
Chapter 6
Complements: Stabilisation Methods,
Eigenvalue Problems

In this chapter, we shall consider two special topics related to the approximation of
saddle-point problems. The first one is about stabilised methods, which are more and
more widely used in many applications where it is difficult to build approximations
satisfying both the ellipticity in the kernel and the inf-sup properties. The second
section will be devoted to an abstract presentation of eigenvalue problems for
mixed problems, where an emphasis will be put on both necessary and sufficient
conditions.

6.1 Augmented Formulations

6.1.1 An Abstract Framework for Stabilised Methods

Stabilisation techniques have become quite popular and new methods have been
introduced along many avenues. Taking into account the enormous variety of
possible applications, stabilisation techniques would require a book of their own.
On the other hand, we might conceive stabilisation techniques as an arsenal of
tricks to manipulate the problem and transform it into one for which the general
stability theories (as the ones described in this book), can be applied. Hence, we
just give the flavour of some of these tricks, and refer to the specialised literature
for applications on the various particular problems. We will start with some general
considerations regarding augmented formulations (that are the basis of the so-called
“stabilisations à la Hughes-Franca”). Then, following [123], we shall describe a
general framework for the study of stability issues, in which one tries to reduce
the stabilising modifications at the strictly necessary minimum (whence the name
“minimal stabilisations”).

We have seen previously, in Sect. 1.5, that some augmented formulations cannot
be written as Euler’s equations of a Lagrangian but rather through an antisymmetric
bilinear form. To include these formulations, among others, in our framework, we

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 6,
© Springer-Verlag Berlin Heidelberg 2013

337



338 6 Complements: Stabilisation Methods, Eigenvalue Problems

start by introducing an abstract framework, that contains the mixed methods studied
in the previous chapters as a special case.

Let therefore W be a Hilbert space, let A be in L.W;W 0/ (the space of linear
continuous operators from W to W 0 as defined in Sect. 4.1.4), and let F be in W 0.
We consider the problem: find X 2 W such that,

AX D F; (6.1.1)

which in variational formulation can be written as

hAX; Y iW 0�W D hF; Y iW 0�W 8Y 2 W : (6.1.2)

From now on, we shall always assume that the bilinear form associated to A is
positive semi-definite, that is

hAY; Y i � 0 8Y 2 W : (6.1.3)

Remark 6.1.1. As we are mostly interested in mixed problems, it is worth showing
that this abstract formalism contains the usual theory for these problems. Indeed, let
W WD V �Q, with X WD .u; p/, and Y WD .v; q/, and define

(
hAX; Y i WD a.u; v/C b.v; p/ � b.u; q/;
hF; Y i WD hf; viV 0�V � hg; qiQ0�Q:

(6.1.4)

In this context, it is clear that (6.1.2) is just another way of writing

(
a.u; v/C b.v; p/ D .f; v/V 8 v 2 V;
b.u; q/ D .g; q/ 8 q 2 Q: (6.1.5)

It must however be noted that we are implicitly using the non symmetric form

�
A Bt

�B 0

��
u
p

�
D
�
f

�g
�

(6.1.6)

rather than the symmetric one

�
A Bt

B 0

��
u
p

�
D
�
f

g

�
: (6.1.7)

As a consequence of this choice, assuming

a.v; v/ � 0 8 v 2 V; (6.1.8)

we clearly have that (6.1.3) holds. ut
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6.1.2 Stabilising Terms

We shall consider here a very wide class of stabilisations, the so-called augmented
formulations. Philosophically, we could think of them as based on the following
observation. Suppose that we are given a general problem of the type: find X 2 W
such that

hAX; Y iW 0�W D hF; Y iW 0�W 8Y 2 W; (6.1.9)

and assume that A is an isomorphism from W to W 0 (so that our problem has
a unique solution). In general, as we observed already in Remark 1.5.1, given a
subspace Wh � W , we cannot be sure that the discretised problem: find Xh 2 Wh

such that

hAXh; Y iW 0�W D hF; Y iW 0�W 8Y 2 Wh (6.1.10)

has a unique solution as well. On the other hand, still following Remark 1.5.1, if we
assume that we have an ellipticity condition of the form

9˛ > 0 such that hAY; Y iW 0�W � ˛kY k2W 8Y 2 W; (6.1.11)

(that clearly implies stability, with constant 1=˛, and unique solvability of (6.1.9))
then for every subspace Wh � W , we will immediately have

9˛ > 0 such that hAYh; YhiW 0�W � ˛kYhk2W 8Yh 2 Wh; (6.1.12)

and we have unique solvability of (6.1.10) (with the same stability constant 1=˛)
without any need to be smart. Hence, although simple-minded, the general idea
is: given the problem (6.1.9), try to present its solution as the solution of another
problem for which an ellipticity condition of the type (6.1.11) holds true. In these
precise terms, this is very easy. Indeed, the solution X of (6.1.9) will also be a
solution of the problem: find X 2 W such that:

.AX;AY /W 0 D .F;AY /W 0 8Y 2 W : (6.1.13)

Note that if A is an isomorphism between W and its dual W 0, then for every Y 2 W ,
we obviously have Y D A�1.AY / and problem (6.1.13) will satisfy the ellipticity
condition

.AY;AY /W 0 D kAY k2W 0 � kY k2W
kA�1k2 8Y 2 W : (6.1.14)

At this level of generality, it is difficult to explain why, in several applications, we
are not happy with this “solution”, and we still want to look for some different trick.



340 6 Complements: Stabilisation Methods, Eigenvalue Problems

Just to make an example, if A is a differential operator (say, the Laplace operator),
then problem (6.1.14) will correspond to a differential operator in which the order
is doubled (in our example: the biharmonic operator) and for which discretisation
would produce a matrix that is more ill-conditioned than the original one discretising
A. In this subsection, we will see some of these possible alternative techniques. We
develop our discussion in the general setting of [46] but we shall mostly restrict our
examples to the specific case of mixed methods.

We come back to the operator A. At a general level, the operator A has a
symmetric part As , defined as

As D .A C At /=2 (6.1.15)

and an antisymmetric part Aa, defined as

Aa D .A � At /=2: (6.1.16)

It is immediate to see that, for every Y 2 W , we have

hAsY; Y i D hAY; Y i and hAaY; Y i D 0: (6.1.17)

We point out that, keeping the assumption (6.1.3), we now have that As is
symmetric and non-negative. Hence, we can use Lemma 4.2.1 and then (6.1.17)
to obtain

kAsY k2W 0 � hAsY; Y i kAsk D hAY; Y i kAsk 8Y 2 W : (6.1.18)

We then define, for t 2 R,

At D Aa C tAs (6.1.19)

and we consider for � > 0 the following augmented problem: find X 2 W such
that

W 0hAX � F; Y iW C �.AX � F;At Y /W 0 D 0 8Y 2 W : (6.1.20)

Remark 6.1.2. We call the attention of the reader on the difference between At

(the transposed operator of A) and At , defined by (6.1.19). We apologise for the
similarity of these two symbols that have, however, a totally different meaning. ut

It is clear that every solution X of the original problem (6.1.9) will also
be a solution of the augmented problem (6.1.20). A possible advantage of the
formulation (6.1.20) over (6.1.13) is that we can hope to be allowed to take � small
enough, so that the condition number of the resulting matrix will not be much worse
than the condition number of the matrix coming from the discretisation of A.
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Example 6.1.1. As we already stated, we shall restrict our examples here to the case
of mixed methods, that we write again in the form (6.1.6):

A D
�

A Bt

�B 0

�
: (6.1.21)

We shall assume here that the bilinear form a.�; �/ defining A is symmetric and non-
negative, as in (5.5.1) (or in (4.2.28)). As already pointed out, the non-negativity of
a.�; �/ will imply, in particular, that (6.1.3) is satisfied. The symmetry of a.�; �/, on
the other hand, will imply that the symmetric part of the operator A is given by

As D
�
A 0

0 0

�
(6.1.22)

and the antisymmetric part is given by

Aa D
�

0 Bt

�B 0

�
: (6.1.23)

From the symmetry and non-negativity of a, using (4.2.30) we have

kAuk2V 0 � kaka.u; u/ D kAk hAu; uiV 0�V (6.1.24)

that represents (6.1.18) in our particular case. It is not difficult to check that the
stabilising term .AX;At Y /W 0 , for X D .u; p/ and Y D .v; q/ now becomes

.AX;At Y /W 0 D .Au C Btp; tAv C Btq/V 0 C .Bu; Bv/Q0

D t.Au C Btp;Av/V 0 C .Bu; Bv/Q0 C .Au C Btp;Btq/V 0 : (6.1.25)

ut
Example 6.1.2. The treatment of advection dominated equations is surely outside
the scope of this book. However, it might be interesting to see how the general
setting above can deal with a problem of the type: find u 2 H1

0 .˝/ such that

� "�u C c � grad u D f in ˝ (6.1.26)

where " is a given positive and “small” number, c is a given smooth vector field (that,
for simplicity, we assume to be divergence-free), and f is a given forcing term, say,
in L2.˝/. In this case, the stabilising term would be

.Au;At v/W 0 D .�"�u C c � grad u;�t "�v C c � grad v/H�1.˝/: (6.1.27)

ut
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Remark 6.1.3. The structure of an augmented problem can be described as follows.
First, we observe that the equation AX � F D 0 takes place in the dual space
W 0. Indeed, in its variational formulation (6.1.2), the equation is tested on a generic
element Y 2 W , giving hAX � F; Y i D 0 for all Y . In the augmented problem,
we keep this term, and we sum to it (with a suitable multiplier �) a term containing
the same equation, but this time tested on a term of the type At Y (always for Y
generic in W). Since the term At Y is itself in W 0 (as the difference AX � F ),
this new term cannot be written as a duality between W 0 and W , and we must take
the scalar product of the two terms in W 0. The idea of adding a term made by the
scalar product of the equation times a suitable operator acting on the test function
Y is, somehow, the essence of the original idea of Hughes and Brooks, that has been
extended and exploited in a more general setting by Hughes, Franca, and various co-
authors, and became popular under the name of stabilisation à la Hughes-Franca.
However, as we shall see, to take the inner product in W 0 is, in general, not so easy
and the stabilising terms that are found in the literature (starting from the earliest
ones by Hughes and his group) do not have exactly this form. Indeed, a big variety of
different stabilising terms have been introduced, studied, and used in the literature of
the last two or three decades (see, for instance, [10], [193], [214], [250] and [339]),
all (or almost all) based on L2 inner products (possibly multiplied by some suitable
power of the mesh-size h) rather than on the W 0 inner product. However, as pointed
out in [46], we could think at most of these variants as being different attempts to
mimic, in one way or another, the effect of �.AX � F;At Y /W 0 . ut

6.1.3 Stability Conditions for Augmented Formulations

Now, we want to study the behaviour of augmented problems of the type of (6.1.20).
To start with, we look for sufficient conditions on t and � ensuring that the
augmented problem (6.1.20) has a unique solution.

Theorem 6.1.1. Let W be a Hilbert space, and A 2 L.W;W 0/ be an isomorphism
which verifies (6.1.3). If t 2 R and � > 0 verify

�.1� t/2 < 4kAsk�1; (6.1.28)

then there exists ˛stab > 0 such that

hAY; Y iW 0�W C �.AY;At Y /W 0 � ˛stabkAY k2W 0 8Y 2 W; (6.1.29)

where At is defined in (6.1.19).
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Proof. We apply (6.1.18) and (6.1.19), and then Cauchy-Schwarz to obtain

hAY; Y iW 0�W C �.AY;At Y /W 0

� 1

kAskkAsY k2W 0 C �
�
kAaY k2W 0 C t kAsY k2W 0 C .1C t/ .AaY;AsY /W 0

�

�
� 1

kAsk C �t
�

kAsY k2W 0 C �kAaY k2W 0 � �j1C t j kAaY kW 0 kAsY kW 0 :

(6.1.30)

The last line of (6.1.30) is a quadratic form in kAsY k and kAaY k. Hence, the
desired (6.1.29) will be satisfied for some ˛stab > 0 if

4�
� 1

kAsk C �t
�
> .�.1C t//2: (6.1.31)

This can be written as

4

kAsk > �.1C t/2 � 4�t D �.t � 1/2; (6.1.32)

and the result follows. ut
Remark 6.1.4. We note that condition (6.1.28) implies in particular that the coeffi-
cient of kAsY k in the last line of (6.1.30) is positive. This is clear if we note that
(6.1.31) is actually equivalent to (6.1.28). ut
Remark 6.1.5. It is immediate to see that, for t D 1, we have that (6.1.28) is
satisfied for every value of � > 0. This is not so unreasonable since, for t D 1,
we have At D A. One could then argue that t D 1 is the best choice and that
other values for t have no interest. However, as we shall see, in several applications,
including mixed formulations and advection dominated elliptic equations, both the
choices t D 0 and t D �1 have been abundantly used. ut

Essentially with the same proof, one has the following result, which is slightly
more general.

Theorem 6.1.2. Under the same assumptions as in Theorem 6.1.1, let M be a
continuous, bilinear form on W 0 � W 0 and let M and �0 be positive constants
such that

M.X 0; Y 0/ � M kX 0kW 0 kY 0kW 0 8X 0; Y 0 2 W 0 (6.1.33)

and

�0kY 0k2W 0 � M.Y 0; Y 0/ 8Y 0 2 W 0: (6.1.34)
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If t 2 R and � > 0 verify

�
�
M2.1C t/2 � 4�20t

�
<

4�0

kAsk ; (6.1.35)

then there exists ˛stab > 0 such that

hAY; Y iW 0�W C �M.AY;At Y / � ˛stabkAY k2W 0 8Y 2 W; (6.1.36)

where At is always defined in (6.1.19).

Proof. We use (6.1.18), (6.1.19), (6.1.34), and then (6.1.33) to obtain

hAY; Y iW 0�W C �M.AY;At Y /

� 1

kAskkAsY k2W 0 C�
�
�0kAaY k2W 0 Ct�0 kAsY k2W 0 C.1Ct/M.AaY;AsY /W 0

�

�
� 1

kAsk C��0t
�
kAsY k2W 0 C��0kAaY k2W 0 ��j1C t jM kAaY kW 0 kAsY kW 0 :

(6.1.37)

The last line of (6.1.30) is a quadratic form in kAsY k and kAaY k. Hence, the
desired (6.1.36) will be satisfied for some ˛stab > 0 if

4��0

� 1

kAsk C ��0t
�
> �2M2.1C t/2; (6.1.38)

and the result follows. ut
Remark 6.1.6. We note that condition (6.1.35) implies in particular that the coeffi-
cient of kAsY k in the last line of (6.1.37) is positive. This is again clear if we note
that (6.1.38) is actually equivalent to (6.1.35). ut
Remark 6.1.7. Looking at the proof of Theorems 6.1.1 and 6.1.2, we see that we
could also write more specialised estimates, of the type

˛
�kAsY k2W 0

kAsk C �kAaY k2W 0

�
� hAY; Y iW 0�W C �M.AY;At Y /: (6.1.39)

This would prove relevant in cases like advection dominated problems (6.1.26),
where kAsk ' " and kAsvk2W 0 ' k"�vk2W 0 ' k"vk2

H1 . ut
Remark 6.1.8. Theorem 6.1.2 reproduces Theorem 6.1.1 when we use M to define
the scalar product in W 0 (so that M D �0 D 1). ut
Remark 6.1.9. It is also obvious that the exact solutionX of (6.1.2) will also satisfy
the augmented formulation of the problem: find X 2 W such that
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hAX � F; Y iW 0�W C �M.AX � F;At Y / D 0 8Y 2 W : (6.1.40)

ut
Remark 6.1.10. In the same assumptions as in Theorem 6.1.2, and essentially with
the same proof, one could show that there exists an !0, depending only on kAsk, t ,
M , and �0, and an ˛0 > 0 such that, for every ! with 0 < ! � !0 and for every
Y 2 W , one has

hAY; Y iW 0�W C !2 M.AY;At Y / � ˛0

�
kAsY k2W 0 C !2kAaY k2W 0

�
: (6.1.41)

The interest of this variant, as we shall see, is that we would be allowed to take an
! D !.h/ that goes to zero with h. ut

We now consider our main example, that is, mixed formulations (6.1.5) inserted
in the present framework through (6.1.4). We have seen that the general stabilising
term takes the form (6.1.25). We point out that, in particular,

.AY;At Y /W 0 D tkAvk2V 0 C .1C t/.Av;Bt q/V 0 C kBtqk2V 0 C kBvk2Q0 ; (6.1.42)

while

kAsY kW 0 D kAvkV 0 and kAaY k2W 0 D kBtqk2V 0 C kBvk2Q0 : (6.1.43)

It is clear that the general philosophy, requiring that the stabilising term vanishes
when X is the exact solution, would still be respected by taking a more general
term, instead of .AX � F;At Y /. Hence, in some sense, we could specialise the
result of Theorem 6.1.2 and adapt it to the case (here most interesting) of mixed
methods. For instance, for general positive constants �1 and �2, we could consider
a stabilising term of the form

.Au C Btp � f; tAv C �1B
tq/V 0 C .Bu � g;�2Bv/Q0 : (6.1.44)

It is clear that if .u; p/ is a solution of (6.1.5), then it is also a solution of

V 0hAu C Btp � f; viV � Q0hBu � g; qiQ0

C �
�
.Au C Btp � f; tAv C �1B

tq/V 0 C .Bu � g;�2Bv/Q0

�
D 0 (6.1.45)

for all v 2 V and for all q 2 Q.
Concerning the stability (and hence, in particular, the uniqueness of the solution

of (6.1.45)), we note that

.Av C Btq; tAv C �1B
tq/V 0 C .Bv; �2Bv/Q0

D tkAvk2V 0 C .t C �1/.Av;B
t q/V 0 C �1kBtqk2V 0 C �2kBvk2Q0 : (6.1.46)
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Hence, mimicking the proof of Theorem 6.1.1, we easily have that

V 0hAvCBtq; viV �Q0hBv; qiQC�.AvCBtq; tAvC�1Btq/V 0C�.Bv;�2Bv/Q0

� 1

kAskkAvk2V 0 C�
�
tkAvk2V 0 C.tC�1/.Av;Bt q/V 0 C�1kBtqk2V 0 C�2kBvk2Q0

�

�
� 1

kAskC�t
�

kAvk2V 0C�
�
�1kBtqk2V 0C�2kBvk2Q0�jtC�1j kAvkV 0k kBtqkV 0

�

� C
�
kAvk2V 0 C �1kBtqk2V 0 C �2kBvk2Q0

�
(6.1.47)

whenever � is small enough, and precisely,

�.t � �1/2 < 4�1

kAsk : (6.1.48)

We can make this result more explicit in the following theorem.

Theorem 6.1.3. Let V and Q be Hilbert spaces, and a and b bilinear forms on
V � V and V � Q, respectively, as in Assumption AB of Chap. 4 (Sect. 4.2.1).
Assume that a is symmetric and positive semi-definite as in (6.1.8), and assume that
the continuous problem (6.1.5) is well posed (that is, a is elliptic on the kernel of B ,
and b satisfies the inf-sup condition). Let t 2 R and let �, �1, and �2 be positive
real numbers. If (6.1.48) is satisfied, then there exists an ˛M > 0 such that, for
every .v; q/ 2 V �Q, we have

˛M

�
kAvk2V 0 C �1kBtqk2V 0 C �2kBvk2Q0

�
� V 0hAv C Btq; viV � Q0hBv; qiQ
C �.Av C Btq; tAv C �1B

tq/V 0 C �.Bv;�2Bv/Q0 :

(6.1.49)

6.1.4 Discretisations of Augmented Formulations

The augmented formulations (6.1.40) or (6.1.45) can then be transported into the
discretised problem.

Starting from the more general case of (6.1.40), we consider therefore the discrete
stabilised problem: find Xh 2 Wh such that

hAXh; YhiW 0�W C �M.AXh;At Yh/

D hF; YhiW 0�W C �M.F;At Yh/ 8Yh 2 Wh:
(6.1.50)
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It is clear that, whenever (6.1.35) holds true, the ellipticity property (6.1.36)
will be inherited by the discrete problem, that will therefore be stable. Hence, we
immediately have the following result.

Theorem 6.1.4. Let W be a Hilbert space, and A 2 L.W;W 0/ be an isomorphism
which verifies (6.1.3). Let moreover M be a continuous, bilinear form on W 0 � W 0
and letM and �0 be positive constants such that (6.1.33) and (6.1.34) are satisfied.
Finally, let t 2 R and � > 0 verify (6.1.35), and let At be defined as in (6.1.19).
Then, for every F 2 W 0 and for every finite dimensional subspace Wh, denoting
by X and Xh the solutions of the continuous problem (6.1.40) and of the stabilised-
discretised one (6.1.50), respectively, we have

kX � XhkW � C inf
Yh2Wh

kX � YhkW ; (6.1.51)

where C is a constant depending on kA�1k, kAk, �, M , t and on the constant ˛stab

appearing in (6.1.36), bounded on bounded subsets, but independent of the choice
of Wh.

Proof (Hint). As usual, for everyXI 2 Wh, we apply the stability estimate (6.1.36)
to the difference ıX WD Xh�XI . Then, in the right-hand side, we substituteX in lieu
of Xh, using the fact that they are the solutions of (6.1.2) and (6.1.50), respectively.
Finally, we use the continuity of A, of A�1 and M to have an estimate of kXh �
XIkW in terms of kX � XIkW . Then, we add and subtract X and use the triangle
inequality. Finally, sinceXI is generic in Wh, we replace kX�XIk with the infimum
of kX � Yhk for Yh varying in Wh. ut
Remark 6.1.11. In the simplified case where M is the scalar product in W 0, the
above problem (6.1.50) could formally be obtained by writing

hAXh � F; Yh C �At Yhi D 0 8 Yh 2 Wh (6.1.52)

and we could call this a “Petrov-Galerkin” method as the test functions are not in
the same space as the solution. However, unless W can be identified to W 0, (6.1.52)
has no sense. One must make a certain number of additional manipulations in order
to reach a viable formulation. ut

Shifting now to the particular case of mixed formulations, and considering
(6.1.45), we assume that Vh and Qh are finite dimensional subspaces of V and Q,
respectively. It might be convenient to recall some definitions from the previous
chapters. We do it quickly:

Bh WD �Q0

h
BEV Bt

h WD �V 0

h
BEQ Ah WD �V 0

h
AEV (6.1.53)

K WD KerB D fv 2 V s.t. Bv D 0g;
Kh WD KerBh D fvh 2 Vh s.t. Bhvh D 0g: (6.1.54)
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We now consider the discretised problem: find .uh; ph/ 2 Vh �Qh such that

V 0hAuh C Btph � f; vhiV C Q0hBuh � g; qhiQ0

C �.Auh C Btpf � f; tAvh C �1B
tqh/V 0

C �.Buh � g;�2Bvh/Q0 D 0 8 vh 2 Vh 8qh 2 Qh:

(6.1.55)

It is clear that the stability result of Theorem 6.1.3 can now be used to get the
following error estimate.

Theorem 6.1.5. In the same assumptions as in Theorem 6.1.3, assume further that
the continuous problem (6.1.5) is stable (that is, a is elliptic in the kernel, and b
satisfies the inf-sup condition). Let Vh � V and Qh � Q be finite dimensional
subspaces, and for f 2 V 0 and g 2 Q0, let .u; p/ and .uh; ph/ be the solutions of
the continuous problem (6.1.45) and of (6.1.55), respectively. Then, we have

ku � uhk2V C kp � phk2Q � C
�

inf
vh2Vh

ku � vhkV C inf
vh2Vh

ku � vhkV
�

(6.1.56)

where C is a constant depending on kA�1k, kAk, �, M , t and on the constant ˛M
appearing in (6.1.49), bounded on bounded subsets, but independent of the choices
of Vh and Qh.

Proof. The proof follows exactly the same lines as the proof of Theorem 6.1.4, and
the classical form of all the “stability+consistency” error bound. ut

We shall now make explicit problem (6.1.45) in a few special cases. It is not
difficult to see that (6.1.45) corresponds to have a linear “augmented operator” of
the type

Mstab D
�
A Bt

�B 0

�

C �
�
t

�
AtA AtBt

0 0

�
C �1

�
0 0

BA BBt

�
C �2

�
BtB 0

0 0

��
:

(6.1.57)

Let us see, for � D 1, three typical values of t , namely t D 1, t D 0 and
t D ��1.

(i) Case t D 1
The augmented system is:

8̂̂
ˆ̂<
ˆ̂̂̂:

hAuh C Btph � f; vhiV 0�V C .Auh C Btph � f;Avh/V 0

C �2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;
h�Buh C g; qiQ0�Q

C �1.Auh C Btph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.58)
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(ii) Case t D 0
The augmented system is:

8̂̂̂
<̂
ˆ̂̂̂:

hAuh C Btph � f; vhiV 0�V
C�2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;

h�Buh C g; qiQ0�Q
C �1.Auh C Btph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.59)

(iii) Case t D ��1

The augmented system is:

8̂̂̂
<̂
ˆ̂̂̂:

hAuh CBtph � f; vhiV 0�V � �1.Auh C Btph � f;Avh/V 0

C �2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;
h�Buh C g; qiQ0�Q

C �1.Auh CBtph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.60)

Remark 6.1.12. From the point of view of “economy”, the case t D 0 implies the
smallest number of extra terms and would be our favourite. On the other hand, we
have seen that, in several cases, the choice t D 1 guarantees stability for every value
of the stabilisation parameter � in (6.1.50), and this is also a nice feature. Finally,
for the choice t D ��1, we can see that the final expression of Mstab in (6.1.57) is

Mstab D
�
A � �1AtAC �2B

tB Bt � �1AtBt

�B C �1BA �1BB
t

�
(6.1.61)

which, changing the sign of the second equation, becomes symmetric since obvi-
ously we have .Bt � �1A

tBt/t D B � �1BA. In conclusion, all the three choices
present some interesting aspects. ut
Remark 6.1.13. It is not too difficult to spot the role of each of the extra terms in
(6.1.58) and (6.1.57). Indeed, we can easily see that if A is coercive on the kernel
of B (a property that, in general, will not be inherited by the discretised problem),
then, according to Proposition 4.3.4,

hAu; uiV 0�V C �2.Bu; Bu/Q0�Q0 � Q̨kuk2V 8 u 2 V; (6.1.62)

for a suitable constant Q̨ , a property that will be inherited by the discretised problem.
It is then clear that the extra term on the first equation (that is, the term containing
�2) will allow to bypass problems related to the coercivity of the bilinear form a.
On the other hand, the extra term in the second equation will help in controlling p
as the (continuous) inf-sup condition implies

�1.B
tq; Btq/V 0�V 0 � �1kBtqk2V 0 � �1ˇ

2kqk2Q: (6.1.63)
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The choice between the three possibilities above will obviously depend on the
type of discretisation that we want to use, as well as on many other possible
considerations. We will see some of them in the following chapters. ut
Remark 6.1.14. We point out that, in most applications, things are usually not
totally bad: in general, we will either have a lack of coercivity on the kernel but
a good inf-sup condition or the reverse. Very roughly speaking, the lack of the inf-
sup condition will occur when Vh is not big enough, compared with Qh (so that,
for instance, the image of Bh will not fill Q0

h). On the other hand, if Vh, compared
with Qh, is too big, then the kernel Kh of Bh will contain elements that are not
in the kernel K of the operator B , and the ellipticity in the kernel, for the discrete
problem, would fail. In these cases, we can limit ourselves to a lighter stabilisation.
Two typical cases are

1. To retrieve coercivity of a: in (6.1.61), take t D �1 D 0� hAuh C Btph � f; vhiV 0�V C �2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;
h�Buh C g; qhiQ0�Q D 0 8 qh 2 Qh:

(6.1.64)

2. To retrieve the inf-sup condition for b: in (6.1.61) take t D �2 D 0

� hAuh CBtph � f; vhiV 0�V D 0 8 vh 2 Vh;
h�Buh C g; qhiQ0�Q C �1.Auh C Btph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.65)

It is easily seen, following the path of Theorem 6.1.1, that the above problems
are stable under suitable conditions. The simplest case would be that A is defined
by a bilinear form which is coercive on V such as in the Stokes problem. This will
be developed in Chap. 8. In that case, a stabilisation such as in (6.1.65) would be
sufficient. The first case (6.1.64) is nothing but the discretised version of (1.5.10).
We will come back to this line of thought in the next section. ut
Remark 6.1.15 (Caveat emptor). We recall that we have used the exact norms in V 0
and Q 0. In many cases, (e.g. when this would imply the use of the H�1 norm) this
may well be impossible (or very difficult) to implement numerically, and we shall
have to introduce an approximation of our stabilised problem. This will typically be
done by applying, in the discretised problem, the differential operators element-
wise, and then substituting the H�1 scalar product with h2 times the L2 scalar
product. ut

6.1.5 Stabilising with the “Element-Wise Equations”

To give an idea of the techniques mentioned in the above remark, we consider the
following variant of Theorem 6.1.4. As we shall see, the variant follows the spirit



6.1 Augmented Formulations 351

of Remark 6.1.10, and is closely connected with the family of methods of the next
subsection. For this, however, we have to introduce some new objects. We assume
that we have a space WC (made of smoother functions) and a Hilbert space H (that
we identify with its dual space H0) such that

WC � W 	 H � H0 	 W 0 (6.1.66)

and

As.WC/ 	 H; Aa.WC/ 	 H; (6.1.67)

and for all h

Aa.Wh/ 	 H: (6.1.68)

We also assume that we have, for all h, a linear operator

Sh W H C As.Wh/C Aa.Wh/ ! H (6.1.69)

such that

kShY kH D kY kH 8Y 2 H; (6.1.70)

and we note that, together with (6.1.68), this gives

kSh.AaYh/kH � kAaYhkH 8Yh 2 Wh: (6.1.71)

We assume further that there exists a monotonically increasing function ! W RC !
RC such that

!.h/kSh.ArYh/kH � kArYhkW 0 where r D s or a; 8Yh 2 Wh: (6.1.72)

Remark 6.1.16. In the applications that we have in mind, the space H will be either
L2 or a Cartesian product of several copies of L2, and the operator Sh will be the
one that allows to take the element-by-element derivatives of functions that are
smooth (typically, polynomials) inside each element but might be discontinuous
from one element to the next (or are continuous but not C1, when you take second
derivatives). In mathematical words, Sh.�/ would take the restriction �jT to each
individual open triangle T , and then consider the L2 function that in each triangle
T is equal to �jT . In this way, possible Dirac masses concentrated on the inter-
element boundaries would be dropped. Having this in mind, it should be clear that
the assumption in (6.1.68) is a very strong one, and in all the applications that we
considered, it requires either that the antisymmetric part of A is an operator of lower
order (as it happens for advection dominated flows) or that the elements of Wh have,
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in a certain sense, more continuity than strictly necessary (as when using continuous
pressures in the Stokes problem). ut
Assuming further that

F 2 H (6.1.73)

where F is the right-hand side of (6.1.1), we can consider the discretised problem:
find Xh 2 Wh such that

hAXh � F; YhiW 0�W C �!2.h/.Sh.AXh � F /;Sh.At Yh//H D 0 (6.1.74)

for all Yh 2 Wh. Proceeding as in Theorems 6.1.1 and 6.1.2, it is not difficult to see
that if

.1 � t/2�!2.h/ <
4

kAsk ; (6.1.75)

then there exists ˛0 > 0 such that

hAYh; YhiW 0�W C �!2.h/ .Sh.AYh/;Sh.At Yh//H

� ˛0

�
kAsYhk2W 0 C �!2.h/kSh.AaYh/k2H

�
8Yh 2 Wh: (6.1.76)

We can now apply the above estimate to have a bound on the error.

Theorem 6.1.6. Let W be a Hilbert space and A 2 L.W;W 0/ be an isomorphism
which verifies (6.1.3). Assume that all the additional assumptions (6.1.66)–(6.1.73)
are satisfied, and assume further that the solution X of problem (6.1.2) belongs to
WC. For t 2 R and for � > 0, let Xh be the solution of (6.1.74). If (6.1.75) is
satisfied, then there exists a constant C , depending only on ˛0, t , and �, such that

kAs.X �Xh/kW 0 C !.h/kSh.Aa.X �Xh//kH

� C inf
Yh2Wh

�
.kX � YhkW C !�1.h/kX � YhkH

C !.h/kSh.Aa.X � Yh//kH
�
:

(6.1.77)

Proof. We first observe that the Galerkin orthogonality equation

hA.X �Xh/; YhiW 0�W C �!2.h/.Sh.A.X � Xh//;Sh.At Yh//H D 0 (6.1.78)

holds for all Yh 2 Wh. Then let XI be a generic element of Wh, and set as before
ıX WD Xh � XI and ıI WD X � XI . We apply the estimate (6.1.76) to ıX and then
we add and subtract X and use (6.1.78) to obtain
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˛0

�
kAsıXk2W 0 C �!2.h/kSh.AaıX/k2H

�
� hA ıX; ıXiW 0�W C �!2.h/ .Sh.AıX/;Sh.At ıX//H

D hA ıI ; ıXiW 0�W C �!2.h/ .Sh.AıI /;Sh.At ıX//H:

(6.1.79)

The first term in the last line of (6.1.79), using (6.1.19), (6.1.68), and then (6.1.71),
can be estimated by

hA ıI ; ıXiW 0�W � kıIkW � kAsıXkW 0 C kıIkH � kAaıXkH;

� kıI kW � kAsıXkW 0 C !�1.h/kıIkH � !.h/kSh.AaıX/kH;

� .kıI kW C !�1.h/kıIkH/ � .kAsıXkW 0 C !.h/kSh.AaıX/kH/

(6.1.80)

while the second term, using (6.1.19) and then (6.1.72), is easily estimated by

!2.h/ .Sh.AıI /;Sh.At ıX//H

� !.h/ kSh.AıI /kH � !.h/kSh.At ıX/kH

� !.h/ kSh.AıI /kH �
�
jt jkAsıXkW 0 C !.h/kSh.AaıX/kH

�
:

(6.1.81)

The result (6.1.77) now follows easily by a repeated use of the arithmetic-geometric
mean inequality and finally, the use of the triangle inequality to estimate X �Xh in
terms of ıX and ıI . Note that the last term in the right-hand side of (6.1.77) appears
only in this final step (using the triangle inequality).

Remark 6.1.17. In most applications, the constant!.h/ corresponds to some inverse
inequality applied to piecewise polynomial functions. The same constant (in terms
of powers of h) will often appear if we compare the best approximation of a smooth
function X taken in the norm of H rather than in the (stronger) norm of W . As a
result, the first two terms appearing in the right-hand side of (6.1.77) will, in general,
be of the same order, and the third will be either of the same order or smaller. ut
Remark 6.1.18. As we can see, the strong assumption (6.1.68) has been used only
to estimate the term hAaıI ; ıXi in (6.1.80). In a certain number of applications, one
could take advantage of some particular feature of the problem at hand, and survive
without it. To do so when dealing with the abstract problem would be, however, very
complicated. Hence, we defer the analysis of the different applications of the above
theory to the following chapters, mostly to Chap. 8 concerning the Stokes problem,
and we just consider here below some example of the possible stabilisations of
Laplace operator in mixed form. ut
Example 6.1.3 (Stabilisation of the mixed Poisson problem). In Sect. 1.5.1 of
Chap. 1, we have considered many augmented methods for the mixed formulation
of the Dirichlet problem. Most of these methods can be written in the framework
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that we have just developed. For simplicity, we refer to the simplest formulations
(1.5.2) and (1.5.9), that we briefly recall for the convenience of the reader:

.u; v/C.div v; p/�.div uCf; q/ D 0; 8 v 2 H.divI˝/ 8 q 2 L2.˝/ (6.1.82)

and

.u � gradp; v/C .u; grad q/� .f; q/ D 0 8 v 2 L2.˝/ 8 q 2 H1
0 .˝/: (6.1.83)

Other examples will be seen in the following chapters. We have therefore, for the
formulation (6.1.82), W D H.divI˝/ � L2.˝/ and, for the formulation (6.1.83),
W D .L2.˝//d �H1

0 .˝/. In all cases, we take H WD .L2.˝//d � L2.˝/, and we
use the symbol .� ; �/ to denote the inner product in L2.˝/ or in .L2.˝//d . We also
assume, for simplicity, that the solution .u; p/ belongs to .H1.˝//d � H2.˝/ \
H1
0 .˝/. Finally, following the common usage, we denote by gradh q the element-

wise gradient Sh.grad q/ and by divh v the element-wise divergence Sh.div v/. In
the first case (that is when using the formulation (6.1.82)), we have

.u; v/C.div v; p/ � .div u C f; q/

C �h2
�
t..u; v/C .div v; p//

� �1.u � gradh p; gradh q/C �2.div u C f; div v/
�

D 0;

(6.1.84)

while in the second case (that is when using the formulation (6.1.83)), we have
instead

.u� gradp; v/C .u; grad q/ � .f; q/
C �h2

�
t.u � gradp; v/

� �1.u � gradp; grad q/C �2.divh u C f; divh v/
�

D 0:

(6.1.85)

Let us see some particular cases related to this last example. In all cases, we will
take, for simplicity, � D 1.

(i) Case t D 1. In this case, the augmented formulation is

.1Ch2/.u� gradp; v/C �2h
2.divh u C f; divh v/ D 0 8 v 2 .L2.˝//2;

.1��1h2/.u; grad q/C �1h
2.gradp; grad q/ � .f; q/ D 0 8 q 2H1

0 .˝/:

(6.1.86)

Note that stability holds for every choice of �2 � 0.
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(ii) Case t D 0. In this case, the augmented formulation is

.u� gradp; v/C �2h
2.divh u C f; divh v/ D 0 8 v 2 .L2.˝//2;

.1��1h2/.u; grad q/C �1h
2.gradp; grad q/� .f; q/ D 0 8 q 2H1

0 .˝/:

(6.1.87)

This formulation, in particular with �1 D 0, is particularly appealing for
discretisations in which the inf-sup condition holds already but the ellipticity
in the kernel is lacking.

(iii) Case t D ��1. In this case, the augmented formulation is

.1 � �1h
2/.u� gradp; v/C �2h

2.divh u C f; divh v/ D 0 8 v 2 .L2.˝//2;
.1��1h2/.u; grad q/C �1h

2.gradp; grad q/ � .f; q/ D 0 8 q 2H1
0 .˝/:

(6.1.88)

Note that, changing the sign of the second equation, we reach a symmetric
problem, as already pointed out in Remark 6.1.12. ut

6.2 Other Stabilisations

In this subsection, we still want to deal with methods for transforming the problem
in a stable one, but not necessarily reaching a formulation where ellipticity holds. In
particular, here, we want to analyse methods to fix discretisations that have already
some sort of stability, in a spirit similar to the one of Remark 6.1.14.

6.2.1 General Stability Conditions

We go back to our original abstract formulation (6.1.1) which we re-write for the
convenience of the reader. We consider the problem: find X 2 W such that

AX D F; (6.2.1)

together with its variational formulation

hAX; Y iW 0�W D hF; Y iW 0�W 8Y 2 W : (6.2.2)

We also recall that we assumed the non-negativity condition (6.1.3) that we also
repeat here

hAY; Y iW 0�W � 0; 8Y 2 W : (6.2.3)



356 6 Complements: Stabilisation Methods, Eigenvalue Problems

The following result is an exercise of functional analysis, but, for the convenience
of the readers, we sketch a proof.

Proposition 6.2.1. If (6.2.3) holds, then the two following conditions are equiva-
lent:

.i/ A is an isomorphism from W onto W 0 (6.2.4)

.i i/ 9˚ 2 L.W;W/ and a constant ˛˚ > 0 such that

hAY;˚.Y /iW 0�W � ˛˚kY k2W 8Y 2 W : (6.2.5)

Proof. Let J D RW 0 be the Ritz operator from W 0 to W as defined in
Theorem 4.1.2. The implication .i/ H) .i i/ follows by taking ˚ D JA. To
prove the converse implication, we denote by Id the identity operator in W , and
we remark that, if (6.1.3) holds, then for every positive real number s, we have, for
all Y 2 W ,

h.s˚ C Id/tAY; Y iW 0�W D hAY; .s˚ C Id/Y iW 0�W � s ˛˚kY k2W :

This easily implies that .s˚ C Id/tA is an isomorphism from W onto W 0. On the
other hand, we know that s˚ C Id is an isomorphism for s small enough (see for
instance Theorem 4.1.3), so that .s˚ C Id/t will also be an isomorphism, as well
as its inverse .s˚ C Id/�t . Hence, A D Œ.s˚ C Id/�t �Œ.s˚ C Id/tA� (as product
of two isomorphisms) is also an isomorphism, and .i/ holds. ut
Remark 6.2.1. If we further assume A D At (that is, if we assume the bilinear form
hAY; Y i to be symmetric), then, using Lemma 4.2.2, we see that in (6.2.5) we could
always use ˚ D Id , and the equivalence would still hold. ut
Remark 6.2.2. If (6.1.3) is not satisfied, we always have .i/ H) .i i/ but the
converse is false. This can be seen by considering in L2. �0;C1Œ / the mapping:

(
.Au/.x/ D u.x � 1/ for x > 1

.Au/.x/ D 0 for 0 < x � 1

(corresponding to shifting the graph of u to the right by 1, and inserting 0 in the
interval .0; 1/). Clearly, .i i/ is satisfied by taking ˚u WD Au, but .i/ is not, as A is
injective but not surjective. For an operator that does not satisfy (6.1.3), we would
need two conditions instead of (6.2.5), that is: 9˚1;˚2 2 L.W;W/ such that, for
all Y 2 W , (

hAY;˚1.Y /iW 0�W � ˛1kY k2W ;
h˚2.Y /;At Y iW�W 0 � ˛2kY k2W ;

(6.2.6)

implying that A is both injective and surjective. ut
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Remark 6.2.3. It must be noted that the stability constant of Problem (6.1.2), that
is, the smallest constant C such that

kXk � CkAXk 8X 2 W; (6.2.7)

is not 1=˛˚ (see (6.2.5)) but rather

C D k˚k=˛˚ : (6.2.8)

ut
Remark 6.2.4. We now consider again the case of (6.1.4), in which the abstract
problem (6.2.2) is just a different way of writing the mixed problem (6.1.5). For this
case, we want to get an explicit construction of some ˚ that satisfies (6.2.5) starting
from the usual stability conditions developed previously in Chap. 4. In other words,
we are going to see the equivalence of (6.2.5) with the ellipticity in the kernel and
inf-sup conditions. We thus consider, for any given X� D .u�; p�/ in V � Q, two
auxiliary problems, which have a unique solution if the mixed problem (6.1.5) is
well posed:

– Find .u1; p1/, solution of

(
a.v; u1/C b.v; p1/ D .u�; v/V 8 v 2 V;
b.u1; q/ D 0 8 q 2 Q; (6.2.9)

– Find .u2; p2/, solution of

(
a.v; u2/C b.v; p2/ D 0 8 v 2 V;
b.u2; q/ D .p�; q/Q 8 q 2 Q: (6.2.10)

In other words, we take .u1; p1/ D A�1.RV u�; 0/ and .u2; p2/ D A�1.0; RQp�/,
where RV and RQ are the Ritz operators from V to V 0 and from Q to Q0,
respectively (see (4.1.37)). We now set ˚..u�; p�// WD .u1 C u2;�p1 � p2/ and
we have:

A.X�; ˚.X�// D a.u�; u1 C u2/C b.u1 C u2; p�/C b.u�; p1 C p2/

D ku�k2V C kp�k2Q D kXk2W :
(6.2.11)

ut
Remark 6.2.5. Problems (6.2.9) and (6.2.10) could, by linearity, be combined into
one. We preferred to make more explicit the separate control of ku�kV and kp�kQ.
One should also note that (see Remark 6.2.3) the stability constant in (6.2.7)
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(which, using (6.2.8), is now equal to k˚k, since by (6.2.11) we have ˛˚ D 1)
depends through (6.2.9) and (6.2.10) on the usual constants defining, for example,
the coercivity in the kernel and the inf-sup condition. No free lunch. ut

6.2.2 Stability of Discretised Formulations

Let us now turn to the discretisation of problem (6.1.2). For a given sequence of
subspaces Wh of W (usually of finite dimension), we consider, for each h, the
discrete problem: find Xh 2 Wh such that

hAXh; Yhi D hF; Yhi 8Yh 2 Wh: (6.2.12)

In general, for an arbitrary choice of the sequence fWhg, (6.2.12) will not be
stable, that is, we cannot ensure that there exists a sequence of linear operators
˚h 2 L.Wh;Wh/, uniformly bounded in h, such that for some ˛˚ > 0 independent
of h:

hAYh; ˚h.Yh/i � ˛˚kYhk2W 8Yh 2 Wh: (6.2.13)

We suppose that we have, for each h, a stabilising term R with the structure

R.Xh; Yh/ WD L.Xh; Yh/C hN; Yhi (6.2.14)

where N , which is possibly null, will depend on F , and where L.Xh; Yh/ is a
continuous bilinear form on Wh with a continuity constant cL,

jL.Xh; Yh/j � cLkXhkWkYhkW : (6.2.15)

In practice, we shall buildR.Xh; Yh/ in such a way that it can be used as a stabilising
term in a sense that will be defined in hypothesis H.0 below. All the stabilisations
of the previous section (see, for instance, (6.1.20) or (6.1.40)) had indeed the above
structure. Here, however, we shall often use just the bilinear part L.Xh; Yh/.

We shall now consider an abstract error estimate based on the following
hypothesis.

H.0 We have:

(i) A continuous problem

hAX; Y i D hF; Y i 8Y 2 W; (6.2.16)

which we assume to have a unique solution,
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(ii) A sequence of stabilised discrete problems

hAXh; Yhi C rR.Xh; Yh/ D hF; Yhi 8Yh 2 Wh; (6.2.17)

where R.Xh; Yh/ is of the form (6.2.14) and r > 0 is a scalar,

(iii) Two constants Qc˚ and Q̨˚ , and an operator Q̊
h 2 L.Wh;Wh/ such that

k Q̊
h.Yh/k � Qc˚kYhk 8Yh 2 Wh (6.2.18)

and

hAYh; Q̊
h.Yh/iW 0 �W C rL.Yh; Q̊

h.Yh// � Q̨˚kYhk2W : (6.2.19)
ut

Under the assumption H.0, we have the following error bound.

Proposition 6.2.2. Assume that H.0 holds, and let X and Xh be the solutions of
(6.2.16) and (6.2.17) respectively. For every XI 2 Wh, let us set

R.XI / WD sup
Yh2Wh

R.XI ; Yh/

kYhk : (6.2.20)

We then have

Q̨˚
Qc˚ kXI � Xhk � kAk kX �XIk C rR.XI /; (6.2.21)

and consequently

kX � Xhk � Qc˚kAk C Q̨˚
Q̨˚ kX � XIk C Qc˚rR.XI /

Q̨˚ : (6.2.22)

Proof. Set ıX WD XI � Xh and QYh WD Q̊
h.ıX/. From (6.2.18), we immediately

have

k QYhk � Qc˚ kıXk: (6.2.23)

On the other hand, using (6.2.19), adding and subtractingX and using (6.2.14), then
using (6.2.16) and (6.2.17), and finally (6.2.20), we obtain:

Q̨˚ kıXk2 � hAıX; QYhi C r L.ıX; QYh/
D hA.XI � X/; QYhi C hAX; QYhi � hAXh; QYhi � rR.Xh; QYh/C rR.XI ; QYh/

D hA.XI � X/; QYhi C rR.XI ; QYh/
� k QYhk .kAk kXI �Xk C rR.XI //
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and (6.2.21) follows immediately using (6.2.23). Finally, (6.2.22) follows from
(6.2.21) using the triangle inequality. ut

On many occasions, as we have seen in the previous section, the perturbation
term R can be chosen in such a way that the strong consistency property (usually
called Galerkin orthogonality) still holds. In these cases, the solution X of (6.2.16)
would verify

R.X; Yh/ D 0 8Yh 2 Wh; (6.2.24)

implying that for the discrete stabilised problem we have

hAX; Yhi C rR.X; Yh/ D hF; Yhi 8Yh 2 Wh: (6.2.25)

In this case, we have, essentially by the same proof as in Proposition 6.2.2, the
following corollary.

Corollary 6.2.1. Assume that H.0 holds, and let X and Xh be the solutions of
(6.2.16) and (6.2.17) respectively. Assume moreover that X satisfies the strong
consistency condition (6.2.24). Then, we have

kX � Xhk � Qc˚.kAk C rcL/C Q̨˚
Q̨˚ inf

Yh2Wh

kX � Yhk (6.2.26)

where cL is defined in (6.2.15).

Remark 6.2.6. It is clear that the above results, and in particular Corollary 6.2.1,
could be applied to the methods of the previous section. ut
The results of Proposition 6.2.2 and of Corollary 6.2.1 are of a general nature and, in
order to obtain sharper results, we shall have to specialise somehow the construction
of R.Xh; Yh/ and its properties. This will be done in the following subsection.

6.3 Minimal Stabilisations

In several applications, we will have that there exists a subspace Wh 	 W and a
positive constant ˛ such that

hAZ;Zi � ˛k�Wh
Zk2 8Z 2 Wh; (6.3.1)

or, more generally,

W 0hAZ;˚h.Z/iW � ˛k�Wh
ZkW k˚h.Z/k 8Z 2 Wh; (6.3.2)
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for some linear mapping ˚h from Wh to Wh. In these cases, we can consider that
the part of the solution that belongs to W h will somehow be “under control” and
will not need to be stabilised.

In these cases, the stabilising term R in (6.2.14) could be chosen of the form

R.Xh; Yh/ D .GhXh �N;GhYh/H (6.3.3)

for some suitable Hilbert space H, a suitable N in H (either equal to 0 or
depending on f ), and a suitable linear operator Gh from Wh to H. Conditions
for .GhXh;GhYh/H to be stabilising will be given in the subsections below. Often,
roughly speaking, one would take N D 0 and use a Gh with

KerGh D Wh; (6.3.4)

so that Gh will act only on the part of Wh that is not in Wh. In other cases, as we
already did at the end of the previous section, we have to deal with several equations,
and Gh will act differently on each of them. Moreover, in several cases, Wh will
contain all the low frequencies of Wh, so that a smooth solution X 2 W could be
approximated fairly well by elements Xh 2 W h. Then, for every XI 2 Wh and for
every Xh 2 Wh, we will have that the term R.XI / in (6.2.21) can be estimated by

R.XI ; Yh/

kYhk D R.XI �Xh; Yh/

kYhk
� cLkXI � Xhk � cL.kXI � Xk C kX � Xhk/;

so that, from (6.2.21), we have in this case

Q̨˚
Qc˚ kXI � Xhk � .kAk C rcL/ kX � XIk C r cLkX � Xhk (6.3.5)

and the error estimate will depend on the approximation properties of both Wh and
Wh, on the value of cL and on the choice of r . We shall now provide a precise and
sharper analysis of some of these situations.

We still suppose that the discrete problem defined by (6.2.12) is not stable. We
may however suppose that a partial stability holds for some semi-norm ŒYh�h on Wh.

Remark 6.3.1. In general, the “biggest semi-norm” one could consider is clearly

ŒX�h WD sup
Yh2Wh

W 0hAX; YhiW
kYhkW

: (6.3.6)

However, in many applications, simpler (and more explicit) norms can be preferred.
ut

The following assumption expresses in a precise way the fact that a certain semi-
norm ŒXh�h is “under control”:
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H.1 For every h, there exists

(i) A semi-norm Œ � �h on W ,
(ii) An operator ˚h 2 L.Wh;Wh/,

(iii) A constant c˚ such that

k˚h.Yh/kW � c˚kYhkW 8Yh 2 Wh; (6.3.7)

(iv) A constant ˛˚ > 0 such that

hAYh;˚h.Yh/i � ˛˚ ŒYh�
2
h 8Yh 2 Wh: (6.3.8)

ut
Assumption H.1 might seem cumbersome or difficult to realise in practice. This is
not the case. Indeed, before proceeding, we point out that Assumption H.1 is indeed
verified in a number of applications. In particular, we consider the following (rather
typical) situations.

Minimal stabilisation of mixed formulations. Assume that hAX; Y i is defined as
in (6.1.4), and recall the definitions (6.1.53) and (6.1.54).

For every fixed Xh � .uh; ph/ 2 Wh, we consider, in the spirit of Remark 6.3.1,

S.Xh/ WD sup
.vh;qh/2Vh�Qh

W 0hA.uh; ph/; .vh; qh/iW
k.vh; qh/kW

: (6.3.9)

Assuming that (6.1.8) holds, we will always have

S.Xh/ � W 0hA.uh; pp/; .uh; ph/iW
k.uh; ph/kW

� a.uh; uh/

k.uh; ph/kW
DW juhj2a

k.uh; ph/kW
: (6.3.10)

Similarly, we have (always without any assumptions on Vh or Qh)

S.Xh/ � sup
.vh;0/2Kh�f0g

a.uh; vh/

kvhkV D k�K0

h
A uhkV 0 ; (6.3.11)

S.Xh/ � sup
.0;qh/2f0g�Qh

b.uh; qh/

kqhkQ D kBh uhkQ0 ; (6.3.12)

S.Xh/ � sup
.vh;0/2K?

h �f0g

a.uh; vh/C b.vh; ph/

kvhkV D k�K0
h
A vh C Bt

h qhkV 0 ; (6.3.13)



6.3 Minimal Stabilisations 363

but, in general, we would not be able to get estimates of the type

S.Xh/ � CkAhuhkV or S.Xh/ � kBt
hkQ0 (6.3.14)

separately. In most particular cases, however, one might have some good property
and exploit it. We have seen in the previous chapters that sufficient conditions that
ensure stability and error estimates are the ellipticity in the kernel Kh (elker) of the
bilinear form a.� ; �/ and the discrete inf-sup condition for the bilinear form b.� ; �/.
We also pointed out that the two conditions play, in a certain sense, one against
the other: taking a bigger Vh helps in ensuring the inf-sup condition but increases
the kernel and makes elker more at risk and the other way round. It is therefore
not unreasonable to assume that we already took care of one of the two conditions
(just by increasing or decreasing one of the two spaces), and ask the help of some
stabilising trick in order to take care of the other. More precisely, we assume, to start
with, that we have a continuous problem that is well posed.

A.1 We suppose that hAX; Y i is defined as in (6.1.4) and that

(i) The bilinear form a.�; �/ is K-elliptic, that is,

9˛0 > 0 s:t: a.v; v/ � ˛kvk2V 8 v 2 K D KerBI (6.3.15)

(ii) The bilinear form b.v; q/ satisfies the inf-sup condition in V �Q where

ˇ WD inf
v2V

sup
q2Q

b.v; q/

kvkV kqkQ : (6.3.16)

ut
In what follows, we will discuss the cases in which one of the two conditions is not
satisfied for the discretised problem.

Example 6.3.1 (Minimal stabilisation of the inf-sup condition). For simplicity, we
further assume that the ellipticity condition holds on the whole V , that is,

9˛ > 0 s:t: a.v; v/ � ˛kvk2V 8 v 2 V: (6.3.17)

We know that the full ellipticity in V (6.3.17) implies automatically the full
ellipticity in Vh. On the other hand, this is not true, in general, for the inf-sup
condition. Hence, as we consider methods in need to be stabilised, we suppose
that the discrete inf-sup condition does not hold with a constant independent of h.
In order to see that, however, Assumption H.1 is satisfied; we consider the following
semi-norm:

ŒYh�
2
h D Œ.vh; qh/�

2 WD kvhk2V C ŒŒqh��
2
h (6.3.18)

where
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ŒŒqh��h WD sup
vh2Vh

b.vh; qh/

kvhkV � kBt
hqhkV 0 8 qh 2 Qh: (6.3.19)

The following proposition states that, in this framework, Assumption H.1 holds.

Proposition 6.3.1. Let A be of the form (6.1.4) and assume that A.1 holds, together
with the full ellipticity (6.3.17). Then, H.1 also holds. In particular, (6.3.7) and
(6.3.8) hold with

˛˚ D ˛

2
min

�
1;

1

kak2
�
; (6.3.20)

c˚ D 1C ˛

kak2 (6.3.21)

and with the semi-norm Œ � �h defined in (6.3.18) and (6.3.19).

Proof. For a given Yh WD .vh; qh/, let v�
h 2 Vh be such that

b.v�
h ; qh/

kv�
h kV D sup

wh2Vh
b.wh; qh/

kwhkV DW ŒŒqh��h (6.3.22)

scaled in such a way that

kv�
h kV D ŒŒqh��h: (6.3.23)

We now choose

˚h.Yh/ D .vh C ıv�
h ; qh/; (6.3.24)

with ı a positive real number to be specified later on. We have from (6.1.4) and
(6.3.24):

hAYh; ˚h.Yh/i D a.vh; vh/C ıa.vh; v
�
h /

C b.vh; qh/C ıb.v�
h ; qh/� b.vh; qh/

� ˛kvhk2V � ıkakkvhkV kv�
h kV C ıŒŒqh��hkv�

h kV
D ˛kvhk2V � ıkakkvhkV ŒŒqh��h C ıŒŒqh��

2
h; (6.3.25)

having used (6.3.17), (6.3.22), and, in the last step, (6.3.23). It is now clear that,
choosing ı D ˛=kak2, (6.3.25) implies

hAYh;˚h.Yh/i � ˛

2
kvhk2V C ı

2
ŒŒqh��

2
h (6.3.26)
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having used 2ab � a2 C b2. Hence, we have (6.3.8) with the constant ˛˚ given by
(6.3.20). On the other hand, (6.3.23) and the choice of ı imply (6.3.7) and (6.3.21)
since

kvh � ıv�
hk � kvhk C ıkv�

h k D kvhk C ıŒŒqh��h: ut

Remark 6.3.2. Looking at the above proof, we can see that, actually, we proved,
instead of (6.3.7), the stronger inequality

k˚h.Yh/k � c˚ ŒYh�h 8Yh 2 Wh: (6.3.27)

ut
Example 6.3.2 (Minimal stabilisations of the ellipticity condition). Another possi-
ble case in which H.1 is satisfied is the following one, in which we suppose, this
time, that the discrete inf-sup condition does hold with a constant independent of h,
but the ellipticity in the kernel does not. For instance, we might have that a is elliptic
on the kernel K of B , but the kernel Kh of Bh is not a subset of K , and ellipticity
does not hold for all vh 2 Kh.

In particular, we assume that A1 holds, that the discrete inf-sup condition

9ˇ� > 0 such that WD inf
v2V

sup
q2Q

b.v; q/

kvkV kqkQ � ˇ� (6.3.28)

holds with ˇ� independent of h, and that, moreover, as in (5.2.37) and (5.2.38), there
exists a Hilbert space V � with V ,! V � such that

9˛� > 0 such that a.v; v/ � ˛�kvk2V � 8 v 2 V; (6.3.29)

together with

9M �
a such that a.u; v/ � M �

a kukV � kvkV � 8 u; v 2 V: (6.3.30)

Then, we consider the following semi-norm:

ŒYh�
2
h D Œ.vh; qh/�

2 WD kvhk2V � C kqhk2Q: (6.3.31)

The following proposition states that in this framework, Assumption H.1 holds.

Proposition 6.3.2. Let A be of the form (6.1.4) and assume that A.1 holds, together
with assumptions (6.3.28)–(6.3.30). Then, H.1 also holds. In particular, (6.3.7) and
(6.3.8) hold with
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˛˚ D ˛

2
min

�
1;

ˇ2�
.M �

a /
2

�
; (6.3.32)

c˚ D 1C ˛�ˇ�
.M �

a /
2

(6.3.33)

and with the semi-norm Œ � �h defined in (6.3.31).

Proof. For a given Yh WD .vh; qh/, we use (6.3.28) to choose v�
h 2 Vh such that

b.v�
h ; qh/

kv�
h kV D sup

wh2Vh
b.wh; qh/

kwhkV � ˇ�kqhk2Q; (6.3.34)

scaled in such a way that

kv�
h kV D kqhkQ: (6.3.35)

We now choose

˚h.Yh/ D .vh C ıv�
h ; qh/; (6.3.36)

with ı a positive real number to be specified later on. We have from (6.1.4) and
(6.3.36):

hAYh; ˚h.Yh/i D a.vh; vh/C ıa.vh; v
�
h /

C b.vh; qh/C ıb.v�
h ; qh/� b.vh; qh/

� ˛�kvhk2V � � ıM �
a kvhkV �kv�

h kV � C ıˇ�kqhkQkv�
h kV

D ˛�kvhk2V � ıM �
a kvhkV kqhkQ C ıˇ�kqhk2Q; (6.3.37)

having used (6.3.15), (6.3.34), and, in the last step, (6.3.35). It is now clear that,
choosing ı D ˛�ˇ�=.M �

a /
2, (6.3.25) implies

hAYh; ˚h.Yh/i � ˛�

2
kvhk2V C ıˇ�

2
ŒŒqh��

2
h; (6.3.38)

having used 2ab � a2 C b2. Hence, we have (6.3.8) with the constant ˛˚ given by
(6.3.32). On the other hand, (6.3.35) and the choice of ı imply (6.3.7) with (6.3.33),
since

kvh � ıv�
hk � kvhk C ıkv�

h k D kvhk C ıkqhk: ut

Remark 6.3.3. Looking at the above proof, we can see that, together with (6.3.7),
we could also prove the inequality
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Œ˚h.Yh/�h � c˚ ŒYh�h 8Yh 2 Wh; (6.3.39)

which in this case is stronger than (6.3.7). ut
Remark 6.3.4. It is important to note that ˚h.vh; qh/, defined by (6.3.24) or
(6.3.36), leaves the second component of .vh; qh/ unchanged. This property can
be useful in several circumstances. ut
General results on minimal stabilisations. Having seen that Assumption H.1 is
indeed a reasonable one, we are now going to see how to use it in order to stabilise
the problem. Roughly speaking, as we have already mentioned, we are going to
add a bilinear form L.Xh; Yh/ on Wh � Wh, assuming that it could take care of
“the remaining part of the W norm”, that is “the part of the W norm which is not
controlled by the semi-norm Œ � �h”.

For technical reasons, we are going to make this assumption in two steps: we shall
first assume in H.2 that L.Yh; Yh/ controls a suitable intermediate term kGhYhk2H
(to be discussed later on), and then we shall assume, in H.3, that this intermediate
term, together with the semi-norm Œ � �h, can control the whole W norm. Let us see
this in a more precise way.

H.2 There exist a Hilbert space H, a bilinear form L 2 L.H;H/, three positive
constants cG , cL and ˛G , and, for every h, an operator Gh 2 L.Wh;H/,
withkGhkL.Wh;H/ � cG , such that

L.GhZh;GhYh/ � cLkGhZhkH kGhYhkH 8Yh; Zh 2 Wh; (6.3.40)

L.GhYh;GhYh/ � ˛GkGhYhk2H 8Yh 2 Wh: (6.3.41)

ut
Remark 6.3.5. It is clear that hypothesis H2 is tailored for using a stabilising term
R of the form (6.3.3). ut
We now consider, for some positive real number r , the stabilised operator QA defined
as

h QAXh; Yhi WD hAXh; Yhi C rL.GhXh;GhYh/ 8Xh; Yh 2 Wh (6.3.42)

and the corresponding regularised problem

h QAXh; Yhi D rL.N;GhYh/C hF; Yhi 8Yh 2 Wh: (6.3.43)

We have the following result.

Lemma 6.3.1. Assume that H.1 and H.2 hold, and assume moreover that, for the
mapping ˚h considered in H.1 and the map Gh considered in H.2, we have

kGh.˚h.Yh//kH � cG˚kGh.Yh/kH 8Yh 2 Wh (6.3.44)
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for some constant CG˚ independent of h. Then, there exist a linear mapping ˚�
h 2

L.Wh;Wh/ and two constants ˛�̊ and c�̊ , depending only on ˛˚ , c˚ ˛R , and cR
such that, for every h, for every r and for every Yh 2 Wh, we have

k˚�
h .Yh/kW � c�̊ kYhkW ; (6.3.45)

kGh.˚�
h .Yh//kH � c�̊ kGh.Yh/kH; (6.3.46)

and

h QAYh; ˚�
h .Yh/i � ˛�̊�ŒYh�2h C rkGh.Yh/k2H

�
; (6.3.47)

where QA is given in (6.3.42). ut
Proof. We set

˚�
h .Yh/ WD Yh C ı˚h.Yh/ (6.3.48)

with ı to be chosen later on. Then, using first (6.3.42) and (6.3.48), then (6.3.8),
(6.3.41), and using (6.3.44) to bound the last term, we have:

h QAYh; ˚�
h .Yh/i

� ı˛˚ ŒYh�
2
h C r˛GkGh.Yh/k2H � rcLkGh.Yh/kHıcG˚kGh.Yh/kH;

(6.3.49)

and the result follows easily for rı smaller than 4˛G˛˚=.cL cG˚/2. ut
Remark 6.3.6. It is easy to check that (6.3.44) holds easily whenever

L.Xh;˚h.Yh// D L.Xh; Yh/; (6.3.50)

implying that L.Xh; Yh/ depends only on the part of Yh which is left unchanged
by ˚h. ut
We finally need a further assumption that connects the right-hand side of (6.3.47)
with the norm in Wh.

H.3 With the notation of assumptions H.1 and H.2, we further assume that there
exist two positive constants �2 and �3 such that

ŒYh�
2
h C �2kGhYhk2H � �3kYhk2W 8Yh 2 Wh: (6.3.51)

ut
It is clear that, if Assumption H.3 is also verified, then (6.3.47) will give a
stability result of type (6.2.13), where the explicit value of the constant ˛˚ can
be easily deduced from the values of the other constants. On the other hand, the
estimate (6.3.47) will also be used in the sequel in cases when some constant
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(r mostly, and sometimes �2) might depend on h, so that it is convenient to leave it
in its present form.

We now consider the problem of error estimates. As we introduced sufficient
conditions to ensure stability, the question will be to check consistency, and in
particular the effect on consistency of the extra stabilising terms. As we said, in
many applications, the constants r , �2, and �3 appearing in (6.3.51) might be allowed
to depend on h. Hence, it is important that we keep track of them in our abstract
estimates. Mimicking (6.2.20), we now set

R.XI / WD sup
Yh2Wh

L.GhXI �N;GhYh/

kGhYhkH
: (6.3.52)

Theorem 6.3.1. Let X and Xh be the solutions of (6.2.16) and (6.3.43) respec-
tively. Assume that H.1, H.2, and H.3 hold. Then, for every XI 2 Wh, we have

ŒXI �Xh�2h C rkGh.XI �Xh/k2H
� C

�
r C �2

r�3
kAk2kXI �Xk2 C r.R.XI //2

�
; (6.3.53)

where the constant C depends on ˛G , ˛˚ , cL and c˚ , but does not depend on the
other parameters.

Proof. We set ıX WD XI �Xh and Yh WD ˚�
h .ıX/, with ˚�

h given in Lemma 6.3.1.
Using Lemma 6.3.1, then the continuous equation (6.2.16) and the stabilised discrete
one (6.3.43), and then (6.3.40), (6.3.45), and (6.3.46), we get

˛˚ŒıX�
2
h C r˛GkGhıXk2 � hA.ıX/; ˚�

h .ıX/i C rL.Gh.ıX/;Gh.˚
�
h .ıX///

D hA.XI � X/;˚�
h .ıX/i C rL.GhXI �N;Gh.˚

�
h .ıX///

� c�̊ kAk kXI � Xk kıXk C rR.XI /kGhıXk: (6.3.54)

We now use H.3 to bound kıXk:

kıXk �
� ŒıX�2h C �2kGhıXk2

�3

�1=2 � ŒıX�h C �
1=2
2 kGhıXk
�
1=2
3

: (6.3.55)

At this point, we need, just for a while, a lighter notation. We denote one of the two
terms on the right-hand side of (6.3.53) by D1 WD kAk kXI � Xk and the other
by D2 WD kGh.XI /kH. We also denote the second term in the left-hand side by
g WD kGh.ıX/kH. With this notation, the inequality that we have to prove becomes
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ŒıX�2h C rg2 � C
�r C �2

r�3
D2
1 C rD2

2

�
(6.3.56)

and what we have got, inserting (6.3.55) into (6.3.54) and using the new notation,
can be written as

ŒıX�2h C rg2 � C
� D1

�31=2
ŒıX�h CD1

� �2
r�3

�1=2
r1=2g C r1=2D2r

1=2g
�
: (6.3.57)

Then, we apply the inequality ab � c

2
a2 C 1

2c
b2 with suitable choices of c, move

three terms to the left and multiply the resulting equation by a suitable constant to
get (6.3.53). ut

As an immediate consequence of Theorem 6.3.1, we have the following error
estimate.

Theorem 6.3.2. Let X and Xh be the solutions of (6.2.16) and (6.3.43) respec-
tively. Assume that H.1, H.2 and H.3 hold, and assume that the operator Gh could
be extended to a space W.h/ 	 W containing both Wh and X . Then, there exists a
constant C D C.˛G; ˛˚ ; cL; c˚/ such that

ŒX �Xh�2h C rkGh.X �Xh/k2H
� C inf

XI2Wh

�r C �2

r�3
kAk2kX � XIk2 C r.R.XI //2

�
: (6.3.58)

Moreover, we have the following important corollary.

Corollary 6.3.1. Keep the same assumptions as in Theorem 6.3.2, and assume
moreover that for every h we have a space W.h/ containing both Wh and the
exact solution X of (6.2.16) such that Gh could be extended to an operator in
L.W.h/;H/, with norm cG uniformly bounded in h, and such that (6.3.40) and
(6.3.41) still hold for Yh andZh in W.h/. Finally, assume that, for the exact solution
X of (6.2.16), we have

L.GhX �N;GhYh/ D 0 8Yh 2 Wh; (6.3.59)

so that, with the notation of (6.3.52), we have R.X/ D 0. Then, there exists a
constant C D C.˛G; ˛˚ ; cL; c˚/ such that

ŒX �Xh�2h C rkGh.X �Xh/k2H
� C inf

XI2Wh

�r C �2

r�3
kAk2kX �XIk2 C rkGh.X � XI /k2H

�
: (6.3.60)
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Remark 6.3.7. It is not difficult to see that the approach described here, and in
particular the result of Corollary 6.3.1, has much in common with the ones described
and analysed in the previous section. Actually, many stabilising techniques available
on the market can be set equally well in the framework of the previous section as in
that of the present one. Still, in certain cases, one of the two would be easier to use,
and in other cases, only one of these two approaches will be usable. ut

As we mentioned already, in different applications, we might allow some of
the constants (and mainly r and �2) to depend on h. Hereafter, we shall rapidly
see some typical cases, taking as simplest example the one-dimensional version of
mixed formulations for the Poisson problem, already seen in (6.1.82) and (6.1.83).
Other examples will be seen in the following chapters, for different applications.

The first, and main difference, is whether the constant �2 can be assumed to tend
to zero (and fast enough) when h tends to zero. We first consider the case in which
it is more convenient to take a �2 that does not depend on h. In a certain number of
cases, Theorem 6.3.2 or Corollary 6.3.1 can be applied with all the constants (r , �2,
and �3) independent of h.

Example 6.3.3 (Both r and �2 are independent of h). It is clear that Corollary 6.3.1
is the natural candidate to be applied in these cases. Most augmented formulations
and their variants can be analysed in this way. Just to see an example, consider the
one-dimensional Poisson problem (6.1.82), and assume that we take Vh WD L21 and
Qh WD L00. We have already seen in the previous Chapter (in Sect. 5.2.4) that this
choice leads to a total disaster, due to the failure of the elker condition. However,
adding a term

R.Xh; Yh/ � R..uh; ph/; .vh; qh// D .u0
h C f; v0

h/ (6.3.61)

will restore the full ellipticity and give a good solution. On the other hand, the bound
(6.3.12) tells us, in this case, that the projection of Buh � u0

h onto Qh is already
under control, and a further analysis would show that indeed the term in (6.3.61)
could be multiplied by h2 and still provide a sufficient stabilisation (see [125]). ut
Example 6.3.4 (Taking �2 fixed and r depending on h). In this case, we are allowed
to use directly Theorem 6.3.1. The bound (6.3.53) will provide (for r “small”) an
estimate of the type

ŒıX�2h C rkGh.ıX/k2H � C

�
1

r
kXI �Xk2 C rkGh.XI /k2H

�
; (6.3.62)

which, when (6.3.4) holds, can become

ŒıX�2h C rkGhıXk2 � C

�
1

r
kXI � Xk2 C rkXh �Xk2

�

� C

�
1

r
hs1 C rhs2

�
; (6.3.63)
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by usual interpolation estimates with, in general, s1 � s2 � 0. Then, by taking
r D hs , we get

ŒıX�2h C hskGhıXk2 � C
�
hs1�s C hs2Cs

�
; (6.3.64)

with the optimal choice given by s D .s1 � s2/=2. We further develop such a case
in the following example. ut
Example 6.3.5 (Penalty methods for the inf-sup condition). Coming back to the
case of Proposition 6.3.1, a large class of stabilisations to cure methods where
the inf-sup condition fails can be built taking a subspace QQh of Qh, denoting by
QP the projection operator on QQh, and setting

(
Gh..vh; qh// WD QP .qh/;
R..uh; ph/; .vh; qh// WD . QPph; QPqh/Q:

(6.3.65)

The subspace QQh will be chosen so that H.3 holds. This means that, using the
notation (6.3.19), we should have

ŒŒqh��
2
h C �2kP QQh

qhk2 � �3kqhk2Q; (6.3.66)

for some positive constants �2 and �3. The stabilised problem then becomes

(
a.uh; vh/C b.vh; ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; qh/� r. QPph; QPqh/ D .g; qh/ 8 qh 2 Qh:

(6.3.67)

In this case, the estimate (6.3.53) would yield

kuI � uhk2V C ŒŒpI � ph��
2
h C rk QP .pI � ph/k2Q

� C
r C �2

r
.kAk2kuI � uk2V C kpI � pk2Q/

C rk QP .pI � p/k2Q C rk QP .p/k2Q: (6.3.68)

We now consider three cases:

(i) Stable penalty. The inf-sup condition is satisfied. In this case, we obviously
have ŒŒqh��h ' kqhkQ. We can then take �2 D 0 and QQh D Qh, which means
that QP D I . We can take r as small as we want and there is anO.r/ term in the
right-hand side. This means that the penalty is used as a computational trick to
obtain an otherwise good solution.

(ii) Brute force penalty. We have no (usable) inf-sup condition (roughly speaking:
ŒŒqh��h D 0 for any qh). We take again QQh D Qh and QP D I but we now need
�2 D O.1/. The error estimate becomes,
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kuI � uhk2V C rkpI � phk2Q
� C

1

r
.kAk2kuI � uk2V C kpI � pk2Q/C rkpk2Q: (6.3.69)

In that case, we only get a bound on kuI � uhk. Suppose, to fix ideas, that we
would expect an O.hk/ from the usual error estimates. It is clear that the best
that we can do is to take r D O.hk/ and get a final bound in O.hk=2/ instead
of O.hk/.

(iii) Clever-penalty. Let us suppose that there is a subspace Qh � Qh such that
Vh � Qh satisfies the inf-sup condition and let P be the projection onto Qh.
We set QP D .I � P/ and we now need �2 D O.1/. The bound would now be

kuI � uhk2V C k NpI � phk2 C rk.I � P /.pI � ph/k2Q
� C

1

r
.kAk2kuI � uk2V C kpI � pk2Q/C rk.I � P /pk2Q: (6.3.70)

Two possibilities arise, depending on the approximation properties inQh. If all
the terms kuI �ukV , kpI �pkQ, and k.I �P/pkQ in the right-hand side have
a similar order in h, then any positive r will provide an estimate of the best
possible order. Such stabilising methods have been considered in [349]. On the
other hand, suppose that the last term is of lower order than the other ones.
One could use a small value of r to get a better accuracy but to the expense of
loosing on the first terms. If, for instance, we expect

.kuI � uk2V C kpI � pk2Q/ D O.h4/ and k.I � P /.p/k2Q D O.h2/;

then the choice r D O.h/ will yield an estimate of O.h3=2/ on ku � uhkV and
of O.h/ on kp � phkQ. Such a procedure was introduced by Lovadina and
Auricchio [284] for the Stokes problem. ut

Example 6.3.6 (Using a �2 that depends on h). We now consider the cases in which
it is possible, and convenient, to use a �2 that tends to zero with h. At first sight,
one might think that this never (or almost never) occurs. However, this is not true.
Assume, for instance, that

Œqh�h � kqhkL2 ; (6.3.71)

where qh is the L2 projection of qh onto the space of piecewise constant functions.
It is elementary, by the Poincaré inequality, to see that, for a qh piecewise inH1, we
have

kqhk2L2 � kqhk2L2 C C h2k gradh qhk2L2 ; (6.3.72)
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where, as before, gradh is the piecewise gradient and C is a constant that depends
only on the minimum angle of the decomposition (and where, for simplicity, we
assumed a quasi-uniform decomposition). Hence, in this case, we would have

Œqh�
2
h C h2k gradh qhk2L2 � �3kqhk2L2 (6.3.73)

with a constant �3 independent of h: a formula of the type of (6.3.51) with �2 D h2.
Looking at (6.3.53), it seems natural, when �2 is small, to take r as small as �2 (that
is, going to zero with the same order). It is what we consider in the next example. ut
Example 6.3.7 (Both r and �2 depend on h). We consider the case in which both
r and �2 depend on h, and go to zero. For simplicity, we assume that we take,
brutally, r � �2, but everything will work just taking, say, r � ��2 with a constant
� independent of h. Then, we have

ŒıX�2h C rkGh.ıX/k2H � ŒıX�2h C �2kGh.ıX/k2H � �3kıXk2 (6.3.74)

so that applying (6.3.53) to the left-hand side of (6.3.74) gives

�3 kıXk2 � C

�
2

�3
kAk2kXI �Xk2 C rkGh.XI /k2H

�
: (6.3.75)

For instance, dealing with the one-dimensional version of (6.1.82) and starting from
Vh WD L11 and Qh WD L12, it is easy to see that Œ.vh; qh/�2h � kvhk21 C kqhk20, where
again qh is the projection of qh on piecewise constants. In view of (6.3.72), we can
then take

R..u; p/; .v; q// D .p0; q0/ (6.3.76)

and r D �2 D h2. This will give linear convergence for both u and p. ut

6.3.1 Another Form of Minimal Stabilisation

We now develop a more sophisticated variant of the previous case (where �2 depends
on h) that is based, instead of (6.3.71), on a (possible) estimate of the type

Œqh�h � kqhkL2 � C h2k grad qhk2L2 : (6.3.77)

Estimates of this type are met in situations like the one analysed in Sect. 5.4.5 (see, in
particular Eq. (5.4.22)) and related to the technique known as Verfürth’s trick [375]
that we discussed in the previous chapter. We still suppose that Assumption A.1
holds and we complete it by the following assumption.
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A.2 There exists a Hilbert space H with V ,! H � H 0 ,! V 0 such that

Bt.Qh/ � H (6.3.78)

(where Bt W Q �! V 0 is, as usual, the linear operator associated with the
bilinear form b.v; q/), and there exist a monotone function ! W RC ! R

C and a
positive constant 	 , independent of h, such that

!.h/kvhkV � kvhkH 8 vh 2 Vh; (6.3.79)

!.h/kBtqhkH � kqhkQ 8qh 2 Qh (6.3.80)

and

kv � �VhvkH � 	!.h/kvkV 8 v 2 V: (6.3.81)

ut
We note that, setting

ŒŒqh��h WD sup
vh2Vh

b.vh; qh/

kvhkV D sup
vh2Vh

.vh; B
tqh/H

kvhkV ; (6.3.82)

from (6.3.79) we have

ŒŒqh��h D sup
vh2Vh

.vh; B
tqh/H

kvhkH
kvhkH
kvhkV � !.h/ k�V 0

h
BtqhkH � !.h/kBt

hqhkH :
(6.3.83)

In agreement with the general procedure of this section, we can now take H D H

with

Gh..vh; qh// D Btqh � Bt
hqh D .I � �V 0

h
/Btqh (6.3.84)

and define:

R..uh; ph/; .vh; qh// D �
Btph � Bt

hph; B
tqh � Bt

hqh
�
H
: (6.3.85)

It is clear that both (6.3.40) and (6.3.41) will hold with constants independent of
h, so that H.2 holds. We are left with H.3 which will be proved in the next two
propositions using essentially the so-called Verfürth’s trick [375] that we already
discussed in Sect. 5.4.5.

Lemma 6.3.2. Assume that A.1 and A.2 hold. Then,

ŒŒqh��h WD sup
vh2Vh

b.vh; qh/

kvhkV � ˇkqkQ � 	!.h/kBtqhkH 8 qh 2 Qh; (6.3.86)

where ˇ is the inf-sup constant appearing in (6.3.16), !.h/ is given in (6.3.79)–
(6.3.81), and 	 is given in (6.3.81).
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Proof. The proof is essentially the same as the one that was used to prove (5.4.22) in
the last chapter. Let us see it briefly. We start from the inf-sup condition (6.3.16), we
add and subtract the projection �Vhv of v over Vh and then use (6.3.82) and (6.3.81):

ˇkqhkQ � sup
v2V

b.v; qh/

kvkV D sup
v2V

�
b.�Vhv; qh/

kvkV C b.v � �Vh ; qh/
kvkV

�

� sup
v2V

b.�Vhv; qh/

k�VhvkV C sup
v2V

.v � �Vhv; Bt qh/H

kvkV
� sup

vh2Vh
b.vh; qh/

kvhkV C sup
v2V

kv � �VhvkHkBt .qh/kH
kvkV

� ŒŒqh��h C 	!.h/kBtqhkH 8 qh 2 Qh:

(6.3.87)

ut
We can now easily get the following result.

Lemma 6.3.3. Under Assumptions A.1 and A.2, there exists a constant Q̌, inde-
pendent of h, such that

ŒŒqh��
2
h C !2.h/kBtqh � �VhB

tqhk2H � Q̌kqhk2Q 8 qh 2 Qh: (6.3.88)

Proof. Indeed, by the triangle inequality, we have, for every qh 2 Qh:

kBtqh � �V 0

h
BtqhkH C k�V 0

h
BtqhkH � kBtqhkH : (6.3.89)

On the other hand, summing (6.3.86) plus 	 times (6.3.83), we have

.1C 	/ŒŒqh��h � ˇkqhkQ C 	!.h/
�
k�V 0

h
BtqhkH � kBtqhkH

�
(6.3.90)

so that

.1C 	/ŒŒqh��h C 	!.h/kBtqh � �V 0

h
BtqhkH � ˇkqhkQ (6.3.91)

and the result follows easily. ut
Remark 6.3.8. Actually, by Pythagora’s theorem, we obviously have, for every qh 2
Qh:

kBtqhk2H D kBtqh � �V 0

h
Btqhk2H C k�V 0

h
Btqhk2H : (6.3.92)

However, as we have seen, the triangle inequality (6.3.89) is enough for our proof.
ut

Lemma 6.3.3 implies that H.3 holds, with the above choices for Œ � �h and Gh, with a
constant �3 independent of h, and with �2 D !2.h/.
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Remark 6.3.9. In certain cases, it would be more convenient to introduce another
finite element space QVh 	 H , and use a stabilising term like

R..uh; ph/; .vh; qh// D
�
Btph � � QV 0

h
Btph; B

tqh � � QV 0

h
Btqh

�
H

(6.3.93)

instead of (6.3.85). Then, Lemma 6.3.3 will still hold (and consequently H.3 will
also hold), provided that we have some additional result that guarantees, in the
particular case under study, that

kBtqhkH � C.kBtqh � � QV 0

h
BtqhkH C k�V 0

h
BtqhkH/ 8qh 2 Qh (6.3.94)

for some constant C independent of h. ut
In view of the above remark, it might be convenient to treat the two cases (that is:

using (6.3.85) or (6.3.93) when (6.3.94) also holds) together. For this, we introduce
the following assumption.

A.3 With the notation of Assumption A.2, we consider a space QVh 	 H and we
assume that there exists a positive constant Q�, independent of h, such that

k�VhBtqhkH C kBtqh � � QVhB
tqhkH � Q� kBtqhkH 8 qh 2 Qh: (6.3.95)

ut
Assumption A.3 obviously holds, for instance, if QVh D f0g, or more generally
whenever QVh 	 Vh. The case of a QVh larger than Vh, instead, will work only in
some special case, and will require an ad hoc (and sometimes delicate) proof. We
can collect the result of Lemma 6.3.3 and the above discussion in the following
theorem.

Theorem 6.3.3. Assume that Assumptions A.1, A.2, and A.3 hold. Assume more-
over that the full ellipticity condition (6.3.17) holds. Assume that we are given
subspaces Vh � V and Qh � Q, and we take Wh WD Vh � Qh with (6.3.18)
and (6.3.19). Set

Gh..vh; qh// WD Btqh � � QVhB
tqh: (6.3.96)

Then, H.3 holds with a constant �3 independent of h, and with �2 D !2.h/.

We are therefore in a situation very similar to that of Example 6.3.6. A very
reasonable choice would then be to use an r that also behaves as !.h/2 as in
Example 6.3.7. Then using Theorem 6.3.1 as in (6.3.75), we have the following
theorem.

Theorem 6.3.4. Assume that A.1, A.2, and A.3 hold, and let .u; p/ be the solution
of Problem (6.1.5). Assume that, in (6.2.17), R is defined through (6.3.85), and
that r is a positive number � !.h/2. Then, Problem (6.2.17) has a unique solution
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.uh; ph/ and there exists a constant C , independent of h and r , such that, for every

.uI ; pI / 2 Vh �Qh, we have:

kuI � uhk2V C kpI � phk2Q

� C
�
ku � uIk2V C kp � pIk2Q C rkGh.0; pI /k2

�
:

(6.3.97)

Proof. The proof is an immediate consequence of (6.3.53) as in (6.3.74) and
(6.3.75). ut
Remark 6.3.10. The convenience in using r > !2.h/ (including the case of an r
fixed that does not depend on h) can occur when the term kGh.0; pI /kH in (6.3.97)
is already small. Indeed, with a choice of the type (6.3.93), we would have

kGh.0; pI /kH D kBtpI � � QVhB
tpIkH

� kBt.pI � p/ � � QVhB
t .pI � p/kH C kBtp � � QVhB

tpk
� CkBt.p � pI /kH C k.I � �V th/BtpkH

(6.3.98)

that could be small whenever Btp is smooth and QVh has good approximation
properties. ut

Remark 6.3.11. It is clear that the condition r � !2.h/ could be replaced with
r � �!2.h/ for some � > 0 independent of h. This, indeed, will make the notation
in the proof heavier, but the final result will end up in a different value of the constant
C in (6.3.97). ut

Remark 6.3.12. As usual, we can then take uI and pI as the best approximations
of u and p, respectively (in the respective norms), and then deduce an estimate for
ku � uhkV C kp � pIkQ by the triangle inequality. ut

We now consider the case of an r smaller that !2.h/.

Theorem 6.3.5. In the same assumptions as in Theorem 6.3.4, taking r � !2.h/,
we have:

kuI � uhk2V C ŒŒpI � ph��
2 C rkpI � phk2Q

� C
�2!2.h/

r
.ku � uIk2V C kp � pIk2Q/C rkGh.0; pI /k2

�
:

(6.3.99)

Proof. The proof is again an easy consequence of (6.3.53) in Theorem 6.3.1.

Remark 6.3.13. In applications, the choice of the form of r.h/ will be done in
order to get the best possible estimate. In particular, the choice r D �!.h/2 will
be the best choice when QVh D 0 and first order approximations are employed.
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This situation will be met for instance in the Brezzi-Pitkäranta stabilisation for the
Stokes problem considered in Chap. 8, that however could be treated by the simpler
estimates of Example 6.3.7. ut

6.4 Enhanced Strain Methods

The so-called “enhanced strain” methods have become popular as a stabilising
device. We shall try to give a feeling of how they work and the way they can be
applied to mixed methods. We shall however first consider a more classical setting.
Let us thus consider two Hilbert spaces V and Q. To simplify the notation, we
assume, from the very beginning, that Q is identified with its dual space, that is
Q � Q 0. We then assume that we have a continuous operatorB from V toQ D Q 0
and a continuous isomorphism C from Q onto Q. We want to solve a variational
problem of the form,

inf
v2V

1

2
.CBv;Bv/Q � hf; viV 0�V : (6.4.1)

As usual, we consider an analogous problem in subspaces Vh and Qh where we
make the assumption that B.Vh/ 	 Qh. We want to solve

inf
vh2Vh

1

2
.CBvh; Bvh/Q � hf; vhiV 0�V : (6.4.2)

In some cases, for instance in an almost incompressible elasticity problem, the
numerical solution may behave badly: a locking phenomenon can occur when
problem (6.4.2) is too stiff. To build an enhanced method, we introduce a new space
Eh � Q and we change the problem into

inf
vh2V;
2Eh

1

2
.C.Bvh C 
/; .Bvh C 
//Q � hf; vhiV 0�V ; (6.4.3)

where 
 2 Eh is some “enhancement” of Bvh. In terms of mathematical
programming, this would be called a “slack variable”. The optimality conditions
of (6.4.3) are

.C.Buh C 
/; Bvh/Q � hf; vhiV 0�V D 0; 8 vh 2 Vh;

.C.Buh C 
/; ı/Q D 0; 8 ı 2 Eh: (6.4.4)

Assuming, for simplicity, that C.Eh/ 	 Eh (as it is almost always the case in
practice), and denoting by PE the projection on Eh, the last equation of (6.4.4) can
be read:

C
 D �PECBuh (6.4.5)
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and taking this expression into the first equation, we obtain

.C.I � PE/Buh; Bvh/Q � hf; vhiV 0�V D 0; 8 vh 2 Vh; (6.4.6)

which is clearly a weaker formulation of the original problem. This idea has
been used to obtain stable formulations for a variety of problems such as nearly
incompressible elasticity or simulation of very thin structures.

We shall now see briefly, following [284], how this idea can be extended to the
case of a mixed formulation (that we repeat once more for the sake of convenience)

(
a.u; v/C b.v; p/ D .f; v/V 8 v 2 V;
b.u; q/ D .g; q/Q 8 q 2 Q; (6.4.7)

assuming again that Q is identified with its dual space.
We shall not try to cover all cases: to avoid unnecessary technicalities, we shall
concentrate on the inf-sup condition. We shall then suppose that the bilinear form
a.u; v/ can be decomposed as

a.u; v/ D aD.u; v/C �.Bu; Bv/; (6.4.8)

where aD.u; v/ is coercive on the kernel ofB so that, according to Proposition 4.3.4,
a.u; v/ is coercive on the whole space V if � > 0. We write explicitly:

�
aD.uh; vh/C �.Buh; Bvh/C .Bvh; ph/ D .f; vh/ 8 vh 2 Vh;
.Buh; qh/ D .g; qh/ 8 qh 2 Qh:

(6.4.9)

Following the idea of enhanced methods, we introduce a subspace Eh of Q and we
change the problem into

8̂̂
<
ˆ̂:
aD.uh; vh/C �.Buh C 
;Bvh/C .Bvh; ph/ D .f; vh/ 8 vh 2 Vh;
�.Buh C 
; ı/C .ı; ph/ D 0 8 ı 2 Eh;
.Buh C 
; qh/ D .g; qh/ 8 qh 2 Qh:

(6.4.10)

The second equation of (6.4.10) can be read as


 D �PEBuh � .1=�/PEph: (6.4.11)

Bringing (6.4.11) into the first and the last equation of (6.4.10), we get:

(
aD.uh; vh/C �..I � PE/Buh; Bvh/C b.vh; .I � PE/ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; .I � PE/qh/ � .1=�/.PEph; PEqh/ D .g; qh/ 8 qh 2Qh;

(6.4.12)
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where in the second equation we used the fact that ..I � PE/Buh; qh/ is equal to
b.uh; .I � PE/qh/.

We can now consider two interesting special cases. In the first one, we choose
Eh so that PEBvh D 0 for any vh. Equations (6.4.12) now simplify to

�
aD.uh; vh/C �.Buh; Bvh/C b.vh; ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; qh/� .1=�/.PEph; PEqh/ D .g; qh/ 8 qh 2 Qh:

(6.4.13)

This is clearly like using a penalty method to stabilise ph, as we have seen already
in Remark 4.3.7. We have already seen these methods in Example 6.3.5, and we
shall discuss their applications at various occasions in the following chapters, and
in particular in Chap. 8.

It is also interesting to give a look at the case where we choose as Eh a subspace
ofQh. Let us denote byQh the orthogonal complement of Eh and by P � I � PE
the projection onto Qh. We can now write (6.4.12) as

�
aD.uh; vh/C �.PBuh; PBvh/C b.vh; Pph/ D .f; vh/ 8 vh 2 Vh;
b.uh; P qh/� .1=�/.PEph; PEqh/ D .g; qh/ 8 qh 2 Qh:

(6.4.14)

Writing the second equation for qh D qh 2 Qh and then for qh D ı 2 Eh, we have

b.uh; qh/ D .g; qh/ 8 qh 2 Qh (6.4.15)

plus

cPEph D PEg: (6.4.16)

Thus, we have simply written a discrete problem in Vh �Qh:

�
aD.uh; vh/C �.Buh; Bvh/C b.vh; ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; qh/ D .g; qh/ 8 qh 2 Qh;

(6.4.17)

with B D P.B/, and then corrected ph D ph C .1=�/PEg.

Is that all? By no means! There are more things in Heaven and Earth, Horatio,
than are dreamt of in your philosophy.
And among all those things, “stabilisation methods” hold a non negligible place.

6.5 Eigenvalue Problems

We shall consider in this section a general setting for the approximation of
eigenvalue problems associated with the mixed problems introduced in Sect. 5.1.
To make the presentation clearer, we recall some basic assumptions. We thus have
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two Hilbert spaces,V and Q. Moreover, a.v; v/ and b.v; q/ are continuous bilinear
forms on V � V and V �Q,

9Ma > 0 8u; v 2 V a.u; v/ � MajjujjV jjvjjV
9Mb > 0 8v 2 V; 8q 2 Q b.v; q/ � MbjjvjjV jjqjjQ: (6.5.1)

To simplify the presentation, we also assume that

a.�; �/ is symmetric and positive semi-definite. (6.5.2)

Setting jjvjja WD .a.v; v//1=2 (which in general will only be a semi-norm on V ),
this immediately gives

8u; v 2 V a.u; v/ � jjujjajjvjja: (6.5.3)

These properties will be assumed to hold throughout all the section. For any given
pair .f; g/ in V 0 �Q0, the standard mixed problem is then to find .u; p/ in V �Q
such that �

a.u; v/C b.v; p/ D hf; vi 8v 2 V
b.u; q/ D hg; qi 8q 2 Q: (6.5.4)

We now know that in order to have existence, uniqueness and continuous depen-
dence from the data for problem (6.5.4), it is necessary and sufficient that the bilinear
forms a.�; �/ and b.�; �/ satisfy conditions (5.1.6) and (5.1.1). We thus suppose to
have on b.�; �/ the inf-sup condition.

There exists ˇ > 0 such that

inf
q2Q

sup
v2V

b.v; q/

jjvjjV jjqjjQ � ˇ: (6.5.5)

We shall, for simplicity, assume the ellipticity on the kernel (5.1.7) instead of (5.1.1).
There exists ˛ > 0 such that

a.v; v/ � ˛jjvjj2V 8v 2 KerB (6.5.6)

where the kernel KerB is defined as:

KerB D fv 2 V such that b.v; q/ D 0 8q 2 Qg: (6.5.7)

In Chap. 1 (see Sect. 1.3.4), we have seen many examples of mixed formulations
of boundary value problems related to various applications in fluid mechanics and
in continuous mechanics and we have shown that there are eigenvalue problems
associated with most of them. We shall be interested, here, in the approximation
of these eigenvalue problems. We thus consider the discrete analogue of (6.5.4).



6.5 Eigenvalue Problems 383

We assume that we are given two families of finite dimensional subspaces Vh and
Qh of V andQ, respectively, and we consider the discretised problem: find .uh; ph/
in Vh �Qh such that

�
a.uh; vh/C b.vh; ph/ D hf; vhi 8vh 2 Vh
b.uh; qh/ D hg; qhi 8qh 2 Qh:

(6.5.8)

We have seen in Chap. 5 that discrete analogues of (6.5.5) and (6.5.6) are sufficient
to ensure solvability of the discrete problem together with optimal error bounds.
More precisely, the spaces Vh and Qh should satisfy two conditions:

• The discrete ellipticity on the kernel: there exists ˛ > 0, independent of h, such
that

a.vh; vh/ � ˛jjvhjj2V 8vh 2 KerBh; (6.5.9)

where the discrete kernel KerBh is defined as

KerBh D fvh 2 Vh such that b.vh; vh/ D 0 8vh 2 Vhg;

• The discrete inf-sup condition: there exists ˇ > 0, independent of h, such that

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

jjvhjjV jjqhjjQ � ˇ: (6.5.10)

Then, we have unique solvability of (6.5.8) and the following error estimate

jju � uhjjV C jjp � phjjV � C

�
inf
v2Vh

jju � vjjV C inf
q2Qh

jjp � qjjQ
�
: (6.5.11)

We now turn to the eigenvalue problems. As we have seen, the eigenvalue problem
which is naturally associated with the corresponding boundary value problem in
strong form does not correspond to taking .�u; �p/ as right-hand side of (6.5.4).
Instead, according to the different cases, the natural eigenvalue problem is obtained
by taking .�u; 0/ or .0;��p/ as right-hand side of (6.5.4). One expects, as for
instance in [299], that (6.5.9) and (6.5.10), together with suitable compactness
properties, are sufficient to ensure good convergence of the eigenvalues. However,
when the problem is set in mixed variational form, compactness is more delicate
to deal with. It was shown in [82] that, for the particular case of (1.3.85) for the
mixed Poisson problem, even if the operator mapping g into u is clearly compact,
assumptions (6.5.9) and (6.5.10) are not sufficient to avoid, for instance, the presence
of spurious eigenvalues in the discrete spectrum. Here, we address a more general
problem, in abstract form, and we look for sufficient (and, possibly, necessary) con-
ditions in order to have good approximation properties for the eigenvalue problems
having either .� u; 0/ or .0;��p/ at the right-hand side. As we shall see, in each of
the two cases, (6.5.9) and (6.5.10) might be neither necessary nor sufficient for that.
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Our approach will be more similar to the one of [188] than to the one of [112]
or [40]. Important references for the study of eigenvalue problems in mixed form
are [43,299,316]. With respect to sufficient conditions, our development introduces
minor differences. For instance, our bilinear form a.�; �/ is not supposed to be
positive definite. Moreover, previous related papers deal mostly with cases in which
the two components of the solution of the direct problem are both convergent,
while we accept discretisations that can produce singular global matrices. On the
other hand, having assumed symmetry of a.�; �/, we do not have to consider adjoint
problems as in [188]. However, in practical cases, the actual gain is negligible. The
major interest of the present setting consists in showing that our sufficient conditions
are, mostly, also necessary, thus providing a severe test for assessing whether a
given discretisation is suitable for computing eigenvalues or not. This justifies, in
our opinion, the apparently excessive generality of our abstract approach. Indeed,
as we shall see, convergence of discrete eigenvalues does not even imply, for mixed
formulations, the non-singularity of the corresponding global matrices.

Finally, we point out that we do not look here for a priori estimates for eigenvalues
and eigenvectors, but only deal with convergence. This is somehow in agreement with
the fact that necessary conditions are a major issue here. However, in most cases, a
priori error estimates can be readily deduced, checking the last step in the proofs of
sufficient conditions and/or applying the general instruments of, say, [43, 109, 299]
(see also [76] for a review).

6.5.1 Some Classical Results

Before considering the case of eigenvalue problems in mixed form, we need to recall
some classical facts. Let H be a Hilbert space and T W H ! H be a self-adjoint
compact operator. To simplify the presentation, we assume that T is non-negative.

We are interested in the eigenvalues � 2 R defined by

�T u D u; with u 2 H n f0g: (6.5.12)

In the above assumptions, it is well-known that there exists a sequence f�i g and an
associated orthonormal basis fuig such that

�iT ui D ui ;
0 � �1 � �2 � � � � � �i � � � � ;
lim
i!1�i D C1:

(6.5.13)

We also set, for i 2 N, Ei D span.ui /.
The following mapping will be useful. Let m W N ! N be the application which

to every N associates the dimension of the space generated by the eigenspaces of
the first N distinct eigenvalues; that is
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m.1/ D dim f˚iEi W �i D �1g ;
m.N C 1/ D m.N/C dim

˚˚iEi W �i D �m.N/C1
	
:

(6.5.14)

Clearly, �m.1/; : : : ; �m.N/ .N 2 N/ will now be the first N distinct eigenvalues
of (6.5.12).

Assume that we are given, for every h > 0, a self-adjoint non-negative operator
Th W H ! H with finite range. We denote by �hi 2 R the eigenvalues of the problem

�Thu D u; with u 2 H n f0g: (6.5.15)

Let Hh be the finite-dimensional range of Th and dimHh DW N.h/; then, Th admits
N.h/ real eigenvalues denoted �hi such that

0 � �h1 � � � � � �hi � : : : �hN.h/: (6.5.16)

The associated discrete eigenfunctions uhi , i D 1; : : : ; N.h/, give rise to an
orthonormal basis of Hh with respect to the scalar product of H . Let Eh

i WD
span.uhi /.

We assume that

lim
h!0

jjT � ThjjL.H/ D 0: (6.5.17)

It is a classical result in spectrum perturbation theory that (6.5.17) implies the
following convergence property for eigenvalues and eigenvectors:

8� > 0; 8N 2 N 9 h0 > 0 such that 8h � h0

max
iD1;:::;m.N/ j�i � �hi j � �;

Oı.˚m.N/
iD1 Ei ;˚m.N/

iD1 E
h
i / � �;

(6.5.18)

where Oı.E; F /, for E and F linear subspaces of H , represents the gap between E
and F and is defined by

Oı.E; F / D maxŒı.E; F /; ı.F;E/�;
ı.E; F / D sup

u2E; jjujjH D1
inf
v2F jju � vjjH : (6.5.19)

Vice versa, it is not difficult to prove that (6.5.18) is a sufficient condition
for (6.5.17).

6.5.2 Eigenvalue Problems in Mixed Form

Let us go back to the abstract framework introduced above. In particular, assume,
for the moment, that (6.5.5) and (6.5.6) are satisfied and that (6.5.8) has a solution
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for every .f; g/ in V 0 � Q0. Problems (6.5.4) and (6.5.8) then define, in a natural
way, two operators S.f; g/ D .u; p/ (solution of (6.5.4)) and Sh.f; g/ D .uh; ph/
(solution of (6.5.8)). To make things precise, we introduce, for every h > 0, the dual
norms:

jjf jjV 0

h
D sup

vh2Vh
hf; vhi
jjvhjjV jjgjjQ0

h
D sup

qh2Qh

hg; qhi
jjqhjjQ : (6.5.20)

From Theorem 3.4.4 of Chap. 3, we know that (6.5.10) and (6.5.9) imply that the
discrete operator Sh is bounded from V 0

h � Q0
h to V � Q, uniformly in h, and we

have the bounds (3.4.103) and (3.4.104) (with x D uh and y D ph). Moreover,
Lemma 3.5.2 tells us that the converse holds true.

Lemma 6.5.1. If there exists a constant C > 0 such that, for every h > 0 and for
every quadruplet .uh; ph; f; g/ 2 Vh �Qh � V 0 �Q0 satisfying (6.5.8), one has

jjSh.f; g/jjV�Q � C.jjf jjV 0

h
C jjgjjQ0

h
/; (6.5.21)

then (6.5.10) and (6.5.9) are verified with ˇ D 1=C and ˛ D 1=.C 2Ma/. Then,
(6.5.8) has a solution for all f 2 V 0

h and g 2 Q0
H .

Proof. This is a mere rewriting of Lemma 3.5.2. ut
We now consider the eigenvalue problem. For the sake of simplicity, let us

assume for the moment that there exist two Hilbert spaces HV and HQ such that
we can identify

HV � H 0
V ;

HQ � H 0
Q

(6.5.22)

and such that

V 	 HV 	 V 0
Q 	 HQ 	 Q0 (6.5.23)

hold with dense and continuous embedding, in a compatible way.
The restrictions of S and Sh toHV �HQ now define two operators fromHV �HQ

into itself.
As a consequence of (6.5.11) and Lemma 6.5.1, it is immediate to prove the

following proposition.

Proposition 6.5.1. Assume that (6.5.10) and (6.5.9) hold. Then, Sh converges
uniformly to S in L.HV � HQ/ if and only if S (from HV � HQ into itself) is
compact. ut

This proposition concludes the convergence analysis for the eigenvalue prob-
lems associated to (6.5.4) and (6.5.8). However, in the applications, one usually
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finds eigenvalue problems associated to (6.5.4) and (6.5.8) when one of the two
components of the datum is zero. Let us set these eigenvalue problems in their
appropriate abstract framework introducing the following operators:

CV W V 0 ! V 0 �Q0
CV .f / D .f; 0/

CQ W Q0 ! V 0 �Q0
CQ.g/ D .0; g/

(6.5.24)

and their adjoints

C �
V W V �Q ! V

C �
V .v; q/ D v

C �
Q W V �Q ! Q

C �
Q.v; q/ D q:

(6.5.25)

We shall say that (6.5.4) is a problem of the type .f; 0/ if the right-hand side
in (6.5.4) satisfies g D 0. Similarly, we shall say that (6.5.4) is a problem of the
type .0; g/ if the right-hand side in (6.5.4) satisfies f D 0. Correspondingly, we
shall study the approximation of the eigenvalues of the following operators:

TV D C �
V ı S ı CV W V 0 ! V; for problems of the type .f; 0/;

TQ D C �
Q ı S ı CQ W Q0 ! Q; for problems of the type .0; g/:

(6.5.26)

Whenever the associated discrete problems are solvable, we can introduce the
discrete counterparts of TV and TQ as:

T hV D C �
V ı Sh ı CV W V 0 ! V; for problems of the type .f; 0/;

T hQ D C �
Q ı Sh ı CQ W Q0 ! Q; for problems of the type .0; g/:

(6.5.27)

6.5.3 Special Results for Problems of Type .f; 0/ and .0; g/

In the remaining part of this section, we recall the results obtained in Sect. 3.5.3
on the solvability and boundedness of the discrete operators with either the discrete
inf-sup condition or the discrete ellipticity on the kernel for the special type of data
associated with our eigenvalue problems.

Problems of the type .f; 0/: From Proposition 3.5.2, we have the following result.

Proposition 6.5.2. If the discrete ellipticity on the kernel (6.5.9) holds and g D 0,
then problem (6.5.8) has at least one solution .uh; ph/. Moreover, uh is uniquely
determined by f and

jjuhjjV � 1

˛
jjf jjV 0

h
; (6.5.28)

where ˛ is the constant appearing in (6.5.9). ut
We also have the reciprocal from Proposition 3.5.3.
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Proposition 6.5.3. Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet .uh; ph; f; 0/ 2 Vh�Qh�V 0 �Q0 satisfying (6.5.8),
one has

jjuhjjV � C jjf jjV 0

h
; (6.5.29)

then the operator T hV is defined in all V 0 and the discrete ellipticity on the
kernel (6.5.9) holds with ˛ D 1=.C 2Ma/,Ma being the continuity constant of a.�; �/
(see (6.5.1)). ut
Problems of the form .0; g/: In the same way, we have from Proposition 3.5.5 the
following result.

Proposition 6.5.4. Assume that the following weak discrete inf-sup condition
holds: for every h > 0, there exists a constant ˇh > 0 such that

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

jjvhjjV jjqhjjQ � ˇh: (6.5.30)

Then, for every g 2 V 0 and f D 0, problem (6.5.8) has at least one solution .uh; ph/
and ph is uniquely determined by g. ut
Proposition 6.5.5. Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet .uh; ph; 0; g/ 2 Vh�Qh�V 0 �Q0 satisfying (6.5.8),
one has

jjphjjV � C jjgjjV 0

h
: (6.5.31)

Then, the operator T hQ is defined in all Q0 and the weak discrete inf-sup con-
dition (6.5.30) holds. In general, (6.5.31) does not imply the discrete inf-sup
condition (6.5.10). ut
Proof. As in Proposition 6.5.5, the assumption (6.5.31) implies that, with obvious
notation, Bt

h is injective, therefore Bh will be surjective and this implies (6.5.30).
However, (6.5.10) cannot be deduced in general: consider the case when a.�; �/ �

0, Vh D Qh and b.�; �/ is h times the scalar product in Vh. ut
Proposition 6.5.6. Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet .uh; ph; 0; g/ 2 Vh�Qh�V 0 �Q0 satisfying (6.5.8),
one has

jjuhjjV C jjphjjQ � C jjgjjQ0

h
; (6.5.32)

then both T hQ andC �
V ıShıCQ are defined onQ0 and (6.5.10) holds with ˇ D 1=C .

ut
Proof. This results directly from Proposition 6.5.6. ut
Moreover, we have the following proposition.
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Proposition 6.5.7. If there exists C > 0 such that

jjC �
Q ı Sh ı CV jjL.V 0

h ;Vh/
� C (6.5.33)

for every h > 0, then (6.5.10) holds with ˇ D 1=C . ut
Proof. The proof can be done as we did for Lemma 3.5.2. ut

We therefore see from Propositions 6.5.3 and 6.5.7, that for problems of the type
.f; 0/, the estimate (6.5.29) on uh implies (6.5.9) and the estimate (6.5.33) on ph
implies (6.5.10). Analogue properties do not entirely hold for problems of the type
.0; g/.

6.5.4 Eigenvalue Problems of the Type .f; 0/

In this section, together with (6.5.1) and (6.5.2), we assume that ellipticity on the
kernel (6.5.6) and the inf-sup condition (6.5.5) are verified. We also assume that we
are given a Hilbert space HV (that we shall identify with its dual space H 0

V ) such
that

V 	 HV 	 V 0 (6.5.34)

with continuous and dense embeddings. We consider the eigenvalue problem: find
.�; u/ in R � V , with u ¤ 0 such that there exists p 2 V verifying

a.u; v/C b.v; p/ D �.u; v/HV 8v 2 V;
b.u; q/ D 0 8q 2 Q: (6.5.35)

In the formalism of Sect. 6.5.2, this can be written as

�TV u D u: (6.5.36)

We assume that the operator TV is compact from HV to V .
Suppose now that we are given two finite dimensional subspaces Vh andQh of V

andQ, respectively. Then, the approximation of (6.5.35) is: find .�h; uh/ in R� Vh,
with uh ¤ 0 such that there exists ph 2 Qh verifying

a.uh; vh/C b.vh; ph/ D �h.uh; vh/HV 8vh 2 Vh;
b.uh; qh/ D 0 8qh 2 Qh;

(6.5.37)

which can be written as

�h T
h
V uh D uh: (6.5.38)
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We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of T hV to TV in L.HV ; V / which, as we have seen, implies
the convergence of eigenvalues and eigenvectors (see (6.5.18)).

To start with, we look for sufficient conditions and for this, we introduce some
notation. Let V H

0 andQH
0 be the subspaces of V andQ, respectively, containing all

the solutions u 2 V and p 2 V , respectively, of problem (6.5.4) when g D 0; that
is, with the formalism of the Sect. 6.5.2,

V H
0 D C �

V ı S ı CV .HV / D TV .HV /

QH
0 D C �

Q ı S ı CV .HV /:
(6.5.39)

Notice that the following inclusion holds true:

V H
0 	 KerB:

The spaces V H
0 andQH

0 will be endowed with the natural norm: that is, for instance,

jjvjjV H0 WD inffjj
jjHV ; TV 
 D vgI
jjqjjQH

0
WD inffjj
jjHV ; C �

Q ı S ı CV 
 D qg: (6.5.40)

Definition 6.5.1. We say that the weak approximability of QH
0 is verified if there

exists !1.h/, tending to zero as h tends to zero, such that for every p 2 QH
0 ,

sup
vh2KerBh

b.vh; p/

jjvhjjV � !1.h/jjpjjQH
0
: (6.5.41)

Notice that, in spite of its appearance, (6.5.41) is indeed an approximability
property. Actually, as vh 2 KerBh, we have b.vh; p/ D b.vh; p � pI / for every
pI 2 Qh, which has, usually, to be used to verify (6.5.41).

Definition 6.5.2. We say that the strong approximability of V H
0 is verified if there

exists !2.h/, tending to zero as h tends to zero, such that for every u 2 V H
0 , there

exists uI 2 KerBh such that

jju � uI jjV � !2.h/jjujjVH0 : (6.5.42)

Theorem 6.5.1. Let us assume that the discrete ellipticity on the kernel (6.5.9)
is verified. Assume moreover the weak approximability of QH

0 and the strong
approximability of V H

0 . Then, the sequence T hV converges uniformly to TV in
L.HV ; V /, that is, there exists !3.h/, tending to zero as h tends to zero, such that

jjTV f � T hV f jjV � !3.h/jjf jjHV ; for all f 2 HV : (6.5.43)
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Proof. Let f 2 HV and let .u; p/ 2 V H
0 � QH

0 be solution of (6.5.4):
.u; p/ D S.f; 0/. As we assumed (6.5.9), Proposition 6.5.2 ensures that T hV is well
defined on V 0. Recall that u WD TV .f /. Let uh WD T hV .f / and let pI be such that
.uh; pI / is a solution of (6.5.8) (such a pI might not be unique). In order to prove
the uniform convergence of T hV to TV , we have to estimate the difference jju�uhjjV .
We do it by bounding the term jjuI � uhjjV , where uI is given by (6.5.42), and then
by using the triangular inequality. We have

˛jjuI � uhjj2V � a.uI � uh; uI � uh/

D a.uI � u; uI � uh/C a.u � uh; uI � uh/

� MajjuI � ujjV jjuI � uhjjV � b.uI � uh; p � ph/

�
 
MajjuI � ujjV C sup

vh2KerBh

b.vh; p � ph/

jjvhjjV

!
jjuI � uhjjV

D
 
MajjuI � ujjV C sup

vh2KerBh

b.vh; p/

jjvhjjV

!
jjuI � uhjjV :

(6.5.44)

The result then follows immediately from the strong approximability of V H
0 and the

weak approximability ofQH
0 . In particular, we can take!3.h/D .1CMa=˛/!2.h/C

!1.h/=˛ . ut
In the following theorem, we shall see that the assumptions of Theorem 6.5.1 are

also, in a sense, necessary for the uniform convergence of T hV to TV in L.HV ; V /.

Theorem 6.5.2. Assume that the sequence T hV is bounded in L.V 0; V /, and con-
verges uniformly to TV in L.HV ; V / (see (6.5.43)). Then, the ellipticity in the kernel
property (6.5.9) holds true. Moreover, both the strong approximability of V H

0 and
the weak approximability of QH

0 are satisfied.

Proof. Condition (6.5.9) can be obtained applying Proposition 6.5.3. Let u be an
element of V H

0 . Then, by definition of V H
0 , there is f 2 HV such that u D TV f .

Define uI WD T hV f . Uniform convergence implies the strong approximability of
V H
0 .

In a similar way, let p be an element of QH
0 . Then, by definition of QH

0 , p D
C �
Q ıS ıCV f for some f 2 HV . There might be more than one such f . We choose

f such that jjf jjHV � 3
2

inff fjjf jjHV W C �
Q ı S ı CV f D pg D 3

2
jjpjjQH

0
. Let

u WD TV f . Correspondingly, let uh WD T hV f and let ph be such that .uh; ph/ is a
solution of (6.5.8) with the same right-hand side (such a ph might not be unique).
Then, we obtain

sup
vh2KerBh

b.vh; p/

jjvhjjV D sup
vh2KerBh

b.vh; p � ph/

jjvhjjV D sup
vh2KerBh

a.u � uh; vh/

jjvhjjV
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� Majju � uhjjV � Ma!3.h/jjf jjHV � 3

2
Ma!3.h/jjpjjQH

0
;

which gives (6.5.41) with !1.h/ D 3
2
Ma!3.h/, that is, the weak approximability

of QH
0 . ut

Remark 6.5.1. We shall present examples of eigenvalue problems of type .f; 0/ for
the Stokes problem in Sect. 8.11. ut

6.5.5 Eigenvalue Problems of the Form .0; g/

In this section, together with (6.5.1) and (6.5.2), we assume that, for every given
g 2 Q0 and f D 0, problem (6.5.4) has a unique solution .u; p/ and that there
exists a constant C (independent of g) such that

jjujjV C jjpjjQ � C jjgjjQ0 : (6.5.45)

It is easy to see that this implies the inf-sup condition (6.5.5) but not the ellipticity
on the kernel (6.5.6).

Remark 6.5.2. An example of this situation can be found in Sect. 10.1.1 for the
 � ! formulation of the biharmonic problem. ut
In the following, we assume that we are given a Hilbert space HQ (that we shall
identify with its dual space H 0

Q) such that

Q 	 HQ 	 Q0 (6.5.46)

with continuous and dense embeddings. For simplicity, we assume that for every
q 2 Q, we have jjqjjHQ � jjqjjQ (with constant equal to 1).

We consider the eigenvalue problem: find .�; p/ in R � V , with p ¤ 0 such that
there exists u 2 V verifying

a.u; v/C b.v; p/ D 0 8v 2 V
b.u; q/ D ��.p; q/HQ 8q 2 Q (6.5.47)

which in the formalism of Sect. 6.5.2 can be written as

�TQp D �p: (6.5.48)

As we shall see, problems of the type .0; g/ are more closely related to the
abstract theory of [188] than problems of the previous type .f; 0/.

From now on, we assume that the operator TQ is compact from HQ into Q.
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We introduce two finite dimensional subspaces Vh and Qh of V and Q,
respectively. Then, the approximation of (6.5.47) reads: find .�h; ph/ in R � Qh,
with ph ¤ 0 such that there exists u2Vh verifying

a.uh; vh/C b.vh; ph/ D 0 8vh 2 Vh
b.uh; qh/ D ��h.ph; qh/HQ 8qh 2 Qh;

(6.5.49)

that is,

�hT
h
Qph D �ph: (6.5.50)

We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of T hQ to TQ in L.HQ;Q/, which implies the convergence
of eigenvalues and eigenvectors (see (6.5.18)).

To start with, we look for sufficient conditions.
We introduce some notation. Let V 0

H and Q0
H be the subspaces of V and Q

respectively, containing all the solutions u 2 V and p 2 Q, respectively, of
problem (6.5.4) when f D 0; that is, with the formalism of Sect. 6.5.2,

V 0
H D C �

V ı S ı CQ.HQ/

Q0
H D C �

Q ı S ı CQ.HQ/ D TQ.HQ/:
(6.5.51)

It will also be useful to define the space V 0
Q0 as the image of C �

V ı S ı CQ (from
Q0 to V ).

As before, the spaces V 0
H ,Q0

H and V 0
Q0 will be endowed with their natural norms

(see for instance (6.5.40)).

Definition 6.5.3. We say that the weak approximability ofQ0
H with respect to a.�; �/

is verified if there exists !4.h/, tending to zero as h goes to zero, such that for every
p 2 QH

0 and for every vh 2 KerBh,

b.vh; p/ � !4.h/jjpjjQ0
H

jjvhjja: (6.5.52)

Notice that (6.5.52) is indeed an approximation property, as we already pointed out
for its counterpart (6.5.41).

Definition 6.5.4. We say that the strong approximability of Q0
H is verified if there

exists !5.h/, tending to zero as h goes to zero, such that for every p 2 Q0
H there

exists pI 2 Qh such that

jjp � pI jjV � !5.h/jjpjjQ0
H
: (6.5.53)
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Notice that (6.5.52) and (6.5.53) are (much) weaker forms of assumption H.7
of [188].

Definition 6.5.5. Following Sect. 5.4.3, we say that an operator˘h from V (or from
a subspace of it) into Vh is a B-compatible operator with respect to the bilinear form
b.�; �/ and the subspaceQh � Q if it verifies, for all v in its domain,

b.v �˘hv; qh/ D 0 8qh 2 Qh; (6.5.54)

and there exists a constant C˘ , independent of h, such that:

jj˘hjjL.V 0
Q0
;V / � C˘: (6.5.55)

We now introduce a stronger form of (6.5.55).

Definition 6.5.6. B-Id-compatible operator
We shall say that the operator˘h is B-Id-compatible if it satisfies (6.5.54), (6.5.55)
and if moreover it converges to the Identity operator in norm, that is, if there exists
!6.h/, tending to zero as h tends to zero, such that for every v 2 V 0

H , we have

jjv �˘hvjja � !6.h/jjvjjV 0H : (6.5.56)

Remark 6.5.3. In Sect. 5.4.3, we have seen that (6.5.54) and (6.5.55) imply the
discrete inf-sup condition (6.5.10). Notice that (6.5.56) is strongly related to
assumption H.5 of [188]. As we shall see, the condition that!6.h/ goes to 0with h is
actually necessary for the convergence of eigenvalues. In [188], it is only assumed to
be bounded, that is, essentially (6.5.55). Indeed, their interest was in a priori bounds
(and not on necessity) and, moreover, they were dealing with direct problems (and
not with eigenvalues). In particular, (6.5.56) is not necessary to obtain point-wise
convergence of T hQ to TQ where the discrete ellipticity on the kernel (6.5.9) and the
discrete inf-sup condition (6.5.10) are sufficient. Notice that, from Remark 5.4.3, the
inf-sup (6.5.5) and its discrete counterpart (6.5.10) imply (6.5.55), but not (6.5.56).

ut
We can now prove the following result.

Theorem 6.5.3. Let us assume that there exists a B-Id-compatible operator ˘h W
V 0
Q0 ! Vh, that is satisfying (6.5.54)–(6.5.56). Assume moreover that the strong

approximability ofQ0
H is verified (see (6.5.53)) as well as the weak approximability

of Q0
H with respect to a (see (6.5.52)). Then, the sequence T hQ converges to TQ

uniformly from HQ into Q, that is, there exists !7.h/, tending to zero as h goes to
zero, such that

jjTQg � T hQgjjV � !7.h/jjgjjHQ; for all g 2 HQ: (6.5.57)



6.5 Eigenvalue Problems 395

Proof. As we recalled above (6.5.5) and (6.5.54)–(6.5.55) imply the discrete inf-sup
condition (6.5.10). Thanks to Proposition 6.5.4, T hQ is then well defined.

Let g 2 HQ and let .u; p/ 2 V 0
H � Q0

H be the solution of (6.5.4) with f D 0.
Recall that p D TQg. Let ph WD T hQg and let uh be such that .uh; ph/ is a solution
of (6.5.8) (such a uh might be not unique). In order to prove the uniform convergence
of T hQ to TQ, we have to find a priori estimates for the error jjp � phjjQ. Let Qg 2 Q0
be such that h Qg; p �phi D jjp�phjjQ and jj QgjjQ0 D 1. Take vt WD C �

V ı S ıCQ Qg,
hence jjvt jjV 0

Q0

� jj QgjjQ0 D 1 (see (6.5.40)). Then, we have

jjp � phjjQ D h Qg; p � phi D b.vt; p � ph/
D b.vt �˘hvt; p � ph/C b.˘hvt; p � ph/

D b.vt �˘hvt; p � pI/� a.u � uh;˘hvt/:

(6.5.58)

Let us estimate separately the two terms in the right-hand side:

b.vt �˘hvt; p � pI/ � Mbjjvt �˘hvt jjV jjp � pI jjQ
� Mb .jjvt jjV C jj˘hvt jjV / jjp � pI jjQ

a.u � uh;˘hvt/ � jj˘hvt jjajju � uhjja:
(6.5.59)

Using (6.5.55), we obtain the following estimate for ˘hvt

jj˘hvt jjV � C˘ jjvt jjV 0
Q0

� C˘: (6.5.60)

Putting together (6.5.58)–(6.5.60) and using (6.5.53), we obtain

jjp � phjjQ � Mb.1C C˘/jjp � pI jjQ C C˘ jju � uhjja
� Mb.1C C˘/!5.h/jjpjjQ0

H
C C˘ jju � uhjja:

(6.5.61)

To conclude the proof, there remains to estimate jju � uhjja. Thanks to the
triangular inequality and to (6.5.56), we bound only jj˘hu�uhjja using also (6.5.52)
and (6.5.54). Notice that ˘hu � uh belongs to KerBh

jj˘hu � uhjj2a D a.˘hu � u; ˘hu � uh/C a.u � uh;˘hu � uh/

� jju �˘hujjajj˘hu � uhjja � b.˘hu � uh; p � ph/
D jju �˘hujjajj˘hu � uhjja � b.˘hu � uh; p/

� jj˘hu � uhjja
�
jju �˘hujja C !4.h/jjpjjQ0

H

�
;

(6.5.62)
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which, due to (6.5.56), gives

jju � uhjja � 2jju �˘hujja C !4.h/jjpjjQ0
H

� 2!6.h/jjujjV 0H C !4.h/jjpjjQ0
H

(6.5.63)

and (6.5.57) holds with !7.h/ D Mb.1CC˘/!5.h/C 2C˘!6.h/CC˘!4.h/. ut
Remark 6.5.4. In Theorem 6.5.3, we have proved the uniform convergence of T hQ
to TQ in L.HQ;Q/. However, in Sect. 6.5.2, we have seen that the convergence
of the spectrum is equivalent to the uniform convergence of T hQ to TQ in L.HQ/.
Indeed, the latter holds under the weaker assumption that there exists a B-compatible
operator satisfying only (6.5.56) as we shall see in the following theorem. ut
Theorem 6.5.4. Let us assume that there exists a B-compatible operator
(see (6.5.54)) ˘h W V 0

Q0 ! Vh satisfying (6.5.56). Assume moreover that both

the strong approximability of Q0
H (see (6.5.53)) and the weak approximability

of Q0
H with respect to a.�; �/ (see (6.5.52)) are verified. Then, the sequence T hQ

converges uniformly to TQ in HQ.

Proof. We observe that (6.5.5) and (6.5.54) imply the weak discrete inf-sup
condition (6.5.30). Thanks to Proposition 6.5.4, T hQ is then well defined.

Let g 2 HQ and let .u; p/ 2 V 0
H � Q0

H be the solution of (6.5.4) with f D 0.
Recall that p D TQg. Let ph WD T hQg and let uh be such that .uh; ph/ is a solution
of (6.5.8) with right-hand side .0; g/ (such a uh might be not unique). We estimate
jjp � phjjHQ . Using a duality argument, let .ut; pt/ 2 V � V be defined by
.ut; pt/ WD S.0; p � ph/. Due to the definition (6.5.51), ut belongs to V 0

H with
the following estimate jjut jjV 0H � jjp � phjjHQ (see (6.5.40))

jjp � phjj2HQ D .p � ph; p � ph/ D b.ut; p � ph/

D b.ut �˘hut; p/C b.˘hut; p � ph/
D �a.u; ut �˘hut/ � a.u � uh;˘hut/

� jjujjajjut �˘hut jja C jju � uhjjajj˘hut jja
� jjujja!6.h/jjut jjV 0H C 2jju � uhjjajjut jjV 0H
� .!6.h/jjujja C 2jju � uhjja/ jjp � phjjHQ;

having assumed !6.h/ � 1. Hence,

jjp � phjjHQ � !6.h/jjujja C 2jju � uhjja:

The rest of the proof follows the same lines as the one of Theorem 6.5.3,
using (6.5.52) and (6.5.56) (see (6.5.62) and (6.5.63)). ut

The remaining part of this section is devoted to see what one can deduce from
the uniform convergence of T hQ to TQ.
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Theorem 6.5.5. Assume that the sequence T hQ is bounded in L.Q0;Q/. Then, there
exists a B-compatible operator (see (6.5.54)) ˘h W V 0

Q0 ! Vh such that

jju �˘hujja � C jjujjV 0
Q0

: (6.5.64)

Proof. Let u belong to V 0
Q0 . Then, by definition, u D C �

V ıS ıCQg for some g 2 Q0.
There is only one g in this condition, and therefore, by definition, jjujjV 0

Q0

D jjgjjQ0

(see (6.5.40)). Let p 2 Q be such that .u; p/ D S.0; g/. Let ph WD T hQg; notice that,
by assumption, jjphjjQ � C jjgjjQ0 . By Propositions 6.5.5 and 6.5.4, there exists at
least one uh such that .uh; ph/ 2 Vh � Qh is a corresponding discrete solution
of (6.5.8). If such a uh is unique, we define ˘hu WD uh. Otherwise, we still define
˘hu as the uh having minimum norm in V . By construction, we have (6.5.54) and

jj˘hujj2a D hg; phi � jjgjjQ0 jjT hQgjjQ � C jjgjj2Q0 D C jjujj2
V 0
Q0

: (6.5.65)

Let us bound jju �˘hujja:

jju �˘hujj2a D a.u �˘hu; u �˘hu/

D a.u; u �˘hu/� a.˘hu; u �˘hu/

D �b.u �˘hu; p/ � a.u �˘hu; ˘hu/:

(6.5.66)

The first term in the right-hand side can be handled as follows:

b.u �˘hu; p/ D b.u �˘hu; p � ph/

D hg; p � phi � b.˘hu; p � ph/

D hg; p � phi C a.u �˘hu; ˘hu/:

(6.5.67)

Inserting (6.5.67) in (6.5.66), we obtain

jju �˘hujj2a D �hg; p � phi � 2a.u �˘hu; ˘hu/

� jjgjjQ0jjp � phjjQ C 2jju �˘hujjajj˘hujja
� jjgjjQ0

�jjpjjQ C jjphjjQ
�C 2jju �˘hujjajj˘hujja;

(6.5.68)

and then the boundedness of T hQ and (6.5.65) imply (6.5.64). ut
Theorem 6.5.6. Assume that the sequence T hQ converges to TQ uniformly in

L.HQ;Q/. Then, for all p 2 Q0
H , there exists pI 2 Qh such that (6.5.53) holds

true.

Proof. Let p belong to Q0
H , then p D TQg for a suitable g in HQ. Let ph WD

T hQg be the corresponding discrete solution, then we define pI WD ph and the
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inequality (6.5.53) is an easy consequence of the uniform convergence of T hQg to
TQg in Q. ut
Theorem 6.5.7. Let us assume that the sequence T hQ is bounded in L.Q0;Q/ and
converges uniformly to TQ in L.HQ;Q/. In addition, we assume that the following
bound holds for the solutions of (6.5.8) with f D 0

jjuhjjV � C jjgjjQ0 : (6.5.69)

Then, there exists a B-compatible operator ˘h W V 0
Q0 ! Vh satisfying (6.5.55)

and (6.5.56). Moreover, we have the discrete inf-sup condition (6.5.10) and the weak
approximability of Q0

H with respect to a.�; �/ (see (6.5.52)) holds.

Proof. From Proposition 6.5.5, we have that C �
V ı S ı CQ is also well defined

and (6.5.10) holds. Let us check (6.5.55). For u 2 V 0
Q0 , there exists g 2 Q0 and

p 2 Q such that .u; p/ D S.0; g/. We set ˘hu WD C �
V ı Sh ı CQg. As we have

seen, (6.5.54) holds trivially, and now (6.5.55) also holds in virtue of (6.5.69), with
C˘ WD C .

Now, let us check (6.5.56). Let u belong to V 0
H ; by definition u D C �

V ı S ı CQg
for some g 2 HQ. As in the proof of Theorem 6.5.5, g is unique, and jjujjV 0H D
jjgjjHQ . Let p WD TQg; clearly, p 2 Q0

H . Let ph WD T hQg. By construction,
.˘hu; ph/ solves (6.5.8) with the right-hand side .0; g/. Moreover, by the same
computations as above, we arrive at (see the first line in (6.5.68))

jju �˘hujj2a D �hg; p � phi � 2a.u �˘hu; ˘hu/:

From this, we have

jju �˘hujj2a D �hg; p � phi � 2b.˘hu; p � ph/

� �jjgjjQ0 C 2Mbjj˘hujjV
� jjp � phjjQ

� .1C 2MbC /jjgjjQ0!7.h/jjgjjHQ
� .1C 2MbC /!7.h/jjgjj2HQ
D .1C 2MbC /!7.h/jjujj2

V 0H
;

(6.5.70)

where we used (6.5.69) and the uniform convergence of T hQ to TQ in L.HQ; V /

(see (6.5.57)). The bound (6.5.70) gives (6.5.56) with:

!6.h/ D ..1C 2MbC /!7.h//
1=2:

Now, let us check (6.5.52). If p 2 Q0
H , then p D TQg for a suitable g in HQ.

Let u be such that .u; p/ D S.0; g/ and set ph WD T hQg and uh WD ˘hu. Then we
get, for every vh 2 KerBh,



6.5 Eigenvalue Problems 399

b.vh; p/ D b.vh; p � ph/
D a.˘hu � u; vh/ � Majj˘hu � ujjajjvhjja

(6.5.71)

and (6.5.56) (already proved) ends the proof since, by definition:

jjujjV 0H D jjgjjHQ D jjpjjQ0
H
: ut

Examples for the mixed formulation of second order linear elliptic problems will
be presented in Chap. 7, Sect. 7.1.3. We also refer to Sect. 10.1.2 for an example
with the  � ! approximation of the biharmonic problems.
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