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Preface

The present book includes extended and revised versions of a set of selected papers
from the First International Conference on Pattern Recognition (ICPRAM 2012), held
in Vilamoura, Algarve, Portugal, from 6 to 8 February, 2012, sponsored by the Institute
for Systems and Technologies of Information Control and Communication (INSTICC)
and held in cooperation with the Association for the Advancement of Artificial Intelli-
gence (AAAI) and Pattern Analysis, Statistical Modelling and Computational Learning
(PASCAL2). This conference was technically co-sponsored by IEEE Signal Process-
ing Society, Machine Learning for Signal Processing (MLSP) Technical Committee of
IEEE, AERFAI (Asociación Española de Reconocimiento de Formas y Análisis de Im-
agen) and APRP (Associação Portuguesa de Reconhecimento de Padrões). INSTICC is
member of the Workflow Management Coalition (WfMC).

The purpose of the International Conference on Pattern Recognition Applications
and Methods (ICPRAM) is to bring together researchers, engineers and practitioners
interested on the areas of Pattern Recognition, both from theoretical and application
perspectives.

ICPRAM received 259 paper submissions from 46 countries, in all continents. To
evaluate each submission, a double blind paper review was performed by the Program
Committee, whose members are highly qualified researchers in ICPRAM topic areas.
Based on the classifications provided, only 115 papers were selected for oral presen-
tation (61 full papers and 54 short papers) and 32 papers were selected for poster pre-
sentation. The full paper acceptance ratio was 24%, and the total oral acceptance ratio
(including full papers and short papers) 44%. These strict acceptance ratios show the
intention to preserve a high quality forum which we expect to develop further next year.

We must thank the authors, whose research and development efforts are recorded
here. We also thank the keynote speakers for their invaluable contribution and for taking
the time to synthesise and prepare their talks. Finally, special thanks to all the members
of the INSTICC team, whose collaboration was fundamental for the success of this
conference.

December 2012 Pedro Latorre Carmona
J. Salvador Sánchez

Ana L.N. Fred
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Alejandro Veloz, Rodrigo Salas

Training Selection with Label Propagation for Semi-supervised Land
Classification and Segmentation of Satellite Images . . . . . . . . . . . . . . . . . . . . . 181
Olga Rajadell, Pedro Garcı́a-Sevilla

Hyperspectral Imagery Framework for Unmixing and Dimensionality
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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Pattern Recognition as an Indicator  
of Diagnostic Expertise 

Thomas Loveday1, Mark Wiggins1, Marino Festa2, David Schell2, and Dan Twigg3 

1 Department of Psychology, Macquarie University, Australia 
{thomas.loveday,mark.wiggins}@mq.edu.au 

2 Childrens Hospital at Westmead, Sydney, Australia 
{marino.festa,david.schell}@health.nsw.gov.au 

3 Transpower, Wellington, New Zealand 
dan.twigg@transpower.co.nz 

Abstract. Expertise is typically associated with high levels of experience in a 
domain. However, high levels of experience do not necessarily mean that opera-
tors are capable of performing at the level of expertise. Based on evidence  
that pattern-recognition is the foundation of expert diagnostic performance, two 
studies investigated the utility of distinguishing competent from expert practi-
tioners using measures of the component tasks of pattern-recognition. In two 
dissimilar domains, performance across the tasks clustered into two levels, re-
flecting competence and expertise. Performance on the tasks was only weakly 
correlated with years of experience in the domain. The significance of these re-
sults is discussed in relation to assessment and training evaluation.  

Keywords: Cues, Expertise, Pattern-recognition. 

1 Background 

The expertise of diagnosticians has typically been associated with cumulative expe-
rience in the domain. However, it is apparent that some experienced and qualified 
practitioners may never achieve genuine expertise, and instead, will only achieve a 
level of performance that could be described as competent [1, 2]. 

To explain this observation, Gray [3] proposed that amongst highly experienced indi-
viduals, there are actually two levels of performance. The levels were presumed to reflect 
‘competent non-experts’, who rely on prior cases and heuristics [4], and ‘genuine ex-
perts’, who utilize reliable and efficient cognitive shortcuts [5]. Specifically, it is evident 
that experts, who have been identified on the basis of their diagnostic performance, are 
more likely to using pattern recognition in comparison to their non-experts peers [6-8]. 

Pattern recognition is defined as the non-conscious recognition of problem-states 
based on patterns of features that prime appropriate scripts in memory [9, 10]. The 
efficiency of expert pattern-recognition appears to be based on highly nuanced and 
automated feature-outcome associations in memory [6, 11]. These ‘cue’ associations 
represent an association in memory between the features of the environment and a 
subsequent outcome or problem [12]. Cue-based pattern recognition reduces cognitive 
load during information acquisition without sacrificing depth of processing [13],  
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thereby allowing experts to generate rapid and appropriate responses to environmental 
stimuli [14]. For example, in a ‘think-aloud’ study of gastroenterologists, it was ob-
served that pattern-recognition during diagnosis produced accurate, and seemingly 
automatic, treatment responses [6]. 

Since expert diagnostic performance invokes pattern-recognition, several researchers 
have sought to predict diagnostic performance using simple tasks that assess the ability 
of operators to recognize the relationships between features in the environment and 
subsequent events. For example, Morrison, Wiggins, Bond and Tyler [15] developed a 
paired association task to assess diagnostic expertise using feature and event pairs, and 
found that expert offender profilers’ recorded faster recognition of associated features 
and events in comparison to their novice counterparts. However, that study was limited 
insofar as it only measured one component skill of cue-based pattern recognition. 

The present researchers proposed a more comprehensive assessment process, whe-
reby experts are distinguished from non-experts using normative measures of four 
distinct component skills of cue-based pattern recognition. Specifically, a series of 
studies attempted to distinguish experts from non-experts within an experienced 
population based on their performance during diagnostic tasks in which the selection 
and extraction of appropriate cues was advantageous. 

Two batteries of cue-based tasks were developed within the software package, 
EXPERTise, one of which was designed for pediatric intensive care and the other for 
electricity power-control.  EXPERTise was specifically designed to identify expert 
practitioners in those domains by combining four diagnostic tasks in which perfor-
mance is reliant on cue utilization: 

• Feature Identification, which is a measure of the ability to extract diagnostic cues 
from the operational environment [16]; 

• Paired Association, which assesses the capacity to discern strong feature-event 
cues from weak feature event cues in the environment [15]; 

• Feature discrimination, which is a measure of the ability to discriminate diagnostic 
from irrelevant cues in the environment [17]; and the  

• Transition Task, which assesses the capacity to acquire diagnostic cues from the 
environment in a strategic, non-linear pattern [18]. 

This chapter describes the two studies in detail. Study One describes the application of 
EXPERTise in pediatric intensive care and demonstrates its ability to distinguish expert 
from non-expert personnel. Study Two extends Study One by applying the tool to pow-
er-control, demonstrating the generalizability of cue-based measures. It also involved an 
assessment of the reliability of classifications of expertise based on cue utilization. 

2 Study One 

2.1 Aims and Hypothesis 

Study One was designed to determine the utility of EXPERTise in distinguishing 
competent non-experts from genuine experts within an experienced sample of medical 
practitioners. 
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Since each of the four tasks used in the present study was selected to assess inde-
pendent facets of the broader construct of cue-based pattern-recognition during diag-
nosis, it was hypothesized that performance amongst experienced practitioners would 
cluster into two levels across the tasks. This prediction was consistent with evidence 
that experienced practitioners can be distinguished as competent non-experts or ex-
perts, depending upon their performance. Since years of experience in the domain is 
only weakly associated with expert skill acquisition, performance during the tasks 
was not expected to correlate significantly with years of domain experience. 

2.2 Method 

Participants. A sample of fifty pediatric intensive care unit staff was recruited for the 
study. Twenty three were male and twenty seven were female. They ranged in age 
from 30 to 63 years with a mean of 42.3 years (SD = 8.3). The participants had accu-
mulated between three and 26 years of experience within pediatric critical care, with a 
mean of 9.8 years (SD = 6.9). 

Measures. The present study used two measures, a demographics survey and EX-
PERTise. 

Demographic Survey. In addition to basic demographics, years of experience in the 
domain was recorded. 

Expertise. EXPERTise is a ‘shell’ software package designed to record performance 
across four cue-based expert diagnostic reasoning tasks. EXPERTise was specifically 
designed so that these tasks could be customized to match stimuli used in the domain. 

Stimuli. Cognitive interviews were conducted with two pediatric intensive care prac-
titioners to develop the stimuli used in the present study. These practitioners were 
selected on the basis of peer recommendation. The information derived from the sub-
ject-matter experts was restructured into several scenarios that identified feature and 
outcome pairs that were available for patient diagnosis. These pairs and scenarios 
were validated in an untimed pilot test. The scenarios formed the basis of the stimuli 
used within the EXPERTise tasks. See Figure 1 for an example of the stimuli. 

Feature Identification Task (FID). The feature identification task had two forms. In 
the first form, the participants were presented with a patient bedside monitor display-
ing an abnormal parameter that indicated that the patient was in a critical condition. 
The participants were asked to ‘click’ on the abnormal parameter. In the second form, 
the bedside monitor was displayed for 1.5 seconds, and the participant was asked to 
identify the abnormal parameter from one of four options. For both forms, response 
times were recorded and were aggregated across items to yield a mean response time. 
Accuracy was also recorded and summed for a single accuracy score. 

Paired Association Task (PAT). The paired association task also had two forms. In both, 
two domain-relevant phrases were displayed on-screen, either sequentially (Form 1) or 
simultaneously (Form 2) for 1.5 seconds. The participant was asked to rate the related-
ness of the two phrases on a six-point scale. Response latencies were recorded and ag-
gregated across items to yield a mean reaction time for each participant. The association 
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ratings were also aggregated into a single ‘discrimination’ metric based on the mean 
variance of the participants’ responses. 

 

Fig. 1. Example patient bedside monitor output 

Feature Discrimination Task (FDT). The feature discrimination task measured expert 
discrimination between sources of information during decision-making. The task 
presented the participant with a patient bedside monitor output and a short written 
scenario description. On a subsequent screen, the participants were asked to choose an 
appropriate response to the scenario from eight treatment options. The participants 
then rated, on a six-point scale, the utility of nine individual types of information in 
informing their decision. These ratings were aggregated into a single discrimination 
metric based on the variance of the participant’s ratings. 

Transition Task (TT). The transition task consisted of a single scenario accompanied 
by a patient bedside monitor output. The scenario was intentionally vague and thus, 
forced participants to acquire additional information provided in a list of information 
screens. The participants then selected a diagnosis and response from four treatment 
options. The order in which the information screens were accessed was recorded. This 
was converted to a single metric based on the ratio of screens accessed in sequence to 
the total number of screens accessed. 

Procedure. Participants were initially briefed on the purpose of the study and were 
then asked to sign a consent form if they wished to continue. They subsequently com-
pleted the demographics questionnaire and EXPERTise using a laptop computer. 

2.3 Study 1 Results 

Correlations with Experience. To investigate the relationship between years of  
experience in pediatrics and each task within EXPERTise, bivariate correlations were 
undertaken between years of experience in the domain and performance on the  
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EXPERTise tasks. Consistent with expectations, years of experience in the domain 
yielded only weak to moderate Pearson correlations with performance on the EX-
PERTise tasks, 0 ≤ r ≤ 0.33, p < 0.05. 

Cluster Models. The primary aim of the Study 1 was to determine the feasibility of 
identifying expert practitioners using tasks in which pattern recognition was advanta-
geous. Because the sample comprised qualified individuals, it was expected that per-
formance would cluster into two groups, reflecting competence and expertise. 

Table 1 presents the results of a k-Means cluster analysis. As expected, two distinct 
groups formed based on performance across the EXPERTise tasks. 

Cluster One (n = 24) comprised those individuals who, whilst qualified, demon-
strated a lower level of performance across the EXPERTise tasks in comparison to the 
members of Cluster 2. Therefore, the participants in this cluster were described as 
‘competent non-experts’. 

Cluster Two (n = 26) comprised those individuals who demonstrated superior per-
formance across the EXPERTise tasks. Since the members of this cluster were gener-
ally faster, more accurate, more discriminating, and less sequential in their acquisition 
of information, they were described as ‘experts.’ 

Table 1. Participant cluster means for Study 1 

Measure Non-Expert Mean (SD) Expert Mean (SD) Overall Mean (SD) 
Feature Identification Reaction Time 11.1 (4.4) 7.7 (3.0) 9.2 (4.1) 
Feature Identification Accuracy 5.3 (2.1) 6.7 (1.7) 6.0 (2.0) 
Paired Association 1 Reaction Time 6.0 (2.2) 4.6 (1.3) 5.3 (1.9) 
Paired Association 1 Variance 1.5 (0.6) 2.4 (0.8) 2.0 (0.8) 
Paired Association 2 Reaction Time 4.3 (1.7) 3.6 (1.1) 3.9 (1.4) 
Paired Association 2 Variance 1.2 (0.7) 1.8 (0.7) 1.5 (0.7) 
Feature Discrimination Variance 2.72 (2.8) 4.5 (3.2) 3.7 (3.1) 
Transition Ratio 0.91 (0.17) 0.63 (0.42) 0.8 (0.4) 

2.4 Study 1 Discussion 

The aim of Study One was to determine whether four measurements of pattern recog-
nition could, when combined, distinguish competent from expert medical practitioners 
within an experienced sample. Since the judicious selection and extraction of cues 
was advantageous in each of the tasks, it was expected that pediatric experts would 
demonstrate consistently superior performance. 

The results of Study One are consistent with expectations that the EXPERTise 
tasks could accurately distinguish competent from expert practitioners within an expe-
rienced sample of participants. Performance across the four assessment tasks clustered 
into two levels, with Cluster Two significantly outperforming Cluster One on all four 
tasks. This suggests that the Cluster One and Cluster Two represented, respectively, 
non-experts and experts within an experienced sample. 

As expected, performance on the tasks was not strongly correlated with years of ex-
perience in the domain. This outcome is consistent with prior research [6-8], and thus, 
highlights the limitations of using years of experience as a means of identifying expert 
diagnosticians in pediatric healthcare. There is an increasingly strong case to be made 
that years of experience in the domain is only weakly associated with the progression to 
diagnostic expertise [3], suggesting that other indicators may be preferable. 
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3 Study Two 

3.1 Aims and Hypothesis 

Study One demonstrated that experts could be distinguished from non-experts within 
an experienced sample using measures of pattern-recognition. Study Two was de-
signed to extend the outcomes of Study One by testing whether the effects observed 
are evident within other diagnostic roles. Power system control was selected as the 
domain of interest because this role involves forecasting network demands and diag-
nosing system events. Therefore, experienced operators would have had sufficient 
opportunity to acquire the feature and event associations in memory that facilitate 
pattern recognition and diagnostic expertise. 

Consistent with the outcomes of Study One, it was hypothesized that performance 
amongst qualified power-controllers would cluster into two levels across the EX-
PERTise tasks. Performance during the tasks was not expected to correlate signifi-
cantly with years of experience in the domain. 

Study Two was also designed to enable an assessment of the reliability of pattern-
recognition-based expert and non-expert classifications over time. Specifically, Study 
Two examined whether classifications of expertise, based on performance during the 
EXPERTise tasks, remained consistent over a six-month period. 

Previous research suggests that the rate of skill acquisition differs, depending upon 
the level of experience within the domain. Specifically, the rate of skill acquisition in 
the progression from novice to competence tends to be much faster for a given period 
of time than the rate of skill acquisition in the progression from competence to exper-
tise [19, 20]. Therefore, it was hypothesized that if EXPERTise produces a consistent 
and valid classification of expertise based on normative performance, then within an 
experienced sample a significant level of consistency in EXPERTise-based normative 
classifications should be observed between administrations of the battery at a six-
month interval. 

3.2 Method 

Participants. Initially, twenty-one qualified power controllers, recruited from Trans-
power, New Zealand, elected to participate in the study. At retest, conducted six 
months later, five of the participants were not available due to work scheduling. A 
sixth participant was interrupted by an earthquake during the retest session and was 
not included in the final sample. In total, 15 participants completed both test and ret-
est. The characteristics of the six participants who failed to complete the retest session 
were similar to the other participants in their years of experience, position, age, gend-
er and performance. 

Of the 15 participants who attended both test and retest, 13 were male and two 
were female. The participants ranged in age from 31 to 58 years with a mean age of 
40.7 years (SD = 8.4). The participants had accumulated between two and 32 years of 
experience in the power transmission domain, with a mean of 11.2 years (SD = 9.9). 
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Measures. The present study used two measures, a demographics survey and EX-
PERTise. 

Demographic Survey. The demographic survey was identical to that employed in 
Study One, including years of experience in the domain. 

Expertise. The EXPERTise tasks were identical to those used in Study One, with the 
stimuli and scenarios adapted for power-control. 

Stimuli. The stimuli employed in Study Two were developed using the same inter-
view protocols described in Study One. Two subject matter experts from the power 
control domain were interviewed. Figure 2 provides an example of the stimuli used in 
Study Two. 

 

Fig. 2. Example network map and supervision control output 

Procedure. The participants were asked to participate in the study during their sche-
duled work breaks. They were tested in single participant sessions and were briefed 
on the purpose of the study and asked to sign a consent form if they wished to contin-
ue. They completed the demographics questionnaire and then began the EXPERTise 
test battery online at their workstation. The participants were retested using the same 
procedure six-months later. 

3.3 Results 

Correlations with Experience. To investigate the relationship between years of ex-
perience in power control and each task within EXPERTise, bivariate correlations 
were undertaken between years of experience1 in the domain general and perfor-
mance on the EXPERTise tasks. Consistent with expectations, years of experience in 
the domain yielded only weak to moderate Pearson correlations with performance on 
the EXPERTise tasks, 0 ≤ r ≤ 0.40, p < 0.05. 

Cluster Models. One of the aims of Study Two was to replicate the findings of Study 
One in a dissimilar domain, by identifying expert power controllers using tasks in 
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which pattern recognition was advantageous. Consequently, following the initial test, 
participants were classified into two groups (non-expert and expert) using the k-
means cluster procedure with k = 2 groups. 

Table 2. Participant cluster means for Study 2 

Measure Non-ExpertMean (SD) ExpertMean (SD) Overall Mean (SD) 
Feature Identification Reaction Time 8.1 (6.1) 5.5 (1.9) 6.1 (3.4) 
Feature Identification Accuracy 10.2 (1.8) 10.5 (2.3) 10.4 (2.1) 
Paired Association 1 Reaction Time 10.5 (5.31) 6.4 (2.1) 7.4 (3.5) 
Paired Association 1 Variance 3.2 (.60) 4.3 (.52) 4.0 (.7) 
Paired Association 2 Reaction Time 5.2 (2.3) 4.2 (1.5) 4.4 (1.7) 
Paired Association 2 Variance 3.5 (.8) 4.5 (.8) 4.3 (.9) 
Feature Discrimination Variance 7.4 (3.3) 11.8 (3.4) 10.7 (3.8) 
Transition Ratio .76 (.1) .68 (.23) .70 (.21 

 
Table 2 lists the results of the k-Means cluster analysis. As expected, two groups 

formed based on performance across the EXPERTise tasks. 
Cluster One (n = 5) comprised those power controllers who demonstrated a lower 

level of performance across the EXPERTise tasks in comparison to the members of 
Cluster Two. Therefore, the participants in this cluster were described as ‘non-
experts’. 

Cluster Two (n = 16) comprised those individuals who demonstrated superior per-
formance across the EXPERTise tasks. Since the members of this cluster were gener-
ally faster, more accurate, more discriminating, and less sequential in their acquisition 
of information, they were described as ‘experts.’ 

EXPERTise Classification Reliability. The participants were re-classified following 
retest six months later using the same cluster procedure. The results of the EXPER-
Tise classifications at Test and Retest are summarized in Table 3. 

An analysis of classification consistency was undertaken using the Kappa statistic. The 
consistency of classifications over the six-month interval was moderate, Kappa = 0.59, p < 
.05. In total, 80% of the participant’s received the same classification at test and retest. 

Table 3. Test by retest EXPERTise classifications 

 Retest 
Non-expert Expert Total 

Test 
Non-expert 4 0 4 

Expert 3 8 11 
Total 7 8 15 

3.4 Study Two Discussion 

Study Two was designed to replicate, in part, the results of Study One with diagnosti-
cians drawn from a dissimilar domain. Specifically, it was designed to determine 
whether the EXPERTise measurements of pattern recognition could distinguish  
competent from expert power controllers within an experienced sample. It was hy-
pothesized that expert power controllers would demonstrate consistently superior 
performance across the tasks. 
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The results of Study Two were consistent with the outcomes of Study One with 
performance across the four assessment tasks clustering into two levels. Moreover, 
Cluster Two demonstrated superior performance across all of the EXPERTise tasks, 
each of which was designed to measure a distinct component of expert pattern recog-
nition. This suggests that Cluster 1 and Cluster 2 comprised, respectively, non-experts 
and experts within an experienced sample. 

Study Two was also designed to determine whether normative classifications of 
expertise, based on performance during the EXPERTise tasks, were consistent over a 
six-month period. Since expertise typically requires more than ten years of dedicated 
practice [21], it was assumed that the interval between assessments was insufficient to 
produce genuine and significant changes in expert performance. Therefore, it was 
expected that non-expert and expert classifications, based on standardized norms, 
would be relatively consistent at test and retest. 

Overall, the results supported the expectation that normative classifications would 
be consistent at test and retest. In fact, 80% of the participants received the same clas-
sification in both sessions. Therefore, EXPERTise appears to produce a consistent 
classification of domain expertise. 

4 General Discussion and Conclusions 

A number of previous studies of expert diagnosis have been based on assessments of 
expertise using years of experience within a domain [6]; [21-24]. Although these com-
parisons can be useful, they are based on a linear relationship between experience and 
diagnostic performance [1, 2]. However, in the present studies, performance on four 
expertise assessment tasks was only weakly associated with years of experience in the 
domain. Therefore, while years of experience may be a necessary precursor to expert 
diagnostic performance, it will not inherently confer expertise within the domain. 

The results of Studies One and Two suggest that when investigating diagnostic per-
formance, expertise should not be operationalized simply as years of experience in the 
domain or role. Rather, an alternative approach is to identify expertise using pattern 
recognition performance during domain-relevant tasks. In both studies, two distinct 
clusters emerged that appeared to represent two distinct levels of performance. These 
levels were consistent with the distinction made by Gray [3] between competent non-
expert and expert practitioners. Moreover, these differences in performance were 
consistent across all four assessment tasks, each of which was designed to assess an 
independent dimension of expert pattern recognition [17]; [18]; [25-27]. 

The identification of diagnostic experts on the basis of their performance, rather 
than their years of experience in the domain, should assist with studies of feature ex-
traction, pattern recognition and empirical comparisons between different levels of 
diagnostic performance. Further, the identification of genuine experts ought to im-
prove the validity of research outcomes involving the observation of expert perfor-
mance and, perhaps, provide the basis for an improved understanding of the process 
of cognitive skill acquisition. 

At an applied level, the present results have important implications for evaluation and 
training. In particular, it is apparent that normative assessments of pattern-recognition 
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during domain-relevant tasks are: (a) able to distinguish levels of expertise; and (b) are 
able to achieve a level of consistency necessary to track the acquisition of expertise over 
time. Consequently, the EXPERTise tool appears to provide a method of assessing the 
progression towards diagnostic expertise. 

With the development of standardized norms, it should be possible to determine 
whether an individual learner is developing diagnostic skills consistent with expecta-
tions and/or whether a particular level of performance has been achieved following 
exposure to specialist training. By assessing the four components of expert pattern rec-
ognition, EXPERTise can also be used to identify the individual skills that an expe-
rienced competent practitioner may be struggling to acquire. This information can then 
guide remedial training efforts. Such cue-based approaches to training have already met 
with some success in other domains, including aviation [14] and mining [22]. 

Each of the EXPERTise assessment tasks were designed to assess a distinct compo-
nent of expert pattern recognition and diagnosis. Therefore, if performance is relatively 
weaker on one or more of the tasks, it should be possible to identify the specific area of 
deficiency and thereby better target interventions. The application of this strategy can be 
used to improve the efficiency and the effectiveness of remedial diagnostic training and, 
as a consequence, minimize the costs associated with training interventions. 

The present series of studies were designed to determine whether four independent 
assessments of expert pattern-recognition could, collectively, distinguish competent 
from expert practitioners within experienced samples of diagnosticians. In both power 
control and medicine, performance on all four assessment tasks successfully differen-
tiated two groups, whereby experienced diagnosticians could be divided into compe-
tent and expert practitioners based on their capacity for pattern recognition or cue 
utilization. 

The successful differentiation of non-experts and experts in dissimilar diagnostic 
domains demonstrates the utility of the EXPERTise tasks. It also highlights the im-
portance of pattern-recognition in expert performance generally. In time, pattern-
recognition based assessments, like EXPERTise, may be used to determine whether 
experienced practitioners are developing expertise at a rate that is consistent with their 
peers. Individuals’ who perform at an unsatisfactory level may benefit from remedial 
training. It is expected that this combination of progressive assessment and remedial 
training may reduce the rate and severity of errors involving diagnosis. 
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Abstract. Factorial designs are widely used experimental plans for identifying
important factors in screening studies where many factors are involved. In many
practical situations where some interactions are significant, the design is super-
saturated and the experimental analysis becomes infeasible due to the lack of
degree of freedoms [9]. Recently, a new analysis procedure called the Stepwise
Response Refinement Screener (SRRS) method is proposed to screen important
effects for supersaturated designs [6]. This paper extends this method to the two-
level factorial designs. The applications to several real-life examples suggest that
the SRRS method is able to retrieve similar results as the existing methods do.
Simulation studies show that compared to existing methods in the literature, the
SRRS method performs well in terms of the true model identification rate and the
average model size.

Keywords: Stepwise Response Refinement Screener (SRRS), Akaike Informa-
tion Criterion (AIC), Screening experiment, factorial designs, Supersaturated
designs.

1 Introduction

As science and technology have advanced to a higher level nowadays, investigators are
becoming more interested in and capable of studying large-scale systems. To address
these challenges of expensive experimental costs, research in experimental design has
lately focused on the class of supersaturated designs (SSD) for their run-size economy
and mathematically novelty. Under the condition of factor sparsity [2], these experi-
ments aims at correctly identifying the subset of those active factors that have significant
impact on the response, so that the whole investigation can be economically proceed via
discarding inactive factors prior to the follow-up experiments.

Traditionally, SSDs are employed only for screening main effects, and interactions
are discarded due to limited degree of freedom. More refined analysis methods were
recently developed and Phoa, Pan and Xu (2009) [8] provides a comprehensive list of
recent analysis methods found in the literature. Candes and Tao (2007) [3] proposed the
Dantzig selector (DS) and showed that it has some remarkable properties under some
conditions. Phoa, Pan and Xu (2009) [8] implemented the DS in practice, introducing
a graphical procedure via a profile plot for analysis and an automatic variable selection
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DOI: 10.1007/978-3-642-36530-0_2 c© Springer-Verlag Berlin Heidelberg 2013
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procedure via a modified Akaike information criterion (AIC). Traditionally, AIC is
used for model selection. For linear models, it is defined as

AIC = n log(RSS/n) + 2p (1)

where RSS =
∑n

i=1(yi − ŷi)
2 is the residual sum of squares and p is the number

of parameters in the model. It is known that AIC tends to overfit the model when the
sample size is small. Phoa, Pan and Xu (2009) [8] imposed a heavy penalty on the model
complexity and proposed a new modified AIC for the DS method, which is defined as

mAIC = n log(RSS/n) + 2p2 (2)

The mAIC typically chooses a smaller model than AIC.
Recently, Phoa (2012) [6] introduce a new variable selection approach via the Step-

wise Response Refinement Screener (SRRS). The SRRS chooses the best subset of
variables or active factors by two procedures: Factor Screening and Model Searching.
This method has shown its superior model selection ability via a comparison to five
commonly used methods in the literature, namely SSVS [4], SSVS/IBF [1], SCAD [5],
PLSVS [17] and the DS [8] method. Readers who are interested in the main idea of the
SRRS method are referred to Phoa (2012) [6]. This paper aims at extending the SRRS
method to the variants of supersaturated experiments. In section 2, we proposes the pro-
cedure of SRRS with Heredity Prinicple, which is modified from the original version
introduced in Phoa (2012) [6]. Some notes about the procedure and modifications are
disucssed briefly in this section. To demonstrate the value of the SRRS method, two
real-life examples are demonstrated in section 3 and a simulation study is performed in
section 4. The result shows that the SRRS method is powerful for analyzing not only
SSDs but also its variant designs. The last section gives some concluding remarks.

2 Analysis of Fractional Factorial Designs via the SRRS Methods

Fractional factorial designs (FFDs) are classified into two broad types: Regular FFDs
and Nonregular FFDs. Regular FFDs are constructed through defining relations among
factors and are described in many textbooks [14]. These designs have been widely used
in scientific researches and industrial processes because they are simple to construct and
to analyze. On the other hands, nonregular FFDs such as Plackett and Burman (1946)
[12] designs, Quaternary-code designs (Phoa and Xu 2009 [10], Zhang et. al. 2011 [16])
and other orthogonal arrays are often used in various screening experiments for their run
size economy and flexibility [14]. Phoa, Xu and Wong (2009) [11]demonstrated the ad-
vantages of using nonregular FFDs using two real-life toxicological experiments. Phoa,
Wong and Xu (2009) [9] used three real-life chemometrics examples to show the anal-
ysis pitfalls when the interactions are assumed to be insignificant without verifications.

In this section, we extend the use of the SRRS method to the analysis of two-level
nonregular fractional factorial designs (FFDs).
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2.1 Modification of the SRRS Method Accompanied for the Analysis
of Nonregular Designs

Consider a nonregular FFDs with k1 main effects and n runs, where n < m. There
are k2 = k1(k1 + 1)/2 interactions between two different main effects. If all two-
factor interactions are considered together with all main effects, it is possible that k2 >
m, then the design matrix is supersaturated. We express the relationship via a linear
regression model y = Xβ+ ε where y is an n× 1 vector of observations, X is an n×k
model matrix for k = k1 + k2, β is a k × 1 vector of unknown parameters, and ε is an
n× 1 vector of random errors. Assume that ε ∼ N(0, σ2In) is a vector of independent
normal random variables. In addition, X is assumed to be supersaturated, i.e. n < k.
We denote m to be the number of potentially important effects (PIEs) and Sinf to be
the influential set of PIEs found in the process.

Traditionally, the analysis of nonregular FFDs is based on two assumptions: the fac-
tor sparsity principle and the effect heredity prinicple. The first assumption has been
embedded in the SRRS method, but the second assumption does not. In order to im-
plement the heredity principle into the SRRS method, the two procedures of the SRRS
method are slightly modified and presented in the following steps:

I. SRRS (with Heredity Prinicple)–Factor Screening:
Step 1. Standardize data so that y0 has mean 0 and columns of X have equal lengths.
Step 2. Compute the marginal correlations ρ(Xi, y0) for all main effects Xi, i =

1, . . . , k. (∗)
Step 3. Choose E0 such that |ρ(E0, y0)| = maxXi |ρ(Xi, y0)|. Identify E0 as the first

PIE and include E0 in SInf .
Step 4. Obtain the estimate βE0 by regressing y0 on E0.
Step 5. For the next m PIEs Ej where j = 1, . . . ,m, m < n− 2,

(a) Compute the refined response yj = yj−1 − Ej−1βEj−1 .
(b) Compute the marginal correlations ρ({Xi, Xij}, yj) for all main effects

Xi, i = 1, . . . , k and all two-factor interactions Xij , Xj ∈ SInf . (∗)
(c) Choose Tj such that |ρ(Tj, yj)| = max{Xi,Xij} |ρ({Xi, Xij}, yj)|. (∗)
(d) Obtain the estimate βTj by regressing yj on E0, . . . , Ej−1, Tj .
(e) If |βTj | ≥ γ and has not been included in Sinf , identify Tj as a PIE (i.e.

Ej = Tj) and include Ej in Sinf .
(f) Repeat (a) to (e) up to mth step, where Ej = Em is not included in Sinf .

m is determined by either m < n− 2 or the threshold condition |βTj | ≥ γ
or both.

II. SRRS (with Heredity Principle)–Model Searching:

Step 6. Perform all-subset search, with the consideration of the heredity principle, for
all Ej , from models with one factor to models with m factors, where m is
minimum between the ceiling of n/3 or the number of Ej in Sinf . (∗)

Step 7. Compute mAIC for each model and choose the final model with the smallest
mAIC among all models, and all Ej included in the final model are considered
to be significant to the response y0.
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2.2 A Brief Discussion on the Main Idea of the SRRS Method

There are several notes that needs further discussions in the procedure of the SRRS
method, including the threshold gamma, the refined response, the stopping criteria and
the modifications from the original SRRS method used in the analysis of supersaturated
designs.

The first note is about gamma. It is a threshold between signal and noise and a
relatively small γ should be chosen. One can choose γ according to the information on
the magnitude of effects or noise. For example, Phoa, Pan and Xu (2009) [8] suggested
to choose γ to be approximately 10% of the maxmimum absolute estimates in their
simulation study. It is recommended that the procedure should be repeated with a few
choices of γ. When the signal and noise ratio is large, the choice of γ is not crucial.
However, if the result is sensitive to the choice of γ, one should be cautious about
the procedure and the result. Generally speaking, we choose γ to be approximately
5% − 10% of |βE0 | in the examples and simulation studies of this paper. Although
|βE0 |may not be the maximum absolute slope estimate in some cases, it is conservative
to set a slightly smaller γ, so that one or two more factors are considered as PIEs.

The second note is about the refined response. yj is obtained by reducing a portion
of magnitude that only corresponds to Tj−1 from yj−1. The portions of magnitude
that corresponds to all other PIEs are preserved in yj . Therefore, only the marginal
correlation between yj and Tj−1 will be zero, and the marginal correlations between
yj and all other factors, including those that have been included in Sinf , are compared
in step 5(b). The magnitudes of these marginal correlations consist of: (i) some middle
to high values, which indicate that these factors still have possibilities to be PIEs after
j refinements, and (ii) some close-to-zero values, which indicates that these factors
do not have impact on the response anymore. Thus, the selection in Step 5(c) can be
interpreted as the selection of the PIEs that has the highest marginal correlation to the
refined response.

The third note is about the stopping criteria. There are two criteria that can stop the
search. The first criterion is the number of PIEs in Sinf . The Model Searching proce-
dure of the SRRS requires to build the regression models between the PIEs in Sinf and
the original response y0. This means the number of PIEs has to be at most the number
of runs minus two, so that there are enough degrees of freedom to estimate all PIEs,
the intercept and the residual of the model, or otherwise the design is supersaturated
again. It leads to the first criterion: m < n − 2. The second criterion is related to the
magnitude of the slope estimate. Any magnitudes that are lower than γ are considered
as noise. If Ej is chosen in Step 5(c) but |βEj | is found to be smaller than γ, Step 5(e)
suggests that Ej is not a PIE. Then the search stops because even if |βEj | < γ, all other
factors with smaller absolute marginal correlations to yj have smaller slope estimates
than |βEj |, and so all these slope estimates, whose absolutes are smaller than γ, will be
considered as noise.

The last note is about the modification. There are several modifications in the current
version specified for embedding the Heredity Principle. The first modification is in Step
2. Due to the heredity principle, two-factor interactions can never be selected as the first
PIE, so only the marginal correlations of all main effects are compared for selecting the
first PIE. The second and third modifications are in Step 5. During the search of the
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jth PIE, not all two-factor interactions are considered in the comparison of marginal
correlation. Heredity principle suggests that a two-factor interaction Xij is considered
in Step 5(b) if and only if either Xi or Xj or both parents main effects have been
included in SInf in the previous searches. Therefore, the modifications in Step 5 take
away a subset of two-factor interactions that none of their corresponding parent main
effects have been PIEs. The last modification is in Step 6. The reduced models built
in this step must follow the heredity principle in order to avoid the situation that some
significant two-factor interactions are included in the reduced model but none of their
parent main effects have been included.

2.3 Two Illustrating Examples

We illustrate the analysis of nonregular FFDs via the SRRS method step by step using
the following two examples. The Factor Screening procedures is terminated via the
noise threshold in the first example and via the maximum number of PIEs in the second
example.

Example 1. Consider the cast fatigue experiment (Wu and Hamada 2000 [14], section
7.1), a real data set consisting of seven two-level factors. The design matrix and the
response are found in Wu and Hamada (2000) [14]. When all two-factor interactions
are considered to be as important as the main effects, the design matrix consists of 21
additional interactions and is supersaturated.

In the Factor Screening procedure, the first PIE being identified is F and its absolute
marginal correlation to y0 is the highest among all main effects (0.6672). A regression
model between y0 andF is built and the magnitude of the slope estimate |βF | = 0.4576.
Then we set the threshold γ = 0.04, about 10% of βF .

To search for the second PIE, the new response y1 is refined by subtracting FβF

from y0. Then among all main effects and all the two-factor interactions that consist
of F , FG (the interaction between main effects F and G) has the highest absolute
marginal correlation (0.8980) to y1 and so it is identified as the second PIE. A regression
model between y1 and FG, F is built and the magnitude of the slope estimate |βFG| =
0.4588 > γ. This means FG is important enough to be included in the influential set
SInf together with F .

The procedure continues to search for the next five PIEs. Table 1 shows every step
of the process of Factor Screening. Note that in the last step, the absolute magnitude of
the slope estimate of AE is close to 0, so the search stops and seven PIEs are identified
in the Factor Screening procedure.

Since there are 12 observations in the data, the maximum number of active factors
is suggested to be 4. There are totally 98 reduced models up to four-factors models that
are constructed from seven PIEs, but only 49 of them fulfill the heredity principle. A
comparison of the mAICs of these 49 reduced models shows that the two-effects model
with F and FG has the lowest mAIC = −27.82. Thus the SRRS method suggests that
F and FG have significant impacts to the response y0. This result is also recommended
by Wu and Hamada (2000, Section 8.4) [14] and the Dantzig selector (DS) method in
Phoa, Pan and Xu (2009) [8].
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Table 1. Factor Screening of Cast Fatigue Experiment Data

Marginal Continue
m PIE Correlation |β| or Stop
0 F 0.6672 0.4576 Continue
1 FG −0.8980 0.4588 Continue
2 D −0.4677 0.1183 Continue
3 EF −0.6336 0.1442 Continue
4 C 0.5032 0.0758 Continue
5 E −0.5817 0.0785 Continue
6 AE −0.7667 0.1482 Continue
AE −0.6835 0 Stop

PIEs in SInf after Factor Screening:
C, D, E, F , AE, EF , FG

Example 2. Consider the high-performance liquid chromatography (HPLC) experiment
[13], a real data set consisting of eight two-level factors. The design matrix and the re-
sponse are found in Phoa, Wong and Xu (2009) [9]. When all two-factor interactions
are considered to be as important as the main effects, the design matrix consists of 28
additional interactions and is supersaturated.

In the Factor Screening procedure, the first PIE being identified is E and its absolute
marginal correlation to y0 is the highest among all main effects (0.5019). A regression
model between y0 andE is built and the magnitude of the slope estimate |βF | = 0.5583.
Then we set the threshold γ = 0.05, about 10% of βE .

To search for the second PIE, the new response y1 is refined by subtracting EβE

from y0. Then among all main effects and all the two-factor interactions that consist
of E, EF (the interaction between main effects E and F ) has the highest absolute
marginal correlation (0.8055) to y1 and so it is identified as the second PIE. A regression
model between y1 and EF , E is built and the magnitude of the slope estimate |βEF | =
0.7750 > γ. This means EF is important enough to be included in the influential set
SInf together with E.

The procedure continues to search for the next eight PIEs. Table 2 shows every step
of the process of Factor Screening. Note that in the last step, although the absolute
magnitude of the slope estimate of EF is 0.0667 > γ, the m < n − 2 criterion stops
the search and nine PIEs are identified in the Factor Screening procedure.

Since there are 12 observations in the data, the maximum number of active factors
is suggested to be 4. With nine PIEs found in the previous step, there are totally 255
reduced models up to four-factors models, but only 102 of them fulfill the heredity
principle. A comparison of the mAICs of these 102 reduced models shows that the
three-effects model with E, F and EF has the lowest mAIC = −6.48. Thus the
SRRS method suggests that E, F and EF have significant impacts to the response y0.

Phoa, Wong and Xu (2009) [9] previously analyzed the same data and concluded that
an additional effect H was also significant to the response. The mAIC of the model
consisting of E, F , H and EF is −3.95, which is slightly higher than our suggested
model. The increase of mAIC when H is added comes from the heavy penalty to the
number of factors in the model. If other penalty terms are used, results may be different.
For example, the original AIC favors the addition of H . Therefore, H may be barely
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Table 2. Factor Screening of HPLC Experiment Data

Marginal Continue
m PIE Correlation |β| or Stop
0 E −0.5019 0.5583 Continue
1 EF 0.8055 0.7750 Continue
2 F 0.7747 0.4417 Continue
3 H −0.7396 0.3000 Continue
4 FH 0.5897 0.1625 Continue
5 A 0.6922 0.1389 Continue
6 FI −0.5295 0.0893 Continue
7 EI 0.5713 0.0836 Continue
8 AF −0.6587 0.0792 Continue

EF 0.6951 0.0667 Continue
PIEs in SInf after Factor Screening:
A, E, F , H , AF , EF , EI , FH , FI

significant and some follow-up experiments are suggested to investigate the significance
of H to the response.

3 Simulation Studies

In order to judge the value of the SRRS method, we randomly generate some models
and evaluate the performance of the SRRS method.

Example 3. In this example, we generate data from the same linear model as in Exam-
ple 1. Since there are only 12 observations in the data, the maximum possible number
of active factors is 4. Therefore, we consider four cases for beta. There are i active
factors for case i, 1 ≤ i ≤ 4. For each case, we generate 500 models where the selec-
tion of active factors is random without replacement, the signs of the active factors are
randomly selected from either positive or negative, and the magnitudes are randomly

Table 3. Summary of Simulation Results in Example 3

Case I II III IV
Min TMIR 94% 47% 5% 0%

Size 1.00 1.85 2.05 1.06
1st Q. TMIR 97% 97% 44% 15%

Size 1.01 2.01 3.00 2.42
Median TMIR 98% 97% 96% 53%

Size 1.02 2.02 3.00 3.30
3rd Q. TMIR 99% 99% 99% 88%

Size 1.03 2.03 3.01 3.76
Max TMIR 100% 100% 100% 99%

Size 1.06 2.05 3.04 3.98
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selected from 2 to 10 with replacement. For each model, we generate data 100 times
and obtain the True Model Identified Rate (TMIR) and the average model size. In the
simulations we fix γ = 1, which is approximately equal to 10% of max |βi|. Table 3
gives the summary statistics of these two quantities among 500 models.

The SRRS method is very effective in identifying 1, 2 and 3 active factors; the TMIR
in these cases are at least 96% in average true model identified rate and only a few cases
that have average model sizes slightly higher than the true numbers of active factors.
The performance of the method decreases in identifying 4 active factors. It is mainly
because of the limit posted on the allowed number of active factors, which leads to a
slightly underfitting situation.

4 Concluding Remarks

The Stepwise Response Refinement Screener (SRRS) method has shown its satisfac-
tory performance on screening the supersaturated designs in Phoa (2011) [6]. In this
paper, we modify the SRRS method in order to adapt for analyzing the nonregular
FFDs with the consideration of interactions. Under the validity of the factor sparsity
and effect heredity assumptions, the calculations needed to carry out the analysis are
simple and easily performed with little computation time. Simulation suggests that the
SRRS method performs well in most of the cases, except when it is on the line of max-
imum number of allowed active factors. However, we cannot ensure that this method
works well in every case, and sometimes it may still possible to reach misleading con-
clusion. Although some theoretical works are still under investigation, the results of the
SRRS are shown to be interesting from a partitioner point of view. The R function of
the SRRS is available by email request from the author, and the standalone program for
the SRRS will be available soon.

It is highly recommended that once the suggested set of significant factors is found,
a follow-up experiment is needed for validating the results. It is more economical and
efficient to use nonregular fractional factorial designs than full factorial designs in the
validation process. A detailed review on nonregular fractional factorial designs is re-
ferred to Xu, Phoa and Wong (2009) [15] and a systematic construction method for
nonregular fractional factorial designs of the required size is referred to Phoa and Xu
(2009) [10] and Phoa, Mukerjee and Xu (2012) [7].

The procedure of the SRRS suggested in this paper can be easily modified and ex-
tended to the analysis when higher order interactions are found to be significant. For
example, if it is necessary for considering the significance of three-factor interactions
to the impact of the response, the procedure can be slightly modified to accomodate the
inclusion of three-factor interactions under the rule of Heredity Prinicple. The proce-
dure can also be extended to multi-level factorial designs with certain transformations.
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Abstract. Class-level object detection is a fundamental task in computer vision 
and it is usually tackled with global or local image features. In contrast to these 
approaches, we propose semi-local features that exploit object segmentation as 
a pre-processing step for detection. The term semi-local features depicts that the 
proposed features are locally extracted from the image but globally extracted 
from the object. In particular, we investigate the impact of features generation 
approaches from differently transformed object regions. These transformations 
are, on the one hand, done with several object-background modifications and 
bounding-boxes. On the other hand, state-of-the-art texture and color features as 
well as different dissimilarity measures are compared against each other. We 
use the Pascal VOC 2010 dataset for evaluation with perfect and inaccurate ob-
ject segments and to perform a case study with an automatic segmentation ap-
proach. The results indicate the high potential of semi-local features to assist 
object detection systems and show that a significant difference exists between 
different feature extraction methods. 

Keywords: Object detection, Visual features, Segmentation. 

1 Introduction 

Recently, a set of object detection approaches have been proposed where segmenta-
tion is used as a pre-processing step [1-4]. They outperform sliding window ap-
proaches although almost the same features and classification techniques are used. 
We believe that customized features that are less distracted by the object’s back-
ground can further improve these results. Thus, the main research question of this 
work is: How to extract state-of-the-art texture and color features best from  
segmented objects to improve detection systems? The proposed semi-local features 
exploit different region modifications to set the focus on specific object properties. 
Furthermore, these features are simple and fast to compute which makes them suitable 
to assist segmentation-based object detection systems. 

Generally, the detection of class-level objects in real-world images is a challenging 
task for automated systems that is far from solved. Objects can be situated every-
where and at every size in an image. They can be occluded and shown under all kinds 
of perspective distortions or under different lighting conditions. Moreover, intra class 
differences and inter class similarities can complicate this task. Even humans some-
times fail to distinguish between closely related classes like bicycles and motorbikes, 
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when only a single image with difficult examples is shown. However, the complexity 
of object detection can be reduced when a set of segmented object hypotheses are 
given in the first place [2] as it is accurately known where to search for an object.  

 

Fig. 1. Semi-local features: A region that covers the entire segmented cow is prepared (here: 
background replaced by white pixels) to extract color and texture features from it 

In this work, we extract well-established image features semi-locally from seg-
mented objects. Thereby, color and texture features are generated from image regions 
that contain the entire object. We use the term semi-local features because these fea-
tures are locally extracted from the image but globally extracted from the object. Fur-
thermore, we show that the use of differently prepared image regions facilitates the 
power of these features. For instance, the object background is excluded and replaced 
by white pixels in Fig. 1.  

This work contributes to object detection research with an extensive study on the 
suitability of semi-local features for the classification of segmented objects and the 
influence of different region preparation techniques. The used set of image features 
and dissimilarity measures should ensure that the evaluation results are as universally 
valid as possible. On the one hand, we work on interactively generated segmentations 
that are provided by the Pascal VOC challenge [5] and use a simple nearest neighbor 
classification. In addition to this perfect segmentation, we simulate inaccurate seg-
mentations for comparison. On the other hand, we perform a case study on automati-
cally segmented regions to gain further insights into the semi-local feature approach. 

The remainder of the paper is organized as follows. Section 2 describes related 
work in the field of object detection and segmentation. Section 3 presents semi-local 
features. Section 4 explains the experiments and Section 5 draws conclusions and 
future research directions. 

2 Related Work 

Local features [6] are a part of the best practice for object detection systems. First, 
these features are regularly sampled or extracted around interest-regions [7] before 



 Object Detection with Semi-local Features 25 

 

they are generalized to one or more bag-of-features (BoF) per image [8-9]. This BoF 
approach produces fixed-length vectors for classification. In order to locate objects 
within an image, many sub-regions are then investigated with a sliding window [10]. 
In addition to BoFs, global and semi-local features have been successfully used for 
related tasks, such as scene classification [11], geometric context retrieval [12], and 
human body detection [13]. 

2.1 Segmentation-Based Detection 

Object detection approaches that operate on segmented objects [1-4] work similar to 
sliding window approaches but with a heavily reduced search-space. Thus, more po-
werful (and computationally more expensive) recognition approaches can be applied. 
However, this benefit is not extensively exploited so far: In [1] color histograms and 
RCF (regionSIFT) descriptors are extracted from the segmented objects. [2], [3], and 
[14] generate BoFs from SIFT [15], colorSIFT [8], local shape context [14], and gray-
value patches. In [2] independent BoFs are extracted from the segmented object and 
its background within a bounding box as well as semi-local HoG features [13]. [3] 
sets all background pixels to black and extracts local features from interest-regions 
that overlap with the segmented object. We use a similar zero-masking step to gener-
ate features with a higher weighting of the object shape.  

Only [16] propose segmentation specific features, called boundary object shape, 
where the geometric relations of object boundary edges are measured. We further 
explore this idea and propose customized features for the classification of segmented 
objects. To the knowledge of the authors, no work has been proposed so far that in-
vestigates such semi-local features for object detection. 

2.2 Segmentation Approaches 

Different object segmentation approaches including Normalized Cuts [17], MinCuts 
[18], and Mean-Shift [19] have been used for the object detection systems described 
above. A good overview of segmentation approaches can be found in [20]. In contrast 
to semantic segmentation [21], these approaches work without knowledge about the 
segmented objects and they are used to generate a ‘soup’ of many overlapping seg-
mentations. Such multi-segmentation approaches can achieve higher object detection 
rates when overlapping segments are individually classified and combined afterwards 
[2]. All of the described object detection systems work with unsupervised segmenta-
tion. However, it can be useful to test single stages of such detection systems on inte-
ractively generated object segments that are almost perfect [1]. We use this strategy  
to compare different semi-local features that are extracted from perfectly and inaccu-
rately segmented objects. 

3 Semi-local Features 

We extract and classify semi-local features from segmented objects in following steps. 
First, a set of transformed image regions are prepared from every segmented object. 
Next, different color and texture features are extracted from these regions and stored in 



26 R. Sorschag 

 

a database. The features of each object are then matched against the features of all other 
objects using a nearest neighbor strategy with several dissimilarity measures. At last, we 
evaluate the percentage of correctly matched features for each object class. 

3.1 Region Preparation 

In the region preparation step, we use different object-background modifications, seg-
mentation accuracies and bounding boxes to transform object segments into regions for 
semi-local feature extraction. In the following, these region preparation methods are 
explained and their effects on the resulting feature properties are discussed. 

 

Fig. 2. Region preparation techniques from perfect (top row) and inaccurate segments (bottom 
row), shown for the cow of Fig. 1 and the plane of Fig. 3. The columns correspond to the re-
gions explained in Table 1. 

Object-Background Modifications. We use six different modification techniques, 
shown in the columns of Fig. 2 and in the rows of Table 1. Region 1 is equivalent to 
bounding boxes without segmentation. No focus is set to specific properties of the 
object in these regions. In the opposite, shape is the only attribute left to describe in 
Region 6. In Region 2 and Region 3 black and white backgrounds are used. These 
regions set the focus to the object shape and its content (texture and color). Region 4 
keeps the characteristics of the original background although the object is focused and 
the object boundaries are sharpened. We use Gaussian smoothing to blur the back-
ground of these regions heavily. The Gaussian noise of Region 5 also sets focus to the 
object but with fewer weighting of the object shape. In preliminary experiments, we 
have tested further object-background modifications (e.g. object boundary expansion) 
but the six selected ones performed best. 
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Table 1. Object-background modifications. The focus of each region and the properties of the 
resulting semi-local features reflect these modifications. 

Region Object Background Focus 
Region 1 original original none 
Region 2 original black shape & object 
Region 3 original white shape & object 
Region 4 original blurred object & background 
Region 5 original Gaussian noise object 
Region 6 white black shape 

Bounding Boxes. Most image features are extracted from square image regions. 
However, segmented objects are given as arbitrarily shaped polygons or image masks, 
and thus we operate on bounding boxes around such object segments. As shown in 
Fig. 3, we select two different bounding boxes for each object. First, we use tight, 
rectangular bounding boxes that touch the segment bounds on all four sides. These 
regions are resized to squares in a pre-processing step. Secondly, we use square 
bounding boxes that touch the object bounds only in the larger dimension. These re-
gions contain larger parts of the object’s background but no additional resize step 
changes the aspect ratio of these regions. 

 

Fig. 3. Bounding boxes. Two different bounding boxes are used for region preparation from 
each segmented object (left). The square bounding box includes more background but does not 
change the aspect ratio of the resulting regions (right). 

Segmentation Accuracy. As shown in Fig. 2, we use two different segmentation 
accuracies. On the one hand, perfect segmentations are given from the Pascal VOC 
dataset [5]. The object pixels are thereby used as foreground and all others are used as 
background. On the other hand, we simulate an inaccurate segmentation using the 
convex hull of all pixels that belong to a perfectly segmented object. No holes are 
retained in this approach but the actual object shape is heavily changed. In the case 
study of this work, we further use an automatic object segmentation approach. For 
these experiments no information about the segmentation accuracy is given. 

3.2 Image Features 

Four popular texture and color features are used in the experiments: SIFT, Gabor 
wavelets, MPEG-7 ColorLayout and ScalableColor. We omit to add specific shape 
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features because the used texture features extracted from Region 6 (white object on 
black background) already present effective shape features. 

Texture Features. SIFT features [15] consist of 8-dimensional orientation histograms 
that are computed from the image gradients in 16 slightly overlapping sub-regions on 
a 4x4 grid. They are normalized to increase the robustness against color and illumina-
tion changes. In the proposed semi-local feature approach, we extract only one SIFT 
feature from the entire object region without interest point detection. Gabor wavelets 
[23] are computed with a bank of orientation and scale sensitive Gabor filters. We use 
the mean and standard deviation of each filter output as final feature values. 

MPEG-7 Color Features. ColorLayout [22] presents the spatial distribution of colors 
in a very compact form. They cluster an image or an image region into sub-regions of 
8x8 pixels and compute the average pixel value for each of them. Finally, the first low 
frequency coefficients of a discrete cosine transform are selected. ScalableColor fea-
tures [22] use a quantized HSV color histogram to build a scalable binary tree from 
their indexed probability values before a discrete Haar transformation is applied. The 
resulting features are scale invariant. 

3.3 Object Detection 

We compute the nearest neighbor for the segmented objects using all described region 
preparation techniques and feature types independently. Thereby, each segmented 
query object is matched against all other segmented objects in the dataset. The object  
 
Table 2. Dissimilarity measures used to classify semi-local features: n specifies the dimension 
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class of the nearest neighbor is then used to determine the class of a query object. We 
perform this nearest neighbor classification with following dissimilarity measures to 
get as general findings as possible. 

The dissimilarity measures of Table 2 have been chosen according to their high 
performance for image retrieval with global features in [24]. We believe that more 
sophisticated classification approaches can be used to achieve better detection results, 
but it is out of the scope of this work to identify the best classification strategies. In-
stead, we try to perform a fair comparison between the proposed feature extraction 
techniques and want to show how these features can be used to improve existing  
detection systems. 

3.4 Implementation 

Most object detection systems consist of heterogeneous components and they are 
deeply integrated into their application workflow. This makes it difficult to alter spe-
cific components of these systems if changes are required for some reason. In contrast 
to this practice, we use the configurable object recognition infrastructure CORI [25] 
to enable the interchangeability of different segmentation approaches, region prepara-
tion methods, visual features, and dissimilarity measures. On the one hand, CORI 
facilitates the development of these components in a reusable way, independent from 
specific tasks. On the other hand, new processing chains can be arranged with simple 
configurations by the selection of desired components and their parameters. 

In this work, we focused on the development of two novel CORI components: a 
segmentation wrapper and a region preparer. The segmentation wrapper operates on the 
output images of typical segmentation approaches instead of supporting only one single 
approach. As shown in Fig. 4, these output images contain each segmented region in a 
different color for both, image and object segmentation. The only difference is that ob-
ject segmentation approaches (right image) only segment those regions that probably 
belong to an object while non-object pixels are black and object boundary pixels are 
shown in white. For the experiments of this work, perfect object segmentation images 
are used and inaccurate segmentations are simulated in a further preprocessing step. 
However, we also wanted to support a fully automated object detection workflow. Thus, 
we implemented the segmentation wrapper in a way that it is able to execute various 
segmentation approaches as an external process. Currently, this works for every seg-
mentation approach that is executable from the command line with the arguments input 
image directory and output directory. Eventually, the segmentation wrapper returns the 
bounding box (square or rectangle) and the pixel mask of each segment. 

The region preparer uses the original image and the segmentation wrapper results as 
input in order to generate the proposed image regions for semi-local features generation. 
In this implementation, we first generate a new image with the size of the bounding box 
of this segment and fill it with the background of the current region, see Table 1. The 
smoothing of Region 4 is thereby applied by convolution with a Gaussian mask using 
the Intel Performance Primitives. After this step, each pixel of the new image that is 
given in the region mask is replaced with the original pixel from the input image or with 
a white pixel for Region 6, respectively. Finally, we resize the new image to a fixed size 
of 64x64 pixels for the computation of color and texture features. 
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Fig. 4. Segmentation output: The input image (left) is transformed into a set of image regions 
(middle) or to segmented objects with black background and white boarder pixels (right) 

4 Evaluation 

In the experiments, two different evaluation strategies are used. On the one hand, we 
computed the recall of correctly classified objects for each object class and for all 
classes combined. On the other hand, we did a precision-at-k evaluation to count the 
number of query objects with at least one correct match in the top k entries (k = 1-10). 
Afterwards, we performed an initial case study to investigate semi-local features in 
combination with automatic image segmentation approaches.  

4.1 Dataset 

We used the open Pascal VOC 2010 segmentation dataset [5] for all experiments. In 
this dataset, 20 different object classes (see x-axis of Fig. 5) are perfectly segmented 
in 1928 Flickr images. The ground-truth contains a total number of 4203 objects 
whereby several object classes occur more often than other ones. For instance, 928 
persons and 108 dining tables are given. All images are provided with JPEG encoding 
and a longer dimension side of 500 pixels. 

Table 3. Overall recall (in %) for perfect and inaccurate segmentation 

  R.1 R.2 R.3 R.4 R.5 R.6 

P
er

fe
ct

 S
eg

 

SIFT 25.0 38.3 40.4 32.0 29.8 46.5 
GW 20.5 37.2 39.9 21.0 31.5 45.0 
CL 15.4 22.4 23.6 19.6 15.0 28.7 
SC 16.4 21.8 21.4 21.6 16.5 - 

In
ac

c.
 S

eg
. SIFT 25.0 27.2 27.5 22.5 27.2 12.1 

GW 20.5 25.3 24.8 19.1 25.1 10.8 

CL 15.4 16.8 18.6 17.9 15.2 15.1 

SC 16.4 16.5 16.8 16.5 15.8 - 

4.2 Results 

The results are organized according to following aspects: the suitability of semi-local 
features for object detection; the role of region preparation, segmentation accuracy, 
used image feature types, and dissimilarity measures. Fig. 5 and Table 3 are used  
to illuminate these points. Both show the achieved recall of a nearest neighbor classi-
fication with Jeffrey divergence on squared bounding boxes. 
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Fig. 5. Recall per object class from perfectly segmented objects. For each feature type the re-
sults of the best region are shown. The object classes are sorted according to their highest result 
from left to right. 

Semi-local Features. Fig. 5 shows that the recall rates of the best matching object 
classes are significantly above 50% for texture features. Furthermore, the results of all 
objects are clearly above random classification (5%) independent of the used feature 
type. The fact that all 4-legged animals (sheep, horse, cow, cat, dog) are below the 
average, indicates that inter-class similarities decrease their classification. As shown 
in Table 3, the highest overall recall of 46.5% was achieved with SIFT features from 
perfectly segmented Region 6. Moreover, 80% of all objects have at least one correct 
match within the first 10 retrieved objects for the same configuration. These results 
clearly indicate that semi-local features are able to facilitate the detection of accu-
rately segmented objects. 

Region Preparation. Table 3 shows that texture features achieved the best results on 
Region 6 (white foreground on black background) where only shape information is 
given. This is also true for most object classes. MPEG-7 color descriptors generally 
perform best with original objects on black and white background (Regions 2 and 3). 
These regions are also the best choice for texture features when no accurate segmenta-
tion is given. At the first glance, white background outperforms black background on 
the given dataset but the results of the precision-at-k did not verify this assumption. 
Moreover, square bounding boxes always achieved better results than rectangle 
bounding boxes for SIFT and MPEG-7 features by an average increase of 2%. This 
indicates that the effect of changing the object’s aspect ratio is worse than using a 
larger amount of background. However, for Gabor wavelets no significant changes 
have been measured between square bounding boxes and rectangle ones. 

Segmentation Accuracy. In order to simulate inaccurate segmentations from the 
given test set, we used the convex hull around perfectly segmented objects. Table 3 
shows the classification results of perfectly and inaccurately segmented objects. These 
results indicate that accurate segmentation can improve the classification significantly  
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(up to +24.5%) when the region is prepared appropriately. In contrast, only smaller 
improvements of about 2% are achieved between unmodified regions (Region 1) and 
modified ones for inaccurate segmentation. Only the results of Gabor wavelets im-
prove from 20.5% to 25.3% and 24.8% for black and white backgrounds. Region 6 
performs worse than all other regions for inaccurate segmentation because these re-
gions only contain very rough object contours, as shown in Fig. 2. 

Feature Types. The performance of SIFT and Gabor wavelets is similar for both 
segmentation accuracies and all regions except Region 1 and Region 4 where the 
background is left unmodified and blurred, respectively. Gabor wavelets perform 
slightly better on rectangular bounding boxes while SIFT achieves better results on 
square regions. MPEG-7 ColorLayout and ScalableColor features perform worse than 
texture features for the given task. Although Fig. 5 indicates that ColorLayout outper-
forms ScalableColor this is only true because the best performing region preparation 
approach (Region 6) is not applicable for pure color features (ScalableColor) where 
no spatial information is used.  

Dissimilarity Measures. The difference between the best and the worst dissimilar-
ity measure for all features is about 3-5%. For instance, the results of SIFT features 
for Region 6 on perfect segmentations lie between 46.5% for the best (Jeffrey di-
vergence) and 42.4% for the worst measure (Canberra metric). The highest varia-
tions are caused by MPEG-7 ScalableColor features. It seems that the ranking of 
dissimilarity measures does not depend on the used region preparation technique 
because the results of all measures are similarly ordered for all techniques. The best 
dissimilarity measure for all features was Jeffrey divergence followed by Chi-
Squared statistics. The worst measure was Fractional distance for all features fol-
lowed by Canberra metric for texture features. L1 metric performed best of the 
Minkowski family measures, especially for texture features where the difference to 
L2 distance was above 2.5%. 

4.3 Case Study 

In addition to the evaluation based on perfect object segmentations, we performed a 
case study with the automatic image segmentation approach of [26]. This case study 
does not aim at the execution of an entire object detection workflow but it tries to 
discover potential challenges in the combination of non-perfect segmentation ap-
proaches with semi-local features. We intentionally selected a segmentation approach 
that is not amongst the top teams of the Pascal VOC segmentation challenge (compare 
[5] and [18]) because it adds every image pixel to an image region without region 
classification. As a consequence, we get three different segment types to challenge the 
proposed semi-local feature approach. The first segment type only captures parts of  
an object or the entire object. The second type captures only non-object parts while 
both are captured by the third type, object parts and image parts that do not belong to 
this object. The third image of Fig. 6 shows these segment types in gray, red, and 
yellow. 
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Fig. 6. Semi-local features from image segments of [26]. (a) original image, (b) image seg-
ments, (c) segment types: gray contains only background, red contains only object parts, yellow 
contains both, (d) Region 3 examples from combined segments. 

Experimental Setup. The case study is done with images of the Pascal VOC test set 
including several instances of all 20 objects. In a first experiment, we used the default 
parameters of the automatic segmentation approach and extracted semi-local features 
for each segment. In a second experiment, we executed the segmentation several 
times for each image with different parameters. In this process, we got a couple of 
overlapping segments for each object similar to the multi-segmentation approaches 
that are explained in the related work section. First, we performed a manual inspec-
tion of the resulting semi-local feature regions, compare Fig. 2. Then, we extracted 
the semi-local features of each image region for all proposed region preparation tech-
niques and performed a nearest neighbour search against the same features of all resi-
dual regions in the test set. In this process, we did another manual inspection of the 
matching regions. Note that no precision or recall values are given for this case study 
due to the small dataset size. 

Observations. The image segments often capture the object boundaries accurately on 
some sites but seldom on all sites at the same time. Semi-local features that are ex-
tracted from these partially accurate regions do not often match with features of the 
same object. It only works if the rough object size and aspect ratio is preserved by the 
object segment whereby the results of Region 4 are the best ones. Sophisticated 
matching or region preparation techniques are required to improve this performance. 
Thus, we experimented with the combination of neighbouring segments to one semi-
local feature, as shown on the right side of Fig 6. Improved performance pays the 
price of increased complexity when more segments are combined to one semi-local 
feature and we counted up to a few hundred segment combinations per image. Fur-
thermore, we observed that the segmentation robustness of specific object parts is 
good. For instance, the wheels of cars and busses were regularly segmented as indi-
vidual regions. Semi-local texture features of Region 6 seems to be good candidates 
for object detection with these object parts. The last observations consider the missing 
orientation invariance of the proposed semi-local features. If a large test set is given 
and the most common perspectives of each object are learned, orientation invariance 
is not important. Otherwise it is reasonable to rotate the image regions to their domi-
nant orientation before feature extraction to gain rotation invariance similar to [15]. 
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Discussion. From the object detection view, two different challenges arise from these 
observations. The first challenge is it to figure out which segment (or combination of 
segments) captures a trained object and which ones only capture background. The 
second challenge is which segment captures an object best if many overlapping hy-
potheses are given. Obviously, this second challenge mainly arises if we roughly 
know where in an image we should search for the object. This kind of information 
might stem from other object detection cues, such as a sliding window BoF approach.  
In order to tackle these challenges, we can either use perfectly segmented objects or 
automatically segmented objects to train the object detection system. In the first case, 
only accurately segmented objects would result in correct matches. However, per-
fectly segmented training examples seem to be the appropriate choice to identify the 
best segmentation of overlapping hypotheses, like the ones in the right of Fig. 6. In 
the second case, even partially accurate segmentations can lead to correct object de-
tection if they are segmented similarly in training and test images. 

5 Conclusions and Future Work 

In this work, we have proposed semi-local features for object detection using segmen-
tation as a pre-processing step. In this approach, state-of-the-art texture and color 
features are extracted from regions that cover the entire object with and without back-
ground modifications. Results of an extensive evaluation indicate that semi-local  
features are good candidates to improve object detection systems. The experiments 
investigated perfect segmentations and inaccurate ones, on the one hand, and auto-
matically segmented image regions, on the other hand. The classification was done 
with a nearest neighbor matching strategy and different dissimilarity measures to keep 
the evaluation as simple and universally valid as possible. 

In the evaluation, we have first shown that it does matter how the regions of seg-
mented objects are prepared for semi-local feature extraction. Regions with modified 
objects and backgrounds can improve the overall classification rate significantly 
compared to unmodified regions, especially for accurately segmented objects. Sec-
ondly, square bounding boxes achieves better results than tight, rectangular bounding 
boxes. Thirdly, texture features perform better than color features and improvements 
of a few percent can be achieved when the right dissimilarity measures are chosen. 
The Jeffrey divergence and Chi-Square correlation performed best for all feature 
types and region preparation techniques. 

For future work, we plan to investigate semi-local features in an integrated object 
detection system and on larger test sets of real-world images and videos. In this proc-
ess, we want to evaluate the impact of different segmentation approaches and the 
compatibility of semi-local features with best practice object detection approaches. 
Furthermore, it might be interesting to apply semi-local features also for other com-
puter vision tasks, for instance, in the area of robot navigation. 
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Abstract. Non-stationary time series are extremely challenging to model. We
propose a Bayesian mixture model framework for obtaining time varying param-
eters for a dynamic linear model. We discuss on-line estimation of time varying
DLM parameters by means of a dynamic mixture model composed of constant
parameter DLMs. For time series with low signal-to-noise ratios, we propose a
novel method of constructing model priors. We calculate model likelihoods by
comparing forecast distributions with observed values. We utilize computation-
ally efficient moment matching Gaussians to approximate exact mixtures of path
dependent posterior densities. The effectiveness of our approach is illustrated by
extracting insightful time varying parameters for an ETF returns model in a pe-
riod spanning the 2008 financial crisis; and, by demonstrating the superior per-
formance in a statistical arbitrage application.

Keywords: Bayesian inference, Dynamic linear models, Multi-process models,
Statistical arbitrage.

1 Background

1.1 Linear Models

Linear models are utilitarian work horses in many domains of application. A model’s
linear relationship between a regression vector Ft and an observed response Yt is ex-
pressed through coefficients of a regression parameter vector θ. Allowing an error of
fit term εt, a linear regression model takes the form:

Y = F Tθ + ε , (1)

where Y is a column vector of individual observations Yt, F is a matrix with column
vectors Ft corresponding to individual regression vectors, and ε a column vector of
individual errors εt.

The vector Y and the matrix F are observed. The ordinary least squares (“OLS”)
estimate θ̂ of the regression parameter vector θ is [1]:

θ̂ =
(
FF T

)−1

FY . (2)
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1.2 Stock Returns Example

In modeling the returns of an individual stock, we might believe that a stock’s return
is roughly a linear function of market return, industry return, and stock specific return.
This could be expressed as a linear model in the form of (1) as follows:

r = F Tθ + ε, F =

⎡⎣ 1
rM
rI

⎤⎦ , θ =

⎡⎣ α
βM

βI

⎤⎦ , (3)

where r represents the stock’s return, rM is the market return, rI is the industry return,
α is a stock specific return component, βM is the sensitivity of the stock to market
return, and βI is the sensitivity of the stock to it’s industry return.

1.3 Dynamic Linear Models

Ordinary least squares, as defined in (2), yields a single estimate θ̂ of the regression
parameter vector θ for the entire data set. Problems arise with this framework if we
don’t have a finite data set, but rather an infinite data stream. We might expect θ, the
coefficients of a linear relationship, to vary slightly over time θt ≈ θt+1. This motivates
the introduction of dynamic linear models [2]. DLMs are a generalized form, subsuming
Kalman filters [3], flexible least squares [4], linear dynamical systems [5,6], and several
time series methods — Holt’s point predictor, exponentially weighted moving averages,
Brown’s exponentially weighted regression, and Box-Jenkins autoregressive integrated
moving average models [2]. The regime switching model in [7] may be expressed as
a DLM, specifying an autoregressive model where evolution variance is zero except at
times of regime change.

1.4 Contributions and Paper Structure

The remainder of the paper is organized as follows. In section §2, we introduce DLMs
in further detail; discuss updating estimated model parameter distributions upon arrival
of incremental data; show how forecast distributions and forecast errors may be used to
evaluate candidate models; the generation of data given a DLM specification; inference
as to which model was the likely generator of the observed data; and, a simple exam-
ple of model inference using synthetic data with known parameters. Building upon this
base, in section §3 multi-process mixture models are introduced. We report design chal-
lenges we tackled in implementing a mixture model for financial time series. In section
§4, we introduce an alternative set of widely available financial time series permitting
easier replication of the work in [8]; and we provide an example of applying a mix-
ture model to real world financial data, extracting insightful time varying estimates of
variance in an ETF returns model during the recent financial crisis. In section §5, we
augment the statistical arbitrage strategy proposed in [8] by incorporating a hedge that
significantly improves strategy performance. We demonstrate that an on-line dynamic
mixture model outperforms all statically parameterized DLMs. Further, we draw atten-
tion to the fact that the period of unusually large mispricing identified by our mixture
model coincides with unusually high profitability for the statistical arbitrage strategy.
In §6, we conclude.
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Algorithm 1. Updating a DLM given G, V,W .
Initialize t = 0
{Initial information p(θ0|D0) ∼ N[m0, C0]}
Input: m0, C0, G, V , W
loop

t = t+ 1
{Compute prior at t: p(θt|Dt−1) ∼ N[at, Rt]}
at = Gmt−1

Rt = GCt−1G
T +W

Input: Ft

{Compute forecast at t: p(Yt|Dt−1) ∼ N[ft, Qt]}
ft = F T

t at

Qt = F T
t RtFt + V

Input: Yt

{Compute forecast error et}
et = Yt − ft

{Compute adaptive vector At}
At = RtFtQ

−1
t

{Compute posterior at t: p(θt|Dt) ∼ N[mt, Ct]}
mt = at + Atet
Ct = Rt −AtQtA

T
t

end loop

2 Dynamic Linear Models

2.1 Specifying a DLM

In the framework of [2], a dynamic linear model is specified by its parameter quadru-
ple {Ft, G, V,W}. DLMs are controlled by two key equations. One is the observation
equation:

Yt = F T
t θt + νt, νt ∼ N(0, V ) , (4)

the other is the evolution equation:

θt = Gθt−1 + ωt, ωt ∼ N(0,W ) . (5)

F T
t is a row in the design matrix representing independent variables effecting Yt. G is

the evolution matrix, capturing deterministic changes to θ, where θt ≈ Gθt−1. V is the
observational variance, Var(ε) in ordinary least squares. W is the evolution variance
matrix, capturing random changes to θ, where θt = Gθt−1+wt, wt ∼ N(0,W ). The
two parameters G and W make a linear model dynamic.

2.2 Updating a DLM

The Bayesian nature of a DLM is evident in the careful accounting of sources of vari-
ation that generally increase system uncertainty; and, information in the form of in-
cremental observations that generally decrease system uncertainty. A DLM starts with
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initial information, summarized by the parameters of a (frequently multivariate) normal
distribution:

p (θ0|D0) ∼ N (m0, C0) . (6)

At each time step, the information is augmented as follows:

Dt = {Yt, Dt−1} . (7)

Algorithm 1 details the relatively simple steps of updating a DLM as additional regres-
sion vectors Ft and observations Yt become available. Note that upon arrival of the
current regression vector Ft, a one-step forecast distribution p(Yt|Dt−1) is computed
using the prior distribution p(θt|Dt−1), the regression vector Ft, and the observation
noise V .

2.3 Model Likelihood

The one-step forecast distribution facilitates computation of model likelihood by evalu-
ation of the density of the one-step forecast distribution p(Yt|Dt−1) for observation Yt.
The distribution p(Yt|Dt−1) is explicitly a function of the previous periods information
Dt−1; and, implicitly a function of static model parameters {G, V,W} and model state
determined by a series of updates resulting from the history Dt−1. Defining a model at
time t as Mt = {G, V,W,Dt−1}, and explicitly displaying the Mt dependency in the
one-step forecast distribution, we see that the one-step forecast distribution is equivalent
to model likelihood1:

p (Yt|Dt−1) = p (Yt, Dt−1|Dt−1,Mt) = p (Dt|Mt) (8)

Model likelihood, p(Dt|Mt), will be an important input to our mixture model discussed
below.

2.4 Generating Observations

Before delving into mixtures of DLMs, we illustrate the effect of varying the evolution
variance W on the state variable θ in a very simple DLM. In Figure 1 we define three
very simple DLMs, {1, 1, 1,Wi} ,Wi ∈ {.0005, .05, 5}. The observations are from
simple random walks, where the level of the series θt varies according to an evolution
equation θt = θt−1 + ωt, and the observation equation is Yt = θt + νt. Compare the
relative stability in the level of observations generated by the three models. Dramatic
and interesting behavior materializes as W increases.

2.5 Model Inference

Figure 1 illustrated the difference in appearance of observations Yt generated with dif-
ferent DLM parameters. In Figure 2, note that models with smaller evolution variance

1 Dt = {Yt, Dt−1} by definition; Mt contains Dt−1 by definition; and, p(Yt, Dt−1|Dt−1) =
p(Yt|Dt−1)p(Dt−1|Dt−1) = p(Yt|Dt−1).
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Fig. 1. Observations Yt generated from a mixture of three DLMs. Discussion appears in §2.4
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Fig. 2. Estimates of the mean of the state variable θt for three DLMs when processing generated
data of Figure 1

W result in smoother estimates — at the expense of a delay in responding to changes
in level. At the other end of the spectrum, large W permits rapid changes in estimates
of θ — at the expense of smoothness. In terms of the model likelihood p(Dt|Mt), if
W is too small, the standardized forecast errors et/

√
Qt will be large in magnitude,

and therefore model likelihood will be low. At the other extreme, if W is too large, the
standardized forecast errors will appear small, but the model likelihood will be low now
due to the diffuse forecast distribution.

In Figure 3, we graph the trailing interval log likelihoods for each of the three DLMs.
We define trailing interval (k-period) likelihood as:

Lt(k) = p(Yt, Yt−1, . . . , Yt−k+1|Dt−k)
= p(Yt|Dt−1)p(Yt−1|Dt−2) . . .

p(Yt−k+1|Dt−k) .
(9)
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Fig. 3. Log likelihood of observed data during most recent 10 days given the parameters of three
DLMs when processing generated data of Figure 1. Bold band at top of figure indicates the true
generating DLM.

This concept is very similar to Bayes’ factors discussed in [2], although we do not
divide by the likelihood of an alternative model. Our trailing interval likelihood is also
similar to the likelihood function discussed in [9]; but, we assume the errors et are not
autocorrelated.

Across the top of Figure 3 appears a color code indicating the true model prevailing
at time t. It is interesting to note when the likelihood of a model exceeds that of the
true model. For instance, around the t = 375 mark, the model with the smallest evo-
lution variance appears most likely. Reviewing Figure 2, the state estimates of DLM
{1, 1, 1,W = .0005} just happened to be in the right place at the right time. Due to the
more concentrated forecast distributions p(Yt|Dt−1) of this model, it briefly attains the
highest trailing 10-period log likelihood. A similar occurrence can be seen for the DLM
{1, 1, 1,W = .05} around t = 325.

While the series on Figure 3 appear visually close at times, note the log scale. After
converting back to normalized model probabilities, the favored model at a particular
instance is more apparent as illustrated in Figure 4. In §5, we will perform model infer-
ence on the return series of exchange traded funds (ETFs).

3 Parameter Estimation

In §2, we casually discussed DLMs varying in parameterization. Generating observa-
tions from a specified DLM or combination of DLMs, as in §2.4, is trivial. The inverse
problem, determining model parameters from observations is significantly more chal-
lenging. There are two distinct versions of this task based upon area of application.
In the simpler case, the parameters are unknown but assumed constant. A number of
methods are available for model identification in this case, both off-line and on-line.
For example, [10] use E-M off-line, and [9] use the likelihood of a fixed-length trailing
window of prediction errors on-line. Time varying parameters are significantly more
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Fig. 4. Model probabilities from normalized likelihoods of observed data during most recent 10
periods. Bold band at top of figure indicates the true generating DLM.

challenging. The posterior distributions are path dependent and the number of paths
is exponential in the length of the time series. Various approaches are invoked to ob-
tain approximate solutions with reasonable computational effort. [2] approximate the
posterior with a single Gaussian that matches the moments of the exact distribution.
[11,12] propose variational Bayesian approximation. [13] discusses Gaussian-sum and
assumed-density filters.

3.1 Multi-process Mixture Models

[2] define sets of DLMs, where the defining parameters Mt = {F,G, V,W}t are in-
dexed by λ2, so that Mt = M(λt). The set of DLMs at time t is {M(λt) : λt ∈ Λ}.
Two types of multi-process models are defined. A class I multi-process model, where
for some unknown λ0 ∈ Λ,M(λ0) holds for all t; and, a class II multi-process model
for some unknown sequence λt ∈ Λ, (t = 1, 2, . . .),M(λt) holds at time t. We build
our model in §4 in the framework of a class II mixture model. We do not expect to be
able to specify parameters exactly or finitely. Instead, we specify a set of models that
quantize a range of values. In the terminology of [12], we will create a grid approxima-
tion to the evolution and observation variance distributions.

Class II mixture models permit the specification of a model per time period, lead-
ing to a number of potential model sequences exponential in the steps, |Λ|T . However,
in the spirit of the localized nature of dynamic models and practicality, [2] exploit the
fact that the value of information decreases quickly with time, and propose collaps-
ing the paths and approximating common posterior distributions. In the filtering liter-
ature, this technique is referred to as the interacting multiple model (IMM) estimator
[15, Ch. 11.6.6]. In our application, in §5, we limit our sequences to two steps, and

2 [2] index the set of component models α ∈ A; however, by convention in finance, α refers to
stock specific return, consistent with §1.2. To avoid confusion, we index the set of component
models λ ∈ Λ, consistent with the notation of [14].
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approximate common posterior distributions by collapsing individual paths based on
the most recent two component models. To restate this briefly, we model two step se-
quences — the component model Mt−1 just exited, and the component model Mt now
occupied. Thus, we consider |Λ|2 sequences. Reviewing Algorithm 1, the only informa-
tion required from t− 1 is captured in the collapsed approximate posterior distribution
p (θt−1|Dt−1) ∼ N (mt−1, Ct−1) for each component model λt−1 ∈ Λ considered.

3.2 Specifying Model Priors

One key input to mixture models are the model priors. We have tried several approaches
to this task before finding a method suitable for our statistical arbitrage modeling task in
§5. The goal of our entire modeling process is to design a set of model priors p(M(λt))
and model likelihoods p(D|M(λt)) that yield in combination insightful model poste-
rior distributions p(M(λt)|D), permitting the computation of quantities of interest by
summing over the model space λt ∈ Λ at time t:

p(Xt|Dt) ∝
∑
λt∈Λ

p(Xt|M(λt))p(M(λt)|Dt) (10)

In the context of modeling ETF returns discussed in §5, the vastly different scales for
the contribution of W and V to Q left our model likelihoods unresponsive to values of
W . This unresponsiveness was due to the fact that parameter values W and V are of
similar scale; however, a typical |Ft| for this model is approximately 0.01, and therefore
the respective contributions to the forecast variance Q = F TRF + V = F T(GCGT +
W)F+V are of vastly different scales, 1 : 10,000. Specifically, density of the likelihood
p(Yt|Dt−1) ∼ N(ft, Qt) is practically constant for varying W after the scaling by
0.012. The only knob left for us to twist is that of the model priors.

DLMs with static parameters embed evidence of recent model relevance in their
one-step forecast distributions. In contrast, mixture model component DLMs move for-
ward in time from posterior distributions that mask model performance. The situation
is similar to the game best ball in golf. After each player hits the ball, all players’ balls
are moved to a best position as a group. Analogously, when collapsing posterior distri-
butions, sequences originating from different paths are approximated with a common
posterior based upon end-point model. While some of us may appreciate obfuscation of
our golf skills, the obfuscation of model performance is problematic. Due to the vari-
ance scaling issues of our application, the path collapsing, common posterior density
approximating technique destroys the accumulation of evidence in one-step forecast
distributions for specific DLM parameterizationsλ ∈ Λ. In our current implementation,
we retain local evidence of model effectiveness by running a parallel set of standalone
(not mixed) DLMs. Thus, the total number of models maintained is |Λ|2 + |Λ|, and
the computational complexity remains asymptotically constant. In our mixture model,
we define model priors proportional to trailing interval likelihoods from the standalone
DLMs. This methodology locally preserves evidence for individual models as shown in
Figure 3 and Figure 4.

The posterior distributions p(θt|Dt)M(λ) emitted by identically parameterized stan-
dalone and component DLMs differ in general. A standalone constant parameter DLM



Inferring Time Varying DLM Parameters from a Mixture Model 45

computes the prior p(θt|Dt−1)M(λt) as outlined in Algorithm 1 using its own posterior
p(θt−1|Dt−1)M(λt=λt−1). In contrast, component DLMs compute prior distributions
using a weighted posterior:

p(θt−1|Dt−1)M(λt) =∑
λt−1

p(M(λt−1)|M(λt))p(θt−1|Dt−1)M(λt−1) .
(11)

4 A Financial Example

[8] proposed a model for the returns of the S&P 500 Index based upon the largest
principal component of the underlying stock returns. In the form Y = F Tθ + ε used
throughout this paper,

Y = rs&p, F = rpc1, and θ = βpc1. (12)

The target and explanatory data in [8] spanned January 1997 to October 2005. We pro-
pose the use of two alternative price series that are very similar in nature; but, publicly
available, widely disseminated, and tradeable. The proposed alternative to the S&P In-
dex is the SPDR S&P 500 ETF (trading symbol SPY). SPY is an ETF designed to mimic
the performance of the S&P 500 Index[16]. The proposed alternative to the largest prin-
cipal component series is the Rydex S&P Equal Weight ETF (trading symbol RSP). RSP
is an ETF designed to mimic the performance of the S&P Equal Weight Index [17].
While perhaps not as obvious a pairing as S&P Index / SPY, a first principal compo-
nent typically is the mean of the data — in our context, the mean is the equal weighted
returns of the stocks underlying the S&P 500 Index. SPY began trading at the end of
January 1993. RSP began trading at the end of April 2003. We use the daily closing
prices Pt to compute daily log returns:

rt = log

(
Pt

Pt−1

)
. (13)

Our analysis is based on the months during which both ETFs traded, May 2003 to
present (August 2011).

The price levels, scaled to 100 on April 30, 2003 are shown in Figure 5. Visually as-
sessing the price series, it appears the two ETFs have common directions of movement,
with RSP displaying somewhat greater range than SPY. Paralleling the work of [8], we
will model the return of SPY as a linear function of RSP, Y = F Tθ + ε:

Y = rspy, F = rrsp, and θ = βrsp. (14)

We estimate the time varying regression parameter θt using a class II mixture model
composed of 50 candidate models with parameters {Ft, 1, V,W}. Ft = rrsp, the return
of RSP, is common to all models. The observation variances are the values V × 106 ∈
{ 1, 2.15, 4.64, 10, 21.5, 46.4, 100, 215, 464, 1, 000 }. The evolution variances are
the values W × 106 ∈ { 10, 56, 320, 1, 800, 10, 000 }. Our on-line process computes
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Fig. 6. The daily standard deviation of νt and ωt as estimated by the mixture model. Observation
noise νt ∼ N(0, V ); evolution noise ωt ∼ N(0,W ).

502+50 = 2550 DLMs, 502 DLMs corresponding to the two-period model sequences,
and 50 standalone DLMs required for trailing interval likelihoods. In the mixture model,
the priors p(M(λt)) for component models M(λt), λt ∈ Λ, are proportional to trailing
interval likelihoods (9) of corresponding identically parameterized standalone DLMs.

Subsequent to running the mixture model for the period May 2003 to present, we are
able to review estimated time varying parameters Vt and Wt, as shown in Figure 6. This
graph displays the standard deviation of observation and evolution noise, commonly re-
ferred to as volatility in the financial world. It is interesting to review the decomposition
of this volatility. Whereas the relatively stationary series

√
W in Figure 6 suggests the

rate of evolution of θt is fairly constant across time; the observation variance V varies
dramatically, rising noticeably during periods of financial stress in 2008 and 2009. The
observation variance, or standard deviation as shown, may be interpreted as the end-of-
day mispricing of SPY relative to RSP. In §5, we will demonstrate a trading strategy
taking advantage of this mispricing. The increased observational variance at the end of
2008, visible in Figure 6 results in an increase in the rate of profitability of the statisti-
cal arbitrage application plainly visible in Figure 7. Conversely, the low observational
variance beginning in 2010 to present (March 2012) in Figure 6 corresponds to a period
of stagnation in the trading strategy in Figure 7.
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Fig. 7. Cumulative return of the various implementations of a statistical arbitrage strategy based
upon a time varying mixture model and 10 constant parameter DLMs

5 Statistical Arbitrage

[8] describe an illustrative statistical arbitrage strategy. Their proposed strategy takes
equal value trading positions opposite the sign of the most recently observed forecast
error εt−1. In the terminology of this paper, they tested 11 constant parameter DLMs,
with a parameterization variable δ equivalent to:

δ =
W

W + V
. (15)

They note that this parameterization variable δ permits easy interpretation. With δ ≈ 0,
results approach an ordinary least squares solution: W = 0 implies θt = θ. Alterna-
tively, as δ moves from 0 towards 1, θt is increasingly permitted to vary.

Figure 6 challenges the concept that a constant specification of evolution and obser-
vation variance is appropriate for an ETF returns models. To explore the effectiveness
of class II mixture models versus statically parameterized DLMs, we evaluated the per-
formance of our mixture model against 10 constant parameter DLMs. We set V = 1 as
did [8], and specified:

W ∈ {29, 61, 86, 109, 139, 179, 221, 280, 412, 739} .

These values correspond to the 5, 15, . . . 95%-tile values of W/V observed in our mix-
ture model.

Figure 6 offers no justification of using V = 1. While the prior p(θt|Dt−1), one-
step p(Yt|Dt−1) and posterior p(θt|Dt) “distributions” emitted by these DLMs will
not be meaningful, the intent of such a formulation is to provide time varying point
estimates of the state vector θt. The distribution of θt is not of interest to modelers
applying this approach. In the context of the statistical arbitrage application considered
here, the distribution is not required. The trading rule proposed is based on the sign of
the forecast error; and, the forecast is a function of the prior mean at (a point estimate)
for the state vector θt and observed values Ft and Yt: εt = Yt − F T

t at.
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Fig. 8. Sharpe ratios realized by the time varying mixture model and 10 constant parameter DLMs

5.1 The Trading Strategy

Consistent with [8], we ignore trading and financing costs in this simplified experi-
ment. Given the setup of constant absolute value SPY positions taken daily, we compute
cumulative returns by summing the daily returns. The rule we implement is:

portfoliot(εt−1) =

{
+1 if εt−1 ≤ 0,

−1 if εt−1 > 0.
(16)

where portfoliot = +1 denotes a long SPY and short RSP position; portfoliot

= −1 denotes a short SPY and long RSP position. The SPY leg of the trade is of
constant magnitude. The RSP leg is−at× SPY-value, where at is the mean of the prior
distribution of θt, p(θt|Dt−1) ∼ N(at, Rt); and, recall from (14) the interpretation
of θt is the sensitivity of the returns of SPY Yt to the returns of RSP Ft. Note that
this strategy is a modification to [8] in that we hedge the S&P exposure with the equal
weighted ETF, attempting to capture mispricings while eliminating market exposure.
The realized Sharpe ratios appear dramatically higher in all cases than in [8], primarily
attributable to the hedging of market exposure in our variant of a simplified arbitrage
example. Montana et al. report Sharpe ratios in the 0.4 - 0.8 range; in this paper, after
inclusion of the hedging technique, Sharpe ratios are in the 2.3 - 2.6 range.

5.2 Analysis of Results

We reiterate that we did not include transaction costs in this simple example. Had we
done so, the results would be significantly diminished. With that said, we will review
the relative performance of the models for the trading application.

In Figure 7, it is striking that all models do fairly well. The strategy holds positions
based upon a comparison of the returns of two ETFs, one scaled by an estimate of
βrsp,t. Apparently small variation in the estimates of the regression parameter are not
of large consequence. Given the trading rule is based on the sign of the error εt, it
appears that on many days, slight variation in the estimate of θt across DLMs does
not result in a change to sign(εt). Figure 8 shows that over the interval studied, the
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mixture model provided a higher return per unit of risk, if only to a modest extent.
What is worth mentioning is that the comparison we make is the on-line mixture model
against the ex post best performance of all constant parameter models. Acknowledging
this distinction, the mixture model’s performance is more impressive.

6 Conclusions

Mixtures of dynamic linear models are a useful technology for modeling time series
data. We show the ability of DLMs parameterized with time varying values to generate
observations for complex dynamic processes. Using a mixture of DLMs, we extract
time varying parameter estimates that offered insight to the returns process of the S&P
500 ETF during the financial crisis of 2008. Our on-line mixture model demonstrated
superior performance compared to the ex post optimal component DLM in a statistical
arbitrage application.

The contributions of this paper include the proposal of a method, trailing interval
likelihood, for constructing component model prior probabilities. This technique facili-
tated successful modeling of time varying observational and evolution variance param-
eters, and captured model evidence not adequately conveyed in the one-step forecast
distribution due to scaling issues. We proposed the use of two widely available time-
series to facilitate easier replication and extension of the statistical arbitrage application
proposed by [8]. Our addition of a hedge to the statistical arbitrage application from [8]
resulted in dramatically improved Sharpe ratios.

We have only scratched the surface of the modeling possibilities with DLMs. The
mixture model technique eliminates the burden of a priori specification of process
parameters.
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Abstract. Mutual information is one of the most popular criteria used in feature
selection, for which many estimation techniques have been proposed. The large
majority of them are based on probability density estimation and perform badly
when faced to high-dimensional data, because of the curse of dimensionality.
However, being able to evaluate robustly the mutual information between a subset
of features and an output vector can be of great interest in feature selection. This
is particularly the case when some features are only jointly redundant or relevant.
In this paper, different mutual information estimators are compared according to
important criteria for feature selection; the interest of a nearest neighbors-based
estimator is shown.

Keywords: Mutual information estimation, Feature selection, Density estima-
tion, Nearest neighbors.

1 Introduction

Nowadays, machine learning practitioners often have to deal with databases of very large
dimension (containing data described by a lot of features). When considering a predic-
tion task, all the features are not equally relevant to predict the desired output while
some can be redundant; irrelevant or redundant features can increase the variance of the
prediction models without reducing their bias while most of distance-based methods are
quite sensitive to useless features. More generally, learning with high-dimensional data
is a hard task due to the problems related to the curse of dimensionality [1].

Two main approaches exist to reduce the dimensionality of a data set. One solution
is to project the data on a space of smaller dimension. Projections can be very effective
but do not preserve the original features; this is a major drawback in many industrial
or medical applications where interpretability is primordial. On the contrary, feature
selection, by trying to find a subset of features with the largest prediction power, does
allow such an interpretability.

Even if many ways of selecting features can be thought of, this paper focuses on fil-
ters. Filters are independent from the model used for prediction and thus do not require
building any prediction model (including time-consuming learning and potential meta-
parameters to tune by resampling methods). They are faster than wrappers which try
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to find the best subset of features for a specific model through extensive simulations.
Filters are often based on an information-theoretic criterion measuring the quality of
a feature subset and a search procedure to find the subset of features maximising this
criterion; the mutual information (MI) criterion [2] has proven to be very efficient for
feature selection and has been used successfully for this task since many years (see e.g.
[3,4]).

As it is not possible in practice to evaluate the MI between all the 2f−1 (f being the
initial number of features) feature subsets and the output vector when f grows, incre-
mental greedy procedures are frequently used, whose most popular ones are forward,
backward or forward/backward. Such procedures are said to be multivariate, since they
require the evaluation of the MI (or of another chosen criterion) directly between a set
of features and the output vector. These methods have the advantage over bivariate ones
such as ranking that they are able to detect subsets of features which are jointly rele-
vant or redundant. Consider the XOR problem as a simple example; it consists in two
features and an output scalar which is zero if both features have the same value and
one otherwise. Individually each feature does not carry any information about the outp-
tut; univariate procedures will never be able to detect them as relevant. However, when
combined, the two features completely determine the output; when one is selected, a
multivariate procedure will select the other one as relevant. A detailed introduction to
the feature selection problem can be found in [5].

As will be seen, the MI generally cannot be computed analytically but has to be
estimated from the data set. Even if this task has been widely studied, it remains very
challenging for high-dimensional vectors. In this paper, it is shown how a MI estimator
based on the principle of nearest neighbors (NN) outperforms traditional MI estimators
with respect to three feature selection related criteria. This study is, to the best of our
knowledge, the first one to compare MI estimators in such a context.

The rest of the paper is organized as follows. Section 2 briefly introduces the MI
criterion and describes five of the most popular MI estimators. Section 3 presents the
experiments carried out to compare these estimators and shows the results obtained on
artificial and real-world data sets. Discussions and conclusions are given in Section 4.

2 Mutual Information

This section introduces the MI and presents the estimators used for comparison.

2.1 Definitions

Mutual information [2] is a symmetric measure of the dependence between two (groups
of) random variables X and Y , assumed to be continuous in this paper. Its interest for
feature selection comes mainly from the fact that MI is able to detect non-linear rela-
tionships between variables, whereas, as an example, it is not the case for the popular
correlation coefficient which is limited to linear dependencies. Moreover, the MI can be
naturally defined for groups of variables and is thus well-suited for multivariate search
procedures. MI is defined as

I(X ;Y ) = H(X) +H(Y )−H(X,Y ) (1)
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where H(X) is the entropy of X , defined for a continuous random variable as:

H(X) = −
∫

fX(ζX) log fX(ζX) dζX . (2)

In this last equation, fX is the probability density function (pdf) of X . The MI can then
be rewritten as

I(X ;Y ) =

∫ ∫
fX,Y (ζX , ζY ) log

fX,Y (ζX , ζY )

fX(ζX)fY (ζY )
dζX dζY . (3)

In practice, neither fX , fY nor fX,Y are known for real-world problems; the MI has
thus to be estimated.

2.2 Estimation

Plenty of methods have been proposed to estimate the MI. The great majority of them
starts by estimating the pdf before plugging these results into Equation (1) or an equiva-
lent expression. However, the dimension of X increases at each step of a forward feature
selection procedure (or is already high at the beginning of a backward procedure) and
most of these methods suffer dramatically from the curse of dimensionality [1]; they re-
quire an exponentially growing number of samples as the dimension of X grows while
the number of available samples is in practice often limited. Such MI estimations do
not thus seem well suited for feature selection. A NN-based MI estimator [6] avoiding
the pdf estimation step has been used successfully in a feature selection context [7,3].
In the rest of this section, this estimator and four popular other ones are introduced.

The Basic Histogram. The histogram is one of the oldest and simplest ways to estimate
a pdf. The basic idea is to divide the observation, prediction and joint spaces into non
overlapping bins of fixed size and then to count the number of points falling in each of
the bins. The entropy of X , Y and (X,Y ) can be estimated using the discretized version
of (2) and the estimation of the MI then naturally follows from (1). If histograms with
bins of the same fixed size are considered, as it is the case in this paper, the size of the
bins needs to be determined. Here, the approach by Sturges [8] will be followed: the
number k of bins will be 
1 + log2(N)�, where N is the number of samples in the data
set; other approaches could also be thought of [9].

The Kernel Estimator. The basic histogram suffers from many drawbacks. Among
others, it is sensitive to the choice of the origin and to the size of the bins. In order to
avoid sharp steps between the bins (and hence discontinuities), one can use the kernel
density estimator (KDE) given by:

f̂X(x) =
1

Nh

N∑
i=1

K(
x− xi

h
), (4)

where N is the number of observations in X , h is the window width and K is the
kernel function required to integrate to one, leading f̂ to be a probability density [10];



54 G. Doquire and M. Verleysen

xi denotes the ith observation of the data set X . One possible choice for K is the
Gaussian kernel, leading to the following density estimator:

f̂(x) =
1

Nh
√
2π

N∑
i=1

exp(
−(x− xi)

2

2h2
). (5)

In practice, the choice of the bandwidth h is fundamental. In this paper, the approach
by Silverman [11] using a rule of thumb will be followed. It is often used as a good
trade-off between performance and computational burden. The idea is to choose the
width minimizing the asymptotic mean integrated square error (AMISE) between the
estimation and the true density, assuming the underlying distribution is Gaussian. The
resulting width is:

ĥrot ≈ σ(
4

f + 2
)1/(f+4) N−1/(f+4) (6)

where f is again the dimensionality of X . A large overview of different ways to select
the kernel bandwidth is given in [12].

The B-splines Estimator. Another generalisation of the simple binning approach is
given by the use of B-splines functions [13]. The idea is again to first discretize the
X , Y and (X,Y ) spaces. However, in this approach, the data points are allowed to be
assigned to more than one bin ai simultaneously in order to prevent the positions of
the borders of the bins from affecting too much the estimation. The weights with which
each point belongs to a bin are given by the B-spline functions Bi,k (k being the spline
order). Without getting too much into details, B-splines are recursively defined as:

Bi,1(x) :=

{
1 if ti ≤ x ≤ ti+1

0 otherwise

Bi,k(x) := Bi,k−1(x)
x− ti

ti+k−1 − ti
+Bi+1,k−1(x)

ti+k − x

ti+k − ti+1

(7)

where t is a knot vector defined for a number of bins M and a spline order k = 1...M−1
as:

ti :=

⎧⎪⎨⎪⎩
0 if i < k

i− k + 1 if k ≤ i ≤M − 1

M − 1− k + 2 if i > M − 1

(8)

To estimate the density f̂x, MX weights Bi,k(xu) are determined for each datapoint xu

(where MX is the number of bins in the X space). As the sum of the weights corre-
sponding to each data point is 1, the sum of the mean values of each bin is also 1. The
weights can thus be seen as the probability of each bin (p(ai) = 1

N

∑N
u=1 Bi,k(xu))

and the entropy of the distribution can be estimated. The process is repeated for the
Y space and for the joint (X,Y ) space. The notion of B-splines can be extended
to the multivariate case from univariate splines by the tensor produt construct. As
an example, in two dimensions, the probability of a bin ai,j is given by p(ai,j) =
1
N

∑N
u=1 Bi,k(xu)×Bj,k(yu) where x denotes the first variable and y the second one.
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The Adaptive Partition of the Observation Space. Darbellay and Vajda proved [14]
that the MI can be approximated arbitrarily closely in probability by calculating relative
frequencies on appropriate partitions. More precisely, they use an adaptive partitioning
of the observation scheme, different from the traditional product partitions, to take into
account the fact that with such basic partitions, much of the bins are not used to estimate
the MI and can be replaced by fewer bins; they proved the weak consistency of the
proposed method. Mathematical details can be found in [14]. In the rest of this paper,
this methodology will be denoted adaptive histogram.

The Nearest Neighbors-Based or Kraskov Estimator. Since the hardest part when
estimating the MI is the estimation of the underlying probability densities, another al-
ternative is simply not to estimate densities and therefore directly estimating the MI
by using NN statistics. The intuitive idea behind Kraskov’s estimator [6] is that if the
neighbors of a specific observation in the X space correspond to the same neighbors in
the Y space, there must be a strong relationship between X and Y . More formally, the
estimator is based on the Kozachenko-Leonenko estimator of entropy defined as:

Ĥ(X) = −ψ(K) + ψ(n) + log(cd) +
d

N

N∑
n=1

log(εX(N,K)) (9)

where ψ is the digamma function, N the number of samples in X , d the dimensionality
of these samples, cd the volume of a d-dimensional unitary ball and εX(n,K), twice
the distance (usually chosen as the Euclidean distance) from the nth observation in X
to its Kth NN. Two slightly different estimators are then derived whose most popular
one is:

Î(X ;Y ) = ψ(N) + ψ(K)− 1

K
− 1

N

N∑
i=1

(ψ(τxi) + ψ(τyi)) (10)

where τxi is the number of points whose distance from xi is not greater than 0.5 ×
ε(n,K) = 0.5 ×max(εX(n,K), εY (n,K)). Avoiding the evaluation of pdf, the hope
is to reach better results than with traditional estimators.

It is also important to note that other NN based density estimators have been pro-
posed in the litterature; a recent example is [15]. As they are less popular than [6] for
feature selection, they are not used in the present comparison.

3 Experiments

Three sets of experiments are carried out in this section. The objective is to assess the
interest of the different estimators for incremental feature selection algorithms. The
criteria of comparison and the experimental setup are thus very different from the ones
used in previous papers only focused on MI estimation (see e.g. [16]). First, a suitable
estimator should be accurate, i.e. it should reflect the true dependency between groups
of features and increases (resp. decreases) when the dependance between groups of
features increases (resp. decreases). Then it should also be able to detect uninformative
features and return a value close to zero when two independent groups of features are
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r=0.1 r=0.9

Fig. 1. Boxplots of the approximation of the MI for correlated Gaussian vectors by several es-
timators: the basic histogram (green), a KDE (red), an adaptive histogram (cyan), a NN-based
estimator (black) and a B-splines estimator (magenta). The solid line represents the true MI.

given. Eventually, a good estimator should be quite independent from the value of its
parameters or some fast heuristics to fix them should be available.

The implementation by A. Ihler has been used for KDE1. For the NN-based estima-
tor, the parameter K is set to 6 unless stated otherwise. For the B-splines estimator, the
degree of the splines is set to 3 and the number of bins to 3. These values correspond to
those advised in the respective original papers [6,13].

3.1 Accuracy of the Estimators

The first set of experiments consists in comparing the precision of the MI estimators as
the dimension of the data set increases. To this end, they will be used to estimate the
MI between n correlated Gaussians X1 . . . Xn with zero mean and unit variance. This
way, the experimental results can be compared with exact analytical expressions as the
MI for n such Gaussians is given by [14]:

I(X1. . .Xn) = −0.5× log[det(σ)] (11)

where σ is the covariance matrix.
All the correlation coefficients are set to the same value r, chosen to be 0.1 and 0.9.

The estimation is repeated 100 times on randomly generated datasets of 1000 instances;
the results are shown for n = 1...9. Even if this can be seen as a small number of dimen-
sions, there are practical limitations when using splines and histogram-based estimators
in higher dimensions. Indeed the generalization of the B-splines-based estimator to han-
dle vectors of dimension d involves the tensor product of d univariate B-splines, a vector
of size Md, where M is the number of bins. Histogram-based methods are also limited
in the same way since they require the storage of the value of kd bins, where k is the
number of bins per dimension. Nearest neighbors-based methods are not affected by
this kind of problems and have only a less restrictive limitation regarding the number n
of data points since they require the calculation of O(n2) pairwise distances. As will be

1 http://www.ics.uci.edu/˜ihler/code/

http://www.ics.uci.edu/~ihler/code/
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seen, the small number of dimensions used in the experiments is sufficient to underline
the drawbacks and advantages of the compared estimators.

Figure 1 shows that, as far as the precision is concerned, Kraskov et al.’s estimator
largely outperforms its competitors for the two values of r (r = 0.1 and r = 0.9). The
estimated values are always very close to the true ones and show small variations along
the 100 repetitions. The adaptive histogram provides on average accurate estimations
up to dimension 8 and 6 for r = 0.1 and r = 0.9 respectively, with however very strong
fluctuations observed accross the experiments. The B-spline estimator is also extremely
accurate for the five first dimensions and r = 0.1. For r = 0.9 (and thus for higher
values of MI), it severely underestimates the true values while the aspect of the true MI
curve is preserved. This cannot be considered as a major drawback in a feature selection
context where we are interested by the comparison of MI between groups of features.
The results achieved by the kernel density estimator are very poor as soon as n exceeds
1, largely overestimating the true values for r = 0.1 while immediately decreasing for
r = 0.9. Finally, as one could expect, the basic histogram produces the worst results;
the estimated values are too high to be reported on Figure 1 for r = 0.1 when the
dimension of the the data exceeds two.

3.2 Mutual Information between Independent Variables

In feature selection, a suitable estimator should assign a value close to zero to the MI
between independent (groups of) variables. More precisely, one has to make sure that a
greatly above zero value of MI is not the result of a weakness or a bias of the estimator
but does correspond to a dependence between the variables. Moreover, as the MI is not
bounded to a known interval, the relevance of each feature subset cannot be directly
assessed based only on the value of the MI. A solution is to establish the relevance of
a feature subset by looking if the MI between this subset and the outptut vector is sig-
nificantly larger than the MI between this subset and a randomly permuted version of
the output. It is thus important in practice to study how the MI between the actual data
points and a randomly permuted objective vector is estimated. In theory, the MI esti-
mated in this way should be 0 as no more relationship exists between the observations
and the permuted output.

Experiments have been carried out on one artificial and two real-world data sets. The
artificial problem is derived from [17] and is often used as a benchmark for feature
selection algorithms. It has 10 input variables Xi uniformly distributed over [0, 1] and
an output variable Y given by Y = 10 sin(X1X2)+ 20(X3− 0.5)2+10X4+5X5+ ε
where ε is a Gaussian noise with zero mean and unit variance. The sample size is 1000
and 100 data sets are randomly generated. As can be deducted easily, only the five first
features are relevant to predict Y .

The first real data set is the well known Delve census data set, available from the
University of Toronto2 for which the 2048 first entries of the training set are kept. The
dimension of the data set is 104. The second real data set is the Nitrogen data set3,
containing only 141 spectra discretized at 1050 different wavelengths. The goal is to

2 http://www.idrc-chambersburg.org/index.html
3 http://kerouac.pharm.uky.edu/asrg/cnirs/

http://www.idrc-chambersburg.org/index.html
http://kerouac.pharm.uky.edu/asrg/cnirs/
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(a) (b) (c)

Fig. 2. Estimated MI between a group of features and the output (circles) and boxplots of the
estimated MI between the same features and a permuted output for the NN-based estimator: (a)
Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

(a) (b) (c)

Fig. 3. Estimated MI between a group of features and the output (circles) and boxplots of the es-
timated MI between the same features and a permuted output for the B-splines density estimator:
(a) Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

predict the Nitrogen content of a grass sample. As pre-processing, each spectrum is
represented using its coordinates in a B-splines basis, in order to reduce the amount of
features to a reasonable number of 105 ([18]). For each data set, a forward feature selec-
tion procedure using the NN-based estimator is conducted (since it performed the best
in the previous section) and is halted when nine features have been selected. The MI is
then estimated as well as the MI with the permuted output for 100 random permutations
of the output and for each of the nine subsets of features of increasing dimension. The
performance of the estimators is thus compared on the same sets of relevant features.
In Figure 2, it can be seen that for the three problems, the NN-based estimator used
with permuted output produces values very close to 0, even when working with few
samples as for the Nitrogen data set (the variance is however larger in this case). This
satisfactory observation is in good agreement with previous results found in [6] where
the authors conjectured the fact that equation (10) is exact for independent variables,
without proof of this result. Let us also notice two undesirable facts about the estima-
tor. First it sometimes produces slightly negative values. Even if this has no theoretical
justification [19], this can easily be dealt with in practice, by setting negative values to
0. Secondly, it can be seen that the MI decreases after the addition of some variables.
Once again, this phenomenon is not theoretically founded [19] even if it has often been
used as a stopping criterion in greedy feature selection algorithms.

The B-splines estimator (Figure 3) also performs well on the Delve data set, while
the results on the two other datasets contrast with this behaviour; regarding the artificial
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data set, the eight and nine first features have a higher MI with the permuted output
than the first three with the actual output. This can be understood as the eight and nine
first permuted features having a higher MI with the output than the three first original
features have. This is a very undesirable fact in the context of feature selection, as it
is obvious that permuted features do not carry any information about Y while the first
three original ones actually do. The adaptative histogram (Figure 4) produces highly
negative values for the Delve and the Nitrogen data sets. Even if the same trick as the
one used for the Kraskov estimator could also be applied here (setting the negative val-
ues to 0), things are different. First, the absolute values of the negative results are very
large, traducing instabilities of the algorithm as the dimension grows. Next, for the Ni-
trogen data set, the first, third and fourth features have a higher MI with the permuted
output than the first eight and nine have with the actual output. For the artificial data
set, the first nine features have a higher MI with the permuted output than the first six
have with the true output.

The KDE (Figure 5) also returns values highly above 0 with the permuted output;
on the artificial data set, the MI between the features and the actual or the permuted
output becomes equal as the dimension increases. However, no confusion is possible for
the two real-world data sets. Eventually, the histogram (Figure 6) shows dramatically
incorrect results, with almost equal values for the MI between any subset of features
and the permuted or the actual output; things are better for the Delve Census dataset.

3.3 Choice of the Parameters

The last experiment is about the choice of the parameters in the estimators. As already
mentioned, the basic histogram, the KDE, the B-splines approach and the NN-based es-
timator all have at least one parameter to fix, which can be fundamental for the quality
of the estimations. Since the performances of the basic histogram in high-dimensional
spaces are obviously dramatic, this estimator is not studied in more details. To com-
pare the different estimators, the same data sets are used as in the previous section
and the MI estimations are shown for dimension 2 to 5. Once again this limitation is
due to the time and space-consuming generalization of the B-splines approach in high-
dimensional spaces. Moreover, the choice of the parameter is less related to feature
selection.

The Kernel Density Estimator. For the KDE, the parameter to be fixed is the kernel
width. As an alternative to the rule of thumb used so far (see Equation (6)), two other
methods are considered. The first one is the popular Least Squares Cross-Validation
(LSCV) introduced by Rudemo and Bowman [20] [21] whose goal is to estimate the
minimizer of the Integrated Square Error. The second one is the Plug-In method pro-
posed by Hall, Sheater Jones and Marron [22]. Figure 7 shows the extreme sensitivity of
the KDE to the width of the kernel since the results obtained with both bandwidth deter-
mination strategies are totally different for the three data sets. Moreover, as illustrated
in Figure 8 showing the estimation of the MI for correlated Gaussians and r = 0.9,
none of the methods used to set the kernel width clearly the other ones.
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(a) (b) (c)

Fig. 4. Estimated MI between a group of features and the output (circles) and boxplots of the esti-
mated MI between the same features and a permuted output for the adaptive histogram estimator:
(a) Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

(a) (b) (c)

Fig. 5. Estimated MI between a group of features and the output (circles) and boxplots of the
estimated MI between the same features and a permuted output for the kernel density estimator:
(a) Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

(a) (b) (c)

Fig. 6. Estimated MI between a group of features and the output (circles) and boxplots of the
estimated MI between the same features and a permuted output for the histogram based estimator:
(a) Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

The B-splines Estimator. Two parameters have to be determined in this approach: the
degree of the splines and the number of bins. We fix the degree of the splines to three (as
suggested in the original paper) and only focus on the number of bins per dimension as
this parameter has been shown to influence much more the output [13]; it will be taken
between 2 and 5. Even if these values can seem surprisingly small, only three bins are
used in [13]. The results presented in Figure 9 show that the estimated MI increases
with the number of bins. These conclusions are consistent with those found in [13] for
the one-dimensional case. However, even if the estimator is extremely sensitive to the
number of bins, the relative values of the MI between the output and different groups
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Fig. 7. Estimated MI with the kernel density estimator for different values of the kernel width: (a)
Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

Fig. 8. Estimated MI for correlated Gaussians with a kernel density estimator whose kernel’s
width has been determined by three different procedures

of features is preserved, and so is the relative significance of the feature subsets. The
sensitivity of the estimator is thus not a drawback for feature selection.

The Nearest Neighbors-Based Algorithm. The only parameter to fix in the NN-based
estimator is the number of neighbors K . Kraskov et al. suggest a value of 6, arguing it
leads to a good trade-off between the variance and the bias of the estimator [6]. Here,
K is considered between 4 and 8.

Figure 10 shows very little sensitivity of the estimator in terms of absolute differ-
ences between estimations and thus a small sensitivity of the estimator to the number
of neighbors used. However the results on the Delve data set indicate that even a small
variation in the values of the estimated MI can lead to a different ranking of the features
subsets in terms of relevance. As an example, in this data set, when using K = 4 or
K = 5 neighbors, the subset of the five first features is less informative for the output
than the subset of the four first features, while the opposite conclusion (which is in the-
ory true) can be drawn when using 6, 7 or 8 neighbors. This is something that must be
taken care of when performing feature selection because it could lead to the selection
of irrelevant (or less relevant than other) features. One idea to overcome this issue is
to average the estimations obtained within a reasonable range of values of K . In [23],
this principle is applied to feature selection using a version of the Kraskov estimator
adapted for classification problems. Another idea is to choose the value of K using the
permutation test and resampling techniques [7].
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Fig. 9. Estimated MI with the B-splines estimator for different values of bins per dimension: (a)
Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

Fig. 10. Estimated MI with the NN-based estimator for different values of the parameter k: (a)
Delve dataset, (b) Nitrogen dataset, (c) Artificial dataset

4 Conclusions and Discussions

In this paper, several approaches to the estimation of multi-dimensional MI are
compared through three important criteria for feature selection: the accuracy, the con-
sistency with an independence hypothesis and the sensitivity to the values of the pa-
rameter(s). The conclusion is the superiority of the NN-based algorithm which is by
far the most accurate and the most consistent with an independent hypothesis (i.e. it
returns values very close to 0 when estimating the MI between independent variables)
on the three datasets used for comparison. The B-splines estimator presents interesting
properties as well but can hardly be used when dimension becomes higher than 9 or
10, because of the exponential number of values to compute; the NN-based estimator
is not affected by this major drawback, since it only requires the computation of the
distances between each pair of points of the dataset. By avoiding the hazardous evalua-
tion of high-dimensional pdf, it is able to produce very robust results as the dimension
of the data increases. It is also the less sensitive to the value of its single parameter,
the number of neighbors K . However, the choice of this parameter is important since
slight variations in the estimation of the MI can lead to a different ranking of the feature
subsets relevance. Being aware of all these facts, it thus appears to be a good choice
to use the Kraskov estimator, or its counterpart for classification, to achieve MI-based
multivariate filter feature selection.
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Abstract. We use Machine Learning techniques to model the reading prefer-
ences of audiences of 14 online news outlets. The models, describing the appeal
of a given article to each audience, are formed by linear functions of word fre-
quencies, and are obtained by comparing articles that became “Most Popular” on
a given day in a given outlet with articles that did not. We make use of 2,432,148
such article pairs, collected over a period of over 1.5 years. Those models are
shown to be predictive of user choices, and they are then used to compare both the
audiences and the contents of various news outlets. In the first case, we find that
there is a significant correlation between demographic profiles of audiences and
their preferences. In the second case we find that content appeal is related both to
writing style – with more sentimentally charged language being preferred, and to
content with “Public Affairs” topics, such as “Finance” and “Politics”, being less
preferred.

Keywords: Pattern Analysis, Ranking SVM, News Appeal, Text Analysis, User
Preference Modelling, Prediction of user choices.

1 Introduction

Understanding the appeal of a given article to its potential readers is a vital question
for journalists and editors, who need to select which articles to publish, particularly in
a situation of intense competition among news media. But it is also useful to media
analysts, who are interested in explaining the choices of editors: are they driven by
pleasing their readers, or by other motives as well?

We use Machine Learning techniques to model the reading preferences of audiences
of 14 online news outlets. The models describe the appeal of a given article to each audi-
ence, and they are formed by linear functions of word frequencies. Models are obtained
by comparing articles that became “Most Popular” on a given day in a given outlet with
articles that did not. We make use of 2,432,148 such article pairs, collected over a period
of over 1.5 years, using our News Outlets Analysis & Monitoring (NOAM) system [9].
These models are shown to be predictive of reader choices, and they are used in various
different ways to compare news outlets, as well as readers’ preferences. News outlets
are compared both from the point of view of their readers, and from the point of view
of their contents.

The comparison of readers of different outlets is performed by comparing the differ-
ent user models generated, based on datasets from each particular outlet, and is found
to be significantly correlated with demographic profiles of the readers of those outlets.

P.L. Carmona et al. (Eds.): Pattern Recognition – Applications and Methods, AISC 204, pp. 65–77.
DOI: 10.1007/978-3-642-36530-0_6 c© Springer-Verlag Berlin Heidelberg 2013
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This investigation is only possible for the 11 outlets for which we had access to “Most
Popular” articles as well as to demographic data.

The comparison of the contents of different outlets is done by assessing them through
a combined model of reader preferences, and ranking them according to how appealing
their contents are to an average reader. This comparison of contents can be extended
to a larger number of outlets, since it only requires that we have a sample of the con-
tents of those outlets. We find that there is a significant correlation between usage of
sentimentally charged language and appeal to readers, as well as there being an anti-
correlation between reader preferences and the coverage of “Public Affairs” stories,
such as “Finance” or “Politics”.

The success of this modelling approach is remarkable, if we consider that we ignore
important clues to user choices, such as position in the web page, font size or accom-
panying images or media. We even ignore the full content of the articles, basing our
models of user choices solely on the title and description of articles – the same limited
information users will use to make their choices. Furthermore, we do not have access to
the actual download figures corresponding to a given article. If we did, this would lead
to a problem of linear regression. Instead, we frame the task as a problem of Learning
to Rank, or preference learning, since we only have access to pairs of articles where one
became popular and the other did not.

This work extends paper [17], where we built a set of six models and presented ini-
tial explorations of the models’ applications. Here, we present models for 14 different
audience groups, along with three approaches to explain why certain news articles are
preferred to others, based on: demographics of readership, style of news articles, mea-
sured in sentiment-loaded words, and content of articles, in being about “Public” of
“Non-Public” affairs.

Previous work in news analysis and readers’ news preferences was mainly carried
out by scholars of media studies and communication sciences: Research on identifying
factors which influence choices of newspaper editors has been carried out since 1960s,
ranging from what becomes news [13] to media bias, as in [12] in terms of liberal
ideological views. More recently, online news moved also into focus of research, as
for instance in [3]. They compared journalists choices of news to publish to audiences’
choices of news to read, discovering discrepancies in these sets.

One main challenge in previous studies is the fact that data is collected, processed
and analysed by hand by individual researchers. This poses limitations on the amount
of data that can be assesseds and its interpretation. Automatic processing of news and
readers’ clicks has been realised in recent years, mostly aimed at resulting possibilities,
for instance for news recommendations, as in [7].

In order to build user profiles, one has to acquire data about user preferences. Com-
mon approaches include to ask users about their preferences, or to collect click data. The
first approach is more direct, but also more tedious and obtrusive for users. The second
approach usually requires a log-in system to link user profiles and demographic informa-
tion to user click choices, as in [21]. We explore a third approach which does not directly
interfere with users, and which is based on click information, as published by the outlets
themselves in news feeds of “Most Popular” stories. The drawback is that this infor-
mation is not available for all outlets and there is not a fine-grained user segmentation.
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In our previous work we explored such datasets with different techniques to model user
preferences in terms of prediction performance and applications [15],[16],[17].

The paper is structured as follows: Sect. 2 focuses on creation of preference models:
we present the theoretical framework to learn pairwise preference relations; the data
used; and the resulting models’ performances. Here, we also visualise models via word
clouds. In Sect. 3, we introduce appeal computation for individual articles, and compare
models based on the appeal they assign to a reference set of articles. This is compared
to demographics of models. We work on explanations of appeal based on article style
and content in Sect. 4, and we discuss the results of our work and conclude the paper in
Sect. 5.

2 Modelling Reader Preferences

This section describes the theoretical framework of learning pairwise preference rela-
tions; the selection and preparation of the data we used in our experiments; and the
resulting models, their prediction performance, and visualisation of their influential as-
pects. The key task is to model news preferences of different groups of audiences.

2.1 Ranking Pairs with Ranking SVM

Our modelling is based on two assumptions: a) news article preference is directly con-
nected to the appeal of articles, and b) this appeal can be quantified via a linear utility
function.

More formally, we say that an item xi is preferred to xj by notion xi � xj . The
linear utility function f : Rn → R of the form f(x) = 〈w, x〉 + b captures this “better
than” relationship via

xi � xj ⇐⇒ f(xi) > f(xj)⇐⇒ 〈w, (xi − xj)〉 > 0 (1)

The last inequality is used to form constraints in the quadratic optimisation problem of
Ranking SVM, which was introduced in [18] in the context of search engine queries.
The approach builds upon the method for binary classification of SVM [4],[6].

In Ranking SVM, learning the relationship between two items xi and xj is expressed
as a binary classification problem on the data item of their difference x(i,j) = xi − xj .
The class label y is determined via

〈
w, x(i,j)

〉
: if the value is greater or equal to 0, then

y(i,j) = +1, otherwise y(i,j) = −1.
The optimisation problem for Ranking SVM for � training data pairs of form x(i,j),

with slack variables ξ(i,j) for non-linearly separable data is expressed, over all pairs
x(i,j), as:

minimise
ξ,w

〈w,w〉 + C
∑
x(i,j)

ξ(i,j) (2)

subject to y(i,j)(〈w, x(i,j)〉) ≥ 1− ξ(i,j), (3)

ξ(i,j) ≥ 0 ∀ x(i,j) (4)
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The solution w is a parameters vector and can be used in two ways: to predict the pref-
erence relationship between two items xi and xj ; and to compute the appeal score for
an individual item xi via s(xi) = 〈w, xi〉, where xi is the vector space representation
of the article.

We exploit both these properties: we learn preference models on pairwise data, and
we quantify the appeal of individual items via their utility scores s(xi). For all our
experiments, we used the implementation SVM rank [19].

2.2 News Articles Dataset

The data used in our study comes from RSS (Really Simple Syndication) and Atom
feeds, published by the different news outlets. A feed contains news articles in a struc-
tured format including a title, a short description and the publication date of each article.

Our approach to create preference data pairs, which are needed for the Ranking SVM
technique, relies on two feeds:

(a) The “Top Stories” feed, carrying items published in the “Main Page” of an outlet.
(b) The “Most Popular” feed, which presents articles the readers found most interesting

– by clicking on them in order to read them.

News Popularity. We define an item as “Popular” if it has been published in both the
“Top Stories” and the “Most Popular” feeds, and as “Non-Popular” when it occurred
in “Top Stories” but not in the “Most Popular” feeds. This captures the fact that both
articles had the same starting conditions, but one of them was clicked on by the readers
more often than the other. Such an approach allows now to pair up “Popular” with
“Non-Popular” items, from same day and outlet, to serve as input to the Ranking SVM.

Data Sources. We use data from 14 English-writing news outlets to learn models, in-
cluding online presences of newspapers, magazines and news wires, namely “BBC”,
“CBS”, “CNN”, “Forbes”, “KSBW”, “Los Angeles Times”, “news.com.au”, “New York
Times”, “NPR”, “Reuters”, “Seattle Times”, “Time”, “Wall Street Journal” and “Ya-
hoo! News”. All these outlets provide both the feeds “Top Stories” and “Most Popular”
needed to create preference data pairs. We used 20 months of news articles between 1st
December 2009 and 31st July 2011. Furthermore, we also used 579,805 articles pub-
lished in the “Top Stories” feeds of 37 English-writing outlets between 1st June 2010
to 31st May 2011 as a reference set for appeal score computations.

Data Processing. News data was collected, pre-processed and managed via the News
Outlets Analysis & Monitoring (NOAM) system [9]. For each article, we extracted its
title and description, to imitate the snippet of text a user would see on a typical news out-
let webpage. We applied standard text mining pre-processing techniques of stop word
removal, stemming [24], and transfer into the bag-of-words (TF-IDF) space [20] – a
standard representation in information retrieval and text categorisation [25]. The over-
all vocabulary was comprised from 179,238 words.

Train and Test Datasets. Data was divided into 18 months for training and 2 months
for testing, in a 10-fold cross-validation setting. We excluded monthly datasets of small
size, of which there were 3 for “BBC”, “NPR” and “Wall Street Journal” and one for
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“Forbes”. Average monthly pairs sizes are reported in Table 1. The overall number of
articles pairs used was 2,432,148. The average number of non-zero word features per
article’s title and description was 16.48.

Table 1. Average sizes of preference data pairs per month

Outlet Data pairs per month

BBC 41,757
CBS 4,946
CNN 712

Forbes 5,577
KSBW 1,334

Los Angeles Times 1,941
New York Times 6,242

News.com.au 1,698
NPR 4,455

Reuters 3,675
Seattle Times 28,325

Time 3,004
Wall Street Journal 3,538

Yahoo! News 24,102

2.3 User Preference Models

Each of the 10 training sets per outlet led to one model, which were evaluated on the
respective two months of testing data. Results for pairwise preference prediction accu-
racy, averaged over all datasets, are shown in Fig. 1, with error bars representing the
standard error of the mean. Average performance over all models is 70.6%, and 77.2%
for the five best performing models, showing that it is possible to model news prefer-
ences for the different audience groups with the proposed approach.

For all further work, we used one model per audience group: we computed cosine
similarity between model vectors of one and the same outlet, along with the centroid of
these models. The model most similar to the centroid was used as the representative.

Each model is a vector which assigns weights to terms that affect the appeal score
of articles. We can visualise this information as a word cloud, focusing on the strongest
50 positively and negatively weighted terms, as shown in Fig. 2. The influential terms
reflect the character of those two different outlets and the articles their audience prefer
to read.

3 Comparing Models

This section shows how appeal scores can be used for comparison of models – and thus
the audience group preferences the models embody. These results are then compared to
demographics of audiences in an attempt to interpret our findings.
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Fig. 1. Pairwise preference prediction accuracy for 14 models on 20 months of data. Error bars
represent error of the mean. Average model performance is 70.6%.

(a) “News.com.au” (b) “Forbes”

Fig. 2. The 50 strongest positive weighted terms (magenta) and 50 strongest negative weighted
terms (black) in models for news preferences of audience of (a) “News.com.au” and (b) “Forbes”

A preference model w, applied to an input article xi, produces an appeal score
sw(xi). We used a normalised version of the scoring function to exclude possible effects
of article xi’s text length on the appeal score:

sw(xi) = 〈 w

||w|| ,
xi

||xi|| 〉 (5)

Appeal scores were computed for the reference set of 579,805 “Top Stories” articles
from 37 outlets, with each of the 14 models. A distance matrix was created, based on
the measure of (1 − sample linear correlation), and multidimensional scaling was
applied to enable a visualisation of the data in the first two resulting dimensions, as
shown in Fig. 3.
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This comparison shows similarities in what different audience groups find more or
less appealing: with “Reuters” and “Wall Street Journal” readers on one side of the
image; “Time” audience on top and “Yahoo! News” on the bottom, framing the space;
and a cluster of five models showing similar appeal tendencies on the left-hand side.
Other models are placed in-between.
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Fig. 3. Models’ distances, based on their appeal score assignments to 579,805 “Top Stories” arti-
cles in the reference set

Next, we aimed to explain these similarities by comparing them to other data about
the audiences: their demographics. We acquired demographic information from
www.alexa.com for 11 outlets, constructed of values for age groups, education cat-
egories, gender, parenthood, and ethnicity of the website’s audiences “relative to the
general internet population”. Each audience was thus represented by a 25-dimensional
demographics vector. As before, we computed correlation distances between audience
data, with the resulting visualisation in Fig. 4.

In order to compare the two distance matrices, we used the Mantel test [22] imple-
mented in the “Vegan” package of the statistical computation system “R” [23]. We use
10,000 permutations to produce the Mantel statistic r with Spearman’s rank correlation,
which measures a monotonic relationship, finding r=0.451 with p-value=0.034.
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4 Explaining News Appeal

Previous sections presented modelling of preferences, and a possible explanation based
on audience demographics. This section presents exploration of appeal in relation to
characteristics of the articles themselves, and their outlets. We introduce the notion of
“Global appeal” and relate it to style of articles – via usage of sentiment-loaded words,
and articles’ contents – via their topics. In both cases, we find significant correlations,
serving as explanations for articles being preferred by audiences.

In previous steps, we used the individual preference models to each compute an
appeal score for every news item. In this section, we average the scores of all models
per item to form a “global” appeal score, i.e. measuring how appealing an article is
perceived by a general audience. Furthermore, we operate on the level of entire outlets
which publish news by grouping articles by their publication source. Working on style
and content of articles, we found title and description to be of insufficient data quantity,
and thus used title, description and article content text for all work presented in this
section.

4.1 Global Appeal and Linguistic Subjectivity of Outlets

Our first exploration focuses on the global appeal and its relation to the linguistic sub-
jectivity of articles. This characteristic quantifies the usage of sentiment-loaded words.
While in theory, a news article should be rather neutral in its selection of words and
report only the facts, in reality outlets have the choice of wording news and grasping
the attention of their readers by using either positively or negatively loaded words. Our
measure of linguistic subjectivity focuses on adjectives as the strongest sentiment carri-
ers [14], and it is defined as the ratio of adjectives with sentiment over the total number
of adjectives in a text.

We computed linguistic subjectivity scores for articles in “Top Stories” feeds of a
subset of 31 outlets in our reference set. Global appeal was computed with a subset
of six models presented in [17]. We observe a strong and significant correlation (Pear-
son correlation coefficient = 0.6791, p-value <0.0001) between articles’ global appeal
scores and their linguistic subjectivity values, and we visualise all outlets in the two-
dimensional space of appeal and linguistic subjectivity in Fig. 5. Both axis show a
ranking of outlets by how appealing they are perceived (x-axis) and by their choice
of language (y-axis). Both, global appeal and linguistic subjectivity are higher for UK
tabloids and the online presence of the “People” magazine, which are positioned close
to each other, and further apart from all other outlets. On the opposite directions, we
can find the newswire “Reuters” and “BBC”. Another observation is that “The Boston
Globe”, “The New York Times” and its international version “International Herald
Tribune” – all assets of “The New York Times Company”1 – have similar linguistic
subjectivity and appeal.

1 Source (Aug. 2011):
http://www.nytco.com/company/index.html

http://www.nytco.com/company/index.html
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Fig. 5. Outlets in the space of global appeal and linguistic subjectivity of their “Top Stories”
articles. UK tabloids, marked as rectangles, cluster together in both dimensions.

4.2 Appeal, “Public” and “Non-Public” Affairs

It is not only style of news that attracts reader’s interest, but also what the news are
about. In this part, we automatically detect topics of news articles and relate them to the
articles’ global appeal scores, showing that the broad themes of “Public Affairs” and
“Non-Public Affairs” are related to article appeals.

For each article in our reference set of “Top Stories” from 37 outlets, we assign a
topic score for a variety of topics based on SVM classifiers [10]. We then group the top-
ics into two broad themes: “Public Affairs” and “Non-Public Affairs”. Topics assigned
to “Public Affairs” are Elections, Inflation and Prices, Markets, Business, Politics and
Petroleum, topics of “Non-Public Affairs” are Crime, Disasters, Fashion, Art, Envi-
ronmental issues, Religion, Science, Sports, Travel and Weather. The average of topic
scores for the corresponding theme leads to two additional scores per each article.

In our first experiment, we look at the topics of the “Top Stories” news published
by the different outlets. We use the topic classifiers to decide whether an article is of
a certain topic or not. Averaging over topics for the two themes, we can assign 63%
of articles over all outlets to belong to either “Public” and “Non-Public” affairs. We
visualise in Fig. 6 the outlets in the space of their ratios of “Non-Public” to “Public”
article themes, set against the global appeal of their articles.

As expected from previous results on global appeal, articles from the online presence
of “People” score high in being most interesting for general audiences to read. They also
show the highest ratio of topicalities (11.8), focusing strongly on “Non-Public Affairs”
news. On the opposite along this axis, we find “The Wall Street Journal” with a ratio
value of 0.12. Indeed, there are only two outlets, “Wall Street Journal” and “Reuters”,
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Fig. 6. Outlets in the space of global appeal and the ratios of “Non-Public” to “Public” themes of
their published “Top Stories” articles

for which we can assign a majority of their articles to be of “Public” theme rather than
of “Non-Public”, resulting in their reported ratio being less than one.

If we do not threshold the output of the topics’ SVM classifiers, we obtain real-valued
topic scores. In our next experiment, we use the resulting “Public Affairs” and “Non-
Public Affairs” values to compute correlation coefficients with the articles’ global ap-
peal scores. We look separately at articles from the different outlets in our reference set,
leading to 37 sets of coefficients, as shown in Fig. 7. Over all outlets and for a general
audience, we can observe a significant correlation of 0.28 between appeal of an article
and its content being about “Non-Public Affairs”, and a significant anti-correlation of
-0.31 between appeal and “Public Affairs” themes (p-value < 0.001 in all cases).

The last experiment looks at the appeal scores assigned to articles by the 14 in-
dividual models, for all 579,805 articles in the reference set. We compute correlation
coefficients between the vectors of articles’ appeal scores, and their “Public” and “Non-
Public” affairs scores – for each individual model. We find for all models a significant
correlation (p-value < 0.001) between appeal scores and the news to be about “Non-
Public Affairs”, except for the “Reuters” model, which had p-value=0.2023. For 12
models, we find an anti-correlation between “Public Affairs” themes and appeal, and
for the remaining two models “Wall Street Journal” and “Reuters”, on the contrary, a
correlation of 0.032 and 0.094, resp., with p-value < 0.001 in all cases. A visualisation
of these results is given in Fig. 8.

The results of this Section show that there exists a connection between a news arti-
cle’s appeal and its style – as measured by linguistic subjectivity. In terms of content,
by automatically assigning topic themes to news, we observe two general trends across
news from all outlets: the higher the “Non-Public Affairs” score of an article, the more
appealing it is perceived by a general audience (i.e. across all preference models), and
the higher the “Non-Public Affairs” score, the less appealing. Broken up across the
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Fig. 7. Correlation coefficients between global appeal of “Top Stories” articles and their scores
for “Public” and “Non-Public” Affairs, grouped by the 37 outlets
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Fig. 8. Models in space of correlation coefficients of the appeal scores they assign to “Top Stories”
articles from 37 outlets, and the articles’ themes. For all modelled audiences, the “Non-Public
Affairs” theme is correlated with appeal score.

individual models, we get a more detailed picture: all audiences perceive articles with
higher “Non-Public Affairs” score as more appealing, and most of them, with the ex-
ception of two, perceive articles with higher “Public Affairs” score as less appealing.

5 Conclusions and Future Work

We show how Machine Learning approaches can be used for large-scale analysis of
millions of news data items in order to model “What people prefer to read”, and we
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present some explanations to the question of “What influences those preferences?”.
Such analyses can be helpful for journalists and editors to understand what their readers
prefer reading about and which words trigger the audience’s attention.

The data we used for modelling is limited in the following aspects: textual content, as
published in news feeds, does not capture other factors that might influence a reader’s
interest in an article, such as accompanying pictures or videos. However, we assume
that text is the strongest information carrier, and thus the strongest factor for an article’s
appeal. Furthermore, feed data contains no demographic information about the readers
of specific articles, leading to a rather coarse-grained segmentation of users by their
choice of outlet. Such an approach is known in marketing as “behavioural segmenta-
tion” [1]. Consequently, all users are treated as one homogeneous group with similar
preferences. Our use of titles and descriptions of articles only – in order to mimic a
realistic setting of browsing news websites – has an effect on the available amount of
text, and thus non-zero features, per article. Given all these characteristics of our data,
it is remarkable that it is still possible to reliably predict news preferences of audiences.

Avenues for future work include improvements of data used to understand influ-
ences on appeal, such as more extensive demographic information for all the outlets’
audiences. Other possible factors on appeal worth investigating, apart from linguis-
tic subjectivity and topics, are geographic proximity of users to news, the presence of
celebrities and other named entities in the text, or the reporting of scandals.

Acknowledgements. I. Flaounas and N. Cristianini are supported by the CompLACS
project (European Community’s Seventh Framework Programme – grant agreement
No. 231495); N. Cristianini was supported by a Royal Society Wolfson Research Merit
Award; all authors are supported by Pascal2 Network of Excellence.

References

1. Assael, H., Roscoe Jr., A.M.: Approaches to Market Segmentation Analysis. The Journal of
Marketing 40(4), 67–76 (1976)

2. Boczkowski, P.J., Mitchelstein, E.: Is There a Gap between the News Choices of Journal-
ists and Consumers? A Relational and Dynamic Approach. The International Journal of
Press/Politics 15(4), 420–440 (2010)

3. Boczkowski, P.J., Peer, L.: The Choice Gap: The Divergent Online News Preferences of
Journalists and Consumers. Journal of Communication 61(5), 857–876 (2011)

4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A Training algorithm for Optimal Margin Classifiers.
In: Proceedings of the 5th Conference on Computational Learning Theory (COLT), pp. 144–
152. ACM (1992)

5. Burgoon, J.K., Burgoon, M., Wilkinson, M.: Writing Style as a Predictor of Newspaper Read-
ership, Satisfaction and Image. Journalism Quarterly 58, 225–231 (1981)

6. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press (2000)

7. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online
collaborative filtering. In: Proceedings of the 16th International Conference on World Wide
Web (WWW), pp. 271–280. ACM (2007)



Modelling and Explaining Online News Preferences 77

8. Flaounas, I.N., Turchi, M., Cristianini, N.: Detecting macro-patterns in the european me-
diasphere. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and International Conference on Intelligent Agent Technology - Workshops, pp.
527–530. IEEE (2009)

9. Flaounas, I., Ali, O., Turchi, M., Snowsill, T., Nicart, F., De Bie, T., Cristianini, N.: NOAM:
news outlets analysis and monitoring system. In: Proceedings of the 2011 International Con-
ference on Management of Data (SIGMOD 2011), pp. 1275–1278. ACM (2011)

10. Flaounas, I.: Pattern Analysis of News Media Content. PhD thesis, University of Bristol
(2011)

11. Flesch, R.: A New Readability Yardstick. Journal of Applied Psychology 32(3), 221–233
(1948)

12. Groseclose, T., Milyo, J.: A Measure of Media Bias. The Quarterly Journal of Eco-
nomics 120(4), 1191–1237 (2005)

13. Harcup, T., O’Neill, D.: What is News? Galtung and Ruge revisited. Journalism Studies 2(2),
261–280 (2001)

14. Hatzivassiloglou, V., Wiebe, J.M.: Effects of adjective orientation and gradability on sentence
subjectivity. In: Proceedings of the International Conference on Computational Linguistics
(COLING), pp. 299–305. Morgan Kaufmann (2000)

15. Hensinger, E., Flaounas, I., Cristianini, N.: Learning the Preferences of News Readers with
SVM and Lasso Ranking. In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI
2010. IFIP AICT, vol. 339, pp. 179–186. Springer, Heidelberg (2010)

16. Hensinger, E., Flaounas, I.N., Cristianini, N.: Learning Readers’ News Preferences with Sup-
port Vector Machines. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II.
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Abstract. Many interesting applications of Pattern Recognition techniques can
take advantage in dealing with labeled graphs as input patterns. To this aim, the
most important issue is the definition of a dissimilarity measure between graphs.
In this paper, we outline an ensemble of methods for dealing with such data,
focusing on two specific methods. The first one is simply based on a global align-
ment approach applied to seriated versions of the graphs. The second one is a two-
stages method, which applies a recurrent substructures analysis to the seriated
graphs, individuating a set of frequent subsequences, employed for embedding
the graphs into a real valued feature vector space. Tests have been performed by
synthetically generating a set of classification problem instances with increasing
problem hardness, and with a shared benchmarking database of labeled graphs.

Keywords: Granular computing, Inexact graph matching, Sequence embedding,
Graph embedding.

1 Introduction

Many recognition problems coming from interesting practical applications deal directly
with structured patterns, such as images [7], audio/video signals [24], biochemical
compounds [2] and metabolic networks [33], for instance. Usually, in order to take
advantage of the existing data driven modeling systems [31], each pattern of a struc-
tured domain X is transformed to an R

m feature vector by adopting a suitable explicit
preprocessing function φ : X → R

m. The design of these functions is a challenging
problem, mainly due to the implicit semantic and informative gap between X and R

m.
A key element to design an automatic system dealing with these recognition problems
is the information granulation and compression of the input set X , that can be achieved
through the definition of suited information granules [1]. Another approach is the one
provided by kernels-based learning machines [30], where the representation of the input
data in a high dimensional embedding space is performed implicitly, defining a suitable
valid kernel function k : X × X → R.

Labeled graphs are general and flexible structures able to model both topological and
semantic information in data. Consequently, the graph-based representation has been
adopted extensively in different contexts. A labeled graph is a tuple g = (V , E , μ, ν) ,
where V is the (finite) set of vertices (also referred as nodes), E ⊆ V × V is the set of
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edges, μ : V → LV is the vertex labeling (total) function with LV the vertex-labels set,
and ν : E → LE is the edge (total) labeling function with LE the edge-labels set. The
generality of bothLE andLV permits to represent a broad set of patterns. Consequently,
each inductive modeling engine that has to deal with labeled graphs as input patterns,
must be able to understand effectively, and efficiently, both structural and labels-related
commonalities. For this purpose, a suited graph matching procedure [10,17] must be
defined, able to act as the basic matching measure for any given pair of graphs of G. Of
great interest are Inexact Graph Matching (IGM) procedures, that can be defined, from
a very high level of abstraction, as nonnegative functions of the form f : G ×G → R

+.

1.1 Contribution and Paper Organization

In this paper, we describe two constructive tools for dealing with inexact matching of
labeled graphs. The first one is a seriation method able to transform a general graph
into a sequence of vertices labels. The second one is an approach based on a Granular
Computing paradigm [1], that performs a recurrent patterns search in the structured
domain, resulting in an alphabet of significant symbols. These symbols can be usefully
employed to embed each original structured pattern into a real valued feature vector,
which can be fed into well established Pattern Recognition algorithms, such as Support
Vector Machines, Neurofuzzy Networks, etc. [31].

These two constructive tools are then employed to build two types of IGM techniques
[17,10]. The first one is based on the principle of applying Dynamic Programming based
alignment algorithms, such as Levenshtein [14] and Dynamic Time Warping (DTW)
[29] on the data domain of the seriated graphs. The second one is based on the appli-
cation of the recurrent substructures mining on the seriated graphs, in order to build an
embedding procedure able to map the input graphs into real valued feature vectors. It
is worth to remark that the embedding based on recurrent substructures search could
be also applied directly on the input graphs domain G, without performing the seriation
stage. Moreover, it could be used for data compression in order to prepare the graphs
for a subsequent seriation stage. The latter two approaches, however, have not been
investigated in the present paper, and they are subject for future works.

This paper is organized as follows. In Section 2 we outline the tools we employ for
building IGM algorithms. More specifically, in Section 2.1 the graph seriation algorithm
is outlined and in Section 2.2 the two-stages method is briefly introduced. In Section 3
we give a detailed description of the core element of the second stage of the two-stages
algorithm, i.e. the proposed Granular Computing method for the recurrent substructures
analysis in the special case of sequences, such as the ones yielded by the seriation
procedure. In Section 4 we integrate these two algorithms, described in Section 2.1 and
3, respectively, in an optimized classification system. Experiments of the graph-based
recognition system follow in Section 5. Finally, in Section 6 we draw our conclusions.

2 Inexact Graph Matching

Pattern Recognition and Soft Computing systems are founded on the capability of deal-
ing with the notion of dissimilarity (or equivalently, the similarity) between the input
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patterns of a generalized input set X . For example, the very simple k-NN classifier is
totally based on a suited dissimilarity measure tailored to the specific input set X . When
dealing with labeled graphs, that is when X = G, the notion of graphs (dis)similarity is
developed through the well known IGM problem. Basically, IGM algorithms are con-
ceived to be able to understand, in a unified framework, both topological and semantic
commonalities among graphs. As a consequence, an IGM algorithm can be though as a
function f : G × G → R

+, that assigns a (dis)similarity value to a given pair of labeled
graphs.

It is possible to distinguish three mainstream approaches in the technical literature
[17,10]:

1. Graph Edit Distance [4,8,19,9]: these methods match the graphs directly in their
domain and, in general, are applicable to a wide class of graphs.

2. Graph Kernels [2,13,16,18]: they are based on the notion of similarity between
two discrete objects, that is evaluated on an implicitly induced high dimensional
feature space. Being able to define a kernel function for graphs permits to import
the whole class of kernel machines on this domain.

3. Graph Embedding [23,11,27,6]: these methods are based on the embedding of
the graph to obtain a general (and usually relative to the data) explicit vector rep-
resentation. These methods can be seen as a generalization of the graph kernels
approach.

Therefore, IGM algorithms must be thought as the key procedures of any, from very
simple to highly complex, Graph-based Pattern Recognition and Soft Computing
system.

2.1 Graph Seriation

Given a graph g, the aim of the seriation is to establish an order on the set of vertices
V(g), with |V(g)| = n, such that the derived sequence of vertices s = (vi1 , vi2 , ..., vin)
respects a given property of the graph. For example, an interesting approach is the one
that analyzes the spectrum (i.e. the set of its eigenvalues/eigenvectors) of the matrix
representation of the graph [28]. The leading eigenvector ψ of the adjacency matrix
contains the information about the structural connectivity of each vertex of the graph.
Similarly, analyzing the (symmetric) transition matrix Tn×n, it is possible to obtain
information about the a priori probability of a given vertex in a random walk scenario.
In general this approach can be used for unweighted and weighted graphs. However,
we observe that it is possible to extend this method also to the graphs with real vectors
as weights on the edges, taking into account the (Euclidean) norm Wij =‖ ν(eij) ‖
of the vector, assuming that the highest is the norm, the stronger is the relationship. In
Algorithm 1 it is shown the procedure to obtain the sequence of vertices s using the
leading eigenvector ψ of the matrix representation of the graph. Note that in Algorithm
1 the sequence s is assumed to behave as a list of vertices.

Once the seriated version of the graph is available, some well established tools can
be adopted to build some useful dissimilarity measure between sequences.
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Algorithm 1. Graph Seriation.
Input: The leading eigenvector ψ of g
Output: A sequence of vertices s = (vj1 , ..., vjn )

1: k = 1
2: j1 = arg maxj∈V ψ(j)

3: add(s1, j1)
4: k = 2
5: repeat
6: jk = arg maxj∈Njk−1

∧j /∈L ψ(j)

7: add(sk, jk)
8: until All vertices V(g) are in s
9: return s

2.2 Graph Embedding through Substructures Analysis

This powerful tool performs a transformation f : G → E , mapping each graph g ∈ G
to a numeric vector h ∈ E , where usually E ⊆ R

n. This transformation is realized by
first creating the alphabet A, a set of substructures frequently recurring in the whole
dataset. Once the alphabet is formed by a procedure of substructures mining, the graph
to transform is tested for the presence of occurrences of each element of A. The re-
sulting values can be used to form a vector having dimension equal to the cardinality
of A. Once the representation in form of real valued vectors is available, well know
tools such as Minkowski or Mahalanobis distances can be used to build the final IGM
function, depending on the semantic of data.

It can be noted that this procedure can be applied directly in the graphs domain G.
However, the method mainly investigated in this paper consists in applying the em-
bedding procedure on the simplified sequenced data obtained from the graphs with the
seriation algorithm described in Section 2.1. In this case, the transformation function
can be viewed as the composition of two functions, f = f2 ◦ f1, where f1 : G → S
transforms a graph g into a sequence s, and f2 : S → E transforms the sequence s into
the final embedding vector h. The substructures mining procedure is performed in the
S domain, and consequently each pattern of A is actually a subsequence. The second
transformation function will be described in the next section.

3 A Granular Computing-Based Mining Procedure for Sequences
Embedding

In this section, we describe two variants of a Granular Computing embedding proce-
dure able to cope with a set of sequences S. For the purpose of this paper, we will
assume that a sequence is actually a string of characters belonging to a finite nominal
set. Consequently, if not specified differently, the two terms must be considered equiv-
alent. The first algorithm, called GRADIS [15], follows strictly a clustering ensembles
based approach [32], while the second one is called RL-GRADIS [25], and adds a rein-
forcement learning approach [12] to the same clustering scheme. GRADIS individuates
different clusters of similar patterns by making complete partitions of the input dataset
using a standard clustering algorithm. To this aim, a pure clustering approach is taken
into account, specifically the well known BSAS algorithm [31]. Each cluster is viewed
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as a granule of similar, and hence indistinguishable, occurrences of a frequent pattern.
The candidates are evaluated by means of a cost function taking into account compact-
ness and cardinality of the clusters/granule. If a candidate cluster contains an adequate
number of patterns which are similar enough, the candidate individuates a frequent pat-
tern, otherwise it is discarded. The main drawback of this approach, in the case of large
datasets, is the high computational cost required by the clustering ensembles proce-
dure, usually performed with settings which yield a high number of clusters. This is
due to the fact that system parameters settings producing a low number of clusters are
not suited to the search of frequent patterns. The approach followed by RL-GRADIS
overcomes the limits of the pure clustering based approach, by introducing a dynamic
behavior for discarding clusters which are not updated frequently during the presenta-
tion of patterns. In this way, the number of clusters can be automatically limited even
with low settings of the clustering threshold, only yielding compact clusters. Moreover,
only clusters containing frequent patterns live up to the end of the process, limiting also
the general computational cost of the system. For this purpose, RL-GRADIS should be
defined as an unsupervised learning scheme based on clustering the input set S.

3.1 Frequent Substructures Identification

Given an input set of sequences S, the set of n-grams N (subsequences of length n)
is extracted performing an n-grams analysis [15]. The set N is built considering each
variable length n-gram extracted from each input sequence of S. The length of each
n-gram vary between two user-defined parameters l and L. For very large datasets,
it can be unfeasible to extract and retain all the n-grams. Consequently, by using a
suited user-defined selection probability p, only a subset N ∗ ⊆ N can be retained.
Therefore, the following analysis is performed on the set N ∗. As an example, if an
input sequence is s = (A,B,C,D), with l = 2, L = 3, we obtain the set of its n-
grams Ns = {(A,B), (A,B,C), (B,C), (B,C,D), (C,D)}. The same expansion is
repeated for each s ∈ S, eventually yielding the set N =

⋃
s∈S Ns (andN ∗ if p < 1).

Algorithm 2, taken from [25, Algorithm 1], shows the pseudo-code that describes
the n-grams discovery strategy adopted by RL-GRADIS. This algorithm is based on a
dynamic list of receptors R, which play the same role of cluster representatives as de-
scribed for GRADIS, therefore providing a model of the corresponding cluster. In the
case of substrings, a MinSOD representative [5] employing the Levenshtein distance is
used. However, we stress that different matching measures for sequences could be em-
ployed, such as for example the DTW, tailored for the specific nature of the sequence
itself (e.g., time series or complex composite types). Each receptor is assigned a strength
parameter denoted with f . This value is dynamically updated to track receptors associ-
ated to highly frequent patterns. It is easy to recognize the basic sequential analysis per-
formed by the BSAS clustering algorithm (from line 3 to 20). The additional procedure
aimed at the removal of the not-frequently updated receptors (i.e., clusters together with
its elements) is outlined from line 21 to 26. Basically, it consists in a loop that checks
the strength f of each identified receptor in R. If the algorithm finds that a receptor is
not adequately updated over time, it will be removed from the current set of receptors
R. This test is performed matching the strength of each receptor with a user-defined
threshold ε. The α, β and σ parameters, each falling in the interval [0, 1], control
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Algorithm 2. Symbols Alphabet Computation using Reinforcement Learning Approach.
Input: The set of n-grams N∗ = {n0, n1, ..., n|N∗|}, the maximum number of allowed clusters Q, the clustering

threshold Θ, α, β, σ and ε parameters
Output: A set of receptors R

1: R = ∅
2: for all ni ∈ N∗ do
3: if R = ∅ then
4: Create new receptor r̂ such that f(r̂) = σ
5: update(r̂, ni)
6: push(R, r̂)
7: else
8: dmin = min

rj∈R
diss(rj , ni)

9: if dmin > Θ AND size(R) < Q then
10: Create new receptor r̂ such that f(r̂) = σ
11: update(r̂, ni)
12: push(R, r̂)
13: else
14: r̄ = arg min

rj∈R
diss(rj , ni)

15: update(r̄, ni)
16: f(r̄) = f(r̄) + α(1 − f(r̄))
17: end if
18: end if
19: for all rj ∈ R do
20: f(rj) = (1 − β) · f(rj)
21: if f(rj) < ε then
22: pop(R, rj)
23: end if
24: end for
25: end for
26: return R

the dynamic behavior of the strength value f over time. In particular, σ stands for the
default strength value, α is used as a reinforcing factor when the cluster is updated and
β is used to adjust the speed of forgetfulness of receptors.

It is worth to stress that, even if the symbols identification algorithm developed in RL-
GRADIS results to be usually more faster and essential than the clustering ensembles
strategy of GRADIS [25], it is based on a single clustering threshold parameter, Θ.
Consequently, the definition of the right value of this parameter becomes an important
objective of study.

At the end of the procedure, the set of receptors R = {r1, r2, ..., r|R|} is com-
pletely identified. From R we derive the symbols alphabet A, using as a measure
of cluster quality the strength of the respective receptor. Compactness and size costs
are associated to each cluster as additional descriptive measures, and are defined as
K(Cj) = 1

n−1

∑n−1
i=1 dLEV (ni, rj) and S(Cj) = 1 − |Cj |

|N∗| , respectively. Each symbol
aj is thus defined as a triple (rj ,K(Cj)·δ, f(rj)), where K(Cj)·δ is a cluster-dependent
thresholding factor used in the subsequent embedding phase, and f(rj) is the quality
of the cluster Cj (and in turn the quality of the receptor rj ) in the alphabet A. There-
fore, each symbol is equipped with the domain-dependent semantic, that in our case is
defined as a pair of metric and quality information concerning the cluster from which it
has been derived. We stress that the size cost S(Cj) is taken into account indirectly into
the force factor computation (i.e., f(rj)), since a heavily populated cluster is updated
frequently.
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Conversely, the GRADIS approach defines a threshold τ , used for symbols filtering.
The cost of each candidate symbol, denoted with Γ (Cj), is defined as a convex linear
linear combination of the compactness and size costs

Γ (Cj) = (1 − μ) ·K(Cj) + μ · S(Cj) (1)

If this cost is lower than the threshold τ , the cluster is retained in the alphabet A,
otherwise it is rejected. In this case, a symbol aj is defined as (nSOD

Cj
,K(Cj) · δ, 1 −

Γ (Cj)), adopting a user-defined tolerance parameter δ ≥ 1.

Computational Complexity. The procedure shown in Algorithm 2 consists basically
in a linear scan of the set N ∗. For each ni ∈ N ∗, a number of distance computations,
dependent on the clusters size and on the maximum number of allowed clusters Q,
must be performed to update the MinSOD element (line 11 or 16) and to assign the
input pattern ni to the nearest receptor (line 8). If L is the maximum length of the n-
grams, the cost of a single Levenshtein distance computation is given by O(L2). The
assignment of each ni to a receptor has a cost bounded by Q · L2, and the MinSOD
update cost can be upper bounded by |C|2 · L2, where C ⊂ N ∗ is the constant-size
cache of the MinSOD [5]. Moreover, the loop from line 21 to line 26 consists in at most
Q evaluations of the receptors strength. Thus, the overall computational complexity is
upper bounded byO(|N ∗|·(Q·L2+|C|2·L2+Q)) = O(|N ∗|·L2·(Q+|C|2)+|N ∗|·Q),
that is linear in the size of the inputN ∗.

3.2 Sequences Embedding Method

Both GRADIS and RL-GRADIS share the following sequences embedding procedure.
The embedding space E is built upon a local reference framework, defined on the base
of the symbols alphabet A. Indeed, the set A can be seen as a set of prototypes of the
input set S, used to produce a dissimilarity space representation E [20]. Practically, if
|A| = d, each sequence sj , j = 1 → |S|, is represented as a d-dimensional numeric
vector, hj ∈ R

d, called symbolic histogram. In the i-th component of h is counted the
number of occurrences of the symbol ai into sj , evaluating the match degree using an
inexact matching procedure, on the base of the adopted sequences dissimilarity (e.g.,
Levenshtein).

Algorithm 3 shows the embedding algorithm. Let νi = �len(si) · λ� be the length
tolerance adopted in order to find matches in si, where λ is a user-defined parameter in
[0, 1]. The selected set of n-gramsNsi of si, of variable length n between len(si)−νi ≤
n ≤ len(si) + νi, is extracted and the inexact matching is computed against aj and
each nk ∈ Nsi . If the matching value is lower or equal to the symbol-dependent value
K(Cj) · δ, the counting is incremented by one. Further post-processing techniques can
be applied to each histogram in E , such as normalizations and different (monotonic)
transformations, aimed at reshaping data.

4 Optimized Classification System

A very important feature of a classification system is its generalization capability, that
can be estimated evaluating a suited performance measure, related to the classification
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Algorithm 3. Symbolic Histogram Representation.
Input: The input set S, the symbols alphabet A, parameters λ and δ
Output: A set of symbolic histogram representations H ⊆ E

1: H = ∅
2: for all si ∈ S do
3: Initialize the relative zero-valued symbolic histogram h(i)

4: Let νi = �len(si) · λ�
5: Extract all the n-grams of si, denoted as Nsi

, of variable length n between len(si)− νi ≤ n ≤ len(si) + νi
6: for all aj ∈ A do
7: for all nk ∈ Nsi

do
8: Compute the inexact matching value djk = d(aj, nk)
9: if djk ≤ K(Cj) · δ then

10: h
(i)
j = h

(i)
j + 1

11: end if
12: end for
13: end for
14: H = H ∪ {h(i)}
15: end for

model, on the test set. The well-known Occam’s Razor principle [31] of learning theory
can be interpreted, for the purpose of classification systems, as a law of parsimony
concerning the learned classifier. That is, under the same conditions of performance on
the training set, the classification model that shows the best generalization capability is
the one that is characterized by the lowest structural complexity.

The proposed classification system performs an automatic stage of genetic algorithm-
based model optimization and wrapper-based feature selection on E [25], using only the
information of the training set. This is done defining a fitness function with the aim of
optimizing a linear convex combination of the classification accuracy and the composite
structural complexity. The composite structural complexity is itself defined as a linear
convex combination of the fraction of selected features and the model structural com-
plexity of the classifier. Formally, if ĥ is the reduced symbolic histogram of a given
input sequence s, we compute its fitness function as

f(ĥ) = 1− (η ·ErrStr + (1− η) · (γ · FC + (1− γ) · SC)) (2)

In Equation 2, ErrStr is the classification error rate achieved over the training set, FC
stands for the fraction of selected feature and SC = 1− exp(−(#I/Δ)) is a non linear
compression of the structural complexity measure. For instance, using SVM [3] as clas-
sifier on E , #I is given by the number of adopted support vectors, while in the case of
a neuro-fuzzy Min-Max model [26], is given by the number of hyperboxes. Of course,
a wide range of feature-based classifiers are applicable to embedding space E . The pa-
rameter Δ is a factor used to modulate the decrease speed of the nonlinear compressing
function. However, the SC factor could be defined also adopting linear functions, get-
ting rid of the modulating parameterΔ. The η and γ parameters can be adapted to focus,
during the optimization stage, on the structural complexity of the classification model
and on the dimensionality of the embedding space, or to the classification error. Once
the model optimization phase is terminated, the best-performing setup is considered and
the classification accuracy on the test set is evaluated directly as

f(ĥ) = 1− ErrSts (3)
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5 Experiments

In the following two subsections, we show and discuss two experimental evaluations
on a synthetically generated set of classification problem instances, and a test on a
well know shared dataset of graphs belonging to different scientific contexts [21]. The
methods under analysis are the following:

– k-NN classification rule using Levenshtein distance applied to sequenced graphs S.
– The SVM classification system applied to the embedding space E , employed in the

optimized classification system described in Section 4.

5.1 Experiments on Synthetic Data

The aim of this test is to progressively increase the hardness of the classification task,
measuring the robustness of the system. We focus on an equally distributed two-classes
set of classification problem instances, using only weighted graphs. Each class of graphs,
for each problem instance, has been generated using a Markov Chains-based approach
[15]. That is, each class is entirely described by a proper transition matrix. The order of
the graphs is set up to 100 and, their size is randomly determined, with 1000, 500 and
500 graphs for the training validation and test sets, respectively. To control the hardness
of the classification problem, we produce a sequence of generating transition matrices
with different level of randomness. A transition matrix is said to be fully random if
the transition probabilities are uniform. Thus, for each classification problem instance,
we generate the two transition matrices (one for each class of graphs) introducing two
real parameters, α, β ∈ [0, 1], controlling the similarity of the transition matrices. Let
P1 and P2 be two different permutation matrices, and let U be the uniform transition
matrix, with a zero diagonal. We firstly generate two intermediate matrices, say A and
B, as shown in [15, Equation 2]. Finally, we obtain the two transition matrices, char-
acterized by a desired similarity, as shown in [15, Equation 3]. In the following tests,
different combinations of α and β have been used, generating 118 graph classification
problem instances.

Results with Both Approaches. Tests on synthetic data demonstrate the correctness
of the implementations and the robustness and stability of the employed tools. In fact,
for the k-NN with Levenshtein distance method, except four cases, the classification
accuracy percentage is always 100% for values of α and β in the interval [0.1, 0.9].
Only for extreme values of α and β (i.e., 0 and 1) the behavior becomes unstable and
a high number of errors is observed, approaching to the performance of the random
classifier. The employed k in this case has been fixed to one. The approach based on the
explicit embedding performs in a very similar way, yielding slightly worse results [15].

5.2 Experiments on the IAM Dataset

In this section, we provide different comparative experimental evaluations over two IAM
datasets [21]. The AIDS dataset is a not-equally distributed two-class problem with 250,
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Table 1. Classification Accuracy Percentages on the AIDS and Mutagenicity Datasets

System Datasets
AIDS Mutagenicity

BP-H+k-NN [8] 99.2 68.3
BP-V+k-NN [8] 98.9 67.6
GC+k-NN [16] 99.2 -

wBMF+k-NN [6] 94.0 69.1
sk+SVM [22] 97.4 55.4

k-NN+Levenshtein 99.0 71.1
RL-GRADIS+SVM 98.0 67.1

GRADIS+SVM 98.5 59.0

250 and 1500 samples for the training, validation and test set, respectively. The repre-
sented data are molecular compounds, denoting or not activity against HIV. The atoms
are represented directly through the vertices, and covalent bonds by the edges of the
graph. Vertices are labeled with the chemical symbol and edges by the valence of the
linkage. The Mutagenicity dataset is again a two class problem, concerning the classifi-
cation of chemical agents depending on their mutagenicity properties. The graphs labels
and their meaning are the same as the ones of the AIDS dataset. The training, validation
and test set contain 1500, 500 and 2337 graphs, respectively. The following results have
been obtained on a machine with an Intel Core 2 Quad CPU Q6600 2.40GHz and 4 GB
of main memory, running a 64-bit Linux OS.

Results with Levenshtein-Based k-NN. As concerns the AIDS dataset, the classifi-
cation result is comparable with the one obtained by other state of the art competing
algorithms. In fact the classification accuracy percentage of the antagonist methods
varies from 94.0% to 99.2%, while the proposed method achieves 99.0%. As concerns
the Mutagenicity dataset, the proposed method slightly outperforms the competing al-
gorithms, achieving an accuracy of 71.1% against results which vary from 55.4% to
69.1%. The reported results in Table 1 have been obtained with k = 1 and k = 3, re-
spectively, resulting to be the best configurations. However, we tested the method with
k varying from one to seven, yielding only slightly different results.

Results with the Embedding-Based Systems. For what concerns the embedding of
the AIDS dataset, RL-GRADIS employs only 0.247 seconds for the alphabet computa-
tion and 1.251 seconds for the embedding of the three datasets (i.e., training, test and
validation sets). The alphabet contains 86 symbols. The RL-GRADIS has been executed
setting α = 0.01, β = 0.001, ε = 0.001 and θ = 0.2. On the other hand GRADIS com-
putes the alphabet of symbols in 1.304 seconds and performs the embedding in roughly
the same computing time. The alphabet contains 100 symbols, yielding a less com-
pact representation of the input set. The GRADIS procedure has been executed setting
Θmin = 0, Θmax = 0.2 and τ = 0.75. In both cases, the algorithms have been executed
searching for n-grams of length between 3 and 5, limiting the maximum number of
clusters to 100, and retaining the full retrieved n-grams set N .

For what concerns the Mutagenicity dataset, RL-GRADIS performs the alphabet iden-
tification in 5.045 seconds and the embedding of the three datasets in 6.941 seconds. The
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alphabet contains 76 symbols. The procedure has been executed with α = 0.01, β =
0.003, ε = 0.001 and θ = 0.2. The GRADIS procedure employs 19.255 seconds for
the alphabet computation and roughly the same computing time for the embedding of
the three datasets. The retrieved alphabet contains 100 symbols and the execution setup
consists in setting Θmin = 0, Θmax = 0.2 and τ = 0.75. Both algorithm were aligned
searching for n-grams between length 3 and 6, and again limiting the maximum number
of clusters to 100, retaining the full set of n-grams.

Table 1 shows the average accuracy percentages, obtained executing ten times the
classification stage using different random seeds affecting the genetic algorithm be-
havior employed in the optimization stage. For both systems (i.e., GRADIS and RL-
GRADIS), SVM (actually, the C-SVM version, setting C = 1000) has been employed as
the final classifier on the produced embeddings, performing 100 evolutions and using
a population of 20 individuals for the optimization stage of the classifier (see Section
4). The synthesized classifier has been obtained, for the AIDS dataset, in 15.96 and
22.98 seconds, selecting 24 and 10 features, using the RL-GRADIS and GRADIS em-
beddings, respectively. For what concerns the Mutagenicity dataset, the synthesis has
required 157.98 and 306.96 seconds, selecting 22 and 33 features, using RL-GRADIS
and GRADIS derived embeddings. In all the configurations, the standard deviation of the
results is around 1%. As a whole, the proposed two stages IGM procedure, employed
in classification tasks, exhibits stable and encouraging results.

6 Conclusions and Future Directions

In this paper, graph seriation and embedding procedures based on substructure recur-
rence analysis have been employed in two different algorithmic arrangements for clas-
sification purposes. Tests have been carried out on synthetic data for robustness veri-
fication, and on two particular datasets from the IAM database. The simpler approach
only based on seriation and Levenshtein distance showed better performances. This
could be due to the fact that frequent subgraphs in the original graph dataset G are not
mapped into recurrent substrings in S after the seriation stage. We are planning fur-
ther tests in order to ascertain this hypothesis. It is important to underline that in any
classification approach based on graph seriation, once obtained S, all useful informa-
tion stored in edges labels is definitively unavailable to subsequent processing stages.
For this reason, this information should be used appropriately in the seriation stage.
Consequently, in order to take full advantage of edge label information, as observed in
Section 2.1, a meaningful norm on this labels set (i.e., the set LE ) should be defined, in
order to represent the strength of the relationship between vertices, which in turn is the
very fundamental information exploited during the seriation stage. However, in both the
AIDS and Mutagenicity datasets edge labels information has not taken into account in
computing a weighted adjacency or transition matrix. In spite of this, the classification
system based on RL-GRADIS achieves satisfactory classification results, not far from
the other state of the art approaches.

Future works include to validate further the overall performance measures using
other real world datasets with additional algorithmic improvements. Moreover, another
interesting approach consists in searching frequent substructures directly in the original
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graph domain G, and using them to define a suited compressed semantic representation
of each graph, defining an intermediate information granulation level, in order to per-
form another frequent subgraphs mining step or directly the seriation stage followed
by an RL-GRADIS embedding. Further algorithmic refinements include the automatic
optimization of crucial parameters by means of improved meta-heuristic global op-
timization methods. Another possible improvement consists in enhancing the simple
clustering algorithm adopted in RL-GRADIS, defining more meaningful cluster com-
pactness costs functions, for example relying on higher order statistical descriptors
(such as a joint measure of mean and variance, kurtosis, etc.) or using fuzzy sets re-
lated mathematical tools for cluster models.
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Abstract. We introduce a non-parametric method for segmentation in regime-
switching time-series models. The approach is based on spectral clustering of
target-regressor tuples and derives a switching regression tree, where regime
switches are modeled by oblique splits. Such models can be learned efficiently
from data, where clustering is used to propose one single split candidate at each
split level. We use the class of ART time series models to serve as illustration,
but because of the non-parametric nature of our segmentation approach, it readily
generalizes to a wide range of time-series models that go beyond the Gaussian
error assumption in ART models. Experimental results on S&P 1500 financial
trading data demonstrates dramatically improved predictive accuracy for the ex-
emplifying ART models.

Keywords: Regime-switching time series, Spectral clustering, Regression tree,
Oblique split, Financial markets.

1 Introduction

The analysis of time-series data is an important area of research with applications in
areas such as natural sciences, economics, and finance to mention a few.

Many time series exhibit nonstationarity due to regime switching. Proper detection
and modeling of this switching is a major challenge in time-series analysis. In regime-
switching models, different time series regimes are described by submodels with differ-
ent sets of parameters. A particular submodel may apply to multiple time ranges when
the underlying time series repeatedly falls into a certain regime. For example, volatil-
ity of equity returns may change when affected by events such as earnings releases or
analysts’ reports, and we may see similar volatility patterns around similar events.

The intuition in this paper is to match proposed regimes with modes of the joint
distribution of target-regressor tuples, which is a particular kind of mixture modeling.
Prior research offers quite a variety of mixture modeling approaches to the analysis
of nonstationary time series. In Markov-switching models (see, e.g., [12,13]) a Markov
evolving hidden state indirectly partitions the time-series data to fit local auto-regressive
models in the mixture components. Another large body of work (see, e.g., [27,28]) have
adapted the hierarchical mixtures of experts in [15] to time series. In these models–also
denoted as gated experts–the hierarchical gates explicitly operate on the data in order to
define a partition into local regimes. In both the Markov-switching and the gated expert
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models, the determination of the partition and the local regimes are tightly integrated in
the learning algorithm and demands an iterative approach, such as the EM algorithm.

We focus on a conceptually simple direction that lends itself easier to explanatory
analysis. The resulting design differs from the above work in at least three aspects: 1) we
propose a modular separation of the regime partitioning and the regime learning, which
makes it easy to experiment independently with different types of regime models and
different separation methods, 2) in particular, this modularity allows for non-parametric
as well as parametric regime models, or a mixture thereof, 3) the regime-switching
conditions depend deterministically on data and are easy to interpret.

We model the actual switching conditions in a regime-switching model in the form
of a regression tree and call it the switching tree. Typically, the construction of a re-
gression tree is a stagewise process that involves three ingredients: 1) a split proposer
that creates split candidates to consider for a given (leaf) node in the tree, 2) one or
more scoring criteria for evaluating the benefit of a split candidate, and 3) a search
strategy that decides which nodes to consider and which scoring criterion to apply at
any state during the construction of the tree. Since the seminal paper [2] popularized
the classic classification and regression tree (CART) algorithm, the research community
has given a lot of attention to both types of decision trees. Many different algorithms
have been proposed in the literature by varying specifics for the three ingredients in the
construction process mentioned above.

Although there has been much research on learning regression trees, we know of only
one setting, where these models have been used as switching trees in regime-switching
time series models–namely the class of auto-regressive tree (ART) models in [18]. The
ART models generalize classical auto-regressive (AR) models (e.g., [11]) by having
a regression tree define the switching between the different AR models in the leafs.
As such, the well-known threshold auto-regressive (TAR) models [25,24] can also be
considered as a specialization of an ART model with the regression tree limited to a
single split variable. The layout of our algorithms is strongly influenced by [18] (which
we repeatedly refer to for comparison), but our premises and approach is very different.

In particular, we propose a different way to create the candidate splits during the
switching tree construction. A split defines a predicate, which, given the values of re-
gressor variables, decides on which side of the split a data case should belong.1 A
predicate may be as simple as checking if the value of a particular single regressor is
below some threshold or not. We will refer to this kind of split as an axial split, and it
is in fact the only type of splits allowed in the ART models. We make use of general
multi-regressor split predicates, which in this paper we approximate with linear predi-
cates called oblique splits. Importantly, we show evidence that for a broad class of time
series, the best split is not likely to be axial.

It may sometimes be possible to consider and evaluate the efficacy of all feasible
axial splits for the data associated with a node in the tree, but for combinatorial reasons,
oblique splitting rarely enjoys this luxury. We therefore need a split proposer, which is
more careful about the candidate splits it proposes. In fact, our approach is extreme in
that respect by only proposing a single oblique split to be considered for any given node

1 For clarity of presentation, we will focus on binary splits only. It is a trivial exercise to extend
our proposed method to allow for n-ary splits.
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during the construction of the tree. Our oblique split proposer involves a simple two step
procedure. In the first step, we use a spectral clustering method to separate the data in
a node into two classes. Having separated the data, the second step now proceeds as a
simple classification problem, by using a linear discriminant method to create the best
separating hyperplane for the two data classes. Any discriminant method can be used,
and there is in principle no restriction on it being linear, if more complicated splits are
sought.

Oblique splitting has enjoyed significant attention for the classification tree setting.
See, e.g., [2,20,3,10,14]. Less attention has been given to the regression tree setting,
but still a number of methods has come out of the statistics and machine learning com-
munities. See, e.g., [7,16,4] to mention a few. Setting aside the time-series context for
our switching trees, the work in [7] is in style the most similar to the oblique splitting
approach that we propose in this paper. In [7], the EM algorithm for Gaussian mixtures
is used to cluster the data. Having committed to Gaussian clusters it now makes sense to
determine a separating hyperplane via a quadratic discriminant analysis for a projection
of the data onto a vector that ensures maximum separation of the Gaussians. This vector
is found by minimizing Fisher’s separability criterion.

Our approach to proposing oblique split candidates is agnostic to any specific para-
metric assumptions on the noise distribution and therefore accommodates without
change non-Gaussian or even correlated errors (thus our method is more general than
ART, which relies on univariate Gaussian quantiles as split candidates). This approach
allows us to use spectral clustering - a non-parametric segmentation tool, which has
been shown to often outperform parametric clustering tools (see, e.g., [26]).

Spectral clustering dates back to the work in [8,9] that suggest to use the method for
graph partitionings. Variations of spectral clustering have later been popularized in the
machine learning community [23,19,21], and, importantly, very good progress has been
made in improving an otherwise computationally expensive eigenvector computation
for these methods [29]. We use a simple variation of the method in [21] to create a
spectral clustering for the time series data in a node. Given this clustering, we then use
a simple perceptron learning algorithm (see, e.g., [1]) to find a hyperplane that defines
a good oblique split predicate for the autoregressors in the model.

Let us now turn to the possibility of splitting on the time feature in a time series.
Due to the special nature of time, it does not make sense to involve this feature as an
extra dimension in the spectral clustering; it would not add any discriminating power
to the method. Instead, we propose a procedure for time splits, which uses the cluster-
ing in another way. The procedure identifies specific points in time, where succeeding
data elements in the series cross the cluster boundary, and proposes time splits at those
points. Our split proposer will in this way use the spectral clustering to produce both the
oblique split candidate for the regressors, and a few very targeted (axial) split candidates
for the time dimension.

The rest of the paper is organized as follows. In Section 2, we briefly review the ART
models that we use as a baseline, and we define and motivate the extension that allows
for oblique splits. Section 3 reviews the general learning framework for ART models.
Section 4 contains the details for both aspects of our proposed spectral splitting method–
the oblique splitting and the time splitting. In Sections 5 and 6 we describe experiments
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and provide experimental evidence demonstrating that our proposed spectral splitting
method dramatically improves the quality of the learned ART models over the current
approach. We will conclude in Section 7.

2 Standard and Oblique ART Models

We begin by introducing some notation. We denote a temporal sequence of variables by
X = (X1, X2, . . . , XT ), and we denote a sub-sequence consisting of the i’th through
the j’th element by Xj

i = (Xi, Xi+1, . . . , Xj), i < j. Time-series data is a sequence
of values for these variables denoted by x = (x1, x2, . . . , xT ). We assume continuous
values, obtained at discrete, equispaced intervals of time.

An autoregressive (AR) model of length p, is simply a p-order Markov model that
imposes a linear regression for the current value of the time series given the immediate
past of p previous values. That is,

p(xt|xt−1
1 ) = p(xt|xt−1

t−p) ∼ N (m+

p∑
j=1

bjxt−j , σ
2)

whereN (μ, σ2) is a conditional normal distribution with mean μ and variance σ2, and
θ = (m, b1, . . . , bp, σ

2) are the model parameters (e.g., [6, page 55]).
The ART models is a regime-switching generalization of the AR models, where a

switching regression tree determines which AR model to apply at each time step. The
autoregressors therefore have two purposes: as input for a classification that determines
a particular regime, and as predictor variables in the linear regression for the specific
AR model in that regime.

As a second generalization2, ART models may allow exogenous variables, such as
past observations from related time series, as regressors in the model. Time (or time-
step) is a special exogenous variable, only allowed in a split condition, and is therefore
only used for modeling change points in the series.

2.1 Axial and Oblique Splits

Different types of switching regression trees can be characterized by the kind of pred-
icates they allow for splits in the tree. The ART models allow only a simple form of
binary splits, where a predicate tests the value of a single regressor. The models handle
continuous variables, and a split predicate is therefore of the form

Xi ≤ c

where c is a constant value and Xi is any one of the regressors in the model or a variable
representing time. A simple split of this type is also called axial, because the predicate
that splits the data at a node can be considered as a hyperplane that is orthogonal to the
axis for one of the regressor variables or the time variable.

2 The class of ART models with exogenous variables has not been documented in any paper. We
have learned about this generalization from communications with the authors of [18].
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The best split for a node in the tree can be learned by considering all possible par-
titionings of the data according to each of the individual regressors in the model, and
then picking the highest scoring split for these candidates according to some criterion. It
can, however, be computationally demanding to evaluate scores for that many split can-
didates, and for that reason, [5] investigated a Gaussian quantile approach that proposes
only 15 split points for each regressor. They found that this approach is competitive to
the more exhaustive approach. A commercial implementation for ART models uses the
Gaussian quantile approach and we will compare our alternative to this approach.

We propose a solution, which will only produce a single split candidate to be consid-
ered for the entire set of regressors. In this solution we extend the class of ART models
to allow for a more general split predicate of the form∑

i

aiXi ≤ c (1)

where the sum is over all the regressors in the model and ai are corresponding coeffi-
cients. Splits of this type are in [20] called oblique due to the fact that a hyperplane that
splits data according to the linear predicate is oblique with respect to the regressor axes.
We will in Section 4 describe the details behind the method that we use to produce an
oblique split candidate.

2.2 Motivation for Oblique Splits

There are general statistical reasons why, in many situations, oblique splits are prefer-
able over axial splits. In fact, for a broad class of time series, the best splitting hyper-
plane turns out to be approximately orthogonal to the principal diagonal
d = ( 1√

p , . . . ,
1√
p ). To qualify this fact, consider two pre-defined classes of segments

x(c), c = 1, 2 for the time-series data x. Let μ(c) and Σ(c) denote the mean vector and
covariance matrix for the sample joint distribution of Xt−1

t−p , computed for observations
on p regressors for targets xt ∈ x(c).

Let us define the moving average At = 1
p

∑p
i=1 Xt−i. We show in the Appendix

that in the context where Xt−i − At is weakly correlated with At, while its variance
is comparable with that of At, the angle between the principal diagonal and one of the
principal axes of Σ(c), c = 1, 2 is small. This would certainly be the case with a broad
range of financial data, where increments in price curves have notoriously low correla-
tions with price values [22,17], while seldom overwhelming the averages in magnitude.
With one of the principal axes being approximately aligned with the principal diagonal
d for both Σ(1) and Σ(2) it is unlikely that a cut orthogonal to either of the coordinate
axes Xt−1, . . . , Xt−p can provide optimal separation of the two classes.

3 The Learning Procedure

An ART model is typically learned in a stagewise fashion. The learning process starts
from the trivial model without any regressors and then greedily evaluates regressors
one at a time and adds the ones that improve a chosen scoring criterion to model, while
scoring criterion keeps improving.
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The task of learning a specific autoregressive model considered at any stage in this
process can be cast into a standard task of learning a linear regression tree. It is done
by a trivial transformation of the time-series data into multivariate data cases for the
regressor and target variables in the model. For example, when learning an ART model
of length p with an exogenous regressor, say zt−q, from a related time series, the
transformation creates the set of T − max(p, q) cases of the type (xt

t−p, zt−q), where
max(p, q) + 1 < t ≤ T . We will in the following denote this transformation as the
phase view, due to a vague analogy to the phase trajectory in the theory of dynamical
systems.

Most regression tree learning algorithms construct a tree in two stages (see, e.g., [2]):
First, in a growing stage, the learning algorithm will maximize a scoring criterion by
recursively trying to replace leaf nodes by better scoring splits. A least-squares devia-
tion criterion is often used for scoring splits in a regression tree. Typically the chosen
criterion will cause the selection of an overly large tree with poor generalization. In a
pruning stage, the tree is therefore pruned back by greedily eliminating leaves using
a second criterion–such as the holdout score on a validation data set–with the goal of
minimizing the error on unseen data.

In contrast, [18] suggests a learning algorithm that uses a Bayesian scoring criterion,
described in detail in that paper. This criterion avoids over-fitting by penalizing for the
complexity of the model, and consequently, the pruning stage is not needed. We use this
Bayesian criterion in our experimental section.

In the next section, we describe the details of the algorithm we propose for producing
the candidate splits that are considered during the recursive construction of a regression
tree. Going from axial to oblique splits adds complexity to the proposal of candidate
splits. However, our split proposer dramatically reduces the number of proposed split
candidates for the nodes evaluated during the construction of the tree, and by virtue of
that fact spends much less time evaluating scores of the candidates.

4 Spectral Splitting

This section will start with a brief description of spectral clustering, followed by details
about how we apply this method to produce candidate splits for an ART time-series
model. A good tutorial treatment and an extensive list of references for spectral cluster-
ing can be found in [26].

The spectral splitting method that we propose constructs two types of split candidates–
oblique and time–both relying on spectral clustering. Based on this clustering, the method
applies two different views on the data–phase and trace–according to the type of splits
we want to identify. The algorithm will only propose a single oblique split candidate and
possibly a few time split candidates for any node evaluated during the construction of
the regression tree.

4.1 Spectral Clustering

Given a set of n multi-dimensional data points (x1, . . . , xn), we let aij = a(xi, xj)
denote the affinity between the i’th and j’th data point, according to some symmet-
ric and non-negative measure. The corresponding affinity matrix is denoted byA =
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(aij)i,j=1,...,n, and we let D denote the diagonal matrix with values
∑n

j=1 aij , i =
1, . . . , n on the diagonal.

Spectral clustering is a non-parametric clustering method that uses the pairwise prox-
imity between data points as a basis of the criterion that the clustering must optimize.
The trick in spectral clustering is to enhance the cluster properties in the data by chang-
ing the representation of the multi-dimensional data into a (possibly one-dimensional)
representation based on eigenvalues for the so-called Laplacian.

L = D −A

Two different normalizations for the Laplacian have been proposed in [23] and [21],
leading to two slightly different spectral clustering algorithms. We will follow a sim-
plified version of the latter. Let I denote the identity matrix. We will cluster the data
according to the second smallest eigenvector–the so-called Fiedler vector [9]–of the
normalized Laplacian

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2

The algorithm is illustrated in Figure 1. Notice that we replace Lnorm with

L′
norm = I − Lnorm

which changes eigenvalues from λi to 1 − λi and leaves eigenvectors unchanged. We
therefore find the eigenvector for the second-largest and not the second-smallest eigen-
vector. We prefer this interpretation of the algorithm for reasons that become clear when
we discuss iterative methods for finding eigenvalues in Section 4.2.

1. Construct the matrix L′
norm.

2. Find the second-largest eigenvector e = (e1, . . . , en) of L′
norm.

3. Cluster the elements in the eigenvector (e.g. by the largest gap in values).
4. Assign the original data point xi to the cluster assigned to ei.

Fig. 1. Simple normalized spectral clustering algorithm

Readers familiar with the original algorithm in [21] may notice the following sim-
plifications: First, we only consider a binary clustering problem, and second, we only
use the two largest eigenvectors for the clustering, and not the k largest eigenvectors in
their algorithm. (The elements in the first eigenvector always have the same value and
will therefore not contribute to the clustering.) Due to the second simplification, the
step in their algorithm that normalizes rows of stacked eigenvectors can be avoided, be-
cause the constant nature of the first eigenvector leaves the transformation of the second
eigenvector monotone.

4.2 Oblique Splits

Oblique splits are based on a particular view of the time series data that we call the
phase view, as defined in Section 3. Importantly, a data case in the phase view involves
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Fig. 2. Oblique split candidate for ART model with two autoregressors. (a) The original time
series. (b) The spectral clustering of phase-view data. The polygon separating the upper and
lower parts is a segment of a separating hyperplane for the spectral clusters (c) The phase view
projection to regressor plane and the separating hyperplane learned by the perceptron algorithm.
(d) The effect of the oblique split on the original time series: a regime consisting of the slightly
less upward trending and more volatile first and third data segments is separated from the regime
with more upward trending and less volatile second and fourth segments.

values for both the target and regressors, which imply that our oblique split proposals
may capture regression structures that show up in the data–as opposed to many standard
methods for axial splits that are ignorant to the target when determining split candidates
for the regressors.

It should also be noted that because the phase view has no notion of time, similar
patterns from entirely different segments of time may end up on the same side of an
oblique split. This property can at times result in a great advantage over splitting the
time series into chronological segments. First of all, splitting on time imposes a severe
constraint on predictions, because splits in time restrict the prediction model to infor-
mation from the segment latest in time. Information from similar segments earlier in
the time series are not integrated into the prediction model in this case. Second, we may
need multiple time splits to mimic the segments of one oblique split, which may not be
obtainable due to the degradation of the statistical power from the smaller segments of
data. Figure 2(d) shows an example, where a single oblique split separates the regime
with the less upward trending and slightly more volatile first and third data segments of
the time series from the regime consisting of the less volatile and more upward trend-
ing second and fourth segments. In contrast, we would have needed three time splits
to properly divide the segments and these splits would therefore have resulted in four
different regimes.

Our split proposer produces a single oblique split candidate in a two step procedure.
In the first step, we strive to separate two modes that relates the target and regressors for
the model in the best possible way. To accomplish this task, we apply the affinity based
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spectral clustering algorithm, described in Section 4.1, to the phase view of the time
series data. For the experiments reported later in this paper, we use an affinity measure
proportional to

1

1 + ||p1 − p2||2
where ||p1 − p2||2 is the L2-norm between two phases. We do not consider exogenous
regressors from related time series in these experiments. All variables in the phase view
are therefore on the same scale, making the inverse distance a good measure of prox-
imity. With exogenous regressors, more care should be taken with respect to the scaling
of variables in the proximity measure, or the time series should be standardized. Fig-
ure 2(b) demonstrates the spectral clustering for the phase view of the time-series data
in Figure 2(a), where this phase view has been constructed for an ART model with two
autoregressors.

The oblique split predicate in (1) defines an inequality that only involves the regres-
sors in the model. The second step of the oblique split proposer therefore projects the
clustering of the phase view data to the space of the regressors, where the hyperplane
separating the clusters is now constructed. While this can be done with a variety of
linear discrimination methods, we decided to use a simple single-layer perceptron op-
timizing the total misclassification count. Such perceptron will be relatively insensitive
to outliers, compared to, for example, Fisher’s linear discriminant.

The computational complexity of an oblique split proposal is dominated by the cost
of computing the full affinity matrix, the second largest eigenvector for the normalized
Laplacian, and finding the separating hyperplane for the spectral clusters. Recall that n
denotes the number of cases in the phase view of the data. The cost of computing the full
affinity matrix is therefore O(n2) affinity computations. Direct methods for computing
the second largest eigenvector is O(n3). A complexity of O(n3) may be prohibitive for
series of substantial length. Fortunately, there are approximate iterative methods, which
in practice are much faster with tolerant error. For example, the Implicitly Restarted
Lanczos Method (IRLM) has complexity O(mh+nh), where m is the number of non-
zero affinities in the affinity matrix and h is the number of iterations required until
convergence [29]. With a full affinity matrix m = n2, but a significant speedup can
be accomplished by only recording affinities above a certain threshold in the affinity
matrix. Finally, the perceptron algorithm has complexity O(nh).

4.3 Time Splits

A simple but computationally expensive way of determining a good time split is to
let the split proposer nominate all possible splits in time for the further evaluation.
The commercial implementation of the ART models relies on an approximation to this
approach that proposes a smaller set of equispaced points on the time axis.

We suggest a data driven approximation, which will more precisely target the change
points in the time series. Our approach is based on another view of the time series data
that we call the trace view. In the trace view we use the additional time information
to label the phase view data in the spectral clustering. The trace view, now traces the
clustered data through time and proposes a split point each time the trace jumps across
clusters. The rationale behind our approach is that data in the same cluster will behave
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in a similar way, and we can therefore significantly reduce the number of time-split pro-
posals by only proposing the cluster jumps. As an example, the thin lines orthogonal to
the time axis in Figure 2(d) shows the few time splits proposed by our approach. Get-
ting close to a good approximation for the equispaced approach would have demanded
far more proposed split points.

Turning now to the computational complexity. Assuming that spectral clustering has
already been performed for the oblique split proposal, the additional overhead for the
trace through data is O(n).

5 Evaluation

In this section, we provide an empirical evaluation for our spectral splitting methods. We
use a large collection of financial trading data. The collection contains the daily closing
prices for 1495 stocks from Standard & Poor’s 1500 index3 as of January 1, 2008. Each
time series spans across approximately 150 trading days ending on February 1, 2008.
(Rotation of stocks in the S&P 1500 lead to the exclusion of 5 stocks with insuffient
data.) The historic price data is available from Yahoo!, and can be downloaded with
queries of format http://finance.yahoo.com/q/hp?s=SYMBOL, where SYMBOL is the
symbol for the stock in the index. We divide each data set into a training set, used as
input to the learning method, and a holdout set, used to evaluate the models. We use
the last five observations as the holdout set, knowing that the data are daily with trading
weeks of five days.

In our experiments, we learn ART models with an arbitrary number of autoregressors
and we allow time as an exogenous split variable. We do not complicate the experiments
with the use of exogenous regressors from related time series, as this complication is
irrelevant to the objective for this paper. For all the models that we learn, we use the
same Bayesian scoring criterion, the same greedy search strategy for finding the number
of autoregressors, and the same method for constructing a regression tree – except that
different alternative split candidates are considered for the different splitting algorithms
that we consider.

We evaluate two different types of splitting with respect to the autoregressors in the
model: AxialGaussian and ObliqueSpectral. The AxialGaussian method is the standard
method used to propose multiple axial candidates for each split in an ART model, as
described in Section 2.1. The ObliqueSpectral method is our proposed method, which
for a split considers only a single oblique candidate involving all regressors. In combi-
nation with the two split proposer methods for autoregressors, we also evaluate three
types of time splitting: NoSplit, Fixed, and TimeSpectral. The NoSplit method does not
allow any time splits. The Fixed method is the simple standard method for learning
splits on time in an ART model, as described in Section 4.3. The TimeSpectral method
is our spectral clustering-based alternative. In order to provide context for the numbers
in the evaluation of these methods, we will also evaluate a very weak baseline, namely
the method not allowing any splits. We call this method the Baseline method.

We evaluate the quality of a learned model by computing the sequential predictive
score for the holdout data set corresponding to the training data from which the model

3 standardandpoors.com

standardandpoors.com
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was learned. The sequential predictive score for a model is simply the average log-
likelihood obtained by a one-step forecast for each of the observations in the holdout set.
To evaluate the quality of a learning method, we compute the average of the sequential
predictive scores obtained for each of the time series in the collection. Note that the
use of the log-likelihood to measure performance simultaneously evaluates both the
accuracy of the estimate and the accuracy of the uncertainty of the estimate. Finally, we
use a (one-sided) sign test to evaluate if one method is significantly better than another.
To form the sign test, we count the number of times one method improves the predictive
score over the other for each individual time series in the collection. Excluding ties, we
seek to reject the hypothesis of equality, where the test statistic for the sign test follows
a binomial distribution with probability parameter 0.5.

6 Results

To make sure that the results reported here are not an artifact of sub-optimal axial split-
ting for the AxialGaussian method, we first verified the claim from [5] that the Gaussian
quantiles is a sufficient substitute for the exhaustive set of possible axial splits. We com-
pared the sequential predictive scores on 10% of the time series in our collection and
did not find a significant difference.

Table 1 shows the average sequential predictive scores across the series in our collec-
tion for each combination of autoregressor and time-split proposer methods. First of all,
for splits on autoregressors, we see a large improvement in score with our ObliqueSpec-
tral method over the standard AxialGaussian method. Even with the weak baseline–
namely the method not allowing any splits–the relative improvement from AxialGaus-
sian to ObliqueSpectral over the improvement from the baseline to AxialGaussian is
still above 20%, which is quite impressive.

The fractions in Table 2 report the number of times one method has higher score than
another method for all the time series in our collection. Notice that the numbers in a frac-
tion do not necessarily sum to 1495, because we are not counting ties. We particularly

Table 1. Average sequential predictive scores for each combination of autoregressor and time
split proposer methods

Regressor splits Time splits Ave. score

Baseline Baseline -3.07

AxialGaussian NoSplit -1.73
AxialGaussian Fixed -1.72
AxialGaussian TimeSpectral -1.74

ObliqueSpectral NoSplit -1.45
ObliqueSpectral Fixed -1.46
ObliqueSpectral TimeSpectral -1.44
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Table 2. Pairwise comparisons of sequential predictive scores. The fractions show the number
of time series, where one method has higher score than the other. The column labels denote the
autoregressor split proposers being compared.

Baseline / Baseline / AxialGaussian /

AxialGaussian ObliqueSpectral ObliqueSpectral

NoSplit 118 / 959 74 / 1168 462 / 615
Fixed 114 / 990 79 / 1182 226 / 418
SpectralTime 122 / 955 71 / 1171 473 / 604

notice that the ObliqueSpectral method is significantly better than the standard Axial-
Gaussian method for all three combinations with time-split proposer methods. In fact,
the sign test rejects the hypothesis of equality at a significance level < 10−5 in all
cases. Combining the results from Tables 1 and 2, we can conclude that the large im-
provement in the sequential predictive scores for our ObliqueSpectral method over the
standard AxialGaussian method is due to a general trend in scores across individual
time series, and not just a few outliers.

We now turn to the surprising observation that adding time-split proposals to either
of the AxialGaussian and the ObliqueSpectral autoregressor proposals does not im-
prove the quality over models learned without time splits–neither for the Fixed nor the
TimeSpectral method. Apparently, the axial and oblique splitting on autoregressors are
flexible enough to cover the time splits in our analysis. We do not necessarily expect
this finding to generalize beyond series that behave like stock data, due to the fact that
it is a relatively easy exercise to construct an artificial example that will challenge this
finding.

Finally, the oblique splits proposed by our method involve all regressors in a model,
and therefore rely on our spectral splitting method to be smart enough to ignore noise
that might be introduced by irrelevant regressors. Although efficient, such parsimonious
split proposal may appear overly restrictive compared to the possibility of proposing
split candidates for all possible subsets of regressors. However, an additional set of
experiments have shown that the exhaustive approach in general only leads to insignif-
icant improvements in predictive scores. We conjecture that the stagewise inclusion of
regressors in the overall learning procedure for an ART model (see Section 3) is a main
reason for irrelevant regressors to not pose much of a problem for our approach.

7 Conclusions and Future Work

We have presented a method for building regime-switching trees for nonstationary time
series. The method is based on geometric clustering. More specifically, spectral clus-
tering has been used in this paper. As such, our method does not rely on any parametric
assumptions with regards to the distributions that best describe individual regimes. The
clustering-based split proposer is used to propose a single oblique split candidate at each
node level in the switching tree, which makes the method computationally efficient.



Segmentation of Nonstationary Time Series with Geometric Clustering 105

In the evaluation part of the paper we limited ourselves to an extension of ART mod-
els that are built under the assumption of uncorrelated Gaussian error. The joint target-
regressor distribution for a regime-switching time series can be modeled as a mixture
of Gaussians in this case, and we were able to motivate and then prove empirically that
oblique splits are better at learning the mixtures than combinations of axial splits. In
fact, the experimental evidence we have collected shows that our approach when used
to extend the ART models, dramatically improves predictive accuracy over the current
approach. We still experimented under the assumption of Gaussianity. An important
future experiment should allow non-Gaussian models in the oblique switching trees.

The focus in this paper has been on learning regime-switching time-series mod-
els that will easily lend themselves to explanatory analysis and interpretation. In fu-
ture experiments we also plan to evaluate the potential tradeoff in modularity, inter-
pretability, and computational efficiency with forecast precision for our simple learning
approach compared to more complicated approaches that integrates learning of soft
regime switching and the local regimes in the models, such as the learning of Markov-
switching (e.g., [12,13]) and gated experts (e.g., [27,28]) models.
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Appendix

Lemma 1. Let Σ be a non-singular sample auto-covariance matrix for Xt−1
t−p defined

on the p-dimensional space with principal diagonal direction d = ( 1√
p , . . . ,

1√
p ), and

let At =
1
p

∑p
i=1 Xt−i. Then

sin2(Σd, d) =

∑p
i=1 cov(Xt−i −At, At)

2∑p
i=1 cov(Xt−i, At)2

. (2)

Proof. Introduce St =
∑p

i=1 Xt−i. As per bi-linear property of covariance, (Σd)i =
1√
p cov(Xt−i, St), i = 1, . . . , p and (Σd)d = 1

p

∑p
i=1 cov(Xt−i, St) = cov(At, St).

Non-singularity of Σ implies that the vector Σd �= 0. Hence, |Σd|2 �= 0 and
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cos2(Σd, d) =
((Σd)d)

2

|(Σd)|2 =
p cov(At, St)

2∑p
i=1 cov(Xt−i, St)2

.

It follows that

sin2(Σd, d)

= 1− cos2(Σd, d)

=
p
(

1
p

∑p
i=1 cov(Xt−i, St)

2 − cov(At, St)
2
)

∑p
i=1 cov(Xt−i, St)2

=

∑p
i=1 cov(Xt−i −At, St)

2∑p
i=1 cov(Xt−i, St)2

Dividing the numerator and denominator of the last fraction by p2 amounts to replacing
St by At, which concludes the proof. �

Corollary 1. When Xt−i − At and At are weakly correlated, and the variance of
Xt−i −At is comparable to that of At, i = 1, . . . , p, then sin2(Σd, d) is small.

Specifically, let σ and ρ denote respectively standard deviation and correlation, and
introduce Δi = cov(Xt−i−At,At)

σ(At)
= ρ(Xt−i − At, At)σ(Xt−i − At). We quantify

both assumptions in Corollary 1 by positing that |Δi| < εσ(At), i = 1, . . . , p, where
0 < ε� 1. Easy algebra on Equation (2) yields

sin2(Σd, d) =
ΣΔ2

i

Σ(σ(At) +Δi)2

<
pε2σ(At)

2

p(1 − ε)2σ(At)2

=
ε2

(1 − ε)2
(3)

Under the assumptions of Corollary 1, we can now show that d is geometrically close
to an eigenvector of Σ. Indeed, by inserting (3) into the Pythagorean identity we derive
that | cos(Σd, d)| >

√
1−2ε
1−ε and close to 1. Now, given a vector v for which |v| =

1, | cos(Σv, v)| reaches the maximum of 1 iff v is an eigenvector of Σ. When the
eigenvalues of Σ are distinct, d must therefore be at a small angle with one of the p
principal axes for Σ.
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Abstract. Nontechnical losses represent a very high cost to power supply
companies, who aims to improve fraud detection in order to reduce this losses.
The great number of clients and the diversity of different types of fraud makes
this a very complex task. In this paper we present a combined strategy based
on measures and methods adequate to deal with class imbalance problems. We
also describe the features proposed, the selection process and results. Analy-
sis over consumers historical kWh load profile data from Uruguayan Electricity
Utility (UTE) shows that using combination and balancing techniques improves
automatic detection performance.

Keywords: Electricity theft, Support vector machine, Optimum path forest,
Unbalance class problem, Combining classifier, UTE.

1 Introduction

Improving nontechnical loss detection is a huge challenge for electric companies. Re-
search in pattern classification field has been made to tackle this problem [25], [21],
[20], [17]

In Uruguay the national electric power utility (henceforth call UTE) faces the prob-
lem by manually monitoring a group of customers. The procedure is ilustrated in the
figure 1(a). Agroup of experts looks at the monthly consumption curve of each customer
and indicates those with some kind of suspicious behavior. This set of customers, ini-
tially classified as suspects are then analyzed taking into account other factors (such as
fraud history, counter type etc.). Finally a subset of customers is selected to be inspected
by an UTE employee, who confirms (or not) the irregularity. The procedure described
before, has major drawbacks, mainly, the number of costumers that can be manually
controlled is small compared with the total amount of costumer (around 500.000 only in
Montevideo). To improve the efficiency of fraud detection and resource utilization, we
implemented a tool that automatically detects suspicious behavior analyzing customers
historical consumption curve. Thus, UTE’s experts only need to look to a reduced num-
ber of costumers and then select those who need to be inspected, as is ilustrated in the
figure 1(b)

Due to the applications nature there is a great imbalance between “normal” and
“fraud/suspicious” classes. The class imbalance problem in general and fraud detec-
tion in particular have received considerable attention in recent years. Garcia et al. and

P.L. Carmona et al. (Eds.): Pattern Recognition – Applications and Methods, AISC 204, pp. 109–120.
DOI: 10.1007/978-3-642-36530-0_9 c© Springer-Verlag Berlin Heidelberg 2013
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(a) Previous fraud detection scheme (b) Actual fraud detection scheme

Fig. 1.

Guo and Zhou review main topics in the field of the class imbalance problem [15],
[14], [16]. These include: resampling methods for balancing data sets [3],[2], [7], [8],
[18], feature extraction and selection techniques -wrapper [10], and choose of F-value
as performance measure.

In addition, it is generally accepted that combination of diverse classifiers can im-
prove performance. A difficult task is to choose the combination strategy for a diverse
set of classifiers. Kuncheva found the optimum set of weights for the majority weight
vote combiner when the performance metrics is accuracy and with independent base
classifiers [19]. Further analysis has been done on the relationship between diversity
and the majority rules performance [4], [28], [9]. In this paper we propose a combi-
nation function adapted to the imbalance between classes, using F-value as the perfor-
mance measurement and some well-known pattern recognition techniques such as SVM
(Support Vector Machine) [27], [26], Tree classifiers and more recent algorithms such
as Optimum Path Forest [22],[24] as base classifiers.

Performance evaluation using test dataset shows very good results on suspicious pro-
files selection. Also, on field evaluation of fraud detection using our automatic system
shows similar results to manual experts’ method.

This paper is an extension of our previous work presented in the International Confer-
ence on Pattern Recognition Application and Methods (ICPRAM 2012) [11], including
some new and deeper analysis and some suggestions received in the conference pre-
sentation. The paper is organized as follows. Section 2 describes general aspects of the
class imbalance problem, section 3 describes different strategies proposed, section 4
presents the results obtained, and, finally, section 5 concludes the work.

2 The Class Imbalance Problem

When working on the fraud detection problem, one can not assume that the number of
people who commit fraud are the same than those who do not, usually there are fewers
elements from the class who commit fraud. This situation is known as the problem of
class imbalance, and it is particularly important in real world applications where it is
costly to misclassify examples from the minority class. In this cases, standard classifiers
tend to be overwhelmed by the majority class and ignore the minority class, hence ob-
taining suboptimal classification performance. Having to confront this type of problem,
we decided to use three different strategies on different levels, changing class distribu-
tion by resampling, manipulating classifiers, and on the ensemble of them.
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The first consists mainly in resampling techniques such as under-sampling the major-
ity class or over-sampling the minority one. Random under-sampling aims at balancing
the data set through random removal of majority class examples. The major problem
of this technique is that it can discard potentially important data for the classification
process. On the other hand, the simplest over-sampling method is to increase the size
of the minority class by random replication of those samples. The main drawback of
over-sampling is the likelihood of over-fitting, since it makes exact copies of the mi-
nority class instances As a way of facing the problems of resampling techniques dis-
cussed before, different proposals address the imbalance problem by adapting existing
algorithms to the special characteristics of the imbalanced data sets. One approach is
one-class classifiers, which tries to describe one class of objects (target class) and dis-
tinguish it from all other objects (outliers). In this paper, the performance of One-Class
SVM, adaptation of the popular SVM algorithm, will be analyzed. Another technique
is cost-sensitive learning, where the cost of a particular kind of error can be different
from others, for example by assigning a high cost to mislabeling a sample from the
minority class.

Another problem which arises when working with imbalanced classes is that the
most widely used metrics for measuring the performance of learning systems, such
as accuracy and error rate, are not appropriate because they do not take into account
misclassification costs, since they are strongly biased to favor the majority class ([14]) .
In the past few years, several new metrics which measure the classification performance
on majority and minority classes independently, hence taking into account the class
imbalance, have been proposed [5].

– Recallp =
TP

TP + FN

– Recalln =
TN

TN + FP

– Precision =
TP

TP + FP

– Fvalue =
(1 + β2)Recallp × Precision

β2 Recallp + Precision

Table 1. Confusion matrix

Labeled as
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

Recallp is the percentage of correctly classified positive instances, in this case, the fraud
samples. Precision is defined as the proportion of labeled as positive instances that are
actually positive. The combination of this two measurements, the F-value, represents
the geometric mean between them, weighted by the parameter β. Depending on the
value of β we can prioritize Recall or Precision. For example, if we have few resources
to perform inspections, it can be useful to prioritize Precision, so the set of samples
labeled as positive has high density of true positive.

3 Strategy Proposed

The system presented consists of basically on three modules: Pre-Processing and Nor-
malization, Feature selection and extraction and, finally, Classification. Figure 2 shows
the system configuration. The system input corresponds to the last three years of the
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Fig. 2. Block Diagram

monthly consumption curve of each costumer, here called Xm = {xm
1 , ... xm

n },
where xm

i is the consumption of the m costumer during the i-th month. The first mod-
ule called Pre-Processing and Normalization, normalizes the input data so that they all
have unitary mean and implements some filters to avoid peaks from billing errors.

The proposed methodology was developed as GUI software in Matlab using PRTOOLS
[13], LibOPF [23] and LibSVM [6].

3.1 Features

A feature set was proposed taking into account UTEs technician experts in fraud detec-
tion by manual inspection and recent papers on non technical loss detection [1], [20],
[21]. To represents samples in some convenient space we meet several times UTEs
experts in order to understand what they look for, when inspecting some customer con-
sumption curve.

Below a list of the proposed features:

– Consumption ratio for the last 3, 6 and 12 months and the average consumption.
– Norm of the difference between the expected consumption and the actual consump-

tion. The expected consumption value, is calculated taking into account the same
month of the previous year multiplied by the ratio between the mean consumption of
each year.

– Difference between Fourier coefficients from the last and previous years.
– Difference between Wavelet coefficients from the last and previous years.
– Difference in the coefficients of the polynomial that best fits the consumption curve.

All the above features compare the actual behavior with the past behavior for each
customer. The idea is to identify changes in the behavior that could be associated to
irregular situations. But, imagine that some customer is stealing since long time ago,
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then above features, will not show any change in the behavior. For these reason, we
consider more features that compare customers curves with the other customers in the
data set as:

– Euclidean distance of each customer to the mean customer, where the mean customer
is calculated by taking the mean for each month between all the customers.

– Variance of the consumption curve.
– Module of the first five Fourier coefficients.
– Slope of the straight line that fits the consumption curve.

3.2 Features Selection

It is well known that when thinking about the features to use, large number of at-
tributes do not imply better performances. The important thing is their relevance and
the relationship between the number of these and the number of elements. This is why
we implemented a feature selection stage. We implemented some algorithms for fea-
ture selection and look for those subsets of features that bests better for each classifer
algorithm.

Evaluation Methods Used

We used two types of evaluation methods: filter and wrapper. Filters methods looks for
subsets of features with low correlation between them and high correlation with the la-
bels, while wrapper methods evaluate the performance of a given classifier for the given
subset of features.
In the wrapper methods, we used as performance measure the F-value, also, the evalu-
ations were performed using 10 fold cross validation over the training set.
As searching method, we used Bestfirt, for which we found in this application a good
balance between performance and computational costs.
Some of the features purposed, were selected most of the times for all the classifiers,
for example:

1. Consumption ratio for the last 3 months and the average consumption (illustrated in
Figured 3(a)).

2. Consumption ratio for the last 6 months and the average consumption (illustrated in
Figured 3(b)).

3. Consumption ratio for the last 12 months and the average consumption (illustrated
in Figured 3(c)).

(a) (b) (c)

Fig. 3. Features Selected
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(a) (b)

Fig. 4. Features Selected

4. Euclidean distance of each customer to the mean customer (illustrated in Figured
4(a)).

5. Slope of the straight line that fits the consumption curve (illustrated in Figured 4(b)).
6. Some of the wavelets coefficients considered.

3.3 Classifiers

SVM is an algorithm frequently used in pattern recognition and fraud detection. The
main purpose of the binary SVM algorithm is to construct an optimal decision func-
tion f(x) that predicts unseen data into two classes and minimizes the classification
error. In order to obtain this, one looks to maximize the separation margin between the
two classes and hence classify correctly unseen data [21]. This can be formulated as a
quadratic programming optimization problem

Φ(ω, ζi) = min

{
1

2
‖ω‖2 + C

n∑
i=1

ζi

}
(1)

subjected to the constraint that all the training samples are correctly classified, that is

yi(〈ω, x〉 + b) ≥ 1− ζi, i = 1, 2, ..., n (2)

where ζi for i = 1, 2, ..., n are nonnegative slack variables. C is a regularization param-
eter and is selected to be the tradeoff between the two terms in 1.

CS-SVM and One-Class SVM. Two different approaches where introduced when de-
scribing the class imbalance problem, one-class classifiers and cost-sensitive learning.
When applying this two approaches on SVM, we talk about One-Class SVM and CS-
SVM.

In One-Class SVM equation 1 becomes,

min
ω∈H, ζi∈R, ρ∈R

1

2
‖ω‖2 + 1

ν l

n∑
i=1

ζi − ρ (3)

while in CS-SVM it becomes:

Φ(ω, ζi) = min

⎧⎨⎩1

2
‖ω‖2 +

∑
i/yi=1

C+ζi +
∑

i/yi=−1

C−ζi

⎫⎬⎭ (4)
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Both the kernel parameter K and the values of C+, C− and ω are often chosen using
cross validation. The method consists in splitting the data set into p parts of equal size,
and perform p training runs. Each time, leaving out one of the p parts and use it as an
independent validation set for optimizing the parameters. Usually, the parameters which
work best on average over the p runs are chosen. Finally, these average parameters are
used to train the complete training set. There are some problems with this, as can be
seen on [26].

Having said this, the method used to determine the optimum parameters for
CS-SVM was:

1. Determine sets C = [C1, C2, ..., Cn] and γ = [γ1, γ2, ..., γm].
2. Select Ci ∈ C and γj ∈ γ, split the training set into p parts of equal size and perform

p training runs. Each set is called Bi with i = {1, 2, ..., p}.
3. Use Bte = B1 as the test set and Btr = B2 ∪B3 ∪ ... ∪Bp as the training set.
4. Determine a classifier model for Btr, Ci and γj . As the ratio between the two classes

is unbalanced, when determining the CS-SVM classifier two parameters are defined,
C+ and C− using class weights defined by calculating the sample ratio for each
class. This was achieved by dividing the total number of classifier samples with the
individual class samples. In addition, class weights were multiplied by a factor of
100 to achieve satisfactory weight ratios [21].

5. Classify the samples from the training set Bte and compare the results with the labels
predetermined. From these comparison, obtain the estimated Fvalue for Ci and γj
called Fvalue1 (Ci, γj).

6. Repeat these procedure forBte = B2 and the combination of the reaming sets as Btr

getting e2(Ci, γj), then for Bte = B3 and so on until completing the p iterations.
7. For each pair of (Ci, γj) there’s an estimation of the classification error for each

cross validation. The classification error for this pair (Ci, γj) is the average value of

the classification errors obtained in each cross validation, e(Ci, γj) =
1

p

∑
el(Ci, γj).

8. This method is repeated combining all the values from the sets C and γ.
9. The values of Copt and γopt are the ones for which the smallest classification error

is obtained.

The metric used for measuring the classification error for this method was the Fvalue.
For One-Class SVM, the method was the same but with the main objective of finding
σ ∈ S = {σ1, σ2.....σl}.

OPF. In [25] a new approach, Optimum Path Forest (OPF), is applied to fraud detec-
tion in electricity consumption. The work shows good results in a problem similar to
the targeted. OPF creates a graph with training dataset elements. A cost is associated to
each path between two elements, based on the distance of the intermediate elements be-
longing to the path. It is assumed, that elements of the same class will have a lower path
cost, than elements of different classes. The next step is to choose representatives from
each class, called prototypes. Classifying a new element implies to find the prototype
with lowest path cost. Since OPF is very sensitive to class imbalance, we under-sampled
the majority class. Best performance was obtained while using a training data set with
40% of the elements from the minority class.
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C4.5. The fourth classifier used is a decision tree proposed by Ross Quinlan: C4.5.
Trees are a method widely used in pattern recognition problems due to its simplicity
and good results. To classify, a sequence of simple questions is done. It begins with an
initial question, and depending on the answer, the procedure continues until reaching a
conclusion about the label to be assigned. The disadvantage of these methods is that they
are very unstable and highly dependent on the training set. To fix this, in C4.5 a later
stage of AdaBoost was implemented. It generates multiple instances of the tree with
different portions of the training set and then combines them achieving a more robust
result. As in OPF, sensitivity to class imbalance has led to sub-sampling the majority
class. Again, we found that the best results was obtained while using a training data set
with 40% of the elements from the minority class.

3.4 Combining Classifiers

The next step after selecting feature sets and adjusting classification algorithms to the
training set, is to decide how to combine the information provided by each classifier.
There are several reasons to combine classifiers, for example, to obtain a more robust
and general solution and improve the final performance [12].

After labels have been assigned by each individual classifier, a decision rule is
build as:

gp(x) = λp
O−SV M dpO−SV M + λp

CS−SVM dpCS−SVM

+λp
OPF dpOPF + λp

Tree d
p
Tree

(5)

gn(x) = λn
O−SV M dnO−SV M + λn

CS−SV M dnCS−SVM

+λn
OPF dnOPF + λn

Tree d
n
Tree

(6)

where dij(x) = 1 if the classifier j labels the sample as i and 0 otherwise. Then if
gp(x) > gn(x) the sample is assigned to the positive class, if gn(x) > gp(x) the
sample is assigned to the negative class.

In [19], the weighted majority vote rule is analyzed and optimum weights are found
for maximum overall accuracy, assuming independence between classifiers:

λi
j = log

(
Accuracyj

1−Accuracyj

)
, where Accuracyj represents the ratio of correctly classified

samples for the classifier j, (in [19] priors are also consider on the g{p,n}(x) construc-
tion adding log(P (ω{p,n})))

Inspired in this result, but taking into account that we want to find a solution with
good balance between Recall and Precision, several weights λp,n

j were proposed:

– λi
j = log

(
Recallpj+1

Recallpj−1

)
– λi

j = log
(

Fvaluej
+1

Fvaluej
−1

)
– λi

j = log
(

Accuracyj

1−Accuracyj

)
– λp

j = Recallnj and λn
j = Recallpj
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Also the optimal multipliers were found by exhaustive search over a predefined grid,
looking for those which maximize the classification Fvalue. Search was made by look-
ing for all the possibilities with λi

j ∈ [0 : 0.05 : 1] and was evaluated with a 10-fold
cross validation.

All of the proposed combined classifiers improved individual classifiers performance.
In Table 2 we present the performance results using optimal multipliers, found by
exhaustive search.

4 Results

4.1 Data

For this paper we used a data set of 1504 industrial profiles (October 2004- Septem-
ber 2009) obtained from the Uruguayan electric power company (DATASET 1). Each
profile is represented by the customers monthly consumption. UTE technicians make
random profile selection and data labeling. Training and performance evaluation shown
in Table 2 was done with DATASET 1. Another independent dataset (DATASET 2) of
3338 industrial profiles with contemporary data (January 2008-2011) was used for on
field evaluation.

4.2 Labeling Results

Table 2 shows performance for individual classifiers and for the combination of them,
results shown here were achieved by using a 10-fold cross validation using DATASET1.
CS-SVM presented the best Fvalue, followed by One class SVM. We saw that combina-
tion improved performance achieving better results than those of the the best individual
classifier.

Table 2. Data Set 1 labeling results

Description Acc. Recp. P re. Fval.
(%) (%) (%) (%)[β = 1]

O-SVM 84,9 54,9 50,8 52,8
CS-SVM 84,5 62,8 49,7 55,5

OPF 80,1 62,2 40,5 49
Tree (C4.5) 79 64,6 39 48,6

Combination 86,2 64 54,4 58,8

4.3 On Field Results

After all the proposed alternatives were evaluated (on DATASET 1), comparing au-
tomatic labelling with manual labelling performed by UTE’s experts, we tested data
labels with on field evaluation.



118 M. Di Martino et al.

Fig. 5. Consumption Profiles

This test were done in the following way:

1. Train the classification algorithm using DATASET 1.
2. Classify samples from DATASET 2. Lets call DATASET 2P the samples of

DATASET 2 labelled as positive (associated to abnormal consumption behavior).
3. Inspect customers on DATASET 2P

533 samples of DATASET 2 labelled as positive, were inspected by UTE’s team. The
inspections yielded 22 irregular situations. This results show that the automatic frame-
work has a hit rate of 4.12%. Manual fraud detection performed by UTE’s experts
during 2010 had a hit rate of about 4%, so results are promising, specially taking into
account that manual detection considers more information than just the consumption
curve, such as fraud history, surface dimension and contracted power, among others.

Figures 5(a) and 5(b) show some examples of customers classified as suspicious by
our automatic system. Once inspected, illegal activities were detected in these cases.

5 Conclusions

We developed a framework able to detect customers whose consumption behaviour
show some kind of irregularities. UTE is beginning to incorporate the system proposed
and first results showed that it is useful and can lead to important savings, both time and
money. We will continue working with UTE’s collaboration, focusing our investigation
on the lines of:

– Improving final performance and monitor bigger customer sets aiming to reach all
customers in Montevideo (Uruguayan capital city).

– Analyze existence of data clusters, i.e. to allow making more specific soluitions for
the consumer with a similar kind of “normal” behavior. This has importance for the
automatic analysis and also for the manual analysis.

– Add more features to our learning algorithm, such as: counter type (digital or analog),
customer type (dwelling or industrial) and contracted power, among others.

We introduce different classifiers suitable for this type of problems (with unbalanced
classes), comparing performance results for each of them. Innovative combination strate-
gies are also proposed, all of them showing better results (using F-value as performance
measurement) than the best individual classifier.

Acknowledgements. The authors would like to thank UTE, especially Juan Pablo Ko-
sut, for providing datasets and share fraud detection expertise. We also want to thank
Pablo Muse, Pablo Cancela and Martin Rocamora for fruitfull discussion.
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Abstract. This work presents a method for building adaptive local/semi-global
features using a set of already extracted features. While for most methods lo-
cal features are extracted independently of the task in hand, these features tend
to change their representations in favor of different hypotheses to find the best
possible representation. The features introduced in this paper take advantage of
the part-based models at the feature level by combining the near by local fea-
tures. This combination can either be local, which results in a more generic set
of features suitable for bag-of-visual-words (BOVW) models or be semi-global,
which results in a set of more object dependent features which are referred as
parts. These representations capture the local variations around the local feature.
At classification time, the best possible representation of these features is found
and used in the calculations. This selection is done based on a latency defined at
the feature level. The goal of this paper is to test how the adaptive features can
improve the feature level likelihoods. The focus of the experiments of this paper
is showing 1) how adaptive feature perform in BOVW scenarios and 2) how re-
placing single features with equivalent adaptive features improves the likelihoods
obtained from them. The experiments of this paper are done on several classes of
MSRCv1 and v2 datasets and it is shown that the method outperforms the base-
lines in all cases and the results are comparable to the state-of-the-art methods
using BOVW models.

Keywords: Feature inference, Latent models, Clustering.

1 Introduction

Local features are considered to be the building blocks of many computer vision and
machine learning methods and their quality highly effects the method’s outcome. There
are many popular methods for extracting local features from images. Among them one
can name sift [10], hog[2] and haar[16] features, which are widely used for object detec-
tion and recognition [4,7] and texture features such as maximum response filter-banks
[14] and MRF[13] which are used for texture recognition and classification. For most
methods feature extraction is done independently from the method’s task. For example
in a normal inference problem a model tries to decide between two different classes.
Usually for both hypothesises the same feature vector is fed to the model. In other
words once the features are extracted, they remain constant through the whole process.

Computer vision methods deal with local features in different ways. Some such as
boosting based object detectors [7,16] and markov random fields [6], depend on how
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discriminative single features are and some, such as bag-of-visual-words [12], demand
less discriminative features and depend on groups of features seen in a specific region
on the image. For the methods that depend on the discriminative properties of local
features the inference done at the feature level plays a critical role in the outcome of the
method. Improving the quality of feature level inference can highly improve the quality
of the object level inference done by most of such methods.

Many studies have shown that use of higher order statistics, ex. the joint relation
between the features, can highly improve the quality of the features. Capturing joint
relations is popular with the bag-of-words methods [9,8] since they deals with modeling
joint relation between a finite number of data clusters. Unfortunately not many studies
have focused on modeling joint relations in non-discretized data to create features that
capture joint relations. A recent study on this matter is done by Morioka et al. [11]. In
their study they introduced a mechanism for pairing two sift feature vectors together
and creating a Local Pairwise Codebook by clustering them. As shown in their work
the clusters produced using these joint features are more informative than the clusters
produced using single features. The idea behind their work is similar to the work in this
paper while the methodology of this work does not limit the number of feature vectors
used in creating more complex features.

The method in this paper uses the assumption that a set of features are extracted from
the image and a relation is known between them that can be captured by a graph. For ex-
ample the features can come from several patches in the image and their spatial relation
can be presented as a graph. These features can be extracted using any feature extrac-
tion method. The basic idea behind this paper is to use local features and their relations
to introduce a new set of dynamic and changeable intermediate semi-global features in
terms of latent variables. These intermediate features will be referred as feature clouds.
The latent variables enable the feature to change its representation in different scenarios
and their value is determined by an optimization procedure to make it more discrimi-
native for learning algorithms. This dynamic property of feature cloud provides a good
ground for introducing more discriminative features than the ones previously extracted
from the image. The performance of these features is analyzed in two different experi-
ments on MSRC v1 and v2 [17] datasets. The first experiment deals with discriminative
analysis of feature clouds and their inference at the feature level. These analysis show
how more complex feature have an easier time locally identifying object regions in
comparison more simple features. In the second experiment the features are employed
in bag-of-visual-words model and it is shown that they have a better performance than
the existing methods.

The outline of this paper is as follow. The related works to this paper are discussed
in section 2. The feature clouds are discussed in detail in sections 3, 4 and 5. Finally
section 6 discusses the behaviour of the feature clouds in some different scenarios.

2 Related Works

The goal of this paper is to present a method that takes advantage of part-based models
at the feature level to come up with a set of intermediate features with discriminative
properties. In this section a brief review of part based methods is provided and their
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Fig. 1. (Left) A node u (a patch from an image) is connected to its neighboring nodes (close
by patches). Here tree node are selected (red patches) as a latent configuration. The quantitative
value of this configuration is calculated as (φu, φv2 , φv5 , φv7).(Right) For any given point z in
the feature space the closest vector within Fu is selected as f�

z through an optimization process.
This shows how z can influence the value of Fu.

differences with the presented method is pointed out. Later an example of studies that
show how local features can effect the overall inference is discussed.

Part-based models have been widely used in object detection applications. A good
example of such application can be found in the work of Felzenszwalb et al.[3]. These
models consist of a fixed root feature and several part feature with their position as
latent variables in relation to the root feature. The part features are learnt either using
exact annotation [5] or as the result of an optimization problem [3]. Because of this
latency the model can have many configurations an usually the best configuration is
chosen among many due to the task in hand. In these models the part features are used
to estimate a better confidence for the root feature.

Taking the part-based models to the feature level comes with several difficulties. To
begin with there is larger variation at the feature level compared to the object level. Here
each local feature can play the role of a root feature and completely different features
can be equally good representatives for an object class. As an example consider the
features obtained from the wheel and the door of a car, one wishes for a car model to
return a high likelihood for both features despite their differences. Also there is no right
or wrong way to look at local features. In this work the root features and their parts
are calculated as the result of a clustering process. Since there is no best configuration
for these features each root feature can have several good part configurations. These
configurations will capture the local variation around the local feature and will later be
used for training non-linear discriminative classifiers.

As mentioned in section 1 many methods benefit from discriminative behaviours of
local features. A good example of such benefit can be seen in [6] where the authors
Sanjiv Kumar et al. show how replacing generative models with discriminative models
benefits the MRF solvers and improves their final results. Similar examples can be
widely found in numerous computer vision studies. The key difference between these
works and this method is the fact the features can change their value to result in a more
discriminative behaviour.
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Fig. 2. This figure shows how a car representative anchor point pulls out features from two dif-
ferent images. It can be seen that the features are avoiding cow texture since this texture is not a
good candidate for supporting being a car hypothesis.

3 Feature Clouds

To define the feature clouds, let G(V,E) be a graph with the extracted features as its
nodes and the relation between them encoded as its edges. Also for each node, say u, let
φu denote the feature vector associated with this node and Nu denote the its neighbors.
A cloud feature, with its root at node u and m latent parts, is the set of all possible
vectors that are created by concatenating the feature vector of node u and the feature
vectors of m nodes selected from Nu. This set is formally defined as

Fu = {(φu, φv1 , ..., φvm)|vi ∈ Nu}, (1)

where (φu, φv1 , ..., φvm) is the concatenation of the feature vector of the nodes u, v1, ...,
vm. In other words all possible configurations that can be made using u and its parts
exist in the set Fu. This can also be seen as the space of all variations around node
u. These configurations are shown in figure 1 (Left). In this figure a node u (a patch
extracted from an image) is connected to its neighbours (its close by patches). In this
configuration the three selected neighbors v2, v5, v7 are shown using solid line edges.
and the resulting feature vector for this configuration is (φu, φv2 , φv5 , φv7). Here the
set Fu will contain all possible similar feature vectors made by selecting three nodes
among the eight neighbors.

In practice only one of the vectors within Fu is selected and used as its quantitative
value. Since the size of this set can grow large this value is selected in an optimization
process. This value is determined in relation to a fixed target point in the feature space.
For any arbitrary point z in the feature space, the value of Fu is fixed as the best fitting
vector in Fu to this point. This can be written as

f�
(z,u) = argmin

f∈Fu

{d(f, z)}. (2)

Here d(.) is the euclidean distance. Here the point z is used as an anchor point in the
feature space for fixing latent variables of the feature cloud. Figure 1 (Right) illustrates
how f�

z is selected. In this work z plays an important role in the classification process.
Since for every given z the value of Fu changes, z can be seen as a tool for pulling out
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Fig. 3. This figure shows a summery of the classification process. Initially a node u is selected
and its corresponding cloud is calculated. With the known anchor points z1, . . . , zn, the value for
the basis functions φi are calculated and using them a classification for the node u is achieved.

different properties of Fu. In the classification stage each Fu will be fit to different z
values, learnt during the training process, to verify whether Fu contains configurations
that belong to the object or not. The result of this selection can be seen in figure 2. In
this figure a car related region is being extracted from a car image and a cow image. It
can be seen that the positioning of the features completely differ in the two images and
more importantly the features seem to be avoiding the texture of the cow. This is done
because the optimization process tends to find the best available matches in the image
to support a certain hypothesis (being on a car) and regions on the cow don’t seem to
be good candidates.

By having a prior knowledge of how the nodes are distributed in Nu a partitioning
can be imposed on this set. This partitioning will later be referred as the architecture of
the cloud feature. This partitioning is designed in a way that each latent part comes from
one partition. This partitioning can slightly reduce the complexity of the optimization.

Efficient solving of the optimization problem 2 can have a large effect on the perfor-
mance and the running time of the methods using feaure. Assuming that the size of the
extracted features is fixed and distance is measured using euclidean distance, the com-
plexity of implemented method is calculated as O(|Nu|m), where is m is the number
of latent parts. By introducing an architecture and partitioning Nu, this complexity will
be reduced to O(|Nu|). In other words this problem can be solved by visiting the neigh-
bors of each node at most m times. It is possible to design more efficient algorithms for
solving this optimization problem and this will be in the focus of the future works of
this paper.

4 Latent Classifiers

In this problem the task of a classifier is to take a feature cloud and classify it into either
being from the object or not. For a set of labeled features, {(Fu1 , y1), . . . , (FuN , yN )}
gathered from the training set, the goal is to design a function c that uses one or several
configurations within cloud features to minimize the cost function

N∑
i=1

|c(Fui)− yi|. (3)
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A key difference between this approach and other available approaches is the fact that
the local variations around the local feature are also modeled with optimization of c.
This means that not only the model uses the value of the root feature but it also uses the
dominant features appearing around the root feature regardless of their spatial position.

The optimization problem 3 is approximated by defining the function c as a linear
basis regression function with model parameters z1, z2, ..., zM ,W . The values z1, z2,
..., zM are M anchor points in the feature space for fixing the latent variables capturing
different configurations of the features and W = (w0, ..., wM ) contains the regression
weights, these parameters are learnt during the training stage. Using these parameters,
the regression function c is defined as

c(Fu; z1, . . . , zM ,W ) =

M∑
m=1

wmΦzm(Fu) + w0. (4)

Here the basis function Φzm measures how good Fu can be fit to zm. This basis function
can be written as any basis function for example a Gaussian basis function is defined as

Φzm(Fu; s) = exp(−
d(f�

(zm,u), zm)2

2s2
). (5)

Equations 4 and 5 clearly show that the decision made for Fu depend both on the
different values in Fu and how good it can be fit to zm values. Due to the dynamic
section, Fu can be fit to different zm values which makes the scoring processes harder
for negative samples. The summery of this classification process can be seen in figure
3. During the training stage solving equation 4 to obtain W is straight forward once the
zm values are known.

The local features come from different regions of an object and these regions are no
visually similar. This fact results in a large variation on the data used for training. This
variation can not be captured by only one set of M configurations. To solve this problem
a mixture model of K sets each with M different configurations is considered and each
set is associated with a different regression model. When classifying a cloud feature, it
is initially assigned to the model that minimizes the over all fitting cost, defined as

argmin
k∈{1...K}

{
M∑

m=1

d(f�

(z
(k)
m ,u)

, z(k)m )}. (6)

Here the model is chosen based on how good the feature Fu is fit to all the configura-
tions within the model.

5 Learning the Parameters

The goal of the learning algorithms is to determine the K configurations sets together
with the regression function. It is possible to design an optimization method to estimate
all configurations together with the regression function, but such optimization is more
suitable for an object level classification since the data contains less variation at that
level. In this work the optimization is done two separate steps. The first step uses a
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Fig. 4. (Left) The Arc1 only depends on the patch itself. (Middle) The Arc2 (Arc3) Depends on
the central patch together with a selection of patches in the scale details (context) of the central
patch. (Right) The Arc4 Depends on the central patch and a selection of patches from from details
and the context of the central patch.

generative method for finding the K sets of configurations. This generative method is
an adaptation k-means algorithm with the cost function

argmin
S

K∑
k=1

∑
Fu∈Sk

(
M∑

m=1

d(f�

z
(k)
m

, z(k)m )

)
. (7)

This adaptation of k-means divides the features into K clusters and the elements of
each cluster have a strong connection by sharing the M different configurations. This
optimization can be solved using iterative methods used for solving the k-means prob-
lem. This method will be referred as L-KMEANS(K,M). To optimize this cost function
initially the feature clouds are partitioned into K subsets based on how close they are
to the M anchor points. After this partitioning the obtained values from the clouds of
each partition are used for updating the anchor points. This process is continued until a
convergence is achieved.

To determine the parameters initially L-KMEANS(K,M) procedure is ran over the
positive features. This way the strong configurations appearing in the training set are
formulated in terms of cluster centers resulted by the procedure. These cluster centers
can be used for labeling all features. For each cluster the variations in the negative fea-
tures is captured by running L-KMEANS(1,M) on the negative features assigned to that
cluster. Finally, after identifying both positive and negative configurations, these con-
figurations are used to fix the values of cloud features and the and regression function 4
is optimized to separate the positive features from the negative features.

6 Experiments and Results

The aim of the proposed methodology is to define a level of latency at the feature level
to extract more discriminative local/semi-global features. This latency in selection of
features can benefit many different pattern recognition tasks. To analyze the effect of
this latency two different scenarios are considered. A scenario is to employ the feature
clouds in a bag-of-visual-words (BOVW) model. The idea behind the bag of visual
words model is the fact that objects are built using a series of local structures that are
shared between different objects and a histogram of such local structures can lead to
the identification of the objects. Meanwhile, another challenge is to identify unique
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Fig. 5. The heat-maps shown in this figure are produced by mapping the scores of all the individ-
ual features on a plane. These show how the models locally learn the structures of the object.

structures (parts) on the objects and use them for the classification of the object. The
fact that the parts are defined in a more global sense and are more related to the object
class, makes them bad candidates for BOVW models. Instead the quality of these parts
can be evaluated based on how good they appear on the object. Both these scenarios are
discussed in this section.

When defining the feature clouds in section 3, each cloud is defined based on a set of
neighboring features. On an image the neighboring features can be located as features
withing a spatial radius of δ around the root feature. In this context δ will be referred as
the flexibility parameter. This parameter can be used to build clouds for different pur-
poses. If the value of δ is low then the joint representation become more local therefor
more suited for BOVW models. A disadvantage of building such local joint presenta-
tions is the fact that their performance of becomes close to the performance of single
features upon which the joint features were built. When the value of δ grows large, the
joint representations can be selected from a larger range of features on the object, which
makes the selection more dependent on object class and the features become more class
and viewpoint dependent. Having a semi-global feature provides a series of features
that are independent and are rarely detected off the object.

The experiments conducted in this paper are not designed to be compared with state
of the art object detectors but to test the hypothesis proposed in the paper. The main
idea behind the experiments is to evaluate these local features with different architec-
tures and compare them with the baseline which only contains the root feature. The
evaluation is straight forward, each feature is scored using the equations 4 and 6. Figure
5 shows how the heat-map of this score looks like for different images. For these fig-
ures the score was calculated for individual nodes and mapped on a plane. In the feature
inference problem the results are presented in terms of different precision recall curves
of these values. The experiments are conducted on several classes of MSRC v1 and v2
[17] datasets.

6.1 Feature Clouds as Semi-global Features

Several parameters control the behaviour of the cloud features. As mentioned in section
3 the architecture of the cloud features imposes a strong prior on how the latent parts
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are placed together. The architecture controls the complexity of the feature by control-
ling the number of its latent parts. The flexibility of these features is controlled by the
number of neighbors each node has in graph G. The larger the size of the neighbours
the wider the search space is for the latent parts. The goal of the experiments to ana-
lyze how the complexity and flexibility of the cloud features effects their discriminative
behavior. Unfortunately, as the flexibility and the complexity of the features increase
the optimization processes in equations 7 and 4 become computationally expensive.
Therefore the results are only provided on a few classes of this dataset.

The graph used in the experiments is build over the fixed size patches with 30 pixel
side extracted from an image pyramid and described using a PHOG descriptor [1]. The
choice of this graph is due to the future works of this paper when these features are used
to build object level classifiers.

Let G = (V,E) denote the graph built over the patches extracted from the image
pyramid with V containing all extracted patches and for two patches in V , say u and v,
the edge uv belongs to E iff |xu − xv| < t and |su − sv| < 1. Here xu is the spatial
position, su is the scale level of node u and t is a given threshold which controls how
patches are connected to each other.

In this work four different architectures are considered. These architectures are con-
sidered as prior information and are hard coded in the method. Although it is possible to
learn the architectures, learning them requires more tools which are not in the scope of
this paper. As mentioned in section 3 the architecture is imposed by partitioning the set
Nu. In this problem the neighbors of each node come from three different scale levels.
There are, of course, many different ways that this set can be partitioned into m subsets.
To reduce the number of possibilities only partitions with simple fixed scale and spatial
relations to the central node are considered. Twelve subsets are formed by dividing the
nodes (patches) in each scale into four quadrants. The scale levels and quadrants can be
seen in the features shown in figure 4. A number of these subsets are selected to form
different features architectures. Let this selection be denoted by Pu. Using a subset of
the twelve partitions, the four architectures defined in this figure are,

– Arc 1: This architecture is created by having Pu = ∅. This architecture uses the de-
scriptor of the central node as the descriptor. This feature will be used as a benchmark
for analyzing dynamic architectures.

– Arc 2: Let Pu partition the scale level below the scale level of u into four spatial
quadrants. This architecture contains the data from node u and additional information
about the details in this region.

– Arc 3: Let Pu partition the scale level above the scale level of u into four spatial
quadrants. This architecture contains the data from node u and additional information
about the context in this region.

– Arc 4: Let Pu partition the scale levels both above and below the scale level of u.
This architecture contains the data from u together with information about details
and the context of the region u has appeared in.

Here each node can be described using each of the four architectures and the goal is to
verify the most suitable architecture for the object region. To train the classifiers any
feature from the positive regions is considered positive and the rest of the extracted fea-
tures are considered as negative features. This should be kept in mind that the problem
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Fig. 6. Results from the MSRCv1 dataset. Five classes {car,face,plane,cow,bike} were considered
from this dataset. In this experiment the value of t controlling number of neighbors was varied
from the value equal to half the patch size to three times larger than the patch size.

being solved here is equivalent taking an arbitrary patch from an arbitrary scale and lo-
cation and asking whether it belongs to the object or not. Due to the noise at the feature
level this problem is a hard problem to solve by nature.

Classes {Car,Face,Plane,Cow,Bike} are chosen from this dataset. In this experiment
all four architectures are used with varying t value to increase the flexibility of features.



Adaptive Features for Object Classification 131

Here 256 models are used and each with 5 positive and 5 negative latent configurations.
The results of this experiment can be seen in figure 6. These experiments reveal several
properties about the cloud features. The first property is in fact that the improvement
obtained on the feature likelihood level depend on both the base feature and the archi-
tecture. At it can be seen in this figure the base feature (red curves) has an easier time
capturing the properties of the car and face classes in comparison with the rest of the
classes. Also between these two classes the architectures have an easier time capturing
the relations in face region. Meanwhile it is clearly visible that for the bike class both
the features and architectures are failing to capture the local properties. This figure also
shows that there is no best architecture for the all the object classes and the choice of
the architecture is completely object dependent. This can be seen in the likelihoods ob-
tained from the plane and the cow classes, where the base likelihoods are similar but
the responses obtained from the different architectures are different.

6.2 Feature Clouds in BOVW Models

This experiment is conducted on 9 classes of MSRC v2 dataset following the experiment
setting presented by Morioka et al. [11] for building local pairwise codebook (LPC). In
their setting sift features were sampled at every 8 pixels from the images and LPC was
build by clustering them. In their framework features with distance equal or less than
8 pixels are merged to build joint features. To adapt this scenario the graph G(V,E)
from section 3 is constructed over such sift features. Here V contains all the sampled
sift features and for every two features, say u and v, uv ∈ E iff |xu − xv| ≤ δ =
8. In the concept of feature clouds each the anchor points is optimized for each for
each class. Here a number of anchor points are calculated for the classes (together with
the background class) using the cost function 7 and put together as N anchor points
{c1, ..., cN}. In this experiment, equation 2 was used to build a histogram for each
image. To define this formally let {Fu1 , . . . ,FuM } be M feature clouds extracted from
an image and H be a N bin histogram with H [n] representing its nth bin. The value of
H [n] is determined as

H [n] = #{Fui : ∀m �= n, d(f�
(cn,ui)

, cn) < d(f�
(cm,ui)

, cm)}. (8)

Here Fui is assigned to most fitting anchor point. Similar to [11] the histograms where
classified using non-linear SVM with histogram intersection kernel. In this experiment
beside the appearance of latent parts their position was also modeled. This modeling
was by changing the optimization 2 to

f�
z = argmin

f=(fA,fx)∈Fu

{αd(fA, zA) + (1 − α)d(fx, zx)}. (9)

Here fA and zA contain the appearance information of the configuration and the anchor
point, while fx and zx contain the information about the relative position of the latent
parts with respect to the root feature. The value alpha was considered as a constant
value equal to 0.75.

For this experiment half of the images in each class were used as training images
and the other half was used for testing. The SIFT features were calculated on a dense
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grid after smoothing the image using VLFeat’s [15] Matlab API. In this experiment
feature clouds with accuracy of 84.19 ± 2.75%, having 820 words in the dictionary,
have performed better than the best baseline accuracy (single features) with accuracy
of 83.0 ± 2.0%. Also since the leading dimensions of the words, calculated for the
feature clouds, corresponding to the root features can be used for labeling root features,
a secondary histogram can be calculated for these features. The performance of the
concatenated histogram of cloud features and root features classified the images in the
dataset with the accuracy of 85.6±1.4%. Our results are higher than the results reported
for LPC[11] 83.9± 2.9% and [18] 78.3± 2.6% for 2nd order and 80.4± 2.5% for 10th

order spatial features.

7 Conclusions and Future Works

The main objective of this work has been to investigate the improvement in discrim-
inability obtained by substituting simple local features with more adaptive composite
hierarchical structures that are computed at recognition time from a set of potential
structures denoted as feature clouds. This is motivated by the fact that even at local
feature level, intra class object variation is very large, implying that generic single fea-
ture classifiers that try to capture this variation will be very difficult to design. In our
approach this difficulty is circumvented by the introduction of the cloud features that
capture the intra class variation an feature level. The price paid is of course a more
complex process for the extraction of local features that are computed in an optimiza-
tion process in order to yield maximally efficient features. We believe however that this
process can be made efficient by considering the dependencies and similarities between
local feature variations that are induced by the global intra class object variation.

There are many ways to improve the performance and accuracy of the feature clouds
and investigate their applications. As mentioned in the text, coming up with better opti-
mization algorithms will decrease the usage cost of these features. Meanwhile designing
algorithms for learning the architecture rather than hard-coding them will increase the
accuracy of these features. As for the applications, these features can be used in differ-
ent object detection and recognition platforms. A direct follow up of this work is using
these features to build more robust object detectors for detecting object classes. Since
the cloud features are results of clustering process rather than discriminative analysis,
they can also be used in bag-of-words models and will result in more discriminative
words and smoothed labeled regions.

Acknowledgements. This work was supported by The Swedish Foundation for Strate-
gic Research in the project Wearable Visual Information Systems.
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Abstract. The email inbox is indeed a dangerous place, but using pattern recog-
nition tools it is possible to filter most wasteful elements that may cause damage
to end users. Furthermore, as phishing and spam strategies have shown an ad-
versarial and dynamic behavior, the number of variables to be considered for a
proper email classification has increased substantially over time. For many years
these elements have driven pattern recognition and machine learning communi-
ties to keep improving email filtering techniques. This work presents an embed-
ded feature selection approach that determines a non-linear decision boundary
with minimal error and a reduced number of features by penalizing their use in
the dual formulation of binary Support Vector Machines (SVMs). The proposed
method optimizes the width of an anisotropic RBF Kernel via successive gradient
descent steps, eliminating those features that have low relevance for the model.
Experiments with two real-world spam and phishing data sets demonstrate that
our approach has a better performance than well-known feature selection algo-
rithms while consistently using a smaller number of variables.

Keywords: Spam and phishing filtering, Support vector machines, Feature se-
lection, Embedded methods.

1 Introduction

One particular domain for which machine learning has been considered a key compo-
nent is cyber-security. Specifically, for the correct identification of the large number of
spam messages, web spam, and spam servers which inundate Internet resources every
day. It is likely that spam messages will continue to be one of the most wasteful, danger-
ous and infectious elements on the Web as new campaigns are occasionally instigated
by spam senders [29].

One of the main reasons for which spam classification is relevant, is that unsolicited
email leads to several threats, as they are not just unwanted product advertisements.
Through spam mechanisms, different types of viruses, Trojans, and links to phishing
fraud websites are spread on mass. Among the reasons for which spam classification is
important, its carbon footprint has gain relevance over the last years. It has been reported
that the carbon footprint of the 62 trillion spam emails sent each year is equivalent to
3.1 million cars on the road using at least 2 billion gallons of gasoline [19].
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In the cyber-crime context, one of the most common social engineering threats is
phishing fraud. This malicious activity consists of sending email scams, asking for per-
sonal information to break into any virtual or physical location where victims may store
useful private information, such as financial institutions, e-Commerce, among other lo-
cations. Using phishing, millions of dollars are stolen every year1, and this number is
likely to keep raising as the Internet penetration in our everyday life increases.

Identifying malicious emails such as spam or phishing can be considered as a task
of binary classification where the goal is to discriminate between the two classes of
“desired” and “undesired” emails. Support Vector Machine [31] is an effective clas-
sification method and provides several advantages such as absence of local minima,
adequate generalization to new objects, and representation that depends on few param-
eters. Furthermore, this method has proved to be very effective for spam classification
[27] and Phishing [15]. However, this approach does not determine the importance of
the features used by a classifier [17]. In this paper we present a feature selection ap-
proach for binary classification using SVM, showing its potential for spam and phishing
classification.

This paper is organized as follows. In Section 2 we briefly introduce spam and phish-
ing classification. Recent developments for feature selection using SVM are reviewed
in Section 3. Section 4 presents the proposed feature selection method based on SVM.
Experimental results using real-world data sets for spam and phishing classification
are given in Section 5. A summary of this paper can be found in Section 6, where we
provide its main conclusions and address future developments.

2 Spam and Phishing Classification

Among all counter-measures used against spam and phishing, there are two main alter-
natives [4]: content-based classification methods and network-based strategies. In the
following, the main approaches for these alternatives are briefly reviewed.

2.1 Content-Based Classification

Spam filtering is a classical problem in machine learning, and many filtering techniques
have been described [12]. However, in terms of content-based classification, phishing
differs in many aspects from the spam case. While most of spam emails are intended to
spread information about products and web sites, in phishing, the interaction between a
message and the receiver is more complex. End users are usually involved in a third step
of interaction, such as following malicious links, filling deceptive forms, or replying
with useful information which are relevant for the fraud message to succeed.

Also, there is a clear difference among many phishing techniques, classified into
two main categories, known as deceptive phishing and malware phishing [4]. While
malware phishing has been used to spread malicious software installed on victim’s ma-
chines, deceptive phishing, according to [4], can be categorized in six categories: Social

1 Reports and statistics are kept by the Antiphishing Working Group, www.apwg.org [Online:
accessed May 13, 2012].

www.apwg.org
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engineering, Mimicry, Email spoofing, URL hiding, Invisible content, and Image con-
tent. For each one of these subcategories, content-based features have been proposed by
[4] to enhance phishing classifiers.

Previous works on content-based filtering of deceptive spam or phishing emails have
focused on the extraction of a large number of features used in popular machine learn-
ing techniques for its classification [5,4]. In [1], logistic regression, SVMs, and random
forests were used to construct classifiers to correctly label email messages, obtaining
the best results with an F-measure of 0.9. In [11], using a list of improved features ex-
tracted directly from email messages, the author proposed an SVM-based model which
obtained an F-measure of 0.9764 in a different phishing and spam corpus data set.

2.2 Network-Based Classification

Real Time Blacklists (RBLs) have been considered as an efficient alternative to filter-
ing spam messages, just by considering server-side features for spam sender detection.
These services can be queried over the Domain Name System (DNS) protocol, which
provides a powerful tool for email servers to decide whether or not to accept messages
from a given host [26]. Furthermore, different machine learning classifiers have been
proposed to classify spam senders, such as the basic formulation of SVMs [27], a mod-
ified extension for SVMs especially designed for imbalanced datasets, called Granular
SVM with Boundary Alignment (GSVM-BA) [28], and an improvement of previous
method, called Granular SVM with Random granulation (GSVM-RAND) [25].

To date, few experiments have been documented in terms of large scale spam server
classification in different contexts. One approach, introduced by [16], describes how
to use online learning algorithms to classify suspicious URLs, which could be related
to phishing fraud and spam activities. Furthermore, [30] designed and evaluated a real-
time malicious URLs classification strategy using a distributed approach for the logistic
regression binary classification algorithm.

The latter approaches are based on features extracted from network properties and
not from content-based characteristics, hence the dimensionality of the classification
problem is considerably low and the features’ properties are different than in content-
based approaches. For this reason, these approaches were not considered in this paper.

3 Feature Selection for SVMs

In this section we recall the classification method Support Vector Machine (SVM) de-
veloped by [31]. Additionally, we present the main strategies for feature selection with
SVMs.

3.1 Support Vector Classification

Given training points xi ∈ Rn, i ∈ {1, . . . ,m} and binary labels y ∈ Rm, yi ∈
{−1,+1}, SVM provides the optimal hyperplane f(x) = wT ·x+b that aims to separate
the training examples by maximizing the margin, which is equivalent to minimizing
the norm of coefficients w [31]. A set of slack variables ξ is also introduced for each



138 S. Maldonado and G. L’Huillier

training vector, considering a penalty parameter C, which helps to control the degree of
misclassification.

For a non-linear classifier, the solution will be given in a form of a Kernel machine,
where training data are mapped to the higher dimensional space H by the function
x→ φ(x) ∈H . The mapping is performed by a kernel function K(x, y) = φ(x) ·φ(y)
which defines an inner product in H [24].

The optimal hyperplane is thus the one with maximal distance (in H ) to the closest
image φ(xi) from the training data. The dual formulation of SVM for binary classifica-
tion can be stated as follows:

Max
α

m∑
i=1

αi − 1

2

m∑
i,s=1

αiαsyiysK(xi, xs) (1)

subject to
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C i ∈ {1, . . . ,m}.
From a variety of available kernel functions, the linear, polynomial, and the Gaussian
kernel are chosen in many applications:

1. Linear Kernel: K(xi, xs) = xi · xs.
2. Polynomial Kernel: K(xi, xs) = (xi · xs + 1)

d, where d ∈ N is the degree of the
polynomial.

3. Gaussian Kernel: K(xi, xs) = exp
(
− ||xi−xs||2

2ρ2

)
, where ρ > 0 is the parameter

controlling the width of the kernel.

The selection of the best kernel function is still a matter of research [2,24]. Empirically,
best classification performance is usually achieved with the Gaussian Kernel [2].

3.2 Feature Selection with SVMs

There are different strategies for embedded feature selection. First, feature selection
can be seen as an optimization problem. For example, the methods presented in [21]
add an extra term that penalizes the cardinality of the selected feature subset to the
standard cost function of SVM. By optimizing this modified cost function features are
selected simultaneously to model construction. Another embedded approach is the Fea-
ture Selection ConcaVe (FSV) [7], based on the minimization of the “zero norm” :
‖w‖0 = | {i : wi �= 0} |. Note that ‖·‖0 is not a norm because the triangle inequality
does not hold [7], unlike lp-norms with p > 0. Since the l0-“norm” is non-smooth, it
was approximated by a concave function:

‖w‖0 ≈ eT (e− exp(−β|w|) (2)
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with an approximation parameter β ∈ R+ and e = (1, . . . ,1)T. The problem is finally
solved by using an iterative method called Successive Linearization Algorithm (SLA)
for FSV [7]. [33] proposed an alternative approach for zero-“norm” minimization (l0-
SVM) by iteratively scaling the variables, multiplying them by the absolute value of
the weight vector w. [22] consider simultaneously the three objectives goodness-of-fit,
a regularization parameter for structural risk minimization, and feature penalization,
considering a sequential forward selection strategy. An important drawback of these
methods is that they are limited to linear classification functions [13].

Several embedded approaches consider backward feature elimination in order to es-
tablish a ranking of features, using SVM-based contribution measures to evaluate their
relevance. One popular method is known as Recursive Feature Elimination (SVM-RFE)
[14]. The goal of this approach is to find a subset of size r among n variables (r < n)
which maximizes the classifier’s performance. The feature to be removed in each itera-
tion is the one whose removal minimizes the variation of W 2(α):

W 2(α) =

m∑
i,s=1

αiαsyiysK(xi,xs) (3)

The scalar W 2(α) is a measure of the model’s predictive ability and is inversely pro-
portional to the margin. Features are eliminated applying the following procedure:

1. Given a solution α, for each feature p calculate:

W 2
(−p)(α) =

m∑
i,s=1

αiαsyiysK(x
(−p)
i ,x(−p)

s ) (4)

where x(−p)
i represents the training object i with feature p removed.

2. Eliminate the feature with smallest value of |W 2(α)−W 2
(−p)(α)|.

Another ranking method that allows kernel functions was proposed in [23], which con-
siders a leave-one-out error bound for SVM, the radius margin bound [31] LOO ≤
4R2||w||2, where R denotes the radius of the smallest sphere that contains the training
data. This bound is also used in [34] through the scaling factors strategy. Feature selec-
tion is performed by scaling the input parameters by a vector σ ∈ [0, 1]n. Large values
of σj indicate more useful features. The problem consists in choosing the best kernel of
the form:

Kσ(xi,xs) ≡ K(σ ∗ xi,σ ∗ xs) (5)

where ∗ is the component-wise multiplication operator. The method presented by [34]
considers the gradient descent algorithm for updating σ. [8] propose to limit the use of
the attributes by constraining the scaling factors using a parameter σ0, which controls
the norm of σ.
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4 The Proposed Method for Embedded Feature Selection

An embedded method for feature selection using SVMs is proposed in this section. The
reasoning behind this approach is that we can improve classification performance by
eliminating the features that affect on the generalization of the classifier by optimizing
the Kernel function. The main idea is to penalize the use of features in the dual for-
mulation of SVMs using a gradient descent approximation for Kernel optimization and
feature elimination. The proposed method attempts to find the best suitable RBF-type
Kernel function for each problem with a minimal dimension by combining the param-
eters of generalization (using the 2-norm), goodness of fit, and feature selection (using
a 0-“norm” approximation).

For this approach we use the anisotropic Gaussian Kernel:

K(xi,xs,σ) = exp

(
−||σ ∗ xi − σ ∗ xs||2

2

)
(6)

where ∗ denotes the component-wise vector product operator.
The proposed approach (Kernel-Penalized SVM) incorporates feature selection in

the dual formulation of SVMs. The formulation includes a penalization function f(σ)
based on the 0-“norm” approximation (2) described in Section 3 and modifying the
Gaussian Kernel using an (anisotropic) width vector σ as a decision variable. The fea-
ture penalization should be negative since the dual SVM is a maximization problem.
The following embedded formulation of SVMs for feature selection is proposed:

Max
α,σ

m∑
i=1

αi − 1

2

m∑
i,s=1

αiαsyiysK(xi,xs,σ)− C2f(σ) (7)

subject to
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C i ∈ {1, . . . ,m}.
σj ≥ 0 j ∈ {1, . . . , n}.

Notice that the values of σ are always considered to be positive, in contrast to the
weight vector w in formulation (2), since it is desirable that the kernel widths be posi-
tive values [18]. Considering the “zero norm” approximation described in (2), ‖σ‖0 ≈
eT (e − exp(−β|σ|), and since |σj | = σj ∀j, it is not necessary to use the 1-norm in
the approximation.

The following feature penalization function is proposed, where the approximation
parameter β is also considered. In [7], the authors suggest setting β to 5:

f(σ) = eT (e− exp(−βσ)) =
n∑

j=1

[1− exp (−βσj)] (8)

Since the formulation (7) is non-convex, we develop an iterative algorithm for its
approximation. A 2-step methodology is proposed: first we solve the traditional dual
formulation of SVM for a fixed anisotropic kernel width σ:



Feature Selection for Spam and Phishing Filtering Using SVMs 141

Max
α

m∑
i=1

αi − 1

2

m∑
i,s=1

αiαsyiysK(xi,xs,σ) (9)

subject to
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C i ∈ {1, . . . ,m}.
In the second step the algorithm solves, for a given solution α, the following non-linear
formulation:

Min
σ

F (σ) =

m∑
i,s=1

αiαsyiysK(xi,xs,σ) + C2f(σ) (10)

subject to
σj ≥ 0 j ∈ {1, . . . , n}.

The goal of formulation (10) is to find a sparse solution, making zero as many compo-
nents of σ as possible. We propose an iterative algorithm that updates the anisotropic
kernel variable σ, using the gradient of the objective function, and eliminates the fea-
tures that are close to zero (below a given threshold ε). The algorithm solves successive
gradient descent steps until one particular scaling factor σj drops below a threshold ε,
starting with one initial solution σ0. When this happens, attribute j is eliminated by
setting σj = 0. Then the algorithm returns to formulation (9) until convergence. It is
also possible that several variables become zero in one iteration. The algorithm Kernel
Width Updating and Feature Elimination follows:

Algorithm 1. Kernel Width Updating and Feature Elimination.
1. Start with σ = σ0;
2. flag=true; flag2=true;
3. while(flag==true) do
4. train SVM (formulation (9));
5. t = 0;
6. while(flag2==true) do
7. σt+1 = σt − γΔF (σt);
8. if (||σt+1 − σt||1 < ε′) then
9. flag2==false, flag==false;

10. else
11. if (∃j | σt+1

j > 0 ∧ σt+1
j < ε, ∀j) then

12. for all (σt+1
j < ε) do σt+1

j = 0;
13. flag2==false;
14. end if
15. end if
16. t = t+ 1;
17. end while;
18. end while;
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In the seventh line the algorithm adjusts the Kernel variables by using the gradi-
ent descent procedure, incorporating a gradient parameter γ. In this step the algorithm
computes the gradient of the objective function in formulation (10) for a given solution
of SVMs α, obtained by training an SVM classifier using formulation (9). For a given
feature j, the gradient of formulation (10) is:

ΔjF (ν) = C2βexp (−βσj) +

m∑
i,s=1

σj(xi,j − xs,j)
2αiαsyiysK(xi,xs,σ) (11)

Lines 11 to 14 of the algorithm represent the feature elimination step. When a Kernel
variable σj in iteration t+1 is below a threshold ε, this feature is considered as irrelevant
and eliminated by setting σj = 0. This variable will not be included in subsequent
iterations of the algorithm.

Lines 8 and 9 of the algorithm represent the stopping criterion, which is reached
when σt+1 ≈ σt. It is also possible to monitor the convergence by considering the
measure ||σt+1 − σt||1, which represents the variation of the Kernel width between
two consecutive iterations t and t+ 1.

5 Results for Spam and Phishing Data Sets

We applied the proposed approach for feature selection to two data sets. We consider the
following procedure for model comparison: First, model selection is performed before
feature selection, obtaining the kernel parameters d, ρ and penalty parameter C. The
best combination is selected via 10-fold cross-validation. For the methods RFE-SVM,
FSV-SVM and Fisher Filtering a ranking is first obtained with the training data, and
model performance is then obtained using 10-fold cross-validation for specific numbers
of attributes, depending on the size of the data set, considering the hyper-parameters ob-
tained during the model selection procedure. For KP-SVM, instead, the algorithm runs
using initial hyper-parameters and automatically obtains the desired number of features
and the Kernel shape when convergence is reached we compute also the average cross-
validation performance in intermediate steps for comparison purposes. The parameters
for KP-SVM were selected previously according to the following values:

– Parameter C2 represents the penalty for the feature usage and is strongly related
to C, the original regularization parameter. C2 is considered the most important
parameter for KP-SVM, since classification results change significantly varying its
values. We try the values C2 = {0, 0.5C,C, 2C}, monitoring both classification
accuracy and feature usage.

– The initial (isotropic) kernel width σ0, the threshold ε and the gradient parameter γ
are considered less influential in the final solution, according to our empirical results.
We set σ0 = 1

ρ2 · e, where ρ is the isotropic kernel width obtained in a previous step
for model selection considering all features, and e is a vector of ones of the size of
the number of current features in the solution; ε = 1

100ρ2 and γ = 0.1ε||ΔF (σ0)||,
where ||ΔF (σ0)|| represents the Euclidean norm of the first computed gradient vec-
tor. This combination of parameters guarantees both a sufficiently small ε that avoids
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the removal of relevant features and an adequate update of the kernel variables, con-
trolled by the magnitude of the components of ΔF (σ). This parameter avoids a
strong fluctuation of the kernel variables and negative widths, especially at the first
iterations of the algorithm.

5.1 Description of Data Sets

In this subsection we briefly describe the different data sets mentioned above.

Spambase Data Set (Spam)
The Spambase Data set from the UCI data repository [3] presents 57 features and 4,601
instances (2,788 emails labeled as spam and 1,813 ham2 emails). The data set was
created by Mark Hopkins, Erik Reeber, George Forman and Jaap Suermondt from the
Hewlett Packard Labs.

Most of the features indicate whether a particular word or character was frequently
occurring in the email. The data set presents 48 continuous attributes representing the
percentage of words in the email that match a particular word, 6 continuous attributes
representing the percentage of characters in the email that match a particular character,
the average length of uninterrupted sequences of capital letters, the length of the longest
uninterrupted sequences of capital letters and the total number of capital letters in the
email. The predictive variables were scaled between 0 and 1.

Phishing Data Set (Phishing)
The phishing corpus used to test the proposed methodology, was an English language
phishing email corpus built using Jose Nazario’s phishing corpus [20] and the SPA-
MASSASSIN ham collection. The phishing corpus3 consists of 4,450 emails manually
retrieved from November 27, 2004 to August 7, 2007.

The ham corpus was built using the Spamassassin collection, from the Apache SPA-
MASSASSIN Project4, based on a collection of 6,951 ham email messages. Both phish-
ing and ham messages are available in UNIX” mbox format.

All features were extracted according to [15], where first documents are tokenized in
order to extract all words in messages. Then, a stopword removal process and stemming
of messages’ words is realized. When all messages are pre-processed, different feature
extraction methodologies are executed, such as structural features [11], keyword extrac-
tion [32], singular value decomposition [10], and latent Dirichlet allocation [6]. Finally,
all extracted features are combined in order to extract a final set of features that fully
characterize a given phishing message.

Table 1 summarizes the relevant information for each spam data set, considering the
number of original variables, number of instances and the predominant class proportion
(PCP), which is obtain by dividing the number of examples of the predominant class
(ham) with the total number of instances.

2 “Ham” is the name used to describe regular messages that are neither spam nor phishing.
3 Available at http://bit.ly/jnazariophishing [Online: accesses May 13, 2012].
4 Available at http://spamassassin.apache.org/publiccorpus/ [Online: ac-

cessed May 13, 2012].

http://bit.ly/jnazariophishing
http://spamassassin.apache.org/publiccorpus/
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Table 1. Descriptive information for each data set

Variables Examples PCP
Spam 57 4,601 0.61

Phishing 273 9,794 0.61

5.2 Results Using Kernel-Penalized Feature Selection

First we compare the results of the best model found using the described model selec-
tion procedure for the three different kernel functions presented in Section 3: linear,
polynomial, and Gaussian kernel. Table 2 presents the mean classification accuracy and
its standard deviation using 10-fold cross-validation. The following set of values for the
parameters (penalty parameter C, degree of the polynomial function d and Gaussian
Kernel width σ) were used:

C = {0.1, 0.5, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000}
d = {2, 3, 4, 5, 6, 7, 8, 9}
ρ = {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 100}.

Table 2. Mean classification accuracy for three different kernel functions

N SVM linear SVM poly SVM RBF
Spam 57 93.24±0.4 93.37±0.3 93.87±0.4

Phishing 273 98.50±0.1 98.52±0.1 98.79±0.1

Best results were achieved for both data sets using the Gaussian Kernel, but this
difference is statistically significant only on the second data set. Notice that the Kernel
function (6) can be easily modified by incorporating the component-wise product to any
suitable Kernel if the best Kernel is not the Gaussian.

In order to study the classification performance of KP-SVM we compared the results
for a given number of features (determined by the stopping criterion of our approach)
with different feature selection algorithms for SVMs presented before in this paper
(SVM-RFE, FSV and Fisher Criterion Score). The results of the mean test accuracy
using 10-fold cross-validation are shown in Table 3, where n is the number of features
determined by KP-SVM.

Table 3. Mean classification accuracy for four different feature selection strategies

n Fisher+SVM SVM-FSV RFE-SVM KP-SVM
Spam 26 92.15±0.3 85.85±0.8 93.18±0.5 93.52±0.3

Phishing 30 98.44±0.1 96.93±0.2 98.27±0.2 98.68±0.1

The proposed method outperforms all other approaches in terms of classification
error for the given number of features obtained by the convergence of KP-SVM, as can
be observed from the data in Table 3. The gain in terms of effectiveness is significant
in both data sets, with the only exception of RFE-SVM in the first data set, whose
performance is lower but not significantly worse than KP-SVM.
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Fig. 1. Mean of test accuracy for Spam vs. the number of ranked variables used for training

Fig. 2. Mean of test accuracy for Phishing vs. the number of ranked variables used for training

Then we compared the classification performance of the different ranking criteria
for feature selection by plotting the mean test accuracy for an increasing number of
ranked features used for learning. Figures 1 and 2 show the results for each data set
respectively. The proposed KP-SVM approach provides only the information until the
stopping criterion is reached.

These experiments underline that the proposed approach, KP-SVM, outperforms
other feature selection methods in terms of classification performance for a small num-
ber of features in both data sets used. Another important remark is that best classifica-
tion performance is achieved for KP-SVM considering C2 = C for the Spam data set
and C2 = 0.5C for the Phishing data set. For both data sets the use of feature penaliza-
tion outperforms the model obtained using C2 = 0, which can be considered a variant
of the ARD model presented in [9]. This fact proves the importance of feature selection
in relatively high dimensional data sets, such as the ones presented in this work.
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6 Conclusions

In this work we present an embedded approach for feature selection using SVM applied
to phishing and spam classification. A comparison with other feature selection methods
and classification shows the advantages of our approach:

– It outperforms other techniques in terms of classification accuracy, based on its abil-
ity to adjust better to a data set by optimizing the kernel function and simultaneously
selecting an optimal feature subset.

– It is not necessary to set a priori the number of features to be selected, unlike other
feature selection approaches. The algorithm determines the optimal feature number
according to the regularization parameter C2.

– It can be used other kernel functions, such as linear and polynomial kernels.

Even if several parameters have to be tuned, the computational effort can be reduced
since the search for an optimal feature subset can be obtained automatically, reducing
computational time by avoiding a validation step on finding an adequate number of
ranked features. The model selection procedure presented in Section 5 reduces both
the computational effort of setting several parameters via cross-validation and the risk
of over-fitting. Our empirical results demonstrate the importance of feature penalty to
achieve best classification performance under the presented model selection procedure.

Future work has to be done in various directions. First, we consider the extension
to highly imbalanced data sets, a very relevant topic in phishing and spam classifica-
tion, and in pattern recognition in general. Furthermore, the current scenario for spam
and phishing classification suggests the extension of the proposed embedded feature
selection technique to very large databases as an important research opportunity.
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Abstract. In the dissimilarity representation approach, the dimension reduction
of the dissimilarity space is addressed by using instance selection methods. Sev-
eral studies have shown that these methods work well on small data sets. Also,
the uniformity of the instances distribution can be obtained when the classes are
evenly spread and balanced. However, many real-world problems are character-
ized by an imbalanced class distribution. In this paper, we address the problem
of instance selection for constructing the dissimilarity space in the imbalanced
data context. Class imbalance is handled by resampling the data set, whereas
instance selection is applied to find a small representation set. Experimental re-
sults demonstrate the significance of the joint use of resampling techniques and
instance selection methods to improve the performance of classifiers trained on
dissimilarity representation.

Keywords: Instance selection, Dissimilarity representation, Resampling tech-
niques, Imbalanced data sets.

1 Introduction

The statistical pattern recognition approach traditionally represents the objects in vector
spaces by a set of measurable features. However, this approach presents some draw-
backs: (i) objects of different classes may be represented by the same feature vectors
and (ii) the classifiers could be affected by the variation of feature sets [1]. An alter-
native approach to the feature-based representation that overcomes these problems is
the dissimilarity representation paradigm proposed by Pekaslka and Duin [2]. Here, the
objects are represented by their dissimilarity or distance values to the other objects in
the set.

The construction of a new vector space from a dissimilarity representation is car-
ried out in two ways [3]: (i) Euclidean embedding and (ii) the dissimilarity space. The
former case is based on embedding the given non-Euclidean dissimilarity data into a
vector space preserving the distances between objects as good as possible in compari-
son to the original dissimilarities. The second way postulates an Euclidean vector space
defined by the dissimilarities vectors. This method considers the dissimilarity matrix
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as a new training data set, where the set of rows (dissimilarities) vectors (one for each
object) represents individual training samples and the columns form the dimensions of
the so-called dissimilarity space. For its construction, the pairwise dissimilarities are
computed between a given object and objects from the representation set R. In general,
a representation set is a set of chosen prototypes of the training set T . Sometimes, R
can be chosen as the whole training set.

In the dissimilarity space, the dimensionality is determined by the size of the rep-
resentation set. When all training objects are used to build the representation set, the
dimension of the dissimilarity space is equal to |T |, which may impose a computational
burden on the classifier. To overcome this problem, numerous works have proposed to
use and develop instance selection methods (instance selection methods) for finding a
small reduced representation set (from the training data) capable of achieving a good
trade-off between classification accuracy and computational efficiency [4,5,6,7,8,9,10].
Results using instance selection methods have shown a good performance for small
training sets. Likewise, when the classes are evenly spread and balanced, it is possible
to gain a uniform prototypes distribution. However, in many real-world problems, there
exists an extremely skewed difference between the class ratios of prior probabilities.
This data complexity, known as the class imbalance problem [11], may affect the in-
stance selection process to obtain reduced representation sets that does not reflect the
true distribution [9].

The class imbalance problem occurs when one class vastly outnumbers the other
class, which is usually the most important one and with the highest misclassification
costs. Instances from the minority and majority classes are often referred to as posi-
tive and negative, respectively. Several solutions have been proposed to deal with this
data complexity. One of the most investigated is resampling, which aims at balanc-
ing the original data set, either by over-sampling the minority class [12,13] and/or by
under-sampling the majority class [14,15], until the classes are approximately equally
represented.

Although class imbalance has been extensively studied for binary classification prob-
lems, very few approaches explore the class imbalance problem in the dissimilarity
space [16,17,18]. Besides, to the best of our knowledge, no work has been carried out
on how to select a small representation set for constructing the dissimilarity space on
imbalanced data sets.

This paper investigates some strategies to select a reduced representation set and
manage the class imbalance for dissimilarity representation. In order to face such a prob-
lem, this work focuses on the joint use of instance selection methods and resampling
techniques. To this end, we will carry out experiments over real data sets, employing
four renowned instance selection methods and two resampling algorithms. All tech-
niques are evaluated in terms of their geometric mean of accuracies, and then compared
for statistical differences using the Friedman’s average rank test and the Nemenyi’s post
hoc test.

The rest of the paper is outlined as follows. Section 2 provides a summary of the clas-
sification problem in dissimilarity representation. Section 3 presents a brief overview
of instance selection methods. An introduction to resampling algorithms is provided
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in Section 4. In Section 5, the experimental setup is described. Next, in Section 6, the
results are showed and discussed. Finally, Section 7 concludes the present study.

2 Dissimilarity Space

In traditional pattern recognition algorithms, objects are represented by a vector of fea-
tures, in which the dimensionality of the feature space is given by the number of features
employed to describe the objects. On the contrary, in the dissimilarity space, objects are
represented by dissimilarity vectors, where each element of a vector relates an object
with other objects [2].

Given a training set of n objects, T = {x1, . . . , xn}, a new set of r representa-
tive objects of the problem, called prototypes, is obtained from T . This set of proto-
types, which contains information of all classes in T , is known as representation set,
R = {p1, . . . , pr}. The amount of prototypes (r) in R determines the dimension of
the dissimilarity space. Several methods have been proposed in the literature to select
this set of prototypes; for example, Pekalska et al. studied the random and systematic
selection procedures for the normal density-based quadratic classifier [8].

In dissimilarity-based classification, some dissimilarity measure d has to be em-
ployed to compute the proximity between objects. Given the pair of objects x = (x1, x2,
. . . , xm) and y = (y1, y2, . . . , ym), the dissimilarity measure d must satisfy one or more
of the usual conditions for a metric [19]: non-negativity, identity of indiscernibles, sym-
metry and triangle inequality.

Usually, the dissimilarity measure used to represent objects by proximities corre-
sponds to the Euclidean distance between two objects x and y, that is,

d(x, y) = (

m∑
j=1

(xj − yj)
2)1/2 (1)

where m is the number of features. Then, the proximity between the i-th object in T ,
xi, and all prototypes in R is

D(xi, R) = {d(xi, p1), . . . , d(xi, pr)} (2)

which is a vector with r distances that associates xi with all objects in R. By doing
D(T,R), a n × r dissimilarity matrix is obtained, which refers to the distances from
the objects in the training set to all objects in the representation set and it will be further
used to built the classifier in the dissimilarity space.

In this paper, we will use the Euclidean distance measure. Given a test set S, the
proximity between objects in S and prototypes in R is also computed, giving a dissim-
ilarity matrix D(R,S). Thus, the test set S can be evaluated with the classifier built in
the dissimilarity space.

3 Instance Selection Methods

In the framework of the dissimilarity representation, the instance selection methods
are used to find a small representation set for reducing the computational effort, while
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preserving the classification accuracy. Research on this topic has proposed solutions to
be applied in the dissimilarity space [7,10] and/or in the original feature space [4,6]. In
this work, we are interested in techniques that fall into the second group. A full review
of instance selection methods used in the dissimilarity space can be found in the work
by Plasencia-Calaña et al. [9].

A straightforward instance selection method is the random selection (RS) which
seeks k prototypes randomly from the training set without taking into account the class
labels. This method can be applied in a stratified fashion, where k prototypes from each
class are selected. This allows to produce a more uniform reduced data set with respect
to the class distribution.

Other more “intelligent” method seeks to retain points that are closer to the deci-
sion boundaries, while removing internal points. One of the earliest methods is the
Condensed Nearest Neighbour (CNN) proposed by Hart [20]. This algorithm finds a
condensed subset CS from the training set T that correctly classifies every prototype in
T using the nearest neighbour (1-NN) rule. This approach starts by randomly selecting
one pattern belonging to each class from T and putting them into CS. Each remaining
sample in T is then classified using the objects in the current CS. If a sample in T is
misclassified, it is added to CS. This process ends when no sample in T is misclassified
by CS. Nevertheless, this algorithm does not guarantee minimality and both the quality
and size of the condensed subset depend on the order in which the training objects are
presented to the algorithm.

To overcome the aforementioned issues, Barandela et al. [21] proposed the Modified
Selective Subset (MSS) method, which reduces the training set size while preserving
the original decision boundaries as much as possible.

4 Resampling Techniques

Resampling consists of artificially balancing the original data set, either by over-sampling
the minority class and/or by under-sampling the majority class, until the problem classes
are approximately equally represented. Both strategies can be applied in any learning
system, since they act as a preprocessing phase, allowing the learning system to receive
the training objects as if they belonged to a well-balanced data set. Thus, any bias of
the system towards the majority class due to the different proportion of examples per
class would be expected to be suppressed. The simplest method to increase/reduce of
the minority/majority class corresponds to non-heuristic methods that aim to balance
the class distribution through the random replication/elimination of positive/negative
objects. Nevertheless, these methods have shown important drawbacks. Random over-
sampling may increase the likelihood of overfitting, since it makes exact copies of the
minority class objects. On the other hand, random under-sampling may discard data po-
tentially important for the classification process. Despite this problem, it has empirically
been shown to be one of the most effective resampling methods. In order to overcome
these drawbacks, several authors have developed focused resampling algorithms that
create balanced data sets in an intelligent way.

Chawla et al. [12] proposed an over-sampling technique that generates new syn-
thetic minority objects by interpolating between several positive examples that lie close
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together. This method, called SMOTE (Synthetic Minority Oversampling TEchnique),
allows the classifier to build larger decision regions that contain nearby objects from the
minority class. From the original SMOTE algorithm, several modifications have been
proposed in the literature, most of them pursuing to determine the region in which the
positive examples should be generated. For instance, Borderline-SMOTE [13] consists
of using only positive examples close to the decision boundary, since these are more
likely to be misclassified.

Unlike the random method, many proposals are based on a more intelligent selec-
tion of the majority class examples to eliminate. For example, Kubat and Matwin [22]
proposed an under-sampling technique named one-sided selection, that selectively re-
moves only those negative instances that are “redundant” or that “border” the minority
class objects (they assume that these bordering cases are noise). In contrast to the one-
sided selection technique, the so-called neighborhood cleaning rule emphasizes more
data cleaning than data reduction. To this end, Wilson’s editing is used to identify and
remove noisy negative objects. Similarly, Barandela et al. [14] introduced a method that
eliminates not only noisy examples of the majority class by means of Wilsons editing,
but also redundant examples through the MSS condensing algorithm.

5 Experimental Setup

Experiments have been carried out over 13 data sets taken from the UCI Machine Learn-
ing Database Repository [23] and a private library (http://www.vision.uji.es/∼sanchez/
Databases/). All data sets have been transformed into two-class problems by keeping
one original class (the minority class) and joining the objects of the remaining classes
(giving the majority class). For example, in Segmentation database the objects of classes
1, 2, 3, 4 and 6 have been joined to shape a unique majority class and the original class
5 has been left as the minority class (see a summary in Table 1).

A stratified five-fold cross validation method has been adopted for the present ex-
periments: each original data set has been randomly divided into five parts or equal
(or approximately equal) size. For each fold, four of the parts have been pooled as the
training data, and the remaining block has been employed as an independent set. The
training sets (in the feature space) have been preprocessed by SMOTE and random
under-sampling (RUS) to handle the class imbalance problem. Also, three instance se-
lection methods previously described have been applied over the original training sets
(without any preprocessing) and the balanced data sets to gain a reduced representation
set: random selection (R), the Condensed Nearest Neighbour (CNN) and the Modi-
fied Selective Subset method (MSS). In the case of the random selection method, we
have selected 50% (R50) and 100% (R100) of objects from each class. Next, we have
computed the dissimilarity matrix D(T,R) by using either imbalanced and balanced
training sets with their respective representative sets. Finally, two learners, Fisher and
1-NN classifiers, were applied on the dissimilarity space.

5.1 Performance Evaluation in Class Imbalance Problems

Evaluation of classification performance plays a critical role in the design of a learning
system and therefore, the use of an appropriate measure becomes as important as the
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Table 1. Data sets used in the experiments

Data Set Positive Examples Negative Examples Classes Majority Class

Breast 81 196 2 1
Ecoli 35 301 8 1,2,3,5,6,7,8
German 300 700 2 1
Glass 17 197 9 1,2,4,5,6,7,8,9
Haberman 81 225 2 1
Laryngeal2 53 639 2 1
Phoneme 1586 3818 2 1
Pima 268 500 2 1
Scrapie 531 2582 2 1
Segmentation 330 1980 6 1,2,3,4,6
Spambase 1813 2788 2 1
Vehicle 212 634 4 2,3,4
Yeast 429 1055 10 1,3,4,5,6,7,8,9,10

Table 2. Confusion matrix for a two-class decision problem

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

selection of a good algorithm to successfully tackle a given problem. Traditionally,
standard performance metrics have been classification accuracy and/or error rates. For
a two-class problem, these can be easily derived from a 2 × 2 confusion matrix as that
given in Table 2.

The classification accuracy (Acc) evaluates the effectiveness of the learner by its
percentage of correct predictions,

Acc =
TP + TN

TP + FN + TN + FP
(3)

The counterpart of accuracy is the error rate, which evaluates a classifier by its percent-
age of incorrect predictions.

Err =
FP + FN

TP + FN + TN + FP
= 1−Acc (4)

Empirical and theoretical evidences show that these measures are strongly biased
with respect to data imbalance and proportions of correct and incorrect classifications
[24,25,26,27,28]. In a binary decision problem, a learner predicts objects as either pos-
itive or negative; if very few examples belong to the positive class, a naive learning
system could obtain a very high accuracy by just classifying all objects as negative.
However, this is useless in most real domains because the class of interest is generally
the positive one. Therefore, evaluators such as accuracy or error rate appear to be inap-
propriate for class imbalanced data, thus motivating the search for other measures based
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on some straightforward indexes, which have also been formulated from a 2× 2 confu-
sion matrix as that in Table 2. For example, Kubat and Matwin [22] use the geometric
mean of accuracies measured separately on each class,

Gmean =
√
TPr · TNr (5)

where TPr = TP/(TP+FN) is the percentage of positive examples that are correctly
classified, while, TNr = TN/(TN + FP ) is defined as the proportion of negative
examples that are correctly classified.

The Gmean is associated to a point on the ROC curve, and the idea is to maximize
the accuracies of both classes while keeping them balanced. It can be interpreted as a
kind of good trade-off between both rates because a high value occurs when they both
are also high, whereas a low value is related to at least one low rate.

5.2 Statistical Significance Tests

A common way to compare two classifiers over a set of problems is the Student’s paired
t-test. However, this appears to be conceptually inappropriate and statistically unsafe
because parametric tests are based on a variety of assumptions (independence, normal-
ity and homoscedasticity) that are often violated due to the nature of the problems [29].
In general, the non-parametric tests (e.g., Wilcoxon and Friedman tests) should be pre-
ferred over the parametric ones, especially in multi-problem analysis, because they do
not assume normal distributions or homogeneity of variance [29,30].

The Friedman test is based on the average ranked performances of a collection of
techniques on each data set separately. Under the null-hypothesis, which states that all
the algorithms are equivalent, the Friedman statistic can be computed as follows:

χ2
F =

12N

K(K + 1)

⎡⎣∑
j

R2
j −

K(K + 1)2

4

⎤⎦ (6)

where N denotes the number of data sets, K is the total number of algorithms and Rj

is the average ranks of algorithms. The χ2
F is distributed according to the Chi-square

distribution with K − 1 degrees of freedom, when N (number of data sets) and K
(number of algorithms) are big enough. However, it has been demonstrated that the
Friedman statistic produces an undesirably conservative effect. In order to overcome
the conservativeness, Iman and Davenport [31] proposed a better statistic distributed
according to the F−distribution with K − 1 and (K − 1)(N − 1) degrees of freedom,

FF =
(N − 1)χ2

F

N(K − 1)− χ2
F

(7)

When the null-hypothesis is rejected, we can use post-hoc tests in order to find the
particular pairwise comparisons that produce statistical significant differences. A post-
hoc test compares a control algorithm opposite to the remainder techniques, making
possible to define a collection of hypothesis around the control method. The Nemenyi
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post-hoc test, which is analogous to the Tukey test for ANOVA, states that the perfor-
mances of two or more algorithms are significantly different if their average ranks are
at least as great as their critical difference (CD) with a certain level of significance:

CD = qα

√
K(K + 1)

6N
(8)

where qα is a critical value based on the studentised range statistic divided by
√
2. For

the present set-up, the corresponding critical values are q0.05 = 3.268 and q0.10 =
3.030, for α = 0.05 and α = 0.10, respectively.

6 Results and Discussion

Table 3 reports the results, in terms of Gmean, given by Fisher and 1-NN classifiers
on the 13 data sets. For each strategy here proposed, the average Friedman is also
shown. The technique achieving the best Gmean on each data set as well as the av-
erage Friedman’s ranking is highlighted in bold. From these results, several comments
can be drawn:

– In general, when dissimilarity spaces are constructed on balanced datasets (for any
instance selection method), the Gmean values are significantly better than those
obtained by using the original training set (without preprocessing).

– The benefits of resampling are much more obvious in the Glass data set, where
Gmean increases from 0.00 (all minority objects were misclassified) to 0.686 with
the Fisher classifier.

– Paradoxically, for both 1-NN and Fisher classifiers, the random selection method
achieves the best classification results.

– The RUS+R100 strategy has the best Friedman ranking in the case of Fisher,
whereas SMOTE with both versions of random selection provide the best aver-
age ranking in 1-NN. As claimed by Pekalska and Duin [2], the nearest neigh-
bours classifiers may require a much larger representation set to generate a higher
accuracy.

– Although R100 seems a good strategy, it is important to remark that this technique
may produce an increase in the computational cost. This problem might grow up if
it is combined with an oversampling technique.

In order to check whether there are significantly differences in the results, we computed
the Iman-Davenport’s statistic using the Eq. 7 described above. The computation yields
FF = 9.585 and FF = 4.486 for 1-NN and Fisher classifiers, respectively. The critical
value for the F distribution with 12-1=11 and (12-1)(13-1)=132 degrees of freedom
considering two levels of confidence, α = 0.05 and α = 0.05, are F (11,132)0.05 =
1.86 and F (11,132)0.10 = 1.62, so the null hypothesis that all strategies here explored
perform equally well can be rejected. Therefore, we can apply Nemenyi’s post hoc test
in order to detect the set of strategies that are significantly worse than the control method
(the method with the best Friedman’s rank).

The results of the Nemenyi’s post hoc test can be found in Fig. 1. For each classifier
and level of confidence, the plot shows the strategies here proposed, which have been
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Table 3. Average Gmean results obtained with Fisher and 1-NN classifiers (for each data set,
the best case is highlighted in bold

Fisher

Original SMOTE RUS

R50 R100 CNN MSS R50 R100 CNN MSS R50 R100 CNN MSS

Breast 0.580 0.591 0.578 0.610 0.628 0.586 0.614 0.615 0.632 0.637 0.569 0.603
German 0.645 0.652 0.634 0.666 0.695 0.691 0.626 0.650 0.697 0.694 0.662 0.662
Laryngeal2 0.838 0.884 0.883 0.818 0.910 0.905 0.668 0.768 0.920 0.916 0.796 0.730
Pima 0.669 0.657 0.656 0.660 0.676 0.672 0.592 0.676 0.697 0.681 0.680 0.682
Scrapie 0.415 0.442 0.442 0.371 0.516 0.516 0.441 0.452 0.582 0.592 0.403 0.380
Spambase 0.885 0.897 0.895 0.897 0.892 0.898 0.862 0.890 0.880 0.890 0.900 0.897
Vehicle 0.630 0.626 0.624 0.626 0.694 0.661 0.637 0.671 0.750 0.758 0.627 0.624
Ecoli 0.773 0.676 0.695 0.651 0.845 0.834 0.547 0.707 0.851 0.855 0.757 0.774
Glass 0.000 0.000 0.000 0.000 0.635 0.686 0.000 0.569 0.624 0.614 0.000 0.000
Haberman 0.533 0.534 0.518 0.572 0.610 0.573 0.517 0.567 0.607 0.606 0.533 0.523
Segmentation 0.907 0.936 0.936 0.928 0.938 0.949 0.772 0.924 0.804 0.810 0.858 0.789
Yeast 0.667 0.671 0.669 0.672 0.717 0.701 0.619 0.681 0.723 0.725 0.678 0.669
Phoneme 0.871 0.884 0.883 0.882 0.879 0.890 0.710 0.871 0.870 0.885 0.880 0.875

Avg. Ranking 8.62 7.04 8.38 7.35 3.46 3.81 10.46 6.58 3.85 3.04 7.31 8.12

1-NN

Original SMOTE RUS

R50 R100 CNN MSS RS50 R100 CNN MSS R50 R100 CNN MSS

Breast 0.510 0.533 0.561 0.544 0.561 0.537 0.520 0.534 0.592 0.585 0.532 0.504
German 0.528 0.527 0.527 0.520 0.543 0.549 0.525 0.524 0.563 0.564 0.522 0.515
Laryngeal2 0.711 0.738 0.708 0.681 0.918 0.907 0.681 0.678 0.844 0.864 0.740 0.686
Pima 0.605 0.596 0.595 0.597 0.621 0.610 0.592 0.603 0.626 0.631 0.595 0.596
Scrapie 0.509 0.510 0.508 0.507 0.504 0.502 0.511 0.515 0.464 0.457 0.506 0.514
Spambase 0.732 0.734 0.733 0.734 0.732 0.732 0.733 0.731 0.733 0.732 0.735 0.732
Vehicle 0.561 0.557 0.557 0.567 0.604 0.607 0.555 0.579 0.611 0.629 0.551 0.555
Ecoli 0.715 0.716 0.708 0.687 0.793 0.812 0.697 0.712 0.747 0.764 0.681 0.695
Glass 0.541 0.541 0.000 0.000 0.732 0.737 0.594 0.555 0.647 0.662 0.000 0.000
Haberman 0.571 0.579 0.575 0.578 0.587 0.606 0.588 0.576 0.577 0.585 0.586 0.580
Segmentation 0.894 0.894 0.891 0.881 0.911 0.911 0.883 0.883 0.852 0.852 0.887 0.883
Yeast 0.643 0.635 0.638 0.645 0.676 0.674 0.642 0.640 0.682 0.682 0.632 0.637
Phoneme 0.843 0.844 0.844 0.840 0.861 0.861 0.844 0.839 0.850 0.851 0.845 0.836

Avg. Ranking 7.2 6.5 7.6 8.0 3.6 3.6 7.5 7.8 4.7 4.3 8.1 9.2

listed in ascending order based in their ranking values (on the y−axis), and the ranking
obtained by the Friedman test is displayed on the x−axis. A horizontal dashed line is
drawn to represent the end of the best performing technique (the control method). All
methods which are on the right side of this line belong to the strategies whose perfor-
mance is significantly worse than the control method. From these results, in the case
of Fisher classifier, the strategies RUS+MSS, CNN, R50 and SMOTE+CNN perform
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Fig. 1. Nemenyi’s critical-difference diagram using Fisher (upper) and 1-NN (below) classifiers
with two levels of confidence: (a) (c) α = 0.05 and (b) (d) α = 0.10

significantly worse than the RUS+R100 technique. For 1-NN classifier, RUS+CNN and
RUS+CNN perform even worse than SMOTE with R50 and R100.

7 Conclusions

In this paper, we have analyzed the effect of the representation set in the dissimilarity
space when data are imbalanced. For this purpose, we have evaluated four prototype se-
lection methods and two resampling techniques (one corresponding to under-sampling
and one to over-sampling). All these algorithms have also been applied to the data sets
before representing them by dissimilarities, with the aim to analyze the influence of
having a balanced representation set on the classification performance.

Using the Fisher and 1-NN classifiers, it has been observed that in general, the best
classification results in terms of the geometric mean of accuracies are obtained when
the training data sets have previously been preprocessed by using some resampling
algorithm.

Acknowledgements. This work has partially been supported by the Spanish Ministry
of Education and Science under grants CSD2007–00018, AYA2008–05965–0596 and
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Abstract. Probabilistic Latent Semantic Analysis (PLSA) is a popular technique
to analyze non-negative data where multinomial distributions underlying every
data vector are expressed as linear combinations of a set of basis distributions.
These learned basis distributions that characterize the dataset lie on the standard
simplex and themselves represent corners of a simplex within which all data ap-
proximations lie. In this paper, we describe a novel method to extend the PLSA
decomposition where the bases are not constrained to lie on the standard sim-
plex and thus are better able to characterize the data. The locations of PLSA
basis distributions on the standard simplex depend on how the dataset is aligned
with respect to the standard simplex. If the directions of maximum variance of
the dataset are orthogonal to the standard simplex, then the PLSA bases will
give a poor representation of the dataset. Our approach overcomes this drawback
by utilizing Singular Values Decomposition (SVD) to identify the directions of
maximum variance, and transforming the dataset to align these directions paral-
lel to the standard simplex before performing PLSA. The learned PLSA features
are then transformed back into the data space. The effectiveness of the proposed
approach is demonstrated with experiments on synthetic data.

Keywords: Matrix factorization, Probabilistic Latent Semantic Analysis (PLSA),
Nonnegative Matrix Factorization (NMF), Singular Values Decomposition (SVD).

1 Introduction

The need for analyzing non-negative data arises in several applications such as com-
puter vision, semantic analysis and gene expression analysis among others. Nonnega-
tive Matrix Factorization (NMF) [1,2] was specifically proposed to analyze such data
where every data vector is expressed as a linear combination of a set of characteristic
basis vectors. The weights with which these vectors combine differ from data point
to data point. All entries of the basis vectors and the weights are constrained to be
nonnegative. The nonnegativity constraint produces basis vectors that can only com-
bine additively without any cross-cancellations and thus can be intuitively thought of as
building blocks of the dataset. Given these desirable properties, the technique has found
wide use across different applications. However, one of the main drawbacks of NMF is
that the energies of data vectors is split between the basis vectors and mixture weights
during decomposition. In other words, the basis vectors may lie in an entirely different
part of the data space making any geometric interpretation meaningless.
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Probabilistic Latent Semantic Analysis (PLSA) [3] is a related method with prob-
abilistic foundations which was proposed around the same time in the context of se-
mantic analysis of document corpora. A corpus of documents is represented as a matrix
where each column vector corresponds to a document and each row corresponds to a
word in the vocabulary and the entry corresponds to the numer of times the word ap-
peared in the document. PLSA decomposes this matrix as a linear combination of a set
of multinomial distributions over the words called topics where the weight vectors are
multinomial distributions as well. Non-negativity constraint is imposed implicitly be-
cause the extracted topics or basis distributions and weights represent probabilities. It
has been shown that the underlying computations in NMF and PLSA are identical [4,5].
However, unlike NMF where there are no additional constraints beyond nonegativity,
PLSA bases and weights being multinomial distriutions also have the contraint that the
entries sum to 1. Since the weights sum to 1, the PLSA approximations of the data can
be thought of as lying within a simplex defined by the basis distriutions. Shashanka [6]
formalizes this geometric intuition as Simplex Decompositions where the model extracts
basis vectors that combine additively and correspond to the corners of a simplex sur-
rounding the modeled data. PLSA and its extensions such as Latent Dirichlet Allocation
[7] and Correlated Topic Models [8] are specific examples of Simplex Decompositions.

Since PLSA (and other PLSA extensions in the family of topic models) does not
decompose the data-vectors themselves but the underlying multinomial distributions
(i.e. the data vectors normalized to sum to unity), the extracted basis vectors don’t lie
in the data space but lie on the standard simplex. This can be a drawback depending
on the dataset under consideration and may pose a particular poroblem if the data is
aligned such that most of the variability and structure characterizing the dataset lies
in directions orthogonal to the standard simplex. In such cases, the projections of the
data vectors onto the simplex (which is what is decomposed by PLSA) carry very little
information about the shape of the data distribution and thus the obtained PLSA bases
are much less informative.

In this paper, we propose an approach to get around this drawback of PLSA (and
other related topic models). We first use Singular Values Decomposition (SVD) to iden-
tify the directions of the most variability in the dataset and then transform the dataset
so that these vectors are parallel to the standard simplex. We perform PLSA on the
transformed data and obtain PLSA basis vectors in the transformed space. Since the
transformation is affine and invertible, we apply the inverse transformation on the basis
vectors to obtain basis vectors the characterize the data in the original data space. These
basis vectors no longer are constrained to live on the standard simplex but lie within the
data space and correspond to corners of a simplex that surrounds all the data points.

The paper is organized as follows. In Section 2, we provide the necessary back-
ground by describing the PLSA algorithm and geometry. Section 3 describes our pro-
posed approach and constitutes the bulk of the paper. We illustrate the applicability of
the method by applying the proposed technique on synthetic data. We also provide a
short discussion of the algorithm and its applicability for semi-nonnegative factoriza-
tions. We conclude the paper in Section 4 with a brief summary and avenues for future
work.
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2 Background

Consider an M × N non-negative data matrix V where each column vn represents
the n-th data vector and vmn represents the (mn)-th element. Let v̄n represent the
normalized vector vn and V̄ is the matrix V with all columns normalized.

PLSA characterizes the bidimensional distribution P (m,n) underlying V as

P (m,n) = P (n)P (m|n) = P (n)
∑
z

P (m|z)P (z|n), (1)

where z is a latent variable. PLSA represents v̄n as data distributions P (m|n) which in
turn is expressed as a linear combination of basis distributions P (m|z). These
basis distributions combine with different proportions given by P (z|n) to form data
distributions.

PLSA parameters P (m|z) and P (z|n) can be estimated through iterations of the
following equations derived using the EM algorithm,

P (z|m,n) =
P (m|z)P (z|n)∑
z P (m|z)P (z|n) ,

P (m|z) =
∑

n vmnP (z|m,n)∑
m

∑
n vmnP (z|m,n)

, and

P (z|n) =
∑

m vmnP (z|m,n)∑
m vmn

.

EM algorithm guarantees that the above updates converge to a local optimum.
PLSA can be written as a matrix factorization

V̄M×N ≈WM×ZHZ×N = PM×N , (2)

where W is the matrix of basis distributions P (m|z) with column wz corresponding to
the z-th basis distribution, H is the mixture weight distriution matrix of entries P (z|n)
with column hn corresponding to the n-th data vector, and P is the matrix of model
approximations P (m|n) with column pn corresponding to the n-th data vector. See
Figure 1 for an illustration of PLSA.

3 Algorithm

The previous section described PLSA algorithm and illustrated the geometry of the
technique. This section presents our proposed approach. We first briefly present the
motivation for our algorithm and then describe the details of the algorithm. We illustrate
the algorithm by applying it on a synthetic dataset.

3.1 Motivation

As illustrated in Figure 1, the basis distributions obtained by applying PLSA on a
dataset lie on the Standard simplex. The basis distributions form the corners of a PLSA
Simplex containing not the original datapoints but the normalized datapoints instead.
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Fig. 1. Illustration of Probabilistic Latent Semantic Analysis. The data matrix V with 1000 3-
dimensional vectors vn is shown as red points and the normalized data V̄ is shown as blue points
on the Standard simplex. PLSA was performed on V and the three extracted basis distributions
shown by w1, w2 and w3 are points on the Standard simplex that form the corners of the PLSA
simplex around normalized data points v̄n shown in blue.

Our goal is to extend the technique so that the basis vectors form a simplex around the
original datapoints. In other words, we would like to remove the constraint that the basis
vectors form multinomial distributions and thus they don’t have to lie on the standard
simplex. However, since we need the basis vectors to still form a simplex around the
data approximations, the mixture weights with which they combine are still constrained
to be multinomial distributions.

The necessity of such an approach becomes apparent when one considers the im-
plication of normalization of datapoints that PLSA implicitly does. The normalization
skews the relative geometry of datapoints. In certain cases, the normalization can hide
the real shape of the distriution of datapoints as illustrated in Figure 2.

3.2 Problem Formulation

Given the data matrix V, we would like to find a matrix decomposition similar to equa-
tion 2 of the form

VM×N ≈WM×ZHZ×N = PM×N (3)

where Z is the dimensionality of the desired decomposition, W is the matrix of basis
vectors, H is the matrix of mixture weights, and P is the matrix of approximations.

The above equation is similar to equation (2) but with important differences. In equa-
tion (2), the matrix undergoing decomposition is V̄ whereas the goal here is to decom-
pose the original data matrix V. The matrix W is analogous to W from equation (2)
but unlike the columns of W that are constrained to sum to 1, the columns of W have
no such constraints. Similarly, P is analogous to P but the columns of the former are
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Fig. 2. Illustration of normalization on a dataset. Points in red represents a dataset of 1000 3-
dimensional points where the directions of maximum variance are orthogonal to the plane corre-
sponding to the standard simplex. Thus, the projection of points in the dataset onto the standard
simplex removes important information about the distribution of datapoints.

not constrained to sum to 1 like the columns of P. However, since both equations (2)
and (3) are simplex decompositions, matrices H and H are alike with entries in each of
their columns constrained to sum to 1.

3.3 Algorithm

Consider a scenario where a dataset V that we desire to decompose using PLSA already
lies on the standard simplex. Then, all the constraints that we need as described in the
previous subsection are already satisfied. Since all data points lie on the standard sim-
plex, the dataset V is identical to its normalized version V̄. Hence, the decomposition
desired in equation (3) becomes identical to the decomposition in equation (2). We can
apply PLSA directly to the given dataset V and obtain the desired basis vectors.

This observation points to the approach we present below. If we could transform
the dataset so that all points lie on the standard simplex and the transformation is in-
vertible, we can achieve the desired decomposition. However, the standard simplex in
M -dimensional space represents part of the (M − 1)-dimensional hyperplane. Thus,
instead of being able to have the points exactly lie on the standard simplex, we are
constrained to transforming data such that the projections of the data onto (M − 1)
dimensions of our choice will lie on the simplex. Choosing the first (M − 1) principal
components of the dataset as the (M − 1) dimensions on which data will be projected
will produce the least error of all possible projections.

The problem now reduces to finding the right transformation that takes the projec-
tions of the data on the first (M − 1) principal components and aligns them paral-
lel to the standard simplex. The last principal component is transformed such that it
left orthogonal to the standard simplex. We leverage the work of [6] to define this
transformation matrix. See the appendix for more details.
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Fig. 3. Results of applying PLSA on the dataset shown in Figure 2. Since the projections of data
points on the standard simplex (shown in blue) have narrow variance in one direction, the PLSA
simplex obtained is degenerate and almost forms a straight line through the data projections.

Given the data matrix VM×N , the entire algorithm can be summarized as follows:

1. Center the data by removing the mean vector to obtain V̂, i.e. V̂ = V−mean(V).
2. Perform SVD of matrix V̂T to obtain U, the matrix of data projections on the

singular vectors, i.e. V̂T = USXT .
3. Obtain the M ×M transformation matrix T (see Appendix for details of this com-

putation).
4. Transform the data to lie parallel to the standard simplex, i.e. B = (UTT )T .
5. Center the transformed data such that the centroid of the simplex coincides with the

data mean, i.e. B̄ = B −mean(B) + c, where c is a vector corresponding to the
centroid of the standard simplex.

6. Ensure all entries of B̄ are nonnegative by subtracting the minimum entry from the
matrix, i.e. B̂ = B̄−min(B̄).

7. Normalize the matrix B̂ such that entries of the center of the dataset sum to 1, i.e.
B′ = B̂/b, where b = 1−min(B̄).

8. The matrix is now ready for PLSA. Apply PLSA on B′ to obtain W and H, i.e.
B′ ≈WH.

9. Undo steps 7, 6, 5 and 4 respectively for the basis vector matrix W to obtain W̄, i.e.
– W = W × b
– W = W +min(B̄)
– W = W +mean(B)− c
– W̄ = WTT

10. Undo the SVD projection and data centering for W̄ to obtain W , i.e.
– W̄ = (W̄SXT )T

– W = W̄ +mean(V)

The desired decomposition is given by V ≈WH.
For experiments, we created a synthetic dataset of 1000 3-dimensional points as illus-

trated in Figure 2. The dataset was created in such a way that the directions of maximal
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Fig. 4. Result of applying our approach on the dataset illlustrated in Figure 2. As desired, the ex-
tracted basis vectors form a simplex (dotted black line around the red points) around the original
datapoints instead of around the data projections on the standard simplex.

variance present in the data was orthogonal to the plane of the standard simplex. Results
of applying PLSA on the dataset is summarized in Figure 3 and results of applying the
proposed approach is illustrated in Figure 4. We also created a second synthetic dataset
with the presence of two distinct clusters. As shown in Figure 5, the cluster structure
is lost when the data is projected on to the standard simplex. Also shown in figure are
the PLSA-simplex that surrounds the projected points and the simplex resulting from
Simplex Decomposition that surrounds the data.

3.4 Discussion

We first point out that even though we have used PLSA as the specific example, the pro-
posed approach is applicable to any topic modeling technique such as Latent Dirichlet
Allocation or Correlated Topic Models where data distributions are expressed as linear
combinations of charateristic basis distributions.

Complexity. At its core, the proposed algorithm utilized Singular Values Decomposi-
tion and a chosen topic model such as PLSA. The data is pre-processed by performing
SVD and aligning the resulting SVD directions with the Standard Simplex. Features
from the topic model are computed on data that has been transformed, and then are
processed back to the original data space. SVD, along with the specific implementation
of the topic models, act as the primary complexity bottlenecks. Thus, the complex-
ity of the proposed approach depends on the complexity of the algorithm chosen for
implementing the topic model.

Relation to Semi-nonnegative Factorization. In the approach described in the previ-
ous subsections, no explicit constraints were placed as to the nonnegativity of the entries
of basis vectors. So far in this paper, we have focused on data that have nonnegative en-
tries but the proposed approach is also applicable for datasets with real-valued entries.
The algorithm described earlier can be applied to any arbitrary datasets with real-values
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Fig. 5. Results of applying PLSA and Simplex Decomposition on a synthetic dataset with two
clusters. The PLSA features form a simplex around the projected points where the cluster infor-
mation has been lost. Simplex Decomposition results in features that surround both the clusters
in the dataset.

entries without any modifications. In other words, the algorithm can be applied to ar-
bitrary real-valued datasets to obtain real-valued features such that the mixture weights
represent multinomial distributions (non-negative and sum to 1). This enables one to
transform arbitrary datasets and represent them as points on a standard simplex.

This is an alternative approach to the one proposed by Shashanka [6]. In that work,
data is transformed into the next higher dimension so that PLSA can be applied while
in this work, we use SVD to align the dataset along the dimensions of the standard
simplex. It will be instructive to compare the two approaches in this context and we
leave that for future work.

The authors are not aware of any other work in the topic modeling community to
extend their techniques for handling real-valued datasets. However, Nonnegative Ma-
trix Factorization has been extended to generalized datasets. Specifically, Ding et al.
[9] proposed a technique called Semi-Nonnegative Matrix Factorization (Semi-NMF)
that decomposes a real-valued matrix into a product of a real-valued matrix and a non-
negative matrix. It can be represented as X± ≈ F±GT

+ where the subscripts indicate
the signs of entries allowed in the matrices. This is similar to simplex decomposition ex-
pressed as a matrix factorization as shown in equation (3). Since matrices V and W can
have any real-valued entries whereas matrix H is constrained to have only non-negative
entries, the proposed simplex decomposition also qualifies as Semi-NMF. However, in
Semi-NMF as proposed in Ding et al. [9], the non-negative matrix has no additional
constraints and thus the method is not a simplex decomposition. The extracted features
cannot be interpreted geometrically as corners of a convex-hull surrounding the dataset.

Our approach is more general in nature. As we pointed out earlier, we chose PLSA
as an example for exposition in this paper but the any other topic model can be imple-
mented as part of the proposed approach. Specifically, one can impose prior distribu-
tions on the mixture weights in our approach. Also, any new adances in topic model
implementations can be incorporated into the proposed algorithm.
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4 Conclusions

In this paper, we presented a novel approach to perform Simplex Decompositions on
datasets. Specifically, the approach learns a set of basis vectors such that each data vec-
tor can be expressed as a linear combination of the learned set of bases and where the
corresponding mixture weights are nonnegative and sum to 1. PLSA performs a simi-
lar decomposition but it characterizes the normalized datapoints instead of the original
dataset itself. We demonstrated the spurious effect such a normalization can have with
the help of synthetic datasets. We described our approach and demonstrated that it pro-
vides a way to overcome this drawback. We showed that the proposed algorithm is
applicable for semi-nonnegative matrix factorizations. This work has several other po-
tential applications in tasks such as clustering, feature extraction, and classification. We
would like to continue this work by applying the technique on real-world problems and
demonstrating its usefulness. We also intend to extend this work to be applicable to
other related latent variable methods such as Probabilistic Latent Component Analysis.
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Appendix

Here, we briefly describe how to choose the transformation matrix T that transforms
M -dimensional data V such that the first (M − 1) principal components lie parallel to
the standard (M − 1)-Simplex. We need to indentify a set of (M − 1) M -dimensional
orthonormal vectors that span the standard (M − 1)-simplex.

Shashanka [6] developed a procedure to find exactly such a matrix and the method
is based on induction. Let RM denote a M × (M − 1) matrix of (M − 1) orthog-
onal vectors. Let 1M and 0M denote M -vectors where all the entries are 1’s and 0’s
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respectively. Similarly, let 1a×b and 0a×b denote a × b matrices of all 1’s and 0’s re-
spectively. They showed that the matrix R(M+1) given by[

RM 1M

0T
(M−1) −M

]
if M is even, and

[
R(M+1)/2 0(M+1)/2×(M−1)/2 1(M+1)/2

0(M+1)/2×(M−1)/2 R(M+1)/2 −1(M+1)/2

]
,

if M is odd, is orthogonal.R(M+1) is then normalized to obtain an orthonormal matrix.
Given the above relation and the fact that R1 is an empty matrix, one can compute

RM inductively for any value of M .
We have an additional constraint that the last principal component be orthogonal to

the standard simplex and this can be easily achieved by appending a column vector of
1’s to RM .

Thus, the matrix T defining our desired transformation is given by [RM 1M ].
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Abstract. Twitter has become the most widely used microblogging service
nowadays, where people tells and spread, with short messages, what are they
feeling or what it is happening at that moment. For this reason, having an insight
of the behavior of the messages stream inside the social network could be of great
help to support difficult challenges such as event detection, credibility analysis,
and marketing, among others problems in social network analysis. A massive
amount of data is generated in this context, and a simple idea that might be useful
for every challenging mining task consists of predicting the amount of messages
(stream volume) that will be emitted in some specific time span.

In this work we model the messages’ stream volume as a time series by count-
ing the number of collected messages during a time interval. Moreover, computa-
tional intelligence techniques are applied to identify the most influential regressors
or lags, and a nonlinear autoregressive model is adjusted to this time series. Sim-
ulation experiments were conducted for a sample of over 900K collected tweets
in a specific geographic area. With this methodology, an attempt to answer some
questions about the behavior of the stream volume will be made.

Keywords: Social network analysis, Stream volume prediction, Time series
forecasting, Non-linear autoregressive models, Computational intelligence.

1 Introduction

Twitter has become one of the main communication medias on the Internet. Users em-
ploy this media to share ideas, news or simply feelings about anything, producing in this
way a valuable footprint about what is happening at every second and what people think
or feel about it. Nowadays Twitter has become one of the most popular microblogging
services, having hundreds of millions of messages posted everyday by more than 50M
of users. In Twitter, users post short messages with a 140 characters length at most -
which are called tweets - commenting about their thoughts, feelings, recent actions or

� This work was supported by the research grants FONDEF-CONICYT D09I1185, FONDE-
CYT 1110854, DIUV 37/2008 and DGIP-UTFSM.
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even discussions about recent news. Every posted message has associated its creation
timestamp, the message content, some user information and also georeferred informa-
tion if there is any.

The massive information content generated in Twitter has become an interesting
source of research and application. Briefly, some areas and works where the reader
could find a more detailed insight are: Event detection [13,15,18], Credibility Analysis
[5,16] and Marketing in Social Networks [4,7]. The high frequency generation of the
data have important challenges in terms of storage and processing, given the inherent
online characteristic of this context. It is in this sense that the stream volume would
be a useful information for every task of the aforementioned, specially those tasks that
involve important computation processes executed in an online fashion.

Time series analysis over streaming data probably dates back to [6], where the au-
thors propose the sliding window model for computation in data streams and also tackle
the problem of maintaining aggregates statistics of a data stream using this approach.
Several works have follow this path for computing aggregate estimates over streaming
data [11,14,17,21], although at our knowledge no one pointed out to twitter or social
network data. Spite of the simplicity of the idea, we think that the stream volume pre-
diction using non-linear models without considering expensive computations such as
fourier or wavelet synopsis, text or network analysis in data, may fit quite well in the
streaming environment.

Being based upon the idea studied in [8], and also improving the prediction perfor-
mance, this work is devoted to pose some questions about the potential periodicity of
stream volume on Twitter, considering for this matter almost 1 million observations
and a novel lag identification technique for autoregressive models [20]. For this pur-
pose, linear and nonlinear methods are employed for the prediction task together with
the identified autoregressive structure. After the experimentation with stream volume
data aggregated by different time intervals (1, 5, 10, 15 and 60 minutes), the achieved
results together with the identified lags will provide interesting evidence that will enable
the discussion about the feasibility of the prediction and the interpretation of periodic
patterns found in the data for each time granularity.

This work is organized as follows. In next section we deliver the fundamental con-
cepts related to lag identification with the SIFAR algorithm, following with non-linear
time series forecasting with artificial neural networks. In section 3 we explain the pro-
posed methodology carried out for the lag identification and for the prediction task.
In section 4 we show the attained results by both prediction models and then, the dis-
cussion of results is presented before ending with some concluding remarks and future
work in the last section.

2 Methodology

2.1 Non-linear Time Series Prediction with Artificial Neural Networks

The statistical approach to forecasting involves the construction of stochastic models
to predict the value of an observation xt using previous observations. This is often
accomplished by using linear stochastic difference equation models. By far, the most
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important class of such models is the linear autoregressive integrate moving average
(ARIMA) model.

An important class of Non-linear Time Series models is that of non-linear Autore-
gressive models (NAR) which is a generalization of the linear autoregressive (AR)
model to the non-linear case. A NAR model obeys the equation xt = h(xt−1, xt−2, ....,
xt−p)+εt, where h is an unknown smooth non-linear function and εt is white noise, and
it is assumed that E[εt|xt−1, xt−2, ...] = 0. In this case the conditional mean predictor
based on the infinite past observation is x̂t = E[h(xt−1, xt−2, ...)|xt−1, xt−2, ...], with
the following initial conditions x̂0 = x̂−1 = ... = 0.

On the other hand, Artificial Neural Networks (ANN) have received a great deal of
attention in many fields of engineering and science. Inspired by the study of brain archi-
tecture, ANN represent a class of non-linear models capable of learning from data. The
essential features of an ANN are the basic processing elements referred to as neurons
or nodes; the network architecture describing the connections between nodes; and the
training algorithm used to estimate values of the network parameters.

Artificial Neural Networks (ANN) are seen by researches as either highly parameter-
ized models or semiparametric structures. ANN can be considered as hypotheses of the
parametric form h(·;w), where the hypothesis h is indexed by the parameter w. The
learning process consists in estimating the value of the vector of parameters w in order
to adapt the learner h to perform a particular task.

The Multilayer Perceptron (MLP) is the most popular and widely known artificial
neural network. In this network, the information is propagated in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the output
nodes. Figure 1 illustrates the architecture of this artificial neural network with one hid-
den layer. Furthermore, this model has been deeply studied and several of its properties
have been analyzed. One of the most important theorem is about its universal approx-
imation capability (see [12] for details), and this theorem states that every bounded
continuous function with bounded support can be approximated arbitrarily closely by a
multi-layer perceptron by selecting enough but a finite number of hidden neurons with
appropriate transfer function.

The non-linear function h(x,w) represents the output of the multilayer perceptron,
where x is the input signal and w being its parameter vector. For a three layer MLP
(one hidden layer), the output computation is given by the following equation

g(x,w) = f2

⎛⎝ λ∑
j=1

w
[2]
kj f1

(
d∑

i=1

w
[1]
ji xi + w

[1]
j0

)
+ w

[2]
k0

⎞⎠ (1)

where λ is the number of hidden neurons,x = (x1, ..., xd) is the input sample point, and

w = (w
[1]
ji , w

[1]
j0 , w

[2]
kj , w

[2]
k0)i=1..d,j=1..λ is the vector of weights. An important factor in

the specification of neural models is the choice of the transfer function, these can be
any non-linear function as long as they are continuous, bounded and differentiable. The
transfer function of the hidden neurons f1(·) should be nonlinear while for the output
neurons the function f2(·) could be a linear or nonlinear function.

The MLP learns the mapping between the input space χ to the output space Υ
by adjusting the connection strengths between the neurons w called weights. Several
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Fig. 1. Network architecture of the Multilayer Perceptron

techniques have been created to estimate the weights, where the most popular is the
backpropagation learning algorithm, also known as generalized delta rule, popularized
by [19].

Artificial Neural Networks have been successfully applied for time series prediction
outperforming classical linear models in nonlinear processes. Refer to the following
works for further details [2,3,9]

2.2 Lags Identification of an Autoregressive Time Series

Veloz et al [20] have recently proposed the SIFAR technique for the identification
of a non-linear process represented by a time series. SIFAR is the acronym of self-
identification of lags of an autoregressive TSK-based model, and the aim of the SIFAR
method is the identification of the structure of a Takagi- Sugeno-Kang (TSK) fuzzy
model to represent the non-linear autoregressive (NAR) relationship xt = f(xt−1, ...,
xt−q) by means of a set of n fuzzy if-then rules. However, in this work we will applied
the proposed strategy to identified the most relevant lags as explained below.

SIFAR [20] is a clustering-based and model-free method to determine the most suit-
able lags from a set of candidates of an autoregressive process. Local domains in the
regressors space (product space of lags) associated to a region of the target space are
generated. The consistence of the mapping is evaluated and the lags that do not con-
tribute to the smoothness of the mapping will be neglected. The identification process
consists in the following two stages:

Fuzzy Partition of the Regressors and Target Spaces. In order to establish local lin-
ear domains in the regressors and target spaces, clusters of data samples are generated
using the fuzzy C-means (FCM) technique [1]. The FCM is first applied to the target
space and for each of the obtained clusters, an α-cut that contains the most representa-
tive and similar data samples is computed. These α-cuts are defined by

O(h)
α = {yk ∈ Y|μh(yk) ≥ αo}

where αo ∈ [0, 1] is a user-defined threshold. Afterwards, the FCM is applied on the
regressors space independently for each set of explanatory vectors whose target values
are in {O(1)

α , . . . , O
(no)
α }. In other words, for the h-th α-cut O(i)

α , the FCM is applied to

the dataset {xk∗}, where k∗ = {k|yk ∈ O
(h)
α }.
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Lags Relevance Evaluation. The contribution of each lag variable of the autoregres-
sive process to affect the regularity of the local mapping between regressors and target
spaces is quantified according to the following formula:

Rj
h = |k(h)in − k(h)o |,

where k
(h)
o = {k|yk ∈ O

(h)
α }, k(h)in = {k|xk ∈ I

(h)
α }, I(h)α =

⋃nin

i=1{xk ∈ X|yk ∈
O

(h)
α ∧w(h)

i (xk) ≥ αin}, |·| represents the cardinality of the resulting set andw(h)
i is the

conjunction of unidimensional fuzzy sets associated to the i-th cluster in the regressors
space, i.e., w(h)

i (xk) =
∏d

j=1 μ
(h)
ij (xkj), where μ

(h)
ij (·) is the membership function

obtained by the FCM algorithm . Finally, the total relevance of the j-th lag is selected
as the maximum of the terms Rj

h, i.e., Rj = maxh∈{1,...,no} R
j
h. Afterwards, the set

relevances {R1, . . . , Rj , . . . , Rd} for the set of candidate lags are sorted in descending
order. The lags that are going to be considered for the incorporation to the model are
the q-th elements with highest value, where q is a user-defined parameter.

2.3 Twitter Time Series

In this work, the volume prediction task is attained by using a collection of Tweets
pulled from the Twitter stream and filtered by the geographical region of Chile, dur-
ing the period of time covered between August 13th and September 9th of 2011. The
amount of data consists of 947, 927 tweets collected in the aforementioned time span of
25 days (about 36, 000 minutes). In a previous work [8], we have posed the significance
of the stream volume prediction task over Twitter, and also a preliminary attempt in this
matter was made in order to test the feasibility of the idea. For a detailed information
about the extraction and pre-processing procedures, the following references will be
quite explanatory [8,10].

The stream volume is modeled as a time series by counting the number of collected
messages during a user-defined time interval, namely 1-5-10-15-60 minutes, and their
plots are depicted in figure 2 .

2.4 Time Series Processing

The Twitter Time Series is analyzed with the computational intelligence techniques
described above, in order to identify the best non-linear structure able to have a good
forecasting performance.

Lag Identification Task

In this stage, the most significant lags are identified by means of the SIFAR strategy
described in section 2.2. The SIFAR strategy is problem dependent, for this reason, an
exhaustive combination of model parameters are tested in order to find the best set of
lags. For example, the maximum order of the possible regressor is a user defined param-
eter. In this way, several candidate combinations of lags were generated and evaluated,
the one with the lowest mean square error is selected, and the lag identification task
ends.
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(a) 1-minute (b) 5-minutes

(c) 10-minutes (d) 15-minutes

(e) 60-minutes

Fig. 2. Aggregated time series of the Chilean tweet stream sampled between August 13th and
September 9th of 2011. The selected window sizes or granularity levels are (a) 1 minute, (b) 5
minutes and (c) 10 minutes (d) 15 minutes (e) 60 minutes.

Stream Volume Prediction Task

In order to forecast the quantity of tweets collected in a specific time window, the con-
figurations obtained in the previous stage were employed to generate the training data
sets with the autoregressive structure. A classical linear autoregressive (AR) model and
an three layer MLP were estimated from these data sets. Due to the random initializa-
tion of the MLP model, 10 independent runs were executed for each dataset. Finally the
average and standard deviation of the performance measures are obtained.

The architecture of the neural network consists in three layers of neurons (one hid-
den layer), where the number of input neurons depends on the number of lags of each
selected configuration, the number of output neurons was set to one (1-step ahead pre-
diction), and we arbitrarily decided to test with ten hidden neurons to maintain a low
complexity of the model. We selected the log sigmoid transfer function

f1(z) =
1

1 + e−z
,
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for the hidden neurons and the linear transfer function, f2(z) = z, for the output neu-
rons. The parameters were estimated according to Levenberg-Marquardt optimization
algorithm (for this study we have used the Neural Nework toolbox of Matlab).

Performance Measures

In order to compare the performance of the prediction algorithms employed in this
work, the Mean Square Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

and the Correlation Coefficient (R)

R =

∑n
i=1(yi − Ȳ )(ŷi − P̄ )√∑n

i=1(yi − Ȳ )2
√∑n

i=1(ŷi − P̄ )2

were computed. In the previous equations, n is the number of samples; yi, i = 1..n, are
the targets, while ŷi are the predictions; Ȳ and P̄ are the mean values of the targets and
predictions respectively.

3 Results

3.1 Lag Identification Task

The resulting configurations of lags are presented in table 1. For the 1-minute aggrega-
tion data, the SIFAR model identified five lags from the six past minutes (excluding the
minute number 5), denoting a short term dependency. In the 5-minutes data, a long term
dependency was identified as the selected lags correspond to the history of almost 16
hours before. Following with the 10-minutes aggregation data, the five lags identified
correspond to the history of between 16 and 17 hours before. For the 15-minutes data,
the identified lags correspond to the history of between 16 and 20 hours before. Finally,
for the 1-hour (60-minutes) data, the dependency found corresponds to what happened
between 6 and 8 hours before.

3.2 Stream Volume Prediction Task

Table 2 shows that the AR and the MLP models attain comparable and acceptable re-
sults. Only with the exception of the configuration 05 − C2 for the MLP, the achieved
R values are higher than 90% for both models with a quite low variability, indicating
that an important part of the variance in the target variable is well explained by both
models. On the other hand, the great variability of the MSE for the MLP model may
suggest the existence of some outliers.

Finally, an interesting situation occurs in the results of the 05 − C2 configuration
(5-minute data with configuration C2), where MSE and R are considerably worse than
the attained values by the AR model, suggesting a notorious difficulty suffered by the
MLP on predicting with this configuration of lags. The SIFAR method is based in the
linear relation between the input and output local regions, this strategy may affect the
capabilities of the MLP of modeling global non-linear interactions.
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Table 1. Configurations identified by the SIFAR algorithm for the autoregressive structure of the
time series data, for each dataset

Configuration Lags for 1 minute
C1 xt−1, xt−2, xt−3, xt−4, xt−6

Configuration Lags for 5 minutes
C2 xt−191, xt−192

Configuration Lags for 10 minutes
C3 xt−97, xt−98, xt−99, xt−100, xt−101

Configuration Lags for 15 minutes
C4 xt−65, xt−66, xt−67, xt−68, , xt−69

Configuration Lags for 1 hour
C5 xt−6, xt−7, xt−8

Table 2. Results attained by both prediction algorithms and for each of the autoregressive con-
figurations identified. For the ANN model, as MSE and R are average values over several runs,
they are presented together with its associated standard deviation. Each minute-granularity and
configuracion-number pair is denoted in the first column.

AR MLP
#mins-conf. MSE R MSE R

01-C1 0.001975 0.939540 0.001969 ( 0.000330) 0.922890 ( 0.013704)

05-C2 0.001607 0.972377 0.015622 ( 0.022797) 0.769144 ( 0.274799)

10-C3 0.002388 0.967639 0.004061 ( 0.003163) 0.927717 ( 0.056275)

15-C4 0.003357 0.962108 0.003590 ( 0.001080) 0.948385 ( 0.014190)

60-C5 0.012081 0.907956 0.009609 ( 0.002403) 0.908213 ( 0.020350)

3.3 Discussion

Considering the results presented in the previous section, the feasibility of stream-
volume-predicton idea is reinforced as the results seem promising in terms of perfor-
mance. Moreover a new question must be posed, and it relates with the periodicity found
in the stream volume, and particularly the long-term periodicity, as it is shown that the
most relevant lags for 1-step ahead predictions are between 15 and 20 hours in three
cases and between 6 and 8 hours in another one. Additionally, for the 1-minute time-
window size, a short-term periodic behavior was observed by the exhaustive search of
the SIFAR strategy.

Moreover, note the “batch behavior” of all the identified lags, which it means that the
recognized configuration of lags come in a sequence fashion. This observation results
quite interesting as it may suggest the existence of a kind of packed temporal structure
of this data. Anyway, it must be considered the possibility that this “packed structure”
may have been generated due to the internal clustering mechanism of SIFAR. Hence, in
order to enhance this observation and the potential conclusions attached to it, another
algorithms for structure identification of autoregressive processes must be employed.
In figure 2 , the plots display an interesting behavior known as self-similarity, where at
different windows size, the time series pattern are quite similar.
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Nevertheless, the abstraction level imposed by the aggregated data and the atomic
data itself (timestamp of each tweet), presents - on one hand - the simplicity of the
collection and processing as two main advantages, but - on the other hand - it narrows
the range of the observations. That is, even when a periodicity in the stream volume
appears - which in turn seems very interesting for the study of the phenomenon - the
potential cause of this pattern remains hidden as a more thorough analysis of the text and
maybe some other sources of evidence are needed. Finally, is there a periodic behavior
in the Stream Volume on Twitter?. The evidence supports it, but experimentation with
more data sets would allow a much stronger conclusion. However, the regular behavior
of the the data stream could be of great help in finding odd samples that could be of
paramount importance for event detection or other social network applications.

4 Conclusions

In this paper we present an extension of the work [8] that face the problem of stream
volume prediction on Twitter. As an enhancement of our previous work, we have used
an automatic algorithm - SIFAR - to identify the most relevant lags in an autoregres-
sive process. We also have extended the size of the dataset from 171, 991 to 947, 927
tweets. After this, and using the identified lags, we have compared a linear and a non-
linear autoregressive prediction techniques, namely a classic AR model and Multilayer
Perceptron model. By means of these improvements, in the present work we are able to
observe and identify a periodic behavior in the stream volume and also attain a reason-
able performance in the predicion task.

Anyway, a little step on unraveling the behavior of the stream volume in Twitter
was made. As interesting observations arise, several questions also appear, which off
course will make up the future work in this subject. Is this periodic behavior a constant
pattern?; Is it related with some special incident or event ocurring during the analyzed
period?; Is there a packed structure in the identified lags group?

In addition, a next step in this problem would be to consider the real-time prediction
together with the potential evolution of the data.
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Abstract. Different scenarios can be found in land classification and segmenta-
tion of satellite images. First, when prior knowledge is available, the training data
is generally selected by randomly picking samples within classes. When no prior
knowledge is available the system can pick samples at random among all unla-
beled data, which is highly unreliable or it can rely on the expert collaboration to
improve progressively the training data applying an active learning function. We
suggest a scheme to tackle the lack of prior knowledge without actively involving
the expert, whose collaboration may be expensive. The proposed scheme uses a
clustering technique to analyze the feature space and find the most representative
samples for being labeled. In this case the expert is just involved in labeling once
a reliable training data set for being representative of the feature space. Once the
training set is labeled by the expert, different classifiers may be built to process
the rest of samples. Three different approaches are presented in this paper: the
result of the clustering process, a distance based classifier, and support vector
machines (SVM).

Keywords: Semi-supervised classification, Image segmentation, Hyper-spectral
imaging, mode seek clustering.

1 Introduction

The classification and segmentation of land usage in satellite images generally requires
an expert who provides the corresponding labels for the different areas in the images.
Some authors work with prior knowledge in a supervised scenario and training data is
selected within each class [1][2]. Lately the research interest in active learning tech-
niques, which move to a semi-supervised scenario, is raising. In new real databases, the
expert labeling involves whether prior knowledge or checking at the land place itself,
which could be highly expensive. The expert collaboration may be needed an unknown
number of steps to improve the classification by helping in the training selection until
the convergence condition is achieved [3][4]. Hence, the expert collaboration can be
highly expensive and picking at random among the unlabeled pool is not convenient
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because classes are often very unbalanced and the probabilities of getting an efficient
representative training data is inverse to the amount of labeled samples. Consequently,
decreasing the size of labeled data is a problem. Whereas for classifier based on dis-
tances, larger training sets overfit our classifier and it is preferable to provide the clas-
sifier with a few interesting highly descriptive samples [5]; for other types of classifiers
providing a considerable amount of training samples is a concern.

In unsupervised scenarios, data analysis techniques have proved being good at pro-
viding relevant data when no prior knowledge is available. Among them, clustering
techniques allow us to divide data in groups of similar samples. Specially when sam-
ples represent pixels from an image, clustering algorithms have successfully been ap-
plied to image segmentation in various fields and applications [6]. We aim to segment
and classify hyper-spectral satellite images. Fully unsupervised procedures often have
insufficient accurate classification results. For such a reason, a hybrid scenario between
supervised and unsupervised techniques is our target where the methods applied could
take into account some labels to build a classifier. We suggest a cluster-based training
selection. This approach selects the training samples according to an unsupervised anal-
ysis of the data (mode seek clustering). The selected data (centers of the clusters) are
likely to well represent those samples that were clustered together. This scheme was
presented in [7] where a KNN1 classifier was used.

Here we also introduce label propagation to adapt the method to other classifiers.
For the sake of using a SVM classifier, the unlabeled data contained in each cluster
is modeled regarding the distribution of their distances to their corresponding centers.
The label of the center is propagated to those samples that fit this model. Besides we
also test the result of assigning labels to unlabeled samples according to the result given
by the cluster itself and the labels provided by the expert for the modes of clusters.
For all cases, the suggested scheme is compared with the supervised state of the art
classification, resulting in outperforming previous works.

A review of the sample selection scheme with its spatial improvement is presented
in Section 2. Several classification alternatives are presented in Section 3. Results will
be shown and analyzed in Section 5. Finally, Section 6 presents some conclusions.

2 Preliminaries

Nowadays, due to the improvement in the sensors, databases used for segmentation and
classification of hyper-spectral satellite images are highly reliable in terms of spectral
and spatial resolution. Therefore, we can consider that our feature space representation
of the data is also highly reliable. On the other hand, in segmentation and classification
of this kind of images the training data used has not been a concerned so far, with-
out worrying about providing the most reliable information [5]. The scheme suggested
in [7] was a first attempt in this sense. It was proposed an unsupervised selection of the
training samples based on the analysis of the feature space to provide a representative
set of labeled data. It proceeds as follows:

1. In order to reduce the dimensionality of the problem, a set of spectral bands, given
a desired number, is selected by using a band selection method. The WaLuMi band
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selection method [8] was used in this case, although any other similar method could
be used.

2. A clustering process is used to select the most representative samples in the image.
In this case, we have used the Mode Seek clustering procedure which is applied over
the reduced feature space. An improvement in the clustering process is included by
adding the spatial coordinates of each pixel in the image as additional features.
Since the clustering is based on distances, spatial coordinates should also be taken
into account assuming the class connection principle.

3. The modes (centers of the clusters) resulting of the previous step define the training
set for the next step. The expert is involved at this point, only once, by providing
the corresponding labels of the selected samples.

4. The classification of the rest of non-selected samples is performed, using the
training set defined above to build the classifier. Three different classification exper-
iments have been performed here: a KNN classifier with k = 1, a direct classifi-
cation with the results of the clustering process, and an extension will be presented
for the use of SVM.

2.1 Mode Seek Clustering

Given a hyper-spectral image, all pixels can be considered as samples which are char-
acterized by their corresponding feature vectors (spectral curve). The set of features
defined is called the feature space and samples (pixels) are represented as points in
that multi-dimensional space. A clustering method groups similar objects (samples) in
sets that are called clusters. The similarity measure between samples is defined by the
cluster algorithm used. A crucial problem lies in finding a good distance measure be-
tween the objects represented by these feature vectors. Many clustering algorithms are
well known. A KNN mode seeking method will be used in this paper [9]. It selects
a number of modes which is controlled by the neighborhood parameter (s). For each
class object xj , the method seeks the dissimilarity to its sth neighbors. Then, for the
s neighbors of xj , the dissimilarities to their sth neighbors are also computed. If the
dissimilarity of xj to its sth neighbor is minimum compared to those of its s neighbors,
it is selected as prototype. Note that the parameter s only influences the scheme in a
way that the bigger it is the less clusters the method will get since more samples will be
grouped in the same cluster, that is, less modes will be selected as a result. For further
information about the mode seek clustering method see [9] and [5]

2.2 Spatial Improvement

The clustering algorithm searches for local density maxima where the density function
has been calculated using the distances for each sample in its s neighborhood using a
dissimilarity measure as the distance between pairs of samples. In that difference, all
features (dimensions) are considered. When features do not include any spatial informa-
tion the class connection principle is missed (pixels that lie near in the image are likely
to belong to the same class). Therefore, we suggest to include the spatial coordinates
among the feature of the samples. See Fig 1.(a) where all samples have been repre-
sented in the three first features space and in different color per class. Notice that, when
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a b

Fig. 1. Effects of including spatial information in the feature space. Plots show the samples of
the database in the feature space, colored per class according to the ground-truth. (a) no spatial
information is available. (b) spatial coordinates are included.

no spatial data is considered and all classes are located in the same space and when
no prior knowledge is available for the clustering process, finding representatives for
each class would be difficult since the classes themselves may lie together. Moreover,
different areas of the same class may be within the same cloud. However, when spatial
data is included, Fig 1.(b), the single cloud of samples is broken according to spatial
distances and classes (fields) are more separable. In this sense also samples belonging
to the same class but lying in different places of the image are separable.

In [7] it was suggested to weigh the spatial coordinates by an arbitrary number to
reinforce two samples that are close spatially to have a closer distance and the way
round. Such a weight should be decided in terms of the range of the features provided
by the spectrometer so the coordinates are overweighed but they do not cause the rest
of features be dismissed in the global measure.

3 Classification Alternatives

The whole dataset was first reduced to 10 bands using the band selection method named
in Section 2. This method is used for minimizing the correlation between features but
maximizing the amount of information provided, all that without changing the feature
space. Clustering was carried out tuning the parameter s to get a prefixed number of
selected samples. Three different classification alternatives have been used.

3.1 Straightforward Schemes

1. First a KNN with k=1 classification has been performed with the labeled samples
as training set. This is not an arbitrary choice, because the clustering procedure
used is based on densities calculated on a dissimilarity space, and therefore, the
local maxima correspond to samples which minimize its dissimilarity with a high
amount of samples around it. Thus, the selected samples are highly representative
in distance-based classifiers.

2. Second, another classification process has been performed using the straightfor-
ward result of the clustering procedure. The expert labels the selected samples.
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Then, all samples belonging to the cluster that each labeled sample is representing
are automatically labeled in the same class. This provides a very fast pixel classifi-
cation scheme as the clustering result is already available.

3.2 Extension to SVM

The scheme, as it has been presented, is not useful for classifiers that are not based on
distances. However, we would like to check if providing relevant training data may be
also useful for other classifiers. In this case, we extend the proposed method for SVM.
For such a classifier, it would be useful to model the data shape and not their centers.
Nevertheless, we do not want to increase the amount of labeled data. According to these
criteria we suggest using the label of the centers as in the previous cases and using a
label propagation technique to those samples fitting certain model with the aim of mod-
eling the shape of the data and provide the SVM with a useful training set. The main
idea behind label propagation is the cluster assumption. Two samples xi and xj have a
high probability of sharing the same label y if there is a path between them in X which
moves through regions of significant density [10]. Many graph-based techniques can
be found in literature [11]. To propagate labels using the cluster analysis already per-
formed and according to the main idea of label propagation, we suggest propagating the
label of all cluster centers as follows:

Given the set of clusters W = {w1, ..., wt}
and distances Di = {d1, ..., ds}
where dj = distance(centerwi, xj) and xj ∈ wi

we can assign the label ywi according:
(xj , ywi) if 0.8 ∗max(Di) ≤ dj ≤ 0.85 ∗max(Di)

We considered the possibility of propagating the label to the whole cluster or all the data
included in the sphere created taking as a limit 0.8 ∗max(Di). There are two reasons
for discarding these options. In the case first, propagating the label of the center to all
data points in the cluster increases the errors introduced by label propagation since the
further a data point is from its center the more possibilities that they do not share the
same label, according the cluster assumption. As for both cases, we aimed to use a
SVM as classifier and training is the most expensive step. Increasing considerably the
training data has an undesired effect on the computation time. This is rather an arbitrary
choice and we are currently working on the direction of how to better determine this
parameter.

4 Data Sets

A well-known data set has been used in the experiments (see Fig 4). Hyper-spectral
image 92AV3C was provided by the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) and acquired over the Indian Pine Test Site in Northwestern Indiana in 1992.
From the 220 bands that composed the image, 20 are usually ignored (the ones that
cover the region of water absorption or with low SNR) [12]. The image has a spatial
dimension of 145× 145 pixels. Spatial resolution is 20m per pixel. Classes range from
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20 to 2468 pixels in size. In it, three different growing states of soya can be found,
together with other three different growing states of corn. Woods, pasture and trees
are the bigger classes in terms of number of samples (pixels). Smaller classes are steel
towers, hay-windrowed, alfalfa, drives, oats, grass and wheat. In total, the dataset has
16 labeled classes and unlabeled part which is known as the background. This so called
background will be here considered as the 17 class for the segmentation experiments.

We will analyze the details and performance for AVIRIS data set since it is a widely
used data set. However we will show results with two other data sets, HYMAP and also
CHRISPROBA (see Fig 4).

The DAISEX99 project provides useful aerial images about the study of the variabil-
ity in the reflectance of different natural surfaces. This source of data, which is referred
to as HyMap, corresponds to a spectral image (700× 670 pixels and seven classes that
are composed of crops and an unknown class) acquired with the 128-band HyMap spec-
trometer during the DAISEX9́9 campaign (http:/io.uv.es/projects/daisex/). The last data
set was acquired by the satellite PROBA which has a positional spectroradiometric sys-
tem (CHRIS) that measures the spectral radiance, i.e., the amount of light that passes
through or is emitted from a particular area. System CHRISPROBA is able to operate
in several acquisition modes. The image used in this paper come from the mode that
operates on an area of 15× 15 km, with a spatial resolution of 34 m, obtaining a set of
62 spectral bands that range from 400 to 1050 nm (641 × 617 pixels and nine classes
that are composed of crops and an unknown class). The camera has a spectral resolution
of 10 nm. Concretely, this image covering the area that is known as Barrax (Albacete,
Spain) has 52 bands.

5 Experimental Results

In this section we will analyze the details of the method for AVIRIS data set. Later re-
sults will be shown for the other two data sets. In Fig 3 the results obtained using several
classification strategies are compared: KNN using only the center of the clusters for
the training set, SVM after label propagation, KNN using the same training set used
for the SVM, and the classification using the plain output of the mode seek clustering.
It was already shown in [7] that the scheme used with KNN clearly outperformed the
random selection. Now, the classification result for the KNN classifier adding more
samples in the clusters assuming the same label is very similar to the ones obtained
with the KNN classifier using only the cluster centers. The SVM classifier provided
the worst results in all experiments. This may be due to the fact that the double thresh-
old scheme proposed assumes a spherical distribution of the samples around the cluster
centers. However, this is not the case in general, and that is the reason why SVM cannot
properly model the borders of the classes using these training samples. On the other
hand, the mode seek clustering classification outperformed all other methods. The rea-
son is that this sort of clustering is not based on the distance to a central sample in the
cluster but to the distance to other samples in the clusters. When the distance to a cen-
tral point is considered, a spheric distribution of the pixels around this point is assumed.
However, the mode seek clustering provides clusters that may adapt to different shapes,
depending on the distribution of the samples in the feature space, and these clusters can
be modeled using just one sample.
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Fig. 2. AVIRIS, HYMAP and CHRIS-PROBA data sets (respectively per row). Color composi-
tion and ground-truth.

Fig. 3. Learning curve in terms of error rate when increasing the size of training data in number
of samples selected by the scheme suggested. Different classification methods tested using the
92AV3C database.

The database has 21025 samples. Fig. 4 show the classification results of several
classifiers when 0.33% of the pixels in the image (69 pixels) was labeled by the expert.
The classification errors are shown as white pixels. It can be noted that the clustering
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(a) (b)

(c) (d)

Fig. 4. Segmentation-classification results using 0.33% of data for the selected training set us-
ing several classifiers. (a) KNN using the cluster centers. (b) SVM (c) KNN using the same
training set as for the SVM (d) mode seek clustering.

(a) (b)

(c) (d)

Fig. 5. Segmentation-classification results using 4% of data for the selected training set using
several classifiers. (a) KNN using the cluster centers. (b) SVM (c) KNN using the same train-
ing set as for the SVM (d) mode seek clustering.

classifier outperformed the other classifiers not only in the percentage of classification
rate but also providing smooth compact regions in the image. Similar results can be
seen in Fig. 5 where 4% of the pixels in the image was labeled, where the classification
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error = 0.157 error = 0.116
(a) (b)

Fig. 6. Segmentation-classification results using different amounts of data for the selected training
set using the proposed scheme and the clustering based classification. (a) Using 2% of the data.
(b) Using 4% of the data.

errors tend to concentrate in the borders of the different regions in the image. Note that
the segmentation results are quite smooth even for the background class.

Let’s consider the 2% of the samples and the cluster-based classification. See results
in Fig 6.(a). Observe the top left part of the image where the selection manages to detect
all of them although the classes are lying one next to each other and their size is not big.
The best result is presented in Fig 6.(b), it is the classification-segmentation result for
the 17-classes problem using 4% of the data. The overall error rate is 0.116 and the most
relevant error is the lost of very small classes that cannot be found by the clustering.
In Table 1 the results per class are presented for different sizes of the training set using
cluster classification. Observe that the accuracy per class of a reduced training set is
good when the class has been detected by the cluster. As long as one class is missed in
the selection of the training data, this class will be entirely misclassified.

A brief overview of the results for the other two data sets can be found in Fig 7.
This data sets have higher spatial resolution and better results were expected for them.
Indeed, error rates of 0.1 are reached for both when less than 0.5% of the data is used
for training. In this cases, all classes are big enough in number of samples and there
are no classes missed in the selection process. Again, errors are placed at the borders
of the areas. Note that in HYMAP data set there is an area defined in the groundtruth
that draws a line around all visible shapes and it is labeled. This area is too narrow and
always confused with the adjacent classes, for such an example of class distribution this
method will have difficulties since their samples are spatially very close to other areas
and they never form a structure big enough to be detected by itself.

In Table 1 where the error rate per class is shown, we can see that the results obtained
using 2% of the samples are already comparable in terms of per class accuracy with
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error = 0.129 error = 0.109

(a) (b)

Fig. 7. Segmentation-classification results for other data sets selecting the training set using the
proposed scheme and the clustering based classification. The training set selected is shown at
the first row, at the second row the error resulting is presented in white and last row shows the
classification result for (a) Using 0.312% of the data set HYMAP. (b) Using 0.244% of the data
set CHRIS-PROBA.

results obtained in supervised scenarios using 5% of the data [1]. Notice that classes
with only one spatial area are well classified with few samples needed, such as Alfalfa,
Wheat, Hay-windrowed, Grass/pasture-mowed and Corn. Some of them (as Wheat and
Hay-windrowed) were already well classified when only 0.33% training data was used.
The rest of the classes are divided in different spatial areas and their detection is highly
dependant on the size of the area and the amount of different classes that surrounds
them. Soybeans-min-till class is from the beginning well classified with only 10 sam-
ples, this is a large class whose different areas in the image are also large and well
defined. The same can be concluded for other classes like Bldg-Grass-Tree-Drives or
Woods. However, class Soybeans-clean till is confused with the classes around since
the areas where it lies in are small despite of being a big class. The background is a
special case, although it is treated here as a single class for segmentation purposes, it
consists of different areas with probably considerably different spectral signatures and,
if a part of it would be missing in the training data, that part will be misclassified.
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Table 1. Accuracy per class for the 17 classes classification of the AVIRIS dataset using 12
features (ten spectral features and two spatial coordinates). For a training sets of 0.33%, 2% and
4% of the data using the clustering-based classifier.

0.33% of training data 2% of training data 4% of training data
classes training/total error training/total error training/total error

Heterogenous background 22/10659 0.432 171/10659 0.262 367/10659 0.193

Stone-steel towers 0/95 1 2/95 0.139 5/95 0.033

Hay-windrowed 2/489 0.004 10/489 0.004 25/489 0.004

Corn-min till 5/834 0.214 18/834 0.076 40/834 0.045

Soybeans-no till 5/968 0.185 25/968 0.060 40/968 0.072

Alfalfa 0/54 1 1/54 0.038 3/54 0.039

Soybeans-clean till 2/614 0.488 15/614 0.066 28/614 0.056

Grass/pasture 3/497 0.105 12/497 0.064 28/497 0.042

Woods 6/1294 0.023 29/1294 0.034 58/1294 0.026

Bldg-Grass-Tree-Drives 3/380 0.021 9/380 0.011 12/380 0.011

Grass/pasture-mowed 0/26 1 1/26 0.040 1/26 0.040

Corn 1/234 0.601 6/234 0.070 10/234 0.049

Oats 0/20 1 0/20 1 0/20 1

Corn-no till 6/1434 0.278 35/1434 0.067 63/1434 0.035

Soybeans-min till 10/2468 0.069 70/2468 0.023 143/2468 0.018

Grass/trees 4/747 0.067 18/747 0.033 34/747 0.042

Wheat 1/212 0.009 7/212 0.005 11/212 0.005

Overall error 0.299 0.156 0.116

6 Conclusions

A training data selection method has been proposed in a segmentation classification
scheme for scenarios in which no prior knowledge is available. This aims at improv-
ing classification and reducing the interaction with the expert who would label a very
small set of points only once. This is highly interesting when expert collaboration is
expensive. To get representative training data, mode seek clustering is preformed. This
type of clustering provides modes (representative samples) for each cluster found in the
feature space and those modes are the selected samples for labeling. Thanks to a spatial
improvement in the clustering, the modes provided do not contain redundant training in-
formation and can represent different spatial areas in the image that belong to the same
class. The training selection has been used over several classifiers. We have experi-
mentally proved that distance based classifiers are more adequate than SVM for such
an approach. Furthermore, we have also shown that the classification obtained from
the mode seek clustering outperformed the simple distance based classifiers because it
better adapts to the shapes of the clusters in the feature space.

All classification strategies benefit from the selection of the labeled data to improve
their performances. They provide very good results even with less labeled data than
provided in other scenarios where training data was randomly selected.
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Av. Rovisco Pais, Torre Norte, Piso 10, 1049-001 Lisbon, Portugal

zen@isel.pt
http://www.deetc.isel.pt/jnascimento/

Abstract. In hyperspectral imagery a pixel typically consists mixture of spectral
signatures of reference substances, also called endmembers. Linear spectral mix-
ture analysis, or linear unmixing, aims at estimating the number of endmembers,
their spectral signatures, and their abundance fractions.

This paper proposes a framework for hyperpsectral unmixing. A blind method
(SISAL) is used for the estimation of the unknown endmember signature and their
abundance fractions. This method solve a non-convex problem by a sequence of
augmented Lagrangian optimizations, where the positivity constraints, forcing
the spectral vectors to belong to the convex hull of the endmember signatures, are
replaced by soft constraints. The proposed framework simultaneously estimates
the number of endmembers present in the hyperspectral image by an algorithm
based on the minimum description length (MDL) principle. Experimental results
on both synthetic and real hyperspectral data demonstrate the effectiveness of the
proposed algorithm.

Keywords: Blind hyperspectral unmixing, Minimum volume simplex,
Minimum Description Length (MDL), Variable splitting augmented lagrangian,
Dimensionality reduction.

1 Introduction

Although, there have been significant improvements in the hyperspectral sensors, there
are in an image pixels that contain more than one substance, i.e., the acquired spectral
vectors are mixtures of the substances spectral signatures present in the scene [6,19].

The linear mixing assumption has been widely used to describe the observed hyper-
spectral vectors. According to this assumption, a mixed pixel is a linear combination
of endmembers signatures weighted by the corresponding abundance fractions. Due
to physical considerations, the abundance fractions are subject to the so-called non-
negativity and a full-additivity constraints [6].

� This work was supported by the Instituto de Telecomunicações and by the Fundação para a
Ciência e Tecnologia under project HoHus (PEst-OE/EEI/LA0008/2011).

P.L. Carmona et al. (Eds.): Pattern Recognition – Applications and Methods, AISC 204, pp. 193–204.
DOI: 10.1007/978-3-642-36530-0_16 c© Springer-Verlag Berlin Heidelberg 2013

http://www.deetc.isel.pt/jnascimento/


194 J.M.P. Nascimento and J.M. Bioucas-Dias

Hyperspectral unmixing, aims at estimating the number of reference materials, also
called endmembers, their spectral signatures, and their abundance fractions [17]. Hyper-
spectral linear unmixing approaches can be classified as either statistical or geometrical.
Statistical methods very often formulate the problem under the Bayesian framework
[14] [1] [18] [21].

The geometric perspective just referred to has been exploited by many algorithms.
These algorithms are based on the fact that, under the linear mixing model, hyper-
spectral vectors belong to a simplex set whose vertices correspond to the endmembers
signatures. Thus, finding the endmembers is equivalent to identifying the vertices of the
referred to simplex [20].

Some algorithms assume the presence of, at least, one pure pixel per endmember (i.
e., containing just one material). Some popular algorithms taking this assumption are
the pixel purity index (PPI), [7], vertex component analysis (VCA), [20], the automated
morphological endmember extraction (AMEE) [22], and the N-FINDR [26] (see [9] for
recently introduced reinterpretations and improvements of N-FINDR). These methods
are followed by a fully constrained least square estimation [16] or by a maximum like-
lihood estimation [24] of the abundance fractions to complete the unmixing procedure.

If the pure pixel assumption is not fulfilled, which is a more realistic scenario, the
unmixing process is a rather challenging task, since some endmembers are not in the
dataset. Some recent methods, in the vein of Craig’s work minimum Volume Transform
(MVT) [12] which finds the smallest simplex that contain the dataset, are the simplex
identification via split augmented Lagrangian (SISAL) [4], iterated constrained end-
member (ICE), [3], the minimum-volume enclosing simplex algorithm (MVES) [10],
successive volume maximization (SVMAX) [9], and the alternating projected subgra-
dients (APS) [28].

Fig. 1 illustrates three datasets raising different degrees of difficulties in what un-
mixing is concerned: the dataset shown in Fig.1(a) contains pure pixels, i.e., the spectra
corresponding to the simplex vertices are in the dataset. This is the easiest scenario
with which all the unmixing algorithms cope without problems; the dataset shown in
Fig.1(b) does not contain pure pixels, at least for some endmembers. This is a much
more challenging, usually attacked with the minimum volume based methods, note that
pure-pixels based methods are outperformed under these circumstances; Fig.1(c), con-
tains a highly mixed dataset where only statistical methods can give accurate unmixing
results.

Most of these methods assume that the number of endmembers are known a-priori
or estimated for some method, such as, NWHFC [11], HySime [5], and Second mo-
ment linear dimensionality (SML) [2]. The robust signal subspace estimation (RSSE)
[13] have been proposed in order to estimate the signal subspace in the presence of rare
signal pixels, thus it can be used as a preprocessing step for small target detection ap-
plications. Sparsity promoting ICE (SPICE) [27] is an extension of ICE algorithm that
incorporates sparsity-promoting priors to find the correct number of endmembers. The
framework presented in [8] also estimates the number of endmembers when it unmix the
data. This framework has the disadvantage of using the Unsupervised Fully Constrained
Least Squares (UFCLS) algorithm proposed in [16] which assumes the presence of at
least one pure pixel per endmember.
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Fig. 1. Illustration of tree scenarios: (a) with pure pixels (solid line - estimated simplex by all
methods); (b) without pure pixels and with pixels in the facets (solid red line - estimated simplex
based on minimum volume; dashed blue line - estimated simplex by pure-pixel based methods);
(c) highly mixed pixels (solid red line - estimated simplex based on minimum volume; dashed
blue line - estimated simplex by pure-pixel based methods)

This paper proposes a framework for linear hyperpsectral unmixing. SISAL [4] is
used for the estimation of the endmember signature and their abundance fractions,
while, based on the minimum description length (MDL) principle the number of end-
members is inferred. SISAL belongs to the minimum volume class methods.
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This paper is organized as follows. Section 2 formulates the problem and describes
the fundamentals of the proposed method. Section 3 presents the method to infer the
number of endmembers. Section 4 illustrates aspects of the performance of the proposed
approach with experimental data based on U.S.G.S. laboratory spectra and with real
hyperspectral data collected by the AVIRIS sensor, respectively. Section 5 concludes
with some remarks.

2 Problem Formulation

Assuming the linear observation model, each pixel y of an hyperspectral image can
be represented as a spectral vector in R

l (l is the number of bands) and is given by
y = Ms + n, where M ≡ [m1,m2, . . . ,mp] is an l × p mixing matrix (mj denotes
the jth endmember spectral signature), p is the number of endmembers present in the
covered area, s = [s1, s2, . . . , sp]

T is the abundance vector containing the fractions of
each endmember (notation (·)T stands for vector transposed), and vector n holds the
sensor noise and modeling errors.

To fix notation, let Y ≡ [y1, . . . ,yn] ∈ R
l×n denote a matrix holding the n ob-

served spectral vectors, S ≡ [s1, . . . , sn] ∈ R
p×n a matrix holding the respective

abundance fractions, and N ≡ [n1, . . . ,nn] ∈ R
l×n accounts for additive noise. To

be physically meaningful, abundance fractions are subject to non-negativity and con-
stant sum constraints, i.e., {s ∈ R

p : s � 0,1T
p s = 1T

n}1. Therefore

Y = MS+N

s.t. : S � 0 , 1T
p S = 1T

n . (1)

Usually the number of endmembers is much lower than the number of bands (p� L).
Thus, the observed spectral vectors can be projected onto the signal subspace. The
identification of the signal subspace improves the SNR, allows a correct dimension
reduction, and thus yields gains in computational time and complexity [5].

Let Ep be a matrix, with orthonormal columns, spanning the signal subspace. Thus

X ≡ ET
p Y +ET

p N

= AS+N∗, (2)

where X ≡ [x1, . . . ,xn] ∈ R
p×n denote a matrix holding the projected spectral

vectors, A = ET
p M is a p×p square mixing matrix, and N∗ accounts for the projected

noise.
Linear unmixing amounts to infer matrices A and S. This can be achieved by fitting

a minimum volume simplex to the dataset [12]. Finding a minimum volume matrix A
subject to constraints in (1), leads to the non-convex optimization problem

Q̂ = argmin
Q
{− log | detQ|}

s.t. : QX � 0 , 1T
p QX = 1T

n , (3)

1 s � 0 means sj ≥ 0, for j = 1, . . . , p and 1T
p ≡ [1, . . . , 1].
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where Q ≡ A−1. The constraint 1T
p QX = 1T

n can be simplified, by multiplying the
equality on the right hand side by XT (XXT )−1, resulting 1T

p QX = 1T
n ⇔ 1T

p Q =

aT , where aT ≡ 1T
nX

T (XXT )−1.
SISAL aims to give a sub-optimal solution of (3) solving the following problem by

a sequence of augmented Lagrangian optimizations:

Q̂∗ = argmin
Q
{− log | detQ|+ λ‖QX‖h}

s.t. : 1T
p Q = aT , (4)

where ‖QX‖h ≡
∑

ij h(QX), h(x) ≡ max(−x, 0) is the so-called hinge function and
λ is the regularization parameter. Notice that ‖QX‖h penalizes negative components
of QX, thus playing the rule of a soft constraint, yielding solutions that are robust to
outliers, noise, and poor initialization.(see [4] for details).

3 Number of Endmembers Estimation

The MDL principle proposed by Rissanen [23] aims to select the model that offers
the shortest description length of the data. This approach can be used to estimate the
number of endmembers [8]. The well-known MDL criterion for n i.i.d. observations, in
general, is given by

k̂MDL = argmin
k

{
L(X|θ̂k) +

1

2
k logn

}
, (5)

where L(X|θ̂k) is a likelihood function based on the projected data X with parameters
θ, and 1

2 k logn is an increasing function penalizing higher values of k [15].
Assuming that the additive noise is Gaussian distributed, i.e. n ∼ N (0,Λ) and given

a set of n i.i.d. observed samples, the likelihood equation is given by:

L(X|θ̂k) ≡
n∑

i=1

[
− log p(xi|θ̂k)

]
=

n

2

(
p log(2π) + log | detΛ|

)
+

1

2
tr
[
(X−AS)T Λ−1 (X−AS)

]
,

(6)

where tr(·) denotes the trace of a matrix, matrices A and S are replaced by their esti-
mates using SISAL algorithm, the noise covariance matrix, Λ, is estimated using the
algorithm based on the multiple regression theory proposed in [5] and the number of
free parameters is k = p2. The resulting optimization algorithm is an iterative scheme
that requires to compute the objective function and to estimate the matrices A, S, and
Λ for each value of p.

4 Experiments

This section provides simulated and real data experiments to illustrate the algorithm’s
performance. The proposed method is tested and compared with SPICE [27] on differ-
ent simulated scenarios concerning with different signal-to-noise ratio (SNR), absence



198 J.M.P. Nascimento and J.M. Bioucas-Dias

of pure pixels, and number of endmembers present in the scene. The proposed method
is also applied to real hyperspectral data collected by the AVIRIS sensor over Cuprite,
Nevada.

4.1 Evaluation with Simulated Data

In this section the proposed method is tested on simulated scenes. To evaluate the per-
formance of the algorithm the well-known spectral angle distance (SAD) metric is used
[17]. SAD measures the shape similarity between the ith endmember signature mi and
its estimate m̂i. Based on this metric we define a spectral root mean square angle error,
given by:

εm ≡ 1

p

[
p∑

i=1

(
arccos

mT
i m̂i

‖mi‖‖m̂i‖
)2
]1/2

. (7)

To measure the similarity between the observed data and the unmix result it is also
computed the residual error between the observed pixels and their estimates:

rls ≡ ‖Y − M̂Ŝ‖2F , (8)

where M̂ = EpÂ and Ŝ are estimated by SISAL.
Concerning the simulated data creation an hyperspectral image composed of 104 pix-

els is generated according to expression (1), where spectral signatures where selected
from the USGS digital spectral library. The selection of endmember signatures is ar-
bitrary as long as they are linearly independent. The reflectances contain 224 spectral
bands covering wavelengths from 0.38 to 2.5μm with a spectral resolution of 10nm.
The abundance fractions are generated according to a Dirichlet distribution given by

D(s1, . . . , sp|μ1, . . . , μp) =
Γ (
∑p

j=1 μj)∏p
j=1 Γ (μj)

p∏
j=1

s
μj−1
j . (9)

This density, besides enforcing positivity and full additivity constraints, displays a wide
range of shapes, depending on the parameters of the distribution μ = [μ1, . . . , μp].

In this experiment the Dirichlet parameters are set to μ = [3, . . . , 3], concerning the
additive noise, the SNR, which is defined as

SNR ≡ 10 log10
(
E
{
yTy

}
/E
{
nTn

})
, (10)

is set to 30 dB.
Fig. 2 presents a scatterplot of the simulated scene for the p = 3 case, where dots

represent the pixels and circles represent the true endmembers. This figure also shows
the endmembers estimates (squares) which are very close to the true ones. Fig.3 shows
the endmembers signatures (solid line) and their estimates (dashed line). Note that, in
this experiment there is no pure pixels in the dataset, however, the endmembers estimate
is very accurate.

Fig 4, presents the evolution of the cost function [see expression (5)] as a function of
the number of endmembers. The minimum of the function occurs at k̂ = 3 which is the
true number of endmembers in the scene.
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Fig. 2. Scatterplot of the three endmembers mixture: Dataset (blue dots); true endmembers (black
circles); Proposed method estimates (red squares)
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Fig. 3. Endmembers signatures (solid line) and their estimates (dashed line)

Table 1 presents the root mean square error distance εm, the residual least squares
error rls, and the estimated number of endmembers for different experiments: p is set
to {3, 5, 10} and the SNR is set to {30, 50} dB. Note that the estimated values are
exactly the number of endmembers in the scene and the unmix error increases with
increasing values of p and with noise level. The results achieved by SPICE in terms of
residual error are similar to the proposed method results, although the errors between
endmembers signatures and their estimates are worst.
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Fig. 4. Cost function evolution as a function of the number of endmembers

Table 1. Results for different scenarios as a function of the SNR and of the number of endmem-
bers (p)

Proposed Method SPICE

SNR p ̂k εm rls ̂k εm rls

3 3 0.048 4.76 3 0.293 4.82
30 dB 5 5 0.053 6.41 5 0.198 6.47

10 10 0.929 6.99 6 0.258 7.18

3 3 0.042 0.47 3 0.141 1.06
50 dB 5 5 0.059 0.64 5 0.432 1.30

10 10 0.196 0.70 6 0.268 1.70

4.2 Experiments with Real Hyperspectral Data

In this section, the proposed method is applied to a subset (50 × 90 pixels and 224
bands) of the Cuprite dataset acquired by the AVIRIS sensor on June 19, 1997, Fig. 5
shows band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite Nevada
dataset. The AVIRIS instrument covers the spectral region from 0.41μm to 2.45μm
in 224 bands with a 10nm band width. Flying at an altitude of 20 km, it has an IFOV
of 20m and views a swath over 10 km wide. This site has been extensively used for
remote sensing experiments over the past years and its geology was previously mapped
in detail [25].

Table 2 present the residual error and the estimated number of endmembers for
SPICE and for the proposed method. The results of both methods are comparable.
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Fig. 5. Band 30 (wavelength λ = 655.8nm) of the subimage of AVIRIS Cuprite Nevada dataset
(rectangle denotes the image fraction used in the experiment)

Table 2. Results for Cuprite dataset

Proposed method SPICE

̂k 6 7
rls 3.13 3.27

Fig.6 (left) shows the estimated signatures, which are compared with the nearest
laboratory spectra, to visually distinguish the different endmembers an offset has been
added to each signature. Note that, this endmembers are known to dominate the consid-
ered subimage [25].

Fig.6 (right) presents the estimated abundance maps for the extracted endmembers.
A visual comparison show that these maps are in accordance with the known ground
truth. Note that for this region Desert vanish (Fig.6b)) and Sphene (Fig. 6d)) abundance
maps are very similar. These results show the potential of the proposed method to si-
multaneously select the number of endmembers, estimate the spectral signatures, and
their abundance fractions.
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Fig. 6. Experimental results on Cuprite dataset. Left: Comparison of the estimated signatures
(dashed line) with the nearest USGS spectra (solid line). Right: Abundance maps estimates. a)
Alunite; b) Desert vanish; c) Dumortierite; d) Sphene; e) Kaolinite; f) Montmorillonite.

5 Conclusions

In this paper, a new framework is proposed to blindly unmix hyperspectral data and
simultaneously infer the number of endmembers based on the minimum description
length (MDL) principle. The estimation of the endmembers spectra and their abun-
dance fractions is based on SISAL, which is a minimum-volume type method, that
solves a non-convex problem by a sequence of augmented Lagrangian optimizations,
where the positivity constraints, forcing the spectral vectors to belong to the convex
hull of the endmember signatures, are replaced by soft constraints. The experimental
results achieved on simulated and on real datasets show the potential of the proposed
method.
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