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Abstract. Non-stationary time series are extremely challenging to model. We
propose a Bayesian mixture model framework for obtaining time varying param-
eters for a dynamic linear model. We discuss on-line estimation of time varying
DLM parameters by means of a dynamic mixture model composed of constant
parameter DLMs. For time series with low signal-to-noise ratios, we propose a
novel method of constructing model priors. We calculate model likelihoods by
comparing forecast distributions with observed values. We utilize computation-
ally efficient moment matching Gaussians to approximate exact mixtures of path
dependent posterior densities. The effectiveness of our approach is illustrated by
extracting insightful time varying parameters for an ETF returns model in a pe-
riod spanning the 2008 financial crisis; and, by demonstrating the superior per-
formance in a statistical arbitrage application.

Keywords: Bayesian inference, Dynamic linear models, Multi-process models,
Statistical arbitrage.

1 Background

1.1 Linear Models

Linear models are utilitarian work horses in many domains of application. A model’s
linear relationship between a regression vector Ft and an observed response Yt is ex-
pressed through coefficients of a regression parameter vector θ. Allowing an error of
fit term εt, a linear regression model takes the form:

Y = F Tθ + ε , (1)

where Y is a column vector of individual observations Yt, F is a matrix with column
vectors Ft corresponding to individual regression vectors, and ε a column vector of
individual errors εt.

The vector Y and the matrix F are observed. The ordinary least squares (“OLS”)
estimate θ̂ of the regression parameter vector θ is [1]:

θ̂ =
(
FF T

)−1

FY . (2)
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1.2 Stock Returns Example

In modeling the returns of an individual stock, we might believe that a stock’s return
is roughly a linear function of market return, industry return, and stock specific return.
This could be expressed as a linear model in the form of (1) as follows:

r = F Tθ + ε, F =

⎡
⎣

1
rM
rI

⎤
⎦ , θ =

⎡
⎣

α
βM

βI

⎤
⎦ , (3)

where r represents the stock’s return, rM is the market return, rI is the industry return,
α is a stock specific return component, βM is the sensitivity of the stock to market
return, and βI is the sensitivity of the stock to it’s industry return.

1.3 Dynamic Linear Models

Ordinary least squares, as defined in (2), yields a single estimate θ̂ of the regression
parameter vector θ for the entire data set. Problems arise with this framework if we
don’t have a finite data set, but rather an infinite data stream. We might expect θ, the
coefficients of a linear relationship, to vary slightly over time θt ≈ θt+1. This motivates
the introduction of dynamic linear models [2]. DLMs are a generalized form, subsuming
Kalman filters [3], flexible least squares [4], linear dynamical systems [5,6], and several
time series methods — Holt’s point predictor, exponentially weighted moving averages,
Brown’s exponentially weighted regression, and Box-Jenkins autoregressive integrated
moving average models [2]. The regime switching model in [7] may be expressed as
a DLM, specifying an autoregressive model where evolution variance is zero except at
times of regime change.

1.4 Contributions and Paper Structure

The remainder of the paper is organized as follows. In section §2, we introduce DLMs
in further detail; discuss updating estimated model parameter distributions upon arrival
of incremental data; show how forecast distributions and forecast errors may be used to
evaluate candidate models; the generation of data given a DLM specification; inference
as to which model was the likely generator of the observed data; and, a simple exam-
ple of model inference using synthetic data with known parameters. Building upon this
base, in section §3 multi-process mixture models are introduced. We report design chal-
lenges we tackled in implementing a mixture model for financial time series. In section
§4, we introduce an alternative set of widely available financial time series permitting
easier replication of the work in [8]; and we provide an example of applying a mix-
ture model to real world financial data, extracting insightful time varying estimates of
variance in an ETF returns model during the recent financial crisis. In section §5, we
augment the statistical arbitrage strategy proposed in [8] by incorporating a hedge that
significantly improves strategy performance. We demonstrate that an on-line dynamic
mixture model outperforms all statically parameterized DLMs. Further, we draw atten-
tion to the fact that the period of unusually large mispricing identified by our mixture
model coincides with unusually high profitability for the statistical arbitrage strategy.
In §6, we conclude.
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Algorithm 1. Updating a DLM given G, V,W .
Initialize t = 0
{Initial information p(θ0|D0) ∼ N[m0, C0]}
Input: m0, C0, G, V , W
loop

t = t+ 1
{Compute prior at t: p(θt|Dt−1) ∼ N[at, Rt]}
at = Gmt−1

Rt = GCt−1G
T +W

Input: Ft

{Compute forecast at t: p(Yt|Dt−1) ∼ N[ft, Qt]}
ft = F T

t at

Qt = F T
t RtFt + V

Input: Yt

{Compute forecast error et}
et = Yt − ft

{Compute adaptive vector At}
At = RtFtQ

−1
t

{Compute posterior at t: p(θt|Dt) ∼ N[mt, Ct]}
mt = at + Atet
Ct = Rt −AtQtA

T
t

end loop

2 Dynamic Linear Models

2.1 Specifying a DLM

In the framework of [2], a dynamic linear model is specified by its parameter quadru-
ple {Ft, G, V,W}. DLMs are controlled by two key equations. One is the observation
equation:

Yt = F T
t θt + νt, νt ∼ N(0, V ) , (4)

the other is the evolution equation:

θt = Gθt−1 + ωt, ωt ∼ N(0,W ) . (5)

F T
t is a row in the design matrix representing independent variables effecting Yt. G is

the evolution matrix, capturing deterministic changes to θ, where θt ≈ Gθt−1. V is the
observational variance, Var(ε) in ordinary least squares. W is the evolution variance
matrix, capturing random changes to θ, where θt = Gθt−1+wt, wt ∼ N(0,W ). The
two parameters G and W make a linear model dynamic.

2.2 Updating a DLM

The Bayesian nature of a DLM is evident in the careful accounting of sources of vari-
ation that generally increase system uncertainty; and, information in the form of in-
cremental observations that generally decrease system uncertainty. A DLM starts with
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initial information, summarized by the parameters of a (frequently multivariate) normal
distribution:

p (θ0|D0) ∼ N (m0, C0) . (6)

At each time step, the information is augmented as follows:

Dt = {Yt, Dt−1} . (7)

Algorithm 1 details the relatively simple steps of updating a DLM as additional regres-
sion vectors Ft and observations Yt become available. Note that upon arrival of the
current regression vector Ft, a one-step forecast distribution p(Yt|Dt−1) is computed
using the prior distribution p(θt|Dt−1), the regression vector Ft, and the observation
noise V .

2.3 Model Likelihood

The one-step forecast distribution facilitates computation of model likelihood by evalu-
ation of the density of the one-step forecast distribution p(Yt|Dt−1) for observation Yt.
The distribution p(Yt|Dt−1) is explicitly a function of the previous periods information
Dt−1; and, implicitly a function of static model parameters {G, V,W} and model state
determined by a series of updates resulting from the history Dt−1. Defining a model at
time t as Mt = {G, V,W,Dt−1}, and explicitly displaying the Mt dependency in the
one-step forecast distribution, we see that the one-step forecast distribution is equivalent
to model likelihood1:

p (Yt|Dt−1) = p (Yt, Dt−1|Dt−1,Mt) = p (Dt|Mt) (8)

Model likelihood, p(Dt|Mt), will be an important input to our mixture model discussed
below.

2.4 Generating Observations

Before delving into mixtures of DLMs, we illustrate the effect of varying the evolution
variance W on the state variable θ in a very simple DLM. In Figure 1 we define three
very simple DLMs, {1, 1, 1,Wi} ,Wi ∈ {.0005, .05, 5}. The observations are from
simple random walks, where the level of the series θt varies according to an evolution
equation θt = θt−1 + ωt, and the observation equation is Yt = θt + νt. Compare the
relative stability in the level of observations generated by the three models. Dramatic
and interesting behavior materializes as W increases.

2.5 Model Inference

Figure 1 illustrated the difference in appearance of observations Yt generated with dif-
ferent DLM parameters. In Figure 2, note that models with smaller evolution variance

1 Dt = {Yt, Dt−1} by definition; Mt contains Dt−1 by definition; and, p(Yt, Dt−1|Dt−1) =
p(Yt|Dt−1)p(Dt−1|Dt−1) = p(Yt|Dt−1).
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Fig. 1. Observations Yt generated from a mixture of three DLMs. Discussion appears in §2.4
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Fig. 2. Estimates of the mean of the state variable θt for three DLMs when processing generated
data of Figure 1

W result in smoother estimates — at the expense of a delay in responding to changes
in level. At the other end of the spectrum, large W permits rapid changes in estimates
of θ — at the expense of smoothness. In terms of the model likelihood p(Dt|Mt), if
W is too small, the standardized forecast errors et/

√
Qt will be large in magnitude,

and therefore model likelihood will be low. At the other extreme, if W is too large, the
standardized forecast errors will appear small, but the model likelihood will be low now
due to the diffuse forecast distribution.

In Figure 3, we graph the trailing interval log likelihoods for each of the three DLMs.
We define trailing interval (k-period) likelihood as:

Lt(k) = p(Yt, Yt−1, . . . , Yt−k+1|Dt−k)
= p(Yt|Dt−1)p(Yt−1|Dt−2) . . .

p(Yt−k+1|Dt−k) .
(9)
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Fig. 3. Log likelihood of observed data during most recent 10 days given the parameters of three
DLMs when processing generated data of Figure 1. Bold band at top of figure indicates the true
generating DLM.

This concept is very similar to Bayes’ factors discussed in [2], although we do not
divide by the likelihood of an alternative model. Our trailing interval likelihood is also
similar to the likelihood function discussed in [9]; but, we assume the errors et are not
autocorrelated.

Across the top of Figure 3 appears a color code indicating the true model prevailing
at time t. It is interesting to note when the likelihood of a model exceeds that of the
true model. For instance, around the t = 375 mark, the model with the smallest evo-
lution variance appears most likely. Reviewing Figure 2, the state estimates of DLM
{1, 1, 1,W = .0005} just happened to be in the right place at the right time. Due to the
more concentrated forecast distributions p(Yt|Dt−1) of this model, it briefly attains the
highest trailing 10-period log likelihood. A similar occurrence can be seen for the DLM
{1, 1, 1,W = .05} around t = 325.

While the series on Figure 3 appear visually close at times, note the log scale. After
converting back to normalized model probabilities, the favored model at a particular
instance is more apparent as illustrated in Figure 4. In §5, we will perform model infer-
ence on the return series of exchange traded funds (ETFs).

3 Parameter Estimation

In §2, we casually discussed DLMs varying in parameterization. Generating observa-
tions from a specified DLM or combination of DLMs, as in §2.4, is trivial. The inverse
problem, determining model parameters from observations is significantly more chal-
lenging. There are two distinct versions of this task based upon area of application.
In the simpler case, the parameters are unknown but assumed constant. A number of
methods are available for model identification in this case, both off-line and on-line.
For example, [10] use E-M off-line, and [9] use the likelihood of a fixed-length trailing
window of prediction errors on-line. Time varying parameters are significantly more
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Fig. 4. Model probabilities from normalized likelihoods of observed data during most recent 10
periods. Bold band at top of figure indicates the true generating DLM.

challenging. The posterior distributions are path dependent and the number of paths
is exponential in the length of the time series. Various approaches are invoked to ob-
tain approximate solutions with reasonable computational effort. [2] approximate the
posterior with a single Gaussian that matches the moments of the exact distribution.
[11,12] propose variational Bayesian approximation. [13] discusses Gaussian-sum and
assumed-density filters.

3.1 Multi-process Mixture Models

[2] define sets of DLMs, where the defining parameters Mt = {F,G, V,W}t are in-
dexed by λ2, so that Mt = M(λt). The set of DLMs at time t is {M(λt) : λt ∈ Λ}.
Two types of multi-process models are defined. A class I multi-process model, where
for some unknown λ0 ∈ Λ,M(λ0) holds for all t; and, a class II multi-process model
for some unknown sequence λt ∈ Λ, (t = 1, 2, . . .),M(λt) holds at time t. We build
our model in §4 in the framework of a class II mixture model. We do not expect to be
able to specify parameters exactly or finitely. Instead, we specify a set of models that
quantize a range of values. In the terminology of [12], we will create a grid approxima-
tion to the evolution and observation variance distributions.

Class II mixture models permit the specification of a model per time period, lead-
ing to a number of potential model sequences exponential in the steps, |Λ|T . However,
in the spirit of the localized nature of dynamic models and practicality, [2] exploit the
fact that the value of information decreases quickly with time, and propose collaps-
ing the paths and approximating common posterior distributions. In the filtering liter-
ature, this technique is referred to as the interacting multiple model (IMM) estimator
[15, Ch. 11.6.6]. In our application, in §5, we limit our sequences to two steps, and

2 [2] index the set of component models α ∈ A; however, by convention in finance, α refers to
stock specific return, consistent with §1.2. To avoid confusion, we index the set of component
models λ ∈ Λ, consistent with the notation of [14].
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approximate common posterior distributions by collapsing individual paths based on
the most recent two component models. To restate this briefly, we model two step se-
quences — the component model Mt−1 just exited, and the component model Mt now
occupied. Thus, we consider |Λ|2 sequences. Reviewing Algorithm 1, the only informa-
tion required from t− 1 is captured in the collapsed approximate posterior distribution
p (θt−1|Dt−1) ∼ N (mt−1, Ct−1) for each component model λt−1 ∈ Λ considered.

3.2 Specifying Model Priors

One key input to mixture models are the model priors. We have tried several approaches
to this task before finding a method suitable for our statistical arbitrage modeling task in
§5. The goal of our entire modeling process is to design a set of model priors p(M(λt))
and model likelihoods p(D|M(λt)) that yield in combination insightful model poste-
rior distributions p(M(λt)|D), permitting the computation of quantities of interest by
summing over the model space λt ∈ Λ at time t:

p(Xt|Dt) ∝
∑
λt∈Λ

p(Xt|M(λt))p(M(λt)|Dt) (10)

In the context of modeling ETF returns discussed in §5, the vastly different scales for
the contribution of W and V to Q left our model likelihoods unresponsive to values of
W . This unresponsiveness was due to the fact that parameter values W and V are of
similar scale; however, a typical |Ft| for this model is approximately 0.01, and therefore
the respective contributions to the forecast variance Q = F TRF + V = F T(GCGT +
W)F+V are of vastly different scales, 1 : 10,000. Specifically, density of the likelihood
p(Yt|Dt−1) ∼ N(ft, Qt) is practically constant for varying W after the scaling by
0.012. The only knob left for us to twist is that of the model priors.

DLMs with static parameters embed evidence of recent model relevance in their
one-step forecast distributions. In contrast, mixture model component DLMs move for-
ward in time from posterior distributions that mask model performance. The situation
is similar to the game best ball in golf. After each player hits the ball, all players’ balls
are moved to a best position as a group. Analogously, when collapsing posterior distri-
butions, sequences originating from different paths are approximated with a common
posterior based upon end-point model. While some of us may appreciate obfuscation of
our golf skills, the obfuscation of model performance is problematic. Due to the vari-
ance scaling issues of our application, the path collapsing, common posterior density
approximating technique destroys the accumulation of evidence in one-step forecast
distributions for specific DLM parameterizationsλ ∈ Λ. In our current implementation,
we retain local evidence of model effectiveness by running a parallel set of standalone
(not mixed) DLMs. Thus, the total number of models maintained is |Λ|2 + |Λ|, and
the computational complexity remains asymptotically constant. In our mixture model,
we define model priors proportional to trailing interval likelihoods from the standalone
DLMs. This methodology locally preserves evidence for individual models as shown in
Figure 3 and Figure 4.

The posterior distributions p(θt|Dt)M(λ) emitted by identically parameterized stan-
dalone and component DLMs differ in general. A standalone constant parameter DLM
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computes the prior p(θt|Dt−1)M(λt) as outlined in Algorithm 1 using its own posterior
p(θt−1|Dt−1)M(λt=λt−1). In contrast, component DLMs compute prior distributions
using a weighted posterior:

p(θt−1|Dt−1)M(λt) =

∑
λt−1

p(M(λt−1)|M(λt))p(θt−1|Dt−1)M(λt−1) .
(11)

4 A Financial Example

[8] proposed a model for the returns of the S&P 500 Index based upon the largest
principal component of the underlying stock returns. In the form Y = F Tθ + ε used
throughout this paper,

Y = rs&p, F = rpc1, and θ = βpc1. (12)

The target and explanatory data in [8] spanned January 1997 to October 2005. We pro-
pose the use of two alternative price series that are very similar in nature; but, publicly
available, widely disseminated, and tradeable. The proposed alternative to the S&P In-
dex is the SPDR S&P 500 ETF (trading symbol SPY). SPY is an ETF designed to mimic
the performance of the S&P 500 Index[16]. The proposed alternative to the largest prin-
cipal component series is the Rydex S&P Equal Weight ETF (trading symbol RSP). RSP
is an ETF designed to mimic the performance of the S&P Equal Weight Index [17].
While perhaps not as obvious a pairing as S&P Index / SPY, a first principal compo-
nent typically is the mean of the data — in our context, the mean is the equal weighted
returns of the stocks underlying the S&P 500 Index. SPY began trading at the end of
January 1993. RSP began trading at the end of April 2003. We use the daily closing
prices Pt to compute daily log returns:

rt = log

(
Pt

Pt−1

)
. (13)

Our analysis is based on the months during which both ETFs traded, May 2003 to
present (August 2011).

The price levels, scaled to 100 on April 30, 2003 are shown in Figure 5. Visually as-
sessing the price series, it appears the two ETFs have common directions of movement,
with RSP displaying somewhat greater range than SPY. Paralleling the work of [8], we
will model the return of SPY as a linear function of RSP, Y = F Tθ + ε:

Y = rspy, F = rrsp, and θ = βrsp. (14)

We estimate the time varying regression parameter θt using a class II mixture model
composed of 50 candidate models with parameters {Ft, 1, V,W}. Ft = rrsp, the return
of RSP, is common to all models. The observation variances are the values V × 106 ∈
{ 1, 2.15, 4.64, 10, 21.5, 46.4, 100, 215, 464, 1, 000 }. The evolution variances are
the values W × 106 ∈ { 10, 56, 320, 1, 800, 10, 000 }. Our on-line process computes
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Fig. 5. SPDR S&P 500 (SPY) and Rydex S&P Equal Weight (RSP) ETF closing prices, scaled to
April 30, 2003 = 100
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Fig. 6. The daily standard deviation of νt and ωt as estimated by the mixture model. Observation
noise νt ∼ N(0, V ); evolution noise ωt ∼ N(0,W ).

502+50 = 2550 DLMs, 502 DLMs corresponding to the two-period model sequences,
and 50 standalone DLMs required for trailing interval likelihoods. In the mixture model,
the priors p(M(λt)) for component models M(λt), λt ∈ Λ, are proportional to trailing
interval likelihoods (9) of corresponding identically parameterized standalone DLMs.

Subsequent to running the mixture model for the period May 2003 to present, we are
able to review estimated time varying parameters Vt and Wt, as shown in Figure 6. This
graph displays the standard deviation of observation and evolution noise, commonly re-
ferred to as volatility in the financial world. It is interesting to review the decomposition
of this volatility. Whereas the relatively stationary series

√
W in Figure 6 suggests the

rate of evolution of θt is fairly constant across time; the observation variance V varies
dramatically, rising noticeably during periods of financial stress in 2008 and 2009. The
observation variance, or standard deviation as shown, may be interpreted as the end-of-
day mispricing of SPY relative to RSP. In §5, we will demonstrate a trading strategy
taking advantage of this mispricing. The increased observational variance at the end of
2008, visible in Figure 6 results in an increase in the rate of profitability of the statisti-
cal arbitrage application plainly visible in Figure 7. Conversely, the low observational
variance beginning in 2010 to present (March 2012) in Figure 6 corresponds to a period
of stagnation in the trading strategy in Figure 7.
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Fig. 7. Cumulative return of the various implementations of a statistical arbitrage strategy based
upon a time varying mixture model and 10 constant parameter DLMs

5 Statistical Arbitrage

[8] describe an illustrative statistical arbitrage strategy. Their proposed strategy takes
equal value trading positions opposite the sign of the most recently observed forecast
error εt−1. In the terminology of this paper, they tested 11 constant parameter DLMs,
with a parameterization variable δ equivalent to:

δ =
W

W + V
. (15)

They note that this parameterization variable δ permits easy interpretation. With δ ≈ 0,
results approach an ordinary least squares solution: W = 0 implies θt = θ. Alterna-
tively, as δ moves from 0 towards 1, θt is increasingly permitted to vary.

Figure 6 challenges the concept that a constant specification of evolution and obser-
vation variance is appropriate for an ETF returns models. To explore the effectiveness
of class II mixture models versus statically parameterized DLMs, we evaluated the per-
formance of our mixture model against 10 constant parameter DLMs. We set V = 1 as
did [8], and specified:

W ∈ {29, 61, 86, 109, 139, 179, 221, 280, 412, 739} .

These values correspond to the 5, 15, . . . 95%-tile values of W/V observed in our mix-
ture model.

Figure 6 offers no justification of using V = 1. While the prior p(θt|Dt−1), one-
step p(Yt|Dt−1) and posterior p(θt|Dt) “distributions” emitted by these DLMs will
not be meaningful, the intent of such a formulation is to provide time varying point
estimates of the state vector θt. The distribution of θt is not of interest to modelers
applying this approach. In the context of the statistical arbitrage application considered
here, the distribution is not required. The trading rule proposed is based on the sign of
the forecast error; and, the forecast is a function of the prior mean at (a point estimate)
for the state vector θt and observed values Ft and Yt: εt = Yt − F T

t at.
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Fig. 8. Sharpe ratios realized by the time varying mixture model and 10 constant parameter DLMs

5.1 The Trading Strategy

Consistent with [8], we ignore trading and financing costs in this simplified experi-
ment. Given the setup of constant absolute value SPY positions taken daily, we compute
cumulative returns by summing the daily returns. The rule we implement is:

portfoliot(εt−1) =

{
+1 if εt−1 ≤ 0,

−1 if εt−1 > 0.
(16)

where portfoliot = +1 denotes a long SPY and short RSP position; portfoliot

= −1 denotes a short SPY and long RSP position. The SPY leg of the trade is of
constant magnitude. The RSP leg is −at× SPY-value, where at is the mean of the prior
distribution of θt, p(θt|Dt−1) ∼ N(at, Rt); and, recall from (14) the interpretation
of θt is the sensitivity of the returns of SPY Yt to the returns of RSP Ft. Note that
this strategy is a modification to [8] in that we hedge the S&P exposure with the equal
weighted ETF, attempting to capture mispricings while eliminating market exposure.
The realized Sharpe ratios appear dramatically higher in all cases than in [8], primarily
attributable to the hedging of market exposure in our variant of a simplified arbitrage
example. Montana et al. report Sharpe ratios in the 0.4 - 0.8 range; in this paper, after
inclusion of the hedging technique, Sharpe ratios are in the 2.3 - 2.6 range.

5.2 Analysis of Results

We reiterate that we did not include transaction costs in this simple example. Had we
done so, the results would be significantly diminished. With that said, we will review
the relative performance of the models for the trading application.

In Figure 7, it is striking that all models do fairly well. The strategy holds positions
based upon a comparison of the returns of two ETFs, one scaled by an estimate of
βrsp,t. Apparently small variation in the estimates of the regression parameter are not
of large consequence. Given the trading rule is based on the sign of the error εt, it
appears that on many days, slight variation in the estimate of θt across DLMs does
not result in a change to sign(εt). Figure 8 shows that over the interval studied, the
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mixture model provided a higher return per unit of risk, if only to a modest extent.
What is worth mentioning is that the comparison we make is the on-line mixture model
against the ex post best performance of all constant parameter models. Acknowledging
this distinction, the mixture model’s performance is more impressive.

6 Conclusions

Mixtures of dynamic linear models are a useful technology for modeling time series
data. We show the ability of DLMs parameterized with time varying values to generate
observations for complex dynamic processes. Using a mixture of DLMs, we extract
time varying parameter estimates that offered insight to the returns process of the S&P
500 ETF during the financial crisis of 2008. Our on-line mixture model demonstrated
superior performance compared to the ex post optimal component DLM in a statistical
arbitrage application.

The contributions of this paper include the proposal of a method, trailing interval
likelihood, for constructing component model prior probabilities. This technique facili-
tated successful modeling of time varying observational and evolution variance param-
eters, and captured model evidence not adequately conveyed in the one-step forecast
distribution due to scaling issues. We proposed the use of two widely available time-
series to facilitate easier replication and extension of the statistical arbitrage application
proposed by [8]. Our addition of a hedge to the statistical arbitrage application from [8]
resulted in dramatically improved Sharpe ratios.

We have only scratched the surface of the modeling possibilities with DLMs. The
mixture model technique eliminates the burden of a priori specification of process
parameters.
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