

A. Selamat et al. (Eds.): ACIIDS 2013, Part II, LNAI 7803, pp. 206–214, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Space-Time Trade Off for FUFP-trees Maintenance

Bac Le1, Chanh-Truc Tran1, Tzung-Pei Hong2, and Bay Vo3

1 University of Science, Ho Chi Minh City, Viet Nam
lhbac@fit.hcmus.edu.vn, tructc@gemadept.com.vn

2 Department of CSIE, National University of Kaohsiung, Taiwan, R.O.C.
tphong@nuk.edu.tw

3 Information Technology College, Ho Chi Minh City, Viet Nam
vdbay@itc.edu.vn

Abstract. In the past, Hong et al. proposed an algorithm to maintain the fast
updated frequent pattern tree (FUFP-tree), which was an efficient data structure
for association-rule mining. However in the maintenance process, the counts of
infrequent items and the IDs of transactions with those items were determined
by rescanning all the transactions in the original database. This step might be
quite time-consuming depending on the number of transactions in the original
database and the number of rescanned items. This study improves that approach
by storing 1-items during the maintenance process and based on the properties
of FUFP-trees, such that the rescanned items and inserted items are processed
more efficiently to reduce execution time. Experimental results show that the
improved algorithm needs some more memory to store infrequent 1-items but
the performance is better than the original one.

Keywords: data mining, frequent itemset, FUFP-tree, infrequent itemset,
incremental mining.

1 Introduction

Data mining is one of the most interesting subjects with many techniques and algo-
rithms developed [1]. Among the research topics of data mining, improving the effi-
ciency of mining association rules from transaction databases has attracted much at-
tention [1-11]. The first several algorithms for mining association rules were based on
the Apiori algorithm [2], which repeatedly scanned a database to generate and process
candidate itemsets level by level and thus needed a high computational cost. In 2000,
the frequent pattern-tree (FP-tree) structure was proposed by Han et al. [6] for effi-
ciently mining association rules without the generation of candidate itemsets. In real-
world applications, a transaction database keeps being updated, and insertion is a very
common operation. Efficient maintenance algorithms are thus needed when transac-
tions are inserted [8-9]. In 2008, the incremental fast updated frequent pattern-tree
(FUFP-tree) maintenance algorithm for handling transaction insertion was proposed
[8]. In that approach, the FUFP-tree is incrementally handled without reconstructing
the FUFP-tree from the beginning. However, the original database needs to be res-
canned to determine the occurrence of infrequent items, which are not stored during

 A Space-Time Trade Off for FUFP-trees Maintenance 207

the maintenance process, and to determine the transaction IDs in which the rescanned
items appear. This paper improves the above approach for transaction insertion by
storing 1-items during the maintenance process and using the properties of FUFP-
trees, such that the rescanned items and inserted items are processed more efficiently
to reduce execution time.

2 Review of FUFP-trees

An FUFP-tree [8] is similar to an FP-tree except that it has bi-directional links
between parent nodes and their child nodes. When new transactions are inserted to the
original database, Hong et al.’s algorithm processes them to maintain the FUFP-tree
without reconstructing it from the updated database. Depending on whether items are
frequent (large) in the original database and in the new transactions, there are 4 cases
to consider, which are shown in Table 1. Each case is processed separately. The
Header-Table and the FUFP-tree are then appropriately updated if necessary.

Table 1. Four cases for transaction insertion [8]

Case Org. DB New Trans Results
1 Frequent Frequent Always Frequent
2 Frequent Infrequent Determined from existing info.
3 Infrequent Frequent Determined by rescanning DB
4 Infrequent Infrequent Always infrequent

There are some points which can be improved in the original approach. When the
original approach processes the items in case 3, the transactions in the original data-
base need to be rescanned for determining the occurrences of infrequent items, which
are not stored during the maintenance process. This step is thus the most time-
consuming step. The computation time of this step is positively related to the number
of transactions in the original database, the number of items in each transaction (the
length of each transaction) and the number of items in the set of rescanned items.

3 Improved Algorithm

3.1 Notations

D, T, U: the original database, new transactions, updated database, respectively;
Sup: the minimum support threshold for frequent itemsets;
minSup_Org, minSup_New, minSup: the minimum support count of D, T, U,
respectively;
CountOrg(I), CountNew(I), CountUpd(I): frequency of I in D, T, U, respectively;
Flist, IFlist: the list of large and small items in D, respectively;
Flist_New, IFlist_New: the list of large and small items in T, respectively;
Item_Case1, Item_Case2, Item_Case3, Item_Case4: list of items of the four cases,
respectively;

208 B. Le et al.

Items: a temporary list to store items;
Htable: the Header-Table of FUFP-tree;
FUFP_tree: the current FUFP-tree;
Rescan_Items: the list of items to update the FUFP-tree based on the original data-
base;
Insert_Items: the list of items to update the FUFP-tree based on new transactions;
Corresponding branch: the branch generated from the frequent items in a transaction
according to the order of items appearing in Header-Table.

3.2 Proposed Algorithm

The details of the improved algorithm are shown below.

INPUT: Original database (D), Header-Table (Htable), FUFP-tree (FUFP_tree),
support threshold (Sup), set of t new transactions (T).

OUTPUT: A new FUFP-tree for the updated database (U).

STEP 1: Scan the new transactions T to find their items and counts, and store large
items into Flist_New and small items into IFlist_New.

STEP 2: Based on Flist, IFlist, Flist_New and IFlist_New, find and store items into
Items_Case1, Items_Case2, Items_Case3 and Items_Case4, respectively.
STEP 3: For each item I in Items_Case1, do the following substeps:
Substep 3-1: The new count of I in U: CountUpd(I) = CountOrg(I) + CountNew(I).
Substep 3-2: Set the count of I in Htable = CountUpd(I).
Substep 3-3: Set the count of I in Flist = CountUpd(I).
Substep 3-4: Add I to the set of Insert_Items.
STEP 4: For each item I in Items_Case2, do the following substeps:
Substep 4-1: The new count of I in U: CountUpd(I) = CountOrg(I) + CountNew(I).
Substep 4-2: Set the count of I in Flist = CountUpd(I).
Substep 4-3: If (CountUpd(I) ≥ minSup), item I will still be large in updated DB; update
the count of I in Htable as CountUpd(I) and add I to the set of Insert_Items.
Substep 4-4: If (CountUpd(I) < minSup), item I will become small in updated DB;
move I from Flist to IFlist, and remove I from the Htable and the FUFP-tree.
STEP 5: For each item I in Items_Case3, do the following substeps:
Substep 5-1: The new count of I in U: CountUpd(I) = CountOrg(I) + CountNew(I).
Substep 5-2: Set the count of I in IFlist = CountUpd(I).
Substep 5-3: If (CountUpd(I) ≥ minSup), add I both to Insert_Items and Rescan_Items.
STEP 6: Sort the items in Rescan_Items in descending order of their updated counts.
STEP 7: Insert the items in the Rescan_Items to the end of the Htable according to
the descending order of their counts and move I from IFlist to Flist.
STEP 8: Update the FUFP-tree according to the set of Rescan_Items. For each trans-
action J in the original database, do the following substeps:
Substep 8-1: Determine which items of Rescan_Items appear in J, and store the results
to a temporary list Items. If the list Items has no items, it means that there is no items
of Rescan_Items appearing in J, and redo substep 8-1 with next transaction J.

 A Space-Time Trade Off for FUFP-trees Maintenance 209

Substep 8-2: Find the corresponding branch B of J in FUFP-tree, and store B to the
temporary branch, Branch.
Substep 8-3: For each item I in Items, if I appears in the corresponding branch
Branch, add 1 to the count of the node I and remove node I from Branch (from the
properties of FUFP-trees, if a node in a specific branch is different from the others, it
should not be considered in the next run after being processed. This will speed up the
algorithm); otherwise, insert I at the end of the branch, set its count as 1, then re-find
the new corresponding branch B, and store B to Branch.
STEP 9: Update the FUFP-tree according to the set of Insert_Items. For each transac-
tion J in the new transactions, do the following substeps:
Substep 9-1: Determine which items of Insert_Items appear in J, and store the results
to a temporary list Items. If the list Items has no items, it means that there is no items
of Insert_Items appearing in J, and redo substep 9-1 with the next transaction J.
Substep 9-2: Find the corresponding branch B of J in FUFP-tree and store B to the
temporary branch, Branch.
Substep 9-3: For each item I in Items, if I appears in the corresponding branch
Branch, add 1 to the count of the node I and remove node I from Branch, (like subs-
tep 8-3); otherwise, insert I at the end of the branch, set its count as 1, re-find the new
corresponding branch B, and store B to Branch.
STEP 10: For each item I in Items_Case4, do the following substeps:
Substep 10-1: The new count of I in U: CountUpd(I) = CountOrg(I) + CountNew(I).
Substep 10-2: Set the count of I in IFlist = CountUpd(I).

4 An Example

This section illustrates the proposed algorithm for maintaining an FUFP-tree after
transactions are inserted. An original database with 10 transactions and 8 items, from
a to h, is used in this example, which shown in Table 2.

Table 2. Original database used for the example

No Items No Items
1 a, b, c, d, e 6 a, c, d, e, g
2 a, b, c, f, h 7 a, b, h
3 b, c, d, e, g 8 b, c, d, g
4 a, b, f, h 9 a, b, d, f
5 a, b, f 10 a, b, d, h

Assume the support threshold was set at 50%. For the original database, min-
Sup_Org is 5, and the frequent 1-itemsets are b, a, d, and c, which are used to con-
struct the Header-Table. The FUFP-tree is then built from the original database and
Header-Table. Fig.1 shows the results. Assume there are five transactions inserted to
the original database as in Table 3.The proposed algorithm proceeds as follow.

STEP 1: The five new transactions are first scanned to get the items and their counts.
Large items are stored in Flist_New = {b:4, f:4, a:3, e:3} and small items are stored in

210 B. Le et al.

IFlist_New = {c:2, d:2, g:1} based on minSup_New = 5 × 50% = 2.5 (3 by integer). The
large items and small items of the original database are stored in Flist = {b:9, a:8, d:6,
c:5} and IFlist = {e:3, f:4, h:4, g:4}, respectively, during the FUFP-tree construction.

Table 3. New inserted transactions

No Items
1 a, b, e, f
2 c, e, f
3 a, b, f
4 a, b, d, f, g
5 b, c, d, e

Fig. 1. FUFP-tree and Header-Table for the example

STEP 2: From Flist, IFlist, Flist_New, IFlist_New, the items of the 4 cases are calcu-
lated. In case 1, the items which appear both in Flist and Flist_New are stored in
Items_Case1 (= {b, a}). In case 2, the items which appear in Flist but don’t exist in
Flist_New are stored in Items_Case2 (= {d, c}). In case 3, the items which appear in
Flist_New but do not exist in Flist are stored in Items_Case3 (= {f, e}). In case 4, the
items which appear in IFlist but do not exist in Flist_New are stored in Items_Case4
(= {h, g}).

STEP 3 to STEP 5: Each item in Items_Case1, Items_Case2 and Items_Case3 are
processed by its individual step. After STEP 5, Insert_Items = {b, a, d, f} and Res-
can_Items = {f}. FUFP-tree, Header-Table, Flist and IFlist are also updated corres-
pondingly.

STEP 6: The items in the set of Rescan_Items are sorted in descending order of their
updated counts. In this example, there is only f, thus no sorting is needed.

STEP 7: The items in the Rescan_Items are inserted to the end of the Header-Table
according to the descending order of their counts. Thus, f is added to the end of Head-
er-Table, and then f is moved from IFlist to Flist. The results after STEP 7 are shown
in Fig. 2.

 A Space-Time Trade Off for FUFP-trees Maintenance 211

Fig. 2. FUFP-tree, Header-Table, Flist and IFlist after step 7 has been processed

STEP 8: The FUFP-tree is updated according to the transactions in the original database and
the Rescan_Items (= {f}). Table 4 shows the corresponding branches of the original database
with items in Rescan_Items.

Table 4. Original transactions and items appear in Rescan-Items

No Original DB Items Cor. branch No Original DB Items Cor. branch
1 a, b, c, d, e - - 6 a, c, d, e, g - -
2 a, b, c, f, h f b → a 7 a, b, h - -
3 b, c, d, e, g - - 8 b, c, d, g - -
4 a, b, f, h f b → a → f 9 a, b, d, f f b → a → d
5 a, b, f f b → a → f 10 a, b, d, h - -

In this example, each transaction in the original database is processed. Transactions
2, 4, 5 and 9 are processed because they include an item appearing in Rescan_Items.
The results are shown in Fig. 3.

Fig. 3. FUFP-tree, Header-Table, Flist and IFlist after STEP 8

212 B. Le et al.

STEP 9: The FUFP-tree is updated according to the transactions in the new transac-
tions and the Insert_Items (= {b, a, d, f}). Table 5 shows the corresponding branches
of the new transactions with items in Insert_Items. Each transaction with its corres-
ponding branch in the new transactions is then processed.

Table 5. New transactions and items appear in Insert-Items

No New trans. Items Cor. branch
1 a, b, e, f b, a, f b → a → f
2 c, e, f f -
3 a, b, f b, a, f b → a → f
4 a, b, d, f, g b, a, d, f b → a → d → f
5 b, c, d, e b, d B → d

STEP 10: The counts in IFlist of items in case 4 are then updated. Each item in
Items_Case4 is processed. After STEP 10, the final results are shown in Fig. 4.

Fig. 4. FUFP-tree, Header-Table, Flist and IFlist after STEP 10 has been processed

5 Experimental Results

Experiments were programmed in C# on a laptop with an Intel 1.73 GHz quad-core
CPU and 8GBs of RAM, running Windows 7 Ultimate 64 bits. Two real databases
were used in the experiments. One is the BMS-POS and the other is MUSHROOM.
The BMS-POS contained several years of point-of-sale data from a large electronics
retailer with 515,597 transactions and 1,657 items. The maximal length of a transac-
tion was 164 and the average length of the transactions was 6.5. There are 8,124
transactions with 22 items in the MUSHROOM. The parameters were set the same as
Hong et al.’s. For the BMS-POS, the first 400,000 transactions were used to build the
initial FUFP-tree and the next 5,000 transactions were sequentially used as new trans-
actions; while for the MUSROOM, the first 5,000 transactions were used initially and
the next 500 transactions were inserted each time. The minSup was set to 4%, 6%, and
8%. Table 6 shows the execution time of the two algorithms with three different
minimum support thresholds. Each value is the average execution time over 5 runs.

 A Space-Time Trade Off for FUFP-trees Maintenance 213

Table 6. Execution time of the two algorithms with different thresholds

% Algorithms
Run time(s) of each 5,000 trans. inserted

B
M

S-P
O

S
5,000 10,000 15,000 20,000 25,000

4
Hong et al.’s alg. 12.703 9.184 9.355 9.189 9.145

Proposed alg. 0.104 0.055 0.054 0.052 0.059

6
Hong et al.’s alg. 10.861 9.157 9.270 9.173 9.176

Proposed alg. 0.128 0.054 0.055 0.056 0.055

8
Hong et al.’s alg. 11.802 9.224 9.176 9.210 9.143

Proposed alg. 0.164 0.055 0.054 0.055 0.054

% Algorithms
Run time(s) of each 500 trans. inserted

M
U

SH
R

O
O

M

500 1,000 1,500 2,000 2,500

4
Hong et al.’s alg. 0.367 0.278 0.291 0.304 0.314

Proposed alg. 0.031 0.024 0.021 0.019 0.017

6
Hong et al.’s alg. 0.353 0.301 0.292 0.253 0.135

Proposed alg. 0.028 0.019 0.020 0.065 0.017

8
Hong et al.’s alg. 0.363 0.382 0.288 0.241 0.139

Proposed alg. 0.031 0.141 0.018 0.019 0.019

The results indicated that the proposed algorithm ran faster than the original ap-
proach. The main reasons are that Hong et al.’s approach has to rescan the transac-
tions in the original database to determine the counts of infrequent items and the IDs
of transactions in which the infrequent items appear, while the new approach gets the
counts of infrequent items directly from IFlist, which is stored during FUFP-tree con-
struction. Additionally, the proposed algorithm processes the Recan_Items and In-
sert_Items more efficiently based on the properties of the FUFP-tree. The number of
nodes and the structure of the result trees generated are the same.

6 Conclusion and Future Work

An improved FUFP-tree maintenance approach for transaction insertion has been
proposed. The proposed algorithm does not need to rescan the original database by
storing the 1-items during the maintenance process. Moreover, based on the properties
of the FUFP-tree, the item of a node in a specific branch is different from the others,
thus the steps of updating the FUFP-tree according to Rescan_Items and Insert_Items
are processed more efficiently by pruning out the processed item steps by steps. The
execution time of the proposed algorithm is much lower than that of the original algo-
rithm. The numbers of nodes of the FUFP-tree constructed by the two algorithms are
the same. The proposed approach, however, requires some more memory to store 1-
items. There is a trade-off between memory and execution time. The proposed ap-
proach is more efficient for large databases. For small databases with a few thousand
of records, such as MUSHROOM, the difference is not very clear.

Lattice-based approaches for efficient mining association rules have been proposed
in recent years [12-13]. In the future, we will study how to build frequent itemsets
lattice when the database is changed. Besides, we will consider expanding the work in
[14] to mine high utility itemsets.

214 B. Le et al.

Acknowledgement. This work was supported by Vietnam’s National Foundation for
Science and Technology Development (NAFOSTED).

References

1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective.
IEEE Transactions on Knowledge and Data Engineering 5(6), 914–925 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In: The 20th International Conference on Very Large Databases, pp. 487–499 (1994)

3. Agrawal, R., Srikant, R., Vu, Q.: Mining association rules with item constraints. In: The
Third International Conference on Knowledge Discovery in Databases and Data Mining,
pp. 67–73 (1997)

4. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining optimized association
rules for numeric attributes. In: The ACM Sigact-Sigmod Symposium on Principles of
Database Systems, pp. 182–191 (1996)

5. Han, J., Fu, Y.: Discovery of multiple-level association rules from large database. In: The
Twenty-first International Conference on Very Large Data Bases, pp. 420–431 (1995)

6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
SIGMOD Conference, pp. 1–12 (2000)

7. Hong, T.P., Lin, C.W., Wu, Y.L.: Maintenance of fast updated frequent pattern trees for
record deletion. Computational Statistics & Data Analysis 53(7), 2485–2499 (2009)

8. Hong, T.P., Lin, C.W., Wu, Y.L.: Incrementally fast updated frequent pattern trees. Expert
Systems with Applications 34(4), 2424–2435 (2008)

9. Lin, C.W., Hong, T.P., Wu, Y.L.: The Pre-FUFP algorithm for incremental mining. Expert
Systems with Applications 36(5), 9498–9505 (2009)

10. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithm for discovering association
rules. In: The AAAI Workshop on Knowledge Discovery in Databases, pp. 181–192
(1994)

11. Park, J.S., Chen, M.S., Yu, P.S.: Using a hash-based method with transaction trimming for
mining association rules. IEEE Transactions on Knowledge and Data Engineering 9(5),
812–825 (1997)

12. Vo, B., Le, B.: Mining minimal non-redundant association rules using frequent itemsets
lattice. Journal of Intelligent Systems Technology and Applications 10(1), 92–106 (2011)

13. Vo, B., Le, B.: Interestingness for association rules: Combination between lattice and hash
tables. Expert Systems with Applications 38(9), 11630–11640 (2011)

14. Le, B., Nguyen, H., Vo, B.: An efficient strategy for mining high utility itemsets. Interna-
tional Journal of Intelligent Information and Database Systems 5(2), 164–176 (2011)

	A Space-Time Trade Off for FUFP-trees Maintenance
	Introduction
	Review of FUFP-trees
	Improved Algorithm
	Notations
	Proposed Algorithm

	An Example
	Experimental Results
	Conclusion and Future Work
	References

