
Chapter 16
Materialization Strategies

SQL is the most common language to interact with databases. Users are accus-
tomed to the table-oriented output format of SQL. To provide the same data
interfaces as known from row stores in column stores, the returned results have to
be transformed into tuples in row format. The process of transforming encoded
columnar data into row-oriented tuples is called materialization.

Especially for column-oriented databases with lightweight compression, an
appropriate materialization strategy is essential. Abadi et al. [AMDM07] analyzed
different materialization strategies for column-oriented databases. Depending on
the storage technique (e.g. compressed vs. uncompressed data, dictionary encoding
vs. no dictionary encoding), different materialization strategies can be superior.
Grund et al. [GKK+11] analyzed database operators and the impact of material-
ization strategies for intermediate results, in particular for dictionary-encoded
columnar data structures.

16.1 Aspects of Materialization

Abadi et al. [AMDM07] divide the topic of materialization into two aspects, the
execution of materialization and the time of materialization. The execution can be
divided into parallel and pipelined materialization. The advantages and disad-
vantages of both approaches are discussed in detail in [GKK+11] and are not part
of this learning material. All the following examples use a non-pipelined execu-
tion, where each operator is independent from the others.

There are two different strategies concerning the time aspect of materialization:
early and late materialization. Early materialization describes the strategy, where
data is decoded early (using dictionary lookups) during the query execution. For
example, consider a dictionary-encoded string column. It contains the attribute
vector of integer values and the sorted dictionary of strings. Here, the actual string
replaces the positional integer value representing the corresponding dictionary
position early. Hence, a row-oriented tuple representation is created early on.

H. Plattner, A Course in In-Memory Data Management,
DOI: 10.1007/978-3-642-36524-9_16, � Springer-Verlag Berlin Heidelberg 2013

105



With the late materialization strategy, column-orientation and the positional
information instead of the actual value are used as long as possible during query
execution. Ideally, the row-oriented tuple will be materialized in the very last step
before returning the result to the user.

Figure 16.1 shows in an example where actual values and positions are used in
early and late materialization.

In many cases, late materialization can improve the performance for column
stores, especially when light-weight compression techniques are used [AMDM07].
The following sections will discuss both strategies based on an example query.

16.2 Example

To discuss the difference between early and late materialization, we will examine
the query ‘‘List the number of male inhabitants per city in Germany’’, see SQL
query in Listing 16.1.

In both following examples, one strategy will be used throughout the whole
query execution for exemplary purposes, even though a combination is often
advantageous in real world situations. Example data of the World Population
Table which is used in the query is shown in Fig. 16.2.

Pos-Scan

AVgender AVcountry

Dcity

Pos-Scan

Pos-AND

Lookup

Group (count)

{pos} {pos}

{(ValueID, AggCity)}

AVcity

Lookup

Dgender

Lookup

Dcountry

ValueID

{pos}

{(ValCity, AggCity)}

Group by: ValID

ValueID

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: 

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

Value

Position

Early Materialization Late Materialization

Fig. 16.1 Example comparison between early and late materialization

Listing 16.1: Example query

106 16 Materialization Strategies



16.3 Early Materialization

When early materialization is used as the materialization strategy throughout the
complete query, all required columns are materialized first. In our case, required
columns are all columns that are used as predicates in the query (i.e., country and
gender), as well as all columns that are part of the result (i.e., city). Dictionary
lookups are performed for each of these columns using the valueIDs in the cor-
responding attribute vectors. For the gender column, the result of these lookups is
the vector {ValGender} with the actual values (see Fig. 16.3a).

The next step is to scan the intermediate vector {ValGender} for the gender
predicate ‘m’. To all qualifying lines the corresponding position is added and
copied to the intermediate vector {(pos, ValGender)} (see Fig. 16.3b).

In the next step, the columns are combined as shown in Fig. 16.4. Hereby, the
{ValCountry} vector is added to the intermediate result {(pos, ValGen-
der)} while scanning for the predicate value ‘GER’.

The final step is to aggregate and return the requested data of the SQL query.
For that the intermediate result {(pos, ValGender‘ ValCountry‘
ValCity)} is grouped by ValCity and aggregated. The result is {(ValCity‘
AggCity)}, as shown in Fig. 16.5.

Fig. 16.2 Example data of table ‘‘world_population’’

16.3 Early Materialization 107



16.4 Late Materialization

Instead of materializing the values of the dictionary lookup early (as done in the
early materialization strategy), the dictionary-encoded value (valueID) con-
tained in the attribute vector is being used. Ideally, the lookup into the dictionary
for materialization is performed in the very last step before returning the result.

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: „m“

predicate: 
„GER“

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

m

m

f

m

Lookup

0 m

1 f

0

0

1

0

AVgender

D gender

{ValGender}

m

m

f

m

Value-Scan

2 m

4 m

predicate: "m"

{ValGender}

m1

{(pos, ValGender)}

(a)

(b)

(a)

(b)

Fig. 16.3 Early materialization: materializing column via dictionary lookups and scanning for
predicate

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: „m“

predicate: 
„GER“

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

GER

GER

GER

GER

Add-Attributepredicate: "GER"

{ValCountry}

2 m

4 m

m1

{(pos, ValGender)}

2 m

4 m

m1 GER

GER

GER

{(pos, ValGender, ValCountry)}

Fig. 16.4 Early materialization: scan for constraint and addition to intermediate result

108 16 Materialization Strategies



Figure 16.6 shows the first step. Here, the predicates gender = ‘m’ and coun-
try = ‘GER’ are used for the lookup using the corresponding dictionaries. The
outcome is a vector of dictionary positions (valueIDs) per column that qualify for
the given predicates. Notice that the dictionary for the column city is not accessed,
since it is not required for the actual processing of the query right now. Only the
valueID of the columns gender and country are looked up, as they are required
for the succeeding scan operation.

Even though the visualization of the late materialization strategy implies a parallel
execution of the lookups, the execution can also be done sequentially. Actually, with

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: „m“

predicate: 
„GER“

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

Group (count)Group by: ValCity

Berlin 2

1Bonn

{(ValCity, AggCity)}

{(pos, ValGender, ValCountry, ValCity)}

2 m

4 m

m1 GER

GER

GER

Berlin

Berlin

Bonn

Fig. 16.5 Early materialization: group by ValCity and aggregation

Fig. 16.6 Late materialization: lookup predicate values in dictionary

16.4 Late Materialization 109



a predicate as country = ‘GER’, for which less than 2 % of the world population
qualify, a sequential execution is advantageous (see Chap. 15 for more details).

Figure 16.7a shows the scan phase. With the valueIDs from the first step, now
the attribute vectors are scanned. The position of each matching valueID in the
attribute vector is added to the output vector of this step ({pos}). The merge of
these positional lists is shown in Fig. 16.7b. Here, each value that is existent in
both vectors is appended to the result vector of this step.

Figure 16.8a shows the group by operation. Hereby, the intermediate vectors
are taken to group the positions in {pos} by the valueIDs in the city attribute vector
and add the count of each city to the output vector. In the last step the actual
lookup of the city valueIDs is performed, as shown in Fig. 16.8b.

Compared to the early materialization strategy, the late materialization strategy
might have to perform an additional lookup, e.g. when the gender would also be
part of the result. This penalty can diminish the advantages, for example when
many columns have to be materialized (consequently many dictionary lookups,
what typically occurs when using ‘SELECT*’) or when the result set is very
large (i.e., many output rows).

In general, the question to which extend—and even if—late materialization is
in favor of early materialization depends on many variables like the used query
operations and selectivity, among others [GKK+11].

Fig. 16.7 Late materialization: scan and logical AND

110 16 Materialization Strategies

http://dx.doi.org/10.1007/978-3-642-36524-9_15
http://dx.doi.org/10.1007/978-3-642-36524-9_15


16.5 Self Test Questions

1. Which Strategy is Faster?
Which materialization strategy—late or early materialization—provides the
better performance?

(a) Early materialization
(b) Late materialization
(c) Depends on the characteristics of the executed query
(d) Late and early materialization always provide the same performance.

2. Disadvantages of Early Materialization
Which of the following statements is true?

(a) The execution of an early materialized query plan can not be parallelized
(b) Whether late or early materialization is used is determined by the system

clock
(c) Early materialization requires lookups into the dictionary, which can be

very expensive and are not required when using late materialization
(d) Depending on the persisted value types of a column, using positional

information instead of actual values can be advantageous (e.g. in terms of
cache usage or SIMD execution).

Fig. 16.8 Late materialization: filtering of attribute vector and dictionary lookup

16.4 Late Materialization 111



References

[AMDM07] D.J. Abadi, D.S. Myers, D.J. DeWitt, S. Madden, Materialization strategies in a
column-oriented dbms, in ICDE, ed. by R. Chirkova, A. Dogac, M.T. Ã-zsu, T.K.
Sellis (IEEE, New York, 2007), pp. 466–475 Url: http://dblp.uni-trier.de/db/conf/
icde/icde2007.html#AbadiMDM07

[GKK+11] M. Grund, J. Krueger, M. Kleine, A. Zeier, H. Plattner, Optimal Query Operator
Materialization Strategy for Hybrid Databases, in DBKDA (IARIA, Cancun, 2011),
pp. 169–174

112 16 Materialization Strategies

http://dblp.uni-trier.de/db/conf/icde/icde2007.html#AbadiMDM07
http://dblp.uni-trier.de/db/conf/icde/icde2007.html#AbadiMDM07

	16 Materialization Strategies
	16.1…Aspects of Materialization
	16.2…Example
	16.3…Early Materialization
	16.4…Late Materialization
	16.5…Self Test Questions
	References


