
Chapter 10
Complements on Plate Problems

In this chapter, we shall present a few among many applications of mixed methods
to plate problems. In the first section, we shall describe a mixed method for the
linear thin plates theory and in the second, a dual hybrid method. In the last section,
we shall report some recent results on the discretisation of the Mindlin-Reissner
formulation for moderately thick plates.

10.1 A Mixed Fourth-Order Problem

10.1.1 The  �! Biharmonic Problem

Let us now see, as a new example of application of the abstract results of
Chaps. 4 and 5, some simple cases of fourth-order problems. We shall start with
formulation (1.3.65) which we may now rewrite in the form (4.2.6) by setting

V WD H1.˝/; Q WD H1
0 .˝/; (10.1.1)

a.!; �/ WD
Z
˝

!� dx 8!; � 2 V; (10.1.2)

b.�; �/ WD
Z
˝

grad� � grad � dx 8� 2 Q; � 2 V: (10.1.3)

We shall denote by .!;  / instead of .u; p/ the solution of the problem in order
to be consistent with the usual physical notations. It is easy to see that we are
now in the situation of Sect. 3.6: the bilinear form a.!; �/ is not coercive on V
(nor is it on KerB but only on H WD L2.˝/). A loss of accuracy is therefore to
be expected. Another pitfall is that we cannot use the abstract existence results of
Chap. 4 for the continuous problem and that we must deduce the existence of a
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576 10 Complements on Plate Problems

solution through another channel. In the present case, we know that the solution of
our mixed problem: find  2 H1

0 .˝/ and ! 2 H1.˝/ such that

8̂
<̂
ˆ̂:

Z
˝

!� dx C
Z
˝

grad � grad � dx D 0 8� 2 H1.˝/;

Z
˝

grad! � grad� dx D
Z
˝

f� dx 8� 2 H1
0 .˝/;

(10.1.4)

should be a solution of a biharmonic problem

42 D f;  2 H2
0 .˝/: (10.1.5)

From a regularity result on the biharmonic problem, we know, for instance, that if
˝ is a convex polygon [234, 281, 362], for f 2 H�1.˝/, the solution of (10.1.5)
belongs to H3.˝/ so that ! D �4 belongs to H1.˝/. It is then direct to
verify that we have thus obtained a solution of (10.1.4). This is an example of an
“ill-posed” mixed problem. It should be remarked that the discussion of existence
made above does not apply when the right-hand side of the first equation of (10.1.4)
is not equal to zero.

To get a discrete problem, we take, following the notations of Chap. 2,

Vh WD L1k; Qh WD L1k \H1
0 .˝/; k � 2: (10.1.6)

The case k D 1 requires a more special analysis [197, 226, 344]. We then have that
the constant S.h/, appearing in (5.2.40), can now be bounded by S.h/ � ch�1 so
that a direct application of Proposition 5.2.6 gives

k! � !hk0 C k �  hk1 � chk�1: (10.1.7)

Indeed, the inf-sup condition is quite straightforward. The operator B is nothing
here but the Laplace operator from H1.˝/ to H�1.˝/, which is obviously
surjective. To check the discrete condition, we use the criterion of Proposition 5.4.3:
given ! 2 H1.˝/, we want to build !h 2 Vh such that

Z
˝

grad!h � grad�h dx D
Z
˝

grad! � grad�h dx; 8�h 2 Qh: (10.1.8)

We recall, however, that we have chosen Qh � Vh so that (10.1.8) will, a fortiori,
hold if we take �h 2 Vh. However, (10.1.8) is then nothing but a discrete Neumann
problem for which a solution exists and can be chosen (it is defined up to an additive
constant) so that

k!hk1 � c k!k1: (10.1.9)

It must be noted that the condition Qh � Vh is essential to the above result.
In practice, this is not a restriction as (10.1.6) is a natural and efficient choice.
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Result (10.1.7) is far from optimal and may suggest at first sight that the method is
not worth being used. It can however be sharpened in two ways. First it is possible
to raise the estimate on j! � !hj0 by half an order [197, 345] by a quite intricate
analysis using L1-error estimates. The second way is a more direct variant of the
duality method of Sect. 5.5.5 and shows that the expected accuracy can be obtained
for  2 H3.˝/, that is,

k �  hk1 � chk; (10.1.10)

and under a supplementary regularity assumption

k �  hk0 � chkC1: (10.1.11)

We refer the reader to [107, 189, 342, 345] and [192] for this analysis.
On the other hand, the particular structure of problem (10.1.4) allows the use

of sophisticated but effective techniques for the numerical solution [150, 225, 227],
so that this method and its variants have a considerable practical interest. In fact, it
provides a correct setting for the widely used  � ! approximations in numerical
fluid dynamics. We refer to [222] for more informations on this subject. Still in the
case of fourth-order problems, we could also consider instead formulation (1.3.70)
which is more related to plate bending problems. We now set

V WD .H1.˝//2�2s ; Q WD H1
0 .˝/; (10.1.12)

and we define, following (1.3.70) for � and � in V ,

a.�; �/ WD 12.1� �2/

Et3

Z
˝

Œ.1C �/ � W � � � tr.�/ tr.�/� dx: (10.1.13)

In order to consider a weaker form of the saddle point problem (1.3.70), we
introduce

b.v; �/ WD
Z
˝

.div �/ � grad v dx D
Z
˝

X
i;j

@�ij

@xj

@v

@xi
dx: (10.1.14)

This enables us to look for w 2 H1
0 .˝/ instead of H2

0 .˝/, the second boundary
condition being implied by this variational formulation as a natural condition. This is
again an “ill-posed” mixed problem: we must obtain existence of a solution through
a regularity result on the standard problem. Two approaches have been followed in
the approximation of this mixed problem. One of them consists in taking (see [300])

Vh WD .L1k/2�2s ; Qh WD L1k \H1
0 .˝/: (10.1.15)

With respect to (10.1.14), it is, however, possible to use a second approach and
to work not in V D .H1.˝//2�2s but in the weaker space

H.divI˝/s WD f� j �ij D �ij; �ij 2 L2.˝/; div � 2 .L2.˝//2g: (10.1.16)
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Discretisations of this space can be built through composite elements. We refer
to [262] and [27] for the analysis of this case.

In the first case, the results are the same as for the �! approximation discussed
above. We get, by Proposition 5.2.6, an error estimate which is O.hk�1/. Duality
methods (see [192]) would enable us to lift the estimate on  at the right level. For
the second case, we can have optimal error estimates (see the above references).

10.1.2 Eigenvalues of the Biharmonic Problem

We now briefly consider the possibility of computing eigenvalues of the biharmonic
problem using the elements introduced above. If we refer to Sect. 1.2.1 of Chap. 6,
we are considering a .0; g/ situation. This means that, fortunately for us, we do not
need a coercivity condition. Our eigenvalue problem can indeed be written as: find
 2 H1

0 .˝/ and ! 2 H1.˝/ such that

8̂
<̂
ˆ̂:

Z
˝

!� dx C
Z
˝

grad � grad � dx D 0 8� 2 H1.˝/;

Z
˝

grad! � grad� dx D �

Z
˝

 � dx 8� 2 H1
0 .˝/:

(10.1.17)

In the notation of Sect. 6.5.5, we have V D H1.˝/ and Q D H1
0 .˝/. We take

HQ D L2.˝/ and we assume that ˝ is a convex polygon. We then have

V 0
Q0 Dfz 2 H1.˝/ W 9v 2 H2

0 .˝/ with z D 	vg
Dfz 2 H1.˝/ W .z; �/ D 0 8� 2 L2.˝/ with 	� D 0g

(10.1.18)

so that with obvious notation

V 0
Q0 D H3.˝/\H2

0 .˝/: (10.1.19)

For any given polygon, V 0
H and Q0

H will be slightly more regular, according to the
maximum angle (see e.g. [233]).

For every given regular sequence fThg of triangulations of ˝ and for every
integer k � 2, we can take as in [152, 224, 298]:

V k
h WD L1k
Qk
h WD L1k \H1

0 .˝/:
(10.1.20)

Notice that Qk
h D V k

h \H1
0 .˝/. We can now define˘hw in Vh as the solution of:

.
˘hw; 
vh/ D .
w; 
vh/ 8vh 2 V k
h : (10.1.21)
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Clearly, (6.5.54)–(6.5.56) hold. Similarly, (6.5.53) holds by taking pI (here  I )
as the usual interpolant. On the other hand, to check (6.5.52), we have to assume
quasi-uniformity of the decomposition and then proceed, as we did for Dirichlet’s
problem in (7.1.43), using an inverse inequality to obtain: for vh 2 KerBh and
q 2 H3.˝/\H2

0 .˝/,

.
vh;
q/ D .
vh;
q �
qI/ � Ch�1jjvhjja Ch2jjqjj3:

This shows the utility of the requirement k � 2. However, a more sophisticated
proof, following the arguments of Scholz [344], shows that (1.2.50) also holds for
k D 1.

We thus have checked all the hypotheses of Theorem 6.5.3 and our eigenvalue
problem is properly posed.

10.2 Dual Hybrid Methods for Plate Bending Problems

We now consider as a final example an application of our general theory to hybrid
methods. We go back again to Example 1.3.8 and set, for the sake of simplicity,
� D 0 and Et3=12 D 1. The consideration of the true values would not change
the mathematical structure of the problem, but would result in more lengthy
formulae. The condition D�

2 .�/ D f in (1.3.74) is, in general, difficult to enforce
directly. Hence, following [321], we may think of working with stresses satisfying
D�
2 .�/ D f inside each element of a given decomposition. This will imply that we

have to enforce some continuity of the stresses by means of a Lagrangian multiplier;
moreover, it will be convenient to assume f 2 L2.˝/. In order to make the
exposition clearer, we need some Green’s formulae. We have indeed, on any triangle
K of a triangulation Th of ˝ ,

Z
K

� W D
2
.v/ dx D

Z
K

D�
2 .�/v dx C

Z
@K

ŒMnn.�/
@v

@n
�Kn.�/v� ds (10.2.1)

for all � 2 .H2.T //2�2s and v 2 H2.T /, where

Mnn.�/ WD .� � n/ � n; (10.2.2)

Kn.�/ WD @

@n
tr.�/ � @

@t
Œ.� � n/ � t �; t D tangent unit vector: (10.2.3)

It is essential, in the definition of Kn, to consider the derivative @=@t in the
distributional sense, that is, to take into account the jumps of .� �n/ � t at the corners
of K (the so-called corner forces).
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It is easy to check that the conditionD�
2 .�/ D f in ˝ is equivalent to

8̂
<̂
ˆ̂:

D�
2 .�/ D f in each T;

X
K

Z
@K

ŒMnn.�/
@v

@n
�Kn.�/v� ds D 0; 8v 2 H2

0 .˝/:
(10.2.4)

Setting

b.�; v/ WD
X
K

Z
@K

ŒMnn.�/
@v

@n
�Kn.�/v� ds

�
Z
˝

� W D
2
.v/ dx �

X
T

Z
T

D�
2 .�/v dx;

(10.2.5)

Vf .Th/ WD f� j � 2 .L2.˝//2�2s ; D�
2 .�/ D f in eachKg; (10.2.6)

the problem can now be written as

inf
�2Vf .Th/

sup
v2H2

0

1

2
k�k20 � b.�; v/: (10.2.7)

If now �f is a given element of Vf .Th/, that is, a particular solution ofD�
2 .�/ D f

in each K , we have
8<
:
.�0 C �f ; �/� b.�;w/ D 0 8� 2 V0.Th/;

b.�0 C �f ; v/ D 0 8v 2 H2
0 .˝/;

(10.2.8)

where obviously �0 C �f WD � . Problem (10.2.8) has now the form (4.2.6), where

V D V0.Th/, Q D H2
0 , a.�; �/ D .�; �/, and b.�; v/ is given by (10.2.5). The

right-hand side is obviously �.�f ; �/ for the first equation and �b.�f ; v/ for the

second equation. It is natural to use in V the L2-norm, and in Q the norm kvkQ D
kD

2
vkV D kD

2
vk0. It is clear that condition (4.2.12), that is, the ellipticity of

a.�; �/, is trivially satisfied in the whole V (and not only in KerB) with ˛ D 1.
A different value for E; t; � would obviously yield a different value for ˛, but the
V -ellipticity will still be true. It is clear that KerBt cannot be empty; indeed, any
v with support in a single K will satisfy b.�; v/ D 0 for all � , and hence is a zero
energy mode. However, it is not difficult to see that ImB is closed.

Proposition 10.2.1. The image of B is a closed subset of Q0 WD H�2.˝/.

Proof. We have to show that if a sequence �n WD B�
n

converges to � in H�2, then
� D B� for some � 2 V0.Th/ DW V . We first note that

if � 2 V0.Th/ and � 2 H2
0 .˝/, then b.�; �/ � .�;D

2
�/; (10.2.9)
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which is quite obvious from (10.2.5) and (10.2.6). Now let � 2 H2
0 .˝/ be such that

42� D � and let � WD D
2
� (so that D�

2 � D �). For every � 2 H2
0 , we have

h�; �iH�2�H2
0

D hD�
2 �; �iH�2�H2

0
D .�;D

2
�/: (10.2.10)

Now, since �n D B�
n

! � in H�2, we have

.�
n
;D

2
�/ D b.�

n
; �/ D hB�

n
; �i D h�n; �i ! h�; �i D .�;D

2
�/; (10.2.11)

that is, .�
n

� �;D
2
�/ ! 0 for all � 2 H2

0 .˝/. This easily implies D�
2 � D 0 in

each T , so that � 2 V0.Th/. Hence, h�; �i D .�;D
2
�/ D b.�; �/ D hB�; �i, that

is, � 2 ImB . ut
Proposition 10.2.2. We have KerBt D Q

K

H2
0 .K/.

Proof. It is obvious from (10.2.5) that if �jK 2 H2
0 .K/ for all K , then b.�; �/ D 0

8� and hence � 2 KerBt . Therefore, we only need to prove that KerBt �Q
K

H2
0 .K/. For this, let � 2 KerBt , that is,

b.�; �/ � .�;D
2
�/ D 0 8� 2 V0.Th/: (10.2.12)

We want to show that � 2 Q
K.H

2
0 .K//, that is,

�jK 2 H2
0 .K/ for all K: (10.2.13)

Let  be defined in eachK by

 2 H2
0 .K/ and 42 D 42�I (10.2.14)

clearly, .�;D
2
 / D 0 for all � in V0.T0/ so that from (10.2.12),

b.�;  � �/ D .�;D
2
. � �// D 0 8� 2 V0.Th/: (10.2.15)

However, D�
2 D2

. � �/ D 42. � �/ D 0 in each K , so that we can take � D
D
2
. � �/ in (10.2.15) and obtain D

2
. � �/ � 0. Since both  and � are in

H2
0 .˝/, this implies  D � so that from (10.2.14), we get (10.2.13). ut

Proposition 10.2.3. We have

k�kQ=KerBt D kD
2

N�k0; (10.2.16)

where N� is the function in H2
0 .˝/ such that

� � N� 2 H2
0 .K/ for eachK; (10.2.17)

42 N� D 0 in each K: (10.2.18)
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Proof. By definition, we have

k�kQ=KerBt D inf
 2KerBt

k� �  kQ: (10.2.19)

Now from Proposition 10.2.2 and the definition of k�kQ WD kD
2
�k0, we have

k�kQ=KerBt D inf
 2Q

K H
2
0 .K/

kD2.� �  /k0;K : (10.2.20)

It is now an easy matter to check that, for each K ,

inf
 2H2

2 .K/

kD
2
.� �  /k20;K D inf

. ��/2H2
0 .K/

kD
2
 k20;K D kD

2
N�k20;K ; (10.2.21)

for N� defined in (10.2.17) and (10.2.18). Hence, (10.2.21) and (10.2.20)
prove (10.2.16). ut

We are now able to prove the inf-sup condition

sup
�2V0.Th/

b.�; �/

k�k0k�kQ=KerBt
D sup

�2V0.Th/

.�;D
2
�/

k�k0kD
2

N�k0

� .D
2

N�;D
2
�/

kD
2

N�k20
D 1 (10.2.22)

because � � N� is the projection (in Q) of � onto KerBt so that N� and � � N� are
orthogonal in Q.

Remark 10.2.1. A way of getting rid of KerBt (which is infinite dimensional) is to
consider as a space of Lagrange multipliers the space

QQ WD f� j� 2 H2
0 .˝/; 42� D 0 in each T g: (10.2.23)

This is what has been done in [114, 127]. The drawback in the choice (10.2.23) is
that the actual transversal displacement w does not belong to QQ so that, as a solution,
we have the unique function Nw in QQ that coincides with w (with its first derivatives)
at the inter-element boundaries (as in (10.2.17) and (10.2.18)). ut

Let us continue our analysis of problem (10.2.8). We already noted that (4.2.12) is
satisfied in our case. Hence, we have to check that the right-hand side of the second
equation in (10.2.8) (that is �b.�f ; v/) is in ImB; this means that we have to find a

particular solution of (10.2.8), which is obvious by taking �f WD D
2
w � �f .

We can now go to the discretisation of (10.2.8); for this, we have to choose
subspaces Vh � V0.Th/ and Qh � Q. For instance, for any triple .m; r; s/ of
integers, we may choose
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V m
h WD .L0m.Th//2�2s \ V0.Th/; (10.2.24)

Qr;s
h WD f� j� 2 H2

0 .˝/; �j@T 2 Tr.@T /; @�
@n

j@T 2 Rs.@T / 8T 2 Thg:
(10.2.25)

Note that Vh is made of tensor-valued polynomials of degree �m which are
completely discontinuous from one element to another and verify D�

2 � D 0 in
each T . On the other hand, Qh is clearly infinite dimensional (which is quite
unusual); however, this does not show up in the computations, where only the values
of � and @�=@n on Eh are considered. To get coercivity, we now have to choose
.m; r; s/ in such a way that KerBt

h � KerBt . This means, in our case, that we have
to show

(
if � 2 Qr;s

h and b.�; �/ D 0 8� 2 V m
h (that is, if � 2 KerBt

h/;

then � D grad� D 0 on Eh; (that is, � 2 KerBt ):
(10.2.26)

The proof of (10.2.26) (or, rather, the finding of sufficient conditions on m for
having (10.2.26)) will be easier with the following characterisation of V m

h .

Lemma 10.2.1. We have

V m
h � S Œ.L0mC1.Th//2�; (10.2.27)

where S is defined, for q D .˛; ˇ/,

S W .q/ !
�

@˛=@y � 1
2
.@˛=@x C @̌ =@y/

� 1
2
.@˛=@x C @̌ =@y/ @̌ =@x

�
: (10.2.28)

Proof. The inclusion S Œ.L0mC1.Th//2� � V m
h is trivial; the opposite inclusion is an

exercise (see [127] for more details). ut
We now notice that if � D S.q/, then

b.�; v/ D
X
K

Z
@K

grad v � @
@t
q ds; (10.2.29)

where t is the tangent to @T . We also notice that
(

� 2 H2
0 .˝/ and grad � D constant on Eh

imply � D 0 and grad� D 0 on Eh:
(10.2.30)

We may now use (10.2.27)–(10.2.30) in (10.2.26) which becomes

8̂
<
:̂

if � 2 Qr;s
h and

X
K

Z
@K

grad � � @
@t
q ds D 0 8q 2 .L0mC1.Th//2;

then grad� D constant on Eh:
(10.2.31)
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Now, (10.2.31) is implied by

8̂
<
:̂

if � 2 Qr;s
h and

Z
@K

grad � � @
@t
q ds D 0 8q 2 .PmC1.K//2

then grad � D constant on @T

(10.2.32)

(but not vice-versa). Now let k be the degree of grad� on @T , that is,

k D max.s; r � 1/: (10.2.33)

The following technical lemma is proved in [127].

Lemma 10.2.2. If � 2 H1.K/ and �jei 2 Pk.ei / (i D 1; 2; 3), and if

Z
@K

�
@q

@t
ds D 0 8q 2 Pk.K/; (10.2.34)

then

�jei D c`ik.s/C c1; .i D 1; 2; 3/; (10.2.35)

where, on each ei , we define `ik as the kth Legendre polynomial (normalised with
value 1 in the second endpoint in the anticlockwise order).

Formula (10.2.35), for k odd, directly implies that � is constant on @K . We therefore
have a first result.

Proposition 10.2.4. If m C 1 D k D max.r � 1; s/ and k is odd, then (10.2.32)
holds.

If mC 1 is even, we can apply Lemma 10.2.2 to both @�=@x and @�=@y and get

@�

@x
D c`ik C c1;

@�

@y
D �`ik C � (10.2.36)

on each ei . If now r � 1 ¤ s, there must exist a combination of @�=@x and @�=@y
on each ei (to get @�=@n) which has degree lower than k. This easily implies that
both @�=@x and @�=@y are constants on @K . We therefore have the following result:

Proposition 10.2.5. If mC 1 D k D max.r � 1; s/ and r � 1 ¤ s, then (10.2.32)
holds.

We are finally left with the last and worst case in which r�1 D s is even. We have
several escapes. First, brutally, we may take m C 1 D k C 1. It is easy to see that,
then, (10.2.32) always holds. As a second possibility, we may take mC 1 D k and
enrich .L0mC1.Th//2 into .L0mC1.Th//2enr by adding, in each K , a pair of functions q
in .PmC1/2 such that @qj =@t jei D `ik (j D 1; 2 and D 1; 2; 3). Again, it is easy to
check that (10.2.32) is satisfied if we take the enriched space .L0mC1.Th//2enr instead
of the original one. Then, of course, we must consider V m

h;enr D S Œ.L0mC1.Th//2enr�
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instead of Vh. Finally, we might give up (10.2.32) and go directly to (10.2.31). It is
easy to check that in (10.2.36), the values of c, c1, �; and �1 must remain constants
from one K to another due to the continuity of grad�je across the edges. Hence,
since � 2 H2

0 .˝/, we must have c D c1 D � D �1 D 0 and, actually, (10.2.31)
holds for m C 1 D k D max.r � 1; s/ in any case, that is, also for r � 1 D s D
even. However, we shall see in a moment that (10.2.32) has other basic advantages
over (10.2.31) that we are not very willing to give up. We summarise the results in
the following theorem.

Theorem 10.2.1. The condition KerBt
h � KerBt holds whenever

mC 1 � k D max.r � 1; s/: (10.2.37)

Moreover, (10.2.32) holds when (10.2.37) is satisfied, unless r � 1 D s D even. In
that case, (10.2.32) is satisfied by taking mC 1 > k or by using an enriched V k�1

h;enr

(between V k�1
h and V k

h ) as described above.

The condition KerBt
h D KerBt implies, by Proposition 5.5.2, the existence of an

operator˘h from V0.Th/ to V m
h such that

b.� �˘h�; v/ D 0 8v 2 Qr;s
h : (10.2.38)

However, in view of the use of Proposition 5.4.3, we would also like to show that
there exists a ˘h which satisfies (10.2.38) and

k˘h�k0 � c k�k0; 8� 2 V0.Th/; (10.2.39)

with c independent of h. Since V m
h is finite dimensional, (10.2.39) will always

hold, but the constant might depend on h. Now, if (10.2.32) holds, we see that
˘h can be defined element by element. Now, the dimension of V m

h jK depends
only on m, but not on h. A continuous dependence argument on the shape of the
element can now prove (10.2.39) without major difficulty (but, to be honest, not
quickly); we refer to [127] for a detailed proof of (10.2.39). Once we have (10.2.38)
and (10.2.39), we apply Proposition 5.4.3 to prove the discrete inf-sup condition.
Then, Theorem 5.2.5 immediately gives

k� � �
h
k0 D kD

2
.w � Qwh/k0

� c
n

inf
�2V mh

k�0 � �k0 C inf
�2Qr;s

h

kD
2
.w � �/k0

o
;

(10.2.40)

where Qwh is the (unique) element in Qr;s
h that satisfies 42 Qwh D f in each K and

belongs to the set of discrete solutions.
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Theorem 10.2.2. If mC 1 � max.r � 1; s/ (andmC 1 > s for r � 1 D s is even),
we have

k� � �
h
k0 C kD

2
.w � Qwh/k0 � cht .kwktC2 C

X
K

k�f k2t;K/
1
2 (10.2.41)

with t D min.mC 1; r � 1; s/.
Proof. The proof is obvious from (10.2.40) and the standard approximation results.

ut
We end this section with a few computational remarks. First, we notice that our

discretisation of (10.2.8) has obviously the matrix structure

�
A Bt

B 0

�
; (10.2.42)

where A, corresponding to the approximation of the identity in V m
h , is obviously

block diagonal because V m
h is made of discontinuous tensors. Hence, one usually

makes an a priori inversion of A, to end with the matrix BA�1Bt which operates on
the unknown wh and is symmetric and positive definite. However, the computation
of the right-hand side is, in general, a weak point in the use of dual hybrid methods,
unless f is very special (zero, Dirac mass, constant, etc.) and allows the use of a
simple �f . A few computational tricks for dealing with more general cases can be
found in [127,289,290]. Here, we recall from [115] a simple method that works for
low-order approximations (more precisely, when t in Theorem 10.2.2 is �2). We
first define the operator R WD orthogonal projection onto Vh. We then remark that
the discretisations (10.2.24) and (10.2.25) of (10.2.8) may be written as

8<
:
.�0

h
C �f ; �/ D .D

2
wh; �/ 8� 2 Vh;

.�
h

C �f ;D
2
�/ D .f; �/ 8� 2 Qh:

(10.2.43)

Solving a priori in �0
h

from the first equation and substituting into the second
equation, we obtain

.RD
2
wh;D

2
�/ D .f; �/ � .�f � R�f ;D

2
�/ 8� 2 Qh: (10.2.44)

Now, the left-hand side of (10.2.44) corresponds to the matrix BA�1Bt acting on
the unknown wh. The right-hand side is actually computable because both .f; �/ �
.�f ;D

2
�/ and .R�f ;D

2
�/ depend (looking carefully) only on the values of � and

its gradient at the inter-element boundaries. However, the computation, in general, is
not easy. Therefore, in some cases, it can be convenient to use a rough approximation
of it, for instance

.f; �/ � .�f � R�f ;D
2
�/ '

X
K

meas.K/

3

3X
jD1

f .Vj /�.Vj /; (10.2.45)
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r = 5
s = 3

r = 5
s = 3

r = 3
s = 3

r = 4
s = 3

r = 3
s = 1

r = 3
s = 2

Symbol Values of

φ

∂
2
φ/∂n∂t

∂φ/∂n

∂
2
φ/∂n∂t∂φ/∂t, ∂φ/∂t,

grad φ

D

Fig. 10.1 Some common
choices for the space Qr;s

h

where the Vj are the vertices of K . It can be shown (see [115]) that this involves an
additional error of orderO.h2/ (essentially because Vh contains all piecewise linear
stress functions and therefore k�f � R�f k0 � ch2) and hence this procedure is
recommended whenever t � 2 in (10.2.41).

Finally, we provide a few remarks on the choice of the degrees of freedom in
V m
h and Qr;s

h . As we have seen, the unknown �0
h

is usually eliminated a priori at
the element level due to the complete discontinuity of V m

h . As a consequence, the
choice of the degrees of freedom in V m

h is of little relevance. In general, it is more
convenient to start from .L0mC1.Th//2 and to derive Vh through (10.2.27).

When m is “large” (say m � 4, to fix the ideas), however, the resulting matrix A
can be severely ill-conditioned unless the degrees of freedom in V m

h are chosen in a
suitable way. We refer to [289,290] for a discussion of this point. On the other hand,
the degrees of freedom in Qr;s

h are the ones that count in the final stiffness matrix,
and, besides, they have to take into account the C�1 continuity requirements. We
sketch in Fig. 10.1 some commonly used choices for different values of r and s.

Remark 10.2.2. It is impossible to say what is, in general, the best choice for r
and s. Numerical evidence shows obviously that the accuracy/number of degrees of
freedom ratio is improved for large r and s, at least when the solution is smooth.
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However, it is clear that the simplest (and most widely used) choice r D 3; s D 1

allows a much easier implementation. Similar considerations also hold with the
choice of m, in particular in the case of an even r � 1 D s, for instance for
r D 3; s D 2. The use of the enriched V 1

h;enr implies a smaller matrix to be inverted
on each element than with the “brutal” choice V 2

h (11 	 11 instead of 17 	 17), but
the latter may allow some simplification in writing the program. ut
Remark 10.2.3. We have used, so far, homogeneous Dirichlet boundary condi-
tions corresponding to a clamped plate. Nothing changes when considering non-
homogeneous Dirichlet conditions. If, instead, a part of the plate is simply supported
(w D given; Mnn D 0) or free (Mnn D 0; Kn D 0), then we have two possibilities
for dealing with them. Let us discuss a simple case: let @˝ D 
D [
N and assume
that w D @w=@n D 0 on 
D and Mn D Kn D 0 on 
N . One possibility is to
chooseQr;s

h so that its elements vanish only on 
D, and to let V m
h unchanged. In this

case, the conditions Mn D Kn D 0 on 
N will be satisfied only in a weak sense.
A second possibility is to choose V m

h in such a way that its elements satisfy, a priori,
the boundary condition Mn D Kn D 0 on 
N . However, care must be taken in
this case to enrich conveniently the stress field in the boundary elements so that the
inf-sup condition still holds. Otherwise, a loss in the order of convergence is likely
to occur. ut
Remark 10.2.4. One may think to use other discretisations of the dual hybrid
formulations than the ones discussed here (see, for instance, the previous remarks).
In any case, the inf-sup condition should be checked. Although this is not evident
from our discussion (because we wanted to deal with many cases at the same time),
nevertheless, it is true that to check the inf-sup condition in hybrid methods is
basically an easy task. What is really needed is the following: for any element K ,
the only displacement modes with zero energy on K , that is, the only modes � such
that

Z
@K

�
Mnn.�/�=n�Kn.�/�

�
ds D 0 8� 2 Vh; (10.2.46)

must be the rigid modes (that is, grad � D constant on T ). If this condition is
violated, one can expect trouble (minor or major, depending on the cases). ut

10.3 Mixed Methods for Linear Thin Plates

We consider the variational formulation of a problem discussed in Chap. 1 which
we recall here for the convenience of the reader. We had

L.�;w/ D inf
�2.L2.˝//2�2s

sup
�2H2

0 .˝/

L.� ; �/ (10.3.1)

where
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L.�; �/ WD 1

2

�
12

Et3

� Z
˝

Œ.1C �/� W � � �.tr.�//2� dx

�
Z
˝

� W D
2
� dx C

Z
˝

f � dx

(10.3.2)

E D Young’s modulus; (10.3.3)

t D thickness of the plate; (10.3.4)

� D Poisson’s ratio; (10.3.5)

f D transversal load / unit surface; (10.3.6)

w D transversal displacement; (10.3.7)

� D stresses (in the Kirchoff assumption): (10.3.8)

In order to use a more compact notation, we set

C� WD 1

2
Et3..1C �/� � � tr.�/ı/ (10.3.9)

and write L.�; �/ as

L.�; �/ D 1

2
.C �; �/ � .�;D

2
�/C .f; �/: (10.3.10)

Assume that we are given a triangulation Th of ˝ and that we are willing to
discretise the stress field � by means of piecewise polynomials for which the normal
bending moment

Mnn.�/ D .� � n/ � n (10.3.11)

is continuous from one element to another. We recall the following Green’s
formulae,

Z
K

� W D
2
� dx D �

Z
K

div � � grad� dx C
Z
@K

Mnn.�/
@�

@n
ds

C
Z
@K

Mnt.�/
@�

@t
ds;

(10.3.12)

�
Z
K

div � � grad� dx D
Z
K

D�
2 .�/ � dx �

Z
@K

Qn.�/ � ds; (10.3.13)

valid for all � and � smooth in K; we recall again that, here, t is the unit tangent
(anticlockwise) vector and

Mnt.�/ D .� � n/ � t ; Qn.�/ D div.�/ � n: (10.3.14)
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If Mnn.�/ is continuous and � is smooth, we can write

L.�; �/ D 1

2
.C �; �/C

X
K

nZ
K

div.�/ � grad � dx �
Z
@K

Mnt.�/
@�

@t
ds

o
C .f; �/:

(10.3.15)

A little functional analysis shows that every integral in (10.3.15) makes sense
(at least as a suitable duality pairing), provided � and � are, respectively, in the
following spaces:

V WD f� j � jK 2 .H1.˝//2�2s ; Mnn.�/ continuous g; (10.3.16)

Q WD W 1;p.˝/; p > 2: (10.3.17)

Remark 10.3.1 (For mathematicians). We have to choose p > 2 in (10.3.17)
because for � 2 H1.K/ we have @�=@t 2 H�1=2.@K/ whereas Mnt.�/ is inQ
ei
H1=2.ei / but not in H1=2.@K/. On the other hand, for � 2 W 1;p , we have

@�=@t 2 W �1=p;p.@K/. Since Mnt.�/ is in Hs.@K/ for all s < 1=2 and since

W �1=p;p.@K/ � H�1.@K/ for s > 1=p, the boundary integral which appears
in (10.3.15) can now be interpreted as a duality pairing between H�s.@K/ and
Hs.@K/ for 1=p < s < 1=2 (which is possible since p > 2). ut

The Euler equations of (10.3.15) can now be written as:

.C�; �/C
X
K

nZ
K

div.�/ � grad w dx �
Z
@K

Mnt.�/
@�

@t
ds

o
D 0 8� 2 V;

(10.3.18)

X
K

nZ
K

div.�/ � grad� dx �
Z
@K

Mnt.�/
@�

@t
ds

o
D .�f; �/ 8� 2 Q;

(10.3.19)

which has the form (5.1.9) if we set

a.�; �/ WD .C�; �/; (10.3.20)

b.�; �/ WD
X
K

nZ
K

div.�/ � grad� dx �
Z
@K

Mnt.�/
@�

@t
ds

o
: (10.3.21)

Unfortunately, problem (10.3.18) and (10.3.19), as it stands, does not satisfy any of
the conditions given in Chap. 4 in order to have a well posed problem. However,
we know that the original problem (1.2.4) has a solution w. If � D C�1.D

2
w/ is

in H1.˝/, that is if the solution w of (1.2.4) is smooth enough, it is easy to check
that the pair .�;w/ solves (10.3.18) and (10.3.19). Hence, we only have to prove the
uniqueness of the solution of (10.3.18) and (10.3.19).
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Proposition 10.3.1. Problem (10.3.18) and (10.3.19) has a unique solution.

Proof. It is obvious that

a.�; �/ � ˛ k�k20; 8� 2 V: (10.3.22)

Let us now check a weaker inf-sup condition. For every � in Q, we define �.�/ by

�11 D �22 D �; �12 D �21 D 0: (10.3.23)

It is immediate to check that Mnt.�/ is continuous across the inter-element
boundaries, so that

X
K

Z
@K

Mnt.�.�//
@�

@t
ds D 0 (10.3.24)

and therefore

b.�.�/; �/ D j�j21;˝: (10.3.25)

It is also easy to check, using (10.3.23) and the Poincaré’s inequality (1.2.14), that

k�.�/kV � c j�j1;˝ I (10.3.26)

hence, we have from (10.3.25) and (10.3.26) that

inf
�2H1

0 .˝/

sup
�2V

b.�; �/

k�kV j�j1;˝ � inf
�2H1

0 .˝/

b.�.�/; �/

k�.�/kV j�j1;˝

� j�j1;˝
k�.�/kV � 1

c
> 0:

(10.3.27)

Now using (10.3.22) and (10.3.27), we have the desired uniqueness by standard
arguments. ut
We are now ready to discretise our problem. Following [132] and [261], for any
integer k � 0, we set

Vh D .L0k/2�2s \ V (10.3.28)

Qh D L1kC1 (10.3.29)

with the notation of Chap. 2. Note that the space Vh in (10.3.28) is made of tensors
whose normal bending moment is continuous across the inter-element boundaries.
The degrees of freedom for Qh will be the usual ones (see Sect. 2.2). As degrees of
freedom for Vh, we may choose, for instance, the following ones:Z

e

Mnn.�/p.s/ ds 8p 2 Pk.e/; 8e 2 Eh; (10.3.30)

Z
T

� W p dx 8p 2 .Pk�1.T //2�2s ; 8K 2 Th; .k � 1/: (10.3.31)
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The possibility of choosing (10.3.30) and (10.3.31) as degrees of freedom in Vh
is shown by the following lemma and by a standard dimensional count.

Lemma 10.3.1. Let � 2 .Pk�1.T //2�2s be such that

Z
ei

Mnn.�/p.s/ ds D 0 8p 2 Pk.ei /; .i D 1; 2; 3/; (10.3.32)

Z
K

� W p dx D 0 8p 2 .Pk�1.T //2�s ; .k � 1/: (10.3.33)

Then, � � 0.

Proof. We only give a hint of the proof. From (10.3.32), we get Mnn.�/D 0. We
first show that D�

2 .�/ D 0. This is trivial for k � 1; for k > 1, take p D D
2
b with

b D b3D
�
2 � in (10.3.33) to get

R
K
b3.D

�
2 .�//

2 dx D 0 and hence D�
2 .�/ D 0. Now

use the formula (see Sect. 10.2)

Z
K

� W D
2
� D

Z
K

D�
2 .�/ � C

Z
@K

ŒMnn.�/
@�

@n
� Kn.�/�� ds (10.3.34)

for � 2 PkC1.T /; thus, we get

Z
@K

Kn.�/ ds D 0 8� 2 PkC1.T /; (10.3.35)

and easily obtain that Kn.�/ D 0. It is now simple to show that � D S.q/

(see (10.2.27) for the definition of S ) for some q 2 .PkC1.K//2 with q D 0 on
@K . Therefore, q1 (for instance) has the form b3z with z 2 Pk�2.K/. Let us now
choose, in (10.3.33), p11 such that @p11=@y and p12 D p22 D 0. We then get

0 D
Z
K

�11p11 dx D
Z
K

@q1

@y
p11 dx D �

Z
K

q1z dx D �
Z
K

b3z
2 dx (10.3.36)

so that z D 0 and q1 D 0. Similarly, one proves that q2 D 0. ut
We are now able to define the operator˘h. We set, for � 2 V ,

Z
e

Mnn.˘h� � �/ p.s/ ds D 0 8p 2 Pk.e/; 8e 2 Eh; (10.3.37)

Z
K

.˘h� � �/ W p ds D 0 8p 2 .Pk�1.K//2�2s ; 8K 2 Th: (10.3.38)

Lemma 10.3.2. Let ˘h be defined by (10.3.37) and (10.3.38). Then, we have

k˘h�kV � c k�kV 8� 2 V (10.3.39)
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and

b.� �˘h�; �h/ D 0 8� 2 V 8�h 2 Qh: (10.3.40)

Proof. Formula (10.3.39) is easy to check. Let us prove (10.3.40). From (10.3.12)
and (10.3.21), we have

b.� �˘h�; �/ D �
X
K

nZ
K

.� �˘h�/ W D
2
� dx �

Z
@K

Mnn.� �˘h�/
@�

@n
ds

o

(10.3.41)

and from (10.3.41), (10.3.37), and (10.3.38), we get (10.3.40). ut
Lemma 10.3.3. If �

h
2 Vh is such that

b.�
h
; �h/ D 0; 8�h 2 Qh; (10.3.42)

then

b.�
h
; �/ D 0; 8� 2 Q: (10.3.43)

Proof. We have, from (10.3.13) and (10.3.21),

b.�
h
; �/ D �

X
K

nZ
K

D�
2 .�h

/� dx C
Z
@K

ŒMnt.�
h
/
@�

@t
�Qn.�

h
/�� ds

o
: (10.3.44)

Integrating
R
@K Mnt

@�

@t
ds by parts and recalling the definition of Kn in (10.2.3), we

then have

b.�
h
; �/ D �

X
K

nZ
K

D�
2 .�h

/ � dx �
Z
@K

Kn.�
h
/� ds

o
: (10.3.45)

Note that (10.3.45) holds for any �
h

and � piecewise smooth. If now (10.3.42) holds,
we first have D�

2 .�h
/ D 0 by choosing �jK D b3D

�
2 .�h

/ (for k � 2, otherwise the
property is trivial). Hence, we are left with

X
K

Z
@K

Kn.�
h
/�h ds D 0 8� 2 Qh: (10.3.46)

Since Kn is made of Dirac measures at the vertices and of polynomials of degree less
or equal to k � 1 on each edge, it is easy to see that (10.3.46) implies Kn.�

h
/ D 0.

Therefore, we have proved that if �
h

2 Vh satisfies (10.3.42), then D�
2 .�h

/ D 0 and
Kn.�

h
/ D 0. We now insert those two equations into (10.3.45) and we get (10.3.43).

ut
This last property was denoted, in Chap. 5, as Zh.0/ � Z.0/. We have seen that,
together with the existence of the operator ˘h, this property is so important that it
can provide optimal error estimates even in desperate situations (no ellipticity, no
inf-sup condition) like ours.
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Actually, we first remark that (10.3.27) and Lemma 10.3.2 provide, through
Proposition 5.4.3, the following inf-sup type condition:

inf
�h2Qh

sup
�
h
2Vh

b.�
h
; �h/

k�
h
kv j�hj1 � c > 0 .c independent of h/: (10.3.47)

On the other hand, since Qh and Vh are finite dimensional, (10.3.22)
and (10.3.47) ensure that the discrete problem has a unique solution. We are now
ready for error estimates.

Proposition 10.3.2. If .�;w/ is the solution of (10.3.18) and (10.3.19) and
.�

h
;wh/ is the discrete solution of (10.3.18) and (10.3.19), then, through (10.3.28)

and (10.3.29), we have

k� � �
h
k0 � c k� �˘h�k0: (10.3.48)

ut
The proof is immediate from the standard theory of Chap. 5.

From (10.3.48) and standard approximation results, we then have

k� � �
h
k0 � chkC1k�kkC1: (10.3.49)

Proposition 10.3.3. With the notation of Proposition 10.3.2, we have

kw � whk1 � c fhkC1k�kkC1 C hkC1kwkkC2g: (10.3.50)

Proof. Let �h 2 Qh to be chosen. From (10.3.47), we have for some �
h

2 Vh

ck�h � whk1k�
h
kV � b.�

h
; �h � wh/

D b.�
h
; �h � w/C b.�

h
;w � wh/

D b.�
h
; �h � w/C a.� � �

h
; �
h
/:

(10.3.51)

It is now elementary to see that �h can be chosen in such a way that

Z
e

p
@

@t
.w � �h/ ds D 0 8p 2 Pk.e/; 8e 2 Eh; (10.3.52)

kw � �hk1 � chkC1kwkkC2: (10.3.53)

With such a choice, we have
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b.�
h
;w � �h/ D

X
K

Z
K

div.�
h
/ � grad.w � �h/dx

� k�
h
kV kw � �hk1

� chkC1 k�
h
kV kwkkC2;

(10.3.54)

so that from (10.3.51), (10.3.54) and (10.3.49) we get (10.3.50). ut
Remark 10.3.2. Result (10.3.50) is not optimal as far as the regularity of w is
involved. Actually, it says

kw � whk1 � chs kwksC2 .s � k C 1/; (10.3.55)

while an .s C 1/-norm on w should be enough for optimality. Furthermore, a more
sophisticated analysis [44, 192] shows that

kw � whkr � chs�rkwks .s � k C 2; 0 � r � 1/ (10.3.56)

for k � 1 and

kw � whk0 � ch2 kwk4 for k D 0: (10.3.57)

In particular, the approach of [44] has a special interest because, by a suitable
use of mesh-dependent norms in Vh and Qh, they can show that the discretised
problem (in the new norms) satisfy the abstract assumptions (5.2.33) and (5.2.34)
so that optimal error estimates (in the new norms) can be directly obtained by
Theorem 5.2.5. Their approach also works for other fourth-order mixed methods,
like those analysed in Sects. 10.1 and 10.2. ut
Remark 10.3.3. For the actual solution of the discretised problem, the most con-
venient method is to disconnect the continuity of �

h
� n and to enforce it back

via Lagrange multipliers �h. Then, one eliminates �
h

at the element level and one
solves a symmetric and positive definite system for the unknowns �h and wh. The
procedure is identical to the one described in Sect. 7.2 and we refer to it for a
detailed description. As far as the error estimates for the Lagrange multipliers �h
are concerned, recent results have been obtained in [158]. ut
Remark 10.3.4. It is interesting to analyse the relationship between the mixed meth-
ods described here and some nonconforming methods for fourth-order problems.
For instance, the following result is proved in [23]. Let us consider the space built
by means of the Morley element L2;NC

2 described in Example 2.2.6 and let us define

ah. h; �h/ WD Et3

12.1� �2/

X
K

Z
K

Œ.1 � �/D
2
 h W D

2
�h C �4 h4�h� dx:

(10.3.58)
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For every �h 2 L2;NC
2 , let �Ih be the piecewise linear interpolant of �h (that is �Ih 2

L11 and �Ih D �h at the vertices). Consider now the modified Morley problem: find
 h 2 L2;NC2 such that

ah. h; �h/ D .f; �Ih / 8�h 2 L2;NC
2 : (10.3.59)

Then, we have

D
2
 h D �

h
;  Ih D wh; (10.3.60)

where .�
h
;wh/ is the discrete solution of the mixed problem (10.3.18) and (10.3.19)

through (10.3.28) and (10.3.29) for k D 0. We note explicitly that, in the
case of variable coefficients, the equivalence is more complicated. Also note that
@ h=@nje D �hje for all e 2 Eh, where �h is the Lagrange multiplier introduced in
the previous remark. Notice that we have, from [23],

k h � wk1;h � ch2 kwk3; (10.3.61)

which improves (10.3.50) and (10.3.57) since it requires only H3-regularity on w.
This is particularly striking since the cost for computing  h is cheaper (or equal,
using �h) than the cost for computing .�

h
;wh/. ut

10.4 Moderately Thick Plates

10.4.1 Generalities

We end this chapter with a hint on the theory for the so-called “Mindlin–Reissner
plates”. The corresponding model stands somehow in between the standard three-
dimensional linear elasticity and the two-dimensional Kirchhoff theory for thin
plates. Let us recall it briefly. Assume that we are given a three-dimensional elastic
body that, in absence of forces, occupies the region˝ 	 ��t; t Œ, where˝ � R

2 is a
bounded smooth domain and t > 0 is “small” (but not “too small”) with respect to
diam(˝). This is what we call a “moderately thick” plate. We shall assume, for the
sake of simplicity, that the plate is clamped along the entire boundary @˝ 	 ��t; t Œ
and that a vertical load f D .0; 0; f3/ is imposed.

Here below, we present the “Mindlin-Reissner” model following the classical
engineering “derivation”. Such derivation is questionable, from the mathematical
point of view, at some points, but it has the clear merit of being short and
simple. From the mathematical point of view, the derivation of [35] is much more
convincing, but it is surely longer and more complicated. As the aim of this book
is mainly concentrated on the mathematical properties of models and on their
discretisations rather than on the modelling aspects, we decided to stick to the
simpler choice.
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The Mindlin model assumes that the “in plane” displacements u1 and u2 have
the form

u1.x; y; z/ D �z �1.x; y/; u2.x; y; z/ D �z �2.x; y/ (10.4.1)

and that the “transversal” displacement u3 has the form

u3.x; y; z/ D w.x; y/: (10.4.2)

The corresponding strain field therefore takes the form:
(
"11 D �z @�1=@xI "22 D �z @�2=@yI "33 D 0I
2"12 D �z.@�1=@y C @�2=@x/I 2"13 D @w=@x � �1I 2"23 D @w=@y � �2I

(10.4.3)
and assuming a linear elastic material, the stress field is

(
�11 D ."11 C �"22/ E=.1 � �2/I �22 D ."22 C �11/E=.1� �2/I
�ij D "ijE=.1C �/I i; j D 1; 2; 3; i ¤ j:

(10.4.4)

If we now write the total potential energy

˘ D 1

2

Z
˝���t;t Œ

.� W " � 2 f � u/ dx dy dz (10.4.5)

in terms of � and w through (10.4.1)–(10.4.4), we obtain (after some calculations)

˘ D t3

2
.a.�; �/C �t

2

Z
˝

j grad w � � j2 dx dy �
Z
˝���t;t Œ

f3 w dx dy dz; (10.4.6)

where the symmetric bilinear form a is identified by

a.�; �/ WD E

12.1� �2/

Z
˝

h�@�1
@x

C �@�2

@y

�@�1
@x

C
��@�1
@x

C @�2

@y

�@�2
@y

C .1 � �/
2

�@�1
@y

C @�2

@x

��@�1
@y

C @�2

@x

�i
dx dy;

(10.4.7)

where

� WD E k

2.1C �/
(10.4.8)

and k is a correction factor which is often used to account for the “nonconformity”
of (10.4.4). Indeed, from (10.4.1)–(10.4.4), we deduce that �13 and �23 are constants
in z, whereas the physical problem has �13 D �23 D 0 on the upper and lower face
of the plate: ˝ 	 ftg and ˝ 	 f�tg; hence, (10.4.4) is often corrected by assuming
that �13 and �23 behave parabolically in z, vanishing for z D ˙t and assuming the
value (10.4.4) for z D 0. For a mathematically more convincing justification of the
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classical 5=6 factor, we refer again to [35]. Actually, for the sake of simplicity, we
shall assume, from now on, that

� D 1:

In fact, as far as we do not expect the true value (10.4.8) to go to zero or to C1,
assuming � D 1 will just change the numerical value of the constants appearing in
the stability estimates or in the a priori error estimates, but it will not change the
behaviour in function of the thickness t or the mesh-size h.

10.4.2 The Mathematical Formulation

The assumed boundary conditions lead to the kinematic constraints

�1 D �2 D w D 0 on @˝: (10.4.9)

Hence, we define the spaces

� WD .H1
0 .˝//

2I Z WD H1
0 .˝/I V WD � 	Z (10.4.10)

with the norm

k.�; �/k2V WD k�k21 C k�k21: (10.4.11)

When convenient, the generic element of V will be denoted v D .�; �/ with � D
.�1; �2/ 2 � and � 2 Z. We finally recall the Korn inequality

9˛Korn > 0 such that a.�; �/ � ˛Korn k�k21 8� 2 �; (10.4.12)

where, from now on in this section, the symmetric bilinear form a will be the one
given in (10.4.7).

It is easy to check that, for any fixed t > 0, functional (10.4.5) has a unique
minimiser .�;w/ on V which satisfies

t3 a.�; �/C t

Z
˝

.grad w � �/ � � dx dy D 0 8� 2 �; (10.4.13)

t

Z
˝

.grad w � �/ � grad � dx dy D
Z
˝���t;t Œ

f3 � dx dy dz 8� 2 Z: (10.4.14)

In particular, we have

t3

2
a.�; �/C t

2

Z
˝

j grad � � �j2 dx dy � c.t/ .k�k21 C k�k21/; (10.4.15)
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for any v D .�; �/ 2 V . Note that for fixed t , (10.4.15) always guarantees
that (10.4.13), (10.4.14) is a nice linear elliptic problem so that, for instance, any
reasonable conforming approximation of V will have optimal order of convergence.

The troubles start when we take a small t ; then, the constant in (10.4.15)
deteriorates and so does the constant in front of the optimal error bound. In practice,
it is well known that if we use “any reasonable conforming approximation of V ”, we
will get pretty bad answers for small t . Here, we shall make an analysis of the nature
of the trouble. We shall also give some sufficient conditions on the discretisation so
that it stays good for t smaller and smaller. The one-dimensional case was treated
in [15], but the two-dimensional case, as we shall see, is more complicated.

The first thing that we have to do is to construct a sequence of physical problems
Pt (for t > 0 and, say t < T0) that fulfil the following requirements:

(1) Each Pt is of type (10.4.13) and (10.4.14) and so has a unique solution �.t/,
w.t/;

(2) There exists two constants c1, c2 with 0 < c1 < c2 such that

c1 � k�.t/k1 C kw.t/k1 � c2 8 t 2�0; T0Œ: (10.4.16)

A possible answer is to fix ˝ , E , and �, and to choose, for each t > 0, the load
f3.x; y; z/ of the form

f3.x; y; z/ WD t2

2
f .x; y/; (10.4.17)

with g.x; y/ fixed (once and for all) independent of t . It is clear that (10.4.17)
implies

Z
˝���t;t Œ

f3 w dx dy dz D t3
Z
˝

f w dx dy D t3.f;w/; (10.4.18)

where as usual .f;w/ denotes theL2.˝/ inner product or (with an abuse of notation)
whenever f is assumed to be only inH�1.˝/, the duality pairing betweenH�1.˝/
and H1

0 .˝/. Hence, dividing (10.4.6) by t3, each problem Pt will amount to
minimise, in V ,

˘t.�;w/ D 1

2
a.�; �/C t�2

2

Z
j grad w � � j2 dx dy � .f;w/: (10.4.19)

Proposition 10.4.1. Let �.t/, w.t/ be the minimiser of (10.4.19) in V .
Then, (10.4.16) holds with c1 and c2 independent of t .

Proof. We obviously have

a.�; �/C t�2k grad w � �k20 D .f;w/: (10.4.20)
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Using (10.4.12) and a little algebra, we deduce from (10.4.20) that

k�k21 C kwk21 � c.˛Korn/kf k�1kwk1; (10.4.21)

which implies the boundedness of k�k1 C kwk1 from above. Then, one observes
that the minimum of ˘t over all V is surely smaller than the minimum of ˘t over
V0 D f.�; �/ j � D grad �g (which is clearly independent of t and negative). Hence,

1

2
a.�; �/C t�2

2
k grad w � �k20 � .f;w/ � �c < 0 (10.4.22)

for some positive c independent of t , which immediately gives

.f;w/ � c > 0 (10.4.23)

which implies that kwk0 (and hence k�k1 C kwk1) is bounded from below by a
positive constant. This completes the proof. ut
According to Proposition 10.4.1, we have now a sequence of problems, indexed
by the thickness t , whose solutions are bounded uniformly (in t) and also bounded
uniformly away from zero.

For the convenience of the reader, we repeat explicitly the general problem of
our sequence.

The sequence of minimum problems. Given a bounded domain ˝ � R
2 with

diameter T WD diam.˝/ and an element f 2 L2.˝/, for every thickness t 2�0; T Œ,
we consider the problem: find .�.t/;w.t// in V WD .H1

0 .˝//
2 	H1

0 .˝/ such that

˘t.�;w/ � ˘t.�; z/ 8.�; z/ 2 V; (10.4.24)

where˘t is given by (10.4.19).
The sequence (10.4.24) is what we need to analyse the performance of numerical

methods. Indeed, we expect a “good and reliable” numerical method to perform
uniformly well on all the problems of our sequence, regardless of the possible
smallness of t . We therefore look for error bounds (in terms of powers of the mesh-
size h) which hold uniformly in t .

10.4.3 Mixed Formulation of the Mindlin-Reissner Model

It will be convenient, in order to carry on the analysis, to introduce the auxiliary
variable

�.t/ WD t�2.grad w.t/ � �.t// (10.4.25)
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which is related to the shear stresses but does not go to zero with t (and could
be considered as a sort of normalised shear stress). We can now write the Euler
equations for˘t in the form

a.�; �/C .�; grad � � �/ D .f; �/; 8.�; �/ 2 V; (10.4.26)

� D t�2.grad w � �/: (10.4.27)

This is now taking the form of the abstract problems studied in Chap. 4, especially
in Sect. 4.3. In particular, we can define the bilinear forms

A..�;w/; .�; z// WD a.�; �/; (10.4.28)

where a is defined in (10.4.7), and

B..�; �/; ı/ WD .grad � � �; ı/ (10.4.29)

corresponding to the operator

B W .�; �/ �! .grad � � �/; (10.4.30)

and finally the functional

.F; .�; �// WD .f; �/: (10.4.31)

With this notation, Eqs. (10.4.26) and (10.4.27) can be written as

A..� ;w/; .�; �//C B..�; �/; �/ D .F; .�; �// 8 .�; �/ 2 V; (10.4.32)

B..�;w/; ı/� t2.�; ı/ D 0 8 ı: (10.4.33)

As we have already seen on several other examples, it is convenient, from many
aspects, to consider (10.4.32) and (10.4.33) as a perturbation of the “limit problem”
that we have for t D 0, namely

A..�0;w0/; .�; �//C B..�; �/; �
0
/ D .F; .�; �// 8 .�; �/ 2 V; (10.4.34)

B..�0;w0/; ı/ D 0 8 ı: (10.4.35)

It is easy to check that the kernelK WD KerB is given by

K D f.�; �/ j .�; �/ 2 V such that � D grad �g: (10.4.36)

It is then clear that the Korn inequality (10.4.12) implies that the bilinear form A,
defined in (10.4.28), is elliptic in the kernel K of B:

A..�; �/; .�; �// � ˛0k.�; �/k2V 8 .�; �/ 2 K; (10.4.37)

with ˛0 depending only on the Korn constant ˛Korn appearing in (10.4.12).
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On the other hand, we note that we did not decide yet what the space Q should
be, and hence where ı is allowed to vary in (10.4.33) or in (10.4.35). Recalling the
general theory of Chap. 4, we observe that the space Q should be defined in such a
way that the operator B, associated with the bilinear form B, is surjective from V to
Q0 (or, at least, that its image is a closed subspace of Q0). It is therefore clear that
the next, crucial, step has to be the characterisation of the image of B, that is B.V /
with V given in (10.4.10).

In what follows, we are going to use the notation introduced in Chap. 2 for the
two-dimensional operators

curl W � �! curl� D
�
@�

@y
;�@�
@x

�
;

curl W � �! curl� D �@�1
@y

C @�2

@x
:

(10.4.38)

Note as well that (for the same reason) we are using here .x; y; z/ instead of
.x1; x2; x3/.

Proposition 10.4.2. The mapping B is surjective from V onto the space 
 D
H0.curl;˝/ defined by

H0.curlI˝/ D f� j� 2 .L2.˝//2; curl� 2 L2.˝/; � � t D 0 on @˝g (10.4.39)

k�k2H0.curlI˝/ WD k�k20 C k curl�k20 (10.4.40)

(where t is the unit tangent to @˝) and admits a continuous lifting.

Proof. We shall show that there exists a ˇRM > 0 such that: for every � 2
H0.rotI˝/ there exists .�; �/ 2 V verifying

� D grad � � � � B.�; �/; (10.4.41)

and

k�k1 C k�k1 � 1

ˇRM
k�kH0.curlI˝/: (10.4.42)

For this, we first choose v 2 .H1
0 /
2 such that

div v D � curl�; (10.4.43)

kvk1 � ck curl�k0I (10.4.44)

this is obviously possible because

Z
˝

curl� dx dy D
Z
@˝

� � t ds D 0: (10.4.45)
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Then, we set

� D .�1; �2/ WD .�v2; v1/ (10.4.46)

so that from (10.4.43) and (10.4.44) we have

curl� D � curl�; (10.4.47)

k�k1 � k curl�k0: (10.4.48)

Now choose � as the unique solution in H1
0 .˝/ of

4� D div�C div� 2 H�1.˝/I (10.4.49)

we have, using (10.4.48) and (10.4.49),

k�k1 � c .k div�k�1 C k div �k�1/ � c .k�k0 C k curl�k0/: (10.4.50)

We now have

8̂
<̂
ˆ̂:

div.grad � � �/ D div� in ˝;

curl.grad � � �/ D curl� in ˝;

.grad � � �/ � t D � � t D 0 on @˝;

(10.4.51)

which easily implies (10.4.41). On the other hand, (10.4.42) follows from (10.4.48)
and (10.4.50). ut

Proposition 10.4.2 tells us how to choose Q in order to have that B is surjective
from V to Q0. Actually, we have little choice: Q0 must be equal to the space 
 D
H0.curl;˝/ defined in (10.4.39). As we are dealing with Hilbert space, this implies
that Q has to be the dual space of 
 :

Q � 
 0 WD .H0.curlI˝//0: (10.4.52)

On the other hand, a little functional analysis allows us to characterise
 0 as follows:


 0 WD .H0.curlI˝//0

D H�1.divI˝/
D f� j � 2 .H�1.˝//2; div � 2 H�1.˝/g

(10.4.53)

with the norm

k�k2Q � k�k2
 0 WD k�k2�1 C k div �k2�1 : (10.4.54)
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Then, the Closed Range Theorem (see Sect. 4.2.2) tells us that Proposition 10.4.2
can be written in the form of an inf-sup condition:

9ˇRM > 0 such that inf
�2Q

sup
.�;�/2V

R
˝
.grad � � �/ � � dx dy

k.�; �/kV k�kQ � ˇRM: (10.4.55)

Hence, to start with, we can make precise the limit problem (10.4.34) and
(10.4.35) as follows

8̂
<̂
ˆ̂:

find .�0;w0/ 2 V and �
0

2 Q such that

A..� ;w/; .�; �//C B..�; �/; �
0
/ D .f; �/ 8 .�; �/ 2 V;

B..�0;w0/; ı/ D 0 8 ı 2 Q:
(10.4.56)

From (10.4.37) and (10.4.55), using Theorem 4.2.3, we then have the following
result on the limit problem (10.4.34) and (10.4.35) in the form (10.4.56).

Proposition 10.4.3. Let A and B be defined as (10.4.28) and (10.4.29), respec-
tively. Then, for every f 2 L2.˝/, the limit problem (10.4.56) has a unique solution
.�0;w0; �0/ and we have

k�0k1 C kw0k1 C k�
0
k
 0 � ckf k�1: (10.4.57)

ut
Remark 10.4.1. Actually, the abstract theory of Chap. 4 tells us that we could take
any framework that is much more general than the one used for problem (10.4.56).
For instance, we could have allowed a general F 2 V 0 (not necessarily of the
form (10.4.31)) in the right-hand side of the first equation. Besides, we did not
need to assume f 2 L2.˝/, as f 2 H�1.˝/ would clearly have been sufficient.
Moreover, a right-hand side in Q0 D 
 would also be allowed (instead of zero) in
the second equation. We decided, however, to present the result in the framework of
our original plate problem. ut
Remark 10.4.2. It is not difficult to check that the unique solution of (10.4.56) is
related to the solution of the Kirchhoff model: find wK 2 H2

0 .˝/ such that

E

12.1� �2/
	2wK D f (10.4.58)

by the relations

w0 D wK; �0 D grad wK: (10.4.59)

ut
Remark 10.4.3. In the case of beam problems, the space 
 0 is replaced by L2,
which makes things much easier. ut
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Remark 10.4.4. We now remark that, with our choice, we have Q0 �H0

.curlI˝/ ,! .L2.˝//2. As Q0 is clearly dense in .L2.˝//2, we also have
(identifying, as usual, .L2.˝//2 with its dual space) .L2.˝//2 ,! Q. This
implies that the perturbation introduced, for positive t , in the full problem (10.4.32)
and (10.4.33) has to be regarded as a singular perturbation of the limit
problem (10.4.34) and (10.4.35). Hence, it has to be dealt with using the instruments
of Sect. 4.3.2. ut

In view of the previous remark, we introduce the space

W WD .L2.˝//2 (10.4.60)

and set the mathematical framework for the Mindlin-Reissner problem (10.4.32)
and (10.4.33) as follows

8̂
ˆ̂<
ˆ̂̂:

find .�.t/;w.t// 2 V and �.t/ 2 W such that

A..�.t/;w.t//; .�; �//C B..�; �/; �.t// D .f; �/ 8 .�; �/ 2 V;
B..�.t/;w.t//; �/ D t2.�; �/W 8� 2 W D .L2.˝//2:

(10.4.61)

Having chosen W as well as Q, we can now prove the following result.

Proposition 10.4.4. Let the spaces V , Q, and W be defined as in (10.4.10)–
(10.4.60), respectively, and let the bilinear forms A and B and the opera-
tor (10.4.30) be defined in (10.4.28), (10.4.29) and (10.4.30), respectively. Then,
there exists an Q̨ > 0 such that

Q̨ k.�; �/k2V � A..�; �/; .�; �//C kB.�; �/k2W : (10.4.62)

Proof. The result is essentially trivial. Indeed, using (10.4.11), the triangle inequal-
ity, and the Poincaré inequality (1.2.14), we have first

k.�; �/k2V � k�k21 C C1k grad �k20 � C2.k�k21 C k grad � � �k20/;

where C1 and C2 depend only on the Poincaré constant. Then, we can use the Korn
inequality (10.4.12) and the definition of A and B to obtain

k�k21 C k grad �k20 � 1

˛Korn
A..�; �/; .�; �//C kB.�; �/k20;

and the result follows. ut
We can now apply Theorem 4.3.4 (with g D 0) and obtain the following result.
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Theorem 10.4.1. With the same assumptions as in Proposition 10.4.4, for
every f 2V 0 and for every t 2�0; 1Œ, problem (10.4.61) has a unique solution
.�.t/;w.t/; �.t//. Moreover, there exists a constant c, depending only on ˝ ,
such that

k�.t/k1 C kw.t/k1 C k�.t/k
 0 C tk�.t/k0 � ckf kV 0 : (10.4.63)

ut
We can now study the behaviour of the solutions of problem (10.4.61) when

t ! 0.

Proposition 10.4.5. With the same assumptions as in Theorem 10.4.1, we have

�.t/ * �0 in .H1
0 .˝//

2;

w.t/ * w0 in H1
0 .˝/;

�.t/ * �
0

in 
 0;

(10.4.64)

where .�0, w0, �0/ is the solution of the limit problem (10.4.56).

Proof. The weak convergence (a priori, up to a subsequence) in (10.4.64)
just follows from (10.4.16) and (10.4.57). A passage to the limit in (10.4.61)
gives (10.4.56). ut
Remark 10.4.5. Additional results in this direction can be found in [171]. ut

We can now apply the results of Proposition 4.3.5 and of Remarks 4.3.12
and 4.3.14 to estimate the convergence rate as a function of t2 which plays here the
role of �. This leads us to a convergence rate in

p
� D t . In order to improve this

bound and also to enable us later to get sharper error estimates, we now introduce a
decomposition principle for (10.4.26) and (10.4.27).

10.4.4 A Decomposition Principle and the Stokes Connection

We shall first prove the following decomposition principle for vector-valued func-
tions in 
 0 D H0.curlI˝/.
Proposition 10.4.6. Every element � 2 
 0 can be written in a unique way as

� D grad C curl p; (10.4.65)

with  2 H1
0 .˝/, p 2 L2.˝/=R, and curlp D

n
�@p=@y; @p=@x

o
. Moreover, we

may use

k�k2
 0 D k k2
H1
0 .˝/

C kpk2
L2.˝/=R

(10.4.66)

as a norm on 
 0.
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Proof. Set � WD div � 2 H�1.˝/. We define  to be the unique solution of
�4 D �,  2 H1

0 .˝/ and we set ˛ D � � grad . One has div˛ D 0 so
that ˛ D curlp and p is determined up to a constant in L2.˝/. Condition (10.4.66)
is then immediate. ut
Remark 10.4.6. The decomposition introduced in Proposition 10.4.6 also holds for
.L2.˝//2 andH.curlI˝/. The difference between these spaces lies in the regularity
of the p component. Indeed, taking � D grad Ccurlp with  2 H1

0 .˝/, we have

� 2 .L2.˝//2 , p 2 H1.˝/=R; (10.4.67)

� 2 H.rotI˝/ , p 2 H2.˝/=R; (10.4.68)

� 2 H0.rotI˝/ , p 2 H2.˝/=R and
@p

@n
D 0 on @˝: (10.4.69)

ut
It is now a simple exercise to transform problem (10.4.61) in terms of the new

unknowns �.t/, w.t/,  .t/, and p.t/. We have indeed the following basic theorem,
which is of considerable help in understanding the nature of the Mindlin-Reissner
equations.

Theorem 10.4.2. Any solution of (10.4.61) is a solution of the following
problem (and conversely) through the change of variables (10.4.65): find
.�.t/;w.t/;  .t/; p.t// in � 	Z 	H1

0 .˝/ 	 L2.˝/=R such that

.grad ; grad �/ D .f; �/ 8� 2 H1
0 .˝/; (10.4.70)

(
a.�.t/; �/ � .curlp.t/; �/ D .grad ; �/ 8� 2 .H1

0 .˝//
2;

� .�.t/; curl q/� t2.curlp.t/; curl q/ D 0 8q 2 H1.˝/=R;
(10.4.71)

.grad w.t/; grad�/ D .�.t/; grad�/C t2.grad ; grad�/ 8� 2 H1
0 .˝/:

(10.4.72)

Proof. The proof is immediate: it is enough to make the substitution (10.4.65), and
observe that both (10.4.61) and (10.4.70)–(10.4.72) have a unique solution. ut
Remark 10.4.7. It must be noted that (10.4.71) implies @p=@nj@˝ D 0 and p 2
H2.˝/ so that � D grad C curlp is indeed an element of 
 D H0.curlI˝/.
Note also that  .t/ is actually independent of t . ut
Remark 10.4.8. It is important to note that although (10.4.70)–(10.4.72) seems,
at first sight, a system of four equations, it actually decomposes immediately
into equation (10.4.70) (which allows to compute  directly from f ), plus
equations (10.4.71) (which allow to compute �.t/ and p.t/ once we know  ) plus
equation (10.4.72) (which allows to compute w.t/ once we know �.t/ and  ). We
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have thus reduced, through Theorem 10.4.2, our original problem into the following
sequence

– A Dirichlet problem (10.4.70) that is independent of t ,
– A “Stokes-like” problem (10.4.71),
– A Dirichlet problem (10.4.72).

ut
The decomposition provided by Theorem 10.4.2 shows us that it is the p

component of � which depends on t . Before coming back to the quantification of
this dependency, we rapidly develop the analogy between (10.4.71) and a Stokes
problem. Let us set �? D f��2; �1g . We can write (10.4.71) in the form

8<
:
a.�?; �?/C .p; div �?/ D .grad ; �?/ 8�? 2 .H1

0 .˝//
2;

.div �?; q/ D t2 .gradp; grad q/ 8q 2 H1.˝/=R:
(10.4.73)

The limit problem .t D 0/ is thus a standard Stokes problem and we shall be able
to rely on results of Chap. 8 to build approximations. We shall not analyse here the
case t ¤ 0 in too much detail. However, it is important to see the behaviour of p as
t ! 0.

Proposition 10.4.7. Let �.t/, w.t/, p.t/, and  be the solution of (10.4.70)–
(10.4.72). We then have

k�.t/k2 C kw.t/k2 C k .t/k2 C kp.t/k1 C t kp.t/k2 � c kf k0 (10.4.74)

where the constant c is independent of t . ut
We refer to [122] for the proof of this result which is based essentially on the

regularity properties of the Dirichlet problem and the Stokes problem.
An important point is that (10.4.74) does not improve too much for a more

regular f (even in a smooth domain). It is not possible to bound kp.t/k2 uniformly
in t . The reason is that the normal derivative of p.t/ vanishes although this is not the
case for the solution p.0/ of the limit problem. We thus have a boundary layer effect
which has been studied in [29]. This analysis shows that an analogue of (10.4.74)
exists for k�k 5

2
and kpk 3

2
but not for more regular spaces.

Remark 10.4.9. We can now try to apply Remarks 4.3.12 and 4.3.14 to our problem.
DenotingWC WD fp j p 2 H2.˝/=R; @p=@nj@˝ D 0g, it is clear that we have

j.curlp; curl q/j � ckpkW
C

kqk
L2.˝/=R

: (10.4.75)

Whenever the solution p0 of the limit problem is regular enough (this is the case for
smooth data and a smooth domain), we shall have
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p0 2 ŒL2.˝/;WC�� 8 � < 3

4
: (10.4.76)

No improvement is possible because of the fact that @p.0/=@n ¤ 0. We can thus
apply Remark 4.3.14 to get for � < 3

4

k�.t/ � �0k1 C kp.t/ � p0k0 C kw.t/ � w0k1 � ct2� kp0k� ; (10.4.77)

where kp0k� is the norm of p0 in ŒL2.˝/;WC�� . We can summarise (10.4.77) by
saying that we have an O.t3=2�"/ convergence. This requires, however, a smooth
domain. In the case where @˝ is only Lipschitz continuous, the best we can get
is O.t/. ut

10.4.5 Discretisation of the Problem

We now turn our attention to the discretisation of our problem (10.4.26) and
(10.4.27). Let us thus assume that we are given finite-dimensional subspaces �h
and Zh of � and Z and use Vh D �h 	 Zh as a subspace of V . We also discretise
the space W D .L2.˝//2 by 
h and we consider the discretised problem: find
.�h;wh; �

h
/ such that

8<
:
a.�h; �h

/C .�
h
; grad �h � �

h
/ D .f; �h/ 8.�

h
; �h/ 2 Vh;

.grad wh � �h; �h
/� t2.�

h
; �

h
/ D 0 8�

h
2 
h:

(10.4.78)

This could also be written with the notation of Sect. 10.4.3, that is, in particular,
making use of the bilinear form A and B defined in (10.4.28) and (10.4.29). The
discrete problem (10.4.78) becomes: find ..�h;wh/; �h/ 2 Vh 	Qh such that

8<
:

A..�h;wh/; .�; �//C B..�; �/; �
h
/ D .F; .�; �// 8 .�; �/ 2 Vh;

B..�;w/; �/� t2.�; �/ D 0 8� 2 Qh � 
h:
(10.4.79)

In what follows, we shall use either the form (10.4.78) or the form (10.4.79),
according to the notational convenience.

Remark 10.4.10. Note that from the second equation of (10.4.78), we do not have
in general �

h
D �t�2.grad wh � �h/ unless we take �h, Zh, and 
H such that

gradZh ��h � 
h. This, as we shall see, could be a problem regarding the actual
implementation of the method. Indeed, in the common engineering practice, one
prefers to solve the discrete problems in terms of �h and wh alone. In this case, the
use of the mixed formulation (and the introduction of the variable �

h
) should be

regarded as a mathematical artefact used in order to have a better understanding of
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the mathematical structure of the discretised problem. We will come back several
times to this important point. ut
It is easy to check that, now, the discrete kernel Kh WD KerBh is given by

Kh D f.�; �/ j �; �/ 2 Vh; .� � grad �; ı/ D 0 8ı 2 
hg; (10.4.80)

and we consider the problem of having, for our discrete problem, the ellipticity in
the discrete kernel;

A..�; �/; .�; �// � ˛h0k.�; �/k2V 8 .�; �/ 2 Kh: (10.4.81)

For the continuous case, the Korn inequality (10.4.12) implied that the bilinear form
A is elliptic in the kernelK (see (10.4.37)). As the variable � does not appear in the
actual expression of A..�; �/; .�; �//, we deduce that the only possibility in order to
have the ellipticity in Kh is that the following property holds

9� > 0 s. t. f.�; �/ 2 Khg ) fk�k1 � �k�k1g (10.4.82)

and a simple necessary condition for it is that

f.grad �; ı/ D 0 8ı 2 
hg ) fgrad � D 0g: (10.4.83)

This can easily be satisfied assuming for instance that

grad.Zh/ � 
h: (10.4.84)

As we shall see, the above condition (10.4.84) is not difficult to enforce when
choosing the finite element spaces and the vast majority of the good and reliable
methods will satisfy it. On the other hand, the discrete inf-sup condition

9ˇRM > 0 such that inf
�2Qh

sup
.�;�/2Vh

R
˝.grad � � �/ � � dx dy

k.�; �/kV k�kQ � ˇRM (10.4.85)

is a major difficulty, and most methods will be designed in order to get around
it. For this, the first methods that we are going to consider are those based on the
decomposition principle given in Proposition 10.4.6 and on the re-formulation of
the problem given in Theorem 10.4.2.

Remark 10.4.11. It will often be convenient to look as well at the limit problem:
find .�0h;w0h; �0h/ 2 �h 	Zh 	 
h such that

8<
:
a.�0h; �h

/C .�
0h
; grad �h � �

h
/ D .f; �h/ 8.�

h
; �h/ 2 Vh;

.�
h
; grad w0h � �0h/ D 0 8�

h
2 
h;

(10.4.86)
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that could also be expressed in the form (10.4.79) with t D 0. It also comes from
the results of Sects. 4.3.2 and 5.5.3 that to get a good approximation of (10.4.61)
by (10.4.79) (that is, with convergence properties independent of t), it is necessary
for (10.4.86) to be a good approximation of (10.4.34) and (10.4.35). ut

We shall first consider the most “naive” case.

Example 10.4.1 (The direct approach). Let us suppose that we are given �h � �

and Zh � Z, and let us choose


h D grad.Zh/��h: (10.4.87)

This choice implies that

KerBh D f.�
h
; �h/ j �

h
D grad �hg � KerB; (10.4.88)

so that the ellipticity in Kh (10.4.81) evidently holds. It is important to note that
the choice (10.4.87) is very easy to use on the computer, as it actually corresponds
to minimising the energy functional ˘t given by (10.4.19) on Vh D �h 	 Zh and
that you do not even see �

h
(nor 
h). The choice (10.4.87) is then one of the most

widely used choices for 
h although, in general, one does not realise it.
However, in the limit t ! 0, one is lead to minimise

˘t � a.�
h
; �
h
/ � .f; �h/ (10.4.89)

on KerBh. Now, a quick glance to KerBh will make us understand that we have a
long way to go. Consider �?

h
D f��2h; �1hg, that is, a rotation of �=2 of �

h
. It is

clear that if .�
h
; �h/ belongs to KerBh, we then have, by (10.4.88),

div �?
h

D curl�
h

D 0: (10.4.90)

Therefore, with choice (10.4.87), we are minimising ˘t in (10.4.89) on a subset of
functions �

h
satisfying (10.4.90). However, we have already seen in Chap. 8, for the

linear Stokes problem, that it is not recommended to work with velocity fields which
are exactly incompressible (because there are too few of them in general). A direct
application of (10.4.87) is likely to lead to bad results (e.g. locking) unless a very
special choice of�h and Zh has been made. ut

In what follows, we shall mainly concentrate on two groups of finite ele-
ment approaches: the Methods based on the decomposition principle, and the
Methods based on a nonconforming approximation of the original minimisation
problem (10.4.24).
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10.4.5.1 Methods Based on the Decomposition Principle

The first group of methods that we present is directly guided by the decomposition
principle of Propositions 10.4.6 and 10.4.2 in which a Stokes-like problem explicitly
appears. For the sake of simplicity, we shall describe one possible method in
this group, based on the MINI element for Stokes. However, it will be clear that
starting from every finite element stable approximation for the Stokes problem using
continuous pressures, one can derive a Reissner-Mindlin method belonging to the
present group.

The basic idea is to give up a direct approximation of � and to approximate
instead each component of its decomposition into grad h C curlph. Moreover,
as (10.4.71) shows us that �h and ph are analogous to a velocity field and a pressure
field in a Stokes problem, we shall try to use some results of Chap. 8 to build a
suitable approximation.

We assume that ˝ is a convex polygon and that we are given a sequence fThg of
partitions of ˝ into triangles. Let �h be built by employing the MINI element of
Chap. 8 , that is, in the notations of Chap. 2,

(
�h D .L11 \H1

0 .˝//
2 ˚ B3;

Zh D L11 \H1
0 .˝/:

(10.4.91)

These are spaces of piecewise linear polynomials enriched by a bubble function in
the case of �h. We also introduce


h WD grad.L11 \H1
0 .˝//˚ curl L11 � gradZh ˚ curl L11: (10.4.92)

This space is then a strict subspace of piecewise constant vector functions
constructed by discretising the ingredients of the decomposition principle of
Proposition 10.4.6 and Remark 10.4.6.

It is straightforward to check that KerBh is made of the pairs .�
h
; �h/ in�h 	Zh

such that

.�
h
; curl qh/ D 0 8qh 2 L11; (10.4.93)

.grad �h; grad �h/ D .�
h
; grad�h/ 8�h 2 Zh � L11 \H1

0 .˝/: (10.4.94)

Now, condition (10.4.94) is especially nice as it implies

k�hk1 � c k�
h
k1; 8.�

h
; �h/ 2 KerBh; (10.4.95)

and hence, (10.4.82) holds and we have the ellipticity in the kernel (10.4.81).
We still have to check the inf-sup condition (10.4.85) and we can do it using
Proposition 5.4.3: given .�; �/, we must then be able to build .�

h
; �h/ D ˘h.�; �/

such that
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B..�; �/� .�
h
; �h/; ıh/ D 0 8ıh; (10.4.96)

with

k�
h
k1 C k�hk1 � c .k�k1 C k�k1/: (10.4.97)

Using the structure ı D grad�h C curl qh, condition (10.4.96) becomes:
8<
:
.grad �h; �h � grad �h/ � .grad �h; � � grad �/ D 0 8�h 2 Zh;
.curl qh; �

h
� grad �h/� .c url qh; � � grad �/ D 0 8qh 2 L11:

(10.4.98)

In order to construct the operator ˘h, we use the result already obtained in
Chap. 8 to deal with the inf-sup condition for the MINI element. In particular, we
proved that there exists an operator˘S , from� D .H1

0 .˝//
2 into �h, such that

.grad qh; � �˘S.�// D 0 8qh 2 L11; (10.4.99)

with k˘S.�/k1 � C k�k1 and C independent of h. With the same arguments, we
can obviously prove that there exists an operator˘R from � D .H1

0 .˝//
2 into �h

such that

.curl qh; � �˘R.�// D 0 8qh 2 L1 � 1; (10.4.100)

with

k˘R.�/k1 � C k�k1; (10.4.101)

with C independent of h. Condition (10.4.100), taking into account the fact that
.curlqh; grad �h/ D .curl qh; grad �/ � 0 (by Green’s formula), tells us that the
second equation of (10.4.98) is satisfied if we take �

h
D ˘r.�/. We now observe

that the first equation of (10.4.98) reduces to

.grad�h; grad �h/ D . grad�h; grad � � �C˘R.�// 8�h 2 Zh; (10.4.102)

and this is a discrete Dirichlet problem for the Laplace operator for which we have
easily k�hk1 � c .k�k1 C k�k1/, yielding the second part of (10.4.97).

Remark 10.4.12. It should be clear from our construction that the crucial step is to
have an operator˘R satisfying (10.4.100) and (10.4.101). This, always changing as
we did the div operator into rot, essentially means that we could take, instead of the
MINI element, any other finite element pair that is stable for the Stokes problem and
which uses continuous pressures. ut
Having proved the inf-sup condition (10.4.85), we can therefore apply to the limit
problem (10.4.86) the basic results of Chap. 5. We can summarise this in the
following proposition.
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Proposition 10.4.8. Problem (10.4.86) with the choice (10.4.91) and
(10.4.92) has a unique solution. Moreover, if .�0;w0; �0/ is the solution of (10.4.34)
and (10.4.35), we have

k�0��0hk1 C kw0�w0hk1 C k�
0
��

0h
k
 0

� ch fkw0k3 C k�
0
kH.divI˝/g: (10.4.103)

ut
Remark 10.4.13. The result of Proposition 10.4.2 can be applied to the discrete
problem in the present case. Indeed, we built, a priori, 
h in order to obtain
a decomposition principle. Problem (10.4.78) can be written in the form: find
.�h.t/;wh.t/;  h.t/; ph.t// in �h 	Zh 	Zh 	 L11=R such that

.grad h; grad �/ D .f; �/ 8� 2 Zh; (10.4.104)
(
a.�h; �/ � .curlph; �/ D . grad h; �/ 8� 2 �h;
� .�h; curl q/� t2.curlph; curl q/ D 0 8q 2 L11=R;

(10.4.105)

.grad wh; grad�/ D .�h; grad�/C t2.grad h; grad�/ 8� 2 Zh: (10.4.106)

These problems can be solved sequentially and (10.4.105) is a Stokes-like problem
using the MINI element of Chap. 8. This approximation has been introduced and
studied for t ¤ 0 in [122]. Using this decomposition and Proposition 10.4.8,
recalling that

k�k
 0 D k k1 C kpk0=R; (10.4.107)

and bringing in the regularity result of Proposition 10.4.7, we have, for t D 0, the
following estimate:

k 0h �  0k1 C kp0 � p0hk0=R � ch fkw0k2 C k 0k2 C kp0k1g � ch kf k0:
(10.4.108)

From a numerical point of view, (10.4.104)–(10.4.106) can lead to an efficient
method, provided one has a Stokes solver available. ut
Remark 10.4.14. An easy duality argument would also show that we have the
estimate

k�0 � �0hk0 C kw0 � w0hk0 � ch2fkw0k3 C k�
0
kH. divI˝/g: (10.4.109)

ut
To end the discussion on this group of methods, we rapidly show how the results

of Sect. 5.5 can be applied to the case t ¤ 0. We consider the error estimate (5.5.52)
from Remark 5.5.5, where we denote V D .H1

0 .˝//
2 	H1

0 .˝/, Q D 
 0 and
W D .L2.˝//2. The parameter � is, of course, t2 in the present case. It is
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easily verified that all conditions are satisfied and that we have, taking into account
regularity properties of Remark 10.4.6,

k�.t/��h.t/k21 C kw.t/�wh.t/k21 C k�.t/��
h
.t/k2
 0

C t2 k�.t/ � �
h
.t/k20 � C

�
inf
�
h

k�.t/ � �
h
k21 C inf

qh
kw.t/ � qhk21

C inf
�
h

fk�.t/��
h
k2
 0 C t2k�.t/��

h
k20g

�
: (10.4.110)

Using the decomposition principle and the estimate (10.4.74), we can recover the
following result of [122].

Theorem 10.4.3. For every t 2�0; T Œ, problem (10.4.104)–(10.4.106) with the
choices (10.4.91) and (10.4.92) has a unique solution .�h.t/;wh.t/;  h.t/; ph.t//.
If moreover .�.t/;w.t/;  .t/; p.t// is the solution of (10.4.70)–(10.4.72), then we
have

k�.t/ � �h.t/k21 C kw.t/ � wh.t/k21
C k .t/ �  h.t/k21 C jp.t/ � ph.t/j20 C t2 kp.t/ � ph.t/k21

� c h2fk�.t/k22 C kw.t/k22 C k .t/k22 C jp.t/j21 C t2kp.t/k22g; (10.4.111)

with c independent of h and t .

We therefore have an O.h/ convergence uniform in t . This result cannot be
(much) improved because of the boundary layer effect already described.

10.4.5.2 Nonconforming Approximations of the Minimum Problem

The previous class of methods is, although interesting, rather remote from the
actual engineering practice in which one tries to stick as closely as possible to
the original formulation. In particular, as already pointed out in Remark 10.4.10,
what is preferred in the engineering practice is to work only in terms of the original
unknowns � and w, and, possibly, having their degrees of freedom at the same nodes
(in particular if one wants to extend the methods to shell problems).

As we have seen, however, in Example 10.4.1, working directly on the minimi-
sation problem (10.4.24) would require approximations �h.t/ and wh.t/ that, in the
limit for t ! 0, satisfy �h.0/ D grad wh.0/, and if we want to use a conforming
approximation�h � � this would require wh 2 Zh to belong to H2

0 .˝/, which is
not so easy to obtain, in particular for low degree elements.

The most common escape to the troubles that we are facing is to use some
kind of numerical integration (or a nonconforming approximation) for the term
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t�2k grad w � �k2 which appears in (10.4.19), thus weakening condition (10.4.90).
A way of formalising it is the following. We assume that we are given a linear
operator r which maps �h 	 Zh into (for instance) L2.˝/. To see an example,
consider for instance the possible, but not necessarily recommended, choices:

r.�; �/ 2 L00 and r.�; �/jK D mean value of .grad � � �/ on K (10.4.112)

or

r.�; �/ 2 L00 and r.�; �/jK D value of .grad � � �/ (10.4.113)

at the barycentre of K . Then, one minimises, instead of ˘t (as in (10.4.24)), the
functional

Mr
t WD 1

2
a.�; �/C t�2

2
kr.�;w/k20 � .f;w/ (10.4.114)

on�h 	Zh. This can be regarded as obtained from the problem find .�h;wh; �h/ 2
�h 	Zh 	 
h such that

8<
:
a.�h; �h

/C .�
h
; r.�

h
; �h//� .f; �h/ D 0 8.�

h
; �h/ 2 Vh;

.�
h
; r.�h;wh// � t2.�h; �

h
/ D 0 8�

h
2 
h;

(10.4.115)

whenever its second equation is equivalent to

�
h

D t�2r.�h;wh/: (10.4.116)

This will always be the case for choices of 
h that verify

r.�h;Zh/ � 
h: (10.4.117)

In this case, the limit problem (for t D 0) will be: find .�h;wh; �h/ 2 �h 	Zh 	 
h
such that

8<
:
a.�h; �h

/C .�
h
; r.�

h
; �h//� .f; �h/ D 0 8.�

h
; �h/ 2 Vh;

.�
h
; r.�h;wh// D 0 8�

h
2 
h:

(10.4.118)

With the notation (10.4.28) for A and setting

QBh..�; �/; �/ D .r.�; �/; �/.L2.˝//2 8.�; �/ 2 Vh 8� 2 
h; (10.4.119)

we can write the problem (10.4.115) as



10.4 Moderately Thick Plates 617

8̂
ˆ̂<
ˆ̂̂:

find .�h.t/;wh.t// 2 Vh and �
h
.t/ 2 Wh � 
h such that

A..�h.t/;wh.t//; .�; �//C QBh..�; �/; �h.t// D .f; �/ 8 .�; �/ 2 Vh;
QBh..�h.t/;wh.t//; �/ D t2.�; �/W 8� 2 W D .L2.˝//2:

(10.4.120)
The kernel of the operator QBh associated with QB will then be

Ker QBh D f.�
h
; �h/ 2 Vh such that .r.�

h
; �h/; �/ D 0 8� 2 
hg;

(10.4.121)

which, assuming that (10.4.117) is satisfied, can also be written as

Ker QBh D f.�
h
; �h/ 2 Vh such that r.�

h
; �h/ D 0g: (10.4.122)

All this should be connected to the ellipticity in the kernel, or, better, to the following
(more powerful) property, strongly related to (5.5.46)

9 Q̨RM > 0 such that A..�; �/; .�; �//C t�2kBh.�; �/k2W
� A..�; �/; .�; �//C t�2kr.�; �/k20
� Q̨RMk.�; �/k2V 8 .�; �/ 2 Vh 8t 2�0; T Œ; (10.4.123)

where T is always the diameter of ˝ as in (10.4.19).
We have for this the following result.

Proposition 10.4.9. Let A and QBh be defined as in (10.4.28) and (10.4.119) for
an r that satisfies (10.4.117). If moreover we have

9cr and Cr > 0 such that kr.�; �k20 � Crk grad �k20 � crk�k21 8 .�; �/ 2 Vh;
(10.4.124)

then (10.4.123) holds.

Proof. The proof is almost immediate using the Korn inequality (10.4.12). It is
sufficient to combine the two inequalities

A..�; �/; .�; �//C t�2kr.�; �/k20 � A..�; �/; .�; �// � ˛Kornk�k21
and

A..�; �/; .�; �//C t�2kr.�; �/k20
� T �2kr.�; �/k20 � T �2�Crk grad �k20 � crk�k21

�
:

Condition (10.4.124) might look cumbersome. We have, however, a simple
sufficient condition for that.
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Proposition 10.4.10. Assume that r.�; �/ has the form

r.�; �/ WD Rh.�/� grad �; (10.4.125)

where R is a mapping from �h to 
h such that

kRh.�/k0 � CRk�k1; (10.4.126)

for some constant CR independent of h. Then, (10.4.124) holds.

The proof is an easy exercise.
We can now use Theorem 5.5.5 and obtain the following abstract error bound.

Theorem 10.4.4. Assume thatR is an operator from�h to
h satisfying (10.4.126),
and assume that the bilinear form QB is defined through (10.4.125) and (10.4.119).
For every t 2�0; T Œ, let .�.t/;w.t/; �.t/ be the solution of Problem (10.4.61)
and let .�h.t/;wh.t/; �h.t/ be the solution of (10.4.120). Then, for every
.�I .t/;wI .t/; � I .t/ in �h 	Zh 	 
h such that

Rh.�I / � grad wI D t2�
I
; (10.4.127)

we have

k�h.t/ � �I .t/k1 C kwh.t/ � wI .t/k1 C tk�
h
.t/ � �

I
.t/k0

� C
�
k�.t/ � �I .t/k1 C kw.t/ � wI .t/k1 C k�.t/ � �

I
.t/kQ

C sup
�2�h

.Rh�; �/� .�; �
I
/

k�k1
�

(10.4.128)

where C is a constant independent of t and h.

Proof. The proof is elementary: using (10.4.126) and Proposition 10.4.10, we
obtain (10.4.124). Using Proposition 10.4.9, we obtain (10.4.123), which is the
crucial assumption needed to apply Theorem 5.5.5. ut
Remark 10.4.15. In many cases, the last term in the right-hand side of (10.4.128)
can be better estimated by

sup
�2�h

.Rh�
I

� �; �/
k�k1 C sup

�2�h

.�; � � �
I
/

k�k1 (10.4.129)

which, in a sense, separates the errors k�.t/� �
I
.t/k�1 and kRh � Identityk. It has

to be pointed out that, in most cases, the difference Rh�
I

� � will be orthogonal to
all (vector-valued) polynomial of a certain degree ` so that
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sup
�2�h

.Rh�
I

� �; �/

k�k1 � C hk� � �`�k0 (10.4.130)

where �` is the projection operator on polynomials of degree `. ut
As we did for the previous class of methods (the ones based on the decompo-

sition), we will not present here a list of all methods of this type available on the
market. We will instead present a single method, as an example, in order to show
the general guidelines that rule their construction.

We assume again that ˝ is a convex polygon and then we are given a sequence
fThg of partitions of ˝ into triangles. We set, with the notation of Chap. 2,

�h WD .L12 C B3/
2 \ .H1

0 .˝//
2; Zh WD .L12 CB3/\H1

0 .˝/; (10.4.131)


h WD f� 2 .L02/2 s. t. � j� � t 2 P1.e/ 8 edge eg \H0.curlI˝/: (10.4.132)

Note that this is the rotated BDFM2, following Remark 2.3.2. Together with the
spaces (10.4.131), we consider the operator˘h from, say, .H1.˝//2 into 
h defined
in each triangle K by

Z
e

.˘h� � �/ � t�1 ds D 0 8e 2 @K 8�1 2 P1.e/; (10.4.133)

Z
K

.˘h� � �/ � q dx D 0 8q 2 RT 0.K/; (10.4.134)

where RT 0.K/ is the lowest order Raviart-Thomas space (see Chap. 2).
We can now define the operator r . Following the structure (10.4.125), we set

r.�
h
; �h/ D grad �h �˘h�

h
2 
h: (10.4.135)

The kernel of Bh as defined in (10.4.121) is now easily characterised as the set of
.�
h
; �h/ such that

˘h�h
D grad �h: (10.4.136)

Since k˘h�
h
k0 � ck�

h
k1 for some constant c independent of h, we can apply

Proposition 10.4.10 and then Proposition (10.4.9) to get

A..�; �/; .�; �//C t�2kr.�; �/k20 � Q̨RMk.�; �/k2V (10.4.137)

that is, more precisely, condition (10.4.137). In order to apply Theorem 10.4.4, we
just need to check that condition (10.4.127) holds for suitable �I ;wI ; �I having
optimal approximation properties. For the construction of �I ;wI ; �I , we can use
the following lemma.
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Lemma 10.4.1. Assume that

f� 2 
h such that curl� D 0g � grad.Zh/: (10.4.138)

Set �
I

WD ˘h� and assume that we can find �i and wi verifying

curl˘h.�
i � �/ D 0 ˘h.grad wi � grad w/ D 0: (10.4.139)

Then, from (10.4.138) and (10.4.139), one obviously has

˘h.�
i � �/ D grad �h (10.4.140)

for some �h 2 Zh. Then setting

�I WD �i wI D wi � �h; (10.4.141)

one has (10.4.127) as well as

k˘h.�I � �/k1 C kwI � wk1 � 2 k˘h.�
i � �/k1 C kwi � wk1: (10.4.142)

Note that, in other words, inequality (10.4.142) tells us that we can “arrange”
(10.4.127) without losing accuracy. The proof is simple: first we check that

˘h�I � grad wI

D ˘h�
i � grad wI D ˘h� C .˘h� i �˘h�/� grad wI

D ˘h� C grad �h � grad wI D ˘h� � grad wi

D ˘h� �˘h grad wi D ˘h.� � grad wi / D ˘h.t
2�/

D t2�
I
; (10.4.143)

giving us (10.4.127). Inequality (10.4.142) then follows immediately from

kwI � wk1 � kwi � wk1 C k�hk1 � kwi � wk1 C k˘h.�
i � �/k1: (10.4.144)

ut
Then, we just have to construct �i and wi satisfying (10.4.139). The construction

of �i is easy. Indeed, denoting ˘CR the B-compatible operator for the Couzeix-
Raviart element for the Stokes problem and by �1 the projection onto L01, one has
from Example 8.6.1

�1 curl.� � curl˘CR�/ D 0 (10.4.145)

and similarly, from the properties of the BDFM element,

�1 curl � � curl˘h� D 0: (10.4.146)
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We deduce that

curl˘h� D �1 curl � D �1 curl˘CR� D curl˘h˘CR�: (10.4.147)

This says that the choice

�i WD ˘CR� (10.4.148)

will satisfy the first condition of (10.4.139). On the other hand, taking

wi .P / D w.P / for all node P in Th; (10.4.149)Z
e

.wi � w/ ds D 0 for all edge e in Th; (10.4.150)

and Z
K

.wi � w/ dx D 0 for all triangleK in Th; (10.4.151)

we easily have that

Z
e

grad.wi � w/ � t �1; ds D 0 8 edge e in Th; 8�1 2 P1.e/ (10.4.152)

and
Z
T

grad.wi � w/ � q dx D 0 8 triangle T in Th; 8q 2 RT 01.T /; (10.4.153)

implying the second condition of (10.4.139).
We can therefore use Theorem 10.4.2 and standard interpolation estimates

(together with Remark 10.4.15) to obtain the following result.

Theorem 10.4.5. Consider the discretised problem (10.4.120) with the choices
(10.4.131)–(10.4.135). Then, for every t 2�0; T Œ, it has a unique solution
.�h.t/;wh.t/; �h.t/. Let moreover .�.t/;w.t/; �.t/ be the solution of Prob-
lem (10.4.61). Then we have

k�h.t/ � �I .t/k1 C kwh.t/ � wI .t/k1 C t k�
h
.t/ � �

I
.t/k0

� C h2
�
k�.t/k3 C kw.t/k3 C tk�.t/k2 C k�kH1.divI˝/

�
(10.4.154)

where C is a constant independent of t and h.

As we already noted, this estimate is overoptimistic because it ignores the
boundary layer effects. From the results of [29], anO.h3=2/ convergence rate should
be expected.
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Remark 10.4.16. Similar estimates have been obtained in [117] for the presently
discussed element and related ones, including elements defined on quadrilaterals.
More refined estimates can be found in [126]. A recent review of different Mindlin-
Reissner approximations, including the Linked interpolation techniques (that have
not been considered here), can be found in [190]. ut
Remark 10.4.17. The choice of second-order accuracy has been made only for the
sake of simplicity. Higher-order elements are possible and we shall indicate at
the end of this chapter a general framework within which they could be built. On the
contrary, lower-order elements are more difficult to get; see for instance [54] for the
convergence analysis of a similar method, which is only O.h/ accurate [55, 258].
We also refer to [28, 54, 122, 126, 181, 182, 323] for other examples. ut
Remark 10.4.18. It is possible to use a duality argument to get an O.h3/ estimate
for k� � �hk0 and kw � whk0. See [126]. ut

Now to end this lengthy section, we are in a position to present general guidelines
for the discretisation of Mindlin–Reissner problems.

We must emphasise again that the decomposition principle makes apparent a
direct link with the Stokes problem. Indeed, all examples for which a satisfactory
analysis could be achieved contained an already proven Stokes element. If we distin-
guish the case of continuous pressure approximation and the case of discontinuous
pressure element, we get two types of strategies.

10.4.6 Continuous Pressure Approximations

– Suppose one knows �h 	Qh to be a good approximation of the Stokes problem
with Qh � H1.˝/.

– Choose Zh an approximation of H1
0 .˝/ of the same order of accuracy.

– Write 
h D gradZh C curlQh.

In this context, the definition of 
h does not lead, in general, to a standard space
and the decomposition principle of Theorem 10.4.2 and Remark 10.4.5 is the only
way to handle things from a computational point of view. It may, however, happen,
for a clever choice of Zh and Qh, that 
h turns out to be a standard polynomial
space. Such a situation has been encountered in [28] where, using for �h 	Qh the
MINI element, but takingZh to be L1;NC

1 , that is, a nonconformingP1 approximation
ofH1

0 .˝/, 
h comes to be the whole space .L00/2 and not a proper subspace. For an
extension of the Arnold-Falk element to higher degree, see [14, 26].

10.4.7 Discontinuous Pressure Elements

This second class of approximations to the Stokes problem has been the basis for the
“reduced integration” method of the last subsection. Here, we shall try to outline the
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principal features of this strategy in order to provide a guide for possible extensions,
some of which can be found in [117].

1. Here again, our starting point is an approximation of the Stokes problem�h	Qh,
Qh being a space of discontinuous polynomial functions. This approximation
should, of course, satisfy the inf-sup condition.

2. We need to match this with an approximation 
h ofH0.curl;˝/. More precisely,
we need a couple of spaces .
h;Qh/ (where Qh is the same as before) and a
uniformly bounded linear operator ˘h ! 
h such that we have the commuting
diagram:

H
curl�����! L2.˝/

˘h

??y Ph

??y

h

curl�����! Qh

(10.4.155)

where � D .H1.˝//2 \H0 .curl;˝/ and Ph is the L2-projection operator.
3. We finally need a space Zh � H1

0 .˝/ such that

gradZh D fıh 2 
h; curl ıh D 0g: (10.4.156)

Ingredients (1), (2), (3) will produce a plate element for which one can essentially
repeat the proof of Theorem 10.4.5 and obtain optimal error estimates for � and w.
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