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Preface

Why We Wrote This Book

Our research group at the HPI has conducted research in the area of in-memory
data management for enterprise applications since 2006. The ideas and concepts of
a dictionary-encoded column-oriented in-memory database gained much traction
due to the success of SAP HANA as the cutting-edge industry product and from
followers trying to catch up. As this topic reached a broader audience, we felt the
need for proper education in this area. This is of utmost importance as students and
developers have to understand the underlying concepts and technology in order to
make use of it.

At our institute, we have been teaching in-memory data management in a
Master’s course since 2009. When I learned about the current movement towards
the direction of Massive Open Online Courses, I immediately decided that we
should offer our course about in-memory data management to the public. On
September 3, 2012 we started our online education with the new online platform
http://www.openHPI.de. We granted 2,137 graded certificates to the 13,126 par-
ticipating learners of the first iteration of the online course. Please feel free to
register at openHPI.de to be informed about upcoming lectures.

Several thousand people have already used our material in order to study for the
homework assignments and final exam of our online course. This book is based on
the reading material that we provided to the online community. In addition to that,
we incorporated many suggestions for improvement as well as self-test questions
and explanations. As a result, we provide you with a textbook teaching you the
inner mechanics of a dictionary-encoded column-oriented in-memory database.

Navigating the Chapters

When giving a lecture, content is typically taught in a one-dimensional sequence.
You have the advantage that you can read the book according to your interests. To
this end, we provide a learning map, which also reappears in the introduction to
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make sure that all readers notice it. The learning map shows all chapters of this
book, also referred to as learning units, and shows which topics are prerequisites
for which other topics. For example, the learning unit ‘‘Differential Buffer’’
(Chap. 25) is referred to relatively late in the book. Nevertheless, you might
already read it earlier. The prerequisites are that you understood the concepts of
how ‘‘DELETEs’’, ‘‘INSERTs’’, and ‘‘UPDATEs’’ are conducted without a dif-
ferential buffer.

The last section of each chapter contains self-test questions. You also find the
questions including the solutions and explanations in Sect. 34.3.

The Development Process of the Book

I want to thank the team of our research chair ‘‘Enterprise Platform and Integration
Concepts’’ at the Hasso Plattner Institute at the University of Potsdam in Germany.
This book would not exist without this team.

Special thanks go to our online lecture core team consisting of Ralf Teusner,
Martin Grund, Anja Bog, Jens Krüger, and Jürgen Müller.

During the preparation of the online lecture as well as during the online lecture
itself, the whole research group took care that no email remained unanswered and
all reported bugs in the learning material were fixed. Thus, I want to thank the
research assistants Martin Faust, Franziska Häger, Thomas Kowark, Martin
Lorenz, Stephan Müller, Jan Schaffner, Matthieu Schapranow, David Schwalb,
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Christian Schwarz, Christian Tinnefeld, Arian Treffer, Johannes Wust, as well as
our team assistant Andrea Lange for their commitment.

During the development process, several HPI bachelor students (Frank
Blechschmidt, Maximilian Grundke, Jan Lindemann, Lars Rückert) and HPI master
students (Sten Ächtner, Martin Boissier, Ekaterina Gavrilova, Martin Köppelmann,
Paul Möller, Michael Wolowyk) supported us during the online lecture preparations.
Special thanks go to Martin Boissier, Maximilian Grundke, Jan Lindemann, and
Jasper Schulz, who worked on all the corrections and adjustments that have to be
made when teaching material is enhanced in order to print a book.

Help Improving This Book

We are continuously seeking to improve the learning material provided in this book.
If you identify any flaws, please do not hesitate to contact me at hasso.plattner@
hpi.uni-potsdam.de.

So far, we received bug reports that resulted in improvements in the learning
material from the following attentive readers: Shakir Ahmed, Heiko Betzler,
Christoph Birkenhauer, Jonas Bränzel, Dmitry Bondarenko, Christian Butzlaff,
Peter Dell, Michael Dietz, Michael Max Eibl, Roman Ganopolskyi, Christoph
Gilde, Hermann Grahm, Jan Grasshoff, Oliver Hahn, Ralf Hubert, Katja Huschle,
Jens C. Ittel, Alfred Jockisch, Ashutosh Jog, Gerold Kasemir, Alexander Kirov,
Jennifer Köenig, Stephan Lange, Francois-David Lessard, Verena Lommatsch,
Clemens Müller, Hendrik Müller, Debanshu Mukherjee, Holger Pallak, Jelena
Perfiljeva, Dieter Rieblinger, Sonja Ritter, Veronika Rodionova, Viacheslav Ro-
dionov, Yannick Rödl, Oliver Roser, Alice-Rosalind Schell, Wolfgang Schill, Leo
Schneider, Jürgen Seitz, David Siegel, Markus Steiner, Reinhold Thurner, Florian
Tönjes, Wolfgang Weinmann, Bert Wunderlich, and Dieter Zürn.

We are thankful for any kind of feedback and hope that the learning material
will be further improved by the in-memory database community.

Hasso Plattner
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Chapter 1
Introduction

This book A Course in In-Memory Data Management focuses on the technical
details of in-memory columnar databases. In-memory databases, and especially
column-oriented databases, are a recently vastly researched topic [BMK09, KNF+,
Pla09]. With modern hardware technologies and increasing main memory
capacities, groundbreaking new applications are becoming viable.

1.1 Goals of the Lecture

Everybody who is interested in the future of databases and enterprise data man-
agement should benefit from this course, regardless whether one is still studying,
already working, or perhaps even developing software in the affected fields. The
primary goal of this course is to achieve a deep understanding of column-oriented,
dictionary-encoded in-memory databases and the implications of those for enter-
prise applications. This learning material does not include introductions into
Structured Query Language (SQL) or similar basics; these topics are expected to
be prior knowledge. However, even if you do not yet have solid SQL knowledge,
we encourage you to follow the course, since most examples with relation to SQL
will be understandable from the context.

With new applications and upcoming hardware improvements, fundamental
changes will take place in enterprise applications. The participants ought to
understand the technical foundation of next generation database technologies and
get a feeling for the difference between in-memory databases and traditional
databases on disk. In particular, you will learn why and how these new technol-
ogies enable performance improvements by factors of up to 100,000.

1.2 The Idea

The foundation for the learning material is an idea that professor Hasso Plattner
and his ‘‘Enterprise Platform and Integration Concepts’’ (EPIC) research group
came up with in a discussion in 2006. At this time, lectures about Enterprise

H. Plattner, A Course in In-Memory Data Management,
DOI: 10.1007/978-3-642-36524-9_1, � Springer-Verlag Berlin Heidelberg 2013
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Resource Planning (ERP) systems were rather dry with no intersections to modern
technologies as used by Google, Twitter, Facebook, and several others.

The team decided to start a new radical approach for ERP systems. To start
from scratch, the particular enabling technologies and possibilities of upcoming
computer systems had to be identified. With this foundation, they designed a
completely new system based on two major trends in hardware technologies:

• Massively parallel systems with an increasing number of Central Processing
Units (CPUs) and CPU-cores

• Increasing main memory volumes

To leverage the parallelism of modern hardware, substantial changes had to be
made. Current systems were already parallel in respective to their ability to handle
thousands of concurrent users. However, the underlying applications were not
exploiting parallelism.

Exploiting hardware parallelism is difficult. Hennessy et al. [PH12] discuss
what changes have to be made to make an application run in parallel, and explain
why it is often very hard to change sequential applications to use multiple cores
efficiently.

For the first prototypes, the team decided to look more closely into accounting
systems. In 2006, computers were not yet capable of keeping big companies’ data
completely in memory. So, the decision was made to concentrate on rather small
companies in the first place. It was clear that the progress in hardware development
would continue and that the advances will automatically enable the systems to
keep bigger volumes of data in memory.

Another important design decision was the complete removal of materialized
aggregates. In 2006, ERP systems were highly depending on pre-computed
aggregates. With the computing power of upcoming systems, the new design was
not only capable of increasing the granularity of aggregates, but of completely
removing them.

As the new system keeps every bit of the processed information in memory,
disks are only used for archiving, backup, and recovery. The primary persistence is
the Dynamic Random Access Memory (DRAM), which is accomplished by
increased capacities and data compression.

To evaluate the new approach, several bachelor projects and master projects
implemented new applications using in-memory database technology over the next
several years. Ongoing research focuses on the most promising findings of these
projects as well as completely new approaches to enterprise computing with an
enhanced user experience in mind.

1.3 Learning Map

The learning map (see Fig. 1.1) gives a brief overview over the parts of the
learning material and the respective chapters in these parts. In this graph, you can
easily see what the prerequisites for a chapter are and which contents will follow.

2 1 Introduction



1.4 Self Test Questions

1. Rely on Disks
Does an in-memory database still rely on disks?

(a) Yes, because disk is faster than main memory when doing complex
calculations

(b) No, data is kept in main memory only
(c) Yes, because some operations can only be performed on disk
(d) Yes, for archiving, backup, and recovery
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Part I
The Future of Enterprise Computing



Chapter 2
New Requirements for Enterprise
Computing

When thinking about developing a completely new database management system
for enterprise computing, the question whether there is a need for a new database
management system arises. And the answer is yes! Modern companies have
changed dramatically. Nowadays companies are more data-driven than ever
before. For example, during manufacturing a much higher amount of data is
produced, e.g. by assembly line sensors or manufacturing robots. Furthermore,
companies process data at a much larger scale, e.g. competitor behavior, price
trends, etc. to support management decisions. And data volumes will continue to
grow in the future. There are two major requirements for a modern database
management system:

• Data from various sources have to be combined in a single database manage-
ment system, and

• This data has to be analyzed in real-time to support interactive decision taking.

The following sections outline use cases for modern enterprises and derive
associated requirements for a completely new enterprise data management system.

2.1 Processing of Event Data

Event data influences enterprises today more and more. Event data is characterized
by the following aspects:

• Each event dataset itself is small (some bytes or kilobytes) compared to the size
of traditional enterprise data, such as all data contained in a single sales order,
and

• The number of generated events for a specific entity is high compared to the
amount of entities, e.g. hundreds or thousand events are generated for a single
product.

In the following, use cases of event data in modern enterprises are outlined.

H. Plattner, A Course in In-Memory Data Management,
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2.1.1 Sensor Data

Sensors are used to supervise the function of more and more systems today. One
example is the tracking and tracing of sensitive goods, such as pharmaceuticals,
clothes, or spare parts. Hereby packages are equipped with Radio-Frequency
Identification (RFID) tags or two-dimensional bar codes, the so-called data matrix.
Each product is virtually represented by an Electronic Product Code (EPC), which
describes the manufacturer of a product, the product category, and a unique serial
number. As a result, each product can be uniquely identified by its EPC code. In
contrast, traditional one-dimensional bar codes can only be used for identification
of classes of products due to their limited domain set. Once a product passes
through a reader gate, a reading event is captured. The reading event consists of
the current reading location, timestamp, the current business step, e.g. receiving,
unpacking, repacking or shipping, and further related details. All events are stored
in decentralized event repositories.

Real-Time Tracking of Pharmaceuticals

For example, approx. 15 billion prescription-based pharmaceuticals are produced
in Europe. Tracking any of them results in approx. 8,000 read event notifications
per second. These events build the basis for anti-counterfeiting techniques. For
example, the route of a specific pharmaceutical can be reconstructed by analyzing
all relevant reading events. The in-memory technology enables tracing of 10
billion events in less than 100 ms.

Formula One Racing Cars

Formula one racing cars are also generating excessive sensor data. These sports cars
are equipped with up to 600 individual sensors, each recording tens to hundreds of
events per second. Capturing sensor data for a 2 h race produces giga- or even
terabytes of sensor data depending on their granularity. The challenge is to capture,
process, and analyze the acquired data during the race to optimize the car param-
eters instantly, e.g. to detect part faults, optimize fuel consumption or top speed.

2.1.2 Analysis of Game Events

Personalized content in online games is a success factor for the gaming industry.
The German company Bigpoint is a provider of browser games with more than 200
million active users.1 Their browser games generate a steady stream of more than

1 Bigpoint GmbH—http://www.bigpoint.net/

8 2 New Requirements for Enterprise Computing

http://www.bigpoint.net/


10,000 events per second, such as current level, virtual goods, time spent in the
game, etc. Bigpoint tracks more than 800 million events per day. Traditional
databases do not support processing of these huge amounts of data in an interactive
way, e.g. join and full table scans require complex index structures or data
warehouse systems optimized to return some selected aspects in a very fast way.
However, individual and flexible queries from developers or marketing experts
cannot be answered interactively.

Gamers tend to spend money when virtual goods or promotions are provided in
a critical game state, e.g. a lost adventure or a long-running level that needs to be
passed. In-game trade promotion management needs to analyze the user data, the
current in-game events, and external details, e.g. current discount prices.

In-memory database technology is used to conduct in-game trade promotions
and, at the same time, conduct A/B testing. To this end, the gamers are divided into
two segments. The promotion is applied to one group. Since the feedback of the
users is analyzed in real-time, the decision to roll-out a huge promotion can be
taken within seconds after the small test group accepted the promotion.

Furthermore, in-memory technology improves discovery of target groups and
testing of beta features, real-time prediction, and evaluation of advert placement.

2.2 Combination of Structured and Unstructured Data

Firstly, we want to understand structured data as any kind of data that is stored in
a format, which is automatically processed by computers. Examples for structured
data are ERP data stored in relational database tables, tree structures, arrays, etc.
Secondly, we want to understand partially or mostly unstructured data, which
cannot easily be processed automatically, e.g. all data that is available as raw
documents, such as videos or photos. In addition, any kind of unformatted text,
such as freely entered text in a text field, document, spreadsheet or database, is
considered as unstructured data unless a data model for its interpretation is
available, e.g. a possible semantic ontology.

For years, enterprise data management focused on structured data only.
Structured data is stored in a relational database format using tables with specific
attributes. However, many documents, papers, reports, web sites, etc. are only
available in an unstructured format, e.g. text documents. Information within these
documents is typically identified via the document’s meta data. However, a
detailed search within the content of these documents or the extraction of specific
facts is not possible by using the meta data. As a result, there is a need to harvest
information buried within unstructured enterprise data. Searching any kind of
data—structured or unstructured—needs to be equally flexible and fast.

2.1 Processing of Event Data 9



2.2.1 Patient Data

In the course of the patient treatment process, e.g. in hospitals, structured and
unstructured data is generated. Examples of unstructured data are diagnosis
reports, histologies, and tumor documentations. Examples of structured data are
results of the erythrogram, blood pressure, temperature measurements, or the
patient’s gender. The in-memory technology enables the combination of both
classes of patient data with additional external sources, such as clinical trials,
pharmacological combinations or side-effects. As a result, physicians can prove
their hypotheses by interactively combing data and reduce necessary manual and
time-consuming searches. Physicians are able to access all relevant patient data
and to take their decision on latest available patient details.

Due to their high fluctuation of unexpected events, such as emergencies or
delayed surgeries, the daily time schedule of physicians is very time-optimized. In
addition to certain technical requirements of their tools, they have also very strict
response time requirements. For example, the HANA Oncolyzer, an application
for physicians and researchers was designed for mobile devices. The mobile
application supports the use-as-you-go factor, i.e., the required patient data is
available at any location on the hospital campus and the physician is no longer
forced to go to a certain desktop computer for checking a certain aspect. In
addition, if the required detail is not available in real-time for the physician, she/he
will no longer use the application. Thus, all analyses performed by the in-memory
database are running on a server landscape in the IT department while the mobile
application is the remote user interface for it.

Having the flexibility to request arbitrary analyses and getting the results within
milliseconds back to the mobile application makes in-memory technology a per-
fect technology for the requirements of physicians. Furthermore, the mobility
aspect bridges the gap between the IT department where the data are stored and the
physician that visits multiple work places throughout the hospital every day.

2.2.2 Airplane Maintenance Reports

Airport maintenance logs are documented during exchange of any spare parts at
Boeing. These reports contain structured data, such as date and time of the
replacement or order number of the spare part, and unstructured data, e.g. kind of
damage, location, and observations in the spacial context of the part. By com-
bining structured and unstructured data, in-memory technology supports the
detection of correlations, e.g. how often a specific part was replaced in a specific
aircraft or location. As a result, maintenance managers are able to discover risks
for damages before a certain risk for human-beings occurs.
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2.3 Social Networks and the Web

Social networks are very popular today. Meanwhile, the time when they were only
used to update friends about current activities are long gone. Nowadays, they are
also used by enterprises for global branding, marketing and recruiting.

Additionally, they generate a huge amount of data, e.g. Twitter deals with one
billion new tweets in five days. This data is analyzed, e.g. to detect messages about
a new product, competitor activities, or to prevent service abuses. Combining
social media data with external details, e.g. sales campaigns or seasonal weather
details, market trends for certain products or product classes can be derived. These
insights are valuable, e.g. for marketing campaigns or even to control the manu-
facturing rate.

Another example for extracting business relevant information from the Web is
monitoring search terms. The search engine Google analyzes regional and global
search trends. For example, searches for ‘‘influenza’’ and flu related terms can be
interpreted as a indicator for a spread out of the influenza disease. By combining
location data and search terms, Google is able to draw a map of regions that might
be affected from an influenza epidemic.

2.4 Operating Cloud Environments

Operating software systems in the cloud requires a perfect data integration strat-
egy. Assume, you process all your company’s human resources (HR) tasks in an
on-demand HR system provided by provider A. Consider a change of the provider
to cloud provider B. Of course, a standardized data format for HR records can be
used to export data from A and import it at B. However, what happens if there is
no compatible standard for your application? Then, the data exported from A
needs to be migrated, respectively remodeled, before it can imported by B. Data
transformation is a complex and time-consuming task which often has to be done
manually due to the required knowledge about source and target formats and many
exceptions which have to be solved separately.

In-memory technology provides a transparent view concept. Views deta scribe
how input values are transformed to the desired output format. The required
transformations are performed automatically when the view is called. For example,
consider the attributes first name and last name that need to be transformed
into a single attribute contact name. A possible view contact name per-
forms the concatenation of both attributes by performing concat(first name,
last name).

Thus, in-memory technology does not change the input data, while offering the
required data formats by transparent processing of the view functions. This enables
a transparent data integration compared to the traditional Extract Transform and
Load (ETL) process used for (BI) systems.
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2.5 Mobile Applications

The wide-spread of mobile applications fundamentally changed the way enter-
prises process information. First BI systems were designed to provide detailed
business insights for CEOs and controllers only. Nowadays, every employee is
getting insights by the use of BI systems. However, for decades information
retrieval was bound to stationary desktop computers. With the wide-spread of
mobile devices, e.g. PDAs, smartphones, etc., even field workers are able to
analyze sales reports or retrieve the latest sales funnel for a certain product or
region.

Figure 2.1 depicts the new design of BI systems, which is no longer top-down
but bottom-up. Modern BI systems provide all required information to sales rep-
resentatives directly talking to customers. Thus, customers and sales representa-
tives build the top of the pyramid.

In-memory databases build the foundation for this new corporate structure. On
mobile devices, people are eager to get a response within a few seconds [Oul05,
OTRK05, RO05]. With the ability to perform complex and freely formulated
queries with sub-second responds, in-memory databases can revolutionize the way
employees communicate with customers. An example of the radical improvements
through in-memory databases is the dunning run. A traditional dunning process
took 20 min on an average SAP system, but by rewriting the dunning run on in-
memory technology it now takes less than 1 s.

2.6 Production and Distribution Planning

Two further prominent use cases for in-memory databases are complex and long-
running processes such as production planning and availability checking.

Fig. 2.1 Inversion of corporate structures
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2.6.1 Production Planning

Production planning identifies the current demand for certain products and con-
sequently adjusts the production rate. It analyzes several indicators, such as the
users’ historic buying behavior, upcoming promotions, stock levels at manufac-
turers and whole-sellers. Production planning algorithms are complex due to
required calculations, which are comparable to those found in BI systems. With an
in-memory database, these calculations are now performed directly on latest
transactional data. Thus, algorithms are more accurate with respect to current stock
levels or production issues, allowing faster reactions to unexpected incidents.

2.6.2 Available to Promise Check

The Available-to-Promise (ATP) check validates the availability of certain goods.
It analyzes whether the amount of sold and manufactured goods are in balance.
With raising numbers of products and sold goods, the complexity of the check
increases. In certain situations it can be advantageous to withdraw already agreed
goods from certain customers and reschedule them to customers with a higher
priority. ATP checks can also take additional data into account, e.g. fees for
delayed or canceled deliveries or costs for express delivery if the manufacturer is
not able to sent out all goods in time.

Due to the long processing time, ATP checks are executed on top of pre-
aggregated totals, e.g. stock level aggregates per day. Using in-memory databases
enables ATP checks to be performed on the latest data without using pre-aggre-
gated totals. Thus, manufacturing and Scheduling rescheduling decisions can be
taken on real-time data. Furthermore, removing aggregates simplifies the overall
system architecture significantly, while adding flexibility.

2.7 Self Test Questions

1. Compression Factor
What is the average compression factor for accounting data in an in-memory
column-oriented database?

(a) 100x
(b) 10x
(c) 50x
(d) 5x
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2. Data explosion
Consider the formula 1 race car tracking example, with each race car having
512 sensors, each sensor records 32 events per second whereby each event is
64 byte in size.
How much data is produced by a F1 team, if a team has two cars in the race and
the race takes 2 h?
For easier calculation, assume 1,000 byte = 1 kB, 1,000 kB = 1 MB,
1,000 MB = 1 GB.

(a) 14 GB
(b) 15.1 GB
(c) 32 GB
(d) 7.7 GB
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Chapter 3
Enterprise Application Characteristics

3.1 Diverse Applications

An enterprise data management system should be able to handle data coming from
several different source types.

• Transactional data is coming from different applications, e.g. Enterprise
Resource Planning (ERP) systems.

• The sources for event processing and stream data are machines and sensors,
typically high volume systems.

• Real-time analytics usually leverage structured data for transactional reporting,
classical analytics, planning, and simulation.

• Finally, text analytics is typically based on unstructured data coming from the
web, social networks, log files, support systems, etc.

3.2 OLTP Versus OLAP

An enterprise data management system should be able to handle transactional and
analytical query types, which differ in several dimensions. Typical queries for
Online Transaction Processing (OLTP) can be the creation of sales orders,
invoices, accounting data, the display of a sales order for a single customer, or the
display of customer master data. Online Analytical Processing (OLAP) consists
of analytical queries. Typical OLAP-style queries are dunning (payment remin-
der), cross selling (selling additional products or services to a customer), opera-
tional reporting, or analyzing history-based trends.

Because it has always been considered that these query types are significantly
different, it was argued to split the data management system into two separate
systems handling OLTP and OLAP queries separately. In the literature, it is
claimed that OLTP workloads are write-intensive, whereas OLAP-workloads are
read-only and that the two workloads rely on ‘‘Opposing Laws of Database
Physics’’ [Fre95].
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Yet, research in current enterprise systems showed that this statement is not true
[KGZP10, KKG+11]. The main difference between systems that handle these
query types is that OLTP systems handle more queries with a single select or
queries that are highly selective returning only a few tuples, whereas OLAP
systems calculate aggregations for only a few columns of a table, but for a large
number of tuples.

For the synchronization of the analytical system with the transactional sys-
tem(s), a cost-intensive ETL (Extract-Transform-Load) process is required. The
ETL process takes a lot of time and is relatively complex, because all changes
have to be extracted from the outside source or sources if there are several, data is
transformed to fit analytical needs, and it is loaded into the target database.

3.3 Drawbacks of the Separation of OLAP from OLTP

While the separation of the database into two systems allows for specific workload
optimizations in both systems, it also has a number of drawbacks:

• The OLAP system does not have the latest data, because the latency between the
systems can range from minutes to hours, or even days.Consequently, many
decisions have to rely on stale data instead of using the latest information.

• To achieve acceptable performance, OLAP systems work with predefined,
materialized aggregates which reduce the query flexibility of the user.

• Data redundancy is high. Similar information is stored in both systems, just
differently optimized.

• The schemas of the OLTP and OLAP systems are different, which introduces
complexity for applications using both of them and for the ETL process syn-
chronizing data between the systems.

3.4 The OLTP Versus OLAP Access Pattern Myth

The workload analysis of multiple real customer systems reveals that OLTP and
OLAP systems are not as different as expected. For OLTP systems, the lookup rate
is only 10 % higher than for OLAP systems. The number of inserts is a little higher
on the OLTP side. However, the OLAP systems are also faced with inserts, as they
have to permanently update their data. The next observation is that the number of
updates in OLTP systems is not very high [KKG+11]. In the high-tech companies
it is about 12 %. It means that about 88 % of all tuples saved in the transactional
database are never updated. In other industry sectors, research showed even lower
update rates, e.g., less than 1 % in banking and discrete manufacturing [KKG+11].
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This fact leads to the assumption that updating as such or alternatively deleting
the old tuple and inserting the new one and keeping track of changes in a ‘‘side
note’’ like it is done in current systems is no longer necessary. Instead, changed or
deleted tuples can be inserted with according time stamps or invalidation flags.
The additional benefit of this insert-only approach is that the complete transac-
tional data history and a tuple’s life cycle are saved in the database automatically.
More details about the insert-only approach will be provided in Chap. 26.

The further fact that workloads are not that different after all leads to the vision
of reuniting the two systems and to combine OLTP and OLAP data in one system.

3.5 Combining OLTP and OLAP Data

The main benefit of the combination is that both, transactional and analytical
queries can be executed on the same machine using the same set of data as a
‘‘single source of truth’’. ETL-processing becomes obsolete.

Using modern hardware, pre-computed aggregates and materialized views can
be eliminated as data aggregation can be executed on-demand and views can be
provided virtually. With the expected response time of analytical queries below
one second, it is possible to do the analytical query processing on the transactional
data directly anytime and anywhere. By dropping the pre-computation of aggre-
gates and materialization of views, applications and data structures can be sim-
plified, as management of aggregates and views (building, maintaining, and storing
them) is not necessary any longer.

A mixed workload combines the characteristics of OLAP and OLTP workloads.
The queries in the workload can have full row operations or retrieve only a small
number of columns. Queries can be simple or complex, pre-determined or ad hoc.
This includes analytical queries that now run on latest transactional data and are
able to see the real-time changes.

3.6 Enterprise Data Characteristics

By analyzing enterprise data, special data characteristics were identified. Most
interestingly, many attributes of a table are not used at all while table can be very
wide. 55 % of columns are unused on average per company and tables with up to
hundreds of columns exist. Many columns that are used have a low cardinality of
values, i.e., there are very few distinct values. Further, in many columns NULL or
default values are dominant, so the entropy (information containment) of these
column is very low (near zero).

These characteristics facilitate the efficient use of compression techniques,
resulting in lower memory consumption and better query performance as will be
seen in later chapters.
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3.7 Self Test Questions

1. OLTP OLAP Separation Reasons
Why was OLAP separated from OLTP?

(a) Due to performance problems
(b) For archiving reasons; OLAP is more suitable for tape-archiving
(c) Out of security concerns
(d) Because some customers only wanted either OLTP or OLAP and did not

want to pay for both.
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Chapter 4
Changes in Hardware

This chapter deals with hardware and lays the foundations to understand how the
changing hardware impacts software and application development and is partly
taken from [SKP12].

In the early 2000s multi-core architectures were introduced, starting a trend
introducing more and more parallelism. Today, a typical board has eight CPUs and
8–16 cores per CPU. So each one has between 64 and 128 cores. A board is a
pizza-box sized server component and it is called blade or node in a multi-node
system. Each of those blades offers a high level of parallel computing for a price of
about $50,000.

Despite the introduction of massive parallelism, the disk totally dominated all
thinking and performance optimizations not long ago. It was extremely slow, but
necessary to store the data. Compared to the speed development of CPUs, the
development of disk performance could not keep up. This resulted in a complete
distortion of the whole model of working with databases and large amounts of
data. Today, the large amounts of main memory available in servers initiate a shift
from disk based systems to in-memory based systems. In-memory based systems
keep the primary copy of their data in main memory.

4.1 Memory Cells

In early computer systems, the frequency of the CPU was the same as the fre-
quency of the memory bus and register access was only slightly faster than
memory access. However, CPU frequencies did heavily increase in the last years
following Moore’s Law1 [Moo65], but frequencies of memory buses and latencies
of memory chips did not grew with the same speed. As a result, memory access
gets more expensive, as more CPU cycles are wasted while stalling for memory
access. This development is not due to the fact that fast memory can not be built, it
is an economical decision as memory which is as fast as current CPUs would be

1 Moore’s Law is the assumption that the number of transistors on integrated circuits doubles
every 18–24 months. This assumption still holds till today.
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orders of magnitude more expensive and would require extensive physical space
on the boards. In general, memory designers have the choice between Static
Random Access Memory (SRAM) and Dynamic Random Access Memory
(DRAM).

SRAM cells are usually built out of six transistors (although variants with only
four do exist but have disadvantages [MSMH08]) and can store a stable state as
long as power is supplied. Accessing the stored state requires raising the word
access line and the state is immediately available for reading.

In contrast, DRAM cells can be constructed using a much simpler structure
consisting of only one transistor and a capacitor. The state of the memory cell is
stored in the capacitor while the transistor is only used to guard the access to the
capacitor. This design is more economical compared to SRAM. However, it
introduces a couple of complications. First, the capacitor discharges over time and
while reading the state of the memory cell. Therefore, today’s systems refresh
DRAM chips every 64 ms [CJDM01] and after every read of the cell in order to
recharge the capacitor. During the refresh, no access to the state of the cell is
possible. The charging and discharging of the capacitor takes time, which means
that the current can not be detected immediately after requesting the stored state,
therefore limiting the speed of DRAM cells.

In a nutshell, SRAM is fast but requires a lot of space whereas DRAM chips are
slower but allow larger chips due to their simpler structure. For more details
regarding the two types of RAM and their physical realization the interested reader
is referred to [Dre07].

4.2 Memory Hierarchy

An underlying assumption of the memory hierarchy of modern computer systems
is a principle known as data locality [HP03]. Temporal data locality indicates that
data which is accessed is likely to be accessed again soon, whereas spatial data
locality indicates that data which is stored together in memory is likely to be
accessed together. These principles are leveraged by using caches, combining the
best of both worlds by leveraging the fast access to SRAM chips and the sizes
made possible by DRAM chips. Figure 4.1 shows a hierarchy of memory on the
example of the Intel Nehalem architecture. Small and fast caches close to the
CPUs built out of SRAM cells cache accesses to the slower main memory built out
of DRAM cells. Therefore, the hierarchy consists of multiple levels with
increasing storage sizes but decreasing speed. Each CPU core has its private L1
and L2 cache and one large L3 cache shared by the cores on one socket. Addi-
tionally, the cores on one socket have direct access to their local part of main
memory through an Integrated Memory Controller (IMC). When accessing other
parts than their local memory, the access is performed over a Quick Path Inter-
connect (QPI) controller coordinating the access to the remote memory.
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The first level are the actual registers inside the CPU, used to store inputs and
outputs of the processed instructions. Processors usually only have a small amount
of integer and floating point registers which can be accessed extremely fast. When
working with parts of the main memory, their content has to be first loaded and
stored in a register to make it accessible for the CPU. However, instead of
accessing the main memory directly the content is first searched in the L1 cache. If
it is not found in L1 cache it is requested from L2 cache. Some systems even make
use of a L3 cache.

4.3 Cache Internals

Caches are organized in cache lines, which are the smallest addressable unit in the
cache. If the requested content cannot be found in any cache, it is loaded from
main memory and transferred down the hierarchy. The smallest transferable unit
between each level is one cache line. Caches, where every cache line of level i is
also present in level iþ 1 are called inclusive caches otherwise the model is called
exclusive caches. All Intel processors implement an inclusive cache model. This
inclusive cache model is assumed for the rest of this text.

When requesting a cache line from the cache, the process of determining whether
the requested line is already in the cache and locating where it is cached is crucial.
Theoretically, it is possible to implement fully associative caches, where each cache
line can cache any memory location. However, in practice this is only realizable for
very small caches as a search over the complete cache is necessary when searching
for a cache line. In order to reduce the search space, the concept of a n-way set
associative cache with associativity Ai divides a cache with Ci bytes in Ci=Bi=Ai sets
and restricts the number of cache lines which can hold a copy of a certain memory

Memory Page

Nehalem Quadcore

Core 0 Core 1 Core 2 Core 3

L3 Cache

L2

L1

TLB

Main Memory Main Memory

QPI

Nehalem Quadcore

Core 0Core 1 Core 2 Core 3

L3 Cache

L2

L1

TLB

QPI

L1 Cacheline

L2 Cacheline

L3 Cacheline

Fig. 4.1 Memory hierarchy on Intel Nehalem architecture

4.2 Memory Hierarchy 21



address to one set or Ai cache lines. Thus, when determining if a cache line is already
present in the cache only one set with Ai cache lines has to be searched.

A requested address from main memory is split into three parts for determining
if the address is already cached as shown by Fig. 4.2. The first part is the offset O,
which size is determined by the cache line size of the cache. So with a cache line
size of 64 bytes, the lower 6 bits of the address would be used as the offset into the
cache line. The second part identifies the cache set. The number s of bits used to
identify the cache set is determined by the cache size Ci, the cache line size Biand
the associativity Ai of the cache by s ¼ log2ðCi=Bi=AiÞ. The remaining 64� o� s
bits of the address are used as a tag to identify the cached copy. Therefore, when
requesting an address from main memory, the processor can calculate S by
masking the address and then search the respective cache set for the tag T . This
can be easily done by comparing the tags of the Ai cache lines in the set in parallel.

4.4 Address Translation

The operating system provides each process a dedicated continuous address space,
containing an address range from 0 to 2x. This has several advantages as the process
can address the memory through virtual addresses and does not have to bother about
the physical fragmentation. Additionally, memory protection mechanisms can
control the access to memory, restricting programs to access memory which was
not allocated by them. Another advantage of virtual memory is the use of a paging
mechanism which allows a process to use more memory than is physically available
by paging pages in and out and saving them on secondary storage.

The continuous virtual address space of a process is divided into pages of size p,
which is on most operating system 4 KB. Those virtual pages are mapped to
physical memory. The mapping itself is saved in a so called page table, which
resides in main memory itself. When the process accesses a virtual memory
address, the address is translated by the operating system into a physical address
with help of the memory management unit inside the processor.

We do not go into details of the translation and paging mechanisms. However,
the address translation is usually done by a multi-level page table, where the
virtual address is split into multiple parts which are used as an index into the page
directories resulting in a physical address and a respective offset. As the page table
is kept in main memory, each translation of a virtual address into a physical
address would require additional main memory accesses or cache accesses in case
the page table is cached.

Tag T

64 0

Set S Offset O

Fig. 4.2 Parts of a memory address
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In order to speed up the translation process, the computed values are cached in
the so called , which is a small and fast cache. When accessing a virtual address,
the respective tag for the memory page is calculated by masking the virtual address
and the TLB is searched for the tag. In case the tag is found, the physical address
can be retrieved from the cache. Otherwise, a TLB miss occurs and the physical
address has to be calculated, which can be quite costly. Details about the address
translation process, TLBs and paging structure caches for Intel 64 and IA-32
architectures can be found in [Int08].

The costs introduced by the address translation scale linearly with the width of
the translated address [HP03, CJDM99], therefore making it hard or impossible to
built large memories with very small latencies.

4.5 Prefetching

Modern processors try to guess which data will be accessed next and initiate loads
before the data is accessed in order to reduce the incurring access latencies. Good
prefetching can completely hide the latencies so that the data is already in the
cache when accessed. However, if data is loaded which is not accessed later it can
also evict data which would be accessed later and thereby induce additional misses
by loading this data again. Processors support software and hardware prefetching.
Software prefetching can be seen as a hint to the processor, indicating which
addresses are accessed next. Hardware prefetching automatically recognizes
access patterns by utilizing different prefetching strategies. The Intel Nehalem
architecture contains two second level cache prefetchers—the L2 streamer and
data prefetch logic (DPL) [Int11]. The prefetching mechanisms only work inside
the page boundaries of 4 KB, in order to avoid triggering expensive TLB misses.

4.6 Memory Hierarchy and Latency Numbers

The memory hierarchy can be viewed as pyramid of storage mediums. The slower
a medium is, the cheaper it gets. This also means that the amount of storage on the
lower levels increases, because it is simply more affordable. The hierarchy levels
of nowadays hardware are outlined by Fig. 4.1. This also means that the amount of
storage offered by a lower medium can be higher, as outlined in Fig. 4.3.

At the very bottom is the hard disk. It is cheap, offers large amounts of storage
and replaces tapes as the slowest storage medium necessary.

The next medium is flash. It is faster than disk, but it is still regarded as disk
from a software perspective because of its persistence and its usage characteristics.
This means that the same block oriented input and output methods which were
developed more than 20 years ago for disks are still in place for flash. In order to
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fully utilize the speed of flash based storage the interfaces and drivers have to be
adapted accordingly.

On top of flash is the main memory, which is directly accessible. The next level
are the CPU caches—L3, L2, L1—with different characteristics. Finally, the top
level of the memory hierarchy are the registers of the CPU where things like
calculations are happening.

When accessing data from a disk, there are usually four layers between the
accessed disk and the registers of the CPU which only transport information. In the
end, every operation takes place inside the CPU and in turn the data has to be in
the registers.

Table 4.1 shows some of the latencies, which come into play regarding the
memory hierarchy. Latency is the time delay experienced by the system to load the
data from the storage medium until it is available in a CPU register. The L1 cache
latency is 0.5 ns. In contrast, accessing a main memory reference takes 100 ns and
a simple disk seek is taking 10 ms.

In the end, there is nothing special about ‘‘in-memory’’ computing and all
computing ever done was in memory, because it can only take place in the CPU.

Fig. 4.3 Conceptual view of the memory hierarchy

Table 4.1 Latency numbers

Action Time in nanoseconds (ns) Time

L1 cache reference (cached data word) 0.5
Branch mispredict 5
L2 cache reference 7
Mutex lock / unlock 25
Main memory reference 100 0.1 ls
Send 2,000 byte over 1 Gb/s network 20,000 20 ls
SSD random read 150,000 150 ls
Read 1 MB sequentially from memory 250,000 250 ls
Disk seek 10,000,000 10 ms
Send packet CA to Netherlands to CA 150,000,000 150 ms
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Assuming a bandwidth-bound application, the performance is determined by how
fast the data can be transferred through the hierarchy to the CPU. In order to
estimate the runtime of an algorithm, it is possible to roughly estimate the amount
of data which has to be transferred to the CPU. A very simple operation that a CPU
can do is a comparison like filtering for an attribute. Let us assume a calculation
speed of 2 MB per millisecond for this operation using one core. So one core of a
CPU can digest 2 MB per millisecond. This number scales with the amount of
cores and if there are ten cores, they can scan 20 GB per second. If there are ten
nodes with ten cores each, then that is already 200 GB in per second.

Considering a large multi-node system like that, having ten nodes and 40 CPUs
per node where the data is distributed across the nodes, it is hard to write an
algorithm which needs more than 1 s. This includes large amounts of data. The
previously mentioned 200 GB are highly compressed data. So it is a much higher
amount of plain character data. To sum this up, the number to remember is 2 MB
per millisecond per core. If an algorithm shows a completely different result it is
worth looking into it as there is probably something going wrong. This could be an
issue in SQL, like a too complicated join or a loop in a loop.

4.7 Non-Uniform Memory Architecture

As the development in modern computer systems goes from multi-core to many-
core systems and the amount of main memory continues to increase, the in Uni-
form Memory Architecture (UMA) systems becomes a bottleneck and introduces
heavy challenges in hardware design to connect all cores and memory.

Non-Uniform Memory Architectures (NUMA) attempt to solve this problems by
introducing local memory locations which are cheap to access for local processors.
Figure 4.4 pictures an overview of an UMA and a NUMA system. In an UMA

(a) (b)

Fig. 4.4 (a) Shared FSB, (b) Intel quick path interconnect [Int09]
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system every processor observes the same speeds when accessing an arbitrary
memory address as the complete memory is accessed through a central memory
interface as shown in Fig. 4.4a. In contrast, in NUMA systems, every processor
has its primary used local memory as well as remote memory supplied from the
other processors. This setup is shown in Fig. 4.4b. The different kinds of memory
from the processors point of view introduce different memory access times
between local memory (adjacent slots) and remote memory that is adjacent to the
other processing units.

Additionally, systems can be classified into cache-coherent NUMA (ccNUMA)
and non cache-coherent NUMA systems. ccNuma systems provide each CPU
cache the same view to the complete memory and enforce coherency by a hard-
ware implemented protocol. Non cache-coherent NUMA systems require software
layers to handle memory conflicts accordingly. Although non ccNUMA hardware
is easier and cheaper to build, most of todays available standard hardware provides
ccNUMA, since non ccNUMA hardware is more difficult to program.

To fully exploit the potentials of NUMA, applications have to be made aware of
the different memory latencies and should primarily load data from the locally
attached memory slots of a processor. Memory-bound applications may suffer a
degradation of up to 25 % of their maximal performance if remote memory is
accessed instead of local memory.

By introducing NUMA, the central bottleneck of the FSB can be avoided and
memory bandwidth can be increased. Benchmark results have shown that a
throughput of more than 72 GB per second is possible on an Intel XEON 7560
(Nehalem EX) system with four processors [Fuj10].

4.8 Scaling Main Memory Systems

An example system that consists of multiple nodes can be seen in Fig. 4.5. One
node has eight CPUs with eight cores, so each system has 64 cores, and there are
four nodes. Each of them has a terabyte of RAM and SSDs for persistence.
Everything which is below DRAM is for logging, archiving, and for emergency
reconstruction of data, which means reloading the data after the power supply was
turned off.

The networks which connect the nodes are continuously increasing in speed. In
the example shown in Fig. 4.5, a 10 Gb Ethernet network connects the four nodes.
Computers with 40 Gb Infiniband are already on the market and switch manu-
facturers are talking about 100 Gb switches which even have logic allowing smart
switching. This is another location where an optimization can take place—on a
low level and very effective for applications. It can be leveraged to improve joins,
where calculations often go across multiple nodes.
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4.9 Remote Direct Memory Access

Shared memory is another interesting way to directly access memory between
multiple nodes. The nodes are connected with the network via Infiniband and
create a shared memory region. The main idea is to automatically access data
which is on a different node without explicitly shipping the data. In turn, there is
direct access without shipping and processing it on the other side. Research has
been done at Stanford University in cooperation with the HPI using a RAM cluster.
It is very promising as it could basically offer direct access to a seemingly
unlimited amount of memory from a program’s perspective.

4.10 Self Test Questions

1. Speed per Core
What is the speed of a single core when processing a simple scan operation
(under optimal conditions)?

(a) 2 GB/ms/core
(b) 2 MB/ms/core

Fig. 4.5 A system consisting of multiple blades
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(c) 2 MB/s/core
(d) 200 MB/s/core

2. Latency of Hard Disk and Main Memory
Which statement concerning latency is wrong?

(a) The latency of main memory is about 100 ns
(b) A disk seek takes an average of 0.5 ms
(c) Accessing main memory is about 100,000 times faster than a disk seek
(d) 10 ms is a good estimation for a disk seek.
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Chapter 5
A Blueprint of SanssouciDB

SanssouciDB is a prototypical database system for unified analytical and trans-
actional processing. The concepts of SanssouciDB build on prototypes developed
at the HPI and an existing SAP database system. SanssouciDB is an SQL database
and it contains similar components as other databases such as a query builder, a
plan executer, meta data, a transaction manager, etc.

5.1 Data Storage in Main Memory

In contrast to most other databases data is kept permanently in main memory.
Main memory is the primary persistence for data, yet logging and recovery still
need the disk as non-volatile data storage. All operators, e.g., find, join, or
aggregation, can anticipate that data resides in main memory. Thus, operators can
be programmed differently, free of any hassles coming from optimizing for disk
access. Using main memory as the primary persistence leads to a different orga-
nization of data that only works if data is always available in memory. If this is the
case, pointer arithmetic and following pointer sequences is all that is necessary to
retrieve data.

5.2 Column-Orientation

Another concept used in SanssouciDB was invented more than two decades ago,
that is, storing data column-wise [CK85] instead of row-wise. In column-orien-
tation, complete columns are stored in adjacent blocks. This can be contrasted with
row-oriented storage where complete tuples (rows) are stored in adjacent blocks.
Column-oriented storage, in contrast to row-oriented storage, is well suited for
reading consecutive entries from a single column. This can be useful for aggre-
gation and column scans. More details on column-orientation and its differences to
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row-orientation can be found in Chap. 8. To minimize the amount of data that
needs to be transferred between storage and processor, SanssouciDB uses several
different data compression techniques, which will be discussed in Chap. 7.

5.3 Implications of Column-Orientation

Column-oriented storage has become widespread in database systems specifically
developed for OLAP, as the advantage of column-oriented storage is clear in case
of quasi-sequential scanning of single attributes and set processing thereof. If not
all fields of a table are queried, column-orientation can be exploited as well in
transactional processing (avoiding ‘‘SELECT *’’). An analysis of enterprise
applications showed that there is actually no application that uses all fields of a
given tuple. For example, in dunning only 17 attributes are necessary out of a table
that contains 300 attributes. If only the 17 needed attributes are queried instead of
the full tuple representation of all 300 attributes, an instant advantage of factor
eight to 20 for data to be scanned can be achieved.

As disk is not the bottleneck any longer, but access to main memory has to be
considered, an important aspect is to work on a minimal set of data. So far,
application programmers were fond of ‘‘SELECT *’’ statements. The difference in
runtime between selecting specific fields or all fields in row-oriented storage is
insignificant and in case changes to an application need more fields, the data was
already there (which besides is a weak argument for using SELECT * and
retrieving unnecessary data). However, in case of column-orientation, the penalty
for ‘‘SELECT *’’ statements grows with table width. Especially if tables are
growing in width during productive usage, actual runtimes of applications cannot
be anticipated during programming.

With the column-store approach, the number of indices can be significantly
reduced. In a column store, every attribute can be used as an index. Because all
data is available in memory and the data of a column is stored consecutively, the
scanning speed is high enough that a full sequential scan of an attribute is sufficient
in most cases. If this is not fast enough, dedicated indices can still be used in
addition for further speedup.

Storing data in columns instead of rows is more complicated for workloads with
write access, so the concept of a differential store was introduced. New entries are
written to a differential store first. In contrast to the main store, the differential
store is optimized for inserts. At a later point in time and depending on thresholds,
e.g. the frequency of changes and new entries, the data in the differential store is
merged into the main store. More details about the differential buffer and the
merge process will provided later in Chaps. 25 and 27.
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5.4 Active and Passive Data

The data in SanssouciDB is separated into active data (data of business processes
that are not yet completed) and passive data (data of business processes that are
closed/completed and will not be changed any more). Active data is stored in main
memory. Passive data can be moved to slower storage as it is queried less fre-
quently. Separating passive data from active data reduces the amount of main
memory needed to store the entire data set of an enterprise.

Whenever new data is written to the database or existing data is changed,
logging to non-volatile storage is needed. During the merge of the differential store
to the main store, snapshots are taken and stored in non-volatile memory, as well.
Logs and snapshots are necessary to restore the database in case of failure.

The largest advantage so far is that main memory access depends on time-
deterministic processes in contrast to seek-times of HDDs that depend on
mechanical parts. Thus, runtimes of in-memory processing can be calculated
(although it might be complicated). Observations from using in-memory databases
show that response times are smooth—always the same—and not varying like it is
the case with disks and their response time variations due to disk seeks.

5.5 Architecture Overview

The architecture shown in Fig. 5.1 grants an overview of the components of
SanssouciDB.

SanssouciDB is split in three different logical layers fulfilling specific tasks
inside the database system. The ‘‘Distribution Layer’’ handles the communication
to applications, creates query execution plans, stores meta data contains the logic
for database transactions. Inside the main memory of a specific machine the main
working set of SanssouciDB is located. That working set is accessed during query
execution and is stored either in row, column or hybrid-oriented data layout,
depending on the specific type of queries sends to the database tables. The non-
volatile memory is used for logging and recovery purposes, as well as for data
aging and time travel.

All those concepts will be described in the subsequent sections.

5.4 Active and Passive Data 31



5.6 Self Test Questions

1. New Bottleneck
What is the new bottleneck of SanssouciDB that data access has to be opti-
mized for?

(a) Disk
(b) The ETL process
(c) Main memory
(d) CPU

2. Indexes
Can indexes still be used in SanssouciDB?

(a) No, because every column can be used as an index
(b) Yes, they can still be used to increase performance
(c) Yes, but only because data is compressed
(d) No, they are not even possible in columnar databases.

Fig. 5.1 Schematic architecture of SanssouciDB
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Chapter 6
Dictionary Encoding

Since memory is the new bottleneck, it is required to minimize access to it.
Accessing a smaller number of columns can do this on the one hand; so only
required attributes are queried. On the other hand, decreasing the number of bits
used for data representation can reduce both memory consumption and memory
access times.

Dictionary encoding builds the basis for several other compression techniques
(see Chap. 7) that might be applied on top of the encoded columns. The main
effect of dictionary encoding is that long values, such as texts, are represented as
short integer values.

Dictionary encoding is relatively simple. This means not only that it is easy to
understand, but also it is easy to implement and does not have to rely on complex
multilevel procedures, which would limit or lessen the performance gains. First,
we will explain the general algorithm how original values are translated to integers
using the example presented in Fig. 6.1.

Dictionary encoding works column-wise. In the example, every distinct value in
the first name column ‘‘fname’’ is replaced by a distinct integer value. The position
of a text value (e.g. Mary) in the dictionary is the representing number for that text
(here: ‘‘24’’ for Mary). Until now, we have not saved any storage space. The
benefits come to effect with values appearing more than once in a column. In our
tiny example, the value ‘‘John’’ can be found twice in the column ‘‘fname’’,
namely on position 39 and 42. Using dictionary encoding, the long text value (we
assume 49 Byte per entry in the first name column) is represented by the short
integer value (23 bit are needed to encode the 5 million different first names we
assume to exist in the world). The more often identical values appear, the greater
the benefits. As we noted in Sect. 3.6, enterprise data has low entropy. For this,
dictionary encoding is well suited and grants a good compression ratio. A calcu-
lation for the complete first name and gender columns in our world-population
example will exemplify the effects.
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6.1 Compression Example

Given is the world population table with 8 billion rows, 200 Byte per row:

Attribute # of Distinct Values Size

First name 5 million 49 Byte
Last name 8 million 50 Byte
Gender 2 1 Byte
Country 200 49 Byte
City 1 million 49 Byte
Birthday 40 000 2 Byte

Sum 200 Byte

The complete amount of data is:

8 billion rows � 200 Byte per row ¼ 1:6 TB

Each column is split into a dictionary and an attribute vector. Each dictionary
stores all distinct values along with their implicit positions, i.e. valueIDs.

In a dictionary-encoded column, the attribute vectors now only store valueIDs,
which correspond to the valueIDs in the dictionary. The recordID (row number) is
stored implicitly via the position of an entry in the attribute vector. To sum up, via
dictionary encoding, all information can be stored as integers instead of other,
usually larger, data types.

Fig. 6.1 Dictionary encoding example
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6.1.1 Dictionary Encoding Example: First Names

How many bits are required to represent all 5 million distinct values of the first
name column ‘‘fname’’?

dlog2ð5; 000; 000Þe ¼ 23

Therefore, 23 bits are enough to represent all distinct values for the required
column. Instead of using

8 billion � 49 Byte ¼ 392 billion Byte ¼ 365:1 GB

for the first name column, the attribute vector itself can be reduced to the size of

8 billion � 23 bit ¼ 184 billion bit ¼ 23 billion Byte ¼ 21:4 GB

and an additional dictionary is introduced, which needs

49 Byte � 5 million ¼ 245 million Byte ¼ 0:23 GB:

The achieved compression factor can be calculated as follows:

uncompressed size

compressed size
¼ 365:1 GB

21:4 GBþ 0:23 GB
� 17

That means we reduced the column size by a factor of 17 and the result only
consumes about 6 % of the initial amount of main memory.

6.1.2 Dictionary Encoding Example: Gender

Let us look on another example with the gender column. It has only 2 distinct
values. For the gender representation without compression for each value (‘‘m’’ or
‘‘f’’) 1 Byte is required. So, the amount of data without compression is:

8 billion � 1 Byte ¼ 7:45 GB

If compression is used, then 1 bit is enough to represent the same information. The
attribute vector takes:

8 billion � 1 bit ¼ 8 billion bit ¼ 0:93 GB

The dictionary needs additionally:

2 � 1 Byte ¼ 2 Byte

6.1 Compression Example 39



This concludes to a compression factor of:

uncompressed size

compressed size
¼ 7:45GB

0:93 GBþ 2 Byte
� 8

The compression rate depends on the size of the initial data type as well as on the
column’s entropy, which is determined by two cardinalities:

• Column cardinality, which is defined as the number of distinct values in a
column, and

• Table cardinality, which is the total number of rows in the table or column

Entropy is a measure which shows how much information is contained in a
column. It is calculated as

entropy ¼ column cardinality

table cardinality

The smaller the entropy of the column, the better the achievable compression rate.

6.2 Sorted Dictionaries

The benefits of dictionary encoding can be further enhanced if sorting is applied to
the dictionary. Retrieving a value from a sorted dictionary speeds up the lookup
process from OðnÞ, which means a full scan through the dictionary, to OðlogðnÞÞ,
because values in the dictionary can be found using binary search. Sadly, this
optimization comes at a cost: Every time a new value is added to the dictionary
which does not belong at the end of the sorted sequence of the existing values, the
dictionary has to be re-sorted. Even the insertion of only one value somewhere
except the end of the dictionary causes a re-sorting, since the position of already
present values behind the inserted value has to be moved one position up. While
sorting the dictionary is not that costly, updating the corresponding attribute vector
is. In our example, about 8 billion values have to be checked or updated if a new
first name is added to the dictionary.

6.3 Operations on Encoded Values

The first and most important effect of dictionary encoding is that all operations
concerning the table data are now done via attribute vectors, which solely consist
of integers. This causes an implicit speedup of all operations, since a CPU is
designed to perform operations on numbers, not on characters. When explaining
dictionary encoding, a question often asked is: ‘‘But isn’t the process of looking up
all values via an additional data structure more costly than the actual savings? We
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understand the benefits concerning main memory, but what about the processor’’—
First, it has to be stated that the question is deemed appropriate. The processor has
to take additional load, but this is acceptable, given the fact that our bottleneck is
memory and bandwidth, so a slight shift of pressure in the direction of the pro-
cessor is not only accepted but also welcome. Second, the impact of retrieving the
actual values for the encoded columns is actually rather small. When selecting
tuples, only the corresponding values from the query have to be looked up in the
dictionary for the column scan. Generally, the result set is small compared to the
total table size, so the lookup of all other selected columns to materialize the query
result is not that expensive. Carefully written queries also only select those col-
umns that are really needed, which not only saves bandwidth but also further
reduces the number of necessary lookups. Finally, several operations such as
COUNT or NOT NULL can even be performed without retrieving the real values
at all.

6.4 Self Test Questions

1. Lossless Compression
For a column with few distinct values, how can dictionary encoding signifi-
cantly reduce the required amount of memory without any loss of information?

(a) By mapping values to integers using the smallest number of bits possible to
represent the given number of distinct values

(b) By converting everything into full text values. This allows for better
compression techniques, because all values share the same data format.

(c) By saving only every second value
(d) By saving consecutive occurrences of the same value only once

2. Compression Factor on Whole Table
Given a population table (50 millions rows) with the following columns:

• name (49 bytes, 20, 000 distinct values)
• surname (49 bytes, 100, 000 distinct values)
• age (1 byte,128 distinct values)
• gender (1 byte, 2 distinct values)

What is the compression factor (uncompressed size/compressed size) when
applying dictionary encoding?

(a) � 20
(b) � 90
(c) � 10
(d) � 5
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3. Information in the Dictionary
What information is saved in a dictionary in the context of dictionary encoding?

(a) Cardinality of a value
(b) All distinct values
(c) Hash of a value of all distinct values
(d) Size of a value in bytes

4. Advantages through Dictionary Encoding
What is an advantage of dictionary encoding?

(a) Sequentially writing data to the database is sped up
(b) Aggregate functions are sped up
(c) Raw data transfer speed between application and database server is

increased
(d) INSERT operations are simplified

5. Entropy
What is entropy?

(a) Entropy limits the amount of entries that can be inserted into a database.
System specifications greatly affect this key indicator.

(b) Entropy represents the amount of information in a given dataset. It can be
calculated as the number of distinct values in a column (column cardi-
nality) divided by the number of rows of the table (table cardinality).

(c) Entropy determines tuple lifetime. It is calculated as the number of
duplicates divided by the number of distinct values in a column (column
cardinality).

(d) Entropy limits the attribute sizes. It is calculated as the size of a value in
bits divided by number of distinct values in a column the number of distinct
values in a column (column cardinality).
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Chapter 7
Compression

As discussed in Chap. 5, SanssouciDB is a database architecture designed to run
transactional and analytical workloads in enterprise computing. The underlying
data set can easily reach a size of several terabytes in large companies. Although
memory capacities of commodity servers are growing, it is still expensive to
process those huge data sets entirely in main memory. Therefore, SanssouciDB
and most modern in-memory storage engines use compression techniques on top
of the initial dictionary encoding to decrease the total memory requirements. The
columnar storage of data, as applied in SanssouciDB, is well suited for com-
pression techniques, as data of the same type and domain is stored consecutively.

Another advantage of compression is that it reduces the amount of data that
needs to be shipped between main memory and CPUs, thereby increasing the
performance of query execution. We discuss this in more detail in Chap. 16 on
materialization strategies.

This chapter introduces several lightweight compression techniques, which
provide a good trade-off between compression rate and additional CPU-cycles
needed for encoding and decoding. There are also a large number of so-called
heavyweight compression techniques. They achieve much higher compression
rates, but encoding and decoding is prohibitively expensive for their usage in our
context. An in-depth discussion of many compression techniques can be found
in [AMF06].

7.1 Prefix Encoding

In real-world databases, we often find the case that a column contains one pre-
dominant value and the remaining values have low redundancy. In this case, we
would store the same value very often in an uncompressed format. Prefix encoding
is the simplest way to handle this case more efficiently. To apply prefix encoding,
the data sets need to be sorted by the column with the predominant value and the
attribute vector has to start with the predominant value.
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To compress the column, the predominant value should not be stored explicitly
every time it occurs. This is achieved by saving the number of occurrences of the
predominant value and one instance of the value itself in the attribute vector. Thus,
a prefix-encoded attribute vector contains the following information:

• number of occurrences of the predominant value
• valueID of the predominant value from the dictionary
• valueIDs of the remaining values.

7.1.1 Example

Given is the attribute vector of the country column from the world population
table, which is sorted by population of countries in descending order. Thus, the
1.4 billion Chinese citizens are listed at first, then Indian citizens and so on. The
valueID for China, which is situated at position 37 in the dictionary (see Fig. 7.1a),
is stored 1.4 billion times at the beginning of the attribute vector in uncompressed
format. In compressed format, the valueID 37 will be written only once, followed
by the remaining valueIDs for the other countries as before. The number of
occurrences ‘‘1.4 billion’’ for China will be stored explicitly. Figure 7.1b depicts
examples of the uncompressed and compressed attribute vectors.

The following calculation illustrates the compression rate. First of all the
number of bits required to store all 200 countries is calculated as log2ð200Þ which
results in 8 bit.

Without compression the attribute vector stores the 8 bit for each valueID
8 billion times:

(a) (b)

Fig. 7.1 Prefix encoding example. (a) Dictionary. (b) Dictionary-encoded attribute vector (top)
and prefix-encoded dictionary-encoded attribute vector (bottom)
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8 billion � 8 bit ¼ 8 billion Byte ¼ 7:45 GB

If the country column is prefix-encoded, the valueID for China is stored only once
in 8 bit instead of 1.4 billion times 8 bit. An additional 31 bit field is added to
store the number of occurrences (dlog2 ð1:4 billionÞ e ¼ 31 bit). Consequently,
instead of storing 1.4 billion times 8 bit, only 31 bitþ 8 bit ¼ 39 bit are really
necessary. The complete storage space for the compressed attribute vector is now:

ð8 billion� 1:4 billionÞ � 8 bitþ 31 bitþ 8 bit ¼ 6:15 GB

Thus, 1.3 GB, i.e., 17 % of storage space is saved. Another advantage of prefix
encoding is direct access with row number calculation. For example, to find all
male Chinese the database engine can determine that only tuples with row num-
bers from 1 until 1.4 billion should be considered and then filtered by the gender
value.

Although we see that we have reduced the required amount of main memory, it
is evident that we still store much redundant information for all other countries.
Therefore, we introduce run-length encoding in the next section.

7.2 Run-Length Encoding

Run-length encoding is a compression technique that works best if the attribute
vector consists of few distinct values with a large number of occurrences. For
maximum compression rates, the column needs to be sorted, so that all the same
values are located together. In run-length encoding, value sequences with the same
value are replaced with a single instance of the value and

(a) either its number of occurrences or
(b) its starting position as offsets.

Figure 7.2 provides an example of run-length encoding using the starting
positions as offsets. Storing the starting position speeds up access. The address of a
specific value can be read in the column directly instead of computing it from the
beginning of the column, thus, providing direct access.

7.2.1 Example

Applied to our example of the country column sorted by population, instead of
storing all 8 billion values (7.45 GB), we store two vectors:

• one with all distinct values: 200 times 8 bit
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• the other with starting positions: 200 times 33 bit with 33 bit necessary to store
the offsets up to 8 billion (dlog2 ð8 billionÞe ¼ 33 bit). An additional 33 bit field
at the end of this vector stores the number of occurrences for the last value.

Hence, the size of the attribute vector can be significantly reduced to approxi-
mately 1 KB without any loss of information:

200 � ð33 bitþ 8 bitÞ þ 33 bit � 1 KB

If the number of occurrences is stored in the second vector, one field of 33 bit
can be saved with the disadvantage of losing the direct access possibility via
binary search. Losing direct access results in longer response times, which is no
option for enterprise data management.

7.3 Cluster Encoding

Cluster encoding works on equal-sized blocks of a column. The attribute vector is
partitioned into N blocks of fixed size (typically 1024 elements). If a cluster
contains only a single value, it is replaced by a single occurrence of this value.
Otherwise, the cluster remains uncompressed. An additional bit vector of length N
indicates which blocks have been replaced by a single value (1 if replaced, 0
otherwise). For a given row, the index of the corresponding block is calculated by
integer division of the row number and the block size N. Figure 7.3 depicts an
example for cluster encoding with the uncompressed attribute vector on the top
and the compressed attribute vector on the bottom. Here, the blocks only contain
four elements for simplicity.

(a) (b)

Fig. 7.2 Run-length encoding example. (a) Dictionary. (b) Dictionary-encoded attribute vector
(top) and compressed dictionary-encoded attribute vector (bottom)
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7.3.1 Example

Given is the city column (1 million different cities) from the world population
table. The whole table is sorted by country and city. Hence, cities, which belong to
the same country, are stored next to each other. Consequently, the occurrences of
the same city values are stored next to each other, as well. 20 bit are needed to
represent 1 million city valueIDs (dlog2 (1 million) e ¼ 20 bit). Without com-
pression, the city attribute vector requires 18.6 GB (8 billion times 20 bit).

Now, we compute the size of the compressed attribute vector illustrated in
Fig. 7.3. With a cluster size of 1024 elements the number of blocks is 7.8 million
( 8 billion rows
1024 elements per block). In the worst case every city has 1 incompressible block. Thus,

the size of the compressed attribute vector is computed from the following sizes:

incompressible blocksþ compressible blocksþ bit vector

¼ 1 million � 1024 � 20 bitþ ð7:8� 1Þmillion � 20 bitþ 7:8 million � 1 bit

¼ 2441 MBþ 16 MBþ 1 MB

� 2:4 GB

With a resulting size of 2.4 GB, a compression rate of 87 % (16.2 GB less
space required) can be achieved.

Cluster encoding does not support direct access to records. The position of a
record needs to be computed via the bit vector. As an example, consider the query
that counts how many men and women live in Berlin (for simplicity, we assume
that only one city with the name ‘‘Berlin’’ exists and the table is sorted by city):

To find the recordIDs for the result set, we look up the valueID for ‘‘Berlin’’ in
the dictionary. In our example, illustrated in Fig. 7.4, this valueID is 3. Then, we
scan the cluster-encoded city attribute vector for the first appearance of valueID 3.

Fig. 7.3 Cluster encoding example
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While scanning the cluster-encoded vector, we need to maintain the corresponding
position in the bit vector, as each position in the vector is mapped to either one
value (if the cluster is compressed) or four values (if the cluster is uncompressed)
of the cluster-encoded city attribute vector. In Fig. 7.4, this is illustrated by
stretching the bit vector to the corresponding value or values of the cluster-
encoded attribute vector. After the position is found, a bit vector lookup is needed
to check whether the block(s) containing this valueID are compressed or not to
determine the recordID range containing the value ‘‘Berlin’’. In our example, the
first block containing ‘‘Berlin’’ is uncompressed and the second one is compressed.
Thus, we need to analyze the first uncompressed block to find the first occurrence
of valueID 3, which is the second position, and can calculate the range of re-
cordIDs with valueID 3, in our example 10 to 16. Having determined the re-
cordIDs that match the city predicate, we can use these recordID to access the
corresponding gender records and aggregate according to the gender values.

7.4 Indirect Encoding

Similar to cluster encoding, indirect encoding operates on blocks of data with N
elements (typically 1024). Indirect Encoding can be applied efficiently if data
blocks hold a few numbers of distinct values. It is often the case if a table is sorted
by another column and a correlation between these two columns exists (e.g., name
column if table is sorted by countries).

Fig. 7.4 Cluster encoding example: no direct access possible
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Besides a global dictionary used by dictionary encoding in general, additional
local dictionaries are introduced for those blocks that contain only a few distinct
values. A local dictionary for a block contains all (and only those) distinct values
that appear in this specific block. Thus, mapping to even smaller valueIDs can
save space. Direct access is still possible, however, an indirection is introduced
because of the local dictionary. Figure 7.5 depicts an example for indirect
encoding with a block size of 1024 elements. The upper part shows the dictio-
nary-encoded attribute vector, the lower part shows the compressed vector. The
first block contains only 200 distinct values and is compressed. The second block
is not compressed.

7.4.1 Example

Given is the dictionary-encoded attribute vector for the first name column
(5 million distinct values) of the world population table that is sorted by country.
The number of bits required to store 5 million distinct values is 23 bit
(dlog2 ð5 millionÞ e ¼ 23 bit). Thus, the size of this vector without additional
compression is 21.4 GB (8 billion � 23 bit).

Now we split up the attribute vector into blocks of 1024 elements resulting in
7.8 million blocks (8 billion rows

1024 elements). For our calculation and for simplicity, we assume
that each set of 1024 people of the same country contains on average 200 different
first names and all blocks will be compressed. The number of bits required to
represent 200 different values is 8 bit (dlog2ð200Þe ¼ 8 bit). As a result, the ele-
ments in the compressed attribute vector need only 8 bit instead of 23 bit when
using local dictionaries.

23 bit 

Indirect 
encoding

23 bit per element 8 bit per element 

23 bit per element 

Fig. 7.5 Indirect encoding example
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Dictionary sizes can be calculated from the (average) number of distinct values
in a block (200) multiplied by the size of the corresponding old valueID (23 bit)
being the value in the local dictionary. For the reconstruction of a certain row, a
pointer to the local dictionary for the corresponding block is stored (64 bit). Thus,
the runtime for accessing a row is constant. The total amount of memory necessary
for the compressed attribute vector is calculated as follows:

local dictionariesþ compressed attribute vector

¼ ð200 � 23 bitþ 64 bitÞ � 7:8 million blocksþ 8 billion � 8 bit

¼ 4:2 GBþ 7:6 GB

� 11:8 GB

Compared to the 21.4 GB for the dictionary-encoded attribute vector, a saving
of 9.6 GB (44 %) can be achieved. The following example query that selects the
birthdays of all people named ‘‘John’’ in the ‘‘USA’’ shows that indirect encoding
allows for direct access:

As the table is sorted by country, we can easily identify the recordIDs of the
records with country=‘‘USA’’, and determine the corresponding blocks to scan the
‘‘first_name’’ column by dividing the first and last recordID by the cluster size.

Fig. 7.6 Indirect encoding example: direct access

Listing 7.4.1: Birthdays for all residents of the USA with first name John
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Then, the valueID for ‘‘John’’ is retrieved from the global dictionary and, for each
block, the global valueID is translated into the local valueID by looking it up in the
local dictionary. This is illustrated in Fig. 7.6 for a single block. Then, the block is
scanned for the local valueID and corresponding recordIDs are returned for the
birthday projection. In most cases, the starting and ending recordID will not match
the beginning and the end of a block. In this case, we only consider the elements
between the first above found recordID in the starting block up to the last found
recordID for the value ‘‘USA’’ in the ending block.

7.5 Delta Encoding

The compression techniques covered so far reduce the size of the attribute
vector. There are also some compression techniques to reduce the data amount in
the dictionary as well. Let us assume that the data in the dictionary is sorted
alpha-numerically and we often encounter a large number of values with the
same prefixes. Delta encoding exploits this fact and stores common prefixes only
once.

Delta encoding uses a block-wise compression like in previous sections with
typically 16 strings per block. At the beginning of each block, the length of the first
string, followed by the string itself, is stored. For each following value, the number
of characters used from the previous prefix, the number of characters added to this
prefix and the characters added are stored. Thus, each following string can be
composed of the characters shared with the previous string and its remaining part.
Figure 7.7 shows an example of a compressed dictionary. The dictionary itself is
shown in Fig. 7.7a. Its compressed counterpart is provided in Fig. 7.7b.

(a) (b)

Fig. 7.7 Delta encoding example. a Dictionary. b Compressed dictionary
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7.5.1 Example

Given is a dictionary for the city column sorted alpha-numerically. The size of the
uncompressed dictionary with 1 million cities, each value using 49 Byte (we
assume the longest city name has 49 letters), is 46.7 MB.

For compression purposes, the dictionary is separated into blocks of 16 values.
Thus, the number of blocks is 62,500 ð1 million cities

16 Þ. Furthermore, we assume the
following data characteristics to calculate the required size in memory:

• average length of city names is 7
• average overlap of 3 letters
• the longest city name is 49 letters ðdlog2ð49Þe ¼ 6 bitÞ.

The size of the compressed dictionary is now calculated as follows:

block size � number of blocks

¼ encoding lengthsþ 1st cityþ 15 other cities � number of blocks

¼ ðð1þ 15 � 2Þ � 6 bitþ 7 � 1 Byteþ 15 � ð7� 3Þ � 1 ByteÞ � 62; 500

� 5:4 MB

Compared to the 46.7 MB without compression the saving is 42.2 MB (90 %).

7.6 Limitations

What has to be kept in mind is that most compression techniques require sorted
sets to tap their full potential, but a database table can only be sorted by one
column or cascading. Furthermore, some compression techniques do not allow
direct access. This has to be carefully considered with regard to response time
requirements of queries.

7.7 Self Test Questions

1. Sorting Compressed Tables
Which of the following statements is correct?

(a) If you sort a table by the amount of data for a row, you achieve faster read
access

(b) Sorting has no effect on possible compression algorithms
(c) You can sort a table by multiple columns at the same time
(d) You can sort a table only by one column.
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2. Compression and OLAP / OLTP
What do you have to keep in mind if you want to bring OLAP and OLTP
together?

(a) You should not use any compression techniques because they increase
CPU load

(b) You should not use compression techniques with direct access, because
they cause major security concerns

(c) Legal issues may prohibit to bring certain OLTP and OLAP datasets
together, so all entries have to be reviewed

(d) You should use compression techniques that give you direct positional
access, since indirect access is too slow.

3. Compression Techniques for Dictionaries
Which of the following compression techniques can be used to decrease the
size of a sorted dictionary?

(a) Cluster Encoding
(b) Prefix Encoding
(c) Run-Length Encoding
(d) Delta Encoding.

4. Indirect Access Compression Techniques
Which of the explained compression techniques does not support direct
access?

(a) Run-Length Encoding
(b) Prefix Encoding
(c) Cluster Encoding
(d) Indirect Encoding.

5. Compression Example Prefix Encoding
Suppose there is a table where all 80 million inhabitants of Germany are
assigned to their cities. Germany consists of about 12,200 cities, so the
valueID is represented in the dictionary via 14 bit. The outcome of this is that
the attribute vector for the cities has a size of 140 MB. We compress this
attribute vector with Prefix Encoding and use Berlin, which has nearly
4 million inhabitants, as the prefix value. What is the size of the compressed
attribute vector? Assume that the needed space to store the amount of prefix
values and the prefix value itself is neglectable, because the prefix value only
consumes 22 bit to represent the number of citizens in Berlin and additional
14 bit to store the key for Berlin once. Further assume the following con-
versions: 1 MB ¼ 1000 kB; 1 kB ¼ 1000 B

(a) 0.1 MB
(b) 133 MB
(c) 63 MB
(d) 90 MB
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6. Compression Example Run-Length Encoding Germany
Suppose there is a table where all 80 million inhabitants of Germany are
assigned to their cities. The table is sorted by city. Germany consists of about
12,200 cities (represented by 14 bit). Using Run-Length Encoding with a start
position vector, what is the size of the compressed city vector? Always use the
minimal number of bits required for any of the values you have to choose.
Further assume the following conversions: 1 MB ¼ 1000 kB; 1 kB ¼ 1000 B

(a) 1.2 MB
(b) 127 MB
(c) 5.2 KB
(d) 62.5 kB

7. Compression Example Cluster Encoding
Assume the world population table with 8 billion entries. This table is sorted
by countries. There are about 200 countries in the world. What is the size of
the attribute vector for countries if you use Cluster Encoding with
1,024 elements per block assuming one block per country can not be com-
pressed? Use the minimum required count of bits for the values. Further
assume the following conversions: 1 MB ¼ 1000 kB; 1 kB ¼ 1000 B

(a) � 9 MB
(b) � 4 MB
(c) � 0:5 MB
(d) � 110 MB

8. Best Compression Technique for Example Table
Find the best compression technique for the name column in the following
table. The table lists the names of all inhabitants of Germany and their cities,
i.e. there are two columns: first_name and city. Germany has about 80 million
inhabitants and 12,200 cities. The table is sorted by the city column. Assume
that any subset of 1,024 citizens contains at most 200 different first names.

(a) Run-Length Encoding
(b) Indirect Encoding
(c) Prefix Encoding
(d) Cluster Encoding.
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Chapter 8
Data Layout in Main Memory

In this chapter, we address the question how data is organized in memory. Relational
database tables have a two-dimensional structure but main memory is organized
unidimensional, providing memory addresses that start at zero and increase serially
to the highest available location. The database storage layer has to decide how to
map the two-dimensional table structures to the linear memory address space.

We will consider two ways of representing a table in memory, called row and
columnar layout, and a combination of both ways, a hybrid layout.

8.1 Cache Effects on Application Performance

In order to understand the implications introduced by row-based and column-based
layouts, a basic understanding of memory access performance is essential. Due to
the different available types of memory as described in Sect. 4.1, modern computer
systems leverage a so-called memory hierarchy as described in Sect. 4.2. These
caching mechanisms plus techniques like the Translation Lookaside Buffer (TLB,
see Sect. 4.4) or hardware prefetching (see Sect. 4.5) introduce various perfor-
mance implications, which will be outlined in this section that is based on [SKP12].

The described caching and virtual memory mechanisms are implemented as
transparent systems from the viewpoint of an actual application. However,
knowing the used system with its characteristics and optimizing applications based
on this knowledge can have crucial implications on application performance.

The following two sections describe two small experiments, outlining perfor-
mance differences when accessing main memory. These experiments are for the
interested reader and will not be relevant for the exam.

8.1.1 The Stride Experiment

As the name random access memory suggests, the memory can be accessed ran-
domly and one would expect constant access costs. In order to test this assumption,

H. Plattner, A Course in In-Memory Data Management,
DOI: 10.1007/978-3-642-36524-9_8, � Springer-Verlag Berlin Heidelberg 2013
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we run a simple benchmark accessing a constant number (4,096) of addresses with
an increasing stride, i.e. distance, between the accessed addresses.

We implemented this benchmark by iterating through an array chasing a
pointer. The array is filled with structs so that following the pointer of the elements
creates a circle through the complete array. Structs are data structures, which allow
to create user-defined aggregate data types that group multiple individual variables
together. The structs consist of a pointer and an additional data attribute realizing
the padding in memory, resulting in a memory access with the desired stride when
following the pointer chained list.

In case of a sequential array, the pointer of element i points to element iþ 1 and
the pointer of the last element references the first element so that the circle is
closed. In case of a random array, the pointer of each element points to a random
element of the array while ensuring that every element is referenced exactly once.
Figure 8.1 outlines the created sequential and random array.

If the assumption holds and random memory access costs are constant, then the
size of the padding in the array and the array layout (sequential or random) should
make no difference when iterating over the array. Figure 8.2 shows the result for
iterating through a list with 4,096 elements, while following the pointers inside the
elements and increasing the padding between the elements. As we can clearly see,
the access costs are not constant and increase with an increasing stride. We also see
multiple points of discontinuity in the curves, e.g. the random access times increase
heavily up to a stride of 64 bytes and continue increasing with a smaller slope.

Figure 8.3 indicates that an increasing number of cache misses is causing the
increase in access times. The first point of discontinuity in Fig. 8.2 is quite exactly
the size of the cache lines of the test system. The strong increase is due to the fact,
that with a stride smaller than 64 bytes, multiple list elements are located on one
cache line and the overhead of loading one line is amortized over the multiple
elements.

pointer padding pointer padding pointer padding pointer padding

pointer padding pointer padding pointer padding pointer padding

Fig. 8.1 Sequential versus random array layout
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For strides greater than 64 bytes, we would expect a cache miss for every single
list element and no further increase in access times. However, as the stride gets
larger the array is placed over multiple pages in memory and more TLB misses
occur, as the virtual addresses on the new pages have to be translated into physical
addresses. The number of TLB cache misses increases up to the page size of 4 KB
and stays at its worst case of one miss per element. With strides greater as the page
size, the TLB misses can induce additional cache misses when translating the
virtual to a physical address. These cache misses are due to accesses to the paging
structures which reside in main memory [BCR10, BCR10, SS95].

To summarize, the performance of main memory accesses can largely differ
depending on the access patterns. In order to improve application performance,
main memory access should be optimized in order to exploit the usage of caches.

8.1.2 The Size Experiment

In a second experiment, we access a constant number of addresses in main
memory with a constant stride of 64 bytes and vary the size of the working set size
or accessed area in memory. A run with n memory accesses and a working set size
of s bytes would iterate n

s�64 times through the array, which is created as described
earlier in the stride experiment in Sect. 8.1.1.

Figure 8.4a shows that the access costs differ up to a factor of 100, depending
on the working set size. The points of discontinuity correlate with the sizes of the
caches in the system. As long as the working set size is smaller than the size of the
L1 Cache, only the first iteration results in cache misses and all other accesses can
be answered out of the cache. As the working set size increases, the accesses in
one iteration start to evict the earlier accessed addresses, resulting in cache misses
in the next iteration.
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Figure 8.4b shows the individual cache misses with increasing working set
sizes. Up to working sets of 32 KB, the misses for the L1 cache go up to one per
element, the L2 cache misses reach their plateau at the L2 cache size of 256 KB
and the L3 cache misses at 12 MB.

As we can see, the larger the accessed area in main memory, the more capacity
cache misses occur, resulting in poorer application performance. Therefore, it is
advisable to process data in cache friendly chunks if possible.

8.2 Row and Columnar Layouts

Let us consider a simple example to illustrate the two mentioned approaches for
representing a relational table in memory. For simplicity, we assume that all values

(a)

(b)

Fig. 8.3 Cache misses for cache accesses with increasing stride. (a) Sequential Access.
(b) Random Access
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are stored as strings directly in memory and that we do not need to store any
additional data. As an example, let us look at the simple world population example:

Id Name Country City

1 Paul Smith Australia Sydney
2 Lena Jones USA Washington
3 Marc Winter Germany Berlin

As discussed above, the database must transform its two-dimensional table into a
one-dimensional series of bytes for the operating system to write them to memory.
The classical and obvious approach is a row- or record-based layout. In this case,
all attributes of a tuple are stored consecutively and sequentially in memory. In
other words, the data is stored tuple-wise. Considering our example table, the data
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Fig. 8.4 Cycles and cache misses for cache accesses with increasing working sets. (a) Sequential
Access. (b) Random Access

8.2 Row and Columnar Layouts 59



would be stored as follows: ‘‘1, Paul Smith, Australia, Sydney; 2, Lena
Jones, USA, Washington; 3, Marc Winter, Germany, Berlin’’.

On the contrary, in a columnar layout , the values of one column are stored
together, column by column. The resulting layout in memory for our example
would be: ‘‘1, 2, 3; Paul Smith, Lena Jones, Marc Winter; Austra-
lia, USA, Germany; Sydney, Washington, Berlin’’.

The columnar layout is especially effective for set-based reads. In other words, it
is useful for operations that work on many rows but only on a notably smaller subset
of all columns, as the values of one column can be read sequentially, e.g. when
performing aggregate calculations. However, when performing operations on single
tuples or for inserting new rows, a row-based layout is beneficial. The different access
patterns for row-based and column-based operations are illustrated in Fig. 8.5.

(a)

(b)

Fig. 8.5 Illustration of memory accesses for row-based and column-based operations on row and
columnar data layouts.
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Currently, row-oriented architectures are widely used for OLTP workloads
while column stores are widely utilized in OLAP scenarios like data warehousing,
which typically involve a smaller number of highly complex queries over the
complete data set.

8.3 Benefits of a Columnar Layout

As mentioned above, there are use cases where a row-based table layout can be
more efficient. Nevertheless, many advantages speak in favor of the usage of a
columnar layout in an enterprise scenario.

First, when analyzing the workloads enterprise databases are facing, it turns out
that the actual workloads are more read-oriented and dominated by set
processing [KKG+11].

Second, despite the fact that hardware technology develops very rapidly and the
size of available main memory constantly grows, the use of efficient compression
techniques is still important in order to (a) keep as much data in main memory as
possible and to (b) minimize the amount of data that has to be read from memory
to process queries as well as the data transfer between non-volatile storage
mediums and main memory.

Using column-based table layouts enables the use of efficient compression
techniques leveraging the high data locality in columns (see Chap. 7). They mainly
use the similarity of the data stored in a column. Dictionary encoding can be
applied to row-based as well as column-based table layout, whereas other tech-
niques like prefix encoding, run-length encoding, cluster encoding or indirect
encoding directly leverage the benefits of columnar table layouts.

Third, using columnar table layouts enables very fast column scans as they can
sequentially scan the memory, allowing e.g. on the fly calculations of aggregates.
Consequently, storing pre-calculated aggregates in the database can be avoided,
thus minimizing redundancy and complexity of the database.

8.4 Hybrid Table Layouts

As stated above, set processing operations are dominating enterprise workloads.
Nevertheless, each concrete workload is different and might favor a row-based or a
column-based layout. Hybrid table layouts combine the advantages of both worlds,
allowing to store single attributes of a table column oriented while grouping other
attributes into a row-based layout [GKP+11]. The actual optimal combination highly
depends on the actual workload and can be calculated by layouting algorithms.

As an illustrating example, think about attributes, which inherently belong
together in commercial applications, e.g. quantity and measuring unit or payment
conditions in accounting. The idea of the hybrid layout is that if the set of attributes
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are processed together, it makes sense from a performance point of view to phys-
ically store them together. Considering the example table provided in Sect. 8.2 and
assuming the fact that the attributes Id and Name are often processed together, we
can outline the following hybrid data layout for the table: ‘‘1, Paul Smith; 2,
Lena Jones; 3, Marc Winter; Australia, USA, Germany; Sydney,
Washington, Berlin’’. This hybrid layout may decrease the number of cache
misses caused by the expected workload, resulting in increased performance.

The usage of hybrid layouts can be beneficial but also introduces new questions
like how to find the optimal layout for a given workload or how to react on a
changing workload.

8.5 Self Test Questions

1. When DRAM can be accessed randomly with the same costs, why are con-
secutive accesses usually faster than stride accesses?

(a) With consecutive memory locations, the probability that the next requested
location has already been loaded in the cache line is higher than with
randomized/strided access. Furthermore is the memory page for consecu-
tive accesses probably already in the TLB

(b) The bigger the size of the stride, the higher the probability, that two values
are both in one cache line

(c) Loading consecutive locations is not faster, since the CPU performs better
on prefetching random locations, than prefetching consecutive locations

(d) With modern CPU technologies like TLBs, caches and prefetching, all
three access methods expose the same performance.
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Chapter 9
Partitioning

9.1 Definition and Classification

Partitioning is the process of dividing a logical database into distinct independent
datasets. Partitions are database objects itself and can be managed independently.
The main reason to apply data partitioning is to achieve data-level parallelism.
Data-level parallelism enables performance gains, a classic example for that is to
use a multi-core CPU to process several distinct data areas in parallel, whereas
each core works on a separate partition. Since partitioning is applied as a technical
step to increase the query speed, it should be transparent1 to the user. In order to
ensure the transparency of the applied partitioning for the end user, a view
showing the complete table as a union of all query results from all involved
partitions is required. With data-level parallelism it is possible to increase per-
formance, availability, or manageability of datasets. Which of these sometimes
contradicting goals is favored usually depends on the actual use case. Two short
examples are given in Sect. 9.4. Because data partitioning is a classical NP-
complete2 problem, finding the best partition is a complicated task, even if the
desired goal has been clearly outlined [Kar72]. There are mainly two types of data
partitioning: horizontal and vertical partitioning, which will be covered in detail in
the following.

9.2 Vertical Partitioning

Vertical partitioning results in splitting the data into attribute groups with repli-
cated primary keys. These groups are then distributed across two (or more) tables
(Fig. 9.1). Attributes that are usually accessed together should be in the same table,
in order to increase join performance. Such optimizations can only be applied if

1 Transparent in IT means that something is completely invisible to the user, not that the user can
inspect the implementation through the cover. Except of their effects like improvements in
speed or usability, transparent components should not be noticeable at all.

2 NP-complete means that the problem can not be solved in polynomial time.
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actual usage data exists, which is one point why application development should
always be based on real customer data and workloads.

In row-based databases, vertical partitioning is possible in general. However, it
is not a common approach because it is hard to establish, because the underlying
concept of values tuple wise is contradicted when separating parts of the attributes.
Column-based databases implicitly support vertical partitioning, since each col-
umn can be regarded as a possible partition.

9.3 Horizontal Partitioning

Horizontal Partitioning is used more often in classic row-oriented databases. To
apply this partitioning, the table is split into disjoint tuple groups by some con-
dition. There are several sub-types of horizontal partitioning:

The first partitioning approach we present here is range partitioning, which
separates tables into partitions by a predefined partitioning key, which determines
how individual data rows are distributed to different partitions. The partition key
can consist of a single key column or multiple key columns. For example, cus-
tomers could be partitioned based on their date of birth. If one is aiming for a
number of four partitions, each partition would cover a range of about 25 years
(Fig. 9.2).3 Because the implications of the chosen partition key depend on the
workload, it is not trivial to find the optimal solution.

The second horizontal partitioning type is round robin partitioning. With round
robin, a partitioning server does not use any tuple information as partitioning
criteria, so there is no explicit partition key. The algorithm simply assigns tuples
turn by turn to each partition, which automatically leads to an even distribution of
entries and should support load-balancing to some extent (Fig. 9.3).

However, since specific entries might be accessed way more often than others,
an even workload distribution can not be guaranteed. Improvements from intel-
ligent data co-location or appropriate data-placement are not leveraged, because
the data distribution is not dependent on the data, but only on the insertion order.

CountryCityGenderDoB
Last 

Name
First 

Name
ID

ID DoB
Last 

Name
First 

Name
Gender CountryCityID

Fig. 9.1 Vertical partitioning

3 Based on the assumption that the companies’ customers mainly live nowadays and are between
0 and 100 years old.
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The third horizontal partitioning type is hash-based partitioning. Hash parti-
tioning uses a hash function4 to specify the partition assignment for each row
(Fig. 9.4).

The main challenge for hash-based partitioning is to choose a good hash
function, that implicitly achieves locality or access improvements.

The last partitioning type is semantic partitioning. It uses knowledge about the
application to split the data. For example, a database can be partitioned according
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to the life-cycle of a sales order. All tables required for the sales order represent
one or more different life-cycle steps, such as creation, purchase, release, delivery,
or dunning of a product. One possibility for suitable partitioning is to put all tables
that belong to a certain life-cycle step into a separate partition.

9.4 Choosing a Suitable Partitioning Strategy

There are number of different optimization goals to be considered while choosing a
suitable partitioning strategy. For instance, when optimizing for performance, it
makes sense to have tuples of different tables, that are likely to be joined for
further processing, on one server. This way the join can be done much faster due to
optimal data locality, because there is no delay for transferring the data across the
network. In contrast, for statistical queries like counts, tuples from one table
should be distributed across as many nodes as possible in order to benefit from
parallel processing.

To sum up, the best partitioning strategy depends very much on the specific use
case.

9.5 Self Test Questions

1. Partitioning Types
Which partitioning types do really exist and are mentioned in the course?

(a) Selective Partitioning
(b) Syntactic Partitioning
(c) Range Partitioning
(d) Block Partitioning.

2. Partitioning Type for Given Query
Which partitioning type fits best for the column ‘birthday’ in the world pop-
ulation table, when we assume that the main workload is caused by queries like
‘SELECT first_name, last_name FROM population WHERE birthday
[ 01:01:1990 AND birthday \31:12:2010 AND country ¼ ‘England’?
Assume a non-parallel setting, so we can not scan partitions in parallel. The
only parameter that is changed in the query is the country.

(a) Round Robin Partitioning
(b) All partitioning types will show the same performance
(c) Range Partitioning
(d) Hash Partitioning.
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3. Partitioning Strategy for Load Balancing
Which partitioning type is suited best to achieve fair load-balancing if the
values of the column are non-uniformly distributed?

(a) Partitioning based on the number of attributes used modulo the number of
systems

(b) Range Partitioning
(c) Round Robin Partitioning
(d) All partitioning types will show the same performance.

Reference

[Kar72] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations, eds. by R. Miller, J. Thatcher (Plenum Press, 1972), pp. 85–103
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Chapter 10
Delete

The delete operation terminates the validity of a given tuple. It stores the infor-
mation in the database that a certain item is no longer valid This operation can
either be of physical or logical nature. A physical delete operation removes an item
from the database so that it is no longer physically accessible. In contrast, a logical
delete operation only terminates the validity of an item in the dataset, but keeps the
tuple still available for temporal queries [Pla09].

The simplified SQL-Syntax for a delete statement looks like the following,
where the predicate may select a single or multiple tuples.

10.1 Example of Physical Delete

In the following example, all persons with the name ‘Jane Doe’ are supposed to be
removed from a database table storing first and last names. Based on the applied
dictionary encoding (see Chap. 6), the table consists of two dictionaries and two
value attribute vectors.

First, the valueIDs for the first and last name need to be identified. Jane corre-
sponds to valueID 23 and Doe to valueID 18, according to their respective dictionary.

Listing 10.1: Delete syntax
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Next, we scan through the attribute vectors and find the appropriate positions,
which means we look up the recordIDs for these values. In our example, there is
only one tuple with that combination of first and last name.

When finally deleting the two values from the attribute vectors, all subsequent
tuples need to be adjusted to maintain a sequence without gaps and they are moved to
preserve a sequential memory area. This implementation alternative of the delete
operation is therefore very expensive in terms of performance. In Chap. 26, later
during the course, the insert-only approach is presented as a better alternative to
implement deletion in typical enterprise use cases. This approach is of logical nature.
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10.2 Self Test Questions

1. Delete Implementations
Which two possible delete implementations are mentioned in the course?

(a) White box and black box delete
(b) Physical and logical delete
(c) Shifted and liquid delete
(d) Column and row deletes

2. Arrays to Scan for Specific Query with Dictionary Encoding
When applying a delete with two predicates, e.g. firstname ¼ ‘John’ AND
lastname ¼ ‘Smith’, how many logical blocks in the IMDB are being looked at
during determination which tuples to delete (all columns are dictionary
encoded)?

(a) 1
(b) 2
(c) 4
(d) 8

3. Fast Delete Execution
Assume a physical delete implementation and the following two SQL state-
ments on our world population table:

(A) DELETE FROM world_population WHERE country ¼ ‘China’;
(B) DELETE FROM world_population WHERE country ¼ ‘Ireland’; Which

query will execute faster? Please only consider the concepts learned so far.

(a) Equal execution time
(b) A
(c) Depends on the ordering of the dictionary
(d) B

Reference

[Pla09] H. Plattner, in A common database approach for OLTP and OLAP using an in-memory
column database, ed. by U. Çetintemel, S. Zdonik, D. Kossmann. SIGMOD Conference
(ACM, Newyork, 2009), pp. 1–2
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Chapter 11
Insert

This chapter outlines what happens when inserting a new tuple into a table
(execution of an insert statement). Compared to a row-based database, the insert in
a column store is a bit more complicated. For a row-oriented database, the new
tuple is simply appended to the end of the table, i.e., the tuple is stored as one
piece. SanssouciDB uses column-orientation to store the data physically. A
detailed description of the differences between row store and column store is given
in Chap. 8. So, adding a new tuple to the database means to add a new entry to
every column that the table comprises of. Internally, every column consists of a
dictionary and an attribute vector (see Chap. 6). Adding a new entry to a column
means to check the dictionary and adding a new value if necessary. Afterwards, the
respective value of the dictionary entry is added to the attribute vector of the
column. Since the dictionary is sorted, adding a new entry to a column results in
three different scenarios:

1. Without a new dictionary entry
2. With a new dictionary entry, without resorting the dictionary
3. With a new dictionary entry, with resorting the dictionary

In this chapter, we will give a step by step explanation of the three different
scenarios.

11.1 Example

In this example, we insert the data of a new person into the world_population table
(see Fig. 11.1) that we used before.The example outlines what happens for the
column lname, representing the last name of a person, and fname, representing the
first name of a person.
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11.1.1 INSERT without New Dictionary Entry

To demonstrate a scenario were we have an insert without a new entry to the
dictionary, we will look at the insert of the last name attribute to the lname column
of our world_population table. Attribute vector and dictionary of the lname col-
umn are initially filled as displayed in Fig. 11.2.

To add the string Schulze to the column, we need to look up whether it already
exists in the dictionary. Since there is another person named Sophie Schulze
(recordID four of the world_population table) in the database, the dictionary for
the lname column already contains an entry with the string Schulze. As one can see
from Fig. 11.3, the dictionary position of Schulze is ‘‘3’’.

Since Schulze is on position 3 of the dictionary, we append 3 to the end of the
attribute vector (see Fig. 11.4).

11.1.2 INSERT with New Dictionary Entry

When inserting the first name, the first name dictionary is scanned for the string
Karen. As shown in Fig. 11.5, this name is not present in the dictionary, yet.

Therefore, the name is appended to the end of the first name dictionary (see
Fig. 11.6).

As outlined in Chap. 6, the dictionary needs to be kept sorted. After appending
Karen to the end of the dictionary, the dictionary needs to be resorted. Therefore,
as shown in Fig. 11.7, a new dictionary is created with sorted order. In the new
dictionary most of the dictionaryIDs changed. For instance, the valueID for
Michael is changed from 3 to 4.

Fig. 11.1 Example database table named world_population
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Fig. 11.2 Initial status of the lname column

Fig. 11.3 Position of the string Schulze in the dictionary of the lname column

Fig. 11.4 Appending dictionary position of Schulze to the end of the attribute vector
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Based on the changed valueIDs of the new first name dictionary, all valueIDs of
the first name attribute vector need to be updated as well. Figure 11.8 shows the
changes to the attribute vector. For instance at position 1, the valueID for Michael
is changed from 3 to 4.

Fig. 11.5 Dictionary for first name column

Fig. 11.6 Addition of Karen to fname dictionary

Fig. 11.7 Resorting the fname dictionary
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In case the newly added dictionary value is inserted at the end based on the
sorting order of the dictionary, those two steps are omitted. The dictionary does not
need to be resorted and therefore the attribute vector does not need to be rebuild.

Finally the valueID 2, representing the dictionary position of the string Karen,
is appended to the attribute vector (see Fig. 11.9).

11.2 Performance Considerations

When thinking of the world_population example, there are about 8 billion people
and 5 million unique first names. Every new entry to the dictionary may cause an
overhead regarding resorting of the dictionary and reorganization of the respective
attribute vector. Triggering resorting and reorganization at every single insert
would lead to a performance penalty, which compromises the overall performance
of the system.Therefore, an additional insert layer needs to be added, the differ-
ential buffer. Chapter 25 explains in detail how write performance is kept at a high
level using periodic merges of the differential buffer and the main store.

Fig. 11.9 Appending the valueID representing Karen to the attribute vector

Fig. 11.8 Rebuilding the fname attribute vector
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The vulnerability of a column to reorganization heavily depends on the column
cardinality (the number of distinct values in a dictionary). When the dictionary
only has a few entries, it is most likely that a column needs to be reorganized with
a new insert. However, especially with attributes of low column cardinality, e.g.,
gender or country, the likelihood of reorganization decreases over time, since most
of the possible values for the respective column have been inserted into the dic-
tionary already. In real world applications, the dictionary only changes occa-
sionally after it has reached a certain size. The additional steps necessary for new
unique dictionary entries will occur less frequent and therefore expensive reor-
ganization becomes less frequent.

11.3 Self Test Questions

1. Access Order of Structures During Insert
When doing an insert, what entity is accessed first?

(a) The attribute vector
(b) The dictionary
(c) No access of either entity is needed for an insert
(d) Both are accessed in parallel in order to speed up the process.

2. New Value in Dictionary
Given the following entities:
Old dictionary: ape, dog, elephant, giraffe
Old attribute vector: 0, 3, 0, 1, 2, 3, 3
Value to be inserted: lamb
What value is the lamb mapped to in the new attribute vector?

(a) 1
(b) 2
(c) 3
(d) 4

3. Insert Performance Variation Over Time
Why might real world productive column stores experience faster insert per-
formance over time?

(a) Because the dictionary reaches a state of saturation and, thus, rewrites of
the attribute vector become less likely.

(b) Because the hardware will run faster after some run-in time.
(c) Because the column is already loaded into main-memory and does not have

to be loaded from disk.
(d) An increase in insert performance should not be expected.
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4. Resorting Dictionaries of Columns
Consider a dictionary encoded column store (without a differential buffer) and
the following SQL statements on an initially empty table:
INSERT INTO students VALUES(‘Daniel’, ‘Bones’, ‘USA’);
INSERT INTO students VALUES(‘Brad’, ‘Davis’, ‘USA’);
INSERT INTO students VALUES(‘Hans’, ‘Pohlmann’, ‘GER’);
INSERT INTO students VALUES(‘Martin’, ‘Moore’, ‘USA’);
How many complete attribute vector rewrites are necessary?

(a) 2
(b) 3
(c) 4
(d) 5

5. Insert Performance
Which of the following use cases will have the worst insert performance when
all values will be dictionary encoded?

(a) A city resident database, that store all the names of all the people from that
city

(b) A database for vehicle maintenance data which stores failures, error codes
and conducted repairs

(c) A password database that stores the password hashes
(d) An inventory database of a company storing the furnature for each room.

11.3 Self Test Questions 81



Chapter 12
Update

The ‘‘UPDATE’’ is part of SQL’s data manipulation language (DML) and is used
for changing one or more tuples in a table. The UPDATE statement has the
following general form:

The optional WHERE condition restricts the update to tuples that match the
given condition. If no WHERE condition is specified, then all tuples in the table
are updated. Logically, i.e., in relational algebra, an UPDATE statement is
equivalent to a DELETE statement followed by an INSERT statement.

12.1 Update Types

Three different types of updates can be found in a typical enterprise application
[Pla09]:

• Aggregate update: The attributes are accumulated values as part of materialized
views. From our experience in enterprise systems, typically between 1 and 5
materialized aggregates are maintained for each accounting line item.

• Status update: Binary change of a status variable, typically with timestamps
• Value update: The value of an attribute changes by replacement.

12.1.1 Aggregate Updates

Most of the updates taking place in financial applications apply to complete
records, containing e.g. account number, legal organization, year, etc. The system

Listing 12.1: Update syntax
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contains aggregates for these records, e.g., by account, by project, or by region.
Directly reading these aggregates is faster than computing them on the fly.

12.1.2 Status Updates

Status variables (e.g. unpaid, paid) typically use a predefined set of a small number
values and thus create no problem when performing an in-place update since the
column cardinality does not change. It is advisable that compression of sequences
(e.g. run-length encoding) in the columns is not allowed for status fields. If the
automatic recording of status changes is preferable for the application, we can also
use the insert-only approach, which will be discussed in Chap. 26, for these
changes. In case the status variable has only two states, a null value and a time
stamp can be used as values to note if the status has been set. Thus, an in-place
update is fully transparent even considering temporal queries.

12.1.3 Value Updates

Since the change of an attribute in an enterprise application in most cases has to be
recorded (log of changes), the insert-only approach seems to be the appropriate
answer. On average only 5 % of the tuples of a financial accounting system are
actually changed over a longer period of time [KKG+11]. The extra load for the
differential buffer (the write-optimized store in a column store database, which
handles updates and inserts) and the extra consumption of main memory are
acceptable. With insert-only, we also capture the change history including time
and origin of the change.

Despite the fact that typical enterprise systems are not update-intensive, by
using insert-only and by not maintaining totals, we can even further reduce the
number of updates, which also reduces locking issues.

12.2 Update Example

Given is the world population table. Michael Berg moves from Berlin to Potsdam.
So the following query should be executed:

Listing 12.2: Michael Berg moves from Berlin to Potsdam
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Figure 12.1 shows the table before the update is executed.
Because the value ‘‘Potsdam’’ already exists in dictionary, the query executor

can simply look up the dictionary key for the value and update the attribute vector
accordingly. This is shown in Fig. 12.2.

Now, assume that Hanna Schulze moves from Hamburg to Bamberg:

This time, the value ‘‘Bamberg’’ is not yet in the dictionary.
The query executor performs the following actions:

1. The value ‘‘Bamberg’’ is appended at the end of the dictionary.
2. The dictionary is reorganized in order to maintain its sort order, which is

required for fast binary search on the dictionary.
3. Every value in the attribute vector is potentially updated (i.e. replaced with the

new dictionary value representing the actual value). Depending on the position

Fig. 12.1 The world_population table before updating

Listing 12.3: Hanna Schulze moves from Hamburg to Bamberg

Fig. 12.2 Dictionary, old and new attribute vector of the city column, and state of the
world_population table after updating
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of the new value in the new-sorted dictionary, this step becomes very expen-
sive. In our example, the complete attribute vector must be rewritten since
‘‘Bamberg’’ is the first item in the new-sorted dictionary.

Figure 12.3 illustrates this process.

12.3 Self Test Questions

1. Status Update Realization
How do we want to realize status updates for binary status variables?

(a) Single status field: ‘‘false’’ means state 1, ‘‘true’’ means state 2
(b) Two status fields: ‘‘true/false’’ means state 1, ‘‘false/true’’ means state 2
(c) Single status field: ‘‘null’’ means state 1, a timestamp signifies transition to

state 2
(d) Single status field: timestamp 1 means state 1, timestamp 2 means state 2.

2. Value Updates
What is a ‘‘value update’’?

(a) Changing the value of an attribute
(b) Changing the value of a materialized aggregate
(c) The addition of a new column
(d) Changing the value of a status variable.

Fig. 12.3 Updating the world_population table with a value that is not yet in the dictionary
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3. Attribute Vector Rewriting after Updates
Consider the world population table (first name, last name) that includes all
people in the world: Angela Mueller marries Friedrich Schulze and becomes
Angela Schulze. Should the complete attribute vector for the last name column
be rewritten?

(a) No, because ‘Schulze’ is already in the dictionary and only the valueID in
the respective row will be replaced

(b) Yes, because ‘Schulze’ is moved to a different position in the dictionary
(c) It depends on the position: All values after the updated row need to be

rewritten
(d) Yes, because after each update, all attribute vectors affected by the update

are rewritten.
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Chapter 13
Tuple Reconstruction

13.1 Introduction

As mentioned earlier, data with matrix characteristics can be stored in linear
memory either column by column (columnar layout) or row by row (row layout).
The impacts were already discussed in Chap. 8 in more detail. The columnar
layout is optimized for analytical set-based operations that work on many rows but
for a notably smaller subset of all columns of data. The row layout shows a better
performance for select operations on few single tuples. In this chapter, we discuss
the operations needed for tuple reconstruction in detail and explain the influence of
the different layouts on the performance of these operations. Tuple reconstruction
is a typical functionality in OLTP applications. It is executed whenever more than
one column is requested from the database, for example when the user in an ERP
system calls the ‘‘show’’ or ‘‘edit’’ transactions for the master data object or for a
document.

To explain the influence of the main memory layout organization on the per-
formance of the tuple reconstruction operation, we have to consider the notion of
the cache access and the size of the cache line. A CPU cache is a cache used by the
central processing unit of a computer to reduce the average time to access memory.
The cache is a smaller, faster memory which stores copies of the data from the
most frequently used main memory locations. Memory cache is organized in 32 or
64 byte long cache lines. Even when reading just one byte from the memory, the
CPU reads a complete cache line and places it into the cache. This characteristic of
a cache will help us to estimate the response time for the tuple reconstruction
operations for both layouts.

13.2 Tuple Reconstruction in Row-Oriented Databases

First, let us consider an example using the row layout. Let us assume, we need to
reconstruct the tuple knowing the position of the tuple. As a first example, we take
into account the following properties of the tuple:

H. Plattner, A Course in In-Memory Data Management,
DOI: 10.1007/978-3-642-36524-9_13, � Springer-Verlag Berlin Heidelberg 2013

89

http://dx.doi.org/10.1007/978-3-642-36524-9_8
http://dx.doi.org/10.1007/978-3-642-36524-9_8


• the size of one tuple is 200 byte;
• the number of attributes in the tuple is 6.

To estimate the result, we also need the following parameters:

• speed of the read operation from main memory: 2 MB/ms/core;
• we consider 64 byte long cache lines;
• all calculations will be done for one core per CPU. If we consider more cores,

the performance will increase appropriately.

Let us calculate how much time the read operation for the tuple reconstruction
will take in this case considering that the data is organized using row layout. The
operation is executed relatively fast, as all attributes are stored sequentially.
Considering a size of 200 bytes per tuple, we will need 4 cache accesses
(d200

64 e ¼ 4) to read the whole tuple from main memory. The CPU reads a bit more
than the size of a tuple (200 byte) in this case, because it will read a complete
cache line for every cache access (in case of a row layout, the CPU will load some
data of the following tuple to the cache). Thus, we read 256 byte from main
memory. Considering the speed 2 MB/ms/core, we can calculate the time as
described below:

Tuple reconstruction response time ðrow layoutÞ ¼ 256 byte
2;000;000 byte=ms=core

¼ 0:128 ls

13.3 Tuple Reconstruction in Column-Oriented Databases

Now let us estimate the processing time for the same operation and tuples with the
same characteristics but taking into account that the data is organized in a columnar
layout. The data is stored attribute-wise in this case. To reconstruct the tuple, the
CPU cannot just sequentially read data from memory. It needs to do cache accesses
for every attribute of the tuple required for the tuple reconstruction. Therefore,
knowing the implicit recordID of the tuple to be reconstructed, it will ‘‘jump’’
between the attributes of the tuple to collect the values. Let us calculate how much
time the read operation for the tuple reconstruction will take in this case. Con-
sidering that the reconstructed tuple has 6 attributes and that for a complete read of
every attribute one cache access is required, we will need 6 cache accesses to read
all attributes of the tuple from main memory. Taking into account a cache line size
of 64 byte, the CPU needs to read: 64 byte � 6 ¼ 384 byte from main memory. The
CPU reads more than the size of a tuple (200 byte) in this case, because it will read
a complete cache line for every cache access (in case of a columnar layout, a CPU
will load some additional attributes’ values of the following tuples). Considering
the speed 2 MB/ms/core, we can calculate the time as described below:
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Tuple reconstruction response time ðcolumn layoutÞ ¼ 384 byte
2; 000; 000 byte=ms=core

¼ 0:192 ls

In this simple example, performance of the tuple reconstruction operation on the
column layout is not significantly worse in comparison with the row layout.
Nevertheless, the difference in the response time can be more significant if we
consider an example for a tuple with a larger number of attributes.

13.4 Further Examples and Discussion

In reality, the number of attributes in the tables of business applications is much
larger. As an example, let us calculate the response time for tuple reconstruction
with the following characteristics:

• The size of one tuple is 3,200 byte. For the response time of the column layout
calculation, we also consider that for every attribute of the tuple, one cache
access is enough to read the whole attribute of the tuple.

• The number of attributes in the tuple is 100.

Let us calculate response times for the tuple reconstruction operation for both
layouts considering the same CPU characteristics that were described in the
example above.

Row layout: 50 cache accesses are required for a CPU to read the whole tuple:
50 � 64 byte ¼ 3;200 byte.

Tuple reconstruction response time ðrow layoutÞ ¼ 3;200 byte
2;000;000 byte=ms=core

¼ 1:6 ls

Columnar layout:
100 cache accesses are required in case of the columnar layout to read the

attributes of the tuple: 100 � 64 byte ¼ 6;400 byte;

Tuple reconstruction response time ðrow layoutÞ ¼ 6;400 byte
2;000;000 byte=ms=core

¼ 3:2 ls

This example shows how the number of attributes of the tuple can influence the
response time for both layouts. The performance for tuple reconstruction of the
columnar layout will become progressively worse in comparison to the row store
when we increase the number of a tuple’s attributes and request all attributes.
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We can conclude that it is important to select only the necessary fields of a
tuple. This way, the potential disadvantage of a columnar layout can be reduced to
a minimum. As you can imagine, queries that really need 100 columns are seldom.

13.5 Self Test Questions

1. Tuple Reconstruction on the Row Layout: Performance
Given a table with the following characteristics:

• Physical storage in rows
• The size of each field is 34 byte
• The number of attributes is 9
• A cache line has 64 byte
• The CPU processes 2 MB per millisecond.

Calculate the time required for reconstructing a full row. Please assume the
following conversions: 1 MB ¼ 1;000 kB, 1 kB ¼ 1;000 B

(a) � 0.1 ls
(b) � 0.275 ls
(c) � 0.16 ls
(d) � 0.416 ls

2. Tuple Reconstruction on the Column Layout: Performance
Given a table with the following characteristics:

• Physical storage in columns
• The size of each field is 34 byte
• The number of attributes is 9
• A cache line has 64 byte
• The CPU processes 2 MB per millisecond.

Calculate the time required for reconstructing a full row. Please assume the
following conversions: 1MB ¼ 1;000 KB; 1 kB ¼ 1;000 B

(a) � 0.16 ls
(b) � 0.145 ls
(c) � 0.288 ls
(d) � 0.225 ls

3. Tuple Reconstruction in Hybrid Layout
A table containing product stock information has the following attributes:

Warehouse (4 byte); Product Id (4 byte); Product Name Short (20 byte);
Product Name Long (40 byte); Self Production (1 byte); Production Plant
(4 byte); Product Group (4 byte); Sector (4 byte); Stock Volume (8 byte); Unit
of Measure (3 byte); Price (8 byte); Currency (3 byte); Total Stock Value
(8 byte); Stock Currency (3 byte)
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The size of a full tuple is 114 byte.
The size of a cache-line is 64 byte.

The table is stored in main memory using a hybrid layout. The following fields
are stored together:

• Stock Volume and Unit of Measure;
• Price and Currency;
• Total Stock Value and Stock Currency;

All other fields are stored column-wise.
Calculate and select from the list below the time required for reconstructing a
full tuple using a single CPU core. Please assume the following conversions:
1 MB ¼ 1;000 kB; 1 kB ¼ 1;000 B

(a) � 0.352 ls
(b) � 0.020 ls
(c) � 0.061 ls
(d) � 0.427 ls

4. Comparison of Performance of the Tuple Reconstruction on Different
Layouts
A table containing product stock information has the following attributes:
Warehouse (4 byte); Product Id (4 byte); Product Name Short (20 byte);
Product Name Long (40 byte); Self Production (1 byte); Production Plant (4
byte); Product group (4 byte); Sector (4 byte); Stock Volume (8 byte); Unit of
Measure (3 byte); Price (8 byte); Currency (3 byte); Total Stock Value (8 byte);
Stock Currency (3 byte)

The size of a full tuple is 114 byte.
The size of a cache-line is 64 byte.

Which of the following statements are true?

(a) If the table is physically stored in column layout, the reconstruction of a
single full tuple consumes �0.192 ls using a single CPU core

(b) If the table is physically stored in row layout, the reconstruction of a single
full tuple consumes �128 ns using a single CPU core

(c) If the table is physically stored in column layout, the reconstruction of a
single full tuple consumes �448 nanoseconds using a single CPU core

(d) If the table is physically stored in row layout, the reconstruction of a single
full tuple consumes �0.64 ls using a single CPU core.
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Chapter 14
Scan Performance

14.1 Introduction

In this chapter, we discuss the performance of the scan operation. Scan operations
require the values of a single attribute or a small set of attributes but go through the
whole dataset. Scan operations search one or more attributes for a certain value.
Unless the table is sorted by the attribute to scan, a scan has to iterate over all lines
and returns those lines, which fulfill the search predicate (e.g. ‘‘SELECT * FROM
world_population WHERE lastname ¼ ‘Smith’’’). As in Chap. 13, we will discuss
the influence of different layouts (row and column) and different approaches on the
performance of the scan operation. We compare the following three approaches:

• full table scan in row layout
• stride access for the selected attributes in row layout
• full column scan in columnar layout

In the following examples, the world population table already known from
previous chapters is scanned. To recap, the table has the following properties:

• 8 billion tuples
• tuple size of 200 byte
• table size of 8 billions � 200 byte ¼ 1.6 TB
• attributes: first name, last name, gender, country, city, birthday
• all attributes have a fixed length

In addition, the previous assumptions for the response time calculations are
used:

• bandwidth of read operations from main memory: 2 MB/ms/core
• cache line size of 64 byte

In the first example, the scan operation will help to answer the question: ‘‘How
many women are in the world?’’.

The target column that has to be scanned to answer this question is ‘‘Gender’’,
which has two possible distinct values. For simplicity, the calculations of the scan
performance are done using a single core. When performing the scan operation,

H. Plattner, A Course in In-Memory Data Management,
DOI: 10.1007/978-3-642-36524-9_14, � Springer-Verlag Berlin Heidelberg 2013

95

http://dx.doi.org/10.1007/978-3-642-36524-9_13
http://dx.doi.org/10.1007/978-3-642-36524-9_13


each row of the table is independent from all other rows. Consequently the scan
operation can be efficiently parallelized and scales nearly linearly.

14.2 Row Layout: Full Table Scan

Having the data organized in a row layout, the first and most obvious approach to
find the exact number of women in the world is to scan sequentially through all
rows to read the gender attribute. We have seen this behavior for software that uses
Object-Relational Mapping (ORM) and does calculations on the application side.
Having to retrieve whole data sets in order to create the needed objects to interact
with, results in a full table scan. During this operation, the CPU will read 1.6 TB
from main memory. Taking into account the scan speed of 2 MB/ms per core, we
can calculate the runtime on one core as follows:

Full table scan response time on 1 core ¼ 1:6 TB
2 MB/ms

¼ 800 s

We would have to wait for more then 10 min to get the answer to our question.
In order to achieve a better performance we have to look for optimizations. An
obvious and simple solution is to compute the question in parallel on multiple
cores and CPUs. We could do a vertical partitioning of the table and let the
processing units execute the scan operation on the table parts in parallel.

Let us have a quick look on an example for a quad core CPU for that. The scan
speed for a quad core CPU can be calculated as follows: 4 cores � 2 MB/ms/core ¼
8 MB/ms. The full table scan response time is 1.6 TB/8 MB/ms ¼ 200 s. Even
with four cores the query execution takes several minutes.

Another approach that could help to increase the performance of the scan
operation is to take advantage of the in-memory database and read the gender
fields with direct access. On disk based databases, only pages instead of single
attributes are usually directly accessible (see Sect. 4.4). The results for this
approach are calculated and discussed in the next Sect. 14.3.

14.3 Row Layout: Stride Access

Assume we still use row layout to store the data in memory. But now, instead of
scanning the whole table and reading all table fields from main memory, we read
the target field via direct access. To scan all gender fields the CPU does 8 billions
cache accesses, one access for each tuple. Assuming the cache line size is 64 byte,
and considering the fact that a CPU will read exactly 64 byte during each cache
access independently of the gender field size, we can calculate the data size that is
read from main memory during the whole scan operation:
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data volume ¼ 8 billion � 64 byte � 512 GB

Taking into account the scan speed, we get the following the response time for one
core:

Stride access response time on 1 core ¼ 512 GB = 2 MB/ms ¼ 256 s

The result is better than that for the full table scan, but answering the question
still takes several minutes. However, there are further opportunities to optimize the
scan speed for our initial question.

The next Sect. 14.4 will discuss the effects of using a columnar data layout.

14.4 Columnar Layout: Full Column Scan

When using a columnar layout, the data is stored attribute-wise in main memory.
This fact leads us to the following conclusions:

• As attributes of the same types are stored together, effective compression
algorithms can be used to reduce the data volume that is stored in memory and
that has to be transferred between main memory and CPU.

• As values of the same attribute are stored consecutively, the probability that the
next accessed item has already been loaded as part of the same cache line, is
relatively high depending on the length of the compressed values. The shorter
the values, the higher the probability.

Consequently, two aspects of columnar layouts can be leveraged: scanning only
target fields and reading compressed values. Both aspects reduce the data volume
transferred between main memory and CPU and consequently reduce response
times. In our example, the CPU will scan through the ‘‘Gender’’ field.

Considering this column is dictionary-encoded as described in Chap. 6, only
one bit is necessary to encode the two possible values ‘m’ and ‘f’. As before, we
can calculate the data volume to be read from main memory using the size of the
attribute and the number of tuples: 8 billion � 1 bit � 1 GB, which leads to a full
column scan response time of 1 GB/2 MB/ms/core ¼ 0.5 s on one core.

The result shows a significant difference in the performance in comparison with
both presented approaches for the row layout. Further taking into account the
opportunity to use several cores and to execute the scan operation in parallel, using
the column layout we can speed up the answer to our example-question even more.
While our example query, which is using only one attribute and is posed against a
vast number of tuples might not be the common use case, it can be stated that in
analytical workloads the general circumstances are favorable for this approach, as
we have already seen in Chap. 3. Queries against huge data volumes that operate
on a small number of columns are characteristic for analytical and transactional
enterprise applications.
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14.5 Additional Examples and Discussion

In our previous example, we considered an almost ‘‘perfect’’ case. With 1-bit
length, the gender attribute was compressed to the minimum for dictionary-
encoded values. This fact decreased the data volume to be transferred between
CPU and main memory. Of course, the outcome of the performance calculation
depends on the size of the scanned fields. For larger fields, the CPU will need to
scan through a higher data volume and less values will fit into one cache line.

To compare the results with another attribute, let us take the same table from the
first example and calculate the response time for the full column scan operation on the
column ‘‘Birthday’’. This column has more distinct values than the ‘‘Gender’’ field.

Considering that every value (i.e. valueID of a compressed value in the
‘‘Birthday’’ column) has a size of 2 byte, we can calculate the transferred data
volume and appropriate response time as follows:

• data volume to be read from main memory ¼ 8 billion � 2 byte � 16 GB
• full column scan response time ¼ 16 GB/ 2 MB/ms/core ¼ 8 s (with one core)

To summarize the calculations performed above, we can conclude, that the
following parameters of a CPU and a scanned table influence scan performance:

• cache utilization
• memory bandwidth
• number of processing units
• number of tuples in the table (table cardinality)
• used compression
• used layout: column or row layout

The example calculations in this chapter show a significant speed up of the scan
performance when switching from row to dictionary-encoded column layout.
While the columnar layout with its higher data density better utilizes the CPU
caches, we would also like to note that it enables further optimizations, e.g. the
usage of SIMD/SSE operations (see Sect. 17.1.2).

14.6 Self Test Questions

1. Loading Dictionary-Encoded Row-Oriented Tuples
Consider the example in Sect. 14.2 with dictionary-encoded tuples. In this
example, each tuple has a size of 32 byte. What is the time that a single core
processor needs to scan the whole world_population table if all data is stored in
a dictionary-encoded row layout?

(a) 128 s
(b) 256 s
(c) 64 s
(d) 96 s
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Chapter 15
Select

In this chapter, we describe how an application can extract data that was once
stored in the database (execution of the SELECT statement).

The SELECT statement is a combination of multiple relational operations,
mainly selection, projection, and Cartesian product. We focus on the implications
of SanssouciDB’s column-orientated data layout.

15.1 Relational Algebra

Three different basic operations of the relational algebra can be used to create
SQL’s SELECT statement. These are the Cartesian product, the projection and the
selection.

15.1.1 Cartesian Product

The Cartesian product (or cross product) is a binary operation, taking two relations
R1 and R2 to produce the result R1 � R2. Those are having nR1 and nR2 attributes
and a cardinality of jR1j and jR2j. As a result, a new relation R3 with nR3 ¼
nR1 þ nR2 and jR3j ¼ jR1j � jR2j tuples is returned. After both relations were
combined, projections and selections can be applied to reduce the size of the result
set. Database systems tend to use join operations to reduce the size of intermediate
results, as described in Chap. 19.

15.1.2 Projection

Projection is used to delete or permute the attributes of its input relation. Looking
at the logical layout of a table, projection is a ‘‘vertical’’ operator. It can be written
as pj1;...;jnðRÞ, with j1 to jn being an ordered sequence representing the ordered
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sequence of attributes of R contained in the projections result. Using a column-
oriented data layout, only columns that are part of the projection (and those
attributes used in predicates, which are not necessarily projected) need to be read
by the database. Thus, query processing consumes fewer resources if only a subset
of the entire set of attributes needs to be touched.

15.1.3 Selection

When the data stored within a relation needs to be filtered by some criteria, the
selection is used. The selection, written as r, is a ‘‘horizontal’’ operator. It eval-
uates an expression (predicate) consisting of a and b that are combined via a binary
operation h. While a and b can be attribute names, specified, or calculated values,
h represents any binary operation (e.g., equals, greater, smaller) that evaluates to
‘‘true’’ or ‘‘false’’. Only tuples of the relation with a positive evaluation (‘‘true’’) of
h are included into the result set.

15.2 Data Retrieval

In most applications, SELECT is a commonly used command.
The typical SQL SELECT statement can be defined as

SELECT pj1;...;jnðRÞ
FROM R

WHERE rahbðRÞ

Because SQL presents a declarative description of the result requested from the
database, an ordered set of execution steps is required to extract the data from the
database, a so-called query execution plan. For each SQL query, multiple exe-
cution plans can exist that deliver the same results with differing performance.
Query optimizers are used to calculate the cost of different query execution plans.
Relying on cost models and heuristics used within the optimizer an effective plan
is chosen. The goal is to reduce the size of the result set as early as possible, e.g.,
by

• applying selections as early as possible
• ordering sequential selections so that the most restrictive ones are executed first
• ordering joins corresponding to their tables’ cardinalities (smallest tables are

used first)
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As a concrete example we use the table shown in Fig. 15.1 and execute the fol-
lowing SELECT statement that retrieves the first names and last names of male
Italians from the world population table:

Retrieve first and last names for male Italiens

SELECT fname, lname

FROM world polulation

WHERE country ¼ ‘Italy’AND gender ¼ ‘m’

The corresponding query execution plan for that particular SQL query could look
like shown in Fig. 15.2.

The query plan would than be executed in the database, as shown in Fig. 15.3.
Database operations with independent inputs can be executed in parallel.

Because of SanssouciDB’s dictionary encoding, a dictionary lookup is used to
find the valueIDs for ‘‘Italy’’ and ‘‘m’’, in our example 3 and 1. Afterwards the
attribute vectors of country and gender are scanned and position lists identifying
valid tuples are created. Those lists are intersected, resulting in a new list con-
taining the positions of all tuples fulfilling the two selections.

Fig. 15.1 Example database table world_population

country = "Italy" gender = "m"

     fname, 
    lname

position 
list

position 
list

positional
AND

Fig. 15.2 Example query execution plan for SELECT statement
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15.3 Self Test Questions

1. Table Size
What is the table size if it has 8 billion tuples and each tuple has a total size of
200 byte?

(a) � 12.8 TB
(b) � 12.8 GB
(c) � 2 TB
(d) � 1.6 TB

2. Optimizing SELECT
How could the performance of SELECT statements be improved?

(a) Reduce the number of indices
(b) By using the FAST SELECT keyword
(c) Order multiple sequential select statements from low selectivity to high

selectivity
(d) Optimizers try to keep intermediate result sets large for maximum flexi-

bility during query processing.

Fig. 15.3 Execution of the created query plan
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3. Selection Execution Order
Given is a query that selects the names of all German women born after January
1, 1990 from the world_population table (contains data about all people in the
world). In which order should the query optimizer execute the selections?
Assume a sequential query execution plan.

(a) country first, birthday second, gender last
(b) country first, gender second, birthday last
(c) gender first, country second, birthday last
(d) birthday first, gender second, country last.

4. Selectivity Calculation
Given is the query to select the names from German men born after January 1,
1990 and before December 31, 2010 from the world population table (8 billion
people). Calculate the selectivity.

Selectivity = number of tuples selected / number of tuples in the table

Assumptions:

• there are about 80 million Germans in the table
• males and females are equally distributed in each country
• there is an equal distribution between all generations from 1910 until 2010

(a) 0.001
(b) 0.005
(c) 0.1
(d) 1

5. Execution Plans
For any one SELECT statement...

(a) there always exist exactly two execution plans, which mirror each other
(b) exactly one execution plan exists
(c) several execution plans with the same result set, but differing performance

may exist
(d) several executions plans may exist that deliver differing result sets.
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Chapter 16
Materialization Strategies

SQL is the most common language to interact with databases. Users are accus-
tomed to the table-oriented output format of SQL. To provide the same data
interfaces as known from row stores in column stores, the returned results have to
be transformed into tuples in row format. The process of transforming encoded
columnar data into row-oriented tuples is called materialization.

Especially for column-oriented databases with lightweight compression, an
appropriate materialization strategy is essential. Abadi et al. [AMDM07] analyzed
different materialization strategies for column-oriented databases. Depending on
the storage technique (e.g. compressed vs. uncompressed data, dictionary encoding
vs. no dictionary encoding), different materialization strategies can be superior.
Grund et al. [GKK+11] analyzed database operators and the impact of material-
ization strategies for intermediate results, in particular for dictionary-encoded
columnar data structures.

16.1 Aspects of Materialization

Abadi et al. [AMDM07] divide the topic of materialization into two aspects, the
execution of materialization and the time of materialization. The execution can be
divided into parallel and pipelined materialization. The advantages and disad-
vantages of both approaches are discussed in detail in [GKK+11] and are not part
of this learning material. All the following examples use a non-pipelined execu-
tion, where each operator is independent from the others.

There are two different strategies concerning the time aspect of materialization:
early and late materialization. Early materialization describes the strategy, where
data is decoded early (using dictionary lookups) during the query execution. For
example, consider a dictionary-encoded string column. It contains the attribute
vector of integer values and the sorted dictionary of strings. Here, the actual string
replaces the positional integer value representing the corresponding dictionary
position early. Hence, a row-oriented tuple representation is created early on.
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With the late materialization strategy, column-orientation and the positional
information instead of the actual value are used as long as possible during query
execution. Ideally, the row-oriented tuple will be materialized in the very last step
before returning the result to the user.

Figure 16.1 shows in an example where actual values and positions are used in
early and late materialization.

In many cases, late materialization can improve the performance for column
stores, especially when light-weight compression techniques are used [AMDM07].
The following sections will discuss both strategies based on an example query.

16.2 Example

To discuss the difference between early and late materialization, we will examine
the query ‘‘List the number of male inhabitants per city in Germany’’, see SQL
query in Listing 16.1.

In both following examples, one strategy will be used throughout the whole
query execution for exemplary purposes, even though a combination is often
advantageous in real world situations. Example data of the World Population
Table which is used in the query is shown in Fig. 16.2.

Pos-Scan

AVgender AVcountry

Dcity

Pos-Scan

Pos-AND

Lookup

Group (count)

{pos} {pos}

{(ValueID, AggCity)}

AVcity

Lookup

Dgender

Lookup

Dcountry

ValueID

{pos}

{(ValCity, AggCity)}

Group by: ValID

ValueID

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: 

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

Value

Position

Early Materialization Late Materialization

Fig. 16.1 Example comparison between early and late materialization

Listing 16.1: Example query
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16.3 Early Materialization

When early materialization is used as the materialization strategy throughout the
complete query, all required columns are materialized first. In our case, required
columns are all columns that are used as predicates in the query (i.e., country and
gender), as well as all columns that are part of the result (i.e., city). Dictionary
lookups are performed for each of these columns using the valueIDs in the cor-
responding attribute vectors. For the gender column, the result of these lookups is
the vector {ValGender} with the actual values (see Fig. 16.3a).

The next step is to scan the intermediate vector {ValGender} for the gender
predicate ‘m’. To all qualifying lines the corresponding position is added and
copied to the intermediate vector {(pos, ValGender)} (see Fig. 16.3b).

In the next step, the columns are combined as shown in Fig. 16.4. Hereby, the
{ValCountry} vector is added to the intermediate result {(pos, ValGen-
der)} while scanning for the predicate value ‘GER’.

The final step is to aggregate and return the requested data of the SQL query.
For that the intermediate result {(pos, ValGender‘ ValCountry‘
ValCity)} is grouped by ValCity and aggregated. The result is {(ValCity‘
AggCity)}, as shown in Fig. 16.5.

Fig. 16.2 Example data of table ‘‘world_population’’
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16.4 Late Materialization

Instead of materializing the values of the dictionary lookup early (as done in the
early materialization strategy), the dictionary-encoded value (valueID) con-
tained in the attribute vector is being used. Ideally, the lookup into the dictionary
for materialization is performed in the very last step before returning the result.

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: „m“

predicate: 
„GER“

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

m

m

f

m

Lookup

0 m

1 f

0

0

1

0

AVgender

D gender

{ValGender}

m

m

f

m

Value-Scan

2 m

4 m

predicate: "m"

{ValGender}

m1

{(pos, ValGender)}

(a)

(b)

(a)

(b)

Fig. 16.3 Early materialization: materializing column via dictionary lookups and scanning for
predicate
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Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup
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AVgender

predicate: „m“

predicate: 
„GER“

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

GER

GER
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Add-Attributepredicate: "GER"

{ValCountry}

2 m
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{(pos, ValGender)}

2 m

4 m

m1 GER

GER

GER

{(pos, ValGender, ValCountry)}

Fig. 16.4 Early materialization: scan for constraint and addition to intermediate result
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Figure 16.6 shows the first step. Here, the predicates gender = ‘m’ and coun-
try = ‘GER’ are used for the lookup using the corresponding dictionaries. The
outcome is a vector of dictionary positions (valueIDs) per column that qualify for
the given predicates. Notice that the dictionary for the column city is not accessed,
since it is not required for the actual processing of the query right now. Only the
valueID of the columns gender and country are looked up, as they are required
for the succeeding scan operation.

Even though the visualization of the late materialization strategy implies a parallel
execution of the lookups, the execution can also be done sequentially. Actually, with

Value-Scan

Add-Attribute

Group (count)

{(pos,ValGender)}

{(ValCity, AggCity)}

Lookup

Dcity AVcity

Lookup

Dcountry
AVcountry

Lookup

Dgender

AVgender

predicate: „m“

predicate: 
„GER“

Add-Attribute

{ValCity}

{ValCountry}

{ValGender}

{(pos,ValCity,ValCountry,ValGender)}

Group by: ValCity

{(pos,ValCountry,ValGender)}

Group (count)Group by: ValCity

Berlin 2

1Bonn

{(ValCity, AggCity)}

{(pos, ValGender, ValCountry, ValCity)}

2 m

4 m

m1 GER

GER

GER

Berlin

Berlin

Bonn

Fig. 16.5 Early materialization: group by ValCity and aggregation

Fig. 16.6 Late materialization: lookup predicate values in dictionary
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a predicate as country = ‘GER’, for which less than 2 % of the world population
qualify, a sequential execution is advantageous (see Chap. 15 for more details).

Figure 16.7a shows the scan phase. With the valueIDs from the first step, now
the attribute vectors are scanned. The position of each matching valueID in the
attribute vector is added to the output vector of this step ({pos}). The merge of
these positional lists is shown in Fig. 16.7b. Here, each value that is existent in
both vectors is appended to the result vector of this step.

Figure 16.8a shows the group by operation. Hereby, the intermediate vectors
are taken to group the positions in {pos} by the valueIDs in the city attribute vector
and add the count of each city to the output vector. In the last step the actual
lookup of the city valueIDs is performed, as shown in Fig. 16.8b.

Compared to the early materialization strategy, the late materialization strategy
might have to perform an additional lookup, e.g. when the gender would also be
part of the result. This penalty can diminish the advantages, for example when
many columns have to be materialized (consequently many dictionary lookups,
what typically occurs when using ‘SELECT*’) or when the result set is very
large (i.e., many output rows).

In general, the question to which extend—and even if—late materialization is
in favor of early materialization depends on many variables like the used query
operations and selectivity, among others [GKK+11].

Fig. 16.7 Late materialization: scan and logical AND
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16.5 Self Test Questions

1. Which Strategy is Faster?
Which materialization strategy—late or early materialization—provides the
better performance?

(a) Early materialization
(b) Late materialization
(c) Depends on the characteristics of the executed query
(d) Late and early materialization always provide the same performance.

2. Disadvantages of Early Materialization
Which of the following statements is true?

(a) The execution of an early materialized query plan can not be parallelized
(b) Whether late or early materialization is used is determined by the system

clock
(c) Early materialization requires lookups into the dictionary, which can be

very expensive and are not required when using late materialization
(d) Depending on the persisted value types of a column, using positional

information instead of actual values can be advantageous (e.g. in terms of
cache usage or SIMD execution).

Fig. 16.8 Late materialization: filtering of attribute vector and dictionary lookup
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Chapter 17
Parallel Data Processing

In the following, we discuss how to achieve parallelism in in-memory and tradi-
tional database management systems. Pipelined parallelism and data parallelism
are two approaches to speed up query processing.

In pipelined parallelism, the next operator already starts while the current
operator is not finished but has already produced partial results. Thus, the exe-
cution time of operators partly overlaps. For example, consider a JOIN and SORT
operator involving the evaluation of a predicate. Each operator performs its tasks
and if first results become available, they are used by the next operator until the
end of the pipeline is reached as depicted in Fig. 17.1 on the left.

In data parallelism, the data set is partitioned so that the operators of a query
work on individual parts of the data set in parallel. Afterwards, the results of the
parallel streams are merged to the complete result set (see Fig. 17.1 on the right).
The query plan becomes more complex since all operators are executed on each
data partition individually and a merge operation is added.

In database management systems, further aspects can be considered for
parallelization. We distinguish between intra-query and inter-query parallelism.
Intra-query parallelism addresses parallelization of operators within a query, i.e.,
the query looks like a single operation, but it is parallelized internally, e.g., by
spawning multiple threads and using data parallelism. Inter-query parallelism
addresses the aspect to schedule multiple queries to execute them in parallel. This
may also results in parallel data access if queries use the same data.

17.1 Hardware Layer

Parallel processing of data is an essential aspect of achieving high performance for
in-memory database systems. But what are the reasons for using parallelization
instead of a single CPU core running at a tremendous high frequency such as
1 PHz? We want to discuss this question in the remainder of this section.
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17.1.1 Multi-Core CPUs

Ideally, a modern computer would consist of a single CPU core running at 1 PHz
and huge persistent integrated main memory as shown in Fig. 17.2. Reality looks
different, though. Nowadays, we typically have multiple CPU cores on one CPU
die. Furthermore, modern server systems consist of multiple CPUs. This multiplies
the number of cores.

The reasons for that multi-core development are buried in the hardware
developments of the last decade. The assumption that the number of transistors
doubles every 18 month, known as Moore’s law, is still valid [Moo65]. However,
the operating frequency of the transistors cannot be increased infinitely. For
example, with increasing frequency the ratio of heat loss increases. As a result, the
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energy efficiency degrades while additional power is required to cool transistors.
Hardware vendors proved that using multiple CPU cores operated at a lower
frequency, e.g., 2.4–2.7 GHz, increases efficiency while keeping cooling
requirements at an adequate level. For example, Fig. 17.3 depicts the conceptual
architecture of single CPU consisting of four cores. Combining multiple CPUs
within a single server is shown in Fig. 17.4 and the combination of multiple
servers to form a more powerful data processing system is depicted in Fig. 17.5.

17.1.2 Single Instruction Multiple Data

The foundation of parallelization can directly be found within the CPU, i.e., data
processing can be parallelized using the Single instruction multiple data (SIMD)
paradigm. In contrast to traditional Reduced Instruction Set Computing (RISC)
CPUs, SIMD parallelization builds on the use of so-called vectorized operators.
These operators are directly implemented in the CPU to perform operations on
multiple data words in specialized CPU registers in parallel. Computer graphics
makes use of Streaming SIMD Extensions (SSE) instructions that operate on either
128 or 256 bit wide registers. For example, in one 128 bit register you can store
two 64 bit values to perform a Parallel add (PADD) as depicted in Fig. 17.6. Thus,
two calculations can be processed within one instruction step instead of Scalar add
(SADD) where one calculation is performed at a time.

For instance, let us consider the aggregation of outstanding items. Using PADD
reduces the time to sum up the individual items dramatically by summing up
multiple items in a single instruction.
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Let us assume the following example: the gender attribute values can be stored
in a single bit. Using SIMD you can process the gender of 128 persons in a single
CPU instruction step. For example, if you encode male as 1 and female as 0,
calculating the ratio of male and female persons of this group of 128 persons is
performed within a single instruction by performing a PADD. For comparison,
modern processor families are able to perform 100,000 Million instructions per
second (MIPS) and more [HP11]. SIMD is the lowest level of parallelization on a
computer system.

In-memory database management systems differ from traditional database
management systems in how they address the performance topic. For example, in-
memory databases incorporate data partitioning to improve performance. Fur-
thermore, query result sets are aligned to fit the CPU cache lines, i.e., the number
of cache misses is minimized so that additional data loading from main memory is
minimized.

17.2 Software Layer

In addition to hardware parallelism, we consider software-level parallelism in the
following section.

17.2.1 Amdahl’s Law

Gene Amdahl conducted fundamental considerations about software-level paral-
lelism. He defined that the maximum speedup of executing a piece of code in
parallel is limited by the time needed to process the longest sequential fraction of
the code. This is nowadays known as Amdahl’s law [Amd67].

Fig. 17.6 Single instruction multiple data parallelism
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max. speedup(N) ¼ 1

1� Pð Þ þ P
N

ð17:1Þ

Equation (17.1) defines Amdahl’s law with P giving the fraction of the code that
can be processed in parallel and N giving the level of parallelism, e.g. the number
of CPU cores.

Let us assume the following example: the ratio of parallel and the sequential
part are 3:1. If the execution time of the parallel part is decreased, e.g. by
increasing the number of cores, the maximum speedup cannot exceed four as can
be seen in Eq. (17.2).

lim
N!1

speedup(N) ¼ 1

1� 3
4

� �
þ 3

4N

¼ 1
1
4

¼ 4 ð17:2Þ

Amdahl’s law assumes that the there is a fixed size of the solution space, i.e. a
tasks generates repeatable a finite number of results. In contrast, Gustafson
assumes that there is a maximum acceptable response time while the solution
space is not known beforehand [Gus88]. Equation (17.3) defines Gustafson’s law
with C defining the number of cores and a defining the non-parallelizable fraction
of the program code.

max. speedup(C) ¼ C� a C� 1ð Þ ð17:3Þ

17.2.2 Shared Memory

In a shared memory system [Li86], data that is stored in the shared memory
segment is accessible by all processors in an uniform way. Special programming
concepts, such as mutexes and semaphores, are used to avoid conflicting data
access in the shared memory segment, e.g., simultaneous write access. Although
shared memory is an easy way to share data across processes or CPU cores, it
comes with the problem of scaling.

Shared memory systems suffer from scalability issue since the maximum size of
the shared memory segment is limited by available memory size. The total
memory size of a single system is small compared to the total main memory size
formed by multiple servers.

17.2.3 Message Passing

Message passing is a very powerful paradigm to improve the processing of
algorithmic problems [GLS94]. Instead of sharing memory between all threads,
only messages are passed between individual processing threads. This paradigm is
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widely used for number crunching tasks, such as prediction of meteorology,
earthquakes, and other kinds of simulations.

All processors can perform tasks independently while processors depending on
results of each other exchange messages for coordination. In comparison to the
shared memory approach, message passing can easily scale out, because proces-
sors are independent of shared memory. Thus, they can perform their tasks indi-
vidually while exchanging messages, e.g., via network links. However, if the sum
of exchanged messages exceeds the network capacity, the network becomes a
bottleneck for this parallelism paradigm.

17.2.4 MapReduce

The data parallel paradigm aims at identifying a portion of data so that each
portion can be processed in parallel. Thus, each processing job is performing the
same task on an individual partition of the complete data. Examples of data
parallel paradigm are the MapReduce framework and the OpenMP library [DG08,
DM98].

MapReduce consists of two specific functions: the map and the reduce function.
The former operates on individual data partitions in parallel and produced partial
results r1::rn for its assigned partition p1::pn. The reduce function forms one
overall result rall by merging all partial result r1::rn. Map and reduce steps can be
chained to produce arbitrary results for complex tasks.

The canonical example for MapReduce is counting the number of occurrences
of a specific word in a defined set of text documents. Each map function processes
an individual text document or a part of it. It counts the number of occurrences for
a specific word within this document. Since map functions are executed in parallel,
multiple text documents are scanned for the desired word simultaneously. The
following reduce function calculates the total number of occurrences for the
specific word by summing up the individual results. Google is also using Ma-
pReduce for indexing of and searching in Web sites and text documents.

MapReduce requires the developer to define the ‘‘how’’ and the ‘‘what’’, i.e., if
your algorithm does not scale efficiently, the overall response time will not be
reduced. This direct control may also be a disadvantage for some tasks since you
only want to define the ‘‘what’’. For example, in a database management system
you expect an optimizer to generate the proper code—the ‘‘how’’—to retrieve the
desired data —the ‘‘what’’.

Thus, MapReduce does not address all problems efficiently. It is designed for
parallel processing of a batch job, e.g., word counting. However, interactive
analytical queries require flexible access to data. For example, exploring overdue
payers requires subsequent analyses of data subsets, which makes it hard to have
all possible map function available.
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17.3 Self Test Questions

1. Shared Memory
What limits the use of shared memory?

(a) The number of workers, which share the same resources and the limited
memory itself

(b) The caches of each CPU
(c) The operation frequency of the processor
(d) The usage of SSE instructions.
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Chapter 18
Indices

18.1 Indices: A Query Optimization Approach

Usually, applications work only with a subset of records at a time. Therefore,
before processing the portion, it must be located within the database. Hence,
records should be stored in a manner that makes it possible to locate them effi-
ciently whenever they are needed. The process of locating a specific set of records
is determined by the predicates that are used to characterize these records.

SanssouciDB organizes its records in columns (see Chap. 8). To determine the
records, it is necessary to perform a scan on all the columns, which are used as
filter criteria. In main memory column-oriented databases, which store column
values continuously, i.e. in adjacent memory blocks, searching for a value with a
full scan (by iterating through all items placed in memory sequentially) can be
done by orders of magnitude faster than in row-oriented databases. Therefore, the
usefulness of index structures in such databases is limited. Nevertheless, because
the complexity of a full column scan is linear, it is just a matter of data volume that
will make the speed advantage of indices relevant to main memory column-ori-
ented databases.

In this chapter, we discuss the topic of inverted indices in the context of main
memory databases in more detail.

18.2 Technical Considerations

Let us look at the world_population table from Chap. 11 again. For the readers
convenience we repeat (see Fig. 18.1). Let us assume that we want to locate the
records of all the people from Berlin. The dictionary and the attribute vector of the
column are shown in Fig. 18.2.

To determine the set of berlin records, we need to set the filter criterion on the
city attribute of the table. The respective SQL query could look like depicted in
Listing 18.1.
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Now, let us do a back of the envelope calculation. Assuming the table contains
8 billion records, our CPU is able to process 2 GB per second per core, and the city
column is encoded using 20 bit. The memory footprint of the city column’s
attribute vector can be calculated using

8 billion � 20 bit ¼ 160 billion bit ¼ 20 billion Byte � 18:6 GB

The time it takes a single core to process that amount of data can be calculated
using

18:6 GB� 2 GB=sec � 9:3 sec

This calculation shows that scanning the whole column with 40 cores takes
�230 ms. Despite that this scan speed is unthinkable for a row-oriented database,
the speed might not be sufficient for all applications.

Fig. 18.1 Example database table named world_population

Fig. 18.2 City column of the world_population table

Listing 18.1: Query to select all people from Berlin
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18.3 Inverted Index

Now, let us investigate a more complicated, but more efficient algorithm presented
in detail in [FSKP12]. We consider an inverted index for the attribute city. An
inverted index maps each distinct value to a position list, which contains all
positions where the distinct value can be found in the column. The index for the
dictionary-encoded column consists of the following two parts (Fig. 18.3):

• Index offsets (IO) : this vector stores for each dictionary entry (or in other
words, for each unique value of the attribute vector) the offset for the position
list in the positions vector. This means that the offset vector stores references to
the first occurrence of the particular dictionary code in the positions vector.

• Index positions (IP) : the index position vector contains a position list of all
distinct values of the attribute vector sorted by the integer valueID. In contrast,
the attribute vector stores valueIDs by position.

Let us see how much data the CPU has to read using an index. We continue with
the query shown in Listing 18.1. The following steps need to be executed to
determine the position of berlin in the attribute vector.

1. We need to perform a binary search on the dictionary to determine the dictionary
position related to berlin. As depicted in Fig. 18.4, berlin is at position 1.

2. The dictionary position of berlin corresponds directly to the position of the
index offset vector shown in Fig. 18.5. In this example, the dictionary position
of berlin is 1, so the corresponding index offset vector position is 1.

3. Since the attribute of the respective search criterion is not necessarily a primary
key, it is possible that the same value is used by many records. Consequently,
more than one attribute vector entry can be filled with that value. As explained
in the beginning of this chapter, the index position vector represents a sorted list
of the values in the attribute vector. To determine the range of values to read

Fig. 18.3 Index offset and index positions
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from the index position vector, we simply read the value of the index offset
vector at the position, we determined in Step 1, and the value of the next higher
position (see Fig. 18.6).

4. Since 3 is already the offset of the next value in the index positions vector, we
only need to read positions 1 and 2. As shown in Fig. 18.7, IP vector position 1
contains the value 4 and position 2 contains the value 6, which are the exact
positions of the dictionary code for berlin in the attribute vector. By retrieving
the offsets of berlin and dresden from the IO vector, we are able to determine
the exact range of all values we need to read in order to resolve the respective
attribute vector positions of berlin.

5. With the positions resolved in Step 4, we are able to jump directly to the
respective attribute vector positions of all other columns of that table in order to
materialize the complete records of all the people that live in Berlin (Fig. 18.8).

Fig. 18.4 Query processing using indices: Step 1

Fig. 18.5 Query processing using indices: Step 2
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Fig. 18.6 Query processing using indices: Step 3

Fig. 18.7 Query processing using indices: Step 4

Fig. 18.8 Query processing using indices: Step 5
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Using this approach, we reduce the data volume read by a CPU from the main
memory by providing a data structure that does not require the scan of the entire
attribute vector. Investigations regarding the influence of using indices on memory
traffic and performance are shown in Sect. 18.4.

18.4 Discussion

In the previous section, we explained the idea of using an inverted index on a
dictionary-encoded column to increase response time for lookup requests. An
index increases the memory consumption per column. In this section we compare
data lookup using full table scan against an index, regarding memory consumption
and lookup performance. We first introduce the following symbols that we use.

18.4.1 Memory Consumption

In the beginning of this chapter, we explained that an index consists of an IO
vector and an IP vector. To determine the overall size of the index, we need to
calculate the size of these two structures.

Im ¼ IOm þ IPm

The allocated memory of a vector can simply be calculated by multiplying its
length (number of entries) with its width (size of a single entry).

IOm ¼ IOl � IOw

IPm ¼ IPl � IPw

The length of IP directly corresponds to the length of the attribute vector AVl, since
it is basically a sorted version of the corresponding attribute vector. The width of
IP is determined by the bit-encoded length of the attribute vector, since it contains
direct positions to the values in the attribute vector.

IPl ¼ AVl

IPw ¼ dlog2ðAVlÞe bits

The length of IO directly corresponds to the length of the dictionary Dl, which in
turn is determined by the number of distinct values in the respective column. The
width of IO is derived from the biggest offset into IP, because IO contains the bit-
encoded offsets used to determine the position ranges in IP. As the maximum offset
stored in IO can be the length of IP, the resulting width of IO is dlog2ðIPlÞe.

IOl ¼ Dl

IOw ¼ dlog2ðIPlÞe bits
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Summarizing, we combine the above formulas to a single equation for calculating
the size of an index structure.

Im ¼ Dl � dlog2ðIPlÞe þ AVl � dlog2ðAVlÞebits

Im ¼ ðDl þ AVlÞ � ðdlog2ðAVlÞeÞbits

Let us now calculate the actual size of an index for the city column of our
world_population table from Fig. 18.1. We need to determine Dl, IPl, and AVl.
Based on the assumption that there are about 1 million cities around the world and
that the world population is 8 billion, we just need to insert these numbers into our
formula.

Im ¼ 106 � dlog2ð8 � 109Þe þ 8 � 109 � dlog2ð8 � 109Þebits

So from this formula, we get an index size of about 31 GB for the city column.

18.4.2 Lookup Performance

Independent of using an index or not, we need to perform a binary search on the
dictionary to determine the encoded value for the respective search term. Let us
assume that we need to read log2ðDlÞ entries to perform the binary search. Since
the binary search on the dictionary has to be done for both access methods we can
ignore it, when we compare them.

Description Unit Symbol

Memory consumption of the index bits Im

Length of the index offset vector – IOl

Width of the index offset vector bits IOw

Memory consumption of index offset vector bits IOm

Length of the index positions vector – IPl

Width of the index positions vector bits IPw

Memory consumption of index positions vector bits IPm

Length of dictionary (number of distinct values in column) – Dl

Length of attribute vector – AVl

Width of attribute vector bits AVw

In case of a full column scan, we need to traverse the attribute vector
sequentially, by reading AVl entries, each with a size of dlog2ðDlÞe bits. Again,
assuming 8 billion rows in the table and 1 million cities, we need to read

8 � 109 � dlog2ð106Þebits ¼ 160:000:000:000 bits

for a full attribute vector scan.
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Now, when using an index the situation is different. After the dictionary lookup,
we directly read the upper and lower limit from the index offset vector (see
Fig. 18.6). We neglect this step for our performance consideration since the
number of bytes read does not impact the overall scan performance. Having
determined the upper and lower limit for the index positions vector, we need to
traverse through it (see Fig. 18.7). The number of entries to read from IP depends
on the distribution of values in the column. Reading an attribute value that is used
more frequently, we need to read more entries, on less frequently used values we
need to read less. Assuming a uniform distribution of values we need to read
AVl � Dl entries. The width of the entries is dlog2ðAVlÞe. Combining both equa-
tions, we get

IndexPositions ¼ AVl � dlog2ðAVlÞe
Dl

for the number of bits to read from the index positions vector. Taking our world
population example, where we look for all people living in Berlin, we come up with

8 � 109 � dlog2ð8 � 109Þebits

106
¼ 264:000 bits

to read using an index. Assuming a CPU performance of 2MB/ms/core, a single
core needs about 9 s to scan the complete attribute vector. Accessing the column
using an index, the CPU needs 0.0157 ms to read the attribute vector positions of
the people living in Berlin. Thus, in this example, we improve performance by a
factor of �573;248 with the index, compared to a sequential attribute vector scan.

We compare the theoretical memory traffic for the attribute vector scan and the
position read in Fig. 18.9 for different dictionary sizes on a column with 30 million
entries. With a uniform distribution, the index leads to less memory traffic, if at
least 8 distinct values are present.

Fig. 18.9 Attribute vector scan versus index position list read for a column with 30 million
entries (note the log-log scale)
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18.5 Self Test Questions

1. Index Characteristics
Introducing an index...

(a) decreases memory consumption
(b) increases memory consumption
(c) speeds up inserts
(d) slows down look-ups.

2. Inverted Index
What is an inverted index?

(a) A structure that contains the distinct values of the dictionary in reverse
order

(b) A list of text entries that have to be decrypted, it is used for enhanced
security

(c) A structure that contains the delta of each entry in comparison to the largest
value

(d) A structure that maps each distinct value to a position list, which contains
all positions where the value can be found in the column.
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Chapter 19
Join

This chapter is about joins and their execution in in-memory database systems. In
general, joins are a way to combine tuples of two or more tables. There are two
general categories of joins which can be than further specialized:

• Inner-Joins creates a result table that combines the tuples from the two input
tables based on a join-predicate. It therefore combines each tuple from the first
table with each tuple of the second table to check for the join-predicate.

• Outer-joins are used to fetch information that might not be there. An example
where an outer join can be used are sales in a certain region and period. If the
objective is to display the sales for all regions over the whole year and there is a
region with no sales in a certain period then that information would be lost with
a regular equi-join. In contrast, the outer-join inserts Null as a value if there is no
matching tuple in the second relation. This allows obtaining the information
from the result directly (without guessing at missing regions in the example).

Further specialization of the join types are:

• equi-joins are the most common and most important join type. They allow the
selection of tuples from both relations which satisfy a given equality predicate.

• semi-joins return only one half of the intermediate join result. The other half is
discarded.

The most prominent use case for joins are normalized database schemas where
joins are executed based on foreign keys. Another use case of joins are applica-
tions where tables come from different sources. They use the same attribute, e.g., a
customer number or a material number, but might have different names. The
applications is able to tell the database that those two attributes are the same and
based on this information it is possible to join the tables.

Different types of relations between two tables exist. These are one-to-one, one-
to-many, and many-to-many relations. A one-to-one relation connects one tuple of
the first table with one tuple from the second table. This means joining the tables’
results in a maximum of one join partner for each tuple. In a one-to-many relation-
ship, each tuple of the first table is joined with multiple tuples of the second table. An
example for a one-to-many relation would be a normalized world population table
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where a foreign key in the world population table represents the country and the
names of the countries are located in a separate country table that contains exactly
one tuple per country. The resulting relation between county and the world popu-
lation table connects each country from the country table with all its citizens in the
world population table. In a many-to-many relationship, each tuple from the first
relation may be joined to multiple tuples from the second one and each tuple from the
second relation may be joined to multiple tuples from the first one. An example for a
many-to-many relation is the books-and-authors relation. A book can have many
authors and an author can have multiple books. A many-to-many relation can be
implemented as an additional table containing pairs of foreign keys that lists the
matching tuples of the two tables with the many-to-many relation.

19.1 Join Execution in Main Memory

Looking at the properties of main memory shows that sequential scans are many
times faster than random access. In turn, the target of join algorithms in main
memory systems is to leverage sequential scans as much as possible. As a con-
sequence, random lookups are avoided as much as possible. Another target of
these algorithms is to avoid materialization of data as long as possible in order to
work with the much smaller position information, e.g., to fit more data into one
cache line (see Chap. 16).

The next two sections present the hash-join and the sort-merge join as two join
algorithms that leverage the features of in-memory databases. First, a hash-join is
based on a hash function. The function maps input values to fixed length output
values. It has the advantage that the access is very cheap. The sort-merge join uses
the properties of a distinctly sortable data type. After sorting the two join columns,
the columns are merged.

To present the algorithms, we use the world population table and an extra
locations table that provides more details about specific locations (both are sim-
plified for the examples to keep the IDs small). See Fig. 19.1 for an overview of
the example tables.

We furthermore use the statement in Listing 19.1. It retrieves the name of each city
in the state ‘Hessen’, the mayor of that city and the number of people living there. For
simplicity, we assume that city names are distinct per state. As it is an inner join, only
cities with at least one join partner in the world population table are shown in the
result set.

Listing 19.1: SQL statement including a join
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19.2 Hash-Join

The hash-join is based on a hash function, which allows access in constant time. A
second feature of this function is that it maps to fixed length keys, even though the
input of the function might have a variable length.

The hash-join algorithm itself consists of two phases: a hash phase and a hash-
join phase. During the hash phase, the smaller relation (lower table cardinality) is
sequentially scanned on the predicate column and the hash key of each attribute
value is calculated. The key is inserted into a hash map together with the value’s
position in the table. To keep the hash map small and its creation fast, the smaller
one of the two joined tables is used for hash map creation.

During the hash-join phase, the bigger relation is sequentially scanned. Each
value is probed into the hash map by calculating the hash key and looking it up in
the hash map. If the value exists, the position of the currently probed tuple and the
tuple’s position in the hash map are returned as a matching pair. A row is skipped
if its key does not exist in the hash map.

19.2.1 Example Hash-Join

This section provides a deeper insight into the hash-join algorithm by analyzing the
example query’s execution as displayed in Listing 19.1. The first step of the query
execution is to find all predicates that can be evaluated before the actual join exe-
cution starts. This allows reducing the size of intermediate results and in turn saves
memory and other computing resources. Regarding the example, this means the filter

Fig. 19.1 The example join tables
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operation of the WHERE clause is executed first. The result is a reduced amount
of cities that are relevant for the join. In our example, the result is a list of all positions
of cities of the locations table in ‘Hessen’, which are\812,912,1023,4581,…[.

At this point the actual join starts with the hash phase. The cities in ‘Hessen’ are
the smaller input relation, which means they are sequentially scanned to build the
hash map as shown in Fig. 19.2. The hash map contains the valueID of the city
column of the world population table as the hash-encoded key. That valueID
translation is done using the city dictionaries of both tables. As an example, take a
look at the city ‘Kassel’ with the recordID 812. To get the valueID of ‘Kassel’ in
the world population table, it is looked up in its city dictionary. The hash-encoded
key of the hash map is generated from this valueID, which is 471 for ‘Kassel’. The
second part that is stored in the hash map is the position information of the
locations table. In the case of ‘Kassel’ that is 812. Creating the hash map creates a
mapping from the world population table to the locations table.

The next phase is the actual hash-join phase, which is also called probe phase.
Figure 19.3 displays a part of the example’s probe phase. The city column of the
world population table is scanned and each item’s city valueID is probed into the
hash map to check if the hash map contains the key. This access is of constant
complexity. When a key is found, the recordID of the currently probed row and the
recordID that is stored together with the matching hash key are returned as a
matching pair. Those pairs are the result set of the actual join operation.

In a last step, the rest of the query is executed. This includes executing the
COUNT aggregation, based on position pairs, to calculate how many people are
living in each city. Finally, the mayor and the name of the city can be fetched and
the query’s materialized result is complete.

Hash-joins have one significant problem, which is the hash function. The reason
for this is that a hash function for longer byte values like strings is difficult to find.
If the function does not absolutely fit, the algorithm has to deal with collisions.
Collisions occur if multiple distinct values are hashed to the same key. Those
collisions make the hash-join algorithm more complex as it has to deal with them.
An alternative to the hash-join is the sort-merge join, which will be discussed in
the next section.

Fig. 19.2 Hash map creation
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19.3 Sort-Merge Join

The sort-merge join consists of multiple phases that can be implemented as a semi-
join. First, the predicate column of the smaller relation is scanned to build a list of
unique valueIDs. This list is used afterwards to create a translation table, which
contains the unique values of each relation. Removing all rows without a join
partner from the mapping table completes the first part of the semi-join.

Now, the bigger relation is sequentially scanned and all matching positions are
retrieved using the translation table. The result is a list of all matching positions.
Based on the position lists of both tables, the results from both parts of the semi-
join are combined and the matching tuples are returned.

19.3.1 Example Sort-Merge Join

This section shows the execution of a sort-merge join with the help of an example.
The query from Listing 19.1 is used again but this time a different join algorithm is
employed. An overview of both join tables and their join column dictionaries is
shown in Fig. 19.1. ‘Kassel’, the city of the last example, has position 812 in the
locations table. The valueID of ‘Kassel’ is 471 in the world population city dic-
tionary and 812 in the locations city dictionary.

The first phase of the sort-merge join execution is very similar to the hash-join
execution. First, the filter operation is executed to reduce the number of input
tuples to the actual join operation.

In the join execution’s second part, a unique list of valueIDs is created from the
smaller relation. This is a list of all valueIDs of the cities in ‘Hessen’, i.e. 812, 231,
and 510. It is the base for the translation table. The example translation table is
shown in Fig. 19.4. It provides a mapping from a city’s valueID in the world
population dictionary to the valueID in the locations table dictionary. Each
valueID from the dictionary of the locations table is used to retrieve the actual

Fig. 19.3 Hash-join phase
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value, which in turn is used to perform a lookup on the dictionary of the world
population table.

The next step of the sort-merge join is to remove all rows from the mapping
table, where one part of the mapping is missing. In the example, this is the case for
the row where 231 is the valueID of the location table and a world population’s
valueID is not available. Removing those rows completes the first part of the semi-
join. So far, the algorithm mainly worked on dictionaries instead of actual data.

The second part of the semi-join makes use of the translation table to find all
matching positions in the world population table. Afterwards, the list of matching
positions in the world population and the list of positions in the locations table are
available and both list are sorted. The city column of locations is already sorted
because the values come from the dictionary of the column ‘‘city’’ of the table
‘‘locations’’, which is alphabetically sorted. That means it is now possible to
combine the two semi-joins and create a list of intermediate matching position
pairs. This step is illustrated in Fig. 19.5. This is the result of the join itself.

The last step is again very similar to the last step of the hash-join. The
aggregation, i.e., the number of inhabitants of all cities in ‘Hessen’, is calculated
and afterwards the actual names of the city and the mayor are retrieved from the
dictionary.

19.4 Choosing a Join Algorithm

Besides hash-join and sort-merge join, the nested-loop join is a third option to
perform a join. Basically, it scans one relation and for each scanned tuple, the
whole other relation is scanned for matching tuples. This results in a complexity of
Oðn � mÞ with the first table having n tuples and the second having m tuples.

Fig. 19.4 Building the translation table
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The algorithm of the hash-join has a complexity of Oðnþ mÞ as the first
relation’s join column is scanned once to build the hash map and afterwards the
second relation’s join column is scanned once to probe the values into the hash
map.

The sort-merge join complexity is Oðn � logðnÞ þ m � logðmÞÞ. In general, it is
worse than the hash-join’s complexity because it requires sorting before the merge
can be done.

To sum this up, the hash-join performs best in general. It performs better if there is
an index on the attribute, which improves building the hash map. The limitation of the
algorithm is the hash map. If the map becomes too large or of it is too complicated to
build at all, there might be better alternatives. A reliable fall back algorithm is the
sort-merge join, because it does not require an index on the attribute. The nested-loop
algorithm is suitable for very small data sets, where creating the data structures of the
other algorithms would create too much overhead.

19.5 Self Test Questions

1. Hash-Join Complexity
What is the complexity of the Hash-Join?

(a) O(n+m)
(b) O(n2/m2)
(c) O(n � m)
(d) O(n � log(n)+m+log(m))

Fig. 19.5 Matching pairs from both position lists
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2. Sort-Merge Join Complexity
What is the complexity of the Sort-Merge Join?

(a) O(n+m)
(b) O(n2/m2)
(c) O(n � m)
(d) O(n � log(n)+m � log(m))

3. Join Algorithm Small Data Set
Given is an extremely small data set. Which join algorithm would you choose
in order to get the best performance?

(a) All join algorithms have the same performance
(b) Nested-Loop Join
(c) Sort-Merge Join
(d) Hash-Join

4. Join Algorithm Large Data Set
Imagine a large data set with an index. Which join algorithm would you
choose in order to get the best performance?

(a) Nested-Loop Join
(b) Sort-Merge Join
(c) All join algorithms have the same performance
(d) Hash-Join

5. Equi-Join
What is the Equi-Join?

(a) If you select tuples from both relations, you use only one half of the join
relations and the other half of the table is discarded

(b) If you select tuples from both relations, you will always select those
tuples, that qualify according to a given equality predicate

(c) It is a join algorithm that ensures that the result consists of equal amounts
from both joined relations

(d) It is a join algorithm to fetch information, that is probably not there. So if
you select a tuple from one relation and this tuple has no matching tuple
on the other relation, you would insert their NULL values there.

6. One-to-One-Relation
What is a one-to-one relation?

(a) A one-to-one relation between two objects means that for each object on
the left side, there are one or more objects on the right side of the joined
table and each object of the right side has exactly one join partner on the
left

(b) A one-to-one relation between two objects means that for exactly one
object on the left side of the join exists exactly one object on the right side
and vice versa
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(c) A one-to-one relation between two objects means that each object on the
left side is joined to one or more objects on the right side of the table and
vice versa each object on the right side has one or more join partners on
the left side of the table

(d) Each query which has exactly one join between exactly two tables is
called a one-to-one relation, because one table is joined to exactly one
other table.
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Chapter 20
Aggregate Functions

This chapter discusses aggregate functions. It outlines what aggregate functions
are, how they work, and how they can be executed in an in-memory database
system.

Aggregate functions are a specific set of functions that take multiple rows as an
input to create an output. This means, they work on data sets instead of single
values. Grouping the input data based on specified group attributes creates the sets.
Basic aggregate functions are, e.g., COUNT, SUM, AVERAGE, MEDIAN, MAX-
IMUM and MINIMUM. Furthermore, it is possible to create additional functions
for special purposes, e.g., OLAP functions that extend basic functions.

The basic SQL syntax to use an aggregate function can be seen in Listing 20.1.

The GROUP BY clause specifies the attributes by which the input relation is
grouped. All selected attributes that are not used in the GROUP BY clause should
specify an aggregate function in the select clause, otherwise their value might be
undefined. The WHERE and the HAVING clauses are optional.

20.1 Aggregation Example Using the COUNT Function

Let us consider an example for the use of the COUNT aggregate function. Assume
an input table containing the complete world population as shown in Fig. 20.1.

The goal is to count all citizens per country. Using the COUNT aggregate
function, an SQL query to achieve this is depicted in Listing 20.2.

Listing 20.1: SQL aggregate function syntax
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Figure 20.2 shows how such a query would be processed. First, the system runs
through the attribute vector for the country column. For each new encountered
country valueID, an entry with initial value ‘‘1’’ is added to the result map. If the
encountered valueID has been added before, the respective entry in the result map
is increased by one. That way, a result map is created which contains the valueIDs
of each country and its number of occurrence. Second, the countries are fetched
from the respective dictionary using the valuesIDs and the final result of the
COUNT function is created. The result contains pairs of country names and the
countries’ number of occurrences in the source table, which corresponds to the
number of citizens.

Other aggregate functions show a similar pattern. For SUM, the number of
occurrences for each valueID is counted in an auxiliary data structure and the sum
is calculated in a final step by summing up the number of occurrences multiplied

Fig. 20.1 Input relation containing the world population

Fig. 20.2 Count example

Listing 20.2: Example SQL query using the COUNT aggregate function
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with the respective value of each valueId. AVERAGE can be calculated by dividing
SUM by COUNT. To retrieve the median, the complete relation has to be sorted
and the middle value is returned. MAXIMUM and MINIMUM compare a tempo-
rary extreme value with the next value from the relation and replace it if the new
value is higher (for MAXIMUM) or lower (for MINIMUM), respectively.

20.2 Self Test Questions

1. Aggregate Function Definition
What are aggregate functions?

(a) A set of functions that transform data types from one to another data
(b) A set of indexes that speed up processing a specific report
(c) A set of tuples that are grouped together according to specific requirements
(d) A specific set of functions that summarize multiple rows from an input data

set.

2. Aggregate Functions
Which of the following is an aggregate function?

(a) HAVING
(b) MINIMUM
(c) SORT
(d) GROUP BY
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Chapter 21
Parallel Select

Chapter 18 introduced the concept of an inverted index to prevent the database
system from performing a full column scan every time a query searches for a
predicate in the column. However, maintaining an index is expensive and con-
sumes additional memory. So the decision to use an index should be made care-
fully, balancing all the pros and cons an index would bring in the particular
situation. This chapter discusses how to speed up a full column scan despite adding
an index to it. Chapter 17 introduced parallelism as a means to parallelize the
execution of database operations. In this chapter, we present a detailed description
of how parallelism can be used to speed up the execution of a SELECT operation.

21.1 Parallelization

The purpose of a SELECT operation is to find all positions in a column, that
correspond to a certain predicate, meaning that we need to scan the attribute vector
to find the position of all codes that match the dictionary entry of the predicate.
Splitting the vector into chunks of data can parallelize a sequential scan over the
attribute vector of a column. Each chunk of data can be processed independently
and the results will be combined. Let us look at an example. We want to find the
names of all men from Italy. The corresponding query to that question is shown in
Listing 21.1. Please note that this query is just for demonstration purposes. There
exist better implementations of that query, which we knowingly neglect to con-
struct a simplified, yet less optimal example.

Listing 21.1: Query to select all men from Italy
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Figure 21.1 shows the resulting query plan, when the columns are split into four
chunks. In this case, the attribute vector scans can be performed in parallel by eight
independent threads.

As can be seen in Listing 21.1, we need two parallel UNION operations to
combine the results from the different threads. The positional AND operation is
executed sequentially again. Fortunately, the positional AND operation can be
parallelized, too. If the two columns are equally partitioned, meaning that the
number of partitions is equal and the position ranges in each corresponding par-
tition are the same, the positional AND can be executed in parallel as well. Fig-
ure 21.2 shows such as scenario based on our example. The two attribute vectors
of the columns are partitioned into four chunks. The position ranges in the
respective chunks are the same for both columns (0. . .2; 3. . .5; 6. . .8, and 9. . .11).
Parallel scans in the individual chunks will result in the selection shown in
Fig. 21.3. After the parallel scans determined the individual positions that

Fig. 21.1 Parallel scan, partitioning each column into 4 chunks

Fig. 21.2 Equally partitioned columns

146 21 Parallel Select



correspond to the search predicate in the respective column, we need to compare
the positions within each chunk. If the same position has been marked in both
columns, we have found a record that fulfills our search predicates. Now, this
operation can be performed in parallel for each individual chunk. Figure 21.4
shows the result of the parallel comparison.

The last operation in the query is the UNION, which collects the results from
the different positional AND operations. Once, we parallelize the positional AND,
the executed query plan changes. The new query plan is depicted in Fig. 21.5.

Fig. 21.3 Result of parallel scans

Fig. 21.4 Result of Positional AND
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21.2 Self Test Questions

1. Amdahl’s Law
Amdahl’s Law states that...

(a) the number of CPUs doubles every year
(b) the level of parallelization can be no higher than the number of available

CPUs
(c) the speedup of parallelization is limited by the time needed for the

sequential fractions of the program
(d) the amount of available memory doubles every year.

2. Query Execution Plans in Parallelizing SELECTS
When a SELECT statement is executed in parallel...

(a) all other SELECT statements are paused
(b) its query execution plan becomes much simpler compared to sequential

execution
(c) its query execution plan is adapted accordingly
(d) its query execution plan is not changed at all.

Fig. 21.5 Parallel scans with parallel Positional AND

148 21 Parallel Select



Chapter 22
Workload Management and Scheduling

22.1 The Power of Speed

One of the most important factors that determine the usability for an application is
response time. Psychological studies show that the acceptable maximum appli-
cation response time for a human is about three seconds. After three seconds, the
user might loose concentration and does something else. Once the application has
finished its processing and is ready for the next human input, the user has to focus
on the application again. These context switches are extremely expensive as they
constantly interrupt the user and lead to being unproductive.

Online Transaction Processing (OLTP) and Online Analytical Processing
(OLAP) are very similar from a technical perspective, but completely different
from the user interaction perspective. OLAP transactions are long lasting, whereas
OLTP transactions are short, but are being executed frequently and by many users
in parallel.

A table scan necessary for an OLAP query can easily be parallelized to a high
degree by a query optimizer. If the query optimizer decides that the query can be
executed in parallel, it separates the query into multiple sub-queries, executes
every sub-query in parallel and combines their intermediate results. To mix a
highly parallelized analytical workload with a transactional workload, two queues
are required. One queue is used for transactional queries and one for parallelizable
analytical queries. If analytical queries are so small that they do not need to be
parallelized they are treated like normal transactional queries, so they go in the
same queue as these. Consequently, the query optimizer can execute transactional
queries right away and tackle analytical queries with otherwise unused resources.

The additional challenge is to allow multiple users to explore the data simul-
taneously whenever they want. With the new architecture of SanssouciDB, it is
possible to give users the freedom to analyze data in a very fast and unrestricted
manner. This leads from a user who is not frustrated by using IT systems to a user,
who actually enjoys it. As a result, the user works more with the available data and
explores it beyond minimal duty.

In the corporate world, users are often separated into different groups with
varying execution priorities. It is usual that top-managers get the highest priority
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and clerks the lower one. This is disadvantageous, because top-managers use the
system extremely seldom, whereas clerks have to work with the system on a daily
basis. Consequently, it is desirable to empower also the clerks with the full pro-
cessing capacity of the IT landscape as they often detect uncommon patterns early
and know how to navigate through the data. The here presented architecture
provides full processing speed for all hierarchies throughout the company.

22.2 Scheduling

The scheduler has to assign the computer’s resources such as processing power,
memory, or network bandwidth to the running queries. Each query can be broken
into tasks, which are eligible for being distributed across the available resources.
During query execution, the original query is decomposed into a query plan that is
executed to generate the expected result. To optimize the scheduling decision,
statistical information about queries and their execution is used as well.

In general, scheduling goes along with several kinds of complications: inter-
dependencies between queries, different resource utilization for the queries (e.g.
some are CPU-bound or memory-bandwidth bound etc.), restricted resources,
locality of operations (e.g. a filter task should be executed at the node where the
data is stored) and so on.

These possible complications make finding an optimal execution plan a very
complex task which is NP-hard in most cases. Therefore, a good solution is often
sufficient: such a solution can be found by applying heuristics and by making
assumptions about some relevant parameters. This enables a near-optimal sched-
uling decision in the shortest possible period [Pla11].

22.3 Mixed Workload Management

Typically, optimizing resource usage and scheduling is a workload-dependent
problem and becomes even more complicated when two different types of
workloads are mixed. As said before, a transactional workload is characterized by
short running queries that must be executed within tight time constraints. In
contrast, an analytical workload consists of more complex and computationally
heavier queries. Running mixed workloads on a single database instance leads to
potentially conflicting optimization goals. The response time for transactional
queries must be guaranteed. At the same time, the response time for analytical
queries should be as short as possible. This can only be achieved by using the
aforementioned scheduler, which makes sure that the available resources are fully
utilized.
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22.4 Self Test Questions

1. Resource Conflicts
Which three hardware resources are usually taken into account by the scheduler
in a distributed in-memory database setup?

(a) CPU processing power, main memory, network bandwidth
(b) Main memory, disk, tape drive
(c) CPU processing power, graphics card, monitor
(d) Network bandwidth, power supply unit, main memory.

2. Workload Management Scheduling Strategy
Why does a complex workload scheduling strategy might have disadvantages in
comparison to a simple resource allocation based on heuristics or a uniform
distribution, e.g. Round Robin?

(a) The execution of a scheduling strategy itself consumes more resources than
a simplistic scheduling approach. A strategy is usually optimized for a
certain workload—if this workload changes abruptly, the scheduling
strategy might perform worse than a uniform distribution

(b) Heuristics are always better than complex scheduling strategies
(c) A scheduling strategy is based on general workloads and thus might not

reach the best performance for specific workloads compared to heuristics or
a uniform distribution, while its application is cheap

(d) Round-Robin is usually the best scheduling strategy.

3. Analytical Queries in Workload Management
Analytical queries typically are . . .

(a) long running with soft time constraints
(b) short running with soft time constraints
(c) short running with strict time constraints
(d) long running with strict time constraints.

4. Query Response Times
Query response times . . .

(a) can be increased so the user can do as many tasks as possible in parallel
because context switches are cheap

(b) have to be as short as possible, so the user stays focused at the task at hand
(c) should never be decreased as users are unfamiliar with such system

behavior and can become frustrated
(d) have no impact on a users work behavior.
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Chapter 23
Parallel Join

Join procedures are cost intensive tasks even for in-memory databases. As today’s
systems introduce more and more parallelism, intra-operator parallelization moves
into focus. This chapter discusses possible schemes to parallelize a hash-join
algorithm, as described in Chap. 19. Hash-join algorithms usually consist of two
phases:

1. In the hashing phase, a hash map for the smaller join relation is created,
2. In the probing phase, a sequential scan over the larger join relation is performed

while probing into the hash map.

To optimize the performance of hash-join algorithms, sequential memory
access should be favored while random access should be avoided. Moreover, early
materialization should be avoided and one should work with valueIDs as long as
possible. However, this chapter will not concentrate on performance optimizations
but deals with parallelization schemes for hash-join algorithms.

Various methods to parallelize join algorithms exist. We will first outline a
simple, only partially parallelized hash-join algorithm in Sect. 23.1, followed by a
more complex and fully parallelized version in Sect. 23.2.

23.1 Partially Parallelized Hash-Join

A simple way to parallelize a hash-join is to keep the hashing phase sequential and
to only parallelize the probing phase.

In the sequential hashing phase, a hash table for the smaller join relation is
created. This is done by sequentially scanning the join column, computing the
respective hash value of each element and storing the position in the elements hash
bucket.

In the probing phase, the larger join relation is partitioned horizontally across
the available threads and the probing is performed in parallel. Each thread works
with a local copy of the hash table and stores its results in a local result table.
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When all probe threads have finished, the local result tables are merged into a
unified result table.

Although the join is not fully parallelized, this approach works well in practice,
as the probing phase on the larger join relation dominates the join costs. However,
one disadvantage is the distribution of the hash table across all cores. As it will be
randomly accessed during the probe phase and it is likely that the hash table is too
large for the first level cache, accesses are likely to induce cache misses.

23.2 Parallel Hash-Join

Another parallelization approach executes both, the hash phase and the probe
phase of the join, in parallel. In the first phase, the hash table for the smaller input
relation A is calculated in parallel, as outlined in Fig. 23.1. In the second phase,
the larger input relation B is probed in parallel against the hash table of A, as
described before in Sect. 23.1.

In the first phase, the smaller input relation A is prepared by calculating its hash
table. The smaller relation is chosen, in order to keep the resulting hash map as
small as possible. The hash table stores a list of positions for each value in the
relation. Multiple hash threads work independently on the relation A, which is
sliced up into multiple parts as shown in step (a) of Fig. 23.1. Each hash thread
scans its part of the input table, hashes the values and writes its results into a small
local hash table, as outlined by step (b). When the local hash table of a thread
reaches a predefined size limit and does not fit into the cache anymore, it is written
back to a buffer in main memory and a new local hash table is created by the

Fig. 23.1 Parallelized hashing phase of a join algorithm
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thread. Each full local hash table is added to a queue, symbolized by the buffer in
step (c). Multiple merge threads process the added tables in the buffer, merging
them to a unified hash table for relation A, depicted in step (d). Each merge thread
only processes its exclusively assigned values, so that the write synchronization on
the unified hash table can be reduced to a minimum.

In the second phase, the probing is parallelized over the available threads as
outlined before in Sect. 23.1. This means, the larger join relation is partitioned
horizontally and each thread stores its results in a local result table. When all
threads have finished, the local result tables of the probe threads are concatenated
and materialized. For a more detailed discussion of parallel join algorithms, the
interested reader is referred to [KKL+09, MBK82].

23.3 Self Test Questions

1. Parallelizing Hash-Join Phases
What is the disadvantage when the probing phase of a join algorithm is par-
allelized and the hashing phase is performed sequentially?

(a) Sequentially performing the hashing phase introduces inconsistencies in the
produced hash values

(b) The algorithm still has a large sequential part that limits its potential to
scale

(c) The sequential hashing phase will run slower due to the large resource
utilization of the parallel probing phase

(d) The table has to be split into smaller parts, so that every core, which
performs the probing, can finish.
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Chapter 24
Parallel Aggregation

Similar to the parallel join mechanism described in Chap. 23, aggregation oper-
ations can also be accelerated using parallelism and hash-based algorithms. In this
chapter, we discuss how parallel aggregation is implemented in SanssouciDB.
Note that multiple other ways to implement parallel aggregation are also con-
ceivable. However, we focus on our parallel implementation using hashing and
thread-local storage.

24.1 Aggregate Functions Revisited

The concept of aggregate functions has already been discussed in Chap. 20.
Aggregate functions operate on single columns but usually take a large number of
rows into account. Examples for aggregate functions are COUNT, SUM, AVER-
AGE, MIN, MAX or STDDEV. Which aggregates are returned is typically specified
using GROUP BY and/or HAVING clauses in SQL. The GROUP BY clause is used
to express that the aggregate function shall be computed for every distinct value of
the specified attribute(s). For example, the following query would incur a COUNT
operation with two different counters, namely one for female and another one for
male entries:

The HAVING clause behaves similar to the SQL WHERE clause, the difference
being that the filter criterion is specified with respect to the aggregate function.

Listing 24.1: Simple SQL query using the COUNT aggregate function
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24.2 Parallel Aggregation Using Hashing

Let us revisit the following example from Chap. 20:

The result of this query lists the number of all citizens for every distinct value
of the ‘‘country’’ column. Table 24.1 shows what the result might look like:

In the following, we describe how this result is computed using the parallel
aggregation algorithm in SanssouciDB. Figure 24.1 visualizes how the algorithm
works. It consists of two phases, the hashing phase and the aggregation phase.

In the hashing phase, shown in the upper part of Fig. 24.1, our world population
table is horizontally partitioned into n parts (cf. Sect. 9.3). The chosen n deter-
mines how many threads will be used for the parallel aggregation. In a lightly
loaded system, n might be as high as the number of CPU cores available on the
machine (cf. Chap. 22). Note that the horizontal partitioning occurs logically and
dynamically, i.e. the way the table is stored physically remains unaltered. Each of
the n threads is now assigned a partition and creates an empty thread-local hash
table. The hash table is used to store

• the hash value of a country and
• the number of occurrences of that country in the world population table.

The threads then begin to scan the ‘‘country’’ column. For each row in the partition
of a thread, the thread checks whether the current country is already contained in
its thread-local hash table. If yes, the number stored in correspondence with the
hash value of the country is increased by one. If not, the hash value of the country
is stored along with a ‘‘1’’, since the thread has just found the first inhabitant of the
country in the current partition. Note that creating a new entry in the hash table
might result in a situation where the size of the hash table exceeds the size of the
CPU cache. Whenever this would be the case, the hash table is stored and a new

Listing 24.2: Another SQL example using the COUNT aggregate function

Table 24.1 Possible result for query in listing 24.2

Country Citizens

China 1,347,350,000
France 65,350,000
Germany 81,844,000
Italy 59,464,000
India 1,210,193,000
United Kingdom 62,262,000
United States 314,390,000
Japan 127,570,000
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hash table is created. The new key/value pair is inserted into the just created empty
hash table. Ensuring that the hash table never exceeds the size of the CPU cache is
crucial for facilitating fast lookups in the hash table. Since a lookup occurs for
every row, which is being scanned, the lookup and alteration of the hash table
should not incur a cache miss. When all threads have finished scanning their
assigned partition, the aggregation phase begins.

In the aggregation phase, the buffered hash tables are merged. This is accom-
plished by so-called merger threads. In this phase the results from the part hash-
tables are further aggregated. The buffered tables are merged using range parti-
tioning. Each merger thread is responsible for a certain range, indicated by a
different color in Fig. 24.1. The partitioning criterion is defined on the keys of the
local hash tables.

Considering the example in Listing 24.1, the hash values for the ‘‘gender’’
attribute could be partitioned as follows: All hash keys whose binary representa-
tion starts with ‘‘0’’ are assigned to one merger thread, and all keys whose binary
representation starts with ‘‘1’’ are assigned to another merger thread. In our
example given in Listing 24.2, the hash values for the ‘‘country’’ attribute might be
partitioned into eight regions. Thus, assuming that there are roughly 200 countries
in the world, each merger thread would be responsible for � 200

8 countries if the
hash function ensures a mostly uniform value distribution.

Fig. 24.1 Parallel aggregation in SanssouciDB
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Each merger thread accesses all buffered hash tables and looks for hash values
in the range that is has been assigned. Since access to the buffered hash tables is
read-only, there are no contention issues due to synchronization. Similar to the
hashing phase, each merger thread has a private hash table where it maintains the
total number of citizens per country as it goes through all buffered hash tables from
the previous phase. The result is obtained by simply concatenating the private hash
tables of the merger threads.

A more detailed description of the parallel aggregation algorithm in Sanssou-
ciDB can be found in [Pla11].

24.3 Self Test Questions

1. Aggregation—GROUP BY
Assume a query that returns the number of citizens of a country, e.g.: SELECT
country, COUNT( � )
FROM world_population
GROUP BY country;

The world_population table contains the names and countries of all citizens of
the world.

The GROUP BY clause is used to express ...

(a) the graphical format of the results for display
(b) an additional filter criteria based on an aggregate function
(c) that the aggregate function shall be computed for every distinct value of

country
(d) the sort order of countries in the result set.

2. Number of Threads
How many threads will be used during the second phase of the described
parallel aggregation algorithm when the table is split into 20 chunks and the
GROUP BY attribute has 6 distinct values?

(a) exactly 20 threads
(b) at most 6 threads
(c) at least 10 threads
(d) at most 20 threads.
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Chapter 25
Differential Buffer

25.1 The Concept

The database architecture discussed so far was optimized for read operations. In the
previously described approach an insert of a single tuple can force a restructuring of
the whole table if a new attribute value occurs and the dictionary has to be resorted.
To overcome this problem, we will introduce the differential buffer in this chapter.

The concept of the differential buffer (sometimes also called ‘‘delta buffer’’ or
‘‘delta store’’) divides the database into a main store and the differential buffer. All
inserts, updates, and delete operations are performed on the differential buffer.
Thus, data modifications happen in the differential buffer only. The read-optimized
main store is not touched by any data modifying operation. The overall current
state of the data is the conjunction of the differential buffer and the main store, thus
every read operation has to be performed on the main store and the differential
buffer, too. Since the differential buffer is orders of magnitudes smaller than the
main store, this has only a small impact on the reading performance.

During query execution, a query is logically split into a query on the com-
pressed main partition and the differential buffer. After the results of both subsets
are retrieved, the intermediate representation must be combined to build the full
valid result representing the current state of the database (Fig. 25.1).

25.2 The Implementation

In the differential buffer, we keep the concept of a column-oriented layout and the
use of dictionaries. However, to improve write performance, the dictionaries are
not sorted but the values are stored in insertion order. Thus, resorting of the
differential buffer will not occur. To speed up accesses to values in the unsorted
dictionary, we use CSB+ trees [RR00]. The CSB+ tree is mainly used as an index
to look up valueIDs for a given value. While this overall approach is optimized for
write performance the biggest drawback of this data storage format is that we
cannot execute the queries in the exact same way as we do it in the main partition.
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One example are range queries. In the compressed main partition we can guarantee
based on the explicit order of the valueIDs that we can represent a range of
valueIDs by its boundaries. Due to the insertion order of the tuples in the differ-
ential buffer we have to explicitly identify and carry each qualifying valueID as for
comparison. For simple single point queries that only access one tuple this is not of
importance, but as stated, might cause a problem for the mentioned range queries
[HBK+11].

The general implementation of the differential buffer is thereby as follows.
First, we keep a list of all occurring values and a CSB+ tree to allow for loga-
rithmic search in all unique values. While the unique values are not stored in a
specific order as it is done in the compressed main partition, the CSB+ tree allows
to define an ordering criterion on an attribute to perform fast searches on that
attribute. The disadvantage of this approach is the space overhead of the tree
structure. While the tree is not required to explicitly store the actual value, which is
stored in a separate list in insertion order, it still needs to build the required tree
structure and thus the space overhead can be approximated by a factor of two
depending on the actual fill level of the leaf nodes inside the tree.

Since read performance is critical to our mixed workload enterprise applica-
tions, we need to make sure that the differential buffer size is always kept as small
as possible. To achieve this we use an online reorganization process that merges
the changes that are stored in the differential buffer with the compressed main
partition to build a new compressed main partition. The detailed description of the
merge process will follow in Chap. 27.

Fig. 25.1 The differential buffer concept

164 25 Differential Buffer

http://dx.doi.org/10.1007/978-3-642-36524-9_27
http://dx.doi.org/10.1007/978-3-642-36524-9_27


25.3 Tuple Lifetime

Because the compressed main partition of a table cannot be modified, we need a
new way to identify tuple lifetime for the records stored there. If we have to update
a record in the compressed main partition the first idea is that we will now perform
an additional insert with the same values in the delta partition and do nothing in the
main partition. The problem that arises with this implementation is that we then
can no longer distinguish between the result of the compressed main partition and
the delta partition. This is especially important if there are multiple modifications
for a single record. To overcome this limitation we need to add a special system bit
vector to the table that manages the validity of a tuple in the compressed main
partition and the differential buffer. For each record, this validity vector stores a
single bit that indicates if the record at this position is valid or not. To ensure fast
read and write access to this vector, it stays uncompressed.

During query execution the lookup of the valid tuple is handled as follows: First
the query is executed normally as it would be without the validity vector. In
parallel, we execute the same query in the differential buffer. Afterwards, when the
result for the compressed main partition is available, the result positions are
verified with the validity vector to remove all positions from the intermediate
result that are not valid. This strategy is illustrated in Fig. 25.2. In this example
Michael Berg moves from Berlin to Potsdam. Since we cannot modify the main
structure directly we have to execute two operations. First, we invalidate the old
tuple in the main partition by unsetting the valid bit, and second, we insert the
complete tuple with the new location in the differential buffer so we have all
information about Michael Berg available again. Both operations have to be able
to be executed atomically as one single operation so that no information will be
lost at any time.

The drawback of this approach is that during query execution a small additional
overhead is added. However, the benefits greatly outweigh the disadvantages,
especially because using specialized SIMD instructions enables us to check
multiple positions at once for validity.

Fig. 25.2 Michael Berg moves from Berlin to Potsdam
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25.4 Self Test Questions

1. The Differential Buffer
What is the differential buffer?

(a) A buffer where exception and error messages are stored
(b) A buffer where different results for one and the same query are stored for

later usage
(c) A dedicated storage area in the database where inserts, updates and dele-

tions are buffered
(d) A buffer where queries are buffered until there is an idle CPU that takes one

new task over.

2. Performance of the Differential Buffer
Why might the performance of read queries decrease, if a differential buffer is
used?

(a) Because only one query at a time can be answered by using the differential
buffer

(b) Because read queries have to go against the main store and the differential
buffer, which is write-optimized

(c) Because inserts collected in the differential buffer have to be merged into
the main store every time a read query comes in

(d) Because the CPU cannot perform the query before the differential buffer is
full.

3. Querying the Differential Buffer
If we use a differential buffer, we have the problem that several tuples
belonging to one real world entry might be present in the main store as well as
in the differential buffer. How did we solve this problem?

(a) This statement is completely wrong because multiple tuples for one real
world entry must never exist

(b) All attributes of every doubled occurrence are set to NULL in the com-
pressed main store.

(c) We introduced a validity bit
(d) We use a specialized garbage collector that just keeps the most recent

entry.
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Chapter 26
Insert-Only

26.1 Definition of the Insert-Only Approach

Data stored in database tables changes over time and these changes should be
traceable, as enterprises need to access their historical data. Additionally, the
possibility to access any data that has been stored in the database in the past and
keeping historical data is mandatory e.g. for financial audits.

In this chapter, we discuss the insert-only approach. This approach means that
applications do not perform updates and deletions on physically stored data tuples,
but add tuples and manage their validity instead. A small glimpse how this can be
done was already shown with the validity column in Chap. 25. By using insert-
only, all data changes are recorded in the same logical database table, we abstract
from the introduced separation between the main store and the differential buffer
here. In other words, the insert-only approach can be formulated as following:
outdated data is not overwritten or deleted, but invalidated. Invalidation can be
done by means of additional attributes which indicate the current revision of a
tuple. That makes accessing the previous revisions of data very simple: just by
using the key of the tuple and the revision attribute results in the retrieval of the
requested tuple in its desired version. This already provides the kind of traceability
that is legally required for financial applications in many countries. In addition,
there are some business related benefits and some technical reasons for insert-only,
such as:

• So called time travel queries are easily possible. Time travel queries allow users
to see the data like it was in certain point in the past. Simple access to historical
data helps a company’s management to efficiently analyze the history and
development of the enterprise, which can be helpful for strategic decisions;

• This approach can simplify implementation of parallelization mechanisms, e.g.
multiversion concurrency control (will be discussed below);

• In the context of in-memory column-store databases, where the encoded data is
stored and appropriate dictionaries for the attributes are used, an insert-only
approach simplifies working with dictionaries, as no dictionary cleaning is
necessary in this case.
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So, how do we differentiate between the actual tuples and outdated ones? We
consider the two following implementation possibilities:

• Point representation: to determine the validity of tuples, one field is used. In the
field ‘‘valid from’’ the insertion date is stored.

• Interval representation: to determine the validity of tuples, two fields are used.
The fields contain information about the valid time interval: ‘‘valid from’’ and
‘‘valid to’’ dates.

Let us consider in more detail the corresponding implementation, use cases,
advantages, and disadvantages of both implementation possibilities. To explain the
approaches, we take the example table ‘‘world_population’’. In the following, we
explain the concept with dates for simplicity. In reality, timestamps with a pre-
cision of one microsecond are used.

26.2 Point Representation

When using point representation, the ‘‘valid from’’ date is stored with every tuple
in the database table. The field contains the date from the moment when the tuple
was created. The obvious advantage of this method is a fast write of new tuples.
On any update, only the tuple with the new values and the current ‘‘valid from’’
date has to be entered, the other tuples do not need to be changed. Consider the
following initial state of the table (Table 26.1). Please note that this time the ids
are stored explicitly and will be used to reference tuples (in reality, any primary
key for the tuples will do, it does not have to be separate ids).

Now we want to update the tuple with id 1, because Michael moves from Berlin
to Hamburg. The update in the database table is done on 07-02-2012. In case of an
insert-only approach and point representation, the update result will look as
depicted in Table 26.2.

So, the old data is not deleted, but the new record for the tuple with the same
key and the different ‘‘valid from’’ date is inserted. To do the update, the user or
the client application issues the following SQL statement:

Listing 26.1: Update request from user or application

Table 26.1 Initial state of example table using point representation

Id Fname Lname Gender Country City Birthday Valid from

0 Martin Albrecht m Germany Berlin 08-05-1955 10-11-2011
1 Michael Berg m Germany Berlin 03-05-1970 10-11-2011
2 Hanna Schulze f Germany Hamburg 04-04-1968 10-11-2011
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The update statement can be semantically regarded as the following insert
operation (Listing 26.2), if the overwriting behavior of the update is discarded,
which is the case for insert only. All attributes that are not directly mentioned in
the update statement are retrieved from the most recent entry of the tuple. So
internally, the following insert statement is executed:

At the same time, a point representation approach causes the following dis-
advantage: it can be less efficient for read operations when the user only needs the
most recent tuples. Every time when searching for the recent tuple, the other tuples
of that entry (so here these with the same id) have to be checked, to make sure that
the most recent one has been found. In other words, for identifying which tuple is
the most recent one, we need to fetch all tuples and sort them by their
valid_from timestamp. After that we get the most recent tuple.

Taking the updated example table, let us assume we want to select the newest
record with the id ¼ 1. The following operation has to be performed in this case
(Listing 26.3):

Listing 26.3: Point representation: retrieve most recent entry

The mentioned properties make the point representation approach efficient for
OLTP operations where write operations are required more often than read
operations.

26.3 Interval Representation

When using interval representation, both ‘‘valid from’’ and ‘‘valid to’’ dates are
stored with every tuple in the database table. The fields contain the creation date of
a tuple and the point in time when it was invalidated.

Table 26.2 Example table using point representation after updating the tuple with id ¼ 1

Id Fname Lname Gender Country City Birthday Valid from

0 Martin Albrecht m Germany Berlin 08-05-1955 10-11-2011
1 Michael Berg m Germany Berlin 03-05-1970 10-11-2011
2 Hanna Schulze f Germany Hamburg 04-04-1968 10-11-2011
1 Michael Berg m Germany Hamburg 03-05-1970 07-02-2012

Listing 26.2: Generated insert statement from update request
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As in the point representation, in interval representation the complete tuple is
stored on attribute change with the ‘‘valid from’’ date. Additionally, the ‘‘valid to’’
date field is updated in the tuple that is substituted by a newer one. This ‘‘valid to’’
date will be equal to the ‘‘valid from’’ date in the new tuple. Obviously, a write
operation is more complex in this case. Consider the same table as in the point
representation example, with the initial state shown in Table 26.3.

Again, we want to update the tuple with the id ¼ 1 again such that the city will
be changed to ‘Hamburg’. In case of interval representation, the result of the
update will look as depicted in Table 26.4.

Not only the new tuple with the updated field values is inserted, but also the old
tuple is updated. Two operations have to be done in this case, and that makes
writes for the interval representation less efficient (see Listing 26.4).

Listing 26.4: Operations for update in insert only

On the other hand, an additional ‘‘valid to’’ field simplifies read operations in
comparison to point representation. In the case of an interval representation, there
is no need to fetch and sort the tuples to get the most recent ones; only the tuples
with the appropriate key and an empty ‘‘valid to’’ date have to be selected. To
select the most recent tuple for Michael, the following operation is executed
(Listing 26.5):

Listing 26.5: Interval representation: retrieve most recent entry

Table 26.3 Initial state of example table using interval representation

Id Fname Lname Gender Country City Birthday Valid from Valid to

0 Martin Albrecht m Germany Berlin 08-05-1955 10-11-2011
1 Michael Berg m Germany Berlin 03-05-1970 10-11-2011
2 Hanna Schulze f Germany Hamburg 04-04-1968 10-11-2011

Table 26.4 Example table using interval representation after updating the tuple with id ¼ 1

Id Fname Lname Gender Country City Birthday Valid from Valid to

0 Martin Albrecht m Germany Berlin 08-05-1955 10-11-2011
1 Michael Berg m Germany Berlin 03-05-1970 10-11-2011 07-02-2012
2 Hanna Schulze f Germany Hamburg 04-04-1968 10-11-2011
1 Michael Berg m Germany Hamburg 03-05-1970 07-02-2012
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The mentioned properties make the interval representation approach especially
efficient for OLAP operations, where read operations are required more often than
write operations.

26.4 Concurrency Control: Snapshot Isolation

Taking the multi-core architecture of modern CPUs and the possibility to paral-
lelize queries into account, different ways of parallelization and concurrency
control have to be investigated. As mentioned above, an insert-only approach not
only helps to match business requirements, but also simplifies technical aspects of
an in-memory column store. Let us discover in more detail how the insert-only
approach can help to simplify snapshot isolation.

The following approaches for concurrency control are commonly used:

• Locking: in this case, a transaction that locks resources works with them
exclusively. An operation can be started only if all required resources are
available.

• Optimistic concurrency control: in this case, data for an operation is stored
isolated, in a so called virtual snapshot.

In the secondly mentioned approach, all manipulations are done on the data that is
valid from the time the transaction was started which is the so-called virtual
snapshot. So, when using multiversion concurrency control, transactions that need
to update data actually insert new versions into the database, but concurrent
transactions will still see a consistent state based on previous versions, because
they all work on their own ‘‘virtual copy’’ of the data. Obviously, that can cause
conflicts.

Now, let us see an example how the insert-only approach can simplify multi-
version concurrency control. We consider interval representation in this example.
Let us take the following simple table about the salary of employees, with the
following state at the time point T1 (Table 26.5):

This table will be the source data for two concurrently executing transactions.
T1 is the time when the first transaction starts. It works on the data for the
employee with the id 0. At the point of time T1, it reads the salary value ‘‘10000’’.
At the point of time T3 (which is in our example again ‘07-07-2012’ and a
timestamp exact to microseconds in reality), it updates the record with id 0 as
following (Table 26.6):

Table 26.5 Example table using interval representation to show concurrent updates

EmplId Salary Valid from Valid to

0 10000 10-11-2011
1 20000 10-11-2011
2 15000 10-11-2011
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The second concurrent transaction starts at the point of time T2, so that T2 lies in
between T1 and T3. It also works with the data with id ¼ 0. But at the moment T2,
it has no access to the updated version by the first transaction, and cannot see the
updates done by the first transaction at the point of time T3. The concurrency
control starts to work when the second transaction tries to update the record with id
= 0 at the point in time T4, which is later than T3 (Fig. 26.1).

26.5 Insert-Only: Advantages and Challenges

As described above, we never delete data from a table. This raises the question
‘‘How will the insert-only approach influence memory consumption?’’. On any
change of the tuple, for each row update, an additional tuple with the additional
timestamp will be inserted into the database and the stored data volume will
increase. This fact seems to increase memory consumption considerably. But is it
really so? To answer this question, let us see what types of updates are usually
performed in business applications:

• Aggregate updates
• Status updates
• Value updates

Taking the advantages of an in-memory column-based database into account,
aggregates can be efficiently calculated on the fly, so we can avoid the updates of
the first type altogether. Concerning the remaining update types, a study was

Fig. 26.1 Snapshot isolation

Table 26.6 Example table using interval representation to show concurrent updates after first
update

EmplId Salary Valid from Valid to

0 10000 10-11-2011 07-07-2012
1 20000 10-11-2011
2 15000 10-11-2011
0 12000 07-07-2012
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conducted at HPI [KKG+11]. The study showed that a typical SAP financials
application is not update-intensive: only an average of about 5 % of all operations
are updates (see Chap. 3). That already lessens the problem much. Adding the fact
that most of these updates are status updates, another simple trick helps to reduce
the remaining impact on memory consumption. Since most status fields only
consist of one bit of information, which means that a status is now set, they can
directly be replaced with the timestamp of the change. When doing the status
update this way, all information is encapsulated in one field and the update can be
done in place, so no additional record has to be written. These characteristics and
improvements lead to the result that the memory consumption only increases
moderately when insert-only is being used.

26.6 Self Test Questions

1. Statements Concerning Insert-Only
Considering an insert-only approach, which of the following statements is true?

(a) When given a differential buffer, historical data can be used to further speed
up the insert performance

(b) Old data items are deleted as they are not necessary any longer
(c) Historical data has to be stored in a separate database to reduce the overall

database size
(d) Data is not deleted, but invalidated instead.

2. Benefits of Historic Data
Which of the following is NOT a reason why historical data is kept by an
enterprise?

(a) Historic data can be used to analyze the development of the company
(b) It is legally required in many countries to store historical data
(c) Historical data can provide snapshots of the database at certain points in

time
(d) Historical data can be analyzed to boost query performance.

3. Accesses for Point Representation
Considering point representation and a table with one tuple, that was invali-
dated five times, how many tuples have to be checked to find the most recent
tuple?

(a) Five
(b) Two, the most recent one and the one before that
(c) Only one, that is, the first which was inserted
(d) Six.
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4. Physical Delete instead of Insert-Only
What would be necessary if physical deletion of tuples was implemented in
SanssouciDB?

(a) Dictionary cleaning which would cause rewriting of the attribute vector
(b) The latest snapshot has to be reloaded after a deletion to maintain data

integrity
(c) Deletion of tuples is part of SanssouciDB
(d) Assurance of compatibility to other DBMS.

5. Statement concerning Insert-Only
Which of the following statements concerning insert-only is true?

(a) Point representation allows faster read operations than interval represen-
tation due to its lower impact on tuple size

(b) In interval representation, four operations have to be executed to invalidate
a tuple

(c) Interval representation allows more efficient write operations than point
representation

(d) Point representation allows more efficient write operations than interval
representation.
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Chapter 27
The Merge Process

Using a differential buffer as an additional data structure to improve write
performance requires to cyclically combine this data with the compressed main
partition. This process is called ‘‘merge’’.

The reasons for merging are two-fold. On the one hand, merging the data of the
differential buffer into the compressed main partition decreases the memory
consumption due to better compression. On the other hand, merging both data
structures improves the read performance due to the sorting of the dictionary of the
read-optimized main store. In an enterprise context, the requirements of the merge
process are that it

• can be executed asynchronously,
• has as little impact as possible on all other operations, and
• does not block any OLTP or OLAP transactions.

To achieve this goal, the merge process creates a new empty differential buffer and
a copy of the main store upfront the actual merging phase to avoid looking during
the merge. Incoming data modifications are passed to the new differential buffer.
Using this approach, we are able to reduce the time when we have to explicitly
lock the compressed main and delta partitions. Using the copy of the main store
and the new differential buffer, the merged table is only locked for the short time
period when the pointer to the main store of a table is set to the new main store
after the merge. In this online merge concept, the table is available for reads and
the second delta for write operations during the merge process.

Now, we will describe the merge algorithm and acquired locks in more detail.
During the merge, the process requires additional system resources (CPU and main
memory) that have to be considered during system sizing and scheduling.

For the differential buffer concept, it is important to mention that all update,
insert, and delete operations are captured as technical inserts into the differential
buffer while a dedicated valid tuple vector per table and store ensures consistency.
When using a differential buffer, the update, insert, and delete performance of the
database is limited by two factors:
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• the insert rate into the write-optimized structure and
• the performance with which the system can merge the accumulated modifica-

tions into the read-optimized main store.

By introducing a differential buffer, the read performance is decreased depending
on the number of tuples in the differential buffer. Join operations are especially
slowed down since results have to be materialized. This means that intermediate
values from the differential buffer cannot be directly compared to those from the
compressed main partition. This can force the execution engine to switch to an
execution based on early materialization which can have a severe performance
impact (see Chap. 16). Consequently, the merge process has to be executed if the
performance impact becomes too large. It is triggered by one of the following
events:

• The number of tuples in the differential buffer for a table exceeds a defined
threshold.

• The memory consumption of the differential buffer exceeds a specified limit.
• The differential buffer log for a columnar table exceeds the defined limit.
• The merge process is triggered explicitly by a specific SQL command.

27.1 The Asynchronous Online Merge

To enable the execution of queries during a running merge operation, we introduce
the concept of an asynchronous merge. The overall requirement for this process is
that it will not block any concurrent modifying transactions. Figure 27.1 illustrates
this concept.

By introducing a second differential buffer during the merge phase, data
changes on the table can still be applied, even during the merge process. Conse-
quently, read operations have to access both differential buffers to query the

Fig. 27.1 The concept of the online merge
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current state during the merge. To maintain consistency, the merge process
requires a lock at the beginning and at the end of the process of switching the
stores and applying necessary data modifications—such as valid tuple modifica-
tions—which have occurred during the merge process. Open transactions are not
affected by the merge, since their changes are copied from the old into the new
differential buffer and can be processed in parallel to the merge process. To finish
the merge operation, the old main store is replaced with the new one. Within this
last step of the merge process, a snapshot of the new main store is persisted, which
defines a new starting point for log replay in case of failures (see Chap. 28).

The merge process consists of three phases: (i) prepare merge, (ii) attribute
merge, and (iii) commit merge. Phase (ii) is hereby carried out for each attribute of
the table.

27.1.1 Prepare Merge Phase

The prepare merge phase locks both the differential buffer as well as the main
store, and creates a new empty differential buffer for all new inserts, updates, and
deletes that occur during the merge process. Additionally, the current validity
vectors of the old differential buffer and the main store are copied because these
may be changed by concurrent updates or deletes applied during the merge, which
may affect tuples involved in this process.

27.1.2 Attribute Merge Phase

The attribute merge phase as outlined in Fig. 27.2 consists of two steps. In the first
step of the attribute merge operation, the differential buffer and main store dic-
tionaries are combined into one sorted result dictionary. In addition, a value
mapping is created as an auxiliary mapping structure to map the positions from the
old dictionary to the new dictionary for the differential buffer and the main store.
These auxiliary structures are actually not necessary for the algorithm, but avoid
expensive lookups in the old dictionaries and improve cache utilization.

The input dictionaries to be consolidated are the main store’s dictionary and the
sorted dictionary extracted from the differential buffer’s CSB+ tree. Having the
sorted dictionaries, both are merged and form the resulting dictionary containing
the main store’s and differential buffer’s distinct values.

In the second step of the attribute merge, the values from the two attribute
vectors are copied into a new combined attribute vector. Therefor the auxiliary
structure is used. To ensure that the sizing of the new attribute vector is correct, we
calculate the required value width based on the size of the new dictionary.

An exemplary run of the attribute merge phase is shown in Sect. 27.2.
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27.1.3 Commit Merge Phase

The commit merge phase starts by acquiring a write lock of the table. This ensures
that all running queries are finished before the switch to the new main store
including the updated valueIDs takes place. Then, the valid tuple vector that was
copied in the prepare phase is applied to the actual vector to mark invalidated
rows. As the last step, the new main store replaces the original differential buffer as
well as the old main store and the memory allocations of both are freed.

The result of the merge process for a simple example is shown in Fig. 27.3. The
new attribute vector holds all tuples of the original main store, as well as the ones
from the differential buffer. Note that the new dictionary includes all values from
the main store and the differential buffer and it is sorted to allow for binary search
and range queries that incorporate materialization query execution strategies.

27.2 Exemplary Attribute Merge of a Column

The Attribute Merge described in Sect. 27.1 will be explained with a simplified
example, showing the merge of a single column. Please note that this does include
the optimizations of the single column merge concept described in Sect. 27.3. As
also shown in Fig. 27.4, the overall process consists of two distinct steps.

Fig. 27.2 The attribute merge
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The first step takes the dictionary of the main store’s attribute vector (here
denoted as Dm) of the main store column (AVm) and its counterpart, the sorted list of
values (AVd), which is extracted from the differential buffer’s CSB+ tree, as input
and produces the combined sorted dictionary Dc as well as the auxiliary structures
AUXm and AUXd as output. To merge both dictionaries, first the pointer on both lists
is set to the first element. The values of the pointers of both dictionaries are then
compared in each iteration, the smaller value is added to the result, and the

Fig. 27.3 The attribute in the main store after the merge process
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corresponding pointer is incremented. In the event that both values are equal, the
value is added once and both pointers are incremented. To be able to later update the
attribute vector to the newly created dictionary, every time a value is added to the
merged dictionary the mapping information from the corresponding old dictionary
to the merged one is added to the corresponding auxiliary structure. If one of the two
pointers reaches the end of its input dictionary, the remaining items of the other
dictionary are copied directly to the result vector, since both dictionaries are sorted.

That means, that at the beginning of this step, the pointer on Dm marks ‘‘apple’’,
and the pointer on AVd marks ‘‘bodo’’. As ‘‘apple’’ is lexically located before
‘‘bodo’’, it is added to Dc first and the pointer on Dm is advanced to ‘‘charlie’’.
Afterwards, ‘‘bodo’’ is added to Dc and the pointer on the CSB+ tree is advanced to
‘‘frank’’. As can be seen, entries (like ‘‘apple’’, arrow M1) only present in the old
main store dictionary, entries only present in the CSB+ tree of the differential
buffer (‘‘bodo’’, arrow D1) and entries present in both structures (‘‘frank’’, arrow
B1) get transferred to the new combined dictionary Dc. While constructing the
combined dictionary, the auxiliary structures AUXm and AUXd are filled with the
resulting new valueIDs which will most probably differ from the old valueIDs.
This is necessary for both structures, not just the differential buffer: for the main
store, the new valueIDs might be increased in comparison to the old ones due to
the addition of new entries from the differential buffer.

The second step builds up the combined attribute vector AVc using the attribute
vector AVm of the old main store, the leafs of the CSB+ tree (AVds) which represent
the attribute vector of the differential buffer in a sorted order encoded by the CSB+
tree and the just created auxiliary structures AUXm and AUXd. The valueIDs of the
outdated attribute vectors are sequentially scanned. Each value is updated with the
help of the appropriate auxiliary structure and then just added to AVc. The arrows
UM1 and UM2 show an example for the entry ‘‘charlie’’, which was represented by
the valueID 1, but is now represented by the valueID 2 due to the addition of the
value ‘‘bodo’’ to the combined dictionary. All in all, the resulting combined attribute
vector is the concatenation of the existing attribute vectors with updated valueIDs.

27.3 Merge Optimizations

In addition to the described asynchronous online merge, this section presents
further optimizations.

27.3.1 Using the Main Store’s Dictionary

The first optimization is the usage of the main store’s dictionary in the differential
buffer. One of the major advantages of writing to a differential buffer is that adding
new elements can be done without the eventual penalty of re-sorting the dictionary
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or re-encoding the attribute vector. A disadvantage is that an additional dictionary
is created which has to be incorporated into the main store’s dictionary during the
merge. But in several cases, using the main store’s dictionary in the differential
buffer as well can improve the merge performance. This is the case when the main
store’s dictionary is already saturated. Typical examples are columns storing years,
country codes, or postal codes. These columns are saturated early and new ele-
ments are rather rare.

In these cases, all elements in the differential buffer use the final dictionary
positions of the main store. This can severely reduce the memory consumption of
the differential buffer. Consequently, the merge of an attribute that reuses the main
dictionary is a simple concatenation of the differential buffer tuples to the main
store’s attribute vector. In cases where the probability of data modifications
introducing new values to the dictionary is high, using the main store’s dictionary
in the differential buffer is rather expensive. This is the case for attributes such as
the time of day, entity identifier, or similar.

27.3.2 Single Column Merge

Another possible optimization concerns memory consumption. During the merge
phase, the complete new main store is kept in main memory. At the point of
highest memory consumption, more than twice the size of the original main store
plus the size of the differential buffer is required to be stored in main memory to
execute the proposed merge process. Tables in enterprise applications often consist
of millions of tuples while having hundreds of attributes. As a consequence,
requiring full table copies can lead to a huge overhead since at least twice the size
of the largest table has to be available in memory to allow the merge process to
run. For example, the financial accounting table of a large consumer products
company contains about 250 million line items with 300 attributes. The uncom-
pressed size with variable length fields of the table is about 250 GB and can be
compressed with bit compressed dictionary encoding to 20 GB [KGZP10].
However, to run the merge process, at least 40 GB of main memory are necessary.

To avoid storing a complete table in memory twice, Krueger et al. present the
so-called Single Column Merge that merges a table column-wise [KGW+11].
Consequently, not the whole table needs to be kept in memory twice, but only a
single column. Thus, if all columns are merged sequentially, the required amount
of memory is reduced to the size of the differential buffer and the compressed
table, plus the size of the largest resulting column. A drawback of this approach is,
that querying as well as transaction management on a partially merged table
becomes more complex.
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27.3.3 Unified Table Concept

To further improve the transactional capabilities of column stores, [SFL+12]
present a modified differential buffer concept, called Unified Table Concept.
Hereby, an additional data structure in form of an in-memory row store—called
L1-delta—is used (see Fig. 27.5), while the L2-delta (i.e. the differential buffer in
SanssouciDB) and the main store have similar structures as in SanssouciDB.

In this concept, each data modification is first written to the L1-delta. This
structure stores approximately 10,000 to 100,000 rows. The L1-delta is merged
with the L2-delta at regular intervals or when a certain row-limit is reached. The
L2-delta is suited to store up to 10 million rows and is merged with the main store.
Consequently, this approach introduces bulk-loading improvements to the differ-
ential buffer and uses a highly write-optimized data structure (i.e., row store) for
incoming data modifications.

27.4 Self Test Questions

1. What is the Merge?
The merge process...

(a) incorporates the data of the write-optimized differential buffer into the read-
optimized main store

(b) combines the main store and the differential buffer to increase the
parallelism

Fig. 27.5 Unified table concept (adapted from [SFL+12])
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(c) merges the columns of a table into a row-oriented format
(d) optimizes the write-performance.

2. When to Merge?
When is the merge process triggered?

(a) When the number of tuples within the differential buffer exceeds a specified
threshold

(b) When the space on disk runs low and the main store needs to be further
compressed

(c) Before each SELECT operation
(d) After each INSERT operation.
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Chapter 28
Logging

Databases need to provide durability guarantees (as part of ACID1) to be used in
productive enterprise applications. To provide these guarantees, fault-tolerance
and high availability have to be ensured. However, since hardware failures or
power outages cannot be avoided or foreseen, measures have to be taken which
allow the system to recover from failures.

The standard procedure to enable durable recovery is logging. With the help of
logging and recovery protocols, databases can be brought back to the last con-
sistent state before the failure. This is achieved by check pointing the current
system and logging subsequent data modifications. Data is written into log files,
which are stored on persistent memory such as hard disk drives (HDD) or solid-
state drives (SSD).

Please note that these requirements are true for any database, regardless of
being an in-memory database or not.

28.1 Logging Infrastructure

A key consideration when talking about logging is performance, both for writing
the logs as well as for reading logs back into memory when recovering. As
discussed in Sect. 4.6, the performance gap between disk and CPU is steadily
increasing. Consequently, logging has to be primarily optimized with respect to
minimizing I/O operations.

Figure 28.1 outlines the logging infrastructure of SanssouciDB. The logging
data, which is written to disk, consist of three parts:

• Snapshot of the main store
• Value logs
• Dictionary logs.

1 ACID stands for Atomicity, Consistency, Isolation, Durability. These properties guarantee
reliability for database transactions and are considered as the foundation for reliable enterprise
computing.
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Check pointing [Bor84] is used to create a snapshot of the database at a certain
point in time, at which the data is in a consistent state. According to [HR83], a
database is in a consistent state ‘‘if and only if it contains the results of all
committed transactions’’. The snapshot is a direct copy of the read-optimized main
store and it is written to disk periodically. The purpose of check pointing is to
speed up the recovery process, since only log entries after the snapshot have to be
replayed, while the main store can be loaded from the snapshot directly. To log the
data of the differential store, which is not part of the snapshot, value logs as well as
dictionary logs are used to track committed changes.

SanssouciDB’s logging infrastructure differs from most traditional databases.
SanssouciDB adapted the infrastructure to leverage the columnar data structures
and to reduce I/O performance penalties. Amongst these optimizations are:

• Snapshot format: at each checkpoint, a snapshot of the main store is written to
disk using a binary file format. This means that an exact copy of the main store
in memory is written to disk, which can later be directly restored without any
loading overhead in case of a recovery.

• Checkpoint timing: the ideal timing for check pointing is when the differential
buffer is relatively small compared to the main store. That is right after the
merge.

• Storing meta data: to speed up the recovery process, additional meta data is
written to disk. With the help of this meta data, the required memory can be
allocated before loading. Thus, expensive re-allocations and data movements
can be avoided. Data hereby written is, e.g., the number of tuples in the main
store and the number of bits used in each dictionary.
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Fig. 28.1 Logging infrastructure

186 28 Logging



• Separation into value and dictionary logs: the two major performance opti-
mizations for logging in SanssouciDB are the reduction of the log size and the
parallelization of logging. This is achieved by using dictionary-encoded logging,
which is discussed in detail in the next section.

28.2 Logical Versus Dictionary-Encoded Logging

The obvious way to log data modifications is logical logging. As depicted in
Fig. 28.2, logical logging simply writes the SQL statement and its parameters
(recordID and attribute values) to disk.

Logical logging has two major shortcomings. First, logging and recovery
cannot be parallelized since the order of the log has to be preserved during replay
to recover the dictionary and the corresponding attribute vector elements. Second,
logical logging writes values directly to disk and, therefore, does not leverage
compression as used in SanssouciDB. Consequently, logical logging writes com-
paratively large data volumes to disk.

To avoid these shortcomings, SanssouciDB uses a logging schema, which
separates the dictionary-encoded data (and their corresponding dictionary inserts)
from the transactional context, the so-called dictionary-encoded logging
[WBR+12]. This approach allows recovering the attribute vectors and dictionaries
in parallel and permits to replay the log entries in an arbitrary order. Furthermore,
dictionary-encoded logging reduces the log size due to the usage of dictionary-
compression, which speeds up the recovery process significantly.

In which cases dictionary-encoded logging is advantageous over logical logging
depends on the data characteristics. In enterprise applications, the same data char-
acteristics that favor dictionary-compressed column-stores also apply to dictionary-
encoded logging. Amongst these characteristics are, e.g., the low number of distinct
values, which leads to fewer dictionary log entries, and the distribution of values.

Value distribution can be described using the Zipf distribution. Intuitively, the
Zipf distribution describes—depending on the variable alpha—how heavily the
distribution is drawn to one value. In the case of alpha ¼ 0, the distribution equals
a uniform distribution and every value occurs equally often. As alpha increases,
less values are more frequently occurring (see exemplary distributions for varying
alpha values in Fig. 28.3).

The authors in [HBK+11] state that the majority of columns analyzed from
financial, sales and distribution modules of an enterprise resource planning (ERP)

Fig. 28.2 Logical logging
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system were following a power-law distribution—a small set of values that occur
frequently, while the majority of values is rare. Furthermore, [HBK+11] identified
an average alpha value of 1.581 in enterprise systems.

Figure 28.4 shows the results of an experiment that measures the cumulated log
size per query for a varying value distribution. In this experiment, one million
INSERT queries of single zipf distributed values with a total of 1,000 distinct values
have been simulated. With an alpha value of 1.581, the dictionary is already saturated
after �30;000 queries. Afterwards, queries rarely add entries to the dictionary log.
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Fig. 28.3 Exemplary Zipf distributions for varying alpha values
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As shown for an alpha value of 4.884 (see Fig. 28.4), the more heavily the distri-
bution is drawn to one value, the smaller the accumulated log size will be. Please note
that logging is only needed for queries that modify the data set to save the changes.

A comparison of the log sizes for logical and dictionary-encoded logging is
shown in Fig. 28.5. These values have been measured on a productive enterprise
system with seven million write operations on the sales item table. Due to the high
compression of recurring values, the dictionary-encoded logging reduces the log
size by 29 %. As a consequence, dictionary-encoded logging is in favor of logical
logging, since it exploits typical data distributions in enterprise systems. For more
details about enterprise data characteristics see Chap. 3.

28.3 Example

Figure 28.6 shows an example of dictionary-encoded logging. Here, three SQL
queries (insert,update, anddelete) of three different transactions are logged.

The first query (INSERT INTO T1 (Attr1, Attr2) VALUES (‘abc’,
‘L’);) inserts a new row into table T1. This query has the transaction ID 9
(TID ¼ 9), which is stored in the following format:

Lt ¼ f‘‘t’’; TIDg

Since both values (‘abc’ and ‘L’) are not yet stored in the corresponding dic-
tionaries, new entries will be added. Dictionary logs Ld are created each time a
transaction adds new values into a dictionary. Therefore, the table identifier t, the
column index ci, the added value v, and the corresponding valueID VID are logged.
The letter ‘‘d’’ at the first position of the dictionary log entry marks that this is a
dictionary log entry, similar to the letter ‘‘t’’ marking the transaction log entry above.
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Ld ¼ f‘‘d’’; t; ci; v;VIDg

Consequently, for transaction 9, two dictionary logs are stored holding the IDs
of the modified dictionaries for table T1 (i.e. column ID), the corresponding
positions in the dictionaries, and the newly inserted values:

ð‘‘d’’; T1; 1; ‘abc’; 2Þ and ð‘‘d’’; T1; 2; ‘L’; 3Þ

Value logs Lv store the actual values, which are appended to the attribute
vectors. Value log entries store more than just plain data structure changes as done
in the dictionary logs, since they have to be linked to the corresponding
transactions.

Lv ¼ f‘‘v’’; TID; t;RID; IRID; bmn; ðVID1; . . .;VIDnÞg

Each value log Lv hereby stores the transaction identifier TID, the table
identifier t, and the rowID RID in the attribute vector. The letter ‘‘v’’ at the first
position marks this log entry as a value log entry. The values are stored in a vector
of VIDs, whereby the bit mask bmn stores the corresponding columns (n is the
number of attributes in table t). If a row is invalidated by the new row (e.g. due to
an update or a delete), the ID of the invalidated row is stored in IRID.

Fig. 28.6 Example: logging for dictionary-encoded columns
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The second query (UPDATE T1 SET Attr2 = ‘M’ WHERE Attr1 =
‘abc’;) in Fig. 28.6 alters a row, without introducing new values. Thus only one
transactional log entry and one value log entry, storing the new dictionary position
for attribute ‘‘Attr1’’, are stored.

The delete query (DELETE FROM T1 WHERE Attr2 = ‘XL’;) invalidates a
row. But in this case, the result might not be obvious. When a row is deleted, a new
line is added to the table. In this example, transaction 11 marks row 2 as invalid.
This is achieved via hidden system attributes (i.e. columns storing the TID and the
corresponding IDs of invalidated rows). While the TID field of a certain row
always persists the transaction ID that inserted this row, the invalidated row field is
only written for updates and deletes. To mark, that a line has not just been updated
but entirely deleted, the invalidated row field is prefixed (see entry ‘‘-2’’ in
Fig. 28.6). Both, for updates and deletes, the unchanged fields of the inserted tuple
are copied from the invalidated row instead of being left empty. The reason is
twofold: first, with fixed length attribute vectors, empty fields provide no advan-
tages in terms of performance or memory consumption. Second, copying the row
avoids additional lookups to get the values of the invalidated row. This is espe-
cially advantageous for long-running transactions and queries, which potentially
need to include outdated rows.

It is furthermore important to understand when and in which order the stored
logs are written to disk. Once a transaction is committed, first the dictionary buffers
have to be written to disk. This has to be ensured to avoid value logs referencing
valueIDs that cannot be recovered. Afterwards, the value logs are written to disk.
Finally, if both logs were written to disk successfully, the committed transaction log
is written to disk. Both, the value log entries and the transaction log entries are
collected in the same log buffer (the value log buffer in Fig. 28.1).

28.4 Self Test Questions

1. Snapshot Statements
Which statement about snapshots is wrong?

(a) The recovery process is faster when using a snapshot because only log files
after the snapshot need to be replayed

(b) The snapshot contains the current read-optimized store
(c) A snapshot is an exact image of a consistent state of the database to a given

time
(d) A snapshot is ideally taken after each insert statement.

2. Recovery Characteristics
Which of the following choices is a desirable characteristic of any recovery
mechanism?

(a) Recovery of only the latest data
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(b) Returning the results in the right sorting order
(c) Maximal utilization of system resources
(d) Fast recovery without any data loss.

3. Situations for Dictionary-Encoded Logging
When is dictionary-encoded logging superior?

(a) If large values are inserted only one time
(b) If the number of distinct values is high
(c) If all values are different
(d) If large values are inserted multiple times.

4. Small Log Size
Which logging method results in the smallest log size?

(a) Common logging
(b) Log sizes never differ
(c) Dictionary-encoded logging
(d) Logical logging.

5. Dictionary-Encoded Log Size
Why has dictionary-encoded logging the smaller log size in comparison to
logical logging?

(a) Because of interpolation
(b) Because it stores only the differences of predicted values and real values
(c) Because of the reduction of recurring values
(d) Actual log sizes are equal, the smaller size is only a conversion error when

calculating the log sizes.
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Chapter 29
Recovery

To handle steadily growing volumes of data and intensifying workloads, modern
enterprise systems have to scale out, using multiple servers within the enterprise
system landscape. With the growing number of servers—and consequently
growing number of racks and CPUs—the probability of hardware-induced failures
is rising.

Productive enterprise systems are expected to never fail or to securely fail-over
once a defect is detected. When a server fails, it may have to be rebooted and
restored, or another server has to take over the workload of the failed server. In
either way, to restore the previous state of the server before its failure, data stored
on persistent memory has to be loaded back into the in-memory database. This
process is called ‘‘recovery’’. Using snapshots and log data—as presented in the
previous Chap. 28—a database can be rebuild to the latest consistent state.

The recovery process, which is presented in this section, relies on dictionary-
encoded logging [WBR+12]. It is executed in two subsequent tasks (I) read meta
data and prepare data structures, (II) read logging data and recover database.

29.1 Reading Meta Data

In addition to logging committed transactions, SanssouciDB logs meta data to
speed up the recovery process. With additional knowledge about the data struc-
tures, which have to be recovered, expensive data movements and re-allocations
can be avoided. Examples for stored meta data are, e.g., the location of the latest
snapshot, the number of rows in the main store, or the bits required for the
dictionary encoding of columns.

As an example, take the replaying of the dictionary logs. Without knowing in
advance how many elements have been persisted before the system failure, the
allocated space for the dictionary would probably have to be resized several times.
A resize usually implies moving the whole data set to a new allocation. If the
number of elements and the number of required bits is known in advance, the
allocated space can be sized accordingly without the need of re-allocations or data
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movements. The number of dictionary elements is stored, since scanning the
dictionary log for the latest log to receive the dictionary size is not efficient even
when scanning in reverse order. The reason is that transactions do not have to be
logged in their incoming order. Thus, finding the maximum dictionary position in
the dictionary log might cause reading large parts of the dictionary log file.

29.2 Recovering the Database

After the data structure allocation has taken place, the recovery process continues
to replay the database logs. As part of this process, the snapshot of a table’s main
store is reloaded into memory. At the same time the dictionary log files (containing
the dictionary log entries) and the value log files (containing the value and
transaction log entries) are replayed.

Due to the dictionary-encoded logging described in Sect. 28.2, the files can be
processed in parallel. The import of the dictionary logs and the main store is rather
straightforward, while reading the value and transaction log entries from the value
log file is a bit more complex. To avoid replaying not committed transactions, the
value log file is read in reverse order. This way it is ensured that only value log
entries are replayed, whose transactions have been successfully committed.
Remember, value and transaction log entries are written to the same file with the
strict order of writing the transaction log entry after all value and dictionary log
entries have been successfully written.

After the import of the value log file, a second run over the imported tuples is
performed. This is caused by the dictionary-encoded logging, which only logs
changed attributes of tuples, thus reducing I/O operations. Consequently, the
imported tuples have to be checked for empty attributes and they have to be
completed if necessary. This is done by iterating over all versions of the tuple,
using the validation flag.

29.3 Self Test Questions

1. Recovery
What is recovery?

(a) It is the process of recording all data during the run time of a system
(b) It is the process of restoring a server to the last consistent state before its

crash
(c) It is the process of improving the physical layout of database tables to speed

up queries
(d) It is the process of cleaning up main memory, that is ‘‘recovering’’ space.
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2. Server Failure
What happens in the situation of a server failure?

(a) The system has to be rebooted and restored if possible, while another server
takes over the workload

(b) The power supply is switched to backup power supply so the data within
the main memory of the server is not lost

(c) The failure of a server has no impact whatsoever on the workload
(d) All data is saved to persistent storage in the last moment before the server

shuts down.
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Chapter 30
On-the-Fly Database Reorganization

In typical enterprise applications, schema and data layout have to be changed from
time to time. The main cases for such changes are software upgrades, software
customization, or workload changes. Therefore, the option of database reorgani-
zation, such as adding an attribute to a table or changing attribute properties, is
required.

In row-oriented databases, database reorganization is typically time-consuming
as well as cost-intensive. That is why most row-oriented database management
systems usually do not allow data definition operations while the database is online
[AGJ+08]. Consequently, downtime of the database server has to be taken into
account. In contrast, modifications within a column store database, such as
SanssouciDB, can be done dynamically without any downtime. The following
sections explain what database reorganization looks like in row stores and column
stores.

30.1 Reorganization in a Row Store

In row stores, database reorganization is expensive. As mentioned in Sect. 8.2 all
attributes of a tuple are stored sequentially in the same memory block, where each
block contains multiple rows. The left side of Fig. 30.1 shows a table that includes
a unique identifier, the first name, and last name of citizens.

If an additional attribute, for example, state is added and no space is available in
the block, adding a new attribute requires a reorganization of the storage for the
entire table. The same issue occurs when the size of an attribute is increased. The
right side of Fig. 30.1 shows the table’s storage after the attribute state is added.
Each row is extended by that attribute and all following rows are moved within the
block (and the following blocks if necessary).

To be able to dynamically change the data layout, a common approach for row
stores is to create a logical schema on top of the physical data layout [AGJ+08].
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This method allows changing the logical schema without modifying the physical
representation of the database but also decreases the performance because of the
overhead of accessing the meta data and data of the logical tables. Another
approach is using schema versioning for database systems [Rod95]. These
advanced approaches will not be discussed any further as part of this learning
material.

30.2 On-the-Fly Reorganization in a Column Store

In column-oriented databases, each column is stored independently from the other
columns in a separate block, see the example in Fig. 30.2. New attributes can be
added very easily, because they will be created in a new memory area. Locking for
changing the data layout is only required for a very short period, during which
solely the meta data of the table is adapted.

As mentioned in Sect. 16.4, in SanssouciDB new columns will not be materi-
alized until the first value is added. The dictionary and the attribute vector of new
columns remain non-existent as long as the column does not contain any values.
The addition of a column has no impact whatsoever on existing applications if they
solely request their required attributes from the database (meaning they do not use
SELECT * statements).

Fig. 30.2 Example memory layout for a column store

Fig. 30.1 Example memory layout for a row store
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30.3 Excursion: Multi-Tenancy Requires
Online Reorganization

This sections gives a typical use case where online reorganization is required in a
database system.

In a single-tenant system, each customer (tenant) has its own database instance
on a physically separated server machine. In this case, maintenance costs for the
service provider will be very high and in addition, tenants do not even use their
system permanently with the complete utilization level. In contrast, on multi-
tenant systems different customers share the same resources on the same machine.
By providing a single administration framework for the whole system, multi-
tenancy can improve the efficiency of system management [JA07] and increases
the utilization of systems. The Software-as-a-Service provider Salesforce.com1

first employed this technique on a large scale.
Multi-tenancy can be implemented in three different ways with different levels

of granularity: shared machine, shared database instance, and shared table.
In the shared machine implementation (see Fig. 30.3a) each customer has its

own database process and these processes are executed on the same server. The
advantages of this approach are a good isolation among other tenants and easy
customer migrations from one machine to another. Major limitations are that this
approach does not support memory pooling and each database needs its own
connection pool. Moreover, administrative operations cannot be applied on all
database instances simultaneously (in bulk).

In the shared database instance implementation (see Fig. 30.3b) each customer
has its own tables, but shares the database instance with other customers. In this
case, connection pools can be shared between customers and pooling of memory is
better compared with the previous approach. On the other hand, isolation between
customers is reduced. This approach allows simultaneous execution of many
administrative operations on all database instances.

In the shared table approach (see Fig. 30.3c) many tenants share the common
database and each customer has its own rows, which are marked by an additional
attribute, e.g., tenantID. With this approach, resource pooling performs best and
sharing of connection pools between customers is possible. Administrative oper-
ations can be carried out in bulk by running queries over the column containing the
tenantID.

Multi-tenant systems using the shared table approach are a typical environment
where on-the-fly database reorganization is necessary. These systems aim at
maintaining the ability of individual tenants to make custom changes to their
database tables, while not affecting other tenants using the same resources. In row
stores, the entire database or table would be completely locked to process data
definition operations. In the column store, the table is locked only for the amount

1 http://www.salesforce.com

30.2 On-the-Fly Reorganization in a Column Store 199

http://www.salesforce.com


of time that is needed to complete the data definition operation and the lock is only
restricted to the meta data of the table.

30.4 Hot and Cold Data

In addition to ever increasing growth of data, intern (i.e. controlling) and extern
(i.e. tax law) requirements demand that data should be kept at hand for many years.
The separation of data into cold data and hot data is an approach to handle the
increased, but still limited capacity of main memory efficiently, while keeping all
data of a company available for reporting needs.

Business objects in enterprise applications have their own life cycle. In
Fig. 30.4, an example life cycle for a sales opportunity is shown. The life cycle of
a business object can be separated into active (hot) and passive (cold) states. The
sequence of events a business object has passed through determines its state. A
business object becomes passive and can be moved to cold data if it will not be
changed any longer and, thus, the object will be accessed less often. Passive
objects will still be used for reporting. In our example of the sales opportunity, it
becomes passive if the opportunity is won and, thus, it is turned into a sales order
by the sales representative, or if it is lost, e.g., canceled by the customer.

(a) (b)

(c)

Fig. 30.3 Multi-tenancy granularity levels
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Probably more than 90 % off all queries are going against hot data. Hot and
cold data can be treated differently as access patterns differ, e.g., read-only access
in cold data versus read and write access in hot data. Different data partitioning
(due to differing access patterns), other storage media (DRAM for hot data, SSD
for cold data), and different materialization strategies can further be used depen-
dent on the data state.

30.5 Self Test Questions

1. Separation of Hot and Cold Data
How should the data separation into hot and cold take place?

(a) Randomly, to ensure efficient utilization of storage areas
(b) Round-robin, to ensure uniform distribution of data among hot and cold stores
(c) Manually, upon the end of the life cycle of an object
(d) Automatically, depending on the state of the object in its life cycle.

2. Data Reorganization in Row Stores
The addition of a new attribute within a table that is stored in row-oriented
format ...

(a) is not possible
(b) is an expensive operation as the complete table has to be reconstructed to

make place for the additional attribute in each row

Fig. 30.4 The life cycle of a sales order
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(c) is possible on-the-fly, without any restrictions of queries running con-
currently that use the table

(d) is very cheap, as only meta data has to be adapted.

3. Cold Data
What is cold data?

(a) Data, which is not modified any longer and that is accessed less frequently
(b) The rest of the data within the database, which does not belong to the

result of the current query
(c) Data that is used in a majority of queries
(d) Data, which is still accessed frequently and on which updates are still

expected.

4. Data Reorganization
The addition of an attribute in the column store ...

(a) slows down the response time of applications that only request the attri-
butes they need from the database

(b) speeds up the response time of applications that always request all pos-
sible attributes from the database

(c) has no impact on existing applications if they only request the attributes
they need from the database

(d) has no impact on applications that always request all possible attributes
from the table.

5. Single-Tenancy
In a single-tenant system ...

(a) all customers are placed on one single shared server and they also share
one single database instance

(b) each tenant has its own database instance on a shared server
(c) power consumption per customer is best and therefore it should be favored
(d) each tenant has its own database instance on a physically separated server.

6. Shared Machine
In the shared machine implementation of multi-tenancy ...

(a) each tenant has an own exclusive machine, but these share their resources
(CPU, RAM) and their data via a network

(b) all tenants share one server machine, but have own database processes
(c) each tenant has an own exclusive machine, but these share their resources

(CPU, RAM) but not their data via a network
(d) all tenants share the same physical machine, but the CPU cores are

exclusively assigned to the tenants.
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7. Shared Database Instance
In the shared database instance implementation of multi-tenancy ...

(a) the risk of failures is minimized because more technical staff (from dif-
ferent tenants) will have a look at the shared database

(b) all tenants share one server machine and one main database process, tables
are also shared

(c) each tenant has its own server, but the database instance is shared between
the tenants via an InfiniBand network

(d) all tenants share one server machine and one main database process, tables
are tenant exclusive, access control is managed within the database.
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Chapter 31
Implications on Application Development

In the previous chapters, we introduced the ideas behind our new database
architecture and their technical details. In addition, we showed that the in-memory
approach can significantly improve the performance of existing database
applications.

In this chapter, we discuss how the existing applications should be redesigned
and how new applications should be designed to take full advantage of the new
database technology. Our research and the prototypes we built show that in-
memory technology greatly influences the design and development of enterprise
applications. The main driver for these changes is the drastically reduced response
time for database queries. Now, even more complex analytical queries can be
executed directly on the transactional data in less than one second. With this
performance, we are able to develop new applications and enhance currently
existing applications in a way that was not possible before. Modern applications
can especially benefit from the database performance when it comes to better
granularity and actuality of the processed data.

The most important approach to achieve this performance is to move appli-
cation logic closer to the database. While traditional approaches try to encapsulate
complex logic in the application server, with the advent of in-memory computing
it becomes crucial to move data intensive logic as close as possible to the database.
An additional advantage of moving data-intensive application logic closer to the
database is that the amount of data that has to be transferred between the appli-
cation server and the database system is significantly reduced when most of the
data intensive operations are executed directly in the database system.

31.1 Optimizing Application Development
for In-Memory Databases

A typical enterprise application contains three main architectural layers (see
Fig. 31.1).
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These three main layers are usually distributed over three independent physical
systems, which leads to a three tier setup. To ensure a common understanding of
the terms layer and tier, the words are shortly explained: A layer separates pro-
gram code and its responsibility on the logical level, but it does not state how the
deployment of the code looks like. The word tier describes the physical archi-
tecture of a system, so it gives details about the hardware setup used to run the
program code.

The interaction and presentation layer is responsible for providing a user
interface. This includes the creation of views, which summarize required infor-
mation to be shown in a clear and understandable fashion. Moreover, the pre-
sentation layer gets user information requests and forwards them to the other
layers. The complete user interface may consist of many different independent
presentation layers for different devices or platforms.

The business logic and orchestration layer acts as a mediator between the
presentation and the persistence layer. It handles user requests obtained from the
presentation layer. This can either be the direct execution of data operations (by
using the application’s cache) or delegation of calls to the persistence layer.

Data persistence and processing provides interfaces for requesting data with
the help of declarative query languages (such as SQL or Multidimensional
Expression (MDX)) and prepares data for further processing in the upper layers.

Fig. 31.1 Three tier enterprise application
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31.1.1 Moving Business Logic into the Database

As mentioned before, in traditional applications, the application logic is mainly
stored in the orchestration layer to allow easier scaling of the complete application.
To leverage the full performance, we have to identify which application logic
should be moved closer to the persistence layer. The ultimate goal is to leave only
such logic in the orchestration layer, that provides functionality that is orthogonal
to what can be handled within the user interaction request. This reduced layer
would than mostly translate user requests into SQL and MDX queries, or calls to
stored procedures on the database system.

To illustrate the impact, we will explain the changes and the effects using an
example that performs an analytical operation directly on the transactional data. In
the following, two different implementations of the same user request will be
compared. The request identifies all due invoices per customer and aggregates
their amount (which is usually referred to as dunning). Dunning is one of the most
important applications for consumer companies. It is typically a very time-con-
suming task, because it involves read operations on large amounts of transactional
data.

Listing 31.1 implements business logic directly in the application layer. It
depends on given object structures and encodes the algorithms in terms of the used
programming language.

Using this approach, all customer data is required to be loaded from the
database and an object instance for each customer will be created. To create the
object, all attributes will be loaded, although only one attribute is needed. After
that, for all invoices of each customer, it will be determined whether it is con-
sidered paid or not. For that, it is checked whether the due date at which the
invoice should be paid, has already passed. Finally, the total unpaid amount for
each customer is aggregated.

For each iteration of the inner loop, a query is executed in the database to
retrieve all attributes of the customer invoice.

The second approach, presented in Listing 31.2, uses a single SQL query to
retrieve the same result set. All calculations, filtering and aggregations are handled

Listing 31.1: Imperative implementation of a simple report
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close to the data. Therefore, the efficient operators implementation introduced in
previous chapters can be used. The other advantage is that only the required result
set is returned to the application layer. Consequently, the network traffic is
reduced.

When using small amounts of data, the performance differences are barely
noticeable. However, once the system is in a production and is filled with realistic
amounts of data, using the imperative approach results in much slower response
times. Accordingly, it is very important to test performance of different algorithms
with realistic customer data sets that represent realistic sizing settings and value
distributions.

The ability to express application logic using SQL can be a huge advantage
because expensive calculations are done inside the database. That way, calcula-
tions as well as comparisons can work directly on the compressed data. Only as the
last step, when returning the results, the compressed values are converted to the
original values to present them in human readable format.

31.1.2 Stored Procedures

An additional possibility to move application logic into the database are stored
procedures, which allow to reuse data-intensive application logic. The main
benefits of using stored procedures are:

• Business logic centralization and reuse
• Reduction of application code and simplifying of change management
• Reduction of network traffic
• Pre-compilation of queries increases the performance for repeated execution.

Stored procedures are typically written in a special mixed imperative-declara-
tive programming language (see Listing 31.3). Such programming languages
support both declarative database queries (such SQL) and imperative controlling
sequences (loops, conditions) and concepts (e.g. variables, parameters). Once a
stored procedure is defined, it can be used (and reused) by several applications.
Applicability across different applications is usually established via individual
invocation parameters (our tiny example does not contain such parameters, but we

Listing 31.2: Declarative implementation of a simple report
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could alter it so that we pass a country to the procedure which is used as a selection
criterion and only customers of this country would be part of the dunning run).

31.1.3 Example Application

One prominent example, where we were able to achieve an astonishing perfor-
mance increase over a traditional implementation was in the area of financial
applications. Here, we analyzed the dunning run, meaning extraction of all
overdue accounting entries from the accounting tables. The traditional picture of
the dunning run showed that the original application was implemented as follows:
First select all accounts to be dunned and transfer this list to the application server.
Now, for each account, all open account items where selected and the due date for
each calculated. Now for all items that will be dunned additional configuration
logic was loaded and the materialized result set is written to a dedicated dunning
table. From the discussion in the previous sections we see that this implementation
is clearly disadvantageous since it executes a lot of individual SQL statements and
transfers intermediate results from the database system to the application server
and back. In addition, the implementation looks like a manual join implementation
connecting accounts with account items.

In several iterations on the dunning implementation, we were able to reduce the
overall runtime of the dunning implementation from initially 1200 to 1:5 s.
Figure 31.2 shows the summary comparison of these implementations. The main
difference between the versions is that the fastest implementation tries to push as
much selection already down to the first filter predicates and executes as much as
possible in parallel. Thus, we were able to achieve a speedup of factor 800.

To summarize, in our new implementation of the dunning run, we followed the
principles that were presented earlier in this section. The most important of these
principles is to move data-intensive application logic as close as possible to the
database.

Listing 31.3: Creation of a stored procedure
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31.2 Best Practices

In the following section, the discussion of the chapter will be summarized by
outlining the most important rules, which should be fulfilled by working with
enterprise applications.

• The right place for data processing: This is an important decision, which
developers have to make during implementation. The more data is processed
during a single operation, the closer it should be executed to the database.
Aggregations should be executed in the database while single record operations
should be part of the application layer.

• Avoid SELECT*: Only really required attributes for the application should be
loaded. Developers often tend to load more data than is actually needed, because
this apparently allows easier adoption to unforeseen use cases. The downside is,
that this leads to intensive data transfer between the application and database
servers which causes significant performance penalties. Furthermore, tuple
reconstruction in a column-oriented data format is slightly more complex than in
a row-oriented data format (see Chap. 13).

• Use real data for application development: Only real data can show possible
bottlenecks of the application architecture and identify patterns that may have a
negative impact on the application performance. Another benefit is that user
feedback during development tends to be much more productive and precise, if
real data is used.

• Work in multi-disciplinary teams: We believe that only joint, multidisciplinary
efforts of user interface designers, application programmers, database specialists,
and domain experts will lead to the creation of new, innovative applications. Each

Fig. 31.2 Comparison of different dunning implementations

212 31 Implications on Application Development

http://dx.doi.org/10.1007/978-3-642-36524-9_13
http://dx.doi.org/10.1007/978-3-642-36524-9_13


of them has its own point of view and is able to optimize one aspect of a possible
solution, but only if they jointly try to solve problems, the others will benefit from
their knowledge.

31.3 Self Test Questions

1. Architecture of a Banking Solution
Current financials solutions contain base tables, change history, materialized
aggregates, reporting cubes, indices, and materialized views. The target fi-
nancials solutions contains...

(a) only base tables, reporting cubes, and the change history.
(b) only base tables, algorithms, and some indexes.
(c) only base tables, materialized aggregates, and materialized views.
(d) only indexes, change history, and materialized aggregates.

2. Criterion for Dunning
What is the criterion to send out dunning letters?

(a) Bad stock-market price of the own company
(b) Bad information about the customer is received from consumer reporting

agencies
(c) When the responsible accounting clerk has to achieve his rate of dunning

letters
(d) A customer payment is overdue.

3. In-Memory Database for Financials
Why is it beneficial to use in-memory databases for financials systems?

(a) Financial systems are usually running on mainframes. No speed up is
needed. All long-running operations are conducted as batch jobs.

(b) Operations like dunning can be performed in much shorter time.
(c) Because of the high reliability of data in main memory, less maintenance

work is necessary and labor costs could be reduced.
(d) Easier algorithms are used within the applications, so shorter algorithm run

time leads to more work for the end user. Business efficiency is improved.

4. Connection between Object Fields and Columns
Assume that ‘‘overdue’’ is expressed in an enterprise system business object by
four fields. How many columns play a role to store that information?

(a) all columns of the table
(b) two columns
(c) four columns
(d) one column.
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5. Languages for Stored Procedures
Languages for stored procedures are...

(a) designed primarily to be human readable. They follow the spoken english
grammar as close as possible.

(b) strongly imperative, the database is forced to exactly fulfill the orders
expressed via the procedure.

(c) usually a mixture of declarative and imperative concepts.
(d) strongly declarative, they just describe how the result set should look like.

All aggregations and join predicates are automatically retrieved from the
database, which has the information ‘‘stored’’ for that.
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Chapter 32
Database Views

32.1 Advantages of Views

Database views define a transformation rule that is processed when the underlying
data item is accessed [PZ11]. Thus, views describe a structured subset of the
complete data available in the database.

The concept of database views come with major two advantages.
Firstly, they can be used to reduce the complexity of queries, i.e. special

transformations and joins are hidden by the view while the transformed data is
returned as result. Multiple views can be cascaded. Thus, complex queries can be
orchestrated and easily maintained.

Secondly, views replace long-running transformations from the ETL processes
by instant transformations. For example, if a data transformation is required ETL
requires to transform all data before importing them. With the help of views, the
transformation is performed just when a certain data item is accessed. This is
advantageous, if only a small subset of all imported data are accessed.

Figure 32.1 shows the view metropolises_population, which returns only citi-
zens from cities with more than one million inhabitants. With the help of this view,
writing queries that select citizens of big cities is straight forward while the
readability of the code is improved.

Another advantage of database views is that they can be used to create virtual
data schemas that build stable interfaces for application development. Two
important aspects concerning software quality, software maintenance and reus-
ability, are enhanced by the decoupling of the application code from the actual
data schema. A prominent example are data cubes, such as those used in many data
warehouses [GBLP96].

Instead of materializing data redundantly as a cube schema, virtual cubes can be
created on the fly with the help of database views. In contrast to traditional cubes,
virtual cubes work directly on the raw data, i.e. they access always the latest data
without any latency. As a result, the integration of third party software applications,
such as Business Intelligence dashboards, Microsoft Excel, or web applications, is
simplified, storage demands are reduced due to the elimination of redundant data,
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and the forecasts become more accurately since data used by virtual cubes is always
the latest available data within the database.

32.2 Layered Views Concept

Figure 32.2 depicts the layered view concept. This concept describes the assembly
of views in layers. Hereby, the data sources for a view can be either tables or other
views. Views can built on column-oriented and row-oriented database tables
equally. The layered view concept allows the integration of external data sources,
such as further databases, to join them into one virtual table. Thus, the layered
view concepts simplifies the development of queries and the combination of data.

32.3 Development Tools for Views

Graphical tools can be used for view creation. These tools are able to create
complex join-views by interactively dragging one database table onto another,
whereby join attribute(s) are automatically determined. Furthermore, view
development tools provide performance analysis, e.g. of a joined table, and point
out possible processing improvements by rearranging data or joins.

Fig. 32.1 Using views to simplify join-queries
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32.4 Self Test Questions

1. View Locations
Where should a logical view be built to get the best performance?

(a) in the GPU
(b) in a third system
(c) close to the data in the database
(d) close to the user in the analytical application.

2. Data Representation
What is the traditional representation of business data to the end user?

(a) bits
(b) videos
(c) music
(d) lists and tables.

3. Views and Software Quality
Which aspects concerning software quality are improved by the introduction of
database views?

(a) Accessibility and availability
(b) Testability and security

Fig. 32.2 The view layer concept
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(c) Reliability and usability
(d) Reusability and maintainability.
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Chapter 33
Handling Business Objects

Enterprise applications are typically developed in an object-oriented fashion: Real
world objects, such as production facilities or warehouses as well as artifacts like
sales orders, are mapped to so-called business objects. A business object is an
entity capable of storing information and state. It typically has a tree like structure
with leaves holding information about the object or connections to other business
objects.

As an example, the left hand side of Fig. 33.1 shows a business object repre-
senting a sales order. It consists of a header leaf with general information like the
order number, the order date and the customer (business partner). As described in
Chap. 3, typically only a small number of attributes of the provided ones are really
used in productive systems. For the case at hand, the leaf storing the delivery terms
is not used—this may be the case, when delivery terms have not been entered in
the system, yet, or if the company running the system does not maintain this
information in its enterprise application. Each sales order consists of a number of
items and they each have an associated schedule line with information about their
delivery.

33.1 Persisting Business Objects

The challenge now is, how to persist a business object in the relational database
model, so that it still can be queried efficiently. Let us assume that the database
only stores the sales order numbers in a sales order table and there is an additional
table for each of the leaves. When extracting the sales order, there is no way of
knowing, which leaves are really used and therefore one SELECT statement needs
to be executed for every leaf. In case the sales order consists of 50 leaves, of which
only 5 are used, a large number of wasted SELECT statements needs to be
executed.

To avoid those unnecessary SELECTs, a business object data guide structure
can help to store the information which leaves of a business object are populated
with data. In our example, the root object stores a bit mask that contains the
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information which leaves are really populated. In the example of Fig. 33.1, the
zero at the second position of the object data guide indicates that the delivery
terms leaf is not filled with data and a SELECT statement on that table can be
omitted.

33.2 Object-Relational Mapping

Another field of research is object-relational mapping (ORM) integrated in the
database. Object-relational mapping is used to map objects—as used in most high-
level programming languages—to their relational representations as used in rela-
tional databases. ORM inside the database is especially interesting for handling
business objects on columnar databases.

One reason is the vast number of applications and systems, that are interacting
with the business data. In contrast to most web applications, business applications
are highly diverse. To deploy the same view on business objects throughout all
applications a business objects repository should be used. Such a repository is a
central place for business objects definitions inside the database, which are reg-
ularly pulled from applications and systems relying on the business objects. This
way of modifying business objects or integrating new business processes (e.g.
implemented as stored procedures directly on the database side) does not require to
modify each application’s ORM framework.

Fig. 33.1 Sales order business object with object data guide representation
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Another advantage for business object handling inside the database is the
proximity to the actual data. Object-relational mappers aim at reducing the usage
of ‘‘SELECT *’’ queries, as they often occur in applications. Since ‘‘SELECT *’’
should be avoided when possible on columnar stores, object-relational mapping
inside the database can prevent such queries and enforce an efficient business
object handling. One possibility to prevent such queries is to track regularly
requested business objects and only query attributes, which are likely to be used.
Any additional attributes, which are unexpectedly requested, would incur addi-
tional queries.

Furthermore, having business objects on the database side allows to implement
business processes using stored procedures and thus reducing client application
code. This way complex business processes can be implemented using business
objects instead of raw relational data.

33.3 Self Test Questions

1. Business Object Mapping
What is business object mapping?

(a) Putting together a diagram of all used business objects. It is similar to a
sitemap on webpages

(b) Allocate an index to every business object and save it in the associated
memory area

(c) Representing every element of a business object in a table
(d) Create a hash code of the business object and save this hash code instead of

the whole object.
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Chapter 34
Bypass Solution

As illustrated throughout the course, in-memory data management can enable
significant advantages to data processing within enterprises. However, the tran-
sition for enterprise applications to an in-memory database will require radical
changes to data organization and processing, resulting in major adaptations
throughout the entire stack of enterprise applications. By considering conservative
upgrade policies used by many ERP system customers, the adoption of in-memory
technology is often delayed, because such radical changes do not align well with
the evolutionary modification schemes of business-critical customer systems.
Consequently, a risk-free approach is required to help enterprises to immediately
leverage in-memory data management technology without disruption of their
existing enterprise systems.

We propose a transition process that allows customers to benefit from in-
memory technology without changing their running systems. This is a step by step,
non-disruptive process that helps to transform traditionally separated operational
and analytical systems into what we believe is the future for enterprise applica-
tions: transactional and analytical workloads handled by a single, in-memory
database.

Within the first step of the transition, an in-memory database will run in parallel
to the traditional database and the data will be stored in both systems. Secondly,
new side-by-side applications using transactional data of the ERP system can be
developed. In the next step, a new data warehouse (DW) solution can be intro-
duced that is able to answer flexible, ad-hoc queries and operate without materi-
alized views, aggregating all necessary information on the fly from the
transactional data. Complex ETL processes are not required any longer. Finally,
the traditional disk-based database of the ERP system can be replaced by a col-
umn-oriented dictionary-encoded in-memory database. This transition is described
in more detail in the next section.
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34.1 Transition Steps in Detail

First of all, we start with a commonly found initial architecture of an existing
enterprise solution as illustrated in Fig. 34.1.

Typically, it consists of multiple OLTP and OLAP systems, each of them
running on separate databases. The OLAP system consolidates data from multiple
OLTP systems and external data sources. A costly and time-consuming ETL
process between the OLTP and OLAP systems is used to pre-aggregate data for the
OLAP system. Based on this architecture, the non-disruptive transition plan that
we call ‘‘bypass solution’’ has been developed.

In the first step of this approach (see Fig. 34.2), the IMDB is installed and
connected to the traditional database.

The only difference will be in data representation: data will be stored in col-
umns. An initial load to the in-memory database (IMDB) creates a copy of the
existing system state with all business objects in the IMDB. In spite of the huge
volume of data to be reproduced, first experiments with massively parallel bulk

Fig. 34.1 Initial architecture

Fig. 34.2 Run IMDB in parallel
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loads of customer data have shown that even for the largest companies this one-
time initialization can be done in only a few hours.

After the initial load, the two storages will be maintained in parallel, every doc-
ument and change in a business object is stored in both databases. For this, estab-
lished database replication technologies are used. The high compression rate in a
column store helps to decrease the amount of main memory required for such parallel
use of two databases, and hence it does not lead to a significant waste of resources.
When calculating with an average data compression factor of 10, a 1 TB database
system can be compressed so that only 100 GB of in-memory storage are needed. At
the same time, using the parallel installation of the IMDB, we can estimate perfor-
mance and memory consumption benefits of this architecture for concrete business
cases and prove the need of moving the system to the new data storage.

In a second step, new applications can be developed leveraging the potentials of
the new technology (see Fig. 34.3). These applications only read the replicated
ERP system data. If they want to write data, they either use the traditional inter-
faces of the ERP system or, if they want to store additional data, they use a

Fig. 34.3 Deploy new applications

Fig. 34.4 Traditional data warehouse on IMDB

34.1 Transition Steps in Detail 225



separate segment in the in-memory database. That way, business value by new
revolutionary applications can be generated from the first day on.

In a third step, which can be done in parallel with the previous ones, the data
warehouse system is ported to the IMDB as illustrated in Fig. 34.4. This will help
to achieve another gain in reporting performance in comparison to disk-based
OLAP systems.

The difference to the traditional system is that all materialized data cubes and
aggregates will be removed. Instead, aggregates are computed on the fly and all data-
intensive operations are pushed to the database level. In comparison with storing all
materialized aggregates and indices, this reduces the amount of main memory, which
is necessary for the OLAP system. It immediately leads to the following benefits: the
data cubes in a traditional BI system are usually updated on a weekly basis or even
less frequently. However, executives, management, and all other decision makers
often demand up-to-date information. By running OLTP and OLAP systems on the
same IMDB platform, this information can be delivered in real time. Another
advantage is that the ETL process is radically simplified as the complex calculation
of aggregates is omitted. The ETL process can partly be replaced by the same
replication mechanism used between the traditional ERP database and the parallel
installation of the in-memory database. Therefore, we called the replication in
Fig. 34.4 simply EL, since no transformation takes place any longer, just extraction
and load remain. Furthermore, the BI system will be more flexible as complex cube
management and maintenance operations are abandoned and complexity is reduced.

In most cases, the migration to the in-memory database BI system can be
conducted automatically. This is relatively simple as existing materialized views
are replaced by non-materialized views. Analytical queries can be rewritten by

Fig. 34.5 Run OLTP and OLAP on IMDB
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generators. However, in complex migrations scenarios, factors such as different
SQL dialects, data structures, or software parts that rely on additional data in
proprietary formats may pose an obstacle and might require manual interventions.

The final step of the suggested solution can be executed when the customer is
comfortable with the parallel in-memory solution. In this step, the traditional
OLTP database can be switched off. After that, the customer works only with the
consolidated in-memory enterprise system that is used for both transactional and
analytical queries (see Fig. 34.5).

The data warehouse system could theoretically be replaced in a setup with only
one ERP system. Reality shows that many OLTP systems exist and external data
has to be integrated into the analytical system. To this end, the traditional BW
system is used as a data platform consolidating data from these OLTP systems and
external sources.

Additionally, during system evolution, new extensions to the data model are
possible. Adding new tables and new attributes to existing tables in the column
store is done on the fly and this speeds up release cycles significantly.

34.2 Bypass Solution: Conclusion

As discussed above, the suggested bypass solution introduces a risk-free and non-
disruptive transition to the in-memory database technology. The importance of this
transition can be backed-up by selected customer examples: For a large financial
service provider, the analysis of 33 million customer records could be reduced
from 45 min on the traditional DBMS to 5 s on an IMDB. This increase in speed
fundamentally changes the company’s opportunities for customer relationship
management, promotion planning, and cross selling.

In a similar use case, a large vendor in the construction industry is using an
IMDB to analyze its nine million customer records and to create contact listings
for specific regions, sales organizations, and branches. Customer contact listing is
currently an IT process that may take two to three days to complete. A request
must be sent to the IT department who must plan a background job that may take
30 min and the results have to be manually returned to the requester. With an
IMDB, sales people can directly query the live system and create customer listings
in any format they wish, in less than 10 s.

Concluding, the use of in memory technology can lead to a qualitative change
in the business processes of an enterprise. The transaction that took days using the
traditional process, can now be performed in the foreground on the fly. That will
change the way of thinking and optimize many business processes in enterprises.
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34.3 Self Test Questions

1. Transition to IMDBs
What does the transition to in-memory database technology mean for enterprise
applications?

(a) Data organization and processing will change radically and enterprise
applications need to be adapted

(b) The data organization will not change at all, but the source code of the
applications has to be adapted

(c) There will be no impact on enterprise applications
(d) All enterprise applications are significantly sped up without incurring any

adaptions.
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Self Test Solutions

Introduction

1. Rely on Disks
Does an in-memory database still rely on disks?

Possible Answers:

(a) Yes, because disk is faster than main memory when doing complex
calculations

(b) No, data is kept in main memory only
(c) Yes, because some operations can only be performed on disk
(d) Yes, for archiving, backup, and recovery

Correct Answer: (d)

Explanation: Logs for archiving have to be stored on a persistent storage
medium that preserves the content longer timespans. Main memory looses all
information if the system is unpowered, therefore an other, persistent storage
medium such as hard drives or SSDs has to be used for recovery and archiving.

New Requirements for Enterprise Computing

1. Compression Factor
What is the average compression factor for accounting data in an in-memory
column-oriented database?

Possible Answers:

(a) 100x
(b) 10x
(c) 50x
(d) 5x
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Correct Answer: (b)

Explanation: As mentioned in the text, the average compression factor that was
measured in a financials application was about 10. Other measurements in
different industries showed average compression factors in the same range.

2. Data explosion
Consider the formula 1 race car tracking example, with each race car having
512 sensors, each sensor records 32 events per second whereby each event is 64
byte in size.
How much data is produced by a F1 team, if a team has two cars in the race and
the race takes two hours?
For easier calculation, assume 1,000 byte ¼ 1 kB, 1,000 kB ¼ 1 MB, 1,000
MB ¼ 1 GB.

Possible Answers:

(a) 14 GB
(b) 15.1 GB
(c) 32 GB
(d) 7.7 GB

Correct Answer: (b)

Explanation: Total time: 2 h ¼ 2 � 60 � 60 s ¼ 7; 200 s

Total events per car : 7; 200 s � 512 sensors � 32 events/second/sensor
¼ 117; 964; 800 events
Total events per team : ð2 � total events per carÞ ¼ 235; 929; 600 events
Total amount of data per team : 64 byte/event � 235; 929; 600 events
¼ 15; 099; 494; 400 byte � 15:1 GB

Enterprise Application Characteristics

1. OLTP OLAP Separation Reasons
Why was OLAP separated from OLTP?

Possible Answers:

(a) Due to performance problems
(b) For archiving reasons; OLAP is more suitable for tape-archiving
(c) Out of security concerns
(d) Because some customers only wanted either OLTP or OLAP and did not

want to pay for both
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Correct Answer: (a)

Explanation: The runtimes of analytical queries are significantly higher than
these of transactional ones. Based on this characteristic, analytical processing
negatively affected the day-to-day business i.e. in terms of delayed sales
processing. The separation of analytical and transactional queries to different
machines was the inevitable consequence of the hardware and database
prerequisites of these times.

Changes in Hardware

1. Speed per Core
What is the speed of a single core when processing a simple scan operation
(under optimal conditions)?

Possible Answers:

(a) 2 GB/ms/core
(b) 2 MB/ms/core
(c) 2 MB/s/core
(d) 200 MB/s/core

Correct Answer: (b)

Explanation: Today’s CPUs access more than 95 % of the data to run programs
out of their caches without incurring a cache miss. We assume that all data we
want to deal with is in the Level 1 cache and ignore further delays from the
fetching the data into the Level 1 cache. From Level 1 cache we need roughly
0.5 ns to load one byte, so in 1 millisecond, we could load about 2,000,000 byte,
which is 2 MB (1,000,000 ns/0.5 ns per byte ¼ 2,000,000 byte).

2. Latency of Hard Disk and Main Memory
Which statement concerning latency is wrong?

Possible Answers:

(a) The latency of main memory is about 100 ns
(b) A disk seek takes an average of 0.5 ms
(c) Accessing main memory is about 100,000 times faster than a disk seek
(d) 10 ms is a good estimation for a disk seek

Correct Answer: (b)

Explanation: Please have a look at Table 4.1 on page 48.
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A Blueprint for SanssouciDB

1. New Bottleneck
What is the new bottleneck of SanssouciDB that data access has to be optimized
for?

Possible Answers:

(a) Disk
(b) The ETL process
(c) Main memory
(d) CPU

Correct Answer: (c)

Explanation: Main memory access is the new bottleneck, since the CPU busses
limit overall data transfer. CPU speed increased according to Moore’s Law (in
terms of parallelism) and outperforms the bus speed. Disks are only used for
backup and archiving reasons in SanssouciDB and are therefore not of interest
for actual production usage. ETL processes are not of concern either, since all
queries run on transactional data in one system for online transaction processing
and online analytical processing.

2. Indexes
Can indexes still be used in SanssouciDB?

Possible Answers:

(a) No, because every column can be used as an index
(b) Yes, they can still be used to increase performance
(c) Yes, but only because data is compressed
(d) No, they are not even possible in columnar databases

Correct Answer: (b)

Explanation: Indices are a valid optimization of the performance in
SanssouciDB. The index concept does not rely on compression.

Dictionary Encoding

1. Lossless Compression
For a column with few distinct values, how can dictionary encoding significantly
reduce the required amount of memory without any loss of information?

232 Self Test Solutions



Possible Answers:

(a) By mapping values to integers using the smallest number of bits possible to
represent the given number of distinct values

(b) By converting everything into full text values. This allows for better
compression techniques, because all values share the same data format.

(c) By saving only every second value
(d) By saving consecutive occurrences of the same value only once

Correct Answer: (a)

Explanation: The correct answer describes the main principle of dictionary
encoding, which automatically results in a lossless compression if values appear
more often than once. Saving only every second value is clearly lossy. The same
applies for saving consecutive occurrences of the same value only once, if the
quantity of occurrences is not saved as well. Additionally, this does not describe
dictionary encoding, but Run-Length Encoding. Transforming numbers and
other values into text values increases the data size, since each character value is
at least 1 byte in order to allow the representation of the full alphabet. Number
representations are usually limited to certain upper limits and achieve much
compacter data sizes.

2. Compression Factor on Whole Table
Given a population table (50 millions rows) with the following columns:

• name (49 bytes, 20,000 distinct values)
• surname (49 bytes, 100,000 distinct values)
• age (1 byte, 128 distinct values)
• gender (1 byte, 2 distinct values)

What is the compression factor (uncompressed size/compressed size) when
applying dictionary encoding?

Possible Answers:

(a) � 20
(b) � 90
(c) � 10
(d) � 5

Correct Answer: (a)

Explanation: Calculation without dictionary encoding:
Total size per row: 49þ 49þ 1þ 1 ðbyteÞ ¼ 100 byte
Total size: 100 byte � 50 million rows ¼ 5; 000 MB
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Calculation with dictionary encoding:
Number of bit needed for the attributes:

• names: log2ð20;000Þ\15
• surnames: log2ð100;000Þ\17
• ages: log2ð128Þ\¼ 7
• genders: log2ð2Þ\¼ 1

Size of the attribute vectors:

• 50 million rows �ð15þ 17þ 7þ 1Þ bit ¼ 2;000 million bit ¼ 250 MB

Size of the dictionaries:

• names: 20;000 � 49 byte ¼ 980 KB
• surnames: 100;000 � 49 byte ¼ 4; 9 MB
• ages: 128 � 7 byte ¼ 896 byte
• genders: 2 � 1 byte ¼ 2 byte

Total dictionary size: 4; 9 MBþ 980 KBþ 896 byteþ 2 byte � 5 MB
Overall size: size of attribute vectors + size of dictionaries ¼ 250 MB þ 5 MB

¼ 255 MB
Compression rate:
5000 MB=255 MB ¼ 19; 6 � 20

3. Information in the Dictionary
What information is saved in a dictionary in the context of dictionary encoding?

Possible Answers:

(a) Cardinality of a value
(b) All distinct values
(c) Hash of a value of all distinct values
(d) Size of a value in bytes

Correct Answer: (b)

Explanation: The dictionary is used for encoding the values of a column.
Therefore it consists of a list of all distinct values to be encoded and the
resulting encoded values (in most cases ascending numbers). The distinct
values are used to encode the attributes in user queries during look-ups and to
decode the retrieved numbers from query results back to meaningful, human-
readable values.
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4. Advantages through Dictionary Encoding
What is an advantage of dictionary encoding?

Possible Answers:

(a) Sequentially writing data to the database is sped up
(b) Aggregate functions are sped up
(c) Raw data transfer speed between application and database server is

increased
(d) INSERT operations are simplified

Correct Answer: (b)

Explanation: Aggregate functions are sped up when using dictionary encoding.
because less data has to be transferred from main memory to CPU. The raw data
transfer speed between application and database server is not increased, this is a
determined by the physical hardware and exploited to the maximum. Insert
operations suffer from dictionary encoding, because new values that are not yet
present in the dictionary, have to be added to the dictionary and might require a
re-sorting of the related attribute vector. Due to that, sequentially writing data to
the database is not sped up, either.

5. Entropy
What is entropy?

Possible Answers:

(a) Entropy limits the amount of entries that can be inserted into a database.
System specifications greatly affect this key indicator.

(b) Entropy represents the amount of information in a given dataset. It can be
calculated as the number of distinct values in a column (column cardinality)
divided by the number of rows of the table (table cardinality).

(c) Entropy determines tuple lifetime. It is calculated as the number of
duplicates divided by the number of distinct values in a column (column
cardinality).

(d) Entropy limits the attribute sizes. It is calculated as the size of a value in
bits divided by number of distinct values in a column the number of distinct
values in a column (column cardinality).

Correct Answer: (b)

Explanation: As in information theory, in this context, entropy determines the
amount of information content gained from the evaluation of a certain message,
in this case the dataset.
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Compression

1. Sorting Compressed Tables
Which of the following statements is correct?

Possible Answers:

(a) If you sort a table by the amount of data for a row, you achieve faster read
access

(b) Sorting has no effect on possible compression algorithms
(c) You can sort a table by multiple columns at the same time
(d) You can sort a table only by one column

Correct Answer: (d)

Explanation: Some compression techniques achieve a better compression rate
when they are applied to a sorted table, like Indirect Encoding. Furthermore, a
table cannot be sorted by multiple columns at the same time, so the right answer
is that a table can only be sorted by one column. A potential enhancement is that
one can sort a table cascading (i.e. first sort by country, then sort the resulting
groups by city,...), which improves accesses to the column used as secondary
sorting attribute to some extent.

2. Compression and OLAP / OLTP
What do you have to keep in mind if you want to bring OLAP and OLTP
together?

Possible Answers:

(a) You should not use any compression techniques because they increase CPU
load

(b) You should not use compression techniques with direct access, because
they cause major security concerns

(c) Legal issues may prohibit to bring certain OLTP and OLAP datasets
together, so all entries have to be reviewed

(d) You should use compression techniques that give you direct positional
access, since indirect access is too slow

Correct Answer: (d)

Explanation: Direct positional access is always favorable. It does not cause any
difference to data security. Also, legal issues will not interfere with OLTP and
OLAP datasets, since all OLAP data is generated out of OLTP data. The
increased CPU load which occurs when using compression is tolerated because
the compression leads to smaller data sizes which usually results in better cache
usage and faster response times.
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3. Compression Techniques for Dictionaries
Which of the following compression techniques can be used to decrease the size
of a sorted dictionary?

Possible Answers:

(a) Cluster Encoding
(b) Prefix Encoding
(c) Run-Length Encoding
(d) Delta Encoding

Correct Answer: (d)

Explanation: Delta Encoding for Dictionaries is explained in detail in Sect. 7.5.
Cluster Encoding, Run-Length Encoding, and Prefix Encoding can not be used
on dictionaries because each dictionary entry is unique.

4. Indirect Access Compression Techniques
Which of the explained compression techniques does not support direct access?

Possible Answers:

(a) Run-Length Encoding
(b) Prefix Encoding
(c) Cluster Encoding
(d) Indirect Encoding

Correct Answer: (c)

Explanation: Cluster Encoding does not support direct access. The position of a
record has to be computed via the bit vector.

5. Compression Example Prefix Encoding
Suppose there is a table where all 80 million inhabitants of Germany are
assigned to their cities. Germany consists of about 12,200 cities, so the valueID
is represented in the dictionary via 14 bit. The outcome of this is that the
attribute vector for the cities has a size of 140 MB. We compress this attribute
vector with Prefix Encoding and use Berlin, which has nearly 4 million
inhabitants, as the prefix value. What is the size of the compressed attribute
vector?
Assume that the needed space to store the amount of prefix values and the prefix
value itself is neglectable, because the prefix value only consumes 22 bit to
represent the number of citizens in Berlin and additional 14 bit to store the key
for Berlin once. Further assume the following conversions: 1 MB ¼ 1000 kB,
1 kB ¼ 1000 B
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Possible Answers:

(a) 0.1 MB
(b) 133 MB
(c) 63 MB
(d) 90 MB

Correct Answer: (b)

Explanation: Because we use Prefix Encoding for this attribute vector, we do not
save the valueID for Berlin 4 million times to represent its inhabitants in the city
column. Instead, we resort the table so that all people who live in Berlin are on the
top. In the attribute vector we save the valueID for Berlin and the number of
occurrences for that valueID. Then the valueIDs for the remaining 76 million
people in Germany follow. So the new size of the attribute vector is made up of the
size of the valueID for Berlin (14 bit), the size needed to save the number of
occurrences for Berlin (22 bit) and the size of the remaining entries. The missing
numbers can be calculated the following way: From 80 million people in
Germany remain 76 million to store. Each entry needs 14 bit for the valueID of its
city. So the size of the remaining entries is 76 million � 14 bit ¼ 1064000000 bit.
Thus, the size of the attribute vector is 14 bit þ 22 bit þ 1,064,000,000 bit ¼
1,064,000,036 bit, which is about 133 Mbyte (8 bit ¼ 1 byte).

6. Compression Example Run-Length Encoding Germany
Suppose there is a table where all 80 million inhabitants of Germany are
assigned to their cities. The table is sorted by city. Germany consists of about
12,200 cities (represented by 14 bit). Using Run-Length Encoding with a start
position vector, what is the size of the compressed city vector? Always use the
minimal number of bits required for any of the values you have to choose.
Further assume the following conversions: 1 MB ¼ 1,000 kB, 1 kB ¼ 1,000 B

Possible Answers:

(a) 1.2 MB
(b) 127 MB
(c) 5.2 KB
(d) 62.5 kB

Correct Answer: (d)

Explanation: We have to compute the size of (a) the value array and (b) the size
of the start position array. The size of (a) is the distinct number of cities (12,200)
times the size of each field of the value array (log_2(12,200)). The size of (b) is the
number of entries in the dictionary (12,200) times the number of bit required to
encode the highest possible number of inhabitants (log_2(80,000,000)). The
result is thus 14 bit times 12,200 (170,800) plus 27 bit times 12,200 (329,400),
summing up to 500,200 bit (or 62.5 kB) in total.
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7. Compression Example Cluster Encoding
Assume the world population table with 8 billion entries. This table is sorted by
countries. There are about 200 countries in the world. What is the size of the
attribute vector for countries if you use Cluster Encoding with 1,024 elements
per block assuming one block per country can not be compressed? Use the
minimum required count of bits for the values. Further assume the following
conversions: 1 MB ¼ 1,000 KB, 1 kB ¼ 1,000 B

Possible Answers:

(a) � 9 MB
(b) � 4 MB
(c) � 0.5 MB
(d) � 110 MB

Correct Answer: (a)

Explanation: To represent the 200 cities, 8 bit are needed for the valueID,
because log2ð200Þ is 8. With a cluster size of 1024 elements the number of
blocks is 7,812,500 (8 billion entries/1,024 elements per block). Each country
has one incompressible block, so there are 200 of them. The size of one
incompressible block is the number of elements per block (1,024) times the size
of one valueID (8 bit). The result is 8,192 bit and consequently the required size
for the 200 blocks is 200 � 8,192 bit ¼ 1,638,400 bit. For the remaining
7,812,300 compressible blocks, it is only necessary to store one valueID for
each block. Hence the resulting size of the compressible blocks is 62,498,400 bit
(7,812,300 � 8 bit). Finally there is the bit vector which indicates compressible
and incompressible blocks. It requires 1 bit per block, so it has a size of
7,812,500 bit. The size of the whole compressed attribute vector is the sum of
the size of the compressed and uncompressed blocks and the bit vector, which is
1,638,400 bit þ 62,498,400 bit þ 7,812,500 bit ¼ 71,949,300 bit. That is about
9 MB, which is the correct answer.

8. Best Compression Technique for Example Table
Find the best compression technique for the name column in the following
table. The table lists the names of all inhabitants of Germany and their cities,
i.e. there are two columns: first_name and city. Germany has about 80 million
inhabitants and 12,200 cities. The table is sorted by the city column. Assume
that any subset of 1,024 citizens contains at most 200 different first names.

Possible Answers:

(a) Run-Length Encoding
(b) Indirect Encoding
(c) Prefix Encoding
(d) Cluster Encoding
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Correct Answer: (b)

Explanation: In order to use Prefix Encoding or Run-Length Encoding to
compress a column, a table has to be sorted by this specific column. In this
example, we want to compress the ‘‘first_name’’ column, but the table is sorted by
the column city. Therefore we can not use these two compression techniques.
Cluster Encoding is possible in general and we could achieve high compression
rates, but unfortunately Cluster Encoding does not support direct access. So
choosing Cluster Encoding would prohibit direct access and consequently we
would loose much performance. As a conclusion, Indirect Encoding is the best
compression technique for this column, because it works with a good compression
rate while keeping the possibility of direct access.

Data Layout in Main Memory

1. When DRAM can be accessed randomly with the same costs, why are
consecutive accesses usually faster than stride accesses?

Possible Answers:

(a) With consecutive memory locations, the probability that the next requested
location has already been loaded in the cache line is higher than with
randomized/strided access. Furthermore is the memory page for
consecutive accesses probably already in the TLB.

(b) The bigger the size of the stride, the higher the probability, that two values
are both in one cache line.

(c) Loading consecutive locations is not faster, since the CPU performs better
on prefetching random locations, than prefetching consecutive locations.

(d) With modern CPU technologies like TLBs, caches and prefetching, all
three access methods expose the same performance.

Correct Answer: (a)

Explanation: Having always the same distance between accessed addresses
enables the prefetcher to predict the correct locations to load. For randomly
accessed addresses this is obviously not possible. Furthermore, strides of zero,
which is the case for consecutive attribute accesses using columnar layouts, are
highly cash efficient, since solely the needed locations are loaded. To summarize,
random memory accesses might have the same costs, but since the CPU loads
more data than requested into the caches and the prefetcher even fetches
unrequested data, data with a high information density (entropy) can be
processed faster.
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Partitioning

1. Partitioning Types
Which partitioning types do really exist and are mentioned in the course?

Possible Answers:

(a) Selective Partitioning
(b) Syntactic Partitioning
(c) Range Partitioning
(d) Block Partitioning

Correct Answer: (c)

Explanation: Range Partitioning is the only answer that really exists. It is a sub-
type of horizontal partitioning and separates tables into partitions by a
predefined partitioning key, which determines how individual data rows are
distributed to different partitions.

2. Partitioning Type for given Query
Which partitioning type fits best for the column ‘birthday’ in the world
population table, when we assume that the main workload is caused by queries
like ‘SELECT first_name, last_name FROM population WHERE birthday
[ 01.01.1990 AND birthday \31.12.2010 AND country ¼ ‘England’ Assume
a non-parallel setting, so we can not scan partitions in parallel. The only
parameter that is changed in the query is the country.

Possible Answers:

(a) Round Robin Partitioning
(b) All partitioning types will show the same performance
(c) Range Partitioning
(d) Hash Partitioning

Correct Answer: (c)

Explanation: Range Partitioning separates tables into partitions by a predefined
key. In the example that would lead to a distribution where all required tuples are in
the same partition (or in the minimal number of partitions to cover the queried range)
and our query only needs to access this (or these). Round Robin Partitioning would
not be a good partitioning type in this example, because it assigns tuples turn by turn
to each partition, so the data is separated across many different partitions which have
to be accessed. Hash Partitioning uses a hash function to specify the partition
assignment for each row, so the data is probably separated across many different
partitions, too.
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3. Partitioning Strategy for Load Balancing
Which partitioning type is suited best to achieve fair load-balancing if the
values of the column are non-uniformly distributed?

Possible Answers:

(a) Partitioning based on the number of attributes used modulo the number of
systems

(b) Range Partitioning
(c) Round Robin Partitioning
(d) All partitioning types will show the same performance

Correct Answer: (c)

Explanation: Round Robin Partitioning distributes tuples turn by turn to each
partition, so all partitions have nearly the same number of tuples. In contrast,
Range Partitioning assigns entries to the table by a predefined partitioning key.
Because the values used as partitioning keys are normally distributed non-
uniformly, it is difficult or maybe even impossible to find a key that segments
the table into parts of the same size. Consequently, Round Robin Partitioning is
the best strategy for fair load-balancing if the values of the column are non-
uniformly distributed.

Delete

1. Delete Implementations
Which two possible delete implementations are mentioned in the course?

Possible Answers:

(a) White box and black box delete
(b) Physical and logical delete
(c) Shifted and liquid delete
(d) Column and row deletes

Correct Answer: (b)

Explanation: A physical delete erases the tuple content from memory, so that it
is no longer there. A logical delete only marks the tuple as invalid, but it may
still be queried for history traces.
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2. Arrays to Scan for Specific Query with Dictionary Encoding
When applying a delete with two predicates, e.g. firstname¼‘John’ AND
lastname¼‘Smith’ how many logical blocks in the IMDB are being looked at
during determination which tuples to delete (all columns are dictionary encoded)?

Possible Answers:

(a) 1
(b) 2
(c) 4
(d) 8

Correct Answer: (c)

Explanation: First the two dictionaries for firstname and lastname to get the
corresponding valueIDs and then the two attribute vectors to get the positions
(recordIDs).

3. Fast Delete Execution
Assume a physical delete implementation and the following two SQL
statements on our world population table:
(A) DELETE FROM world_population WHERE country¼‘China’;
(B) DELETE FROM world_population WHERE country¼‘Ireland’;
Which query will execute faster? Please only consider the concepts learned so
far.

Possible Answers:

(a) Equal execution time
(b) A
(c) Depends on the ordering of the dictionary
(d) B

Correct Answer: (d)

Explanation: Based on the actual locations of used logical blocks in a physical
delete implementation, the largest part of the time will be moving memory
blocks. Therefore the number of deletes is essential for the runtime. Since China
has a much larger population than Ireland, query B will be faster.
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Insert

1. Access Order of Structures during Insert
When doing an insert, what entity is accessed first?

Possible Answers:

(a) The attribute vector
(b) The dictionary
(c) No access of either entity is needed for an insert
(d) Both are accessed in parallel in order to speed up the process

Correct Answer: (b)

Explanation: First the dictionary is scanned in order to figure out, whether the
value to be inserted is already part of the dictionary or has to be added.

2. New Value in Dictionary
Given the following entities:
Old dictionary: ape, dog, elephant, giraffe
Old attribute vector: 0, 3, 0, 1, 2, 3, 3
Value to be inserted: lamb
What value is the lamb mapped to in the new attribute vector?

Possible Answers:

(a) 1
(b) 2
(c) 3
(d) 4

Correct Answer: (d)

Explanation: ‘‘lamb’’ starts with the letter ‘‘l’’ and therefore does belong after
the entry ‘‘giraffe’’. ‘‘giraffe’’ was the last entry with the logical number 3
(fourth entry) in the old dictionary, so ‘‘lamb’’ gets the number 4 in the new
dictionary.

3. Insert Performance Variation over Time
Why might real world productive column stores experience faster insert
performance over time?
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Possible Answers:

(a) Because the dictionary reaches a state of saturation and, thus, rewrites of
the attribute vector become less likely.

(b) Because the hardware will run faster after some run-in time.
(c) Because the column is already loaded into main-memory and does not have

to be loaded from disk.
(d) An increase in insert performance should not be expected.

Correct Answer: (a)

Explanation: Consider for instance a database for the world population. Most
first names probably did appear after writing a third of the world population.
Future inserts can be done a little faster since less steps are required if the
values are already present in the corresponding dictionary.

4. Resorting Dictionaries of Columns
Consider a dictionary encoded column store (without a differential buffer) and
the following SQL statements on an initially empty table:
INSERT INTO students VALUES(‘Daniel’, ‘Bones’, ‘USA’);
INSERT INTO students VALUES(‘Brad’, ‘Davis’, ‘USA’);
INSERT INTO students VALUES(‘Hans’, ‘Pohlmann’, ‘GER’);
INSERT INTO students VALUES(‘Martin’, ‘Moore’, ‘USA’);
How many complete attribute vector rewrites are necessary?

Possible Answers:

(a) 2
(b) 3
(c) 4
(d) 5

Correct Answer: (b)

Explanation: Each column needs to looked at seperately. An attribute vector
always gets rewritten, if the dictionary was resorted.

• First name: ‘Daniel’; gets inserted, its the first dictionary entry. When ‘Brad’
gets added to the dictionary, it needs to be resorted and therefore the attribute
vector needs to be rewritten. ‘Hans’ and ‘Martin’ are simply appended to the
end of the dictionary each time. Thats a total of one rewrite for the first name.

For the other attributes, the process is equal, the actions are described in short:

• Last name: Bones, Davis, Pohlmann, Moore ! rewrite
• Country: USA, USA ! already present, GER ! rewrite, USA ! already

present

In total, three rewrites are necessary.
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5. Insert Performance
Which of the following use cases will have the worst insert performance when
all values will be dictionary encoded?

Possible Answers:

(a) A city resident database, that store all the names of all the people from that
city

(b) A database for vehicle maintenance data which stores failures, error codes
and conducted repairs

(c) A password database that stores the password hashes
(d) An inventory database of a company storing the furnature for each room

Correct Answer: (c)

Explanation: Inserts take especially long when new unique dictionary entries are
inserted. This will be most likely the case for time stamps and password hashes.

Update

1. Status Update Realization
How do we want to realize status updates for binary status variables?

Possible Answers:

(a) Single status field: ‘‘false’’ means state 1, ‘‘true’’ means state 2
(b) Two status fields: ‘‘true/false’’ means state 1, ‘‘false/true’’ means state 2
(c) Single status field: ‘‘null’’ means state 1, a timestamp signifies transition to

state 2
(d) Single status field: timestamp 1 means state 1, timestamp 2 means state 2

Correct Answer: (c)

Explanation: By using ‘‘null’’ for state 1 and a timestamp for state 2, the
maximum density of needed information is achieved. Given a binary status, the
creation time of the initial status is available in the creation timestamp of the
complete tuple, it does not have to be stored again. If the binary information is
flipped, the ‘‘update’’ timestamp conserves all necessary information in the
described manner. Just saving ‘‘true’’ or ‘‘false’’ would discard this information.
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2. Value Updates
What is a ‘‘value update’’?

Possible Answers:

(a) Changing the value of an attribute
(b) Changing the value of a materialized aggregate
(c) The addition of a new column
(d) Changing the value of a status variable

Correct Answer: (a)

Explanation: In typical enterprise applications, three different types of updates
can be found. Aggregate updates change a value of a materialized aggregate,
status updates change the value of a status variable and finally value updates
change the value of an attribute. Adding a new, empty column is not regarded as
an update of a tuple at all, because it manipulates the whole relation via the
database schema.

3. Attribute Vector Rewriting after Updates
Consider the world population table (first name, last name) that includes all
people in the world: Angela Mueller marries Friedrich Schulze and becomes
Angela Schulze. Should the complete attribute vector for the last name column
be rewritten?

Possible Answers:

(a) No, because ‘Schulze’ is already in the dictionary and only the valueID in
the respective row will be replaced

(b) Yes, because ‘Schulze’ is moved to a different position in the dictionary
(c) It depends on the position: All values after the updated row need to be

rewritten
(d) Yes, because after each update, all attribute vectors affected by the update

are rewritten

Correct Answer: (a)

Explanation: Because the entry ‘Schulze’ is already in the dictionary, it
implicitly has the correct position concerning the sort order and does not need to
be moved. Furthermore, each attribute vector entry has a fixed size, so that
every dictionary entry can be referenced without changing the position of the
adjacent entries in the memory area. Based on these two facts, the answer is that
the attribute vector does not need to be rewritten.
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Tuple Reconstruction

1. Tuple Reconstruction on the Row Layout: Performance
Given a table with the following characteristics:

• Physical storage in rows
• The size of each field is 34 byte
• The number of attributes is 9
• A cache line has 64 byte
• The CPU processes 2 MB per millisecond.

Calculate the time required for reconstructing a full row. Please assume the
following conversions: 1 MB ¼ 1,000 kB, 1 kB ¼ 1,000 B

Possible Answers:

(a) � 0.1 ls
(b) � 0.275 ls
(c) � 0.16 ls
(d) � 0.416 ls

Correct Answer: (c)

Explanation: For 9 attributes of each 34 byte rows, in total 306 byte have to be
fetched. Given a cache line size of 64 byte, 5 cache lines have to be filled:
5 � 64 byte = 320 byte;
Total time needed: size of data to be read/processing speed ¼ 320 byte/
2,000,000 byte/ms/core ¼ 0.16 ls

2. Tuple Reconstruction on the Column Layout: Performance
Given a table with the following characteristics:

• Physical storage in columns
• The size of each field is 34 byte
• The number of attributes is 9
• A cache line has 64 byte
• The CPU processes 2 MB per millisecond

Calculate the time required for reconstructing a full row. Please assume the
following conversions: 1 MB ¼ 1,000 KB, 1 kB ¼ 1,000 B

Possible Answers:

(a) � 0.16 ls
(b) � 0.145 ls
(c) � 0.288 ls
(d) � 0.225 ls
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Correct Answer: (c)

Explanation: Size of data to be read: number of attributes � cache line size ¼
9 � 64 ¼ 576 byte
Total time needed: size of data to be read/processing speed ¼ 576 byte/2,000,000
byte/ms/core ¼ 0.288 ls

3. Tuple Reconstruction in Hybrid Layout
A table containing product stock information has the following attributes:
Warehouse (4 byte); Product Id (4 byte); Product Name Short (20 byte);
Product Name Long (40 byte); Self Production (1 byte); Production Plant (4
byte); Product Group (4 byte); Sector (4 byte); Stock Volume (8 byte); Unit of
Measure (3 byte); Price (8 byte); Currency (3 byte); Total Stock Value (8 byte);
Stock Currency (3 byte)
The size of a full tuple is 114 byte.
The size of a cache-line is 64 byte.
The table is stored in main memory using a hybrid layout. The following fields
are stored together:

• Stock Volume and Unit of Measure;
• Price and Currency;
• Total Stock Value and Stock Currency;

All other fields are stored column-wise.
Calculate and select from the list below the time required for reconstructing a
full tuple using a single CPU core. Please assume the following conversions:
1 MB ¼ 1,000 kB, 1 kB ¼ 1,000 B

Possible Answers:

(a) � 0.352 ls
(b) � 0.020 ls
(c) � 0.061 ls
(d) � 0.427 ls

Correct Answer: (a)

Explanation: The correct answer is calculated as follows: first, the number of
cache lines to be accessed is determined. Attributes that are stored together, can
be read in one access if the total bit size to be retrieved does not exceed the size
of a cache line.
Stock Volume and Unit of Measure: 8 byteþ 3 byte\64 byte! 1 cache line
Price and Currency: 8 byteþ 3 byte\64 byte! 1 cache line
Total Stock Value and Stock Currency: 8 byteþ 3 byte\64 byte! 1 cache line
All other 8 attributes are stored column wise, so one cache access per attribute is
required, resulting in additional cache accesses.
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The total amount of data to be read is therefore: 11 (cachelines) � 64 byte ¼
704 byte
704 byte=ð2; 000; 000 byte/ms/coreÞ � 1 core ¼ 0:352 ls

4. Comparison of Performance of the Tuple Reconstruction on Different
Layouts
A table containing product stock information has the following attributes:
Warehouse (4 byte); Product Id (4 byte); Product Name Short (20 byte);
Product Name Long (40 byte); Self Production (1 byte); Production Plant (4
byte); Product group (4 byte); Sector (4 byte); Stock Volume (8 byte); Unit of
Measure (3 byte); Price (8 byte); Currency (3 byte); Total Stock Value (8 byte);
Stock Currency (3 byte)
The size of a full tuple is 114 byte.
The size of a cache-line is 64 byte.
Which of the following statements are true?

Possible Answers:

(a) If the table is physically stored in column layout, the reconstruction of a
single full tuple consumes �0.192 ls using a single CPU core.

(b) If the table is physically stored in row layout, the reconstruction of a single
full tuple consumes �128 ns using a single CPU core.

(c) If the table is physically stored in column layout, the reconstruction of a
single full tuple consumes �448 ns using a single CPU core.

(d) If the table is physically stored in row layout, the reconstruction of a single
full tuple consumes �0.64 ls using a single CPU core.

Correct Answer: (c)

Explanation: To reconstruct a full tuple from row layout, we first need to
calculate the count of cache accesses. Considering a size of 114 byte, we will
need 2 cache accesses (114 byte=64 byte per cache line ¼ 1:78! 2) to read a
whole tuple from main memory. With two cache accesses, each loading 64 byte,
we read 128 byte from main memory. We assume, like in the questions before,
that the reading speed of our system is 2 megabyte per millisecond per core.
Now we divide 128 byte by 2 megabyte per millisecond per core and get a result
of 0.000064 ms (0.064 ls). So the answers �0.64 ls and �128 ns with one
core, if the table is stored in row layout, are both false.
In a columnar layout, we need to read every value individually from main
memory, because they are not stored in a row (consecutive memory area) but in
different attribute vectors. We have 14 attributes in this example, so we need 14
cache accesses, each reading 64 bytes. Thus the CPU has to read 14 � 64 byte ¼
896 byte from main memory. Like before, we assume that the reading speed is
2 MB per millisecond per core. By dividing the 896 byte by 2 MB/ms/core, we
get the time one CPU core needs to reconstruct a full tuple. The result is
0.000448 ms (448 nanoseconds). So �448 ns with one core and columnar
layout is the correct answer.
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Scan Performance

1. Loading Dictionary-Encoded Row-Oriented Tuples
Consider the example in Sect. 14.2 with dictionary-encoded tuples. In this
example, each tuple has a size of 32 byte. What is the time that a single core
processor needs to scan the whole world_population table if all data is stored in
a dictionary-encoded row layout?

Possible Answers:

(a) 128 s
(b) 256 s
(c) 64 s
(d) 96 s

Correct Answer: (a)

Explanation: The accessed data volume is 8 billion tuples � 32 byte each
�256 GB. Therefore the expected response time is 256 GB/(2 MB/ms/core � 1
core) ¼ 128 s

Select

1. Table Size
What is the table size if it has 8 billion tuples and each tuple has a total size of
200 byte?

Possible Answers:

(a) � 12:8 TB
(b) � 12:8 GB
(c) � 2 TB
(d) � 1:6 TB

Correct Answer: (d)

Explanation: The total size of the table is 8,000,000,000 � 200 byte ¼
1,600,000,000,000 bytes ¼ 1.6 TB.
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2. Optimizing SELECT
How could the performance of SELECT statements be improved?

Possible Answers:

(a) Reduce the number of indices
(b) By using the FAST SELECT keyword
(c) Order multiple sequential select statements from low selectivity to high

selectivity
(d) Optimizers try to keep intermediate result sets large for maximum

flexibility during query processing

Correct Answer: (c)

Explanation: During the execution of the SELECT statement, we have to
search through the whole data of the database for entries with the demanded
selection attributes. By ordering the selection criteria from low/strong (many
rows are filtered out) to high/weak selectivity (few rows are filtered out), we
reduce the amount of data we have to walk through in subsequent steps, which
results in a shorter execution time for the overall SELECT statement.

3. Selection Execution Order
Given is a query that selects the names of all German women born after January
1, 1990 from the world_population table (contains data about all people in the
world). In which order should the query optimizer execute the selections?
Assume a sequential query execution plan.

Possible Answers:

(a) country first, birthday second, gender last
(b) country first, gender second, birthday last
(c) gender first, country second, birthday last
(d) birthday first, gender second, country last

Correct Answer: (a)

Explanation: To optimize the speed of sequential selections the most restrictive
ones have to be executed first. While the gender restriction would reduce the
amount of data (8 billion) to the half (4 billion), the birthday restriction would
return about 1.6 billion tuples and the country restriction (Germany) about 80
million tuples. So the query optimizer should execute the country restriction
first, followed by the birthday restriction, which filters additional 80 % of the 80
million Germans. The gender restriction then filters the last �50 % of entries.
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4. Selectivity Calculation
Given is the query to select the names from German men born after January 1,
1990 and before December 31, 2010 from the world population table (8 billion
people). Calculate the selectivity.
Selectivity ¼ number of tuples selected / number of tuples in the table
Assumptions:

• there are about 80 million Germans in the table
• males and females are equally distributed in each country
• there is an equal distribution between all generations from 1910 until 2010

Possible Answers:

(a) 0.001
(b) 0.005
(c) 0.1
(d) 1

Correct Answer: (a)

Explanation: Calculation:

• 80 million Germans
• 80 million (Germans) � 50 % ¼ 40 million German males
• 40 million (German males) � 20 % ¼ 8 million German males between

1990 and2010
• 8 million (German males between 1990 and 2010)/8 billion ¼ 0.001

The first selection is based on the assumption, that the distribution of males and
females is equal. The second selection is based on the assumption that the
population is equally distributed over the generations, so selecting a timespan of
20 years of 100 years is effectively 1/5th or 20 %. The selectivity is then
calculated via: number of selected tuples/number of all tuples ¼ 8 million/8
billion ¼ 0.001

5. Execution Plans
For any one SELECT statement...

Possible Answers:

(a) there always exist exactly two execution plans, which mirror each other
(b) exactly one execution plan exists
(c) several execution plans with the same result set, but differing performance

may exist
(d) several executions plans may exist that deliver differing result sets
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Correct Answer: (c)

Explanation: For any SELECT statement, several execution plans with the same
result set, but different runtimes may exist. As an example, we want to query all
men living in Italy from world population table; the database offers three
different execution plans. We could query for the gender ‘male’ first and then for
the country ‘Italy’ in the result set or we start with the selection for ‘Italy’ and
then we narrow the result to only males, or we might perform the two selections
on ‘male’ and ‘Italy’ in parallel queries, both running on the full dataset and then
create the intersection. All three execution plans create the same result set, but
require different runtimes. For example its faster to query first for ‘Italy’and then
for ‘male’, because in this case first 8 billion entries (all entries) and then further
select on the resulting 60 million entries (all Italiens), if you start with ‘male’ and
then query for ‘Italy’ you have to scan through 8 billion (all Italiens) and then
through 4 billion entries (all males).

Materialization Strategies

1. Which Strategy is Faster?
Which materialization strategy—late or early materialization—provides the
better performance?

Possible Answers:

(a) Early materialization
(b) Late materialization
(c) Depends on the characteristics of the executed query
(d) Late and early materialization always provide the same performance

Correct Answer: (c)

Explanation: The question of which materialization strategy to use is
dependent on several facts. Amongst them are e.g. the selectivity of queries
and the execution strategy (pipelined or parallel). In general, late materialization
is superior, if the query has a low selectivity and the queried table uses
compression.

2. Disadvantages of Early Materialization
Which of the following statements is true?

Possible Answers:

(a) The execution of an early materialized query plan can not be parallelized
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(b) Whether late or early materialization is used is determined by the system
clock

(c) Early materialization requires lookups into the dictionary, which can be
very expensive and are not required when using late materialization

(d) Depending on the persisted value types of a column, using positional
information instead of actual values can be advantageous (e.g. in terms of
cache usage or SIMD execution)

Correct Answer: (d)

Explanation: Working with intermediate results provides advantages in terms
of cache usage and parallel execution, since positional information usually has a
smaller size than the actual values. Consequently, more items fit into a cache
line, which additionally are of fixed length enabling parallel SIMD operations.
The question of locking and parallelization is in general independent from the
materialization strategy.

Parallel Data Processing

1. Shared Memory
What limits the use of shared memory?

Possible Answers:

(a) The number of workers, which share the same resources and the limited
memory itself.

(b) The caches of each CPU
(c) The operation frequency of the processor
(d) The usage of SSE instructions.

Correct Answer: (a)

Explanation: By default, main memory is assigned to exactly one process, all
other process can not access the reserved memory area. If a memory segment is
shared between processes and this segment is full, additional shared memory has
to be requested. The size of the memory area is therefore a limiting factor. But
more important is the fact that several workers (this can be threads, processes,
etc.) share the same resource. To avoid inconsistencies, measures have to be
taken, e.g. locking or MVCC (multiversion concurrency control). While this does
usually not affect low numbers of workers, any locking will automatically get a
problem as soon as the number of workers reaches a certain limit. At this level,
too many workers cannot work since they have to wait for locked resources.
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Indices

1. Index Characteristics
Introducing an index...

Possible Answers:

(a) decreases memory consumption
(b) increases memory consumption
(c) speeds up inserts
(d) slows down look-ups

Correct Answer: (b)

Explanation: The index is an additional data structure and therefore consumes
memory. Its purpose is to increase performance of scan operations.

2. Inverted Index
What is an inverted index?

Possible Answers:

(a) A structure that contains the distinct values of the dictionary in reverse
order

(b) A list of text entries that have to be decrypted, it is used for enhanced
security

(c) A structure that contains the delta of each entry in comparison to the largest
value

(d) A structure that maps each distinct value to a position list, which contains
all positions where the value can be found in the column

Correct Answer: (d)

Explanation: The inverted index consists of the index offset vector and the
index position vector. The index offset vector stores a reference to the sequence
of positions of each dictionary entry in the index position vector. The index
position vector contains the positions (i.e. all occurances) for each value in the
attribute vector. Thus, the inverted index is a structure that maps each distinct
value to a position list, which contains all positions where the value can be
found in the column.
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Join

1. Hash-Join Complexity
What is the complexity of the Hash-Join?

Possible Answers:

(a) O(nþm)
(b) O(n2/m2)
(c) O(n � m)
(d) O(n � log(n)þmþlog(m))

Correct Answer: (a)

Explanation: Let m and n be the cardinality of the input relations M and N with
m \ ¼ n. The hash function used in the first phase of a Hash-Join, maps a
variable-length value to a fixed length value in constant time and is applied to
the smaller input relation. Thus, it takes m operations. In the second phase, the
attribute vector of the larger relation is probed against the hash table which was
generated in the first step. Again, the hash function is used and therefore n
constant time operations take place. In short, the Hash-Join has a complexity of
O(mþn).

2. Sort-Merge Join Complexity
What is the complexity of the Sort-Merge Join?

Possible Answers:

(a) O(nþm)
(b) O(n2/m2)
(c) O(n � m)
(d) O(n � log(n)þm � log(m))

Correct Answer: (d)

Explanation: Let m and n be the cardinality of the input relations M and N with
m \ ¼ n. The runtime of the Sort-Merge Join is determined by the task to sort
both input relations. As sorting algorithm, merge sort is used, that has runtime a
complexity of O(n � log(n)) for input relation N. This complexity is based on the
fact, that the merge join works recursive and divides the input into two parts,
which are sorted and afterwards combined. The actual number of steps is
determined by the number of recursion levels. The resulting equation for n
elements can be assessed with the term n � log(n) according to the master
theorem. Therefore, the Sort-Merge Join has a complexity of O(m � log(m)þn �
log(n)).
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3. Join Algorithm Small Data Set
Given is an extremely small data set. Which join algorithm would you choose
in order to get the best performance?

Possible Answers:

(a) All join algorithms have the same performance
(b) Nested-Loop Join
(c) Sort-Merge Join
(d) Hash-Join

Correct Answer: (b)

Explanation: Even though the Nested-Loop Join has a much worse complexity
than the other join algorithms, it manages to join the input relations without
additional data structures. Therefore, no initialization is needed. In case of very
small relations, this is a huge saving.

4. Join Algorithm Large Data Set
Imagine a large data set with an index. Which join algorithm would you choose
in order to get the best performance?

Possible Answers:

(a) Nested-Loop Join
(b) Sort-Merge Join
(c) All join algorithms have the same performance
(d) Hash-Join

Correct Answer: (d)

Explanation: The Nested-Loop Join is not suitable for a large data set because
its complexity is much worse than the complexity of the two other algorithms.
The Sort-Merge Join has a worse runtime complexity than the Hash-Join
because it requires sorting before the actual merge can take place. However, it
does not require to build an additional hash structure, which can be complicated
and time consuming depending on the circumstances. In this case the Hash-Join
can use the existing index to speed up the building of the hash map, so the only
possible obstacle is not of concern here. Hence, the Hash-Join is the most
suitable algorithm for large data sets with an index to maximize the
performance.
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5. Equi-Join
What is the Equi-Join?

Possible Answers:

(a) If you select tuples from both relations, you use only one half of the join
relations and the other half of the table is discarded

(b) If you select tuples from both relations, you will always select those tuples,
that qualify according to a given equality predicate

(c) It is a join algorithm that ensures that the result consists of equal amounts
from both joined relations

(d) It is a join algorithm to fetch information, that is probably not there. So if
you select a tuple from one relation and this tuple has no matching tuple on
the other relation, you would insert their NULL values there.

Correct Answer: (b)

Explanation: There are two general categories of joins: inner joins and outer
joins. Inner joins create a result table that combines tuples from both input
tables only if both regarded tuples meet the specified join condition. Based on a
join predicate each tuple from the first table is combined with each tuple of the
second table, the resulting cross-set is filtered (similar to a SELECT statement)
on the join condition. Outer joins, in contrast, have more relaxed conditions on
which tuples to include. If a tuple has no matching tuple in the other relation, the
outer join inserts NULL values for the missing attributes in the result and
includes the resulting combination. Further specializations of the two join types
are for example the Semi-Join, which returns only the attributes of the left join
partner if the join predicate is matched. Another specialization is the Equi-Join.
It allows the retrieval of tuples that satisfy a given equality predicate for both
sides of the tables to be joined. The combined result comprises the equal
attribute twice, once from the left relation and once from the right relation. The
so called Natural-Join is similar to the Equi-Join, except that it strips away the
redundant column that is kept in the Equi-Join.

6. One-to-One-Relation
What is a one-to-one relation?

Possible Answers:

(a) A one-to-one relation between two objects means that for each object on the
left side, there are one or more objects on the right side of the joined table
and each object of the right side has exactly one join partner on the left

(b) A one-to-one relation between two objects means that for exactly one
object on the left side of the join exists exactly one object on the right side
and vice versa
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(c) A one-to-one relation between two objects means that each object on the
left side is joined to one or more objects on the right side of the table and
vice versa each object on the right side has one or more join partners on the
left side of the table

(d) Each query which has exactly one join between exactly two tables is called
a one-to-one relation, because one table is joined to exactly one other table.

Correct Answer: (b)

Explanation: Three different types of relations between two tables exist. These
are one-to-one, one-to-many and many-to-many relations. In a many-to-many
relationship, each tuple from the first relation may be related to multiple tuples
from the second one and vice versa. In a one-to-many relationship, each tuple of
the first table might be related to multiple tuples of the second table, but each
tuple of the second relation refers to exactly one tuple of the first relation.
Consequently a one-to-one relation connects each tuple of the first relation with
exactly one tuple from the second relation, additionally no tuple of the second
relation stays unconnected, so the amount of entries in both relations is equal.

Aggregate Functions

1. Aggregate Function Definition
What are aggregate functions?

Possible Answers:

(a) A set of functions that transform data types from one to another data
(b) A set of indexes that speed up processing a specific report
(c) A set of tuples that are grouped together according to specific requirements
(d) A specific set of functions that summarize multiple rows from an input data

set

Correct Answer: (d)

Explanation: Sometimes it is necessary to get a summary of a data set, like the
average, the minimum, or the number of entries. Databases provide special
functions for these tasks, called aggregate functions, that take multiple rows as
an input and create an aggregated output. Instead of processing single values,
these functions work on data sets, which are created by grouping the input data
on specified grouping attributes.
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2. Aggregate Functions
Which of the following is an aggregate function?

Possible Answers:

(a) HAVING
(b) MINIMUM
(c) SORT
(d) GROUP BY

Correct Answer: (b)

Explanation: MINIMUM (often expressed as MIN) is the only aggregate
function listed here. HAVING is used in SQL Queries to add additional
requirements for the resulting aggregate values in order to be accepted. GROUP
BY is used to specify the columns on which the aggregations should take place
(all tuples with equal values in this columns are grouped together, if multiple
columns are specified, one result per unique attribute combination is computed).
SORT is not a valid SQL expression at all.

Parallel Select

1. Amdahl’s Law
Amdahl’s Law states that ...

Possible Answers:

(a) the number of CPUs doubles every year
(b) the level of parallelization can be no higher than the number of available CPUs
(c) the speedup of parallelization is limited by the time needed for the

sequential fractions of the program
(d) the amount of available memory doubles every year

Correct Answer: (c)

Explanation: While the execution time of the parallelizable code segments can
be shortened by multiple cores, the runtime of the sequential fraction can not be
decreased because it has to be executed by one CPU core only. As this time is
constant, the execution time of the complete program code is at least as long as
the sequential code segment, regardless how many cores are used. This main
principle was first described by Amdahl and named after him. The increase of
chip density by a factor of 2 about every 18–24 month is called ‘‘Moore’s Law’’,
the other two possible answers are incorrect at all.
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2. Query Execution Plans in Parallelizing SELECTS
When a SELECT statement is executed in parallel ...

Possible Answers:

(a) all other SELECT statements are paused
(b) its query execution plan becomes much simpler compared to sequential

execution
(c) its query execution plan is adapted accordingly
(d) its query execution plan is not changed at all

Correct Answer: (c)

Explanation: If columns are split into chunks, attribute vector scans can be
executed in parallel with one thread per chunk. All results for chunks of the
same column have to be combined by a UNION operation afterwards. If more
than one column is scanned, a positional AND operation has to be performed
additionally. In order to execute the AND operation in parallel too, the affected
columns have to be partitioned equally. So parallelizing the AND operation
changes the execution plan, therefore the answer that the execution plan has to
be adapted, is correct.

Workload Management and Scheduling

1. Resource Conflicts
Which three hardware resources are usually taken into account by the scheduler
in a distributed in-memory database setup?

Possible Answers:

(a) CPU processing power, main memory, network bandwidth
(b) Main memory, disk, tape drive
(c) CPU processing power, graphics card, monitor
(d) Network bandwidth, power supply unit, main memory

Correct Answer: (a)

Explanation: When scheduling queries in an in-memory database, storage outside
of main memory is of no importance. Furthermore, graphics hardware and
peripherals are no performance indicator for database systems.
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2. Workload Management Scheduling Strategy
Why does a complex workload scheduling strategy might have disadvantages in
comparison to a simple resource allocation based on heuristics or a uniform
distribution, e.g. Round Robin?

Possible Answers:

(a) The execution of a scheduling strategy itself consumes more resources than
a simplistic scheduling approach. A strategy is usually optimized for a
certain workload—if this workload changes abruptly, the scheduling
strategy might perform worse than a uniform distribution

(b) Heuristics are always better than complex scheduling strategies
(c) A scheduling strategy is based on general workloads and thus might not

reach the best performance for specific workloads compared to heuristics or
a uniform distribution, while its application is cheap

(d) Round-Robin is usually the best scheduling strategy.

Correct Answer: (a)

Explanation: Scheduling strategies reach a point where every further
optimization is based on a specific workload. If one can predict future
workloads based on the past ones, the scheduler can distribute queries for
maximum performance regarding this scenario. However, if the workload
changes unpredictably, there is no gain from specialized strategies. Under these
circumstances, specialized optimizations are rather an unnecessary overhead, as
they may require additional scheduling time, data structures, or increased
resources

3. Analytical Queries in Workload Management
Analytical queries typically are ...

Possible Answers:

(a) long running with soft time constraints
(b) short running with soft time constraints
(c) short running with strict time constraints
(d) long running with strict time constraints

Correct Answer: (a)

Explanation: Analytical workloads consist of complex and computationally
heavy queries. Hence analytical queries have a long execution time. Whereas the
response time must be guaranteed for transactional queries, this is not the case for
analytical ones. While they should be as short as possible, business processes will
not abort if an analytical query takes 3 instead of 2 s. Therefore, analytical queries
have soft time constraints in comparison to transactional ones.
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4. Query Response Times
Query response times ...

Possible Answers:

(a) can be increased so the user can do as many tasks as possible in parallel
because context switches are cheap

(b) have to be as short as possible, so the user stays focused at the task at hand
(c) should never be decreased as users are unfamiliar with such system

behavior and can become frustrated
(d) have no impact on a users work behavior

Correct Answer: (b)

Explanation: Query response times have a huge impact on the user. If an
operation takes too long, the mind tends to wander to other topics than the original
task. The longer it takes, the further this process goes on. Refocusing on the task is
in fact very exhausting and thus, waiting periods should be avoided to guaranty a
convenient experience and reduce human errors.

Parallel Join

1. Parallelizing Hash-Join Phases
What is the disadvantage when the probing phase of a join algorithm is
parallelized and the hashing phase is performed sequentially?

Possible Answers:

(a) Sequentially performing the hashing phase introduces inconsistencies in the
produced hash values

(b) The algorithm still has a large sequential part that limits its potential to
scale

(c) The sequential hashing phase will run slower due to the large resource
utilization of the parallel probing phase

(d) The table has to be split into smaller parts, so that every core, which
performs the probing, can finish

Correct Answer: (b)

Explanation: With Amdahls’ Law in mind, the Hash-Join can only be as fast as
the sum of all sequential parts of the algorithm. Parallelizing the probing phase
shortens the time needed, but has no impact on the hashing phase, which still
has to be done sequentially. Thus, there is always a huge part of the algorithm
which cannot be parallelized.
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Parallel Aggregation

1. Aggregation—GROUP BY
Assume a query that returns the number of citizens of a country, e.g.:
SELECT country, COUNT( � )
FROM world_population
GROUP BY country;
The world_population table contains the names and countries of all citizens of
the world.
The GROUP BY clause is used to express ...

Possible Answers:

(a) the graphical format of the results for display
(b) an additional filter criteria based on an aggregate function
(c) that the aggregate function shall be computed for every distinct value of

country
(d) the sort order of countries in the result set

Correct Answer: (c)

Explanation: In general, the GROUP BY clause is used to express that all used
aggregate function shall be computed for every distinct value (or value
combinations) of the specified attributes. In this case, only one attribute is
specified, so only sets having distinct values for country are aggregated. The sort
order is specified in the ORDER BY clause, additional filter criteria can be added
on the aggregated values with the HAVING clause.

2. Number of Threads
How many threads will be used during the second phase of the described
parallel aggregation algorithm when the table is split into 20 chunks and the
GROUP BY attribute has 6 distinct values?

Possible Answers:

(a) exactly 20 threads
(b) at most 6 threads
(c) at least 10 threads
(d) at most 20 threads

Correct Answer: (b)

Explanation: In the aggregation phase, the so called merger threads merge the
buffered hash tables. Each thread is responsible for a certain range of the GROUP
BY attribute. So if the GROUP BY attribute has 6 distinct values, the maximum
number of threads is 6. If there are more than 6 threads, the surplus threads will
get no pending values and are therefore not used.
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Differential Buffer

1. Differential Buffer
What is the differential buffer?

Possible Answers:

(a) A buffer where exception and error messages are stored
(b) A buffer where different results for one and the same query are stored for

later usage
(c) A dedicated storage area in the database where inserts, updates and

deletions are buffered
(d) A buffer where queries are buffered until there is an idle CPU that takes one

new task over

Correct Answer: (c)

Explanation: The main store is optimized for read operations. An insert of a
tuple is likely to force restructuring of the whole table. To avoid this, we
introduced the differential buffer, an additional storage area where all the data
modifications like inserts, updates and delete operations are performed and
buffered until they are integrated into the main store. As a result, we have a read
optimized main store and a write optimized differential buffer. In combination,
update operations as well as read operations are supported by optimal storage
structures, which results in an increased overall performance.

2. Performance of the Differential Buffer
Why might the performance of read queries decrease, if a differential buffer is
used?

Possible Answers:

(a) Because only one query at a time can be answered by using the differential
buffer

(b) Because read queries have to go against the main store and the differential
buffer, which is write-optimized

(c) Because inserts collected in the differential buffer have to be merged into
the main store every time a read query comes in

(d) Because the CPU cannot perform the query before the differential buffer is full

Correct Answer: (b)

Explanation: New tuples are inserted into the differential buffer first, before being
merged into the main store eventually. To speed up inserts as much as possible, the
differential buffer is optimized for writing rather than reading tuples. Read queries
against all data have to go against the differential buffer as well, what might cause a
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slowdown. To prevent noticeable effects for the user, the amount of values in the
differential buffer is kept small in comparison to the main store. By exploiting the
fact that the main store and the differential buffer can be scanned in parallel,
noticeable speed losses are avoided.

3. Querying the Differential Buffer
If we use a differential buffer, we have the problem that several tuples
belonging to one real world entry might be present in the main store as well as
in the differential buffer. How did we solve this problem?

Possible Answers:

(a) This statement is completely wrong because multiple tuples for one real
world entry must never exist

(b) All attributes of every doubled occurrence are set to NULL in the
compressed main store

(c) We introduced a validity bit
(d) We use a specialized garbage collector that just keeps the most recent entry

Correct Answer: (c)

Explanation: Following the insert-only approach, we do not delete or change
existing attributes or whole tuples. If we want to change or add attributes of an
existing tuple in spite of the insert-only approach, we add an updated tuple with
the changed as well as the unchanged values to the differential buffer. In order to
solve the problem of multiple tuples belonging to one real world entry, we
introduced a validity vector that indicates whether a tuple is the most current one
and therefore is valid or not.

Insert Only

1. Statements Concerning Insert-Only
Considering an insert-only approach, which of the following statements is true?

Possible Answers:

(a) When given a differential buffer, historical data can be used to further speed
up the insert performance

(b) Old data items are deleted as they are not necessary any longer
(c) Historical data has to be stored in a separate database to reduce the overall

database size
(d) Data is not deleted, but invalidated instead
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Correct Answer: (d)

Explanation: With an insert-only approach, no data is ever deleted or sourced
out to another, separated database. Furthermore, when using a differential
buffer, the insert performance is not dependent on the data already stored in the
database. Without the differential buffer, a huge amount of data already in the
table might indeed speed up inserts into sorted columns, because a quite
saturated and therefore stable dictionary would reduce the resorting overhead.

2. Benefits of Historic Data
Which of the following is NOT a reason why historical data is kept by an
enterprise?

Possible Answers:

(a) Historic data can be used to analyze the development of the company
(b) It is legally required in many countries to store historical data
(c) Historical data can provide snapshots of the database at certain points in

time
(d) Historical data can be analyzed to boost query performance

Correct Answer: (d)

Explanation: With historical data, time-travel queries are possible. They allow
users to see the data exactly like it was at any point in the past. This simple
access to historical data helps a company’s management to efficiently analyze
the history and the development of the enterprise. Additionally, i.e. in Germany
it is legally required to store particular commercial documents for tax audits.
Historical data however will not improve the query performance, which is the
correct answer consequently.

3. Accesses for Point Representation
Considering point representation and a table with one tuple, that was
invalidated five times, how many tuples have to be checked to find the most
recent tuple?

Possible Answers:

(a) Five
(b) Two, the most recent one and the one before that
(c) Only one, that is, the first which was inserted
(d) Six

Correct Answer: (d)
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Explanation: All tuples belonging to one real world entry have to be checked in
order to determine the most recent tuple when using point representation. It is not
sufficient to start from the end of the table and take the first entry that belongs to the
desired real world entry, because in most cases the table is sorted by an attribute
and not by the insertion order. In this case, six tuples have to be checked, all five
invalidated ones and the current one.

4. Physical Delete instead of Insert-Only
What would be necessary if physical deletion of tuples was implemented in
SanssouciDB?

Possible Answers:

(a) Dictionary cleaning which would cause rewriting of the attribute vector
(b) The latest snapshot has to be reloaded after a deletion to maintain data

integrity
(c) Deletion of tuples is part of SanssouciDB
(d) Assurance of compatibility to other DBMS

Correct Answer: (a)

Explanation: Physical deletions would, in some cases, cause the need to clean
the dictionary, because values that do not exist in the table any longer have to be
eliminated.

5. Statement concerning Insert-Only
Which of the following statements concerning insert-only is true?

Possible Answers:

(a) Point representation allows faster read operations than interval
representation due to its lower impact on tuple size

(b) In interval representation, four operations have to be executed to invalidate
a tuple

(c) Interval representation allows more efficient write operations than point
representation

(d) Point representation allows more efficient write operations than interval
representation

Correct Answer: (d)

Explanation: Point representation will be less efficient for read operations, that
only require the most recent tuple. Using point representation, all tuples of that
entry have to be checked, to determine the most recent one. As a positive aspect,
point representation allows more efficient write operations in comparison to
interval representation, because on any update, only the tuple with the new values
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and the current ‘value from’ date has to be entered, the other tuples do not need to
be changed. The insertion of the tuple with the new entries might however require
the lookup of the former most recent tuple, to retrieve all unchanged values.

Merge

1. What is the Merge?
The merge process ...

Possible Answers:

(a) incorporates the data of the write-optimized differential buffer into the read-
optimized main store

(b) combines the main store and the differential buffer to increase the
parallelism

(c) merges the columns of a table into a row-oriented format
(d) optimizes the write-performance

Correct Answer: (a)

Explanation: If we are using a differential buffer as an additional data structure
to improve the write performance of our database, we have to integrate this data
into the compressed main partition periodically in order to uphold the benefits
concerning the read performance. This process is called ‘‘merge’’.

2. When to Merge?
When is the merge process triggered?

Possible Answers:

(a) When the number of tuples within the differential buffer exceeds a specified
threshold

(b) When the space on disk runs low and the main store needs to be further
compressed

(c) Before each SELECT operation
(d) After each INSERT operation

Correct Answer: (a)

Explanation: Holding too many tuples in the differential buffer, slows down
read performance against all data. Therefore it is necessary to define a certain
threshold at which the merge process is triggered. If it was too often (for
example after every INSERT or even before every SELECT), the overhead of
the merge would be larger than the possible penalty for querying both main
store and differential buffer.
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Logging

1. Snapshot Statements
Which statement about snapshots is wrong?

Possible Answers:

(a) The recovery process is faster when using a snapshot because only log files
after the snapshot need to be replayed

(b) The snapshot contains the current read-optimized store
(c) A snapshot is an exact image of a consistent state of the database to a given

time
(d) A snapshot is ideally taken after each insert statement

Correct Answer: (d)

Explanation: A snapshot is a direct copy of the main store. Because of that, all
the data of the database has to be in the main store when a snapshot is created in
order to represent the complete dataset. This is only the case after the merge
process, not after each insert, because inserts are written into the differential
buffer and otherwise would be omitted.

2. Recovery Characteristics
Which of the following choices is a desirable characteristic of any recovery
mechanism?

Possible Answers:

(a) Recovery of only the latest data
(b) Returning the results in the right sorting order
(c) Maximal utilization of system resources
(d) Fast recovery without any data loss

Correct Answer: (d)

Explanation: It is of course preferable to recover all of the data in as few as
possible time. A high utilization of resources might be a side effect, but is not a
must.

3. Situations for Dictionary-Encoded Logging
When is dictionary-encoded logging superior?

Possible Answers:

(a) If large values are inserted only one time
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(b) If the number of distinct values is high
(c) If all values are different
(d) If large values are inserted multiple times

Correct Answer: (d)

Explanation: Dictionary Encoding replaces large values by a minimal number
of bits to represent these values. As an additional structure, it requires some
space, too. In return, huge savings are possible if values appear more than once,
because the large values is only saved once and then referenced by the smaller
key value whenever needed. If the number of distinct values is high or even
maximal (when all values are different, which is also given if each value is
inserted only once), the possible improvements can not be fully leveraged.

4. Small Log Size
Which logging method results in the smallest log size?

Possible Answers:

(a) Common logging
(a) Log sizes never differ
(a) Dictionary-encoded logging
(a) Logical logging

Correct Answer: (c)

Explanation: Common logging is wrong because it does not even exist. Logical
logging writes all data uncompressed to disk. In contrast, dictionary-encoded
logging saves the data using dictionaries, so the size of the data is implicitly
smaller because of the compression of recurring values. Consequently, of the
mentioned logging variants, dictionary-encoded logging has the smallest log size.

5. Dictionary-Encoded Log Size
Why has dictionary-encoded logging the smaller log size in comparison to
logical logging?

Possible Answers:

(a) Because of interpolation
(b) Because it stores only the differences of predicted values and real values
(c) Because of the reduction of recurring values
(d) Actual log sizes are equal, the smaller size is only a conversion error when

calculating the log sizes

Correct Answer: (c)
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Explanation: Dictionary Encoding is a compression technique that encodes
variable length values by smaller fixed-length encoded values using a mapping
dictionary. As a consequences, it reduces the size of recurring values.

Recovery

1. Recovery
What is recovery?

Possible Answers:

(a) It is the process of recording all data during the run time of a system
(b) It is the process of restoring a server to the last consistent state before its crash
(c) It is the process of improving the physical layout of database tables to speed

up queries
(d) It is the process of cleaning up main memory, that is ‘‘recovering’’ space

Correct Answer: (b)

Explanation: In case of a failure of the database server, the system has to be
restarted and set to a consistent state. This is be done by loading the backup data
stored on persistent storage back into the in-memory database. The overall
process is called ‘recovery’.

2. Server Failure
What happens in the situation of a server failure?

Possible Answers:

(a) The system has to be rebooted and restored if possible, while another server
takes over the workload

(b) The power supply is switched to backup power supply so the data within
the main memory of the server is not lost

(c) The failure of a server has no impact whatsoever on the workload
(d) All data is saved to persistent storage in the last moment before the server

shuts down

Correct Answer: (a)

Explanation: A backup power supply is only a solution if there is a power
outage but if a CPU or a mainboard causes an error, a backup power supply is
useless. Saving data to persistent storage in the last moment before the server
shuts down is not always possible, for example if there is a power outage and no
backup power supply or if an electric component causes a short circuit and the
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server shuts down immediately to prevent further damage, there is no time to
write the large amount of data to the slow disk. If a server has to shut down,
incoming queries should be accepted and executed nonetheless. Therefore, the
right answer is that the server has to be rebooted if possible and the data is
restored as fast as possible. In the meantime the workload has to be distributed
to other servers, if available.

On-the-Fly Database Reorganization

1. Separation of Hot and Cold Data
How should the data separation into hot and cold take place?

Possible Answers:

(a) Randomly, to ensure efficient utilization of storage areas
(b) Round-robin, to ensure uniform distribution of data among hot and cold

stores
(c) Manually, upon the end of the life cycle of an object
(d) Automatically, depending on the state of the object in its life cycle

Correct Answer: (d)

Explanation: In enterprise applications, business objects have their own live
cycles, which can be separated into active (hot) and passive (cold) states. The
states are defined by a sequence of passed events. If a business object will not be
changed any longer and is accessed less often, it becomes passive and can be
moved to the storage area for cold data, which might be a slower and therefore
cheaper hardware location than main memory.

2. Data Reorganization in Row Stores
The addition of a new attribute within a table that is stored in row-oriented
format ...

Possible Answers:

(a) is not possible
(b) is an expensive operation as the complete table has to be reconstructed to

make place for the additional attribute in each row
(c) is possible on-the-fly, without any restrictions of queries running

concurrently that use the table
(d) is very cheap, as only meta data has to be adapted

Correct Answer: (b)
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Explanation: In row-oriented tables all attributes of a tuple are stored
consecutively. If an additional attribute is added, the storage for the entire table
has to be reorganized, because each row has to be extended by the amount of
space the newly added attribute requires. All following rows have to be moved
to memory areas behind. Of course, the movement of tuples backwards can be
parallelized if the size of the added attribute is known and constant, nonetheless
is the piecewise relocation of the complete table relatively expensive.

3. Cold Data
What is cold data?

Possible Answers:

(a) Data, which is not modified any longer and that is accessed less frequently
(b) The rest of the data within the database, which does not belong to the result

of the current query
(c) Data that is used in a majority of queries
(d) Data, which is still accessed frequently and on which updates are still

expected

Correct Answer: (a)

Explanation: To reduce the amount of main memory needed to store the entire
data set of an enterprise application, the data is separated into active (hot) and
passive (cold) data. Active data is the data of business processes that are not yet
completed and therefore stored in main memory for fast access. Passive data in
contrast is data of business processes that are closed or completed and will not
be changed any more and thus is moved to slower storage mediums like SSDs.

4. Data Reorganization
The addition of an attribute in the column store ...

Possible Answers:

(a) slows down the response time of applications that only request the attributes
they need from the database

(b) speeds up the response time of applications that always request all possible
attributes from the database

(c) has no impact on existing applications if they only request the attributes
they need from the database

(d) has no impact on applications that always request all possible attributes
from the table

Correct Answer: (c)

Self Test Solutions 275



Explanation: In column-oriented tables each column is stored independently
from the other columns in a separate block. Because a new attribute requires a
new memory block, there is no impact on the existing columns and their layout
in memory. Hence, there is also no impact on existing applications which access
only the needed attributes that existed before.

5. Single-Tenancy
In a single-tenant system ...

Possible Answers:

(a) all customers are placed on one single shared server and they also share one
single database instance

(b) each tenant has its own database instance on a shared server
(c) power consumption per customer is best and therefore it should be favored
(d) each tenant has its own database instance on a physically separated server

Correct Answer: (d)

Explanation: If each customer has its own database on a shared server, this is
the ‘shared machine’ implementation of a multi-tenant system. If all customers
share the same database on the same server, the implementation is called
‘shared database’. A ‘single-tenant’ system provides each user an own database
on a physically separated server. The power consumption per customer is not
optimal in that implementation of multi-tenancy, because it is not possible to
share hardware resources. Shared hardware resources allow to run several
customers on one machine to utilize the resources in an optimal way and then
shut down systems that are not required momentarily.

6. Shared Machine
In the shared machine implementation of multi-tenancy ...

Possible Answers:

(a) each tenant has an own exclusive machine, but these share their resources
(CPU, RAM) and their data via a network

(b) all tenants share one server machine, but have own database processes
(c) each tenant has an own exclusive machine, but these share their resources

(CPU, RAM) but not their data via a network
(d) all tenants share the same physical machine, but the CPU cores are

exclusively assigned to the tenants

Correct Answer: (b)

Explanation: Please have a look at Sect. 30.3 on page 229.
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7. Shared Database Instance
In the shared database instance implementation of multi-tenancy ...

Possible Answers:

(a) the risk of failures is minimized because more technical staff (from different
tenants) will have a look at the shared database

(b) all tenants share one server machine and one main database process, tables
are also shared

(c) each tenant has its own server, but the database instance is shared between
the tenants via an InfiniBand network

(d) all tenants share one server machine and one main database process, tables
are tenant exclusive, access control is managed within the database

Correct Answer: (d)

Explanation: Please have a look at Sect. 30.3 on page 229.

Implications

1. Architecture of a Banking Solution
Current financials solutions contain base tables, change history, materialized
aggregates, reporting cubes, indices, and materialized views. The target
financials solutions contains ...

Possible Answers:

(a) only base tables, reporting cubes, and the change history
(b) only base tables, algorithms, and some indexes
(c) only base tables, materialized aggregates, and materialized views
(d) only indexes, change history, and materialized aggregates

Correct Answer: (b)

Explanation: Because in-memory databases are considerably faster than their disk-
focused counterparts, all views, aggregates and cubes can be computed on-the-fly.
Also, the change history is dispensable when using the insert-only approach.
Because main memory capacity is relatively expensive when compared to disk
capacity, it is more important than ever to discard unneeded and redundant data. The
base tables and the algorithms are still necessary, because they are the essential
atomic parts of the database and indexes improve the performance while requiring
only small amounts of memory.
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2. Criterion for Dunning
What is the criterion to send out dunning letters?

Possible Answers:

(a) Bad stock-market price of the own company
(b) Bad information about the customer is received from consumer reporting

agencies
(c) When the responsible accounting clerk has to achieve his rate of dunning

letters
(d) A customer payment is overdue

Correct Answer: (d)

Explanation: A dunning letter is send to remind a customer to pay his
outstanding invoices. If a customer doesn’t pay within the term of payment, he is
overdue. Then a company has to send a dunning letter to call on the customer to
pay, before it could demand an interest rate from him.

3. In-Memory Database for Financials
Why is it beneficial to use in-memory databases for financials systems?

Possible Answers:

(a) Financial systems are usually running on mainframes. No speed up is
needed. All long-running operations are conducted as batch jobs

(b) Operations like dunning can be performed in much shorter time
(c) Because of the high reliability of data in main memory, less maintenance

work is necessary and labor costs could be reduced
(d) Easier algorithms are used within the applications, so shorter algorithm run

time leads to more work for the end user. Business efficiency is improved

Correct Answer: (b)

Explanation: Operations like dunning are very time-consuming tasks, because
they involve read operations on large amounts of transactional data. Column
oriented in-memory databases reduce the duration of the dunning run because of
their extremely high read performance.

4. Connection between Object Fields and Columns
Assume that ‘‘overdue’’ is expressed in an enterprise system business object by
four fields. How many columns play a role to store that information?

Possible Answers:

(a) all columns of the table
(b) two columns
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(c) four columns
(d) one column

Correct Answer: (c)

Explanation: Each field of a business object is an independent attribute and
consequently stored in a separate column. Because each field is possibly
important to store the information, all four columns play a role.

5. Languages for Stored Procedures
Languages for stored procedures are ...

Possible Answers:

(a) designed primarily to be human readable. They follow the spoken english
grammar as close as possible

(b) strongly imperative, the database is forced to exactly fulfill the orders
expressed via the procedure

(c) usually a mixture of declarative and imperative concepts
(d) strongly declarative, they just describe how the result set should look like.

All aggregations and join predicates are automatically retrieved from the
database, which has the information ‘‘stored’’ for that

Correct Answer: (c)

Explanation: Languages for stored procedures typically support declarative
database queries expressed in SQL, imperative control sequences like loops and
conditions and concepts like variables and parameters. Hence, languages for
stored procedures usually support a mixture of declarative and imperative
concepts and combine the best parts of the two programming paradigms to be
very efficient.

Views

1. View Locations
Where should a logical view be built to get the best performance?

Possible Answers:

(a) in the GPU
(b) in a third system
(c) close to the data in the database
(d) close to the user in the analytical application
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Correct Answer: (c)

Explanation: One chosen principle for SanssouciDB is that any data intensive
operation should be executed in the database to speed it up. In consequence,
views, which focus on a certain aspect of the data and often do some
calculations to enrich the information with regard to the desired focus, should be
placed close to the data. It this case, that means they should be located directly
in the database.

2. Data Representation
What is the traditional representation of business data to the end user?

Possible Answers:

(a) bits
(b) videos
(c) music
(d) lists and tables

Correct Answer: (d)

Explanation: Bits are the internal representation of all data, but unconverted they
are not suitable to be read for people. Humans are used to work rich media like
sounds, videos and pictures. Business data can not be delivered via sounds, videos
or pictures in a condensed form, so the best approximation and therefore optimal
representation is to deliver the data in structured text formats, which are lists and
tables. If available, these lists and tables should further be displayed in aggregated
ways i.e. charts to help users to grasp the proportions reflected by the data.

3. Views and Software Quality
Which aspects concerning software quality are improved by the introduction of
database views?

Possible Answers:

(a) Accessibility and availability
(b) Testability and security
(c) Reliability and usability
(d) Reusability and maintainability

Correct Answer: (d)

Explanation: The introduction of database views allows a decoupling of the
application code from the actual data schema. This improves the reusability and
maintainability, because changes on the application code are possible without
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requiring changes to the data schema and vice versa. Additionally, existing
application code can be used for many different data schemes, if the required
schemas can be mapped via views to the data schema used by the application
code. Availability, reliability and testability are not improved by using views.

Handling Business Objects

1. Business Object Mapping
What is business object mapping?

Possible Answers:

(a) Putting together a diagram of all used business objects. It is similar to a
sitemap on webpages

(b) Allocate an index to every business object and save it in the associated
memory area

(c) Representing every element of a business object in a table
(d) Create a hash code of the business object and save this hash code instead of

the whole object

Correct Answer: (c)

Explanation: A business object is an entity capable of storing information and
state. It typically has a tree like structure with leaves holding information about
the object or connections to other business objects. So if business object are
stored in a database, every element of it has to be represented in a table. This is
called business object mapping.

ByPass Solution

1. Transition to IMDBs
What does the transition to in-memory database technology mean for enterprise
applications?

Possible Answers:

(a) Data organization and processing will change radically and enterprise
applications need to be adapted

(b) The data organization will not change at all, but the source code of the
applications has to be adapted

(c) There will be no impact on enterprise applications
(d) All enterprise applications are significantly sped up without incurring any

adaptions
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Correct Answer: (a)

Explanation: Traditional database systems separated the operational and the
analytical part. With in-memory databases this is not necessary anymore,
because they are fast enough to combine both parts. Furthermore, SanssouciDB
stores the data in column-based format, while most traditional databases use a
row-oriented format. Query speeds in enterprise applications will receive some
improvements without any changes to the program code due to the fact that all
data is in main memory and aggregations can be computed faster using column
orientation. To fully leverage the potentials of the presented concepts, adaptions
of the existing applications will be necessary so that the effects that the two
mentioned major changes, the reunion of OLTP and OLAP and the column
orientation, can be exploited in the program.

282 Self Test Solutions



Glossary

ACID Property of a database management
system to always ensure atomicity,
consistency, isolation, and durability of
its transactions.

Active Data Data of a business transaction that is not
yet completed and is therefore always
kept in main memory to ensure low
latency access.

Aggregation Operation on data that creates a sum-
marized result, for example, a sum,
maximum, average, and so on. Aggre-
gation operations are common in enter-
prise applications.

Analytical Processing Method to enable or support business
decisions by giving fast and intuitive
access to large amounts of enterprise
data.

Application Programming
Interface (API)

An interface for application program-
mers to access the functionality of a
software system.

Atomicity Database concept that demands that all
actions of a transaction are executed or
none of them.

Attribute A characteristic of an entity describing a
certain detail of it.

Availability Characteristic of a system to continu-
ously operate according to its specifica-
tion, measured by the ratio between the
accumulated time of correct operation
and the overall interval.

H. Plattner, A Course in In-Memory Data Management,
DOI: 10.1007/978-3-642-36524-9, � Springer-Verlag Berlin Heidelberg 2013
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Available-to-Promise (ATP) Determining whether sufficient quanti-
ties of a requested product will be
available in current and planned inven-
tory levels at a required date in order to
allow decision making about accepting
orders for this product.

Batch Processing Method of carrying out a larger number
of operations without manual inter-
vention.

Benchmark A set of operations run on specified data
in order to evaluate the performance of a
system.

Blade Server in a modular design to increase
the density of available computing
power.

Business Intelligence Methods and processes using enterprise
data for analytical and planning pur-
poses, or to create reports required by
management.

Business Logic Representation of the actual business
tasks of the problem domain in a
software system.

Business Object Representation of a real-life entity in the
data model, for example, a purchasing
order.

Cache A fast but rather small memory that
serves as buffer for larger but slower
memory.

Cache Coherence State of consistency between the ver-
sions of data stored in the local caches
of a CPU cache.

Cache-Conscious Algorithm An algorithm is cache conscious if
program variables that are dependent
on hardware configuration parameters
(for example, cache size and cache-line
length) need to be tuned to minimize the
number of cache misses.

Cache Line Smallest unit of memory that can be
transferred between main memory and
the processor’s cache. It is of a fixed
size, which depends on the respective
processor type.

Cache Miss A failed request for data from a cache
because it did not contain the requested
data.
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Cache-Oblivious Algorithm An algorithm is cache oblivious if no
program variables that are dependent on
hardware configuration parameters (for
example, cache size and cache-line
length) need to be tuned to minimize
the number of cache misses.

Characteristic-Oriented
Database System

A database system that is tailored
towards the characteristics of special
application areas. Examples are text
mining, stream processing and data
warehousing.

Cloud Computing An IT provisioning model, which
emphasizes the on-demand, elastic pay-
per-use rendering of services or provi-
sioning of resources over a network.

Column Store Database storage engine that stores each
column (attribute) of a table sequen-
tially in a contiguous area of memory.

Compression Encoding information in such a way that
its representation consumes less space in
memory.

Compression Rate The ratio to what size the data on which
compression is applied can be shrinked.
A compression rate of 5 means that the
compressed size is only 20 % of the
original size.

Concurrency Control Techniques that allow the simultaneous
and independent execution of transac-
tions in a database system without creat-
ing states of unwanted incorrectness.

Consistency Database concept that demands that
only correct database states are visible
to the user despite the execution of
transactions.

Consolidation Placing the data of several customers on
one server machine, database or table in
a multi-tenant setup.

Cube Specialized OLAP data structure that
allows multi-dimensional analysis of
data.

Customer Relationship
Management (CRM)

Business processes and respective tech-
nology used by a company to organize
its interaction with its customers.
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Data Aging The changeover from active data to
passive data.

Data Center Facility housing servers and associated
ICT components.

Data Dictionary Meta data repository.
Data Layout The structure in which data is organized

in the database; that is, the database’s
physical schema.

Data Mart A database that maintains copies of data
from a specific business area, for exam-
ple, sales or production, for analytical
processing purposes.

Data Warehouse A database that maintains copies of data
from operational databases for analyti-
cal processing purposes.

Database Management
System (DBMS)

A set of administrative programs used to
create, maintain and manage a database.

Database Schema Formal description of the logical struc-
ture of a database.

Demand Planning Estimating future sales by combining
several sources of information.

Design Thinking A methodology that combines an end-
user focus with multidisciplinary col-
laboration and iterative improvement. It
aims at creating desirable, user-friendly,
and economically viable design solu-
tions and innovative products and
services.

Desirability Design thinking term expressing the
practicability of a system from a
human-usability point of view.

Dictionary In the context of this book, the com-
pressed and sorted repository holding all
distinct data values referenced by Sans-
souciDB’s main store.

Dictionary Encoding Light-weight compression technique
that encodes variable length values by
smaller fixed-length encoded values
using a mapping dictionary.

Differential Buffer A write-optimized buffer to increase
write performance of the SanssouciDB
column store. Sometimes also referred
to as differential store or delta store.
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Distributed System A system consisting of a number of
autonomous computers that communi-
cate over a computer network.

Dunning The process of scanning through open
invoices and identifying overdue ones,
in order to take appropriate steps
according to the dunning level.

Durability Database concept that demands that all
changes made by a transaction become
permanent after this transaction has
been committed.

Enterprise Application A software system that helps an organi-
zation to run its business. A key feature
of an enterprise application is its ability
to integrate and process up-to-the-min-
ute data from different business areas
providing a holistic, real-time view of
the entire enterprise.

Enterprise Resource
Planning (ERP)

Enterprise software to support the
resource planning processes of an entire
company.

Entropy Average information containment of a
sign system.

Extract-Transform-Load
(ETL) Process

A process that extracts data required for
analytical processing from various
sources, then transforms it (into an
appropriate format, removing dupli-
cates, sorting, aggregating, etc.) such
that it can be finally loaded into the
target analytical system.

Fault Tolerance Quality of a system to maintain opera-
tion according to its specification, even
if failures occur.

Feasibility Design thinking term expressing the
practicability of a system from a tech-
nical point of view.

Front Side Bus (FSB) Bus that connects the processor with
main memory (and the rest of the
computer).

Horizontal Partitioning The splitting of tables with many rows,
into several partitions each having fewer
rows.

Hybrid Store Database that allows mixing column-
and row-wise storage.
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In-Memory Database A database system that always keeps its
primary data completely in main
memory.

Index Data structure in a database used to
optimize read operations.

Insert-Only New and changed tuples are always
appended; already existing changed and
deleted tuples are then marked as
invalid.

Inter-Operator Parallelism Parallel execution of independent plan
operators of one or multiple query plans.

Intra-Operator Parallelism Parallel execution of a single plan
operation independently of any other
operation of the query plan.

Isolation Database concept demanding that any
two concurrently executed transactions
have the illusion that they are executed
alone. The effect of such an isolated
execution must not differ from execut-
ing the respective transactions one after
the other.

Join Database operation that is logically the
cross product of two or more tables
followed by a selection.

Latency The time that a storage device needs
between receiving the request for a
piece of data and transmitting it.

Locking A method to achieve isolation by regu-
lating the access to a shared resource.

Logging Process of persisting change informa-
tion to non-volatile storage.

Main Memory Physical memory that can be directly
accessed by the central processing unit
(CPU).

Main Store Read-optimized and compressed data
tables of SanssouciDB that are com-
pletely stored in main memory and on
which no direct inserts are allowed.

MapReduce A programming model and software
framework for developing applications
that allows for parallel processing of
vast amounts of data on a large number
of servers.
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Materialized View Result set of a complex query, which is
persisted in the database and updated
automatically.

Memory Hierarchy The hierarchy of data storage technolo-
gies characterized by increasing
response time but decreasing cost.

Merge Process Process in SanssouciDB that periodi-
cally moves data from the write-opti-
mized differential store into the main
store.

Meta Data Data specifying the structure of tuples in
database tables (and other objects) and
relationships among them, in terms of
physical storage.

Mixed Workload Database workload consisting both of
transactional and analytical queries.

Multi-Core Processor A microprocessor that comprises more
than one core (processor) in a single
integrated circuit.

Multi-Tenancy The consolidation of several customers
onto the operational system of the same
server machine.

Multithreading Concurrently executing several threads
on the same processor core.

Network Partitioning Fault Fault that separates a network into two
or more sub-networks that cannot reach
each other anymore.

Node Partial structure of a business object.
Normalization Designing the structure of the tables of a

database in such a way that anomalies
cannot occur and data integrity is
maintained.

Object Data Guide A database operator and index structure
introduced to allow queries on whole
business objects.

Online Analytical
Processing (OLAP)

see Analytical Processing.

Online Transaction
Processing (OLTP)

see Transactional Processing.

Operational Data Store Database used to integrate data from
multiple operational sources and to then
update data marts and/or data
warehouses.
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Object-Relational
Mapping (ORM)

A technique that an object-oriented
programm could use a relational data-
base as if it is an object-oriented
database.

Padding Approach to modify memory structures
so that they exhibit better memory
access behavior but requiring the
trade-off of having additional memory
consumption.

Passive Data Data of a business transaction that is
closed/completed and will not be chan-
ged anymore. For SanssouciDB, it may
therefore be moved to non-volatile
storage.

Prefetching A technique that asynchronously loads
additional cache lines from main mem-
ory into the CPU cache to hide memory
latency.

Query Request sent to a DBMS in order to
retrieve data, manipulate data, execute
an operation, or change the database
structure.

Query Plan The set and order of individual database
operations, derived by the query opti-
mizer of the DBMS, to answer an SQL
query.

Radio-Frequency
Identification (RFID)

Wireless technology to support fast
tracking and tracing of goods. The latter
are equipped with tags containing a
unique identifier that can be readout by
reader devices.

Real Time In the context of this book, defined as,
within the timeliness constraints of the
speed-of-thought concept.

Real-Time Analytics Analytics that have all information at its
disposal the moment they are called for
(within the timeliness constraints of the
speed-of-thought concept).

Recoverability Quality of a DBMS to allow for recov-
ery after a failure has occurred.

Recovery Process of re-attaining a correct data-
base state and operation according to the
database’s specification after a failure
has occurred.
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Relational Database A database that organizes its data in
relations (tables) as sets of tuples (rows)
having the same attributes (columns)
according to the relational model.

Response Time at the Speed
of Thought

Response time of a system that is
perceived as instantaneous by a human
user because of his/her own mental
processes. It normally lies between 550
and 750 ms.

Return on Investment (ROI) Economic measure to evaluate the effi-
ciency of an investment.

Row Store Database storage engine that stores all
tuples sequentially; that is, each mem-
ory block may contain several tuples.

Sales Analysis Process that provides an overview of
historical sales numbers.

Sales Order Processing Process with the main purpose of cap-
turing sales orders.

SanssouciDB The in-memory database described in
this book.

Scalability Desired characteristic of a system to
yield an efficient increase in service
capacity by adding resources.

Scale-out Capable of handling increasing work-
loads by adding new machines and
using these multiple machines to pro-
vide the given service.

Scale up Capable of handling increasing work-
loads by adding new resources to a
given machine to provide the given
service.

Scan Database operation evaluating a simple
predicate on a column.

Scheduling Process of ordering the execution of all
queries (and query plan operators) of the
current workload in order to maintain a
given optimality criterion.

Sequential Reading Reading a given memory block by
block.

Shared Database Instance Multi-tenancy implementation scheme
in which each customer has its own
tables, and sharing takes place on the
level of the database instances.
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Shared Machine Multi-tenancy implementation scheme
in which each customer has its own
database process, and these processes
are executed on the same machine; that
is, several customers share the same
server.

Shared Table Multi-tenancy implementation scheme
in which sharing takes place on the level
of database tables; that is, data from
different customers is stored in one and
the same table.

Shared Disk All processors share one view to the
non-volatile memory, but computation
is handled individually and privately by
each computing instance.

Shared Memory All processors share direct access to a
global main memory and a number of
disks.

Shared Nothing Each processor has its own memory and
disk(s) and acts independently of the
other processors in the system.

Single Instruction Multiple
Data (SIMD)

A multiprocessor instruction that applies
the same instructions to many data
streams.

Smart Grid An electricity network that can intelli-
gently integrate the behavior and actions
of all users connected to it - generators,
consumers and those that do both in order
to efficiently deliver sustainable, eco-
nomic and secure electricity supplies.

Software-as-a-Service (SaaS) Provisioning of applications as cloud
services over the Inter- net.

Solid-State Drive (SSD) Data storage device that uses micro-
chips for non-volatile, high- speed stor-
age of data and exposes itself via
standard communication protocols.

Speedup Measure for scalability defined as the
ratio between the time consumed by a
sequential system and the time con-
sumed by a parallel system to carry out
the same task.
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Star Schema Simplest form of a data warehouse
schema with one fact table (containing
the data of interest, for example, sales
numbers) and several accompanying
dimension tables (containing the spe-
cific references to view the data of
interest, for example, state, country,
month) forming a star-like structure.

Stored Procedure Procedural programs that can be written
in SQL or PL/SQL and that are stored
and accessible within the DBMS.

Streaming SIMD Extensions
(SSE)

An Intel SIMD instruction set extension
for the x86 processor architecture.

Structured Data Data that is described by a data model,
for example, business data in a rela-
tional database.

Structured Query Language
(SQL)

A standardized declarative language for
defining, querying, and manipulating
data.

Supply Chain Management
(SCM)

Business processes and respective tech-
nology to manage the flow of inventory
and goods along a company’s supply
chain.

Table A set of tuples having the same
attributes.

Tenant (1) A set of tables or data belonging to
one customer in a multi-tenant setup. (2)
An organization with several users que-
rying a set of tables belonging to this
organization in a multi-tenant setup.

Thread Smallest schedulable unit of execution
of an operating system.

Three-tier Architecture Architecture of a software system that is
separated in a presentation, a business
logic, and a data layer (tier).

Time Travel Query Query returning only those tuples of a
table that were valid at the specified
point in time.

Total Cost of Ownership (TCO) Accounting technique that tries to esti-
mate the overall life- time costs of
acquiring and operating equipment, for
example, software or hardware assets.

Transaction A set of actions on a database executed
as a single unit according to the ACID
concept.
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Transactional Processing Method to process every-day business
operations as ACID transactions such
that the database remains in a consistent
state.

Translation Lookaside Buffer (TLB) A cache that is part of a CPU’s memory
management unit and is employed for
faster virtual address translation.

Trigger A set of actions that are executed within
a database when a certain event occurs;
for example, a specific modification
takes place.

Tuple A real-world entity’s representation as a
set of attributes stored as element in a
relation. In other words, a row in a table.

Unstructured Data Data without data model or that a
computer program cannot easily use
(in the sense of understanding its con-
tent). Examples are word processing
documents or electronic mail.

Vertical Partitioning The splitting of the attribute set of a
database table and distributing it across
two (or more) tables.

Viability Design thinking term expressing the
practicability of a system from an
economic point of view.

View Virtual table in a relational database
whose content is defined by a stored
query.

Virtual Machine A program mimicking an entire com-
puter by acting like a physical machine.

Virtual Memory Logical address space offered by the
operating process for a programm which
is independent of the amount of actual
main memory.

Virtualization Method to introduce a layer of abstrac-
tion in order to provide a common
access to a set of diverse physical and
thereby virtualized resources.
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