

A. Selamat et al. (Eds.): ACIIDS 2013, Part I, LNAI 7802, pp. 135–145, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Efficient Method for Discovering Motifs
in Large Time Series

Cao Duy Truong and Duong Tuan Anh

Faculty of Computer Science and Engineering,
Ho Chi Minh City University of Technology

caoduytruong@hcmunre.edu.vn, dtanh@cse.hcmut.edu.vn

Abstract. Time series motif is a previously unknown pattern appearing
frequently in a time series. An efficient motif discovery algorithm for time
series would be useful as a tool for summarizing massive time series databases
as well as many other advanced time series data mining tasks. In this paper, we
propose a new efficient algorithm, called EP-BIRCH, for finding motifs in large
time series datasets. This algorithm is more efficient than MK algorithm and
stable to the changes of input parameters and these parameters are easy to be
determined through experiments. The instances of a discovered motif may be of
different lengths and user does not have to predefine the length of the motif.

Keywords: time series motif, motif discovery algorithm, clustering algorithm,
extreme points.

1 Introduction

A time series is a sequence of real numbers measured at equal intervals. Time series
data arise in so many applications of various areas ranging from science, engineering,
business, finance, economic, medicine to government. Nowadays, time series datasets
in several applications becomes very large, with the scale of multi-terabytes and data
mining task in time series data of such scale becomes very challenging.

Time series motifs are frequently occurring but previously unknown subsequences
of a longer time series, which are very similar to each other. Since their formalization
in 2002 by Lin et al. [4], several time series motif discovery algorithms have been
proposed ([1], [4], [5], [6], [7], [12]). With most of these algorithms, user has to
determine in advance the length of the motif and the distance threshold (range) for
subsequence matching, which are the two parameters in most of the motif discovery
algorithms. There have been a few algorithms proposed for finding time series motif
with different lengths or variable lengths ([3], [9], [10]). However so far, to the best of
our knowledge, there has been no time series motif discovery algorithm that can
determine automatically the suitable length of the motif in a time series.

In this paper, we propose a new efficient algorithm for detecting time series motif
which uses significant extreme points to determine motif candidates and then cluster
motif candidates to find the most significant motif by using BIRCH algorithm. This

136 C.D. Truong and D.T. Anh

algorithm works directly in the original time series without any transformation for
dimensionality reduction. The experiments on the real world datasets demonstrate that
our proposed method outperforms the MK algorithm [6]. Besides, the proposed
algorithm has three other major advantages. First, it can perform effectively with
large time series datasets. Second, it is not sensitive to input parameters and these
parameters can be determined easily. Third, the instances of a discovered motif may
be of different lengths and user does not have to predefine the length of the motif.

2 Background

2.1 Time Series Motif and Bruce-Force Algorithm for Finding Motifs

Definition 1. Time Series: A time series T = t1,…,tN is an ordered set of N real-values
measured at equal intervals.

Definition 2. Similarity distance: D(s1, s2) is a positive value used to measure
differences between two time series s1, and s2, relies on measure methods. If D(s1, s2)
< r, where r is a real number (called range), then s1 is similar to s2 .

Definition 3. Subsequence: Given a time series T of length N, a subsequence C of T is
a sampling of length n < N of contiguous positions from T, that is, C = tp,…,tp+n-1 for

1≤ p ≤ m – n + 1.

Definition 4. Time series motif: Given a time series T, a subsequence C is called the
most significant motif (or 1-motif) of T, if it has the highest count of the subsequences
that are similar to it. All the subsequences that are similar to the motif are called
instances of the motif.

Lin et al. ([4]) also introduced the brute-force algorithm to find the most significant
motif (see Fig. 1). The input parameters of this algorithm are the length of the motif
(n) and the distance threshold (r). Notice that the brute-force algorithm enumerates
the non-trivial matches between subsequences. Given a time series T containing a
subsequence C beginning at position p and a matching subsequence M beginning at q,
we say that M is a trivial match to C if either p = q or there does not exists a
subsequence M’ beginning at q’ such that D(C, M’)> r and either q<q’<p or p<q’<q.
In the brute-force algorithm, we exclude the trivial matches so that only non-trivial
matches are counted for detecting 1-motif in a time series.

This brute-force algorithm work directly on raw time series and requires O(m2)
calls to the distance function (m is the length of the time series).

Algorithm Find-1-Motif-Brute-Force(T, n, r)
best_motif_count_so_far = 0
best_motif_location_so_far = null;
for i = 1 to length(T) – n + 1
 count = 0; pointers = null;
 for j = 1 to length(T) – n + 1

 An Efficient Method for Discovering Motifs in Large Time Series 137

 if Non_Trivial_Match (C[i: i + n – 1], C[j: j + n – 1], r) then
 count = count + 1;
 pointers = append (pointers, j);
 end
 end
 if count > best_motif_count_so_far then
 best_motif_count_so_far = count;
 best_motif_location_so_far = i; motif_matches = pointers;
 end
 end

Fig. 1. The outline of brute-force algorithm for 1-motif discovery

2.2 Algorithms for Finding Motifs

Since the definition of time series motif was given in 2002 [4], several algorithms
have been proposed to tackle the problem of time series motif discovery. The first
algorithm that can find motifs in linear time is Random Projection, developed by Chiu
et al. in 2003 [1]. It is an iterative approach and uses as base structure a collision
matrix whose rows and columns are the SAX representation of each time series
subsequence.

Mueen et al. in 2009 [6] proposed the first exact motif discovery algorithm, called
MK algorithm, that works directly on raw time series data. One of the major
disadvantages of the Random Projection algorithm and the MK algorithm is that they
still execute very slowly with large time series data.

In this work, we improve the method for time series motif discovery proposed by
Gruber et al. 2006 [2]. This method is based on the concepts of significant extreme
points that was proposed by Pratt and Fink, 2002 [8]. The algorithm proposed by
Gruber et al. for finding time series motifs consists of three steps: extracting
significant extreme points, determining motif candidates from the extracted
significant extreme points and clustering the motif candidates to determine the 1-
motif through the cluster with the largest numbers of candidates. For convenience, in
this paper, we call the algorithm proposed by Gruber et al. EP-C (Extreme Points and
Clustering). When Gruber et al. proposed the EP-C algorithm, they apply it in
signature verification and did not compare it to any previous time series motif
discovery algorithms. Through our experiments done by Tin, 2012 [11], we found
out that the EP-C is much more effective than Random Projection in terms of time
efficiency and motif accuracy. But EP-C still needs some improvements.

2.3 Finding Time Series Motifs Using the MK Algorithm

Mueen et al. in 2009 [6] proposed the first exact motif discovery algorithm, called
MK algorithm, that works directly on raw time series data. This algorithm uses the
“nearest neighbor” definition of motif as follows. Time series motifs are pairs of
subsequences which are very similar to each other.

138 C.D. Truong and D.T. Anh

Based on MK algorithm, we can modify it so that it can detect 1-motif in time
series according the first formalized definition given by Lin et al. [4]. The
modification can be done simply as follows: for each i-th subsequence of a longer
time series, we use a linked list to store all the subsequences that match with the i-th
subsequence. Later, the linked list with the largest number of matching subsequences
will be the linked list associated with the 1-motif of the time series.

In the modified MK algorithm, we can also apply the three improvement
techniques proposed by Mueen et al., 2009 ([6]). The three improvement techniques
are (i) exploiting the symmetry of Euclidean distance, (ii) exploiting triangular
inequality and reference point, and (iii) applying early abandoning.

Thank to the three techniques, the modified MK algorithm is up to three orders of
magnitude faster than brute-force algorithm. More details about the three
improvement techniques, interested reader can refer to [6]. In this work, we will use
the modified MK algorithm as the baseline algorithm to compare with our proposed
algorithm for finding time series motif.

2.4 Finding Significant Extreme Points

To extract a temporally ordered sequence of motif candidates, significant extreme
points of a time series have to be found. The definition of significant extreme points,
given by Pratt and Fink, 2002 [8] is as follows.

Definition 5. Significant Extreme Points: A univariate time series T = t1,…,tN has a
significant minimum at position m with 1 < m < N, if (ti, . . . , tj) with 1 ≤ i < j ≤ N in
T exists, such that tm is the minimum of all points of this subsequence and ti ≥ R×tm, tj
≥ R×tm with user-defined R ≥ 1.
Similarly, a significant maximum is existent at position m with 1 < m < N, if a
subsequence (ti, . . . , tj) with 1 ≤ i < j ≤ N in T exists, such that tm is the maximum of
all points of this subsequence and ti ≤ R×tm, tj ≤R×tm with user-defined R ≥ 1.

Fig. 2. Illustration of Significant Extreme Points: (a) Minimum, (b) Maximum

Notice that in the above definition, the parameter R is called compression rate
which is greater than one and an increase of R leads to selection of fewer significant
extreme points. Fig. 2 illustrates the definition of significant minima (a) and maxima

 An Efficient Method for Discovering Motifs in Large Time Series 139

(b). Given a time series T, starting at the beginning of the time series, all significant
minima and maxima of the time series are computed by using the algorithm given in
[8].

The significant extreme points can be the starting point or ending point of a motif
instances. Basing on the extracted significant points we can extract the motif
candidates from a time series and then cluster them using BIRCH algorithm.

2.5 BIRCH Clustering

BIRCH is designed for clustering a large amount of numerical data by integration of
hierarchical clustering at the initial stage and other clustering methods, such as
iterative partitioning at the later stage ([13]). It introduces two main concepts,
clustering feature and clustering feature tree (CF tree), which are used to summarize
cluster representations. These structures help the clustering method achieve good
speed and scalability in large databases. BIRCH is also effective for incremental and
dynamic clustering of incoming objects.

Given N d-dimensional points or objects ix in a cluster, we can define the centroid

0x , the radius R, and the diameter D of the cluster as follows:

where R is the average distance from member objects to the centroid, and D is the
average pairwise distance within a cluster. Both R and D reflect the tightness of the
cluster around the centroid. A clustering feature (CF) is a triplet summarizing
information about clusters of objects. Given N d-dimensional points or objects in a
subcluster, then the CF of the cluster is defined as

where N is the number of points in the subcluster, LS is the linear sum on N points
and SS is the square sum of data points.

 ()






  = −

=
N

xx
R

N

i i1
2

0

2
1

()






 

−
= = −=

)1(
1

2
1

2
1

NN

xx
D

N

j ji
N

i



),,(CF SSLSN=

 =
= N

i ixLS
1



0x =
N

x
N

i

i
=1

140 C.D. Truong and D.T. Anh

A clustering feature is essentially a summary of the statistics for the given subcluster:
the zero-th, first, and second moments of the subcluster from a statistical point of
view. Clustering features are additive. For example, suppose that we have two disjoint
clusters, C1 and C2, having the clustering features, CF1 and CF2, respectively. The
clustering feature for the cluster that is formed by merging C1 and C2 is simply CF1 +
CF2. Clustering features are sufficient for calculating all of the measurements that are
needed for making clustering decisions in BIRCH.

A CF tree is a height-balanced tree that stores the clustering features for a
hierarchical clustering. By definition, a nonterminal node in the tree has descendents
or “children”. The nonleaf nodes store sums of the CFs of their children, and thus
summarize clustering information about their children. Each entry in a leaf node is not
a single data objects but a subcluster. A CF tree has two parameters: branching factor
(B for nonleaf node and L for leaf node) and threshold T. The branching factor
specifies the maximum number of children in each nonleaf or leaf node. The
threshold parameter specifies the maximum diameter of the subcluster stored at the
leaf nodes of the tree. The two parameters influence the size of the resulting tree.

BIRCH applies a multiphase clustering technique: a single scan of the data set
yield a basic good clustering, and one or more additional scans can (optionally) be
used to further improve the quality. The BIRCH algorithm consists of four phases as
follows.

Phase 1: (Building CF tree) BIRCH scans the database to build an initial in-
memory CF tree, which can be view as a multilevel compression of the data that tries
to preserve the inherent clustering structure of the data.

Phase 2: [optional] (Condense data) Condense into desirable range by building a
smaller CF tree.

Phase 3: (Global Clustering) BIRCH applies a selected clustering algorithm to
cluster the leaf nodes of the CF tree. The selected algorithm is adapted to work with a
set of subclusters, rather than to work with a set of data points.

Phase 4: [optional] Cluster refining

After the CF tree is built, any clustering algorithm, such as a typical partitioning
algorithm, can be used in Phase 3 with the CF tree built in the previous phase. Phase 4
uses the centroids of the clusters produced by Phase 3 as seeds and redistributes the
data points to its closest seed to obtain a set of new clusters.

3 The Proposed Method – Combination of Significant Extreme
Points and BIRCH

The proposed method, called EP-BIRCH (Extreme points and BIRCH clustering), is
an improvement of the EP-C described in Section 2. The EP-C algorithm by Gruber et
al. [2] uses hierarchical agglomerative clustering (HAC) algorithm for clustering

  =
= N

i ixSS
1

2

 An Efficient Method for Discovering Motifs in Large Time Series 141

which is not suitable to large scale time series datasets. In our proposed method, we
use BIRCH algorithm to cluster motif candidates rather than using HAC algorithm.
BIRCH is especially suitable for clustering very large time series datasets. Besides, in
the EP-C algorithm, each motif candidate is determined by three contiguous extreme
points, but in our proposed method, motif candidate is determined by n contiguous
extreme points where n is selected by user.

EP-BIRCH consists of the following steps:

Step 1: We extract all significant extreme point of the time series T. The result of
this step is a sequence of extreme points EP = (ep1, . . . , epl)

Step 2: We compute all the motif candidates iteratively. A motif candidate MCi(T),
i = 1, . . . , l − 2 is the subsequence of T that is bounded by the n extreme
points epi and epi+n-1. Motif candidates are the subsequences that may have
different lengths.

Step 3: Motif candidates are the subsequences that may have different lengths. To
enable the computation of distances between them, we can bring them to the
same length using homothetic transformation. The same length here is the
average length of all motif candidates extracted in Step 2.

Step 4: We build the CF tree with parameters B and T. We insert to the CF tree all
the motif candidates found in Step 3. We apply k-Means as Phase 3 of BIRCH
to cluster the leaf nodes of the CF tree where k is equal to the number of the
leaf nodes in the CF tree.

Step 5: Finally we find the subcluster in the CF tree with the largest number of
objects. The 1-motif will be represented by that cluster.

In the Step 3, to improve the effectiveness of our proposed method, we apply
homothety for transforming the motif candidates with different lengths to those of the
same length rather than spline interpolation as suggested in [2]. Spline interpolation is
not only complicated in computation, but also can modify undesirably the shapes of
the motif candidates. Homothety is a simpler and more effective technique which also
can transform the subsequences with different lengths to those of the same length.

Homothety is a transformation in affine space. Given a point O and a value k ≠ 0.
A homothety with center O and ratio k transforms M to M’ such that

OMkOM ×=' . Fig. 3. shows a homothety with center O and ratio k = ½ which
transforms the triangle MNP to the triangle M’N’P’.

Fig. 3. Homothetic Transformation

142 C.D. Truong and D.T. Anh

Homothety can preserve the shapes of any curves under the transformation.
Therefore, it can be used to align a longer motif candidate to a shorter one. The
algorithm that performs homothety to transform a motif candidate T with length N (T
= {Y1,…,YN}) to motif candidate of length N’ is given as follows.

1. Let Y_Max = Max{Y1,…,YN}; Y_Min = Min {Y1,…,YN}
2. Find a center I of the homothety with the coordinate: X_Center = N/2, Y_Center

= (Y_Max + Y_Min)/2
3. Perform the homothety with center I and ratio k = N’/N.

Notice that in Step 4 of our proposed method, if the parameters B and T are well
selected, the number of the leaf nodes in the CF tree is approximately the suitable
number of the clusters for the particular set of motif candidates.

4 Experimental Evaluation

In this experiment, we compare our EP-BIRCH algorithm to the modified MK
algorithm described in Section 2. The MK algorithm is selected for comparison since
it is the most recent proposed motif discovery algorithm which has remarkable
efficiency. We implemented the two motif discovery algorithms with Microsoft
Visual C# and conducted the experiment on a Core i7, Ram 4GB PC. We tested the
algorithms on six publicly available datasets. The datasets are described as follows.

1. Monthly air temperatures in Tokyo, measured at the Station No:47662, from
01/1876 to 06/20121

2. Natural Gas Futures Contract 1 (Dollars per Million BTU) from 31/12/1993 to
13.07.20122.

3. Power Demand by ECN, displayed as a function of hours and days3
4. Euro/US Dollar Exchange rates from 28.03.2005 to 28.03.2006, measured at

every 5 minutes4
5. Koski ECG (electrocardiogram) dataset5
6. Sea level dataset, measured at Coastal Ocean Observation Network TCOON,

at every 6 minutes6

The comparison is in terms of running time and efficiency. Here we evaluate the
efficiency of each algorithm by simply considering the ratio of how many times the
Euclidean distance function must be called by this algorithm over the number of times
it must be called by the brute-force algorithm given in Section 2. The efficiency value

1 http://www.data.jma.go.jp/obd/stats/etrn/view/
monthly_s3_en.php?block_no=47662&view=7

2 http://www.eia.gov/dnav/ng/hist/rngc1d.htm
3 http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom
4 http://www.forexpros.com/currencies/eur-usd-historical-data
5 http://www.cs.ucr.edu/~eamonn/iSAX/koski_ecg.dat
6 http://lighthouse.tamucc.edu/pq

 An Efficient Method for Discovering Motifs in Large Time Series 143

is always less than 1; the method with lower efficiency value is better. The
experimental results for the efficiency of the two motif discovery algorithms, EP-
BIRCH and MK, on the six datasets are shown in Table 1.

Table 1. Experimental results on the two algorithms over 6 datasets

Data Length
Motif

average
length

Efficiency (%) Runtime (sec)

MK
EP-

BIRCH
MK

EP-
BIRCH

Tokyo air
tempetature

1639 13 9.16 1.537 5.807 0.382

Natural
Gas

4638 34 33.64 5.569 12.789 1.002

Power 35040 99 2.43 0.112 120.741 3.015

Euro/USD 78893 36 0.7 0.13 532.023 13.383
ECG 144404 157 6.15 0.004 9146.328 4.344

TCOON 175200 112
Out of

memory
0.046

Out of
memory

21.167

From the experimental results in Table 1 we can see that:

1. EP-BIRCH is more efficient than MK in terms of CPU times and efficiency
values. EP-BIRCH is up to four orders of magnitude faster than brute-force
algorithm.

2. EP-BIRCH can find motifs on large time series dataset. With large datasets such
as TCOON (175200 data points), MK can not work, while EP-BIRCH can find
the motif in a very short time (21 seconds)

3. EP-BIRCH can find motif instances with different lengths.
4. The performance of EP-BIRCH is quite stable when some input parameters are

changed.
5. When the input parameters are set with suitable values, the 1-motif found by EP-

BIRCH is exactly similar to the 1-motif found by the bruce-force algorithm.

The Effects of Parameters on the Performance of EP-BIRCH

EP-BIRCH requires from user 4 parameters: R (compression rate for computing the
significant extreme points, n (the number of significant extreme points for each motif
candidate, B (the branching factor of a nonterminal node in CF tree) and T (the
maximum diameter of the subclusters stored in the leaf nodes in CF tree). The length
of motif candidates is determined by the two parameters R and n. With larger R, less
extreme points are extracted and the distance between two extreme points will
become larger. With smaller R, more extreme points are extracted and the distance
between two extreme points will become shorter. However when we increase n we
will obtain motif candidates with larger length. Therefore, we can determine easily
the values of R and n such that we obtain the desirable motif length.

144 C.D. Truong and D.T. Anh

We conducted an experiment to compare the motifs detected by EP-BIRCH when
we change the values of parameters T and B. Experiments on the ECG dataset shows
the following results:

• For n = 2: When T changes from 0.4 to 1.4 and for all different values of B, all
the detected motifs are the same.

• For n = 3: When T changes from 1.0 to 2.0 and for all different values of B, all
the detected motifs are the same.

The experimental results reveal that EP-BIRCH is quite stable when the two
parameters T and B change in some given ranges.

5 Conclusions

We have introduced a new method for discovering motifs in time series which can
work efficiently on large time series datasets. This method, called EP-BIRCH, is
based on extracting significant extreme points and clustering the motif candidates by
using BIRCH algorithm. The experiments on the real world datasets demonstrate that
our proposed method outperforms the MK algorithm in terms of efficiency. Notice
that our proposed method requires only one single scan over the entire time series
dataset. Therefore, we can apply EP-BIRCH not only for discovering motifs on large
time series datasets, but also for finding motifs in streaming time series.

As for future work, we plan to extend the proposed method in finding motifs in
streaming time series and create a disk-aware version of our algorithm to allow the
exploration of truly massive time series datasets.

References

1. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proc. of
9th Int. Conf. on Knowledge Discovery and Data Mining (KDD 2003), pp. 493–498
(2003)

2. Gruber, C., Coduro, M., Sick, B.: Signature verification with dynamic RBF network and
time series motifs. In: Proc. of 10th International Workshop on Frontiers in Hand Writing
Recognition (2006)

3. Li, Y., Lin, J.: Approximate Variable-Length Time Series Motif Discovery Using
Grammar Inference. In: Proceedings of the Tenth International Workshop on Multimedia
Data Mining, Washington, D.C (July 25, 2010)

4. Lin, J., Keogh, E., Patel, P. and Lonardi, S.: Finding Motifs in Time Series. In:
Proceedings of the 2nd Workshop on Temporal Data Mining, at the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2002)

5. Liu, Z., Yu, J.X., Lin, X., Lu, H., Wang, W.: Locating Motifs in Time-Series Data. In: Ho,
T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 343–353.
Springer, Heidelberg (2005)

6. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact Discovery of Time Series
Motif. In: Proc. of 2009 SIAM International Conference on Data Mining, pp. 1–12 (2009)

 An Efficient Method for Discovering Motifs in Large Time Series 145

7. Patel, P., Keogh, E., Lin, J., Lonardi, S.: Mining motifs in massive time series databases.
In: Proc. of IEEE Int. Conf. on Data Mining, pp. 370–377 (2002)

8. Pratt, K.B., Fink, E.: Search for patterns in compressed time series. International Journal of
Image and Graphics 2(1), 89–106 (2002)

9. Tang, H., Liao, S.: Discovering Original Motifs with Different Lengths from Time Series.
Knowledge-based Systems 21(7), 666–671 (2008)

10. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of Time-Series Motif from Multi-
Dimensional Data Based on MDL Principle. Machine Learning 58(2-3), 269–300 (2005)

11. Tin, H.: N: Time Series Motif Discovery based on Important Extreme Points, Master
Thesis, Faculty of Computer Science and Engineering, Ho Chi Minh University of
Technology, Vietnam (July 2012)

12. Yankov, D., Keogh, E., Medina, J., Chiu, B., Zordan, V.: Detecting Time Series Motifs
Under Uniform Scaling. In: Proc. of 13th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD 2007), pp. 844–853 (2007)

13. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for
very large databases. SIGMOD Rec. 25(2), 103–114 (1996)

	An Efficient Method for Discovering Motifs
in Large Time Series
	Introduction
	Background
	Time Series Motif and Bruce-Force Algorithm for Finding Motifs
	Algorithms for Finding Motifs
	Finding Time Series Motifs Using the MK Algorithm
	Finding Significant Extreme Points
	BIRCH Clustering

	The Proposed Method – Combination of Significant Extreme Points and BIRCH
	Experimental Evaluation
	Conclusions
	References

