Chapter 4
Saddle Point Problems in Hilbert Spaces

In the first chapter of this book, we introduced a large number of saddle point
problems or generalisations of such problems. In most cases, the question of
existence and uniqueness of solutions was left aside. In the previous chapter, we
considered the solvability of finite dimensional problems in mixed form, together
with the stability of sequences of such problems. We now introduce an abstract
frame that is sufficiently general to cover all our needs, from the problems of
existence and uniqueness in infinite dimension to the stability of their Finite Element
discretisations.

As a first step, we shall recall some basic definitions of Functional Analysis:
Hilbert spaces, continuous functionals, bilinear forms, and linear operators associ-
ated with bilinear forms.

In Sect.4.2, we discuss conditions that ensure existence and uniqueness for
mixed formulations in Hilbert spaces. Several examples of mixed formulations
related to Partial Differential equations will illustrate the theoretical results. Dif-
ferent stability estimates will then be provided for different sets of assumptions.

The last section (Sect. 4.2.2) will be devoted to the study of perturbed problems
(whose algebraic aspects were discussed in Sect. 3.6 of the previous chapter).

We shall follow essentially the analysis of [112] and [122]. We also refer the
reader to other presentations, as can be found in the books [41, 106,222,315,337].

4.1 Reminders on Hilbert Spaces

In this section, we recall some basic notions on Hilbert spaces. Most readers, and
in particular those with a better mathematical background, will already be familiar
with all the contents of the section. For them, the aim of the section will just be to
fix the notation. For other people with a weaker mathematical background, it could
be useful to refresh some notions. On the other hand, we do not pretend to provide
a complete mastering of Hilbert spaces to people that never heard of them before.
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For these people, a superficial reading will be enough to convince them that things,
in Hilbert spaces, are very similar to their counterparts in finite dimensional spaces.

4.1.1 Scalar Products, Norms, Completeness

We assume that the reader is familiar with the concept of linear space over R. This,
roughly speaking, means that you are allowed to sum two elements of the space, and
to multiply each element of the space times a real number.

Let H, and H; be two linear spaces over R. Amapa : H; x H, — Ris said to be
a bilinear form on H, x H, if, for every u;, v;,w; € Hj, forevery uy, vo,w, € H;
and for every A, u € R, we have

a(Auy + pvr,we) = Aa(ur, wa) + pa(vi, wa) @LD
a(wi, Auy + pvy) = Aa(wi, uz) + pa(wi, va). o

When both H; and H; coincide in a single linear space H, we shall often say that
a is a bilinear form on H, meaning that it is a bilinear form on H x H.
A bilinear form a on H is said to be symmetric if, for every u, v € H, we have

a(u,v) =a(v,u). 4.1.2)

A bilinear form s on H is said to be a scalar product if it is symmetric and if,
MOreover,

s(v,v) >0 VYveH and s(v,v) =0=>v =0. 4.1.3)

We assume that we have a scalar product given on H x H, and from now on
we shall write (u, v)y (or simply (&, v) when no confusion can occur) instead of
s(u, v). To a scalar product, we can always associate a norm

12
lvllg == ((v,v)H) YveH. (4.1.4)

Again, we shall simply write ||v|| instead of ||v||z when no confusion is likely
to occur. It is interesting to note that the norm, as defined in (4.1.4), has the usual
properties of the norms in finite dimension:

IAv] = [Alv]  VYveH YAeR,

lv| >0Vve H and |v|=0=v=0, 4.1.5)
[or +vall < lloall + o2l Yvrv2 € H.
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It is also worth noting that, even in infinite dimension, we have the Cauchy
inequality

(., v)p < ullgllvlz  YuveH, (4.1.6)

whose proof can be easily done mimicking the proof of Lemma 3.3.1 of the previous
chapter.

It is a strong temptation to start defining a norm first (as a mapping from H to R
satisfying (4.1.5)), and then getting a scalar product out of it, for instance by

(u,v) = (||u+v||2— ||u—v||2)/4. 4.1.7)

Smart, isn’t it? But doomed. That would work if and only if the norm you started
with satisfies the so called parallelogram identity:

v+ ull® + llv —ul® = 2([lul® + [0]*). (4.1.8)

A norm that satisfies (4.1.5) and (4.1.8) is said to be a pre-Hilbert norm, and
induces a scalar product associated to it through (4.1.7).

A linear space H with a norm || - || that satisfies (4.1.5) is called a normed
space. If, on top of that, the norm satisfies the parallelogram identity (4.1.8), then
we say that H is a pre-Hilbert space.

As soon as we have a norm (no matter if it is a pre-Hilbert norm or not), we can
talk about convergence and limits. We say that the sequence {v,} of elements of H
converges to v € H (or that v is the limit of v, for n — +o00) if

lim |jv, —v|lg =0. 4.1.9)
n—-+00

The limit in (4.1.9) is obviously the one of elementary calculus (dealing with
sequences of real numbers). When the type of norm to be used cannot be confused,
we will also write, more simply, v, — v.

Example 4.1.1. Tt is immediate to see that for every integer k > 1 the space R¥
with the usual Euclidean norm (3.1.6) used in the previous chapter is a pre-Hilbert
space. Indeed, the Euclidean norm does come from a scalar product, so that

Ix+yl>+lIx=y1I> = x>+ IylI1*+2x"y + x>+ Iy 1> =2x"y = 2(Ix]* + |y[?).

On the other hand, for instance R? with the norm ||x||; := |x;| + |x2], already seen
in (3.0.4), is not a pre-Hilbert space, since the norm || - ||; does not satisfy (4.1.8):
try it withu = (1,0) and v = (0, 1). O

Once we have anorm in H, we can measure the distance of two elements u and v
of H by |ju—v||. Given a non-empty subset T C H, we can measure its diameter by

diam(T) := sup |lu—v]. (4.1.10)

uveT
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Loosely speaking, the diameter of 7 is the “maximum” distance of any two elements
in T. It is obvious that for two subsets S and 7', if T C S, then diam(T') < diam(S)
(if you increase the set of possible choices, the supremum cannot go down).

Now, for every sequence {v, },en of elements of H, and for every integer m € N,
we can consider its m-th tail T,,, defined as the set

T := {Vms Vm+1, Umt2...} ={va| n > mj. (4.1.11)

We clearly have T,,+1 € T,, forevery m € N (the farther you cut, the lesser is left in
the tail). Hence, whatever the sequence {v,} from which you started, the sequence
of real numbers diam(T,,) that you get out of it is obviously non increasing: that is,
diam(T,,+1) < diam(T,,) for every m. Hence, the sequence diam(T,) will always
have a limit, which is > 0. A sequence {v,} of elements of a normed space H is
said to be a Cauchy sequence in H if the sequence of real numbers {diam(T,,)}
that you get out of it verifies

lim diam(T,,) = 0. 4.1.12)

m—+o00

Note that, in order to speak about Cauchy sequences, what you need is to be able
to measure the distance of two objects. This is always possible if, as in our case,
you have a norm. This is also possible in more general situations, but we are not
interested in them here.

A normed linear space H is said to be complete if for every Cauchy sequence
{v,} in H there exists an element v € H such that v, — v in the sense of (4.1.9).
In other words, a normed linear space is complete if every Cauchy sequence has a
limit. We are almost done.

Definition 4.1.1. A Banach space is a normed linear space that is complete.
Definition 4.1.2. A Hilbert space is a pre-Hilbert space that is complete.

Note that we could have defined alternatively a Hilbert space as a Banach space
whose norm satisfies the parallelogram identity (4.1.8). Hence, every Hilbert space
is also a Banach space, but the converse is not true: in Hilbert spaces, you have a
scalar product, and in Banach spaces that are not Hilbert spaces, you do not (and
can not) have one.

Example 4.1.2. 1t is immediate to have, from elementary Calculus, that for every
integer k > 1 the space R¥, with the usual Euclidean scalar product and norm, is a
Hilbert space. In particular, R itself is a Hilbert space if we take the usual product
of two numbers as scalar product (and hence the absolute value as norm). We also
saw in the previous chapter that, for instance in R?, the norm ||x||; := |x| + |x2]
is equivalent to the Euclidean norm (in the sense of (3.0.5)). On the other hand, we
have already seen in Example 4.1.1 that R? with the norm || - ||; is not even a pre-
Hilbert space, and hence it cannot be a Hilbert space although, still by elementary
Calculus, it is easily seen to be a Banach space. Actually, it is not difficult to check
that the property of being complete is not lost if you exchange your norm with an
equivalent norm (while the property (4.1.8) might indeed be lost). O
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Example 4.1.3. Regarding the functional spaces already used in the first chapter,
we can see that if §2 is a bounded open domain, then L'(£2) (the space of Lebesgue
integrable functions over £2), with the norm

IvllLie) :=/ |v(x)| dx (4.1.13)
o)

is a Banach space, but not a Hilbert space. Note that, as we did already in the first
chapter (and as we are going to do all over this book), we used the term functions in
lieu of the (more precise) classes of measurable functions.

Instead, the space L?(£2) (the space of Lebesgue square integrable functions
over §2), with the norm

||v||iz(9) = /sz(x)dx (4.1.14)
is a Hilbert space, and the corresponding scalar product is given by
(u,v) 120 = /Q u(x)v(x)dx. (4.1.15)
Similarly, the space H, (§2) with the scalar product

(u, v)Hol(Q) :=/ grad u(x) - grad v(x) dx (4.1.16)
2

is a Hilbert space. O

In the following discussion, we shall mostly use only Hilbert spaces. Hence, from
now on, we shall mainly concentrate on them, although most of the concepts and
results could be extended easily to Banach spaces.

4.1.2 Closed Subspaces and Dense Subspaces

Definition 4.1.3. A subset 7' of a Hilbert space H is said to be closed if, for every
Cauchy sequence {v, },en of elements of 7', the limit v (which surely exists in H,
since H is complete) belongs to T as well.

If T is a linear subspace of a Hilbert space H, and if T is closed, then we will
say that 7' is a closed subspace of H. Then T itself will be a Hilbert space, with
the same norm as H.

Example 4.1.4. For instance, in L*(£2), we can consider the subspace L2(£2) made
of functions that have zero mean value in 2. It is easy to see that it is a closed
subspace (since the L2-limit of functions with zero mean value has itself zero
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mean value). On the other hand, C°(£2) is a linear subspace of L?(£2), but it is not
closed: for instance, for £2 =] — 1, 1[, the sequence f, (x) := arctan(nx) converges
in L2(£2) to foo(x) := (1/2) sign (x), which does not belong to C°(£2). O

Definition 4.1.4. Let H be a Hilbert space, and let Z be a subset of H. The closure
of Z, that we denote by Z, is the set of elements v € H such that there exists a
sequence {z, }nen of elements of Z that converges to v.

We abviously have that Z is closed if and only if Z = Z.
Another important concept regarding subspaces is that of a dense subspace.

Definition 4.1.5. A subset Z of a Hilbert space H is said to be dense if its closure
Z coincides with the whole space H. If Z is also a linear subspace of H, then we
say that it is a dense subspace.

In other words, Z is dense in H if for every element v of H there exists a
sequence {z, }nen of elements of Z such that

lim |jv—2zlg =0.
n—-+00

Example 4.1.5. Tt is not difficult to see that Z := H_](£2) is a dense subspace of
H = L*(£2). Itis also clear that Z is not a closed subspace of H: for instance, for
£2 =] — 1, 1], the sequence of functions defined by

1 when |x| <1-1/n

Zp(x) ;= min (1,n —nlx|) =
n(l—|x|) when|x|>1—1/n

verifies z,, € HOl (£2) for all n, and its limit in L? equals the constant 1, which is not

in H}(£2) (as it does not vanish at the boundary). O

Note that a dense closed subspace of a Hilbert space H coincides necessarily with
the whole space H. Hence, in general, we consider subspaces that are closed, but
not dense, and subspaces that are dense, but not closed. These two categories of
subspaces are both very important, and we cannot restrict our attention to just one
of them. We point out however, from the very beginning, that closed subspaces are
the ones that, loosely speaking, inherit most of the properties of subspaces of finite
dimensional spaces. In particular, a finite dimensional subspace is always closed
and is never dense (unless it coincides with the whole space).

4.1.3 Orthogonality

Some very useful instruments available in Hilbert spaces (and not in Banach spaces)
are related to the concept of orthogonality. We say that two elements # and v of
a Hilbert space H are orthogonal if (u,v)y = 0. It is the same as in the finite
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dimensional case, with the only difference that there, the scalar product was denoted
by v7u. If Z is a linear subspace of a Hilbert space H, we can define its orthogonal
complement Z+

Z+ :={we H suchthat (w,2) =0 Vz e Z}. (4.1.17)

It is not difficult to see that an orthogonal complement Z~ is always closed (even
when Z itself is not closed). As in (3.1.24), if Z; and Z, are both subspaces of a
Hilbert space H, then

Z\CZ, = Zyczi (4.1.18)

Moreover, we have the following useful property.

Proposition 4.1.1. Let H be a Hilbert space, let Z be a subspace of it, and let Z
be its closure. Then,

=zt (4.1.19)

Proof. Since Z C Z,we obviously have 7J' C Z+.Onthe otherhand, letw € Z1.
We want to see that (z, w)y = O forallz € Z. Indeed, for every z € Z, there exists
a sequence {z,},en Of elements of Z that convergesto 7. Asw € Z L. we have
(zn,w)g = 0 for all n. Hence,

Z,w)y = lim (z,,w) =0. (4.1.20)
n—-+00

|

Remark 4.1.1. Note that, as we had in Remark 3.1.3, the notion of orthogonal space
depends heavily on the choice of the “whole space” H. Indeed, if H; and H, are
Hilbert spaces, and Z is a subspace of H; and also a subspace of H;, then the
orthogonal of Z in H; will, in general, be different from the orthogonal of Z in
H,. This is rather obvious. However, the common notation (that we are using here)
does not distinguish among the two (we should, for this, use something like Z+#
and Z+#2, which would be tremendously ugly). As a consequence, one should be
careful when confusion is possible. O

As we did in the finite dimensional case, if Z is a closed subspace, we can define
the projection operator 7z : H — Z defined for every v € H by

Tzv € Z and (mzv—v) € A 4.1.21)

Compare with (3.1.31) to see that we are just extending the definitions given in the
previous chapter for the finite dimensional case. As we had in the finite dimensional
case, mzv can be seen as the element in Z that minimises the distance from v,
namely

|7zv —v|g = min|z —v| . (4.1.22)
2€Z
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Remark 4.1.2. In the definition of 7z, we assumed that Z was a closed subspace
of H. Of the two properties (of being closed, and of being a subspace), the second
is not very important. Indeed, it is easy to see that (4.1.22) can be used to define
the projection mapping 7z in more general cases, for instance when Z is not a
subspace but simply a closed convex subset, as for instance a closed affine manifold
(which, roughly speaking, is the translation of a closed subspace). On the other hand,
closedness is more essential. To see what can happen when you remove it, assume
that Z is a dense subspace. Then, for v in H but not in Z, the projection 7wz v cannot
be defined: indeed, we recall that, from Proposition 4.1.1, if Z is dense (and hence
Z = H), then Z+ = HL = {0}. Hence, looking at the definition (4.1.21), if Z
is dense the only w € H such that (w — v) € Z1 is w = v. However, such a w is
not in Z, so that there is no element that we could choose as 7z v that satisfies both
properties required in (4.1.21). Hence, wzv does not exist. Note that the alternative
definition (4.1.22) would not be of any help either. Actually, always for Z dense
and v € H with v ¢ Z, the minimum of ||z — v|| for z € Z does not exist, and the
infimum is equal to zero. O

Itis easy to check that if H is a Hilbert space, and if Z is a closed linear subspace,
then every element v of H can be split in a unique way into its two components in
Z andin Z+:

vV=vz + Uz, (4.1.23)

just by setting vz 1= mzv.

Example 4.1.6. For instance, if H := L*(22) and Z := L2(£2), then Z* is the
(one-dimensional) space made of constant functions. The projection of v € L?(£2)
onto Z is given by

1
nz =v—— [ v(x)dx, (4.1.24)
12| Jo
where |§2| is the Lebesgue measure of 2. O

We have, moreover, the following property.

Proposition 4.1.2. Let H be a Hilbert space and Z a closed subspace of it. Then,
either Z = H or Z* is not reduced to {0}.

Proof. 1f Z does not coincide with H, then there exists a v € H such that v ¢ Z.
Hence, mzv — v # 0. As (4.1.21) also gives v — v € Z=, the proof is concluded.

O
We can now see the equivalent of (3.1.23) in general Hilbert spaces.
Proposition 4.1.3. Let H be a Hilbert space, and Z < H a subspace. Then,
(zY' =2z it Zisclosed. (4.1.25)

Proof. Indeed, if Z = (ZJ-)J-, then Z, being the orthogonal of something, is
closed. To see the converse, we remark first that we always have the inclusion
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Z C (Z J-)J-. If Z is closed, suppose, by contradiction, that Z does not coincide
with (Z+)L. From Proposition 4.1.2 (applied with H = (Z1)1), we should have
ave((Z J-)J-, with v # 0, that is orthogonal to all z in Z. As such, v will hence be
also in Z+. However, Z+ N (Z+)1 = {0} and this contradicts the fact that v # 0.

O

Moreover, we have the following additional property.

Proposition 4.1.4. Let H be a Hilbert space, and let Z be a subspace of H. Then,

Zt ={0} iff Zisdense. (4.1.26)

Proof. Assume first that Z is dense. Then, Z = H and hence Z5 = {0}, and the
result follows from Proposition 4.1.1. Assume conversely that Z+ = {0}. Always

from Proposition 4.1 _l , we have now ZJ' = {0}. However, Z is closed, and hence,
by Proposition4.1.2 Z = H, and Z is therefore dense. O

4.1.4 Continuous Linear Operators, Dual spaces, Polar Spaces

We can now recall several other important definitions.

Definition 4.1.6. Let V' and W be Hilbert spaces, and let M be a linear mapping
from V to W. We say that M is bounded or that it is continuous if there exists a
constant ;* such that

IMvllw < u*lvly  YveV 4.1.27)

Note that we have two different names for that (bounded and continuous) because
the two definitions do not coincide if the operator is not linear. Actually, for a
more general operator, (4.1.27) defines a bounded operator, while continuity can
be taken as in the usual Calculus books: for every v € V' and for every sequence v,
converging to v, we have that M v, converges to M v. Here, however, we only deal
with linear operators, and the two concepts coincide.

v
Example 4.1.7. For instance, the operator v — P is continuous from HO1 (£2)
X1

to L?($£2). Similarly, if ¢ is a given (fixed) bounded function, then the mapping
v — ¢ v is continuous from L?(£2) into itself. O

The following definition is less common but very useful.
Definition 4.1.7. Let V and W be Hilbert spaces and let M be a linear mapping
from V to W. We say that M is bounding if there exists a constant 4 such that

[Mvllw = p«llvlly  YveW (4.1.28)



206 4 Saddle Point Problems in Hilbert Spaces

In other words, bounding operators are injective operators whose inverse is
continuous.

The set of all linear continuous operators from a Hilbert space V' into another
Hilbert space W is also a linear space (after defining, in an obvious way, the sum
of two operators or the multiplication of an operator times a real number). Such a
space is usually denoted by L(V, W). In L(V, W), we can also introduce a norm:

M
M| zvw) := sup 1M viw (4.1.29)
' vev vy

When no confusion can occur, the norm in (4.1.29) is simply denoted by || M |
Hence, for instance, (4.1.29) implies

IMvlw < [IM]|vlly  VveV. (4.1.30)

One can prove that (4.1.29) actually defines a norm, and that such a norm verifies
(4.1.8), so that with this norm L£(V, W) is itself a Hilbert space.

A remarkable result concerning linear continuous and one-to-one operators is the
following one, due to Banach.

Theorem 4.1.1 (Banach Theorem). Let V and W be Hilbert spaces and let
M € L(V,W) be a one to one mapping. Then, its inverse operator M~", from
W to V, is also continuous.

Proof. The proof can be found in any book of Functional Analysis. O

As we did for finite dimensional spaces, given a subspace Z < V, we can
consider the extension operator E;_.y, from Z to V which to every z € Z
associates the same z, thought as an element of V. If there is no risk of confusion,
this will, more simply, be denoted by Ez as we did in the previous chapter. Always
in agreement with the finite dimensional case, given an operator M € L(V, W), we
can consider the restriction M, of M to Z, that could be defined as

Myz=MEzz VzelZ. (4.1.31)

Since for every z € Z C V we have obviously Mz z = M z, in several occasions,
the extension operator £z will not be explicitly written. In other cases, however,
such notation will turn out to be very useful.

If we assume that Z is a closed subspace of V, that S is a closed subspace of W
and M € L(V, W), we can also consider its restriction Mzs, defined as

Mzgz=ns MEzz Vze Z. (4.1.32)

Itis easy to check that Mz € L(Z, S )~. Conversely, given an operator L in £L(Z, §S),
we can always consider its extension L € L(V, W) defined by
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Lv=EsLmyv Yo e V. (4.1.33)

A particular case of linear operators, of paramount importance, is found when
the arrival space is R. In this case, linear operators V' — R are called linear
functionals on V. The space of all linear continuous functionals on a Hilbert
space V is called the dual space of V, and is usually denoted by V'. Hence,
V' = L(V,R). As a particular case of the previous situation, V" is itself a Hilbert
space, and its norm (often called the dual norm of || - ||) is given by

1l = sup LW

vev |Vl ’

(4.1.34)

We easily recognise the definition of dual norms that were given in finite dimension.
The value of f atv (denoted by f(v) in (4.1.34)) is often denoted in a different way:
either by y/ f, v)y or by ( f, v)y/xy, or simply ( f, v) when no confusion can occur.
It is not too difficult to check (although we shall not do it here) that, if V' is a Hilbert
space, then the dual space of V' (often called the bi-dual space), actually can be
identified with V itself (see the Ritz representation Theorem (4.1.37) here below).

Example 4.1.8. For instance, in one dimension, it is easy to see that the mapping
8o : v = v(0) € R is continuous from HO1 (] — 1, 1]) to R: indeed,

v(0) = /_01 v'(t)dt < (/_01 lzdt)l/z(/_o1 W) dt)l/z
< 1(/_11 (v’(t))zdt)l/z ol @139

Hence, §) is an element of the dual space of H](] — 1,1[) (usually denoted by
H~'(] = 1,1])). Note that a similar result does not hold in dimension d > 1.
Indeed, if 2 is the disk centred at the origin O and radius 1/ /e, a simple explicit
computation shows that the function

v(x,y) := log|log(x* + y?)|
is indeed in H (£2). Setting
Un(x, y) 1= min{n, v(x, y)},

it is not difficult to see that v, converges to v in H, (£2). However, v,(0,0) = n so
that the bound

un(0,0) = Cllvall gy (2

cannot be true with a constant C (no matter how big) independent of n, as the left-
hand side tends to 400 and the right-hand side stays finite. Similarly, the estimate
(4.1.35) becomes false if we try to replace, in the right-hand side, the H' norm with
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the L? norm: consider, for instance, the sequence of functions defined by

1 for x in [—1/n,1/n]

Un(x) = {
0 for x outside [—-1/n, 1/n].

We have

2 ! 2 In 2
”vﬂ”LZ]_l l[: vn(x)dx: ldx=—-—>0
' -1 —1/n n

while v, (0) = 1 for all n. Hence, there is no constant C (independent of 1) such
that

0, (0) < C [lvullL2(=1.1p)- o
Example 4.1.9. Let us also see an example of dual norm: let n be an integer (larger

than 1) and consider in £2 = ]0, x| the function f,(x) := sin(nx). It is immediate
to check that

I full 22y = v/7/2  and that ||fn||H01(Q):n,/_n/2.

To f, we can associate an element, that we still call f,, of H~'(£2) (that is the dual
space of H| (£2)) as follows

Unebbimay = [ o0 fi0)dr Yo € (@)

Let us compute the norm of f, in H~!(£2). For every ¢ € H](£2) we have
(integrating by parts):

o) = /0 " ) dr = /0 " Sin(nx)p(x) dr
/2

1 (" 1
= —/ cos(nx)g'(x) dx < —| cos(nx)| .2 ol = o1z
n Jo n

n

giving us, always for every ¢ € H/ (£2):

(4.1.36)

On the other hand, it is not difficult to see that, taking ¢ = sin(nx), we get
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(o) _ 7/2 _ V7/2
ey nym/2 n’

showing that (1/n)+/m/2 actually realises the supremum (over all possible ¢’s) of
the left-hand side of (4.1.36). In conclusion, we have

:‘?‘
~
1S

Ifallze) = vVa/2  Nhallupey =nva/2 N fallu-1e) =

This shows that the three norms || - ||z, || - ||H01, and || - || z—1 cannot be equivalent.
This also shows that a high frequency function can have, at the same time, an L>-
norm (and a maximum norm) of the order of 1, a huge H '-norm (~ energy norm),
and a tiny H ~'-norm. This will show up in the next chapter, when the use of finer
and finer grids will allow the presence of highly oscillating piecewise linear (or
piecewise polynomial) functions. O

While several properties that we saw and that we will see hold in a much more
general setting (for instance, in all Banach spaces), the following theorem is, in a
certain sense, characteristic of Hilbert spaces.

Theorem 4.1.2 (Ritz’s Theorem). Let H be a Hilbert space, and let Ry be the
operator H — H' that to each 7 € H associates the functional f, = Ryz € H'
defined as

(fesVY'xg = (z,v)g Yv e H. (4.1.37)

Then, Ry is one to one, and |Ry || cmury = IR |27,y = 1. Moreover, if we
identify (as it is natural) H with (H')', then Ry;' = Ry
Proof. The proof can be found in every Functional Analysis textbook. O

Another result that we are going to use later on is the following theorem, that can
be seen as a particular case of a more general result, known as the Kato Theorem.

Theorem 4.1.3 (Kato Theorem). Let V and W be Hilbert spaces and let T and
T, be in L(V,W). If T\ is bounding, then there exists an €y > 0 such that for all
e € R with |e| < g the perturbed operator T\ + T is also bounding, and we have
moreover

177" = (Ty + eT) N eawy) < C el (4.1.38)

with C depending on &y but independent of ¢.

If Z is a subspace of a Hilbert space H, we can spot a special subset of H’,
usually called the polar space of Z, made of all functionals f € H’ that vanish
identically on Z. The polar space of Z is usually denoted by Z°: hence, we have

Z%:={f e H suchthat (f.2)yrxy =0 Yz e Z}. (4.1.39)
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It is clear that the definition of polar space of Z makes sense only when Z is
considered as a subspace of another space (in this case, H). In particular, the polar
space of Z = {0} coincides with the whole H’ while the polar space of Z = H is
reduced to the zero functional.

Remark 4.1.3. 1t is easy to check that a polar space is always closed. Indeed,
roughly speaking, if ( f,,z) = O for every n and for every z, and if f, — f in
H', then (f,z) = 0 for all z. O

The concept of polar space is commonly used for general Banach spaces. In Hilbert
spaces, however, it becomes particularly simple using the Ritz Theorem. Indeed,
from (4.1.39), we immediately have

Z%= Ry (Zh). (4.1.40)
From this and Proposition 4.1.3, we then have

(z°)° =2z it Zisclosed, (4.1.41)
and from (4.1.26),
Z° ={0} iff Z isdense. (4.1.42)

Remark 4.1.4. Property (4.1.42) is a particular case (or, if you want, the restriction
to Hilbert spaces) of a fundamental theorem of Functional Analysis, known as the
Hahn-Banach Theorem. O

Remark 4.1.5. As we had in Remark 4.1.1 for orthogonal spaces, if Z can be seen
as a subspace of two different spaces H; and H>, then the polar of Z in H 1/ will be
different from the polar of Z in H,. o

Similarly to (4.1.18), when Z| and Z, are subspaces of the same space H, then

ZcZ, = 27Z9c2z (4.1.43)

4.1.5 Bilinear Forms and Associated Operators; Transposed
Operators

Another important particular case is that of bilinear forms. Assume that V' and Q
are Hilbert spaces: we say that a bilinear form b from V' x Q to R is continuous if
there exists a constant up, such that

b(v,q) < wsllvliv ligllo YvelV, VgeQ. (4.1.44)

The norm of the continuous bilinear form ||5| £(vx ¢ r) is then defined as
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b(v,q)

Ak EA (4.1.45)
lvllv llgllo

161l c(vxor) := sup
veV
q9€0

and it will be denoted simply by | 5| when no confusion can occur. Hence, from
(4.1.44) and (4.1.45), we have

bv.q) = lIb[lvllvliglle  YveV.VgeQ. (4.1.46)

It is important to note that continuous bilinear forms on V x Q are strictly connected
to linear continuous operators from V to Q’: indeed, if b is a bilinear formon V' x Q,
we can associate to it a linear operator B from V to Q’, defined as

(Bv.q)prxp :=b(v.q) VYveV,Vqgeo0. (4.1.47)

Conversely, if B is a linear operator from V' to Q’, we can associate to it the bilinear
form

b(v,q) == (Bv,q)o'x0 YveV, VgeQ. (4.1.48)

It is elementary to check that B is continuous (from V to Q') if and only if the
associated bilinear form b is continuous from V x Q toR. To B : V — Q' we can
also associate another operator, that we call transposed operator B’ : Q — V/,
given by

(U,th)VxV/ = (BV,C])Q/XQ = b(v,q). (4.1.49)

Example 4.1.10. 1t is easy to see that if V' := R” and Q := R™, then the linear
operators from V to Q' >~ Q are just (m X n) matrices. In particular, the transposed
operator will simply be the transposed matrix. O

It is worth noting that the continuity of the three objects b, B, and B’ is just the
same property. In particular we have

b(v,
1Bllcwon = 1B et = Ibllsrxom = sup —2®) 4.1.50)

v vllv llglle”
40 ¢

For a linear operator M from a Hilbert space V to another Hilbert space W, we
can define the kernel and the image (or range) as we did in (3.1.7) for the finite
dimensional case:

KerM := {v € V such that Mv = 0},
ImM = {w € W such that 3v € V with Mv = w}.

(4.1.51)

Remark 4.1.6. Note that the kernel of a continuous operator M is always closed.
Indeed, if M v, = 0 and v, — v in V, the continuity of M will imply that M v = 0.
This is not true for the image. Referring to the case of Example 4.1.5, take V =
Hj(£2) and W = L?*(£2), with Mv = v forevery v € V. Clearly, M is continuous,
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but InM = V is not a closed subspace of W. This fact (that the image might not
be closed) puts pains thousandfold upon the mathematicians (whether Achaians or
not). However, as you will see, one can survive. O

We concentrate now our attention on the case of linear operators B from V
to W = Q’, with their associated bilinear form b and transposed operator B’,
as in (4.1.49). In this case, we can see that KerB and KerB’ can be written,
respectively, as

KerB : = {v € V suchthatb(v,q) =0V q € Q}

(4.1.52)
= {v € V such that (v, B'q)yxy» =0V q € Q}

and
KerB' : = {g € Q suchthatbh(v,q) =0Vv eV}

(4.1.53)
= {q € O such that (Bv,q)g'xp =0Vv eV}

In finite dimensional problems (see Proposition 3.1.2), we did interpret (4.1.52)
and (4.1.53) as

KerB = (ImB”)* and KerB” = (ImB)* (4.1.54)

respectively. This, however, cannot be done in the present infinite dimensional case,
because, for instance, ImB is not a subset of Q but a subset of Q' (the two spaces
were identified in finite dimension without telling you anything; sorry for that!). We
have, however introduced a special definition for that: the polar space (see (4.1.39)).
Hence, we can interpret (4.1.52) and (4.1.53) as

KerB = (ImB")° and KerB' = (ImB)° (4.1.55)

respectively. In finite dimension, in Theorem 3.1.1, we also had ImB” = (KerB)*
and ImB = (KerB”7)'. Here we might hope to have

(KerB) = ImB’ and (KerB")’ = ImB. (4.1.56)
Actually, for instance, the equality
(KerB)? = ImB’ (4.1.57)

will follow easily from the second of (4.1.55) using (4.1.41) if we only knew
that ImB is closed. However, unfortunately, this is not always the case. On the
other hand, if ImB is not closed, then (4.1.57) is hopeless, as a polar space is
always closed. Indeed, we can see that we have the following generalisation of
Corollary 3.1.1 and Theorem 3.1.1 to the infinite dimensional case.

Theorem 4.1.4. Let V and Q be Hilbert spaces, and B a linear continuous
operator from V to Q' (that is: B € L(V, Q")). Then, the following three properties
are equivalent:
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ImB is closed in Q' (4.1.58)
ImB = (KerB")° (4.1.59)
3Ly € LAmB, (KerB)Y) and B > 0 such that:

BLpg=g VgelmB and B|Lpglv <lgllor Vg €ImB.
(4.1.60)

Proof. We already discussed the equivalence of (4.1.58) and (4.1.59). Moreover,
if (4.1.58) holds, then B (or actually its restriction to (KerB)1) becomes (with the
same argument used in Proposition 3.1.1) a continuous one-to-one operator between
the two Hilbert spaces (KerB)* and ImB, and Theorem 4.1.1 gives us (4.1.60).
Finally, (4.1.60) easily implies (4.1.58): if g, = B v, is a Cauchy sequence in Q’
then, using (4.1.60), we have that v, (equal to L g,) is a Cauchy sequence in V.
Then, it converges to a v € V, and the continuity of B implies that g, converges to
B v in Q’. Hence, the limit of g, is in ImB. O

Exchanging B and B’, we immediately have the equivalence of the three

properties

ImB' is closed in V’ (4.1.61)
ImB' = (KerB)" (4.1.62)
3Lp € LAmB', (KerB")*) and B > 0 such that:

B'Lp f=f VfeImB' and BlLp flo =Ifllv ¥ f € ImB".
(4.1.63)

What is somehow remarkable is that, actually, the two triplets of properties (4.1.58)—
(4.1.60) and (4.1.61)—(4.1.63) are equivalent to each other. This actually follows
easily from the following proposition.

Proposition 4.1.5. Let V and Q be Hilbert spaces, and B a linear continuous
operator from V to Q' (that is: B € L(V, Q")). Then, ImB is closed iff ImB' is
closed.

Proof. In view of the above equivalences, we only need to prove that (4.1.58)—
(4.1.60) imply (4.1.61). For this, consider ¢ € (KerB’)* and set g = Roq where
Ry is the Ritz operator 0 — Q’. Using (4.1.40) we have g € ( KerB’)’. Hence,
using (4.1.59), we have g € ImB so that g = Bx for x = Lg, and from (4.1.60):
Bllxllv < ligllor = lgllo- Then, we have

lglp = 0 (Roq.q)0 = 0/(.49)0 = o(Bx.4)¢

1
= y(x,B'q)y < |xllv |1B'qllv < EIICIIIQ IB'qlly: (4.1.64)
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which easily gives
Bllalo < IB'qlly: Vg € (KerB)* (4.1.65)

which, in turn, proves that ImB’ is closed by the same argument used in the proof
of Theorem 4.1.4 O

We can summarise the above results in the following theorem, that is a particular
case of a more general (and important) theorem, also due to Banach, and mostly
known as the Closed Range Theorem.

Theorem 4.1.5 (Banach Closed Range Theorem). Let V and Q be Hilbert
spaces and let B be a linear continuous operator from 'V to Q'. Set

K:=KerBCV and H :=KerB' C Q. (4.1.66)

Then, the following statements are equivalent:

e ImB is closed in Q’,

e ImB' is closed in V',

e K%=TImB!,

e H?=1ImB,

e 3Lg € LAmB, KY) and 3B > 0 such that B(Lg(g)) = g Vg € ImB and
moreover B||Lpglv < |gllor Vg €ImB,

e 3 Lg € LAmB', HY) and 3B > 0 such that B' (L (f)) = f ¥V f € ImB!
and moreover B||Lg: fllo < | fllv: V f €ImB". O

In the following treatment, we shall often assume that B is surjective. Let us see
what the Closed Range Theorem has to say in this case.

Corollary 4.1.1. Let V and Q be Hilbert spaces, and let B be a linear continuous
operator from V to Q'. Then, the following statements are equivalent:

e ImB = Q/,

e ImB' is closed and B’ is injective,

* B'isbounding: 3B >0 st |[B'qllv = Blgllo Yqe0,

e ALpeL(Q.V)suchthat B(Lp(g)) =g YgeQ, with||Lg|=1/p.

The proof is immediate.
A useful consequence of Corollary 4.1.1 is the well known Lax-Milgram Lemma:

Theorem 4.1.6 (Lax-Milgram Lemma). Let V be a Hilbert space, and let a(-, )
be a bilinear continuous form on V. Assume that a is coercive, that is

Ja > 0such thata(v,v) > o |v|}, Yv e V. (4.1.67)

Then, for every f € V', the problem: find u € V such that
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a(u,v) = (fiv)yxy VYvevV (4.1.68)

has a unique solution.

Proof. Note that (4.1.68) is equivalent to Au = f, where A € L(V,V’) is the
operator associated to the bilinear form a. We have to prove that A4 is injective and
surjective. Condition (4.1.67) immediately implies that A is bounding:

a(v,w a(v,v
JAvly = sup 20 L a@V) (4.1.69)
wev\foy Iwllv lvllv

Hence, A is injective. With an identical proof, we see that A’ is also bounding.
Hence, A’ is injective and (due to Corollary 4.1.1) A is surjective. O

Remark 4.1.7. Roughly speaking, we can summarise the result of the Closed Range
Theorem by saying that operators with a closed range have essentially all the
well-known properties of operators in finite dimensional spaces (whose range is
always trivially closed) that we have seen in the previous chapter. In particular,
Corollary 4.1.1 is exactly what we need to extend the properties and the results of
Sect. 3.4 to the infinite dimensional case. See in particular Proposition 3.4.4. O

4.1.6 Dual Spaces of Linear Subspaces

We have seen two (very different) types of subspaces: closed subspaces and dense
subspaces. We shall see now that they also behave quite differently when we
consider their dual spaces. Let us see the difference.

Assume first that Z is a closed subspace of a Hilbert space H. Then, we already
pointed out that, using on Z the same norm that we already have on H, the space Z
becomes itself a Hilbert space, and, as such, it will have a dual space Z’ of its own.
It is easy to see that Z’ could be identified with a particular subset of H’, made of all
functionals f € H’ that vanish identically on the orthogonal complement Z+ of Z.
Note that we already have a name for that space, that is (Z1)°. We have therefore,
in a natural way,

Z'=ZY=Ry(Z)cH and (ZY) =2Z"=Ry(ZY) Cc H'. (4.1.70)

Hence, the dual space Z' of a closed subspace Z C H can be identified with
a closed subspace of H'. Once this identification is made, we can also consider
the extension operator Ez/_, g (that we shall often denote simply as Ez/), and
the projection operator w7 from H' to Z'. Note that, for ¢ € Z’, the functional
E 7/ /¢ can also be described as

H{Ez ¢, v == z/{¢,TzV) 7z (4.1.71)
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while for ¢ € H' the functional 77/ can be described as

2wz ¥, 2)z = n ¥, Ez>n2)u. (4.1.72)
In other terms
(nz))' = (Ez) (4.1.73)
and
(m2)" = (Ez). (4.1.74)

Example 4.1.11. For instance, if H = L?(£2) and Z is the space of constant
functions, it is not difficult to see that Z+ = L2($2) (the space of functions having
zero mean value). Now, the dual space of Z will be the space of functionals that can
be written as

q—)k/qu keR
2

(meaning that for each k € R we have a different functional). On the other hand,
the dual space of Z+ will be the space of functionals that can be written as

q—>/kqu kezt
Q

(meaning that for each k € Z L we have a different functional). On the other
hand, (Z1)’ could also be identified with the subset of H’ made of functionals
that vanish identically on constant functions (that is, with the polar set of the space
of constants, which is the polar set of Z, as in (4.1.70)). Using the Ritz operator Ry
of Theorem 4.1.2, we could write Z’ = Ry (Z) and (Z1) = Ry (Z%1). If, as is
done almost every time, we identify L?(£2) with its dual space, then we could write
7' =Zand (Z1t) = Z+. O

Let us consider now the case of a dense subspace S C H of a Hilbert space H.
If we take on S the same norm as on H, we cannot (in the present setting) consider
its dual space, as S will not be closed (unless S = H, a case without any interest).
Hence, we assume that on S we take a different norm. More precisely, we assume
that on S we are given another norm, || - ||s, that makes S a Hilbert space. We
assume, moreover, that this other norm is (up to a multiplicative constant) bigger
than the || - ||y norm:

3Csy > Osuchthat ||s||lg < Csulslls Vs eS. (4.1.75)

In this case, we will say that S is continuously embedded in H. Indeed, (4.1.75)
means exactly that the identity operator is continuous from S into H. There is a
special symbol for that: instead of S C H, we write S — H.

Example 4.1.12. 1f we take, as in Example 4.1.5, S = H}(£2) and H = L*(R2),
then inequality (4.1.75) is just the Poincaré inequality. O
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Now S, being a Hilbert space, has a dual space S’. Let us see the relationship
between S’ and H’. As S C H, for each element g € H’, we can consider its
restriction gs € S’ defined by (g|s.$)s'xs = (g.5)m/xu forall s € S. Indeed,
from (4.1.75) we have easily for every s € S

(g15:8)s'xs = (g.8)wxu < Igla’ Isla < Csu llglu lIslls. (4.1.76)

implying the continuity of g|s : S — R, as well as the continuity of the restriction
operator: namely,

lgislls’ < Csullglla- (4.1.77)

Using the Hahn-Banach theorem (here simplified to (4.1.42)), we see that we
cannot have in H' two different g’s having the same restriction to S: indeed, if g!
and g2 have the same restriction to S (that is, if g|ls = g‘zs), then the difference

g' — g?isin S, and hence it must be zero.

We can then summarise the above discussion by saying that: every g € H’ has
a restriction g|s in S’ and the mapping g — g|s from H' to S’ is injective. This
allows us to identify H' with a subset of S’:

H CS. (4.1.78)

On the other hand, there are, in general, elements in S’ that cannot be presented as
the restriction of any g € H': indeed, S has a norm which is bigger than that of H,
and g could be continuous from S to R and not from H to R. As we have seen for
instance in Example 3.1.6, for  :=] — 1, 1[, taking H := L*(/) and S := H} (1),
the mapping v — v(0) belongs to S’ but cannot be seen as the restriction to S of an
element of H’

In other words, (4.1.77) cannot be reversed. Hence, we have H' C S’, and using
(4.1.77), we see that we actually have H' < §’, and in general the inclusion is
strict. On the other hand, one can also prove that H’ is dense in S’. Moreover, out
of the previous discussion, we easily have that

(g.5)s'xs = (g.8)n'xy wheneverg € H and s € S. (4.1.79)

Hence, if we have two Hilbert spaces S and H with S C H and S dense in H,
then

S—H = H <S5 (4.1.80)

The difference between the two cases, (4.1.70) and (4.1.80), that might be surprising
at first sight, is due to the fact that in the first case we used on S the same norm that
we had on H, while in the second case we used a different, stronger norm.

Example 4.1.13. 'We have already seen the example of 6y, which belongs to the dual
space of S := H/(]—1, 1) but not to the dual space of H := L?(]—1, 1[). Letus
see another simple example. For a general domain £2, taking always S = H/(£2)
and H = L?*(£2), and taking in H’ the functional
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v—>/ vdx,
fos

it is clear that its restriction to S leaves the functional (essentially) unchanged. On
the other hand, for f fixed in L?(£2), the functional

v—>/fa—vdx,
Q 8x

linear and continuous on S, cannot be extended to a continuous functional on H .
O

4.1.7 Identification of a Space with its Dual Space

It is usually a strong temptation, when dealing with Hilbert spaces, to use the Ritz
Theorem 4.1.2 to identify a Hilbert space with its dual. After all, this is what
is done most of the times when dealing with finite dimensional spaces. However,
when dealing with functional spaces (that is, spaces made of functions), it is highly
recommended to limit such identification to L? with its dual (or of a closed
subspace Z of L? with its dual Z’). Every other identification will be calling for
a total disaster. Let us see why. Assume that in (4.1.80) we have H = L?*(£2) and
S = H}(£). Identifying L? with its dual space, we would have H = H’, and
(4.1.80) will become

S H=H <5 (4.1.81)

So far, so good. Everybody does that, and nobody suffers. Assume, however, that,
in spite of all recommendations, you also identify S with S’. Then, in (4.1.81), you
compress the four spaces S = H = H’ = S’ into one, identifying at the same
time a function with itself and with its Laplacian. This is the beginning of the end.
Now, the question that everybody asks (the first time one hears about that) is “What
is so special with L2?”. Itis a very good question. Actually, there is nothing special,
mathematically, about it, apart from the fact that we are so used to identify a function
f € L?(£2) with the mapping (defined for ¢ € L?(£2)):

@ —>/ Sfodx (4.1.82)
2

that we do it all the time, without even realising it. In principle, we might as well
identify a function f € H/(§2) with the mapping (defined for ¢ in H_ (£2)):

@ —>/ grad f - grad ¢ dx (4.1.83)
2
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and don’t use the identification (4.1.82). This will be mathematically correct but
psychologically very, very difficult; and before the rooster crows, you will have used
(4.1.82) three times. Hence, our advice is: No matter whether the above discussion
was clear or not, just avoid any identification of a functional space that is not L? (or
a multiple copy of it, o, exceptionally, a closed subspace of it) with its dual space!
This, of course, unless you are very skilled in Functional Analysis. Although, if you
are. .. why are you reading all this? O

4.1.8 Restrictions of Operators to Closed Subspaces

We shall now deal briefly with a situation that we will meet constantly in the
following chapter. We have (as before) two Hilbert spaces V' and Q, we have a linear
continuous operator B € L(V, Q’), and we have two closed subspaces Z C V and
S C Q. In the applications of the next chapter, Z and S will typically be finite
dimensional spaces (and hence automatically closed).

As we have seen, B (and its transposed operator B’) can be associated to a
bilinear form b defined on V x Q. It is not difficult to see that, restricting the bilinear
form to Z x S, we have as associated operators

By = ng'BE; and B, =nzB'Eg (4.1.84)

and obviously (Bzy)" = B,

Remark 4.1.8. As we have already pointed out in Remark 3.1.11 of the previous
chapter, in general, we cannot expect the kernel of B¢ to be a subspace of the
kernel of B, nor the image of Bzy to be a subset of the image of B. The same is

obviously true for the images and the kernels of B¢, and B'. a

Proposition 4.1.6. Let V and Q be Hilbert spaces, let B € L(V, Q’), and let Z C
Vand S C Q be closed subspaces, with S finite dimensional. Then, the inclusion

KerBg, C KerB' (4.1.85)
holds iff we have
ns/(ImB) - ImBZS/. (4186)

Proof. Assume first that (4.1.85) (that, to be precise, we should actually write as
EsKerBg, C KerB') holds, and let g = Bv € ImB. As ImByy is closed (since
S is finite dimensional), to show that 7g g € ImByy, we just have to check that
ns'g € (KerBj,)", thatis,

0'(8.9)0 =0 Vg € KerBg,,. (4.1.87)
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If the inclusion (4.1.85) is satisfied, then every g € Keng , will also be in KerB'.

Z
However, for ¢ € KerB’ we have

Q/(g,q)Q = Q/(Bv,q)Q = V(U,th>[// = 0, (4188)

giving (4.1.87) and ending the first part of the proof.

Assume now that (4.1.86) holds, and let g; € S be in KerBéZ,, that is:
7z B'qs = 0. For such a ¢, we have, for every z € Z, that
s{qs. ms' Bz) s/
= 0(qs. Bz) o' = v/(B'qs,2)v = z/(nzB'qs.2)2 (4.1.89)

=0,

meaning that g, is in the polar space of ImB,¢. Inclusion (4.1.86) together with
(4.1.43) implies then that ¢g; is in the polar space of ws/ImB, so that forallv € V
we have s (g, ms/Bv)ss = 0, hence y/(B'q,, v)y = 0 and therefore g, € KerB'.

0

Remark 4.1.9. The assumption that S is finite dimensional, in Proposition 4.1.6,
is clearly stronger than necessary. Indeed, looking at the proof, we see that for the
first part we only need ImB,y to be closed, while the second part does not even
need that. However, as we said, we are going to use the result in the case of Z
and S being finite dimensional, so that we did not struggle to minimise this type of
assumptions. O

Exchanging the roles of B and B’, we have, moreover, in the same assumptions
of Proposition 4.1.6 (but requiring Z to be finite dimensional instead of §), that

KerBzy € KerB (4.1.90)

is equivalent to
nz/(ImB") C ImBg,,. 4.1.91)

The case in which the subspaces Z and S are related to the kernels and images
of a linear operator B € L(V, Q') (and of its transposed) is obviously of special
interest. In particular, we can present a corollary of the Closed Range Theorem 4.1.5
that will often be useful.

Corollary 4.1.2. In the same assumptions of Theorem 4.1.5, if one of the six
equivalent properties is satisfied, then Ly € L(K*, H) is the transposed operator
of Ly € L(H*, K°) and in particular,

ILellckt moy = 1L |l gt ko) =2 1. (4.1.92)

Moreover, setting B := 1/u we have
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Bllvlly < IIBvly:  VveK™ (4.1.93)
and

Blgllo < IB'qllvy  VgeH. (4.1.94)

Proof. If, say, ImB is closed, then B will be an isomorphism from K 1 to ImB
which, however, coincides with HP. Similarly, B’ will be an isomorphism from
H* to ImB' that coincides with K°. Hence, L coincides with (BgLz0)~" and
L g+ coincides with (B;I B KO)_I. We also recall from (4.1.70) that

(KH =K' K=ty (HY =H' H'=HYY (4.1.95)

so that it is immediate to see that Lp: is the transposed operator of Lp. Now
(4.1.92) will follow immediately from (4.1.50). Finally, (4.1.93) and (4.1.94) are
now immediate since, forv € K1, we have v = L g(Bv) and forq € H L, we have
q = Lp:(B'q). O

4.1.9 Quotient Spaces

Assume that Q is a Hilbert space and let H be a closed subspace of Q. We also
assume that H is a proper subspace, meaning that H does not coincide with 0. We
consider then the quotient space Q /i defined as the space whose elements are the
equivalence classes induced by the equivalence relation:

vy = vy, ifandonlyif (v —v;) € H. (4.1.96)

In other words, two elements are equivalent if their difference belongs to H. It is
immediate to see that all the elements of H will then be equivalent to 0. In view of
this definition, an element of Qg will then be a subset of O made by elements that
are all equivalent to each other.

Example 4.1.14. For a bounded domain 2 C RY, we take Q := L*(£2) and
we consider the (one-dimensional) subspace H made of constant functions. Then,
Q,n will be made of classes of functions that differ from each other by a constant
function. O

Note that if two classes Cy and C, have an element v*in common, then they must
coincide. Indeed, for every v; in Cy, we have vy — v* € H and, for every v, € C,
we have v, — v* € H. As a consequence, for every v; € Cy and every vy € C,, we
have v; — v, = (v — v*) — (v — v*) € H (as difference of two elements of H).
This implies that for every v; € C, and for every v, € C,, we have v; = v,, which
is to say that the two classes C; and C, coincide. We conclude that two different
classes have no elements in common.
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It is then easy to verify that there is a one-to-one correspondence between Q/n
and the orthogonal complement H+ of H in Q. Let us see it in more detail. Let ¢*
be an element of H1: to it we associate the class C,+ defined by

Cor i ={veQlvzg*t={veQlv—q" € H}. (4.1.97)

It is clear that the mapping ¢* — C,+, from H* to Q /H» 18 injective: indeed,
assume that ¢* and ¢** are two elements in H~ such that the two corresponding
classes Cy+ and C,++ coincide. This implies that, say, ¢** € Cy+, thatis ¢** —g* €
H. Since ¢** — ¢* must also belong to H+ (as difference of two elements both in
H*'), we conclude that ¢** = g*.

Let us see that the mapping ¢* — C,+ is also surjective: let therefore the
class C* be an element of O,y and let § € C*. The class C* could then be
characterised as

C*={veQlv=gl={veQlv—qe H}. (4.1.98)

At this point, it is not difficult to see that C* is a closed convex subset of Q and
hence (see (4.1.22) and Remark 4.1.2) we can define qé* as the projection ¢ 0 of
0 on C* (that can also be seen as the element of C* having minimum norm). It is
then elementary to check that

(e, v) =0 VYveH, (4.1.99)

implying that ¢/ € H L and that, actually, C* = Cqé*- This also allows us to
define a norm in Qg for every C € Q,y, we define

ICllg,u = lmcOllo = ligcllo- (4.1.100)

Hence, if we prefer, we could choose in each class (= element of Q,p) the
unique element, in the class, which belongs to H+, and identify O /g with H L

Example 4.1.15. Let us go back to the case of Example 4.1.14 where Q := L?(£2)
and H is the subspace made of constant functions. We recall that Qg is made of
classes of functions that differ from each other by a constant function. For every
such class, we could always take one function ¢ in the class, and describe the class
as the set of all functions of the form g + ¢ with ¢ constant. In doing so, we could
however decide to choose as “representative” the unique function, in the class, that
has zero mean value. This is the same as picking g* € H*, since H is clearly the
subspace of Q made of functions having zero mean value. O
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4.2 Existence and Uniqueness of Solutions

4.2.1 Mixed Formulations in Hilbert Spaces

From here to the end of this chapter, we will consistently remain in the same
notational framework. As this framework will also include some assumptions, we
summarise all these assumptions under the name of Assumption AB.

Assumption AB: We are given two Hilbert spaces, V and Q, and two continuous
bilinear forms: a(-,-) on V. x V and b(-,-) on V x Q. We denote by A and B,
respectively, the linear continuous operators associated with them. We also set

K := KerB and H := KerB'. (4.2.1)
We recall from the previous subsection that we have
la(u, v)| < llall ully lviv, (4.2.2)
and that the two linear continuous operators A : V — V' and A’ : V — V’ satisfy
(Au, v)yrxy = (u, A"v)yxyr = a(u, v), VvoeVVuelV. (4.2.3)
Similarly,
b, )l = 1]l [vliv ligllo. (4.2.4)
and the two linear operators B : V — Q’, and B' : Q — V' satisfy
(Bv,q)o'xo = (v. B'q)vxy» = b(v,q) YveV, Yqge0. (4.2.5)

We now consider our basic problem. Given f € V' and g € Q’, we want to find
(u, p) € V x Q solution of

a(,v) +b(v,p) = (fv)yxy, YvEV,
(4.2.6)
b(u,q) = (g.9)o'x0. Vq € Q.
Note that problem (4.2.6) can also be written as
Au+B'p=f inV’,
4.2.7)
Bu=g in Q’,

and from now on we shall consider the formulations (4.2.6) and (4.2.7) to be the
same, referring to one or the other according to the convenience of the moment. We
now want to find conditions implying existence and possibly uniqueness of solutions
to this problem.

Remark 4.2.1. 1f the bilinear form a(-, -) is symmetric, the equations (4.2.6) are the
optimality conditions of the minimisation problem
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1
inf —a(v,v) — (f,v)yxy. 4.2.8)
Bv=g 2

The variable p is then the Lagrange multiplier associated with the constraint
Bu = g, and the associated saddle point problem is

, 1
inf sup {5“(”’ v) +b(v,q) = (fiv)vxv — (g, (I>Q/><Q}. (4.2.9)
veV geQ

This is the reason for the title of this chapter, in spite of the fact that we deal in fact
with a more general case. O

Remark 4.2.2. The two equations in (4.2.6) can sometimes be written as a unique
variational equation, setting

A((uv p)s (U, q)) = a(uv U) + b(U, p) - b(us q) V(uv p)s (U, q) eV x Q
(4.2.10)
and then requiring that

A((M, p)v(vs q)) = (fsv)V/XV - (gv q)Q’XQ V(U, q) eV x Q (4.2.11)

One can obviously go from (4.2.6) to (4.2.11), subtracting the two equations, and
from (4.2.11) to (4.2.6) by considering separately the pairs (v,0) and (0, —¢). O

It is clear from the second equation of (4.2.7) that, in order to have existence
of a solution for every g € Q’, we must have ImB = Q’. Following the path of
the previous chapter, we first consider a simpler case, in which we have sufficient
conditions on a and b for having a unique solution.

Theorem 4.2.1. Together with Assumption AB, assume that InB = Q' and that
the bilinear form a(-,-) is coercive on K, that is

Jag > 0 such that a(vo, vo) > o ||voll3, Y vo € K. (4.2.12)

Then, for every (f,g) € V' x Q’, problem (4.2.6) has a unique solution.

Proof. Let us first prove the existence of a solution. From the surjectivity of B
and Corollary 4.1.1, we have that there exists a lifting operator Lp such that
B(Lpg) = g forevery g € Q’. Setting u, := Lpg, we therefore have Bu, = g.
We now consider the new unknown ug := u — ug and, in order to have Bu = g,
we require uy € K. For every vy € K, we obviously have b(vy,q) = 0 for every
q € Q, so that the first equation of (4.2.6) now implies

a(uo, vo) = (f,vo)v'xv —alug,vo), Yvo € K, (4.2.13)

and the Lax-Milgram Lemma, using (4.2.12), ensures that we have a unique uy €
KerB satisfying (4.2.13). Remark now that the functional
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v — L) := (fiv)yxy —a(ug + uo, v), (4.2.14)

thanks to (4.2.13), vanishes identically for every v € K. Hence, £ € K° (the polar
space of K), which, due to Theorem 4.1.4, coincides with ImB’. Hence, £ is in the
image of B’, and there exists a p € Q such that B’ p = £. This means that

(B'p,v)yrxy = (L, 0)vrxy = (f,v)yixy — alug + ug, v) (4.2.15)

for every v € V, and since u = u, + uy, the first equation is satisfied. On the other
hand, Bu = Bug + Bug = g and the second equation is also satisfied.

We now prove uniqueness. By linearity, assume that f = 0 and g = 0: then,
u € K. Testing the first equation on v = u we get a(u,u) = 0 and then u = 0
from (4.2.12). Using u = 0 and f = 0 in the first equation of (4.2.7), we have then
B'p = 0, and from Corollary 4.1.1 we have p = 0. Then, problem (4.2.6) has a
unique solution. O

Remark 4.2.3. The coercivity of a(:,-) on K may hold while there is no coercivity
on V. We have already seen examples of this situation in finite dimension and we
shall see in the next chapters many other examples coming from partial differential
equations. O

The result of Theorem 4.2.1 will be the most commonly used in our applications.
However, as we had in the finite-dimensional case of the previous chapter, it is clear
that it does not give a necessary and sufficient condition. To get it, we must weaken
the coercivity condition (4.2.12). For this, we recall that K is a closed subspace
of V', and hence it is itself a Hilbert space (with the same norm as V'). As such, as
we have seen, K has a dual space, that we denote by K’. Moreover, we note that,
restricting the bilinear form a(-,-) to K, we have two operators, which, according
to the notation (4.1.84), we denote by Axxs and A’KK,, from K to K’, given as in
(4.2.3) by

(Aggruo, vo) k'xkx = (o, Akgrvo) kxxr = a(uo, vo), Yuo,vo € K. (4.2.16)

We also recall that K’ could be identified, through (4.1.70), to a subspace of Q’, and
precisely to (K1) (the polar space of K1). Moreover, it is easy to check that

AKK’ = JIK/A EK (4217)

coincides, in the finite dimensional case, with the operator that (identifying K
and K') was denoted by Agx in the previous chapter.

We are now ready to state and prove the following theorem, which is, from
the theoretical point of view, the most relevant of this section. As we shall
see, it generalises Theorem 4.2.1 and gives the required necessary and sufficient
conditions.

Theorem 4.2.2. Assume that AB holds, and let Axgxr be defined as in (4.2.16).
Then, problem (4.2.6) has a unique solution for every (f,g) € V' x Q' if and
only if the two following conditions are satisfied:
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Agg is an isomorphism from K to K, (4.2.18)
ImB = Q’. (4.2.19)

Proof. Assume first that (4.2.18) and (4.2.19) are satisfied. The existence and
uniqueness of the solution of (4.2.6) follow as in the proof of Theorem 4.2.1. The
only difference is in the solution of (4.2.13), which in the present notation can be
written as

AKK/M() = NK/f — nK/Aug. (4220)

Indeed, here we now have to use (4.2.18) (in order to get the existence of a
solution up) instead of Lax-Milgram as we did there.

Assume conversely that the problem (4.2.6) has a unique solution for every
(f.g) € V/ x Q’.tis clear that, in particular for every g € Q’, we can take (0, g)
as right-hand side in (4.2.6) and have a u € V such that Bu = g (from the second
equation of (4.2.7)). Hence, InB = Q’ and therefore (4.2.19) holds. To show that
(4.2.18) also holds, we proceed as follows.

First, for every ¢ € K’', we take in (4.2.7) f = Ekx/—y¢ (as defined in (4.1.71)),
and g = 0. By assumption, we have a unique solution (u4, pgs), and we observe that
ug € K since g = 0. Testing the first equation of problem (4.2.6) on vy € K, and
using (4.1.71), we have

a(ug, vo) = (fp. Vo) k'xk = (P, Vo) k'xk Yy € K. (4.2.21)

This implies that Agg'uy = ¢, and hence that Agg is surjective. Hence, we are
left to show that Aggs is also injective. Assume, by contradiction, that we had
Agxg'w = 0 for some w € K different from zero. Then, we would have a(w, vy) = 0
for all vo € K, implying that Aw € K°. Due to Corollary 4.1.1 (as we already saw
that (4.2.19) holds), this would imply Aw € ImB’ and we would have the existence
of a p,, € Q such that B” p,, = Aw. Then, the pair (w, —p,,) (different from zero)
would satisfy the homogeneous version of problem (4.2.6), and uniqueness would
be lost. Hence, such a w #% 0 cannot exist. This shows that Axxs must also be
injective, and hence (4.2.18) holds. O

4.2.2 Stability Constants and inf-sup Conditions

In this subsection, we would like to express condition (4.2.19) and condition (4.2.18)
in a different way, to emphasise the role of the stability constants.

Let us start from condition (4.2.19). According to Corollary 4.1.1 of the Closed
Range Theorem, we already know that (4.2.19) holds if and only if the operator B’
is bounding, that is, if and only if there exists a constant 8 > 0 such that

IB'qllv: > Bllglo  VqeQ. (4.2.22)
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Always from the same corollary, we have that this is also equivalent to the existence
of alifting Lg : Q' — V of the operator B

B(Lp(g) =g VgeQ' (4.2.23)

with its norm being bounded by:

1
ILgllzov) < (4.2.24)

E )
where f is the same constant as in (4.2.22) and ImLz = K+,

We now want to define, somehow, the best possible constant that would fit in
(4.2.22). For this, we note that (4.2.22) is equivalent to

Biq|lv
e 1Bl

> B, (4.2.25)
€0 |lqllo

which, recalling the definition of norm in a dual space (4.1.34) and (4.1.49), becomes

b ’
inf sup ﬂ >

> B, (4.2.26)
qeQ veV ||U||V ”q“Q

which is possibly the most commonly used among the many equivalent formulations
of assumption (4.2.19).
With similar arguments, we see that condition (4.2.18) is equivalent to saying
that there exists an oy > 0 such that
inf Sup M 2 o
woek woek [[vollv [wollv
inf sup —20GWD_ o (4.2.27)
woek wek [[vollv [wollv
Remark 4.2.4. Note that in (4.2.25), in (4.2.26), and in (4.2.27), as we did in the
previous chapter and we shall do in the rest of the book, we assumed implicitly that
for fractions of the type

W )

[ollv lollv

where £(-) is a linear functional on a Banach space V, the supremum and the
infimum are taken for v # {0}, and therefore we wrote the supremum (or infimum)
for v € V rather than for v € V' \ {0} (as it would have been more correct, since
these fractions do not make sense for v = {0}). O

We now want to point out, for future use, the following extension of Lemma 3.3.1
of the previous chapter, that is an important ingredient in the proof of the present
Theorem 4.2.3.
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Lemma 4.2.1. Let V be a Hilbert space and let a(-,-) be a symmetric bilinear
continuous form on V. Assume that

a(v,v) >0 Yvel. (4.2.28)
Then, we have
(a(v,w))? < a(v,v)a(w,w) YoweV (4.2.29)
and, for the associated operator A,
14v]I}, < llalla(v,v) = [[4](Av,0)  YveV. (4.2.30)
Apart from the different notation, the proof is identical to that of Lemma 3.3.1.

Moreover, under the assumptions of the previous lemma, we also have the
following result.

Lemma 4.2.2. Let V be a Hilbert space, and let a(-,-) be a symmetric bilinear
continuous form on V. Assume that

a(v,v) >0 Yvel. 4.2.31)

Then, (4.2.27) implies ellipticity on the kernel (4.2.12).
Proof. Indeed, from (4.2.27), we have for vg € K, using (4.2.29),

2
a(v,w a(v,v)a(w,w
AR < sup 2L 2) < (v, v) g ) <lalla@v),  (4232)
wek Wl 7 wek wlly
hence the result with ag = &3 /|a]. O

4.2.3 The Main Result

As we had in the previous chapter (in Theorems 3.4.1 and 3.4.2), we have here the
following final result, that could be considered as the main result of this chapter.

Theorem 4.2.3. Together with AB, assume that there exist two positive constants o
and B such that the inf-sup condition (4.2.26) on b(-, -), and the double-inf-sup con-
dition (4.2.27) on the restriction of a(-,-) to K are satisfied. Then, for every f € V'
and for every g € Q’, problem (4.2.6) has a unique solution that is bounded by

1 2|all
lully < —Ifllv + —lglo (4.2.33)
oy a1
2|al| 2)la|?

<= flvF+=5lglo- 4.2.34
Irllo < i f If v F + W lgllo ( )
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If, moreover, a(-,-) is symmetric and satisfies
a(v,v) >0 Yvel, (4.2.35)

then we have the improved estimates

1 2|al|'/?
lully = =1L lv: + —7—lglle (4.2.36)
o oy p
2||a|'/? llall
Ipllo = —7=Ifllv + FH&’HQ', (4.2.37)
o, B

where « is the constant appearing in (4.2.12).

The proof is identical to that given in the previous chapter for Theorems 3.4.1
and 3.4.2. This is indeed the gift of the Closed Range Theorem, which allows us
to extend all the instruments that were used in finite dimension to the more general
case of Hilbert spaces.

Remark 4.2.5. As we did in Theorem 3.5.2, we could restate Theorem 4.2.2 in
terms of necessary and sufficient conditions. In the present context, this means that if
the bounds (4.2.33) and (4.2.34) hold for all right-hand sides f and g, then (4.2.27)
and (4.2.26) hold. Indeed, for an arbitrary ug € K, let us define f; € K’ by

(fo,vo) = a(up,vo) VYo e K. (4.2.38)

We then use the prolongation Ek- f of fo to V7, asin (4.1.71), and we take g = 0.
We now have that (u, 0) is solution of (4.2.6) with f = f;, and by (4.2.33) we have

1 1 a(ug, w
lally < 1 follyr = - sup 20w0). (4.2.39)
o] 1 woek ”WOH

Similarly, taking { f,,v) = b(v, p) and again g = 0, we have that (0, p) is solution
of (4.2.6) with f = f,, and (4.2.34) implies (4.2.26). All this can be seen as the
natural extension of Lemma 3.5.2 to the infinite dimensional case. O

If the bilinear form a(-, -) is coercive on the whole space, we have immediately
the following corollary (particularly useful for Stokes addicts that do not even want
to know what a kernel is).

Corollary 4.2.1. Let the assumptions AB hold. Suppose that there exist two
positive constants o and B such that the inf-sup condition (4.2.26) on b(-, ), and the
global coercivity condition (4.1.67) on a(-,-) are satisfied. Then, for every f € V'
and for every g € Q’, problem (4.2.6) has a unique solution that is bounded by

1 2||all
lully = =Nfllv: + lgllor, (4.2.40)
o af
2|l 2|al?
Ipllo = 1Ay =+ gl (4.2.41)

af af?
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If, moreover, a(-,-) is symmetric, then we have the improved estimates

! 2Ja]’?
lully < 21 + =Tz lgler (4242)
2" la]
IPllo = g v + g7 Il (4243)

4.2.4 The Caseof ImB # Q'

We now want to discuss briefly the case in which the inf-sup condition on the bilinear
form b does not hold.

Essentially, if ImB does not coincide with Q’, we can distinguish two cases.
Either ImB is closed in Q’, or it is not (everybody surely agrees with that).

If ImB is not closed, then we are in deep trouble. Generally speaking, we should
better look for a different formulation.

If instead the image of B is closed, we survive rather easily. Let us analyse the
situation. We first observe that in this case H = KerB’ will be a closed subspace
of Q thatis not reduced to {0}. In this case, it is clear that problem (4.2.7) cannot
have a unique solution for every f € V' and for every g € Q’. To start with, if
ImB # Q’, and if g € Q' does not belong to ImB, we cannot have a solution.
Hence, the existence of the solution will not always hold. Moreover, if by chance
we have g € ImB and we have a solution (u, p), then for every p* € H with
p* # 0, we easily have that (u, p + p*) is another, different solution. Hence, the
uniqueness of the solution will never hold. Apparently, we are not so well off.

However, if we have g € Im B, then there is an easy way out. Indeed, we observe
first that if Agx is non-singular, we could proceed as we did in the finite dimensional
case (see Proposition 3.2.1) and deduce that we still have at least one solution, whose
first component is unique and whose second component is unique only up to an
element of H. Moreover, we could note that b(v,q) = 0 for every ¢ € H. Hence,
following what has been done in Remark 3.2.4 (for the finite-dimensional case),
we can consider the restriction b of b to V' x H~ without loosing any information.
However, this time, B will be surjective from V' to (H~)'. Indeed, using (4.1.70) we
have that (H+) = H® (= ( KerB*)"). On the other hand, from the Closed Range
Theorem 4.1.5, we have (KerB?)? = ImB, and joining the two we get (H+) =
ImB and everything works.

Hence, the theory developed so far in the case of B surjective applies to the case
where ImB is closed and g € ImB, by just replacing Q with H*.

An alternative path (whose difference from the one above is mainly psychologi-
cal) consists in replacing Q with the quotient space

0:=0m. (4.2.44)
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We recall that the elements of Q are subsets of elements of Q that differ from each
other by an element of H. As we have seen in Sect.4.1.9, Q can be identified to
H+. Hence, as we said, the difference between using V' x H+ and using V x O JH 18
mainly psychological. Nevertheless, some people seem to be in love with this second
option and dislike the first. Just for them, we re-state one of our previous results
in terms of the original space Q and the original bilinear form b in the following
theorem, which is just Theorem 4.2.3 applied to V' x Q,p, and stated in terms of V

and Q.

Theorem 4.2.4. Together with Assumption AB, assume that ImB is closed and
that the double-inf-sup condition (4.2.27) is satisfied. Then, for every f € V’
and for every g € ImB, problem (4.2.6) has a solution (u, p) where u is uniquely
determined, and p is determined up to an element of H. Moreover, setting

b(v,q)

f:= infsup——2 (4.2.45)
qe€Q veV ”v”V ”q”Q/H
we have
1 2|a]
lully = —Ifllv: + —=llgllo’ (4.2.46)
oy o p
2|a| 2|
IPlom = ——=Wf v + —=ligllo"- (4.2.47)
a1 p ap
If, moreover, a(-,-) is symmetric and satisfies
a(v,v) >0 Yvel, (4.2.48)
then we have the improved estimates
1 2|ja||'?
lully = =1/ v + —77llgller (4.2.49)
o o, B
2|ja||'? llall
Ipllom = =/ llv + ==lgllor (4.2.50)
/H aé/Zﬁ ,32
where again oy is the constant appearing in (4.2.12). O

Remark 4.2.6. We point out that the estimates (4.2.46) and (4.2.47), valid for every
f € V'’ and for every g € ImB, imply in particular that, under the assumptions
of Theorem 4.2.4, the image of the operator Ml : (u, p) — (Au + B’ p, Bu) from
Vx QtoV' x Qisalso closed. O

Remark 4.2.7. Another type of generalisation was considered in [312] and [68].
They consider a problem of type (4.3.1) but employing two bilinear forms b, (-, -)
and by (-,-) on V' x Q, that is,
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a(u,v) + bi(v, p) = (fv)yxv, Yo eV

(4.2.51)
by(u,q) = (g.9)o'x0. Yq € Q.

Conditions for existence of a solution are now that both b; (-, -) and b, (-, -) should
satisfy an inf-sup condition of the type (4.2.45), and a(u,v) should satisfy an
invertibility condition from KerB, on (KerB;)’, that s,

. a(uo, vo)

inf sup —— > oy, (4.2.52)
up€KerB| vo€KerB; ”’40” ”UO”

inf  sup SU0%) (4.2.53)

voE€KerB upg€KerB, ||M()|| ||U()|| N

This condition is in general rather hard to check, and the ellipticity on the whole
space V', when applicable, can bring a considerable relief.
For more details, we refer to [68]. O

Remark 4.2.8 (Special cases (f,0) and (0,g)). We have considered these special
cases in the Sect.3.5.3 in the finite dimensional framework. In these cases, it is
possible to obtain existence and stability results under weakened assumptions. We
shall not make them explicit here. However, we refer to the proofs of Theorem 3.4.1
and the following ones in Sect. 3.4 where detailed proofs of related situations are
presented. We just want to point out here that in the case (f, 0), the a priori estimates
(e.g. (4.2.46)) on u do not depend on the inf-sup constant of B. Conversely, in the
case (0, g), for a(-, -) symmetric and positive semi-definite, the estimates on p (e.g.
(4.2.50)) do not depend on the constant «. |

4.2.5 Examples

To fix ideas, we shall apply the results just obtained to some of the examples
introduced in Chap. 1.

Example 4.2.1 (Mixed formulation of the Poisson problem). We consider here the
case of Example 1.3.5. Given f in L?(£2), we look for u € H(div;2) =:
Vand p € L>(22) =: Q such that:

/g'gdx—i—/ p div vdx =0, Vv € H(div; £2),

@ ° (4.2.54)
/ (div u+ f)gdx =0, Vq € L*(2).

2

Here we have
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b(v,q) = / div v g dx, (4.2.55)
2

and B is the divergence operator from H(div; £2) into L?(£2). It is not difficult
to check that it is surjective: for instance, for every g € L?(£2), consider the
auxiliary problem: find ¥ € Hj (£2) such that Ay = g. Its (traditional) variational
formulation is

/gr_adl//- grad ¢ dx = —/g¢dx Ve H () (4.2.56)
2 2

and it has a unique solution thanks to the Lax-Milgram lemma. Then, take v, :=

grad ¢ and you immediately have v, € H(div; £2) and divy, = g as wanted.

The kernel of B is made of the vectors v, € H(div; §2) such that divy, = 0. The
bilinear form a is given by

a(u,v) = / u-vdx, (4.2.57)
2
while we remember that in (1.3.44) the norm in H (div; §2) was defined as
”E”%—I(div; ) = ||2||(2L2(.Q))2 + ” dlvy”iZ(_Q) (4’258)
Hence, a is coercive on KerB (although it is not coercive on H (div; £2)). Our

abstract theory (in particular Theorem 4.2.1) applies immediately, and we have
existence and uniqueness of the solution. O

Example 4.2.2 (The Stokes problem). Let us go back to Example 1.3.1. We take
V = (Hy(£2))* Q := L*(£2), and, given f € V', we look for (u, p) € V x Q,
solution of

ZM/ E@:E(Q)dx—/ p divgdx:/g'idx, Yvel,
% ° ° (4.2.59)

/q divudy =0, Vg € Q.
2

Here, we have g = 0. Moreover, the bilinear form a(u, v) = 2u fg e : e(v)dx
is coercive on V', due to the Korn inequality [183,362]

Jie=k(2) > 0s.t eIy = klulie  Yue (Hy(2)>  (4.2.60)

On the other hand, we have

b(v,q) = —/ q divvdx (4.2.61)
o)
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and B is the divergence operator from (HO1 (£2))? into L?(£2). This time, the study
of its image is much harder than in the previous example. Due to a non-trivial result
by O. Ladyzhenskaya, we have [272,362] that

ImB = L3(2) = {q | g € L*(2), / qdx =0} (4.2.62)
2

and that this subspace of L2(£2) is closed and has co-dimension one. In agreement
with the Closed Range Theorem, KerB' has also dimension 1:

KerB' = Ker(— grad) = {g| g is constant on £2}. (4.2.63)

We are therefore in the case where B’ is not injective. As we did in the last
subsection (see Sect.4.2.4), we can easily survive by considering Q, defined as
in (4.2.44), instead of Q. However, in this case, the space Q (that is the space of
classes of functions in L2(£2) that differ from each other by an additive constant) is
often identified with the space H+ of functions in L?(£2) having zero mean value,
as discussed in Example 4.1.14. Actually, in practice, we simply take

0= {q|q e L*(2), / gdx = o} = LY(R) (4.2.64)
2

and we can apply directly Theorem 4.2.1, which will give the existence and
uniqueness of the velocity u, together with the existence of a pressure p that is
unique up to an additive constant.

The example of Stokes’ problem is paradigmatic of the typical escape that is
usually performed when ImB is closed but different from Q. O

Example 4.2.3 (Domain decomposition for the Poisson problem). Referring to
Example 1.4.2, we have to solve the following problem: find (p,u) with p €
X(£2) =:V, u e H(div; 2) =: Q, solution of

/ g@dpi'g@d%'dx—/ E'ﬂ,ﬂidff:/ S qi dx,
K; K; K;

K;

Vg € H(K), Y Ki, (4.2.65)

Z/ v-n; ppdo =0,Yv € H(div; £2).
;. JOK;

We thus have b(g,v) = =) fE)Ki v-n; g; do, and the operator B, roughly speaking,

associates to ¢ € X(£2) its “DG jumps” g;n; + q;n; on the interfaces e;; = 9K; N
0K ;. The kernel of B is nothing but Hj (£2) and the problem corresponding to
(4.2.65) is the standard Poisson problem. To prove the existence of u, we shall have
to prove that ImB is closed in (H (div; §2))’ and we shall have to characterise Ker B'.
This will be done in Chap. 7. O
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We shall of course come back to these problems when studying more precisely
mixed and hybrid methods. Checking the closedness of ImB, even if existence
proofs can be obtained through other considerations, is a crucial step ensuring that
we have a well-posed problem and that we are working with the right functional
spaces. This last fact is essential to obtain “natural” error estimates.

We end this subsection with a few rather academic examples, just in order
to see formulations that do not work (or present some sort of difficulty) and
understand why.

We shall consider the problem (very loosely related to plate bending problems,
as in Example 1.2.4, or to the Stokes problem in the so-called streamline-vorticity
formulation):

A= f in 2 (4.2.66)

on a reasonably smooth domain £2 (for instance, a convex polygon). We introduce
o = —AvY, and we are going to consider various boundary conditions, and
different possible mixed formulations.

* We start with the easiest choice of boundary conditions, that is
Y=w=0 onl. (4.2.67)

In this case, we can set V = Q := H_(£2), and consider the formulation

/w,udx—/gr_ad,uggdex:O, YuelV,
e e (4.2.68)

—/ gradw grad ¢ dx = —(f, ¢}, VoeQ.
2

In this case, both the operators B and B’ coincide with the Laplace operator
A : Hj(2) - H7'(£2), which is an isomorphism. In particular, InB = Q'
and KerB = {0}, so that the ellipticity in the kernel (4.2.12) is also trivially
satisfied. All is well and good. However, one could object that, with the boundary
conditions (4.2.67), we are almost cheating. Indeed, the problem is equivalent to
the cascade of sub-problems: —Aw = f and —AY¥ = w which are both well
posed if we look forw € Hj and ¥ € H.
*  We now consider the “clamped plate” boundary conditions

Iy
5 =0

Setting V := L?(2) and Q := HZ(£2), it is immediate to see that (, ¥)
satisfies the equations

V= on I (4.2.69)

/a),udx+/,uA1//dx=O, Yuel,
@ e (4.2.70)

/Qa)Afpdx:—(f,(p), VoeQ.
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Here, the operator B’ is just the Laplace operator from Hg (2) to L*(£2), and it
is clearly injective and bounding, since ||¢|2.0 < C ||A¢|o.c2 for some constant
C. Hence, the image of B coincides with Q’. The kernel of B is a little more
sophisticated. With some work, we discover that it can be characterised as

KerB = (L2 )*, (4.2.71)
where L%arm is the (closed) subspace of L?(£2) made of harmonic functions (that

is, functions w such that Aw = 0 in the distributional sense). Indeed, for such
functions, it is not difficult to see that (w, Ap) = 0 for all ¢ € HZ(£2). In any
case, we don’t care too much about KerB, since the bilinear form a is coercive
on the whole V. Our theory applies, and we are happy.

 Still with the “clamped plate” boundary conditions (4.2.69), if we are not willing
to use spaces involving two derivatives (as HZ(£2)), we could take V := H'!(£2)
and Q := H/](£2). It is not difficult to see that (w, ) solves

/w,udx—/gr_ad,uggdex:O, Yuev,
@ e (4.2.72)

—/ gradw grad ¢ dx = —(f, ¢}, VoeQ.
2

This time, B is the Laplace operator from H'(£2) to H~'(£2) (dual space of H),
which is clearly surjective. However, its kernel is made of the harmonic functions
in H'(£2) and the bilinear form a (which in this case is just the L?-inner product)
cannot be coercive (in H'(£2)), not even if you restrict it to the harmonic
functions. If you are not convinced of that, consider in 2 :=10, 7[ x]0, 1] the
sequence of functions

o = sin(kx) eX’.
Clearly, A¢x = 0 for all k. However, a simple computation shows that

Il grad ¢ (1§ o = 2kl 15,0

and you cannot bound ||¢x||? (that is | grad ¢y ||%,_Q) with a(¢r, i) (that is
|| Pk ||% o) uniformly in k. Hence, formulation (4.2.72) is not really healthy, as the
ellipticity in the kernel fails. Indeed, if for instance the domain £2 is not convex,
you are likely to have a problem without existence, as ¥ usually will not be in
H?3($2) and therefore @ might not be in H'(£2). We shall see in the following
chapters that methods based on this formulation might exhibit a suboptimal rate
of convergence.
*  We now consider the boundary conditions

W _do o r (4.2.73)
on on
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Here, we can take V := L?(£2) and Q := o H?(£2) defined as
2 2 dy
oH (£2) :={p|p € H*(£2), n =0on[l'}

and use the formulation (4.2.70). We see that B’ is again the Laplace operator,
but this time ¢ H?(£2) — (L*(2))’ = L*(£2). If, for instance, the domain 2 is
convex, then H := KerB’ is the space of constants, and Im B’ will be the subset
of V! = V = L?(£2) made of functions with zero mean value. The kernel of B
will also be the space of constants, and the image of B will be the polar set of
KerB’, made of those functionals that vanish on constants. We are in a situation
similar to that faced for the Stokes problem in Example 4.2.2. Here, we can adjust
everything by redefining Q as the subset of o H?(£2) made of functions with zero
mean value (thatis, Q = H~). The compatibility condition ( f,c) = 0 for every
constant ¢ will still have to be required, in order to have f € Q' (now = (H*)').
Doing that, we have that a is elliptic on V and ImB = Q' (the new Q’, of
course), and everything will work.

e It is time to see a really weird case. Consider, to fix the ideas, the case of
§2 :=]0, 7[x]0, 1], and split its boundary into the bottom part I, :=]0, w[x{0},
the top part [;:=]0,7[x{1}, and the lateral part Iy := 082\ (I} U I}).
Consider now the boundary conditions

ad a a a
w:—w:Ooan; w:—w:OonF,; —w:—w:Ooan
on on an on
' (4.2.74)
and the spaces V := L% and Q := H? defined as

~ 0 0
H2:={¢|¢6H2(.Q),g0=a—¢=0 oananda—(szoan}.
n n

It is clear that, if you have a solution (w, ) of the problem, then it will satisfy

/a),udx+/,uA1//dx=O, Yuel,
@ ° (4.2.75)

/mepdxz (fg). Vegeo.

This time, B’ will be the Laplace operator from H? to L2(£2). A non-trivial result
of complex analysis (Cauchy-Kovalewskaya Theorem) ensures that KerB' = {0}
(the boundary conditions at the bottom are enough to give you that). However, we
can check that B is not bounding. To see that, consider the sequence

ok = % cos(kx)(1 — cosh(ky)).
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Itis clear that ¢ € H? forall k. A simple computation shows that —A¢y, = cos(kx),
so that

T

On the other hand, it is also simple to check that

eZk

||¢k ”22(9) x~ F
goes to +o00 for k — +00, so that a uniform bound (in k) of the form

1Al 2@y = Bllellzs Vo € H?

is hopeless. Hence, ImB’ is not closed and therefore ImB is not closed either.
Indeed, the problem is severely ill posed, and you cannot solve it in practice unless
you add some sort of regularisation.

4.3 Existence and Uniqueness for Perturbed Problems

Some applications, in particular nearly incompressible materials (Sect. 8.13), will
require a more general formulation than Problem (4.2.6). Although the first
generalisation introduced will appear to be simple, we shall see that its analysis
is rather more intricate.

4.3.1 Regular Perturbations

We assume that we are also given a continuous bilinear form ¢(-,-) on Q x Q, and
we denote by C its associated operator Q — Q.

We now consider the following extension of problem (4.2.6): given f € V' and
g€ Q) findueV and p € Q such that

a(u,v) + b, p) = (f,v)yxy, YveV, 431)
b(u.q) —c(p.q) = (g.9)o'x0- Yqe Q. o

Remark 4.3.1. Whenever a(-,-) and c(:, -) are symmetric, this problem corresponds
to the saddle point problem

. 1 1
inf sup Ea(v, v) +b(v,q) - 56(61, q) —{(fiv) +(g.q)
veV qgeQ

and it is no longer equivalent to a minimisation problem on u. O
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Remark 4.3.2. As in Remark 4.2.2, the two equations in (4.3.1) can sometimes be
written as a unique variational equation, setting

A((u, p), (v,9)) = a(u,v) + b(v, p) —b(u,q) + c(p,q) V(u, p). (v.q) € V(Z 3Q2

and then requiring again that

A((w, p). (v.q)) = (fv)vxy = (& q)oxo  V(v.q) €V x Q. (43.3)

O

We now want to look for conditions on @, b and ¢ ensuring the existence and
uniqueness of a solution to (4.3.1), together with the proper stability bounds.
Let us first consider a special case. We assume that ¢ (-, -) is coercive on Q, that is

3y > Osuchthatc(q.q) >y |lql%. Yqg € O (4.3.4)
and that a(-, -) is also coercive on V:
Ja > Osuch thata(v,v) > a |[v||}, Yv e V. (4.3.5)

Then, we have the following proposition.

Proposition 4.3.1. Together with Assumption AB, assume that (4.3.4) and (4.3.5)
hold. Then, for every f € V' and g € Q’, problem (4.3.1) has a unique solution
(u, p). Moreover, we have:

o y 1 1
Ellullzv + Ellpll2 < %Ilfllzw + Ellgll2 2 (4.3.6)

Proof. The proof is elementary (using, for instance, Lax-Milgram Lemma (4.1.6)
on the bilinear form (4.3.2)). ]

The estimate (4.3.6) is unsatisfactory. Actually, in many applications, we will
deal with a bilinear form c(-, -) defined by

c(p.q) = A(p,q)o, A =0, 4.3.7)

and we would like to get estimates that provide uniform bounds on the solution for
A small (say 0 < A < 1). Clearly, if ¢(-,-) has the form (4.3.7), one has y = A
in (4.3.4) and the bound (4.3.6) explodes for vanishing A. This fact has practical
implications, as we shall see, on the numerical approximations of some problems,
for instance when dealing with nearly incompressible materials. On the other hand,
Proposition 4.3.1 makes no assumptions on b (-, -) (except the usual (4.2.4)) and it is
then quite natural for the choice ¢ = 0 to be forbidden.
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It is then natural to start assuming, as we did in Sect. 3.6 of the previous chapter,
that the corresponding unperturbed problem (corresponding to the case ¢ = 0) is
well posed, and try to find sufficient conditions on ¢ that ensure the well-posedness
of the perturbed problem.

We shall start with the simplest case, generalising Proposition 3.3.1 in an obvious
manner.

Proposition 4.3.2. Together with Assumption AB, assume that Axg’ is an isomor-
phism from K to K' and that InB = Q’. Then, there exists an &y > 0 such that, for
every € with |e| < &g, condition |c| < e implies that problem (4.3.1) has a unique
solution for every | € V' and for every g € Q. O

As for Proposition 4.3.1, the proof is immediate, this time using the Kato
Theorem 4.1.3.

The result of Proposition 4.3.2 is also unsatisfactory. For once, it does give us
a result only for ¢ small enough. Besides, gy will be very difficult to compute in
practice. Without it, we basically never know, in every particular case, whether we
are solving a well posed problem or not, which is clearly a quite unhappy situation.

We therefore have to look for better results. We could start, as in the previous
subsection, by assuming that InB = Q’, and then try to adapt the results to the
case in which ImB is closed but not equal to Q'. We remark, however, that, this
time, the passage from the case when ImB = Q' (when H = {0}) and the case
when ImB is simply closed is no longer so simple, as the bilinear form ¢ could
mix together the components of p in H and in H+. Therefore, it is better to look
directly at the case where we simply have ImB closed. On the other hand, we have
already seen in the previous chapter that assuming symmetry of both a and c gives
much better stability bounds. Hence, we decide to concentrate on that case. This is
particularly reasonable since, in most applications, the symmetry assumptions are
satisfied.

Therefore, to start with, we enlarge our Assumption A5 to include the additional

bilinear form ¢ and the additional properties that we are going to use throughout this
subsection.
Assumption ABC: Together with Assumption AB, we assume that we are given
a continuous bilinear form c(-,-) on Q x Q, and we denote by C its associated
operator Q — Q'. We assume, moreover, that ImB is closed, and that both a(-,-)
and c(-,-) are symmetric and positive semi-definite:

a(v,v) >0, VveV c(q,q) =0, Vg e Q. (4.3.8)
We now introduce some additional notation, and a few related properties that hold

when a and ¢ are symmetric and positive semi-definite, and ImB is closed.
We define the semi-norms

)2 :=a,v)  |q)* =g, q), (4.3.9)

and we note that, thanks to the continuity of @ and c,
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iz <llalllvly YveV and gl <lcllligly Yg€ Q.  (43.10)
We also note that, from (4.2.29), we have

a(u,v) < |ulg|vle and c(p.q) <|plc|qlec. (4.3.11)
and from (4.2.30),
I Aull® < llal lul; and |Cp|* < ||l Ipl;. (4.3.12)

Setting again K = KerB and H = KerB' asin (4.1.66), we can spliteachv € V
andeach g € Q as

v=1v9+7v q=qo+q, (4.3.13)

with vy € K, € K+, qo € H,andq € H+L, and we note that
b(v,q) =b(v,q) = b(v,q9) = b(v,9q). (4.3.14)

In a similar way, we can split each f € V' and each g € Q’ as

f=fi+tf g=sg+% (4.3.15)

with fy € K/, f € (K+) = K°, go € H andg € (H+) = H°, and we note that

(fov) = (fo.vo) + (f.0) (g.q) = (g0.40) + (£.9) (4.3.16)

with obvious meaning of the duality pairings.
We therefore have the following result, in which the roles of a and ¢ are perfectly
interchangeable.

Theorem 4.3.1. Together with Assumption ABC, assume that a(-,-) is coercive on
K and c(-,-) is coercive on H. Let therefore o, B, and yo be positive constants
such that

Ol()”U()H%/ < a(vo, vo) Y € K, 4.3.17)

b(v,q) b(v,q)
sup ———— = —_—
get L vev qllo Vllv  vekt 4eo llgllo IVlv

vollgolly < ¢(@o.q0) ¥ qo € H. (4.3.19)

=B >0, (4.3.18)

Then, for every f € V' and g € Q’, we have that the problem

a(u,v) + b, p) = (fv)yxv. Yv eV,

(4.3.20)
b(u,q) —c(p.q) = (g.9)o'x0. Yq € Q
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has a unique solution, that moreover satisfies

lullv +11pllo < C (17 v + liglor) (4.321)

with C constant depending only on the stability constants oy, 8, yo and on the
continuity constants ||a| and ||c||. More precisely, we have:

el 71l L V2B el 11 fol

v <

e al/zﬂz
B+ wlizl 3\/132 +u ||C||1/2||go||
+ (4.3.22)
e J/1/2/3
el lall™ A1, 2087 + ) Al
Juolly < AL 2
' p? oo
B+ wlal'?Izll | 3uvB>+ 1llgoll
+ " + , (43.23)
/2 2 1/2 1/2 5
B B
17l _B+wIfI 3\//32+M lal> 11 foll
plio = B2 1/2,32
lalllll v2/32 + 12 a7 IIgoll
+ 7 1/2ﬂz (4.3.24)
Yo
Ipolo < LB+ Wlel 2171, 3uvB® + 12l Al
- yé/zlgz O{(l)/zyé/zﬂz
1215 2(B2 2
lal ”f"z 21, 267+ il o)
/282 YoB
where | is defined by
w? = lall el (4.3.26)

Proof. As the problem is symmetric, we just have to prove that the mapping M :
(u, p) — (f, g) is bounding (that is, we have to prove that the bounds (4.3.22)—
(4.3.25) hold true). Then, M will be injective and M’ = M will be surjective, and
the theorem will be proved.
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Then, we note that there is another (fundamental) symmetry in our assumptions
when we exchange a with ¢, u with p and B with B’. Hence, we can start proving
our bounds for the case, say, f = 0. These bounds, due to the above symmetry, will
imply similar ones for the case g = 0 (exchanging u with p, p with y, and so on).
Then, by linearity, we will sum the estimates for f = 0 and those for g = 0, and
obtain the final estimates for the general case.

Hence, we proceed by assuming f = 0. We first observe that, for f = 0, we
have from the first equation

a(u,ug) = —b(up, p) =0 (4.3.27)
since up € KerB. Hence, using (4.3.9), up = u — u, and (4.3.11),
luol? = a(uo, uo) = —a (@, uo) < |ilq |uolas (4.3.28)

which, combined with the ellipticity condition (4.3.17) and then with (4.3.10), gives

lolly < ——luola = —fi. < 12 g (4.3.29)
uollv = 1/214(),1_ l/zua._ 1/2 ully. .
&y &y %)

We also note that, in operator form, Egs. (4.3.20), for f = 0, give
Au=—B'p (4.3.30)
and
Bu=Cp+g. (4.3.31)

Moreover, taking in (4.3.20) v = u in the first equation, ¢ = p in the second
equation, and subtracting, we have

a(u,u) + c(p, p) = —{(g. p), (4.3.32)
implying through (4.3.12) that

2
Aul?, ICply
llall llel

< —(g. p). (4.3.33)

At this point, it will be convenient to further distinguish the cases go = 0 and g = 0,
to make the estimates separately, and then sum them. We start with the easier case
go = 0. Then, (4.3.33) becomes

| Au?, IICpIIZ/<
llall el —

—(g, D). (4.3.34)
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On the other hand, p — p = po € H so that B'p = B’ p. Hence, using (4.3.30),
then (4.3.34), and then (4.1.94), we have

IB'BIy =B pli = | Auly,

. _ S B (4.3.35)
< llalllglle Il < lall ”g”Q’E”B Plv:
which, using again (4.1.94), gives
— | lall
I7llo = EHBIP”V’ = F“g“Q’- (4.3.36)

At this point, we remark that, from the second equation of (4.3.20) tested on g = py,
we have

C(p, 170) = b(bt, 170) - (Ea pO) =0-0= 07 (4‘337)

since B’ pp = 0 and (g, po) = 0 as in (4.3.16). Proceeding exactly as in (4.3.27)-
(4.3.29), we then have

|pole < [Ple- (4.3.38)

Using the ellipticity condition (4.3.19), then (4.3.38), (4.3.10) and the previous
estimate (4.3.36) on p, we have

1 I lall lle)l'/?
Ipolle < —71pole = —751Ple = —757—1Zllo- (4.3.39)
vy vo! vy * B2

The estimates on u and uy can be obtained in a similar way: indeed we can use
(4.3.31), then (4.3.34), and then again (4.3.36) to obtain

_ = lell el —
1Bu—%l% = ICpIg < lcl Izl Pllo < T g1l

giving

(llell llalp*”> . p+p
— 5 Igllor + lIgllor =

where in the last step we used the definition of u given in (4.3.26). Hence, using
(4.1.93), Bu = Bu, and (4.3.40), we have

|Bullor < Igllor. (4.3.40)

w+p
'32

1

IBullor <
B 0

_ |- _
l[ally < EIIBMHQ' = Iglor- (4.3.41)

Finally, we can use (4.3.29) to obtain
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lall' e+ Bllall?
al/? lully < al/—zlgznqu"

uolly < (4.3.42)

The estimates in the case go = 0 are therefore completed.
We now consider the case g = 0. Using the definition (4.3.9), then (4.3.13), and
then the second equation of (4.3.20) with ¢ = po, we have

|pol2 = c(po. po) = c(p. po) — c(P. po)
= b(u, po) — (g0, po) — ¢(P. po) = —(go. po) — ¢(P. po) (4.3.43)
< llgollo’llpollo + 1Plc | pole

where the last equality holds since py € Ker B'. We also note that, due to (4.3.19),
1
Ipollo = —751pole- (4.3.44)
Yo

Joining (4.3.43) and (4.3.44), we then have

llgoll o’

| pol; < 2 |Pole +[Plelpole, (4.3.45)
Yo
implying
lgollor | —
Pole < 2252 + 1Pl (4.3.46)
Yo

and using once more (4.3.44), and then (4.3.10),

1 /llgollor | - lgollor | llell'?
pollo < W( 1/2Q + Iplc) < 2 4 7 I7lo- (4.3.47)
Yo Yo Yo Yo

Proceeding as in (4.3.35), and then using (4.3.47), and finally (4.1.94), we now have

IB'BIS = 1B ply, = I Aully < llall lIgollollpoll

lall ligoly Yallllgollor —
S 1/2 9 ||C||1/2||P||Q
” ) (4.3.48)

lalllgolll  llall lgolig i) ,—
< + BBl
Yo Bvo

Using the classical inequality xy < (x> + y?)/2 on the last term of (4.3.48), we
obtain
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1”Bt—”2 - lall gl N lall® llgoll% llell - 2B+ 1) lall llgoll
SID Plyr = = ,
2 Yo 2B2yo 2y0p? (43.49)
implying easily
1/2 1/2
_ @B + 1) llall'* llgoll o’
1B Pllv: < 0 e (4.3.50)
Yo B
From (4.3.50), using once more (4.1.94), we obtain the estimate on p
282 4 122 1/2 ,
1o < 210 lal 2 ol wash)

1/2
V()/ ,32

which, using (4.3.47), also gives the bound on py:

lgollor  Nell/2 282 + u»)'2|lall'? ||goll o’
+ 5 172 2,
Y0 Yo Yo B

B>+ n2p* + Mz)l/z 2(82 + 12)
= B lgollor = W”gOHQu (4.3.52)

This, in turn, gives us a bound on ||Cpl|| o/. Indeed, using (4.3.33) and remember-
ing that in this case

[ pollo <

(g, p) = (g0, P) = (go. Po) (4.3.53)

and then using (4.3.52), we easily have

llell 2(8% + 1?)
ICPIG =< —licll (go. po) < R

On the other hand, the second equation of (4.3.20) gives Bu = Cp + go, so that
using (4.3.54),

lgoll. (4.3.54)

lell'? 2(B2 + p?)

1/2
Vo/ﬂ

3B+ #el 2

+1)lgollr = T —lgllo,
V()/ B

I1Bullgr < (
(4.3.55)

where we used the fact that yy < ||c||. We now note that Bu = Bu, so that, using
(4.1.93) and (4.3.55), we have the estimate on u

3VE+ wlel 2

1/2
Vo/ B>

_ 1
[ally < EIIBMIIQ/ = ligollo- (4.3.56)
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The estimate on 1 then follows from (4.3.29), that is,

a2 3uv/B* + p

lally < —5—75—lgollo- (4.3.57)
1/2 1/2 1/2
O‘0/ )’0/ 0‘0/ B>

luolly <

As already discussed, the estimates for the cases g = O and f = f or f = f; are
“symmetrical”, and the proof is completed. O

Remark 4.3.3. Following the path of Theorem 3.6.1, we could have proved stability
also for the case in which a or ¢ are not symmetric (at least in the case InB = Q).
However, the dependence of the stability constants upon ¢ and 8 would have been
much worse. O

A very particular (but important) case is met when ¢ has the form, as in (4.3.7),

c(p.q) =AMp.q)o. A =0 (4.3.58)

where (-, )¢ is the scalar product in Q. We decided therefore to dedicate a theorem
especially to it.

Theorem 4.3.2. In the framework of Assumption ABBC, assume further that the inf-
sup condition (4.2.26) and the ellipticity requirement (4.2.12) are satisfied, and that
c is given by (4.3.58) with A > 0. Then, for every f € V' and for every g € Q’,
problem (4.3.20) has a unique solution, and we have the estimate

B>+ 4xa| 2|/
ully < ———— v + ’ (4359)
Il = =g 1 v+ S el
and
2 [la||'/? 4al

Ipllo = —7—Il/ v + (4.3.60)
oy’ P

Tjal + 252 lgllor-

Proof. As we are already used to, we shall split the two cases f = 0 and g = 0,
and then combine the estimates by linearity. Let us first consider the case f = 0,
and assume that u, p and g satisfy

a(u,v) + b(v, p) =0, Vvel,
4.3.61)
b(u,q) —A(p.q)o = (8.9)o'x0.  Vq€Q.
In operator form, (4.3.61) can be written as
Au+ B'p =0,
(4.3.62)
Bu—ARpp =g,

where R is the Ritz operator O — Q' (see (4.1.37)).
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Using (4.1.94) together with the first equation of (4.3.62), we obtain
Bllpllo < 1B pllor = IlAully. (4.3.63)
On the other hand, we already noted (see (4.3.32)) that
a(u.u) + Alply = —(g. Phorxo- (4.3.64)
Using (4.3.12), Eq. (4.3.64) and finally (3.4.17), we have
lA4ully < lalla(u,u) < Jalliplo lgllor (4.3.65)
which, combined with (4.3.63), yields

el

[ Aully: < 7||g||Q', (4.3.66)
and using again (4.3.63),
llall
Ipllo < Fllgllgu (4.3.67)

Using the lifting operator L p defined in Theorem 4.1.5, we set

ii:= Lp(g+ ARy p) (4.3.68)
and we have from (3.4.43)
Bii = g + AR} p. (4.3.69)
Setting now
Uog = u— 1, (4.3.70)

we have from (4.3.69) and the second equation of (4.3.62) that uy € K. We then
note that, testing the first equation of (4.3.61) with v = ug, we have, as in (4.3.27):

a(u,up) = —b(uo, p) = 0. 4.3.71)
Moreover, using (4.3.70), (4.3.71) and (4.3.11), we have as in (4.3.28)
a(uo, ug) = —a(ug, ) < |uglalit]a, (4.3.72)
which easily gives
luola < litlq- (4.3.73)
Hence, we can use (4.2.12) and (4.3.73) to obtain

olluoll} < luol} < a2, (4.3.74)
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and finally from (4.3.74) and (4.3.10),

lal
ol = (T ) lalv.

Finally, we can collect (4.3.70) and (4.3.75) and have an estimate for u:

- lall 7Y, -
ety < ol + by < (1 (%) Y.

We now consider the first equation of (4.3.61) with v = u, getting
a(u,u) + b(u, p) = 0.
Recalling that a is positive semi-definite (see (4.3.8)), we obtain
b(u, p) =0,

and substituting p = A~' R, (Bu — g):

0> (Bu.A™' Ry (Bu—g))prxo

! (IBully — (Bu. Rg' g)orxo).

which easily implies
1Bulyy < (Bu, Ry'g)orxo < IBullor llglors
giving
[Bullor < llgllor-
Using once more the inf-sup condition (4.1.93),

~ | S 1 1
lallv < E”B“”Q’ = E”B”“Q’ = EIIgIIQ”

and inserting (4.3.81) in (4.3.76), then using oy < ||a||, gives

lally2y, o 2lal
= (1 (7))l < ol el
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(4.3.75)

(4.3.76)

(4.3.77)

(4.3.78)

(4.3.79)

(4.3.80)

(4.3.81)

(4.3.82)



250 4 Saddle Point Problems in Hilbert Spaces

We note at this point that we have another way to obtain an estimate for p, apart
from (4.3.67); actually, from the second equation of (4.3.62), and (4.3.80):

1 2
Irllo < XIIBM —gllo = Xllgllg’- (4.3.83)

With some manipulations, we see that (4.3.67) and (4.3.83) can be combined into

4all
rllo < T lgllor- (4.3.84)

A+2p2

We now consider the case in which g = 0 and assume that u, p and f satisfy

a(u,v) +b(v, p) = (f,v)yxv, Vvel,
(4.3.85)
b(u,q) =A(p.q)o =0, VgqeQ,
which in operator form reads:
Au+ B'p=f
(4.3.86)
Bu — ARQp = O,

where again Ry is the Ritz operator Q — Q' (see (4.1.37)). We use again the lifting
operator L p of Theorem (4.1.5), this time setting & := LzARg p so that

Bii = Bu= ARy p. (4.3.87)

and, defining again ug as in (4.3.70), we still have uyp € K. Taking v = u as test
function in the first equation of (4.3.86), and substitute p = Rélk_lBu:

a(u,it) + b(i, Ry' A~ Bu) = (f.@). (4.3.88)
As Bii = Bu, we can rewrite (4.3.88) as follows
A7NBullg = (foi) —a(u.i) < || f v lally — a(u, @). (4.3.89)

We leave (4.3.89) for a while, and we estimate —a(u, ). Using the fact that
u =i + ug and (4.3.11), we obtain

—a(u, i) = —a(@ + uo, ) < —al3 + |ila |uoa- (4.3.90)
On the other hand, testing the first equation with v = ug, we get

a(u,ug) = (f,uo), (4.3.91)
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yielding

luol = aluo, uo) = alu,up) — a(@,uo) < £ || luollv + lala luola-

On the other hand, (4.3.17) gives
aolluolly < luol;
which, together with (4.3.92), yields

I/ 1lv-

|“0|a = 1/2
LA

+ litla.

Inserting this into (4.3.90), we have

- - - 1 ~ - 1
— i) < ~Jil} + lie (75 1S v+ li) = 1dla 7511
L2 o
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(4.3.92)

(4.3.93)

(4.3.94)

(4.3.95)

Inserting this into (4.3.89), then using (4.3.10), and finally using (4.1.93) gives

_ - - 1
AN Bullyr < (LS v llally + litla —7 I v
2

a2 i a2 !
= (1+ S )W vl < (14 5 )1 flvrg
o Q B

1/2
_ o’ + ]

/|| Bul| o
1/2 ”f”V ” [¢)
,30{0

Using again (4.1.93) and then (4.3.96), we have therefore

. 1 Al + [lallV?)
fall = 5 Bulor < Moy~ F el ™)

(PAIZE

Bray?

Using (4.3.93), (4.3.94), and (4.3.10) and then (4.3.97), we have then

’ u ’ al|\1/2 _
I/ v n o _ I/ lv +<|| ||) Il

o) a(l)/z )

lluollvy < —luola <
G172 10 o

0

=

1/2
( 1, M+ flall )l
&%) 060,32

Il

[1Bullor

(4.3.96)

(4.3.97)

(4.3.98)
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From the second equation of (4.3.86) and (4.3.97), we also derive the estimate for p

1/2 1/2
_ +lla]
Pl = 1A~ Bullgr < Bl LAl (4.3.99)
(07

0

We collect the results for g = 0, using the fact that ¢y < ||a||. From (4.3.97) and
(4.3.98), we have the estimate on u

leellv < llallv + lluollv

Alal? + e 1 Alall + (lafleo)/)
= ( T +—+ S ) I £ v
B2 ) aof
/32 + 4A|al|
<——7Iflv, (4.3.100)
opf?
while from (4.3.99) we have the estimate on p
2lall ™ 4.3.101
Ipllo = 1/2,3 I/l (4.3.101)

The final results can then be obtained collecting (4.3.82), (4.3.84), (4.3.100) and
(4.3.101). O

Corollary 4.3.1. In the framework of Assumption ABC, assume that ImB is closed,
that the ellipticity requirement (4.2.12) is satisfied and that c is given by (4.3.58)
with A > 0. Set g = g + go with g € H® and gy € H' (with H := kerB', as
usual), and set p = p+ po withp € H* and py € H. Then, for every f € V' and
forevery g € Q', problem (4.3.20) has a unique solution, and we have the estimates

B* 4 41 |a| 2la|/? _
llullv < Tllfllv + 25 gl (4.3.102)
— 2 la]|'’? 27—
= t , 4.3.103
I7llo < l/zﬂ — 75—l 2l ||+2ﬂ2” gllo ( )
1
[ pollo < xllgollgu (4.3.104)

Proof. It is immediate to check that, actually, the problem splits into two sub-
problems: find (u, p) € V x H* such that

a(u,v) +b(, p) = (fiv)yxv, Yvev,
_ _ o (4.3.105)
b(u,q) —A(D. 9o = (& Q) uLyxut Vge H™,
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and
APo = go. (4.3.106)

For problem (4.3.105), we can apply the results of Theorem 4.3.2 using H+ instead
of Q (with the same norm). Problem (4.3.106) is trivial. O

In the case where ¢ has the form (4.3.58), as in Theorem 4.3.2, it is also
interesting to estimate the distance between the solution of the perturbed problem
(4.3.20) and the solution of the limit problem, for A — 0.

We have in particular the following proposition.

Proposition 4.3.3. Together with Assumption AB, assume that a(-,-) is symmetric,
positive semi-definite and elliptic on K, and that TmB is closed. Let f € V’, let
g € ImB, and let (u*, p*) be the solution in V x H* of the problem

a*,v) + b, p*) = {f.v)yxy, Yvev,
. (4.3.107)
b(*.q) = (g.9)o'x0. Vg€ Q.
Let moreover, for A > 0, (uy, py) be the solutionin V x Q of
a(uy,v) + b(v, pr) = (fv)vxv, Yvel,
(4.3.108)
b(ur.q) —A(pr-@)o = (8. 4)ox0. Vg €Q.
Then, we have
lu* —unlly +11p* — pallo = C A, (4.3.109)

where C is a constant depending only on «y, ||a|| and B.

Proof. Setting §, := u; —u* and §, := pp — p* and taking the difference of
(4.3.108)-(4.3.107), we easily have

a(8y,v) +b(v,8,) =0, Yvel,
b(@u.q) —A(6p.9) =2 (p*.9)o. Vq€Q.
Hence, we can apply estimates (4.3.59) and (4.3.60) with g = AR p*. O

Remark 4.3.4. We point out that the validity of (4.3.109) for A — 0 could have
been obtained directly from Theorem 4.3.2 and the Kato Theorem (4.1.3). O

(4.3.110)

We also point out the following result, that is particularly useful if one is not too
keen on spotting the best dependence of the stability constants.

Proposition 4.3.4. Together with Assumption AB, assume that a(-,-) is symmetric,
positive semi-definite, and elliptic on K, and that ImB is closed. Then, for every
x > 0, there exist a constant &, depending on y, ||a||, oo and B (defined in (4.3.18)),
such that

alvlly < a(,v) + x|Bv|3, YvelV. (4.3.111)
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Proof. It is easy to check that, for every ¢ €10, 1],

a(v,v) + x| Bully = |vol; + (017 + 2a(vo. D) + xIIBvG

2 4 52 =12 =
= |voly + Ivlg + xRl = 2lvola|v]a

1
2 =2 2015112 2 =2
= [volg + Pl + x BNV Iy = elvols — [0l

1. _
= (L=o)lol; + (1 = DI + 281715

lall, .
= (1= 9)lvolg + (lal = =Tl + 2821915

xB%e + llalle — |la||
ols + .

=(1-elv o1l

xB’e + llalle — llal

> ao(1 —e)lvolly + 19115
2
2
and the result follows by taking ¢ = M. O
2182 +2|al
Remark 4.3.5. 1t is clear that, conversely, the property (4.3.111) implies the ellip-
ticity of a on the kernel K of B. O

Remark 4.3.6. Looking at the proof of Proposition 4.3.4, we can analyse the
dependence of the constant & on y 2, on ||a||, and on a. Indeed, setting k := y 8>

+2m
and m := ||a||, for e = ———— we have
2k +2m
k£+m8—m:(k/2)+m—m :%:k(k+m) 43.112)
e e e k+2m
while
a0(2k +2m—k — 2}’)1) Ol()k
|—e) = - , 43.113
(1 =) 2k +2m 2k +2m ( )
On the other hand, since oy < m = ||a||, we have
k
e t+m) , _kao (4.3.114)

k+2m — 2k+2m

which finally gives (looking at the last line of the proof of Proposition 4.3.4)

2
&> % (4.3.115)
258+ 2|lall
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It is easy to see (taking the derivative) that the right-hand side of (4.3.115), as a
function of y, is monotonically increasing. Hence, we can say that, for every fixed
x= > 0, we have that for every y > y«,

2
R i (43.116)

© 2B+ 2all
u!

Remark 4.3.7. In the above theorem, there is no mention of any bilinear form c,
and one may wonder why the theorem has been put in this subsection. However, the
bilinear form a(u, v) + y(Bu, Bv) ¢ is exactly what we get from problem (4.3.20)
for c(p,q) = A(p,q)o (thatis, in the case of the problem (4.3.108)). Indeed, in
this case, the second equation of (4.3.108) can be written as: Bu = ARgp + g
where R is the Ritz operator in Q, as defined in Theorem 4.1.2. Solving for p and
substituting in the first equation gives

1 1,
a(u,v) + I(RQIBM, Bv)oxgr = (f,0) vy + I(RQIg, Bv) gxo-

Then, we use the fact that Rél = Ros, we set y = 1/A, and we obtain that the
problem (4.3.108) is equivalent to

a(u,v) + y(Bu, Bv)gr = (f,v)y'xv + x(g.Bv)gr Yvel,
P = x Ro/(g — Bu),

(4.3.117)

where clearly the first equation can be solved by itself, and its solution u used to
express the solution p of the second equation. O

We conclude the subsection on regular perturbations with the following general
theorem, which is often useful in these kinds of problems.

Theorem 4.3.3 (The shadow solution). Assume that 'H is a Hilbert space, and that
M and D are linear continuous operators from 'H into its dual space. Assume that
ImM is closed and that there exists a A* > 0 such that, for every A positive with
A < A*, we have

Ax|3, < C (Mx + ADX,X)7yx3 VX EH, (4.3.118)

for some C independent of A and x. Let F € ImM and consider, for every A positive
with A < A*, the solution x;, of the perturbed equation

Mx; + ADx, = F. 4.3.119)
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Then, X, has a unique limit X« for A — 0+ and
X3 —Xu«lle < CA (4.3.120)

where C is independent of A.
Proof. We give a hint of the proof. As F € ImM, we have 7 = MX for some
X € (KerM)* with ||X||7; bounded by || F||+¢ . Then,

(ME—-x3), X=x)) + A{DE—x3), ®—x3)) = A (DX, (X —x3)).
showing that

%1 —X[13 < Co (DX, (X —x1)) < Ci[|Fll2lIxr — X2, (4.3.121)

with Cy and C independent of A. Hence, x), —X is bounded, and (up to the extraction
of a subsequence) converges weakly in H. We define then x, as the weak limit (for
A — 0+4) of x,. Then, we can go back to the first inequality in (4.3.121), and see that
the convergence is strong. Now we remark that, for every A, equation (4.3.119) gives
that Dx; belongs to the image of M. As the image is closed, its limit Dx, is also in
the image. Let y. € (KerM)' be such that My, = Dx,. Set now y; := Xx — X,
y := Ay« and G := My. We easily have that

My, + ADy, = ADx, = M(Ayx) = G. (4.3.122)

Proceeding as in the previous part of the proof, we have then

(MF —y1),F—y)) +ADF -y, F—y1)
=1 (Dy.X—x;) =A* (Dy..Y—ya),

showing that

lys —¥13 < CoA(D(yx), (¥ —y1)) < AC|¥ — yalln. (4.3.123)

with C; independent of A. Hence, ||y) — ¥||» = O(X). Recalling the definition of
y, and y, we have then ||x. — X3 — Ay«|lx = O(A) and finally (4.3.120). O

Remark 4.3.8. We note that X and x, will both solve the limit equation Mix = F,
and they have the same component in (KerM)*. However, the perturbation AID,
although vanishing in the limit, leaves a unique choice of the part of the solution
that belongs to (KerM): it is the shadow of the perturbation. O

Remark 4.3.9. The above theorem applies for instance to perturbed mixed formula-
tions as (4.3.20) when a and c are positive definite, with H = V' x Q. In this case,
we can set M(u, p) = (Au + B’ p, —Bu) and D(u, p) = (0, Cp) and the theorem
applies. Note that ImM will be closed due to Remark (4.2.6). O
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4.3.2 Singular Perturbations

An important variant of problem (4.3.20) will occur in applications (cf. Sect. 10.4).
Assume that we are given a Hilbert space W continuously embedded in Q (that is
W < Q) and dense in Q. We recall that, as in (4.1.75), the continuous embedding
means that W C Q and, moreover,

Iwllo < Cwolwlw VYweW (4.3.124)

(and without loss of generality we can assume here that Cyyp = 1). As discussed in
Sect. 4.1.6, the density implies that O’ < W, that Q” is dense in W', the inequality

Iwllwr < lIwllor ~ Ywe Q' (4.3.125)
and finally that
(g.9)wxw = (g.9)o'xo Wheneverg € Q" and ¢q € W. (4.3.126)

Remark 4.3.10. Having assumed already that Cp = 1, and also in order to keep
the formulae reasonably simple, throughout this subsection, we implicitly assume
that the problem has been adimensionalised, so that all the quantities we deal with
are pure numbers. O

We now consider for every A > 0 a perturbation of the type c(p,q) = A (p,q)w,
that is, we consider problems of the form: find (uy, py) in V x W such that:

a(uy,v) + b, pr) = {(f,v)y'xy, Yv eV, (4.3.127)
bup,q) — A (pr.@)w = (81,9 o'x0 + (&2, @)w'sxw, Yqg € W, (4.3.128)

Depending on which space is identified to its dual space, we shall meet cases where
W Q0 = Q' < W orwhere Q' — W' = W < Q. In all cases, roughly
speaking, the solution of a problem in V x Q is approximated by the (smoother)
solution of a problem in V x W . To put the problem in the right frame, we suppose
first, for simplicity, that a(-,-) is coercive on V and b(:,-) continuous on V x Q
(hence on V' x W) with ImB closed in Q’. We suppose in (4.3.128) that g; € ImB.
Taking as usual (4.3.127) with v = u, and subtracting (4.3.128) with ¢ = p,, and
then using the coercivity of a, we have immediately

allwl? + Apallyy < I v llually + lIgillorIPallo + llg2llw Il pallw, (4.3.129)
where, as usual, p is the component of p in H 1 with H = KerB’. On

the other hand, with the usual arguments, one still has from (4.3.127) that
BlPallo < llall lluall + || f|lv,. By classical arguments, one then gets the estimate

— 1
lua I3 + 1, + Al palliy < € ALF I + el + ﬁllgzlliw), (4.3.130)
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where (here and in the sequel of this subsection) we denote by C any constant
that depends only on the bilinear forms a and b. If we have go = g2(1)
with ||g2(A)[|%,,/A bounded independently of A, then the solution will become
unbounded in W for A — 0 but will remain bounded in Q /KerB’, and we expect it
to converge to the solution of problem (4.2.6).

Before discussing further this matter, we would like to relax the ellipticity
condition on a, assuming ellipticity only in the kernel of B. This, however, will
produce unnecessary technical difficulties, so that we will compromise on a slightly
stronger condition: We have seen in Proposition 4.3.4 and in Remark 4.3.5 that,
when Im B is closed and a is symmetric, the ellipticity in the kernel of a is equivalent
to the property (4.3.111). Here, taking into account Remarks 4.3.7 and 4.3.6 as well,
we are going to assume that for every y« > O there exists an os. > 0 such that:

Vx> yx 30> aws. t.@lul’> < aw,v) + y||Bv|?, YveV. (43.131)

Note that, as W’ is bigger than Q' (and has a smaller norm), condition (4.3.131) is
stronger than the corresponding condition (4.3.111).

Finally, as we are interested in the case of A small, we will not care about the
possible behaviour for A — 400, and we can limit ourselves to the case A < Ag
(implying that y is bigger that some fixed y«). In the next theorem, it will be
convenient to take Ao = 1/2, just to have slightly nicer formulae.

Theorem 4.3.4. Together with Assumption AB, assume that ImB is closed in Q
and that a(-,-) is positive semi-definite and verifies (4.3.131). Assume moreover
that W is a Hilbert space, continuously embedded in Q and dense in Q. Then,
for every A with 0 < A < 1/2, for every f € V', for every g1 € ImB, and for
every g» € W', the problem (4.3.127) and (4.3.128) has a unique solution which,
moreover, satisfies

— 1
luz |y +173llo +A 2 pallw < € (”f”V""”gl||Q’+m”g2“W’)a (4.3.132)

where p, is the component of p; in H*.

Proof. Since we do not yet have the existence of the solution, we apply a
regularisation argument. We first substitute a with a, given by

a.(u,v) = a(u,v) + e(u,v)y,

with ¢ > 0. Then, we prove a-priori bounds independent of ¢ and we have the
solution in the limit for ¢ — 0+4-. For brevity, we do not re-write problem (4.3.127)
and (4.3.128) with a, in place of a, and we do not indicate the dependence of the
solution of the regularised problem on ¢. Taking the first equation (4.3.127) with
v = u,, and subtracting the second equation (4.3.128) for ¢ = p,, we get

ellually +a(us, un) + A(pa, pa)
v u (4.3.133)

=(four) + (g1, Pa)orxo + (g2, Pa)wrsw.
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We note that we still have from the first equation that

Blpalle = Cllurlly + 1.7 1lv). (4.3.134)

and since we assumed g; € ImB, we have

(1. p2) = (g1, P3) = Cllgllo Ulually + 11/ lv7). (4.3.135)

On the other hand, we also have

(fru) = f v Nluallv (4.3.136)
and
1 12 1 2 Ao
(g2, p1) = mngHW/)L I pallw < ﬁ”ngW/ + §||PA||W- (4.3.137)

Inserting (4.3.135), (4.3.136), and (4.3.137) in (4.3.133) and dropping the term
with the ¢ (which is positive), we then easily have

a(uy,uy) + Al pal3

1
= C(lgillo Uurlly + 1AMy + 1Lf by lually + xllgzlliw) (4.3.138)

1
= C (v (L7 v + Ngrllo) + 1F I + g1 + ez )-

On the other hand, from the second equation we have that A Ry p, (where Ry
is the Ritz operator in W, as in Theorem 4.1.2) is equal to Buy — g, — g». Hence,

1
Mpalliy = AlIRw pallyy = X”Bul — g1 — &l (4.3.139)

Hence, using (a + b)? < 2a® + 2b?, the assumption A < 1/2, (4.3.139) and
(4.3.125), we have:

|Bus |3 < 2||Bus — g1 — ga2|% + 2llgr + 2113
1
< ZIBu — g1 = gallf + Algillwr + 4llgallwe (43.140)
< Mpally +4llgillor + 4llg2llw,

which, joined with (4.3.138), gives immediately
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a(uz,w) + |Burllwr + Al pally,

1 (4.3.141)
< C(IILullv(llfllw +lgille) + 1L/ 15 + gy + Xllgzllﬁw)-
Finally, using (4.3.134) together with (4.3.131) and (4.3.141) gives
laally + 172015 + Al pally
< Cu(llnalfy + 11 + Al paly)
< Co(aGurw) + 1Burlw + 1 F 13+ Al palliy) R
< (v (17 v+ lgillo) + 171 + iy + 3 21,
which easily yields the result (4.3.132) O

As we shall see, a particularly interesting case is met when both g; and g, are
zero. In fact, it is remarkable that in this case we do not need the inf-sup condition
(meaning that we do not need ImB to be closed). We have indeed the following
proposition.

Theorem 4.3.5. Together with Assumption AB, assume that a(-,-) is positive
semi-definite and verifies (4.3.131). Assume, moreover, that W is a Hilbert space,
continuously embedded in Q and dense in Q. Then, for every A with0 < A < 1/2,
and for every f € V', the problem: find (uy, p,) in V- x W such that

a(uy,v) + b, pr) = {(f,v)y'xy, Yv eV, (4.3.143)
b(ur.q) —=A(pr.q)w =0, Vg e W, (4.3.144)

has a unique solution, that moreover satisfies

(4.3.145)

. A f15
allurlly + Al palyy < TV

where & is given in (4.3.131).

Proof. Mimicking the proof of Theorem 4.3.4, we now have, using (4.3.131), then
(4.3.139), and finally (4.3.133):

allually + Allpalliy

1 2
< a(uy,up) + IIIBMAII2 A+ APl = atu,u) + XHBIMH%V/

1
< Z(a(uk, ) + X||BuA||%V,) <2(fiw) vy, (4.3.146)
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and the result follows immediately since

21115, | allully
—

2{fiup)yrxy <

As we consider the augmented problem as a perturbation, we shall now try to get
an estimate on |lu — u, ||y and |[p — pallo as A — O+.

Proposition 4.3.5. With the same assumptions of Theorem 4.3.4, and assuming
moreover that g, = 0, let (uy, py) € V x W be the solution of problem (4.3.127)—
(4.3.128) and (u, p) € V x Q be the solution of problem (4.2.6). We then have

lu=wly + 1P~ Pillo = € inf [Ip=pullo + VA Ipullw ] (43.147)
Proof. Subtracting (4.3.127)—(4.3.128) from (4.2.6) with g € W, one easily has

a(u—uy,v)+b(w,p—p)) =0, Vv eV,
{ (4.3.148)

b(u—up.q) = A(pr.qQ)w. Vg € W.
The argument of Proposition 4.3.3 cannot be applied, for it would require (in the

second equation of (4.3.148)) ¢ € Q. However, let p,, be any element of W. We
rewrite (4.3.148) as

a(u—uy,v) +bw, py,—pr) =b(w,p,—p), YveT,
(4.3.149)

bu—uy,q) +A(pw—prr.w = =A(Pw.w. Yq €W.

We can now apply Theorem 4.3.4 with (g2,q) = A(pw,q)w, and use estimate
(4.3.132) to get

lu—wall} + 17, = Bl <€ (lpw—plb + 2 Ipul}). (43.150)

From the triangle inequality and the arbitrariness of p,,, one deduces (4.3.147). O

Remark 4.3.11. The right-hand side of (4.3.147) will, in general, tend to zero with
A whenever p is more regular than just p € Q. For instance, if p € W, we can take
pw = p and (4.3.147) will give

lu —urlly + 1P = Pallo < C V2. (4.3.151)

See also Remark 4.3.14 here below. O



262 4 Saddle Point Problems in Hilbert Spaces

Remark 4.3.12. The above result is not optimal. For instance, it does not reduce to
the estimate (4.3.109) of Proposition 4.3.3 when W = Q. Let us suppose however,
for simplicity, that ImB = Q’, and consider the space W™ defined as

wt .= Ry'(0Q), (4.3.152)

where Ry is as usual the Ritz operator in W as defined in Theorem 4.1.2. Since Q’
is a dense subspace of W', we easily have that W is a dense subspace of W, and
moreover,

Wt s W Q. (4.3.153)

Furthermore, for every p+ € W, there exists, from the definition (4.3.152), a
g € Q' such that

Pt w = (Ry'g.Ow = (8. @) wxw (4.3.154)

and, using (4.1.76), we have, for every g € W,

(Pt .ow = (& Q)wxw = (g.q)ox0 < glollgle YqeW. (43.155)

where we also used (4.3.126). We can think of W™ as a subspace of W made of
more regular functions. Taking now p,, = p,, € W, we can now go back to
(4.3.149), considering this time that the right-hand side of the second equation (that
is A (pw, q)w) corresponds to the choice g = 0 and (g1,q) = A (py,.q)w when
using Theorem 4.3.4. From (4.3.132), we now have

lu—wlly +lp=pillo =C (_inf lp=puslio +A [Py llw+) 43.156)
pw_‘_eW""

where we also took into account that we assumed ImB = Q' and hence p; = ps.
Now, (4.3.156) is optimal for W+ = Q. O

Remark 4.3.13. The argument of the above remark can easily be extended to the
case in which ImB is closed but does not coincide with Q’. We simply have to take
Wt .= Rg,l HO (where HY is the polar space of H = KerB'), so that (p,,+,q)w <
C |7 o- In general, such a W+ will not be dense in W, but in many applications p
(belonging to H+) will still belong to its closure (that is, you can still approximate
p with a sequence of elements in W ). O

Remark 4.3.14. In the spirit of Remark 4.3.11, we observe that, here again, the
right-hand side of (4.3.156) can be bounded in terms of A whenever p is more
regular. In particular for p € W™, we would have

lu—urllv +llp = pallo = CA. (4.3.157)

|
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Remark 4.3.15. In both (4.3.147) and (4.3.156), an intermediate regularity
between Q and W can provide an intermediate speed of convergence for A — 0.
More precisely, let us suppose that p belongs to [W ™, QJg.0o for 0 < 6 < 1. The
space [W™, Qlyp.0o is an interpolation space between W and Q. We refer the
reader to [62] for more details on these spaces. Here, we just recall that

1Plw+.01e =sup  inf  A7"Ip—puillo+ A" Ipwy ). (43.158)
A>0 Pw+5W+

As a consequence, if p € [W T, Qg.c0, then we have

inf  ([p=pwill + A Pwyllw+)
Pwy EWT

=1 inf ANp—puillo+ A" Py D
Pwy EWT

<A 12w+ .01 oo
(as in [62], Theorem 3.12). Hence, (4.3.156) can be written as
lu —willy + 1P = pallo < C APl +.01) oo - (4.3.159)
Note that, in particular if W+ := H'(£2) and Q := L*(£2), we have that
H(2) = W7, Qlyoo.
Hence, if p € H?(£2), we will also have p € [W ™, Qls.00, and estimate (4.3.159)

will hold true. Clearly, a similar argument could be applied to the estimate (4.3.147)
for p having an intermediate regularity between Q and W. O
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