
Modeling and Verifying DML Triggers

Using Event-B

Hong Anh Le1 and Ninh Thuan Truong2

1 Hanoi University of Mining and Geology
Dong Ngac, Tu Liem, Hanoi

2 VNU - University of Engineering and Technology
144 Xuan Thuy, Cau Giay, Hanoi

{anhlh.di10,thuantn}@vnu.edu.vn

Abstract. Database trigger is a block code that automatically executes
in response to changes of table or view in the database system. The
correctness of a trigger usually can be verified when it is executed. It
is apparently useful if we can detect the trigger system’s errors in the
design phase. In this paper, we introduce an approach to model and verify
data manipulation language (DML) triggers in the database system by a
formal method. In the first phase, we formalize a database trigger system
by an Event-B model. After that, we use the Rodin tool to verify some
properties of the system such as termination, preservation of constraint
rules. We also run an example to illustrate the approach in detail.

1 Introduction

Triggers are active rules of some commercial database systems such as Oracle,
SyBase, etc.. which are formed in ECA (Event - Condition - Action) structure.
Triggers are widely and commonly used in database systems of many applications
to implement automatic tasks and ensure integrity constraints. In some commer-
cial databases, triggers have two kinds: data manipulation language (DML) and
system triggers. The former are fired whenever events such as DELETING, UP-
DATING, INSERTING occur, while the latter are executed in case that system
or data definition language (DDL) events occur. A trigger is made of a block of
code, for example in Oracle, a trigger is similar to a stored procedure containing
blocks of PL/SQL code. These codes are human readable and without any formal
semantic. Therefore, we can only verify that if a trigger terminates or conflicts
to integrity constraints after executing it or with human inspection step by step.
It is important if we can show that triggers execution is correct at the design
time. Several works have attempted to solve this question by using termination
detection algorithms or model checking [13] [14] [10] [7] [16]. However, in our
thought, most of results focused on the termination property, while few of them
addressed to both termination and integrity constraints of the database system.
Furthermore, these approaches seem such complicated that we can not apply
them in the database development.

A. Selamat et al. (Eds.): ACIIDS 2013, Part II, LNAI 7803, pp. 539–548, 2013.
© Springer-Verlag Berlin Heidelberg 2013

540 H.A. Le and N.T. Truong

The B method [1] is a formal software development method, originally created
by J.-R. Abrial. The B notations are based on the set theory, generalized sub-
stitutions and the first order logic. Event-B [2] is an evolution of the B method
that is more suitable for developing large reactive and distributed systems. Soft-
ware development in Event-B begins by abstractly specifying the requirements
of the whole system and then refining them through several steps to reach a
description of the system in such a detail that can be translated into code. The
consistency of each model and the relationship between an abstract model and
its refinements are obtained by formal proofs. Support tools have been provided
for Event-B specification and proof in the Rodin platform.

In this paper, we propose an approach to formalize database triggers system
by a proof-based method, e.g Event-B. The main idea of the approach comes
from the similarity between structures of Event-B EVENT and ECA. We first
translate a database system to an Event-B model. In the next step, we bring
this model to more practical approach by using the Rodin platform to verify
some properties such as termination and constraint preservation based on its
proof obligation engine. The advantage of our approach is that a real database
system including triggers and constraints can be modeled easily by logic expres-
sion phrases in Event-B such as INVARIANTS and EVENTS. Therefore, the
correctness of the entire system can be achieved by formal proofs. It is valuable
especially for database developers since they are able to ensure that the trigger
systems avoid the critical issues at the design time. Furthermore, the approach
is such practical that we can implement a tool following its main idea to trans-
form a database model to an Event-B model in Rodin platform automatically
(or partly). It makes sense as we can bring the formal verification to database
implementation. It also overcomes one of disadvantages that makes formal meth-
ods absent in the database development process because of the complexity of
modeling.

The remainder of this paper is structured as follows. Section 2 gives a brief
introduction of Event-B and background of database triggers. Next, in Section
3, we introduce some transformation rules between a database triggers system to
an Event-B model. To show the approach in detail, we model a specific trigger
system in an example in Section 4. Followed by Section 5, we give some informa-
tion and adjustment of related works so far. We conclude our contribution and
present the future works in Section 6.

2 Backgrounds

In this section, we briefly introduce the overview of relational database triggers
and basic knowledge of Event-B.

2.1 Database Triggers

Database trigger is a block code that is automatically fired in response to an
defined event in the database. The event is related to a specific data manipulation

Modeling and Verifying DML Triggers Using Event-B 541

of the database such as inserting, deleting or updating a row of a table. Triggers
are commonly used in some cases: to audit the process, to automatically perform
an action, to implement complex business rules.

The structure of a trigger is followed EAC structure, hence it takes the fol-
lowing form: rule name:: Event(e) IF condition DO action.

It means that whenever Event(e) occurs and the condition is met then the
database system performs actions . Users of some relational database systems
such as Oracle, MySQL, SyBase are familiar with triggers which are represented
in SQL:1999 format (the former is SQL-3 standard). Database triggers can be
mainly classified by two kind: DML and Data Definition Language (DDL) trig-
ger. The former is executed when data is manipulated, while in some database
systems, the letter is fired in response to DDL events such as creating table or
events such as login, commit, rollback..

2.2 Event-B

Event-B is a kind of formal method which combines mathematical techniques
from the set theory and the first order logic. It is used as a notation and method
for the formal development of discrete systems. Event- B is an evolution of others
formal method notations like B-method (also know as classical B), Z and Action
Systems. It is considered as an evolution because it simplifies the B machine
notations, is easy to learn and more suitable for parallel and distributed reactive
system development. Another advantage Event-B is the tool support for system
modeling. The basic structure of an Event B model consists of a MACHINE and
a CONTEXT.

Contexts form the static part of the model while machines form the dynamic
part. Contexts can extend (or be extended by) other context and are referred
(seen) by machines. The machine contains the dynamic part of the model. It
describes the system state, the operations to interact with the environment to-
gether with the properties, conditions and constraints on the model. A Machine
is defined by a set of clauses which is able to refine another Machine. We briefly
introduce main concepts in Event-B as follows:

– Variables: represents the state variables of the model of the specification.
– Invariants: describes by first order logic expressions, the properties of the
attributes defined in the variable clauses. Typing information, functional
and safety properties are described in this clause. These properties are true
in the whole model. Invariants need to be preserved by events clauses.

– Events: defines all the events that occur in a given model. Each event is char-
acterized by its guard (i.e. a first order logic expression involving variables).
An event is fired when its guard evaluates to true. If several guards evaluate
to true, only one is fired with a non deterministic choice.

A Context consists of the following items:

– Sets: describes a set of abstract and enumerated types.
– Constants: represents the constants used by the model.

542 H.A. Le and N.T. Truong

– Axioms: describes with first order logic expressions, the properties of the
attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause.

After having the system modeled in Event-B, we need to reason about the model
to understand it. To reason about a model, we use its proof obligation which
show its soundness or verify some properties. As we mention in the first part of
this Subsection, behaviors of the system are represented by machines. Variables
v of a machine defines state of a machine which are constrained by invariants
I (v). Events Em which describe possible changes of state consisting of guards
Gm(v) and actions Sm(v , v ′) and they are denoted by

when Gm(v) then v :| Sm(v , v ′) end

Properties of an Event-B model are proved by using proof obligations (PO)
which are generated automatically by the proof obligation generator of Rodin
platform. The outcome of the proof obligation generator are transmitted to the
prover of the Rodin tool performing automatic or interactive proofs.

3 Modeling and Verifying Database Triggers System

In this section, we present an approach to model a database systems including
triggers. The main idea is mapping between entities of the database systems
and Event-B elements in which we emphasize on modeling triggers by Event-B
Events. After the transformation, we are able to verify some properties based on
achieved Event-B model.

3.1 Modeling Database Systems

A database system is normally designed by several elements such as tables
(or views) with integrity constraints and triggers. Whenever users modify the
database table contents, e.g Insert, Delete and Update actions, the modifica-
tion should be conformed to constraints and it also can fire the corresponding
triggers. Before modeling the trigger system by Event-B, we introduce some def-
initions related to Event-B specification, they are useful in the modeling process.

Definition 1. A database trigger is modeled by a 3-tuple db = <T ,C ,G>
where T is a set of table, C states system constraints, G indicates a set of
triggers.

Definition 2. For each t ∈ T , denoted by a tuple t =<row1, .., rowm>where m
is the number of table row, rowi , (i ∈ 1..m) is a set indicating the i-th row of
the table. A row is stated by a tuple rowi=<field1, .., fieldn>

Definition 3. Each trigger g of the system is presented as a 3-tuple such as
g ∈ G, g = <e, c, a> where, e is the corresponding event of the trigger, c is
condition of the trigger, a is the action of the trigger.

Modeling and Verifying DML Triggers Using Event-B 543

We model a database system by mapping these definitions to Event-B concepts
in Table 1. These rules are described in detail as follows:

Table 1. Transformation between database system and Event-B concepts

Database definitions Event-B concepts

Rule 1. db = <T ,C ,G> dbB = {ST ↔ I ↔ E}
T = {t1, .., tm> ST = {t1, .., tm}

Rule 2 t = <r1, .., rm> tB = {rB1, .., rBm}.
Rule 3 ri = <fi1, .., fin> rBi = {1 �→ fBi1, ..,m �→ fBin}

– Rule 1. Where set of tables T is mapped to set ST , constraints C is translated
to a set of invariant I, triggers set G is transformed to a set of events E

– Rule 2. A table is translated to a set of rows.
– Rule 3. A row of a table is transformed to an ordered set of fields, where m
is a number of columns of the table and fBij is the value of column j at row
i, where i ∈ 1..m, j ∈ 1..n

In the next subsection, we present in detail how to formalize database triggers.

3.2 Formalizing Triggers

As illustrated in Table 2, a trigger is formalized as an Event-B event where
trigger’s type and its condition is the guard of the event. Action of a trigger is
transformed to the body part of an Event-B event.

Table 2. Modeling a trigger by an Event-B Event

IF (type)
ON (condition) WHEN (type ∧ condition)

ACTION (act) THEN (act) END

To show our approach, we simplify by considering the case that the Action
part of a trigger contains a single action, though it can be a sequence of ac-
tions. It is clear that we are able to model such sequence of actions using
Event-B if we can formalize a single Action. An Action of a trigger body is
Insert, Update or Delete statement. In case of Update and Delete statements,
the action contains a condition that shows which rows are affected. There-
fore, we combine statement and trigger condition into guard of transformed
event. Specifically, mapping rules of each kind of statements are presented in
Table 3.

3.3 Verifying System Properties

After the transformation, taking advantages of Event-B method and its support
tool, we are able to verify some properties of the database system model as
follows:

544 H.A. Le and N.T. Truong

Table 3. Translating SQL statements to Event-B events

UPDATE table name WHEN update condition

SET column1=value, column2=value2 THEN r := {1 �→ value1, 2 �→ value2}
WHERE some column=some value

DELETE FROM table name WHEN delete condition

WHERE some column=some value table name := table name − {col1 �→ val1, .., coln �→ valn}
INSERT INTO table name WHEN insert condition

VALUES (value1,..,valuen) table name := table name ∪ {col1 �→ val1, .., coln �→ valn}

– Termination: Since a trigger can fire the other triggers, hence it probably
leads to infinite loop. The termination of a trigger is able to be verified by
the deadlock property of the Event-B model. This situation occurs when
after a sequence of events, state of the system does change. This property
is proved by proof obligations which state that the disjunction of the event
guards always hold under the properties of the constant and the invariant.
The deadlock freedom rule is stated as I (v) � G1(v) ∨ ... ∨ Gn(v), where
v is variable, I (v) denotes invariant, Gi(v) presents guard of the event. At
the moment, the deadlock freeness PO is not generated automatically by the
Rodin tool yet. However, we can generate it ourself by as a theorem saying
the disjunction of guards.

– Constraint preservation: Since these properties already are modeled by Event-
B INVARIANTS as the approach illustrated in Subsection 3.1, hence we can
prove them by using invariant PO rules.

4 An Example

In order to make our approach more clear, in this section, we take an example
to present it in detail. We first describe the example, after that we model it by
an Event-B machine and verify its properties.

4.1 Example Description

Let assume that we have a database system including two tables EMPLOYEES
and BONUS structured in Table 4.

Table 4. Table EMPLOYEES and BONUS

EMPLOYEES BONUS

E Id level E Id amount

0911 2 0911 2

0912 2 0912 2

0913 4 0913 4

The database system has a constraint: The bonus of an employee with a level
greater than 5 is at least 20.

Modeling and Verifying DML Triggers Using Event-B 545

It includes two triggers that do the following tasks:
Trigger 1. Whenever the level of employee is updated, his bonus is increased by
10 if the level is even
Trigger 2. If the employee’s bonus amount is updated, then his level is increased
by 1.

These two triggers are rewritten in the format of PL/SQL as follows:

CREATE TRIGGER Tr igger 1 BEFORE UPDATE
OF level ON employees
FOR EACH ROW
BEGIN

IF MOD(employees . level ,2)=0 THEN
UPDATE bonus SET bonus . amount

=bonus . amount + 10
WHERE bonus . E id = employees . E id ;

END IF ;
END

CREATETRIGGER Tr igger 2 BEFORE UPDATE
OF amount ON bonus
FOR EACH ROW
BEGIN
UPDATE employees SET

employees . level = employees . level+1
WHERE bonus . E id = employees . E id ;

END

4.2 Modeling an Example

Followed the approach presented in Section 3, we formalize two tables which are
involved in the trigger statements by two variables such as empl and bonus. Vari-
ables bonus rec and empl rec present a row of the table Bonus and Employees
respectively.

inv7 : bonus ∈ P((N1 × N1)× (N1 × N1))
inv11 : empl ∈ P((N1 × N1)× (N1 × N1))
inv16 : bonus rec ∈ bonus

inv17 : empl rec ∈ empl

inv5 : trigger type ∈ P(TIME) ↔ P(COMMAND)
inv20 : active field ∈ P(TABLE NAMES) ↔ P(FIELD NAMES)

The constraint of the database system is also formalized by an INVARIANT

INVARIANTS
inv21 : empl level < 5 ∨ bonus amount ≥ 20

546 H.A. Le and N.T. Truong

We next formalize two triggers of the system as the approach presented in 3.2.
Since DML actions are performed on the table, we model the table involved in
triggers by an Event-B VARIABLE table such that table is the identifier of the
table.

Event trigger1 =̂
when

grd1 : trigger type = {AFTER �→ UPDATE}
grd3 : empl levelmod2 = 0

grd5 : empl level ∈ ran(ran(empl))
grd6 : empl id ∈ ran(dom(empl))
grd8 : ran(dom({bonus rec})) = {empl id}
grd9 : bonus amount ∈ dom(dom({bonus rec}))
grd10 : active field = {EMPLOYEES �→ EMP LEVEL}

then
act1 : trigger type := {AFTER �→ UPDATE}
act3 : bonus amount := bonus amount+ 10

act5 : bonus rec := (1 �→ empl id) �→ (2 �→ bonus amount)
act6 : active field := {BONUS �→ BONUS AMOUNT}

end
Event trigger2 =̂

when
grd1 : trigger type = {AFTER �→ UPDATE}
grd2 : active field = {BONUS �→ BONUS AMOUNT}
grd3 : ran(ran({empl rec})) = {empl id}
grd4 : empl level ∈ ran(ran({empl rec}))

then
act1 : trigger type := {AFTER �→ UPDATE}
act2 : empl level := empl level+ 1

act3 : empl rec := (1 �→ empl id) �→ (2 �→ empl level)
act4 : active field := {EMPLOYEES �→ EMP LEVEL}

end

4.3 Checking Properties

– Termination: To verify the termination property in the Rodin tool, we gen-
erate an invariant clause which is the disjuntion of two events’ guards. Using
PO engine of the Rodin tool, we can prove that the system is not deadlock
free, i.e the system is terminated.

– Constraint violation: Since the constraint property of the system is modeled
by INVARIANT inv21, hence it is also proved by invariant preservation rules.
The invariant is proved to be failed through events of the model, hence the
triggers execution violates the system constraint.

5 Related Works

From the beginning, the previous works focused on the termination of the triggers
by using static analysis, e.g. checking set of triggers is acyclic with triggering

Modeling and Verifying DML Triggers Using Event-B 547

graph. In [13] and [14], Sin-Yeung Lee and Tok-Wang introduced algorithms
to detect the correctness of updating triggers. However, this approach is not
extended apparently for general triggers and it is presented as their future work.

E.Baralis et al performed the dynamic analysis to check active rules at run
time to see if a state of the database system is repeated.

L. Chavarria and Xiaoou Li proposed a method verifying active rules by using
conditional colored Petri nets [7]. Since Petri nets are mainly used in modeling
transitions, hence it is quite elaborated when normalizing rules. The approach
has to classify rules by the logic condition of these rules to check if they involve
disjunction or conjunction operators. In our opinion, if the number of these
operators are enormous then the transition states can be exploded.

Some works applied model checking for active database rule analysis [12][10].
In [12], T. S. Ghazi and M. Huth presented an abstract modeling framework
for active database management systems and implemented a prototype of a
Promela code generator. However, they did not describe how to model data and
data actions for evaluation.

Eun-Hye CHOI et al [10] proposed a general framework for modeling active
database systems and rules. The framework is feasible by using a model checking
tool, e.g SPIN, however, constructing a model in order to verify the termination
and safety properties is not a simple step and can not be done automatically.

More recently, R. Manicka Chezian and T.Devi [17] introduced a new algo-
rithm which does not pose any limitation on the number of rules but it only
emphasizes on algorithms detecting the termination of the system.

6 Conclusion and Future Works

Most of the researches to date that have worked on verifying and modeling
database active rules or triggers mainly focuses on the termination property.
A few works presented methods to model a database system and verify some
properties of the system. However, in our opinion, these results are complex
to bring them to software development and are not feasible to be performed
automatically without human analysis. In this paper, we propose an approach
to formalize and verify the database system with constraints and triggers by
using Event-B. Our main contribution is that we perform the mapping between
elements of the database such as tables, triggers, constraints to Event-B clauses.
We also reuse the obligation engines and tool supported by Event-B to prove
the correctness of the system. Moreover, the transformation is also simple and
clear such that it is feasible to formalize the database system by an Event-B
model automatically. Therefore, it makes sense if we want to bring the formal
verification to software development.

Besides the advantages, the paper still has some limitation such that we do not
address how to model a more complex case study with more complicated trig-
gers. These issues, along with development of a tool which takes into account
to translate a database system to an Event-B model in the format of Rodin
platform, are our future works.

548 H.A. Le and N.T. Truong

Acknowledgments. This work is supported by the project no. 102.02–2010.06
granted by Vietnam National Foundation for Science and Technology
Development (Nafosted).

References

1. B method web site (2012), http://www.bmethod.com
2. Event-b and the rodin platform (2012), http://www.event-b.org
3. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge

University Press (2010)
4. Ait-Sadoune, I., Ait-Ameur, Y.: From bpel to event-b. In: IM FMT 2009 Confer-

ence, Dsseldorf Germany, Fevruary (2009)
5. Baralis, E.: Rule analysis. In: Active Rules in Database Systems, pp. 51–67.

Springer, New York (1999)
6. Baralis, E., Widom, J.: An algebraic approach to static analysis of active database

rules. ACM Trans. Database Syst. 25(3), 269–332 (2000)
7. Chavarŕıa-Báez, L., Li, X.: Verification of active rule base via conditional colored

petri nets. In: SMC, pp. 343–348 (2007)
8. Chavarŕıa-Báez, L., Li, X.: Ecapnver: A software tool to verify active rule bases.

In: ICTAI (2), pp. 138–141 (2010)
9. Chavarŕıa-Báez, L., Li, X.: A petri net-based metric for active rule validation. In:

ICTAI, pp. 922–923 (2011)
10. Choi, E.-H., Tsuchiya, T., Kikuno, T.: Model checking active database rules. Tech-

nical report, AIST CVS, Osaka University, Japan (2006)
11. Choi, E.-H., Tsuchiya, T., Kikuno, T.: Model checking active database rules under

various rule processing strategies. IPSJ Digital Courier 2, 826–839 (2006)
12. Ghazi, T., Huth, M.: An Abstraction-Based Analysis of Rule Systems for Active

Database Management Systems. Technical report, Kansas State University, Tech-
nical Report KSU-CIS-98-6, p.15 (April 1998)

13. Lee, S.-Y., Ling, T.-W.: Are your trigger rules correct? In: Proceedings of the 9th
International Workshop on Database and Expert Systems Applications, DEXA
1998, p. 837. IEEE Computer Society, Washington, DC (1998)

14. Lee, S.-Y., Ling, T.-W.: Verify Updating Trigger Correctness. In: Bench-Capon,
T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 382–391.
Springer, Heidelberg (1999)

15. Li, X., Medina Maŕın, J., Chapa, S.V.: A Structural Model of ECA Rules in Active
Database. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C.
(eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 486–493. Springer, Heidelberg
(2002)

16. Ray, I., Ray, I.: Detecting termination of active database rules using symbolic
model checking. In: Caplinskas, A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151,
pp. 266–279. Springer, Heidelberg (2001)

17. Manicka chezian, T.R.: A new algorithm to detect the non-termination of triggers
in active databases. International Journal of Advanced Networking and Applica-
tions 3(2), 1098–1104 (2011)

http://www.bmethod.com
http://www.event-b.org

	Modeling and Verifying DML Triggers Using Event-B
	Introduction
	Backgrounds
	Database Triggers
	Event-B

	Modeling and Verifying Database Triggers System
	Modeling Database Systems
	Formalizing Triggers
	Verifying System Properties

	An Example
	Example Description
	Modeling an Example
	Checking Properties

	Related Works
	Conclusion and Future Works
	References

