
Chapter 8
Incompressible Materials and Flow Problems

Although the approximation of incompressible flows by finite element methods
has grown quite independently of the main stream of mixed and hybrid methods,
it was soon recognised that a precise analysis requires the framework of mixed
methods. In many cases, one may directly apply the techniques and results of
Chaps. 4 and 5. In particular, the elements used are often standard elements or
simple variants of standard elements. The specificity of the Stokes problem has
however led to the development of special techniques; we shall present some of
them that seem particularly interesting. Throughout this study, the main point will
be to make a clever choice of elements leading to the satisfaction of the inf-sup
condition which is here the important one as coercivity considerations are almost
always straightforward.

This chapter, after a quick description of the problem, will present some simple
examples of elements and techniques of proof which can be used as an introduction
to the subject. This will be followed by a more detailed presentation. It will not
be possible to analyse in detail all the elements for which results are known; we
shall try to group them by families which can be treated by similar methods. These
families will be arbitrary and will overlap in many cases.

Besides this presentation of elements, we shall also consider solution techniques
by penalty methods and we will develop the related problem of almost incompress-
ible elastic materials. We shall consider the equivalence of penalty methods and
mixed methods and some questions arising from it. Stabilisation techniques will
also be considered.

Finally, a section will be devoted to numerical considerations and to the choice
of elements.
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460 8 Incompressible Materials and Flow Problems

8.1 Introduction

We have already considered, in Example 1.3.1, the Stokes problem or creeping flow
problem for an incompressible fluid. We had written it as a system of variational
equations: find u 2 V and p 2 Q such that
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ˆ̂
<

ˆ̂
:

2�

Z

˝

".u/ W ".v/ dx �
Z

˝

p div v dx D
Z

˝

f � v dx 8 v 2 V;

Z

˝

q div u dx D
Z

˝

g q dx; 8 q 2 Q;

(8.1.1)

where V WD .H 1
0 .˝//n and Q is the subspace of L2.˝/ consisting of functions

with zero mean value on ˝ . In this formulation, u is the velocity of the fluid and p

is its pressure. A similar problem arises for the displacement of an incompressible
elastic material.

Remark 8.1.1. Although incompressibility corresponds to the case g D 0, we shall
see in Remark 8.2.2 that non zero boundary conditions correspond implicitly to
introducing g ¤ 0. ut
Remark 8.1.2 (Almost incompressible materials). For a linear elastic material,
following Example 1.2.2, we have to solve the variational equation
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˝

".u/ W ".v/ dx C �

Z

˝

div u div v dx D
Z

˝

f � v dx; 8 v 2 V: (8.1.2)

The case where � is large, or equivalently, when the Poisson ratio � D �=2.� C �/

approaches 1=2, can be considered as an approximation of (8.1.1) by a penalty
method as in Sect. 5.6.3. The limiting case is exactly (8.1.1) up to the fact that u
is a displacement instead of a velocity. Problems where � is large are quite common
and correspond to almost incompressible materials. Results of Sect. 5.5.2 can be
applied and give conditions under which error estimates can be found that do not
depend on �. Problem (8.1.2) will be considered in detail in Sect. 8.12. ut
It is also worth recalling that, defining
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(8.1.3)

that is, Au D div".u/, problems (8.1.1) and (8.1.2) are then respectively equiva-
lent to
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8
ˆ̂
<

ˆ̂
:

� 2�Au C grad p D f ;

div u D g;

uj� D 0

(8.1.4)

and

�2�Au � � grad div u D f : (8.1.5)

Remark 8.1.3. The above problems are sometimes written in a simplified way.
Indeed, we have, for incompressible materials,

�Au D �4u C � grad div u D �4u: (8.1.6)

However, this simplification of the operator is valid only if Dirichlet conditions are
considered everywhere. Otherwise, the natural Neumann conditions are different
and those associated with the simplified operator are unphysical. ut
Remark 8.1.4. The problems described above are, of course, physically unrealistic,
as they involve body forces and homogeneous Dirichlet boundary conditions. The
aim of doing so is to avoid purely technical difficulties and this implies no loss
of generality. The results obtained will be valid, unless otherwise stated, for all
acceptable boundary conditions. ut
To approximate the Stokes problem, two approaches follow quite naturally from the
preceding considerations. The first one is to use system (8.1.1) and to discretise u
and p by standard (or less standard) finite element spaces. The second one is to use
formulation (8.1.2) with � large as a penalty approximation to system (8.1.1).

It rapidly became clear that both these approaches could yield strange results.
In particular, the first one often led to non convergence of the pressure (see
Sect. 8.3.1) and the second one to a locking mechanism, the numerical solution
being uniformly zero, or unnaturally small for � large. For velocity-pressure
approximations, empirical cures were found by Hughes and Allik [255], Hood and
Taylor [249] and others. At about the same time, some elements using discontinuous
pressure fields were shown to work properly [165,200] from the mathematical point
of view.

For the penalty method, the cure was found in selective or reduced integration
procedures. This consisted in evaluating terms like

R
˝ div u div v dx by quadrature

formulae of low order. This sometimes led to good results.
It was finally stated [287], even if the result was implicit in earlier works [59],

that the analysis underlying the two approaches is the same. Penalty methods are
often equivalent to some mixed methods. In such cases, the penalty method works
if and only if the associated mixed method works [60]. This will be developed in
Sect. 8.12.

First, we must give a more precise framework to our problem.
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8.2 The Stokes Problem as a Mixed Problem

8.2.1 Mixed Formulation

We shall describe in this section how the Stokes problem (8.1.1) can be analysed in
the general framework of Chaps. 4 and 5. Defining V WD .H 1

0 .˝//n; Q WD L2.˝/

and

a.u; v/ WD 2�

Z

˝

".u/ W ".v/ dx (8.2.1)

b.v; q/ WD �
Z

˝

q div v dx; (8.2.2)

problem (8.1.1) can clearly be written in the form: find u 2 V and p 2 Q such that

(
a.u; v/ C b.v; p/ D .f ; v/ 8 v 2 V;

b.u; q/ D .g; q/ 8 q 2 Q;
(8.2.3)

which is a saddle point problem in the sense of Chap. 4. Indeed, we have already
seen that p is the Lagrange multiplier associated with the incompressibility
constraint.

Remark 8.2.1. It is apparent, from the definition (8.2.2) of b.�; �/ and from the
boundary conditions of the functions in V , that p, if exists, is defined up to a
constant. Therefore, we change the definition of the space Q into

Q WD L2
0.˝/ D L2.˝/=R; (8.2.4)

where two elements q1, q2 2 L2.˝/ are identified if their difference is constant. It
is not difficult to show that Q is isomorphic to the subspace of L2.˝/ consisting of
functions with zero mean value on ˝ . ut

With this choice, our problem reads: find u 2 V and p 2 Q such that

(
a.u; v/ C b.v; p/ D .f ; v/ 8 v 2 V;

b.u; q/ D .g; q/ 8 q 2 Q:
(8.2.5)

Let us check the hypotheses of Theorem 4.2.2 to ensure that our problem is well-
posed. Using the notation of Chap. 4, we can write

B D � div W .H 1
0 .˝//n ! L2.˝/=R (8.2.6)

and

Bt D grad W L2.˝/=R ! .H �1.˝//n: (8.2.7)
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It can be shown (see, e.g., [362]) that

ImB D Q Š
�

q j q 2 L2.˝/;

Z

˝

q dx D 0

�

; (8.2.8)

hence the operator B has a continuous lifting and the continuous inf-sup condi-
tion (4.2.26) holds. We also notice that, with our definition of the space Q, the
kernel KerBt reduces to zero.

The bilinear form a.�; �/ is coercive on V : there exists ˛ such that

a.v; v/ � ˛kvk2
V : (8.2.9)

This is the well known Korn inequality (see [183, 362]), whence (4.2.12) also will
follow (i.e., A is invertible on KerB).

We state the well-posedness of problem (8.2.5) in the following theorem. The
proof follows from Theorem 4.2.1.

Theorem 8.2.1. Let f be given in .H �1.˝//n and g in Q D L2
0.˝/. Then, there

exists a unique .u; p/ 2 V � Q, solution to problem (8.2.5), which satisfies

jjujjV C jjpjjQ � C.jjf jjH �1 C kgkQ/: (8.2.10)

Now, choosing an approximation Vh � V and Qh � Q yields the discrete
problem

8
ˆ̂
<

ˆ̂
:

2�

Z

˝

".uh/ W ".vh/ dx �
Z

˝

ph div vh dx D
Z

˝

f � v
h

dx 8 vh 2 V;

Z

˝

qh div uh dx D .g; qh/ 8 qh 2 Qh:

(8.2.11)

The bilinear form a.�; �/ is coercive on V ; hence, according to the theory developed
in Chaps. 3 and 4, there is no problem for the existence of a solution fuh; phg to
problem (8.2.11), at least with g D 0. Indeed, we have a finite-dimensional problem
where ImB is closed and the right-hand side of the second equation of (8.2.11) is
zero. It should be noted, however, that we might have trouble with the uniqueness of
ph and that there might be compatibility conditions on g for some approximations.

We thus try to obtain estimates of the errors jju � uhjjV and jjp � phjjQ.
First, we observe that, even for g D 0, the discrete solution uh needs not

be divergence-free. Indeed, the bilinear form b.�; �/ defines a discrete divergence
operator

Bh D � divh W Vh ! Qh (8.2.12)
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(it is convenient here to identify Q D L2.˝/=R and Qh � Q with their dual
spaces). In fact, we have

.divh uh; qh/Q D
Z

˝

qh div uh dx (8.2.13)

and thus divh uh turns out to be the L2-projection of div u onto Qh.
The discrete divergence operator coincides with the standard divergence operator

if div Vh � Qh. Referring to Chap. 5, we see that obtaining error estimates requires
a careful study of the properties of the operator Bh D � divh and of its transpose
that we denote by gradh.

The first issue is to characterise the kernel KerBt
h D Ker.gradh/. It might happen

that KerBt
h contains non-trivial functions. In these cases, ImBh D Im. divh/ will be

strictly smaller than Qh D PQh
.ImB/; this may lead to pathologies. In particular,

if we consider a modified problem, like the one that usually originates when dealing
with Dirichlet boundary conditions, the strict inclusion ImBh � Qh may even imply
trouble with the existence of the solution. This situation is made clearer with the
following example.

Remark 8.2.2. Let us consider problem (8.1.4) with non-homogeneous boundary
conditions, that is, let r be such that

uj� D r;

Z

�

r � n ds D 0: (8.2.14)

It is classical to reduce this case to a problem with homogeneous boundary
conditions by first introducing a function Qu 2 .H 1.˝//2 such that Quj� D r . Setting
u D u0 C Qu with u0 2 .H 1

0 .˝//2, we have to solve

( � 2�Au0 C grad p D f C 2�AQu D Qf ;

div u0 D � div Qu D g; u0j� D 0;
(8.2.15)

with A defined in (8.1.3). We thus find a problem with a constraint Bu0 D g where
g ¤ 0. We have seen in Chap. 5 that the associated discrete problem may fail to
have a solution because gh D PQh

g does not necessarily belong to ImBh, whenever
KerBt

h 6� KerBt . Discretisations where Ker. gradh/ is non-trivial can therefore lead
to ill-posed problems in particular for some non-homogeneous boundary conditions.
Examples of such conditions can be found in [340,341]. In general, any method that
relies on extra compatibility conditions is a source of trouble when applied to more
complicated (non-linear, time-dependent, etc.) problems. ut
For a first attempt to error estimates, we shall use Theorem 5.2.2. Since the bilinear
form a.�; �/ is coercive on V , we only have to worry about the inf-sup condition. The
following proposition will be the starting point for the analysis of any finite element
approximation of (8.2.5).



8.2 The Stokes Problem as a Mixed Problem 465

Proposition 8.2.1. Let .u; p/ 2 V � Q be the solution of (8.2.5) and suppose the
following inf-sup condition holds true

inf
qh2Qh

sup
vh2Vh

R
˝

qh div vh dx

jjqhjjQjjvhjjV � kh: (8.2.16)

Then, there exists a unique .uh; ph/ 2 Vh � Qh, solution to (8.2.11), and the
following estimate holds

kuh � ukV �
�

2kak
˛

C 2kak1=2kbk
.˛/1=2kh

�

Eu C kbk
˛

Ep; (8.2.17)

kph � pkQ �
�

2kak3=2

.˛/1=2kh

C kak kbk
k2

h

�

Eu C 3kak1=2kbk
.˛/1=2kh

Ep (8.2.18)

with ˛ given by (8.2.9). ut
Remark 8.2.3. Actually, as it has been already observed, the existence of the
discrete solution .uh; ph/ (when the right-hand side in the second equation of (8.2.5)
is zero) is not a consequence of the inf-sup condition (8.2.16). However, we should
not forget about the possible situation presented in Remark 8.2.2. ut

Of course, we shall be looking for cases where

kh � k0 > 0: (8.2.19)

In this case, it may be useful to summarise the estimates (8.2.17) and (8.2.18) in the
following result.

Proposition 8.2.2. With the same hypotheses as in Proposition 8.2.1, let us suppose
that (8.2.19) holds. Then, there exists C , independent of h, such that

kuh � ukV C kph � pkQ � C.Eu C Ep/: (8.2.20)

ut
Remark 8.2.4. We shall also meet cases in which the constant kh is not bounded
below by k0. We shall then try to know precisely how it depends on h and to see
whether a lower-order convergence can be achieved. When Ker.gradh/ is non-trivial,
we are interested in a weaker form of (8.2.16)

sup
vh2Vh

R

˝
qh div vh dx

jjvhjjV � kh inf
q2Ker. gradh/

jjqh � qjjL2.˝/; (8.2.21)

and in the dependence of kh in terms of h. From (8.2.17) and (8.2.18), one sees that
the effect will be stronger on the error kp � phkQ. ut
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8.3 Some Examples of Failure and Empirical Cures

This section will present some classical troubles associated to the approximation of
incompressible materials. We shall thus recall the difficulties associated with some
‘obvious’ approximations. We shall consider some examples of possible choices for
the spaces Vh and Qh, namely the P 1 � P1 element, a case of continuous pressure,
and the P 1 � P0 element, a case of discontinuous pressure. These elements do not
satisfy the inf-sup condition (8.2.16) and are not applicable in practice. We shall
introduce some cures which will be developed and eventually justified later in this
chapter.

8.3.1 Continuous Pressure: The P
1

� P1 Element

As we stated in the introduction, the development of finite element methods for
incompressible problems was done, at least in the beginning, independently of the
theory of mixed methods. The natural idea when attempting to solve a problem
involving incompressibility would be to employ the same approximation for both
velocity and pressure, in the simplest case a P1 continuous interpolation

Vh WD .L1
1/

n \ V; Qh WD L1
1 \ Q: (8.3.1)

In the two-dimensional case, it is easy to check that if the number of triangles is large
enough, then there exist non-trivial functions satisfying the discrete divergence-free
condition. Thus, no locking will occur and a solution can be computed. Indeed,
this method would not provide an optimal approximation of the pressures by
virtue of the unbalanced approximation properties of the discrete spaces (while
Qh achieves second order in L2, Vh gives only first order in H 1). On the other
hand, users of such methods (you can think of using also, for instance, .P 2 � P2/,
.Q

1
�Q1/, etc.) soon became aware that their results were strongly mesh dependent.

In particular, the computed pressures exhibited a very strange instability. This comes
from the fact that for some meshes, the kernel of the discrete gradient operator,
Ker.gradh/, is not the subspace of constant functions, as one would expect from the
continuous problem, but is a larger subspace. This means that the solution obtained
is determined only up to a given number of spurious pressure modes [340,341] and
that, at best, some filtering will have to be done before accurate results are available.
We shall come back later on to this phenomenon also named chequerboarding in
Sect. 8.10. We have already stated in Remark 8.2.2 that such spurious modes can
impose non physical conditions on the data. To better understand the nature of
spurious pressure modes, the reader may check the results of Fig. 8.1 in which
different symbols denote points where functions in Ker. gradh/ must have equal
values for a .P 1 � P1/ approximation.
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Fig. 8.1 Spurious modes for
the P 1 � P1 case

In this case, we have three spurious pressure modes. This also shows that there
exists on this mesh one non-trivial discrete divergence-free function whereas a direct
count would predict locking.

Remark 8.3.1 (Possible cures). A cure for this problem was found empirically
[249]: good results can be obtained using a P 2 approximation for velocity but a
P1 approximation for pressure. It is also clear that this does not impair the order of
accuracy. This will be analysed in Sect. 8.8.

Another possibility to obtain stable elements is to add some internal degrees
of freedom. The simplest case is the MINI element of [25] which we present in
Sect. 8.4.2 and in a more general form in Sect. 8.5.5. ut

8.3.2 Discontinuous Pressure: The P
1

� P0 Approximation

A second natural approach would be to try imposing directly the divergence-free
condition. The simplest element one can imagine for the approximation of an
incompressible flow would use a standard P 1 approximation for the velocities and
a piecewise constant approximation for the pressures. With the notation of Chap. 2,
this would read, again in the two-dimensional case,

Vh WD .L1
1/

2 \ V; Qh WD L0
0 \ Q: (8.3.2)

As the divergence of a P 1 velocity field is piecewise constant, this would lead to
a truly divergence-free approximation. Moreover, this would give a well-balanced
O.h/ approximation in estimates (8.2.17) and (8.2.18).

However, it is easy to see that such an element will not work for a general
mesh. Indeed, consider a triangulation of a (simply connected) domain ˝ and let
us denote by

– t the number of triangles,
– vI the number of internal vertices,
– vB the number of boundary vertices.
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Fig. 8.2 The cross-grid
element

We shall thus have 2vI degrees of freedom (d.o.f.) for the space Vh (since the
velocities vanish on the boundary) and .t�1/ d.o.f. for Qh (because of the zero mean
value of the pressures) leading to .t � 1/ independent divergence-free constraints.
By Euler’s relations, we have

t D 2vI C vB � 2 (8.3.3)

and thus

.t � 1/ � 2.vI � 1/: (8.3.4)

A function uh 2 Vh is thus over-constrained and a locking phenomenon is likely to
occur: in general, the only divergence-free discrete function is uh � 0.

When the mesh is built under certain restrictions, it is however possible that some
linear constraints become dependent: this will be the case for the cross-grid macro-
element (Fig. 8.2) which will be analysed in Example 8.10.3.

As we shall see in Sect. 8.8.1, in general, obtaining truly divergence-free
elements requires high degree approximations and some conditions on the mesh.
We shall give, in the next section, the simplest example of a stable discontinuous
pressure element, the P 2 � P0 element.

8.4 Building a B-Compatible Operator: The Simplest
Stable Elements

We shall first recall here some of the results of Sect. 5.4.4 as applied to our
incompressible problems. Then, we present a complete analysis of the MINI and
P 2 � P0 elements and of the nonconforming P 1 � P0 elements. We shall obtain in
Sect. 8.5.5 a more general proof for the MINI element.

It is not recommended to use the element P 2 � P0 because of its “unbalanced”
approximation properties (O.h2/ for Vh in the V -norm and only O.h/ for Qh in
the norm of Q), so that estimate (8.2.20) turns out to be suboptimal. However,
the analysis of this element contains basic issues for getting familiar with the
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approximation of the Stokes problem. Moreover, the stability properties of this
element will often be used as an intermediate step for the analysis of other, more
efficient, elements. It must also be said that this element is not directly generalisable
to the three-dimensional case.

8.4.1 Building a B-Compatible Operator

An efficient way (sometimes known as Fortin’s trick) of proving the inf-sup condi-
tion (8.2.16) consists in building a B-compatible interpolation operator ˘h like in
Sect. 5.4 (see [201]). We write down, here, how the hypotheses of Proposition 5.4.3
read in this particular situation.

Proposition 8.4.1. If there exists a linear operator ˘h W V ! Vh such that

Z

˝

div.u � ˘hu/qh dx D 0 8 v 2 V; qh 2 Qh; (8.4.1)

jj˘hujjV � cjjujjV ; (8.4.2)

then the inf-sup condition (8.2.16) holds true. ut
Remark 8.4.1. As it is shown in Chap. 5, condition (8.4.1) is equivalent to
Ker.gradh/ � Ker.grad/. An element with this property will present no spurious
pressure modes. ut
In several cases, the operator ˘h can be constructed in two steps as in Proposi-
tion 5.4.4. This was the case, for instance, in the proof of Proposition 8.4.3. In
general, it will be enough to build two operators ˘1; ˘2 2 L.V; Vh/ such that

jj˘1vjjV � c1jjvjjV 8 v 2 V; (8.4.3)

jj˘2.I � ˘1/vjjV � c2jjvjjV 8 v 2 V; (8.4.4)
Z

˝

div.v � ˘2v/qh D 0 8 v 2 V; 8 qh 2 Qh; (8.4.5)

where the constants c1 and c2 are independent of h. Then, the operator ˘h

satisfying (8.4.1) and (8.4.2) will be found as

˘hu D ˘1u C ˘2.u � ˘1u/: (8.4.6)

In many cases, ˘1 will be the interpolation operator of [154] (cf. Chap. 2) defined
in H 1.˝/.

On the contrary, the choice of ˘2 will vary from one case to the other, according
to the choice of Vh and Qh. However, the common feature of the various choices for
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˘2 will be the following one: the operator ˘2 is constructed on each element K in
order to satisfy (8.4.5). In many cases, it will be such that

jj˘2vjj1;K � c.h�1
K jjvjj0;K C jvj1;K/: (8.4.7)

We can summarise this result in the following proposition.

Proposition 8.4.2. Let Vh be such that a “Clément’s operator”: ˘1 W V ! Vh

exists and satisfies (8.4.24). If there exists an operator ˘2 W V ! Vh such
that (8.4.5) and (8.4.7) hold, then the operator ˘h defined by (8.4.6) satisfies (8.4.1)
and (8.4.2) and therefore the discrete inf-sup condition (8.2.16) holds. ut
We now consider some simple examples where this construction can be used.

8.4.2 A Stable Case: The MINI Element

We now show how we can enrich the space Vh of Example 8.3.1 so that, in the
end, the new choice will yield a stable and convergent approximation to the Stokes
problem (8.2.3). We set, as in (2.2.28),

B3 WD fb.x/ j b.x/jT 2 P3.T / \ H 1
0 .T /; 8 T 2 Thg: (8.4.8)

Hence, each b.x/ of B3, on each triangle T , has the form ˛.T / �1.x/ �2.x/ �3.x/

with ˛.T / constant in T . Following [25], we set

Vh WD fL1
1.Th/ ˚ B3g2 \ V Qh WD L1

1.Th/ \ Q (8.4.9)

and we want to show that (8.4.9) leads to a stable and convergent approximation of
the Stokes problem. For this, we are going to apply Proposition 8.4.2. We therefore
have to construct an operator ˘h such that

Z

˝

div.v � ˘hv/ qh dx D 0 8 qh 2 Qh 8 v 2 V; (8.4.10)

k˘hvkV � c kvkV 8 v 2 V: (8.4.11)

Following Proposition 8.4.2, we first take for ˘1 the operator rh of Proposition 2.2.1
and Corollary 2.2.1. We set

˘1vjK D rhvjK (8.4.12)

which, from (2.2.20), yields

jv � ˘1vjm;K � c
� X

NK0\ NK¤;
h1�m

K0

jvj1;K0

�
: (8.4.13)
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In particular, (8.4.13) implies the first condition of (5.4.12)

k˘1vkV � c kvkV : (8.4.14)

We now define the operator ˘2 W V ! .B3/2 by means of
Z

˝

div.˘2v � v/qh dx D
Z

˝

.v � ˘2v/ � grad qh dx D 0 8 qh 2 Qh: (8.4.15)

Since grad qh is piecewise constant, (8.4.15) is easily satisfied by choosing, in
each K , bubbles with the same mean value as v. It is easy to check that (under a
minimum angle condition)

k˘2vkr;K � ch�r
K kvk0;K 8 v 2 V; r D 0; 1: (8.4.16)

Indeed, for r D 1, this is the inverse inequality of Sect. 2.2.7.
From (8.4.15), it is then immediate to check that the second condition of (5.4.12)

is fulfilled and, from (8.4.16) and (8.4.13), we easily have the third condition.
We can thus apply Proposition 8.4.2 and the inf-sup condition holds. Now, we

apply Proposition 8.2.2 (or the more complete result of Proposition 8.2.1) and we
obtain

ku � uhkV C kp � phkQ � ch .kuk2;˝ C kpk1/; (8.4.17)

that is, an optimal error estimate for u.

8.4.3 Another Stable Approximation: The Bi-dimensional
P

2
� P0 Element

Let us now move, in the two-dimensional case, to the stable P 2 � P0 element.
Precisely, we use continuous piecewise quadratic vectors for the approximation of
the velocities and piecewise constants for the pressures.

The discrete divergence-free condition can then be written as

Z

K

div uh dx D
Z

@K

uh � n ds D 0; 8 K 2 Th; (8.4.18)

that is, as a conservation of mass on every element. This is intuitively an approxi-
mation of div uh D 0, directly related to the physical meaning of this condition. It
is clear from error estimates (8.2.17), (8.2.18) and standard approximation results
(cf. Chap. 2) that such an approximation will lead to the loss of one order of
accuracy due to the poor approximation of the pressures. However, an augmented
Lagrangian technique can be used in order to recover a part of the accuracy loss (see
Remark 8.4.4).
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M1 M12 M2

M13 e2 M23e1

M3Fig. 8.3 The P 2 element

Proposition 8.4.3. The choice

Vh WD .L1
2/

2 \ V; Qh WD L0
0 \ Q (8.4.19)

fulfils the inf-sup condition (8.2.16).

Proof. Before giving the rigorous proof of Proposition 8.4.3, we are going to sketch
the main argument.

If we try to check the inf-sup condition by building an operator ˘h satisfy-
ing (5.4.10), then, given u, we have to build uh D ˘hu such that

Z

˝

div.u � uh/qh dx D 0 8 qh 2 Qh: (8.4.20)

Since qh is constant on every element K 2 Th, this is equivalent to

Z

K

div.u � uh/ dx D
Z

@K

.u � uh/ � n ds D 0: (8.4.21)

This last condition would be satisfied if uh could be built in the following way. Let
us denote by Mi and ei , i D 1; 2; 3, the vertices and the sides of the triangular
element K (Fig. 8.3); the mid-side nodes are denoted by Mij.

We then define

uh.Mi/ D u.Mi /; i D 1; 2; 3 (8.4.22)
Z

ei

uh ds D
Z

ei

u ds: (8.4.23)

Condition (8.4.23) can be fulfilled by a correct choice of uh.Mij/. Moreover, this
construction can be done at element level as the choice of uh.Mij/ is compatible on
adjacent elements (that is, with this definition, uh turns out to be continuous).

Although this is the basic idea, some technicalities must be introduced before a
real construction is obtained. Indeed, for u 2 .H 1

0 .˝//2, condition (8.4.22) does not
make sense.

Let us then give a rigorous proof of Proposition 8.4.3. We shall rely again
on Proposition 8.4.2. Denoting by ˘1 W V ! Vh the Clément interpolant [154]
described in Proposition 2.2.1, we then have
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X

K

h2r�2
K jv � ˘1vj2r;K � cjjvjj21;˝; r D 0; 1: (8.4.24)

Setting r D 1 and using the triangular inequality jj˘1vjj � jjv �˘1vjjC jjvjj gives

jj˘1vjjV � c1jjvjjV 8 v 2 V: (8.4.25)

We now modify ˘1 in a suitable way. Let us define ˘2 W V ! Vh in the following
way:

˘2vjK.M / D 0 8 M vertex of K; (8.4.26)
Z

e

˘2u ds D
Z

e

u ds 8 e edge of K: (8.4.27)

By construction, ˘2 satisfies

Z

˝

div.v � ˘2v/qh dx D 0 8 vh 2 Vh; qh 2 Qh (8.4.28)

and a scaling argument (see Sect. 2.2.7) gives

j˘2vj1;K D jb˘2vj1; OK < c.K; �0/jj Ovjj1; OK � c.K; �0/.h
�1
K jvj0;K C jvj1;K/: (8.4.29)

We can now define, as in Proposition 5.4.4,

˘hu D ˘1u C ˘2.u � ˘1u/ (8.4.30)

and observe that (8.4.29) and (8.4.24) imply

jj˘2.I � ˘1/ujjV � c2jjujjV 8 v 2 V; (8.4.31)

since

jj˘2.I � ˘1/vjj21;˝ D
X

K

jj˘2.I � ˘1/vjj21;K

� c
X

K

˚
h�2

K jj.I � ˘1/vjj20;K C j.I � ˘1/vj21;K

� � cjjvjj21;˝: (8.4.32)

Hence, Proposition 5.4.4 applies and the proof is concluded. ut
The above proof can easily be extended to more general cases. It applies to the

.Q2/
2 � P0 quadrilateral element, provided that the usual regularity assumptions on

quadrilateral meshes are made.

Remark 8.4.2 (The 2D SMALL element). The proof will hold for elements in which
only the normal component of velocity is used as a d.o.f. at the mid-side nodes
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M3 M13 M1

M23 M12

M2Fig. 8.4 The 2d SMALL
element

[70, 198, 202]. Indeed, if only the normal component of uh is used as a degree of
freedom, the .P2/

2 � P0 element becomes the element of Fig. 8.4 in which, on each
side, the normal component of uh is quadratic, whereas the tangential component is
only linear.

In this case, we can define ˘2v by setting
Z

e

.˘2v � n/ ds D
Z

e

v � n ds: (8.4.33)

The same remark is valid for the .Q2/
2 � P0 quadrilateral element. ut

Remark 8.4.3. The philosophical idea behind the .P2/
2�P0 element is that we need

one degree of freedom per each interface (actually, the normal component of the
velocity) in order to control the jump of the pressures. This is basically the meaning
of Green’s formula (8.4.21). For three-dimensional elements, however, we would
need a mid-face node instead of a mid-side node in order to control the normal flux
from one element to the other.

In particular, we point out that adding internal degrees of freedom to the velocity
space cannot stabilise elements with piecewise constant pressures which do not
satisfy the inf-sup condition. ut
Remark 8.4.4. To reduce the loss of accuracy due to the unbalanced approximation
properties of the spaces Vh and Qh, we can employ the augmented Lagrangian
technique of Sect. 5.6.3. The discrete scheme reads: find .uh; ph/ 2 Vh � Qh such
that

Z

˝

".uh/ W ".vh/ dx C h�1=2

Z

˝

div uh div vh dx

�
Z

˝

ph div vh dx D
Z

˝

f � vh dx; 8 vh 2 Vh;

Z

˝

qh div uh dx D 0; 8 qh 2 Qh:

(8.4.34)

Following [95], we have the following error estimate

jju � uhjjV C jjp � phjjQ � ch3=2 inf
v2Vh; q2Qh

	jju � vjjV C jjp � qjjQ



: (8.4.35)

ut
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P1
NC−− P0 element

Fig. 8.5 P NC
1 � P0 element

8.4.4 The Nonconforming P
1

� P0 Approximation

Finally, to conclude this section about simple examples, we consider the classical
(almost) stable nonconforming triangular element introduced in [165], in which
mid-side nodes are used as degrees of freedom for the velocities. This generates
a piecewise linear nonconforming approximation; pressures are taken constant on
each element as illustrated in Fig. 8.5. It is also possible to build a three-dimensional
version of this element, using mid-face nodes as degrees of freedom. We thus choose
again Qh WD L0

0 \ Q and

Vh WD fvh j vh 2 L1;NC.P1; Th/2 vanishing at the boundary midpoints:g (8.4.36)

We remark that this method is attractive for several reasons. In particular, the
restriction to an element K of the solution uh 2 Vh is exactly divergence-free, since
div Vh � Qh.

As we have a nonconforming element, we must define discrete bilinear forms,

ah.uh; vh/ WD
X

K

Z

K

grad uh W grad vh dx; (8.4.37)

bh.vh; qh/ WD
X

K

Z

K

div vhqh dx (8.4.38)

and consider the problem

ah.uh; vh/ C bh.vh; ph/ D .f ; vh/ 8 vh 2 Vh; (8.4.39)

bh.uh; qh/ D 0 8 qh 2 L0
0: (8.4.40)

Remark 8.4.5 (Problem with coercivity). It must also be recalled that coercivity is
a problem for the P NC

1 � P0 element. The trouble is that the bilinear form (8.2.1) is
not coercive on the nonconforming space Vh and we do not have the discrete version
of Korn’s inequality. This issue has been deeply investigated and clearly illustrated
in [16]. It is important to note that (8.4.37) is not the same as in (8.2.1). As we stated
earlier, the modified problem is valid only for Dirichlet boundary conditions. Even
for the Stokes problem, the inf-sup condition is not always the only relevant one.

ut
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Nevertheless, let us see how we can show the inf-sup condition. We may now
construct ˘h W V ! Vh by

Z

@K

.˘hv � v/ � � ds D 0 8 � 2 R0.@K/ (8.4.41)

and, again, it is easy to see that

j˘hvj1;h � c kvk1;h (8.4.42)

(where as usual jvhj21;h D P
K jvhj21;K ) and

bh.v � ˘hv; qh/ D 0 8 qh 2 L0
0; (8.4.43)

which implies, by Proposition 5.4.2,

inf
q2Qh=R

sup
v2Vh

bh.v; q/

jvj1;hkqk0=R

� c > 0: (8.4.44)

On the other hand, we also have

ah.vh; vh/ � ˛ kvhk2
1;h 8 vh 2 Vh: (8.4.45)

We may now apply Proposition 5.5.6 and get

ju � uhj1;h C kp � phk0;R � ch C Eh.u; p/; (8.4.46)

where

Eh.u; p/ D sup
vh2Vh

jvhj�1
1;hfah.u; vh/ C bh.vh; p/ � .f ; vh/g

D sup
vh2Vh

jvhj�1
1;h

X

K

Z

@K

Œ. grad u/ � n� � vh ds

� ch kuk2;˝ ;

(8.4.47)

so that, in the end, we have the optimal estimate

ju � uhj1;h C kp � phk0=R � ch kuk2;˝ : (8.4.48)

The present element has been generalised to second order in [209]. In this case,
there is no problem with coercivity.
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Remark 8.4.6. The generalisation of nonconforming finite elements to quadrilater-
als is not straightforward. In particular, approximation properties of the involved
spaces are not obvious. More details can be found in [330]. ut

8.5 Other Techniques for Checking the inf-sup Condition

Having presented a few simple examples, we now consider, in a more systematic
way, standard techniques for the proof of the inf-sup stability condition (8.2.16) that
can be applied to a large class of elements. For ease of presentation, in this section,
we develop the theory and postpone the examples to Sects. 8.6 and 8.7, for two-
and three-dimensional schemes, respectively. However, after the description of each
technique, we list some schemes to which that technique can be applied.

8.5.1 Projection onto Constants

Following [116], we now consider a modified inf-sup condition

inf
qh2Qh

sup
vh2Vh

R

˝
qh div vh dx

jjvhjjV jjqh � NqhjjQ � k0 > 0; (8.5.1)

where Nqh is the L2-projection of qh onto L0
0 (that is, piecewise constant functions).

Proposition 8.5.1. Let us suppose that the modified inf-sup condition (8.5.1) holds
with k0 independent of h. Assume moreover that Vh is such that, for any qh 2 L0

0\Q,

sup
vh2Vh

R

˝
qh div vh dx

jjvhjjV � 	0jjqhjjQ; (8.5.2)

with 	0 independent of h. Then, the inf-sup condition (8.2.16) holds true.

Proof. For any qh 2 Qh, one has

sup
vh2Vh

b.vh; qh/

jjvhjjV D sup
vh2Vh

�
b.vh; qh � Nqh/

jjvhjjV C b.vh; Nqh/

jjvhjjV
�

� sup
vh2Vh

b.vh; Nqh/

jjvhjjV � sup
vh2Vh

b.vh; qh � Nqh/

jjvhjjV
� 	0jj NqhjjQ � jjqh � Nqhjj0;

(8.5.3)
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which implies

sup
vh2Vh

b.vh; qh/

jjvhjjV � k0	0

1 C k0

jj NqhjjQ: (8.5.4)

Putting together (8.5.1) and (8.5.4) proves the proposition. ut
Remark 8.5.1. In the case of continuous pressures schemes, hypothesis (8.5.2) can
be replaced with the following approximation assumption: for any v 2 V there
exists vI 2 Vh such that

jjv � vI jjL2.˝/ � c1hjjvjjV ; jjvI jjV � c2jjvjjV : (8.5.5)

The details of the proof can be found in [116] when the mesh is quasi-uniform.
The quasi-uniformity assumption is actually not needed, as it can be shown with an
argument similar to the one which will be presented in the next subsection (see, in
particular, Remark 8.5.2). ut
Example 8.5.1. The technique presented in this section will be used, for instance,
for the stability proof of the generalised two-dimensional Hood–Taylor element (see
Sect. 8.8.2 and Theorem 8.8.1). ut

8.5.2 Verfürth’s Trick

Verfürth’s trick [375], already presented in Sect. 5.4.5, applies to continuous
pressure approximations and is essentially based on two steps. The first step is quite
general and can be summarised in the following Lemma.

Lemma 8.5.1. Let ˝ be a bounded domain in R
n with Lipschitz continuous

boundary. Let Vh � .H 1
0 .˝//n DW V and Qh � H 1.˝/ \ Q be closed subspaces.

Assume that there exists a linear operator ˘0
h from V into Vh and a constant c

(independent of h) such that

jjvh � ˘0
h vjjr � c

X

K2Th

�
h2�2r

K jjvjj21;K

�1=2 8 v 2 V; r D 0; 1: (8.5.6)

Then, there exist two positive constants c1 and c2 such that, for every qh 2 Qh,

sup
v2Vh

R
˝

qh div vh dx

jjvhjjV � c1jjqhjjQ � c2

0

@
X

K2Th

h2
K jj grad qhjj20;K

1

A

1=2

: (8.5.7)
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Proof. Given qh 2 Qh, let Nv 2 V be such that

R

˝
qh div Nv dx

jj NvjjV jjqhjjQ � ˇ > 0; (8.5.8)

where ˇ is the continuous inf-sup constant. Then,

sup
vh2Vh

R
˝

qh div vh dx

jjvhjjV �
R

˝
qh div ˘0

h Nv dx

jj˘0
h NvjjV � 1

2c

R
˝

qh div ˘0
h Nv dx

jj NvjjV

D 1

2c

R

˝
qh div Nv dx

jj NvjjV C 1

2c

R

˝
qh div.˘0

h Nv � Nv/ dx

jj NvjjV

� ˇ=4cjjqhjjQ C 1

2c

R

˝
grad qh � .˘0

h Nv � Nv/ dx

jj NvjjV

� ˇ=4cjjqhjjQ �
0

@
1

2

X

K2Th

h2
K jj grad qhjj20;K

1

A

1=2

:

(8.5.9)

ut
Remark 8.5.2. Indeed, via a scaling argument, it can be shown that the last term in
the right-hand side of equation (8.5.7) is equivalent to jjqh� Nqhjj0, where Nqh denotes,
as in the previous subsection, the L2-projection onto the piecewise constants. ut
We are now in the position of stating the main result of this subsection. Note that
Verfürth’s trick consists in proving a kind of inf-sup condition where the zero norm
of qh is substituted by hjqhj1.

Proposition 8.5.2. Suppose that the hypotheses of Lemma 8.5.1 hold true. Assume,
moreover, that there exists a constant c3 such that, for every qh 2 Qh,

sup
vh2Vh

R
˝

qh div vh

jjvhjjV � c3

0

@
X

K2Th

h2
K jqhj21;K

1

A

1=2

: (8.5.10)

Then, the standard inf-sup condition (8.2.16) holds true.

Proof. Let us multiply (8.5.7) by c3 and (8.5.10) by c2 and sum up the two
equations. We have

.c3 C c2/ sup
vh2Vh

R
˝

qh div vh dx

jjvhjjV � c1c3jjqhjjQ; (8.5.11)

that is, the inf-sup condition (8.2.16). ut
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Example 8.5.2. The Verfürth trick has been designed for the stability analysis
of the Hood–Taylor method. It will be used for this purpose in Sect. 8.8.2 (see
Theorem 8.8.1). ut

8.5.3 Space and Domain Decomposition Techniques

Sometimes, the spaces Vh and Qh decompose into the sum (direct or not) of
subspaces for which it might be easier to prove an inf-sup condition. This is the
case, for instance, when a domain decomposition technique is employed. Some of
the results we are going to present can be viewed as a particular case of the macro-
element technique which will be introduced in Sect. 8.5.4.

The next result has been presented and proved in [223].

Proposition 8.5.3. Suppose ˝ can be decomposed as the union of disjoint sub-
domains with Lipschitz continuous boundaries

˝ WD
R[

rD1

˝r : (8.5.12)

We make use of the following notation:

V0;r WD fv j v 2 Vh; v D 0 in ˝ n ˝rg;

Q0;r WD fq j q 2 Qh;

Z

˝r

q dx D 0g;

K WD fq j q 2 Q; qj˝r is constant; r D 1; : : : ; Rg:

(8.5.13)

Suppose, moreover, that the spaces V0;r and Q0;r satisfy the following inf-sup
condition

inf
qh2Q0:r

sup
vh2V0;r

R
˝r

qh div vh dx

jjqhjjQjjvhjjV � kr > 0; (8.5.14)

with kr independent of h (r D 1; : : : ; R) and that the following inf-sup condition
between Vh and K holds true

inf
qh2K

sup
vh2Vh

R
˝ qh div vh dx

jjqhjjQjjvhjjV � kK > 0; (8.5.15)

with kK independent of h. Then, the spaces Vh and Qh satisfy the inf-sup
condition (8.2.16). ut
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Sometimes, it is not possible (or it is not the best choice) to partition ˝ into
disjoint sub-domains. Let us describe the case of two overlapping sub-domains. The
following proposition can be checked by a direct computation.

Proposition 8.5.4. Let ˝ be the union of two sub-domains ˝1 and ˝2 with
Lipschitz continuous boundaries. With the notation of the previous proposition,
suppose that the spaces V0;r and Q0;r satisfy the inf-sup conditions

inf
qh2Q0;r

sup
vh2V0;r

R
˝r

qh div vh dx

jjqhjjQjjvhjjV � kr > 0; (8.5.16)

for r D 1; 2. Then, the spaces Vh and Qh satisfy the condition

inf
qh2Qh

sup
vh2Vh

R

˝
qh div vh dx

jjqh � qhjjQjjvhjjV � 1p
2

min.k1; k2/; (8.5.17)

where, as in Sect. 8.5.1, we have denoted by qh the L2 projection of qh onto the
space L0

0. ut
Another useful technique for proving the inf-sup condition can be found in [328].

This result is quite general; in particular, the decomposition of the spaces Vh and
Qh does not rely on a decomposition of the domain ˝ . In [328], the following
proposition is stated for a two-subspaces decomposition, but it obviously extends to
more general situations.

Proposition 8.5.5. Let Q1 and Q2 be subspaces of Qh such that

Qh WD Q1 C Q2: (8.5.18)

If V1, V2 are subspaces of Vh and ˛1, ˛2 positive constants such that

inf
qh2Qi

sup
vh2Vi

R
˝ qh div vh dx

jjqhjjQjjvhjjV � ˛i ; i D 1; 2 (8.5.19)

and ˇ1, ˇ2 are non-negative constants such that

ˇ
ˇ
ˇ
ˇ

Z

˝

q1 div v2 dx

ˇ
ˇ
ˇ
ˇ � ˇ1jjq1jjQjjv2jjV 8q1 2 Q1; 8 v2 2 V2;

ˇ
ˇ
ˇ
ˇ

Z

˝

q2 div v1 dx

ˇ
ˇ
ˇ
ˇ � ˇ2jjq2jjQjjv1jjV 8q2 2 Q2; 8 v1 2 V1;

(8.5.20)

with

ˇ1ˇ2 < ˛1˛2; (8.5.21)
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then the inf-sup condition (8.2.16) holds true with k0 depending only on ˛i , ˇi ,
i D 1; 2. ut
Remark 8.5.3. Condition (8.5.21) is trivially true, for instance, when ˇ1ˇ2 D 0 and
˛1˛2 > 0. ut
Example 8.5.3. Most of the techniques presented in this section can be seen as a
particular case of the macro-element technique (see Sect. 8.5.4). Proposition 8.5.4
will be used in Theorem 8.8.1 for the stability proof of the Hood–Taylor scheme.

ut

8.5.4 Macro-element Technique

In this section we present a technique introduced by Stenberg (see [351–355])
which, under suitable hypotheses, reduces the matter of checking the inf-sup
condition (8.2.16) to an algebraic problem. We also refer to [98] for related results
in a somewhat different setting.

The present technique is based on a decomposition of the triangulation Th into
disjoint macro-elements, where we refer to a macro-element as an open polygon
(resp., polyhedron in R

3) which is the union of adjacent elements.
Let us introduce some notation.
A macro-elementM is said to be equivalent to a reference macro-element OM if

there exists a mapping FM W OM ! M such that

1. FM is continuous and invertible;
2. FM . OM/ D M ;
3. If OM D [ OKj , where Kj , j D 1; : : : m, are the elements defining OM , then

Kj D FM . OKj /, j D 1; : : : m, are the elements of M ;
4. FM j OKj

D FKj ı F �1
OKj

, j D 1; : : : m, where FK denotes the affine mapping from

the reference element to a generic element K .

We denote by E OM the equivalence class of OM . We now introduce the discrete spaces
associated with Vh and Qh on the generic macro-element M (N is the dimension
of ˝):

V0;M WD ˚
v j v 2 .H 1

0 .M //N ; v D wjM with w 2 Vh

�
;

Q0;M WD
�

p j p 2 L2.˝/;

Z

M

p dx D 0; p D qjM with q 2 Qh

�

:
(8.5.22)

We finally introduce a space which corresponds to the kernel of Bt
h on the macro-

element M :

KM WD
�

p j p 2 Q0;M ;

Z

M

p div v dx D 0; 8 v 2 V0;m

�

: (8.5.23)
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The macro-elements condition reads

KM D f0g; (8.5.24)

that is, the analogous (at a macro-element level) of the necessary condition for the
discrete Stokes problem to be well-posed that the kernel of Bt

h reduces to the zero
function.

Proposition 8.5.6. Suppose that each triangulation Th can be decomposed into dis-
joint macro-elements belonging to a fixed number (independent of h) of equivalence
classes E OMi

, i D 1; : : : n. Suppose, moreover, that the pair Vh � L0
0=R is a stable

Stokes element, that is,

inf
qh2L0

0=R

sup
vh2Vh

R
˝

qh div vh dx

jjqhjjQjjvhjjV � ˇ > 0; (8.5.25)

with ˇ independent of h. Then, the macro-element condition (8.5.24) (for every M 2
E OMi

, i D 1; : : : n) implies the inf-sup condition (8.2.16).

Proof. We do not give the technical details of the proof, for which we refer to [351].
The basic arguments of the proof are sketched in Remark 8.5.4. ut
Remark 8.5.4. The macro-element condition (8.5.24) is strictly related to the patch
test used by engineers (cf., e.g., [388]). However, the count of the degrees of
freedom is clearly insufficient by itself. Hence, let us point out how the hypotheses
of Proposition 8.5.6 are important.

Hypothesis (8.5.24) (the macro-element condition) implies, via a compactness
argument, that a discrete inf-sup condition holds true between the spaces V0;M

and Q0;M . The finite number of equivalent macro-elements classes is sufficient to
conclude that the corresponding inf-sup constants are uniformly bounded below by
a positive number.

Then, we are basically in the situation of the domain decomposition technique
of Sect. 8.5.3. We now use hypothesis (8.5.25) to control the constant functions on
each macro-element and to conclude the proof. ut
Remark 8.5.5. Hypothesis (8.5.25) is satisfied in the two-dimensional case
whenever Vh contains piecewise quadratic functions (see Sect. 8.3). In the three-
dimensional case, things are not so easy: to control the constants, we need extra
degrees of freedom on the faces, as observed in Remark 8.4.3. For this reason,
let us state the following proposition which can be proved with the technique of
Sect. 8.5.1 (see Remark 8.5.1) and which applies to the case of continuous pressures
approximations. ut
Proposition 8.5.7. Let us make the same assumptions as in Proposition 8.5.6 with
(8.5.25) replaced by the condition of Remark 8.5.1 (see (8.5.5)). Then, provided
Qh � C 0.˝/, the inf-sup condition (8.2.16) holds true. ut
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Remark 8.5.6. The hypothesis that the macro-element partition of Th is disjoint can
be weakened, in the spirit of Proposition 8.5.4, by requiring that each element K

of Th belongs at most to a finite number N of macro-elements with N independent
of h. ut
Example 8.5.4. The macro-element technique can be used in order to prove
the stability of several schemes. Among those, we recall the Q

2
� P1 element

(see Sect. 8.6.3) and the three-dimensional generalised Hood-Taylor scheme (see
Theorem 8.8.2). ut

8.5.5 Making Use of the Internal Degrees of Freedom

This subsection presents a general framework providing a general tool for the
analysis of finite element approximations to problems of incompressible materials.

The basic idea has been used several times on particular cases, starting from [165]
for discontinuous pressures and from [24] and [25] for continuous pressures. We are
going to present it in its final general form given by Brezzi and Pitkiäranta [131]. It
consists essentially in stabilising an element by adding suitable bubble functions to
the velocity field.

In order to do that, following the notation of Remark 2.2.4, we first associate to
every finite element discretisation Qh � Q the space

B.bK grad Qh/ WD
n
ˇ j ˇ 2 V; ˇjK D bK grad.qhjK/ for some qh 2 Qh

o
;

(8.5.26)

where bK is a bubble function defined in K . In particular, we can take bK D b3;K

as the standard cubic bubble if K is a triangle, or a bi-quadratic bubble if K is
a square or other obvious generalisations in 3D. In other words, the restriction of a
ˇ 2 B.bK grad Qh/ to an element K is the product of the bubble functions bK times
the gradient of a function of QhjK .

Remark 8.5.7. In (8.5.26), we take the gradient on K so that B.bK grad Qh/ is well
defined even if Qh is a space of discontinuous pressures. ut
Remark 8.5.8. Notice that the space B.bk grad Qh/ is not defined through a basic
space OB on the reference element. This could be easily done in the case of affine
elements, for all the reasonable choices of Qh. However, this is clearly unnecessary:
if we know how to compute qh on K , we also know how to compute grad qh and
there is no need for a reference element. ut
We can now prove our basic results, concerning the two cases of continuous or
discontinuous pressures.

Proposition 8.5.8 (Stability of continuous pressure elements). Assume that there
exists an operator ˘1 2 L.V; Vh/ satisfying the property of the Clément inter-
polant (8.4.24). If Qh � C 0.˝/ and Vh contains the space B.bk grad Qh/, then
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the pair .Vh; Qh/ is a stable element, in the sense that it satisfies the inf-sup
condition (8.2.16).

Proof. We shall build a B-compatible operator, like in Proposition 8.4.2. We only
need to construct the operator ˘2. We define ˘2 W V ! B.bk grad Qh/, on each
element, by requiring

˘2vjK 2 B.bK grad Qh/jK;
Z

K

.˘2v � v/ � grad qh dx D 0; 8 qh 2 Qh:
(8.5.27)

Problem (8.5.27) has obviously a unique solution and ˘2 satisfies (8.4.5).
Finally, (8.4.7) follows by a scaling argument. Hence, Proposition 8.4.2 gives
the desired result. ut
Corollary 8.5.1. Assume that Qh � Q is a space of continuous piecewise smooth
functions. If Vh contains .L1

1/2 ˚B.bK grad Qh/, then the pair .Vh; Qh/ satisfies the
inf-sup condition (8.2.16).

Proof. Since Vh contains piecewise linear functions, there exists a Clément inter-
polant ˘1 satisfying (8.4.24). Hence, we can apply Proposition (8.5.8). ut

We now consider the case of discontinuous pressure elements.

Proposition 8.5.9 (Stability of discontinuous pressure elements). Assume that
there exists an operator Q̆

1 2 L.V; Vh/ satisfying

jj Q̆
1vjjV � cjjvjjV 8 v 2 V;

Z

K

div.v � Q̆
1v/ dx D 0 8 v 2 V 8 K 2 Th:

(8.5.28)

If Vh contains B.bK grad Qh/, then the pair .Vh; Qh/ is a stable element, in the
sense that it satisfies the inf-sup condition (8.2.16).

Proof. We are going to use Proposition 8.5.8. We take Q̆
1 as operator ˘1. We are

not defining ˘2 on the whole V , but only in the subspace

V 0 WD
�

v j v 2 V;

Z

K

div v dx D 0 8 K 2 Th

�

: (8.5.29)

This will be enough, since we need to apply ˘2 to the difference v � Q̆
1v which is

in V 0 by (8.5.28).
For every v 2 V 0, we define ˘2v 2 B.bK grad Qh/ by requiring that, in each

element K ,
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˘2vjK 2 B.bK grad Qh/jK;
Z

K

div.˘2v � v/qh dx D 0 8 qh 2 QhjK:
(8.5.30)

Note that (8.5.30) is uniquely solvable, if v 2 V 0, since the divergence of a bubble
function has always zero mean value (hence, the number of non-trivial equations
is equal to dim.QhjK/ � 1, which is equal to the number of unknowns; the non-
singularity then follows easily). It is obvious that ˘2, as given by (8.5.30), will
satisfy (8.4.5) for all v 2 V 0. We have to check that

k˘2vk1 � ckvkV ; (8.5.31)

which actually follows by a scaling argument making use of the following bound

jb˘2vj0; OK � c.�0/j Ovj1; OK: (8.5.32)

ut
Corollary 8.5.2 (Two-dimensional case). Assume that Qh � Q is a space of
piecewise smooth functions. If Vh contains .L1

2/2 ˚ B.bK grad Qh/, then the pair
.Vh; Qh/ satisfies the inf-sup condition (8.2.16).

Proof. The stability of the .P2/
2 � P0 element (see Sect. 8.3) implies the existence

of Q̆
1 as in Proposition 8.5.9. ut

Propositions 8.5.8 and 8.5.9 are worth a few comments. They show that almost
any element can be stabilised by using bubble functions. For continuous pressure
elements, this procedure is mainly useful in the case of affine elements. For
discontinuous pressure elements, it is possible to stabilise elements which are
already stable for a piecewise constant pressure field. Examples of such a procedure
can be found in [199]. Stability with respect to piecewise constant pressure implies
that at least one degree of freedom on each side or face of the element is linked to
the normal component of velocity (see [202] and Remark 8.4.3).

Example 8.5.5. Internal degrees of freedom can be used in the stability analysis
of several methods. For instance, we use it for the analysis of the MINI element
(see Sects. 8.6.1 and 8.7.1) in the case of continuous pressures and of the Crouzeix-
Raviart element (see Proposition 8.6.2 and Sect. 8.7.2) in the case of discontinuous
pressures. ut

8.6 Two-Dimensional Stable Elements

In this section, we shall make use of the techniques presented in Sect. 8.5 to prove
the stability for some of the most popular two-dimensional Stokes elements. The
degrees of freedom corresponding to some of those are collected in Fig. 8.6.



8.6 Two-Dimensional Stable Elements 487

Fig. 8.6 Some stable
two-dimensional Stokes
elements: (a) the MINI
element, (b) the
Crouzeix–Raviart element,
(c) the P NC

1 � P0 element,
(d) the Q

2
� P1 element

We start with triangular elements and then we present schemes based on
quadrilaterals.

The Hood–Taylor element (two- and three-dimensional) and its generalisation
will be presented in Sect. 8.8. Figure 8.6 presents the most simple cases of the
elements that we shall discuss.

8.6.1 Continuous Pressure Elements

We have already presented in Sect. 8.4.2 the MINI element. This element, which is
probably the simplest one for the approximation of the Stokes equation, has been
introduced in [25]. Using the results of Sect. 8.5.5, in particular Corollary 8.5.1, we
easily deduce the following result.
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Proposition 8.6.1. The following pair of spaces are stable for any k � 1

Vh WD .Lk
1 ˚ B.b3;K grad Qh//2 \ V; Qh WD Lk

1 \ Q; (8.6.1)

Vh WD .LkC1
1 ˚ B.b3;K grad Qh//2 \ V; Qh WD Lk

1 \ Q: (8.6.2)

ut
For k D 1, (8.6.1) is the MINI element while (8.6.2) defines a variant of the Hood-
Taylor element, which we shall consider in Sect. 8.8, enriched by bubbles. This
produces an element with a slightly better kh in the inf-sup condition.

8.6.2 Discontinuous Pressure Elements

We have already considered in Sect. 8.4.3 the element P 2 � P0. Using a P0 pressure
ensures an element-wise conservation of mass which is an advantage in some
situations. We now rely on Proposition 8.5.9 and more precisely on Corollary 8.5.2.

Example 8.6.1 (The Crouzeix-Raviart element). This element, presented in [165],
is an enrichment to the P 2 � P0 scheme which provides well-balanced approxima-
tion properties. Given a mesh of triangles, the approximating spaces are

Vh WD .L1
2 ˚ B3/2 \ V; Qh WD L0

1 \ Q: (8.6.3)

The proof of the stability for this element is a direct consequence of Proposi-
tion 8.5.8. ut
The Crouzeix-Raviart element is the simplest one of a general family. Indeed, the
construction of the Crouzeix-Raviart element relies on the fact that, as we have seen
in Proposition 8.5.9 and Corollary 8.5.2, adding enough bubbles (that is, internal
degrees of freedom) to an element which is stable for pressures in L0

0 can make it
stable for pressures in L0

k . We can thus state the following proposition.

Proposition 8.6.2. For k � 2, let

Vh WD .L1
k ˚ BkC1/

2 \ V; Qh D L0
k�1 \ Q: (8.6.4)

Then, the couple Vh � Qh is stable. ut
Remark 8.6.1 (A nonconforming version). It can easily be checked [209] that one
obtains a stable element of second order accuracy by replacing the standard bubble
by the nonconforming bubble of (2.2.39), that is, taking

Vh WD .L1
2 ˚ BNC /2 \ V; Qh D L0

1 \ Q: (8.6.5)
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Besides some nice continuity properties of the stress at mid-side nodes, the fact
that second order polynomials are employed simplifies things for the numerical
integration when building the discrete problem. ut
Remark 8.6.2. Instead of enriching Vh, stability can be obtained by taking a smaller
Qh, in general to the expense of accuracy. It can easily be checked that if we take, for
k � 2, Vh D .L1

k/2 and Qh D L0
k�2, we have enough internal degrees of freedom

in Vh to ensure stability. This is not true in the three-dimensional case where one
would need Qh D L0

k�3 and, evidently, k � 3. This choice of elements would have
a severe impact on accuracy. ut

8.6.3 Quadrilateral Elements, Q
k

� Pk�1 Elements

We now discuss the stability and convergence of a family of quadrilateral elements.
The lowest order of this family, the Q

2
� P1 element, is one of the most popular

Stokes elements. These elements are discontinuous pressure elements and they
originate from attempts to use the reduced integration technique which will be
analysed in Sect. 8.12. Let us first consider what would appear to be a natural
construction. Given k � 1, the discrete spaces are defined as follows:

Vh WD .L1
Œk�/

2 \ V; Qh WD L0
Œk�1� \ Q: (8.6.6)

For k D 1, this yields the unstable Q
1

� P0 which will be considered in detail in
Sect. 8.10. For k D 2, we have the Q

2
� Q1 element which appears quite naturally

in the use of reduced integration penalty methods (see [60]). This element is not
stable and suffers from the same problems as the Q

1
� P0 element.

Let us now consider, instead of (8.6.6),

Vh WD .L1
Œk�/

2 \ V; Qh WD L0
k�1 \ Q: (8.6.7)

Using Pk pressure instead of Qk is not a natural choice, although it is the good one.
If the mesh is built of rectangles, the stability proof is an immediate consequence
of Proposition 8.5.9, since (8.5.28) is satisfied for Vh (indeed, the Q

2
� P0 is a

stable Stokes element, see Remark 8.4.3). In the case of a general quadrilateral
mesh, things are not so easy; even the definition of the space Qh is not so obvious
and there have been different opinions, during the years, about two possible natural
definitions. Following [90], we discuss in detail the case k D 2. We shall see that in
this case there are important issues related to the approximation properties of finite
elements on non-affine meshes.

8.6.3.1 The Q
2

� P1 Element

This element was apparently discovered around a blackboard at the Banff Confer-
ence on Finite Elements in Flow Problems (1979). Two different proofs of stability
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can be found in [223] and [351] for the rectangular case. This element is a relatively
late comer in the field; the reason for this is that, as we stated earlier, using a P1

pressure on a quadrilateral is not a standard procedure. It appeared as a cure for
the instability of the Q

2
� Q1 element which appears quite naturally in the use of

reduced integration penalty methods (see [60]). Another cure can be obtained by
adding internal nodes (see [199]).

On a general quadrilateral mesh, the space Qh can be defined in two different
ways: either Qh consists of (discontinuous) piecewise linear functions, or it is built
by considering three linear shape functions on the reference unit square and mapping
them to the general elements like it is usually done for continuous finite elements
(see (2.1.59)). We point out that since the mapping FK from the reference element OK
to the general element K in this case is bilinear but not affine, the two constructions
are not equivalent. We shall refer to the first possibility as the unmapped pressure
approach and to the second one as the mapped pressure approach.

In order to analyse the stability of either scheme, we use the macro-element
technique presented in Sect. 8.5.4 with macro-elements consisting of one single
element.

The unmapped pressure approach yields the original proof presented in [351].
Let M be a macro-element and qh D a0 C axx C ayy 2 Q0;M an arbitrary
function in KM . If b.x; y/ denotes the bi-quadratic bubble function on K , then
vh D .axb.x; y/; 0/ is an element of V0;M and

0 D
Z

M

qh div vh dx dy D �
Z

M

grad qh � vh dx dy D �ax

Z

M

b.x; y/ dx dy

implies ax D 0. In a similar way, we get ay D 0 and, since the average of qh on M

vanishes, we have the macro-element condition qh D 0.
We now consider the mapped pressure approach, following the proof presented

in [90]. There, it is recalled that the macro-element condition (8.5.24) can be related
to an algebraic problem in which we are led to prove that a two-by-two matrix is
non-singular. Actually, it turns out that the determinant of such a matrix is a multiple
of the Jacobian determinant of the function mapping the reference square OK onto
M , evaluated at the barycentre of OK . Since this number must be non-zero for any
element of a well-defined mesh, we can deduce that the macro-element condition is
also satisfied in this case, and we can then conclude that the stability holds thanks
to Proposition 8.5.6.

So far, we have shown that both the unmapped and the mapped pressure
approach give rise to a stable Q2 � P1 scheme. However, as a consequence of the
results proved in [20], we have that the mapped pressure approach cannot achieve
optimal approximation order. Namely, the unmapped pressure space provides a
second order convergence in L2, while the mapped one achieves only O.h/ in the
same norm. In [90], several numerical experiments have been reported, showing that
on general quadrilateral meshes (with constant distortion), the unmapped pressure
approach provides a second order convergence (for both velocity in H 1 and pressure
in L2), while the mapped approach is only sub-optimally first order convergent.
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It is interesting to remark that, in this case also, the convergence of the velocities is
suboptimal, according to the error estimate (8.2.17).

8.7 Three-Dimensional Stable Elements

Many elements presented in Sect. 8.6 have a three-dimensional extension. Some of
them are schematically plotted in Fig. 8.7. However, there are important differences
between the two and three-dimensional cases. One is that bubbles are at least of
fourth degree in the three-dimensional case. Another difference is that the P 2 � P0

element is not stable: to control piecewise constant pressure, we need some degrees
of freedom on the faces. It would indeed be possible to prove that the P 3 � P0 is
stable but this yields a highly unbalanced approximation.

8.7.1 Continuous Pressure 3-D Elements

The most important continuous pressure element is the Hood-Taylor element, and
its generalisations, which will be presented in the next section.

The families associated with the MINI element introduced in (8.6.1) and (8.6.2)
can be generalised to the three-dimensional with an appropriate choice of bubbles.
Consider a regular sequence of decompositions of ˝ into tetrahedra.

Proposition 8.7.1. The following pair of spaces are stable for any k � 1

Vh WD .Lk
1 ˚ B.b4;K grad Qh//3 \ V; Qh WD Lk

1 \ Q; (8.7.1)

Vh WD .LkC1
1 ˚ B.b4;K grad Qh//3 \ V; Qh WD Lk

1 \ Q: (8.7.2)

The proof follows easily, like in the 2D case, from Corollary 8.5.1. ut
The first member of the first family is the MINI element and the first member

of the second family is a version of the Hood-Taylor element where the velocities
are enriched by quartic bubbles. Paradoxically, this may increase the precision on
pressure through a better inf-sup constant.

8.7.2 Discontinuous Pressure 3-D Elements

As we stated earlier, the situation for discontinuous pressure elements is less
favourable than in the two-dimensional case. We first consider an example.



492 8 Incompressible Materials and Flow Problems

a

b

c

Fig. 8.7 Some stable
three-dimensional Stokes
elements: (a) the MINI
element, (b) the
Crouzeix–Raviart element,
(c) the Q

2
� P1 element

Example 8.7.1. The SMALL element is the smallest three-dimensional one if one
wants to use piecewise constant pressure. It is the analogue of the two-dimensional
construction of Remark 8.4.2, but we now have to work on the faces and not on
the edges. Let us thus consider, on a tetrahedral element, the cubic bubble b3;F

associated to the face F D .i; j; k/ and defined, using barycentric coordinates, by

b3;F WD �i �j �k: (8.7.3)

We define our new space by adding on each face of a standard piecewise linear
element such a cubic bubble. We shall denote this extra space on an element K by

BF3 WD
(

vh j vh 2 P3.K/; vh D
X

F

˛F b3;F

)

: (8.7.4)

The final space is thus

Vh WD .L1
1 C BF3/

3 \ V; Qh WD L0
0 \ Q:

This provides the control of the flux on the face and one can easily check that we
have stability for piecewise constant pressure.
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Remark 8.7.1. In fact, the bubble on the face is needed only for the normal
component of the velocity. This implies some complexity for the implementation
but greatly reduces the global number of degrees of freedom. We could thus use,
instead of (8.7.4), denoting nF the normal to the face,

BFn
3 WD

(

vh j vh 2 P3.K/; vh D
X

F

˛F b3;F nF

)

(8.7.5)

and Vh WD ..L1
1/

3 C BF n
3 / \ V: ut

We must retain that discontinuous pressure elements in 3D require third degree
polynomials. ut
Example 8.7.2 (3D analogues of the Crouzeix–Raviart element). In order to gen-
eralise the Crouzeix-Raviart element, we must first get a stable element for
constant pressure. The previously defined SMALL element provides only first order
accuracy. We therefore start from a quadratic approximation and enrich it by face
bubbles to control the fluxes on the faces and by internal bubbles to control linear
pressure. This yields

Vh WD .L1
2 C BF3 C B4/3 \ V; Qh WD L0

1 \ Q:

The stability is an easy consequence of Proposition 8.5.9.
The face bubbles do not increase the order of accuracy and we could employ the

normal bubbles of (8.7.5) However, if one wants to stick to more standard elements,
the natural thing would be to start from the stable P 3�P0 element. To get a balanced
precision, we define

Vh WD .L1
3 C B5/3 \ V; Qh WD L0

2 \ Q: (8.7.6)

We would then have third order accuracy but to the price of a quite large number of
degrees of freedom. This can obviously be extended to higher degrees. ut
Example 8.7.3 (Nonconforming elements). A possibility to reduce the order of
polynomials needed to obtain stable elements is to use nonconforming elements.
The triangular P NC

1 � P0 easily generalises to tetrahedra in 3D. Also in this case,
since div Vh � Qh, the restriction of the discrete solution to every element is truly
divergence-free. The problems of coercivity are still there.

However, it is also possible to obtain second order without this problem. We
have already seen in Remark 8.6.1 that one could get a variant of the Crouzeix-
Raviart element using nonconforming bubbles. The construction can be extended to
the three-dimensional case. Indeed, one can replace the face-bubble of (8.7.3) by its
nonconforming version of (2.2.39), that is,

bNC;F D .�2
i C �2

j C �2
k/ � 1: (8.7.7)
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The internal bubble is also replaced by .�2
i C �2

j C �2
k C �2

l / � 1 and we now
manipulate only second degree polynomials, which is definitely an advantage.
However, things are a little more complicated: we have too many degrees of freedom
and one must remove the vertices. We refer to [203] for details. ut
Example 8.7.4 (Quadrilateral Q

k
� Pk�1 elements). Given a mesh of hexahedra,

we define

Vh WD .L1
k/3 \ V; Qh WD L0

k�1 \ Q; (8.7.8)

for k � 2. We refer to the two-dimensional case (see Sect. 8.6.3) for the definition of
the pressure space. In particular, we recall that Qh on each element consists of true
polynomials and is not defined via the reference element. With the correct definition
of the pressure space, the proof of stability for this element is a simple generalisation
of the corresponding two-dimensional version. ut

8.8 P
k

� Pk�1 Schemes and Generalised
Hood–Taylor Elements

The main result of this section (see Theorems 8.8.1 and 8.8.2) consists in showing
that a family of popular Stokes elements satisfies the inf-sup condition (8.2.16). The
first element of this family has been introduced in [249] and for this reason, the
members of the whole family are usually referred to as generalised Hood–Taylor
elements.

This section is organised in two subsections. In the first one, we discuss
discontinuous pressure approximations for the P k � Pk�1 element in the two-
dimensional triangular case; it turns out that this choice is not stable in the lower
order cases and requires suitable conditions on the mesh sequences for the stability
of the higher order elements.

The last subsection deals with the generalised Hood–Taylor elements, which pro-
vide a continuous pressure approximation in the plane (triangles and quadrilaterals)
and in the three-dimensional space (tetrahedra and hexahedra).

8.8.1 Discontinuous Pressure P
k

� Pk�1 Elements

In this subsection, we shall recall the statement of a basic result by Scott and
Vogelius (see [347]) which, roughly speaking, says: under suitable assumptions on
the decomposition Th (in triangles), the pair Vh WD .L1

k/2 \ V , Qh WD L0
k�1 \ Q

satisfies the inf-sup condition for k � 4.
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On the other hand, the problem of finding stable lower order approximations has
been studied by Q in [328], where interesting remarks are made on this scheme and
where the possibility of filtering out the spurious pressure modes is considered.

In order to state in a precise way the restrictions that have to be made on the
triangulation for higher order approximations, we assume that ˝ is a polygon,
and that its boundary @˝ has no double points. In other words, there exist two
continuous piecewise linear maps x.t/, y.t/ from Œ0; 1Œ into R such that

(
.x.t1/ D x.t2/ and y.t1/ D y.t2// implies t1 D t2;

@˝ D f.x; y/ j x D x.t/; y D y.t/ for some t 2 Œ0; 1Œ g: (8.8.1)

Clearly, we will have lim
t!1

x.t/ D x.0/ and lim
t!1

y.t/ D y.0/. We remark that we

are considering a less general case than the one treated by Scott and Vogelius [347].
We shall make further restrictions in what follows, so that we are actually going to
present a particular case of their results.

Now let V be a vertex of a triangulation Th of ˝ and let �1; : : : ; �n, be the angles,
at V , of all the triangles meeting at V , ordered, for instance, in the anticlockwise
sense. If V is an internal vertex, we also set �nC1 WD �1. Now we define S.V /

according to the following rules.

n D 1 ) S.V / D 0 (8.8.2)

n > 1; V 2 @˝ ) S.V / D max
iD1;n�1

.
 � �1 � �iC1/ (8.8.3)

V … @˝ ) S.V / D max
iD1;n

.
 � �i � �iC1/: (8.8.4)

It is easy to check that S.V / D 0 if and only if all the edges of Th meeting at V fall
on two straight lines. In this case, V is said to be singular [347]. If S.V / is positive
but very small, then V will be “almost singular”. Thus, S.V / measures how close
V is to be singular.

We are now able to state the following result.

Proposition 8.8.1 ([347]). Assume that there exist two positive constants c and ı

such that

ch � hK 8 K 2 Th (8.8.5)

and

S.V / � ı for all V vertex of Th: (8.8.6)

Then, the choice Vh D .L1
k/2 \ V; Qh D L0

k�1 \ Q; k � 4, satisfies the inf-sup
condition with a constant depending on c and ı but not on h. ut
Remark 8.8.1. Condition (8.8.6) is worth a few comments. The trouble is that
S.V / D 0 makes the linear constraints on uh, arising from the divergence-free
condition, linearly dependent (see, also, Examples 8.10.2 and 8.10.3). When this
linear dependence appears, some part of the pressure becomes unstable. However,
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we have met this situation in Example 8.10.3 and this was in fact the key to
convergence, provided a condition on data was fulfilled. The same analysis would
hold here and the unstable part of pressure could be filtered out. ut
Remark 8.8.2. The P k � Pk�1 element can obviously be stabilised by adding
bubbles to the velocity space in the spirit of Sect. 8.5.5 (see Proposition 8.5.9). For
a less expensive stabilisation, consisting in adding bubbles only in few elements,
see [72]. ut

8.8.2 Generalised Hood–Taylor Elements

In this subsection, we recall the results proved in [71, 73] concerning the stability
of the generalised Hood–Taylor schemes. On triangles or tetrahedra, velocities are
approximated by a standard P k element and pressures by a standard continuous
Pk�1, that is, vh 2 .L1

k/n \ V (n D 2; 3), p 2 L1
k�1 \ Q. This choice has an

analogue on rectangles or cubes using a Q
k

element for velocities and a Qk�1

element for pressures. The lowest order triangular element (i.e., k D 2) has been
introduced by Hood and Taylor in [249]. Several papers are devoted to the analysis
of this popular element.

The degrees of freedom of some elements belonging to this family are reported
in Fig. 8.8.

Remark 8.8.3. Another element that has been used because of the simplicity of
its shape functions is the so-called .P 1 � iso � P 2/ � P1 element, It is sketched
in Fig. 8.9. It is a composite element assembled from four piece-wise linear
elements for velocity while pressure remains linear on the macro-element. The same
technique of proof that yields stabiliy of the classical Hood-Taylor element could be
used to show the inf-sup condition for this composite element. ut

The first proof of convergence was given for the two-dimensional case in [61]
where a weaker form of the inf-sup condition was used. The analysis was subse-
quently improved in [375], who showed that the classical inf-sup condition is indeed
satisfied (see Verfürth’s trick in Sect. 8.5.2). The macro-element technique can easily
be used for the stability proof of the rectangular and cubic element (of any order)
as well as for the tetrahedral case when k D 2 (see [351]). In [122], an alternative
technique of proof has been presented for the triangular and tetrahedral cases when
k D 2. This proof generalises to the triangular case when k D 3 (see [121]). Finally,
a general proof of convergence can be found in [71] and [73] for the triangular and
tetrahedral case, respectively.

We now state and prove the theorem concerning the two-dimensional triangular
case (see [71]).

Theorem 8.8.1. Let ˝ be a polygonal domain and Th a regular sequence of
triangular decompositions of it. Then, the choice Vh WD .L1

k \ H 1
0 .˝//2 and
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Fig. 8.8 Some stable
elements belonging to the
Hood–Taylor family

Fig. 8.9 The
.P 1isoP 2/ � P1 element
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Fig. 8.10 The reference
triangle and its symmetric

Qh WD L1
k�1 \ L2

0.˝/ satisfies the inf-sup condition (8.2.16) for any k � 2 if
and only if each triangulation contains at least three triangles.

Proof (Step 1: necessary part). Let us show first that the hypothesis on the mesh
is necessary. If Th only contains one element, then it is easy to see that the inf-
sup constant is zero (otherwise, it should be div Vh � Qh, which is not the case
since the functions in Qh are not zero at the vertices). We shall show that if Th

contains only two triangles T1 and T2, then there exists one spurious pressure mode.
This implies that, also in this case, the inf-sup constant vanishes. We choose the
coordinate system .x; y/ in such a way that the common edge of T1 and T2 lies
on the y-axis. Moreover, we suppose that T2 is the reference triangle and T1 the
symmetric one with respect to the x-axis (see Fig. 8.10). The general case can then
be handled by means of suitable affine mappings.

We denote by �i;a and �i;b the barycentric coordinates relative to the vertices a

and b, respectively, belonging to the element Ti , i D 1; 2. It is easy to check that it
holds: �1;a D 1 C x � y, �1;b D y, �2;a D 1 � x � y, and �2;b D y. We shall also
make use of the function �2;c D x. Let L.x/ be the Legendre polynomial of degree
k � 2 on the unit interval with respect to the weight w.x/ D x.1 � x/3 and consider
the function p.x/ 2 Qh defined as follows:

p0.x/ D
(

�L.�x/ for x < 0;

L.x/ for x > 0:
(8.8.7)

We shall show that grad p is orthogonal to any velocity v 2 Vh. Since p does not
depend on y, we can consider the first component v1 of v only, which, by virtue of
the continuity at x D 0 and of the boundary conditions, has the following general
form:

v1 D
(

�1;a�1;b.Ck�2.y/ C xAk�3.x; y// in T1;

�2;a�2;b.Ck�2.y/ C xBk�3.x; y// in T2;
(8.8.8)

where the subscripts denote the degrees of the polynomials A, B and C . We then
have
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Z

T1[T2

v � grad p dx dy D
Z

T1

v1p0 dx dy C
Z

T2

v1p
0 dx dy

D
Z

T2

�2;a�2;bL.x/x.Bk�3.x; y/ � Ak�3.�x; y// dx dy

D
Z

T2

�2;a�2;b�2;cL.x/q.x; y/ dx dy;

(8.8.9)

where q.x; y/ is a polynomial of degree k � 3 and where the term involving C

disappears by virtue of the symmetries. The last integral reads

Z

T2

xy.1 � x � y/L.x/q.x/ dx dy D
Z 1

0

xL.x/Q.x/ dx (8.8.10)

and an explicit calculation shows that Q.x/ is of the form

Q.x/ D .1 � x/3pk�3.x/; (8.8.11)

where pk�3 is a polynomial of degree k � 3. We can now conclude with the final
computation

Z

T1[T2

v � grad p dx dy D
Z 1

0

x.1 � x/3L.x/pk�3.x/ dx D 0: (8.8.12)

Step 2: sufficient part. The idea of the proof consists in considering, for each
h, a partition of the domain ˝ in sub-domains containing exactly three adjacent
triangles. By making use of Proposition 8.5.4 and the technique presented in
Sect. 8.5.1, it will be enough to prove the inf-sup condition for a single macro-
element, provided we are able to bound the number of intersections between
different sub-domains (basically, every time two sub-domains intersect each other,
a factor 1=

p
2 shows up in front of the final inf-sup constant). Indeed, it is possible

to prove that, given a generic triangulation of a polygon, it can be presented as the
disjoint union of triplets of triangles and of polygons that can be obtained as unions
of triplets with at most three intersections.

Given a generic macro-element a0 [b0 [c0, consider the .x; y/ coordinate system
shown in Fig. 8.11, so that the vertices are B 0 D .0; 0/, D0 D .1; 0/, E 0 D .˛; ˇ/.
By means of the affine mapping x0 D x C ˛y; y0 D ˇy, the Jacobian of which is ˇ,
we can consider the macro-element a[b [c shown in Fig. 8.12, so that b is the unit
triangle. Since ˇ ¤ 0, the considered affine mapping is invertible. With an abuse
of notation, we shall now denote by ˝ the triplet a [ b [ c and by Vh and Qh the
finite element spaces built on it.

We denote by �a
AB the barycentric coordinate of the triangle a vanishing on the

edge AB (analogous notation holds for the other cases). Moreover, we denote by
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Fig. 8.11 A generic triplet of
triangles

Fig. 8.12 A macro-element
where b is the reference
triangle

La
i;x.x/ the i -th Legendre polynomial in ŒxA; 0�, with respect to the measure �a;x

defined by

Z 0

xA

f .x/ d�a;x D
Z

a

�a
AB�a

AEf .x/ dx dy 8 f .x/ W ŒxA; 0� ! R; (8.8.13)

where xA is the x-coordinate of the vertex A. We shall make use of the following
Legendre polynomials, which are defined in a similar way: Lb

i;x (its definition
involves �b

ED and �b
BD), Lb

i;y (using �b
BE and �b

BD), and Lc
i;y (using �c

BC and �c
CD).

Standard properties of the Legendre polynomials ensure that we can normalise
them, for instance, by requiring that they assume the same value (say 1) at the origin.
We now prove by induction with respect to the degree k that a modified inf-sup
condition holds true (see Verfürth’s trick in Sect. 8.5.2). Namely, for any qh 2 Qh,
we shall construct vh 2 Vh such that

�
Z

a[b[c

v h � grad qh dx dy � c1jj grad qhjj20;

jj v hjj0 � c2jj grad qhjj0: (8.8.14)
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The case k=2. This is the original Hood–Taylor method. Given p 2 Qh, we define
vh D .v1.x; y/; v2.x; y//, triangle by triangle, as follows:

v1.x; y/ja D ��a
AB�a

AEjj grad pjj0�; (8.8.15)

v2.x; y/ja D ��a
AB�a

AE

@p

@y
; (8.8.16)

v1.x; y/jb D ��b
ED�b

BDjj grad pjj0� � �b
ED�b

EB

@p

@x
; (8.8.17)

v2.x; y/jb D ��b
ED�b

BD

@p

@y
� �b

ED�b
EBjj grad pjj0�; (8.8.18)

v1.x; y/jc D ��c
BC�c

CD

@p

@x
; (8.8.19)

v2.x; y/jc D ��c
BC�c

CDjj grad pjj0�; (8.8.20)

where the quantities � and � are equal to ˙1 so that the expressions

H D � jj grad pjj0
�Z

a

�a
AB�a

AE

@p

@x
C
Z

b

�b
ED�b

BD

@p

@x

�

; (8.8.21)

K D � jj grad pjj0
�Z

b

�b
EB�b

ED

@p

@y
C
Z

c

�c
BC�c

CD

@p

@y

�

(8.8.22)

are non-negative. First of all, we observe that vh is an element of Vh: its degree is
at most two in each triangle, it vanishes on the boundary and it is continuous across
the internal edges because so is the tangential derivative of p.

It is easy to check that jjvhjj0 � c1jj grad pjj0. In order to prove the first equation
in (8.8.14), we shall show that the quantity
jjj grad pjjj D � R

˝
vh � grad p vanishes only when grad p is zero. From the equality

0 D jjj grad pjjj D
Z

a

�a
AB�a

AE

�
@p

@y

�2

C H

C
Z

b

 

�b
ED�b

EB

�
@p

@x

�2

C �b
ED�b

BD

�
@p

@y

�2
!

C K C
Z

c

�c
BC�c

CD

�
@p

@x

�2

;

(8.8.23)

it follows that

@p

@y
D 0 in a; (8.8.24)
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@p

@x
D @p

@y
D 0 in b; (8.8.25)

@p

@x
D 0 in c; (8.8.26)

H D K D 0: (8.8.27)

These last equations, together with the fact that each component of grad p is
constant if p 2 Qh, easily imply that

grad p D .0; 0/ in ˝: (8.8.28)

The case k > 2. Given p in Qh, if p is locally of degree k � 2, then the result
follows from the induction hypothesis. Otherwise, there exists at least one triangle
of ˝ in which p is exactly of degree k � 1. Like in the previous case, we define
vh D .v1.x; y/; v2.x; y// as follows:

v1.x; y/ja D ��a
AB�a

AEjj grad pjj0La
k�2;x�; (8.8.29)

v2.x; y/ja D ��a
AB�a

AE

@p

@y
; (8.8.30)

v1.x; y/jb D ��b
ED�b

BDjj grad pjj0Lb
k�2;x� � �b

ED�b
EB

@p

@x
; (8.8.31)

v2.x; y/jb D ��b
ED�b

BD

@p

@y
� �b

ED�b
EBjj grad pjj0Lb

k�2;y �; (8.8.32)

v1.x; y/jc D ��c
BC�c

CD

@p

@x
; (8.8.33)

v2.x; y/jc D ��c
BC�c

CDjj grad pjj0Lc
k�2;y�; (8.8.34)

with the same assumption on � and � , so that the terms

H D � jj grad pjj0
�Z

a

�a
AB�a

AELa
k�2;x

@p

@x
C
Z

b

�b
ED�b

BDLb
k�2;x

@p

@x

�

; (8.8.35)

K D � jj grad pjj0
�Z

b

�b
EB�b

EDLb
k�2;y

@p

@y
C
Z

c

�c
BC�c

CDLc
k�2;y

@p

@y

�

(8.8.36)

are non-negative. The same arguments as for k D 2, together with the described
normalisation of the Legendre polynomials, show that vh belongs to Vh.

In order to conclude the proof, we need to show that if
jjj grad pjjj D � R

˝
vh � grad p D 0, then the degree of grad p is strictly less than

k � 2. As before, jjj grad pjjj D 0 implies
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@p

@y
D 0 in a; (8.8.37)

grad p D 0 in b; (8.8.38)

@p

@x
D 0 in c; (8.8.39)

H D K D 0: (8.8.40)

The last equalities imply

Z

a

�a
AB�a

AELa
k�2;x � @p

@x
D 0 (8.8.41)

and
Z

c

�c
BC�c

CDLc
k�2;y � @p

@y
D 0: (8.8.42)

It follows that the degree of grad p is strictly less than k � 2 in contrast to our
assumption. ut
Remark 8.8.4. The proof of the theorem shows that the continuity hypothesis on
the pressure space Qh can be weakened up to require that qh is only continuous on
triplets of elements. ut
We conclude this subsection by stating the three-dimensional analogue to the
previous theorem and by recalling the main argument of the proof presented in [73].

Theorem 8.8.2. Let ˝ be a polyhedral domain and Th a regular sequence of
decompositions of it into tetrahedra. Assume that every tetrahedron has at least
one internal vertex. Then, the choice Vh WD .L1

k \ H 1
0 .˝//3 and Qh WD L1

k�1 \ Q

satisfies the inf-sup condition (8.2.16) for any k � 2.

Proof. We shall make use of the macro-element technique presented in Sect. 8.5.4.
In particular, we shall use Proposition 8.5.7 and the comments included in
Remark 8.5.6.

We consider an overlapping macro-element partition of Th as follows: for each
internal vertex x0, we define a corresponding macro-element Mx0 by collecting all
elements which touch x0. Thanks to the regularity assumptions on the mesh, we only
have to show that the macro-element condition (8.5.24) holds true (see, in particular,
Remark 8.5.6).

Let us consider an element K 2 M D Mx0 and an edge e of K which touches x0.
With a suitable choice of the coordinate system, we can suppose that the direction
of e coincides with that of the x axis. With the notation of Sect. 8.5.4, we shall
show that a function in KM cannot contain functions which depend on x in K .
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Namely, given a function p 2 Q0;M , we can define a function v 2 V0;M as
follows:

v WD
�

��1;i �2;i

@p

@x
; 0; 0

�

in Ki;

where Ki is a generic element of M sharing the edge e with K and �j;i , j D 1; 2,
are the barycentric coordinates of Ki associated with the two faces of Ki which
do not touch e. On the remaining elements, each component of v is set equal to
zero. It is clear that v is a k-th order polynomial in Ki and, since p is continuous
in M , @p=@x is continuous across the faces which meet at e and the function v is
continuous as well. Hence, v belongs to V0;M .

From the definition of Q0;M , it turns out that

0 D
Z

M

p div u D �
Z

M

grad p � v D
X

i

Z

Ki

�1;i �2;i

ˇ
ˇ
ˇ
ˇ
@p

@x

ˇ
ˇ
ˇ
ˇ

2

:

The last relation implies that p does not depend on x in Ki for any i and, in
particular, in K . On the other hand, we can repeat the same argument using as e

the other two edges of K meeting at x0 and, since the directions of the three used
edges are independent, we obtain that p is constant in K . ut
Remark 8.8.5. From the previous proof, we can deduce that the hypotheses on the
triangulation can be weakened, by assuming that each tetrahedron has at least three
edges which do not lie on the boundary of ˝ and which are not in the same plane. On
the other hand, given a generic mesh of tetrahedra, it is not difficult to add suitable
elements in order to meet the requirements of the previous theorem. ut
Remark 8.8.6. The main argument in the proof of the previous theorem is the
straightforward generalisation of the two-dimensional case. Indeed, the proof of
Theorem 8.8.1 could be carried out using the macro-element technique as well. ut

8.9 Other Developments for Divergence-Free Stokes
Approximation and Mass Conservation

From the discussion presented so far, it is clear that, in general, the incompressibility
constraint divu D 0 is not satisfied exactly at the discrete level. More precisely, the
discrete velocity field uh fulfills the following equation

Z

˝

divuh qh dx D 0 8qh 2 Qh;

so that the equality divuh D 0 holds in general only if

div.Vh/ � Qh: (8.9.1)
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Almost all stable elements that we have presented up to now do not satisfy
(8.9.1), the only exception being the two dimensional Scott–Vogelius scheme
P k � Pk�1, which however requires severe mesh restrictions (see Sect. 8.8.1).
Another example is presented in Example 8.10.3, On the other hand, discrete
schemes that fail to satisfy the divergence-free condition (at least locally) can lead
to undesired instabilities when used for the resolution of more complex problems.
This is the case, for instance, when a Stokes solver is used for the approximation of
non linear problems (see [39]), or when the incompressibility condition is related to
a physical mass conservation property, like in fluid-structure interaction problems
(see [78, 280]).

For this reason, a very active research area concerns investigations trying to
develop divergence-free Stokes elements, at least in a local sense.

8.9.1 Exactly Divergence-Free Stokes Elements, Discontinuous
Galerkin Methods

The simplest idea in order to satisfy (8.9.1) is to use a C 1 approximation of the
velocity field and to take as space of pressures exactly Qh D div.Vh/. Here we do
not follow this approach, but we focus on suitably chosen mixed approximations of
the Stokes problem.

Early attempts to develop divergence-free finite elements for the approximation
of the Stokes problem made use of particular mesh sequences. Besides the already
mentioned Scott–Vogelius family (see Sect. 8.8.1), a two dimensional approxi-
mation involving a mesh of rectangles has been introduced in [253, 385]. The
lowest element of the family is constructed as follows: Vh D L1.P2;1 � P1;2; Th/,
Qh D div.Vh/ � L1

Œ1�. It is clear that the use of rectangular elements imposes
limitations to the geometry of the domain ˝ , which make the scheme unappealing
for practical applications.

8.9.1.1 Discontinuous Galerkin Approximations

A more interesting approach arises from the use of discontinuous Galerkin approxi-
mations. A first possibility is to use a completely discontinuous finite element space
for the approximation of the velocity together with a postprocessing procedure
(see [156]), or H.div/ conforming elements in order to avoid the postprocessing
(see [157]).

A more recent approach is based on the idea of using H.div/ conforming
elements for the approximation of the velocities and to enrich them in order to
obtain the stability (see [238]); the enrichment is performed locally by means
of divergence-free polynomials (defined as the curl of suitably chosen bubble
functions), so that the scheme remains conservative. The construction holds on
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simplicial meshes in two and three dimensions and is based on BDM and RT
spaces. This research is further improved in [237], where a conforming divergence-
free element, which can be implemented on two dimensional triangular meshes,
is presented. In this case the enrichment is based on rational functions which
ensure stability and modify the tangential components of the basis functions across
the interelements in order to guarantee their continuity. Some a posteriori error
estimators (Sect. 7.11) for these methods have been considered in [251].

8.9.2 Stokes Elements Allowing for Element-Wise
Mass Conservation

From what we have seen, it is not so easy to obtain a discrete velocity with
vanishing divergence pointwise. On the other hand, in several applications it might
be desirable to have a local (element-wise) conservation of mass. From (8.9.1) it is
clear that discontinuous pressure schemes enjoy automatically a local conservation
property. In particular, if Qh contains piecewise constants, then divuh has zero mean
value on each element. In this respect, we believe that the Q

2
� P1 scheme (see

Sect. 8.6.3.1) is one of the best performing method for quadrilateral meshes. For
simplicial meshes, the SMALL element of Example 8.7.1 provides what seems to
be the simplest element ensuring local mass conservation.

Non conforming schemes can also achieve this goal. In particular the use of non
conforming piecewise linear element for the velocity and piecewise constants for the
pressures yields a simple locally divergence-free scheme. (see [165] and Sect. 8.4.4
for a discussion about this method). The extension to quadrilateral meshes requires
a careful choice of the non conforming space (see [330]).

For continuous pressure schemes, however, the situation is more complicate.
Relation (8.9.1), in particular, shows that the discrete divergence-free condition has
to be considered in a non local sense. For this reason, there have been studies trying
to modify standard spaces in order to achieve a more local conservation of mass.
The main idea behind this technique consists in adding piecewise constants to the
pressure space. It is clear that this modification allows for a local mass conservation
(actually, the method is transformed into a scheme with discontinuous pressures),
but can work only if it does not affect the validity of the inf-sup condition: a larger
pressure space is indeed a potential source of trouble for the stability.

Indeed, it can be shown that generalised Hood–Taylor (see Sect. 8.8) can be
modified by adding piecewise constants to the pressure space and preserving the
inf-sup condition (k � 2 in two dimensions and k � 3 in three dimensions). The
same procedure can be applied to the P 1isoP 2 � P1 element. For the Hood–Taylor
scheme, the idea was suggested in [231,232,369], where numerical evidence of the
improvement was given (see also [144]). The proof of the stability of the enhanced
lowest order Hood–Taylor scheme for triangular and rectangular meshes, can be
found in [322, 329, 364]. A more comprehensive discussion, including a general
proof of stability, can be found in [83].
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8.10 Spurious Pressure Modes

As we stated in the introduction to this chapter, the approximation of the Stokes
problem has been developed mostly independently of the theory of mixed methods.
This led to the use of some approximations which did not satisfy the inf-sup con-
ditions and which generated strange results, specially for the pressure components.
This generated the concept of spurious pressure modes.

For the Stokes problem with Dirichlet boundary conditions, pressure is defined
up to a constant which is the kernel of the gradient operator. This is a natural pressure
mode. However, this mode may not be the only one in discrete problems. For a given
choice of Vh and Qh, we define the space Sh of spurious pressure modes as follows:

Sh WD KerBt
h n KerBt : (8.10.1)

It is clear that a necessary condition for the validity of the inf-sup condition (8.2.16)
is the absence of spurious modes, that is,

Sh D f0g: (8.10.2)

In particular, if Sh is non-trivial, then the solution ph to the discrete Stokes
problem (8.2.11) can be changed to ph C sh, which is still a solution when sh 2 Sh.
Spurious modes correspond to null singular values as discussed in Sect. 5.6.2. The
existence of spurious modes is in many cases strongly mesh dependent. They
will appear on special regular meshes but will remain if such meshes are slightly
distorted.

We shall illustrate how this situation may occur with the following example.

Example 8.10.1 (The Q1�P0 element). Among quadrilateral elements, the Q
1
�P0

element is the first that comes to mind. It is defined as (see Fig. 8.13):

Vh WD .L1
Œ1�/

2 \ V; Qh WD L0
0 \ Q: (8.10.3)

This element is strongly related, for rectangular meshes, to some finite difference
methods [206]. Its first appearance in a finite element context seems to be in [255].

However simple it may look, the Q
1

� P0 element is one of the hardest elements
to analyse and many questions are still open about its properties. This element
does not satisfy the inf-sup condition: it strongly depends on the mesh. For a
regular mesh, the space of spurious modes is one-dimensional. More precisely,
gradh qh D 0 implies that qh is constant on the red and black cells if the mesh is
viewed as a chequerboard (Fig. 8.14).

This means that one singular value (cf. Chap. 3.4.3) of the operator Bh D divh

is zero. Moreover, it has been checked by computation [286] that a large number
of positive singular values converge to zero when h becomes small. In [263], it has
indeed been proved that the second singular value is O.h/ and is not bounded below
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Fig. 8.13 The Q
1

� P0

element

c1 c2 c1

c2 c1 c2

c1 c2 c1

Fig. 8.14 The chequerboard
mode

A

M

B

DC

Fig. 8.15 The reference
criss-cross

(see also [314]). The Q
1

� P0 element has been the subject of a vast literature. We
shall come back to it in Sect. 8.10.2. ut
We shall now present a few more examples and distinguish between local and global
spurious pressure modes.

Example 8.10.2 (The criss-cross P 1 � P0 element). Let us consider a mesh of
quadrilaterals divided into four triangles by their diagonals (Fig. 8.2). We observed,
in Example 8.3.2, that the P 1 � P0 element, on general meshes, is affected by
locking, that is, the computed velocity vanishes. On the mesh introduced above,
however, it is easy to see that non-zero divergence-free functions can be obtained.
The divergence is constant on each triangle. This means that there are four linear
relations between the values of the partial derivatives. It is easily seen that one of
them can be expressed as a combination of the others, this fact being caused by
equality of tangential derivatives along the diagonals. To make things simpler, we
consider the case where the diagonals are orthogonal (Fig. 8.15) and we label by
A, B , C , D the four triangles. We then have, by taking locally the coordinate axes
along the diagonals and by denoting by uK the restriction of a function of Vh to the
element K ,
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@uK
1

@x1

C @uK
2

@x2

D 0; K D A; B; C; D: (8.10.4)

On the other hand, one has at the point M

@uA
1

@x2

D @uB
2

@x2

;
@uA

1

@x1

D @uC
1

@x1

;
@uC

2

@x2

D @uD
2

@x2

;
@uB

1

@x1

D @uD
1

@x1

: (8.10.5)

It is easy to check that this makes one of the four conditions (8.10.4) redundant.
The reader may check the general case by writing the divergence operator in a non
orthogonal coordinate system.

The consequence of the above discussion is that on each composite quadrilateral,
one of the four constant pressure values will be undetermined. The dimension of
KerBt

h will be at least as large as the number of quadrilaterals minus one. This is
what we shall call local modes.

Thus, three constraints remain on each composite quadrilateral element. If we
admit that two of them can be controlled, using the methods of Sect. 8.5.5, by the
“internal” node M , we obtain an element that is very similar to the Q

1
�P0 element

with respect to the degrees of freedom. Indeed, it can be checked that on a regular
mesh, an additional, global chequerboard mode occurs and that the behaviour of
this approximation is essentially the same as that of the Q

1
� P0 element that will

be discussed in details in Sect. 8.10.2. These analogies have been pointed out, for
instance, in [82]. ut
The above example has shown the existence of two kinds of spurious pressure
modes. In the case of the criss-cross P 1 � P0 element presented in the previous
example, dim Sh grows as h goes to 0 and there exists a basis of Sh with local support
(that is, the support of each basis function can be restricted to one macro-element).
We shall refer to these modes as local spurious modes. Such pressure modes can
be eliminated by considering a composite mesh (in the previous example a mesh
of quadrilaterals instead of triangles) and using a smaller space for the pressures by
deleting some degrees of freedom from the composite elements. If the original space
is to be employed, one must check the extra compatibility conditions. This can often
be done by a small change in the data. This will be the case in Example 8.10.3.

If we now consider the Q
1

� P0 example (see Example 8.10.1), the dimension
of Sh does not grow when h goes to 0 and no basis can be found with a local
support. We then have a global spurious mode which cannot be eliminated as easily
as the local ones. Global modes usually appear on special (regular) meshes and are
symptoms that the behaviour of the element at hand is strongly mesh dependent and
requires a special care. Some elements may generate both local and global modes
as we have seen in the criss-cross P 1 � P0 method (see Example 8.10.2).

Example 8.10.3 (The criss-cross P 2 �P1 element). Another simple example where
a local mode occurs is the straightforward extension of the previous example to
the case of a P 2 � P1 approximation. This element has an interest because it is the
simplest really divergence-free element, that is, KerBh � KerB . Unfortunately, its
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Fig. 8.16 The criss-cross
P 2 � P1 element

three-dimensional counterpart does not seem to exist. We consider, as in Fig. 8.16,
a mesh of quadrilaterals divided into triangles by its diagonal. This means that on
each quadrilateral, we have 12 discrete divergence-free constraints, and it is easily
seen by the argument of Example 8.10.2, written at the point M , that one of them is
redundant. Thus, one spurious mode will appear for each composite quadrilateral.
However, in this case, no global mode will appear. The analysis of this element is
also related to the work of [153] by considering the stream function associated with
a divergence-free function. Considering the space of discrete pressures where the
spurious modes are removed, a standard proof using internal degrees of freedom
shows that one has a stable approximation. ut

8.10.1 Living with Spurious Pressure Modes:
Partial Convergence

The presence of spurious modes can be interpreted as a signal that the pressure space
used is in some sense too rich. We therefore can hope to find a cure by using a strict
subspace OQh of Qh as the space of the discrete pressures, in order to obtain a stable
approximation. The question arises whether or not this stability can be used to prove
at least a partial result on the original approximation. One can effectively get some
results in this direction as discussed in Sect. 5.6.3. In general, we cannot make a
direct use of the singular value decomposition but, in some cases, we can identify a
guilty subspace.

We suppose, here, that Q and Qh can be identified to their dual, as it is indeed
the case for the Stokes problem.

Following Sect. 5.3.3, we suppose that we know subspaces OVh and OQh of Vh and
Qh such that the couple OVh� OQh is stable. We denote QQh the orthogonal complement
of OQh in Qh. To apply the result of Sect. 5.3.3, we shall need to obtain the following:

b. Ovh; Qqh/ D 0 8 Qqh 2 QQh; 8 Ovh 2 OVh: (8.10.6)

We emphasise that this will be generally possible only on special meshes. We now
make the hypothesis that in (8.1.1), g has no component in QQh, that is,

.g; Qqh/ D 0; Qqh 2 QQh: (8.10.7)
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This condition is a restriction on admissible data. In practice, it will imply an
extra regularity condition on g which will in turn enable us to obtain (8.10.7)
through a small modification of g. We mean by small that this modification should
not jeopardise the accuracy of the approximation. If we refer to Sect. 5.6.2, by
supposing (8.10.7), we have killed the unstable part of uh. On the other hand, ph

will have components in QQh. However, the part of ph in OQh will be stable and will
provide a reasonable approximation of the solution. More precisely, under these
hypotheses, Proposition 5.3.1 yields the following results:

ku � uhkV � c1

�
inf

Ovh2 OVh

ku � OvhkV C inf
qh2Qh

kp � qhkQ

�
(8.10.8)

kp � OphkQ � c2

�
ku � uhkV C inf

qh2Qh

kp � qhkQ

�
C inf

Oqh2 OQh

kp � OphkQ: (8.10.9)

Example 8.10.4. The simplest example is the case of Example 8.10.3. In this case,
we have OVh D Vh. When the local modes are filtered, pressure will converge,
provided g has no component in these modes. This implies a slight restriction of
data. ut

The most important case is, however, the Q
1

� P0 element which we discuss in
the next section.

8.10.2 The Bilinear Velocity-Constant Pressure
Q

1
� P0 Element

We now come back to a rapid analysis of what is probably (and unfortunately!) the
most popular of all elements for incompressible materials. This is perhaps also the
hardest to analyse and as we shall see, only partial results are known. Origins of
this element can be traced back to finite difference methods [206] and its peculiar
properties were soon recognised. In particular, the chequerboard pressure mode was
already a familiar feature long before the scheme used were written in terms of finite
elements.

Let us summarise the basic facts. On a regular mesh, for a problem with Dirichlet
boundary conditions, two singular values of the matrix (cf. Sect. 5.6.2) vanish
instead of one. We thus have a pure spurious pressure mode in the terminology of
[340,341]. This spurious mode implies a compatibility condition on the data, which
is, in most cases but not always, easily satisfied. When the mesh is slightly distorted,
only one singular value is zero, corresponding to constants, but the second one is
very small, as the zero has become some value depending on the mesh distortion,
thus implying an ill-conditioning of the problem. In many computations, this ill-
conditioning is fortunately almost restricted to pressure: we have what [340, 341]
call an impure pressure mode which can be eventually filtered but often does not
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Fig. 8.17 Macro-element
and degrees of freedom

seem to affect (at least substantially) the computation of velocity. This is still not,
however, the whole story. One could indeed hope from all this that an inf-sup
stability condition could hold for the third singular value instead of the second
and that we could have stability in a simple quotient space. Experimental evidence
showed this hope to be false: on a regular mesh, a large number of eigenvalues
converge to zero at order h [286]. Johnson and Pitkäranta [263] indeed proved the
constant kh to be O.h/ (see also [99, 100, 288, 314]). The standard estimates would
then lead to the conclusion that no convergence will occur, in complete contradiction
with experience. The paper of Johnson and Pitkäranta provided a first result by
showing, on a regular mesh, that under stricter regularity assumptions than usual on
the solution, convergence could take place.

Pitkäranta and Stenberg [324] proved a convergence result, without special
regularity assumptions for a special type of mesh. We have already discussed, in
Sect. 8.10.1, following Sect. 5.6.2, the underlying algebraical issues involved. If
there is a “stable part”, the data corresponding to the unstable modes should be
null or small. In this case, the velocity can indeed be expected to behave well but
the pressure part is doomed. We shall now consider these results for our particular
case. To make things simpler, we shall first consider the case of a regular rectangular
mesh. On such a mesh, we consider a macro-element (Fig. 8.17) M formed of four
quadrilaterals.

On this macro-element, a piecewise constant pressure has four degrees of
freedom. We introduce a local basis on M; �1; �2; �3; �4 described symbolically
on the Fig. 8.18.

A chequerboard mode will obviously take its roots in �4. We therefore introduce
quite naturally the space

OQh WD
X

M

� 3X

iD1

˛iM �i;M

�
(8.10.10)

which will be the stable part and

QQh WD
X

M

˛4M �4;M (8.10.11)
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Fig. 8.18 Pressure basis
functions on M

the unstable part. Stability of .Vh, OQh/ is thus immediate from the standard
techniques, building a B-compatible operator. In fact, we shall build it for a subspace
OVh of Vh which will make it, a fortiori, valid for Vh. The choice of OVh can be inferred

from other well-known elements. We now use, as degrees of freedom, the two values
of velocity at the vertices of M and at its barycentre and the normal value (rather a
correction to this value) at mid-side nodes. The tangential component is thus linear
on each edge and determined by the values at the vertices (Fig. 8.17). To build a
B-compatible operator, we set

Ouh.Pi / D u.Pi /; i D 1; 2; 3; 4: (8.10.12)

To determine the normal node on the edges of M , we take
Z

e

.u � Ouh/ � ne ds D 0; (8.10.13)

where n
e

is the normal to e. This is enough to control the flux at interfaces and the
part of pressure (�1;M ) which is constant on M is controlled. The �2:M and �3;M

components are controlled by
Z

K

div.u � Ouh/�i;M dx D 0; i D 2; 3: (8.10.14)

It is not difficult to check that ˘hu D Ouh is a B-compatible operator for OVh � OQh.
We would now want to apply Proposition 5.3.1. First, this implies a condition on

data.

Remark 8.10.1. Following Sect. 5.3.3, to get reasonable results, the data should
satisfy

.g; Qqh/ D
Z

˝

Qqh div uh dx D 0 (8.10.15)
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which means, here,

.g; �4;M / D
Z

˝

�4;M div uh dx D 0: (8.10.16)

This in fact corresponds to a regularity condition. It is easy to check that on our
macro-element, we have

Z

M

�4;M div uh dx D O.h4/supjdiv
@2u

@x@y
j: (8.10.17)

This is enough to show that this integral can be made null through a small
perturbation of data. ut
In order to apply Proposition 5.3.1, we now need to check (5.3.19) that is now

Z

M

�4M div Ovh dx D 0 8M; 8Ovh: (8.10.18)

It should be seen, in order to check this, that the shape function w1 associated to
vertex P1, for instance, is a function of Q1.M / having the whole of M as its support.
A straightforward computation then shows that one has

Z

M

�4M div w1 dx D
Z

@K1

w1 � n d� �
Z

@K2

w1 � n d�

C
Z

@K3

w1 � n d� �
Z

@K4

w1 � n d� D 0:

(8.10.19)

In the same way, the shape function w12 associated with node P12 satisfies

Z

M

�4M div w12 dx D
Z

@K1

w12 � n d� C
Z

@K2

w12 � n d� D 0 (8.10.20)

and this is also true in the adjacent element because the mesh is aligned. The
shape function associated with the barycentre trivially satisfies the condition.
Condition (5.3.19) therefore holds and we have, by Proposition 5.3.1,

ku � uhkV �
�

inf
Ovh2 OVh

ku � OvhkV C inf
qh2Qh

kq � qhkQ

�
: (8.10.21)

In the present case, it is clear that an error estimate in OVh has the same order as an
estimate in Vh and the result is therefore almost optimal. We also have convergence
of (filtered) pressure in OQh by estimate (5.3.25). Following [324], we can now
extend this result to the case where the mesh is made from super macro-elements
like in Fig. 8.19.
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M2 M3

M1
M4

Fig. 8.19 A super-macro
S M and its sub-macros

Fig. 8.20 A special
macro-element

A general quadrilateral is divided in a regular way into 16 quadrilaterals. It is
well-known [202] that on a non rectangular mesh, at least a four by four patch of
elements is needed to generate a non-trivial discrete divergence-free function. We
thus have four “sub-macros” like in the previous case. The space of filtered pressures
OQh is taken exactly as on the regular mesh and is still defined by (8.10.10). The

space QVh is defined by the following degrees of freedom: the values of velocity at
the vertices of the Mi , the values at the barycentres of the Mi and a correction
of the component of velocity parallel to the mesh at the mid-side nodes of the Mi

internal to SM . One can directly build an interpolation operator enabling us to check
the inf-sup condition. Mid-side nodes of SM control the part of pressure constant
on the whole of SM . Internal mid-side nodes ensure mass-balance on each Mi

and the nodes at the barycentres of the Mi end the job. It must be remarked that
the alignment of mid-side velocities along the mesh is an essential feature of the
construction.

In order to prove condition (5.3.18), the only hard point is to check that (8.10.18)
still holds on every Mi . We refer the reader to [324] for this proof. It is then possible
to use Proposition 5.3.1 and to get optimal error estimates.

This is still not the whole story about this peculiar element. It is also possible
to prove stability [276, 354] on meshes built from macro-elements like in Fig. 8.20
without filtering or using another subterfuge.

This is coherent with the known experimental fact that on a general distorted
mesh, pressure modes disappear and the inf-sup constant is independent of h. This
last fact is still resisting analysis. It is our hope that the above technique could be
generalised to yield the complete result.

The above discussion can be extended to the three-dimensional case. Things are
made still more complicated by the fact that on a regular mesh (let say a n � n � n

assembly of elements to fix ideas), we do not have one spurious pressure mode but
3n�2 of them. This will also mean the same number of compatibility conditions on
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a bFig. 8.21 Pressure modes

Fig. 8.22 Degrees of
freedom for OVh

a bFig. 8.23 Local spurious
modes

data so that trouble should be expected when using apparently reasonable boundary
conditions. These spurious modes are depicted in the following Fig. 8.21. One of
them is the genuine 3-D chequerboard mode (Fig. 8.21a). The other ones are built
from an assembly of 2-D nodes. In Fig. 8.21b, we have sliced the mesh in order to
make apparent the internal structure of this mode. There are 3.n � 1/ possible such
slices so that we find the number of modes stated above.

We now sketch the extension of the above proof to the 3-D case. We shall only
present the rectangular case to avoid lengthening unduly this exposition. We thus
suppose that the mesh is built from 2 � 2 � 2 macro-elements (Fig. 8.22).

Our pressure space OQh will be built from Qh by deleting on each macro-element
four D .3 � 2 � 2/ spurious modes sketched in Fig. 8.23.

The mode depicted in Fig. 8.23b has obviously two other symmetrical counter-
parts. On each macro-element, we thus keep the 3-D analogues of the basis functions
�1;M , �2;M , �3;M of Fig. 8.18. We must now introduce OVh. This is done again by
taking off some degrees of freedom from Vh. The remaining ones are sketched in
Fig. 8.22 The internal node at the barycentre of the element is also used. It is now
clear that . OVh; OQh/ is a stable pair that provides O.h/ convergence. There remains
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to check condition (5.3.19) that is that OVh is transparent with respect to QQh. This is
done exactly as in the 2-D case by a simple check of flow balance at the surface of
elements. Proposition 5.3.1 then applies and we get O.h/ convergence for velocities
and filtered pressures.

It could be hoped that the same kind of analysis could be done for equal
interpolation continuous pressure methods such as the Q

1
� Q1 approximation.

Unfortunately, we know of no way in which condition (5.3.19) could be made to
hold and an analysis of the convergence properties of these approximations remains
an open question. We can however introduce an alternate way of stabilising such
approximations and this is done in the following section.

Remark 8.10.2 (However, this is a dangerous element). As we stated at the begin-
ning of this Section, the Q

1
� P0 element is widely employed. We presented the

above results to provide the reader with enough information about this unduly
popular element. It remains that using an unstable element is a dangerous option
and that the price to pay for an apparent simplicity may be inaccurate results. ut
Remark 8.10.3 (The worst drawback). An important draw-back for the Q

1
� P0

element is that the condition number of the dual problem in p is mesh dependent
while it is not for stable Stokes elements. When an iterative solution method is used,
this leads to a strong slowdown of the convergence. This is especially disastrous for
3-D problems where iterative methods are likely to be necessary. ut

8.11 Eigenvalue Problems

We shall briefly consider, here, the application of the results of Chap. 6 to the
approximation of eigenvalues for the Stokes problem. The results will also be
applicable to incompressible elasticity. They have some importance in this case
because of the popular modal method in which a problem is approximated using
a few eigenvectors as a basis for a Galerkin’s method.

We thus consider the eigenvalue problem introduced in (1.3.84), which we recall
for simplicity. We now take V D .H 1

0 .˝//2 and Q D L2.˝/
ı
R and we look for

u 2 V and q 2 Q satisfying

8
ˆ̂
<

ˆ̂
:

2�

Z

˝

".u/ W ".v/ dx C
Z

˝

p div v dx D �

Z

˝

u � v dx 8v 2 V;

Z

˝

q div u D 0; 8q 2 L2.˝/:

(8.11.1)

The Lagrange multiplier p ensures the incompressibility of the eigenmodes. This is
a problem of the type .f; 0/. It is easy to see, in the notation of Sect. 1.2.1, that if
˝ is, for instance, a convex polygon, QH

0 is H 1.˝/
ı
R and V H

0 is the subspace of
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.H 2.˝/ \ H 1
0 .˝//2 made of divergence-free functions (see [267]). In particular,

we can check that jjujjV H
0

D jjujj0 	 jjujj2 and jjpjjQH
0

D jj grad pjj0.
Let Vh and Qh be finite dimensional subspaces of V and Q respectively. We then

consider the discrete version of (8.11.1),
8
ˆ̂
<

ˆ̂
:

2�

Z

˝

".uh/ W ".vh/ dx C
Z

˝

ph div vh dx D �

Z

˝

uh � vh dx 8vh 2 Vh;

Z

˝

qh div uh D 0; 8qh 2 Qh:

(8.11.2)

In order to apply the theory of Sect. 1.2.1, we must check a few conditions. With
respect to ellipticity, we have no problem with conforming approximations. The
weak approximability (6.5.41) of QH

0 will surely hold if

inf
qh2Qh

jjp � qhjj0 � !1.h/jjpjj1 for all p 2 H 1.˝/
ı
R;

which is satisfied by all choices of finite element spaces that one may seriously think
to use in practice.

The strong approximability (6.5.42) of V H
0 , which now reads

jju � uI jj1 � !2.h/jjujj2 for all u 2 V H
0 ; (8.11.3)

is more delicate as uI has to be chosen in KerBh. If the pair .Vh; Qh/ satisfies the
inf-sup condition, then the property trivially holds.

Remark, however, that the typical way of proving the inf-sup condition, using
a B-compatible operator (Sect. 8.4.1) for every u, is more difficult than prov-
ing (8.11.3) directly. Moreover, there are choices of elements that fail to satisfy
the inf-sup condition, for which (8.11.3) holds true. For instance, we may think of
the Q

1
� P0 element of Sect. 8.10.2.

Let us assume, for simplicity, that ˝ is a square and that the decomposition
Th is made by N � N macro-elements M as in Fig. 8.17. We have seen that this
choice of elements does not satisfy the inf-sup condition: the operator Bt

h has a
non-trivial kernel (the chequerboard mode), and by discarding it, we still have at
best a discrete inf-sup condition with ˇh 	 h (see [101,264,314]). Nevertheless, for
u 2 V H

0 � KerB , we can construct uI as in the construction of OVh in Sect. 8.10.2: let
Ouh be the vector in OVh satisfying (8.10.12)–(8.10.14). It is not difficult to check that
uI D Ouh satisfies (8.11.3) with !2.h/ D O.h/. We have here an example where the
eigenvalues are approximated correctly even though the global matrix associated to
(6.5.8) is singular. The same kind of construction could be extended to a mesh of
macro-elements as in Fig. 8.19.

Remark 8.11.1. We have thus another instance in which the Q
1

� P0 element, very
popular for incompressible elasticity problems, manages to give an impression of
rectitude. ut
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8.12 Nearly Incompressible Elasticity, Reduced Integration
Methods and Relation with Penalty Methods

8.12.1 Variational Formulations and Admissible
Discretisations

We have already seen in Chap. 1 and in Remark 8.1.2 that there are difficulties asso-
ciated to approximations of nearly incompressible materials when using the standard
variational principle. This section will be devoted to showing how these problems
arise and how they can be cured from a proper mixed formulation. Consider, to make
things simpler, a problem with homogeneous Dirichlet conditions,

inf
v2.H 1

0 .˝//n
�

Z

˝

j".v/j2 dx C �

2

Z

˝

j div vj2 dx �
Z

˝

f � v dx: (8.12.1)

We already noted in Sect. 8.1 that this problem is closely related to the penalty
method used to solve the Stokes problem.

It was soon recognised in practice that a brute force use of (8.12.1) could lead,
for large values of �, to bad results, the limiting case being the locking phenomenon
that is an identically zero solution.

Example 8.12.1. The simplest case of such a bad situation would be to employ
piecewise linear elements. Then, for � large, (8.12.1) forces the piecewise constant
divergence to be almost null on each element, that is, implicitly using the P 1 � P0

element of Example 8.3.2. This led to the still persistent idea that triangular or
tetrahedral meshes could not be used for elasticity problems. ut

A cure was found in using a reduced (that is, inexact) numerical quadrature when
evaluating the term �

R
˝

j div vj2 dx associated with compressibility effects. We
refer the reader to the papers of [287] and [60] for a discussion of the long history of
this idea. We shall rather develop in detail in this example the relations of reduced
integrations and mixed methods and try to make clear to what extent they may be
claimed to be equivalent. For this, we first recall from Chap. 1 that problem (8.12.1)
can be transformed by a straightforward application of duality techniques into a
saddle point problem

inf
v

sup
q

�

Z

˝

j".v/j2 dx � 2

2�

Z

˝

jqj2 dx C
Z

˝

q div v dx �
Z

˝

f � v dx (8.12.2)

for which optimality conditions are, denoting .u; p/ the saddle point,

�

Z

˝

".u/ W ".v/ dx C
Z

˝

p div v dx D
Z

˝

f � v dx 8 v 2 .H 1
0 .˝//2; (8.12.3)
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Z

˝

div u q dx D 1

�

Z

˝

pq dx 8 q 2 L2.˝/: (8.12.4)

This is obviously very close to a Stokes problem and is also an example of the
perturbed problem studied in Chap. 4, that is: find u 2 V and q 2 Q such that

a.u; v/ C b.v; p/ D .f; v/; 8 v 2 V; (8.12.5)

b.u:q/ � c.p; q/ D .g; q/; 8 q 2 Q: (8.12.6)

We then know from Chap. 5, Sect. 5.5.2, that an approximation of (8.12.3) and
(8.12.4) (that is, a choice of an approximation for both u and p) which leads to
error estimates independent of � must be a good approximation for the limiting case
� D 0.

Remark 8.12.1. The preceding sections of this chapter therefore give us a good idea
of what should (or should not) be used as an approximation. All stable elements of
Sects. 8.6 and 8.7 can be employed and the choice depends on the choice of solver
and the mesh generation algorithm. ut
What we shall now see is that reduced integration methods correspond to an implicit
choice of a mixed approximation with a discontinuous pressure approximation. The
success of the reduced integration method will thus rely on the qualities of this
underlying mixed method. We have seen in Sect. 8.8.1 that discontinuous pressure
imposing exactly the divergence-free condition requires high degree polynomials
and special meshes. Reduced integration is then a way of reducing the degree of the
underlying pressure in order to hopefully obtain a stable approximation.

8.12.2 Reduced Integration Methods

Let us consider a (more or less) standard approximation of the original prob-
lem (8.12.1). An exact evaluation of the “penalty term” �

R
˝ j div vj2dx means that

for � large, one tries to get an approximation of u which is exactly divergence-free.
However, as we have already seen, few finite elements can stand such a condition
that will in most cases lead to a locking phenomenon due to over-constraining.
In a mixed formulation, one relaxes the incompressibility condition by the choice
of the approximation for p. Let us now see how this will be translated as a
reduced integration method at least in some cases. Let us then consider Vh � V WD
.H 1

0 .˝//n; Qh � Q WD L2
0.˝/, these approximation spaces being built from finite

elements defined on a partition of ˝ . On each element K , let there be given a set
of k points xi and weights !i defining a numerical quadrature formula

Z

K

f .x/ dx D
kX

iD1

!i f .xi /: (8.12.7)
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Remark 8.12.2. It will be convenient to define the numerical quadrature on a
reference element K and to evaluate integrals by a change of variables,

Z

K

f .x/ dx D
Z

OK
f . Ox/ J. Ox/ d Ox D

kX

iD1

!1 f . Oxi / J. Oxi /: (8.12.8)

The presence of the Jacobian J.x/ should be taken into account when discussing
the precision of the quadrature rule on K . ut
Let us now make the hypothesis that for vh 2 Vh and ph; qh 2 Qh, one has exactly

Z

K

qh div vh dx D
kX

iD1

!i Oqh. Oxi /1div vh. Oxi / J. Oxi / (8.12.9)

and

Z

K

ph qh dx D
kX

kD1

!i Oph. Oxi / Oqh. Oxi / J. Oxi /: (8.12.10)

Let us now consider the discrete form of (8.12.4),

Z

˝

div uh qh dx D 1

�

Z

˝

ph qh dx; 8 qh 2 Qh: (8.12.11)

When the space Qh is built from discontinuous functions, this can be read element
by element as

Z

K

qh div uh dx D 1

�

Z

K

ph qh dx 8 qh 2 Qh; (8.12.12)

so that using (8.12.9) and (8.12.10), one gets

Oph. Oxi / D �1div uh. Oxi / or ph.xi / D � div uh.xi /: (8.12.13)

Formula (8.12.8) can in turn be used in the discrete form of (8.12.3) which now
gives

2�

Z

˝

".uh/ W ".vh/ dxC�
X

K

� kX

iD1

!i J. Oxi /.1div uh. Oxi //.1div vh. Oxi //
�

D
Z

˝

f � v
h

dx: (8.12.14)
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In general, the term
P

K

 
kP

iD1

!i J. Oxi /.1divuh. Oxi //.1divvh. Oxi //

!

is not an exact

evaluation of
R

˝
divuh div vh dx and reduced integration is effectively introduced.

In the case where (8.12.9) and (8.12.10) hold, there is a perfect equivalence between
the mixed method and the use of reduced integration. Whatever will come from one
can be reduced to the other one. It will however not be possible, in general, to get
equalities (8.12.9) and (8.12.10) and therefore, a further analysis will be needed.
However, we shall first consider some examples of this complete equivalence case.

Example 8.12.2. Let us consider the Q
1

� P0 approximation on a rectangle and
a one-point quadrature rule. It is clear that div uh 2 P1.K/ and is integrated
exactly. In the same way, a one-point rule is exact for

R

˝
ph qh dx whenever

ph; qh 2 P0.K/. There is thus a perfect equivalence between reduced integration
and the exact penalty method defined by (8.12.11). ut
Example 8.12.3. We now consider again the same Q

1
� P0 element on a gen-

eral quadrilateral. To show that we still have equivalence requires a somewhat
more delicate analysis. Indeed, at first sight, the quadrature rule is not exact for
R

OK 1div uh JK. Ox/ dOx. Let us however consider in detail the term 1div uh D b@u1

@x1
C b@u2

@x2
.

Let B D DF be the Jacobian matrix of the transformation F from OK into K .
Writing explicitly

F D
(

a0 C a1 Ox C a2 Oy C a3 Ox Oy
b0 C b1 Ox C b2 Oy C b3 Ox Oy;

(8.12.15)

one has

B D
�

a1 C a3 Oy b1 C b3 Oy
a2 C a3 Ox b2 C b3 Oy

�

(8.12.16)

so that we get

B�1 D 1

J. Ox/

�
b2 C b3 Ox �b1 � b3 Oy

�a2 � a3 Ox a1 C a3 Oy
�

: (8.12.17)

However,

c@u1

@x1

D
�@Ou1

@ Ox1

.b2 C b3 Ox/ � @Ou1

@ Ox2

.b1 � b3 Oy/
� 1

J. Ox/
; (8.12.18)

c@u2

@x2

D
�@Ou2

@ Ox1

.�a2 � a3 Ox/ C @Ou2

@ Ox2

.a1 C a3 Oy/
� 1

J. Ox/
: (8.12.19)

When computing
R

OK 1div uh J. Ox/ dOx, the Jacobians cancel and one is left with the
integral of a function which is linear in each variable and which can be computed
exactly by a one-point formula. ut
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Example 8.12.4. Using a 4-point integration formula on a straight-sided qua-
drilateral can be seen, as in the previous example, to be exactly equivalent to a
Q

2
� Q1 approximation [59, 60]. ut

The above equivalence is, however, not the general rule. Consider the following
examples.

Example 8.12.5. We want to use a reduced integration procedure to emulate the
Crouzeix-Raviart element (cf. Sect. 8.6.2). To define a P1 pressure, we need three
integration points which can generate a formula that will be exact for second degree
polynomials (but not more). The bubble function included in velocity, however,
makes that div uh 2 P2.K/ and

R
K div uh qhdx will not be evaluated exactly. ut

Example 8.12.6. A full isoparametric Q
2
�Q1 element is not equivalent to its four-

point reduced integration analogue. ut
Example 8.12.7. A Q

2
� P0 approximation is not, even on rectangles, equivalent

to a one-point reduced integration method, for div uh contains second order terms
which are not taken into account by a one-point quadrature. ut

8.12.3 Effects of Inexact Integration

If we now consider into more details the cases where a perfect equivalence does
not hold between the mixed method and some reduced integration procedure, we
find ourselves in the setting of Sect. 5.5.4. In particular, b.vh; qh/ is replaced by an
approximate bilinear form bh.vh; qh/. We shall suppose, to simplify, that the scalar
product on Qh is exactly evaluated. Two questions must then be answered.

– Does bh.:; :/ satisfy the inf-sup condition?
– Do error estimates still hold without loss of accuracy?

We have already introduced in Sect. 5.5.4 a general setting in which this situation
can be analysed. We shall first apply Proposition 5.5.8 in order to check the inf-sup
condition for two examples and we shall give an example where an inexact integral
changes the nature of the problem. We shall then consider consistency error for
those three examples.

Example 8.12.8. We in fact come back to Example 8.12.7 and study on a rectangu-
lar mesh the Q

2
� P0 approximation (see Sect. 8.6.3) with a one-point quadrature

rule. This is not, as we have said, equivalent to the standard Q
2
�P0 approximation.

We now want to check, using Proposition 8.4.1, that it satisfies the inf-sup condition.
We thus have to build a continuous operator (in H 1.˝/-norm) such that

Z

˝

div uh qh dx D
X

K

Œ.div ˘huh/.M0;K/qK� area.K/ (8.12.20)
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8
hy

hx

Fig. 8.24 Numbering for the
Q2 element

where M0;K is the barycentre of K and qK the restriction of qh to K . As qh is
discontinuous, we can restrict our analysis to one element and we study both sides
of equality (8.12.20). We have of course, taking qK D 1,

Z

K

div uh dx D
Z

@K

uh � n d�: (8.12.21)

Using the numbering of Fig. 8.24 and denoting by ui , vi the horizontal and
vertical components of velocity at node i , we can write (8.12.21) by Simpson’s
quadrature rule in the form

Z

K

div uh dx D hy

6
Œu5 C 4u4 C u3� � hy

6
Œu1 C 4u8 C u7�

C hx

6
Œv7 C 4v6 C v5� � hx

6
Œv1 C 4v2 C v3�:

(8.12.22)

If we write

u4 D u5 C u3

2
C Ou4; u8 D u1 C u7

2
C Ou8 (8.12.23)

v0 D v5 C v7

2
C Ov6; v2 D v1 C v3

2
C Ov2; (8.12.24)

where Ou4; Ou6; Ov6 and Ov2 are corrections with respect to a bilinear interpolation, we
may rewrite (8.12.22) as

Z

K

div uh dx D hy

2
Œu5 C u3 C 4

3
Ou4� � hy

2
Œu1 C u7 C 4

3
Ou8�

C hy

2
Œv7 C v5 C 4

3
Ov6� � hx

2
Œv1 C v3 C 4

3
Ov2�:

(8.12.25)

On the other hand, area .K/ div uh.M0;K/ can be seen to be equal to

hy

2
Œu5 C u3 C 2Ou4� � hy

2
Œu1 C u7 C 2Ou8�

�hx

2
Œu7 C v5 C 2 Ov6� � hx

2
Œv1 C v3 C 2Ou2�:

(8.12.26)
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If we thus split uh into a bilinear part u0
h and a mid-point correction part Ouh, one can

define ˘huh by setting
8

<̂

:̂

.˘huh/0 D u0
h;

.1˘huh/ D 2

3
Ouh:

(8.12.27)

Equality (8.12.21) will then hold and (8.12.27) is clearly continuous with a
continuity constant independent of h. ut
Example 8.12.9. We come back to Example 8.12.5 that is a three-point quadrature
rule used in conjunction with the Crouzeix-Raviart element. We shall not give
the analysis in detail but only sketch the ideas. The problem is again to check
that the inf-sup condition holds through Proposition 8.4.1. As the quadrature rule
is exact when qh is piecewise constant, the obvious idea is to build ˘huh by leaving
invariant the trace of uh on @K and only modifying the coefficients of the bubble
functions. This can clearly be done. Continuity is now to be checked and the proof
is essentially the same as the standard proof of the inf-sup condition (Sect. 8.7.2).

ut
Example 8.12.10 (A modified Q

1
�P0 element). We now present a puzzling exam-

ple [127] of an element which is stable but for which convergence is tricky due to
a consistency error term. We have here a case where using a one-point quadrature
rule will change the situation with respect to the inf-sup condition. In fact, it will
make a stable element from an unstable one but will also introduce an essential
change in the problem. The departure point is thus the standard Q1 � P0 element
which was studied in Sect. 8.10.2 and which, as we know, does not satisfy the inf-
sup condition. We now make it richer by adding to velocity uhjK D fu1; u2g what
we shall call wave functions. On the reference element OK D� � 1; 1Œ�� � 1; 1Œ, those
functions are defined by

(
w1 D Ox b2. Ox; Oy/;

w2 D Oy b2. Ox; Oy/;
(8.12.28)

where b2. Ox; Oy/ D .1 � Ox2/.1 � Oy2/ is the Q2 bubble function. If we now consider

OuhjK D fu1 C ˛Kw1; u2 C ˛Kw2g D uhjK C ˛kwk; (8.12.29)

we obtain a new element with an internal degree of freedom. The wave functions
that we added vanish on the boundary and nothing is changed for the stability of
the mixed method with exact integration. If we rather use a one-point quadrature
rule, things become different. We shall indeed check that the modified bilinear form
bh. Ovh; qh/ satisfies the inf-sup condition. We thus have to show that

sup
Ouh

P

K

div Ouh.M0;K/pK h2
K

kOuhk1

� k0 kphk0: (8.12.30)
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This is easily checked by posing on K (we suppose that we have a rectangular mesh
to make things simpler)

OuhjK D hK pKwK: (8.12.31)

We then have div Ouh D ph and

kOuhk1;K D h pK kwKk1;K; (8.12.32)

which implies

kuhk1 � c kphk0; (8.12.33)

and (8.12.30) follows. A remarkable point is, now, that even the hydrostatic mode
has disappeared. This is an indication that something incorrect has been introduced
in the approximation. An analysis of consistency error indeed shows that usual
error estimates fail and that we are actually approximating a continuous problem in
which the incompressibility condition has been replaced by div u C kp D 0 where
k D a=b. We then see that if, in general for the Stokes problem, making the space
of velocities richer improves (at least does not reduce) the quality of the method,
this fact can become false when numerical integration is used. ut
Let us now turn our attention to the problem of error estimation. From Proposi-
tion 5.5.6 and Remark 5.5.9, all we have to do is to estimate the consistency terms,

sup
vh

jb.vh; p/ � bh.vh; p/j
kvhkV

(8.12.34)

and

sup
qh

jb.u; qh/ � bh.u; qh/j
kqhk0

: (8.12.35)

We thus have to estimate quadrature errors. It would be out of purpose to enter into
details, and we refer the reader to [147, 148] where examples of such analysis are
presented exhaustively. The first step is to transform (8.12.34) into a form which is
sometimes more tractable. We may indeed write

b.vh; p/ � bh.vh; p/ D .bh.vh; p � qh/ � bh.vh; p � qh//

C .b.vh; qh/ � bh.vh; qh//
(8.12.36)

and

b.u; qh/ � bh.u; qh/ D .b.u � vh; qh/ � bh.u � vh; qh//

C .b.vh; qh/ � bh.vh; qh//:
(8.12.37)

The first parenthesis in the right-hand side of (8.12.36) and (8.12.37) can be reduced
to an approximation error. The second parenthesis implies only polynomials.
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Let us therefore consider (8.12.37) for the three approximations introduced
above. For the Crouzeix-Raviart triangle, taking vh the standard interpolate of u
makes the second parenthesis vanish while the first yields an O.h/ estimate. For the
two other approximations, taking vh to be a standard bilinear approximation of u
makes the second parenthesis vanish while the first yields an O.h/ estimate, which
is the best that we can hope for anyway. The real trouble is therefore with (8.12.34),
with or without (8.12.36). In the case of the Crouzeix-Raviart triangle, we can use
directly (8.12.34) and the following result of [147, 148].

Proposition 8.12.1. Let f 2 Wk;q.˝/; pk 2 Pk.K/ and denote Ek.fpk/ the
quadrature error on element K when numerical integration is applied to fpk .
Let us suppose that EK. O�/ D 0 8 O� 2 P2k�2.K/. Then, one has

jEK.fpk/j � chk
K .meas.K//

1
2 � 1

9 jf jk;q;K jpkj1: (8.12.38)

ut
Taking k D 2 ; q D 1 and using the inverse inequality to go from jpkj1 to jpkj0,
one gets an O.h2/ estimate for (8.12.34).

The two other approximations cannot be reduced to Proposition 8.12.1 and must
be studied through (8.12.36). We must study a term like

sup
vh

jb.vh; qh/ � bh.vh; qh/j
kvhk1

: (8.12.39)

This can at best be bounded. For instance in the case of the Q
2
� P0 approximation,

we can check by hand that the quadrature error on K reduces to h3
K j div vhj2;K pk .

8.13 Other Stabilisation Procedures

We shall now consider, for the Stokes problem, stabilised formulations presented
in Sect. 6.1.1 of Chap. 6. It is clear or should be clear from the results presented in
the present chapter that the key of success in stabilising incompressible elements is
in weakening the discrete divergence-free condition. This was done, up to now, by
reducing the space Qh of pressures or by enriching the space Vh of velocity field.
We now consider the other possibility of a modified variational formulation. In many
cases, this will amount to explicitly weaken the condition divh uh D 0 by changing
it to

divh uh D gh; (8.13.1)

where gh is a (well chosen) “small” function. One step in this direction had been
done in the work of [131] who considered the relaxed condition
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Z

˝

div uh qh dx D ˇ
X

K

h2
K

Z

K

grad ph � grad qh dx (8.13.2)

in the case of a continuous pressure approximation (that is Qh � H 1.˝/).
In (8.13.2), ˇ is any positive real number. On a regular mesh, this is a discrete
form of

div u D �ˇh2 4p: (8.13.3)

It is easy to understand that appearance of oscillations due to spurious pressure
modes will make 4h ph large. This will relax the divergence-free condition, thus
preventing the growth of such oscillations. The practical use of (8.13.2) indeed
requires a delicate balance between two conflicting phenomena. When ˛ is chosen
too small, stabilisation is poor and spurious pressure modes persist. On the other
hand, taking ˛ too large spoils the value of ph near the boundary because of the
parasitic Neumann condition @ph

@n
D 0 which is implicit in (8.13.2).

This procedure was later generalised by Hughes and Franca [256] and Hughes
et al. [257] in order to improve its consistency, in a way that we present below.

We shall first try to give a unified presentation of this kind of methods using
the general theory of stabilisation procedures developed in Chap. 5. We shall first
consider augmented methods.

8.13.1 Augmented Method for the Stokes Problem

We consider the stabilised formulation (6.1.50) in the special context of the Stokes
problem (1.5.23). We now have

V WD .H 1
0 .˝//n; V 0 WD .H �1.˝//n; H WD .L2.˝//n; Q D Q0 WD L2.˝/

and the dense inclusions V � H � V 0. We also have, for u 2 V and p 2 Q,

b.v; q/ D R
˝ q div v dx;

Bu D � div u 2 Q; Bt p D grad p 2 V 0:
(8.13.4)

As to the operator A, it is defined by

hAu; vi D a.u; v/ D 2�

Z

˝

".u/ W ".v/dx: (8.13.5)

The case t D 1 of Sect. 6.1.2 (with ˇ2 D 0) which corresponds to a stabilisation
method introduced by Douglas and Wang [179] now reads as
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

hAuh C grad ph � f ; vhiV 0�V

C ˇ.Auh C grad ph � f ; Avh/V 0�V 0 D 0; 8 vh 2 Vh;

hdiv uh C g; qiQ0�Q

C ˇ.Auh C grad ph � f ; grad qh/V 0�V 0 D 0; 8 qh 2 Qh;

(8.13.6)

while in the case t D 0, the extra term is only written in the second equation
8
ˆ̂
<

ˆ̂
:

hAuh C grad ph � f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv uh C g; qiQ0�Q

C ˇ.Auh C grad ph � f ; grad qh/V 0�V 0 D 0; 8 qh 2 Qh:

(8.13.7)

We must now build a computable implementation of these formulations. Indeed, the
scalar product in V 0 is not directly handable. In the present case, as the operator A

is an isomorphism from V onto V 0, we can define the scalar product as

.u0; v0/V 0�V 0 WD hA�1u0; v0iV �V 0 : (8.13.8)

However, this means being able to compute the exact inverse of A. We now have to
introduce an approximation and many options are open.

Example 8.13.1 (Defining a scalar product by an approximation of A�1). The first
idea that comes to mind is to use some approximate operator S�1

h instead of A�1.
This could be done by solving an auxiliary problem in a space richer than Vh. Our
problem (8.13.7) would now be changed into

8
ˆ̂
<

ˆ̂
:

hAuh C grad ph � f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv uh C g; qiQ0�Q

C ˇhS�1
h .Auh C grad ph � f /; grad qhiV �V 0 D 0; 8 qh 2 Qh;

(8.13.9)
with a similar expression for (8.13.6). ut
Example 8.13.2 (Defining a scalar product by a change of space). Another way of
defining a discrete formulation, introduced in [256] and [257], is to replace

ˇ.Auh C grad ph � f ; grad qh/V 0�V 0 (8.13.10)

by an expression of the form

ˇ
X

K

h2
K

Z

K

.AuhjK C grad ph � f / � grad qh dx (8.13.11)

and by a similar change on the term appearing in the first equation of (8.13.6) if we
want to use t D 1. This can be seen as another way (through an “inverse inequality”)
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of defining a discrete scalar product corresponding to the H �1.˝/ scalar product by
using a scalar product in H . If the exact solution u is regular enough, this expression
written for u vanishes and we have what has been termed as “strong consistency”.
Note that for piecewise linear uh; AuhjK vanishes, leaving only a corrective term of
the form

ˇ
X

K

h2
K

Z

k

. grad ph � f / � grad qh dx; (8.13.12)

which is a variant of (8.13.2). The aim of (8.13.11) is largely to replace the Neumann
condition @ph

@n
D 0, which is implicit in (8.13.2), by a more correct one, hopefully

making the choice of ˇ easier. ut
We now come back to our discrete stabilised problems (8.13.6) or (8.13.9) and we
first consider the option of using a discrete operator S�1

h . We shall see that in one
important case, both options are equivalent, and that in other cases, we fall back
onto known methods.

8.13.2 Defining an Approximate Inverse S �1
h

Let Vh be the finite element space in which we compute uh. We introduce a space
V C

h of new degrees of freedom and the space Wh WD Vh ˚ V C
h . We can now define

sC
h WD S�1.Auh C grad ph � f / 2 V C

h by a “hierarchical” computation in V C
h

a.sC
h ; vC

h / D hAuh C grad ph � f ; vC
h i; 8 vC

h 2 V C
h : (8.13.13)

In many cases, V C
h will be a space of “bubbles” and this problem will be solvable

element by element. For the case t D 0, our stabilised problem (8.13.7) would now
be read, sC

h being defined from (8.13.13), as

( h.Auh C grad ph � f /; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv .uh C ˇsC
h / C g; qiQ0�Q D 0; 8 qh 2 Qh;

(8.13.14)

which indeed contains a weakened condition of the form (8.13.1). The case t D 1

of (8.13.6) would yield
( hA.uh C ˇ1s

C
h / C grad ph � f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv .uh C ˇ1sC
h / C g; qiQ0�Q D 0; 8 qh 2 Qh:

(8.13.15)

Taking into account equation (8.13.13), one can see that for ˇ D 1, this is nothing
but the solution of the Stokes problem using Wh � Qh as the finite element space.
This will obviously work if this choice of spaces is stable and we have rediscovered
that enriching the space Vh is a good way of getting a stable method. As for the
case (8.13.14), it would be an approximation of this case, which could hardly be
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considered as simpler as the matrix of the problem is not symmetric. Proving its
stability would require some “quasi-orthogonality” between Vh and V C

h of the same
type as what is used to study hierarchical error estimators [2, 47]. We shall not
try to get much further in this direction. There is however a simple case where
both (8.13.14) and (8.13.15) coincide and in fact are equivalent to (8.13.12).

Example 8.13.3 (Defining S�1
h with bubbles, the MINI element). Let us consider the

case of a piecewise linear approximation for both Vh and Qh, which is well known
to be unstable. To fix ideas, we shall use for V C

h the space B3 of conforming cubic
bubbles, although we might also use other shapes of bubbles or nonconforming
quadratic bubbles. Let then bK be the bubble associated to element K . We can write
any function of V C

h in the form

vC
h D

X

K

ˇ
K

bK:

The key of what follows is the fact that we have orthogonality between the space of
bubbles and Vh in the sense that

a.sC
h ; vh/ D a.vh; vC

h / D 0 8 vh 2 Vh; 8 vC
h 2 V C

h : (8.13.16)

As we use bubbles, our Eq. (8.13.13) can be solved element by element and we have
on every K

ıKˇ
K

D
Z

K

.f � Auh � grad ph/ � bK dx D
Z

K

.f � grad ph/ � bK dx (8.13.17)

where

ıK D �

Z

K

j".bK/j2 dx: (8.13.18)

To make things easier, suppose that f is piecewise constant so that we can
rewrite (8.13.17) as

ıKˇ
K

D 	K.f � grad ph/ (8.13.19)

where we denote

	K D
Z

˝

bK dx: (8.13.20)

We thus obtain

S�1.Auh C grad ph � f / D
X

K

.	K=ıK/.f � grad ph/bK: (8.13.21)
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Using (8.13.21), (8.13.14) becomes

8
ˆ̂
<̂

ˆ̂
:̂

hAuh C grad ph C f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv uh C g; qiQ0�Q

� ˇ
X

K

.	2
K=ıK/.grad ph � f ; grad qh/L2.K/�L2.K/ D 0; 8 qh 2 Qh;

(8.13.22)

and this is nothing but a slight variant of the stabilisation obtained from (8.13.11),
as we can check that

	2
K=ıK D cKh2

K (8.13.23)

with a constant cK depending on the shape of the element. The same reasoning can
be done with other choices for the space of bubbles.

Remark 8.13.1 (The MINI element). Given the orthogonality of (8.13.16), it is easy
to see that the formulations of (8.13.6) and (8.13.7) obtained from (8.13.17) coincide
and that for ˇ D 1, they are nothing but the solution of the Stokes problem with the
MINI element. ut

We thus see that the technique of Example 8.13.2 can be obtained in different
ways. We now proceed to develop an error analysis of these methods.

Example 8.13.4 (Error estimates for the Hughes-Franca stabilisation). We place
ourselves in the case of “equal interpolation”, that is, using polynomials in L1

k for
Vh and Qh. Note however that the space Vh will satisfy boundary conditions while
Qh will not. We present the result in the two-dimensional case but it can easily be
extended to the three-dimensional case. We have a space of continuous pressures
and we have thus grad ph 2 H D .L2.˝//2. To simplify the presentation, we
define on H

hu; viH D
X

K

h2
K

Z

K

u � v dx; Œv�2H D hv; viH : (8.13.24)

For any uh 2 Vh, we also define Auh 2 H by

AuhjK D AujK (8.13.25)

and we write a stabilised formulation
(

hAuh C grad ph � f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv uh C g; qiQ0�Q C h.AuhjK C grad ph � f /; grad qhiH D 0; 8 qh 2 Qh;

(8.13.26)
which is the method of [256].
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Following the procedure of Chap. 5, Sect. 6.1.2, we must obtain a stability result and
estimate the consistency term. For stability, we define the bilinear form

Ah.uh; ph/; .vh; qh/i WD a.uh; vh/ � b.vh; ph/ C b.uh; qh/

C ˇh.Auh C grad ph/; grad qhiH :
(8.13.27)

For uh D vh and ph D qh, we obtain

Ah.vh; qh/; .vh; qh/i D ˛kvhk2
V CˇŒgrad qh�2H CˇhAuhjK; grad qH iH : (8.13.28)

To prove stability, we recall that from Verfürth’s trick (cf. Sect. 8.5.2 and also
Chap. 6.3), we have

Œgrad qh�h � kkqhkQ: (8.13.29)

On the other hand, we bound the last term by

ˇhAuhjK; grad qH iH � ˇŒAuh�hŒ grad qh�H � ˇ

2
ŒAuh�2h C ˇ

2
Œgrad qh�2h: (8.13.30)

However, using an inverse inequality, we have

Z

K

jAuhj2 dx � M
1

ch2
K

kuhk2
1;K (8.13.31)

and thus

X

K

h2
K

Z

K

jAuhj2 dx � M

c
kuhk2

V : (8.13.32)

Using this last result in (8.13.28), we have

Ah.vh; qh/; .vh; qh/i.˛ � ˇM

c
/kvhk2

V C ˇŒ grad qh�2H ; (8.13.33)

which implies stability for ˇ small enough. It should be remarked that for the degree
of the approximation k D 1, AuhjK D 0 and that we then have stability for any value
of ˇ.

Following Sect. 6.1.1 of Chap. 6, we now have to bound, .uI ; pI / being an
interpolate of .u; p/, a term of the form

ˇ
X

K

h2
K

Z

K

	
.j.AuI � Au/jK j2/ C jp � pI j2
 dx: (8.13.34)
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The crucial term is the first one. If polynomials of degree k are employed, we have,
by classical interpolation results, an estimate on K ,

Z

K

j.AuI � Au/jK j2 dx D O.h2k�2
K /

and the loss of precision is exactly compensated by the choice of the stabilising
parameter ˇh2

K .
The method does work for any degree of polynomial. However, it should be noted

that for k > 1, it leads to a non-symmetric system which makes it less appealing.
ut

8.13.3 Minimal Stabilisations for Stokes

We now consider another class of stabilisations which contains, as a special case,
the method of (8.13.2). Although this could be written in general, we shall restrict
ourselves to the case of a first order approximation, Vh � .L1

1/
n \ V; Qh � L1

k \ Q.
The method will be a direct adaptation of Sect. 6.3.1 of Chap. 6. We introduce
another space QVh 2 .L1

1/
2, denoting QP the projection over QVh in the norm of

H WD .L2.˝//n and we consider the following problem:

8
ˆ̂
<

ˆ̂
:

hAuh C grad ph � f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv uh C g; qiQ0�Q

C r.grad ph � QP grad ph; grad qh/H D 0; 8 qh 2 Qh:

(8.13.35)

This fits entirely into the theory of Chap. 6 and we have the error bound

ku � uhk2
V C kp � phk2

Q

� C .
!2.h/ C r

r
/

�

inf
vh2VH

ku � vhk2
V

�

C .1 C r

!.h/2
/ inf

qh2Qh

kp � qhk2
Q C rk.I � QP /.grad p/k2

H ;

(8.13.36)
provided that the following assumption holds:

A

8
<

:

There exists a positive constant 	; independent of h ; such that
kPVh

grad qhk2

Ck grad qh � QP grad qhk2 � 	k grad qhk2 8 qh 2 Qh:

(8.13.37)
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Now, as we use an approximation of degree one, we would like all terms on the
right-hand side of inequality (8.13.36) to be O.h2/ and we consider three cases.

(i) The Brezzi-Pitkäranta formulation. If we take QVh D f0g and thus QP D I ,
assumption A evidently holds. The last term in (8.13.36) reduces to
rk grad pk2

H and we need to make r D O.h2/ to get the error bound. The
drawback of the method is the boundary layer on grad ph.

(ii) Projection on Vh. Assumption A is again immediate. We must again con-
sider the last consistency term. Some trouble arises because Vh satisfies
boundary conditions (e.g., vh D 0 on the boundary). We can then expect
k.I � QP /.grad p/k2

H to be no better than O.h/. Taking r D O.h/ would restore
the optimal order but the problem with the boundary layer is not cured.

(iii) Optimal projection. From the previous discussion, one sees that taking QVh D
.L1

1/
2, that is, suppressing boundary conditions, will work with r D O.1/ and

will eliminate the spurious boundary layer. The trouble is now with assumption
A. It was proved in [123] that it indeed holds. This method had been used
in [51].

In order to prove our assumption A, we first consider the following result.

Proposition 8.13.1. Let Qh and Vh be the space of piecewise linear pressures and
velocities as above, and let QVh be the space of piecewise linear continuous vectors
on Th (without boundary conditions.) There exists a constant ˇ� > 0, independent
of h, such that, for every qh 2 Qh and for every wh 2 QVh, there exists a v0

h 2 Vh

verifying

kv0
hk0 � k grad qhk0 (8.13.38)

and

.v0
h; grad qh/0 C k grad qh � whk2

0 � ˇ�k grad qhk2
0: (8.13.39)

Proof. Let us consider first a macro-element K made by the collection of triangles
having one vertex P of Th in common. Split qh D q0 C q`, where q0 is such that
grad q0 has zero mean value in K and q` is linear on K (hence grad q` = constant
in K .) It is clear that .grad q0; grad q`/K D 0. We now take v0

h, piecewise linear,
continuous, vanishing on the boundary of K and having value

p
6 grad q` at the

internal vertex P . An easy computation shows that:

kv0
hk0;K D k grad q`k0;K (8.13.40)

and

.v0
h; grad q`/K D

r
2

3
k grad q`k2

0;K: (8.13.41)
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On the other hand, grad q0 belongs to a space (piecewise constant vectors on K ,
with continuous tangential components, and zero mean on K) whose intersection
with piecewise linear continuous vectors on K is reduced to the zero vector. As we
are in finite dimension, there exists a positive constant ıK such that, for every grad q0

and for every wh,

k grad q0 � whk2
0 � ıKk grad q0k2

0;K: (8.13.42)

As grad q` is clearly continuous and piecewise linear, (8.13.42) easily implies that

k grad qh � whk2
0 D k grad q0 C grad q` � whk2

0

D k grad q0 � Qwhk2
0 � ıKk grad q0k2

0;K ;
(8.13.43)

and a simple scaling argument shows immediately that ıK is independent of the size
of K (notice that (8.13.43) holds for every wh).

Finally, we explicitly point out that

.v0
h; grad q0/K D v0

h.P /

3

Z

K

grad q0dx D 0; (8.13.44)

where P is the only vertex internal to K . From (8.13.41) to (8.13.44), one then gets
that, for every qh and for every wh, there is a v0

h, piecewise linear, continuous, and
vanishing on the boundary of K , such that (8.13.40) holds and

.v0
h; grad qh/K C k grad qh � whk2

0;K � ˇKk grad qhk2
0;K; (8.13.45)

for some positive constant ˇK independent of qh and wh. The result (8.13.38) and
(8.13.39) then follows easily from (8.13.45) by typical instruments (continuity of
ˇK , splitting of ˝ into macro-elements such that each triangle belongs at most to
three different macro-elements, and so on). ut
With the aid of Proposition 8.13.1, we can now prove Assumption A.

Proposition 8.13.2. Let Qh, Vh and QVh be as in Proposition 8.13.1. Then, there
exists a constant Q̌ > 0 such that

kPVh
grad qhk2 C k grad qh � P QVh

grad qhk2 � Q̌ k grad qhk2 8 qh 2 Qh;

(8.13.46)
where all the norms are in L2.

Proof. We start by observing that, for every v0
h and qh, we have

.v0
h; grad qh/ D .v0

h; PVh
grad qh/ � kv0

hk kPVh
grad qhk

� ˇ�

2
kv0

hk2 C 1

2ˇ� kPVh
grad qhk2;

(8.13.47)
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where the last inequality clearly holds for every positive ˇ�, but we shall use it
for the value of ˇ� given in (8.13.39). For every qh, we now take v0

h as given by
Proposition 8.13.1, and using (8.13.38), we have

.v0
h; grad qh/ � ˇ�

2
k grad qhk2 C 1

2ˇ� kPVh
grad qhk2; (8.13.48)

which, inserted in (8.13.39) with wh D P QVh
grad qh, gives

ˇ�

2
k grad qhk2 C 1

2ˇ� kPVh
grad qhk2 Ck grad qh �P QVh

grad qhk2 � ˇ� k grad qhk2;

(8.13.49)
and (8.13.46) follows immediately. ut
Remark 8.13.2 (Enhanced strain methods). Finally, to conclude this section, we
would like to note that another example of stabilisation of the Stokes problem by an
enhanced method can be found in the work of [283]. ut

8.14 Concluding Remarks: Choice of Elements

We would first like to emphasise that the results of this chapter can be applied as
well to flow problems as well as to linear (or linearised) elasticity problems. In
this last case, displacement methods also need to be considered from a mixed point
of view. Indeed, we have already seen in Sect. 8.12 that there is a close relation
between the Stokes problem and linear elasticity problems. However, things are not
so simple: fluid people and solid mechanics people form two different communities
and information was long to cross the border.

8.14.1 Choice of Elements

We have presented discontinuous pressure and continuous pressure elements. They
both have advantages, even though discontinuous pressure is appealing as it enforces
an element wise conservation of mass. They can also be implemented by a penalty
procedure.

In this respect, the reader should have noticed an important difference between
the two-dimensional and the three-dimensional elements presented in this chapter.

• In the 2-D case, we have a choice of discontinuous pressure elements which
can be used with a penalty method. Direct solvers are not too sensitive to the
ill-conditioning of the resulting system and we thus obtain a good resolution
strategy. We can thus recommend the Crouzeix-Raviart element of Example 8.6.1
or its higher order variants.
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• In the 3-D case, discontinuous pressure elements satisfying the inf-sup condition
are expensive as one needs degrees of freedom on the faces. The equivalent of
the Crouzeix-Raviart element also uses bubbles of degree four. The ubiquitous
Q

1
� P0, for which the condition number of the dual problem depends on

h, behaves badly with iterative methods which are essential for large-scale
simulations. We therefore recommend the Hood-Taylor continuous pressure
element.

Remark 8.14.1 (Solvers). The choice of elements is also dictated by the choice
of solvers. In the two-dimensional case, where direct solvers are almost always
employed, discontinuous pressure elements are desirable as they are compati-
ble with penalty methods. In the three-dimensional case, where iterative solvers
are the rule for large problems, penalty methods are to be avoided as they destroy
the condition number of the problem. Recent progress in the construction of solvers
for indefinite systems [58,185,186] however make the use of a continuous pressure
element, such as the Taylor-Hood element, possible and efficient. ut
Remark 8.14.2 (Meshes). Another consideration is the choice of affine (triangular
or tetrahedral) or quadrilateral hexahedral elements. As we already noted, there
was a widespread legend that tetrahedra were not suitable for incompressible solid
mechanics problems. This was based on a lack of analysis and we advocate the
choice of affine elements for two reasons.

• Mesh generation is much easier with tetrahedra than with hexahedra. Indeed,
it can, most of times, be done automatically. This is important in complex
engineering problems where the domains may be of a complex shape.

• The second reason is mesh adaptation, which is also much easier for tetrahedra.
There exist algorithms which can make a mesh optimal to represent a given
solution. ut

Finally, let us recall that the approximation of incompressible materials is a central
issue in many industrial applications. It has therefore been the subject of a vast
literature. We believe to have presented the essential points but we also neglected
many aspects. Among those, we did not describe finite volume methods, which
are mostly amenable to an analysis by the theory of mixed methods. One can find
references in [194] and [195].
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