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Abstract. In hyperspectral imagery a pixel typically consists mixture of spectral
signatures of reference substances, also called endmembers. Linear spectral mix-
ture analysis, or linear unmixing, aims at estimating the number of endmembers,
their spectral signatures, and their abundance fractions.

This paper proposes a framework for hyperpsectral unmixing. A blind method
(SISAL) is used for the estimation of the unknown endmember signature and their
abundance fractions. This method solve a non-convex problem by a sequence of
augmented Lagrangian optimizations, where the positivity constraints, forcing
the spectral vectors to belong to the convex hull of the endmember signatures, are
replaced by soft constraints. The proposed framework simultaneously estimates
the number of endmembers present in the hyperspectral image by an algorithm
based on the minimum description length (MDL) principle. Experimental results
on both synthetic and real hyperspectral data demonstrate the effectiveness of the
proposed algorithm.

Keywords: Blind hyperspectral unmixing, Minimum volume simplex,
Minimum Description Length (MDL), Variable splitting augmented lagrangian,
Dimensionality reduction.

1 Introduction

Although, there have been significant improvements in the hyperspectral sensors, there
are in an image pixels that contain more than one substance, i.e., the acquired spectral
vectors are mixtures of the substances spectral signatures present in the scene [6,19].

The linear mixing assumption has been widely used to describe the observed hyper-
spectral vectors. According to this assumption, a mixed pixel is a linear combination
of endmembers signatures weighted by the corresponding abundance fractions. Due
to physical considerations, the abundance fractions are subject to the so-called non-
negativity and a full-additivity constraints [6].
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Hyperspectral unmixing, aims at estimating the number of reference materials, also
called endmembers, their spectral signatures, and their abundance fractions [17]. Hyper-
spectral linear unmixing approaches can be classified as either statistical or geometrical.
Statistical methods very often formulate the problem under the Bayesian framework
[14] [1] [18] [21].

The geometric perspective just referred to has been exploited by many algorithms.
These algorithms are based on the fact that, under the linear mixing model, hyper-
spectral vectors belong to a simplex set whose vertices correspond to the endmembers
signatures. Thus, finding the endmembers is equivalent to identifying the vertices of the
referred to simplex [20].

Some algorithms assume the presence of, at least, one pure pixel per endmember (i.
e., containing just one material). Some popular algorithms taking this assumption are
the pixel purity index (PPI), [7], vertex component analysis (VCA), [20], the automated
morphological endmember extraction (AMEE) [22], and the N-FINDR [26] (see [9] for
recently introduced reinterpretations and improvements of N-FINDR). These methods
are followed by a fully constrained least square estimation [16] or by a maximum like-
lihood estimation [24] of the abundance fractions to complete the unmixing procedure.

If the pure pixel assumption is not fulfilled, which is a more realistic scenario, the
unmixing process is a rather challenging task, since some endmembers are not in the
dataset. Some recent methods, in the vein of Craig’s work minimum Volume Transform
(MVT) [12] which finds the smallest simplex that contain the dataset, are the simplex
identification via split augmented Lagrangian (SISAL) [4], iterated constrained end-
member (ICE), [3], the minimum-volume enclosing simplex algorithm (MVES) [10],
successive volume maximization (SVMAX) [9], and the alternating projected subgra-
dients (APS) [28].

Fig. 1 illustrates three datasets raising different degrees of difficulties in what un-
mixing is concerned: the dataset shown in Fig.1(a) contains pure pixels, i.e., the spectra
corresponding to the simplex vertices are in the dataset. This is the easiest scenario
with which all the unmixing algorithms cope without problems; the dataset shown in
Fig.1(b) does not contain pure pixels, at least for some endmembers. This is a much
more challenging, usually attacked with the minimum volume based methods, note that
pure-pixels based methods are outperformed under these circumstances; Fig.1(c), con-
tains a highly mixed dataset where only statistical methods can give accurate unmixing
results.

Most of these methods assume that the number of endmembers are known a-priori
or estimated for some method, such as, NWHFC [11], HySime [5], and Second mo-
ment linear dimensionality (SML) [2]. The robust signal subspace estimation (RSSE)
[13] have been proposed in order to estimate the signal subspace in the presence of rare
signal pixels, thus it can be used as a preprocessing step for small target detection ap-
plications. Sparsity promoting ICE (SPICE) [27] is an extension of ICE algorithm that
incorporates sparsity-promoting priors to find the correct number of endmembers. The
framework presented in [8] also estimates the number of endmembers when it unmix the
data. This framework has the disadvantage of using the Unsupervised Fully Constrained
Least Squares (UFCLS) algorithm proposed in [16] which assumes the presence of at
least one pure pixel per endmember.
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Fig. 1. Illustration of tree scenarios: (a) with pure pixels (solid line - estimated simplex by all
methods); (b) without pure pixels and with pixels in the facets (solid red line - estimated simplex
based on minimum volume; dashed blue line - estimated simplex by pure-pixel based methods);
(c) highly mixed pixels (solid red line - estimated simplex based on minimum volume; dashed
blue line - estimated simplex by pure-pixel based methods)

This paper proposes a framework for linear hyperpsectral unmixing. SISAL [4] is
used for the estimation of the endmember signature and their abundance fractions,
while, based on the minimum description length (MDL) principle the number of end-
members is inferred. SISAL belongs to the minimum volume class methods.
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This paper is organized as follows. Section 2 formulates the problem and describes
the fundamentals of the proposed method. Section 3 presents the method to infer the
number of endmembers. Section 4 illustrates aspects of the performance of the proposed
approach with experimental data based on U.S.G.S. laboratory spectra and with real
hyperspectral data collected by the AVIRIS sensor, respectively. Section 5 concludes
with some remarks.

2 Problem Formulation

Assuming the linear observation model, each pixel y of an hyperspectral image can
be represented as a spectral vector in R

l (l is the number of bands) and is given by
y = Ms + n, where M ≡ [m1,m2, . . . ,mp] is an l × p mixing matrix (mj denotes
the jth endmember spectral signature), p is the number of endmembers present in the
covered area, s = [s1, s2, . . . , sp]

T is the abundance vector containing the fractions of
each endmember (notation (·)T stands for vector transposed), and vector n holds the
sensor noise and modeling errors.

To fix notation, let Y ≡ [y1, . . . ,yn] ∈ R
l×n denote a matrix holding the n ob-

served spectral vectors, S ≡ [s1, . . . , sn] ∈ R
p×n a matrix holding the respective

abundance fractions, and N ≡ [n1, . . . ,nn] ∈ R
l×n accounts for additive noise. To

be physically meaningful, abundance fractions are subject to non-negativity and con-
stant sum constraints, i.e., {s ∈ R

p : s � 0,1T
p s = 1T

n}1. Therefore

Y = MS+N

s.t. : S � 0 , 1T
p S = 1T

n . (1)

Usually the number of endmembers is much lower than the number of bands (p � L).
Thus, the observed spectral vectors can be projected onto the signal subspace. The
identification of the signal subspace improves the SNR, allows a correct dimension
reduction, and thus yields gains in computational time and complexity [5].

Let Ep be a matrix, with orthonormal columns, spanning the signal subspace. Thus

X ≡ ET
p Y +ET

p N

= AS+N∗, (2)

where X ≡ [x1, . . . ,xn] ∈ R
p×n denote a matrix holding the projected spectral

vectors, A = ET
p M is a p×p square mixing matrix, and N∗ accounts for the projected

noise.
Linear unmixing amounts to infer matrices A and S. This can be achieved by fitting

a minimum volume simplex to the dataset [12]. Finding a minimum volume matrix A
subject to constraints in (1), leads to the non-convex optimization problem

̂Q = argmin
Q

{− log | detQ|}
s.t. : QX � 0 , 1T

p QX = 1T
n , (3)

1 s � 0 means sj ≥ 0, for j = 1, . . . , p and 1T
p ≡ [1, . . . , 1].
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where Q ≡ A−1. The constraint 1T
p QX = 1T

n can be simplified, by multiplying the
equality on the right hand side by XT (XXT )−1, resulting 1T

p QX = 1T
n ⇔ 1T

p Q =

aT , where aT ≡ 1T
nX

T (XXT )−1.
SISAL aims to give a sub-optimal solution of (3) solving the following problem by

a sequence of augmented Lagrangian optimizations:

̂Q∗ = argmin
Q

{− log | detQ|+ λ‖QX‖h}
s.t. : 1T

p Q = aT , (4)

where ‖QX‖h ≡ ∑

ij h(QX), h(x) ≡ max(−x, 0) is the so-called hinge function and
λ is the regularization parameter. Notice that ‖QX‖h penalizes negative components
of QX, thus playing the rule of a soft constraint, yielding solutions that are robust to
outliers, noise, and poor initialization.(see [4] for details).

3 Number of Endmembers Estimation

The MDL principle proposed by Rissanen [23] aims to select the model that offers
the shortest description length of the data. This approach can be used to estimate the
number of endmembers [8]. The well-known MDL criterion for n i.i.d. observations, in
general, is given by

̂kMDL = argmin
k

{

L(X|̂θk) +
1

2
k logn

}

, (5)

where L(X|̂θk) is a likelihood function based on the projected data X with parameters
θ, and 1

2 k logn is an increasing function penalizing higher values of k [15].
Assuming that the additive noise is Gaussian distributed, i.e. n ∼ N (0,Λ) and given

a set of n i.i.d. observed samples, the likelihood equation is given by:

L(X|̂θk) ≡
n
∑

i=1

[

− log p(xi|̂θk)
]

=
n

2

(

p log(2π) + log | detΛ|
)

+
1

2
tr
[

(X−AS)T Λ−1 (X−AS)
]

,

(6)

where tr(·) denotes the trace of a matrix, matrices A and S are replaced by their esti-
mates using SISAL algorithm, the noise covariance matrix, Λ, is estimated using the
algorithm based on the multiple regression theory proposed in [5] and the number of
free parameters is k = p2. The resulting optimization algorithm is an iterative scheme
that requires to compute the objective function and to estimate the matrices A, S, and
Λ for each value of p.

4 Experiments

This section provides simulated and real data experiments to illustrate the algorithm’s
performance. The proposed method is tested and compared with SPICE [27] on differ-
ent simulated scenarios concerning with different signal-to-noise ratio (SNR), absence
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of pure pixels, and number of endmembers present in the scene. The proposed method
is also applied to real hyperspectral data collected by the AVIRIS sensor over Cuprite,
Nevada.

4.1 Evaluation with Simulated Data

In this section the proposed method is tested on simulated scenes. To evaluate the per-
formance of the algorithm the well-known spectral angle distance (SAD) metric is used
[17]. SAD measures the shape similarity between the ith endmember signature mi and
its estimate m̂i. Based on this metric we define a spectral root mean square angle error,
given by:

εm ≡ 1

p

[

p
∑

i=1

(

arccos
mT

i m̂i

‖mi‖‖m̂i‖
)2

]1/2

. (7)

To measure the similarity between the observed data and the unmix result it is also
computed the residual error between the observed pixels and their estimates:

rls ≡ ‖Y − ̂M̂S‖2F , (8)

where ̂M = Ep
̂A and ̂S are estimated by SISAL.

Concerning the simulated data creation an hyperspectral image composed of 104 pix-
els is generated according to expression (1), where spectral signatures where selected
from the USGS digital spectral library. The selection of endmember signatures is ar-
bitrary as long as they are linearly independent. The reflectances contain 224 spectral
bands covering wavelengths from 0.38 to 2.5μm with a spectral resolution of 10nm.
The abundance fractions are generated according to a Dirichlet distribution given by

D(s1, . . . , sp|μ1, . . . , μp) =
Γ (

∑p
j=1 μj)

∏p
j=1 Γ (μj)

p
∏

j=1

s
µj−1
j . (9)

This density, besides enforcing positivity and full additivity constraints, displays a wide
range of shapes, depending on the parameters of the distribution μ = [μ1, . . . , μp].

In this experiment the Dirichlet parameters are set to μ = [3, . . . , 3], concerning the
additive noise, the SNR, which is defined as

SNR ≡ 10 log10
(

E
{

yTy
}

/E
{

nTn
})

, (10)

is set to 30 dB.
Fig. 2 presents a scatterplot of the simulated scene for the p = 3 case, where dots

represent the pixels and circles represent the true endmembers. This figure also shows
the endmembers estimates (squares) which are very close to the true ones. Fig.3 shows
the endmembers signatures (solid line) and their estimates (dashed line). Note that, in
this experiment there is no pure pixels in the dataset, however, the endmembers estimate
is very accurate.

Fig 4, presents the evolution of the cost function [see expression (5)] as a function of
the number of endmembers. The minimum of the function occurs at ̂k = 3 which is the
true number of endmembers in the scene.
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Fig. 2. Scatterplot of the three endmembers mixture: Dataset (blue dots); true endmembers (black
circles); Proposed method estimates (red squares)
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Fig. 3. Endmembers signatures (solid line) and their estimates (dashed line)

Table 1 presents the root mean square error distance εm, the residual least squares
error rls, and the estimated number of endmembers for different experiments: p is set
to {3, 5, 10} and the SNR is set to {30, 50} dB. Note that the estimated values are
exactly the number of endmembers in the scene and the unmix error increases with
increasing values of p and with noise level. The results achieved by SPICE in terms of
residual error are similar to the proposed method results, although the errors between
endmembers signatures and their estimates are worst.
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Fig. 4. Cost function evolution as a function of the number of endmembers

Table 1. Results for different scenarios as a function of the SNR and of the number of endmem-
bers (p)

Proposed Method SPICE

SNR p ̂k εm rls ̂k εm rls

3 3 0.048 4.76 3 0.293 4.82
30 dB 5 5 0.053 6.41 5 0.198 6.47

10 10 0.929 6.99 6 0.258 7.18

3 3 0.042 0.47 3 0.141 1.06
50 dB 5 5 0.059 0.64 5 0.432 1.30

10 10 0.196 0.70 6 0.268 1.70

4.2 Experiments with Real Hyperspectral Data

In this section, the proposed method is applied to a subset (50 × 90 pixels and 224
bands) of the Cuprite dataset acquired by the AVIRIS sensor on June 19, 1997, Fig. 5
shows band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite Nevada
dataset. The AVIRIS instrument covers the spectral region from 0.41μm to 2.45μm
in 224 bands with a 10nm band width. Flying at an altitude of 20 km, it has an IFOV
of 20m and views a swath over 10 km wide. This site has been extensively used for
remote sensing experiments over the past years and its geology was previously mapped
in detail [25].

Table 2 present the residual error and the estimated number of endmembers for
SPICE and for the proposed method. The results of both methods are comparable.
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Fig. 5. Band 30 (wavelength λ = 655.8nm) of the subimage of AVIRIS Cuprite Nevada dataset
(rectangle denotes the image fraction used in the experiment)

Table 2. Results for Cuprite dataset

Proposed method SPICE

̂k 6 7
rls 3.13 3.27

Fig.6 (left) shows the estimated signatures, which are compared with the nearest
laboratory spectra, to visually distinguish the different endmembers an offset has been
added to each signature. Note that, this endmembers are known to dominate the consid-
ered subimage [25].

Fig.6 (right) presents the estimated abundance maps for the extracted endmembers.
A visual comparison show that these maps are in accordance with the known ground
truth. Note that for this region Desert vanish (Fig.6b)) and Sphene (Fig. 6d)) abundance
maps are very similar. These results show the potential of the proposed method to si-
multaneously select the number of endmembers, estimate the spectral signatures, and
their abundance fractions.
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Fig. 6. Experimental results on Cuprite dataset. Left: Comparison of the estimated signatures
(dashed line) with the nearest USGS spectra (solid line). Right: Abundance maps estimates. a)
Alunite; b) Desert vanish; c) Dumortierite; d) Sphene; e) Kaolinite; f) Montmorillonite.

5 Conclusions

In this paper, a new framework is proposed to blindly unmix hyperspectral data and
simultaneously infer the number of endmembers based on the minimum description
length (MDL) principle. The estimation of the endmembers spectra and their abun-
dance fractions is based on SISAL, which is a minimum-volume type method, that
solves a non-convex problem by a sequence of augmented Lagrangian optimizations,
where the positivity constraints, forcing the spectral vectors to belong to the convex
hull of the endmember signatures, are replaced by soft constraints. The experimental
results achieved on simulated and on real datasets show the potential of the proposed
method.
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