instances of a discovered motif may be of 
different lengths and user does not have to predefine the length of the motif. 

Keywords: time series motif, motif discovery algorithm, clustering algorithm, 
extreme points. 

1 Introduction 

A time series is a sequence of real numbers measured at equal intervals. Time series 
data arise in so many applications of various areas ranging from science, engineering, 
business, finance, economic, medicine to government. Nowadays, time series datasets 
in several applications becomes very large, with the scale of multi-terabytes and data 
mining task in time series data of such scale becomes very challenging. 

Time series motifs are frequently occurring but previously unknown  subsequences 
of a longer time series, which are very similar to each other. Since their formalization 
in 2002 by Lin et al. [4], several time series motif discovery algorithms have been 
proposed ([1], [4], [5], [6], [7], [12]). With most of these algorithms, user has to 
determine in advance the length of the motif and the distance threshold (range) for 
subsequence matching, which are the two parameters in most of the motif discovery 
algorithms. There have been a few algorithms proposed for finding time series motif 
with different lengths or variable lengths ([3], [9], [10]). However so far, to the best of 
our knowledge, there has been no time series motif discovery algorithm that can 
determine automatically the suitable length of the motif in a time series. 

In this paper, we propose a new efficient algorithm for detecting time series motif 
which uses significant extreme points to determine motif candidates and then cluster 
motif candidates to find the most significant motif by using BIRCH algorithm. This 
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algorithm works directly in the original time series without any transformation for 
dimensionality reduction. The experiments on the real world datasets demonstrate that 
our proposed method outperforms the MK algorithm [6]. Besides, the proposed 
algorithm has three other major advantages. First, it can perform effectively with 
large time series datasets. Second, it is not sensitive to input parameters and these 
parameters can be determined easily. Third, the instances of a discovered motif may 
be of different lengths and user does not have to predefine the length of the motif.   

2 Background 

2.1 Time Series Motif and Bruce-Force Algorithm for Finding  Motifs  

Definition 1. Time Series: A time series T = t1,…,tN  is an ordered set of N real-values 
measured at equal intervals. 

Definition 2. Similarity distance: D(s1, s2)  is a positive value used to measure 
differences between two time series s1, and s2, relies on measure methods. If D(s1, s2) 
< r, where r is a real number (called range), then  s1 is similar to s2 . 

Definition 3. Subsequence: Given a time series T of length N, a subsequence C of T is 
a sampling of length n < N of contiguous positions from T, that is, C = tp,…,tp+n-1 for 

1≤ p ≤ m – n + 1. 

Definition 4. Time series motif: Given a time series T, a subsequence C is called the 
most significant motif (or 1-motif) of T, if it has the highest count of the subsequences 
that are similar to it. All the subsequences that are similar to the motif are called 
instances of the motif. 

Lin et al. ([4]) also introduced the brute-force algorithm to find the most significant 
motif (see Fig. 1). The input parameters of this algorithm are the length of the motif 
(n) and the distance threshold (r). Notice that the brute-force algorithm enumerates 
the non-trivial matches between subsequences. Given a time series T containing a 
subsequence C beginning at position p and a matching subsequence M beginning at q, 
we say that M is a trivial match to C if either p = q or there does not exists a 
subsequence M’ beginning at q’ such that D(C, M’)> r and either q<q’<p or p<q’<q. 
In the brute-force algorithm, we exclude the trivial matches so that only non-trivial 
matches are counted for detecting 1-motif in a time series. 

This brute-force algorithm work directly on raw time series and requires O(m2) 
calls to the distance function (m is the length of the time series). 
 

Algorithm Find-1-Motif-Brute-Force(T, n, r) 
best_motif_count_so_far = 0 
best_motif_location_so_far = null;   
for i = 1 to length(T) – n + 1 
    count = 0;  pointers = null; 
    for j = 1 to length(T) – n + 1 
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         if Non_Trivial_Match (C[i: i + n – 1], C[j: j + n – 1], r ) then 
               count = count + 1; 
               pointers = append (pointers, j); 
          end 
     end 
     if count > best_motif_count_so_far then 
         best_motif_count_so_far = count; 
         best_motif_location_so_far = i;  motif_matches = pointers; 
     end 
   end 

Fig. 1. The outline of brute-force algorithm for 1-motif discovery 

2.2 Algorithms for Finding Motifs  

Since the definition of time series motif was given in 2002 [4], several algorithms 
have been proposed to tackle the problem of time series motif discovery. The first 
algorithm that can find motifs in linear time is Random Projection, developed by Chiu 
et al. in 2003 [1]. It is an iterative approach and uses as base structure a collision 
matrix whose rows and columns are the SAX representation of each time series 
subsequence.  

Mueen et al. in 2009 [6] proposed the first exact motif discovery algorithm, called 
MK algorithm, that works directly on raw time series data. One of the major 
disadvantages of the Random Projection algorithm and the MK algorithm is that they 
still execute very slowly with large time series data.  

In this work, we improve the method for time series motif discovery proposed by 
Gruber et al. 2006 [2]. This method is based on the concepts of significant extreme 
points that was proposed by Pratt and Fink, 2002 [8]. The algorithm proposed by 
Gruber et al. for finding time series motifs consists of three steps: extracting 
significant extreme points, determining motif candidates from the extracted 
significant extreme points and clustering the motif candidates to determine the 1- 
motif through the cluster with the largest numbers of candidates. For convenience, in 
this paper, we call the algorithm proposed by Gruber et al. EP-C (Extreme Points and 
Clustering). When Gruber et al. proposed the EP-C algorithm, they apply it in 
signature verification and did not compare it to any previous time series motif 
discovery algorithms. Through our experiments done by Tin, 2012  [11], we found 
out that the EP-C is much more effective than Random Projection in terms of time 
efficiency and motif accuracy. But EP-C still needs some improvements. 

2.3 Finding Time Series Motifs Using the MK Algorithm  

Mueen et al. in 2009 [6] proposed the first exact motif discovery algorithm, called 
MK algorithm, that works directly on raw time series data. This algorithm uses the 
“nearest neighbor” definition of motif as follows. Time series motifs are pairs of 
subsequences which are very similar to each other.   
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Based on MK algorithm, we can modify it so that it can detect 1-motif in time 
series according the first formalized definition given by Lin et al. [4]. The 
modification can be done simply as follows: for each i-th subsequence of a longer 
time series,  we use a linked list to store all the subsequences that match with the i-th 
subsequence. Later, the linked list with the largest number of matching subsequences 
will be the linked list associated with the 1-motif of the time series.  

In the modified MK algorithm, we can also apply the three improvement 
techniques proposed by Mueen et al., 2009 ([6]). The three improvement techniques 
are (i) exploiting the symmetry of Euclidean distance, (ii) exploiting triangular 
inequality and reference point, and (iii) applying early abandoning. 

Thank to the three techniques, the modified MK algorithm is up to three orders of 
magnitude faster than brute-force algorithm. More details about the three 
improvement techniques, interested reader can refer to [6]. In this work, we will use 
the modified MK algorithm as the baseline algorithm to compare with our proposed 
algorithm for finding time series motif. 

2.4 Finding Significant Extreme Points 

To extract a temporally ordered sequence of motif candidates, significant extreme 
points of a time series have to be found. The definition of significant extreme points, 
given by Pratt and Fink, 2002 [8]  is as follows. 

Definition 5. Significant Extreme Points: A univariate time series T = t1,…,tN has a 
significant minimum at position m with 1 < m < N, if (ti, . . . , tj) with 1 ≤ i < j ≤ N in 
T exists, such that tm is the minimum of all points of this subsequence and ti ≥ R×tm, tj 
≥ R×tm with user-defined R ≥ 1.  
Similarly, a significant maximum is existent at position m with 1 < m < N, if a 
subsequence (ti, . . . , tj) with 1 ≤ i < j ≤ N in T exists, such that tm is the maximum of 
all points of this subsequence and ti ≤ R×tm, tj ≤R×tm with user-defined R ≥ 1.  

 

 

Fig. 2. Illustration of Significant Extreme Points: (a) Minimum, (b) Maximum 

Notice that in the above definition, the parameter R is called compression rate 
which is greater than one and an increase of R leads to selection of fewer significant 
extreme points. Fig. 2 illustrates the definition of significant minima (a) and maxima 
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(b). Given a time series T, starting at the beginning of the time series, all significant 
minima and maxima of the time series are computed by using the algorithm given in 
[8]. 

The significant extreme points can be the starting point or ending point of a motif 
instances. Basing on the extracted significant points we can extract the motif 
candidates from a time series and then cluster them using BIRCH algorithm.  

2.5 BIRCH Clustering 

BIRCH is designed for clustering a large amount of numerical data by integration of 
hierarchical clustering at the initial stage and other clustering methods, such as 
iterative partitioning at the later stage ([13]). It introduces two main concepts, 
clustering feature and clustering feature tree (CF tree), which are used to summarize 
cluster representations. These structures help the clustering method achieve good 
speed and scalability in large databases. BIRCH is also effective for incremental and 
dynamic clustering of incoming objects. 

Given N d-dimensional points or objects ix  in a cluster, we can define the centroid 

0x , the radius R, and the diameter D of the cluster as follows: 
 
 
 
  
 
 
 
 
 
 

 
 
 
where R is the average distance from member objects to the centroid, and D is the 
average pairwise distance within a cluster. Both R and D reflect the tightness of the 
cluster around the centroid. A clustering feature (CF) is a triplet summarizing 
information about clusters of objects. Given N d-dimensional points or objects in a 
subcluster, then the CF of the cluster is defined as 

  
 

where N is the number of points in the subcluster, LS  is the linear sum on N points 
and SS is the square sum of data points. 
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A clustering feature is essentially a summary of the statistics for the given subcluster: 
the zero-th, first, and second moments of the subcluster from a statistical point of 
view. Clustering features are additive. For example, suppose that we have two disjoint 
clusters, C1 and C2, having the clustering features, CF1 and CF2, respectively. The 
clustering feature for the cluster that is formed by merging C1 and C2 is simply CF1 + 
CF2. Clustering features are sufficient for calculating all of the measurements that are 
needed for making clustering decisions in BIRCH.  

A CF tree is a height-balanced tree that stores the clustering features for a 
hierarchical clustering. By definition, a nonterminal node in the tree has descendents 
or “children”. The nonleaf nodes store sums of the CFs of their children, and thus 
summarize clustering information about their children. Each entry in a leaf node is not 
a single data objects but a subcluster. A CF tree has two parameters: branching factor 
(B for nonleaf node and L for leaf node) and threshold T. The branching factor 
specifies the maximum number of children in each nonleaf or leaf node. The 
threshold parameter specifies the maximum diameter of the subcluster stored at the 
leaf nodes of the tree. The two parameters influence the size of the resulting tree.  

BIRCH applies a multiphase clustering technique: a single scan of the data set 
yield a basic good clustering, and one or more additional scans can (optionally) be 
used to further improve the quality. The BIRCH algorithm consists of four phases as 
follows. 

Phase 1: (Building CF tree) BIRCH scans the database to build an initial in-
memory CF tree, which can be view as a multilevel compression of the data that tries 
to preserve the inherent clustering structure of the data. 

Phase 2: [optional] (Condense data ) Condense into desirable range by building a 
smaller CF tree. 

Phase 3: (Global Clustering) BIRCH applies a selected clustering algorithm to 
cluster the leaf nodes of the CF tree. The selected algorithm is adapted to work with a 
set of subclusters, rather than to work with a set of data points. 

Phase 4: [optional] Cluster refining 

After the CF tree is built, any clustering algorithm, such as a typical partitioning 
algorithm, can be used in Phase 3 with the CF tree built in the previous phase. Phase 4 
uses the centroids of the clusters produced by Phase 3 as seeds and redistributes the 
data points to its closest seed to obtain a set of new clusters. 

3 The Proposed Method – Combination of Significant Extreme 
Points and BIRCH  

The proposed method, called EP-BIRCH (Extreme points and BIRCH clustering), is 
an improvement of the EP-C described in Section 2. The EP-C algorithm by Gruber et 
al. [2] uses hierarchical agglomerative clustering (HAC) algorithm for clustering 
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which is not suitable to large scale time series datasets. In our proposed method, we 
use BIRCH algorithm to cluster motif candidates rather than using HAC algorithm. 
BIRCH is especially suitable for clustering very large time series datasets. Besides, in 
the EP-C algorithm, each motif candidate is determined by three contiguous extreme 
points, but in our proposed method, motif candidate is determined by n contiguous 
extreme points where n is selected by user. 

EP-BIRCH consists of the following steps: 

Step 1: We extract all significant extreme point of the time series T. The result of 
this step is a sequence of extreme points EP = (ep1, . . . , epl)  

Step 2: We compute all the motif candidates iteratively. A motif candidate MCi(T), 
i = 1, . . . , l − 2 is the subsequence of T that is bounded by the n extreme 
points epi and epi+n-1. Motif candidates are the subsequences that may have 
different lengths. 

Step 3: Motif candidates are the subsequences that may have different lengths. To 
enable the computation of distances between them, we can bring them to the 
same length using homothetic transformation. The same length here is the 
average length of all motif candidates extracted in Step 2. 

Step 4: We build the CF tree with parameters B and T. We insert to the CF tree all 
the motif candidates found in Step 3. We apply k-Means as Phase 3 of BIRCH 
to cluster the leaf nodes of the CF tree where k is equal to the number of the 
leaf nodes in the CF tree. 

Step 5: Finally we find the subcluster in the CF tree with the largest number of 
objects. The 1-motif will be represented by that cluster. 

In the Step 3, to improve the effectiveness of our proposed method, we apply 
homothety for transforming the motif candidates with different lengths to those of the 
same length rather than spline interpolation as suggested in [2]. Spline interpolation is 
not only complicated in computation, but also can modify undesirably the shapes of 
the motif candidates. Homothety is a simpler and more effective technique which also 
can transform the subsequences with different lengths to those of the same length.  

Homothety is a transformation in affine space. Given a point  O and a value  k ≠ 0. 
A homothety with center O and ratio k transforms M to M’ such that 

OMkOM ×=' . Fig. 3. shows a homothety with center O and ratio k = ½ which 
transforms the triangle MNP to the triangle M’N’P’. 

 

Fig. 3. Homothetic Transformation 
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Homothety can preserve the shapes of any curves under the transformation. 
Therefore, it can be used to align a longer motif candidate to a shorter one. The 
algorithm that performs homothety to transform a motif candidate T with length N (T 
= {Y1,…,YN}) to motif candidate of length N’ is given as follows. 

 
1. Let Y_Max = Max{Y1,…,YN}; Y_Min = Min {Y1,…,YN} 
2. Find a center I of the homothety with the coordinate: X_Center = N/2, Y_Center 

= (Y_Max + Y_Min)/2 
3. Perform the homothety with center I and ratio k = N’/N. 
 

Notice that in Step 4 of our proposed method, if the parameters B and T are well 
selected, the number of the leaf nodes in the CF tree is approximately the suitable 
number of the clusters for the particular set of motif candidates. 

4 Experimental Evaluation 

In this experiment, we compare our EP-BIRCH algorithm to the modified MK 
algorithm described in Section 2. The MK algorithm is selected for comparison since 
it is the most recent proposed motif discovery algorithm which has remarkable 
efficiency. We implemented the two motif discovery algorithms  with Microsoft 
Visual C# and conducted the experiment on a Core i7, Ram 4GB PC. We tested the 
algorithms on six publicly available datasets. The datasets are described as follows. 

1. Monthly air temperatures in Tokyo, measured at the Station No:47662, from 
01/1876 to 06/20121 

2. Natural Gas Futures Contract 1 (Dollars per Million BTU) from 31/12/1993 to 
13.07.20122. 

3. Power Demand by ECN, displayed as a function of hours and days3 
4. Euro/US Dollar Exchange rates from 28.03.2005 to 28.03.2006, measured at 

every 5 minutes4 
5. Koski ECG (electrocardiogram) dataset5 
6. Sea level dataset, measured at Coastal Ocean Observation Network TCOON, 

at every 6 minutes6 

The comparison is in terms of running time and efficiency. Here we evaluate the 
efficiency of each algorithm by simply considering the ratio of how many times the 
Euclidean distance function must be called by this algorithm over the number of times 
it must be called by the brute-force algorithm given in Section 2. The efficiency value 

                                                           
1 http://www.data.jma.go.jp/obd/stats/etrn/view/ 
monthly_s3_en.php?block_no=47662&view=7 

2 http://www.eia.gov/dnav/ng/hist/rngc1d.htm 
3 http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom 
4 http://www.forexpros.com/currencies/eur-usd-historical-data 
5 http://www.cs.ucr.edu/~eamonn/iSAX/koski_ecg.dat 
6 http://lighthouse.tamucc.edu/pq 
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is always less than 1; the method with lower efficiency value is better. The 
experimental results for the efficiency of the two motif discovery algorithms, EP-
BIRCH and MK, on the six datasets are shown in Table 1. 

Table 1. Experimental results on the two algorithms over 6 datasets  

Data Length 
Motif 

average 
length 

Efficiency (%) Runtime (sec) 

MK 
EP-

BIRCH 
MK 

EP-
BIRCH 

Tokyo air 
tempetature 

1639 13 9.16 1.537 5.807 0.382 

Natural 
Gas 

4638 34 33.64 5.569 12.789 1.002 

Power 35040 99 2.43 0.112 120.741 3.015 

Euro/USD 78893 36 0.7 0.13 532.023 13.383 
ECG 144404 157 6.15 0.004 9146.328 4.344 

TCOON 175200 112 
Out of 

memory 
0.046 

Out of 
memory 

21.167 

 
From the experimental results in Table 1 we can see that: 

1. EP-BIRCH is more efficient than MK in terms of CPU times and efficiency 
values. EP-BIRCH is up to four orders of magnitude faster than brute-force 
algorithm. 

2. EP-BIRCH can find motifs on large time series dataset. With large datasets such 
as TCOON (175200 data points), MK can not work, while EP-BIRCH can find 
the motif in a very short time (21 seconds) 

3. EP-BIRCH can find motif instances with different lengths. 
4. The performance of EP-BIRCH is quite stable when some input parameters are 

changed. 
5. When the input parameters are set with suitable values, the 1-motif found by EP-

BIRCH is exactly similar to the 1-motif found by the bruce-force algorithm. 

 
The Effects of Parameters on the Performance of EP-BIRCH 
 

EP-BIRCH requires from user 4 parameters: R (compression rate for computing the 
significant extreme points, n (the number of significant extreme points for each motif 
candidate, B (the branching factor of a nonterminal node in CF tree) and T (the 
maximum diameter of the subclusters stored in the leaf nodes in CF tree). The length 
of motif candidates is determined by the two parameters R and n. With larger R, less 
extreme points are extracted and the distance between two extreme points will 
become larger. With smaller R, more extreme points are extracted and the distance 
between two extreme points will become shorter. However when we increase n we 
will obtain motif candidates with larger length. Therefore, we can determine easily 
the values of R and n such that we obtain the desirable motif length. 



144 C.D. Truong and D.T. Anh 

 

We conducted an experiment to compare the motifs detected by EP-BIRCH when 
we change the values of parameters T and B. Experiments on the ECG dataset shows 
the following results: 

•  For n = 2: When T changes from 0.4 to 1.4 and for all different values of B, all 
the detected motifs are the same. 

• For n = 3: When T changes from 1.0 to 2.0 and for all different values of B, all 
the detected motifs are the same. 

The experimental results reveal that EP-BIRCH is quite stable when the two 
parameters T and B change in some given ranges. 

5 Conclusions 

We have introduced a new method for discovering motifs in time series which can 
work efficiently on large time series datasets. This method, called EP-BIRCH, is 
based on extracting significant extreme points and clustering the motif candidates by 
using BIRCH algorithm. The experiments on the real world datasets demonstrate that 
our proposed method outperforms the MK algorithm in terms of efficiency. Notice 
that our proposed method requires only one single scan over the entire time series 
dataset. Therefore, we can apply EP-BIRCH not only for discovering motifs on large 
time series datasets, but also for finding motifs in streaming time series. 

As for future work, we plan to extend the proposed method in finding motifs in 
streaming time series and create a disk-aware version of our algorithm to allow the 
exploration of truly massive time series datasets. 
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