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Preface

About 10 years ago, Mixed and Hybrid Finite Element Methods by F. Brezzi and
M. Fortin went out of print and we were asked to allow a second printing. The world
had evolved and we thought that a revision was due and that some topics had to be
added to the book. For this task, D. Boffi joined the team and we began to write the
improved version. It turned out that this meant doubling the number of pages and
essentially producing a new book.

We hope that the result is now a better, self-contained, presentation of the
underlying issues, either from linear algebra or from functional analysis. The
presentation of the basic results should now be accessible to readers which are
not familiar with functional analysis, although willing to invest some effort in
understanding mathematical issues.

The scope of finite element approximations was extended to H.curlI˝/ and
the three-dimensional cases are now fully covered. Tensor elements were also
considered for elasticity problems. The approximation of eigenvalue problems has
been included as well.

Moreover, new applications have been introduced: mixed elasticity and electro-
magnetism. New results have been added to already treated applications such as the
Stokes problem or mixed formulations of elliptic problems. Even so, some topics
have been merely addressed. This is, for example, the case of a posteriori estimators,
Discontinuous Galerkin methods and new developments on virtual elements which
would have required a long development in an already (too?) long book. Indeed,
each of these topics could be the subject of a whole book. The analysis of mixed
methods is also relevant to many applications such as mortar methods or contact
problems which were also reduced to a few remarks. This does not mean that these
are not important. We had to stop somewhere. Indeed, we took a long time to do so.

We thus hope that this book will provide a good starting point for all those
interested in mixed (and related) finite element methods.

Pavia, Italy D. Boffi and F. Brezzi
Québec, Canada M. Fortin
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Chapter 1
Variational Formulations and Finite
Element Methods

Although we shall not define in this chapter mixed and hybrid (or other non-
standard) finite element methods in a very precise way, we would like to situate them
in a sufficiently clear setting. As we shall see, boundaries between different methods
are sometimes rather fuzzy. This will not be a real drawback if we nevertheless know
how to apply correctly the principles underlying their analysis.

After having briefly recalled some basic facts about classical methods, we shall
present a few model problems. The study of these problems will be the kernel
of this book. Thereafter, we rapidly recall basic principles of duality theory as
this will be our starting point to introduce mixed methods. Domain decomposition
methods (allied to duality) will lead us to hybrid methods. Then we shall briefly
discuss modified variational formulations that can be used to obtain better stability
properties for the discretised versions.

1.1 Classical Methods

We recall here, in a very simplified way, some facts about optimisation methods and
the classical finite element method. Such an introduction cannot be complete and
does not want to be. We refer the reader to [146] or [334], among others, where
standard finite element methods are clearly exposed. We also refer to [167] where
an exhaustive analysis of many of our model problems can be found.

Let us consider a very common situation where the solution of a physical problem
minimises some functional (usually an “energy functional”), in a “well chosen”
space of admissible functions V that we take for the moment as a Hilbert space:

inf
v2V J.v/: (1.1.1)

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 1,
© Springer-Verlag Berlin Heidelberg 2013
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2 1 Variational Formulations and Finite Element Methods

If the functional J.�/ is differentiable (cf. [184] for instance) the minimum (when-
ever it exists) will be characterised by a variational equation

hJ 0.u/; viV 0�V D 0; 8v 2 V; (1.1.2)

where h�; �iV 0�V denotes duality between V and its topological dual V 0, the
derivative J 0.u/ at point u being considered as a linear form on V .

The classical Ritz’s method to approximate the solution of (1.1.1) consists in
choosing a finite dimensional subspace Vm of V , and then looking for um 2 Vm
solution of the problem

inf
vm2Vm

J.vm/; (1.1.3)

or, differentiating,

hJ 0.um/; vmiV 0�V D 0; 8vm 2 Vm: (1.1.4)

Let us consider, to fix ideas, a quadratic functional

J.v/ WD 1

2
a.v; v/ �L.v/; (1.1.5)

where a.�; �/ is a bilinear form on V , which we suppose continuous and symmetric,
and L.�/ a linear form on V . The variational equation (1.1.2) can then be written as

a.u; v/ D L.v/ 8v 2 V; (1.1.6)

while the discrete problem (1.1.4) becomes

a.um; vm/ D L.vm/; 8 vm 2 Vm; um 2 Vm: (1.1.7)

If a basis w1;w2; : : : ;wm of Vm is chosen, and if we write

um D
mX

iD1
˛iwi ; (1.1.8)

problem (1.1.7) is reduced to the solution of the linear system

mX

iD1
aij˛i D bj ; 1 � j � m; (1.1.9)

where we set

aij WD a.wi ;wj /; bj WD L.wj /: (1.1.10)

This formulation can be extended to the case where the bilinear form a.�; �/ is not
symmetric and where problem (1.1.7) no longer corresponds to a minimisation
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problem. This is then usually called a Galerkin method. Let us recall that problems
of type (1.1.7) will have a unique solution if, in particular, the bilinear form a.�; �/ is
coercive, that is if there exists a positive real number ˛ such that for all v in V

a.v; v/ � ˛kvk2V : (1.1.11)

The above described methodology is very general and classical. We can consider
the finite element method as a special case in the following sense.

The finite element method is a general technique to build finite dimensional
subspaces of a Hilbert space V in order to apply the Ritz-Galerkin method to a
variational problem.

This technique is based on a few simple ideas. The fundamental one is the
partition of the domain ˝ in which the problem is posed, into a set of “simple”
sub-domains, called elements. These elements are usually triangles, quadrilaterals,
tetrahedra, etc. A space V of functions defined on ˝ is then approximated by
“simple” functions, defined on each sub-domain with suitable matching conditions
at interfaces. Simple functions are usually polynomials or functions obtained from
polynomials by a change of variables.

This, of course, a very summarised way of defining finite elements and this is
surely not the best way to understand it from the computational point of view. We
shall come back to this in Chap. 2 with a much more workable approach.

The point that we want to emphasise here is the following. A finite element
method can only be considered in relation with a variational principle and a
functional space. Changing the variational principle and the space in which it is
posed leads to a different finite element approximation (even if the solution for the
continuous problems can remain the same).

In the remaining of this Chapter, we shall see how different variational formu-
lations can be built for the same physical problem. Each of these formulations will
lead to a new setting for finite element approximations. The common point of the
methods analysed in this book is that they are founded on a variational principle
expressing an equilibrium (saddle point) condition rather than on a minimisation
principle. We shall now try to see, on some examples, how such equilibrium
principles can be built.

1.2 Model Problems and Elementary Properties of Some
Functional Spaces

The aim of this section is to introduce some notation and to present five model
problems that will underlie almost all cases analysed in this book. They will
be the Dirichlet problem for Laplace’s equation, the linear elasticity problem,
Stokes’ problem, a fourth-order problem modelling the deflection of a thin clamped
plate, and, finally, the time-harmonic Maxwell system. These problems are closely
interrelated and methods to analyse them will also be.
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We shall present, in this section, the most classical variational formulation of
these problems. The following sections will lead us to less standard forms.

We shall assume, in our exposition, that the problems are posed in a domain
˝ of Rn, with a sufficiently smooth boundary @˝ D � (for instance a Lipschitz
continuous boundary). In practice n D 2 or 3 and we shall present most of our
examples in a two-dimensional setting for the sake of simplicity.

In the problems considered here, working in R
2 rather than in R

3 is not really
restrictive and extensions are generally straightforward. (This is however not always
the case for numerical methods.) Let us first recall some definitions. We shall
constantly use Sobolev spaces [3, 281, 309]. They are based on

L2.˝/ WD
�
v
ˇ̌
ˇ
Z

˝

jvj2 dx D kvk2
L2.˝/

< C1
�
; (1.2.1)

the space of square integrable functions on˝ . To be precise, instead of functions we
should actually say classes of measurable functions, meaning that a class is made
of functions that differ from each other only on a subset of ˝ of zero Lebesgue
measure. Having said this once, we shall keep calling them simply functions. We
then define in general, for m integer �0,

Hm.˝/ WD ˚
v
ˇ̌
D˛v 2 L2.˝/; 8j˛j � m

�
; (1.2.2)

where

D˛v WD @j˛jv
@x

˛1
1 � � � @x˛nn ; j˛j D ˛1 C � � � C ˛n;

these derivatives being taken in the sense of distributions. On this space, we shall
use the semi-norms

jvj2k;˝ WD
X

j˛jDk
jD˛vj2

L2.˝/
; k D 0; 1; : : : ; m; (1.2.3)

and the norm

kvk2m;˝ WD
X

k�m
jvj2k;˝: (1.2.4)

Remark 1.2.1. The norm in (1.2.4) is definitely the weirdest aspect of the whole
theory of Sobolev spaces. Indeed, one should take a typical length ` of the problem
(as for instance the diameter of ˝) and use, instead of (1.2.4):

kvk2m;˝ WD
X

k�m
`2kjvj2k;˝; (1.2.5)

avoiding, in this way, to sum objects with different physical dimensions. The expres-
sion (1.2.4), which is by far the most widely used in all the international literature
assumes implicitly that the problem has been adimensionalised, something that one
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is not always willing to do. Needless to say, (1.2.4) has a lot of advantages, and we
are often going to use it. Nevertheless, we felt compelled to give at least a minor
warning to our readers. ut
The space L2.˝/ is then H0.˝/ and we shall usually write kvk0;˝ , to denote its
norm kvkL2.˝/. Let us denote as usual by D.˝/ the space of infinitely differentiable
functions having a compact support in ˝ . We denote by Hm

0 .˝/ the completion
of D.˝/ for the topology defined by the norm (1.2.4). If the boundary is smooth
enough (e.g. Lipschitz continuous boundary) this simple definition will coincide,
without troublesome pathologies, with the more common

Hm
0 .˝/ WD ˚

vj v 2 Hm.˝/ s. t. v D @v

@n
D � � � D @m�1v

@nm�1 D 0 on �
�
; (1.2.6)

where n is the normal direction to � D @˝ . The drawback in the definition (1.2.6)
is however the difficulty in giving sense to the value of v (and, if m > 1, to its
derivatives) on the boundary of˝ . We shall shortly give a hint on how this could be
made precise for the most common cases m D 1 andm D 2.

Indeed, among the spaces introduced so far, the most commonly used, apart from
L2.˝/, will be H1.˝/, H1

0 .˝/, H
2.˝/ and H2

0 .˝/.
If the boundary @˝ is sufficiently smooth (and, again, Lipschitz continuity will

be enough), one can show that there exists a linear and continuous operator �0 W
H1.˝/ ! L2.� / such that �0v coincides with the restriction of v to � whenever
v is smooth (say, to fix the ideas, for every v 2 C1. N̋ /). It seems then natural to
call �0v “the trace of v on � ” and denote it by vj� even if v is a general function in
H1.˝/ that might not be in C1. N̋ /.

A deeper analysis shows that by taking all the traces of all the functions of
H1.˝/, one does not obtain the whole space L2.� / but only a subspace of it.
Further investigations show that such a subspace containsH1.� / as a proper subset.
Hence we have,

H1.� / � �0.H
1.˝// � L2.� / 	 H0.� /; (1.2.7)

where every inclusion is strict. It is finally recognised that the space �0.H1.˝//

belongs to a family of spaces Hs.� / (defined for all s 2 R, that we are not going
to detail here) and corresponds exactly to the value s D 1

2
. Hence we have

H
1
2 .� / WD �0.H

1.˝//; (1.2.8)

with

kgk
H

1
2 .� /

WD inf
v2H1.˝/
�0vDg

kvkH1.˝/: (1.2.9)

In a similar way we could see that the traces of functions in H2.˝/ belong to a
space Hs.� / for s D 3

2
. We may therefore set
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H
3
2 .� / WD �0.H

2.˝//; (1.2.10)

kgk
H

3
2 .� /

WD inf
v2H2.˝/
�0vDg

kvkH2.˝/: (1.2.11)

This can be generalised to the traces of higher order derivatives. For instance, if the
boundary� is Lipschitz continuous, one can define a linear continuous operator �1 W
H2.˝/ ! L2.˝/ such that �1v coincides with the trace of the normal derivative
of v whenever v is smooth (say, v 2 C2. N̋ /). Proceeding as before we could then
define, for v 2 H2.˝/, the trace of the normal derivative:

@v

@n

ˇ̌
�

	 �1v:

If the boundary � is smooth enough (but, here, Lipschitz continuity will not be
enough: one needs at least C1) one gets

�1.H
2.˝// D H

1
2 .� / .for @˝ smoother: not for a polygon/:

Note however that for less regular domains this will no longer be true: for instance, if
˝ is a polygon we have that �1v belongs to a more complicated space that, roughly
speaking, is made of functions whose restriction to each edge e belongs to H

1
2 .e/.

We shall not discuss in a more precise way trace theorems on Sobolev spaces of
fractional order. (The reader may refer to the authors quoted above.) Intuitively,
Sobolev spaces of fractional order can be considered as having regularity properties
that are intermediate between the properties of the neighbouring integer order spaces
and they can indeed be defined as interpolation spaces. Taking this as granted, we
then have

H1
0 .˝/ WD ˚

vj v 2 H1.˝/; v
ˇ̌
�

WD 0
�
; (1.2.12)

H2
0 .˝/ D

�
vj v 2 H2.˝/; v

ˇ̌
�

D 0;
@v

@n

ˇ̌
�

D 0

�
: (1.2.13)

For v 2 H1
0 .˝/, we have the Poincaré inequality

kvk0;˝ � C.˝/jvj1;˝; (1.2.14)

and the semi-norm j � j1;˝ is therefore a norm on H1
0 .˝/, equivalent to k � k1;˝ . We

shall also need to consider functions that vanish on a part of the boundary; suppose
that � D D [ N is a “reasonable” partition of � into disjoint parts; then we can
define

H1
0;D.˝/ WD fvj v 2 H1.˝/; v

ˇ̌
D

D 0g; (1.2.15)

and one has H1
0 .˝/ � H1

0;D.˝/ � H1.˝/.
When considering vector-valued functions, additional spaces will be useful.

In particular we shall use
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H.divI˝/ WD fv 2 L2.˝/nj divv 2 L2.˝/g; (1.2.16)

H.curlI˝/ WD fv 2 L2.˝/nj curl v 2 L2.˝/dg; (1.2.17)

where in (1.2.17) we have d D 1 when n D 2 and d D 3 when n D 3. The
divergence and curl operators are defined as usual; particular care has to be taken for
the definition of the two-dimensional curl operator which in this case is understood
as curl v D div.v?/, where v? is the rotation of v by an angle of �=2. It can be
shown that functions in H.divI˝/ (resp. H.curlI˝/) admit traces of the normal
(resp. tangential) component on � ; namely, there exists a linear and continuous
operator �n W H.divI˝/ ! H�1=2.� / such that �nv D trace of v � n for every
smooth v, where n is the outward normal unit vector, and a similar property holds
for the traces of the tangential components of vectors inH.curlI˝/. More details on
H.divI˝/ andH.curlI˝/will be given in Chap. 2. Spaces including homogeneous
boundary conditions are denoted as follows

H0.divI˝/ WD fv j v 2 H.divI˝/; v � n D 0 on � g; (1.2.18)

H0.curlI˝/ WD fv j v 2 H.curlI˝/; v 
 n D 0 on � g: (1.2.19)

We shall come back in Chap. 2 to the properties of these spaces; the above
definitions are sufficient to allow us to present some examples.

Example 1.2.1 (Boundary value problems for the Laplace equation). This is a very
classical case that in fact led to the definition of Sobolev spaces. For f given in
L2.˝/, let us consider the following minimisation problem on H1

0 .˝/:

inf
q2H1

0 .˝/

�1
2

Z

˝

j grad qj2 dx �
Z

˝

fq dx
�
; (1.2.20)

where j grad qj2 D ˇ̌ @q
@x1

ˇ̌2 C ˇ̌ @q
@x2

ˇ̌2 D grad q � grad q. One shows easily (cf. [141,

281, 309] for instance) that this problem has a unique solution p, characterised by:
p 2 H1

0 .˝/ and

Z

˝

gradp � grad q dx D
Z

˝

fq dx; 8q 2 H1
0 .˝/: (1.2.21)

This is of the form (1.1.6), by setting

a.p; q/ D
Z

˝

gradp � grad q dx

This solution p satisfies, in the sense of distributions,
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( ��p D f in ˝;

p
ˇ̌
�

D 0;
(1.2.22)

which is a standard Dirichlet problem for the Laplace operator�, commonly called
Poisson problem. If H1

0 .˝/ were replaced by H1
0;D.˝/ one would get instead

of (1.2.22) a mixed type problem

8
ˆ̂̂
<

ˆ̂̂
:

��p D f in ˝;

p D 0 on �D;

@p

@n
D 0 on �N :

(1.2.23)

We thus have Dirichlet boundary conditions on �D and Neumann conditions on
�N . In particular for �N D � , we get a Neumann problem. It must be noted that
minimising (1.2.20) on H1.˝/ instead of H1

0 .˝/ will define p up to an additive
constant and requires the compatibility condition

Z

˝

f dx D 0;

which can be seen to be necessary from (1.2.21) by taking q 	 1 in ˝ .
If we denote by H� 1

2 .� / the dual space of H
1
2 .� /, and we take g 2 H� 1

2 .� /,
we can consider the functional

1

2

Z

˝

j grad qj2 dx �
Z

˝

fq dx C hg; qi; (1.2.24)

where the bracket h� ; �i denotes the duality between H� 1
2 .� / and H

1
2 .� /. We

shall sometimes write formally
R
� gq ds instead of hg; vi. Minimising (1.2.24) on

H1
0;D.˝/ leads to the problem

8
ˆ̂̂
<

ˆ̂̂
:

��p D f in ˝;

p D 0 on �D;

@p

@n
D g on �N :

(1.2.25)

When �D D ; the solution is defined up to an additive constant and we must choose
f and g such that

Z

˝

f dx �
Z

�

g ds D 0:

These problems are among the most classical of mathematical physics and we
do not have to emphasise their importance. In the following chapters we shall need
to use regularity results for the problems introduced above. We have supposed up
to now f 2 L2.˝/. For the Poisson problem (1.2.22) we could have assumed f to
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belong to a weaker space, namely f 2 H�1.˝/ D .H1
0 .˝//

0, and nevertheless
obtained p 2 H1

0 .˝/. On the other hand if f is taken in L2.˝/ and ˝ is convex
one can prove [309] that p 2 H2.˝/ and that

kpk2;˝ � ckf k0;˝ ; (1.2.26)

where c is a constant depending only on ˝ . Regularity results are essential to
many approximations results and are fundamental to obtain error estimates. We
refer the reader to [233] for the delicate questions of the regularity of the general
problem (1.2.23) in a domain with corners. ut
Example 1.2.2 (Linear elasticity). We want to determine the displacement u D
fu1; u2g of an elastic material under the action of some external forces. We suppose
the displacement to be small and the material to be isotropic and homogeneous [146,
295]. The domain ˝ is the initial configuration of the body. To set our problem,
we must introduce some notation from continuum mechanics. First we define the
linearised strain tensor ".u/ by

".u/ WD 1

2

� @ui
@xj

C @uj
@xi

�
: (1.2.27)

The trace, tr."/, of this tensor is nothing but the divergence of the displacement field

tr."/.v/ D div v: (1.2.28)

We shall also use the deviatoric "D of the tensor " that is

"D WD " � 1

n
tr."/ı; (1.2.29)

where ı is the standard Kronecker tensor and n is the space dimension. The

deviatoric is evidently built to have tr."D/ D 0. Let then �0 be a part of � on
which we assume u D 0. We also assume the existence in ˝ of a distributed force
f (e.g. gravity) and on �1 of a traction g that is decomposed into a normal part gn
and a tangential part gt . We denote by n and t the normal and tangential unit vectors
to � . Let us denote

j"j2 D " W " WD
X

i;j

"2ij (1.2.30)

and let us consider in V WD .H1
0;�0
.˝//2 the minimisation problem

inf
v2V

�Z

˝

1

2

�
�j div vj2 C 2�j".v/j2� dx �

Z

˝

f � v dx

�
Z

�1

gnv � nds �
Z

�1

gt v � t ds
�
:

(1.2.31)
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Constants � and �, the Lamé coefficients, depend on the physical properties of the
material considered. The solution u of this problem is then characterised by

2�

Z

˝

".u/ W ".v/ dx C �

Z

˝

div u div v dx

D
Z

˝

f � v dx C
Z

˝1

gnv � nds C
Z

�2

gt v � t ds; 8v 2 V;
(1.2.32)

which is still clearly of the form (1.1.6). We now use the classical integration by
parts formula

Z

˝

m W ".v/ dx D �
Z

˝

.div m/ � v dxC
Z

�

mnnv � ndsC
Z

�

mntv � t ds (1.2.33)

where m is a (smooth enough) tensor, and mnn and mnt denote the normal and
tangential parts of the traction vectormn, i.e.

8
ˆ̂̂
<̂

ˆ̂̂
:̂

mnn WD
X

i;j

mij ni nj D
X

i

nX

j

mij nj

o
ni D

X

i

.mn/i ni ;

mnt WD
X

i;j

mij ti nj D
X

i

nX

j

mij nj

o
ti D

X

i

.mn/i ti :

(1.2.34)

Equation (1.2.32) can now be interpreted as

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�.2� div ".u/C � grad div u/ D f in ˝;

u
ˇ̌
�0

D 0;

2�"nn C � div u D gn;

2�"nt D gt on �1:

(1.2.35)

Let us now introduce the stress tensor � WD sD C pı and the constitutive law

(
sD WD 2�"D.u/;

p WD 2.�C �/ div u;
(1.2.36)

relating stresses to displacements. It is now clear that the first equation of (1.2.35)
expresses the equilibrium condition of continuum mechanics,

div � C f D 0: (1.2.37)
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In applications, the constitutive law (1.2.36) will vary depending on the type
of materials and will sometimes take very non linear forms. In this case, the
expression of the energy functional (1.2.31) will change accordingly. Moreover,
large displacements will require a much more complex treatment. Nevertheless,
the problem described above remains valuable as a model for more complicated
situations.

The case of an incompressible material is especially important. It leads to the
same equations as in the study of viscous incompressible flows. ut
Example 1.2.3 (Stokes’ problem for viscous incompressible flow.). We now con-
sider a low velocity flow of a viscous incompressible fluid in a domain ˝ . We
denote by u the velocity field and by ".u/ the (linearised) strain rate tensor defined
in the same way as in (1.2.27). We thus consider the minimisation problem with
the same notation and the same space V as in Example 1.2.2, but now with the
incompressibility condition div v D 0, that is,

inf
v2V

div vD0
�

Z

˝

j".v/j2 �
Z

˝

f � v dx C
Z

�1

gn v � n ds C
Z

�1

gt v � t ds: (1.2.38)

As we shall see later, problem (1.2.31) can be considered, when � is large, as an
approximation (by a “penalty method”) of problem (1.2.38). Indeed when � is large
the second constitutive relation of (1.2.36) forces, in some sense, div v to be zero.
In the limit for � D C1 (1.2.36) becomes meaningless: we shall see in Sect. 1.3
that pressure can then be introduced as a Lagrange multiplier associated with the
constraint div u D 0. ut

We now present a fourth-order problem. It is again, from the physical point of
view, an elasticity problem but in a special modelling.

Example 1.2.4 (Deflection of a thin clamped plate). We consider here the problem
of a thin clamped plate deflected under a distributed load f . The physical model
will be described in Chap. 10. We also refer to [147,148] and [149] for more details
on plate problems. Under reasonable assumptions (and setting, for simplicity, some
physical constants equal to 1), one obtains that the vertical deflection  is solution
of the minimisation problem

inf
'2H2

0 .˝/

1

2

Z

˝

j�'j2 dx �
Z

˝

f ' dx: (1.2.39)

The unique solution  is characterised by

Z

˝

� �' dx D
Z

˝

f ' dx; 8' 2 H2
0 .˝/; (1.2.40)
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and is the solution of the boundary value problem

8
ˆ̂̂
<

ˆ̂̂
:

�2 D f;

 j� D 0;

@ 

@n
j� D 0:

(1.2.41)

For these boundary conditions (representing a clamped plate) (1.2.39) is equiva-
lent to

inf
'2H2

0 .˝/

(
1

2

Z

˝

"�
@2'

@x21

� 2
C 2

�
@2'

@x1@x2

� 2
C
�
@2v'

@x22

� 2#
dx �

Z

˝

f ' dx

)
;

(1.2.42)

which is, in general, more physically sound. These two mathematically equivalent
forms can lead to different numerical methods. It must also be noted that natural
boundary conditions (those arising from integration by parts) will not be the same
if (1.2.39) and (1.2.42) are minimised on a space larger than H2

0 .˝/, so that the
equivalence only holds for plates that are clamped all over the boundary. Actually
the true potential energy of the plate (that is, the true functional which has to be
minimised) is given, for a clamped plate, by

J.'/ WD Et3

12.1�	2/
Z

˝

n
	j�'j2 C .1�	/

h�@2'
@x21

�2C2
� @2'

@x1@x2

�2

C
�@2'
@x22

�2io
dx �

Z

˝

f ' dx; (1.2.43)

where E is Young’s modulus, 	 is the Poisson’s coefficient and t is the thickness of
the plate. In particular E and 	 can be expressed in terms of the Lamé coefficients
�, � in the following way

E WD �.3�C 2�/

�C �
; 	 WD �

2.�C �/
: (1.2.44)

We also recall that the Stokes problem (1.2.38) can also be expressed as a
biharmonic problem by the introduction of a stream function  such that

u D
n @ 
@x2

;� @ 
@x1

o
: (1.2.45)

We shall come back to this point in Sect. 1.3. ut
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Example 1.2.5 (The time-harmonic Maxwell system). Maxwell’s equations repre-
sent one of the most elegant and concise ways to state the fundamentals of electricity
and magnetism. The classical electromagnetic field is described by the four vectors
E , D, H, and B which are functions of the position x 2 R

3 and of the time t 2 R.
The vectors E and H are referred to as the electric and magnetic field, while D and
B are the electric and magnetic displacements, respectively.

The Faraday law of induction states

Z

@˙

E � ds D � d

dt

Z

˙

B � n; (1.2.46)

for any closed orientable surface ˙ in R
2 with normal n; namely, the circulation of

the electric field equals the negative of the rate of change of the magnetic flux.
The Ampère law says

Z

@˙

H � ds D d

dt

Z

˙

D � nC
Z

˙

J � n; (1.2.47)

with the same notation as above and where J denotes the current density vector.
From Eqs. (1.2.46) and (1.2.47) it can be noticed that the fields E , H, B and D

have a different nature. Indeed, the first two are integral 1-forms, while the latter
two are integral 2-forms in the spirit of [247] (Definition 1). This remark is of
fundamental importance for the design of finite element schemes.

The differential forms of (1.2.46) and (1.2.47) read

@B
@t

C curl E D 0;

@D
@t

� curl H D �J ;
(1.2.48)

which are usually referred to as Maxwell’s equations, together with the two Gauss
Laws

div D D 
;

div B D 0;
(1.2.49)

where 
 denotes the charge density function. It is clear that in (1.2.48) and (1.2.49)
the quantities J and 
 cannot be taken independently: taking the divergence of
the second equation in (1.2.48) and comparing with the time derivative of the first
equation in (1.2.49) we have indeed:

@


@t
C div J D 0; (1.2.50)

which could be seen as a compatibility condition when J and 
 are considered as
given data.
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The time-harmonic Maxwell system is considered, for instance, when the Fourier
transform in time is used or when the propagation of electromagnetic waves at a
given frequency is studied. Then, given a frequency !, we consider the ansatz:

E.x; t/ D < �
e�i!tE.x/

�
;

D.x; t/ D < �
e�i!tD.x/

�
;

H.x; t/ D < �
e�i!tH.x/

�
;

B.x; t/ D < �
e�i!tB.x/

�
;

(1.2.51)

where < denotes the real part. We define also

J .x; t/ D < �
e�i!tJ.x/

�
;


.x; t/ D < �
e�i!t r.x/

�
:

(1.2.52)

Standard constitutive equations for linear media read

D D "E; B D �H; (1.2.53)

where " and � denote the electric permittivity and the magnetic permeability,

respectively. For general inhomogeneous, anisotropic materials " and � are 3 
 3

positive definite matrix functions.
Inserting constitutive relations (1.2.53) into (1.2.48) and (1.2.49), and consider-

ing the time-harmonic assumptions (1.2.51) and (1.2.52), we get the time harmonic
Maxwell equations

curlE � i!�H D 0;

div."E/ D r;

curlH C i!"E D J;

div.�H/ D 0:

(1.2.54)

It is a standard procedure to eliminate one variable and to write (1.2.54) as a
second order system. Eliminating for instance the field H , we get

curl.��1 curlE/� !2"E D F; (1.2.55)

where F is given by i!J , together with the divergence condition (which follows
from the equation)

� !2 div."E/ D divF: (1.2.56)
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Equation (1.2.55) is usually equipped with suitable boundary conditions. The
simplest one is the perfect conducting boundary condition which reads:

E 
 n D 0; (1.2.57)

where n is the outward unit vector. We shall discuss variational formulations of the
time harmonic Maxwell equations in Chap. 11. ut

The examples presented above are among the most fundamental of mathematical
physics and engineering problems. A good understanding of their properties will
enable to extend the results obtained to more complex situations.

1.2.1 Eigenvalue Problems

The above examples can also be associated to eigenvalue problems. It is worth
making them explicit as we shall be concerned later with alternate formulations
and their numerical properties. In the case of Example 1.2.1, restricting ourselves to
the case of Dirichlet’s conditions, we have

( ��p D �p in ˝;

p
ˇ̌
�

D 0:
(1.2.58)

The solutions of this problem describe, for instance, the vibrational modes of a
membrane. It can be written in a more precise way as,

Z

˝

gradp � grad q dx D �

Z

˝

p q dx; 8q 2 H1
0 .˝/: (1.2.59)

It is classical [172, 382] that this problem has an infinite countable set of solutions
.pk; �k; k 2 N/ with �k ! 1 as k increases. The key to this result is the compact
inclusion of H1

0 .˝/ into L2.˝/.
In the same way, the eigenvalue problem associated with the elasticity problem

of Example 1.2.2 is fundamental for the study of vibrations in elastic structures. The
problem is then, restricting ourselves again to Dirichlet’s conditions,

8
<

:
�.2� div ".u/C � grad div u/ D Q�u in ˝;

u
ˇ̌
�0

D 0:
(1.2.60)

We have denoted the eigenvalue as Q� to distinguish it from the Lamé coefficients.
The variational form is then,

2�

Z

˝

".u/ W ".v/ dx C �

Z

˝

div u div v dx

D Q�
Z

˝

u � v dx ds; 8v 2 V: (1.2.61)
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Here again we have an infinite set of eigenvalues. Introducing in this problem the
constraint div u D 0, we would get an eigenvalue problem for the Stokes problem
of Example 1.2.3, or to a problem of incompressible elasticity as we shall see later.
Eigenvalue problems related to Maxwell’s equations will be discussed in Chap. 11.

1.3 Duality Methods

1.3.1 Generalities

Up to now, we have introduced equations that can be written as minimisation
problems of some functionals in properly chosen functional spaces. This is the
most classical way of setting these problems. Finite element approximations, based
on the formulations described above, are routinely used in commercial codes.
Various reasons justified the introduction, for these same problems and many other
ones, of different variational formulations and therefore different finite element
approximations. This was done at the beginning by many engineers. The reader
may refer, for example to [321, 335, 336].

The first reason can be the presence in the variational formulation of a constraint,
such as the condition div u D 0 in problem (1.2.38). As we shall see, it is difficult
(and not necessary) to build finite element approximations satisfying exactly this
constraint. It will be more efficient to modify the variational formulation and to
introduce pressure.

A second reason may lie in the physical “importance” of the variables appearing
in the problem. In elasticity problems, for example, it is often more useful to
compute accurately stresses rather than displacements. In the standard formulation,
stresses can be recovered from the displacements by (1.2.36) or some other similar
law. Their computation requires the derivatives of the displacement field u. From a
numerical point of view, differentiating implies a loss of precision. It is therefore
appealing to look for a formulation in which constraints are readily accessible.

A third reason comes from the difficulties arising in the discretisation of spaces
of regular functions such as H2

0 .˝/ appearing in Example 1.2.4. Approximating
this space by a finite element method implies ensuring continuity of the derivatives
at interfaces between elements. This is possible but more cumbersome than approx-
imating, say, H1.˝/ or H1

0 .˝/. A variational formulation enabling to decompose
a fourth-order problem into a system of second order problems permits to avoid
building complicated elements, at the price of introducing some other difficulties.

Finally, a last reason could be to look for a weaker variational formulation
corresponding better in some cases to available data (e.g. punctual loads) for which
standard formulations may become meaningless due to a lack of regularity of the
solution.

We must also point out that the “non-standard” formulations which we shall now
describe have been initially introduced by engineers for one or some of the reasons
discussed above. We quote in this respect, but in a totally non exhaustive way, [210,
243,245,320,370]. On the other hand, very powerful tools for the transformation of



1.3 Duality Methods 17

variational problems can be found in convex analysis and duality theory [38,50,184,
338]. It is neither possible nor desirable to develop here duality theory and we shall
restrict ourselves to the most basic facts. The fundamental idea of duality theory is
that one can represent a convex function by the family of its tangent affine functions.
This is indeed the principle of the classical Legendre transformation. More precisely,
let us define for a given convex function G.v/, defined from a space V to R, the
conjugate functionG�.v�/ on the dual space V 0 of V by

G�.v�/ WD sup
v2V

hv; v�iV�V 0 �G.v/: (1.3.1)

Note that when V D R, G�.v�/ is the intercept with the v axis of the tangent to G
of slope v�. The important point for what follows is that one can build G.v/ from
G�.v�/ by the following formula, symmetrical to (1.3.1)

G.v/ D sup
v�2V 0

hv�; viV 0�V �G�.v�/: (1.3.2)

Given then a problem of the form

inf
v2V F.v/CG.v/; (1.3.3)

we can use (1.3.2) to obtain

inf
v2V

n
F.v/C sup

v�2V 0

hv�; viV 0�V �G�.v�/
o

(1.3.4)

that is, the saddle point problem

inf
v2V

sup
v�2V 0

F.v/C hv�; viV 0�V �G�.v�/: (1.3.5)

Under simple regularity assumptions, one can also consider the dual problem

sup
v�2V 0

n
inf
v2V F.v/C hv�; viV 0�V �G�.v�/

o
: (1.3.6)

To fix ideas, it is worth considering a special and important case where we have
as in (1.1.2), for f 2 V 0,

F.v/ WD 1

2
a.u; v/ � hf; vi: (1.3.7)

We then introduce another Hilbert space Q and an operator B from V into Q0
defined by a continuous bilinear form on V 
Q,

hBv; qi D b.v; q/: (1.3.8)
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We then want to solve for g 2 Q0 the constrained problem

inf
BvDg J.v/: (1.3.9)

This constrained problem can be written as an unconstrained problem, introducing
the characteristic function ı.�jf0g/ defined on Q0 by

ı.qjfgg/ WD
(
0 if v D g;

C1 otherwise.
(1.3.10)

We can then write (1.3.9) as

inf
v2V F.v/C ı.Bvjfgg/; (1.3.11)

which can be readily transformed into the saddle-point problem

inf
v2V

sup
q2Q

1

2
a.u; v/ � b.v; q/ � hf; viV 0�V C hg; qiQ0�Q; (1.3.12)

for which the optimality system is

(
a.u; v/C b.v; p/ D hf; viV 0�V ; 8v 2 V;
b.u; q/ D hg; qiQ0�Q; 8q 2 Q; (1.3.13)

or in operator form, denoting A the operator from V into V 0 defined by a.�; �/,
(
Au C Btp D f;

Bu D g:
(1.3.14)

Remark 1.3.1. Problem (1.3.12) has the general form

inf
v2V

sup
q2Q

L.v; q/; (1.3.15)

where L.v; q/ is a convex-concave functional on V 
Q. If one first eliminates q by
computing

J.v/ D sup
q2Q

L.v; q/;

one falls back on the original problem, the primal problem. Reversing the order of
operations, (this cannot always be done, but no problems arise in the examples we
present) and eliminating v from L.v; q/ by defining

D.q/ WD inf
v
L.v; q/ (1.3.16)



1.3 Duality Methods 19

leads to the dual problem

sup
q2Q

D.q/: (1.3.17)

ut
The dual problem in Q corresponding to (1.3.12) would take the form

inf
q

1

2
hA�1Btq; BtqiV�V 0 � hA�1f; BtqiV�V 0 C hg; qiQ0�Q; (1.3.18)

or in operator form,

BA�1Btp D BA�1f � g: (1.3.19)

We now apply this idea to the previous examples. This form of problem and
its variants will be central to our study and we shall proceed to introduce some
examples.

1.3.2 Examples for Symmetric Problems

Example 1.3.1 (Introduction of pressure in Stokes’ problem.). Let us consider
problem (1.2.38) in which, to make the presentation easier, we take �0 D �

that is pure Dirichlet conditions on the boundary. This constrained problem can
be written as an unconstrained problem, introducing as above the characteristic
function ı.�jf0g/ defined on L2.˝/ by

ı.vjf0g/ WD
(
0 if v D 0;

C1 otherwise.
(1.3.20)

It is thus a pure change of notations to write instead of (1.2.38)

inf
v2V �

Z

˝

j".v/j2 dx �
Z

˝

f � v dx C ı.div vjf0g/ ; (1.3.21)

where V D .H1
0 .˝//

2. On the other hand, one clearly has,

ı.div ujf0g/ D sup
q2L2.˝/

Z

˝

q div udx; 8u 2 .H1
0 .˝//

2; (1.3.22)

and the minimisation problem (1.3.21) can be transformed into the saddle point
problem,

inf
v2V

sup
q2L2.˝/

�

Z

˝

j".v/j2 dx �
Z

˝

f � v dx �
Z

˝

q div v dx: (1.3.23)
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This apparently simple trick has in reality completely changed the nature of the
problem. We now have to find a pair .u; p/ solution of the variational system

8
ˆ̂<

ˆ̂:

2�

Z

˝

".u/ W ".v/ dx �
Z

˝

f � v dx �
Z

˝

p div v dx D 0; 8v 2 V;
Z

˝

q div u dx D 0; 8q 2 L2.˝/:
(1.3.24)

The second equation of (1.3.24) evidently expresses the condition div u D 0. In
order to use (1.3.24), we shall have to show the existence of a saddle point .u; p/,
and in particular the existence of the Lagrange multiplier p. This will be done in
Chap. 4. The variational system (1.3.24) can be interpreted in the form

8
ˆ̂<

ˆ̂:

�2�Au C gradp D f ;

div u D 0;

uj� D 0;

(1.3.25)

where we used the operator Au D div ".u/

Au D

0

BBBB@

@2u1
@x21

C @

@x2

1

2

�
@u1
@x2

C @u2
@x1

�

@2u2
@x22

C @

@x1

1

2

�
@u1
@x2

C @u2
@x1

�

1

CCCCA
: (1.3.26)

Under the divergence-free condition div u D 0, this can also be written as

( ���u C gradp D f ;

div u D 0;
(1.3.27)

which is the classical form of the Stokes problem. ut
Example 1.3.2 (Dual problem for the Stokes problem). In the case of the Stokes
problem, the dual problem can be expressed, as we shall see, in many equivalent
ways. In order to find it we must, q being given, find the minimum in respect to v
of L.v; q/ D �

R
˝

j".v/j2 dx � R
˝
f � v dx � R

˝
q div v dx. The minimum, that

we denote by uq , is characterised by

2�

Z

˝

".uq/ W ".v/ dx �
Z

˝

f � v dx �
Z

˝

q div v dx D 0; 8v 2 V: (1.3.28)
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Taking v D uq this gives,

2�

Z

˝

j".uq/j2 dx �
Z

˝

f � u
q
dx �

Z

˝

q div uq dx D 0: (1.3.29)

Using (1.3.29) to evaluate L.uq; q/, the dual problem can be written as an optimal
control problem,

sup
q2L2.˝/

��
Z

˝

j".uq/j2 dx; (1.3.30)

where uq is the solution of

( �2� Auq C grad q D f ;

uqj� D 0:
(1.3.31)

Denoting by G the Green operator defining the solution of (1.3.31), that is

uq D G.f � grad q/ (1.3.32)

and using (1.3.32) in (1.3.30), one can get from (1.3.29)

inf
q

Z

˝

grad q �G.grad q/ dx �
Z

˝

G.f / � grad q dx: (1.3.33)

One notices that this dual problem is a problem in grad q. It is well-known that the
solution p is defined (for Dirichlet conditions on u) only up to an additive constant.
One can interpret (1.3.33) as the equation,

div.G grad q/ D div.Gf /: (1.3.34)

If one defines on V 0 WD .H�1.˝//2 the norm

kf k2G WD hGf ; f iV�V 0 ; (1.3.35)

problem (1.3.33) can be written as a least-squares problem

inf
q2L2.˝/

1

2
k grad q � f k2G: (1.3.36)

ut
The presence of a Green operator makes this dual problem difficult to handle

directly. It is however implicitly the basis of some numerical solution procedures
[205, 368]. We shall meet below other dual problems that will have a large direct
importance and that will be handled as such.
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Example 1.3.3 (A duality method for nearly incompressible elasticity). We already
noted in Examples 1.2.2 and 1.2.3 that the linear elasticity problem and the Stokes
problem are very similar when a nearly incompressible material is considered. We
now develop this analogy in the framework of Example 1.3.1. The starting point
will be the obvious result,

�

2

Z

˝

j divvj2 dx D sup
q2L2.˝/

Z

˝

q div v dx � 1

2�

Z

˝

jqj2 dx: (1.3.37)

Substituting (1.3.37) into (1.2.31) we get, by the same methods as in the previous
examples, the problem

inf
v2V

sup
q2L2.˝/

�

Z

˝

j".v/j2 dx C
Z

˝

q div v dx � 1

2�

Z

˝

jqj2 dx

�
Z

˝

f � v dx �
Z

�1

gn v � n ds �
Z

�1

gt v � t ds:

(1.3.38)

The solution .u; p/ of problem (1.3.38) is characterised by the system,

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

2�

Z

˝

".u/ W ".v/ dx C
Z

˝

p divv dx

D
Z

˝

f � v dx C
Z

�1

.gnv � nC gtv � t/ ds; 8v 2 V;
Z

˝

q div u dx � 1

�

Z

˝

pq dx D 0; 8q 2 L2.˝/:

(1.3.39)

This can be summarised by saying that we transformed our original problem into a
system by introducing the auxiliary variable p D � div u. It must be noted that this
also makes our minimisation problem become a saddle point problem. We shall see
in Chap. 8, that this apparently tautological change has implications in the building
of numerical approximations to (1.2.31) that remain valid when � is large. ut
Example 1.3.4 (Dualisation of the Poisson problem). The result that we shall get
here can be obtained by many methods. Techniques of convex analysis permit one
to extend what appears to be a trick to much more complex situations. However it
will be sufficient for our purpose to follow the simple development below. Let us
then consider the Dirichlet problem,

inf
q2H1

0 .˝/

1

2

Z

˝

j grad qj2 dx �
Z

˝

fq dx: (1.3.40)

In many applications gradp rather than p is the interesting variable. For instance
in thermo-diffusion problems, gradp will be the heat flux which is (very often)
more important to know than the temperature p. What we now do is essentially to
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introduce the auxiliary variable u D gradp to transform our problem into a system.
To do so, we use the same trick as in Example 1.3.3 and write

1

2

Z

˝

j grad qj2 dx D sup
v2.L2.˝//2

Z

˝

v � grad q dx � 1

2

Z

˝

jvj2 dx; (1.3.41)

which we use in (1.3.40) to get the saddle point problem,

inf
q2Q

sup
v2V

�1
2

Z

˝

jvj2 dx �
Z

˝

fq dx C
Z

˝

v � grad q dx; (1.3.42)

where Q WD H1
0 .˝/ and V WD .L2.˝//2. The saddle point .p; u/ is characterised

by

8
ˆ̂<

ˆ̂:

Z

˝

u � v dx �
Z

˝

v � gradp dx D 0 8v 2 V;
Z

˝

u � grad q dx D
Z

˝

fq dx; 8q 2 Q;
(1.3.43)

and this can be read as
(

u D gradp; p 2 H1
0 .˝/;

div u C f D 0;
(1.3.44)

which is evidently equivalent to a standard Dirichlet problem for Laplace operator.
The dual problem is readily made explicit. Writing it as a minimisation problem

by changing the sign of the objective functional, we have

inf
v2Zf

1

2

Z

˝

jvj2 dx; where Zf WD fv 2 .L2.˝//2j div v C f D 0g: (1.3.45)

This is the classical complementary energy principle. ut
We now want to get a weaker form of this problem. In order to do so, we recall a

functional space already introduced in (1.2.16):

H.divI˝/ WD fvj v 2 .L2.˝//2; div v 2 L2.˝/g; (1.3.46)

and we consider on it the following norm

kvk2H.divI˝/ WD kvk20;˝ C k div vk20;˝ ; (1.3.47)

that makes it a Hilbert space. As we have already said, vectors of H.divI˝/ admit
a well defined normal trace on � WD @˝ . This normal trace v � n, lies in H�1=2.� /
and one has the following “integration by parts” formula,
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Z

˝

v � grad q dx C
Z

˝

div v q dx D hq; v � ni
H

1
2 .� /�H�

1
2 .� /

; (1.3.48)

for any v 2 H.divI˝/ and any q 2 H1.˝/. We shall often write formally
R
� qv �

n ds instead of the duality product hq; v � ni.

Remark 1.3.2. The norm (1.3.47) is surely as weird as many other Sobolev norms.
See Remark 1.2.1. The proper way to write it would be to take a characteristic length
` of the problem (for instance, the diameter of ˝), and consider instead

kvk2H.divI˝/ WD kvk20;˝ C `2k div vk20;˝ : (1.3.49)

We do not do it here, nor, in general, throughout the book, in order to have simpler
formulae to deal with. But, nevertheless, we consider it as not healthy. ut
Example 1.3.5 (Weak form of the dual Poisson problem). If we take f 2 L2.˝/,
problem (1.3.45) which is a constrained problem can be changed into a saddle point
problem, as in Example 1.3.1, by introducing a Lagrange multiplier p 2 L2.˝/,
that is, as v now belongs to H.divI˝/,

inf
v2H.divI˝/

sup
q2L2.˝/

1

2

Z

˝

jvj2 dx C
Z

˝

fq dx C
Z

˝

q div v dx: (1.3.50)

The functional spaces employed precisely enable us to write every term in (1.3.50)
without ambiguity. We now look for a saddle point .p; u/ satisfying the variational
system,

8
ˆ̂<

ˆ̂:

Z

˝

u � v dx C
Z

˝

p div v dx D 0 8v 2 H.divI˝/;
Z

˝

.div u C f /q dx D 0 8q 2 L2.˝/:
(1.3.51)

Using (1.3.48) with v � nj� D 0, we obtain from (1.3.51)

u D gradp: (1.3.52)

Now p 2 L2.˝/ and gradp D u 2 .L2.˝//2 imply that p 2 H1.˝/ and it
is justified to consider its trace. Using again (1.3.48) with a general v shows that
pj� D 0. The solution of our “weaker” problem is then the solution of the standard
problem. However the discretisations of problem (1.3.51) will be quite different
from those used for the standard formulation. ut
Remark 1.3.3. The previous formulation enables us to write directly in a variational
form a non-homogeneous Dirichlet problem. Indeed the solution .p; u/ of the saddle
point problem with g 2 H 1

2 .� /,
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inf
v

sup
q

1

2

Z

˝

jvj2 dx C
Z

˝

.div v C f /q dx �
Z

�

gv � n ds; (1.3.53)

leads to u D gradp; div u C f D 0; pj� D g.
On the other hand, Neumann conditions become essential conditions that have

to be incorporated into the construction of u, that is in the choice of the functional
space. ut
Example 1.3.6 (Dualisation for the linear elasticity problem). We now want to
extend the previous results to the case of the linear elasticity problem. We shall
thus get a second way to dualise problem (1.2.31). It is a general fact that there is
no unique way to use duality techniques.

The lines of the development are the same as for the Poisson problem and we
shall avoid to write the details. We just point out that now u and v play the role of p
and q, while � and � play the role of u and v, respectively.

We start by introducing the space

H.divI˝/s WD f� j �ij 2 L2.˝/; �ij D �ji; div � 2 .L2.˝//2g; (1.3.54)

where div � is the vector @
@x1
�i1 C @

@x2
�i2. On this space we use the norm,

k�k2H.divI˝/s WD
X

i;j

Z

˝

j�ijj2 dx C k div �k2
.L2.˝//2

; (1.3.55)

which makes it a Hilbert space.
One can then define, as forH.divI˝/, the vector �n 2 .H� 1

2 .� //2

.�n/i WD
X

j

�ij nj (1.3.56)

and we shall mostly use the normal and tangential components, �nn and �nt , of this
vector, as defined in (1.2.34). We then have the following “integration by parts”
formula,

Z

˝

� W ".v/ dx C
Z

˝

div � � v dx D h�n; vi D h�nn; v � ni C h�nt ; v � ti; (1.3.57)

which is valid for any � and v smooth enough. We have denoted h�; �i the duality

betweenH� 1
2 .� / andH

1
2 .� / and shall often write the formal expression

R
�
�nn v �

n ds C R
�
�nt v � t ds.

We can now write our dual formulation for the linear elasticity problem.
Following the same line as for the Poisson problem, we now write
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�

Z

˝

j".v/j2 dx C �

2

Z

˝

j div vj2 dx D sup
�2H.divI˝/s

Z

˝

�D W "D dx

C
Z

˝

tr � tr " dx � 1

4�

Z

˝

j�Dj2 dx � 1

2.�C �/

Z

˝

.t r �/2 dx;

(1.3.58)

which leads us to the saddle point problem in H.divI˝/ 
 .L2.˝//2,

inf
�

sup
v

1

2.�C �/

Z

˝

jtr � j2 dxC 1

4�

Z

˝

j�Dj2 dxC
Z

˝

.div �Cf / v dx: (1.3.59)

The solution .�; u/ of this saddle point problem is characterised by the system

8
ˆ̂̂
<

ˆ̂̂
:

div � C f D 0;

tr � D .�C �/ tr ".u/;

�D D 2� "D.u/;

(1.3.60)

which are the equilibrium condition (1.2.37) and the constitutive relations (1.2.36).
The dual problem then consists in minimising the complementary energy

inf
�

1

4�

Z

˝

j�D j2 dx C 1

2.�C �/

Z

˝

jt r � j2 dx; (1.3.61)

under the constraint div � C f D 0. Both the mixed formulation (1.3.59) and
the dual formulation (1.3.61) are used in practice. They lead to different although
similar approximations. ut

We now consider the thin plate problem of Example 1.2.4 to introduce a mixed
formulation due to [152] and [298].

Example 1.3.7 (Decomposition of a biharmonic problem). Again using the same
technique as in the dualisation of the Dirichlet problem in Example 1.3.4, it is a
simple exercise to transform problem (1.2.39) into the saddle point problem

inf
�2L2.˝/

sup
'2H2

0 .˝/

1

2

Z

˝

j�j2 dx C
Z

˝

� �' dx C
Z

˝

f ' dx; (1.3.62)

and to get the dual problem,

inf
�2M

1

2

Z

˝

j�j2 dx; (1.3.63)

where M WD f� 2 L2.˝/; �� C f D 0g. Integrating by parts the termR
˝
� �' dx, we get, as in Example 1.3.5, a weaker formulation
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inf
�2L2.˝/

sup
'2H2

0 .˝/

1

2

Z

˝

j�j2 dx �
Z

˝

grad� � grad' dx C
Z

˝

f ' dx: (1.3.64)

Assume that (1.3.64) has a saddle point .!;  / with ! 2 H1.˝/. Then .!;  / is
characterised by the variational system

8
ˆ̂<

ˆ̂:

Z

˝

!�dx �
Z

˝

grad� � grad dx D 0 8� 2 H1.˝/;

Z

˝

grad! � grad' dx D
Z

˝

f ' dx 8' 2 H1
0 .˝/:

(1.3.65)

It is not difficult to see that the two equations of (1.3.65) imply

8
<̂

:̂

�� D ! and
@ 

@n
ˇ̌
�

D 0;

��! D f:

(1.3.66)

As we already have  j� D 0 (since  2 H1
0 .˝/), we have in (1.3.66) too many

boundary conditions on and none on!. The system however has a solution .!;  /
(provided ˝ and f are smooth enough) such that the solution of the Dirichlet
problem in  also satisfies (through the choice of the right-hand side) the extra
Neumann condition. ut
Example 1.3.8 (Decomposition of the plate bending problem). We now consider
the plate bending problem (1.2.43). In order to make the dual problem easier to
introduce, we first write the energy functional in the form

1

2

� Et3

12.1� 	2/

� Z

˝

M.D
2
'/ W D

2
' dx �

Z

˝

f ' dx; (1.3.67)

where the operatorD
2

is defined by

.D
2
'/ij WD @2'

@xi@xj
; 1 � i; j � 2; (1.3.68)

and the operator M by

M.�/ WD
	
�11 C 	�22 .1� 	/�12
.1 � 	/�12 	�11 C �22



; (1.3.69)

for any symmetric tensor � . Using the same kind of analysis as in the previous
examples, we then get the saddle point problem
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inf
�2.L2.˝//4s

sup
'2H2

0 .˝/

1

2

�12.1� 	2/

Et3

� Z

˝

M�1.�/ W � dx

C
Z

˝

� W D
2
' dx �

Z

˝

f ' dx; (1.3.70)

where .L2.˝//4s is the space of square integrable 2 
 2 symmetric tensors. We
introduce, as dual variables, the bending moments, obtained from the second
derivatives of the primal solution  by

� WD � Et3

12.1� 	2/
M.D

2
u/; (1.3.71)

or explicitly

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�11 D � Et3

12.1� 	2/
�@2 
@x21

C 	
@2 

@x22

�
;

�22 D � Et3

12.1� 	2/
�
	
@2 

@x21
C @2 

@x22

�
;

�12 D � Et3

12.1C 	/

@2 

@x1@x2
:

(1.3.72)

The dual problem can then be written as

inf
�

1

2

� 12
Et3

� Z

˝

Œ.�11 C �22/
2 C 2.1C 	/.�212 � �11�22/� dx; (1.3.73)

under the constraint

D�
2 � D f: (1.3.74)

In (1.3.74) we denoted by D�
2 the transpose of the operatorD

2
so that

D�
2 � D @2�11

@x21
C 2

@2�12

@x1@x2
C @2�22

@x22
: (1.3.75)

It is possible, as in the previous case, to integrate by parts the expressions (1.3.74)
and to obtain formulations in different functional spaces. We shall see an example
of such a procedure in Sect. 10.2. ut

1.3.3 Duality Methods for Non Symmetric Bilinear Forms

In all previous examples, our variational formulations were based on a minimisation
problem for a functional and we were led to introduce a genuine saddle point
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problem. Even if this classical framework is suitable for a first presentation, it is
not the sole possible, and the techniques developed before can also be applied
to problems which are not optimisation problems. Let us consider for instance in
H1
0 .˝/ a continuous and coercive bilinear form a.p; q/. If we do not require a.�; �/

to be symmetric, the variational problem

a.p; q/ D
Z

˝

fq dx; 8q 2 H1
0 .˝/; (1.3.76)

has for f 2 L2.˝/ a unique solution p 2 H1
0 .˝/ but does not correspond to

the minimisation of any functional. To fix ideas, let us suppose that a.p; q/ can be
written as

a.p; q/ D m. gradp; grad q/ D
Z

˝

M. gradp/ � grad q dx (1.3.77)

where m.�; �/ is a continuous bilinear form on .L2.˝//2, which, of course, is non
symmetric, and M is the associated linear operator from .L2.˝//2 into .L2.˝//2.
We can now introduce the auxiliary variable

u D M. gradp/ (1.3.78)

and write problem (1.3.67) in the form

8
ˆ̂<

ˆ̂:

Z

˝

u � grad q dx D
Z

˝

fq dx;

Z

˝

M�1u � v dx D
Z

˝

v � gradp dx:

(1.3.79)

This can be integrated by parts to yield, as in Example 1.3.5, for u inH.divI˝/ and
p in L2.˝/:

8
ˆ̂<

ˆ̂:

Z

˝

div u q dx C
Z

˝

fq dx D 0; 8q 2 L2.˝/;
Z

˝

M�1u � v dxC
Z

˝

p div v dx D 0; 8v 2 H.divI˝/:
(1.3.80)

We shall thus consider in Chaps. 3 and 4 problems such as (1.3.80) without making
reference to a saddle point problem. The same remark would apply to the methods
of the following section. ut

1.3.4 Mixed Eigenvalue Problems

We have considered earlier in Sect. 1.2.1 some eigenvalue problems associated with
our examples. We shall now rapidly consider their counterpart in mixed form. Let
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us thus come back to problem (1.3.13). It is now possible to consider three distinct
eigenvalue problems.

1. The primal eigenvalue problem,

(
a.u; v/C b.v; p/ D �.u; v/V ; 8v 2 V;
b.u; q/ D 0; 8q 2 Q: (1.3.81)

2. The dual eigenvalue problem,

(
a.u; v/C b.v; p/ D 0; 8v 2 V;
b.u; q/ D ��.p; q/Q; 8q 2 Q: (1.3.82)

3. The global eigenvalue problem,

(
a.u; v/C b.v; p/ D �.u; v/V ; 8v 2 V;
b.u; q/ D ��.p; q/Q; 8q 2 Q: (1.3.83)

In practice, the interesting cases, from the physical point of view, will be either the
primal or the dual problem.

Example 1.3.9 (Eigenvalue problem for incompressible elasticity and the Stokes
problem). This case is the simplest instance of a primal eigenvalue problem of
type (1.3.81). We consider the eigenvalue problem corresponding to (1.3.39) in the
limiting case of � infinitely large.

8
ˆ̂<

ˆ̂:

2�

Z

˝

".u/ W ".v/ dx C
Z

˝

p div v dx D �

Z

˝

u � v dx; 8v 2 V;
Z

˝

q div u D 0; 8q 2 L2.˝/:
(1.3.84)

This problem is the equivalent of (1.2.60) in the incompressible case. The Lagrange
multiplier p ensures the incompressibility of the eigenmodes. ut
Example 1.3.10 (Eigenvalue problem for the mixed Poisson problem). This is the
simplest example of a dual problem of type (1.3.82). We consider the eigenvalue
problem associated with the saddle-point problem of (1.3.51).

8
ˆ̂<

ˆ̂:

Z

˝

u � v dx C
Z

˝

p div v dx D 0; 8v 2 H.divI˝/;
Z

˝

div u q dx D ��
Z

˝

p q dx; 8q 2 L2.˝/:
(1.3.85)
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This corresponds to the standard eigenvalue problem of (1.2.58). The Lagrange
multiplier p is now the important variable. ut
As we shall see later in Chap. 6, the approximation of those two kinds of problems
will need specific assumptions.

1.4 Domain Decomposition Methods, Hybrid Methods

We have shown in Sect. 1.3 that duality techniques enable us to obtain alternate
variational formulations for some problems. The method that we shall now describe
will yield a new family of variational principles that can be more or less grouped
under the name of hybrid methods. The common point between the examples
that follow is that in all cases the variational principle will depend explicitly,
independently of any discretisation, on a partition of the domain ˝ into sub-
domains. To clarify some of the facts that will appear later, we first recall a very
classical result.

Example 1.4.1 (A transmission problem). We consider the very classical case in
which a domain ˝ is split into two sub-domains ˝1 and ˝2 by a smooth enough
internal boundary S (Fig. 1.1). We consider the case of a Dirichlet problem with
variable coefficients a1.x/, a2.x/, defined respectively in ˝1 and ˝2 and being
discontinuous on S . This classically leads to the variational problem: find p 2
H1
0 .˝/ such that

Z

˝1

a1.x/ gradp � grad q dx C
Z

˝2

a2.x/ gradp � grad q dx

D
Z

˝

fq dx; 8q 2 H1
0 .˝/: (1.4.1)

We would like to decouple the above problem into two problems, one in each
˝i , and add suitable continuity conditions at the interface S . For this we recall the
following classical result.

Proposition 1.4.1. Assume that ˝ is a domain in R
2 with a Lipschitz continuous

boundary, and let S be a Lipschitz continuous curve that splits ˝ in the two sub-
domains˝1 and˝2. Let moreover a.x/ be a piecewise smooth function, and denote
by ai .x/ .i D 1; 2/ the restriction of a.x/ to ˝i . Let f 2 L2.˝/ and let p be
solution of the problem (1.4.1) Then, setting p1 D pj˝1 and p2 D pj˝2 , it is
equivalent to say that p is solution of the problem

8
ˆ̂<

ˆ̂:

� div .a1.x/ gradp1/ D f in ˝1;

� div .a2.x/ gradp2/ D f in ˝2;

p1j�\@˝1 D 0; p2j�\@˝2 D 0;

(1.4.2)
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S

1 2

Fig. 1.1 The decomposed domain

p1 D p2 on S; a1
@p1

@n1
C a2

@p2

@n2
D 0 on S; (1.4.3)

where n1 and n2 are the exterior normals to ˝1 and˝2 (respectively) on S . ut
ut

An important special case is a1.x/ D a2.x/ D 1. In that case, problem (1.4.1) is
obviously equivalent to

( ��p D f;

uj� D 0
(1.4.4)

and conditions (1.4.2) and (1.4.3) can be written as
8
ˆ̂<

ˆ̂:

��p1 D f in ˝1;

��p2 D f in ˝2;

p1j�\@˝1 D 0; p2j�\@˝2 D 0;

(1.4.5)

and
8
<̂

:̂

p1 D p2 on S;

@p1

@n1
C @p2

@n2
D 0 on S:

(1.4.6)

Example 1.4.2 (A domain decomposition method for the Dirichlet problem). What
we really want to do is to consider a general partition of ˝

N̋ WD
N[

iD1
NKi : (1.4.7)

We now write the classical Dirichlet functional of Example 1.2.1 in the following
way. First, we write the Dirichlet functional as

J.q/ WD
NX

iD1

n1
2

Z

Ki

j grad qj2 dx �
Z

Ki

f q dx
o
: (1.4.8)
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Then, introducing the functional space

X.˝/ WD fqj qjKi 2 H1.Ki/g �
NY

iD1
H1.Ki/; (1.4.9)

we can extend J.q/ on X.˝/. Moreover, H1
0 .˝/ is a closed subspace of X.˝/

and we may consider “q 2 H1
0 .˝/” as a linear constraint on q 2 X.˝/. This

constraint states that on eij D @Ki \ @Kj we must have (in H
1
2 .eij/) pi D pj ,

where p` D pjK` .
We shall therefore, following a now familiar procedure, impose this constraint

through a Lagrange multiplier properly chosen in H� 1
2 .eij/. As we shall see in

Chap. 2, it will be more convenient to introduce v 2 H.divI˝/ and to use the
normal trace of v on @Ki as a multiplier. This leads us to the saddle point problem

inf
p2X.˝/

sup
v2H.divI˝/

NX

iD1

n1
2

Z

Ki

j grad qj2 dx�
Z

@Ki

v � ni q ds�
Z

Ki

f q dx
o
;

(1.4.10)

for which we have the following optimality conditions: for i D 1; : : : ; N , find pi 2
H1.Ki / such that,

Z

Ki

gradpi � grad qi dx D
Z

Ki

f qi dx C
Z

@Ki

u � n qi ds; 8qi 2 H1.Ki /;

(1.4.11)

NX

iD1

Z

@Ki

v � ni pi ds D 0; 8v 2 H.divI˝/: (1.4.12)

Condition (1.4.12) expresses continuity ofp at interfaces eij and conditionpj� D 0.
Condition (1.4.11) shows that each pi is solution in Ki of a Neumann problem

8
<̂

:̂

��pi D f in Ki;

@pi

@ni
D u � ni on @Ki :

(1.4.13)

Solving this problem obviously requires a compatibility condition (take qi D 1

in (1.4.11))
Z

@Ki

u � ni ds C
Z

Ki

f dx D 0 (1.4.14)

on every sub-domainKi . This condition can also be written as
Z

Ki

.div u C f / dx D 0: (1.4.15)
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From (1.4.13) we have that the multiplier u � n can be seen as the normal derivative
of p. Indeed, when equilibrium is attained, we have on interfaces @pi

@ni
D u � n i D

�u � nj D �@pj
@nj

and pi D pj . A suitable lifting of u in each Ki in order to have
div u C f D 0 can always be done because of (1.4.14) and (1.4.15). ut
Example 1.4.3 (Dual problem of the domain decomposition method). We now
consider the dual problem of the above saddle point formulation. It will be, as it
can be expected, very similar to the dual problem introduced in Sect. 1.3 for the
Poisson problem. Let us first remark that taking the infimum on the constant part of
q 2 X.˝/ on eachKi leads to the constraint (1.4.15) on u. It is therefore possible to
suppose div uCf D 0 as this can be attained by modifications to u that are internal
to Ki (that is not modifying u � ni ) and are transparent to formulation (1.4.10).
Writing

Z

@Ki

v � ni q ds D
Z

Ki

div u q dx C
Z

Ki

v � grad q dx; (1.4.16)

one may write from (1.4.10)

sup
div .v/CfD0 inf

qi2H1.Ki /=R

NX

iD1

n1
2

Z

Ki

j grad qi j2 dx �
Z

Ki

v � grad qi dx
o
: (1.4.17)

From (1.4.17) we evidently get, setting u i D ujKi ,

gradpi D P.ui /; (1.4.18)

where P is the projection operator in .L2.Ki//
2 on grad.H1.Ki//. We shall indeed

prove in Chap. 2 that one has

.L2.˝//2 D fgradH1.˝/g ˚ curlH1
0 .˝/g: (1.4.19)

From this we can eliminate qi and write the dual problem,

sup
v2H.divI˝/
div.v/CfD0

�1
2

NX

iD1

Z

Ki

jP.vi /j2 dx: (1.4.20)

We are therefore back to a variant of (1.3.45). Indeed, (1.3.45) shows that the
projection operator P in (1.4.20) is unnecessary. ut
Remark 1.4.1. One could obtain a variant of the above dual problem, without
constraint (1.4.15) by using a “least-squares” solution of (1.4.13) whenever (1.4.14)
does not hold. This could be done, for instance by solving on Ki , in a weak
formulation that we shall not describe,
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8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

�2pi D �f in Ki;

@

@ni
�pi D @f

@ni
on @Ki ;

@pi

@ni
D v � ni on @Ki ;

(1.4.21)

for which a solution always exists, defined up to an additive constant. Such a
procedure could be useful for algorithmic purposes for (1.4.21) is a local simple
problem even if it is a fourth-order problem. ut
Example 1.4.4 (Dual hybrid methods). We now consider the dual problem (1.3.45),
that is the complementary energy principle, that we now pose in H.divI˝/,

inf
v2H.divI˝/
div .v/CfD0

1

2

Z

˝

jvj2 dx: (1.4.22)

We can apply the domain decomposition principle to such a problem by introducing

Y.˝/ WD fvj vjKi 2 H.divIKi/g �
NY

iD1
H.divIKi/: (1.4.23)

As we shall see in Chap. 2, H.divI˝/ is now a closed subspace of Y.˝/
characterised by

NX

iD1

Z

@Ki

.v � ni/ q ds D 0; 8q 2 H1
0 .˝/: (1.4.24)

We can then transform (1.4.22) into the saddle point problem

inf
v2Y.˝/

sup
q2H1

0 .˝/

NX

iD1

n1
2

Z

Ki

jvi j2 dx C
Z

@Ki

vi � ni q ds
o

(1.4.25)

under the local constraint

div v i C f D 0 on Ki: (1.4.26)

An advantage of this formulation is that it is easy to find v i satisfying (1.4.26). We
shall meet discretisation methods, based on such a principle, under the name of dual
hybrid methods for the treatment of almost any example considered in this book:
Dirichlet problems, elasticity problems, fourth-order problems, etc. ut
Example 1.4.5 (The Hellan-Hermann-Johnson method in elasticity). This is an
example in which a domain decomposition is introduced, not by dualising a
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continuity condition but by defining a variational formulation able to bypass
this continuity by approximating weak derivatives. This formulation will not be
developed but is amenable to the techniques of the book. We shall first present
formal results and postpone a precise presentation of the functional framework.
Our starting point will be the saddle point problem (1.3.59) and its optimality
conditions (1.3.60) that we write, in variational form (with functional spaces to be
defined), as

1

�

Z

˝

�D W �D dx C 1

2.�C�/
Z

˝

tr � tr � dx

C
Z

˝

".u/ W � dx D 0; 8� 2 H.divI˝/s; (1.4.27)

Z

˝

".v/ W � dx C
Z

˝

f � v dx D 0 8v 2 .H1
0 .˝//

2: (1.4.28)

These conditions make sense for a space of � chosen so that div � is well defined,
which implies, as we have seen, continuity of � n at interfaces. On the other hand v
can be taken as completely discontinuous on these same interfaces. What we now
try to do is to split continuity conditions between � �n and v. Let us consider indeed
the well-known integration by parts formula,

Z

˝

div � � v dx C
Z

˝

� W ".v/ dx D
Z

@˝

�nn v � n ds C
Z

@˝

�nt v � t ds: (1.4.29)

Whenever v is a smooth (let us say H1.˝/) vector, and �nt is continuous, we thus
have

Z

˝

".v/ W � dx D �
NX

iD1

�Z

Ki

div � � v dx C
Z

@Ki

�nn v � n ds

�
; (1.4.30)

so that we can rewrite (1.4.27) and (1.4.28) in the following form,

1

�

Z

˝

�D W �D dx C 1

2.�C �/

Z

˝

tr � tr � dx

C
NX

iD1

nZ

Ki

div � � u dx�
Z

@Ki

�nn u � n ds
o

D 0 8�;
(1.4.31)

NX

iD1

nZ

Ki

div � � v dx �
Z

@Ki

�nn v � n ds
o

C
Z

˝

f � v dx D 0 8v: (1.4.32)

Formally, this is well defined for � chosen with �nt continuous at interfaces while
u � n is continuous. Then the term
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NX

iD1

nZ

@Ki

�nn v � n ds
o

(1.4.33)

depends on the jump of �nn on @Ki and (1.4.32) can be read as div � C f D 0 in
the sense of distributions.

Up to now we considered a purely formal problem. Giving a good framework
to (1.4.31), and (1.4.32) is a task that requires some care. The presence of traces,
appearing explicitly in the variational formulation, leads to deal with spaces
H

1
2 .@Ki / and H� 1

2 .@Ki / and to subtle considerations about the behaviour of
functions in these rather pathological spaces. Let us define

˙ WD
Y

Ki

.H1.Ki //
4
s D f� j �ijjKi 2 H1.Ki/; �ij D �jig: (1.4.34)

This is a space of smooth tensors and we can consider �nt on each interface eij D
@Ki \ @Kj , (cf. Chap. 2). We have �nt 2 H 1

2 .eij/ but we do not have �nt 2 H 1
2 .@K/

for this would require some continuity at vertices which cannot in general take place
due to the change of direction of n and t . We can nevertheless consider in ˙ tensor
functions � such that �nt is continuous on eij. To make (1.4.33) meaningful, we now
have to choose v with v � n continuous on eij. We have already seen that for v in

H.divIKi/ we can define v � n in H� 1
2 .@Ki /. Unfortunately it is not possible to

restrict v � njeij and get a result in H� 1
2 .eij/: something is lost at corners. In reality

we only need an “infinitesimal” amount of extra smoothness and this will lead us to
look for v in .Lp.˝//2 \H.divI˝/ for p > 2. This will cause some problems in
applying the theory of Chap. 4 and existence of a solution will have to be deduced
through special considerations. ut

1.5 Modified Variational Formulations

We shall present in this section modified variational principles associated to saddle-
point problems or more general mixed methods. We shall distinguish between
augmented formulations and perturbed formulations. In the following, augmented
formulations will correspond to a modification of the variational formulation of
the continuous problem. This will be done so that the solution is not changed
(under perhaps some regularity conditions). The discretised versions will however in
general be different. On the other hand, perturbed formulations will be meaningful
only on a discrete problem. The rationale behind the introduction of these modified
formulations is that they will have, for some discretisations, a better behaviour than
the original one, in particular with respect to stability issues.
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1.5.1 Augmented Formulations

As an example, let us consider the Galerkin least-squares methods introduced by
Hughes and Franca [256]. To fix ideas, let us consider the simple cases of the saddle
point formulation of the Poisson problem of Sect. 1.3,

inf
v2H.divI˝/

sup
q2L2.˝/

1

2

Z

˝

jvj2 dx C
Z

˝

fq dx C
Z

˝

q div v dx; (1.5.1)

for which the Euler equations are

8
ˆ̂<

ˆ̂:

Z

˝

u � v dx C
Z

˝

p div v dx D 0 8v 2 H.divI˝/;
Z

˝

.div u C f /q dx D 0 8q 2 L2.˝/:
(1.5.2)

To better understand stability issues, it will be convenient to write (1.5.2) using
an antisymmetric bilinear form, obtained by subtracting the two equations

E..p; u /; .q; v // W D
Z

˝

u � v dx C
Z

˝

p div v dx �
Z

˝

q div u dx

D
Z

˝

fq dx; 8v 2 H.divI˝/;8q 2 L2.˝/:
(1.5.3)

One sees that

E..p; u /; .p; u // D
Z

˝

juj2 dx; (1.5.4)

so that our bilinear form is non-negative, but not coercive.
The approximation of (1.5.1) thus requires the special constructions that will be

described in Chaps. 3–5.

Remark 1.5.1. A basic philosophical issue: It is important, at this point, to
underline a basic philosophical issue: Assume that you are given a bilinear form
(say, E) on H 
 H, where H is a Hilbert space. There are several ways that could
be used to prove that E induces an isomorphism from H to its dual space H0. We
mean by that that there are several properties that will imply such a result. For
instance, if for simplicity H 	 R

n, you can show that the associated matrix ME

has a determinant that is different from zero. Otherwise, you can show that the
associated homogeneous system has only the (trivial) zero solution. Alternatively,
you can show that the associated non-homogeneous system has at least one solution
for every right-hand side, or you can show that there exists a constant c such that
for every pair .X; F / that satisfies ME X D F you have kXk � c kF k. All
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these properties are indeed equivalent to each other (in finite dimension). As a last
possibility, you can show that E is coercive:

E.X;X/ � ˛kXk2 8X 2 H: (1.5.5)

This last condition (some sort of Cinderella among the other equivalent step-
sisters) is not necessary and sufficient (as all the others are), but only sufficient.
Indeed, there are zillions of non-singular matrices that are not coercive. Assume
now that you want to play an additional game. You would like to consider proper
subspaces QH of R

n (say, to fix ideas, Rm with m < n) and the restriction QE of
the bilinear form E to QH 
 QH. We ask whether the bilinear form QE induces an
isomorphism from QH to its dual QH0. In fact, not a single one of the above necessary
and sufficient conditions will be automatically inherited by QE. Actually, as they are
all equivalent, if one does not the others cannot do either. Surely there are zillions
of non-singular matrices M whose first entry M1;1 is equal to 0. Then you take QH
equal to R

1 (using the first component of every X 2 H 	 R
n) and you are done:

QE is 0.
But Cinderella survives : if E is coercive on H, then QE is coercive on QH, for

every subspace QH � H and the same value of ˛ that makes (1.5.5) true will make

QE. QX; QX/ � ˛k QXk2 8 QX 2 QH; (1.5.6)

hold true as well. Hence, Cinderella becomes princess and superstar, and everybody,
for every problem, would like to have a coercive bilinear form. If it is not, one would
struggle to change the problem into an equivalent one, whose associated bilinear
form is coercive. This, in short, is the essence of many stabilisation techniques. ut
We have already seen in Sect. 1.3 that the solution of the “weaker” problem (1.5.2)
is in fact the solution of the standard problem ��p D f , written as the system

(
u � gradp D 0; p 2 H1

0 .˝/;

div u C f D 0; u 2 H.divI˝/:
(1.5.7)

Starting from this system, we can also consider the other formulation

inf
v2.L2.˝//2

sup
q2H1

0 .˝/

1

2

Z

˝

jvj2 dx C
Z

˝

fq dx �
Z

˝

grad q � v dx; (1.5.8)

for which the Euler equations are now

8
ˆ̂<

ˆ̂:

Z

˝

u � v dx �
Z

˝

gradp � v dx D 0; 8v 2 .L2.˝//2;

�
Z

˝

u � grad q dx C
Z

˝

fq dx D 0; 8q 2 H1
0 .˝/:

(1.5.9)
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Note that, comparing to (1.5.2), we had to change the regularity requirements
on q in order to make the functional meaningful. One checks that the solution of
the continuous Poisson problem, which belongs to H1

0 .˝/, is a solution of our new
saddle point problem. However, it is now clear that the discrete problems will now
have to employ finite element approximations of H1

0 .˝/.
It is clear that we can always add (or subtract) the square of one of the equations

(1.5.7) to the Lagrangian of (1.5.1) or (1.5.8) without changing the min-max point.
For instance, we can add to (1.5.1) the square of the second equation of (1.5.7) to
obtain

inf
v2H.divI˝/

sup
q2L2.˝/

(
1

2

Z

˝

jvj2 dx C
Z

˝

fq dx C
Z

˝

q div v dx

C 
1

2

Z

˝

.div vCf /2 dx
)
; (1.5.10)

where 
1 � 0 is arbitrary. We write again the Euler equations using an antisymmet-
ric bilinear form,

E..p; u/; .q; v// D
Z

˝

u � v dx C 
1

Z

˝

div u div v dx

C
Z

˝

p div v dx �
Z

˝

q div u dx

D
Z

˝

fq dx � 
1
Z

˝

f div v dx;

8v 2 H.divI˝/;8q 2 L2.˝/: (1.5.11)

It is clear that the solution of problem (1.5.10) is exactly the same as that
of problem (1.5.1). Approximate solutions might however be different and some
choices of elements will be stable for (1.5.10) but not for (1.5.1). Indeed, we now
have

E..q; v/; .q; v// D
Z

˝

jvj2 dx C 
1

Z

˝

j div vj2 dx

� min.1; 
1/kvk2H.divI˝/; (1.5.12)

which is not yet the coercivity property (1.5.5), but is much better than (1.5.4), as
now at least the full norm of v is under control. Indeed, as we shall see, this enables
the construction of otherwise impossible approximations such as in [124].

Remark 1.5.2. Terms like min.1; 
1/ appearing in (1.5.12) are also weird. Their
presence has still to do with the weird choice of the norm (1.3.47) in H.divI˝/.
Had we chosen the more reasonable (but, alas!, almost never used in the literature)
definition (1.3.49), we would, instead, have reached a min.1; 
1=`/ which looks
much more healthy, as 
1 is clearly a length. ut
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Another reasonable possibility is available: one might take (1.5.8) and subtract
from it the square of the first equation of (1.5.7), to get

inf
v2.L2.˝//2

sup
q2H1

0 .˝/

1

2

Z

˝

jvj2 dx C
Z

˝

fq dx �
Z

˝

grad q v dx

� 
2

2

Z

˝

jv� grad qj2dx (1.5.13)

and the Euler equations of this Lagrangian yield

E..p; u/; .q; v// D .1 � 
2/
Z

˝

u � v dx � .1 � 
2/

Z

˝

gradp � v dx

C .1 � 
2/
Z

˝

u � grad q dx C 
2

Z

˝

gradp � grad q dx

D
Z

˝

fq dx 8v 2 .L2.˝//2;8q 2 H1
0 .˝/: (1.5.14)

This equation is a convex combination of equation (1.5.3) and of a standard
formulation of the Poisson problem. Although this may seem silly at first sight,
such methods have been used in [208] to stabilise formulations in which the discrete
space Vh for the approximation of u was too small with respect to the space spanned
by grad qh, resulting in a failure of the inf-sup condition. The reason to employ such
a strange approximation was that the first equation was much more complex than
u � gradp D 0 but rather of the form u � gradp D F.u; p/ where the function
F.u; p/ contained terms prescribing low order elements in order to be manageable.
Unsurprisingly, we now have

E..q; v/; .q; v// D .1 � 
2/
Z

˝

jvj2 dx C 
2

Z

˝

j grad qj2 dx; (1.5.15)

and we have coercivity on .L2.˝//2 
H1
0 .˝/ for 0 < 
2 < 1.

Now, if one is really eager for stability, one could consider a “super-stabilised”
formulation

inf
v2H.divI˝/

sup
q2H1

0 .˝/

1

2

Z

˝

jvj2 dx �
Z

˝

v � grad q dx C
Z

˝

fq dx

C 
2

2

Z

˝

jv� grad qj2dx C 
1

2

Z

˝

.div vCf /2 dx

C 
3

2
k ��q � f k2�; (1.5.16)

where k � k� is the norm in H�1.˝/, which we can define from the corresponding
scalar product:

hp0; q0i� WD h.��/�1p0; q0iH1
0 .˝/�H�1.˝/: (1.5.17)
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Taking the Euler equation and using

h��p�f;��qi� D h��p�f; qiH�1.˝/�H1
0 .˝/

D
Z

˝

gradp� grad q dx�
Z

˝

fq dx;

one obtains

.1C 
2/

Z

˝

u � v dx C 
1

Z

˝

div u div v dx � .1C 
2/

Z

˝

gradp � v dx

D � 
1
Z

˝

f div v dx; 8v 2 H.divI˝/
(1.5.18)

� .1C 
2/

Z

˝

u � grad q dx C .
2 C 
3/

Z

˝

gradp � grad q dx

D .
3 � 1/
Z

˝

fq dx; 8q 2 H1
0 .˝/:

Remark 1.5.3. If we take 
3 D 1; 
2 D �1=2; 
1 D 1=2, the above system (1.5.18)
reduces to

Z

˝

.u � gradp/ � v dx C
Z

˝

.div u C f / div v dx D 0; 8v 2 H.divI˝/
(1.5.19)

�
Z

˝

.u � gradp/ � grad q dx D 0; 8q 2 H1
0 .˝/

which are the Euler equations of the problem

inf
v2H.divI˝/ inf

q2H1
0 .˝/


2

2

Z

˝

jv� grad qj2dx C 
1

2

Z

˝

.divvCf /2 dx; (1.5.20)

which is the least squares method introduced by Bramble et al. [108] and has given
rise to a vast literature. ut

Let us now consider the question of the stability of (1.5.18). This can be done
in two ways. In the first one we subtract the two equations to get an antisymmetric
bilinear form, Ea..p; u/; .q; v//. Then, we clearly have

Ea..q; v/; .q; v// D .1C 
2/

Z

˝

jvj2 dx C 
1

Z

˝

j divvj2 dx

� .
2 C 
3/

Z

˝

j grad qj2 dx: (1.5.21)

We thus get coercivity if 
1 > 0; .1C 
2/ > 0; .
2 C 
3/ < 0. It is easy to see that
these conditions imply 
3 < 1 and that, this being given, one can take 
2 D � 
3C1

2
.
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On the other hand, one could want to consider a symmetrical bilinear form by
adding the two equations instead of subtracting them. One then has

Es..q; v/; .q; v// D .1C 
2/

Z

˝

jvj2 dx C 
1

Z

˝

j div vj2 dx

� 2.1C 
2/

Z

˝

grad q � v dx C .
2 C 
3/

Z

˝

j grad qj2 dx: (1.5.22)

It is not difficult to check that (1.5.22) yields coercivity if


1 > 0; 
2 > �1; 
2 C 
3 > 0;

and finally

.
2 C 
3/minf
1; 1C 
2g > .1C 
2/
2:

Now, if minf
1; 1C 
2g D 1C 
2, the last condition implies 
2 C 
3 < 1C 
2, that
is 
3 < 1.

Remark 1.5.4. As in Remark 1.5.2, instead of the expression minf
1; 1 C 
2g, we
should actually have minf
1=`; 1 C 
2g where ` is a characteristic length of the
problem. ut
Remark 1.5.5. We thus see that the least-squares formulation of Remark 1.5.3,
which is obtained with 
3 D 1, is a difficult case which cannot be studied by simple
arguments and is therefore not a simple way to obtain a stable method. ut
Remark 1.5.6. We presented here an example of a quite general idea which was
introduced in [256] and [213]. Other examples of these ideas will be developed in
the following sections of this chapter or in the following chapters. ut
Remark 1.5.7. In the example presented above, Euler equations (1.5.2) were a
system of first order equations. This is not the case of the Stokes problem

inf
v2.H1

0 .˝//
2

sup
q2L2.˝/

�

Z

˝

j P".v/j2dx �
Z

˝

f � v dx �
Z

˝

q div v dx; (1.5.23)

for which one of the equations in strong form contains second derivatives. Applying
the same procedure would lead to a fourth order problem in the variable u which
would lead to undesirable complications. Indeed the analogue of (1.5.13) would
here be obtained from (1.5.23) as follows:

inf
v2.H1

0 .˝//
2

sup
q2L2.˝/

�

Z

˝

j P".v/j2dx �
Z

˝

f � v dx

�
Z

˝

q div v dx � ˇ

Z

˝

jAuC gradp�f j2dx; (1.5.24)
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which would force us to use a very regular approximation for the variable u or to
rather consider the formulation

inf
v2.H1

0 .˝//
2

sup
q2L2.˝/

�

Z

˝

j P".v/j2dx �
Z

˝

f � v dx

�
Z

˝

q div v dx � ˇkAuC gradp�f k2�; (1.5.25)

where k � k� denotes the norm inH�1.˝/. If we take the derivative of (1.5.25) with
respect to v, we could write as in (1.5.17),

hAuC gradp�f ;Avi� D hAuC gradp�f ; viV 0�V ; (1.5.26)

but the derivative with respect to p will yield a term of the form

hAuC gradp�f ;Avi�;

which is not readily computable and which will require some special handling
when considering discrete approximations. The typical solution, when dealing with
a decomposition of ˝ into elements K and piecewise smooth functions u, v, p and
q, is to consider terms of the form

X

K

ˇK.diam.K//2
Z

K

jAuC gradp�f j2dx: (1.5.27)

We shall consider solutions to this question in Chap. 8 where Stokes’ problem will
be studied in detail. ut
Remark 1.5.8. If one looks carefully at the Euler equations of (1.5.14), one sees
that we could be in some trouble for ˇ D 1 as the first equation disappears and we
obviously loose control over p. This justified, in [179], the introduction of another
variant of the general idea developed above. The formulation cannot in this case
be written as a modified Lagrangian but is rather derived from the antisymmetric
bilinear form (1.5.3). Indeed, let us write,

E..u; p/; .v; q// D
Z

˝

p�q dx C
Z

˝

p� grad v dx �
Z

˝

q� grad u dx

C ˇ

Z

˝

.p� grad u/�.q� grad v/dx

D �
Z

˝

f v dx; 8.q; v/ 2 .L2.˝//2
H1
0 .˝/:

(1.5.28)
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This formulation cannot be obtained from a Lagrangian. It can easily be seen that it
remains valid for ˇ > 0 arbitrary. Indeed (1.5.28) can also be written as

.1Cˇ/
Z

˝

.p� grad u/�q dx D 0; 8q 2 .L2.˝//2;

ˇ

Z

˝

grad u � grad v dxC.1�ˇ/
Z

˝

p � grad v dx�
Z

˝

f v dxD 0; 8v2H1
0 .˝/;

(1.5.29)

and this is equivalent to (1.5.7) for any ˇ � 0 with the control of p remaining
untouched. Moreover, we can easily see that, as long as ˇ > 0, there exists a ı > 0
such that

E..v; p/; .v; q// D
Z

˝

jqj2 dx C ˇ

Z

˝

jq� grad vj2 dx > ı
Z

˝

jqj2 dx C
Z

˝

j grad vj2 dx:
(1.5.30)

We shall see later on how this technique can indeed be included in the same general
framework as the previous one. ut

1.5.2 Perturbed Formulations

We can also consider another type of modified variational formulation which is
introduced in the discretised problems and in which, hopefully, the additional
term vanishes when the mesh is refined and the numerical solution converges
to the solution of the original problem. As an example, we consider the Stokes
problem presented above in (1.5.23). We now suppose that we have a subspace Vh
of .H1

0 .˝//
2 and Qh of L2.˝/ and we try to solve

inf
vh2Vh

sup
qh2Qh

�

Z

˝

j".vh/j2dx �
Z

˝

f � vh dx �
Z

˝

qh div vh dx: (1.5.31)

Let us suppose that the couple Vh 
Qh does not satisfy the stability conditions
developed on Chap. 8 but that there exists a subspaceQS

h ofQh such that the couple
Vh 
 QS

h is stable. If for some reason we want to use Qh instead of QS
h we could

retrieve stability by working with the problem

inf
vh2Vh

sup
qh2Qh

�

Z

˝

j".vh/j2dx �
Z

˝

f � vh dx �
Z

˝

qh div vh dx

� ˛

2

Z

˝

jqh � Pqhj2 dx; (1.5.32)
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where Pqh stands for the projection of qh on QS
h , which we suppose to be

(easily) computable. This is now a stable formulation which, for �1 large, yields
almost exactly the solution in Vh 
 QS

h . It must be noted that the modified
problem is meaningless for the continuous problem so that we have a different
way of stabilising. However, the difference sometimes disappears when augmented
versions are discretised.

1.6 Bibliographical Remarks

The purpose of this chapter was to present examples which will be used later as
a standing ground for our development. It was not possible in such a context to
consider every case. We already referred the reader to [166, 167] or [277] where
the mathematical analysis of the problems selected here (and of many others
problems) can be found in a unified setting. Advanced presentation of elasticity
problems can be found in [295] or in [147]. For the Navier-Stokes equations, among
the huge amount of literature, one may consult [278, 350, 363] or [159], and for
electromagnetic problems the classical [273]. We also refer to more engineering-
oriented presentations such as [53, 254, 271] and [387]. In particular, non-linear
problems and their treatment are described in these references.



Chapter 2
Function Spaces and Finite Element
Approximations

In this chapter we present function spaces and suitable finite element approxima-
tions of them, which we shall use in order to apply the abstract theory of the previous
chapters to problems of practical interest.

We do not aim at a general presentation of the subject of a vast literature, but we
present the basic properties of the spaces we are going to use in the sequel of this
book.

In particular, we consider standard results about the finite element approximation
of Sobolev spaces and about approximations of H.divI˝/ and H.curlI˝/. The
results of Sect. 2.1 are technical and may be skipped by a reader interested mostly
in numerical results.

Mainly for historical reasons, we present the finite element approximation of the
spacesH1.˝/, H.divI˝/, andH.curlI˝/ separately, although they could be seen
altogether in the framework of de Rham diagram. We shall briefly comment on it in
Sect. 2.1.4.

2.1 Properties of the SpacesHm.˝/, H.divI˝/,
andH.curlI˝/

2.1.1 Basic Properties

Some of the results of this section have been already anticipated in Chap. 1. Here,
we present them in a unified setting.

• Sobolev spaces Hm.˝/. Given an integer number m�1, standard Sobolev
spaces read

Hm.˝/ WD fv j v 2 L2.˝/; D˛v 2 L2.˝/; j˛j � mg; (2.1.1)

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 2,
© Springer-Verlag Berlin Heidelberg 2013
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where

D˛v WD @j˛jv
@x

˛1
1 @x

˛2
2 : : : @x

˛n
n

; j˛j WD ˛1 C ˛2 C � � � C ˛n: (2.1.2)

We shall consider the standard norm

kvk2m;˝ WD
X

j˛j�m

Z
jD˛vj2 dx; (2.1.3)

associated with the usual inner product and the semi-norm

jvj2m;˝ WD
X

j˛jDm

Z
jD˛vj2 dx: (2.1.4)

The most important of these spaces will be for us H1.˝/ (and some of its sub-
spaces) and for fourth-order problemsH2.˝/.

For the study of Sobolev spaces, we refer the reader to [281, 309], and [3]. It is
well-known that if � D @˝ is smooth enough (for instance Lipschitz continuous),
it is possible to define the trace �u D uj� of u 2 H1.˝/ on the boundary � . The
traces of functions in H1.˝/ span a Hilbert space, denoted by H

1
2 .� /, that is a

proper dense subspace of L2.� /. The mapping,

� W H1.˝/ ! H
1
2 .� /; (2.1.5)

is surjective and possesses a continuous lifting. The norm

k�vk 1
2 ;�

WD inf
w2H1.˝/
�wDv

kwk1;˝ (2.1.6)

is then equivalent to more standard norms on H1.˝/ as defined in [281]. Then we
can write

kvk 1
2 ;�

D kNvk1;˝ ; (2.1.7)

where Nv is the unique solution in H1.˝/ of the Dirichlet problem,

( �4Nv C Nv D 0;

Nvj� D v:
(2.1.8)

We shall denote by H� 1
2 .� / the dual space of H

1
2 .� / with the dual norm,

kv�k� 1
2 ;�

WD sup
v2H1=2.� /

hv; v�i
kvk 1

2 ;�

; (2.1.9)
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where the bracket h�; �i denotes duality betweenH�1=2.� / andH1=2.� /. It is easily
checked that one has

kv�k� 1
2 ;�

D kNv�k1;˝ ; (2.1.10)

where Nv� is the solution of the variational Neumann problem,

Z

˝

grad Nv� � grad v dx C
Z

˝

Nv�v dx D hv�; vi; 8v 2 H1.˝/: (2.1.11)

Remark 2.1.1. We shall sometimes write formally
R
�
v�v d� instead of hv�; vi, to

denote duality between H
1
2 .� / andH� 1

2 .� /. ut
We can define in the same way a trace operator � on H2.˝/: It is now possible

to define vj� in a space denotedH
3
2 .� / but also traces of grad vj� 2 H 1

2 .� /n and
thus the trace of the normal derivative @v

@n
. We then define

H1
0 .˝/ WD fv j v 2 H1.˝/; vj� D 0g; (2.1.12)

H2
0 .˝/ WD fv j v 2 H2.˝/; vj� D 0;

@v

@n
j� D 0g: (2.1.13)

Remark 2.1.2. Spaces H1=2.� / and H3=2.� / are particular cases of generalized
Sobolev spacesHs.�/ for s 2 R

C. The reader should be aware that handling Sobolev
spaces Hs.�/ where s D integer C1=2 requires some caution [281]. In the case
of H1=2.� / it is important to recall some facts. Let �0 be a part of � ; then � 2
H1=2.�0/ cannot be extended by zero outside �0 to a function in H1=2.� / (even if
paradoxically D.�0/ is dense in H1=2.�0/). Dually, if � D �0 [ �1, one does not
get the whole of H�1=2.� / by patching functions of H�1=2.�0/ and H�1=2.�1/.
Unfortunately, spaces H1=2.@K/ and H�1=2.@K/ with K an element of a partition
of ˝ are met very often in the analysis of hybrid and mixed methods and one must
be very careful in handling them. ut
• The space H.divI˝/. Having considered standard Sobolev spaces, we now

present some properties of a space specially adapted to the study of mixed and
hybrid methods.

The mathematical analysis of mixed methods will use constantly

H.divI˝/ WD fq j q 2 .L2.˝//n; div q 2 L2.˝/g (2.1.14)

with the norm

kqk2div;˝ WD jqj20;˝ C j divqj20;˝: (2.1.15)

It is then possible to define q � nj� , the normal trace of q on � .

Lemma 2.1.1. For q 2 H.div;˝/, we can define q � nj� 2 H� 1
2 .� / and we have

Green’s formula,
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Z

˝

div q v dx C
Z

˝

q � grad v dx D hq � n; vi; 8v 2 H1.˝/: (2.1.16)

Proof. For q 2 .D. N̋ //n and v 2 D. N̋ /, we have the standard Green’s formula

Z

�

q � n v d� D
Z

˝

div q v dx C
Z

˝

q � grad v dx; (2.1.17)

and therefore

j
Z

�

q � n v d� j � kqkdiv;˝kvk1;˝ : (2.1.18)

Moreover, the expression
R
˝

div q v dx C R
˝
q � grad v dx depends only on the trace

vj� 2 H 1
2 .� /. The result follows by density of D. N̋ / and .D. N̋ //n in H1.˝/ and

H.divI˝/, respectively. ut
The operator defined above also satisfies a surjectivity property.

Lemma 2.1.2. The trace operator q 2 H.divI˝/ ! q � nj� 2 H� 1
2 .� / is

surjective.

Proof. Let g 2 H� 1
2 .� / be given. Then, solving in H1.˝/

Z

˝

grad � � grad v dx C
Z

˝

�v dx D hg; vi; 8v 2 H1.˝/; (2.1.19)

and making q D grad� implies q � nj� D g. ut
Let us now suppose a partition .� D D [N/ of the boundary � . We define

H1
0;D.˝/ WD fv j v 2 H1.˝/; vjD D 0g: (2.1.20)

In particular, we have H1
0;D.˝/ D H1

0 .˝/ if D D � and H1
0;D.˝/ D H1.˝/ if

D D ;. We shall also need the space

H0;N .divI˝/ WD fq j q 2 H.div˝/; hq � n; vi D 0; 8v 2 H1
0;D.˝/g: (2.1.21)

Remark 2.1.3. This space contains functions of H.divI˝/ whose normal traces
vanish on N . For reasons related to pathological properties of H

1
2 .D/ and

H� 1
2 .N /, it is necessary to use definition (2.1.21) and not an expression such as

q � njN D 0 in H� 1
2 .N /. ut

In particular, we denote H0.divI˝/DH0;N .divI˝/ when N D� . Finally,
another important subspace of H.divI˝/ will be

H0.divI˝/ WD fq j q 2 H.divI˝/; div q D 0g; (2.1.22)

from which we deduce the following result.
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Lemma 2.1.3. The normal trace operator q! q �nj� is surjective fromH0.divI˝/
onto f�� j �� 2 H� 1

2 .� /; h��; 1i D 0g.

Proof. By Green’s formula (2.1.14), we have hq � n; 1i D 0 if q 2 N0.divI˝/.
Reciprocally, if g 2 H� 1

2 .� / is given with hg; 1i D 0, we can solve in H1.˝/=R

the Neumann problem

Z

˝

grad � � grad v dx D hg; �i; 8� 2 H1.˝/; (2.1.23)

and taking q D grad � yields q � n D g. ut
Remark 2.1.4. In applications,D will be the part of � where Dirichlet’s conditions
are given, and N the part with Neumann’s conditions. ut
• The space H.curlI˝/. To conclude this section, we consider the space
H.curlI˝/ which will be used, in particular, for the approximation of problems
arising from electro-magnetics in Chap. 11.

For ˝ 2 R
3, we define

H.curlI˝/ WD f� j � 2 .L2.˝//3; curl� 2 .L2.˝//3g; (2.1.24)

where the curl operator is as usual defined as

curl� D r ^ � WD det

0

B@
i j k
@
@x1

@
@x2

@
@x3

�1 �2 �3

1

CA (2.1.25)

and where we are using the standard norm

k�k2curl;˝ WD j�j20;˝ C j curl�j20;˝: (2.1.26)

Remark 2.1.5. To complete these definitions, we must discuss the definition of
H.curlI˝/ when˝ belongs to R

2. First of all, we recall the possible definitions of
the curl operator in this setting. Given a vector u.x1; x2/ D .u1; u2/, we can evaluate
curl.u1; u2; 0/, which is a vector oriented in the direction of x3. This suggests the
definition

curl u WD @u2
@x1

� @u1
@x2

: (2.1.27)

On the other hand, given a scalar function �.x1; x2/, the vector curl.0; 0; �/ is
perpendicular to the direction of x3 and drives to the following definition

curl� WD
	
@�

@x1
;� @�

@x2



: (2.1.28)
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x2

x3 = n

x1

Fig. 2.1 H.curlI˝/ traces
on the flat surface .x1; x2/

It is clear that the operators curl and curl introduced above are equivalent to the
operators div and grad, respectively, after rotation of the vectors by a right angle.
More precisely, we have

curl u D � div.u?/; (2.1.29)

curl� D �.grad�/?; (2.1.30)

with the standard notation .v1; v2/? D .�v2; v1/. It turns out that in two dimensions
the space H.curlI˝/ is isomorphic to H.divI˝/. This fact has important conse-
quences for the construction of approximations of H.curlI˝/; namely, any finite
element space which is a good approximation of H.divI˝/ can be turned into a
good approximation of H.curlI˝/ just by rotating the vectors by a right angle and
vice versa. ut

We are now going to state results concerning traces of H.curlI˝/ in three
dimensions, in analogy of what has been done in the previous subsection for
H.divI˝/. Traces ofH.curlI˝/ have been the object of a recent and active research
by several authors [6,133–135,143,223,317] and it turns out that the theory is not as
straightforward as in the case of H.divI˝/; in particular we shall see that different
trace definitions can be considered.

In order to get the reader acquainted with the topics which we are going to
present, let us start with an easy but significant example.

Example 2.1.1 (Traces of H.curlI˝/ on a flat surface). Let ˝ � R
3 be the half

space x3 < 0 and let � be the plane x3 D 0. The aim of this example is to consider
the basic situation of a flat boundary, i.e., when the tangent plane at any point
of � coincides with the surface � itself. Given the vector � D .�1; �2; �3/

T 2
H.curlI˝/, we investigate the possible definitions of tangential component of �
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along � (see Fig. 2.1). As usual, we denote by n D .0; 0; 1/T the unit vector
pointing in the outward normal direction of � with respect to ˝ .

We are going to give a meaning to the trace of the tangential component of �

along � . Whenever � 2 C0.˝/, it makes sense to consider the vector �t� D
.� ^ n/j� which, by definition, is orthogonal to n and hence is aligned with the
tangent plane x3 D 0. More precisely, it can be easily checked that

�t� D
0

@
�2

��1
0

1

A

j�
: (2.1.31)

On the other hand, we can also consider the projection of � along the plane � ,
that is the vector �t� D n ^ .� ^ n/j� , which is again orthogonal to n and can be
evaluated explicitly as follows:

�t� D
0

@
�1
�2
0

1

A

j�
: (2.1.32)

It is clear that in this simple example we have that �t� is orthogonal to �t�.
Moreover, let us denote by div� and curl� the divergence and the curl operators
in the .x1; x2/ plane (see Remark 2.1.5 for the definition of curl in two space
dimensions and the relation between operators); then, the following relationships
are easy to derive

div� �t� D curl� �t� D .curl� � n/j� : (2.1.33)

Although it should be clear from the context, we remark that in (2.1.33) we are
formally applying surface operators div� and curl� to three dimensional vectors �t�
and �t�. On the other hand, vectors �t� and �t� are orthogonal to the direction of
x3 so that we can identify them with two dimensional vectors in the tangent space
x3 D 0. We shall implicitly make use of this standard abuse of notation in the sequel
of this chapter. ut

Let us now come back to the general picture and see how the quantities
considered in the previous example extend to general domains and boundaries. The
following integration by parts, which is valid for smooth functions, constitutes the
starting point for the analysis

Z

˝

� � curl� dx �
Z

˝

curl� � � dx D
Z

�

.� ^ n/ � � ds: (2.1.34)

Green’s formula (2.1.34) allows us to define the trace �t� of a function
� 2 H.curlI˝/ by extending the classical tangential trace .� ^ n/j� .

The following lemma is the analogue of Lemma 2.1.1 and can be proved by a
similar technique.
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Lemma 2.1.4. For � 2 H.curlI˝/, we can define the tangential trace �t� D
.� ^ n/j� 2 .H�1=2.� //3 and we have Green’s formula

Z

˝

� � curl� dx �
Z

˝

curl� � � dx D h�t�; �i; 8� 2 .H1.˝//3: (2.1.35)

In particular, it is clear from our construction that, for smooth functions, the
tangential trace �t� is equal to .� ^ n/j� in the classical sense.

Let us now consider the range of the trace operator �t . The linear and continuous
operator �t cannot be surjective onto .H�1=2.� //3 since it has vanishing component
in the direction of n. Moreover, as we already observed in the simplified situation of
Example 2.1.1, we remark that for smooth functions it makes sense to evaluate the
surface divergence of �t� along � and that the following identity holds true

div� .�t�/ D .curl� � n/j� : (2.1.36)

Indeed, the range of �t is usually denoted by H�1=2.divI� / and its dual space
by H�1=2.curlI� /. In the case of smooth domains, it turns out that we have the
following identities

H�1=2.divI� / D fq 2.H�1=2.� //3jq � n D 0 a.e. on �; div� q 2H�1=2.� /g
H�1=2.curlI� /D fq 2.H�1=2.� //3jq � n D 0 a.e. on �; curl� q 2H�1=2.� /g;

(2.1.37)

where the surface operators div� and curl� are applied, by abuse of notation, to the
(two-dimensional) tangential component of q.

In the case of non smooth domains, several insidious aspects have to be taken into
account. In general, computational domains are polyhedra and a polyhedron is not
a smooth domain. In particular, one major issue is hidden in (2.1.37) and is related
to the regularity of the normal vector n. If � is a polyhedral surface, then n jumps
across the edges of � and the product q �n is not well defined for q 2 .H�1=2.� //3

since n is not a multiplier for .H1=2.� //3 where jumps are not allowed. We refer the
interested reader to [136] for the general picture and for more details on this issue.

Remark 2.1.6. In the most general situation, the definition of div� and curl� is
not trivial. Even for smooth domains, we need suitable definitions of differential
operators on curved surfaces. This is a typical task of differential geometry and can
be performed by means of covariant derivatives. We refer the interested reader, for
instance, to [168] for a thorough introduction to this subject. On the other hand, if
the considered finite elements have flat faces (as it is the case for usual tetrahedra),
surface differential operators reduce to standard two-dimensional ones in a local
coordinate system on the face and covariant derivatives along the face are plain
directional derivatives. The situation is not trivial (and not completely understood
yet for what concerns the construction of good finite element spaces) in the case
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of non-flat faces (as it usually occurs for isoparametric elements or general non-
affine hexahedral decompositions). We shall detail some issues for non-affine finite
elements in Sect. 2.2.4. ut

Looking again at Example 2.1.1, another definition which arises when dealing
with the space H.curlI˝/ is the projection of � along the tangent plane of � ,
also known as the tangential trace �t�, which can be defined as follows for smooth
functions:

�t� D n ^ .� ^ n/j� : (2.1.38)

The following Theorem is a consequence of the results of [134–136] and states
the well-posedness of the trace operator �t together with the link between �t and �t .

Theorem 2.1.1. The trace operator �t can be extended to an operator from
H.curlI˝/ to H�1=2.curlI� / and the following Green’s formula holds

Z

˝

curl� �� dx�
Z

˝

� �curl� dx D h�t�; �t�i; 8�; � 2 H.curlI˝/; (2.1.39)

where the brackets denote the duality pairing between H�1=2.divI� / and
H�1=2.curlI� /.

If the boundary of ˝ is split into two parts � D D [ N , then we can consider
the space

H0;N .curlI˝/ WD f� j � 2 H.curlI˝/; h�t�; �i D 0; 8� 2 .H1
0;D.˝//

3g;
(2.1.40)

in analogy to what we have done in the previous subsection. When D D ; (and
hence N D � ), we shall make use of the notationH0.curlI˝/ D H0;� .curlI˝/.

2.1.2 Properties Relative to a Partition of ˝

This section presents a short introduction to properties of some functional spaces.
We refer to [331, 366] for more details.

Partitioning˝ into sub-domains is an essential feature of both standard and non-
standard methods. Continuity properties at interfaces between sub-domains are an
essential part in the definition of a finite element approximation. Moreover, we shall
introduce here some notations that will be used throughout the book.

Let ˝ D Sm
rD1 Kr be partitioned into a family of sub-domains. In practice, Kr

will be a triangle or a quadrilateral (resp., a tetrahedron or a hexahedron in three
dimensions) and we shall call it element. We shall denote by Th a partition of˝ into
elements.

The edges of elements will be denoted by ei (i D 1; 2; 3 or i D 1; 2; 3; 4) in the
two-dimensional case. For three-dimensional elements, unless differently stated,
we denote again the faces of the elements by ei (1� i � 4 or 1� i � 6). We also
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denote by

eij D @Ki \ @Kj ; (2.1.41)

the interface between elementKi andKj and

Eh D
[

ij

eij

[
�h D

[

K

@K; (2.1.42)

where�h is the set of boundary edges or faces. We only deal with compatible meshes
in the sense that the intersection between two elements is a common face, side or
vertex. The situation when a mesh contains hanging nodes is out of the aims of this
work.

Remark 2.1.7. The index h will of course be related to mesh size, that is to the size
of elements. With an abuse of notation, we shall also use the symbol h for denoting
the maximum diameter of the elements of the decomposition. ut

We introduce the functional spaces

X.˝/ WD fv j v 2 L2.˝/; vjKi 2 H1.Ki /; 8ig D
Y

r

H1.Kr/; (2.1.43)

with the norm

kvk2X.˝/ WD
X

r

kvk21;Kr ; (2.1.44)

Y.˝/ WD fq j q 2 L2.˝/; q jKi 2 H.divIKi/; 8ig D
Y

r

H.divIKr/; (2.1.45)

with the norm

kqk2Y.˝/ WD
X

r

kqk2div;˝ (2.1.46)

and

W.˝/ WD f� j � 2 L2.˝/; � jKi 2 H.curlIKi/; 8ig D
Y

r

H.curlIKr/;

(2.1.47)

with the norm

k�k2W.˝/ WD
X

r

k�k2curl;˝: (2.1.48)

We shall now characterizeH1
0;D.˝/,H0;N .divI˝/, andH0;N .curlI˝/ as subspaces

ofX.˝/, Y.˝/, andW.˝/ respectively. Let us first remark that for v 2 H1.˝/ and
q 2 H.divI˝/, we have, denoting nr the normal to �r D @Kr ,

X

r

hq � n
r
; vi�r D hq � n; vi� ; (2.1.49)
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where h�; �i denotes duality between H
1
2 .�r/ and H� 1

2 .�r/. Indeed we can decom-
pose the Green formula as

hq � n; vi� D
X

r

�Z

Kr

divq v dx C
Z

Kr

q � grad v dx

�
(2.1.50)

and apply it inside each element. A similar splitting holds for the functions � 2
H.curlI˝/ and � 2 H1.˝/ when we consider the tangential trace �t�, namely

X

r

h�tr �; �i�r D h�t�; �i� : (2.1.51)

We can now state the following proposition.

Proposition 2.1.1. H1
0;D.˝/ D fvjv 2 X.˝/;

P
r

hq � n
r
; vi D 0;8q 2 H0;N .divI

˝/g:
Proof. It is clear by definition that if v 2H1

0;D.˝/ we have by (2.1.49) thatP
r

hq �n
r
; vi D 0;8q 2 H0;N .divI˝/. Let us consider the reciprocal. Using Green’s

formula, we get

Z

˝

v div q dx D �
X

r

Z

Kr

grad v � q dx; 8q 2 H0;N .divI˝/: (2.1.52)

This implies for all q, for instance q 2 .D.˝//n,

j
Z
v div q dxj �

�X

r

jvj21;Kr
� 1
2 kqk0;˝ ; (2.1.53)

and therefore grad v 2 .L2.˝//n, thus v 2 H1.˝/. We then have hq � n; vi D 0,
8q 2 H0;N .divI˝/, so that v 2 H1

0;D.˝/. ut
The same kind of proof would yield the following analogous results for

H.divI˝/ and H.curlI˝/.
Proposition 2.1.2. H0;N .divI˝/ D fq j q 2 Y.˝/;

P
r

hq � n
r
; vi D 0; 8v 2

H1
0;D.˝/g. ut

Proposition 2.1.3. H0;N .curlI˝/ D f� j � 2 W.˝/;
P
r

h�t�; �i D 0; 8� 2
H1
0;D.˝/g. ut
The last results state that functions of Y.˝/ (resp. W.˝/) belong to H.divI˝/

(resp. H.curlI˝/) if and only if their normal (resp. tangential) traces are “con-
tinuous” at the interfaces. This will be an essential point for finite element
approximations.
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2.1.3 Properties Relative to a Change of Variables

The use of a reference element, and therefore of coordinate changes, is an essential
ingredient of finite element methods, whether for convergence studies or for
practical implementation. We must therefore study the effect of a change of variables
on our function spaces. We refer to [147, 148] for a more complete presentation.

Let OK � R
n. We denote by @ OK its boundary, by On the outward oriented normal,

by d Ox the Lebesgue measure on OK and by d O� the superficial measure induced by it
on @ OK.

LetF be a smooth (at leastC1) mapping fromR
n into R

n. We defineK D F. OK/.
We suppose that the Jacobian matrix DF. Ox/ is invertible for any Ox and that F is
globally invertible on K . We then have

DF�1.x/ D .DF. Ox//�1: (2.1.54)

An important case is F. Ox/ D x0 C B Ox, that is if F is an affine mapping. Then
DF. Ox/ D B is a constant matrix. We denote

kDFk1 WD sup
Ox2K

 
sup
�2Rn

jDF. Ox/�j
j�jRn

!
; (2.1.55)

the norm in L1. OK/ of function Ox ! kDF. Ox/k, that is, matrix norm of DF. Ox/. In
the same way, we have

kDF�1k1 WD sup
x2K

 
sup
�2Rn

j.DF�1.x//�j
j�jRn

!
: (2.1.56)

We write

J. Ox/ WD jdet DF. Ox/j (2.1.57)

and, for Ox 2 @ OK,

JOn. Ox/ WD J. Ox/ k.DF�1/t OnkRn : (2.1.58)

• Sobolev spaces Hs.˝/. If Ov. Ox/ is a function on OK, we define v.x/ on K by

v WD Ov ı F�1; (2.1.59)

and we denote this by v D F. Ov/. We then have the classical formulas,

grad v D .DF�1/t grad Ov ı F�1 D F..DF�1/t grad Ov/ (2.1.60)
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and
Z

K

F. Ov/ dx D
Z

OK
Ov J d Ox; (2.1.61)

Z

@K

F. Ov/ d� D
Z

@ OK
Ov J On d O�: (2.1.62)

From this, it is immediate to deduce the following lemma.

Lemma 2.1.5. The mapping F is an isomorphism from L2. OK/ onto L2.K/ and
from H1. OK/ ontoH1.K/, satisfying,

jvj0;K �
�

sup
Ox
J. Ox/

�
1=2 j Ovj0; OK; (2.1.63)

j Ovj0; OK �
�

inf
Ox
J. Ox/

�
�1=2 jvj0;K; (2.1.64)

jvj1;K �
�

sup
Ox
J. Ox/

�
1=2 kDF�1k1 j Ovj0; OK; (2.1.65)

j Ovj1; OK �
�

inf
Ox
J. Ox/

�
�1=2 kDFk1 jvj1;K: (2.1.66)

Remark 2.1.8. If F is an affine mapping, we also have [146]

jvjm;K � c .det B/
1
2 kB�1km j Ovjm; OK (2.1.67)

and similarly,

j Ovjm; OK � c .det B/�
1
2 kBkm jvjm;K; (2.1.68)

where the constant c depends only on m and on the space dimension n. ut
In the general case, one must use Leibnitz’s formula and the final result is much

more complex. For some comments in this directions, see Sect. 2.2.4.

• The space H.divI˝/. When building approximations ofH.divI˝/ in Sect. 2.3,
we shall be led to use the normal component of vectors as degrees of freedom.
This is pretty natural according to Proposition 2.1.2. The above transformation
obviously does not preserve normal components. It does neither map H.divI OK/
into H.divIK/. To overcome this problem, we have to introduce a special
(contravariant) transformation known as Piola’s transformation.

Let, as before, DF. Ox/ be the Jacobian matrix of the transformation F. Ox/.
We consider, for Oq 2 .L2. OK//n, the mapping,

G. Oq/.x/ WD 1

J. Ox/DF. Ox/ Oq. Ox/; x D F. Ox/: (2.1.69)
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It is then elementary to check that one has (in R
2, but the result holds for Rn)

 
@q1
@x

@q1
@y

@q2
@x

@q2
@y

!
D 1

J
.DF/

 
@ Oq1
@ Ox

@ Oq1
@ Oy

@ Oq2
@ Ox

@ Oq2
@ Oy

!
.DF�1/: (2.1.70)

As the trace of a matrix is invariant by a change of variables, we have

div q D 1

J
div Oq: (2.1.71)

More generally, we have [366]

Lemma 2.1.6. Let v D F. Ov/ and q D G. Oq/, then

Z

K

q � grad v dxD
Z

OK
Oq � grad Ov d Ox; (2.1.72)

Z

K

v � div q dx D
Z

OK
Ov div Oq d Ox; (2.1.73)

Z

@K

q � nv d� D
Z

@ OK
Oq � On Ov d O�: (2.1.74)

We refer to [366] and [331] for the proof of this result and most of the following
ones.

From (2.1.74), we see that G preserves the normal trace in H� 1
2 and enables us

to define subspaces of H.divIK/ through the reference element OK . More precisely
we have,

Lemma 2.1.7. The mapping G is an isomorphism of H.divI OK/ onto H.divIK/
and of H0.divI OK/ ontoH0.divIK/. Moreover we have:

jqj0;K �
�

inf
Ox
J. Ox/

�� 1
2 kDFk1 jqj0; OK; (2.1.75)

j Oqj0; OK �
�

sup
Ox

J. Ox/
� 1
2 kDF�1k1 jqj0;K; (2.1.76)

j div qj0;K �
�

inf
Ox
J. Ox/

�� 1
2 j div Oqj0; OK; (2.1.77)

j div Oqj0; OK �
�

sup
Ox
J. Ox/

�
1
2 j div qj0;K: (2.1.78)

It is also possible to obtain relations between jqjm;K and j Oqjm; OK or between
j divqjm;K and j div Oqjm; OK . We refer to [366] for details. The next lemma deals with
the case where F is an affine transformation and q 2 Hm.divI˝/, where
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Hm.divI˝/ WD fq j q 2 .Hm.˝//n; div q 2 Hm.˝/g: (2.1.79)

Lemma 2.1.8. If the mapping F is affine and if q 2 Hm.divI˝/, the following
estimates hold, with B D DF,

jqjm;K � .det B/�
1
2 kB�1km kBk j Oqjm; OK; (2.1.80)

j divqjm;K � .det B/�
1
2 kB�1km j div Oqjm; OK: (2.1.81)

The reverse inequalities also hold by a simple exchange of roles between K and
OK. Such results are of course essential in the proofs of error estimates. The Piola

transformation can be extended to tensor-valued functions with similar properties
(cf. for instance [127, 295] or [146]).

• The space H.curlI˝/. According to Remark 2.1.5, in this subsection we restrict
the discussion to the three-dimensional situation where OK � R

3 since the two-
dimensional case can be easily deduced from the result of the previous subsection
about approximations of H.divI˝/. In general, when dealing with reference
elements, OK will be a simple geometric entity like a cube or a tetrahedron. In
particular, it will contain vertices, edges and faces. We shall denote by Oe and Of
generic edges and faces, respectively, and by e and f their corresponding images
under the action of F . We shall then refer to an edge e or a face f of K . It is
clear that, for general isomorphisms F , an edge ofK might be curved and a face
ofK might not be contained in a plane. On the other hand, if F is a trilinear map,
then edges of K will be straight and if, moreover, F is affine, then faces of K
will be flat.

In order to deal with the approximation of H.curlI˝/, we shall make use of
the following (covariant) transformation:

H. O�/.x/ WD ŒDF. Ox/��T O�. Ox/; x D F. Ox/: (2.1.82)

We notice that formula (2.1.82) is formally identical to (2.1.60); i.e., we have
chosen to transform vectors of H.curlI˝/ like gradients. In particular, one of
the main features of transformation (2.1.82) is that it preserves the tangential
components in a sense that will soon be made clear.

Before stating the general results, let us go back to the setting of
Example 2.1.1.

Example 2.1.2 (Case when � is flat.). We recall that, in our example, ˝ � R
3 is

the half space x3 < 0 and that � is the plane x3 D 0. Let us consider a linear
mapping F W R3 ! R

3 defined as follows

F. Ox1; Ox2; Ox3/ D .˛ Ox1 C ˇ Ox2; � Ox1 C ı Ox2; Ox3/T ; (2.1.83)
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so that

DF D
0

@
˛ ˇ 0

� ı 0

0 0 1

1

A : (2.1.84)

Basically, we are considering a mapping that corresponds to a motion of ˝ only in
the direction of x1 and x2. In particular, the restriction of F to � maps linearly the
plane � into itself. According to the notation introduced before, we shall denote by
Ő the reference domain and by ˝ the transformed domain; analogously, � is the

image of the reference boundary O� . Let us consider a vector field O� 2 H.curlI Ő /;
we are interested in investigating how the traces of O� transform under the effects of
the covariant map (2.1.82).

It is immediate to evaluate the determinant of DF, given by the constant J D
˛ı � ˇ� , and the matrix ŒDF��T given by

ŒDF��T D 1

J

0

@
ı �� 0

�ˇ ˛ 0

0 0 J

1

A : (2.1.85)

Hence, transformation (2.1.82) reads

� D
0

@
�1

�2
�3

1

A D H. O�/ D 1

J

0

@
ı O�1 � � O�2
˛ O�2 � ˇ O�1
J O�3

1

A : (2.1.86)

The first important result which we are going to check is that the trace O�t O�
transforms like vectors in H.divI O� /. More precisely, let G� denote the Piola
transformation defined in (2.1.69) related to the plane � , i.e.,

G� . Oq/ WD 1

J

	
˛ ˇ

� ı



Oq: (2.1.87)

From (2.1.31) we obtain

G� . O�t O�/ D 1

J

	
˛ ˇ

� ı


	 O�2
� O�1



D 1

J

	
˛ O�2 � ˇ O�1
� O�2 � ı O�1



: (2.1.88)

On the other hand, comparing (2.1.31), (2.1.86), and (2.1.88), we easily get

G� . O�t O�/ D �t .H. O�// D �t�: (2.1.89)

In a similar way, we can find how the trace O�t O� transforms when O� is mapped

like in (2.1.82). It turns out that O�t O� transforms like vectors in H.curlI O� /. In this
case, we can make use of the mapping H� , defined as
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H�

		
�1
�2




WD 1

J

	
ı ��

�ˇ ˛


	
�1
�2



; (2.1.90)

in order to obtain the result

H� . O�t O�/ D �t .H. O�// D �t�: (2.1.91)

ut
Let us now come back to the general situation. For properties of the covariant

transformation (2.1.82) and for the proofs of most of the results presented in the
sequel of this subsection, we refer the interested reader to [222], to the abstract
theory of differential forms presented in [248], to the book [302], and to the
comprehensive review [33].

We shall make use, in particular, of the following relationship between the curl
of � and the curl of O�

curl�.x/ D 1

J. Ox/DF. Ox/ curl O�. Ox/; x D F. Ox/; (2.1.92)

so that we have curl� D G.curl O�/. Formula (2.1.92) is a consequence of the more
general transformation rule (see [310, Theorem 2] and [223])

curl�.x/ D ŒDF��T curl O�. Ox/ŒDF��1; x D F. Ox/; (2.1.93)

where the tensor is defined by curl� D
�
@�j
@xi

� @�i
@xj

�

i;j
:

Before stating results which relate quantities evaluated on the reference element
to corresponding quantities evaluated on the actual element (in the spirit of
Lemma 2.1.6), we need to recall how tangent and normal vectors behave under
the action of the mapping F . Namely, if On is a normal vector at a given point of @ OK ,
then

n.x/ D ŒDF��T � On. Ox/
kŒDF��T � On. Ox/k (2.1.94)

is the corresponding normal unit vector on @K . If Ot is a tangent unit vector, then

t.x/ D DF � Ot . Ox/
kDF � Ot . Ox/k (2.1.95)

is the corresponding tangent unit vector on @K . Moreover, if Ot is tangent to an edge
of OK, then t defined in (2.1.95) is tangent to the corresponding edge of K .

Lemma 2.1.9. Let � WD H. O�/. Let additional functions on K be constructed from
reference functions as follows: v WD F. Ov/, q WD G. Oq/, and � WD H. O�/. Then
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Z

e

� � tv ds D
Z

Oe
O� � Ot Ov d Os; (2.1.96)

Z

f

�t� � �t� d� D
Z

Of
O�t O� � O�t O� d O�; (2.1.97)

Z

K

� � q dx D
Z

OK
O� � Oq d Ox: (2.1.98)

Remark 2.1.9. Formula (2.1.97) is worth some comments. For simplicity, let us
consider the case where f is flat. From Example 2.1.2, it follows that, when
� WD H. O�/, then .�t�/jf is related to .�t O�/j Of by means of the two-dimensional
Piola transform (2.1.69) on the face f . If we call Gf such a transform, then
we have �t� D Gf . O�t O�/. On the other hand, in an analogous way we have that
�t�DHf . O�t O�/ on the face f . Then, Eq. (2.1.97) might be rephrased in terms of

functions defined on the face f as follows: let O� and O be vector fields on Of , then

Z

Of
O � O� d O� D

Z

f

Hf . O / � Gf . O�/ d�: (2.1.99)

ut
Finally, the following analogue of Lemma 2.1.7 holds true.

Lemma 2.1.10. The mapping H is an isomorphism ofH.curlI OK/ ontoH.curlIK/.
Moreover, we have:

k�k0;K �
	

sup
Ox
J. Ox/


 1
2

kDF�1k1k O�k0; OK; (2.1.100)

k O�k0; OK �
�

inf
x
J.x/

�� 1
2 kDFk1k�k0;K; (2.1.101)

k curl�k0;K �
	

inf
Ox
J. Ox/


� 1
2

kDFk1k curl O�k0; OK; (2.1.102)

k curl O�k0; OK �
	

sup
x

J.x/


 1
2

kDF�1k1k curl�k0;K: (2.1.103)

2.1.4 De Rham Diagram

The topics introduced in this chapter can be presented in a general unified approach
by means of tools of exterior algebra. The De Rham complex, in particular, has
been rediscovered recently as a very convenient tool in order to provide a general
setting for handling function spaces and their finite element approximations. In this
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framework, the commuting diagram property which will be presented throughout
this chapter can be seen as particular cases of a more general picture. Even though it
is out of the aims of this book to give a detailed presentation of this topic, we would
like to provide the reader with a short introduction to this subject, which proves to
be a very useful technique not only for the analysis of known finite elements, but
also for designing new ones.

The importance of the de Rham complex in the analysis of finite element
schemes has been detected independently by several authors in different fields. The
commuting diagram properties for finite elements inH.divI˝/ (see [177,178]) has
been the driving force for an active research in the approximation of second order
elliptic problems in mixed form. Bossavit [102] was the first one who used the
full form of the de Rham complex for the approximation of problems arising from
electromagnetism. His pioneer idea has been exploited by several authors (see, for
instance, [75, 170, 247, 248]). The general framework has been designed in [31]
and successfully applied to the construction of new finite element spaces for the
elasticity equations (see [32]). References [33, 34] present an excellent review on
the state of the art of this active research field.

Here we recall the de Rham complex related with the spaces considered in this
chapter. Let us suppose that ˝ � R

3 is a simply connected domain, then the
following sequence is exact

R ,! H1.˝/
grad�����! H.curlI˝/ curl�����! H.divI˝/ div�����! L2.˝/ ! 0:

(2.1.104)

We shall present in the sequel some discrete variants of (2.1.104), which will be
useful to understand interconnections between different approximations.

2.2 Finite Element Approximations ofH1.˝/ andH2.˝/

This section will be mainly devoted to the approximation of H1.˝/ and its
subspace of the form H1

0;D.˝/. We shall moreover sketch some results concerning
the approximation of H2.˝/. Standard approximations of Sobolev spaces can be
subdivided into two classes: conforming and nonconforming methods. Even though
nonconforming methods will be studied in the context of hybrid finite element
methods, their importance makes it useful to introduce them here. We refer to
[41, 146] or [334] for a detailed presentation of the following results.

2.2.1 Conforming Methods

Conforming methods are the most natural finite element methods. They yield
internal approximations in the sense that they enable us to build finite dimensional
subspaces of the function space that we want to approximate.
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Given a partition of the domain ˝ into polygonal or polyhedral elements, a
conforming approximation of H1.˝/ is a space of continuous functions defined
by a finite number of parameters (or degrees of freedom).

The last condition is usually met by using a space of piecewise polynomial
functions or functions obtained from polynomials by a change of variables like
(using the notation of Sect. 2.1.3)

vhjK D Ov ı F �1; (2.2.1)

where K D F. OK/ and Ov is a polynomial function on OK . Continuity is obtained by
a clever choice of degrees of freedom.

Remark 2.2.1. For triangular elements, it is usual and convenient to use piecewise
polynomial functions on K . For quadrilaterals, it is essential to use (2.2.1). It must
then be noted that vhjK is not in general a polynomial on K . This will be the case
only for affine transformations. More comments on this issue will be discussed in
Sect. 2.2.4. ut

To give a more precise definition of our finite element approximations, we shall
need a few definitions. Let us define on an elementK

Pk.K/ WD the space of polynomials of degree �k. (2.2.2)

The dimension of Pk.K/ is 1
2
.k C 1/.k C 2/ for n D 2 and, for n D 3, it is

1
6
.k C 1/.k C 2/.k C 3/. For a rectangular element, it will be convenient to define

(for n D 2)

Pk1;k2.K/ WD
n
p.x1; x2/ j p.x1; x2/ D

X

i�k1
j�k2

aij x
i
1 x

j
2

o
(2.2.3)

the space of polynomials of degree �k1 in x1 and �k2 in x2. In the same way, we
can define on a rectangular hexahedron Pk1;k2;k3.K/ for n D 3. The dimension of
these spaces is .k1C1/.k2C1/ and .k1C1/.k2C1/.k3C1/, respectively. We then
define

Qk.k/ WD
(
Pk;k.K/; for n D 2;

Pk;k;k.K/; for n D 3:
(2.2.4)

We shall also need polynomial spaces on the edges (or faces) of the elements.
Using the notations of Sect. 2.1.2, we define

Rk.@K/WD f� j � 2 L2.@K/; �jei 2 Pk.ei /; 8eig; (2.2.5)

Tk.@K/ WD f� j � 2 Rk.@K/\ C0.@K/g: (2.2.6)
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We define a subspace of Pk , which could have traces of a lower degree on the
boundary of K

Pr
k WD fp j p 2 Pk j@K; p 2 Tr.@K/; r � kg: (2.2.7)

Functions of Rk.@K/ are polynomials of degree �k on each side (or face) of
K . They do not have to be continuous at vertices. The dimensions of Rk.@K/ and
Tk.@K/ are respectively for k � 1:

— 3.k C 1/ and 3k for triangles,
— 4.k C 1/ and 4k for quadrilaterals,
— 2.k C 1/.k C 2/ and 2.k2 C 1/ for tetrahedra.

For hexahedra, it will usually be more convenient to consider functions in Qk.ei /

in the definition of Rk.@K/ and Tk.@K/.
In order to define a finite element, following [146], we need to specify three

things.

— The geometry: we choose a reference element OK, a change of variables F. Ox/
and we set K D F. OK/.

— A set OP of polynomials on OK. For Op 2 OP we define on K; p D Op ı F�1.
— A set of degrees of freedom Ȯ , that is, a set of linear forms f Ò

ig1�i�dim OP
on OP . We say that this set is unisolvent when these linear forms are linearly
independent, i.e. the knowledge of Ò

i . Op/ for all i completely defines Op.

A finite element is of Lagrange type if its degrees of freedom are point values, that
is, if one is given a set f Oai g1�i�dim OP of points in OK and one defines

Ò
i . Op/ D Op. Oai /; 1 � i � dim OP : (2.2.8)

For the approximation of H1.˝/, Lagrange type elements will be sufficient but
approximating H2.˝/ requires Hermite type elements, that is degrees of freedom
involving derivatives.

Remark 2.2.2. The reader should be aware that not any choice of points will yield
a unisolvent set of degrees of freedom. Moreover, the points have to be chosen in
order to ensure inter-element continuity. ut
Example 2.2.1 (Affine Finite Elements). This is the most classical family of finite
elements. The reference element is the triangle OK of Fig. 2.2 and we use the affine
transformation

F. Ox/ D x0 C B Ox: (2.2.9)

The element K is still a triangle and it is not degenerate provided det.B/ ¤ 0.
We now take OP D Pk. OK/ and choose an appropriate set of degrees of freedom. The
standard choices for k � 3 are presented in Fig. 2.3.

It can be easily observed that this choice of points ensures continuity at interfaces.
ut
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K̂
(0,1)

(1,0)

(0,0)

x̂2

x̂1

K

x0

F

Fig. 2.2 An affine tranformation

P1(K)ˆ P2(K)ˆ P3(K)ˆ

Fig. 2.3 Standard conforming elements

â3

â2

â1

â6

â4

â5
K̂

a2

a3

a1

a6

a4

a5

K

F ∈ (Pk(K))2ˆ

Fig. 2.4 Isoparametric triangle of degree 2

Example 2.2.2 (Isoparametric triangular elements). We use the same reference
element and the same set OP as in the previous example. We now take the
transformation F. Ox/ such that each of its components Fi belongs to Pk. OK/. For
k D 1, nothing is changed but for k � 2, the elementK now has curved boundaries.
We present the case k D 2 in Fig. 2.4.

Using such curved triangles enables us to obtain a better approximation of curved
boundaries. It must be noted that the curvature of boundaries introduces additional
terms in the approximation error and the curved elements should be used only when
they are really necessary [152] or [146]. ut
Example 2.2.3 (Isoparametric quadrilateral elements). This is also a very classical
family of finite elements. The reference element is the square OK D �0; 1Œ 
 �0; 1Œ.
We take OP D Qk. OK/ and a transformation F with each component in Qk. OK/.
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â

â1 â2

â3â4

K̂ a4

a1

a2

a3

K

F ∈ (Pk(K))2ˆ

â1 â2

â3â4

â5

â6

â7

â8
â9

K̂

a4
a2

a3a4

a5

a6

a7

a8 a9

K

F ∈ (Q2(K))2ˆ

a

b

Fig. 2.5 (a) The Q1 isoparametric element. (b) The Q2 isoparametric element

â1 â2

â3â4

â5

â6

â7

â8 K̂

a4 a2

a3a4

a5

a6

a7

a8 K

F ∈ (Q2(K))2ˆ

Fig. 2.6 Serendipity element

We present the standard choice of degrees of freedom for k � 2 in Fig. 2.5. It must
be noted that we need F 2 .Q1. OK//2 to define a general straight-sided quadrilateral.

Finally we recall that it is possible to eliminate internal nodes to get the so-called
serendipity finite elements. For instance, if we take

OP D Q0
2.

OK/ W D f Op j Op 2 Q2. OK/; 4 Op. Oa9/C
4X

iD1
Op. Oai /� 2

8X

iD5
Op. Oai / D 0g

D P3. OK/\Q2. OK/ (2.2.10)

we obtain the element of Fig. 2.6.
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Value of the function

Value of the function and its first derivatives

Value of the function and its first and second derivatives

Value of the normal derivative

a bFig. 2.7 (a) P3 triangle. (b)
Argyris’ triangle

As before, the degrees of freedom have been chosen in order to ensure continuity
between elements. The use of serendipity elements should be avoided on distorted
(non-affine) meshes. More details on quadrilateral elements will be given in
Sect. 2.2.4. ut
Example 2.2.4 (Hermite type elements). Approximating H2.˝/ will require con-
tinuity of derivatives at inter-element boundaries and leads to the introduction of
elements in which values of the derivatives are used as degrees of freedom. The
simplest Hermite type element is the P3 triangle of Fig. 2.7a.

Here, the degrees of freedom are values of the function and its derivatives at
vertices plus the function value at the barycentre. This element does not enable
us to build an approximation of H2.˝/. To do so, one must use Argyris’ triangle
(see Fig. 2.7.b) where polynomials of degree 5 are used. (Composite elements can
also been used.) For quadrilaterals, the analogues are easily built. The difficulty
of building approximations of H2.˝/ by standard methods was one of the major
reasons for the introduction of various kinds of mixed or hybrid methods for plate
problems (cf. Sects. 10.2 or 10.3). ut

The remaining part of this section is devoted to the analysis of the approximation
of a given function v by the finite element spaces just described or similar ones. We
shall not give proofs for which we refer to [146, 154, 358].

For a general set of degrees of freedom f Ò
ig on OK , we define the interpolate Orh Ov

of v by

Ò
i .Orh Ov/ WD M. Ov/; 1 � i � dim OP : (2.2.11)

The operatorM must be a well-defined continuous form. When the linear forms
Ò
i are defined by (2.2.5), it is natural to set

.Orh Ov/. Oai / D Ov. Oai /: (2.2.12)

This definition makes sense only when Ov is a continuous function which is
not the case when v 2 H1.˝/. For Lagrange type elements in R

2 or R
3, Ov 2

H2. OK/ is a sufficient condition for (2.2.12) to be justified and Orh Ov is just the
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Lagrange interpolate, in the classical sense, of Ov. For v 2H1.˝/, [154] has defined
a continuous interpolate Orh using averages of u instead of point values. This also
implies a more elaborate use of reference elements. In particular, the operator Orh Ov is
no longer defined on one single element. In fact the nodal values of Orh Ov depend on
the value of Ov on the adjacent elements through an averaging process.

Once Orh Ov is defined, we can define on K

rhv WD .Orh.v ı F // ı F�1 D .Orh Ov/ ı F�1: (2.2.13)

We rapidly recall a few classical results. We refer the reader to [146] for a detailed
presentation. We first consider the case of affine elements, assuming first rh to be
defined by a usual interpolate (2.2.12).

Proposition 2.2.1. If the mapping F is affine, that is F. Ox/ D x0 C B Ox, and if
rhpk D pk for any pk 2 Pk.K/, we have for v 2 Hs.˝/,m � s, 1 < s � k C 1,

jv � rhvjm;K � c kB�1km kBks jvjs;K: (2.2.14)

The proof uses (2.1.67), its reciprocal, and the classical results stated below.

Lemma 2.2.1. j � jkC1;˝ is a norm onHkC1.˝/=Pk.˝/, equivalent to the standard
quotient norm.

From this lemma, the following classical result can be deduced.

Lemma 2.2.2 (Bramble-Hilbert’s lemma). Let L be a continuous linear form on
HkC1.˝/ such that L.pk/ D 0 for any pk 2 Pk.˝/, then there exists a constant c
(depending on L and˝) such that one has

jL.v/j � c jvjkC1;˝: (2.2.15)

Results similar to (2.2.14), although more complex, can be obtained for general
isoparametric elements [146,151,152]. Let then hK be the diameter ofK . Provided
some classical conditions on the shape of elements forbidding degeneracy are
fulfilled [146], relation (2.2.14) can be converted into a relation involving a power
of hK . For affine elements, one defines for instance

�K WD hK


K
; (2.2.16)

where 
K is the diameter of the largest inscribed disk (or sphere) in K .
We shall, in the following, always assume that the interpolation operator rh is

defined by the method of [154], that is, by a local projection instead of a point-wise
interpolate. This allows us to get rid of the condition s > 1 of Proposition 2.2.1. To
state this result, we define
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4K WD fK 0j NK 0 \ NK ¤ ;g; (2.2.17)

h4K WD sup
K024K

hK0 ; (2.2.18)

�4K WD sup
K024K

�K0 : (2.2.19)

We then have the following proposition [154].

Proposition 2.2.2. If the mapping F is affine and if rhpk D pk for any pk 2
Pk.K/, then there is a constant, depending on k and � , such that for m � s, 1 �
s � k C 1,

jv � rhvjm;K � c�4Khs�m4K jvjs;4K: (2.2.20)

ut
We then say that a family of triangulations .Th/h�0 is regular if

�K < �; 8K 2 Th; 8h: (2.2.21)

For the geometrical meaning of this condition, we refer to [146]. We may recall
however that (2.2.21) can be written as a condition on angles excluding degenerate
elements. For general curved elements, there is also a condition on the curvature of
the sides.

We then have the following approximation result.

Corollary 2.2.1. If .Th/h�0 is regular family of affine partitions, there exists a
constant c depending on k and � such that

jv � rhvj1;K � chk jvjkC1;4K: (2.2.22)

For more general partitions including general isoparametric elements, the result
is qualitatively the same: we have an O.hk/ approximation provided the family of
partitions is regular in a sense to be specified (see Sect. 2.2.4 for more details).

We also refer the reader to [260] where some degenerate cases are analysed.
From the elements described above, we can build approximations ofH1.˝/ and

H2.˝/. The idea is of course to use functions whose restriction to an element
belongs to a set of polynomial (or image S of polynomial) functions. Let Sk.K/
be a subspace of Pk.K/. We define, for a partition Th of ˝ ,

Ls.Sk; Th/ WD fv j v 2 Hs.˝/; vjK 2 Sk.K/g: (2.2.23)

Remark 2.2.3. Since the elements of Ls.Sk; Th/ are piecewise polynomials, we
have Ls.Sk; Th/ � C s�1. N̋ / althoughHs.˝/ 6� C s�1. N̋ /. ut

We shall reduce this notation when no confusion is to be feared and write

Ls.Sk/ (2.2.24)
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when no ambiguity is possible as to Th and still more compactly

Lsk D Ls.Pk; Th/; (2.2.25)

when Th is built from triangles and Sk D Pk , the space of polynomials of degree
�k. In the same way, we shall write

LsŒk� D Ls.Qk; Th/; (2.2.26)

when Th is built from quadrilaterals.

Remark 2.2.4 (Bubble functions). We shall often use in our constructions bub-
ble functions. We consider them here in the case ofH1. For an elementK , a bubble
function is a function vanishing on @K . Thus, we say that Sk is a set of bubble
functions if Sk � H1

0 .K/. We then denote

B.Sk/ D L1.Sk; Th/ D L0.Sk; Th/ (2.2.27)

and we shall use the compact notation,

(
Bk D B.Pk \H1

0 .K//;

BŒk� D B.Qk \H1
0 .K//;

(2.2.28)

when no ambiguity will be possible. Spaces of bubble functions will be used to build
enriched spaces. For instance, the space L12 ˚ B3 will be useful in Chap. 8 for the
approximation of Stokes’ problem. This space could also be written as L1.P 2

3 /: ut
When approximating a standard elliptic problem, the finite element spaces intro-
duced up to now can be used directly in the variational formulation of the problem
and error estimates follow from interpolation error estimates [146]. In many cases,
however, nonconforming methods have proved to yield accurate (and sometimes
easier to handle) approximations.

2.2.2 Explicit Basis Functions on Triangles and Tetrahedra

In the case of affine elements, it is often possible to define explicitly the basis
functions associated to a choice of degrees of freedom. This is done using the
following classical result.

Lemma 2.2.3. Let K be an affine element of dimension k with vertices xi ;

.1� i � k/. There exists a set �i .x/; .1� i � k/ of linear functions on K , called
barycentric coordinates, satisfying

�i .xj / D ıij
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and
X

i

�i .x/ D 1:

• It is then immediate that the barycentric coordinates are the basis functions of the
affine P1.K/ element.

• For the P2.K/ element of Fig. 2.3 the basis function associated to the vertex xi
is �i .2�i � 1/=2 while for the node at midpoint of the edge t ij between xi and
xj , the basis function is 4�i�j .

The bubbles of lower degree are on affine elements
�
b3;K D �1�2�3 in the two dimensional case ;
b4;K D �1�2�3�4 in the three-dimensional case.

(2.2.29)

We shall also define nonconforming bubbles in (2.2.39).
Barycentric coordinates will also be employed in Sect. 2.6.

2.2.3 Nonconforming Methods

We shall meet later nonconforming methods when studying hybrid finite element
methods. In many cases, it will however be more convenient to see them in the
framework of external approximations.

Let us consider a variational problem (with f 2 V 0),

a.u; v/ D hf; viV 0�V ; 8v 2 V; u 2 V; (2.2.30)

where V is some Hilbert space and a.u; v/ is a bilinear (coercive) form on V 
 V .
Suppose that we can find a larger space S � V such that there exists a canonical

extension Qa.�; �/ of a to S 
 S , satisfying

Qa.u; v/ D a.u; v/; 8u; v 2 V: (2.2.31)

Moreover, let Vh � S be a family of finite-dimensional subspaces of S such that,
given vh 2 Vh,

v D lim
h!0

vh ) v 2 V: (2.2.32)

When (2.2.32) is satisfied, Vh is said to be an external approximation to V .
Assuming that f can be extended to an element Qf in S 0, we can now approximate
problem (2.2.30) by: find uh 2 Vh such that

Qa.uh; vh/ D h Qf ; vhiS 0�S ; 8vh 2 Vh: (2.2.33)
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Using standard coerciveness and continuity assumptions, one gets from (2.2.30)
and (2.2.33) a result known as Strang’s lemma [146, 358].

ku � uhkS � c inf
vh2Vh

ku � vhkS C sup
vh2Vh

j Qa.u; vh/� h Qf ; vhij
kvhkS

D c inf
vh2Vh

kv � vhk CEh.u; vh/: (2.2.34)

The last term can be seen as a consistency term: it measures how well the exact
solution satisfies the discrete equation. This term vanishes when Vh � V and we get
the standard result for the conforming case.

In classical situations we have V DH1.˝/ or V DH2.˝/ (or one of their
subspaces). Introducing a partition of the domain into m sub-domains Kr , and
assuming V DH1.˝/, we take S DX.˝/ as defined in Sect. 2.1.3. Any bilinear
form of the type

Z

˝

a.x/ grad u � grad v dx (2.2.35)

can immediately be extended to X.˝/ by writing

Qa.u; v/ D
mX

rD1

Z

Kr

a.x/ grad u � grad v dx: (2.2.36)

We now want to find a subspace of X.˝/ approximatingH1.˝/ such that error
estimates obtained from (2.2.27) are “optimal”. Optimality is here relative to the
degree of the polynomials from which the approximation is built: we would like
to get O.hk/ estimates when using polynomials of degree k. We are thus led to
study the second term in the right-hand side of (2.2.34). We shall make this analysis
later in the context of hybrid finite element methods; we shall therefore merely state
the result which is quite classical [142, 165, 211, 259], which was discovered on
empirical grounds, known as the Céa patch test: the moments up to degree k � 1 of
uh on any interface of the partition must be continuous, that is,

Z

e

uhpk�1 dx; 8pk�1 2 Pk�1.e/ (2.2.37)

is continuous across any interface e between two adjacent elements.
A more general form was given by Lascaux and Lesaint [275]. It states that the

consistency term Eh.u; vh/ must vanish whenever u 2 Pr.˝/. For plate problems,
this implies a condition similar to (2.2.37) for uh and its derivatives. To fix ideas we
recall a few classical examples.

In conformity to notation (2.2.23), we denote by L1; NC .Sk; Th/ a nonconforming
approximation of H1.˝/ built from functions of Sk.K/. We shall simplify this
notation whenever possible as in the following example.
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a b cFig. 2.8 Continuity points
for nonconforming elements.
(a) k D 1. (b) k D 2.
(c) k D 3

Example 2.2.5 (Nonconforming elements on the triangle). Let us consider a parti-
tion of ˝ into straight-sided triangles and an approximation

L1;NCk WD fvh j vh 2 L2.˝/; vhjK 2 Pk.K/; 8K 2 Th;
X

K

Z

@K

vh� ds D 0; 8� 2 Rk.@K/g: (2.2.38)

It is then easy to see that the patch test implies that the functions of L1;NCk should
be continuous at the k Gauss-Legendre points on every side of the triangles (see
Fig. 2.8).

For k odd, those points, with internal points for k� 3, can be used as degrees of
freedom, but for k even it is not so and the values at these points are not independent.
We shall come back to this point in Sect. 7.1.4, in particular in Example 7.1.4.
The trouble is that the six Gaussian points of the kD 2 case lie on an ellipse
centered at the barycentre. This ellipse is easily expressed, in terms of barycentric
coordinates by defining the nonconforming bubble, an ellipsoid taking value one at
the barycentre and vanishing at the Gaussian points of the edges

bNC.K/ D 1 � 4

3
.�21 C �22 C �23/: (2.2.39)

It was however shown in [209] that this element can nevertheless be used in a
very simple way. This was extended to the three-dimensional case in [200]. In this
case the nonconforming bubble becomes

bNC.K/ D 1 � 2.�21 C �22 C �23 C �24/: (2.2.40)

It must be noted that, in three-dimensional nonconforming elements, the patch test
implies, in general, no point continuity. However, there exists a six-point quadrature
formula on the triangle, exact for polynomials of degree 3, of which all points lie on
the ellipse defined by (2.2.40) and this ensures the patch-test. ut

Nonconforming approximations of H2.˝/, [147, 148], have been widely used
because of the difficulty to obtain conforming elements. We refer the reader to [275]
where several examples are given. We shall however use in Chaps. 8 and 10 the
following nonconforming approximation of H2.˝/.

Example 2.2.6 (Morley’s triangle). In plate problems, where an approximation
of H2.˝/ is needed, an important nonconforming element is Morley’s triangle
(Fig. 2.9).
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point value

normal derivative value

Fig. 2.9 Morley’s triangle

The functions vh are supposed to be in P2.K/ for every K . The degrees of
freedom are point values at the vertices of the triangle and normal derivatives at mid-
side points. It can be shown by the method of [275] that this provides a consistent
approximation that will converge as O.h/ in a discrete H2.˝/-norm. We shall
denote by L2;NC2 the approximation of H2.˝/ built from such elements. ut
Example 2.2.7 (Nonconforming elements on the rectangle). We consider a partition
of ˝ into straight-sided quadrilaterals, and an approximation of H1.˝/ defined by

L1;NCŒk� WD fuh j uh 2 L2.˝/; uhjKr D Ouh ı F�1
r ; Ouh 2 Qk. OK/

and (2.2.37) holdsg: (2.2.41)

Here again the patch test implies continuity at the Gauss-Legendre points of the
interfaces. It is never possible to use these points as degrees of freedom. For k D 1,
the function . Ox � 1

2
/. Oy � 1

2
/ 2 Q. OK/ vanishes at the four Gauss-Legendre points

of the sides that are indeed midpoints in this case. For k D 2, the points lie on
an ellipse, and so on. It is however possible to extend the method of [209] to
these cases. Another example of a nonconforming quadrilateral element is presented
in [330].

ut
The above examples are in no way exhaustive: many other nonconforming

approximations can be built and some are indeed effectively used [244, 279]. As
we shall see in the sequel, nonconforming methods are strongly related, and often
equivalent, to hybrid methods or mixed methods. We think it is preferable to delay
further examples until they are met in a proper context.

2.2.4 Quadrilateral Finite Elements on Non Affine Meshes

We present here some general results about finite elements on non affine meshes.
A mesh Th is called affine when for all elements K 2 Th the mapping FK from the
reference element OK toK is an affine function. If this is the case, the Jacobian matrix
DFK is constant and this property has important consequences for the theoretical
analysis.
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On the other hand, non affine meshes are met very frequently in real world
applications. They may occur in the approximation of general domains, when
isoparametric elements are used (see, for instance, Example 2.2.2). Moreover, non
affine meshes are generated when quadrilateral or hexahedral elements are used. The
fact that the Jacobian matrix DFK may not be constant not only makes the analysis
of non affine elements more difficult, but may also lead to substantial degeneracy of
their approximation properties.

The aim of this section is to recall recent results which hold for the quadrilateral
finite element approximation of scalar functions (see [20]) and of vector-valued
functions in H.divI˝/ (see [21]).

The possible sub-optimality of some quadrilateral finite elements has been
observed by several authors, often as a result of numerical experiments; a non
exhaustive list of relevant references is [270, 297, 330, 384, 386].

In order to understand where the trouble come from, let us make some comments
on Corollary 2.2.1 in the case of non affine partitions. We consider, for instance, the
reference triangle OK and its image K D FK. OK/. Let us take a smooth function
Ov W OK ! R, the corresponding mapped function v D Ov ı F�1

K W K ! R, and
its linear interpolant rhv W K ! R. When FK is affine, then K is a triangle with
straight sides, the Jacobian matrix DF. Ox/ D B is constant and Corollary 2.2.1 reads

jv � rhvj1;K � chK jvj2;K: (2.2.42)

A fundamental ingredient for such an estimate is the scaling (2.1.68), which in this
particular situation reads

j Ovj2; OK � cj det.B/j�1=2kBk2jvj2;K � cj det.B/j�1=2h2K jvj2;K: (2.2.43)

When the Jacobian matrix is not constant, we cannot use (2.1.68) and the chain rule
gives

j Ovj2; OK � c

ˇ̌
ˇ̌inf

Ox
.J. Ox//

ˇ̌
ˇ̌
�1=2 �

kDFk2
L1. OK/jvj2;K C kD2F kL1. OK/jvj1;K

�
: (2.2.44)

The term kDFk2
L1. OK/ in the right hand side is typically O.h2K/, while the norm of

the Hessian matrixD2F might be a lower order term. This fact is clearly a potential
source of trouble for optimal order approximation.

Remark 2.2.5. Besides the situations presented in Sects. 2.2.5 and 2.5.5, there are
other cases which could be studied but for which the analysis is not yet com-
pleted. Three dimensional H.div;˝/ and H.curlI˝/ approximations on general
hexahedral meshes, for instance, do not have a complete analysis yet (see, for
instance, [19, 191]), while it is known that standard finite elements are suboptimal
in several situations [64, 307]. ut
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2.2.5 Quadrilateral Approximation of Scalar Functions

Necessary and sufficient conditions for optimal order approximation by quadri-
lateral finite elements have been investigated in [20]. The theory applies to finite
elements defined on a reference square element OK and mapped to the actual quadri-
lateral elementK by the standard transformation (2.1.59). The generic mapping FK
is bilinear in each component, so that K is a quadrilateral with straight sides.

Before stating the main results, let us recall a measure of shape regularity for
quadrilateral meshes.

Definition 2.2.1. Let fThg be a family of partitions of convex quadrilaterals. For
eachK , consider the four triangles obtained by the possible choices of three vertices
from the vertices of K and denote by 
K the smallest diameter of the circles
inscribed in the four triangles. Define �K D hK=
K , where hK is as usual the
diameter of K . The family of partitions fThg is said shape-regular if

�K � C 8K;

uniformly in h.

The shape regularity is equivalent to a uniform bound on the ratio of any two
sides of the elements and also to a bound away from 0 and � for the element angles.

Given a smooth function u W ˝ ! R and a finite element space family Vh, we are
interested in the following optimal approximation properties (k is the polynomial
degree of the reference finite element space and gradh is the element-by-element
gradient):

inf
vh2Vh

ku � vhk0;˝ D O.hkC1/; (2.2.45)

inf
vh2Vh

k gradh.u � vh/k0;˝ D O.hk/: (2.2.46)

It is well known (see, for instance, [146, 223]) that a sufficient condition
for (2.2.46) to hold is that the reference finite element space contains Qk. OK/, the
space of polynomials of degree less than or equal to k in each variable, separately.
In this case, the following estimates are known to hold

inf
vh2Vh

ku � vhk0;˝ � chkC1jujkC1;˝; (2.2.47)

inf
vh2Vh

k gradh.u � vh/k0;˝ � chkC1j grad ujkC1;˝: (2.2.48)

Indeed, this is also a necessary condition. This result has been proved in [20] by
exhibiting a very simple (and far from pathological) counterexample: the domain is
a square, the mesh sequence, sketched in Fig. 2.10, is made of self similar trapezoids
and the function to be approximated is as smooth as possible (a polynomial of
degree k).
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Fig. 2.10 Distorted quadrilateral mesh based on a trapezoid macro-element

Remark 2.2.6. The presented result has important consequences for some
commonly used finite element space families. In particular, serendipity elements,
obtained from standard Qk elements by eliminating some internal degrees
of freedom, cannot achieve optimal approximation order (2.2.46) on general
quadrilateral meshes. ut
Remark 2.2.7. The presented results extend to three space dimensions in a straight-
forward way [296]. ut
Remark 2.2.8. The degeneracy of the approximation properties is related to the
mesh distortion. In particular, on asymptotically affine partitions, the optimal
approximation order is achieved. We refer the interested reader to [20] for the
definition of an asymptotically affine mesh and for the proof of this result. ut

2.2.6 Non Polynomial Approximations

2.2.6.1 Spaces Ls
k
.Eh/

In the applications involving hybrid methods, it will be useful to consider approxi-
mation spaces built from functions that have a polynomial trace on @K but which are
not necessarily polynomials inside K . These spaces will be useful whenever only
the trace is computationally important: they can be thought of as defined only on
Eh D

[

K

@K (cf. (2.1.42)). We thus define for s � 1

Lsh.Eh/ WD fv j v 2 Hs.˝/ vj@K 2 Tk.@K/; 8Kg (2.2.49)

and for s D 0

L0k.Eh/ WD fv jv 2 L2.Eh/; vj@K 2 Rk.@K/; 8Kg: (2.2.50)
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For s � 1, functions of Lsk.Eh/ are evidently approximations of H1.˝/ of
optimal order with respect to k. It is also possible to get error estimates on the
traces.

Virtual element methods. The spaces Lsk.Eh/ can easily be defined on polygons
of arbitrary shape, but (as we already pointed out) they can be used only on
the boundary of elements, and, even restricted to a single element, are infinite
dimensional. To reach a finite dimensional version, one has to prolongate them
inside the elements. This can be done in several ways (see e.g. [367, 377] or [306]
and the reference therein).

Recently a variant of these methods has been introduced, called Virtual Elements,
in which the extension is made as the solution of a partial differential equation, but
the construction is such that one does not need to know the solution of this PDE in
order to compute the stiffness matrix.

Let us see a simple example, just to give the flavour of the idea. On an element
K (a polygon of a practically arbitrary shape), we define VM1.K/ as the space of
functions that are linear on each edge of K and harmonic inside. The dimension of
such a space is clearly equal to the number of vertices of K . If we want to compute

aK.v; p/ WD
Z

K

grad v � gradp dx; (2.2.51)

where v is generic in VM1.K/ and p is a polynomial of degree �1, we have

aK.u; p/ 	
Z

K

grad v � gradp dx D
Z

@K

v
@p

@n
ds; (2.2.52)

which is easily computable from the knowledge of v on @K . This allows to compute
a projection operator (that we denote by ˘r

1 ) from VM1.K/ to P1.K/ by

Z

@K

.v �˘r
1 v/ ds D 0 and aK.v �˘r

1 v; q/ D 08q 2 P1.K/: (2.2.53)

Then we can take as approximate local stiffness matrix aKh the following expression:

aKh .u; v/ WD aK.˘r
1 u; ˘r

1 v/C SK.u �˘r
1 u; v �˘r

1 v/; (2.2.54)

where SK is any bilinear form acting on the vertex values and scaling like 1 (for
instance, for a polygon with, say, five vertices, the usual scalar product in R

5 will
do). This will provide an optimal error bound (see [57]).

This can be extended to higher orders to improve the accuracy. Taking k D 2,
for simplicity, we now define VM2.K/ as the space of functions that are quadratic
on each edge of K and whose Laplacian, inside K , is a constant (in general: a
polynomial in Pk�2.K/). The dimension of such a space is clearly equal to twice
the number of vertices of K plus one. As degrees of freedom we take the values
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at the vertices, the values at the midpoints of the edges, and the mean value on K .
Now, if we want to compute

aK.v; p/ WD
Z

K

grad v � gradp dx; (2.2.55)

where v is generic in VM2.K/ and p is a polynomial of degree �2, we have

Z

K

grad v � gradp dx D �
Z

K

v �p dx C
Z

@K

v
@p

@n
ds; (2.2.56)

which is easily computable, as we know v on @K and its average onK . This allows
to compute a projection operator (that we now denote by ˘r

2 ) from VM2.K/ to
P2.K/ by

Z

K

.v �˘r
2 v/ ds D 0 and aK.v �˘r

2 v; q/ D 08q 2 P2.K/: (2.2.57)

Following (2.2.54) we can then take as approximate local stiffness matrix aKh the
following one:

aKh .u; v/ WD aK.˘r
2 u; ˘r

2 v/C SK.u �˘r
2 u; v �˘r

2 v/; (2.2.58)

where again SK is any bilinear form acting on the vertex and inside values and
scaling like 1 (for instance, for a polygon with, say, five vertices, the usual scalar
product in R

11 will do). We still refer to [57] for more details.
We observe that another possibility would be to consider the space eVM1 of

functions that are linear on each edge, whose Laplacian is constant, and such that

Z

K

.v �˘r
1 v/ dx D 0; (2.2.59)

where ˘r
1 is still defined by (2.2.53) using only the boundary values of v. The

advantage of eVM1 over VM1 is that in eVM1 we can compute exactly the mean value
of a function using only its boundary values; this can be useful, for instance, to
define the Virtual Element spaces on a polygonal face of a polyhedron, in particular,
if thereafter we want to use a formula like (2.2.56). For more information in this
direction see [4].

2.2.7 Scaling Arguments

We shall briefly recall here the basic idea of the scaling arguments of [180]. We shall
do it on a very simple example, but it will be clear how the idea applies to more
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general cases. Assume that we want to prove the following inverse inequality for
elements vh 2 Lsk : there exists a constant c depending only on k and on the
minimum angle �0 in Th such that, on every element K , we have

jvhj1;K � ch�1
K jvhj0;K: (2.2.60)

We construct first a new element OK such that the mapping F W OK ! K is simply
given by

x D hK Ox C b (2.2.61)

andK has a vertex at the origin. Formulas (2.1.67) and (2.1.68) then simply become
(in two dimensions)

j Ovjm; OK D hm�1
K jvjm;K (2.2.62)

and we easily get

jvhj1;K D j Ovj1; OK � c.k; OK/ j Ovj0; OK � c.k; OK/ h�1
K jvj0;K: (2.2.63)

Now we remark that c.k; OK/ actually depends continuously on the shape of OK (a
similar argument was already used in [127]). In particular, if one considers the
family K�0 of all the triangles having diameter D 1, one vertex at the origin and
a minimum angle � �0, one easily gets

sup
OK2K�0

c.k; OK/ � c.k; �0/ (2.2.64)

by compactness [180]. Hence from (2.2.63) and (2.2.64) we get

jvhj1;K � c.k; �0/ h
�1
K jvj0;K; (2.2.65)

that is (2.2.60).
Note that, in this particular case, it would have been equally easy (or even easier)

to derive directly (2.2.60) by using (2.1.67) and (2.1.68) and a fixed OK D unit
triangle. However, (2.2.62) is easier to use and the continuity argument (2.2.64) is
always essentially the same in many different applications, so that using the scaling
(2.2.61) actually results in a simplification. For instance, one can get by this method
the inequality

Z

@K

jvhj d� D hK

Z

@ OK
j Ovhj d O� � c.k; �0/ hK j Ovhjo; OK D c.k; �o/ jvhj0;K: (2.2.66)

In the same way, one can guess, for instance, that one has

k@vh=@nkL1.@K/ � c.k; �0/ h
�2
k jvhj0;K; (2.2.67)
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because both sides scale like h�1
K in the transformation (2.2.61) and the inequality

holds on a fixed element of size D 1. However, note that an inequality of the type

kvhkL1.@K/ � c.k; �0/ jvhj1;K (2.2.68)

is still hopeless (take vh D 1!) unless we specify, for instance, that vh has zero mean
value in K .

2.3 Simplicial Approximations ofH.divI˝/ andH.curlI˝/

Although this section and the following one are important by themselves (we
shall use H.divI˝/ or H.curlI˝/ in many applications throughout this book),
its importance also lies in its value as a model. The techniques introduced for the
approximation of H.divI˝/ can indeed be applied to other situations and similar
constructions have been employed in the discretisation of the Hellan-Hermann-
Johnson mixed formulation for which we refer to [318] and [319]. The approxi-
mations that we shall present derive from the original work of [366], and [331]
later generalized and extended to the three-dimensional case by Nédélec [310]. We
shall also use the results of [118, 120], and [311] for the definition of elements that
contain (for simplicial elements) the elements of [310] and [331]. In the case of
rectangles, we introduce a general element containing the elements of [331], the
elements of [120] and the ones of [119], thus clarifying the relation between those
two. As the simplicial case is simple and more intuitive, we shall first consider it in
detail. Quadrilateral and hexahedral elements will be treated afterwards.

2.3.1 Simplicial Approximations ofH.divI˝/

In this section, the element K will be either a triangle .n D 2/ or a tetrahedron
.n D 3/ and we will suppose that we have a mesh Th built from such elements. We
denote by ei .i D 1; 2; 3 or i D 1; 2; 3; 4/ the sides (or the faces) of K . We then
start from the general space of piecewise polynomial vectors. It will be convenient
to denote

P k.K/ WD .Pk.K//
n: (2.3.1)

In analogy with (2.2.23), we want to build approximations ofH.divI˝/ of the form

Ldiv.Sk; Th/ WD fp 2 H.divI˝/ W pjK 2 Sk.K/g; (2.3.2)

which will evidently imply continuity of the normal traces. We shall thus proceed
to build suitable subspaces of to ensure this continuity. We first define, using (2.2.5)

P
n;s
k .K/ WD fp 2 Pk.K/ W p � n 2 Rs.@K/g (2.3.3)
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and

P
n;s
kCxk.K/ WD fp 2 .P k.K/C xPk.K// W p � n 2 Rs.@K/g; (2.3.4)

where x D .x1; x2; : : : ; xn/. For these spaces, we shall write (2.3.2) in a compact
way:

Ldiv
k;s.Th/ D Ldiv.P

n;s
k ; Th/ (2.3.5)

Ldiv
kCxk;s.Th/ D Ldiv.P n;s

kCxk; Th/ (2.3.6)

or even Ldiv
k;s and Ldiv

kCxk;s when there will be no ambiguity as to the choice of Th.
The case s D k is the most natural and widely used. Taking s � k � 1 defines what
we shall call reduced spaces. We introduce special names for a few classical cases.
For s D k, the space P n;k

k .K/ was introduced in [120] (for n D 2) and [118] (for
n D 3). We shall thus call it the Brezzi-Douglas-Marini space and write,

BDMk.K/ WD P
n;k
k .K/: (2.3.7)

The dimension of BDMk.K/ is

dim BDMk.K/ D
(
.k C 1/C .k C 2/; for n D 2;

1
2
.k C 1/.k C 2/.k C 3/; for n D 3:

(2.3.8)

The space P n;k
kCxk was defined in [310] following [331]. We shall call it the Raviart-

Thomas space and write

RT k.K/ WD P
n;k
kCxk: (2.3.9)

Finally the reduced case P n;k�1
k was considered in [119] and we shall write

BDFMk.K/ WD P
n;k�1
k .K/: (2.3.10)

Remark 2.3.1. The original work of [331] used an expression equivalent to (2.3.4)
with s D k on the reference element OK and defined RT k.K/ by the change of
variable G of (2.1.69). It must be noted that this definition is not equivalent to
the definition of RT k.K/ given above: it depends on the orientation of space. For
simplicial elements, definition (2.3.4) is more natural and easier to handle. ut
For the simplicial case, we thus have the following inclusions between the spaces
just defined:

RT k�1 � BDFMk � BDMk � RT k � BDFMkC1 � BDMkC1 � RT kC1:
(2.3.11)

We now have to define suitable degrees of freedom. For q 2 P
n;s
k .K/, we

evidently have div q 2 Pk�1.K/. Moreover, the normal trace q � n on @K belongs
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to Rs.@K/. In order to build from P
n;s
k .K/ an approximation of H.divI˝/, it will

be necessary to ensure continuity of q �n at the interfaces. This will be made possible
by the choice of appropriate degrees of freedom.

Proposition 2.3.1. For k � 1 and for any q 2 P
n;s
k .K/, the following relations

imply q D 0

Z

@K

q � n ps ds D 0; 8ps 2 Rs.@K/; (2.3.12)

Z

K

q � grad pk�1 dx D 0; pk�1 2 Pk�1.K/; (2.3.13)

Z

K

q � p
k

dx D 0; 8p
k

2 Hk.K/; (2.3.14)

where

Hk.K/ WD fq
k

j q
k

2 P k.K/; divq
k

D 0; q
k

� nj@K D 0g: (2.3.15)

Indeed, it is easy to check that (2.3.12) and (2.3.13) are equivalent to q 2 Hk.K/ as
(2.3.12) implies q

k
� nj@K D 0. Moreover,

Z

K

div q pk�1 dx D �
Z

K

q � gradpk�1 dx C
Z

@K

q � n pk�1 ds: (2.3.16)

Thus (2.3.12) and (2.3.13) imply divq D 0. Reciprocally, it is trivial that (2.3.12)
and (2.3.13) hold for q

k
2 Hk.K/. ut

To prove that (2.3.12)–(2.3.14) can be used to define degrees of freedom for
P
n;s
k .K/ by choosing bases for Rs.@K/, Pk�1.K/, and Hk.K/, there remains to

check that the set obtained from (2.3.12) and (2.3.13) is linearly independent. This
is the object of the next lemma.

Lemma 2.3.1. Let g 2 Rs.@K/ and f 2 Pk�1.K/ be such that
Z

@K

gq � n d� C
Z

K

q � gradf dx D 0; 8q 2 P n;s
k .K/: (2.3.17)

Then, g D 0 and f D constant.

Proof. Using the change of variables (2.1.69) and Lemma 2.1.6, it is sufficient to
prove the result on the reference element (see Fig. 2.11). We give the construction
for n D 3 as the case n D 2 is a simple restriction of it. One first uses in (2.3.17)

q1 D x
@f

@x
�4; q2 D y

@f

@y
�4; q3 D z

@f

@z
�4; (2.3.18)

where �4 is the fourth barycentric coordinate, that is �4 D 1 � x � y � z.
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e4

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

y

z

x

Fig. 2.11 The reference element

Then q 2 P k.K/ and q � nj@K D 0 and we get from (2.3.17)

Z

K

h
x
�@f
@x

�2 C y
�@f
@y

�2 C z
�@f
@z

�2i
�4 D 0; (2.3.19)

which implies grad f D 0 since all terms in the integral are positive. We now take
q1 Dxps�1; q2 D q3 D 0. From this we obtain

R
e4
xg ps�1 ds D 0. In the same

way we get
R
e4
yg ps�1 ds D R

e4
zg ps�1 ds D 0 and, as x C y C z D 1 on

e4;
R
e4
g ps�1 ds D 0. All these conditions imply gje4 D 0. Finally, we take

qi D gjei D gi and (2.3.17) implies
3P
iD1

R
ei
.gi /

2 ds D 0, hence g D 0. ut

Let us now count the number of conditions thus induced for BDMk.K/:

dim Rk.@K/C dim Pk�1.K/� 1 D
8
<

:

1
2
k2 C 7k C 4 for n D 2;

1
6
k3 C 15k2 C 38k C 18 for n D 3:

(2.3.20)
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From this we can deduce, by standard arguments of linear algebra,

dimHkD

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

2
k.k � 1/ D dim Pk�2.K/ for n D 2; k � 2;

1

6
3k3�3k�1

6
.k�2/.k�1/kD

8
ˆ̂<

ˆ̂:

dim Œ.Pk�2/3��dim .Pk�3/;
n D 3; k � 3;

dim Œ.Pk�2/3�; nD3; kD2:
(2.3.21)

In the two-dimensional case, the space Hk.K/ can easily be characterized.

Lemma 2.3.2. For n D 2, we have,

Hk.K/ D fp
k

j p
k

D curl.bK pk�2/; pk�2 2 Pk�2.K/g; (2.3.22)

where bK D �1�2�3 2 B3.K/ is the bubble function on K .

Proof. Any p
k

2 Hk.K/ is the curl of a polynomial of degree kC1. A simple count
of degrees of freedom concludes the proof. ut

In the three-dimensional case, the construction of Hk.K/ is less direct. It is still
true that p

k
2 Hk.K/ implies that p

k
is the curl of a vector function polynomial of

degree k C 1. To characterise Hk.K/, we need the polynomial spaces that will be
introduced in the next section for the approximation of H.curlI˝/.

The next result shows, in particular, that the internal degrees of freedom coming
from (2.3.13) and (2.3.14) can be replaced by a term involving the space Nk�2.K/
which will be introduced in (2.3.37) for the approximation of H.curlI˝/. The
reader is referred to Sect. 2.3.2 for more details.

Proposition 2.3.2. For k � 1 and for any q 2 P
n;s
k .K/, the following relations

imply q D 0,

Z

@K

q � nps ds D 0; 8ps 2 Rs.@K/; (2.3.23)

Z

K

q � wk�2 dx D 0; 8wk�2 2 Nk�2.K/; (2.3.24)

where Nk�2.K/ is defined in (2.3.37).

Proof. Space Nk�2.K/ contains the gradients of all polynomials of degree k � 1

so that condition (2.3.24) is stronger than (2.3.13). We thus get q 2 Hk.K/. By
Proposition 2.3.4, a polynomial of degree k which is divergence-free is the curl of
� 2 N C

k .K/ and q � n D 0 implies that we must take the tangential trace �t� to
vanish on @K . From Proposition 2.3.5 it follows that

Z

K

� � p
k�2dx D 0; 8p

k�2 2 P k�2 (2.3.25)
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which implies � D 0. On the other hand, (2.3.24) implies

Z

K

curl� � wk�2 dx D
Z

K

� � curl wk�2 dx D 0; 8wk�2 2 Nk�2.K/ (2.3.26)

and curl Nk�2.K/ spans BDM0
k�2.K/ (see Proposition 2.3.4). From Lemma 2.3.3,

the complement of BDM0
k�2.K/ is made of gradients and the result follows. ut

One must also say that the degrees of freedom described above have mainly
a theoretical importance, for instance in building a B-compatible interpolation
operator for proving the inf-sup condition. In practice, as we shall see in the
applications of Chap. 7, any basis of Pk will be convenient and standard degrees
of freedom can be used.

We can now consider the case of RT k.K/ as defined in (2.3.9). It can easily be
checked that the dimension of RT k.K/ is given by

dim RT k.K/ D
(
.k C 1/.k C 3/ for n D 2;

1
2
.k C 1/.k C 2/.k C 4/ for n D 3;

(2.3.27)

and that only the part of xPk.K/ involving homogeneous polynomials of degree k
is important. We now prove some basic results about RT k.K/ spaces. These spaces
have indeed been tailor designed in order to satisfy the properties which we now
state in the following proposition.

Proposition 2.3.3. For any n-simplicial element K we have for q2RT k.K/,

(
div q 2 Pk.K/;
q � nj@K 2 Rk.@K/:

(2.3.28)

Moreover, the divergence operator is surjective from RT k.K/ onto Pk.K/.

Proof. q 2 RT k.K/ can be written as q D q
0

C xpk with q
0

2 P k.K/. It is
then clear that div q is a polynomial of degree k. This proves the results about div q.
On the other hand, let n D fn1; n2g be the normal to a side (we consider the two-
dimensional case for simplicity)

q � n D q0 � nC pk.x1n1 C x2n2/: (2.3.29)

Along a side, x1n1 C x2n2 is constant, so that q � n is a polynomial of degree k. The
same argument works in R

n. To end the proof, we observe that in R
n

Z

K

div.xp/p dx D n

2

Z

K

jpj2 dx C 1

2

Z

@K

.x � n/jpj2 ds; (2.3.30)

so that div.xpk/ D 0 implies pk D 0. Hence, div.xPk/ has the same dimension
as Pk . ut
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Proposition 2.3.4. For k � 0 and for any q 2 RT k.K/, the following relations
imply q D 0

Z

@K

q � n pk dsD 0; 8pk 2 Rk.@K/; (2.3.31)

Z

k

q � p
k�1 dx D 0; 8p

k�1 2 .Pk�1.K//n: (2.3.32)

This is a variant of Proposition 2.3.1 and the proof is left as an exercise.
Let us now define

RT 0
k.K/ WD fq j q 2 RT k.K/; div q D 0g: (2.3.33)

We can define in the same way BDM0
k.K/ and BDFM0

k.K/. From (2.3.4), we can
easily deduce the following result.

Corollary 2.3.1. RT 0
k.K/ � .Pk.K//

n.

Therefore RT 0
k.K/ D BDM0

k.K/ while BDFM0
k.K/ D RT 0

kC1 contains the
same divergence-free vectors.

Corollary 2.3.2.

• For n D 2, any q
0

2 RT 0
k.K/ D BDM0.K/ is the curl of a stream-function

 kC1 2 PkC1.K/=R.
The dimension of RT 0

k.K/ is equal to dim .PkC1.K/�1/ D 1
2
.kC1/.kC4/.

• For n D 3, from Lemma 2.3.4, any q
0

2 RT 0
k.K/ is the curl of a vector  2

N C
k .K/ D Nk.K/= gradPkC1 D P kC1= gradPkC2 .

Finally, one can obtain a complement of RT 0
k.K/ by the following construction.

Lemma 2.3.3. Any p
k

2 Pk can be written as the sum

p
k

D p0 C grad.bnc.K/pk�1/ (2.3.34)

with p0 2 BDM0.K/ where the nonconforming bubble is defined by (2.2.39).

Proof. It is clear that bnc.K/Pk�1 vanishes on the ellipse bnc D 0 and hence
contains no harmonic functions. ut

Before considering the case of H.curlI˝/ we present a few examples.

Example 2.3.1 (The spaces RT 0; RT 1; BDM1). From the results above, we
know that RT 0 is a space of dimension 3 containing polynomials of the form

(
q1.x; y/ D a C cx;

q2.x; y/ D b C cy:
(2.3.35)
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q · n q · n

q

q · n

a b c

Fig. 2.12 (a) RT0. (b) BDM1. (c) RT1

q · n

q

q · n

q

a b

Fig. 2.13 (a) BDM2. (b) BDFM2

a b c

Fig. 2.14 (a) RT0. (b) BDM1. (c) RT1

We can specify it by the three normal components of q on @K as sketched in
Fig. 2.12. Space BDM1 is of dimension 6 and RT 1 is of dimension 8. It must
be noted that div BDM1 D div RT 0 D P0. In the same way, BDM1 is the subset
of RT 1 such that divq 2 P0 instead of P1. The same concepts can be extended to
BDM2 and BDFM2 as shown in Fig. 2.13. ut

Example 2.3.2 (Three-dimensional elements: RT 0; BDM1; RT 1). The simplest
cases of three-dimensional elements are depicted in Fig. 2.14. ut
Remark 2.3.2 (Two-dimensional approximations of H.curlI˝/). Due to Remark
2.1.5, in the two dimensional case, approximations of H.curlI˝/ can be derived
directly from the approximations of H.divI˝/ which we just presented since in
two dimensions H.curlI˝/ is isomorphic to H.divI˝/ through a rotation by the
angle �=2. Vector fields approximating H.divI˝/ will provide an approximation
of H.curlI˝/ after a suitable rotation. ut
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2.3.2 Simplicial Approximation ofH.curlI˝/

As stated in Remark 2.3.2, two dimensional approximations of H.curlI˝/ can
be derived directly from those of H.divI˝/. For this reason, we restrict our
presentation to the three-dimensional case. In the following, K will therefore
be a tetrahedron. The problem of defining a subspace of P k.K/ which would
lead naturally to the continuity of the tangential trace is more complex than for
H.divI˝/. To understand this, we may consider the trace �t defined in (2.1.32).
From (2.1.37), this trace is in H� 1

2 .curlI @K/ which will imply continuity along
the edges of K . This will also imply in the definition of degrees of freedom
the appearance of the duality pairing with H� 1

2 .divI @K/. Finite element spaces
approximating H.curlI˝/ have therefore often been referred to as edge finite
elements, in analogy to face finite elements approximatingH.divI˝/ and to nodal
finite element approximations of H1.˝/ as degrees of freedom will be associated
to edges (see, in particular, Example 2.3.3), faces, and vertices, respectively.

Edge elements are also known as Nédélec elements since they have been origi-
nally presented in [310, 311]. Important contributions to the analysis can be found
in [8, 102, 170, 223], in [248, 302] and in the references therein. In the simplicial
case, a comprehensive list can be deduced from the presentation of [33] (see, in
particular, Table 5.2) where they have been discussed in a more general setting.

Remark 2.3.3. As we did for approximations of H.div;˝/, we shall define, for
Sk � Pk ,

Lcurl.Sk; Th/ WD fp jp 2 H.curlI˝/; pjK 2 Sk.K/g; (2.3.36)

which will imply continuity of the tangential traces as defined in the previous
sections. We now proceed to present classical ways of building some suitable Sk .

ut
The most popular choice, which has been introduced by Nédélec [310] and

further analysed in [222] is often referred to as first kind Nédélec family.
Let K � R

3 be a tetrahedron and let ei , i D 1; : : : ; 6, denote its edges and fi ,
i D 1; : : : ; 4, its faces. Given an integer k � 0, we define

Nk.K/ WD .Pk.K//
3 ˚ Œx ^ .P h

k .K//
3�; (2.3.37)

where x D .x; y; z/ and Ph
k denotes the space of homogeneous polynomials of

degree k.
It is worth observing that definition (2.3.37) might also be given in the following

equivalent way. Let us define first

Sk WD f� 2 .Pk.K//3j� � x D 0gI (2.3.38)

then we have Nk.K/ WD .Pk.K//
3 ˚ SkC1.
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Proposition 2.3.5. For k � 0 and for any � 2 Nk.K/, the degrees of freedom
of Nk.K/ can be defined by

Z

ei

� � t pk ds 8pk 2 Pk.ei /; 8ei (2.3.39)

Z

fj

�t� � �
k�1 d� 8�

k�1 2 .Pk�1.fj //2; 8fj (2.3.40)

Z

K

� � p
k�2 dx 8p

k�2 2 .Pk�2.K//3: (2.3.41)

For the proof of the previous proposition, we refer the interested reader to [222].
In particular, let us check that the number of conditions involved with (2.3.39)–
(2.3.41) is the same as the dimension of the space Nk.K/. Indeed, (2.3.39) imposes
k C 1 conditions on each edge, (2.3.40) gives k.k C 1/=2 conditions in each of
the two components of the tangential component on each face, and (2.3.41) adds
.k � 1/k.k C 1/=6 more conditions in each of the three components of the vector
field. As it can be easily seen, the sum of the three contributions is equal to

dim.Nk.K// D .k C 1/.k C 3/.k C 4/=2: (2.3.42)

Following (2.3.36), in analogy with what has been done for approximations of
H.divI˝/, we define

Lcurl
kCx^k.Th/ WD Lcurl.Nk; Th/: (2.3.43)

Remark 2.3.4. It would be possible to introduce, if needed, reduced spaces where
the tangential trace is of a lower degree. We can, for example, introduce a reduced
space, N r

k .K/, which is the subspace of Nk.K/ where the degree of the trace on
the faces of K is lowered by one. We thus have for k � 1 the following degrees of
freedom

Z

ei

� � t pk�1 ds 8pk�1 2 Pk�1.ei /; 8ei (2.3.44)

Z

fj

�t� � �
k�2 d� 8�

k�2 2 .Pk�2.fj //2; 8fj (2.3.45)

Z

K

� � p
k�2 dx 8p

k�2 2 .Pk�2.K//3: (2.3.46)

ut
Proposition 2.1.3 states that in order to construct an approximation of

H.curlI˝/, given �2 Nk.k/, we need to ensure continuity of the tangential
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component �t� across elements. The following proposition implies that the degrees
of freedom (2.3.39) and (2.3.40) guarantee such continuity.

Proposition 2.3.6. Assume that � 2 Nk.K/ is such that (2.3.39) and (2.3.40)
vanish on a given face f � K and on all edges e of f . Then � ^ n D 0 on f .

ut
Another possible choice for constructing approximations ofH.curlI˝/ has been

introduced in [311] and is often referred to as the second kind Nédélec family. On a
tetrahedronK , for k � 1, we consider the full polynomial space

NCk.K/ WD P k: (2.3.47)

This is the same set of polynomials which we used to define BDMk . However, we
must now build a set of degrees of freedom which would ensure the continuity of
the tangential trace. Given � 2 NCk.K/, we introduce the following moments:

Z

ei

� � tpk ds; 8pk 2 Pk.ei /; 8ei (2.3.48)

Z

fj

�t� � �
k�2 d�; 8�

k�2 2 RT k�2.fj /; 8fj (2.3.49)

Z

K

� � q
k�3 dx; 8q

k�3 2 RT k�3.K/: (2.3.50)

It is not difficult to check that the total number of degrees of freedom introduced
in (2.3.48)–(2.3.50) is equal to

dim.NCk.K// D .k C 1/.k C 2/.k C 3/

2
: (2.3.51)

Indeed, moments in (2.3.48)–(2.3.50) correspond respectively to 6.kC 1/, 4.kC 1/

.k � 1/, and .k C 1/.k � 1/.k � 2/=2 conditions. Lemma 2.1.9 guarantees that the
moments are compatible with the mapping H and, finally, we refer the interested
reader to [311] for the proof of the unisolvence.

We shall denote as in (2.3.43)

Lcurl
k .Th/ WD Lcurl.NCk; Th/: (2.3.52)

Remark 2.3.5. We shall say that the vectors in Nk.K/;N r
k .K/ or NCk.K/ for

which � ^ n D 0 on all faces of K and which are thus defined by the degrees
of freedom (2.3.41), (2.3.46), and (2.3.50) are H.curl/-bubbles. It is thus clear that
Nk.K/ and N r

k .K/ contain exactly the same bubbles while NCk.K/ has more. ut
Remark 2.3.6. Another important property is that the spaces Nk.K/, N r

k .K/ and
NCk.K/ are invariant under the action of the covariant transform H in case of
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affine mappings (as it can be checked directly). Moreover, from Lemma 2.1.9 if
follows that the degrees of freedom introduced, for example, in (2.3.39)–(2.3.41)
are compatible with respect to H. ut

Our last comment is about the characterization of the kernel of the curl operator
in Nk.K/, N r

k .K/ and NCk.K/. Using a similar notation to what we had introduced
in the previous section, we define

N 0
k .K/ WD f� 2 Nk.K/j curl� D 0g; (2.3.53)

N r0
k .K/ WD f� 2 N r

k .K/j curl� D 0g; (2.3.54)

NC0k.K/ WD f� 2 NCk.K/j curl� D 0g: (2.3.55)

One easily sees that

N 0
k .K/ WD gradPkC1.K/; (2.3.56)

N r0
k .K/ WD gradPk.K/C gradB4.K/P h

k�3.K/; (2.3.57)

NC0k.K/ WD gradPkC1.K/; (2.3.58)

where B4.K/ is the bubble defined in (2.2.28) and Ph
k .K/ denotes, as above, the

space of homogeneous polynomials of degree k. Let us define

N C
k .K/ WD Nk.K/= gradPkC1.K/; (2.3.59)

N rC
k .K/ WD N r

k =N r0
k .K/; (2.3.60)

NCC
k .K/ WD NCk= gradPkC1.K/: (2.3.61)

We then have N C
k .K/ D NCC

kC1.K/while N rC
k .K/ is smaller. The important point

is that we have

curl Nk.K/ D curl NCkC1.K/ D curl N C
k .K/ D BDM0

k.K/ D RT 0
K.K/

(2.3.62)

curl N r
k .K/ D curl N rC

k .K/ D BDFM0
k.K/: (2.3.63)

We can, for example, check the following result.

Lemma 2.3.4. The curl operator is surjective from N C
k .K/ onto BDM0

k.K/ D
RT 0

k.K/.

Proof. A simple count shows that the dimensions of N C
k .K/ and the dimension of

BDM0
k.K/ are equal. ut
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Fig. 2.15 Lowest order edge
elements on a tetrahedron

This can be summarised in the exact sequences,

L1kC1
grad�����! Nk

curl�����! BDMk

div�����! L0k (2.3.64)

L1kC1
grad�����! N r

k

curl�����! BDFMk

div�����! L0k (2.3.65)

This relation is part of a more general commuting diagram property which will
be discussed in Sect. 2.1.4.

Example 2.3.3 (Lowest order edge elements). We conclude this section by explain-
ing in more detail the case kD 0. This is probably the most used edge finite
element and it is also known as the Whitney element, since it has been used by
Whitney in a different context [379]. The case kD 0 is very particular, since the
only meaningful degrees of freedom are those presented in (2.3.39) (and this is also
a good explanation for the name edge elements). The space N0 is simply given by

N0 W D .P0.K//
3 ˚ Œ.x/ ^ .P0.K//3�

D span

8
<

:

0

@
1

0

0

1

A ;

0

@
0

1

0

1

A ;

0

@
0

0

1

1

A ;

0

@
0

z
�y

1

A ;

0

@
�z
0

x

1

A ;

0

@
y

�x
0

1

A

9
=

; : (2.3.66)

The moments (shown in Fig. 2.15), are given by the six degrees of freedom (2.3.39),
that is

Z

e

� � t ds (2.3.67)

and it can be checked that the quantity � � t is constant along the edges. ut

2.4 Approximations ofH.divIK/ on Rectangles and Cubes

We now consider the extension of the previous construction to rectangular elements.
The general quadrilateral case is not straightforward; some considerations about
it are presented in Sect. 2.2.4. In the present case, the use of a reference element
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is essential and we shall build our spaces on OK D � � 1;C1Œn. Contrarily to the
simplicial case, it will be simpler here to first introduce the approximations of
Raviart and Thomas. The extension to the three-dimensional case can be found
in [310].

2.4.1 Raviart-Thomas Elements on Rectangles and Cubes

We first consider a simple extension of the RT k approximation introduced above
for the simplicial case. Let us define

RT Œk� WD
(
PkC1;k 
 Pk;kC1 for n D 2;

PkC1;k;k 
 Pk;kC1;k 
 Pk;k;kC1 for n D 3:
(2.4.1)

It is then easy to check that

dim RT Œk� D
(
2.k C 1/.k C 2/ for n D 2;

3.k C 1/2.k C 2/ for n D 3:
(2.4.2)

These spaces have been defined in order to have

div q
k

2 Qk: (2.4.3)

Moreover, we have

8
<

:
q � n

k
jei 2 Pk.ei / on the edges for n D 2;

q � n
k
jfi 2 Qk.ei / on the faces for n D 3:

(2.4.4)

Defining as in the simplicial case

RT 0Œk� WD fq j q 2 RT Œk�; div q D 0g; (2.4.5)

we have the following result.

Lemma 2.4.1. For n D 2, if q 2 RT 0Œk�.
OK/, there exists  2 QkC1. OK/ such that

q D curl . The dimension of RT 0Œk�. OK/ is .k C 1/.k C 3/.

In order to choose an approximate set of degrees of freedom, we define

�k.K/ WD
(
Pk�1;k.K/ 
 Pk;k�1.K/ for nD 2;

Pk�1;k;k.K/ 
 Pk;k�1;k.K/ 
 Pk;k;k�1.K/ for nD 3:
(2.4.6)
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Proposition 2.4.1. For any q 2 RT Œk�. OK/, the relations

Z

ei

�iq � n ds D 0 8�i 2 Qk.ei / for n D 3

8�i 2 Pk.ei / for n D 2;
Z

OK
� � q dx D 0 8� 2 �k. OK/

(2.4.7)

imply q D 0.

For n D 2 the proof is analogous to the proof of Proposition 2.3.4. For n D 3

see [310]. Note that, for n D 2, the sides ei are one-dimensional, so that actually
Qk.ei / D Pk.ei / in (2.4.7).

The RT Œk� spaces just described are based on the idea that a finite element
approximation on the rectangle should use a space of type Qk . This is however
by no means necessary in the present case.

2.4.2 Other Approximations ofH.divIK/ on Rectangles

In the following, we discuss rectangular finite element approximations of
H.divIK/, which are based on Pk polynomial spaces instead of Qk . The original
idea of the construction was introduced in [120] and a suitable modification was
presented in [118]. Here we follow such approaches for n D 2. For the case when
n D 3, we use the definitions given in [18], which are more natural and provide
spaces which are independent of interchange of coordinate directions.

Let us define following [120] and [118], for n D 2; k � 1,

BDMŒk� WD fq j q D p
k
.x; y/C r curl.xkC1y/

C s curl.xykC1/; p
k

2 .Pk/2g: (2.4.8)

These spaces have been carefully defined in order to have

(
divq 2 Pk�1.K/;

q � njei 2 Pk.ei /:
(2.4.9)

It must be remarked that these last conditions are rather unusual for a rectangular
approximation. We have by a simple count,

dim BDMŒk� D .k C 1/.k C 2/C 2 D k2 C 3k C 4 .n D 2/: (2.4.10)

For the choice of degrees of freedom, we have the following proposition.
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Proposition 2.4.2. For k � 1, the following conditions imply q D 0,

Z

ei

q � n pk ds; 8pk 2 Pk.ei /; (2.4.11)

Z

OK
q � p

k�2 dx D 0; 8p
k�2 2 .Pk�2/n: (2.4.12)

Proof. It is sufficient to prove that (2.4.11) implies q 2 .Pk/
2, that is, all terms

introduced through curl vanish. Then, we have that if q 2 .Pk/2, then q
0

� njei D 0

implies q1 D .1 � x2/p1;k�2 and q2 D .1 � y2/p2;k�2, so that (2.4.12) implies
q D 0. Indeed, from (2.4.8) we have

q1 D p1;k.x; y/ � rxkC1 C s.k C 1/xyk

q2 D p2;k.x; y/C r.k C 1/xky � sykC1: (2.4.13)

In order to have q1 D 0 for x D ˙1 and q2 D 0 for y D ˙1, we have that r and s
must vanish, so that q 2 .Pk/2. ut
Remark 2.4.1. Definition (2.4.8) has been designed in order to keep div q in Pk�1
by adding divergence-free functions to .Pk/n while providing terms with a normal
component in Pk.ei / on each side or face ei . ut

We would now like to see what are the relations between BDMŒk�.K/ and
RT Œk�.K/. First, one obviously has BDMŒk� � RT Œk�. However, the space obtained
by restricting the normal component of BDMŒk� to belong to Pk�1.ei / on each
side has no direct relation to RT Œk�1� and is a much smaller space (providing an
approximation of the same accuracy). In order to get a pattern of inclusions, we
define the space

SŒkC1� WD RT Œk� C fcurl xkC2y; curlyxkC2; curl xkC2; curlykC2g: (2.4.14)

This space obviously contains RT Œk� but also contains BDMŒkC1�.
We can also define the space BDFMŒkC1� by restricting the normal component

of q 2 BDMŒkC1� to belong to Pk.ei / instead of PkC1.ei / on each side [119].
It can easily be checked that BDFMŒ1� D RT Œ0�. To make things clear, let us

consider a diagram in Fig. 2.16.
We can then summarize the previous facts in Fig. 2.17 in which arrows indexed

by b represent a reduction in boundary degrees of freedom and arrows indexed by
i represent a reduction in internal degrees of freedom. Space RT Œ0� plays a special
role in this set of spaces. It is the simplest possible space and it is related to the
MAC space [240] that has been extensively used in fluid mechanical computations.
It is clear from Fig. 2.17 that both RT Œk� and BDFMŒkC1� are a generalization of
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k = 3

k = 2

k = 1

k = 0

BDM[k+1] BDFM[k+1] RT[k] S[k+1]

+6

+2

+12

+6

+2

+24

+12

+4

+24

+12

+4

Fig. 2.16 Two dimensional approximations of H.divIK/

S[k+1]
b−−−−−→ RT[k]

i−−−−−→ S[k]
b−−−−−→ RT[k−1]

BDM[k+1]
b−−−−−→ BDFM[k+1]

k−−−−−→ BDM[k]
b−−−−−→ BDFM[k]

i i ii

Fig. 2.17 Relations between elements approximating H.divIK/: operators b represent reduction
in boundary degrees of freedom and i reduction in internal degrees of freedom

this space with the same order of accuracy. One uses RT Œk� whenever one wants
div q 2 Qk and BDFMŒkC1� if div q 2 Pk is sufficient. It is thus worth considering
BDFMŒkC1� in more details. It is easy to check that

BDFMŒkC1� D .PkC1/2nf0; xkC1gnfykC1; 0g: (2.4.15)

This shows that it is natural to move to BDMŒkC1� and get an extra order of accuracy
whenever one is ready to pay for extra boundary nodes.
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2.4.3 Other Approximations ofH.divIK/ on cubes

To make our presentation complete, we now consider the extension of the elements
of the previous section to the three-dimensional case. In [18] a general framework
for designing finite element spaces on tensor product elements has been introduced.
It turns out that this new construction is more natural than the original one. More
precisely, we are considering the space denoted Sk�2 in this article: it turns out that,
while in two-dimensions this space coincides with BDMŒk�, in three-dimensions it
provides a finite element with the same degrees of freedom as the original BDMŒk�

space, but with no arbitrariness in the choice of the shape functions with respect to
the order of the variables.

Following [18], we thus define, for n D 3, k � 1,

BDMŒk� WD .Pk. OK//3 C span.curlfyz.w2.x; z/ � w3.x; y//;

zx.w3.x; y/ � w1.y; z//;

xy.w1.y; z/ � w2.x; z//g/; (2.4.16)

where each wi belongs to Pk . We have

dim BDMŒk�.K/ D .k C 1/.k2 C 5k C 12/=2: (2.4.17)

The following proposition is the natural extension of Proposition 2.4.2 and has
been proved in a more general setting in [18, Theorem 3.6].

Proposition 2.4.3. For k � 1, the following conditions imply q D 0,

Z

ei

q � n pk ds; 8pk 2 Pk.ei /;
Z

OK
q � p

k�2 dx D 0; 8p
k�2 2 .Pk�2/n: (2.4.18)

We could also consider the three-dimensional BDFMŒk� case by restricting the
degrees of the traces on the boundary. We leave this as an exercise for the reader.

2.4.4 Approximations ofH.curlIK/ on Cubes

Surprisingly enough, the construction of edge finite elements on cubes is less studied
than the corresponding spaces on tetrahedrons. Namely, only one finite element
family was basically known to provide a good approximation of problems involving
the space H.curlI˝/ before the recent paper [18]. We shall describe the associated
space, also known as the Nédélec first kind space (see [310]). Given a cube K and
an integer k � 0, we introduce the polynomial space



102 2 Function Spaces and Finite Element Approximations

NŒk� WD Pk;kC1;kC1.K/ 
 PkC1;k;kC1.K/
 PkC1;kC1;k.K/ (2.4.19)

and the following degrees of freedom
Z

e

� � tpk ds; 8pk 2 Pk.e/; 8e (2.4.20)

Z

f

�t� � �
k�1 d�; 8�

k�1 2 RT Œk�1�.f /; 8f (2.4.21)

Z

K

� � q
k�1 dx; 8q

k�1 2 RT Œk�1�.K/: (2.4.22)

The number of degrees of freedom introduced in (2.4.20)–(2.4.22) is 12.k C 1/,
12k.k C 1/, and 3k2.k C 1/, respectively, which sums up to

dim NŒk� D 3.k C 1/.k C 2/2: (2.4.23)

We refer the interested reader to [310] for the proof of unisolvence.

Remark 2.4.2. Sometimes people refer to second kind Nédélec finite elements on
cubes as well. Although such an element has been introduced in [311], it should be
noted that it does not seem to be a good choice for the approximation of problems
arising from electromagnetism. See, for instance, [163] and [86]. ut

A second discretisation of H.curlI˝/ on cubes comes from the general frame-
work of [18]. More precisely, the space Sk.�1/ can be defined as follows:

Sk.�1/.K/ WD .Pk.K//
3 C span.fyz.w2.x; z/ � w3.x; y//;

zx.w3.x; y/ � w1.y; z//;

xy.w1.y; z/ � w2.x; z//g
C grad s.x; y; z//; (2.4.24)

where each wi belongs to Pk and s is a polynomial on K with superlinear degree
at most k C 1. The superlinear degree of a polynomial was defined in [18] as the
ordinary degree ignoring variables which appear linearly. We have

dim Sk.�1/.K/ D .k C 1/.k2 C 5k C 18/=2 (2.4.25)

and a set of degrees of freedom is given by
Z

e

� � tpk ds; 8pk 2 Pk.e/; 8e (2.4.26)

Z

f

�t� � �
k�2 d�; 8�

k�2 2 Pk�2.f /; 8f (2.4.27)

Z

K

� � q
k�4 dx; 8q

k�4 2 PŒk�4�.K/: (2.4.28)
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2.5 Interpolation Operator and Error Estimates

2.5.1 Approximations ofH.divIK/

Let now q be some function of H.divIK/. Using for each of the spaces the degrees
of freedom previously described, it is possible to define an interpolation operator

Kq, provided q is slightly smoother than merely belonging to H.divIK/. Indeed
the degrees of freedom used always involve the moments of q on the faces (or sides)

of an element. However, functions pk 2 Rk.@K/ do not belong to H
1
2 .@K/ and it

is not possible in general to compute expressions like
R
@K
q � n pk ds since q � n is

only defined in H� 1
2 .@K/.

However, it is easy to check that if q belongs to the space

W.K/ WD fq 2 .Ls.K//n j div q 2 L2 2 .˝/g (2.5.1)

(for a fixed s > 2), then such a construction is possible.

Remark 2.5.1. Readers less familiar with functional analysis will normally wonder
why, given a triangle T and a function � belonging to H�1=2.@T /, even if we are
allowed to take

Z

@T

�

by interpreting it as a duality pairing
Z

@T

� WD h�; 'i with ' 	 1;

we cannot take the integral over an edge ` of @T . The typical answer, at this point,
is: “Because the function identically equal to 1 on the whole boundary @T belongs
to H1=2.@T /, while the function that is equal to 1 on the edge ` and 0 on the rest
of @T does not belong to H1=2.@T /”. The above answer is perfectly correct but,
in general, leaves the person who asked the question totally unhappy. Let us see,
therefore, some example which might help in shedding some more light.

Consider, to start with, the open circle

˝ WD f.x; y/j x2 C y2 < .1=e/2g;
(where e D 2; 718 : : : as usual), and the function

u.x; y/ WD ln.j ln.
p
x2 C y2/j/: (2.5.2)

An easy computation (taking the derivatives of u and integrating their square) would
show to everybody that u 2 H1

0 .˝/. As a consequence, its restriction to the upper
quarter

Q WD f.x; y/j x > 0; y > 0; x2 C y2 < .1=e/2g;
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will belong toH1.Q/ and its trace on @Q will belong toH1=2.@Q/. So far so good.
Now we define � as the (anticlockwise) tangential derivative on @Q of the trace
of u. This will be a distribution over @Q, and it will belong to our puzzling space
H�1=2.@Q/. Now we have (finally!) in our hands an element of H�1=2.@Q/ that is
irregular enough to show some of the pathologies of the space. Let us see it.

To start with, the action of the distribution � on a smooth function ' is easily
described by

h�; 'i WD �
Z

@Q

u
@'

@t
(2.5.3)

where t is the anticlockwise tangent direction on @Q. Using the expression of u in
(2.5.2) and taking the derivative, we easily see that in every open interval �a; bŒ �
�0; 1=eŒ of the x axis we have

�.x/ D � 1

x lnx
;

while in every open interval �a; bŒ � �0; 1=eŒ of the y axis we have

�.y/ D 1

y lny

and in every open subset of the curved part of @Q we have � D 0 (being the
tangential derivative of the zero function).

The first (and now rather easy) fact that we can observe is that both

Z 1=e

0

�.x/dx

and

Z 1=e

0

�.y/dy

are diverging, so that neither of them can be properly defined. Hence, so to speak,
forget about taking the integral of an element of H�1=2.@Q/ over a piece of @Q.

One might still wonder, however, why we can take, instead, the integral on the
whole boundary of the product of � times a smooth enough function ' (including the
function identically equal to 1). To do so, we parametrise the part of the boundary
of Q where u does not vanish by a parameter � 2 � � 1=e; 1=eŒ such that

x.�/ D 0; y.�/ D j� j if � � 0;

x.�/ D �; y.�/ D 0 if � � 0:
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Then, taking into account that u 	 0 on the remaining part of @S , (2.5.3) can be
written as

h ; 'i WD
Z 1=e

�1=e
ln.j ln j� jj/ @'

@�
d�: (2.5.4)

Moreover, integrating by parts, we easily see that in every open interval �a; bŒ of the
x axis included in � � 1=e; 1=eŒ and not containing 0 we have

�.x/ D � 1

� ln j� j :

Hence (as we can see), it is still forbidden to compute, for instance, the integral

Z 1=e

0

�.�/ d� D
Z 1=e

0

1

� ln j� j d� D C1:

Let us see, however, what happens if we consider the integral

Z 1=e

�1=e
ln.j ln j� jj/ @'

@�
d�: (2.5.5)

As a first step, we introduce the even and odd parts of '

'even WD '.�/C '.��/
2

'odd WD '.�/ � '.��/
2

:

It is obvious that ' D 'even C 'odd, so that now (2.5.5) becomes

Z 1=e

�1=e
ln.j ln j� jj/ @.'even C 'odd/

@�
d� D

Z 1=e

�1=e
ln.j ln j� jj/ @'even

@�
d� C

Z 1=e

�1=e
ln.j ln j� jj/ @'odd

@�
d�:

Clearly the derivative of 'even is an odd function, and ln.j ln j� jj/ is even. Hence

Z 1=e

�1=e
ln.j ln j� jj/ @'even

@�
d� D 0;

and we only have to deal with

Z 1=e

�1=e
ln.j ln j� jj/ @'odd

@�
d� D 2

Z 1=e

0

ln.j ln j� jj/ @'odd

@�
d�: (2.5.6)
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Now the discussion becomes delicate, as the regularity of ' plays a crucial role.
Roughly speaking, if ' is, say, in H1. � � 1=e; 1=eŒ /, then 'odd.0/ D 0 and
moreover:

j'odd.�/j � C j� j1=2 for � ! 0; with C D jj'oddjjH1. �0;1=eŒ /: (2.5.7)

This allows the integration by parts in (2.5.6), yielding

�
Z 1=e

0

1

� ln j� j 'odd.�/ d�;

that can be easily seen to be convergent due to (2.5.7). On the other hand, if ' is
simply in H1=2. � � 1=e; 1=eŒ /, then 'odd will “vanish at 0” only in a very weak
sense, namely

Z 1=e

0

��1.'odd.�//
2 d� < C1:

That however will be enough to make the integral in (2.5.6) convergent. ut
For the convenience of the reader we consider a few spaces introduced in this

section and, for each of them, we shall define the corresponding operator 
K that
we will always assume to be defined in W.K/ (see (2.5.1)).

Example 2.5.1 (Interpolation operator for Pn;s
k ). 
K : W.K/ ! P

n;s
k is defined by

8
ˆ̂<

ˆ̂:

Z

@K

.q � 
Kq/ � n pk ds D 0; 8pk 2 Rk.@K/;
Z

K

.q � 
Kq/ � wk�2 dx D 0; 8wk�2 2 Nk�2.K/; .k� 2/:
(2.5.8)

ut
Example 2.5.2 (Interpolation operator for BDMŒk�.K/, case n D 2; K D unit
square). We recall that BDMŒK�.K/ D .Pk.k//

2 ˚ curl.xkC1y/ ˚ curl.xykC1/;
.k � 1/: 
K W W.K/ ! BDMŒk�.K/ is defined by

8
ˆ̂<

ˆ̂:

Z

@K

.q � 
Kq/ � n pk d� D 0; 8pk 2 Rk.@K/;
Z

K

.q � 
Kq/ � p
k�2 dx D 0; 8p

k�2 2 .Pk�2.K//2; .k � 2/:

(2.5.9)

ut
Example 2.5.3 (Interpolation operator for RT k.K/DP

n;k
kCxk.K/). 
K W W.K/ !

RT k.K/ is defined by
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8
ˆ̂<

ˆ̂:

Z

@K

.q � 
Kq/ � n pk d� D 0; 8pk 2 Rk.@K/;
Z

K

.q � 
Kq/ � p
k�1 dx D 0; 8p

k�1 2 P k�1.K/:
(2.5.10)

ut
Note that for rectangular elements we used the unit square for K (or the unit cube
for n D 3). For a general K , the spaces and the interpolation operators 
K have
to be modified by means of the contravariant mapping G of (2.1.69). In particular,

Kq D G.
 OK Oq/ where Oq D G�1.q/ and OK is the unit square or the unit cube. As we
already noted in Sect. 2.2.4, everything works in the case of affine elements while
some complications may arise for general elements.

In the following, whenever it may be convenient, we will denote by the symbol
M.K/ anyone of the above approximations of H.divIK/. Since, as we shall see,
the accuracy of these approximations in the L2-norm is particularly relevant, we
shall denote by Mk.K/ anyone of the above spaces such that Pk.K/ � Mk.K/

but P kC1.K/ 6� Mk.K/. Hence, in the following, Mk.K/ might be, for exam-
ple, one the following spaces: BDMk.K/, BDMŒk�.K/, RT k.K/, RT Œk�.K/,
BDFMkC1.K/, BDFMŒkC1�.K/.

Using Lemmas 2.1.7 and 2.1.8 and usual techniques [146] we have immediately
the following result.

Proposition 2.5.1. LetK be an affine element and 
K be the interpolation operator
W.K/ ! Mk.K/. There exists a constant c depending only on k and on the shape
of K , such that, for 1 � m � k C 1, for s D 0 or 1 and for any q in .Hm.K//n,
we have

kq � 
Kqks;K � chm�s
K jqjm;K: (2.5.11)

ut
We now want to analyse the behaviour of the error in H.divIK/. We need to

characterize the space of the divergences of the vectors in Mk.K/. Let

Dk.K/ WD div.Mk.K//: (2.5.12)

For affine elements, we have, for example,

div.BDMk.K// D div.BDMŒk�.K// D Pk�1.K/; (2.5.13)

div.BDFMkC1.K// D div.BDFMŒkC1�.K// D Pk.K/; (2.5.14)

div.RT k.K// D Pk; (2.5.15)

div.RT Œk�.K// D F.Qk.K//; (2.5.16)

where the definition of F is given immediately after (2.1.59) (note that Qk is
not invariant under affine transformations). The following result is of paramount
importance in the study of these approximations.
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Proposition 2.5.2. Let K be an affine element and 
K the interpolation opera-
tor: W.K/ ! Mk.K/. Let moreover �K be the L2-projection on Dk.K/ D
div.Mk.K//. Then we have, for all q 2 W.K/,

div.
Kq/ D �K div q: (2.5.17)

Proof. Since divK q 2 Dk.K/ by definition, we only have to prove that

Z

K

v div.
Kq/ dx D
Z

K

v div q dx; 8v 2 Dk.K/: (2.5.18)

Indeed,

Z

K

v.div 
Kq � div q/ dx D
Z

K

.q � 
Kq/ � grad v dx

�
Z

K

.q � 
Kq/ � n v dx; (2.5.19)

and it is easy to check that, for all the possible choices of 
K , the right-hand side of
(2.5.19) vanishes. ut
Remark 2.5.2. The statement of Proposition 2.5.2 can also be expressed as

W.K/
div�����! L2.K/


K

??y �K

??y

Mk.K/
div�����! Dk.K/

(2.5.20)

and is often called the “commuting diagram property” (see [177, 178]). We shall
comment more on this property in Sect. 2.5.6. ut

From Proposition 2.5.2, using Lemmas 2.1.7 and 2.1.8 and usual techniques, we
easily have the following result.

Proposition 2.5.3. Let K be an affine element and 
K the interpolation operator:
W.K/ ! Mk.K/. There exists a constant c depending only on k and on the shape
of K such that, for 1 � m � �.Mk/, we have

k div.q � 
Kq/k0;K � chmK j divqjm;K; (2.5.21)

where �.Mk/ D k for BDMk.K/ or BDMŒk� and �.Mk/ D k C 1 for the other
choices.

Remark 2.5.3. Proposition 2.5.3 shows that choosing RT Œk�, BDFMkC1 or
BDFMŒkC1� leads to the same accuracy in H.divIK/ as we have in .L2.K//n.
This is not the case for BDMk or BDMŒk� where the accuracy in H.divIK/
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is of one order less than the accuracy in .L2.K//n. However, as we shall see in
Chap. 7, the commuting diagram property is so strong that this drawback can be
circumvented. ut
Remark 2.5.4. For non-affine elements, the situation is more complicated. In
particular, we have now to defineDk.K/ and F.Dk. OK//; where OK is the reference
element and F is defined in (2.1.59). On the other hand, div.Mk.K// will be
F.J�1 divMk.

OK//. Hence it is clear that Proposition 2.5.2 will not hold any more.
Moreover, Proposition 2.5.3 does not hold (at least for RT Œk�-elements; see again
[366]). More comments on these issues will be given in Sect. 2.5.5. ut

2.5.2 Approximation Spaces for H.divI˝/

It is clear that the spaces defined in the previous sections can be used to define
internal approximations of H.divI˝/. The choice of degrees of freedom has
obviously been made in order to ensure continuity of q � n at interfaces of elements.
We can then define, for each choice of Mk.K/, the space

Mk.˝; Th/ WD fq j q 2 H.divI˝/; qjK 2 Mk.K/g: (2.5.22)

In a similar manner we have, in agreement with the notation (2.2.23),

L0.Dk; Th/ WD fv j v 2 L2.˝/; vjK 2 Dk.K/g: (2.5.23)

It is clear that for affine elements

divMk.˝; Th/ � L0.Dk; Th/: (2.5.24)

Moreover, we can now define a global interpolation operator from

W WD H.divI˝/\ Ls.˝/n (2.5.25)

(for a fixed s > 2) into Mk.˝I Th/ by simply setting

˘hqjK D 
K.qjK/: (2.5.26)

By defining Ph WD projection on L0.Dk; Th/ we have therefore the following
commuting diagram:

W
div�����! L2.˝/

˘h

??y Ph

??y

Mk.˝; Th/
div�����! L0.Dk; Th/

(2.5.27)
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This will imply in particular that

divMk.˝I Th/ D L0.Dk; Th/: (2.5.28)

Finally we have from Propositions 2.5.1 and 2.5.3 the following estimates for the
interpolation operator˘h.

Proposition 2.5.4. Let Th be a regular family of decompositions of ˝ and let ˘h

be defined as in (2.5.26). Then there exists a constant c independent of h such that

kq �˘hqk0;˝ � chm jqjm;˝ (2.5.29)

for 1 � m � k C 1. Moreover,

k div.q �˘hq/k0;˝ � chs j div qjs;˝; (2.5.30)

where s � k for BDMk or BDMŒk� and s � k C 1 for the other choices ofMk .

ut

2.5.3 Approximations ofH.curlI˝/

Now, we show how to use the definitions given in the previous subsection in order to
construct conforming approximations of H.curlI˝/. First of all, we need to define
an interpolation operator. We start with the description of the first case we discussed,
namely the tetrahedral space Nk .

We follow the theory developed in [8]; for the error estimate we refer to [248]
and to the improved modification proposed in [85].

The main question for the definition of the interpolant concerns the regularity
assumptions on the function to be interpolated. We have already seen that H1.˝/

regularity does not allow for the existence of a nodal interpolant (since point-wise
values are not defined in H1.˝/) and that H.divI˝/ regularity does not guarantee
the existence of a face interpolant (essentially because it is not possible to evaluate
the integral of q � n on a single face of K if q � n belongs only to H�1=2.@K/). The
case of the edge interpolant is more tricky than the previous ones since, according to
the theory developed in the previous subsection, we have two families of degrees of
freedom associated with the boundary of K: degrees of freedom defined in (2.3.39)
(corresponding to the edges of K) and the ones defined in (2.3.40) (corresponding
to the faces of K). In [8] it has been proved that if � belongs to the following space

X.K/ WD f� j � 2 .Ls.K//3; curl� 2 .Ls.K//3; .� ^ n/j@K 2 .Ls.K//2g
(2.5.31)

(for a fixed s > 2), then the moments defined in Proposition 2.3.5 make sense.
We are then in the position of defining the interpolation operator for the edge

element spaces introduced in the previous subsection.
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Case 2.5.1 (Case n D 2). As it has been explained at the beginning of Sect. 2.5.3
(see also Remark 2.1.5), two dimensional approximations of H.curlI˝/ can be
obtained from corresponding approximations of H.divI˝/ through a rotation by a
right angle.

Case 2.5.2 (Case n D 3, tetrahedral elements).

(i) Nk.K/ WD .Pk.K//
3 ˚ Œx ^ . QPk.K//3�.

�K W X.K/ ! Nk.K/ is defined by
8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Z

e

.� � �K�/ � tpk ds D 0 8pk 2 Pk.e/; 8e
Z

f

.�t� � �t�K�/ � �
k�1 d� D 0 8�

k�1 2 .Pk�1.f //2; 8f
Z

K

.� � �K�/ � p
k�2 dx D 0 8p

k�2 2 .Pk�2.K//3:
(2.5.32)

(ii) NCk.K/ WD .Pk.K//
3.

�K W X.K/ ! NCk.K/ is defined by
8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Z

e

.� � �K�/ � tpk ds D 0 8pk 2 Pk.e/; 8e
Z

f

.�t� � �t�K�/ � �
k�1 d� D 0 8�

k�1 2 RT k�1.f /; 8f
Z

K

.� � �K�/ � p
k�2 dx D 0 8p

k�2 2 RT k�2.K/:

(2.5.33)

Case 2.5.3 (Case n D 3, cubic elements).

(i) NŒk�.K/ WD Pk;kC1;kC1.K/ 
 PkC1;k;kC1.K/ 
 PkC1;kC1;k.K/.
�K W X.K/ ! NŒk�.K/ is defined by

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

Z

e

.� � �K�/ � tpk ds; 8pk 2 Pk.e/; 8e
Z

f

.�t� � �t�K�/ � �
k�1 d�; 8�

k�1 2 RT Œk�1�.f /; 8f
Z

K

.� � �K�/ � q
k�1 dx; 8q

k�1 2 RT Œk�1�.K/:

(2.5.34)

We now conclude this section with error estimates, in analogy to what has been
done for H.divI˝/ at the end of Sect. 2.5. Let us denote by N.K/ any of the
elements presented so far. More precisely, let Nk.K/ denote an approximation of
order k of H.curlI˝/ (i.e., Nk.K/, NCk.K/, or NŒk�.K/).
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An important difference between the error estimates for edge elements with
respect to the ones presented in Sect. 2.5 for face elements is that, in general,
stronger regularity assumptions are required. The following result has been proved
in [85].

Proposition 2.5.5. LetK be an affine element and �K be the interpolation operator
X.K/ ! Nk.K/. Then there exists a constant c depending only on k and on the
shape of K , such that, for 1 < m � k C 1, for any � 2 .Hm.K//3, we have

k� � �K�k0;K � chmK j�jm;K: (2.5.35)

Moreover, for 1=2 < s � 1, we have (p > 2)

k� � �K�k0;K � chsK.j�js;K C k curl�kLp.K//: (2.5.36)

ut
Let us now characterize the space

Ek.K/ WD curl.Nk.K//: (2.5.37)

Taking into account (2.1.92), we have

curl.N / � Pk.K/; (2.5.38)

curl.NC/ � Pk�1.K/; (2.5.39)

curl.NŒk�/ � G.RT Œk�.K//; (2.5.40)

with G defined in (2.1.69). On the other hand, arguing as in Lemma III.5.11 of [223]
it is possible to show that

curl.N / D Pk.K/\ curl.H.curlIK//; (2.5.41)

curl.NC/ D Pk�1.K/\ curl.H.curlIK//; (2.5.42)

curl.NŒk�/ D G.RT Œk�.K/\ curl.H.curlIK//: (2.5.43)

Arguing as in Propositions 2.5.2 and 2.5.3, we can get an estimate for the interpola-
tion error in the H.curlI˝/ norm. Indeed, the following commuting diagram holds
true

X.K/
curl�����! W.K/

�K

??y 
K

??y

Nk.K/
curl�����! Ek.K/

(2.5.44)

from which the next result can be deduced.
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Proposition 2.5.6. Let K be an affine element and �K the interpolation operator:
X.K/ ! Nk.K/. Then there exists a constant c depending only on k and on the
shape of K such that

k curl.� � �K�/k0;K � chmK j curl�jm;K (2.5.45)

for 1 � m � �N .k/, where �N .k/ D k C 1 for N or NŒk� and �N .k/ D k for NC.
ut

2.5.4 Approximation Spaces for H.curlI˝/

Let ˝ be a domain in R
3 (the two-dimensional case can be dealt with according to

Remark 2.1.5).
The spaces introduced in the previous sections can be used to define internal

approximations of H.curlI˝/. The choice of degrees of freedom has been made in
such a way that the continuity of the trace �t is enforced across the inter-element
boundaries, which is the natural condition for being conforming in H.curlI˝/,
according to Proposition 2.1.3.

In analogy to what has been done in Sect. 2.5.2, we can define, for each choice
of Nk.K/, the spaces

Nk.˝; Th/ WD f� j � 2 H.curlI˝/; �jK 2 Nk.K/g (2.5.46)

and

L0.Ek; Th/ WD fq j q 2 .L2.˝//3; qjK 2 Ek.K/g: (2.5.47)

Given " > 0, let us consider the space

X WD H.curlI˝/\ .H1=2C".˝//3; (2.5.48)

so that the global interpolation operator

˙h�jK WD �.�jK/ (2.5.49)

can be defined (see (2.5.31)).
Given the spaceW0 WD curl.X/, then we have the following commuting diagram

X
curl�����! W0

˙h

??y ˘h

??y

Nk.˝; Th/
curl�����! L0.Ek; Th/

(2.5.50)

where˘h is the face interpolant defined in (2.5.26).
The final error estimates are summarized in the following result.
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Proposition 2.5.7. Let Th be a regular family of decompositions of ˝ and let ˙h

be defined as in (2.5.49). Then there exists a constant c independent of h such that,
for 1 < m � k C 1,

k� �˙h�k0;˝ � chmj�jm;˝: (2.5.51)

Moreover, for 1=2 < s � 1 and p > 2,

k� �˙h�k0;˝ � chs
�
j�js;˝ C k curl�kLp.˝/

�
: (2.5.52)

Finally,

k curl.� �˙h�/k0;˝ � chtk curl�kt;˝ ; (2.5.53)

where t � k C 1 for Nk or NŒk� and t � k for NCk . ut

2.5.5 Quadrilateral and Hexahedral Approximation
of Vector-Valued Functions inH.divI˝/
andH.curlI˝/

The results of Sect. 2.2.4 extend to vector valued functions. We refer the interested
reader to [21], where necessary and sufficient conditions have been presented for
optimal order approximations of functions in H.divI˝/ in two dimensions. The
general situation is more complicated and only partial results exists so far. The most
general result can be found in [19] where sufficient conditions are investigated and
sharper results are shown in [191] for particular three-dimensional situations.

The theory of [21] applies to the approximation by means of vector-valued
discrete functions defined on a reference square element OK and mapped to the actual
quadrilateral element K via the Piola transformation (2.1.69).

Given a smooth function q W ˝ ! R
2, we say that a finite element space family

fXhg is optimally convergent in L2.˝/ if

inf
ph2Xh

kq � phk0;˝ D O.hkC1/; (2.5.54)

where k refers to the polynomial degree of the reference finite element space.
Similarly, the finite element space family fXhg is optimally convergent in the
H.divI˝/ semi-norm if

inf
ph2Xh

k divh.q � ph/k0;˝ D O.hkC1/; (2.5.55)

where divh is the divergence operator evaluated element by element.
Let eRT Œk�. OK/ be the subspace of co-dimension one of RT Œk�. OK/, where the

two highest order fields . OxkC1 Oyk; 0/ and .0; Oxk OykC1/ are replaced by the single
field . OxkC1 Oyk;� Oxk OykC1/. Then, for shape-regular families of quadrilateral meshes,
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condition (2.5.54) is valid if and only if the reference space contains eRT Œk�. OK/.
Moreover, if the reference space contains eRT Œk�. OK/, then the following estimate
holds true:

inf
ph2Xh

kq � phk0;˝ � chkC1jqjkC1;˝: (2.5.56)

Finally, let QQk. OK/ be the subspace of co-dimension one of Qk. OK/ obtained by
eliminating the higher order term Oxk Oyk . Then, condition (2.5.55) holds true if and
only if the divergence of the reference space contains QQkC1. OK/. In this case the
following estimate holds true:

inf
ph2Xh

k div.q � ph/k0;˝ � chkC1j divqjkC1;˝: (2.5.57)

Remark 2.5.5. The reported results have dramatic consequences for the finite
elements presented in Sect. 2.4. In particular, it turns out that none of the presented
finite element families achieve optimal convergence in H.divI˝/ on general
quadrilateral meshes. Actually, RT Œk� is optimal in L2.˝/ (since, of course,

RT Œk�. OK/ contains eRT Œk�. OK/), but not in H.divI˝/ (in particular, there is no
convergence of the divergence for k D 0); while BDMŒk� and BDFMŒk� are
suboptimal both in L2.˝/ and H.divI˝/. ut

A possible cure to the pathologies outlined in Remark 2.5.5 has been presented
in [21] where the family of spaces ABF is introduced. The basic idea is to
add H.div/-conforming bubbles to the RT spaces so that optimal convergence
properties can be achieved.

The results of this section, as it has been already observed, apply to finite element
spaces which are defined on the reference element and mapped to the actual element
by means of standard transformations. The suboptimal approximation orders have
been observed in practical computations (see [20–22, 91]).

However, other finite element definitions are possible for which the (negative)
results of this section might not apply. An example of such definitions is the non-
conforming quadrilateral element presented in [330] which is constructed locally
on the physical element or the reduced integration technique (interpreted as a local
projection technique) presented in [94], where optimal convergence in H.divI˝/
for the RT Œk� family is recovered.

2.5.6 Discrete Exact Sequences

We have introduced in Sect. 2.1.4 the exact sequence (2.1.104). We now show
how this translates to some of the finite element approximations introduced above.
Let us make a particular choice of finite elements approximating the functional
spaces involved with (2.1.104). We consider a simplicial decomposition of a
simply connected domain ˝ in R

3 and use the following finite elements: we take
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L1kC1 (i.e., standard continuous piecewise polynomials of degree k C 1) for the
approximation of H1.˝/, first kind Nédélec elements Nk for the approximation of
H.curlI˝/, Raviart–Thomas elements RT k for the approximation of H.divI˝/,
and discontinuous elements L0k for the approximation of L2.˝/. Moreover, we
consider the three sets of interpolation operators onto these spaces rh, ˙h, ˘h,
respectively, and the L2 projection Ph. With these particular choices, de Rham
complex reads as follows:

C1.˝/
grad�����! .C1.˝//3

curl�����! .C1.˝//3 div�����! C1.˝/

rh

??y ˙h

??y ˘h

??y Ph

??y

L1kC1
grad�����! Nk

curl�����! RT k

div�����! L0k

(2.5.58)

Diagram (2.5.58) has to be understood in the sense that the two lines are exact and
the entire diagram commutes. Thus, for instance, we have that grad rhv D ˙h grad v
or˘h curl� D curl˙h�. Some of these properties have been already recalled in this
chapter (see, in particular, (2.5.27) and (2.5.50)) when analysing the finite element
spaces. We refer the interested reader to [18,33] where the general results are stated
and where it has been shown that several other finite element choices are possible
for the diagram to commute. We could indeed consider, for example, instead of
(2.5.58),

C1.˝/
grad�����! .C1.˝//3

curl�����! .C1.˝//3 div�����! C1.˝/

rh

??y ˙h

??y ˘h

??y Ph

??y

L1kC2
grad�����! NCkC1

curl�����! BDMkC1
div�����! L0k

(2.5.59)

Remark 2.5.6. The information contained in Sect. 2.1.4 and in this section are by
far not exhaustive of the connections between exterior calculus and finite element
analysis. This active research area, not only proves useful for the analysis and the
understanding of existing finite elements, but is also of fundamental importance
for the design of new schemes. The reader who needs an introduction into this
fascinating field is referred to the seminal papers [33, 34]. A more recent and
succinct overview of finite element spaces constructed in the language of differential
forms can be found in [12].

2.6 Explicit Basis Functions for H.divIK/ andH.curlIK/
on Triangles and Tetrahedra

Although it is obviously possible to make explicit the previously defined spaces
on a reference element and to transfer them on an arbitrary element by the Piola
transformation (2.1.69) or (2.1.82), it is worth mentioning that there exist, on
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simplicial elements, general formulas using barycentric coordinates which are
therefore totally general. We shall first introduce some notation.

• In the two-dimensional case, xi ; xj ; xk are the three vertices of a triangle and
�i ; �j ; �k the associated barycentric coordinates.

• In the three-dimensional case, xi ; xj ; xk; xl are the four vertices of a tetrahedron
and �i ; �j ; �k; �l the associated barycentric coordinates.

• We shall denote by t ij D xj � xi the edge connecting xi and xj and similarly
for other pairs of indices. We shall write lij the length of this vector.

• In the three-dimensional case, we denote fijk the face of the tetrahedron defined
by the vertices xi , xj , xk and similarly for other indices.

• The height of the triangle from xk to the opposite edge t ij will be denoted by hk .
• The height of the tetrahedron from xl to the opposite face fijk will be denoted by
hl .

• In a triangle, the outward normal to an edge tij is denoted by nij. In a tetrahedron
the outward normal to a face fijk is denoted by nijk.

The gradient of the barycentric coordinates is related to the normals. In the two-
dimensional case we have

grad�k D � 1

hk
nij (2.6.1)

and the similar three-dimensional formula is

grad�l D � 1

hl
nijk: (2.6.2)

When building basis functions, we shall distinguish between those associated
with edge or face degrees of freedom and ‘bubble’ basis functions associated to
degrees of freedom internal to K . We shall make explicit the lower order cases.

2.6.1 Basis Functions forH.divIK/: The Two-Dimensional
Case

A basis for BDM1.K/ (6 degrees of freedom). Let us define for an edge
t ij; xkbeing the opposite vertex,

�i;ij WD 1

hk
t ki �i (2.6.3)

and

�j;ij WD 1

hk
t kj �j : (2.6.4)
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Let nij be the normal to t ij. We have

�i;ij � nij D �i (2.6.5)

�j;ij � nij D �j : (2.6.6)

Using all possible indices, we get six such functions, two for each edge. From (2.6.5)
and (2.6.6), it is clear that we have thus obtained a basis for BDM1.K/. ut
A basis for RT 0.K/ (3 degrees of freedom). Summing (2.6.5) and (2.6.6), we
obtain

�i;ij � nij C �j;ij � nij D 1: (2.6.7)

Defining

�ij WD �i;ij C �j;ij (2.6.8)

we therefore have a basis function for RT 0.K/, associated with the edge t ij. It is
easy to see that we have

�ij D 1

hk
.x � xk/: (2.6.9)

which is a more standard way of writing this basis. ut
A basis for BDM2.K/ (12 degrees of freedom). To make this construction, we
need to increase the order of polynomials on the edges. We can indeed define on
each edge,

tm;ij WD .t ki C t kj/=2 (2.6.10)

and

�m;ij WD 1

hk
tm;ij �i�j : (2.6.11)

To get BDM2.K/, we add these three functions to those previously obtained in
(2.6.3) and (2.6.4). This yields 3 degrees of freedom per edge.

To complete the construction, we also need to consider ‘bubble’ functions in the
sense of H.divIK/. This means that their normal component must vanish on @K .
They can be built in an easy way from the quadratic functions

bij WD t ij�i�j : (2.6.12)

We have three such expressions, one associated with each edge. With the previously
defined 9, we obtain a basis for BDFM2.K/. ut
A basis for BDFM1.K/ (9 degrees of freedom) and RT 1.K/ (8 degrees of
freedom). A basis for BDFM1.K/ is readily obtained by suppressing the function
defined in (2.6.10) from the previous construction. To get a basis for RT 1.K/

we have to suppress a combination of the bubbles. This is allowed because there
exists such a combination which is divergence-free and which, in a sense, does not
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contribute. However, this construction shows that, in a way, the slightly richer space
BDFM1.K/ is respecting better the symmetries of the triangle. ut
A basis for BDFM3.K/ (20 degrees of freedom). We follow the same lines. We
can build 4 degrees of freedom on each edge, using for example (2.6.3) and (2.6.4),
and

�1
3 ;ij

D 1

hk

	
1

3
t ki C 2

3
t kj



; (2.6.13)

�2
3 ;ij

D 1

hk

	
2

3
t ki C 1

3
t kj



: (2.6.14)

Bubbles can be generated from (2.6.12) using the following expression

b˛1;˛2;˛3;ij WD t ij�
˛i
i �

˛j
j �

˛k
k ; .˛i C ˛j C ˛k/ D 3: (2.6.15)

We remark that b1;2;0;ij C b2;1;0;ij D bij so that we still have the bubbles of
BDM1.K/. Moreover, we note that the three functions of the form b1;1;1;ij are
not linearly independent as we have

t ij C t jk C t ki D 0: (2.6.16)

We should then select two linear combinations of these three functions to get a basis.
ut

A basis for BDFM2.K/ (17 degrees of freedom) and RT 2.K/ (15 degrees of
freedom). To obtain BDFM2.K/, the easiest way is to consider on the edges the
basis functions for BDM2.K/ and the eight bubbles of BDM3.K/. For RT 2.K/,
we must again eliminate the divergence-free combination of bubbles. ut

2.6.2 Basis Functions forH.divIK/: The Three-Dimensional
Case

We can now consider the three-dimensional case.

A basis for BDM1.K/ (12 degrees of freedom) and RT 0.K/ (4 degrees of
freedom). On the face fijk we have three basis functions

�i;ijk WD 1

hl
t li �i (2.6.17)

�j;ijk WD 1

hl
t lj �j (2.6.18)

�k;ijk WD 1

hl
t lk �k: (2.6.19)
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Considering all four faces, we have obtained a basis for BDM1.K/. It is interesting
to note that it employs the same edge-based basis functions as in the two-
dimensional case. The sum

�ijk WD �i;ijk C �j;ijk C �k;ijk D 1

hl
.x � xl/ (2.6.20)

is a basis function for RT 0.K/. ut
A basis for BDFM1.K/ (18 degrees of freedom) and RT 1.K/ (4 degrees of
freedom). As in the two-dimensional case, we can associate a ‘bubble’, function
to each edge, using exactly the same formula (2.6.12) as in the two-dimensional
case. We now have six such bubbles which we can use to build BDFM1.K/ by
adding them to the basis of BDM1.K/. There exist three linear combinations of
these bubbles which are divergence free and which can be eliminated to obtain
RT 1.K/. ut

The reader should have now understood the mechanism and be able to move to
higher degrees.

2.6.3 Basis Functions forH.curlIK/: The Two-Dimensional
Case

As we have noted previously, in the two-dimensional case, the space H.curlIK/ is
essentially the same as H.divIK/. A basis for the discrete spaces can readily be
obtained by a rotation of the vectors. However, we can write the basic construction
in a slightly different way that will be more suitable for the extension to the three-
dimensional case. Instead of (2.6.3) and (2.6.4), let us define for edge t ij

 i;ij WD lij �i grad�j (2.6.21)

and

 j;ij WD lij �j grad�i : (2.6.22)

Given that grad�i is a vector orthogonal to t kj of length 1=hi it is easy to check that
those definitions correspond exactly to what we obtain when replacing in (2.6.3)
and (2.6.4) the vectors t ki and t kj by their orthogonal. It is also easy to see that the
tangential components of  i;ij and  j;ij along t ij are respectively �i and ��j .

2.6.4 Basis Functions forH.curlIK/: The Three-Dimensional
Case

A basis forNC1.K/ (12 degrees of freedom) and N0.K/ (6 degrees of freedom).
In order to define the lowest degree spaces, we define 12 basis functions associated
to edges. The interesting fact is that we can still use on any edge t ij the expressions
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(2.6.21) and (2.6.22). On the other edges, the vectors obtained in this way are either
zero because, for example, �i is zero or orthogonal to the edge. It is thus clear that
we have obtained a basis for NC1.K/. Summing the two expressions (up to the
orientation), we get the basis for N0.K/

 ij WD lij .�j grad�i � �i grad�j /: (2.6.23)

ut
We can move to higher degree elements by using similar constructions.

H.curlIK/-Bubbles. We shall be interested in the H.curlIK/-bubbles which
correspond to the internal degrees of freedom of Nk.K/ and NCk.K/. We recall
that from (2.3.46) and (2.3.50) these degrees of freedom are associated respectively
to .Pk�2/3 and to RT k�2.K/ D .Pk�2/3 C xPk�2. We thus suppose that k � 2

and we define on a tetrahedron, for the four faces defined by the choice of three
barycentric coordinates �i ; �j ; �k ,

˚ijk D Pk�2.fijk/ �i�j �k nijk: (2.6.24)

For k D 2 this defines four functions which are associated with the four faces and
which are the bubbles of NCkC1.K/. To obtain the bubbles of Nk.K/ we must
suppress the gradient of the standard bubble �1�2�3�4 which is

�1�2�3 grad�4 C �1�2�4 grad�3 C �1�3�4 grad�2 C �2�3�4 grad�1 (2.6.25)

which is a combination of the four bubbles of (2.6.24) by (2.6.2).
For k � 3 we must add to the functions defined by (2.6.24) standard bubbles of

the form

Pk�3.K/�1�2�3�4 D Pk�3.K/B4.K/; (2.6.26)

which vanish totally on the boundary of K . This defines a basis for the bubbles
of NCk.K/ and to obtain Nk.K/ we need to remove the gradients of the standard
bubbles. For k D 3, for example, we must remove the gradients of the four bubbles
Pk.K/B4.K/.

2.7 Concluding Remarks

This chapter is evidently not a complete presentation of finite element approxima-
tion methods. It cannot be, unless it becomes a book by itself. Our aim was therefore
to present examples of the most classical cases and to consider a construction for the
less standard caseH.divI˝/ andH.curlI˝/. On the other hand, approximations of
elasticity problems will also require special spaces. They will be described in due
time. We however believe that the present chapter will then provide a sound basis
for these developments.



Chapter 3
Algebraic Aspects of Saddle Point Problems

The examples of Chap. 1 clearly showed that several formulations typically lead to
linear systems of the general form

 
A BT

B 0

! 
x

y

!
D
 

f

g

!
; (3.0.1)

where A and B are linear differential operators from some functional space to
another (which often is its dual space). The general abstract theory for systems of the
type (3.0.1) in Hilbert spaces will be given in Chap. 4. As we shall see, it involves
from time to time non-trivial results in functional analysis that can be difficult to
understand for readers with a weaker mathematical background.

The purpose of this chapter is to present first the basic results of the general
abstract theory in the much simpler context of finite dimensional spaces, where we
can avoid all the subtleties of functional analysis. We shall therefore study systems
of the form (3.0.1) where A and B are respectively an n 
 n matrix and an m 
 n
matrix, while x and f are n 
 1 vectors and y and g are m 
 1 vectors.

It is clear that the present finite dimensional case will usually be reached after the
discretisation of more general systems in abstract Hilbert spaces, so that we cannot
be afraid of wasting our time in analysing it in detail. Moreover, many results that
will be proved in the next chapter can be seen, formally, as simple extensions of the
present algebraic version (although the proofs in the infinite dimensional case are
often more tricky).

Hence, in a sense, the present chapter is dedicated to the readers that have a
weaker background in mathematics, and in particular in functional analysis. We
hope that, for them, a good grasp of the finite dimensional cases will be sufficient to
understand the results (if not the proofs) that will be discussed in the next chapter.

In the study of linear systems of the type (3.0.1), our first need will be to express
in proper form the conditions for their solvability in terms of the properties of the
matrices A and B . By solvability we mean that, for every right-hand side f and g,

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 3,
© Springer-Verlag Berlin Heidelberg 2013
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the system (3.0.1) has a unique solution. It is well known that this property holds if
and only if the .nCm/ 
 .nCm/ matrix

M D
 
A BT

B 0

!
(3.0.2)

is non-singular, i.e. if and only if its determinant is different from zero. We shall
therefore give necessary and sufficient conditions on the sub-matrices A and B for
producing a non-singularM .

In order to have a good numerical method, however, solvability is not enough.
An additional property that we also require is stability. Let us see in more detail what
we mean by that. For a solvable finite-dimensional linear system, we always have
continuous dependence of the solution upon the data. This means that there exists a
constant c such that for every set of vectors x; y; f; g satisfying (3.0.1) we have

kxk C kyk � c.kfk C kgk/: (3.0.3)

In turn, this property implies solvability. Indeed, if we assume that (3.0.3) holds for
every set of vectors x; y; f; g satisfying (3.0.1), then, whenever f and g are both zero,
x and y must also be equal to zero. This is another way of saying that the homoge-
neous system has only the trivial solution, which implies that the determinant of the
matrix (3.0.2) is different from zero, and hence the system is solvable.

However, formula (3.0.3) deserves another very important comment. Actually,
we did not specify the norms adopted for x; y; f; g. We had the right to do so since,
in finite dimension, all norms are equivalent. Hence, the change of one norm with
another would only result in a change of the numerical value of the constant c, but it
would not change the basic fact that such a constant exists. However, in dealing with
linear systems resulting from the discretisation of a partial differential equation, we
face a slightly different situation. In fact, if we want to analyse the behaviour of a
given method when the mesh-size becomes smaller and smaller, we must ideally
consider a sequence of linear systems whose dimension increases and approaches
infinity when the mesh-size tends to zero. As it is well known (and it can also be
easily verified), the constants involved in the equivalence of different norms depend
on the dimension of the space. For instance, in R

n, the two norms

kxk1 WD
nX

iD1
jxi j and kxk2 WD

	 nX

iD1
jxi j2


1=2
(3.0.4)

are indeed equivalent, in the sense that there exist two positive constants c1 and c2
such that

c1kxk2 � kxk1 � c2kxk2 (3.0.5)

for all x in R
n. However, it can be rather easily checked that the best constants one

can choose in (3.0.5) are

kxk2 � kxk1 � p
nkxk2I (3.0.6)
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in particular, the first inequality becomes an equality, for instance, when x1 is equal
to 1 and all the other xi ’s are zero, while the second inequality becomes an equality,
for instance, when all the xi are equal to 1.

When considering a discretisation method for a boundary value problem, which
gives rise to a sequence of algebraic problems with increasing dimension, we have
to take into account that n becomes unbounded. It is then most natural to ask the
following question. Is it possible, for a given choice of the sequence of matrices A
and B and norms kxk; kyk; kfk, and kgk, to find a constant c independent of the
mesh-size that makes (3.0.3) hold true for all mesh-sizes? If this is true (with some
additional relations between the matrices and the norms that will be made precise
later on, in Sect. 3.4), we consider the method to be stable. We point out that, in this
context, stability is a property of methods and not a property of linear systems.

However, in this preliminary chapter, we will not deal directly with boundary
value problems and related methods. We will consider generic sequences of matrices
A and B with the corresponding sequences of norms; then we will require A and
B to satisfy suitable properties expressed in terms of constants (say, ˛ and ˇ) that
will be assumed to be the same constants for all the sequence; finally, we will show
that this gives rise to a constant c in (3.0.3) that depends only on ˛ and ˇ, and is
therefore valid for all the linear systems of the sequence.

To read the present chapter, only a rudimentary background in linear algebra will
be needed, but we hope that the basic ideas will still come out clear enough. The
chapter is therefore mostly recommended for readers with a weak mathematical
background. Some proofs, in particular in the last two sections, although simple,
are somewhat lengthy. The readers with less mathematical inclination might skip
them. On the other hand, the chapter could be considered as useless for people with
a stronger mathematical formation. Indeed, essentially everything will be repeated,
in the more general context of Hilbert spaces, in the next chapter. However, the
examples and the counterexamples of the last two Sections might still have some
interest, and at least a glance at them is recommended for everybody.

We summarise the outline of the chapter: we first (in Sect. 3.1) recall some
elementary facts in linear algebra. The main goal for that is to fix the notation,
and to refresh the memory for people with a low mathematical background. Then,
in Sect. 3.2 we consider the unique solvability of problems of the type (3.0.1), and
we describe necessary and sufficient conditions in terms of properties of matrices A
and B . At this level, all norms are considered to be equivalent. Next, in Sect. 3.3 we
extend part of the theory to matrices of the type

M D
 
A BT

B C

!
; (3.0.7)

which is indeed very generic. However, we shall play the game that (3.0.7) is, in
some sense, a perturbation of (3.0.2). Roughly speaking, we shall assume that A
and B are such that, for C D 0, the matrix (3.0.7) is non-singular, and we look for
conditions on C that would preserve this non-singularity. In that section as well, all
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norms will be considered as equivalent. In the following Sect. 3.4, we start dealing
with big matrices, and for this we introduce different norms, together with the
problem of stability of a sequence of problems for a given choice of the sequences of
norms. As announced, our conditions will involve stability constants (to be precise:
Ma,Mb, ˛, and ˇ, that will be defined later on), depending on properties of matrices
A and B , respectively. The dependence of the global stability constants upon Ma,
Mb, ˛, and ˇ (and in particular upon ˛ and ˇ) will be tracked down with care,
and some simple examples will show the optimality of our results. Some additional
results are presented in Sect. 3.5. Finally, the stability conditions for the perturbed
problems of the type (3.0.7) will be considered in Sect. 3.6.

3.1 Notation, and Basic Results in Linear Algebra

3.1.1 Basic Definitions

Let r and s be positive integers, and M W Rr ! R
s an s 
 r real matrix. We denote

by MT the transposed matrix of M , given by

MT
i;j D Mj;i i D 1; : : : ; r; j D 1; : : : ; s: (3.1.1)

It is clear that MT is an r 
 s matrix, and therefore MT W R
s ! R

r . It is also
immediate to check that

.MT /T 	 M: (3.1.2)

If we have two matricesM W Rr ! R
s and N W Rk ! R

r , the product MN of the
two matrices will be the usual rows times columns one, namely

.M N/m;n D
rX

iD1
Mm;iNi;n 1 � m � s; 1 � n � k: (3.1.3)

Vectors in R
n will be considered as columns, that is as n 
 1 matrices. It is

elementary to check that, in the above assumptions onN and M , we have

.M N/T D NTMT (3.1.4)

and (since the transposed of a 1 
 1 matrix is the matrix itself)

yTM x 	 xTMT y 8x 2 R
r ; 8y 2 R

s : (3.1.5)

Throughout this section, which is very elementary, we shall denote by 0r and 0s
the zero vectors in R

r and in R
s respectively. This notation will be abandoned in

the sequel, with only a few exceptions. Throughout the first three sections of this
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chapter, unless it is otherwise explicitly specified, the norm in R
r , for every integer

r � 1, will be the usual Euclidean norm defined by

kxk2 WD
rX

iD1
x2i 	 xT x: (3.1.6)

We define the kernel and the Range (or image) of M andMT as follows:

.i/ KerM WD fx 2 R
r such that M x D 0sg;

.ii/ KerMT WD fy 2 R
s such that MT y D 0rg;

.iii/ ImM WD fy 2 R
s such that M x D y for some x 2 R

rg;
.iv/ ImMT WD fx 2 R

r such that MT y D x for some y 2 R
sg:

(3.1.7)

3.1.2 Subspaces

As usual, we shall say that Z is a subspace of Rr if Z � R
r and Z is itself a linear

space.

Remark 3.1.1. We recall that a subsetZ of a linear space Rr is itself a linear space
(and hence is a subspace) if, for any two elements z1 and z2 in Z, their sum z1 C z2
also belongs to Z and moreover, for any z 2 Z and for any real number �, the
product �z also belongs to Z. ut
Remark 3.1.2. According to the previous definition, when, for instance, r D 3,
any subspace Z of R3 has to be made of triplets. However, it is quite common to
consider, say, R2 as a subspace of R3 by considering .x1; x2/T as identified with the
triplet .x1; x2; 0/T . This, strictly speaking, is not 100% correct. However, on some
occasion, it might turn out to be convenient, as we are going to see immediately in
the Example 3.1.1 here below. Therefore we will accept it sometimes, while being
very careful with what we do. ut

If Z is a linear subspace of Rr , the image of the restriction of M to Z will be
denoted by M.Z/. Hence,

M.Z/ WD fy 2 R
s such that M z D y for some z 2 Zg: (3.1.8)

It is clear that M.Rr / 	 ImM .

Example 3.1.1. Assume that r D 5, s D 2, and consider the operatorM W R5 ! R
2

defined by

M D
 
1 0 0 0 0

0 1 0 0 0

!
: (3.1.9)
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If Z is the subspace Z WD fx3 D x4 D x5 D 0g (that is the space of quintuples of
the type .x1; x2; 0; 0; 0/T ), the temptation to identify the restriction of M to Z with
the matrix

MZ D
 
1 0

0 1

!
(3.1.10)

is actually quite strong. If, instead of a 2 
 5 matrix, we had a 2 
 500 matrix, then
the temptation would be much stronger (as well as the economy in using the form
(3.1.10)). ut
Definition 3.1.1. Let M be an s 
 r matrix. Let Z be a subspace of Rr and S a
subspace of Rs . We say that M restricted to Z is injective if

8z1 2 Z; 8z2 2 Z we have: fM z1 D M z2g ) fz1 D z2g: (3.1.11)

We say that M fromZ to S is surjective if

8w 2 S 9 z 2 Z such that M z D w: (3.1.12)

It is easy to see that, if for instance Z 	 R
r , then M is injective if and only if

KerM D 0r . More generally, M restricted to Z is injective if and only if KerM \
Z D 0r . On the other hand, if S 	 R

s , thenM is surjective if and only if M.Z/ D
R
s . More generally,M is surjective from Z to S if and only if M.Z/ 
 S .
From now on, if we say that an s 
 r matrixM is injective or surjective, without

specifying the subspaces Z and S , we intend that KerM D 0r or ImM D R
s ,

respectively. In other words, by default we intend that Z D R
r and S D R

s .
The dimension of a linear space will be denoted by dim. Hence, for instance,

dim.Rr / D r , and if Z is a subspace � R
r , then dim.Z/ � r . Moreover,

Z subspace of Rr and dim.Z/ D r ) Z 	 R
r : (3.1.13)

The rank of M is defined as the dimension of its range:

rank.M/ WD dim.ImM/: (3.1.14)

Example 3.1.2. In order to become familiar with the notation, it will be convenient
to consider an elementary example, made by the family of matrices

M˛ D

0

BB@

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ˛

1

CCA ; (3.1.15)

where ˛ is a real parameter. We have clearly r D 5 and s D 3. For our present
purposes, only the cases ˛ D 0 and ˛ D 1 will be relevant. The transposed matrix
will be
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MT
˛ D

0

BBBBBBB@

0 0 0

0 0 0

1 0 0

0 1 0

0 0 ˛

1

CCCCCCCA

: (3.1.16)

It is immediate to check that for ˛ D 0 we have:

KerM0 D fx 2 R
5 s. t. x3 D x4 D 0g dim.KerM0/ D 3;

KerMT
0 D fy 2 R

3 s. t. y1 D y2 D 0g dim.KerMT
0 / D 1;

ImM0 D fy 2 R
3 s. t. y3 D 0g dim.ImM0/ D 2;

ImMT
0 D fx 2 R

5 s. t. x1 D x2 D x5 D 0g dim.ImMT
0 / D 2;

(3.1.17)

while for ˛ D 1, instead, we have

KerM1 D fx 2 R
5 s. t. x3 D x4 D x5 D 0g dim.KerM1/ D 2;

KerMT
1 D 03 dim.KerMT

1 / D 0;

ImM1 D R
3 dim.ImM1/ D 3;

ImMT
1 D fx 2 R

5 s. t. x1 D x2 D 0g dim.ImMT
1 / D 3:

(3.1.18)

In particular, M1 is surjective from R
5 to R

3, and MT
1 is injective from R

3 to R
5.

The same properties are not true for M0 and MT
0 respectively. These simple cases

might also be useful to check several other properties that will be discussed in the
rest of the section. ut

3.1.3 Orthogonal Subspaces

For a given linear subspace Z of Rr , we define its orthogonal subspace Z? as
follows

Z? WD fx 2 R
r such that xT z D 08z 2 Zg: (3.1.19)

It is not difficult (and quite intuitive) to check that

dim .Z?/C dim .Z/ D r; (3.1.20)

and each x of Rr can be split in a unique way in its two components xZ 2 Z and x?

x D xZ C x?: (3.1.21)
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We also have that

Z \Z? D 0r ; (3.1.22)

that

.Z?/? 	 Z (3.1.23)

and that for two subspaces Z1 and Z2

Z1 � Z2 ) Z?
2 � Z?

1 : (3.1.24)

Example 3.1.3. For instance, with the notation of the previous example, if Z D
KerM˛, we have in R

5: for ˛ D 0

.KerM0/
? D fx 2 R

5 such that x1 D x2 D x5 D 0g
dim..KerM0/

?/ D 2;
(3.1.25)

and for ˛ D 1

.KerM1/
? D fx 2 R

5 such that x1 D x2 D 0g
dim..KerM1/

?/ D 3:
(3.1.26)

Always referring to the previous example, we have instead, in R
3: for ˛ D 0

.KerMT
0 /

? D fy 2 R
3 such that y3 D 0g dim..KerMT

0 /
?/ D 2; (3.1.27)

and for ˛ D 1

.KerMT
1 /

? D f the whole R3g dim..KerMT
1 /

?/ D 3: (3.1.28)

ut
Remark 3.1.3. Note that the definition of the orthogonal subspace relies on the
choice of the whole space. For instance, as we have already seen in Remark 3.1.2,
it is quite common to accept that R

r � R
rC1 by identifying .x1; : : : ; xr / with

.x1; : : : ; xr ; 0/. In this case, for Z � R
r we could considerZ both to be a subspace

of Rr and a subspace of RrC1. Clearly, its orthogonal in R
r and its orthogonal in

R
rC1 will be different. We will try to be careful whenever this type of confusion

can occur. ut

3.1.4 Orthogonal Projections

The notion of orthogonal projection on a subspace will play an important role in the
next Section. We recall it here, briefly.
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For a given subspace Z, say, of R
r , we introduce the orthogonal projection

�Z : Rr ! Z as follows. For a given x 2 R
r , its orthogonal projection �Zx is the

minimiser in Z of the quantity kx � zk. Hence, we have

�Zx 2 Z and kx � �Zxk � kx � zk; 8z 2 Z: (3.1.29)

An alternative and equivalent way of writing (3.1.29) is

�Zx WD arg min
z2Z kz � xk: (3.1.30)

It is easy to see that such a minimiser exists, is unique and is the unique solution of

�Zx 2 Z and zT �Zx D zT x; 8z 2 Z: (3.1.31)

An obvious consequence of (3.1.31) is

fx 2 Z?g , f�Zx D 0rg: (3.1.32)

Example 3.1.4. Always referring to the cases of Example 3.1.2, if, for instance,
Z D KerM0 and x D .1; 2; 3; 4; 5/T , then �Zx D .1; 2; 0; 0; 5/T . ut

It will also be convenient to associate to a subspace Z � R
r the extension

operator EZ , defined as the linear operator that to every z 2 Z associates the
same z, thought as a member of Rr . At first sight, this appears to be obnoxiously
redundant. However, as we have seen in Remark 3.1.2, it is quite common, for
instance, to identifyZ D R

2 as the subspace of R3 made by the triplets .x1; x2; 0/T .
Note that, if we consider

Z WD f.x1; x2; 0/T g; (3.1.33)

then EZ is just the identity matrix. If however we consider

Z WD f.x1; x2/T g; (3.1.34)

then the operatorEZ would correspond to the matrix

EZ D

0

BB@

1 0

0 1

0 0

1

CCA ; (3.1.35)

and its transposed operator would be

ET
Z D

 
1 0 0

0 1 0

!
	 �Z: (3.1.36)
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Considering now the general case, we note that if we follow a notation of the
type of (3.1.34), then the equality

ET
Z 	 �Z; (3.1.37)

in fact, holds for a generalZ. Indeed, for every z 2 Z, we can consider the element
EZz defined as z C 0Z? and for every y 2 R

r , we can split it into its components
on Z and on Z? and write y D yZ C yZ? , getting

yTEZz D .yZ C yZ?/T .z C 0Z?/ D .z C 0Z?/T .yZ C yZ?/ D zT �Zy: (3.1.38)

On the other hand, following a notation of the type (3.1.33), we would have (also in
general)

EZ 	 ET
Z 	 �Z 	 �TZ : (3.1.39)

3.1.5 Basic Results

We start by proving an easy but useful proposition.

Proposition 3.1.1. LetM be an s
r matrix. Then, the restriction of M to .KerM/?
is a one-to-one mapping between .KerM/? and ImM .

Proof. Let us see first that M , restricted to .KerM/?, is injective: according to the
definition (3.1.11), we have to prove that, if z1 and z2 belong to .KerM/?, and
M z1 D M z2, then we must have z1 D z2. Indeed, setting Qz WD z1 � z2 we have
M Qz D 0 and hence Qz 2 KerM . On the other hand, the vector Qz, as the difference
between two elements of .KerM/?, must also be in .KerM/?. Hence, Qz belongs, at
the same time, to KerM and to .KerM/?. Due to (3.1.22), this implies Qz D 0r , that
means z1 D z2, as we wanted.

Let us now see that M, as a mapping from .KerM/? to ImM , is surjective.
According to the definition (3.1.12), we have to prove that, for every element w 2
ImM , there exists a z 2 .KerM/? such that M z D w. For this, let w be an element
of ImM . By definition, there exists an x 2 R

r such that M x D w. Split this x
into its components along KerM and .KerM/?. Let x D xK C z be the splitting,
with xK 2 KerM and z 2 .KerM/?. By definition of kernel, M xK D 0, so that
M z D M xK CM z D M x D w, as we wanted. ut

As immediate consequences, we have now the following properties.

Corollary 3.1.1. Let M be an s 
 r matrix. Then, there exists a lifting LM , linear
from ImM to .KerM/?, such that

LMM x D x 8x 2 .KerM/?: (3.1.40)

Moreover, there exists a � > 0 such that
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�kLM yk � kyk 8y 2 ImM and �kxk � kM xk 8x 2 .KerM/?: (3.1.41)

Proof. The existence ofLM satisfying (3.1.40) is obvious. Since all linear operators
are continuous in finite dimension, the two inequalities in (3.1.41) (that are actually,
in this context, the same inequality) are also obvious. ut
Remark 3.1.4. We point out that (3.1.40) easily implies (applyingM to both sides)
that

MLMy D y 8 y 2 ImM: (3.1.42)

We also point out that exchangingM with MT in (3.1.41) we have that there exists
a � > 0 such that

�kyk � kMT yk 8y 2 .KerMT /?: (3.1.43)

ut
Remark 3.1.5. We used the same letter (�) to denote the two constants that appear
in (3.1.41) and (3.1.43). This was not by chance. Actually, as we shall see in a while
(see e.g. Proposition 3.4.3), the two constants coincide, in the sense that if, for a
certain value of �, (3.1.41) is verified, then (3.1.43) is also verified, and vice-versa.

ut

Corollary 3.1.2. Let M be an s 
 r matrix. Then,

dim..KerM/?/ D dim.ImM/; (3.1.44)

dim.ImM/C dim.KerM/ D r; (3.1.45)

dim..KerMT /?/ D dim.ImMT /; (3.1.46)

and:

dim.ImMT /C dim.KerMT / D s: (3.1.47)

Proof. Equation (3.1.44) is an obvious consequence of Proposition 3.1.1. Equa-
tion (3.1.45) follows from (3.1.44) using (3.1.20). Then (3.1.46) and (3.1.47) follow
by exchangingM andMT in (3.1.44) and in (3.1.45).

Remark 3.1.6. Note that (3.1.44) is well in agreement with the previous examples:
for ˛ D 0, we have from (3.1.17) that dim.ImM0/ D 2 and from (3.1.25) that
dim..KerM0/

?/ D 2, while for ˛ D 1, we have from (3.1.18) that dim.ImM1/ D 3

and from (3.1.26) that dim..KerM1/
?/ D 3. The agreement of (3.1.46), (3.1.45)

and (3.1.47) with the previous examples can be checked in a similar way. We leave
it as an exercise. ut

Moreover, the following property is very commonly used.

Corollary 3.1.3. A square r 
 r matrix M is injective if and only if it is surjective.
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Proof. The proof follows immediately from (3.1.45). Indeed,

M is injective , KerM D f0rg , dim.KerM/ D 0

, dim.ImM/ D r , ImM D R
r , M is surjective:

(3.1.48)

Remark 3.1.7. In different words, Corollary 3.1.3 says that, for a square r 
 r

matrixM , the system

M x D f (3.1.49)

has a unique solution for every right-hand side f 2 R
r (D surjectivity) if and only if

the homogeneous system M x D 0r has x D 0r as a unique solution, that is if and
only if

fM x D 0rg ) fx D 0rg (3.1.50)

(D injectivity). It can also be proved (although we are not going to do it here) that
both properties are equivalent to say that the determinant of the matrixM is different
from zero. ut

In particular, we recall the following definition.

Definition 3.1.2. A square r 
 r matrix M is said to be non-singular if it is
injective (or, which is the same, if it is surjective, or, which is again the same, if
its determinant is different from zero).

It is well known that if M is a non-singular r 
 r matrix, then it has an inverse
matrix, denoted byM�1 such that

M�1M D M M�1 D Ir (3.1.51)

where Ir is the identity matrix in R
r . It is easy to check that whenever M is non-

singular, then MT is also non-singular, and its inverse is given by .MT /�1 D
.M�1/T . With a (quite common) abuse of notation, we will indicate it simply by
M�T , that is

M�T D .MT /�1 D .M�1/T : (3.1.52)

An important property is given by the following proposition.

Proposition 3.1.2. Let M be an s 
 r matrix. Then,

KerMT D .ImM/?: (3.1.53)

Proof. We start by proving that KerMT � .ImM/?. Let y 2 R
s be in KerMT (that

is, MT y D 0r ). We want to prove that y 2 .ImM/?, that is

yT .M x/ D 0 8x 2 R
r : (3.1.54)

This, however, is immediate since

yT .M x/ D xTMT y D 0: (3.1.55)
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Now, we prove that .ImM/? � KerMT . Let therefore z 2 R
s be in .ImM/? (that is

zTM x D 0 for all x 2 R
r ). Then,

xT .MT z/ D 0 8x 2 R
r ; (3.1.56)

implying that MT z D 0r , that is, z 2 KerMT .
ut

We then have the following theorem.

Theorem 3.1.1. Let M be an s 
 r matrix. Then:

KerMT D .ImM/?; (3.1.57)

ImM D .KerMT /?; (3.1.58)

KerM D .ImMT /?; (3.1.59)

ImMT D .KerM/?: (3.1.60)

Proof. Property (3.1.57) has already been seen in (3.1.53). Property (3.1.58) follows
from (3.1.53) and (3.1.23). Properties (3.1.59) and (3.1.60) then follow exchanging
M andMT . ut

We note that from Theorem 3.1.1 we can easily deduce some useful properties:

fImM 	 R
sg , fKerMT D 0sg; ImfMT 	 R

rg , fKerM D 0rg: (3.1.61)

All the above properties can also be easily checked on the example of matrices
M˛ in (3.1.15) and their transposed.

Remark 3.1.8. In spite of its immediate proof, Theorem 3.1.1 can be considered as
the finite dimensional version of a very important theorem of functional analysis
(that we shall see in the next chapter) which goes under the name of the Banach
Closed Range Theorem. ut

Collecting the results of Proposition 3.1.1, of Corollary 3.1.40 and of Theo-
rem 3.1.1, we now have immediately the following result.

Corollary 3.1.4. Let M be an s 
 r matrix. Then, setting K WD KerM and H WD
KerMT , we have:

M is one-to-one from K? to ImM 	 H?; (3.1.62)

MT is one-to-one from H? to ImMT 	 K?; (3.1.63)

9LM W H? ! K? such that LM.M x/ D x 8 x 2 K?; (3.1.64)

9LMT W K? ! H? such that LMT .MT y/ D y 8 y 2 H?; (3.1.65)

.LM/
T D LMT : (3.1.66)



136 3 Algebraic Aspects of Saddle Point Problems

Example 3.1.5. Assume that the matrix M has the following form

M D

0

BBBBBBB@

�1 0 � 0 0 0 0 0

0 �2 � 0 0 0 0 0

� � � � � � � �
0 0 � �k 0 0 0 0

0 0 � 0 0 0 0 0

0 0 � 0 0 0 0 0

1

CCCCCCCA

; (3.1.67)

where k is the dimension of K? 	 .KerM/?, which, due to (3.1.44) and (3.1.58)
coincides with the dimension of H? 	 .KerMT /?. Here we have r D k C 4 and
s D k C 2. We obviously have

MT D

0

BBBBBBBBBBB@

�1 0 � 0 0 0

0 �2 � 0 0 0

� � � � � �
0 0 � �k 0 0

0 0 � 0 0 0

0 0 � 0 0 0

0 0 � 0 0 0

0 0 � 0 0 0

1

CCCCCCCCCCCA

; (3.1.68)

and

LM D

0
BBBBBBBBBBB@

��1
1 0 � 0 0 0

0 ��1
2 � 0 0 0

� � � � � �
0 0 � ��1

k 0 0

0 0 � 0 0 0

0 0 � 0 0 0

0 0 � 0 0 0

0 0 � 0 0 0

1
CCCCCCCCCCCA

LMT D

0

BBBBBBB@

��1
1 0 � 0 0 0 0 0

0 ��1
2 � 0 0 0 0 0

� � � � � � � �
0 0 � ��1

k 0 0 0 0

0 0 � 0 0 0 0 0

0 0 � 0 0 0 0 0

1

CCCCCCCA

: (3.1.69)

Remark 3.1.9. Although the form of the matrix M in Example 3.1.5 might appear
very special, using the so-called singular-value decomposition (see e.g. [228]) for
every s 
 r matrix B , we can always choose an orthonormal basis in R

r and an
orthonormal basis in R

s that will transform the matrix B in the form (3.1.67). We
shall come back to this later on. ut

3.1.6 Restrictions of Operators

Assume that we have a subspace Z � R
r and an s 
 r matrix M . To M we can

associate its restriction MZ to Z defined as
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MZz D M.EZ.z// 8z 2 Z that is MZ D M EZ; (3.1.70)

where EZ , here and in all this chapter, is the extension operator as defined in
Sect. 3.1.4.

If now S is a subspace of Rs , we can consider the operatorMZS , fromZ to S ,
defined as

MZS D �S M EZ: (3.1.71)

Clearly, the transposed operator .MZS/
T will be

.MZS/
T D �Z M

T ES D .MT /SZ: (3.1.72)

Remark 3.1.10. We point out that all the results that we have seen in the previous
subsections (and in particular Theorem 3.1.1) still hold for operators like MZS ,
but we have to be careful in the interpretation of the orthogonal complement. In
particular, we have

KerMT
SZ D .ImMZS/

?S ; (3.1.73)

ImMZS D .KerMT
SZ/

?S ; (3.1.74)

KerMZS D .ImMT
SZ/

?Z ; (3.1.75)

ImMT
SZ D .KerMZS/

?Z ; (3.1.76)

where, for three spaces U � V � W , the notation U?V stands (rather obviously)
for the elements of V that are orthogonal to all the elements of U . ut
Example 3.1.6. In the same spirit, considering once more the matrix (3.1.15)
(which describes a linear operator fromR

5 to R
3), if the subspaceZ � R

5 is defined
by fx1 D x4 D 0g, we can indeed either follow the example of (3.1.33) and consider
Z as the set of quintuplets .0; x2; x3; 0; x5/T and describe the restriction of M to Z
again with the matrix (3.1.15). Otherwise, we can follow the example of (3.1.34),
and consider Z as a set of triples .x2; x3; x5/T , and describe it with the matrix

MZ D M EZ D

0

BB@

0 1 0

0 0 1

0 0 ˛

1

CCA : (3.1.77)

So far there is no big difference, and the first option seems actually much cleaner.
ut

Example 3.1.7. Coming back to the Example 3.1.6 above, if we consider now the
space S � R

3, defined by fy2 D 0g, and if we want to analyse the behaviour of M
as an operator from Z to S , the first option would lead us to consider the matrix
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M �
ZS D

0

BB@

0 0 1 0 0

0 0 0 0 0

0 0 0 0 ˛

1

CCA ; (3.1.78)

while the second option would lead to the (simpler) matrix

MZS D
 
0 1 0

0 0 ˛

!
: (3.1.79)

Apparently, the advantage of MZS over M �
ZS is just simplicity. However, if you

want to apply the general results of the previous subsection (as e.g. (3.1.58)) to the
operator “M from Z to S”, you see that the use of the form (3.1.79) makes life
much easier: for instance, for ˛ ¤ 0, the image ofMZS coincides with the whole S
while the kernel of .MZS/

T is reduced to 0. On the other hand, for ˛ D 0, then the
image ofMZS will be made by the pairs .y1; 0/T and the kernel of .MZS/

T is made
by the pairs .0; y2/T so that again ImMZS is orthogonal to Ker.MZS/

T , and so on.
Looking carefully, you can also see everything using the form (3.1.78), but with a
bigger effort. ut
Remark 3.1.11. We must be careful when discussing the kernel and the image of
operators restricted to subspaces. Indeed, in general, KerMZS will not be a subspace
of KerM , and ImMZS will not be a subspace of ImM . Let us see some examples.
Assume that we consider operators R2 ! R

2. We start with

M D
 
1 1

1 1

!
: (3.1.80)

Clearly, the kernel of M is given by KerM D f.x1; x2/T j with x1 D �x2g and the
image by ImM D f.y1; y2/T j with y1 D y2g. If we take

Z WD f.x1; x2/T j with x1 D x2g S WD f.y1; y2/T j with y2 D 0g;

then KerMZS D f.0; 0/T g and ImMZS WD f.y1; y2/T j with y2 D 0g so that
KerMZS � KerM but ImMZS ª ImM . If we take instead

M D
 
1 �1
0 1

!
; (3.1.81)

then KerM D f.0; 0/T g and ImM WD R
2. Choosing Z and S as before, we have

now KerMZS D f.x1; x2/T j with x1 D x2g and ImMZS WD f.0; 0/T g so that now
ImMZS � ImM but KerMZS ª KerM . ut
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The following result deals with the possible inclusions of kernels and images of
MZS and M and their transposed operators.

Proposition 3.1.3. Let M be an s 
 r matrix, let Z be a subspace of R
r , let S be

a subspace of Rs and let finallyMZS 	 �SMEZ be the restriction of M operating
from Z to S . Finally, letMT andMT

SZ be the transposed operators ofM andMZS ,
respectively. Then, the two following inclusions are equivalent

KerMZS � KerM (3.1.82)

Im.�ZMT / � ImMT
SZ: (3.1.83)

Moreover, exchanging the operators with their transposed, we obviously also have

KerMT
SZ � KerMT , Im.�SM/ � ImMZS: (3.1.84)

Proof. We start by noting that (3.1.82) is equivalent to

KerMZS D Z \ KerM: (3.1.85)

On the other hand, from (3.1.74) we have that an element ofZ belongs to ImMT
SZ if

and only if it is orthogonal to all z 2 KerMZS . Taking into account that the generic
element of Im.�ZMT / is �ZM y (with y generic in R

s), and that obviously (by
transposition) zT �ZMT y D yTMEZz, we deduce that (3.1.83) is equivalent to

yTMEZz D 0 8y 2 R
s ; 8z 2 KerMZS; (3.1.86)

which in turn is clearly equivalent to (3.1.85). ut
Remark 3.1.12. An equivalent way of looking at Proposition 3.1.3 is as follows.
Using (3.1.24), we immediately have that (3.1.82) holds if and only if .KerM/? �
.KerMZS/

?, where both the orthogonals are taken in R
r . On the other hand, from

(3.1.60) we have that .KerM/? D ImMT while an elementary argument using
(3.1.76) gives that

.KerMZS/
?Rr D .KerMZS/

?Z [Z?Rr D ImMT
SZ [Z?: (3.1.87)

Hence, (3.1.82) is equivalent to

ImMT � ImMT
SZ [Z?; (3.1.88)

which is clearly equivalent to (3.1.83). ut
Example 3.1.8. In the case of the matrixM of Example 3.1.5, we see that the matrix
MK?H? would be
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MK?H? D

0

BB@

�1 0 � 0
0 �2 � 0
� � � � �
0 0 � �k

1

CCA ; (3.1.89)

showing its nice nature as a k 
 k non singular matrix. With this notation,
.LM/K?H? would just be the inverse matrix

LM
K? H?

D

0
BB@

��1
1 0 � 0

0 ��1
2 � 0

� � � � �
0 0 � ��1

k

1
CCA : (3.1.90)

ut

3.2 Existence and Uniqueness of Solutions: The Solvability
Problem

We go back to our general form (3.0.1), which we repeat here for the convenience
of the reader:

Ax C BT y D f; (3.2.1)

Bx D g: (3.2.2)

We assume that f and g are given in R
n and R

m respectively (n and m being given
integer numbers � 1), and that x and y are also sought in R

n and R
m, respectively.

This implies thatAmust be a square matrix n
n and B a rectangular matrixm
n.
An important role will be played by the kernels of the operators B and

BT . Hence, we set

K WD KerB H WD KerBT : (3.2.3)

An easy consequence of Theorem 3.1.1 that will be used quite often in the sequel
is: for all x 2 R

n and for all y 2 R
m,

x 2 KerB ) xT BT y 	 yT Bx D 0; (3.2.4)

or equivalently, for K D KerB ,

�KB
T y D 0 8 y 2 R

m: (3.2.5)
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3.2.1 A Preliminary Discussion

Our present aim is to give conditions on A and B in order that (3.2.1) and (3.2.2)
have a unique solution.

Let us discuss first some heuristic ideas: according to Remark 3.1.7, the global
matrix

M D
 
A BT

B 0

!
(3.2.6)

will be non-singular if and only if the corresponding homogeneous system

Ax C BT y D 0; (3.2.7)

Bx D 0; (3.2.8)

has the pair x D 0 and y D 0 as a unique solution. Hence, we start our discussion
assuming that f and g are both zero. What do we know about x? From the second
equation (3.2.8), we see that

x 2 K D KerB: (3.2.9)

Moreover, we can take the projection �K of the first equation (3.2.7). We note that,
using (3.2.5), we have �KBT y D 0 so that the projection of the first equation onto
the kernelK is

�KAx D 0: (3.2.10)

We wonder whether

fx 2 K and �KAx D 0g ) fx D 0g : (3.2.11)

Actually, it depends on the matrix A and on K . Either it does or it doesn’t. For the
moment, we just set, with the notation of (3.1.71),

AKK WD �KAEK: (3.2.12)

Coming back to the question (3.2.11), let us analyse the two cases.

• If the answer to (3.2.11) is no, then we surely lose (meaning that the matrix will
indeed be singular). Why do we say that? This is subtle, but not really difficult.
We claim that if the answer is no, then there exists a non-zero solution of the
homogeneous system. Let us see why. If the answer to (3.2.11) is no, it means
that there exists an x� ¤ 0 such that both (3.2.9) and (3.2.10) hold. Now, using
(3.1.32), we note that (3.2.10) implies

Ax� 2 K?: (3.2.13)
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Moreover, we remember that K D KerB and that, from (3.1.60), .KerB/? D
ImBT . Hence, from (3.2.13), we have Ax� 2 ImBT , and therefore there must
exist a y� such that

BT y� D Ax�: (3.2.14)

This is why we lose: indeed, the pair .x�;�y�/ satisfies both equations Ax� C
BT .�y�/ D 0 and Bx� D 0, and we have a non-zero solution of the
homogeneous problem (3.2.7) and (3.2.8), since at least x� ¤ 0.

• If instead the answer to (3.2.11) is yes, we can conclude that, for every pair
.x; y/ solving the homogeneous system (3.2.7) and (3.2.8), we must have x D 0.
However, we still have to work on y. Once we know that x D 0, the first
equation (3.2.7) becomes

BT y D 0; (3.2.15)

and we face a second dilemma: do we have

fBT y D 0g ) fy D 0g ‹ (3.2.16)

Clearly, the answer depends on the matrix BT . If it is injective, the answer to
(3.2.16) will be yes, otherwise it will be no. Here, however, the situation is
simpler: indeed, if the answer is no, it means that there exists a Oy ¤ 0 such
that BT Oy D 0, and we lose again because the pair .0n; Oy/ will clearly be a
non-zero solution to the homogeneous system (3.2.7) and (3.2.8). If instead the
answer to (3.2.16) is also yes, then we can conclude: every solution .x; y/ of the
homogeneous system (3.2.7) and (3.2.8) will necessarily be zero, and the matrix
M will be non-singular.

In conclusion to our heuristic analysis, it seems that, in order to have a non-
singular global matrixM , we need a “yes” for both questions (3.2.11) and (3.2.16).
This indeed is what we are going to prove, in a more precise way, in the next
subsection.

3.2.2 The Necessary and Sufficient Condition

We start with the basic result that provides necessary and sufficient conditions for
solvability.

Theorem 3.2.1. Let n andm be two integers � 1. Let A and B be an n 
 n matrix
and an m 
 n matrix, respectively. Let K be the kernel of B as in (3.2.3), and let
AKK be defined as in (3.2.12). Then, the matrix

M D
 
A BT

B 0

!
(3.2.17)
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is non-singular if and only if the following two conditions are both satisfied:

AKK W K ! K is surjective (or, equivalently, is injective), (3.2.18)

B W R
n ! R

m is surjective (or, equivalently, BT is injective): (3.2.19)

Proof. We start by noting that the equivalence claimed in (3.2.18) has been made
clear in Proposition 3.1.2, while the equivalence claimed in (3.2.19) is an easy
consequence of (3.1.61). We also note that, in some sense, the theorem has been
proved already during the heuristic discussion above. However, here we re-start and
give a more detailed proof.

To this aim, assume first that (3.2.17) is non-singular, that is to say that the
system (3.2.1) has a unique solution for every right-hand side .f; g/ 2 R

n 
 R
m. In

particular, looking at (3.2.2) we see that it must have a solution for every g 2 R
m, and

hence ImB 	 R
m and (3.2.19) holds. Moreover, for every f D fK 2 K the system

 
A BT

B 0

! 
x

y

!
D
 

fK

0m

!
(3.2.20)

must have a solution. For every such solution, we clearly have Bx D 0, that is
x 2 K . We also note that for every y 2 R

m, from (3.2.5) we have that �K BT y D 0.
Hence, taking the projection �K of the first equation of (3.2.20) yields:

�K Ax D fK: (3.2.21)

In other words, solving (3.2.20), we have that: for every f D fK 2 K , there exists an
x 2 K such that (3.2.21) holds. Hence, AKK is surjective fromK to K , and (3.2.18)
holds.

Assume, conversely, that (3.2.18) and (3.2.19) hold. We want to show that the
matrix (3.2.17) is non-singular. This will follow if we show that the homogeneous
system (3.2.7) and (3.2.8) has x D 0; y D 0 as a unique solution. Indeed, from
Bx D 0, we first get that x 2 K . Taking the projection �K of the first equation
(and noting again that �K BT y D 0), we have then �K Ax D 0. This, together with
x 2 K , implies x D 0 thanks to the injectivity in (3.2.18). Finally, the first equation
now becomes BT y D 0, and this gives y D 0 thanks to the injectivity in (3.2.19).

ut
Remark 3.2.1. It follows easily from (3.2.19), using for instance (3.1.45), that a
necessary condition for the solvability is n � m. This was pretty obvious from the
very beginning, but it could be a valuable first simple check for users that are truly
illiterate from the mathematical point of view. ut

Remark 3.2.2. We point out that a necessary and sufficient condition is somehow
a delicate mathematical item: all possible necessary and sufficient conditions for
a matrix to be non-singular are mathematically equivalent to each other, and all
equivalent to the obvious it is non-singular if and only if the determinant is different
from zero or even to the tautology it is non-singular if and only if it is non-singular.
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It is only the commodity of usage that, in each context, makes a necessary and
sufficient condition a useful instrument or a sterile mathematical exercise. In this
respect, we may say that it is not true, in practice, that all necessary and sufficient
conditions are equivalent. Moreover, it often happens that conditions that are only
necessary or only sufficient are more useful, in practice, than the necessary and
sufficient ones. This is what we shall discuss in the next subsection. ut
Remark 3.2.3. We note that the result of Theorem 3.2.1 could have been obtained in
a different, more algebraic way. As the result is particularly important, we report this
alternative way as well, in the hope that two different points of view could provide
a deeper understanding of the whole result.

For this, together with the kernel K of B , we now consider its orthogonal
complement K? in R

n that we call J . Let nK be the dimension of K and nJ the
dimension of J . From (3.1.20) we have

nK C nJ D n: (3.2.22)

We now take a basis fxJ1 ; : : : ; x
J
nJ

g in J and a basis fxK1 ; : : : ; x
K
nK

g in K . It is clear
that

fxJ1 ; : : : ; x
J
nJ
; xK1 ; : : : ; x

K
nK

g (3.2.23)

will be a basis for Rn. With respect to this basis, we can re-write the matrices A, B ,
and BT as follows:

A D
 
AJJ AJK

AKJ AKK

!
B D �

BJ BK
�

BT D
 
BT
J

BT
K

!
: (3.2.24)

Now, from the definition (3.1.7) of K , we immediately have that BK D 0 (that is
the zerom
nK matrix) so that BT

K D 0 as well. Splitting x and f in their orthogonal
components xJ and xK , and fJ and fK , respectively, we can now write the original
system (3.2.1) as follows

0
BB@

AJJ AJK BT
J

AKJ AKK 0

BJ 0 0

1
CCA

0
B@

xJ

xK

y

1
CA D

0
B@

fJ

fK

g

1
CA : (3.2.25)

With a little additional work we can see that BJ is a non-singular square matrix
if and only if B is surjective, and the result of Theorem (3.2.1) follows from the
block-triangular structure of (3.2.25) since AKK 	 �KA. ut

3.2.3 Sufficient Conditions

The problem of checking whether (3.2.18) holds or not could be simplified or even
avoided in some particular cases, as pointed out in the following corollaries to the
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basic Theorem 3.2.1. We recall that, in general, a square r 
 r matrix M is said to
be positive semi-definite if

xT M x � 0 8x 2 R
r (3.2.26)

and it is said to be positive definite if

xT M x > 0 8x 2 R
r with x ¤ 0: (3.2.27)

More generally, if Z is a subspace of Rr , we say that M is positive semi-definite
on Z if MZZ is positive semi-definite, that is

8x 2 Z xT MZZx 	 xT M x � 0; (3.2.28)

and we say that M is positive definite on Z if MZZ is positive definite, that is

8x 2 Z with x ¤ 0 xT MZZx 	 xT M x > 0: (3.2.29)

We observe that a positive definite matrix is always non-singular, since (3.2.27)
easily implies (3.1.50). Hence, in particular, if M is positive definite on a subspace
Z, then MZZ will be non-singular Z ! Z. It is also obvious that if a matrix M is
positive definite (or positive semi definite), then its restriction to every subspace Z
will also be positive definite (resp. semi-definite).

From the above discussion, we have the following useful result.

Corollary 3.2.1. LetA be an n
n matrix, andB anm
nmatrix. IfB W Rn ! R
m

is surjective and A is positive definite on the kernel K of B , then the matrix M
in (3.2.17) is non-singular.

The proof follows immediately from Theorem 3.2.1. The following corollary has
more restrictive assumptions, but its use is even simpler.

Corollary 3.2.2. LetA be an n
n positive definite matrix, andB anm
n matrix.
If B W Rn ! R

m is surjective then the matrix (3.2.17) is non-singular.

Again, the proof is immediate. The advantage of Corollary 3.2.2 (when we can use
it!) is that there is no need to characterise the kernel K , which, in some cases, can
be a non-trivial task.

Among the various sufficient conditions, we could point out that if AKK is an
isomorphism from K to K , then the condition g 2 ImB will be sufficient to
guarantee the existence of a solution for the system (3.2.1). We have in particular
the following result.

Proposition 3.2.1. Let n andm be two integers � 1. LetA andB be an n
nmatrix
and anm
n matrix, respectively. LetK be the kernel ofB as in (3.2.3), and letAKK

be defined as in (3.2.12). Assume that AKK is an isomorphism from K to K and that
g 2 ImB . Then the system (3.2.1) has at least one solution. Moreover, if .x1; y1/
and .x2; y2/ are two solutions of (3.2.1), then x1 D x2 and .y1�y2/ 2 H D KerBT .



146 3 Algebraic Aspects of Saddle Point Problems

Proof. Indeed, if g 2 ImB then, by definition, there exists an xg 2 R
n such that

Bxg D g. Looking for x0 2 K , solution of the problem AKKx0 D �K.f � Axg/,
we can set x WD x0 C xg and note that, projecting the first equation on K , we
have �K.f � Ax/ D 0, because �K f � AKKx0 � �KAxg D 0. In other words,
f �Ax 2 K? which, thanks to (3.1.60), implies f �Ax 2 ImBT . Hence, there exists
a y 2 R

m such that BT y D f � Ax. It is immediate to check that .x; y/ is a solution
of (3.2.1). Assume now that .x1; y1/ and .x2; y2/ are two solutions of (3.2.1), and set
x� WD x1 � x2 and y� WD y1 � y2. Clearly, .x�; y�/ is a solution of the homogeneous
system (that is, (3.2.1) with f D 0 and g D 0). In particular we have, from the
second equation, that x� 2 K , and from the projection onK of the first equation we
have AKKx� D 0 and since AKK is an isomorphism we have x� D 0. This implies
Ax� D 0 and, using again the first equation:BT y� D 0 (that is y� 2 H ). ut
Remark 3.2.4. In the framework of Proposition 3.2.1, the solution will never be
unique, unless we have H D 0m (that however brings us back to Theorem 3.2.1).
On the other hand, we could change the problem and look for y inH?. This actually
is the way to recover a well posed problem when B is not surjective. However, it
obviously works only when g 2 ImB . A particular case in which this would work
systematically is whenever g 	 0 (as it is often the case when the second equation
expresses some incompressibility condition, or some sort of conservation property).

ut

3.2.4 Examples

Let us see now some examples and exercises. We start by emphasising that the part
of A that must be non-singular is actually AKK , and not A itself. Take for instance,
for n D 2 andm D 1, the matrices

A D
 
1 1

1 0

!
B D �

1 0
�

BT D
 
1

0

!
: (3.2.30)

Then, the rank of B is 1 (D m), and (3.2.19) holds true. On the other hand we
have that K D KerB D fx 2 R

2 such that x1 D 0g. Hence, in this case, the
new basis (3.2.23) coincides with the original one, and the matrices are in the
form (3.2.24) already. It is then easy to check that A itself is non-singular, but
AKK D .0/ and hence (3.2.18) does not hold. Indeed, the whole matrix is

M D

0

B@
1 1 1

1 0 0

1 0 0

1

CA (3.2.31)

which is clearly singular.
On the other hand, consider the choice
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A D
 
0 0

0 1

!
B D �

1 0
�

BT D
 
1

0

!
; (3.2.32)

where A is singular. Since K is the same as before, the new coordinates (3.2.23)
coincide again with the old ones, and we have easily that AKK D .1/. This is clearly
non-singular, so that (3.2.18) is now satisfied. Indeed, the whole matrix is now
non-singular:

M D

0
B@
0 0 1

0 1 0

1 0 0

1
CA : (3.2.33)

Along the same lines, referring to Corollary 3.2.2 we notice that it would not be
enough to require that A is positive semi-definite (that is xT Ax � 0 for all x 2 R

n).
Indeed, for the choice

A D
 
1 0

0 0

!
B D �

1 0
�

BT D
 
1

0

!
; (3.2.34)

we have that A is positive semi-definite, we have that (3.2.19) is verified, but the
whole matrix

M D

0

B@
1 0 1

0 0 0

1 0 0

1

CA (3.2.35)

is clearly singular.
In many cases, however, it is not immediate to see, at first glance, what the matrix

AKK is. Consider for instance the case

A D
 
a b

c d

!
B D �

1 � 1� BT D
 
1

�1

!
: (3.2.36)

We have in this case

K WD fx 2 R
2 such that x1 � x2 D 0g: (3.2.37)

Hence, K can be presented as the one-dimensional subset of R2 made of vectors
of the type .˛; ˛/T with ˛ 2 R. In its turn, J can now be presented as the
one-dimensional subset of R

2 made of vectors of the type .ˇ;�ˇ/T with ˇ 2
R. In order to reach the form (3.2.24), we now have to express the matrix A

in the new basis fxJ1 ; : : : ; x
J
nJ
; xK1 ; : : : ; x

K
nK

g that is now simply fxJ1 ; x
K
1 g with

xJ1 D .1;�1/T and xK1 D .1; 1/T (and if we want an orthonormal basis, we can
take xJ1 D .1=

p
2;�1=p2/T and xK1 D .1=

p
2; 1=

p
2/T ). After some classical

computations, we can see that, in this new basis, the matrix A takes the form
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QA D 1

2

 
a � b � c C d a C b � c � d

a � b C c � d a C b C c C d

!
: (3.2.38)

From (3.2.38) we have that AKK is the 1 
 1 matrix ( 1
2
.a C b C c C d/), which is

non-singular if and only if a C b C c C d ¤ 0.
Indeed, one can check easily (for instance, by computing the determinant) that

the condition a C b C c C d ¤ 0 is necessary and sufficient for the matrix

0

@
a b 1

c d �1
1 �1 0

1

A (3.2.39)

to be non-singular. In cases like this (which are the majority), it would possibly
be simpler to deal directly with the restriction of �KA to K , which is AKK in the
original variables. This would require to apply the (original) matrix A

	
a b

c d



(3.2.40)

to the general vector (in the original coordinates) xK D .˛; ˛/T in K , obtaining the
vector

AxK D
 
˛.a C b/

˛.c C d/

!
: (3.2.41)

Then, we have to check whether the component of AxK in K (that is �K Ax) is
different from zero. AsK is one-dimensional, this amounts to take the scalar product

.xK1 /
T AxK D .1=

p
2; 1=

p
2/AxK D ˛p

2
.a C b C c C d/; (3.2.42)

and see if it is different from zero when ˛ is different from zero. We clearly obtain
again the condition aC b C c C d ¤ 0.

We point out, however, that if, by chance, a and d are positive and ad > bc,
then A will be positive definite on the whole R

2, and we can have the solvability
directly from Corollary 3.2.2 without any additional work.

3.2.5 Composite Matrices

Sometimes, the matrix A itself has a block structure of the type

A D
 
C DT

D 0

!
: (3.2.43)
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Then again, one has to be careful and require the non-singularity of A just on the
kernel of B . In some cases, together with an A with the structure (3.2.43), we have
a B with the structure B D .E 0/ or B D .0 E/, so that the whole matrix has
the block structure

M D

0
B@
C DT ET

D 0 0

E 0 0

1
CA or M D

0
B@
C DT 0

D 0 ET

0 E 0

1
CA ; (3.2.44)

respectively. In these cases, it can be a useful exercise to rewrite conditions (3.2.18)
and (3.2.19) in terms of properties of the matrices C , D, and E .

To fix the ideas, let us assume that, in the first case of (3.2.44), C is an r 
 r

matrix,D is an s 
 r matrix, and E a k 
 r matrix. We also assume that r � s C k,
otherwise, according to Remark 3.2.1, the Matrix M will surely be singular. It is
clear that we can directly use Theorem 3.2.1, with

A WD C with n D r and B WD
	
D

E



with m D s C k: (3.2.45)

With a minor effort, one can recognise that

K WD KerB D KerD \ KerE ImB D
 

ImD

ImE

!
(3.2.46)

and that

n
KerBT D

	
0s
0k


o

,
n
fDT y CET z D 0rg ) fy D 0s and z D 0kg

o

,
n
ImDT \ ImET D 0r

o
:

(3.2.47)

Conditions (3.2.18) and (3.2.19), in terms of the matrices C , D, and E , are then

ImDT \ ImET D 0r ;

CKK is non-singular K ! K where K D KerD \ KerE:
(3.2.48)

It is not difficult to verify that conditions (3.2.48) are necessary and sufficient for
the non-singularity of the whole matrixM .

To deal with the second case of (3.2.44), we assume instead that C is an r 
 r

matrix, D is an s 
 r matrix, and E a k 
 s matrix. We also assume, this time, that
r C k � s � k, otherwise, according to Remark 3.2.1, the Matrix M will surely
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be singular. Possibly the easiest way to apply Theorem 3.2.1 consists in performing
first an exchange of rows and columns to reach the form

0
B@
C 0 DT

0 0 E

D ET 0

1
CA : (3.2.49)

Then, we can take n D r C k and m D s with

A D
 
C 0

0 0

!
B D �

D ET
�

B
T D

 
DT

E

!
: (3.2.50)

It is now immediate to see that

KerBT D KerDT \ KerE

so that condition (3.2.19) (that now becomes: KerBT D 0s D 0m) requires in this
case that KerDT \ KerE D 0s . Then, we have to look at the kernel of B and require
the non-singularity of A on it. It is clear that the kernel of B, in this case, is given by

K D f.x; z/ 2 R
r 
 R

k such that Dx C ET z D 0sg: (3.2.51)

This includes all pairs of the form .0r ; Qz/, with Qz 2 KerET . When we apply the
matrix A to one of these vectors, we obviously obtain the zero vector. Hence, if
we want the restriction of A to K to be non-singular, we must first require that
these pairs are reduced to .0r ; 0k/, that is, we must require first that KerET D 0k .
However, K might also contain pairs .x; z/ with x ¤ 0r , provided Dx 2 ImET .
This subset of Rr can be characterised, using also (3.1.60), as

QK D fx 2 R
r such that Dx D ET z for some z 2 R

kg
	 fx 2 R

r such that QzTDx D 0 8Qz 2 KerEg:
(3.2.52)

Hence, the conditions for the second case can be summarised in terms of the
matrices C , D and E as:

KerDT \ KerE D 0s;

KerET D 0k;

C QK QK is non-singular QK ! QK where QK is given in (3.2.52):

(3.2.53)

Again, it is not difficult to verify that conditions (3.2.53) are necessary and sufficient
for the non-singularity of the whole matrix.
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There are obviously other equivalent ways to apply Theorem 3.2.1. For instance,
we can, in both cases, consider directly n D r C s, m D k and

A D
	
C DT

D 0



B D .E 0/ or B D .0 E/: (3.2.54)

As we are dealing with necessary and sufficient conditions, we would find exactly
the same conditions as before, possibly with a longer argument.

In a similar way, one could treat the case when the space R
m 
 R

n is split into
a bigger number of subspaces (four, five, etc.). We do not insist too much on these
exercises.

3.3 The Solvability Problem for Perturbed Matrices

A different, more interesting variant arises when we consider the case of systems of
the type

 
A BT

B �C

! 
x

y

!
D
 

f

g

!
; (3.3.1)

where again A and B are n
n andm
nmatrices, respectively, and C is anm
m
matrix. The name of the game here is to see C as a perturbation of the original
problem (3.2.1). We shall therefore assume that matrices A and B satisfy (3.2.18)
and (3.2.19), plus, possibly, some minor additional requirement, and we look for
conditions on C in order to have the unique solvability of (3.3.1).

The minus sign in front of the matrix C is due to the fact that, in what follows,
we are going to assume the perturbation, in some sense, to be negative (and hence
C to be positive), in order to have existence and uniqueness results.

3.3.1 Preliminary Results

A first sufficient condition for solvability is quite obvious.

Proposition 3.3.1. Assume thatA andC are positive definite. Then problem (3.3.1)
is uniquely solvable. ut
Indeed, it is easy to check that in this case the matrix

 
A BT

�B C

!
(3.3.2)

is positive definite.
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Another more or less obvious sufficient condition is given in the following
proposition.

Proposition 3.3.2. Assume that (3.2.18) and (3.2.19) are satisfied. Then there exists
an " > 0 such that, for every m 
m matrix C satisfying

kCyk � "kyk; 8y 2 R
m; (3.3.3)

problem (3.3.1) is uniquely solvable. ut
The proof is based on the following obvious fact: if the determinant of a matrix is
different from zero, and if we perturb the matrix by a small enough quantity, the
determinant will still be different from zero. We omit the mathematical details.

In the next subsection, we shall provide a theorem that is more interesting, and
more relevant for the applications. In order to prove it, however, we are going to
need the following elementary (and classical) lemma, that will also be useful in
other occasions.

Lemma 3.3.1. Assume that A is a symmetric n 
 n matrix satisfying

xT Ax � 0; 8x 2 R
n (3.3.4)

(that is: A is positive semi-definite). Then, for every x 2 R
n and for every z 2 R

n,
we have

.zT Ax/2 � .xT Ax/ .zTAz/; (3.3.5)

and consequently, always for every x 2 R
n,

xT Ax D 0 ) Ax D 0: (3.3.6)

Proof. Using (3.3.4), we easily have that, for any z 2 R
n and for any real number �,

.x C �z/T A.x C �z/ � 0: (3.3.7)

Expanding (3.3.7) in powers of � and using the symmetry of A, we have

xT Ax C 2�zT Ax C �2zT Az � 0; (3.3.8)

implying that the equation (in the unknown �) xT Ax C 2�zT Ax C �2zT Az D 0

cannot have distinct real roots, and therefore

� 	 .2zT Ax/2 � 4.xTAx/ .zTAz/ � 0; (3.3.9)

which, divided by four, gives exactly (3.3.5). From this we see that xT Ax D 0

implies that zT Ax D 0 for all z 2 R
n, and therefore Ax D 0. This is what is

claimed in (3.3.6). ut
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3.3.2 Main Results

We are now ready to present the main theorem of this section.

Theorem 3.3.1. Let A be an n 
 n matrix, B an m 
 n matrix and let C be an
m
m matrix. Assume (as in the basic Theorem 3.2.1) that BT is injective and AKK

is non-singular from K to K , where K D KerB . Assume further that A and C are
positive semi-definite and that, moreover, A is symmetric. Then, problem (3.3.1) is
uniquely solvable for every right-hand side f, g.

Proof. The proof can be easily done by showing that the homogeneous version
of (3.3.1) (that is when f and g are both equal to zero) has x D 0, y D 0 as the unique
solution. For this, let .x; y/ be the solution of the homogeneous system. Taking the
scalar product of the first equation of (3.3.1) times x, we get

xT Ax C xTBT y D 0; (3.3.10)

while, taking the scalar product of the second equation of (3.3.1) times y, we obtain

yT Bx � yT Cy D 0: (3.3.11)

Subtracting (3.3.11) from (3.3.10), and using (3.1.5), we therefore have

xT Ax C yT Cy D 0: (3.3.12)

Using the fact that A and C are positive semi-definite in (3.3.12), we then have

xT Ax D yT Cy D 0: (3.3.13)

We can now use (3.3.13) and Lemma 3.3.1 to deduce that Ax D 0. Using this in the
first equation, we obtain now BT y D 0 which, as BT is injective, implies y D 0.
This, in turn, gives Cy D 0, so that, from the second equation, Bx D 0. Hence, x
belongs to KerB . Having already Ax D 0, we deduce AKKx D 0, and since AKK is
non-singularK ! K , we conclude that x is also equal to zero. ut
Remark 3.3.1. Looking at the proof of Theorem 3.3.1, we also see that we can
trade the symmetry assumption on A with the condition that A is positive definite
on the whole Rn. Indeed, the symmetry was only used in Lemma 3.3.1 to show that
xT Ax D 0 implies Ax D 0. If A is supposed to be positive definite, from xT Ax D 0

we have immediately x D 0 and then y D 0 as before. ut
Theorem 3.3.1 has a counterpart, in which the symmetry assumption is shifted

from A to C .

Theorem 3.3.2. Let A be an n 
 n matrix, B an m 
 n matrix and let C be an
m
m matrix. Assume (as in the basic Theorem 3.2.1) that BT is injective and AKK

is non-singular from K to K , where K D KerB . Assume further that A and C are
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positive semi-definite and moreover that C is symmetric. Then, problem (3.3.1) is
uniquely solvable for every right-hand side f, g.

Proof. We proceed exactly as in the proof of Theorem 3.3.1. Let .x; y/ be a solution
of the homogeneous system. Taking the scalar products of the first equation times x,
the scalar product of the second equation times y, and finally taking the difference,
we reach again (3.3.12) and (3.3.13). This time, we apply Lemma 3.3.1 to the matrix
C , obtaining Cy D 0. Then we can go back to Theorem 3.2.1 and, using (3.2.18)
and (3.2.19), we obtain x D 0 and y D 0. ut
Remark 3.3.2. The above results could be summarised as follows. Assume that A
and B verify the assumptions of the basic Theorem 3.2.1, that is: B is surjective
(or, equivalently, BT is injective) and AKK is non-singular from K to K , where K
is the kernel of B . Then, problem (3.3.1) is uniquely solvable under the following
assumptions:

• A and C are positive semi-definite and A is symmetric;
• A is positive definite and C is positive semi-definite;
• A and C are positive semi-definite and C is symmetric. ut

3.3.3 Examples

In the following Examples, we shall discuss the necessity of the conditions that
we have used so far. The form (3.3.1) is clearly too general to allow non-trivial
necessary and sufficient conditions. We shall therefore discuss the possibility of
finding more general, but still easy, sufficient conditions.

In the first example, we shall see that the symmetry assumptions in Theo-
rem 3.3.1 or in Theorem 3.3.2 cannot be easily reduced. Indeed, if we consider
the case

A D

0

B@
1 0 0

0 1 �1
0 1 0

1

CA B D
 
0 1 0

0 0 1

!
C D

 
0 �1
1 1

!
; (3.3.14)

we see thatA and C are positive semi-definite,B is surjective and A is non-singular
when restricted to the KerB which in this case is fx 2 R

3 such that x2 Dx3 D 0g.
Hence, all the assumptions of Theorem 3.3.1 are satisfied but the symmetry assump-
tion (since neither A nor C is symmetric). It is easy to see that the whole matrix

M D

0
BBBBBBB@

1 0 0 0 0

0 1 �1 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 �1 �1

1
CCCCCCCA

(3.3.15)
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is singular, since the third and fourth rows are equal. Note that A is symmetric when
restricted to KerB , but this is not enough.

On the other hand, it is obvious that we cannot give up the assumption thatA and
C have, in some weak sense, the same sign, because the elementary choice

A D .1/ B D .1/ C D .�1/ (3.3.16)

gives rise to the singular matrix

M D
 
1 1

1 1

!
: (3.3.17)

Similarly, we cannot even accept that one of the two matrices, A or C , is
indefinite: for instance, the choice

A D
 
0 1

1 1

!
B D �

1 0
�

C D .1/ (3.3.18)

with C symmetric and positive definite and A symmetric but indefinite, produces
the singular matrix

M D

0

B@
0 1 1

1 1 0

1 0 �1

1

CA : (3.3.19)

Hence, although the conditions discussed in Theorems 3.3.1 and 3.3.2 are clearly
only sufficient and by no way necessary, it does not seem easy to write down more
convenient ones.

3.4 Stability

We saw at the beginning of this Chapter that solvability will not be sufficient to
provide a good method to discretise partial differential equations, and some stability
(in a sense to be made precise) is actually needed.

Here, we suppose that we are actually given a sequence of problems with
increasing dimensions. It is clear that this will be the case when we are going to
consider discretisations of a given, say, partial differential equation, with a sequence
of finer and finer meshes. Consider therefore for k D 1; 2; : : : the problems

 
Ak BT

k

Bk 0

! 
xk

yk

!
D
 

fk

gk

!
; (3.4.1)
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where Ak is an nk 
 nk matrix, Bk an mk 
 nk matrix, and the dimensions nk and
mk tend to infinity when k goes to infinity. Roughly speaking, we can imagine that
each value of k will correspond to a different decomposition, and when we will say
that some constant is independent of the decomposition, we will actually mean that
it does not depend on the index k in (3.4.1).

We are therefore interested in conditions that ensure not only the unique
solvability of each problem (3.4.1), but also a stability estimate of the type (3.0.3):

kxkk C kykk � c.kfkk C kgkk/; (3.4.2)

where the constant c does not depend on k. This requirement is obviously meaning-
less, unless we specify the norms that we intend to use. As anticipated at the begin-
ning of this chapter, the choice of the norms, in this case, is not irrelevant: although
they are all equivalent, the constants involved in the equivalence may (and, in gen-
eral, do) depend on the dimensions, which we are assuming to be going to infinity.

On the other hand, if we want to use these abstract results in order to provide a
priori error bounds for some realistic discretisation of a differential problem, we
are not totally free in the choice of the norms.

In general, in the finite element context, the norms to be used will be the norms
in some functional space, where the differential problem itself is set. Hence, in
practice, we are going to have little choice.

For instance (anticipating some ideas from the following chapters), our unknown
vector x could represent the nodal values of a piecewise linear continuous function
defined on a domain ˝ that has been decomposed into triangles T . This means
that we have a one-to-one mapping from R

n to the space L11 of piecewise linear
continuous functions on ˝ , that associates to a vector v in R

n the function 'v such
that, at every nodeNj of the decomposition (j D 1; 2 : : : n), we have 'v.Nj / D vj .
In this case, a very natural choice of norm for v would be

kvk0 WD
� Z

˝

'2v d˝
�1=2

; (3.4.3)

or, alternatively,

kvk1 WD
� Z

˝

jr'vj2 d˝
�1=2

; (3.4.4)

representing, respectively, the L2-norm and the H1
0 -norm of the corresponding

function 'v (if this function vanishes on boundary nodes). At the present level,
however, we have no functional spaces yet (nor, for what matters, a differential
problem). Hence, we are going to consider norms, or, rather, families of norms, that
are defined independently of functional spaces and discretisation schemes. However,
having that target in mind, we shall make assumptions that are somehow tailored for
it. In the present section, we shall then reconsider several aspects that were discussed
in Sect. 3.2 but, this time, introducing norms, and analysing the behaviour of the
various constants in dependence of the chosen norms.
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For the sake of simplicity, from now on we shall drop the index k unless it will
really be necessary, and we will just remember that m, n, A, and B depend on k.

Remark 3.4.1. We point out that, as we have already seen, stability is not a concept
that can be applied to a single discretised problem, but only to a sequence of
discretised problems, or to a discretisation method (that in turn gives rise to
sequences of discretised problems). ut
Remark 3.4.2. Important warning In what follows, we will often consider the
infimum or the supremum of quotients of the type

`.�/

k�k or
j`.�/j
k�k (3.4.5)

where `.�/ is a real number depending linearly on �. It is clear that the quotients in
(3.4.5) make no sense for � D 0, so that the value � D 0 should be discarded when
taking the infimum or the supremum. On the other hand, due to the linearity of `, it
is clear that for every �0 ¤ 0 the quotients in (3.4.5) take the same value over the
ray � D 
�0 when 
 ranges over the positive real numbers. Hence, the limit of the
quotients (3.4.5) for � ! 0, in general, will not exist (we would have a different
limit on every ray coming out of the origin), but the meaning of, say,

sup
�

`.�/

k�k (3.4.6)

will not be “seriously ambiguous”. Hence, for the sake of brevity, we shall write in
these cases

sup
�

`.�/

k�k instead of sup
�¤0

`.�/

k�k : (3.4.7)

ut

3.4.1 Assumptions on the Norms

We denote by X, Y, F, G, respectively, the spaces of vectors x, y, f, g. Hence, we
have

X D R
n; Y D R

m; F D R
n; G D R

m: (3.4.8)

Then, we assume that:

1. The spaces X and Y are equipped with norms k � kX and k � kY . For the sake of
simplicity, we will assume that there exist two symmetric and positive definite
matrices SX (an n 
 n matrix) and SY (anm 
m matrix) such that

kxk2X D .SX x/T .SX x/ 	 xT STXSXx 8 x 2 X;

kyk2Y D .SY y/T .SY y/ 	 yT STY SY y 8 y 2 Y:
(3.4.9)
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2. the spaces F and G are equipped with norms k � kF and k � kG defined as the dual
norms of k � kX and k � kY , i.e.

kfkF WD sup
x2X

xT f
kxkX and kgkG WD sup

y2Y

yT g
kykY : (3.4.10)

It is not difficult to check that

kfk2F D .S�1
X f/T .S�1

X f/ 	 fT S�T
X S�1

X f 8 f 2 F;

kgk2G D .S�1
Y g/T .S�1

Y g/ 	 gT S�T
Y S�1

Y g 8 g 2 G:
(3.4.11)

3. Given the norms in X, Y, F and G, we can define the induced norms of the
matrices A and B as follows

kAk WD sup
x2X

kAxkF

kxkX
kBk WD sup

x2X

kBxkG

kxkX
: (3.4.12)

4. The norms of the transposed matrices AT and BT are obviously defined in the
same way as in (3.4.12). Moreover, we have the following immediate result.

Proposition 3.4.1. In the above assumptions, we have

kAk D kAT k 	 sup
x2X

sup
z2X

zT Ax
kzkX kxkX

(3.4.13)

and

kBk D kBT k 	 sup
x2X

sup
y2Y

yT Bx
kykY kxkX

: (3.4.14)

ut
The proof follows immediately from (3.1.5), which implies that zT Ax D xTAT z
and yT Bx D xT BT y.

5. We will assume that there exist two constants Ma and Mb, independent of the
mesh-size, such that

kAk D kAT k � Ma kBk D kBT k � Mb: (3.4.15)

Sometimes, for K a subspace of X, we will also use the norm

kfkK0 WD sup
x2K

xT f
kxkX : (3.4.16)

The following very useful properties are immediate consequences of the above
assumptions.
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Proposition 3.4.2. Assume that the properties (3.4.8)–(3.4.15) hold true. Then, for
every x and f in R

n and for every y and g in R
m, we have

xT f � kxkX kfkF ; yT g � kykY kgkG; (3.4.17)

kAxkF � MakxkX ; kAT xkF � MakxkX ; (3.4.18)

kBxkG � MbkxkX ; kBT ykF � MbkykY ; (3.4.19)

xTAz � MakxkX kzkX ; xT BT y � MbkxkX kykY ; (3.4.20)

and

kfkK0 � kfkF : (3.4.21)

If moreover A is symmetric and positive semi-definite, then (3.4.18) can be
improved to

kAxkF � M1=2
a .xT Ax/1=2: (3.4.22)

Proof. The proof of (3.4.17) is immediate. For instance, the first inequality follows
from the fact that for every fixed Qx 2 X n f0g we obviously have

QxT f
kQxkX � sup

x2X

xT f
kxkX 	 kfkF ; (3.4.23)

which multiplied by kQxkX gives QxT f � kQxkX kfkF . The second one can be proven
in exactly the same way. The proof of (3.4.18) and (3.4.19) is also immediate, as
is the proof of (3.4.21) (in the right-hand side we take the supremum over a bigger
set). Let us see for instance the proof of (3.4.18) (as the proofs of the other two are
identical): using first (3.4.12) and then (3.4.15), we have:

kAxkF � kAk kxkX � Ma kxkX: (3.4.24)

Property (3.4.20) will then follow immediately from (3.4.18) and (3.4.19), and the
proof of (3.4.21) is immediate. Finally, for the proof of (3.4.22), we can first use
Lemma 3.3.1, which, for every x; z 2 X, gives

jzT Axj � .zT Az/1=2.xT Ax/1=2: (3.4.25)

Then, we use (3.4.10), (3.4.25), and (3.4.20) to get

kAxkF D sup
z2X

zT Ax
kzkX � sup

z2X

.zT Az/1=2.xTAx/1=2

kzkX

� sup
z2X

.Makzk2X /1=2.xTAx/1=2

kzkX D M1=2
a .xT Ax/1=2: (3.4.26)

ut
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From now on, in this chapter, the Euclidean norm will be denoted by k � kE , that is

kzk2E WD zT z: (3.4.27)

The following proposition is an elementary consequence of Corollary 3.1.4.

Proposition 3.4.3. Let B be an m 
 n matrix, and set K WD KerB (as usual) and
H WD KerBT . Then, there exists a positive constant Q̌ such that

inf
y2H?

sup
x2K?

xT BT y
kxkX kykY D inf

x2K?

sup
y2H?

yT Bx
kxkX kykY D Q̌ > 0: (3.4.28)

Moreover, with the notation of Proposition 3.1.1, we have exactly

1

Q̌ 	 kLBk 	 kLBT k: (3.4.29)

Proof. Corollary (3.1.4) implies that B is one-to-one from K? to H? and BT is
one-to-one from K? to H?. It is not difficult to see that Q̌ in (3.4.28) is exactly
the value of the norms of LB and LBT (that are equal to each other). See also
Examples 3.1.5 and 3.1.8.

We are now ready to introduce a precise definition of stability.

Definition of stability. Given a numerical method that produces a sequence of
matrices A and B when applied to a given sequence of meshes (with the mesh-
size h going to zero), we choose norms k � kX and k � kY that satisfy the continuity
condition (3.4.20), and dual norms k � kF and k � kG according to (3.4.10). Then,
we say that the method is stable if there exists a constant c, independent of the
mesh size, such that for all vectors x; y; f; g satisfying the general system (3.2.1)
and (3.2.2), it holds

kxkX C kykY � c.kfkF C kgkG/: (3.4.30)

Remark 3.4.3. We recall (as we have also seen in Remark 3.1.7) that for a square
matrix, we have unique solvability for every right-hand side if and only if the only
solution of the homogeneous system is the zero solution. We note here that (3.4.30)
implies that, whenever f and g are zero, the only possible solution of (3.2.1) and
(3.2.2) is x D 0 and y D 0. Hence, we deduce that (3.4.30) implies the unique
solvability of (3.2.1) and (3.2.2). This is the reason why, on several occasions in this
section, we will state theorems that ensure the stability (3.4.30) without mentioning
explicitly that we have unique solvability for every right-hand side f and g. ut

Having now a precise definition of stability, we can look for suitable assumptions
on the matrices A and B that may provide the stability result (3.4.30). In Sect. 3.2,
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we started with the basic Theorem 3.2.1, giving the necessary and sufficient
conditions for solvability, and then we discussed possible variants with stronger
assumptions which gave only sufficient conditions but were easier to deal with. In
the present section, we shall follow somehow the opposite path: we shall start with
stronger assumptions (allowing an easier proof) and move progressively towards
weaker assumptions.

In particular, as we did in the previous sections, we will consider essentially three
possible situations, with three different levels of generality. In all three cases, we
shall assume an inf-sup condition on the matrix B . On the other hand, for the matrix
A, we shall consider the three cases: ellipticity on the whole space V , ellipticity only
on the kernelK , and a non-singularity condition on AKK of the type of (3.2.18).

Different assumptions on the symmetry of A will often affect the dependence of
the final stability constants on the inf-sup and ellipticity constants.

As a first step, however, we shall discuss the basic assumption to be made on the
matrix B (the inf-sup condition) that will be used in all the theorems of the Section.
In several applications, checking whether the inf-sup condition holds or not will be
the main difficulty. It is therefore necessary to try to have a good understanding of it.

3.4.2 The inf-sup Condition for the Matrix B: An Elementary
Discussion

As we are going to see at the end of this subsection, with the definitions and the
notation that we introduced in the previous part of this chapter, the so-called inf-sup
condition can be expressed rather quickly.

However, as it is often one of the main difficulties (to check or to enforce) in
many applications, we expect a certain number of readers to pick up the book and
start reading this subsection first.

This, clearly, is not recommended, and, frankly speaking, cannot be done.
Nevertheless, we tried, in the beginning of this subsection, to be softer than usual,
rephrasing many concepts that were seen before, and (if not really restarting from
scratch, that would be a total nonsense) to recover some concepts in a more heuristic
way.

Let us start from one of its most common formulations.

Inf-sup condition on B. There exists a positive constant ˇ, independent of the
mesh-size h, such that:

8 y 2 Y 9 x 2 X n f0g such that xTBT y � ˇkxkXkykY : (3.4.31)

In order to understand it better, we start by rewriting condition (3.4.31) in
different equivalent forms, which will also clarify the reason why it is called
inf-sup condition.
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Since, by assumption, x is different from zero, condition (3.4.31) can equiva-
lently be written as:

8 y 2 Y 9 x 2 Xnf0g such that
xT BT y
kxkX � ˇkykY : (3.4.32)

Given y 2 Y, the most suitable x 2 X (for making the inequality in (3.4.32) hold)
is clearly the one that makes the left-hand side of the inequality as big as possible.
Hence, the best we can do is to take the supremum of the left-hand side when x
varies among all possible x 2 X different from 0. Hence, recalling also the notation
in (3.4.7), we may equivalently require that

8 y 2 Y sup
x2X

xT BT y
kxkX � ˇkykY : (3.4.33)

In a sense, we got rid of the task of choosing x. We observe that, making use of the
notation of (3.4.10) for dual norms, we immediately have

sup
x2X

xT BT y
kxkX 	 kBT ykF ; (3.4.34)

so that condition (3.4.33) could easily be rewritten as

8 y 2 Y kBT ykF � ˇkykY : (3.4.35)

We recall now that the usual condition required in the previous section for the
matrix B (see (3.2.19)) was: B is surjective or, equivalently, BT is injective. We
also recall that the injectivity (3.1.11) could be written as

fkBT yk D 0g ) fkyk D 0g: (3.4.36)

Looking back at the basic algebraic property (3.1.41) (that, in finite dimension, is
always true), with M D BT we see that here we are first asking that the inequality
holds for every y 2 Y (and not, as in (3.1.41), for every y 2 .KerBT /?). Hence, we
require that, for every k in our sequence, .KerBT /? D f0g. Moreover, we require
that the constant � that appears in (3.1.41) is uniformly bounded from below by a
uniform constant ˇ.

We also easily recognise that the inf-sup condition, in its equivalent form
(3.4.35), easily implies (3.4.36). Hence, it can be seen as a stronger form of the
plain injectivity (3.4.36), depending on the choice of the norms, and requiring a
uniform bound, ˇ, independent of the mesh-sizes.

However: why is it called inf-sup condition? We note that condition (3.4.35) still
depends on y. We also note that it clearly always holds for y D 0, and therefore
we can concentrate on the y’s that are different from 0; in particular, for y ¤ 0,
condition (3.4.35) can be also written as
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8 y 2 Ynf0g kBT ykF
kykY � ˇ: (3.4.37)

The worst possible y is therefore the one that makes the left-hand side of (3.4.37)
as small as possible. If we want (3.4.37) to hold for every y 2 Y n f0g, we might
as well consider the worst case, looking directly at the infimum of the left-hand side
of (3.4.37) among all possible y’s, requiring that

inf
y2Y

kBT ykF
kykY � ˇ; (3.4.38)

(still following the notation (3.4.7)) that is, recalling (3.4.34),

inf
y2Y

sup
x2X

xT BT y
kxkX kykY � ˇ; (3.4.39)

which is possibly the most used equivalent presentation of the assumption, and
which gave it its name. The advantage of formulation (3.4.39) over the original
formulation (3.4.31), if any, is that we got rid of the dependence on y and x. Indeed,
condition (3.4.39) is now clearly a condition on the matrix B , on the spaces X and
Y (together with their norms), as well as on the crucial constant ˇ.

Remark 3.4.4. We point out once more that the inf-sup condition is stronger than
the simple injectivity (3.4.36). Considering for simplicity the matrix

B� WD
	
1 0 0

0 � 0



(3.4.40)

and taking the Euclidean norm for all the spaces, we easily see that, for 0 < � < 1,

inf
y2R2

kBT yk
kyk D inf

y2R2
.y21 C .�y2/

2/1=2

.y21 C y22/
1=2

D �:

In a sequence of problems, sub-matrices as B� can appear, in crucial places, with
smaller and smaller �’s. In these cases, for every single problem of the sequence,
we shall have a positive infimum in (3.4.38), but there will not be a positive uniform
ˇ bounding them all from below. ut

We collect the previous discussion in the following proposition.

Proposition 3.4.4. Given a sequence of spaces X, Y, a sequence of matrices A
and B and a single positive constant ˇ, then the inf-sup condition (3.4.31) is
equivalent to

ˇkykY � kBT ykF : 8 y 2 Y: (3.4.41)
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Moreover, recalling Proposition 3.4.3, we have that the inf-sup condition (3.4.31) is
also equivalent to

9LB W G ! X such that BLBg D g 8 g 2 G (3.4.42)

with

ˇkLBgkX � kgkG 8 g 2 G: (3.4.43)

Therefore, in particular, the inf-sup condition (3.4.31) implies that all the matrices
B in the sequence are surjective and all the matrices BT are injective. ut

3.4.3 The inf-sup Condition and the Singular Values

Now we shall see that, using the definitions and the notation of the previous part of
this chapter, the discussion of the previous subsection could be drastically shortened.
However, first we recall some basic notion on the singular value decomposition (see
e.g. [228]). Given an m 
 n matrixM , it is always possible to find an n 
 n unitary
matrix U and an m 
m unitary matrix V such that

M D V ˙ U (3.4.44)

where ˙ is an m 
 n non-negative diagonal matrix. We recall that a rectangular
matrix ˙ is said to be a non-negative diagonal matrix if all its entries are non-
negative and for all i ¤ j we have �ij D 0. On the other hand, an r 
 r matrix �
is said to be a unitary matrix when the product �T � is equal to the identity r 
 r
matrix Ir . Note that this implies that .�z/T�z D zT z for all z 2 R

r , so that � does
not change the Euclidean norm.

In (3.4.44), the diagonal entries of ˙ are known as the singular values of M .
It can be shown that the non-zero singular values of M are the square roots of the
non-zero eigenvalues of MTM .

We now focus our attention on a fundamental example already considered in
Sect. 3.1.

Example 3.4.1. Let us go back to the Example 3.1.5, and consider the matrix (that
we now denote by ˙) given by

˙ D

0
BBBBBBB@

�1 0 � 0 0 0 0 0

0 �2 � 0 0 0 0 0

� � � � � � � �
0 0 � �k 0 0 0 0

0 0 � 0 0 0 0 0

0 0 � 0 0 0 0 0

1
CCCCCCCA

; (3.4.45)
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where again k is the dimension of .Ker˙/?, which coincides with the dimension of
.Ker˙T /?. Here we have n D k C 4 and m D k C 2. Assuming that the singular
values �i have been ordered in decreasing order, that is

�1 � �2 � : : : : � �k�1 � �k; (3.4.46)

we clearly have (referring to Corollary 3.1.4)

sup
�2Rn

k˙�kE
k�kE 	 �1 and sup

�2Im˙

kL˙�kE
k�kE 	 ��1

k ; (3.4.47)

which, using Proposition 3.4.3, gives immediately

inf
�2.Ker˙T /?

sup
�2.Ker˙/?

�T ˙�

k�kE k�kE DW Q̌
˙ 	 �k: (3.4.48)

Now, we remark that in (3.4.48) there would be no gain and no loss in taking the
supremum for � 2 R

n rather than for � 2 .Ker˙/? � R
n. In general, taking

the supremum on a bigger set will provide a bigger (or equal) supremum. Here,
for � 2 Ker˙ , the numerator in (3.4.48) (that is �T ˙�) will always be zero and
therefore the supremum will not change. Hence,

inf
�2.Ker˙T /?

sup
�2Rn

�T˙�

k�kE k�kE D �k: (3.4.49)

ut
Now, given an m 
 n matrix B , we set (recalling assumption (3.4.9))

M WD SY B SX; so that B D S�1
Y M S�1

X : (3.4.50)

Taking the singular value decomposition (3.4.44) for M will correspond to writing
B as

B D SY V ˙ U SX: (3.4.51)

It is not difficult to check that writing x D S�1
X U T � and y D S�1

Y V � yields

yT Bx
kxkX kykY D �T V T S�1

Y SY V ˙ U SX S
�1
X U T �

kSX S�1
X U T �kE kSY S�1

Y V �kE D �T ˙�

k�kE k�kE (3.4.52)

where, in the last step, we used the definition of the norms (3.4.9) and the fact that
U and V are unitary.

Noting that, as it can be easily checked, for y D S�1
Y V � and B given by (3.4.51)

(so that BT D SX U
T ˙T V T SY ), we have
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y 2 KerBT iff � 2 Ker˙T ;

we conclude that

inf
y2.KerBT /?

sup
x2Rn

yT Bx
kxkX kykY D inf

�2.Ker˙T /?
sup
�2Rn

�T ˙�

k�kE k�kE D �k: (3.4.53)

We collect the result in the following proposition.

Proposition 3.4.5. Let B be an m 
 n matrix, let the norms in X and Y be defined
as in (3.4.9) through the matrices SX and SY , respectively, and let Q̌ be defined as

inf
y2H?

sup
x2K?

xT BT y
kxkX kykY 	 inf

y2H?

sup
x2X

xT BT y
kxkX kykY DW Q̌; (3.4.54)

where, as usual, K WD KerB and H WD KerBT . Then, Q̌ coincides with the
smallest positive singular value of the matrix SY B SX . In particular, the inf-sup
condition (3.4.31) is equivalent to say that “all the singular values of SY B SX are
positive, and the smallest singular value Q̌ is bounded from below by a fixed positive
constant ˇ, independent of the decomposition”. ut

3.4.4 The Case of A Elliptic on the Whole Space

As we have seen when discussing solvability, the inf-sup condition alone cannot be
sufficient for having stability for problems of the general form (3.2.1) and (3.2.2).
In order to have sufficient conditions, we now introduce a further assumption on
the matrix A. As discussed at the end of Sect. 3.4.1, we start considering a strong
condition. More precisely, we make the following assumption.

Ellipticity condition. There exists a positive constant ˛, independent of the mesh-
size h, such that

˛kxk2X � xT Ax 8 x 2 X: (3.4.55)

We immediately note that, from (3.4.20) and (3.4.55), we easily deduce that

˛ � Ma: (3.4.56)

We now have the following Theorem.

Theorem 3.4.1. Let the assumptions (3.4.8)–(3.4.15) on spaces, norms and matri-
ces be satisfied. Let x; y; f; g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume moreover that the inf-sup condition (3.4.31) and the elliptic-
ity (3.4.55) are satisfied. Then, we have
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kxkX � 1

˛
kfkF C Ma

˛ˇ
kgkG; (3.4.57)

kykY � 2Ma

˛ˇ
kfkF C M2

a

˛ˇ2
kgkG: (3.4.58)

Proof. We shall prove the result by splitting x D xf C xg and y D yf C yg, defined
as the solutions of

(
Axf C BT yf D f;

Bxf D 0;
(3.4.59)

and
(
Axg C BT yg D 0;

Bxg D g:
(3.4.60)

We proceed in several steps.

• Step 1 – Estimate of xf and Axf
We multiply the first equation of (3.4.59) to the left by xTf and we note that

xTf B
T yf 	 yT Bxf D 0 (by the second equation). Hence,

xTf Axf D xT f (3.4.61)

and, using the ellipticity condition (3.4.55), relation (3.4.61) and the first of the
dual norm estimates (3.4.17), we have

˛kxf k2X � xTf Axf D xT f � kxf kX kfkF ; (3.4.62)

giving immediately

kxf kX � 1

˛
kfkF ; (3.4.63)

and using (3.4.18),

kAxf kF � Ma

˛
kfkF : (3.4.64)

• Step 2 – Estimate of yf
Using the equivalent form of the inf-sup condition (3.4.41), we have

ˇkyf kY � kBT yf kF D kf � Axf kF : (3.4.65)

Then, using (3.4.65), (3.4.64) and (3.4.56), we obtain

kyf kY � 1

ˇ
kf � Axf kF � 1

ˇ

	
1C Ma

˛



kfkF � 2Ma

˛ˇ
kfkF : (3.4.66)
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• Step 3 – Estimate of kxgk2X by kygkY
We use the ellipticity (3.4.55), then the first equation of (3.4.60), then (3.1.5),
then the second equation of (3.4.60), and finally the second of the dual norm
estimates (3.4.17):

˛kxgk2X � xTg Axg D �xTg B
T yg 	 �yTg Bxg D �yTg g � kygkY kgkG: (3.4.67)

• Step 4 – Estimate of kygkY by kxgkX
Using again the inf-sup condition in the from (3.4.41), the first equation
of (3.4.60) and the continuity property (3.4.18), we have

ˇkygkY � kBT ygkF D kAxgkF � MakxgkX : (3.4.68)

• Step 5 – Estimate of kxgkX and kygkY
We combine (3.4.67) and (3.4.68) to obtain

˛kxgk2X � Ma

ˇ
kgkGkxgkX ; (3.4.69)

which immediately implies

kxgkX � Ma

˛ˇ
kgkG: (3.4.70)

Using this in (3.4.68), we therefore have

kygkX � M2
a

˛ˇ2
kgkG: (3.4.71)

The final estimate then follows by simply collecting the separate esti-
mates (3.4.63), (3.4.66), (3.4.70) and (3.4.71).

ut
Remark 3.4.5. In some applications (and in particular for the Stokes problem), the
matrix A will always be symmetric and positive definite, essentially for all possible
types of finite element discretisations, with an ˛ easily bounded away from 0. In
these cases, the only condition that we must check will be the inf-sup condition on
B . This led some people to believe that the inf-sup condition forB is the assumption
to be made for getting a good method when dealing with mixed formulations. This,
however, is a superstition, based (as all superstitions) on a narrow horizon. We
will see in Chap. 5, Sect. 5.2.4, some examples of discretisations of simple one-
dimensional problems that illustrate this point. ut
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Remark 3.4.6. In some applications it might happen that the constants ˛ and ˇ
either depend on h (and tend to zero as h tends to zero) or have a fixed value
that is however very small. It is therefore important to keep track of the possible
degeneracy of the constants in our estimates when ˛ and/or ˇ are very small. In
particular, it is relevant to know whether our stability constants degenerate and tend
to infinity, for example, as 1=ˇ or 1=ˇ2 or other powers of 1=ˇ (and, similarly,
of 1=˛). In this respect, we point out that the behaviour indicated in (3.4.57)
and (3.4.58) is optimal. This means that we cannot hope to find a better proof giving
a better behaviour of the constants in terms of powers of 1=˛ and 1=ˇ, as shown by
the following example. Considering the system

0
BB@

1 �1 b

1 a 0

b 0 0

1
CCA

0
BB@

x1

x2

y

1
CCA D

0
BB@

f1

f2

g

1
CCA 0 < a; b � 1; (3.4.72)

one easily obtains

x1 D g

b
; x2 D f2

a
� g

ab
; y D f1

b
C f2

ab
� .1C a/g

ab2
: (3.4.73)

Since ˛ D a and ˇ D b, from (3.4.73) we deduce that the bounds of Theorem 3.4.1
cannot be improved. ut

The dependence of the stability constants on ˛ and ˇ can however be improved
if we add as a further assumption the symmetry of the matrix A. We have indeed the
following result.

Theorem 3.4.2. Let the assumptions (3.4.8)–(3.4.15) on spaces, norms and matri-
ces be satisfied. Let x; y; f; g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume moreover that the inf-sup condition (3.4.31) and the elliptic-
ity (3.4.55) are satisfied, and assume moreover that A is symmetric. Then, we have

kxkX � 1

˛
kfkF C M

1=2
a

˛1=2ˇ
kgkG; (3.4.74)

kykY � 2M
1=2
a

˛1=2ˇ
kfkF C Ma

ˇ2
kgkG: (3.4.75)

Proof. The following proof mimics rather closely the path of the previous one. In
particular, it is done again analysing separately the two problems: (3.4.59), for g D
0, and (3.4.60) for f D 0. However, instead of just indicating the differences between
the two proofs, we prefer to report also the second one in detail.

• Step 1 – Estimate of xf and Axf
We multiply the first equation of (3.4.59) to the left by xTf and we note that

xTf B
T yf 	 yT Bxf D 0 (by the second equation). Hence,
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xTf Axf D xT f (3.4.76)

and, using the ellipticity condition (3.4.55), relation (3.4.76) and the first of the
dual norm estimates (3.4.17), we have

˛kxf k2X � xTf Axf D xT f � kxf kX kfkF ;
giving immediately

kxf kX � 1

˛
kfkF (3.4.77)

as well as

xTf Axf � 1

˛
kfk2F : (3.4.78)

Therefore, using (3.4.22), we also get

kAxf kF � M
1=2
a

˛1=2
kfkF ; (3.4.79)

which improves estimate (3.4.64).
• Step 2 – Estimate of yf

We now use the equivalent form of the inf-sup condition (3.4.41) with y D yf .
We have

ˇkyf kY � kBT yf kF D kf � Axf kF : (3.4.80)

Then, using (3.4.80), (3.4.79) and (3.4.56), we obtain

kyf kY � 1

ˇ
kf �Axf kF �

 
1

ˇ
C M

1=2
a

˛1=2ˇ

!
kfkF � 2M

1=2
a

˛1=2ˇ
kfkF : (3.4.81)

• Step 3 – Estimate of xTg Axg by kygkY
We multiply the first equation of (3.4.60) by xTg . Using the second equation
of (3.4.60) and the second of the dual norm estimates (3.4.17), we have

xTg Axg D �xTg B
T yg 	 �yTg Bxg D �yTg g � kygkY kgkG: (3.4.82)

• Step 4 – Estimate of kygkY by .xTg Axg/1=2

Using now the inf-sup condition in the form (3.4.31) with y D yg, we get that
there exists an Qx ¤ 0 such that QxT BT yg � ˇkQxkXkygkY . This relation, the first
equation of (3.4.60) and the continuity property (3.4.25), yield

ˇkQxkXkygkY � QxT BT yg D �QxTAxg � M1=2
a kQxkX .xTg Axg/1=2; (3.4.83)

giving (as Qx ¤ 0):

kygkY � M
1=2
a

ˇ
.xTg Axg/1=2: (3.4.84)
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• Step 5 – Estimate of kxgkX and kygkY
We first combine (3.4.82) and (3.4.84) to obtain

kygkY � Ma

ˇ2
kgkG: (3.4.85)

Moreover, using the ellipticity assumption (3.4.55), then (3.4.82) and finally
(3.4.85), we have

˛kxgk2X � xTg Axg � kygkY kgkG � Ma

ˇ2
kgk2G;

which can be rewritten as

kxgkX � M
1=2
a

˛1=2ˇ
kgkG: (3.4.86)

The final estimate follows then by simply collecting the separate esti-
mates (3.4.77), (3.4.81), (3.4.86) and (3.4.85). ut

Remark 3.4.7. We point out that the behaviour indicated in (3.4.74) and (3.4.75)
is also optimal, in the sense that, as in the previous case, we cannot hope to find a
better proof giving a better behaviour of the constants in terms of powers of 1=˛ and
1=ˇ. Indeed, consider the system

0
BB@

2
p
a bp

a a 0

b 0 0

1
CCA

0
BB@

x1

x2

y

1
CCA D

0
BB@

f1

f2

g

1
CCA 0 < a; b � 1;

whose solution is

x1 D g

b
; x2 D f2

a
� g

a1=2b
; y D f1

b
� f2

a1=2b
� g

b2
: (3.4.87)

Since the constants ˛ and ˇ are given by

˛ D 2C a � p
a2 C 4

2
D 4a

2
�
2C aC p

a2 C 4
� � a

2

and

ˇ D b;

we see from (3.4.87) that there are cases in which the actual stability constants
behave exactly as predicted by the theory. ut
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3.4.5 The Case of A Elliptic on the Kernel of B

We now consider, together with the inf-sup condition on B , a condition on A that is
weaker than the full ellipticity (3.4.55). In particular, we require the ellipticity of A
to hold only in the kernel K of B .

More precisely, we make the following requirement.

Elker condition. There exists a positive constant ˛0, independent of the mesh-size
h, such that

˛0kxk2X � xTAx 8x 2 K; (3.4.88)

where K is the kernel of B .
The above condition is often called elker since it requires the ellipticity on the

kernel.
We remark, for future use, that from (3.4.20) and (3.4.88) we get

˛0 � Ma: (3.4.89)

The following Theorem generalises Theorem 3.4.1.

Theorem 3.4.3. Let the assumptions (3.4.8)–(3.4.15) on spaces, norms and matri-
ces be satisfied. Let x; y; f; g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume moreover that the inf-sup (3.4.31) and the elker condition (3.4.88)
are satisfied. Then, we have

kxkX � 1

˛0
kfkF C 2Ma

˛0ˇ
kgkG; (3.4.90)

kykY � 2Ma

˛0ˇ
kfkF C 2M2

a

˛0ˇ2
kgkG: (3.4.91)

Proof. We first set xg WD Lg where L is the lifting operator defined by Proposi-
tion 3.4.4. We also point out the following estimates on xg: from the continuity of
the lifting L (3.4.43) we have

ˇkxgkX � kgkG (3.4.92)

and using (3.4.18) and (3.4.92) we obtain

kAxgkF � MakxgkX � Ma

ˇ
kgkG: (3.4.93)

Then we set

xK WD x � xg D x � Lg (3.4.94)
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and we note that xK 2 K . Moreover, .xK; y/ solves the linear system

(
AxK C BT y D f � Axg;

BxK D 0:
(3.4.95)

We can now proceed as in Steps 1 and 2 of the proof of Theorem 3.4.1. We note
that our weaker assumption elker (3.4.88) is sufficient for allowing the first step
in (3.4.62). Proceeding as in the first part of Step 1, and using (3.4.93) at the end,
we get

kxKkX � 1

˛0
kf � AxgkF � 1

˛0

	
kfkF C Ma

ˇ
kgkG



: (3.4.96)

This allows to reconstruct the estimate on x:

kxkX D kxK C xgkX � 1

˛0
kfkF C

	
Ma

˛0ˇ
C 1

ˇ



kgkG

� 1

˛0
kfkF C 2Ma

˛0ˇ
kgkG; (3.4.97)

where we have used (3.4.89) in the last inequality. Combining (3.4.18) and (3.4.97),
we also have

kAxkF � MakxkX � Ma

˛0
kfkF C 2M2

a

˛0ˇ
kgkG: (3.4.98)

Then, we proceed as in Step 2 to obtain, as in (3.4.81),

ˇkykY � kf � AxkF (3.4.99)

and, using the above estimate (3.4.98) on Ax in (3.4.99), we obtain

kykY �
	
1

ˇ
C Ma

˛0ˇ



kfkF C 2M2

a

˛0ˇ2
kgkG � 2Ma

˛0ˇ
kfkF C 2M2

a

˛0ˇ2
kgkG; (3.4.100)

and the proof is concluded. ut

Remark 3.4.8. In the spirit of Remark 3.4.6, we note that the dependence of the
stability constants on ˛0 and ˇ is optimal. Indeed, the dependence is the same as
the one proved in Theorem 3.4.1 under stronger assumptions. Hence, the optimality
is again shown by example (3.4.72), for which we have ˛0 D a and ˇ D b. It
is interesting to note that, contrary to the result of Theorem (3.4.2), adding the
assumption that A is symmetric would not improve the bounds (!). Indeed,
considering the system
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0

BB@

1 1 b

1 a 0

b 0 0

1

CCA

0

BB@

x1

x2

y

1

CCA D

0

BB@

f1

f2

g

1

CCA 0 < a; b � 1; (3.4.101)

one easily obtains

x1 D g

b
; x2 D f2

a
� g

ab
; y D f1

b
� f2

ab
C .1 � a/g

ab2
: (3.4.102)

Since ˛0 D a and ˇ D b, system (3.4.101) shows the same behaviour as the bounds
of Theorem 3.4.3 (and not better), even though A is symmetric. ut

In order to recover the better bounds found in Theorem 3.4.2, we have to assume
that A, on top of satisfying the ellipticity in the kernel (3.4.88), is symmetric and
positive semi-definite in the whole R

n (a property that the matrix A in (3.4.101)
does not have for a < 1). This is because, in order to improve the bounds, one has
to use (3.4.22) that requires A to be symmetric and positive semi-definite. We have
indeed the following result, that we state without proof: indeed, we shall see in the
next section that this result can be obtained as a particular case of a more general
estimate (see Remark 3.6.4).

Theorem 3.4.4. Let the assumptions (3.4.8)–(3.4.15) on spaces, norms and matri-
ces be satisfied. Let x; y; f; g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume that the inf-sup (3.4.31) and the elker condition (3.4.88) are
satisfied, and assume moreover that A is symmetric and positive semi-definite on
the whole space X. Then, we have

kxkX � 1

˛0
kfkF C 2M

1=2
a

˛
1=2
0 ˇ

kgkG; (3.4.103)

kykY � 2M
1=2
a

˛
1=2
0 ˇ

kfkF C Ma

ˇ2
kgkG: (3.4.104)

3.4.6 The Case of A Satisfying an inf-sup on the Kernel of B

As we have seen in the previous sections, the ellipticity in the kernel for the matrix
A is not the weakest condition we can use. Indeed, in order to get necessary and
sufficient conditions for solvability, we used the surjectivity of B (here replaced
with the inf-sup condition on B) and the non-singularity of AKK on the kernel K of
B . Hence, it is clear that we still have room to improve the result of Theorem 3.4.3
by assuming on A some property weaker than (3.4.88). In particular we can assume

Inf-sup condition on AKK: There exists a positive constant ˛1, independent of the
mesh-size h, such that
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inf
x2K

sup
z2K

zT Ax
kzkX kxkX � ˛1: (3.4.105)

We note that (3.4.105) can be equivalently written as

˛1kxkX � sup
z2K

zT Ax
kzkX 8 x 2 K; (3.4.106)

or

˛1kxkX � kAKKxkK0 8 x 2 K; (3.4.107)

where we used the notation of (3.4.16).
We have then the following result.

Theorem 3.4.5. Let the assumptions (3.4.8)–(3.4.15) on spaces, norms and matri-
ces be satisfied. Let x; y; f; g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume, moreover, that the inf-sup condition (3.4.31) onB and the bounding
condition (3.4.107) on AKK are satisfied. Then, we have

kxkX � 1

˛1
kfkF C 2Ma

˛1ˇ
kgkG; (3.4.108)

kykY � 2Ma

˛1ˇ
kfkF C 2M2

a

˛1ˇ2
kgkG: (3.4.109)

Proof. The proof is identical to that of Theorem 3.4.3. The only change is in the
first inequality in (3.4.96). Using this time (3.4.107), and noting once more that
from (3.2.5), we easily obtain

˛1kxKkX � kAKKxKkK0 � kf � AKKxgkK0 � kfkF C kAxgkF ; (3.4.110)

so that the first inequality of (3.4.96) still holds if we replace ˛0 by ˛1. The rest of
the proof goes on unchanged. ut

So far, for every type of bounding conditions on the matrix A (global ellipticity
and ellipticity on K), we considered separately the special cases in which A had
some additional property. In particular, after Theorem 3.4.1 (where A was assumed
to be elliptic on the whole X), we considered in Theorem 3.4.2 the case where
A was also symmetric. Similarly, after Theorem 3.4.3 (where A was assumed to
be elliptic on K), we considered in Theorem 3.4.4 the case where A was also
symmetric and positive semi-definite on the whole X. Now, after Theorem 3.4.5
(where A is supposed to satisfy the bounding condition (3.4.107) on K), we could
ask ourselves what happens if we assume further that A is also symmetric and
positive semi-definite on the whole X. This, however, would bring us back to the
case of Theorem 3.4.4, thanks to the following proposition.
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Proposition 3.4.6. Let A be an n 
 n matrix, and K a subspace of Rn. Assume
that A is symmetric, positive semi-definite, and verifies (3.4.107) on K . Then, A is
elliptic on K . ut
Proof. Indeed, for x 2 K , using (3.4.106) and then (3.3.1), we have

˛21kxk2X � sup
z2K

.zT Ax/2

kzk2X
� sup

z2K
xT Ax zT Az

kzk2X
� MaxT Ax; (3.4.111)

and the result follows with ˛0 D ˛21=Ma. ut

3.5 Additional Results

In this section, we present some additional results concerning necessary conditions,
modified problems and special cases.

3.5.1 Some Necessary Conditions

We see in this subsection that the above sufficient conditions for having exis-
tence and uniqueness of the solution, together with stability estimates, are indeed
necessary.

Theorem 3.5.1. Assume that there exists a constantC such that, for any quadruple
.x; y; f; g/ in X 
 Y 
 F 
G solution of (3.2.1) and (3.2.2), we have

kxkX C kykY � C.jfjjF C jjgjjG/: (3.5.1)

Then, (3.4.107) and (3.4.31) are verified with ˛1 D ˇ D 1=C .

Proof. For every y 2 Y, it is easy to see that .0; y; BT y; 0/ satisfies (3.2.1) and
(3.2.2). Hence, (3.5.1) shows that the inf-sup condition (3.4.31) is satisfied in the
equivalent form (3.4.41), with ˇ D 1=C . Then, for every x 2 K D KerB , set
f WD �KAx 	 AKKx. Note that �K.f � Ax/ D 0, and hence f � Ax belongs to
K?. From (3.1.60) we have that there exists a y 2 Y such that BT y D f � Ax,
and since x 2 K , we have that .x; y; Ax; 0/ satisfies (3.2.1) and (3.2.2). Hence,
inequality (3.5.1) gives now (3.4.107) with ˛1 D 1=C . ut
Remark 3.5.1. Note that an inequality like (3.5.1) implies that the problem (3.2.1)
and (3.2.2) has been adimensionalised. This is not the case for the results of the
previous section. See also Remark 3.6.6 at the end of this chapter. ut

Theorem 3.5.1 dealt with the necessity of the assumptions in Theorem 3.4.5.
The following result deals with the necessity of the assumptions in Theorem 3.4.4.
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Theorem 3.5.2. Let A be symmetric and positive semi-definite. Assume that there
exists a constant C such that for any quadruple .x; y; f; g/ in X 
 Y 
 F 
 G

solution of (3.2.1) and (3.2.2) we have that the bound (3.5.1) holds. Then, (3.4.88)
and (3.4.31) are verified with ˛0 D 1=.C 2Ma/ (whereMa is the continuity constant
of A defined in (3.4.18)) and ˇ D 1=C , respectively.

Proof. The result is an immediate consequence of Theorem 3.5.1 and Proposi-
tion 3.4.6 ut
Remark 3.5.2. As we have seen in Theorem 3.2.1, the estimate (3.5.1) implies the
inf-sup condition (3.2.19) and the non singularity of AKK on the kernel K (3.2.18).
The purpose of Theorems 3.5.1 and 3.5.2 is mainly to show that a uniform bound
for C implies uniform bounds for the constants ˛1 (or ˛0) and ˇ. ut

3.5.2 The Case of B Not Surjective. Modification
of the Problem

Here, we come back, somehow, to the case of Remark 3.2.1. To start with, we
observe that, proceeding as in Remark 3.2.1 we, immediately have the following
result.

Proposition 3.5.1. Assume that AKK satisfies (3.4.105), and g 2 ImB . Then,
problem (3.2.1) and (3.2.2) has at least one solution .x; y/. Moreover, x is uniquely
determined and

jjxjjX � 1

˛1
.jjfjjF C Ma

Q̌ kgkG/ (3.5.2)

where Q̌ is defined in (3.4.28). ut
We note that (3.5.2) does not provide any estimate for the variable y. This should

be expected since in Proposition 3.5.1 we did not assume that the inf-sup condition
(3.4.31) holds true. However, (3.4.28) will always hold so that for g 2 ImB we
might consider the problem (3.2.1) and (3.2.2) in X 
H? instead of X 
Y, keeping
in H the same norm that we had in Y. Hence, we can apply any of the previous
theorems of this section (that is, one of the Theorems 3.4.1–3.4.5) and have an
estimate in X 
 H? as a function of the norms of f and g, of the constant ˛
(or ˛0, or ˛1) and of the constant Q̌ appearing in (3.4.28). For instance, applying
Theorem 3.4.2, we have the following result.

Theorem 3.5.3. Assume that the assumptions (3.4.8)–(3.4.15) on spaces,
norms and matrices are satisfied. Let x; y; f; g satisfy the general system of
equations (3.2.1) and (3.2.2), with y 2 H?. Assume moreover that A is symmetric
and satisfies (3.4.55) and that the constant Q̌ is defined by (3.4.28). Then, we
have:
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kxkX � 1

˛
kfkF C M

1=2
a

˛1=2 Q̌ kgkG; (3.5.3)

kykH? � 2M
1=2
a

˛1=2 Q̌ kfkF C Ma

Q̌2 kgkG: (3.5.4)

3.5.3 Some Special Cases

In some applications, we shall encounter situations where the right-hand side has the
special form .f; 0/ or .0; g/. In fact, the proofs of the previous Theorems often used
explicitly those special cases. We now consider them in more detail. For the sake
of simplicity, we will restrict our attention to the case of A symmetric and positive
semi-definite.

3.5.3.1 The case .f; 0/

From Proposition 3.5.1, we have immediately the following particular case.

Proposition 3.5.2. Assume that A satisfies (3.4.105) and g D 0. Then, prob-
lem (3.2.1) and (3.2.2) has at least one solution .x; y/. Moreover, x is uniquely
determined by f and

jjxjjX � jjfjjF
˛1

: (3.5.5)

Finally, y is unique up to an element in H 	 KerBT and

jj�H? yjjY � MajjfjjF
˛1 Q̌ : (3.5.6)

ut
Conversely, we have that Theorem 3.5.2 has two correspondents in the .f; 0/ case.

Proposition 3.5.3. Assume that A is symmetric and positive semi-definite, and
assume that there exists a constant C > 0 such that, for every quadruple
.x; y; f; 0/ 2 X 
 Y 
 F 
G satisfying (3.2.1) and (3.2.2), one has

jjxjjX � C jjfjjF : (3.5.7)

Then, the discrete ellipticity on the kernel (3.4.88) holds with ˛0 D 1=.C 2Ma/, Ma

being the continuity constant of A defined in (3.4.18). ut
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Proof. The proof is identical to the first part of the proof of Theorem 3.5.1, using
Proposition 3.4.6. ut
Proposition 3.5.4. Assume that A is symmetric and positive semi-definite, and
assume that there exists a constant C > 0 such that, for every quadruple
.x; y; f; 0/ 2 X 
 Y 
 F 
G satisfying (3.2.1) and (3.2.2), one has

jjyjjY � C jjfjjF : (3.5.8)

Then, the inf-sup condition (3.4.41) holds with ˇ D 1=C . ut
Proof. The proof is identical to the second part of the proof of Theorem 3.5.2. ut

3.5.3.2 The case .0; g/

We begin with a simple lemma.

Lemma 3.5.1. Assume that A is symmetric and positive semi-definite, and let Z be
a subspace of X. Then, Ker.AZZ/ � KerA.

Proof. If z is in the kernel of AZZ , we immediately have that

zT Az D 0; (3.5.9)

which, using (3.4.22), implies Az D 0. ut
We can now prove the following result.

Proposition 3.5.5. Assume that A is symmetric and positive semi-definite and
that the inf-sup condition (3.4.31) holds. Then, for every g 2 G and f D 0,
problem (3.2.1) and (3.2.2) has at least one solution .x; y/. Moreover, y is uniquely
determined by g and we have the bound

kykY � Ma

ˇ2
kgkG: (3.5.10)

ut
Proof. Using Proposition 3.4.4, we have that, for every g 2 G, there exists at least
one xg 2 X such that Bxg D g and

kxgk � 1

ˇ
kgkG: (3.5.11)

Using Lemma 3.5.1 with Z D K , we see that KerAKK � KerA. Then, using
Proposition 3.1.3 with r D s and S D Z D K , we have that �K ImA � ImAKK .
Hence, the problem: find xK 2 K such that
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AKKxK D ��KAxg (3.5.12)

has at least one solution. Using (3.4.22), then using (3.5.12) (multiplied to the left
by xK), and finally using the symmetry of A, one gets

kAxKk2F � MaxTKAxK D MaxTKAxg � MakxgkXkAxKkF ; (3.5.13)

which, using (3.5.11), gives immediately

kAxKkF � Ma

ˇ
kgkG: (3.5.14)

Note that (3.5.12) implies that A.xK C xg/ 2 K?, so that by (3.1.60) there exists a
y 2 Y such that BT y D �.AxK C Axg/, and by (3.4.41), (3.5.11), and (3.5.14) we
have

kykY � 1

ˇ
kA.xK C xg/kF � Ma

ˇ2
kgkG: (3.5.15)

Finally, observe that .xg C xK; y/ solves (3.2.1) and (3.2.2) with .0; g/ as right-hand
side.

To see the uniqueness, assume that .xi ; yi / (i D 1; 2) are two solutions. Clearly,
�KA.x1 � x2/ D �KB

T .y2 � y1/ D 0 and hence x1 � x2 is in the kernel of AKK .
Using Lemma 3.5.1, we see that A.x1 � x2/ D 0 so that, from the first equations,
BT .y2 � y1/ D 0 and the inf-sup condition (3.4.31) implies y1 D y2. ut
Proposition 3.5.6. Assume thatA is symmetric and positive semi-definite, and that
there exists a constant C > 0 such that, for every quadruple .x; y; 0; g/ 2 X 
 Y 

F 
G satisfying (3.2.1) and (3.2.2), one has

jjyjjY � C jjgjjG: (3.5.16)

Then, the inf-sup condition (3.4.31) holds. However, we cannot bound ˇ in terms of
the constant C appearing in (3.5.16). ut
Proof. Let us first remark that assumption (3.5.16) implies that BT is injective, and
this implies (3.4.31). In order to see that the value of ˇ cannot be deduced in general,
consider the case when A D 0, X D Y and B is � times the identity. Then, the inf-
sup condition holds with ˇ D j� j and (3.5.16) holds with C D 0. ut
Proposition 3.5.7. Assume thatA is symmetric and positive semi-definite, and that
there exists a constant C > 0 such that for every quadruple .x; y; 0; g/ 2 X 
 Y 

F 
G satisfying (3.2.1) and (3.2.2) one has,

jjxjjX C jjyjjY � C jjgjjG; (3.5.17)

then (3.2.1) and (3.2.2) has a solution for any f 2 F and g 2 G, and (3.4.31) holds
with ˇ D 1=C . ut
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Proof. Clearly, (3.5.17) implies that (3.2.1) and (3.2.2) for f D 0 and g D 0 has
only the zero solution. Hence, Corollary 3.1.3 implies the solvability of (3.2.1) and
(3.2.2) for general f and g, and then Theorem 3.2.1 gives us (3.2.18) and (3.2.19).
Hence, we just have to deal with the estimate of ˇ. Note that, now (as we already
have the unique solvability), (3.5.17) ensures the existence of a lifting operator that
associates to every g 2 G the first component x of the unique solution of (3.2.1) and
(3.2.2) with right-hand side .0; g/. Hence, the result follows from Proposition 3.4.4.

ut

3.5.4 Composite Matrices

In the previous section, we considered the case in which the matrix A has a block
structure of the type

A D
 
C DT

D 0

!
; (3.5.18)

and B has the structure B D .E 0/ or B D .0 E/, so that the whole matrix has
the block structure

M D

0

B@
C DT ET

D 0 0

E 0 0

1

CA (3.5.19)

or

M D

0
B@
C DT 0

D 0 ET

0 E 0

1
CA ; (3.5.20)

respectively. We were also able to find necessary and sufficient conditions for the
solvability, simply using in a reasonable way the conditions dictated by the basic
Theorem 3.2.1.

Here, we would like to consider the associated stability properties. These again
can be deduced from the general case. It is clear that we would need three sequences
of spaces X, Y and Z, with norms that ensure the continuity of the quadratic forms
associated with the matrices

� C . on X 
 X/;

� D . on X 
 Y/;

� E . on X 
 Z for (3.5.19) and Y 
 Z for (3.5.20)/;

as we did in (3.4.20), together with dual norms as in (3.4.10). Then, we just have to
change the non-singularity conditions into their corresponding uniform bounds.
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For instance, in the case (3.5.19), we easily obtained the algebraic condi-
tions (3.2.48), that we recall for convenience of the reader:

ImDT \ ImET D 0r ;

�KC is non-singular K ! K where K D KerD \ KerE:
(3.5.21)

It is not difficult to verify that the corresponding stability conditions are:

inf
.y;z/2Y�Z

sup
x2X

xTDT y C xT ET z
kxkX .kykY C kzkZ/

� ı > 0;

inf
Qx2K

sup
x2K

xT C Qx
kQxkX kxkY

� ˛ > 0; where K D KerD \ KerE:

(3.5.22)

Clearly, we could simplify the condition on C by requiring ellipticity on K, or
ellipticity on the whole X.

For (3.5.20), we performed first an exchange of rows and columns, to reach
the form

M D

0

B@
C 0 DT

0 0 E

D ET 0

1

CA ;

and we found the following solvability conditions:

KerDT \ KerE D 0;

KerET D 0;

� QKC is non-singular QK ! QK;
(3.5.23)

where QK (cfr. (3.2.52)) is given by

QK D fx 2 X such that Dx 2 .KerE/?g: (3.5.24)

Again, it is not difficult to verify that the corresponding stability conditions are:

inf
y2Y

sup
.x;z/2.X�Z/

yTDx C yT ET z
.kxkX C kzkZ/ kykY

� ı > 0;

inf
z2Z

sup
y2Y

yTET z
kykY kzkZ

� � > 0;

inf
Qx2 QK

sup
x2 QK

xT C Qx
kQxkX kxkY

� ˛ > 0:

(3.5.25)

Here too, the third condition could possibly by replaced by an ellipticity condition.
Moreover, it is easy to see that, in order to get the first condition, it would be
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sufficient to assume that one of the two matrices D or ET satisfies an inf-sup
condition by itself. However, this would often be an assumption too strong and
difficult to obtain in practice. As we did in the previous section, we do not insist
on these matters, and we shall not analyse the optimal dependence of the stability
constants from ı, � and ˛ appearing in (3.5.22) and (3.5.25).

3.6 Stability of Perturbed Matrices

We shall now discuss the case of problems of the type (3.3.1) where an additional
matrix C is present. We assume that we are given, for each k 2 N, an m.k/
m.k/
matrix Ck . Together with the matrices Ak and Bk , this will give us a sequence of
perturbed problems

 
Ak BT

k

Bk �Ck

! 
xk

yk

!
D
 

fk

gk

!
: (3.6.1)

As we did for the unperturbed case (3.4.1), we drop the index k, and we just
remember that we are actually dealing with a sequence of problems instead of a
single one.

As a first step, we have to extend our assumptions (3.4.20) on the continuity of
matrices A and B , requiring the continuity of C as well. Hence, we assume that
there exists a constantMc , independent of k, such that

8 z 2 Y; 8 y 2 Y zT Cy � Mc kzkY kykY : (3.6.2)

We note that, as in (3.4.18) and (3.4.19), we now have for every y 2 Y:

kCykG 	 sup
z2Rm

zT Cy
kzkY � MckykY : (3.6.3)

We would like to extend the results of the previous subsection to the perturbed
problem (3.6.1).

3.6.1 The Basic Estimate

Following Theorem 3.3.1 we are going to assume that A is symmetric and non-
singular on K D KerB . It will therefore be useful, in order to reach optimal
estimates in an easier way, to use directly (3.4.88), that we repeat for the conve-
nience of the reader

˛0kxk2X � xTAx 8x 2 K; (3.6.4)
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instead of (3.4.105). For technical reasons, it will also be easier to deal separately
with the case f D 0 and the case g D 0, as we did, for instance, in the proofs of
Theorems 3.4.1 and 3.4.2. This time, however, it will be more convenient to split the
results in two different lemmata, and join them afterwards. We start therefore with
the following lemma.

Lemma 3.6.1. Let the assumptions (3.4.8)–(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric,
and A and C are positive semi-definite. Then, if x, y, and g satisfy

(
Ax C BT y D 0

Bx � Cy D g;
(3.6.5)

we have the estimate

kxkX � 2M
1=2
a .ˇ2 CMcMa/

˛
1=2
0 ˇ3

kgkG; (3.6.6)

kykY � Ma

ˇ2
kgkG: (3.6.7)

Proof. Using the inf-sup condition in the form (3.4.41) together with the first
equation of (3.6.5), we obtain

ˇkykY � kBT ykF D kAxkF : (3.6.8)

Now, we take the scalar product of the first equation of (3.6.5) times x, we take the
scalar product of the second equation of (3.6.5) times y, and we take the difference,
obtaining

xT Ax C yT Cy D �yT g: (3.6.9)

Using (3.4.22), then Eq. (3.6.9) with the assumption that C is positive semi-definite,
and finally (3.4.17), we have

kAxk2F � MaxT Ax � �MayT g � MakykY kgkG; (3.6.10)

which, combined with (3.6.8), yields

kAxkF � Ma

ˇ
kgkG; (3.6.11)

so that, using again (3.6.8),

kykY � Ma

ˇ2
kgkG; (3.6.12)

which proves (3.6.7). The proof now becomes similar to that of Theorem 3.4.2.
Using Proposition 3.4.4, we set
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Qx WD L.g C Cy/ (3.6.13)

so that, from (3.4.43),

B Qx D g C Cy; (3.6.14)

together with

ˇkQxkX � kg C CykG � .1C McMa

ˇ2
/kgkG; (3.6.15)

where, in the last step, we used (3.6.3) and (3.6.12). From (3.6.15), we have then
immediately

kQxkX � ˇ2 CMcMa

ˇ3
kgkG: (3.6.16)

Setting now

xK WD x � Qx; (3.6.17)

we have from (3.6.14) and the second equation of (3.6.5) that xK 2 K (the kernel
of B). We then note that, from the first equation of (3.6.1):

xTKAx D �xTKB
T y D �yT BxK D 0: (3.6.18)

Moreover, using (3.6.17), (3.6.18), and then (3.3.5), we have

xTKAxK D �xTKAQx � .xTKAxK/1=2.QxT AQx/1=2; (3.6.19)

which easily gives

xTKAxK � QxT AQx: (3.6.20)

Hence, we can use (3.6.4) and (3.6.20) to obtain

˛0kxKk2X � xTKAxK � QxT AQx; (3.6.21)

and finally from (3.6.21) and (3.4.20)

kxKkX �
�Ma

˛0

�1=2kQxkX : (3.6.22)

Finally, we can collect (3.6.17), (3.6.22) and (3.6.16) and have an estimate for x:

kxkX � kxKkX C kQxkX � .1C .
Ma

˛
/1=2/kQxkX

� .1C .
Ma

˛0
/1=2/

ˇ2 CMcMa

ˇ3
kgkG:

(3.6.23)

Using (3.4.89) in (3.6.23), we obtain (3.6.6) and the proof is completed. ut
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Remark 3.6.1. The dependence of the constants in (3.6.6) and (3.6.7) on ˛0 and
ˇ cannot be improved. Indeed, considering for instance (for 0 < a; b � 1) the
problem

0

BBBBBBB@

2a
p
a �p

a 0 0p
a 2 1 b 0

�p
a 1 2 0 b

0 b 0 0 1

0 0 b �1 0

1

CCCCCCCA

�

0

BBBBBBB@

x1

x2

x3

y1

y2

1

CCCCCCCA

D

0

BBBBBBB@

0

0

0

�1
�1

1

CCCCCCCA

; (3.6.24)

we easily have, as unique solution,

x1 D 3

b3a1=2
; x2 D �3C b2

b3
; x3 D 3 � b2

b3
; (3.6.25)

y1 D 3

b2
; y2 D 3

b2
: (3.6.26)

We can easily check that we have ˛0 D 2a and ˇ D b, and we verify the optimality
of (3.6.12) and (3.6.23). ut

We now consider the case where g is equal to zero and f is not.

Lemma 3.6.2. Let the assumptions (3.4.8)–(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric,
and A and C are positive semi-definite. Then, if x, y, and f satisfy

(
Ax C BT y D f

Bx � Cy D 0;
(3.6.27)

we have the estimates

kxkX � .ˇ2 C 2McMa/
2 C 4.McMa/

2

˛0ˇ4
kfkF ; (3.6.28)

kykY � 2M
1=2
a .2McMa C ˇ2/

˛
1=2
0 ˇ3

kfkF : (3.6.29)

Proof. As in the previous lemma, we take the scalar product of the first equation
of (3.6.27) with x, then we take the scalar product of the second equation of (3.6.27)
with y, and we take the difference, obtaining

xT Ax C yT Cy D xT f: (3.6.30)
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Using then (3.4.22), Eq. (3.6.30) with the assumption that C is positive semi-
definite, and finally (3.4.17), we have

kAxk2F � MaxT Ax � MaxT f � MakxkX kfkF : (3.6.31)

Next, we use the inf-sup condition in the form (3.4.41) to obtain, from the first
equation of (3.6.27),

ˇkykY � kBT ykF 	 kf � AxkF
� kAxkF C kfkF :

(3.6.32)

We now consider, as we did before, the lifting operator L as defined in Proposi-
tion 3.4.4 and we set

Qx WD L.Cy/ (3.6.33)

so that

B Qx � Cy D 0: (3.6.34)

Then, using (3.4.43) and (3.6.3),

ˇkQxkX � kCykG � Mc kykY : (3.6.35)

We now set

xK WD x � Qx (3.6.36)

and we note that, clearly, BxK D 0, so that xK 2 K D KerB . Our next (and most
delicate) step will be to estimate xK in terms of Qx. We first note that, using (3.6.4),

˛0kxKk2X � xTKAxK; (3.6.37)

which implies that

kxKkX �
�xTKAxK

˛0

�1=2
: (3.6.38)

Then, we estimate xTKAxK . We remember again that xTKB
T y D 0 (since xK 2

KerB), so that, using (3.6.36) and the first equation of (3.6.27),

xTKAxK D xTKAx � xTKAQx D xTKf � xTKAQx: (3.6.39)

We now use (3.6.39) with (3.4.17) and (3.3.5), and then (3.6.38) to obtain

xTKAxK � kfkF kxKkX C .xTKAxK/1=2.QxTAQx/1=2

� kfkF
�xTKAxK

˛0

�1=2 C .xTKAxK/1=2.QxT AQx/1=2

� .xTKAxK/1=2
� 1

˛01=2
kfkF C .QxT AQx/1=2

�
;

(3.6.40)
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implying

.xTKAxK/1=2 � 1

˛01=2
kfkF C .QxT AQx/1=2: (3.6.41)

Inserting (3.6.41) into (3.6.38), and then using (3.4.20), we now have

kxKkX � 1

˛0
kfkF C

� QxT AQx
˛0

�1=2 � 1

˛0
kfkF C Ma

1=2

˛01=2
kQxkX : (3.6.42)

We can now collect (3.6.36), (3.6.42) and (3.6.35) to obtain an estimate for x

kxkX � kxKkX C kQxkX � 1

˛0
kfkF C

�McM
1=2
a

˛01=2ˇ
C Mc

ˇ

�
kykY

� 1

˛0
kfkF C 2McM

1=2
a

˛01=2ˇ
kykY :

(3.6.43)

Now, we take the square of both sides of (3.6.32), we use .a C b/2 � 2.a2 C b2/,
we insert (3.6.31) and finally (3.6.43):

ˇ2kyk2Y � 2kAxk2F C 2kfk2F � 2MakxkX kfkF C 2kfk2F

� 2kfkF
�2McM

3=2
a

˛01=2ˇ
kykY C Ma

˛0
kfkF

�C 2kfk2F :
(3.6.44)

We now use the fact that, for positive real numbers t , a, and b, if t2 � at C b, then
t � a C p

b. Applied to (3.6.44), this gives

kykY � 4McM
3=2
a

˛01=2ˇ3
kfkF C .2Ma C 2˛0/

1=2

˛01=2ˇ
kfkF : (3.6.45)

Using again the fact that ˛0 � Ma, we can rewrite (3.6.45) as

kykY � 2M
1=2
a .2McMa C ˇ2/

˛01=2ˇ3
kfkF : (3.6.46)

Inserting (3.6.46) into (3.6.43), we obtain the corresponding estimate for x:

kxkX �
�8.McMa/

2 C 4McMaˇ
2

˛0ˇ4
C 1

˛0

�
kfkF

D .ˇ2 C 2McMa/
2 C 4.McMa/

2

˛0ˇ4
kfkF ; (3.6.47)

which concludes the proof. ut
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Remark 3.6.2. The result (3.6.28) and (3.6.29) cannot be improved in its depen-
dence from the constants ˛0 and ˇ. Indeed, if we consider, for 0 < a; b � 1, the
system

0

BBBBBBB@

2a
p
a �p

a 0 0p
a 2 1 b 0

�p
a 1 2 0 b

0 b 0 0 1

0 0 b �1 0

1

CCCCCCCA

�

0

BBBBBBB@

x1

x2

x3

y1

y2

1

CCCCCCCA

D

0

BBBBBBB@

2

0

0

0

0

1

CCCCCCCA

; (3.6.48)

we easily have, as unique solution,

x1 D 3C b4

a b4
; x2 D �3 � b2

a1=2 b4
; x3 D 3 � b2

a1=2 b4
; (3.6.49)

y1 D 3 � b2

a1=2 b3
; y2 D 3C b2

a1=2 b3
: (3.6.50)

It is not difficult to check that ˛0 D 2a and ˇ D b. Hence, (3.6.49) and (3.6.50)
shows the optimality of (3.6.28) and (3.6.29). ut
We can now collect the results of the previous two lemmata.

Theorem 3.6.1. Let the assumptions (3.4.8)–(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric
and that A and C are positive semi-definite. Then, if x, y, f, and g satisfy

(
Ax C BT y D f

Bx � Cy D g;
(3.6.51)

we have the estimates

kxkX � .ˇ2 C 2McMa/
2 C 4.McMa/

2

˛0ˇ4
kfkF

C 2M
1=2
a .ˇ2 CMcMa/

˛
1=2
0 ˇ3

kgkG; (3.6.52)

kykY � 2M
1=2
a .2McMa C ˇ2/

˛
1=2
0 ˇ3

kfkF C Ma

ˇ2
kgkG: (3.6.53)

The proof easily follows by linearity.
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3.6.2 The Symmetric Case for Perturbed Matrices

The dependence of the constants in (3.6.52) and (3.6.53) on ˛0 and ˇ improves
noticeably if we assume that C is symmetric as well. As an example, we can
consider the particular case (relevant in applications) of systems still having the
structure (3.6.1), where C is a symmetric and positive definite matrix verifying

�kyk2Y � yT Cy � Mckyk2Y 8 y 2 Y: (3.6.54)

We note that our assumption (3.6.54) easily implies that

1

Mc

kzk2G � zT C�1z � 1

�
kzk2G 8 z 2 Y: (3.6.55)

From (3.6.54), we easily obtain as well that

kykY � 1

�
kCykG 8 y 2 Y (3.6.56)

and from (3.6.55)

kzkG � MckC�1zkY 8 z 2 Y: (3.6.57)

We are now ready to prove our improved estimates.

Remark 3.6.3. We shall prove in the next chapter, Sect. 4.3, additional related
results (in the infinite dimensional case) which may be considered as more elegant,
but for which we have no example showing optimality. ut

Theorem 3.6.2. Let the assumptions (3.4.8)–(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric
and positive semi-definite and that C is symmetric and satisfies (3.6.54). Then, if x,
y, f, and g satisfy (3.6.51), we have the estimate

kxkX � ˇ2 C 4McMa

˛0ˇ2
kfkF C 2M

1=2
a Mc

˛
1=2
0 �ˇ

kgkG (3.6.58)

and

kykY � 2McM
1=2
a

�˛
1=2
0 ˇ

kfkF C 2Ma.Mc C �/

Ma�2 C .Mc C �/ˇ2
kgkG: (3.6.59)

Proof. As we are already used to, we shall split the two cases f D 0 and g D 0, and
then combine the estimates by linearity.

Let us consider first the case f D 0, and assume that x, y, and g satisfy (3.6.5).
Following the notation of Lemma 3.6.1, we still have (3.6.11), (3.6.12)

and (3.6.22). Our target is to improve (3.6.16), which is suboptimal in our (stronger)
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assumptions. For this we restart by taking once more the scalar product of the first
equation of (3.6.5) times x, getting

xTAx C xT BT y D 0 (3.6.60)

and we substitute y D C�1.Bx � g/. Recalling that A is positive semi-definite, we
obtain

xT BT C�1Bx � xT BT C�1g D gT C�1Bx: (3.6.61)

Using (3.6.55) with z D Bx, then (3.6.61), then (3.4.17), and finally (3.6.56) with
y D C�1Bx, we have

kBxk2G � Mc.xT BT C�1Bx/ � Mc.gT C�1Bx/

� MckgkG kC�1BxkY � Mc

�
kgkGkBxkG; (3.6.62)

which easily gives

kBxkG � Mc

�
kgkG: (3.6.63)

As in Lemma 3.6.1, we set again (see (3.6.13) and (3.6.14)) Qx WD L.gCCy/, getting
B Qx D g C Cy D Bx. Using (3.4.43), we have therefore

ˇkQxkX � kB QxkG D kBxkG (3.6.64)

and combining (3.6.63) and (3.6.64), we obtain

kQxkX � Mc

�ˇ
kgkG; (3.6.65)

which is the required improvement of (3.6.16). We can now use this improved
estimate in (3.6.22), and we obtain

kxKkX �
�Ma

˛

�1=2kQxkX � McM
1=2
a

�ˇ˛1=2
kgkG: (3.6.66)

We note at this point that we have another way to obtain an estimate for y, apart
from (3.6.12) that we keep from the previous analysis; actually, from (3.6.56) and
the second equation of (3.6.5), and then (3.6.63):

kykY � 1

�
kBx � gkG �

� 1
�

C Mc

�2

�
kgkG D � CMc

�2
kgkG: (3.6.67)

With some manipulations, we see that (3.6.12) and (3.6.67) can be combined into

kykY � 2Ma.Mc C �/

Ma�2 C .Mc C �/ˇ2
kgkG: (3.6.68)
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We collect the results for f D 0:

kxkX � kxKkX C kQxkX �
��Ma

˛0

�1=2 C 1
�Mc

�ˇ
kgkG; (3.6.69)

kykY � 2Ma.Mc C �/

Ma�2 C .Mc C �/ˇ2
kgkG: (3.6.70)

We also note that, using ˛0 � Ma, the estimate (3.6.69) becomes

kxkX � 2M
1=2
a Mc

˛
1=2
0 �ˇ

kgkG: (3.6.71)

We consider now the case in which g D 0 and assume that x, y, and f satisfy
(3.6.27). As before, we can keep part of the previous analysis, but we can improve
it in several places. From the proof of Lemma 3.6.2, we keep the definition of Qx and
xK , and the estimates (3.6.41) and (3.6.42). We now take the scalar product of the
first equation of (3.6.27) times Qx, and substitute y D C�1Bx:

QxT Ax C QxT BT C�1Bx D QxT f: (3.6.72)

We now recall that B Qx D Bx, and rewrite (3.6.72) as follows

xT BT C�1Bx D QxT f � QxTAx: (3.6.73)

We now apply (3.6.55) with z D Bx and we use (3.6.73) to obtain:

1

Mc

kBxk2G � xT BT C�1Bx D QxT f � QxT Ax:

We then use (3.4.17) and the estimate ˇkQxkG � kB QxkG D kBxkG as in (3.6.64)
and we reach

1

Mc

kBxk2G � 1

ˇ
kfkF kBxkG � QxT Ax: (3.6.74)

We leave (3.6.74) for a while, and we estimate �QxT Ax. Using the fact that x D
Qx C xK , then (3.3.5), then (3.6.41), and finally some little algebra, we have

� QxT Ax D �QxT AQx � QxT AxK

� �QxT AQx C .QxTAQx/1=2.xTKAxK/1=2

� �QxT AQx C .QxT AQx/1=2
� 1

˛01=2
kfkF C .QxT AQx/1=2

�

D 1

˛01=2
kfkF .QxT AQx/1=2; (3.6.75)
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which inserted in (3.6.74) gives

1

Mc

kBxk2G � 1

˛
1=2
0

kfkF .QxT AQx/1=2 C 1

ˇ
kfkF kBxkG: (3.6.76)

Using the continuity of A (3.4.18) and once more ˇkQxkX � kBxkG , inequality
(3.6.76) gives:

1

Mc

kBxk2G � M
1=2
a

˛
1=2
0 ˇ

kfkF kBxkG C 1

ˇ
kfkF kBxkG; (3.6.77)

so that we can divide both sides by kBxkG , obtaining

1

Mc

kBxkG � M
1=2
a

˛
1=2
0 ˇ

kfkF C 1

ˇ
kfkF � M

1=2
a C ˛

1=2
0

˛
1=2
0 ˇ

kfkF ; (3.6.78)

which is the basis of our improved estimates. From (3.6.78), we first derive

kQxkX � 1

ˇ
kB QxkG � Mc .M

1=2
a C ˛

1=2
0 /

˛
1=2
0 ˇ2

kfkF ; (3.6.79)

and then we use it in (3.6.42)

kxKkX � 1

˛0
kfkF C M

1=2
a

˛
1=2
0

kQxkX

�
� 1
˛0

C M
1=2
a

˛
1=2
0

Mc .M
1=2
a C ˛

1=2
0 /

˛
1=2
0 ˇ2

�
kfkF

�
� 1
˛0

C McMa CMc.Ma˛0/
1=2

˛0ˇ2

�
kfkF : (3.6.80)

From the second equation of (3.6.27), (3.6.56) and (3.6.78), we also derive our
improved estimate for y

kykY D kC�1BxkY � 1

�
kBxkG � Mc

�

M
1=2
a C ˛

1=2
0

˛
1=2
0 ˇ

kfkF : (3.6.81)

We collect the results for g D 0, using the fact that ˛ � Ma. From (3.6.79) and
(3.6.80), we have the estimate on x
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kxkX � kQxkX C kxKkX

�
�Mc .M

1=2
a C ˛

1=2
0 /

˛
1=2
0 ˇ2

C 1

˛0
C McMa CMc.Ma˛0/

1=2

˛0ˇ2

�
kfkF

� ˇ2 C 4McMa

˛0ˇ2
kfkF ; (3.6.82)

while, from (3.6.81), we have the estimate on y

kykY � 2McM
1=2
a

�˛
1=2
0 ˇ

kfkF : (3.6.83)

The final results can then be obtained collecting (3.6.70), (3.6.71), (3.6.82) and
(3.6.83). ut
Remark 3.6.4. We remark that in several applications we have C D "Identity, so
that Mc D � D ". In this case, the estimates (3.6.58) and (3.6.59) become

kxkX � ˇ2 C 4"Ma

˛0ˇ2
kfkF C 2M

1=2
a

˛
1=2
0 ˇ

kgkG (3.6.84)

and

kykY � 2M
1=2
a

˛
1=2
0 ˇ

kfkF C 4Ma

Ma"C 2ˇ2
kgkG: (3.6.85)

We also note that in the limit for " ! 0 we recover the result of Theorem 3.4.4. ut
Remark 3.6.5. We also point out that (3.6.84) and (3.6.85) are optimal, with respect
to the dependency of the stability constants on the parameters ˛0, ˇ and ". To see
that, consider for 0 < a; b � 1 the problem

0

BBBBBBB@

2a
p
a �p

a 0 0p
a 2 1 b 0

�p
a 1 2 0 b

0 b 0 �" 0

0 0 b 0 �"

1

CCCCCCCA

�

0

BBBBBBB@

x1

x2

x3

y1

y2

1

CCCCCCCA

D

0

BBBBBBB@

2f

0

0

0

2g

1

CCCCCCCA

; (3.6.86)

whose solution is given by
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x1 D f .b2 C "/

ab2
C g

ba1=2
; x2 D � f "

a1=2b2
� 3g"

b.3"C b2/
;

x3 D f "

a1=2b2
C g.3"C 2b2/

b.3"C b2/
; (3.6.87)

y1 D � f

a1=2b
� 3g

3"C b2
; y2 D f

a1=2b
� 3g

3"C b2
: (3.6.88)

Indeed, it is easy to recognise that ˛0 D 2a and ˇ D b, and hence the optimality of
estimates (3.6.84) and (3.6.85). ut
Remark 3.6.6. It is of some interest to check that all our estimates are “dimension-
ally correct”. Indeed, denoting by Œa�, Œb�, Œc�, Œx�, Œy�, Œf � and Œg�, respectively, the
physical dimensions of A, B , C , x, y, f and g, we have that Ma and ˛ have the
same dimensions as A (and hence, in particular,Ma=˛ is a pure number). Similarly,
Mc and � have the same dimension as Œc�. Moreover, from the two equations of our
system, we have

Œx� D Œf �

Œa�
D Œg�

Œb�
; Œy� D Œf �

Œb�
D Œa�Œg�

Œb2�
D Œg�

Œc�
(3.6.89)

from which we easily deduce that Œa� Œc� equals to Œb2�, so that for instance
MaMc=ˇ

2 is also a pure number. Taking this into account, we can verify that, in

every stability inequality, an Œx� is bounded by a
1

Œa�
Œf � times a pure number or by a

1

Œb�
Œg� times a pure number, while a Œy� is bounded by a

1

Œb�
Œf � times a pure number

or by a
Œa�

Œb2�
Œg� times a pure number. ut



Chapter 4
Saddle Point Problems in Hilbert Spaces

In the first chapter of this book, we introduced a large number of saddle point
problems or generalisations of such problems. In most cases, the question of
existence and uniqueness of solutions was left aside. In the previous chapter, we
considered the solvability of finite dimensional problems in mixed form, together
with the stability of sequences of such problems. We now introduce an abstract
frame that is sufficiently general to cover all our needs, from the problems of
existence and uniqueness in infinite dimension to the stability of their Finite Element
discretisations.

As a first step, we shall recall some basic definitions of Functional Analysis:
Hilbert spaces, continuous functionals, bilinear forms, and linear operators associ-
ated with bilinear forms.

In Sect. 4.2, we discuss conditions that ensure existence and uniqueness for
mixed formulations in Hilbert spaces. Several examples of mixed formulations
related to Partial Differential equations will illustrate the theoretical results. Dif-
ferent stability estimates will then be provided for different sets of assumptions.

The last section (Sect. 4.2.2) will be devoted to the study of perturbed problems
(whose algebraic aspects were discussed in Sect. 3.6 of the previous chapter).

We shall follow essentially the analysis of [112] and [122]. We also refer the
reader to other presentations, as can be found in the books [41, 106, 222, 315, 337].

4.1 Reminders on Hilbert Spaces

In this section, we recall some basic notions on Hilbert spaces. Most readers, and
in particular those with a better mathematical background, will already be familiar
with all the contents of the section. For them, the aim of the section will just be to
fix the notation. For other people with a weaker mathematical background, it could
be useful to refresh some notions. On the other hand, we do not pretend to provide
a complete mastering of Hilbert spaces to people that never heard of them before.

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 4,
© Springer-Verlag Berlin Heidelberg 2013
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For these people, a superficial reading will be enough to convince them that things,
in Hilbert spaces, are very similar to their counterparts in finite dimensional spaces.

4.1.1 Scalar Products, Norms, Completeness

We assume that the reader is familiar with the concept of linear space over R. This,
roughly speaking, means that you are allowed to sum two elements of the space, and
to multiply each element of the space times a real number.

LetH1 andH2 be two linear spaces overR. A map a W H1
H2 ! R is said to be
a bilinear form onH1
H2 if, for every u1; v1;w1 2 H1, for every u2; v2;w2 2 H2

and for every �;� 2 R, we have

a.�u1 C �v1;w2/ D �a.u1;w2/C �a.v1;w2/

a.w1; �u2 C �v2/ D �a.w1; u2/C �a.w1; v2/:
(4.1.1)

When both H1 and H2 coincide in a single linear space H , we shall often say that
a is a bilinear form on H , meaning that it is a bilinear form onH 
H .

A bilinear form a onH is said to be symmetric if, for every u; v 2 H , we have

a.u; v/ D a.v; u/: (4.1.2)

A bilinear form s on H is said to be a scalar product if it is symmetric and if,
moreover,

s.v; v/ � 0 8 v 2 H and s.v; v/ D 0 ) v D 0: (4.1.3)

We assume that we have a scalar product given on H 
 H , and from now on
we shall write .u; v/H (or simply .u; v/ when no confusion can occur) instead of
s.u; v/. To a scalar product, we can always associate a norm

kvkH WD
�
.v; v/H

�1=2 8 v 2 H: (4.1.4)

Again, we shall simply write kvk instead of kvkH when no confusion is likely
to occur. It is interesting to note that the norm, as defined in (4.1.4), has the usual
properties of the norms in finite dimension:

k�vk D j�j kvk 8 v 2 H; 8� 2 R;

kvk � 0 8 v 2 H and kvk D 0 ) v D 0;

kv1 C v2k � kv1k C kv2k 8 v1; v2 2 H:
(4.1.5)
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It is also worth noting that, even in infinite dimension, we have the Cauchy
inequality

.u; v/H � kukHkvkH 8 u; v 2 H; (4.1.6)

whose proof can be easily done mimicking the proof of Lemma 3.3.1 of the previous
chapter.

It is a strong temptation to start defining a norm first (as a mapping fromH to R

satisfying (4.1.5)), and then getting a scalar product out of it, for instance by

.u; v/ WD
�
ku C vk2 � ku � vk2

�
=4: (4.1.7)

Smart, isn’t it? But doomed. That would work if and only if the norm you started
with satisfies the so called parallelogram identity:

kv C uk2 C kv � uk2 D 2.kuk2 C kvk2/: (4.1.8)

A norm that satisfies (4.1.5) and (4.1.8) is said to be a pre-Hilbert norm, and
induces a scalar product associated to it through (4.1.7).

A linear space H with a norm k � kH that satisfies (4.1.5) is called a normed
space. If, on top of that, the norm satisfies the parallelogram identity (4.1.8), then
we say that H is a pre-Hilbert space.

As soon as we have a norm (no matter if it is a pre-Hilbert norm or not), we can
talk about convergence and limits. We say that the sequence fvng of elements ofH
converges to v 2 H (or that v is the limit of vn for n ! C1) if

lim
n!C1 kvn � vkH D 0: (4.1.9)

The limit in (4.1.9) is obviously the one of elementary calculus (dealing with
sequences of real numbers). When the type of norm to be used cannot be confused,
we will also write, more simply, vn ! v.

Example 4.1.1. It is immediate to see that for every integer k � 1 the space R
k

with the usual Euclidean norm (3.1.6) used in the previous chapter is a pre-Hilbert
space. Indeed, the Euclidean norm does come from a scalar product, so that

kxCyk2Ckx�yk2 D kxk2Ckyk2C2xT yCkxk2Ckyk2�2xT y D 2.kxk2Ckyk2/:
On the other hand, for instance R2 with the norm kxk1 WD jx1j C jx2j, already seen
in (3.0.4), is not a pre-Hilbert space, since the norm k � k1 does not satisfy (4.1.8):
try it with u D .1; 0/ and v D .0; 1/. ut

Once we have a norm inH , we can measure the distance of two elements u and v
ofH by ku�vk. Given a non-empty subset T � H , we can measure its diameter by

diam.T / WD sup
u;v2T

ku � vk: (4.1.10)
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Loosely speaking, the diameter of T is the “maximum” distance of any two elements
in T . It is obvious that for two subsets S and T , if T � S , then diam.T / � diam.S/
(if you increase the set of possible choices, the supremum cannot go down).

Now, for every sequence fvngn2N of elements ofH , and for every integerm 2 N,
we can consider its m-th tail Tm, defined as the set

Tm WD fvm; vmC1; vmC2 : : :g 	 fvnj n � mg: (4.1.11)

We clearly have TmC1 � Tm for everym 2 N (the farther you cut, the lesser is left in
the tail). Hence, whatever the sequence fvng from which you started, the sequence
of real numbers diam.Tm/ that you get out of it is obviously non increasing: that is,
diam.TmC1/ � diam.Tm/ for every m. Hence, the sequence diam.Tn/ will always
have a limit, which is � 0. A sequence fvng of elements of a normed space H is
said to be a Cauchy sequence in H if the sequence of real numbers fdiam.Tm/g
that you get out of it verifies

lim
m!C1 diam.Tm/ D 0: (4.1.12)

Note that, in order to speak about Cauchy sequences, what you need is to be able
to measure the distance of two objects. This is always possible if, as in our case,
you have a norm. This is also possible in more general situations, but we are not
interested in them here.

A normed linear space H is said to be complete if for every Cauchy sequence
fvng in H there exists an element v 2 H such that vn ! v in the sense of (4.1.9).
In other words, a normed linear space is complete if every Cauchy sequence has a
limit. We are almost done.

Definition 4.1.1. A Banach space is a normed linear space that is complete.

Definition 4.1.2. A Hilbert space is a pre-Hilbert space that is complete.

Note that we could have defined alternatively a Hilbert space as a Banach space
whose norm satisfies the parallelogram identity (4.1.8). Hence, every Hilbert space
is also a Banach space, but the converse is not true: in Hilbert spaces, you have a
scalar product, and in Banach spaces that are not Hilbert spaces, you do not (and
can not) have one.

Example 4.1.2. It is immediate to have, from elementary Calculus, that for every
integer k � 1 the space R

k , with the usual Euclidean scalar product and norm, is a
Hilbert space. In particular, R itself is a Hilbert space if we take the usual product
of two numbers as scalar product (and hence the absolute value as norm). We also
saw in the previous chapter that, for instance in R

2, the norm kxk1 WD jx1j C jx2j
is equivalent to the Euclidean norm (in the sense of (3.0.5)). On the other hand, we
have already seen in Example 4.1.1 that R2 with the norm k � k1 is not even a pre-
Hilbert space, and hence it cannot be a Hilbert space although, still by elementary
Calculus, it is easily seen to be a Banach space. Actually, it is not difficult to check
that the property of being complete is not lost if you exchange your norm with an
equivalent norm (while the property (4.1.8) might indeed be lost). ut
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Example 4.1.3. Regarding the functional spaces already used in the first chapter,
we can see that if˝ is a bounded open domain, then L1.˝/ (the space of Lebesgue
integrable functions over˝), with the norm

kvkL1.˝/ WD
Z

˝

jv.x/j dx (4.1.13)

is a Banach space, but not a Hilbert space. Note that, as we did already in the first
chapter (and as we are going to do all over this book), we used the term functions in
lieu of the (more precise) classes of measurable functions.

Instead, the space L2.˝/ (the space of Lebesgue square integrable functions
over˝), with the norm

kvk2
L2.˝/

WD
Z

˝

v2.x/ dx (4.1.14)

is a Hilbert space, and the corresponding scalar product is given by

.u; v/L2.˝/ WD
Z

˝

u.x/v.x/ dx: (4.1.15)

Similarly, the space H1
0 .˝/ with the scalar product

.u; v/H1
0 .˝/

WD
Z

˝

grad u.x/ � grad v.x/ dx (4.1.16)

is a Hilbert space. ut
In the following discussion, we shall mostly use only Hilbert spaces. Hence, from

now on, we shall mainly concentrate on them, although most of the concepts and
results could be extended easily to Banach spaces.

4.1.2 Closed Subspaces and Dense Subspaces

Definition 4.1.3. A subset T of a Hilbert space H is said to be closed if, for every
Cauchy sequence fvngn2N of elements of T , the limit v (which surely exists in H ,
since H is complete) belongs to T as well.

If T is a linear subspace of a Hilbert space H , and if T is closed, then we will
say that T is a closed subspace of H . Then T itself will be a Hilbert space, with
the same norm as H .

Example 4.1.4. For instance, in L2.˝/, we can consider the subspace L20.˝/made
of functions that have zero mean value in ˝ . It is easy to see that it is a closed
subspace (since the L2-limit of functions with zero mean value has itself zero
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mean value). On the other hand, C0.˝/ is a linear subspace of L2.˝/, but it is not
closed: for instance, for˝ D �� 1; 1Œ, the sequence fn.x/ WD arctan.nx/ converges
in L2.˝/ to f1.x/ WD .�=2/ sign .x/, which does not belong to C0.˝/. ut
Definition 4.1.4. LetH be a Hilbert space, and letZ be a subset ofH . The closure
of Z, that we denote by Z, is the set of elements v 2 H such that there exists a
sequence fzngn2N of elements of Z that converges to v.

We abviously have that Z is closed if and only if Z D Z.
Another important concept regarding subspaces is that of a dense subspace.

Definition 4.1.5. A subset Z of a Hilbert space H is said to be dense if its closure
Z coincides with the whole space H . If Z is also a linear subspace of H , then we
say that it is a dense subspace.

In other words, Z is dense in H if for every element v of H there exists a
sequence fzngn2N of elements of Z such that

lim
n!C1 kv � znkH D 0:

Example 4.1.5. It is not difficult to see that Z WD H1
0 .˝/ is a dense subspace of

H D L2.˝/. It is also clear that Z is not a closed subspace of H : for instance, for
˝ D � � 1; 1Œ, the sequence of functions defined by

zn.x/ WD min .1; n � njxj/ 	
(

1 when jxj � 1 � 1=n

n.1 � jxj/ when jxj > 1 � 1=n
verifies zn 2 H1

0 .˝/ for all n, and its limit in L2 equals the constant 1, which is not
in H1

0 .˝/ (as it does not vanish at the boundary). ut
Note that a dense closed subspace of a Hilbert space H coincides necessarily with
the whole space H . Hence, in general, we consider subspaces that are closed, but
not dense, and subspaces that are dense, but not closed. These two categories of
subspaces are both very important, and we cannot restrict our attention to just one
of them. We point out however, from the very beginning, that closed subspaces are
the ones that, loosely speaking, inherit most of the properties of subspaces of finite
dimensional spaces. In particular, a finite dimensional subspace is always closed
and is never dense (unless it coincides with the whole space).

4.1.3 Orthogonality

Some very useful instruments available in Hilbert spaces (and not in Banach spaces)
are related to the concept of orthogonality. We say that two elements u and v of
a Hilbert space H are orthogonal if .u; v/H D 0. It is the same as in the finite
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dimensional case, with the only difference that there, the scalar product was denoted
by vT u. IfZ is a linear subspace of a Hilbert spaceH , we can define its orthogonal
complement Z?

Z? WD fw 2 H such that .w; z/ D 0 8 z 2 Zg: (4.1.17)

It is not difficult to see that an orthogonal complement Z? is always closed (even
when Z itself is not closed). As in (3.1.24), if Z1 and Z2 are both subspaces of a
Hilbert space H , then

Z1 � Z2 ) Z?
2 � Z?

1 : (4.1.18)

Moreover, we have the following useful property.

Proposition 4.1.1. Let H be a Hilbert space, let Z be a subspace of it, and let Z
be its closure. Then,

Z
? D Z?: (4.1.19)

Proof. SinceZ � Z, we obviously haveZ
? � Z?. On the other hand, let w 2 Z?.

We want to see that .z;w/H D 0 for all z 2 Z. Indeed, for every z 2 Z, there exists
a sequence fzngn2N of elements of Z that converges to z. As w 2 Z?, we have
.zn;w/H D 0 for all n. Hence,

.z;w/H D lim
n!C1.zn;w/ D 0: (4.1.20)

ut
Remark 4.1.1. Note that, as we had in Remark 3.1.3, the notion of orthogonal space
depends heavily on the choice of the “whole space” H . Indeed, if H1 and H2 are
Hilbert spaces, and Z is a subspace of H1 and also a subspace of H2, then the
orthogonal of Z in H1 will, in general, be different from the orthogonal of Z in
H2. This is rather obvious. However, the common notation (that we are using here)
does not distinguish among the two (we should, for this, use something like Z?H1

and Z?H2 , which would be tremendously ugly). As a consequence, one should be
careful when confusion is possible. ut

As we did in the finite dimensional case, if Z is a closed subspace, we can define
the projection operator �Z W H ! Z defined for every v 2 H by

�Zv 2 Z and .�Zv � v/ 2 Z?: (4.1.21)

Compare with (3.1.31) to see that we are just extending the definitions given in the
previous chapter for the finite dimensional case. As we had in the finite dimensional
case, �Zv can be seen as the element in Z that minimises the distance from v,
namely

k�Zv � vkH D min
z2Z kz � vkH : (4.1.22)
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Remark 4.1.2. In the definition of �Z , we assumed that Z was a closed subspace
of H . Of the two properties (of being closed, and of being a subspace), the second
is not very important. Indeed, it is easy to see that (4.1.22) can be used to define
the projection mapping �Z in more general cases, for instance when Z is not a
subspace but simply a closed convex subset, as for instance a closed affine manifold
(which, roughly speaking, is the translation of a closed subspace). On the other hand,
closedness is more essential. To see what can happen when you remove it, assume
thatZ is a dense subspace. Then, for v inH but not inZ, the projection�Zv cannot
be defined: indeed, we recall that, from Proposition 4.1.1, if Z is dense (and hence
Z D H ), then Z? D H? D f0g. Hence, looking at the definition (4.1.21), if Z
is dense the only w 2 H such that .w � v/ 2 Z? is w D v. However, such a w is
not in Z, so that there is no element that we could choose as �Zv that satisfies both
properties required in (4.1.21). Hence, �Zv does not exist. Note that the alternative
definition (4.1.22) would not be of any help either. Actually, always for Z dense
and v 2 H with v … Z, the minimum of kz � vk for z 2 Z does not exist, and the
infimum is equal to zero. ut

It is easy to check that ifH is a Hilbert space, and ifZ is a closed linear subspace,
then every element v of H can be split in a unique way into its two components in
Z and in Z?:

v D vZ C vZ? ; (4.1.23)

just by setting vZ WD �Zv.

Example 4.1.6. For instance, if H WD L2.˝/ and Z WD L20.˝/, then Z? is the
(one-dimensional) space made of constant functions. The projection of v 2 L2.˝/

onto Z is given by

�Z D v � 1

j˝j
Z

˝

v.x/ dx; (4.1.24)

where j˝j is the Lebesgue measure of ˝ . ut
We have, moreover, the following property.

Proposition 4.1.2. Let H be a Hilbert space and Z a closed subspace of it. Then,
either Z 	 H or Z? is not reduced to f0g.

Proof. If Z does not coincide with H , then there exists a v 2 H such that v … Z.
Hence, �Zv � v ¤ 0. As (4.1.21) also gives �v � v 2 Z?, the proof is concluded.

ut
We can now see the equivalent of (3.1.23) in general Hilbert spaces.

Proposition 4.1.3. Let H be a Hilbert space, and Z � H a subspace. Then,

�
Z?�? D Z iff Z is closed: (4.1.25)

Proof. Indeed, if Z 	 .Z?/?, then Z, being the orthogonal of something, is
closed. To see the converse, we remark first that we always have the inclusion
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Z � .Z?/?. If Z is closed, suppose, by contradiction, that Z does not coincide
with .Z?/?. From Proposition 4.1.2 (applied with H D .Z?/?), we should have
a v 2 .Z?/?, with v ¤ 0, that is orthogonal to all z in Z. As such, v will hence be
also in Z?. However,Z? \ .Z?/? D f0g and this contradicts the fact that v ¤ 0.

ut
Moreover, we have the following additional property.

Proposition 4.1.4. Let H be a Hilbert space, and let Z be a subspace of H . Then,

Z? D f0g iff Z is dense: (4.1.26)

Proof. Assume first that Z is dense. Then, Z 	 H and hence Z
? D f0g, and the

result follows from Proposition 4.1.1. Assume conversely that Z? D f0g. Always

from Proposition 4.1.1, we have now Z
? D f0g. However, Z is closed, and hence,

by Proposition 4.1.2 Z D H , and Z is therefore dense. ut

4.1.4 Continuous Linear Operators, Dual spaces, Polar Spaces

We can now recall several other important definitions.

Definition 4.1.6. Let V and W be Hilbert spaces, and let M be a linear mapping
from V to W . We say that M is bounded or that it is continuous if there exists a
constant �� such that

kMvkW � ��kvkV 8 v 2 V: (4.1.27)

Note that we have two different names for that (bounded and continuous) because
the two definitions do not coincide if the operator is not linear. Actually, for a
more general operator, (4.1.27) defines a bounded operator, while continuity can
be taken as in the usual Calculus books: for every v 2 V and for every sequence vn
converging to v, we have that Mvn converges to Mv. Here, however, we only deal
with linear operators, and the two concepts coincide.

Example 4.1.7. For instance, the operator v ! @v

@x1
is continuous from H1

0 .˝/

to L2.˝/. Similarly, if � is a given (fixed) bounded function, then the mapping
v ! � v is continuous from L2.˝/ into itself. ut

The following definition is less common but very useful.

Definition 4.1.7. Let V and W be Hilbert spaces and let M be a linear mapping
from V to W . We say that M is bounding if there exists a constant �� such that

kMvkW � ��kvkV 8 v 2 V: (4.1.28)
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In other words, bounding operators are injective operators whose inverse is
continuous.

The set of all linear continuous operators from a Hilbert space V into another
Hilbert space W is also a linear space (after defining, in an obvious way, the sum
of two operators or the multiplication of an operator times a real number). Such a
space is usually denoted by L.V;W /. In L.V;W /, we can also introduce a norm:

kM kL.V;W / WD sup
v2V

kMvkW
kvkV : (4.1.29)

When no confusion can occur, the norm in (4.1.29) is simply denoted by kM k.
Hence, for instance, (4.1.29) implies

kMvkW � kM k kvkV 8 v 2 V: (4.1.30)

One can prove that (4.1.29) actually defines a norm, and that such a norm verifies
(4.1.8), so that with this norm L.V;W / is itself a Hilbert space.

A remarkable result concerning linear continuous and one-to-one operators is the
following one, due to Banach.

Theorem 4.1.1 (Banach Theorem). Let V and W be Hilbert spaces and let
M 2 L.V;W / be a one to one mapping. Then, its inverse operator M�1, from
W to V , is also continuous.

Proof. The proof can be found in any book of Functional Analysis. ut
As we did for finite dimensional spaces, given a subspace Z � V , we can

consider the extension operator EZ!V , from Z to V which to every z 2 Z

associates the same z, thought as an element of V . If there is no risk of confusion,
this will, more simply, be denoted by EZ as we did in the previous chapter. Always
in agreement with the finite dimensional case, given an operatorM 2 L.V;W /, we
can consider the restrictionMZ of M to Z, that could be defined as

MZ z D M EZ z 8z 2 Z: (4.1.31)

Since for every z 2 Z � V we have obviously MZ z D M z, in several occasions,
the extension operator EZ will not be explicitly written. In other cases, however,
such notation will turn out to be very useful.

If we assume that Z is a closed subspace of V , that S is a closed subspace of W
andM 2 L.V;W /, we can also consider its restriction MZS, defined as

MZS z D �S M EZ z 8z 2 Z: (4.1.32)

It is easy to check thatMZS 2 L.Z; S/. Conversely, given an operatorL in L.Z; S/,
we can always consider its extension QL 2 L.V;W / defined by
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QLv D ES L�Z v 8v 2 V: (4.1.33)

A particular case of linear operators, of paramount importance, is found when
the arrival space is R. In this case, linear operators V ! R are called linear
functionals on V . The space of all linear continuous functionals on a Hilbert
space V is called the dual space of V , and is usually denoted by V 0. Hence,
V 0 	 L.V;R/. As a particular case of the previous situation, V 0 is itself a Hilbert
space, and its norm (often called the dual norm of k � kV ) is given by

kf kV 0 WD sup
v2V

jf .v/j
kvkV : (4.1.34)

We easily recognise the definition of dual norms that were given in finite dimension.
The value of f at v (denoted by f .v/ in (4.1.34)) is often denoted in a different way:
either by V 0hf; viV or by hf; viV 0�V , or simply hf; vi when no confusion can occur.
It is not too difficult to check (although we shall not do it here) that, if V is a Hilbert
space, then the dual space of V 0 (often called the bi-dual space), actually can be
identified with V itself (see the Ritz representation Theorem (4.1.37) here below).

Example 4.1.8. For instance, in one dimension, it is easy to see that the mapping
ı0 W v ! v.0/ 2 R is continuous fromH1

0 .� � 1; 1Œ/ to R: indeed,

v.0/ D
Z 0

�1
v0.t/ dt �

� Z 0

�1
12 dt

�1=2� Z 0

�1
.v0.t//2 dt

�1=2

� 1
�Z 1

�1

�
v0.t//2 dt

�1=2 D kvkH1
0 . ��1;1Œ /: (4.1.35)

Hence, ı0 is an element of the dual space of H1
0 . � � 1; 1Œ / (usually denoted by

H�1. � � 1; 1Œ /). Note that a similar result does not hold in dimension d > 1.
Indeed, if ˝ is the disk centred at the origin O and radius 1=

p
e, a simple explicit

computation shows that the function

v.x; y/ WD log j log.x2 C y2/j
is indeed in H1

0 .˝/. Setting

vn.x; y/ WD minfn; v.x; y/g;
it is not difficult to see that vn converges to v in H1

0 .˝/. However, vn.0; 0/ D n so
that the bound

vn.0; 0/ � CkvnkH1
0 .˝/

cannot be true with a constant C (no matter how big) independent of n, as the left-
hand side tends to C1 and the right-hand side stays finite. Similarly, the estimate
(4.1.35) becomes false if we try to replace, in the right-hand side, theH1 norm with
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the L2 norm: consider, for instance, the sequence of functions defined by

vn.x/ D
(

1 for x in Œ�1=n; 1=n�
0 for x outside Œ�1=n; 1=n�:

We have

kvnk2L2��1;1Œ D
Z 1

�1
v2n.x/ dx D

Z 1=n

�1=n
1 dx D 2

n
! 0

while vn.0/ D 1 for all n. Hence, there is no constant C (independent of n) such
that

vn.0/ � C kvnkL2. ��1;1Œ /: ut

Example 4.1.9. Let us also see an example of dual norm: let n be an integer (larger
than 1) and consider in ˝ D �0; �Œ the function fn.x/ WD sin.nx/. It is immediate
to check that

kfnkL2.˝/ D p
�=2 and that kfnkH1

0 .˝/
D n

p
�=2:

To fn we can associate an element, that we still call fn, ofH�1.˝/ (that is the dual
space of H1

0 .˝/) as follows

hfn; 'iH�1�H1
0

WD
Z �

0

'.x/fn.x/ dx 8' 2 H1
0 .˝/:

Let us compute the norm of fn in H�1.˝/. For every ' 2 H1
0 .˝/ we have

(integrating by parts):

hfn; 'i D
Z �

0

fn.x/'.x/ dx D
Z �

0

sin.nx/'.x/ dx

D 1

n

Z �

0

cos.nx/' 0.x/ dx � 1

n
k cos.nx/kL2 k'kH1

0
D
p
�=2

n
k'kH1

0
;

giving us, always for every ' 2 H1
0 .˝/:

hfn; 'i
k'kH1

0

�
p
�=2

n
: (4.1.36)

On the other hand, it is not difficult to see that, taking ' 	 sin.nx/, we get
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hfn; 'i
k'kH1

0

D �=2

n
p
�=2

D
p
�=2

n
;

showing that .1=n/
p
�=2 actually realises the supremum (over all possible '’s) of

the left-hand side of (4.1.36). In conclusion, we have

kfnkL2.˝/ D
p
�=2 kfnkH1

0 .˝/
D n

p
�=2 kfnkH�1.˝/ D

p
�=2

n
:

This shows that the three norms k � kL2 , k � kH1
0
, and k � kH�1 cannot be equivalent.

This also shows that a high frequency function can have, at the same time, an L2-
norm (and a maximum norm) of the order of 1, a huge H1-norm (' energy norm),
and a tiny H�1-norm. This will show up in the next chapter, when the use of finer
and finer grids will allow the presence of highly oscillating piecewise linear (or
piecewise polynomial) functions. ut

While several properties that we saw and that we will see hold in a much more
general setting (for instance, in all Banach spaces), the following theorem is, in a
certain sense, characteristic of Hilbert spaces.

Theorem 4.1.2 (Ritz’s Theorem). Let H be a Hilbert space, and let RH be the
operator H ! H 0 that to each z 2 H associates the functional fz D RH z 2 H 0
defined as

hfz; viH 0�H D .z; v/H 8v 2 H: (4.1.37)

Then, RH is one to one, and kRH kL.H;H 0/ D kR�1
H kL.H 0;H/ D 1. Moreover, if we

identify (as it is natural)H with .H 0/0, then R�1
H D RH 0 .

Proof. The proof can be found in every Functional Analysis textbook. ut
Another result that we are going to use later on is the following theorem, that can

be seen as a particular case of a more general result, known as the Kato Theorem.

Theorem 4.1.3 (Kato Theorem). Let V and W be Hilbert spaces and let T1 and
T2 be in L.V;W /. If T1 is bounding, then there exists an "0 > 0 such that for all
" 2 R with j"j � "0 the perturbed operator T1 C "T2 is also bounding, and we have
moreover

kT �1
1 � .T1 C "T2/

�1kL.W;V / � C j"j (4.1.38)

with C depending on "0 but independent of ".

If Z is a subspace of a Hilbert space H , we can spot a special subset of H 0,
usually called the polar space of Z, made of all functionals f 2 H 0 that vanish
identically on Z. The polar space of Z is usually denoted by Z0: hence, we have

Z0 WD ff 2 H 0 such that hf; ziH 0�H D 0 8 z 2 Zg: (4.1.39)
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It is clear that the definition of polar space of Z makes sense only when Z is
considered as a subspace of another space (in this case, H ). In particular, the polar
space of Z D f0g coincides with the whole H 0 while the polar space of Z D H is
reduced to the zero functional.

Remark 4.1.3. It is easy to check that a polar space is always closed. Indeed,
roughly speaking, if hfn; zi D 0 for every n and for every z, and if fn ! f in
H 0, then hf; zi D 0 for all z. ut
The concept of polar space is commonly used for general Banach spaces. In Hilbert
spaces, however, it becomes particularly simple using the Ritz Theorem. Indeed,
from (4.1.39), we immediately have

Z0 	 RH.Z
?/: (4.1.40)

From this and Proposition 4.1.3, we then have

�
Z0
�0 D Z iff Z is closed; (4.1.41)

and from (4.1.26),

Z0 D f0g iff Z is dense: (4.1.42)

Remark 4.1.4. Property (4.1.42) is a particular case (or, if you want, the restriction
to Hilbert spaces) of a fundamental theorem of Functional Analysis, known as the
Hahn-Banach Theorem. ut
Remark 4.1.5. As we had in Remark 4.1.1 for orthogonal spaces, if Z can be seen
as a subspace of two different spaces H1 and H2, then the polar of Z in H

0

1 will be
different from the polar of Z in H

0

2 . ut
Similarly to (4.1.18), when Z1 and Z2 are subspaces of the same space H , then

Z1 � Z2 ) Z0
2 � Z0

1: (4.1.43)

4.1.5 Bilinear Forms and Associated Operators; Transposed
Operators

Another important particular case is that of bilinear forms. Assume that V and Q
are Hilbert spaces: we say that a bilinear form b from V 
Q to R is continuous if
there exists a constant �b such that

b.v; q/ � �bkvkV kqkQ 8 v 2 V; 8 q 2 Q: (4.1.44)

The norm of the continuous bilinear form kbkL.V�Q;R/ is then defined as
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kbkL.V�Q;R/ WD sup
v2V
q2Q

b.v; q/

kvkV kqkQ ; (4.1.45)

and it will be denoted simply by kbk when no confusion can occur. Hence, from
(4.1.44) and (4.1.45), we have

b.v; q/ � kbk kvkV kqkQ 8 v 2 V; 8 q 2 Q: (4.1.46)

It is important to note that continuous bilinear forms on V 
Q are strictly connected
to linear continuous operators from V toQ0: indeed, if b is a bilinear form on V 
Q,
we can associate to it a linear operator B from V to Q0, defined as

hBv; qiQ0�Q WD b.v; q/ 8 v 2 V; 8 q 2 Q: (4.1.47)

Conversely, if B is a linear operator from V toQ0, we can associate to it the bilinear
form

b.v; q/ WD hBv; qiQ0�Q 8 v 2 V; 8 q 2 Q: (4.1.48)

It is elementary to check that B is continuous (from V to Q0) if and only if the
associated bilinear form b is continuous from V 
Q to R. To B W V ! Q0 we can
also associate another operator, that we call transposed operator Bt W Q ! V 0,
given by

hv;BtqiV�V 0 WD hBv; qiQ0�Q D b.v; q/: (4.1.49)

Example 4.1.10. It is easy to see that if V WD R
n and Q WD R

m, then the linear
operators from V toQ0 ' Q are just .m
n/ matrices. In particular, the transposed
operator will simply be the transposed matrix. ut

It is worth noting that the continuity of the three objects b, B , and Bt is just the
same property. In particular we have

kBkL.V;Q0/ 	 kBtkL.Q;V 0/ 	 kbkB.V�Q;R/ 	 sup
v2V
q2Q

b.v; q/

kvkV kqkQ : (4.1.50)

For a linear operator M from a Hilbert space V to another Hilbert space W , we
can define the kernel and the image (or range) as we did in (3.1.7) for the finite
dimensional case:

KerM WD fv 2 V such that Mv D 0g;
ImM WD fw 2 W such that 9 v 2 V with Mv D wg: (4.1.51)

Remark 4.1.6. Note that the kernel of a continuous operator M is always closed.
Indeed, ifMvn D 0 and vn ! v in V , the continuity ofM will imply thatMv D 0.
This is not true for the image. Referring to the case of Example 4.1.5, take V D
H1
0 .˝/ andW D L2.˝/, withMv D v for every v 2 V . Clearly,M is continuous,
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but ImM D V is not a closed subspace of W . This fact (that the image might not
be closed) puts pains thousandfold upon the mathematicians (whether Achaians or
not). However, as you will see, one can survive. ut

We concentrate now our attention on the case of linear operators B from V

to W D Q0, with their associated bilinear form b and transposed operator Bt ,
as in (4.1.49). In this case, we can see that KerB and KerBt can be written,
respectively, as

KerB W D fv 2 V such that b.v; q/ D 0 8 q 2 Qg
D fv 2 V such that hv;BtqiV�V 0 D 0 8 q 2 Qg (4.1.52)

and

KerBt W D fq 2 Q such that b.v; q/ D 0 8 v 2 V g
D fq 2 Q such that hBv; qiQ0�Q D 0 8 v 2 V g: (4.1.53)

In finite dimensional problems (see Proposition 3.1.2), we did interpret (4.1.52)
and (4.1.53) as

KerB D .ImBT /? and KerBT D .ImB/? (4.1.54)

respectively. This, however, cannot be done in the present infinite dimensional case,
because, for instance, ImB is not a subset of Q but a subset of Q0 (the two spaces
were identified in finite dimension without telling you anything; sorry for that!). We
have, however introduced a special definition for that: the polar space (see (4.1.39)).
Hence, we can interpret (4.1.52) and (4.1.53) as

KerB D .ImBt/0 and KerBt D .ImB/0 (4.1.55)

respectively. In finite dimension, in Theorem 3.1.1, we also had ImBT D .KerB/?
and ImB D .KerBT /?. Here we might hope to have

.KerB/0 D ImBt and .KerBt/0 D ImB: (4.1.56)

Actually, for instance, the equality

.KerB/0 D ImBt (4.1.57)

will follow easily from the second of (4.1.55) using (4.1.41) if we only knew
that ImB is closed. However, unfortunately, this is not always the case. On the
other hand, if ImB is not closed, then (4.1.57) is hopeless, as a polar space is
always closed. Indeed, we can see that we have the following generalisation of
Corollary 3.1.1 and Theorem 3.1.1 to the infinite dimensional case.

Theorem 4.1.4. Let V and Q be Hilbert spaces, and B a linear continuous
operator from V toQ0 (that is: B 2 L.V;Q0/). Then, the following three properties
are equivalent:
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ImB is closed in Q0 (4.1.58)

ImB D .KerBt/0 (4.1.59)

9LB 2 L.ImB; .KerB/?/ and ˇ > 0 such that:

B LB g D g 8 g 2 ImB and ˇkLB gkV � kgkQ0 8 g 2 ImB:
(4.1.60)

Proof. We already discussed the equivalence of (4.1.58) and (4.1.59). Moreover,
if (4.1.58) holds, then B (or actually its restriction to .KerB/?) becomes (with the
same argument used in Proposition 3.1.1) a continuous one-to-one operator between
the two Hilbert spaces .KerB/? and ImB , and Theorem 4.1.1 gives us (4.1.60).
Finally, (4.1.60) easily implies (4.1.58): if gn D B vn is a Cauchy sequence in Q0
then, using (4.1.60), we have that vn (equal to Lgn) is a Cauchy sequence in V .
Then, it converges to a v 2 V , and the continuity of B implies that gn converges to
B v in Q0. Hence, the limit of gn is in ImB . ut

Exchanging B and Bt , we immediately have the equivalence of the three
properties

ImBt is closed in V 0 (4.1.61)

ImBt D .KerB/0 (4.1.62)

9LBt 2 L.ImBt ; .KerBt/?/ and ˇ > 0 such that:

Bt LBt f D f 8 f 2 ImBt and ˇkLBt f kQ � kf kV 0 8 f 2 ImBt:

(4.1.63)

What is somehow remarkable is that, actually, the two triplets of properties (4.1.58)–
(4.1.60) and (4.1.61)–(4.1.63) are equivalent to each other. This actually follows
easily from the following proposition.

Proposition 4.1.5. Let V and Q be Hilbert spaces, and B a linear continuous
operator from V to Q0 (that is: B 2 L.V;Q0/). Then, ImB is closed iff ImBt is
closed.

Proof. In view of the above equivalences, we only need to prove that (4.1.58)–
(4.1.60) imply (4.1.61). For this, consider q 2 .KerBt/? and set g D RQq where
RQ is the Ritz operator Q ! Q0. Using (4.1.40) we have g 2 . KerBt/0. Hence,
using (4.1.59), we have g 2 ImB so that g D Bx for x D LBg and from (4.1.60):
ˇkxkV � kgkQ0 D kqkQ. Then, we have

kqk2Q D Q0hRQq; qiQ D Q0hg; qiQ D Q0hBx; qiQ

D V hx;BtqiV 0 � kxkV kBtqkV 0 � 1

ˇ
kqkQ kBtqkV 0 (4.1.64)
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which easily gives

ˇkqkQ � kBtqkV 0 8q 2 .KerBt/? (4.1.65)

which, in turn, proves that ImBt is closed by the same argument used in the proof
of Theorem 4.1.4 ut

We can summarise the above results in the following theorem, that is a particular
case of a more general (and important) theorem, also due to Banach, and mostly
known as the Closed Range Theorem.

Theorem 4.1.5 (Banach Closed Range Theorem). Let V and Q be Hilbert
spaces and let B be a linear continuous operator from V to Q0. Set

K WD KerB � V and H WD KerBt � Q: (4.1.66)

Then, the following statements are equivalent:

• ImB is closed in Q0,
• ImBt is closed in V 0,
• K0 D ImBt ,
• H0 D ImB ,
• 9LB 2 L.ImB;K?/ and 9ˇ > 0 such that B.LB.g// D g 8 g 2 ImB and

moreover ˇkLBgkV � kgkQ0 8 g 2 ImB ,
• 9 LBt 2 L.ImBt ;H?/ and 9ˇ > 0 such that Bt.LBt .f // D f 8 f 2 ImBt

and moreover ˇkLBt f kQ � kf kV 0 8 f 2 ImBt . ut
In the following treatment, we shall often assume that B is surjective. Let us see

what the Closed Range Theorem has to say in this case.

Corollary 4.1.1. Let V andQ be Hilbert spaces, and let B be a linear continuous
operator from V to Q0. Then, the following statements are equivalent:

• ImB D Q0,
• ImBt is closed and Bt is injective,
• Bt is bounding: 9ˇ > 0 s.t. kBtqkV 0 � ˇkqkQ 8 q 2 Q,
• 9 LB 2 L.Q0; V / such that B.LB.g// D g 8 g 2 Q0, with kLBk D 1=ˇ.

The proof is immediate.
A useful consequence of Corollary 4.1.1 is the well known Lax-Milgram Lemma:

Theorem 4.1.6 (Lax-Milgram Lemma). Let V be a Hilbert space, and let a.� ; �/
be a bilinear continuous form on V . Assume that a is coercive, that is

9˛ > 0 such that a.v; v/ � ˛ kvk2V ; 8 v 2 V: (4.1.67)

Then, for every f 2 V 0, the problem: find u 2 V such that
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a.u; v/ D hf; viV 0�V 8 v 2 V (4.1.68)

has a unique solution.

Proof. Note that (4.1.68) is equivalent to Au D f , where A 2 L.V; V 0/ is the
operator associated to the bilinear form a. We have to prove that A is injective and
surjective. Condition (4.1.67) immediately implies that A is bounding:

kAvkV 0 D sup
w2V nf0g

a.v;w/

kwkV � a.v; v/

kvkV � ˛kvkV : (4.1.69)

Hence, A is injective. With an identical proof, we see that At is also bounding.
Hence, At is injective and (due to Corollary 4.1.1) A is surjective. ut
Remark 4.1.7. Roughly speaking, we can summarise the result of the Closed Range
Theorem by saying that operators with a closed range have essentially all the
well-known properties of operators in finite dimensional spaces (whose range is
always trivially closed) that we have seen in the previous chapter. In particular,
Corollary 4.1.1 is exactly what we need to extend the properties and the results of
Sect. 3.4 to the infinite dimensional case. See in particular Proposition 3.4.4. ut

4.1.6 Dual Spaces of Linear Subspaces

We have seen two (very different) types of subspaces: closed subspaces and dense
subspaces. We shall see now that they also behave quite differently when we
consider their dual spaces. Let us see the difference.

Assume first that Z is a closed subspace of a Hilbert space H. Then, we already
pointed out that, using onZ the same norm that we already have onH , the space Z
becomes itself a Hilbert space, and, as such, it will have a dual space Z0 of its own.
It is easy to see thatZ0 could be identified with a particular subset ofH 0, made of all
functionals f 2 H 0 that vanish identically on the orthogonal complementZ? ofZ.
Note that we already have a name for that space, that is .Z?/0. We have therefore,
in a natural way,

Z0 	 .Z?/0 	 RH.Z/ � H 0 and .Z?/0 	 Z0 	 RH.Z
?/ � H 0: (4.1.70)

Hence, the dual space Z0 of a closed subspace Z � H can be identified with
a closed subspace of H 0. Once this identification is made, we can also consider
the extension operator EZ0!H 0 (that we shall often denote simply as EZ0), and
the projection operator �Z0 from H 0 to Z0. Note that, for � 2 Z0, the functional
EZ0!H 0� can also be described as

H 0hEZ0!H 0�; viH WD Z0h�; �ZviZ (4.1.71)
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while for  2 H 0 the functional �Z0 can be described as

Z0h�Z0 ; ziZ WD H 0h ;EZ!H ziH : (4.1.72)

In other terms

.�Z0/t 	 .EZ/ (4.1.73)

and

.�Z/
t 	 .EZ0/: (4.1.74)

Example 4.1.11. For instance, if H D L2.˝/ and Z is the space of constant
functions, it is not difficult to see that Z? D L20.˝/ (the space of functions having
zero mean value). Now, the dual space ofZ will be the space of functionals that can
be written as

q ! k

Z

˝

q dx k 2 R

(meaning that for each k 2 R we have a different functional). On the other hand,
the dual space of Z? will be the space of functionals that can be written as

q !
Z

˝

k q dx k 2 Z?

(meaning that for each k 2 Z? we have a different functional). On the other
hand, .Z?/0 could also be identified with the subset of H 0 made of functionals
that vanish identically on constant functions (that is, with the polar set of the space
of constants, which is the polar set ofZ, as in (4.1.70)). Using the Ritz operatorRH
of Theorem 4.1.2, we could write Z0 D RH.Z/ and .Z?/0 D RH.Z

?/. If, as is
done almost every time, we identify L2.˝/ with its dual space, then we could write
Z0 D Z and .Z?/0 D Z?. ut

Let us consider now the case of a dense subspace S � H of a Hilbert space H .
If we take on S the same norm as on H , we cannot (in the present setting) consider
its dual space, as S will not be closed (unless S 	 H , a case without any interest).
Hence, we assume that on S we take a different norm. More precisely, we assume
that on S we are given another norm, k � kS , that makes S a Hilbert space. We
assume, moreover, that this other norm is (up to a multiplicative constant) bigger
than the k � kH norm:

9CSH > 0 such that kskH � CSHkskS 8 s 2 S: (4.1.75)

In this case, we will say that S is continuously embedded in H . Indeed, (4.1.75)
means exactly that the identity operator is continuous from S into H . There is a
special symbol for that: instead of S � H , we write S ,! H .

Example 4.1.12. If we take, as in Example 4.1.5, S D H1
0 .˝/ and H D L2.˝/,

then inequality (4.1.75) is just the Poincaré inequality. ut
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Now S , being a Hilbert space, has a dual space S 0. Let us see the relationship
between S 0 and H 0. As S � H , for each element g 2 H 0, we can consider its
restriction gjS 2 S 0 defined by hgjS ; siS 0�S D hg; siH 0�H for all s 2 S . Indeed,
from (4.1.75) we have easily for every s 2 S

hgjS ; siS 0�S 	 hg; siH 0�H � kgkH 0 kskH � CSH kgkH 0 kskS ; (4.1.76)

implying the continuity of gjS W S ! R, as well as the continuity of the restriction
operator: namely,

kgjSkS 0 � CSHkgkH 0 : (4.1.77)

Using the Hahn-Banach theorem (here simplified to (4.1.42)), we see that we
cannot have in H 0 two different g’s having the same restriction to S : indeed, if g1

and g2 have the same restriction to S (that is, if g1jS D g2jS ), then the difference

g1 � g2 is in S0, and hence it must be zero.
We can then summarise the above discussion by saying that: every g 2 H 0 has

a restriction gjS in S 0 and the mapping g ! gjS from H 0 to S 0 is injective. This
allows us to identify H 0 with a subset of S 0:

H 0 � S 0: (4.1.78)

On the other hand, there are, in general, elements in S 0 that cannot be presented as
the restriction of any g 2 H 0: indeed, S has a norm which is bigger than that of H ,
and g could be continuous from S to R and not from H to R. As we have seen for
instance in Example 3.1.6, for I WD � � 1; 1Œ, takingH WD L2.I / and S WD H1

0 .I /,
the mapping v ! v.0/ belongs to S 0 but cannot be seen as the restriction to S of an
element of H 0

In other words, (4.1.77) cannot be reversed. Hence, we haveH 0 � S 0, and using
(4.1.77), we see that we actually have H 0 ,! S 0, and in general the inclusion is
strict. On the other hand, one can also prove that H 0 is dense in S 0. Moreover, out
of the previous discussion, we easily have that

hg; siS 0�S D hg; siH 0�H whenever g 2 H 0 and s 2 S: (4.1.79)

Hence, if we have two Hilbert spaces S and H with S � H and S dense in H ,
then

S ,! H ) H 0 ,! S 0: (4.1.80)

The difference between the two cases, (4.1.70) and (4.1.80), that might be surprising
at first sight, is due to the fact that in the first case we used on S the same norm that
we had on H , while in the second case we used a different, stronger norm.

Example 4.1.13. We have already seen the example of ı0, which belongs to the dual
space of S WD H1

0 . ��1; 1Œ / but not to the dual space ofH WD L2. ��1; 1Œ /. Let us
see another simple example. For a general domain ˝ , taking always S D H1

0 .˝/

andH D L2.˝/, and taking in H 0 the functional
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v !
Z

˝

v dx;

it is clear that its restriction to S leaves the functional (essentially) unchanged. On
the other hand, for f fixed in L2.˝/, the functional

v !
Z

˝

f
@v

@x
dx;

linear and continuous on S , cannot be extended to a continuous functional onH .
ut

4.1.7 Identification of a Space with its Dual Space

It is usually a strong temptation, when dealing with Hilbert spaces, to use the Ritz
Theorem 4.1.2 to identify a Hilbert space with its dual. After all, this is what
is done most of the times when dealing with finite dimensional spaces. However,
when dealing with functional spaces (that is, spaces made of functions), it is highly
recommended to limit such identification to L2 with its dual (or of a closed
subspace Z of L2 with its dual Z0). Every other identification will be calling for
a total disaster. Let us see why. Assume that in (4.1.80) we have H D L2.˝/ and
S D H1

0 .˝/. Identifying L2 with its dual space, we would have H 	 H 0, and
(4.1.80) will become

S ,! H 	 H 0 ,! S 0: (4.1.81)

So far, so good. Everybody does that, and nobody suffers. Assume, however, that,
in spite of all recommendations, you also identify S with S 0. Then, in (4.1.81), you
compress the four spaces S 	 H 	 H 0 	 S 0 into one, identifying at the same
time a function with itself and with its Laplacian. This is the beginning of the end.
Now, the question that everybody asks (the first time one hears about that) is “What
is so special with L2?”. It is a very good question. Actually, there is nothing special,
mathematically, about it, apart from the fact that we are so used to identify a function
f 2 L2.˝/ with the mapping (defined for ' 2 L2.˝/):

' !
Z

˝

f ' dx (4.1.82)

that we do it all the time, without even realising it. In principle, we might as well
identify a function f 2 H1

0 .˝/ with the mapping (defined for ' in H1
0 .˝/):

' !
Z

˝

grad f � grad' dx (4.1.83)
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and don’t use the identification (4.1.82). This will be mathematically correct but
psychologically very, very difficult; and before the rooster crows, you will have used
(4.1.82) three times. Hence, our advice is: No matter whether the above discussion
was clear or not, just avoid any identification of a functional space that is notL2 (or
a multiple copy of it, or, exceptionally, a closed subspace of it) with its dual space!
This, of course, unless you are very skilled in Functional Analysis. Although, if you
are : : :why are you reading all this? ut

4.1.8 Restrictions of Operators to Closed Subspaces

We shall now deal briefly with a situation that we will meet constantly in the
following chapter. We have (as before) two Hilbert spaces V andQ, we have a linear
continuous operator B 2 L.V;Q0/, and we have two closed subspaces Z � V and
S � Q. In the applications of the next chapter, Z and S will typically be finite
dimensional spaces (and hence automatically closed).

As we have seen, B (and its transposed operator Bt ) can be associated to a
bilinear form b defined on V 
Q. It is not difficult to see that, restricting the bilinear
form to Z 
 S , we have as associated operators

BZS0 	 �S 0BEZ and Bt
SZ0 	 �Z0BtES (4.1.84)

and obviously .BZS0/t D Bt
SZ0 .

Remark 4.1.8. As we have already pointed out in Remark 3.1.11 of the previous
chapter, in general, we cannot expect the kernel of BZS0 to be a subspace of the
kernel of B , nor the image of BZS0 to be a subset of the image of B . The same is
obviously true for the images and the kernels of Bt

SZ0 and Bt . ut
Proposition 4.1.6. Let V andQ be Hilbert spaces, let B 2 L.V;Q0/, and let Z �
V and S � Q be closed subspaces, with S finite dimensional. Then, the inclusion

KerBt
SZ0 � KerBt (4.1.85)

holds iff we have

�S 0.ImB/ � ImBZS0 : (4.1.86)

Proof. Assume first that (4.1.85) (that, to be precise, we should actually write as
ESKerBt

SZ0 � KerBt ) holds, and let g D Bv 2 ImB . As ImBZS0 is closed (since
S is finite dimensional), to show that �S 0g 2 ImBZS0 , we just have to check that
�S 0g 2 .KerBt

SZ0/
0, that is,

Q0hg; qiQ D 0 8q 2 KerBt
SZ0 : (4.1.87)
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If the inclusion (4.1.85) is satisfied, then every q 2 KerBt
SZ0 will also be in KerBt .

However, for q 2 KerBt we have

Q0hg; qiQ D Q0hBv; qiQ D V hv;BtqiV 0 D 0; (4.1.88)

giving (4.1.87) and ending the first part of the proof.
Assume now that (4.1.86) holds, and let qs 2 S be in KerBt

SZ0 , that is:
�Z0Btqs D 0. For such a qs we have, for every z 2 Z, that

Shqs; �S 0BziS 0

D Qhqs; BziQ0 D V 0hBtqs; ziV D Z0h�Z0Btqs; ziZ
D 0;

(4.1.89)

meaning that qs is in the polar space of ImBZS0 . Inclusion (4.1.86) together with
(4.1.43) implies then that qs is in the polar space of �S 0ImB , so that for all v 2 V

we have S hqs; �S 0 BviS 0 D 0, hence V 0hBtqs; viV D 0 and therefore qs 2 KerBt .
ut

Remark 4.1.9. The assumption that S is finite dimensional, in Proposition 4.1.6,
is clearly stronger than necessary. Indeed, looking at the proof, we see that for the
first part we only need ImBZS0 to be closed, while the second part does not even
need that. However, as we said, we are going to use the result in the case of Z
and S being finite dimensional, so that we did not struggle to minimise this type of
assumptions. ut

Exchanging the roles of B and Bt , we have, moreover, in the same assumptions
of Proposition 4.1.6 (but requiringZ to be finite dimensional instead of S ), that

KerBZS0 � KerB (4.1.90)

is equivalent to

�Z0.ImBt/ � ImBt
SZ0 : (4.1.91)

The case in which the subspaces Z and S are related to the kernels and images
of a linear operator B 2 L.V;Q0/ (and of its transposed) is obviously of special
interest. In particular, we can present a corollary of the Closed Range Theorem 4.1.5
that will often be useful.

Corollary 4.1.2. In the same assumptions of Theorem 4.1.5, if one of the six
equivalent properties is satisfied, then LB 2 L.K?;H0/ is the transposed operator
of LBt 2 L.H?; K0/ and in particular,

kLBkL.K?;H0/ D kLBt kL.H?;K0/ DW �: (4.1.92)

Moreover, setting ˇ WD 1=� we have
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ˇkvkV � kBvkV 0 8 v 2 K?; (4.1.93)

and

ˇkqkQ � kBtqkV 0 8 q 2 H?: (4.1.94)

Proof. If, say, ImB is closed, then B will be an isomorphism from K? to ImB
which, however, coincides with H0. Similarly, Bt will be an isomorphism from
H? to ImBt that coincides with K0. Hence, LB coincides with .BK?H0/�1 and
LBt coincides with .Bt

H?K0/
�1. We also recall from (4.1.70) that

.K?/0 D K 0 K0 D .K?/0 .H?/0 D H 0 H0 D .H?/0 (4.1.95)

so that it is immediate to see that LBt is the transposed operator of LB . Now
(4.1.92) will follow immediately from (4.1.50). Finally, (4.1.93) and (4.1.94) are
now immediate since, for v 2 K?, we have v D LB.Bv/ and for q 2 H?, we have
q D LBt .B

tq/. ut

4.1.9 Quotient Spaces

Assume that Q is a Hilbert space and let H be a closed subspace of Q. We also
assume thatH is a proper subspace, meaning thatH does not coincide withQ. We
consider then the quotient space Q=H defined as the space whose elements are the
equivalence classes induced by the equivalence relation:

v1 Š v2 if and only if .v1 � v2/ 2 H: (4.1.96)

In other words, two elements are equivalent if their difference belongs to H . It is
immediate to see that all the elements of H will then be equivalent to 0. In view of
this definition, an element ofQ=H will then be a subset ofQ made by elements that
are all equivalent to each other.

Example 4.1.14. For a bounded domain ˝ � R
d , we take Q WD L2.˝/ and

we consider the (one-dimensional) subspace H made of constant functions. Then,
Q=H will be made of classes of functions that differ from each other by a constant
function. ut

Note that if two classes C1 and C2 have an element v�in common, then they must
coincide. Indeed, for every v1 in C1, we have v1 � v� 2 H and, for every v2 2 C2,
we have v2 � v� 2 H . As a consequence, for every v1 2 C1 and every v2 2 C2, we
have v1 � v2 D .v1 � v�/ � .v2 � v�/ 2 H (as difference of two elements of H ).
This implies that for every v1 2 C1 and for every v2 2 C2, we have v1 Š v2, which
is to say that the two classes C1 and C2 coincide. We conclude that two different
classes have no elements in common.
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It is then easy to verify that there is a one-to-one correspondence between Q=H

and the orthogonal complementH? of H in Q. Let us see it in more detail. Let q�
be an element of H?: to it we associate the class Cq� defined by

Cq� WD fv 2 Qj v Š q�g 	 fv 2 Qj v � q� 2 H g: (4.1.97)

It is clear that the mapping q� ! Cq� , from H? to Q=H , is injective: indeed,
assume that q� and q�� are two elements in H? such that the two corresponding
classes Cq� and Cq�� coincide. This implies that, say, q�� 2 Cq� , that is q�� �q� 2
H . Since q�� � q� must also belong to H? (as difference of two elements both in
H?), we conclude that q�� D q�.

Let us see that the mapping q� ! Cq� is also surjective: let therefore the
class C � be an element of Q=H and let Nq 2 C �. The class C � could then be
characterised as

C � WD fv 2 Qj v Š Nqg 	 fv 2 Qj v � Nq 2 H g: (4.1.98)

At this point, it is not difficult to see that C � is a closed convex subset of Q and
hence (see (4.1.22) and Remark 4.1.2) we can define q�

C� as the projection �C0 of
0 on C � (that can also be seen as the element of C � having minimum norm). It is
then elementary to check that

.q�
C� ; v/ D 0 8 v 2 H; (4.1.99)

implying that q�
C� 2 H? and that, actually, C � 	 Cq�

C�

. This also allows us to
define a norm in Q=H : for every C 2 Q=H , we define

kCkQ=H
WD k�C 0kQ 	 kq�

C kQ: (4.1.100)

Hence, if we prefer, we could choose in each class (D element of Q=H ) the
unique element, in the class, which belongs to H?, and identifyQ=H with H?.

Example 4.1.15. Let us go back to the case of Example 4.1.14 whereQ WD L2.˝/

and H is the subspace made of constant functions. We recall that Q=H is made of
classes of functions that differ from each other by a constant function. For every
such class, we could always take one function q in the class, and describe the class
as the set of all functions of the form q C c with c constant. In doing so, we could
however decide to choose as “representative” the unique function, in the class, that
has zero mean value. This is the same as picking q� 2 H?, since H? is clearly the
subspace of Q made of functions having zero mean value. ut
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4.2 Existence and Uniqueness of Solutions

4.2.1 Mixed Formulations in Hilbert Spaces

From here to the end of this chapter, we will consistently remain in the same
notational framework. As this framework will also include some assumptions, we
summarise all these assumptions under the name of Assumption AB.
Assumption AB: We are given two Hilbert spaces, V and Q, and two continuous
bilinear forms: a.� ; �/ on V 
 V and b.� ; �/ on V 
 Q. We denote by A and B ,
respectively, the linear continuous operators associated with them. We also set

K WD KerB and H WD KerBt : (4.2.1)

We recall from the previous subsection that we have

ja.u; v/j � kak kukV kvkV ; (4.2.2)

and that the two linear continuous operators A W V ! V 0 and At W V ! V 0 satisfy

hAu; viV 0�V D hu; AtviV�V 0 D a.u; v/; 8 v 2 V 8 u 2 V: (4.2.3)

Similarly,

jb.v; q/j � kbk kvkV kqkQ; (4.2.4)

and the two linear operators B W V ! Q0, and Bt W Q ! V 0 satisfy

hBv; qiQ0�Q D hv;BtqiV�V 0 D b.v; q/ 8 v 2 V; 8 q 2 Q: (4.2.5)

We now consider our basic problem. Given f 2 V 0 and g 2 Q0, we want to find
.u; p/ 2 V 
Q solution of

(
a.u; v/C b.v; p/ D hf; viV 0�V ; 8 v 2 V;
b.u; q/ D hg; qiQ0�Q; 8 q 2 Q: (4.2.6)

Note that problem (4.2.6) can also be written as
(
Au C Btp D f in V 0;

Bu D g in Q0;
(4.2.7)

and from now on we shall consider the formulations (4.2.6) and (4.2.7) to be the
same, referring to one or the other according to the convenience of the moment. We
now want to find conditions implying existence and possibly uniqueness of solutions
to this problem.

Remark 4.2.1. If the bilinear form a.�; �/ is symmetric, the equations (4.2.6) are the
optimality conditions of the minimisation problem
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inf
BvDg

1

2
a.v; v/ � hf; viV 0�V : (4.2.8)

The variable p is then the Lagrange multiplier associated with the constraint
Bu D g, and the associated saddle point problem is

inf
v2V

sup
q2Q

n1
2
a.v; v/C b.v; q/� hf; viV 0�V � hg; qiQ0�Q

o
: (4.2.9)

This is the reason for the title of this chapter, in spite of the fact that we deal in fact
with a more general case. ut
Remark 4.2.2. The two equations in (4.2.6) can sometimes be written as a unique
variational equation, setting

A..u; p/; .v; q// D a.u; v/C b.v; p/� b.u; q/ 8.u; p/; .v; q/ 2 V 
Q
(4.2.10)

and then requiring that

A..u; p/; .v; q// D hf; viV 0�V � hg; qiQ0�Q 8.v; q/ 2 V 
Q: (4.2.11)

One can obviously go from (4.2.6) to (4.2.11), subtracting the two equations, and
from (4.2.11) to (4.2.6) by considering separately the pairs .v; 0/ and .0;�q/. ut

It is clear from the second equation of (4.2.7) that, in order to have existence
of a solution for every g 2 Q0, we must have ImB D Q0. Following the path of
the previous chapter, we first consider a simpler case, in which we have sufficient
conditions on a and b for having a unique solution.

Theorem 4.2.1. Together with Assumption AB, assume that ImB D Q0 and that
the bilinear form a.�; �/ is coercive on K , that is

9˛0 > 0 such that a.v0; v0/ � ˛0 kv0k2V ; 8 v0 2 K: (4.2.12)

Then, for every .f; g/ 2 V 0 
Q0, problem (4.2.6) has a unique solution.

Proof. Let us first prove the existence of a solution. From the surjectivity of B
and Corollary 4.1.1, we have that there exists a lifting operator LB such that
B.LBg/ D g for every g 2 Q0. Setting ug WD LBg, we therefore have Bug D g.
We now consider the new unknown u0 WD u � ug and, in order to have Bu D g,
we require u0 2 K . For every v0 2 K , we obviously have b.v0; q/ D 0 for every
q 2 Q, so that the first equation of (4.2.6) now implies

a.u0; v0/ D hf; v0iV 0�V � a.ug; v0/; 8v0 2 K; (4.2.13)

and the Lax-Milgram Lemma, using (4.2.12), ensures that we have a unique u0 2
KerB satisfying (4.2.13). Remark now that the functional
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v ! `.v/ WD hf; viV 0�V � a.ug C u0; v/; (4.2.14)

thanks to (4.2.13), vanishes identically for every v 2 K . Hence, ` 2 K0 (the polar
space of K), which, due to Theorem 4.1.4, coincides with ImBt . Hence, ` is in the
image of Bt , and there exists a p 2 Q such that Btp D `. This means that

hBtp; viV 0�V D h`; viV 0�V D hf; viV 0�V � a.ug C u0; v/ (4.2.15)

for every v 2 V , and since u D ug C u0, the first equation is satisfied. On the other
hand, Bu D Bug C Bu0 D g and the second equation is also satisfied.

We now prove uniqueness. By linearity, assume that f D 0 and g D 0: then,
u 2 K . Testing the first equation on v D u we get a.u; u/ D 0 and then u D 0

from (4.2.12). Using u D 0 and f D 0 in the first equation of (4.2.7), we have then
Btp D 0, and from Corollary 4.1.1 we have p D 0. Then, problem (4.2.6) has a
unique solution. ut
Remark 4.2.3. The coercivity of a.�; �/ on K may hold while there is no coercivity
on V . We have already seen examples of this situation in finite dimension and we
shall see in the next chapters many other examples coming from partial differential
equations. ut

The result of Theorem 4.2.1 will be the most commonly used in our applications.
However, as we had in the finite-dimensional case of the previous chapter, it is clear
that it does not give a necessary and sufficient condition. To get it, we must weaken
the coercivity condition (4.2.12). For this, we recall that K is a closed subspace
of V , and hence it is itself a Hilbert space (with the same norm as V ). As such, as
we have seen, K has a dual space, that we denote by K 0. Moreover, we note that,
restricting the bilinear form a.� ; �/ to K , we have two operators, which, according
to the notation (4.1.84), we denote by AKK0 and AtKK0 , from K to K 0, given as in
(4.2.3) by

hAKK0u0; v0iK0�K D hu0; A
t
KK0v0iK�K0 D a.u0; v0/; 8 u0; v0 2 K: (4.2.16)

We also recall thatK 0 could be identified, through (4.1.70), to a subspace ofQ0, and
precisely to .K?/0 (the polar space of K?). Moreover, it is easy to check that

AKK0 D �K0AEK (4.2.17)

coincides, in the finite dimensional case, with the operator that (identifying K
andK 0) was denoted by AKK in the previous chapter.

We are now ready to state and prove the following theorem, which is, from
the theoretical point of view, the most relevant of this section. As we shall
see, it generalises Theorem 4.2.1 and gives the required necessary and sufficient
conditions.

Theorem 4.2.2. Assume that AB holds, and let AKK0 be defined as in (4.2.16).
Then, problem (4.2.6) has a unique solution for every .f; g/ 2 V 0 
 Q0 if and
only if the two following conditions are satisfied:
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AKK0 is an isomorphism from K to K 0; (4.2.18)

ImB D Q0: (4.2.19)

Proof. Assume first that (4.2.18) and (4.2.19) are satisfied. The existence and
uniqueness of the solution of (4.2.6) follow as in the proof of Theorem 4.2.1. The
only difference is in the solution of (4.2.13), which in the present notation can be
written as

AKK0u0 D �K0f � �K0Aug: (4.2.20)

Indeed, here we now have to use (4.2.18) (in order to get the existence of a
solution u0) instead of Lax-Milgram as we did there.

Assume conversely that the problem (4.2.6) has a unique solution for every
.f; g/ 2 V 0 
Q0. It is clear that, in particular for every g 2 Q0, we can take .0; g/
as right-hand side in (4.2.6) and have a u 2 V such that Bu D g (from the second
equation of (4.2.7)). Hence, ImB D Q0 and therefore (4.2.19) holds. To show that
(4.2.18) also holds, we proceed as follows.

First, for every � 2 K 0, we take in (4.2.7) f D EK0!V 0� (as defined in (4.1.71)),
and g D 0. By assumption, we have a unique solution .u�; p�/, and we observe that
u� 2 K since g D 0. Testing the first equation of problem (4.2.6) on v0 2 K , and
using (4.1.71), we have

a.u�; v0/ D hf�; v0iK0�K 	 h�; v0iK0�K 8 v0 2 K: (4.2.21)

This implies that AKK0u� D �, and hence that AKK0 is surjective. Hence, we are
left to show that AKK0 is also injective. Assume, by contradiction, that we had
AKK0w D 0 for some w 2 K different from zero. Then, we would have a.w; v0/ D 0

for all v0 2 K , implying that Aw 2 K0. Due to Corollary 4.1.1 (as we already saw
that (4.2.19) holds), this would imply Aw 2 ImBt and we would have the existence
of a pw 2 Q such that Btpw D Aw. Then, the pair .w;�pw/ (different from zero)
would satisfy the homogeneous version of problem (4.2.6), and uniqueness would
be lost. Hence, such a w ¤ 0 cannot exist. This shows that AKK0 must also be
injective, and hence (4.2.18) holds. ut

4.2.2 Stability Constants and inf-sup Conditions

In this subsection, we would like to express condition (4.2.19) and condition (4.2.18)
in a different way, to emphasise the role of the stability constants.

Let us start from condition (4.2.19). According to Corollary 4.1.1 of the Closed
Range Theorem, we already know that (4.2.19) holds if and only if the operator Bt

is bounding, that is, if and only if there exists a constant ˇ > 0 such that

kBtqkV 0 � ˇkqkQ 8 q 2 Q: (4.2.22)
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Always from the same corollary, we have that this is also equivalent to the existence
of a lifting LB W Q0 ! V of the operator B

B.LB.g// D g 8 g 2 Q0; (4.2.23)

with its norm being bounded by:

kLBkL.Q0;V / � 1

ˇ
; (4.2.24)

where ˇ is the same constant as in (4.2.22) and ImLB D K?.
We now want to define, somehow, the best possible constant that would fit in

(4.2.22). For this, we note that (4.2.22) is equivalent to

inf
q2Q

kBtqkV 0

kqkQ � ˇ; (4.2.25)

which, recalling the definition of norm in a dual space (4.1.34) and (4.1.49), becomes

inf
q2Q

sup
v2V

b.v; q/

kvkV kqkQ � ˇ; (4.2.26)

which is possibly the most commonly used among the many equivalent formulations
of assumption (4.2.19).

With similar arguments, we see that condition (4.2.18) is equivalent to saying
that there exists an ˛1 > 0 such that

inf
v02K

sup
w02K

a.v0;w0/

kv0kV kw0kV � ˛1

inf
w02K

sup
v02K

a.v0;w0/

kv0kV kw0kV � ˛1: (4.2.27)

Remark 4.2.4. Note that in (4.2.25), in (4.2.26), and in (4.2.27), as we did in the
previous chapter and we shall do in the rest of the book, we assumed implicitly that
for fractions of the type

`.v/

kvkV or
j`.v/j
kvkV

where `.�/ is a linear functional on a Banach space V , the supremum and the
infimum are taken for v ¤ f0g, and therefore we wrote the supremum (or infimum)
for v 2 V rather than for v 2 V n f0g (as it would have been more correct, since
these fractions do not make sense for v D f0g). ut
We now want to point out, for future use, the following extension of Lemma 3.3.1
of the previous chapter, that is an important ingredient in the proof of the present
Theorem 4.2.3.
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Lemma 4.2.1. Let V be a Hilbert space and let a.� ; �/ be a symmetric bilinear
continuous form on V . Assume that

a.v; v/ � 0 8 v 2 V: (4.2.28)

Then, we have

.a.v;w//2 � a.v; v/ a.w;w/ 8 v;w 2 V (4.2.29)

and, for the associated operator A,

kAvk2V 0 � kak a.v; v/ 	 kAkhAv; vi 8 v 2 V: (4.2.30)

Apart from the different notation, the proof is identical to that of Lemma 3.3.1.
Moreover, under the assumptions of the previous lemma, we also have the

following result.

Lemma 4.2.2. Let V be a Hilbert space, and let a.� ; �/ be a symmetric bilinear
continuous form on V . Assume that

a.v; v/ � 0 8 v 2 V: (4.2.31)

Then, (4.2.27) implies ellipticity on the kernel (4.2.12).

Proof. Indeed, from (4.2.27), we have for v0 2 K , using (4.2.29),

˛21kvk2V � sup
w2K

a.v;w/2

kwk2V
� sup

w2K
a.v; v/a.w;w/

kwk2V
� kaka.v; v/; (4.2.32)

hence the result with ˛0 D ˛21=kak. ut

4.2.3 The Main Result

As we had in the previous chapter (in Theorems 3.4.1 and 3.4.2), we have here the
following final result, that could be considered as the main result of this chapter.

Theorem 4.2.3. Together with AB, assume that there exist two positive constants ˛
and ˇ such that the inf-sup condition (4.2.26) on b.�; �/, and the double-inf-sup con-
dition (4.2.27) on the restriction of a.�; �/ to K are satisfied. Then, for every f 2 V 0
and for every g 2 Q0, problem (4.2.6) has a unique solution that is bounded by

kukV � 1

˛1
kf kV 0 C 2kak

˛1ˇ
kgkQ0 ; (4.2.33)

kpkQ � 2kak
˛1ˇ

kf kV 0F C 2kak2
˛1ˇ2

kgkQ0 : (4.2.34)
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If, moreover, a.�; �/ is symmetric and satisfies

a.v; v/ � 0 8 v 2 V; (4.2.35)

then we have the improved estimates

kukV � 1

˛0
kf kV 0 C 2kak1=2

˛
1=2
0 ˇ

kgkQ0 ; (4.2.36)

kpkQ � 2kak1=2
˛
1=2
0 ˇ

kf kV 0 C kak
ˇ2

kgkQ0 ; (4.2.37)

where ˛0 is the constant appearing in (4.2.12).

The proof is identical to that given in the previous chapter for Theorems 3.4.1
and 3.4.2. This is indeed the gift of the Closed Range Theorem, which allows us
to extend all the instruments that were used in finite dimension to the more general
case of Hilbert spaces.

Remark 4.2.5. As we did in Theorem 3.5.2, we could restate Theorem 4.2.2 in
terms of necessary and sufficient conditions. In the present context, this means that if
the bounds (4.2.33) and (4.2.34) hold for all right-hand sides f and g, then (4.2.27)
and (4.2.26) hold. Indeed, for an arbitrary u0 2 K , let us define f0 2 K 0 by

hf0; v0i D a.u0; v0/ 8 v0 2 K: (4.2.38)

We then use the prolongationEK0f0 of f0 to V 0, as in (4.1.71), and we take g D 0.
We now have that .u0; 0/ is solution of (4.2.6) with f D f0, and by (4.2.33) we have

kukV � 1

˛1
kf0kV 0 D 1

˛1
sup

w02K
a.u0;w0/

kw0k : (4.2.39)

Similarly, taking hfp; vi D b.v; p/ and again g D 0, we have that .0; p/ is solution
of (4.2.6) with f D fp , and (4.2.34) implies (4.2.26). All this can be seen as the
natural extension of Lemma 3.5.2 to the infinite dimensional case. ut

If the bilinear form a.�; �/ is coercive on the whole space, we have immediately
the following corollary (particularly useful for Stokes addicts that do not even want
to know what a kernel is).

Corollary 4.2.1. Let the assumptions AB hold. Suppose that there exist two
positive constants ˛ and ˇ such that the inf-sup condition (4.2.26) on b.�; �/, and the
global coercivity condition (4.1.67) on a.�; �/ are satisfied. Then, for every f 2 V 0
and for every g 2 Q0, problem (4.2.6) has a unique solution that is bounded by

kukV � 1

˛
kf kV 0 C 2kak

˛ˇ
kgkQ0 ; (4.2.40)

kpkQ � 2kak
˛ˇ

kf kV 0 C 2kak2
˛ˇ2

kgkQ0 : (4.2.41)
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If, moreover, a.�; �/ is symmetric, then we have the improved estimates

kukV � 1

˛
kf kV 0 C 2kak1=2

˛1=2ˇ
kgkQ0 ; (4.2.42)

kpkQ � 2kak1=2
˛1=2ˇ

kf kV 0 C kak
ˇ2

kgkQ0 : (4.2.43)

4.2.4 The Case of ImB ¤ Q0

We now want to discuss briefly the case in which the inf-sup condition on the bilinear
form b does not hold.

Essentially, if ImB does not coincide with Q0, we can distinguish two cases.
Either ImB is closed in Q0, or it is not (everybody surely agrees with that).

If ImB is not closed, then we are in deep trouble. Generally speaking, we should
better look for a different formulation.

If instead the image of B is closed, we survive rather easily. Let us analyse the
situation. We first observe that in this case H D KerBt will be a closed subspace
of Q that is not reduced to f0g. In this case, it is clear that problem (4.2.7) cannot
have a unique solution for every f 2 V 0 and for every g 2 Q0. To start with, if
ImB ¤ Q0, and if g 2 Q0 does not belong to ImB , we cannot have a solution.
Hence, the existence of the solution will not always hold. Moreover, if by chance
we have g 2 ImB and we have a solution .u; p/, then for every p� 2 H with
p� ¤ 0, we easily have that .u; p C p�/ is another, different solution. Hence, the
uniqueness of the solution will never hold. Apparently, we are not so well off.

However, if we have g 2 ImB , then there is an easy way out. Indeed, we observe
first that ifAKK is non-singular, we could proceed as we did in the finite dimensional
case (see Proposition 3.2.1) and deduce that we still have at least one solution, whose
first component is unique and whose second component is unique only up to an
element of H . Moreover, we could note that b.v; q/ D 0 for every q 2 H . Hence,
following what has been done in Remark 3.2.4 (for the finite-dimensional case),
we can consider the restriction Qb of b to V 
H? without loosing any information.
However, this time, QB will be surjective from V to .H?/0. Indeed, using (4.1.70) we
have that .H?/0 D H0 .D . KerBt/0/. On the other hand, from the Closed Range
Theorem 4.1.5, we have .KerBt/0 D ImB , and joining the two we get .H?/0 D
ImB and everything works.

Hence, the theory developed so far in the case of B surjective applies to the case
where ImB is closed and g 2 ImB , by just replacingQ with H?.

An alternative path (whose difference from the one above is mainly psychologi-
cal) consists in replacingQ with the quotient space

QQ WD Q=H: (4.2.44)
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We recall that the elements of QQ are subsets of elements of Q that differ from each
other by an element of H . As we have seen in Sect. 4.1.9, QQ can be identified to
H?. Hence, as we said, the difference between using V 
H? and using V 
Q=H is
mainly psychological. Nevertheless, some people seem to be in love with this second
option and dislike the first. Just for them, we re-state one of our previous results
in terms of the original space Q and the original bilinear form b in the following
theorem, which is just Theorem 4.2.3 applied to V 
Q=H , and stated in terms of V
andQ.

Theorem 4.2.4. Together with Assumption AB, assume that ImB is closed and
that the double-inf-sup condition (4.2.27) is satisfied. Then, for every f 2 V 0
and for every g 2 ImB , problem (4.2.6) has a solution .u; p/ where u is uniquely
determined, and p is determined up to an element of H . Moreover, setting

Q̌ WD inf
q2Q

sup
v2V

b.v; q/

kvkV kqkQ=H

(4.2.45)

we have

kukV � 1

˛1
kf kV 0 C 2kak

˛1 Q̌ kgkQ0 ; (4.2.46)

kpkQ=H
� 2kak
˛1 Q̌ kf kV 0 C 2kak2

˛1 Q̌2 kgkQ0 : (4.2.47)

If, moreover, a.�; �/ is symmetric and satisfies

a.v; v/ � 0 8 v 2 V; (4.2.48)

then we have the improved estimates

kukV � 1

˛0
kf kV 0 C 2kak1=2

˛
1=2
0

Q̌ kgkQ0 ; (4.2.49)

kpkQ=H
� 2kak1=2

˛
1=2
0

Q̌ kf kV 0 C kak
Q̌2 kgkQ0 ; (4.2.50)

where again ˛0 is the constant appearing in (4.2.12). ut
Remark 4.2.6. We point out that the estimates (4.2.46) and (4.2.47), valid for every
f 2 V 0 and for every g 2 ImB , imply in particular that, under the assumptions
of Theorem 4.2.4, the image of the operator M W .u; p/ ! .Au C Btp;Bu/ from
V 
Q to V 0 
Q0 is also closed. ut
Remark 4.2.7. Another type of generalisation was considered in [312] and [68].
They consider a problem of type (4.3.1) but employing two bilinear forms b1.�; �/
and b2.�; �/ on V 
Q, that is,
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(
a.u; v/C b1.v; p/ D hf; viV 0�V ; 8 v 2 V
b2.u; q/ D hg; qiQ0�Q; 8 q 2 Q: (4.2.51)

Conditions for existence of a solution are now that both b1.�; �/ and b2.�; �/ should
satisfy an inf-sup condition of the type (4.2.45), and a.u; v/ should satisfy an
invertibility condition from KerB2 on .KerB1/0, that is,

inf
u02KerB1

sup
v02KerB2

a.u0; v0/

ku0k kv0k � ˛1; (4.2.52)

inf
v02KerB1

sup
u02KerB2

a.u0; v0/

ku0k kv0k � ˛1: (4.2.53)

This condition is in general rather hard to check, and the ellipticity on the whole
space V , when applicable, can bring a considerable relief.

For more details, we refer to [68]. ut
Remark 4.2.8 (Special cases .f; 0/ and .0; g/). We have considered these special
cases in the Sect. 3.5.3 in the finite dimensional framework. In these cases, it is
possible to obtain existence and stability results under weakened assumptions. We
shall not make them explicit here. However, we refer to the proofs of Theorem 3.4.1
and the following ones in Sect. 3.4 where detailed proofs of related situations are
presented. We just want to point out here that in the case .f; 0/, the a priori estimates
(e.g. (4.2.46)) on u do not depend on the inf-sup constant of B . Conversely, in the
case .0; g/, for a.�; �/ symmetric and positive semi-definite, the estimates on p (e.g.
(4.2.50)) do not depend on the constant ˛0. ut

4.2.5 Examples

To fix ideas, we shall apply the results just obtained to some of the examples
introduced in Chap. 1.

Example 4.2.1 (Mixed formulation of the Poisson problem). We consider here the
case of Example 1.3.5. Given f in L2.˝/, we look for u 2 H.divI˝/ DW
V andp 2 L2.˝/ DW Q such that:

8
ˆ̂<

ˆ̂:

Z

˝

u � v dx C
Z

˝

p div v dx D 0; 8 v 2 H.divI˝/;
Z

˝

.div u C f /q dx D 0; 8 q 2 L2.˝/:
(4.2.54)

Here we have
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b.v; q/ D
Z

˝

div v q dx; (4.2.55)

and B is the divergence operator from H.divI˝/ into L2.˝/. It is not difficult
to check that it is surjective: for instance, for every g 2 L2.˝/, consider the
auxiliary problem: find  2 H1

0 .˝/ such that � D g. Its (traditional) variational
formulation is

Z

˝

grad � grad � dx D �
Z

˝

g � dx 8� 2 H1
0 .˝/; (4.2.56)

and it has a unique solution thanks to the Lax-Milgram lemma. Then, take vg WD
grad and you immediately have vg 2 H.divI ˝/ and div vg D g as wanted.
The kernel of B is made of the vectors v0 2 H.divI˝/ such that div v0 D 0. The
bilinear form a is given by

a.u; v/ D
Z

˝

u � v dx; (4.2.57)

while we remember that in (1.3.44) the norm in H.divI˝/ was defined as

kvk2H.divI ˝/ WD kvk2
.L2.˝//2

C k div vk2
L2.˝/

: (4.2.58)

Hence, a is coercive on KerB (although it is not coercive on H.divI˝/). Our
abstract theory (in particular Theorem 4.2.1) applies immediately, and we have
existence and uniqueness of the solution. ut
Example 4.2.2 (The Stokes problem). Let us go back to Example 1.3.1. We take
V WD .H1

0 .˝//
2, Q WD L2.˝/, and, given f 2 V 0, we look for .u; p/ 2 V 
Q,

solution of

8
ˆ̂<

ˆ̂:

2�

Z

˝

"D.u/ W "D.v/ dx �
Z

˝

p divv dx D
Z

˝

v � f dx; 8 v 2 V;
Z

˝

q div u dx D 0; 8 q 2 Q:
(4.2.59)

Here, we have g D 0. Moreover, the bilinear form a.u; v/ D 2�
R
˝
"D.u/ W "D.v/ dx

is coercive on V , due to the Korn inequality [183, 362]

9 
 D 
.˝/ > 0 s.t. k"D.v/k
2
.L2.˝//4

� 
jvj21;˝ 8v 2 .H1
0 .˝//

2: (4.2.60)

On the other hand, we have

b.v; q/ D �
Z

˝

q div v dx (4.2.61)
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and B is the divergence operator from .H1
0 .˝//

2 into L2.˝/. This time, the study
of its image is much harder than in the previous example. Due to a non-trivial result
by O. Ladyzhenskaya, we have [272, 362] that

ImB D L20.˝/ D fq j q 2 L2.˝/;
Z

˝

q dx D 0g (4.2.62)

and that this subspace of L2.˝/ is closed and has co-dimension one. In agreement
with the Closed Range Theorem, KerBt has also dimension 1:

KerBt D Ker.� grad/ D fqj q is constant on ˝g: (4.2.63)

We are therefore in the case where Bt is not injective. As we did in the last
subsection (see Sect. 4.2.4), we can easily survive by considering QQ, defined as
in (4.2.44), instead of Q. However, in this case, the space QQ (that is the space of
classes of functions in L2.˝/ that differ from each other by an additive constant) is
often identified with the space H? of functions in L2.˝/ having zero mean value,
as discussed in Example 4.1.14. Actually, in practice, we simply take

Q WD
n
qjq 2 L2.˝/;

Z

˝

q dx D 0
o

	 L20.˝/ (4.2.64)

and we can apply directly Theorem 4.2.1, which will give the existence and
uniqueness of the velocity u, together with the existence of a pressure p that is
unique up to an additive constant.

The example of Stokes’ problem is paradigmatic of the typical escape that is
usually performed when ImB is closed but different fromQ0. ut
Example 4.2.3 (Domain decomposition for the Poisson problem). Referring to
Example 1.4.2, we have to solve the following problem: find .p; u/ with p 2
X.˝/ DW V; u 2 H.divI˝/ DW Q, solution of

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Z

Ki

gradpi � grad qi dx �
Z

@Ki

u � ni qi d� D
Z

Ki

f qi dx;

8 qi 2 H1.Ki /; 8Ki;

X

i

Z

@Ki

v � ni pi d� D 0;8v 2 H.divI˝/:

(4.2.65)

We thus have b.q; v/ D �P
i

R
@Ki
v �ni qi d� , and the operatorB , roughly speaking,

associates to q 2 X.˝/ its “DG jumps” qini C qj nj on the interfaces eij D @Ki \
@Kj . The kernel of B is nothing but H1

0 .˝/ and the problem corresponding to
(4.2.65) is the standard Poisson problem. To prove the existence of u, we shall have
to prove that ImB is closed in .H.divI˝//0 and we shall have to characterise KerBt .
This will be done in Chap. 7. ut
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We shall of course come back to these problems when studying more precisely
mixed and hybrid methods. Checking the closedness of ImB , even if existence
proofs can be obtained through other considerations, is a crucial step ensuring that
we have a well-posed problem and that we are working with the right functional
spaces. This last fact is essential to obtain “natural” error estimates.

We end this subsection with a few rather academic examples, just in order
to see formulations that do not work (or present some sort of difficulty) and
understand why.

We shall consider the problem (very loosely related to plate bending problems,
as in Example 1.2.4, or to the Stokes problem in the so-called streamline-vorticity
formulation):

�2 D f in ˝ (4.2.66)

on a reasonably smooth domain ˝ (for instance, a convex polygon). We introduce
! WD �� , and we are going to consider various boundary conditions, and
different possible mixed formulations.

• We start with the easiest choice of boundary conditions, that is

 D ! D 0 on �: (4.2.67)

In this case, we can set V 	 Q WD H1
0 .˝/, and consider the formulation

8
ˆ̂<

ˆ̂:

Z

˝

! � dx �
Z

˝

grad� grad dx D 0; 8� 2 V;

�
Z

˝

grad! grad' dx D �hf; 'i; 8 ' 2 Q:
(4.2.68)

In this case, both the operators B and Bt coincide with the Laplace operator
� W H1

0 .˝/ ! H�1.˝/, which is an isomorphism. In particular, ImB D Q0
and KerB D f0g, so that the ellipticity in the kernel (4.2.12) is also trivially
satisfied. All is well and good. However, one could object that, with the boundary
conditions (4.2.67), we are almost cheating. Indeed, the problem is equivalent to
the cascade of sub-problems: ��! D f and �� D ! which are both well
posed if we look for ! 2 H1

0 and  2 H1
0 .

• We now consider the “clamped plate” boundary conditions

 D @ 

@n
D 0 on �: (4.2.69)

Setting V WD L2.˝/ and Q WD H2
0 .˝/, it is immediate to see that .!;  /

satisfies the equations

8
ˆ̂<

ˆ̂:

Z

˝

! � dx C
Z

˝

�� dx D 0; 8� 2 V;
Z

˝

! �' dx D �hf; 'i; 8 ' 2 Q:
(4.2.70)



236 4 Saddle Point Problems in Hilbert Spaces

Here, the operator Bt is just the Laplace operator from H2
0 .˝/ to L2.˝/, and it

is clearly injective and bounding, since k'k2;˝ � C k�'k0;˝ for some constant
C . Hence, the image of B coincides with Q0. The kernel of B is a little more
sophisticated. With some work, we discover that it can be characterised as

KerB D .L2harm/
?; (4.2.71)

where L2harm is the (closed) subspace of L2.˝/made of harmonic functions (that
is, functions w such that �w D 0 in the distributional sense). Indeed, for such
functions, it is not difficult to see that .w; �'/ D 0 for all ' 2 H2

0 .˝/. In any
case, we don’t care too much about KerB , since the bilinear form a is coercive
on the whole V . Our theory applies, and we are happy.

• Still with the “clamped plate” boundary conditions (4.2.69), if we are not willing
to use spaces involving two derivatives (asH2

0 .˝/), we could take V WD H1.˝/

and Q WD H1
0 .˝/. It is not difficult to see that .!;  / solves

8
ˆ̂<

ˆ̂:

Z

˝

! � dx �
Z

˝

grad� grad dx D 0; 8� 2 V;

�
Z

˝

grad! grad' dx D �hf; 'i; 8 ' 2 Q:
(4.2.72)

This time,B is the Laplace operator fromH1.˝/ toH�1.˝/ (dual space ofH1
0 ),

which is clearly surjective. However, its kernel is made of the harmonic functions
inH1.˝/ and the bilinear form a (which in this case is just theL2-inner product)
cannot be coercive (in H1.˝/), not even if you restrict it to the harmonic
functions. If you are not convinced of that, consider in ˝ WD �0; �Œ
 �0; 1Œ the
sequence of functions

�k WD sin.kx/ eky:

Clearly, ��k D 0 for all k. However, a simple computation shows that

k grad�kk20;˝ D 2k2k�kk20;˝
and you cannot bound k�kk2V (that is k grad�kk20;˝ ) with a.�k; �k/ (that is
k�kk20;˝ ) uniformly in k. Hence, formulation (4.2.72) is not really healthy, as the
ellipticity in the kernel fails. Indeed, if for instance the domain ˝ is not convex,
you are likely to have a problem without existence, as  usually will not be in
H3.˝/ and therefore ! might not be in H1.˝/. We shall see in the following
chapters that methods based on this formulation might exhibit a suboptimal rate
of convergence.

• We now consider the boundary conditions

@ 

@n
D @!

@n
D 0 on �: (4.2.73)
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Here, we can take V WD L2.˝/ and Q WD 0H
2.˝/ defined as

0H
2.˝/ WD f' j ' 2 H2.˝/;

@'

@n
D 0 on � g

and use the formulation (4.2.70). We see that Bt is again the Laplace operator,
but this time 0H

2.˝/ ! .L2.˝//0 	 L2.˝/. If, for instance, the domain ˝ is
convex, then H WD KerBt is the space of constants, and ImBt will be the subset
of V 0 	 V D L2.˝/ made of functions with zero mean value. The kernel of B
will also be the space of constants, and the image of B will be the polar set of
KerBt , made of those functionals that vanish on constants. We are in a situation
similar to that faced for the Stokes problem in Example 4.2.2. Here, we can adjust
everything by redefiningQ as the subset of 0H2.˝/made of functions with zero
mean value (that is, Q D H?). The compatibility condition hf; ci D 0 for every
constant c will still have to be required, in order to have f 2 Q0 (now D .H?/0).
Doing that, we have that a is elliptic on V and ImB D Q0 (the new Q0, of
course), and everything will work.

• It is time to see a really weird case. Consider, to fix the ideas, the case of
˝ WD �0; �Œ
�0; 1Œ, and split its boundary into the bottom part �b WD�0; �Œ
f0g,
the top part �t WD �0; �Œ
f1g, and the lateral part �` WD @˝ n .�b [ �t /.
Consider now the boundary conditions

 D @ 

@n
D 0 on �bI ! D @!

@n
D 0 on �t I @ 

@n
D @!

@n
D 0 on �`

(4.2.74)
and the spaces V WD L2 andQ WD QH2 defined as

QH2 WD f' j ' 2 H2.˝/; ' D @'

@n
D 0 on �b and

@'

@n
D 0 on �`g:

It is clear that, if you have a solution .!;  / of the problem, then it will satisfy

8
ˆ̂<

ˆ̂:

Z

˝

! � dx C
Z

˝

�� dx D 0; 8� 2 V;
Z

˝

! �' dx D �hf; 'i; 8 ' 2 Q:
(4.2.75)

This time, Bt will be the Laplace operator from QH2 to L2.˝/. A non-trivial result
of complex analysis (Cauchy-Kovalewskaya Theorem) ensures that KerBt D f0g
(the boundary conditions at the bottom are enough to give you that). However, we
can check that Bt is not bounding. To see that, consider the sequence

�k WD 1

k2
cos.kx/.1 � cosh.ky//:
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It is clear that �k 2 QH2 for all k. A simple computation shows that ���k D cos.kx/,
so that

k��kk2L2.˝/ D �

2
:

On the other hand, it is also simple to check that

k�kk2L2.˝/ ' e2k

k4

goes to C1 for k ! C1, so that a uniform bound (in k) of the form

k�'kL2.˝/ � ˇk'k QH2 8' 2 QH2

is hopeless. Hence, ImBt is not closed and therefore ImB is not closed either.
Indeed, the problem is severely ill posed, and you cannot solve it in practice unless
you add some sort of regularisation.

4.3 Existence and Uniqueness for Perturbed Problems

Some applications, in particular nearly incompressible materials (Sect. 8.13), will
require a more general formulation than Problem (4.2.6). Although the first
generalisation introduced will appear to be simple, we shall see that its analysis
is rather more intricate.

4.3.1 Regular Perturbations

We assume that we are also given a continuous bilinear form c.� ; �/ on Q 
Q, and
we denote by C its associated operatorQ ! Q0.

We now consider the following extension of problem (4.2.6): given f 2 V 0 and
g 2 Q0, find u 2 V and p 2 Q such that

(
a.u; v/C b.v; p/ D hf; viV 0�V ; 8 v 2 V;
b.u; q/� c.p; q/ D hg; qiQ0�Q: 8 q 2 Q: (4.3.1)

Remark 4.3.1. Whenever a.�; �/ and c.�; �/ are symmetric, this problem corresponds
to the saddle point problem

inf
v2V

sup
q2Q

1

2
a.v; v/C b.v; q/� 1

2
c.q; q/ � hf; vi C hg; qi

and it is no longer equivalent to a minimisation problem on u. ut
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Remark 4.3.2. As in Remark 4.2.2, the two equations in (4.3.1) can sometimes be
written as a unique variational equation, setting

A..u; p/; .v; q// D a.u; v/C b.v; p/� b.u; q/C c.p; q/ 8.u; p/; .v; q/ 2 V 
Q
(4.3.2)

and then requiring again that

A..u; p/; .v; q// D hf; viV 0�V � hg; qiQ0�Q 8.v; q/ 2 V 
Q: (4.3.3)

ut
We now want to look for conditions on a; b and c ensuring the existence and

uniqueness of a solution to (4.3.1), together with the proper stability bounds.
Let us first consider a special case. We assume that c.�; �/ is coercive onQ, that is

9 � > 0 such that c.q; q/ � � kqk2Q; 8 q 2 Q (4.3.4)

and that a.�; �/ is also coercive on V :

9˛ > 0 such that a.v; v/ � ˛ kvk2V ; 8 v 2 V: (4.3.5)

Then, we have the following proposition.

Proposition 4.3.1. Together with Assumption AB, assume that (4.3.4) and (4.3.5)
hold. Then, for every f 2 V 0 and g 2 Q0, problem (4.3.1) has a unique solution
.u; p/. Moreover, we have:

˛

2
kuk2V C �

2
kpk2 � 1

2˛
kf k2V 0 C 1

2�
kgk2Q0 : (4.3.6)

Proof. The proof is elementary (using, for instance, Lax-Milgram Lemma (4.1.6)
on the bilinear form (4.3.2)). ut

The estimate (4.3.6) is unsatisfactory. Actually, in many applications, we will
deal with a bilinear form c.�; �/ defined by

c.p; q/ D �.p; q/Q; � � 0; (4.3.7)

and we would like to get estimates that provide uniform bounds on the solution for
� small (say 0 � � � 1). Clearly, if c.�; �/ has the form (4.3.7), one has � D �

in (4.3.4) and the bound (4.3.6) explodes for vanishing �. This fact has practical
implications, as we shall see, on the numerical approximations of some problems,
for instance when dealing with nearly incompressible materials. On the other hand,
Proposition 4.3.1 makes no assumptions on b.�; �/ (except the usual (4.2.4)) and it is
then quite natural for the choice c 	 0 to be forbidden.
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It is then natural to start assuming, as we did in Sect. 3.6 of the previous chapter,
that the corresponding unperturbed problem (corresponding to the case c 	 0) is
well posed, and try to find sufficient conditions on c that ensure the well-posedness
of the perturbed problem.

We shall start with the simplest case, generalising Proposition 3.3.1 in an obvious
manner.

Proposition 4.3.2. Together with Assumption AB, assume that AKK0 is an isomor-
phism from K to K 0 and that ImB D Q0. Then, there exists an "0 > 0 such that, for
every " with j"j � "0, condition kck � " implies that problem (4.3.1) has a unique
solution for every f 2 V 0 and for every g 2 Q0. ut
As for Proposition 4.3.1, the proof is immediate, this time using the Kato
Theorem 4.1.3.

The result of Proposition 4.3.2 is also unsatisfactory. For once, it does give us
a result only for " small enough. Besides, "0 will be very difficult to compute in
practice. Without it, we basically never know, in every particular case, whether we
are solving a well posed problem or not, which is clearly a quite unhappy situation.

We therefore have to look for better results. We could start, as in the previous
subsection, by assuming that ImB D Q0, and then try to adapt the results to the
case in which ImB is closed but not equal to Q0. We remark, however, that, this
time, the passage from the case when ImB D Q0 (when H D f0g) and the case
when ImB is simply closed is no longer so simple, as the bilinear form c could
mix together the components of p in H and in H?. Therefore, it is better to look
directly at the case where we simply have ImB closed. On the other hand, we have
already seen in the previous chapter that assuming symmetry of both a and c gives
much better stability bounds. Hence, we decide to concentrate on that case. This is
particularly reasonable since, in most applications, the symmetry assumptions are
satisfied.

Therefore, to start with, we enlarge our Assumption AB to include the additional
bilinear form c and the additional properties that we are going to use throughout this
subsection.
Assumption ABC: Together with Assumption AB, we assume that we are given
a continuous bilinear form c.� ; �/ on Q 
 Q, and we denote by C its associated
operator Q ! Q0. We assume, moreover, that ImB is closed, and that both a.� ; �/
and c.� ; �/ are symmetric and positive semi-definite:

a.v; v/ � 0; 8 v 2 V c.q; q/ � 0; 8 q 2 Q: (4.3.8)

We now introduce some additional notation, and a few related properties that hold
when a and c are symmetric and positive semi-definite, and ImB is closed.

We define the semi-norms

jvj2a WD a.v; v/ jqj2c WD c.q; q/; (4.3.9)

and we note that, thanks to the continuity of a and c,
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jvj2a � kak kvk2V 8 v 2 V and jqj2c � kck kqk2Q 8 q 2 Q: (4.3.10)

We also note that, from (4.2.29), we have

a.u; v/ � juja jvja and c.p; q/ � jpjc jqjc; (4.3.11)

and from (4.2.30),

kAuk2 � kak juj2a and kCpk2 � kck jpj2c : (4.3.12)

Setting againK D KerB andH D KerBt as in (4.1.66), we can split each v 2 V
and each q 2 Q as

v D v0 C v q D q0 C q; (4.3.13)

with v0 2 K , v 2 K?, q0 2 H , and q 2 H?, and we note that

b.v; q/ D b.v; q/ D b.v; q/ D b.v; q/: (4.3.14)

In a similar way, we can split each f 2 V 0 and each g 2 Q0 as

f D f0 C f g D g0 C g (4.3.15)

with f0 2 K 0, f 2 .K?/0 	 K0, g0 2 H 0 and g 2 .H?/0 	 H0, and we note that

hf; vi D hf0; v0i C hf ; vi hg; qi D hg0; q0i C hg; qi (4.3.16)

with obvious meaning of the duality pairings.
We therefore have the following result, in which the roles of a and c are perfectly

interchangeable.

Theorem 4.3.1. Together with Assumption ABC, assume that a.� ; �/ is coercive on
K and c.� ; �/ is coercive on H . Let therefore ˛0, ˇ, and �0 be positive constants
such that

˛0kv0k2V � a.v0; v0/ 8 v0 2 K; (4.3.17)

inf
q2H?

sup
v2V

b.v; q/

kqkQ kvkV D inf
v2K?

sup
q2Q

b.v; q/

kqkQ kvkV D ˇ > 0; (4.3.18)

�0kq0k2Q � c.q0; q0/ 8 q0 2 H: (4.3.19)

Then, for every f 2 V 0 and g 2 Q0, we have that the problem

(
a.u; v/C b.v; p/ D hf; viV 0�V ; 8 v 2 V;
b.u; q/� c.p; q/ D hg; qiQ0�Q; 8 q 2 Q (4.3.20)
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has a unique solution, that moreover satisfies

kukV C kpkQ � C
�
kf kV 0 C kgkQ0

�
(4.3.21)

with C constant depending only on the stability constants ˛0, ˇ, �0 and on the
continuity constants kak and kck. More precisely, we have:

kukV � kckkf k
ˇ2

C
p
2ˇ2 C �2kck1=2 kf0k

˛
1=2
0 ˇ2

C .ˇ C �/kgk
ˇ2

C 3
p
ˇ2 C �2kck1=2kg0k

�
1=2
0 ˇ2

; (4.3.22)

ku0kV � kck kak1=2 kf k
˛
1=2
0 ˇ2

C 2.ˇ2 C �2/kf0k
˛0ˇ2

C .ˇ C �/kak1=2kgk
˛
1=2
0 ˇ2

C 3�
p
ˇ2 C �2kg0k
�
1=2
0 ˛

1=2
0 ˇ2

; (4.3.23)

kpkQ � .ˇ C �/kf k
ˇ2

C 3
p
ˇ2 C �2kak1=2 kf0k

˛
1=2
0 ˇ2

C kakkgk
ˇ2

C
p
2ˇ2 C �2kak1=2 kg0k

�
1=2
0 ˇ2

; (4.3.24)

kp0kQ � C .ˇ C �/kck1=2kf k
�
1=2
0 ˇ2

C 3�
p
ˇ2 C �2kf0k
˛
1=2
0 �

1=2
0 ˇ2

C kak kck1=2kgk
�
1=2
0 ˇ2

C 2.ˇ2 C �2/kg0k
�0ˇ2

; (4.3.25)

where � is defined by

�2 WD kak kck: (4.3.26)

Proof. As the problem is symmetric, we just have to prove that the mapping M W
.u; p/ ! .f; g/ is bounding (that is, we have to prove that the bounds (4.3.22)–
(4.3.25) hold true). Then, M will be injective and Mt 	 M will be surjective, and
the theorem will be proved.
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Then, we note that there is another (fundamental) symmetry in our assumptions
when we exchange a with c, u with p and B with Bt . Hence, we can start proving
our bounds for the case, say, f D 0. These bounds, due to the above symmetry, will
imply similar ones for the case g D 0 (exchanging u with p, ˛0 with �0, and so on).
Then, by linearity, we will sum the estimates for f D 0 and those for g D 0, and
obtain the final estimates for the general case.

Hence, we proceed by assuming f D 0. We first observe that, for f D 0, we
have from the first equation

a.u; u0/ D �b.u0; p/ D 0 (4.3.27)

since u0 2 KerB . Hence, using (4.3.9), u0 D u � u, and (4.3.11),

ju0j2a D a.u0; u0/ D �a.u; u0/ � juja ju0ja; (4.3.28)

which, combined with the ellipticity condition (4.3.17) and then with (4.3.10), gives

ku0kV � 1

˛
1=2
0

ju0ja � 1

˛
1=2
0

juja: � kak1=2
˛
1=2
0

kukV : (4.3.29)

We also note that, in operator form, Eqs. (4.3.20), for f D 0, give

Au D �Btp (4.3.30)

and

Bu D Cp C g: (4.3.31)

Moreover, taking in (4.3.20) v D u in the first equation, q D p in the second
equation, and subtracting, we have

a.u; u/C c.p; p/ D �hg; pi; (4.3.32)

implying through (4.3.12) that

kAuk2V 0

kak C kCpk2Q0

kck � �hg; pi: (4.3.33)

At this point, it will be convenient to further distinguish the cases g0 D 0 and g D 0,
to make the estimates separately, and then sum them. We start with the easier case
g0 D 0. Then, (4.3.33) becomes

kAuk2V 0

kak C kCpk2Q0

kck � �hg; pi: (4.3.34)
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On the other hand, p � p D p0 2 H so that Btp D Btp. Hence, using (4.3.30),
then (4.3.34), and then (4.1.94), we have

kBtpk2V 0 DkBtpk2V 0 D kAuk2V 0

� kak kgkQ0kpkQ � kak kgkQ0

1

ˇ
kBtpkV 0

(4.3.35)

which, using again (4.1.94), gives

kpkQ � 1

ˇ
kBtpkV 0 � kak

ˇ2
kgkQ0 : (4.3.36)

At this point, we remark that, from the second equation of (4.3.20) tested on q D p0,
we have

c.p; p0/ D b.u; p0/� hg; p0i D 0 � 0 D 0; (4.3.37)

since Btp0 D 0 and hg; p0i D 0 as in (4.3.16). Proceeding exactly as in (4.3.27)–
(4.3.29), we then have

jp0jc � jpjc: (4.3.38)

Using the ellipticity condition (4.3.19), then (4.3.38), (4.3.10) and the previous
estimate (4.3.36) on p, we have

kp0kQ � 1

�
1=2
0

jp0jc � 1

�
1=2
0

jpjc � kak kck1=2
�
1=2
0 ˇ2

kgkQ0 : (4.3.39)

The estimates on u and u0 can be obtained in a similar way: indeed we can use
(4.3.31), then (4.3.34), and then again (4.3.36) to obtain

kBu � gk2Q0 D kCpk2Q0 � kck kgkQ0kpkQ � kck kak
ˇ2

kgk2Q0 ;

giving

kBukQ0 � .kck kak/1=2
ˇ

kgkQ0 C kgkQ0 � �C ˇ

ˇ
kgkQ0 ; (4.3.40)

where in the last step we used the definition of � given in (4.3.26). Hence, using
(4.1.93), Bu D Bu, and (4.3.40), we have

kukV � 1

ˇ
kBukQ0 D 1

ˇ
kBukQ0 � �C ˇ

ˇ2
kgkQ0 : (4.3.41)

Finally, we can use (4.3.29) to obtain
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ku0kV � kak1=2
˛1=2

kukV � .�C ˇ/kak1=2
˛1=2ˇ2

kgkQ0 : (4.3.42)

The estimates in the case g0 D 0 are therefore completed.
We now consider the case g D 0. Using the definition (4.3.9), then (4.3.13), and

then the second equation of (4.3.20) with q D p0, we have

jp0j2c D c.p0; p0/ D c.p; p0/� c.p; p0/

D b.u; p0/ � hg0; p0i � c.p; p0/ D �hg0; p0i � c.p; p0/

� kg0kQ0kp0kQ C jpjc jp0jc
(4.3.43)

where the last equality holds since p0 2 KerBt . We also note that, due to (4.3.19),

kp0kQ � 1

�
1=2
0

jp0jc: (4.3.44)

Joining (4.3.43) and (4.3.44), we then have

jp0j2c � kg0kQ0

�
1=2
0

jp0jc C jpjcjp0jc; (4.3.45)

implying

jp0jc � kg0kQ0

�
1=2
0

C jpjc; (4.3.46)

and using once more (4.3.44), and then (4.3.10),

kp0kQ � 1

�
1=2
0

�kg0kQ0

�
1=2
0

C jpjc
�

� kg0kQ0

�0
C kck1=2

�
1=2
0

kpkQ: (4.3.47)

Proceeding as in (4.3.35), and then using (4.3.47), and finally (4.1.94), we now have

kBtpk2V 0 D kBtpk2V 0 D kAuk2V 0 � kak kg0kQ0kp0kQ

�kak kg0k2Q0

�0
C kak kg0kQ0

�
1=2
0

kck1=2kpkQ

�kak kg0k2Q0

�0
C kak kg0kQ0kck1=2

ˇ�
1=2
0

kBtpkV 0 :

(4.3.48)

Using the classical inequality xy � .x2 C y2/=2 on the last term of (4.3.48), we
obtain
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1

2
kBtpk2V 0 � kak kg0k2Q0

�0
C kak2 kg0k2Q0kck

2ˇ2�0
� .2ˇ2 C �2/kak kg0k2Q0

2�0ˇ2
;

(4.3.49)
implying easily

kBtpkV 0 � .2ˇ2 C �2/
1=2kak1=2 kg0kQ0

�
1=2
0 ˇ

: (4.3.50)

From (4.3.50), using once more (4.1.94), we obtain the estimate on p

kpkQ � .2ˇ2 C �2/1=2kak1=2 kg0kQ0

�
1=2
0 ˇ2

; (4.3.51)

which, using (4.3.47), also gives the bound on p0:

kp0kQ � kg0kQ0

�0
C kck1=2

�
1=2
0

.2ˇ2 C �2/1=2kak1=2 kg0kQ0

�
1=2
0 ˇ2

D ˇ2 C �.2ˇ2 C �2/1=2

�0ˇ2
kg0kQ0 � 2.ˇ2 C �2/

�0ˇ2
kg0kQ0 : (4.3.52)

This, in turn, gives us a bound on kCpkQ0 . Indeed, using (4.3.33) and remember-
ing that in this case

hg; pi D hg0; pi D hg0; p0i (4.3.53)

and then using (4.3.52), we easily have

kCpk2Q0 � �kck hg0; p0i � kck 2.ˇ2 C �2/

�0ˇ2
kg0k2Q0 : (4.3.54)

On the other hand, the second equation of (4.3.20) gives Bu D Cp C g0, so that
using (4.3.54),

kBukQ0 �
�kck1=2p2.ˇ2 C �2/

�
1=2
0 ˇ

C 1
�
kg0kQ0 � 3

p
ˇ2 C �2kck1=2
�
1=2
0 ˇ

kg0kQ0 ;

(4.3.55)

where we used the fact that �0 � kck. We now note that Bu D Bu, so that, using
(4.1.93) and (4.3.55), we have the estimate on u

kukV � 1

ˇ
kBukQ0 � 3

p
ˇ2 C �2kck1=2
�
1=2
0 ˇ2

kg0kQ0 : (4.3.56)
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The estimate on u0 then follows from (4.3.29), that is,

ku0kV � kak1=2
˛
1=2
0

kukV � 3�
p
ˇ2 C �2

�
1=2
0 ˛

1=2
0 ˇ2

kg0kQ0 : (4.3.57)

As already discussed, the estimates for the cases g D 0 and f D f or f D f0 are
“symmetrical”, and the proof is completed. ut
Remark 4.3.3. Following the path of Theorem 3.6.1, we could have proved stability
also for the case in which a or c are not symmetric (at least in the case ImB D Q0).
However, the dependence of the stability constants upon ˛0 and ˇ would have been
much worse. ut

A very particular (but important) case is met when c has the form, as in (4.3.7),

c.p; q/ D �.p; q/Q; � � 0 (4.3.58)

where .� ; �/Q is the scalar product inQ. We decided therefore to dedicate a theorem
especially to it.

Theorem 4.3.2. In the framework of Assumption ABC, assume further that the inf-
sup condition (4.2.26) and the ellipticity requirement (4.2.12) are satisfied, and that
c is given by (4.3.58) with � > 0. Then, for every f 2 V 0 and for every g 2 Q0,
problem (4.3.20) has a unique solution, and we have the estimate

kukV � ˇ2 C 4� kak
˛0ˇ2

kf kV 0 C 2kak1=2
˛
1=2
0 ˇ

kgkQ0 (4.3.59)

and

kpkQ � 2 kak1=2
˛
1=2
0 ˇ

kf kV 0 C 4 kak
�kak C 2 ˇ2

kgkQ0 : (4.3.60)

Proof. As we are already used to, we shall split the two cases f D 0 and g D 0,
and then combine the estimates by linearity. Let us first consider the case f D 0,
and assume that u, p and g satisfy

(
a.u; v/C b.v; p/ D 0; 8 v 2 V;
b.u; q/� �.p; q/Q D hg; qiQ0�Q; 8 q 2 Q: (4.3.61)

In operator form, (4.3.61) can be written as
(
Au C Btp D 0;

Bu � �RQp D g;
(4.3.62)

where RQ is the Ritz operatorQ ! Q0 (see (4.1.37)).
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Using (4.1.94) together with the first equation of (4.3.62), we obtain

ˇkpkQ � kBtpkQ0 D kAukV 0 : (4.3.63)

On the other hand, we already noted (see (4.3.32)) that

a.u; u/C �kpk2Q D �hg; piQ0�Q: (4.3.64)

Using (4.3.12), Eq. (4.3.64) and finally (3.4.17), we have

kAuk2V 0 � kaka.u; u/ � kakkpkQ kgkQ0 ; (4.3.65)

which, combined with (4.3.63), yields

kAukV 0 � kak
ˇ

kgkQ0 ; (4.3.66)

and using again (4.3.63),

kpkQ � kak
ˇ2

kgkQ0 : (4.3.67)

Using the lifting operator LB defined in Theorem 4.1.5, we set

Qu WD LB.g C �R�1
Q p/ (4.3.68)

and we have from (3.4.43)

BQu D g C �R�1
Q p: (4.3.69)

Setting now

u0 WD u � Qu; (4.3.70)

we have from (4.3.69) and the second equation of (4.3.62) that u0 2 K . We then
note that, testing the first equation of (4.3.61) with v D u0, we have, as in (4.3.27):

a.u; u0/ D �b.u0; p/ D 0: (4.3.71)

Moreover, using (4.3.70), (4.3.71) and (4.3.11), we have as in (4.3.28)

a.u0; u0/ D �a.u0; Qu/ � ju0jajQuja; (4.3.72)

which easily gives

ju0ja � jQuja: (4.3.73)

Hence, we can use (4.2.12) and (4.3.73) to obtain

˛0ku0k2V � ju0j2a � jQuj2a; (4.3.74)
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and finally from (4.3.74) and (4.3.10),

ku0kV �
�kak
˛0

�1=2kQukV : (4.3.75)

Finally, we can collect (4.3.70) and (4.3.75) and have an estimate for u:

kukV � ku0kV C kQukV �
	
1C

	kak
˛0


1=2

kQukV : (4.3.76)

We now consider the first equation of (4.3.61) with v D u, getting

a.u; u/C b.u; p/ D 0: (4.3.77)

Recalling that a is positive semi-definite (see (4.3.8)), we obtain

b.u; p/ � 0;

and substituting p D ��1R�1
Q .Bu � g/:

0 � hBu; ��1R�1
Q .Bu � g/iQ0�Q

D ��1
�
kBuk2Q0 � hBu; R�1

Q giQ0�Q
�
; (4.3.78)

which easily implies

kBuk2Q0 � hBu; R�1
Q giQ0�Q � kBukQ0 kgkQ0 ; (4.3.79)

giving

kBukQ0 � kgkQ0 : (4.3.80)

Using once more the inf-sup condition (4.1.93),

kQukV � 1

ˇ
kBQukQ0 � 1

ˇ
kBukQ0 � 1

ˇ
kgkQ0 ; (4.3.81)

and inserting (4.3.81) in (4.3.76), then using ˛0 � kak, gives

kukV �
�
1C

�kak
˛0

�1=2�kQukV � 2kak1=2
ˇ˛

1=2
0

kgkQ0 : (4.3.82)
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We note at this point that we have another way to obtain an estimate for p, apart
from (4.3.67); actually, from the second equation of (4.3.62), and (4.3.80):

kpkQ � 1

�
kBu � gkQ0 � 2

�
kgkQ0 : (4.3.83)

With some manipulations, we see that (4.3.67) and (4.3.83) can be combined into

kpkQ � 4 kak
kak�C 2 ˇ2

kgkQ0 : (4.3.84)

We now consider the case in which g D 0 and assume that u, p and f satisfy

(
a.u; v/C b.v; p/ D hf; viV 0�V ; 8 v 2 V;
b.u; q/� �.p; q/Q D 0; 8 q 2 Q; (4.3.85)

which in operator form reads:

(
Au C Btp D f

Bu � �RQp D 0;
(4.3.86)

where againRQ is the Ritz operatorQ ! Q0 (see (4.1.37)). We use again the lifting
operator LB of Theorem (4.1.5), this time setting Qu WD LB�RQp so that

BQu D Bu D �RQp; (4.3.87)

and, defining again u0 as in (4.3.70), we still have u0 2 K . Taking v D Qu as test
function in the first equation of (4.3.86), and substitute p D R�1

Q �
�1Bu:

a.u; Qu/C b.Qu; R�1
Q �

�1Bu/ D hf; Qui: (4.3.88)

As BQu D Bu, we can rewrite (4.3.88) as follows

��1kBuk2Q0 D hf; Qui � a.u; Qu/ � kf kV 0 kQukV � a.u; Qu/: (4.3.89)

We leave (4.3.89) for a while, and we estimate �a.u; Qu/. Using the fact that
u D Qu C u0 and (4.3.11), we obtain

� a.u; Qu/ D �a.Qu C u0; Qu/ � �jQuj2a C jQuja ju0ja: (4.3.90)

On the other hand, testing the first equation with v D u0, we get

a.u; u0/ D hf; u0i; (4.3.91)
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yielding

ju0j2a D a.u0; u0/ D a.u; u0/� a.Qu; u0/ � kf k ku0kV C jQuja ju0ja: (4.3.92)

On the other hand, (4.3.17) gives

˛0ku0k2V � ju0j2a (4.3.93)

which, together with (4.3.92), yields

ju0ja � kf kV 0

˛
1=2
0

C jQuja: (4.3.94)

Inserting this into (4.3.90), we have

� a.u; Qu/ � �jQuj2a C jQuja
� 1

˛
1=2
0

kf kV 0 C jQuja
�

D jQuja 1

˛
1=2
0

kf kV 0 : (4.3.95)

Inserting this into (4.3.89), then using (4.3.10), and finally using (4.1.93) gives

��1kBuk2Q0 � kf kV 0 kQukV C jQuja 1

˛
1=2
0

kf kV 0

�
�
1C kak1=2

˛
1=2
0

�
kf kV 0kQukV �

�
1C kak1=2

˛
1=2
0

�
kf kV 0

1

ˇ
kBukQ0

D ˛
1=2
0 C kak1=2
ˇ˛

1=2
0

kf kV 0kBukQ0 : (4.3.96)

Using again (4.1.93) and then (4.3.96), we have therefore

kQukV � 1

ˇ
kBukQ0 � �.˛

1=2
0 C kak1=2/
ˇ2˛

1=2
0

kf kV 0 : (4.3.97)

Using (4.3.93), (4.3.94), and (4.3.10) and then (4.3.97), we have then

ku0kV � 1

˛
1=2
0

ju0ja � kf kV 0

˛0
C jQuja
˛
1=2
0

� kf kV 0

˛0
C
�kak
˛0

�1=2kQuk

�
� 1
˛0

C �.˛
1=2
0 C kak1=2/kak1=2

˛0ˇ2

�
kf kV 0 : (4.3.98)
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From the second equation of (4.3.86) and (4.3.97), we also derive the estimate for p

kpkQ D k��1BukQ0 � ˛
1=2
0 C kak1=2
ˇ˛

1=2
0

kf kV 0 : (4.3.99)

We collect the results for g D 0, using the fact that ˛0 � kak. From (4.3.97) and
(4.3.98), we have the estimate on u

kukV � kQukV C ku0kV

�
�� .kak1=2 C ˛

1=2
0 /

˛
1=2
0 ˇ2

C 1

˛0
C �.kak C .kak˛0/1=2/

˛0ˇ2

�
kf kV 0

� ˇ2 C 4�kak
˛0ˇ2

kf kV 0 ; (4.3.100)

while from (4.3.99) we have the estimate on p

kpkQ � 2 kak1=2
˛
1=2
0 ˇ

kf kV 0 : (4.3.101)

The final results can then be obtained collecting (4.3.82), (4.3.84), (4.3.100) and
(4.3.101). ut
Corollary 4.3.1. In the framework of Assumption ABC, assume that ImB is closed,
that the ellipticity requirement (4.2.12) is satisfied and that c is given by (4.3.58)
with � � 0. Set g D g C g0 with g 2 H0 and g0 2 H 0 (with H WD kerBt , as
usual), and set p D pCp0 with p 2 H? and p0 2 H . Then, for every f 2 V 0 and
for every g 2 Q0, problem (4.3.20) has a unique solution, and we have the estimates

kukV � ˇ2 C 4� kak
˛0ˇ2

kf kV 0 C 2kak1=2
˛
1=2
0 ˇ

kgkQ0 ; (4.3.102)

kpkQ � 2 kak1=2
˛
1=2
0 ˇ

kf kV 0 C 4 kak
�kak C 2 ˇ2

kgkQ0 ; (4.3.103)

kp0kQ � 1

�
kg0kQ0 : (4.3.104)

Proof. It is immediate to check that, actually, the problem splits into two sub-
problems: find .u; p/ 2 V 
H? such that

(
a.u; v/C b.v; p/ D hf; viV 0�V ; 8 v 2 V;
b.u; q/� �.p; q/Q D hg; qi.H?/0�H? ; 8 q 2 H?;

(4.3.105)
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and

�p0 D g0: (4.3.106)

For problem (4.3.105), we can apply the results of Theorem 4.3.2 usingH? instead
of Q (with the same norm). Problem (4.3.106) is trivial. ut

In the case where c has the form (4.3.58), as in Theorem 4.3.2, it is also
interesting to estimate the distance between the solution of the perturbed problem
(4.3.20) and the solution of the limit problem, for � ! 0.

We have in particular the following proposition.

Proposition 4.3.3. Together with Assumption AB, assume that a.� ; �/ is symmetric,
positive semi-definite and elliptic on K , and that ImB is closed. Let f 2 V 0, let
g 2 ImB , and let .u�; p�/ be the solution in V 
H? of the problem

(
a.u�; v/C b.v; p�/ D hf; viV 0�V ; 8 v 2 V;
b.u�; q/ D hg; qiQ0�Q; 8 q 2 Q: (4.3.107)

Let moreover, for � > 0, .u�; p�/ be the solution in V 
Q of
(
a.u�; v/C b.v; p�/ D hf; viV 0�V ; 8 v 2 V;
b.u�; q/ � �.p�; q/Q D hg; qiQ0�Q; 8 q 2 Q: (4.3.108)

Then, we have

ku� � u�kV C kp� � p�kQ � C �; (4.3.109)

where C is a constant depending only on ˛0, kak and ˇ.

Proof. Setting ıu WD u� � u� and ıp WD p� � p� and taking the difference of
(4.3.108)–(4.3.107), we easily have

(
a.ıu; v/C b.v; ıp/ D 0; 8 v 2 V;
b.ıu; q/� �.ıp; q/ D � .p�; q/Q; 8 q 2 Q: (4.3.110)

Hence, we can apply estimates (4.3.59) and (4.3.60) with g D �RQp
�. ut

Remark 4.3.4. We point out that the validity of (4.3.109) for � ! 0 could have
been obtained directly from Theorem 4.3.2 and the Kato Theorem (4.1.3). ut

We also point out the following result, that is particularly useful if one is not too
keen on spotting the best dependence of the stability constants.

Proposition 4.3.4. Together with Assumption AB, assume that a.� ; �/ is symmetric,
positive semi-definite, and elliptic on K , and that ImB is closed. Then, for every
� > 0, there exist a constant Q̨ , depending on �, kak, ˛0 and ˇ (defined in (4.3.18)),
such that

Q̨ kvk2V � a.v; v/C �kBvk2Q0 8 v 2 V: (4.3.111)
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Proof. It is easy to check that, for every " 2 �0; 1Œ,

a.v; v/C �kBvk2Q0 D jv0j2a C jvj2a C 2a.v0; v/C �kBvk2Q0

� jv0j2a C jvj2a C �ˇkvk2V � 2jv0jajvja

� jv0j2a C jvj2a C �ˇ2kvk2V � "jv0j2a � 1

"
jvj2a

D .1� "/jv0j2a C .1 � 1

"
/jvj2a C �ˇ2kvk2V

� .1 � "/jv0j2a C .kak � kak
"
/jvj2V C �ˇ2kvk2V

D .1� "/jv0j2a C �ˇ2"C kak" � kak
"

kvk2V

� ˛0.1 � "/kv0k2V C �ˇ2"C kak" � kak
"

kvk2V ;

and the result follows by taking " D �ˇ2 C 2kak
2�ˇ2 C 2kak . ut

Remark 4.3.5. It is clear that, conversely, the property (4.3.111) implies the ellip-
ticity of a on the kernelK of B . ut
Remark 4.3.6. Looking at the proof of Proposition 4.3.4, we can analyse the
dependence of the constant Q̨ on �ˇ2, on kak, and on ˛0. Indeed, setting k WD �ˇ2

andm WD kak, for " D k C 2m

2k C 2m
we have

k"Cm"�m

"
D .k=2/Cm �m

"
D k=2

"
D k.k Cm/

k C 2m
(4.3.112)

while

˛0.1 � "/ D ˛0.2k C 2m � k � 2m/
2k C 2m

D ˛0 k

2k C 2m
: (4.3.113)

On the other hand, since ˛0 � m D kak, we have

k.k Cm/

k C 2m
� k˛0

2k C 2m
(4.3.114)

which finally gives (looking at the last line of the proof of Proposition 4.3.4)

Q̨ � �ˇ2˛0

2�ˇ2 C 2kak : (4.3.115)
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It is easy to see (taking the derivative) that the right-hand side of (4.3.115), as a
function of �, is monotonically increasing. Hence, we can say that, for every fixed
�� > 0, we have that for every � � ��,

Q̨ � ˛� WD ��ˇ2˛0
2��ˇ2 C 2kak : (4.3.116)

ut
Remark 4.3.7. In the above theorem, there is no mention of any bilinear form c,
and one may wonder why the theorem has been put in this subsection. However, the
bilinear form a.u; v/C �.Bu; Bv/Q0 is exactly what we get from problem (4.3.20)
for c.p; q/ D �.p; q/Q (that is, in the case of the problem (4.3.108)). Indeed, in
this case, the second equation of (4.3.108) can be written as: Bu D �RQp C g

whereRQ is the Ritz operator in Q, as defined in Theorem 4.1.2. Solving for p and
substituting in the first equation gives

a.u; v/C 1

�
hR�1

Q Bu; BviQ�Q0 D hf; viV 0�V C 1

�
hR�1

Q g;BviQ�Q0 :

Then, we use the fact that R�1
Q 	 RQ0 , we set � D 1=�, and we obtain that the

problem (4.3.108) is equivalent to

(
a.u; v/C �.Bu; Bv/Q0 D hf; viV 0�V C �.g;Bv/Q0 8 v 2 V;
p D �RQ0.g � Bu/;

(4.3.117)

where clearly the first equation can be solved by itself, and its solution u used to
express the solution p of the second equation. ut

We conclude the subsection on regular perturbations with the following general
theorem, which is often useful in these kinds of problems.

Theorem 4.3.3 (The shadow solution). Assume that H is a Hilbert space, and that
M and D are linear continuous operators from H into its dual space. Assume that
ImM is closed and that there exists a �� > 0 such that, for every � positive with
� � ��, we have

�kxk2H � C hMx C �Dx; xiH0�H 8 x 2 H; (4.3.118)

for some C independent of � and x. Let F 2 ImM and consider, for every � positive
with � � ��, the solution x� of the perturbed equation

Mx� C �Dx� D F : (4.3.119)
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Then, x� has a unique limit x� for � ! 0C and

kx� � x�kH � C� (4.3.120)

where C is independent of �.

Proof. We give a hint of the proof. As F 2 ImM, we have F D Mx for some
x 2 .KerM/? with kxkH bounded by kFkH0 . Then,

hM.x � x�/; .x � x�/i C �hD.x � x�/; .x � x�/i D � hDx; .x � x�/i;
showing that

kx� � xk2H � C0 hDx; .x � x�/i � C1kFkH0kx� � xkH; (4.3.121)

with C0 andC1 independent of �. Hence, x��x is bounded, and (up to the extraction
of a subsequence) converges weakly in H. We define then x� as the weak limit (for
� ! 0C) of x�: Then, we can go back to the first inequality in (4.3.121), and see that
the convergence is strong. Now we remark that, for every �, equation (4.3.119) gives
that Dx� belongs to the image of M. As the image is closed, its limit Dx� is also in
the image. Let y� 2 .KerM/? be such that My� D Dx�. Set now y� WD x� � x�,
y WD �y� and G WD My. We easily have that

My� C �Dy� D �Dx� D M.�y�/ D G: (4.3.122)

Proceeding as in the previous part of the proof, we have then

hM.y � y�/; .y � y�/i C �hD.y � y�/; .y � y�/i
D � hDy; x � x�i D �2 hDy�; y � y�i;

showing that

ky� � yk2H � C0 � hD.y�/; .y � y�/i � �C2ky � y�kH; (4.3.123)

with C2 independent of �. Hence, ky� � ykH D O.�/. Recalling the definition of
y� and y, we have then kx� � x� � �y�kH D O.�/ and finally (4.3.120). ut
Remark 4.3.8. We note that x and x� will both solve the limit equation Mx D F ,
and they have the same component in .KerM/?. However, the perturbation �D,
although vanishing in the limit, leaves a unique choice of the part of the solution
that belongs to .KerM/: it is the shadow of the perturbation. ut
Remark 4.3.9. The above theorem applies for instance to perturbed mixed formula-
tions as (4.3.20) when a and c are positive definite, with H D V 
Q. In this case,
we can set M.u; p/ D .Au C Btp;�Bu/ and D.u; p/ D .0; Cp/ and the theorem
applies. Note that ImM will be closed due to Remark (4.2.6). ut
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4.3.2 Singular Perturbations

An important variant of problem (4.3.20) will occur in applications (cf. Sect. 10.4).
Assume that we are given a Hilbert space W continuously embedded in Q (that is
W ,! Q) and dense in Q. We recall that, as in (4.1.75), the continuous embedding
means that W � Q and, moreover,

kwkQ � CWQkwkW 8 w 2 W (4.3.124)

(and without loss of generality we can assume here that CWQ D 1). As discussed in
Sect. 4.1.6, the density implies thatQ0 ,! W 0, thatQ0 is dense inW 0, the inequality

kwkW 0 � kwkQ0 8 w 2 Q0; (4.3.125)

and finally that

hg; qiW 0�W D hg; qiQ0�Q whenever g 2 Q0 and q 2 W: (4.3.126)

Remark 4.3.10. Having assumed already that CWQ D 1, and also in order to keep
the formulae reasonably simple, throughout this subsection, we implicitly assume
that the problem has been adimensionalised, so that all the quantities we deal with
are pure numbers. ut
We now consider for every � > 0 a perturbation of the type c.p; q/ D � .p; q/W ,
that is, we consider problems of the form: find .u�; p�/ in V 
W such that:

a.u�; v/C b.v; p�/ D hf; viV 0�V ; 8 v 2 V; (4.3.127)

b.u�; q/ � � .p�; q/W D hg1; qiQ0�Q C hg2; qiW 0�W ; 8 q 2 W: (4.3.128)

Depending on which space is identified to its dual space, we shall meet cases where
W ,! Q 	 Q0 ,! W 0 or where Q0 ,! W 0 	 W ,! Q. In all cases, roughly
speaking, the solution of a problem in V 
 Q is approximated by the (smoother)
solution of a problem in V 
W . To put the problem in the right frame, we suppose
first, for simplicity, that a.�; �/ is coercive on V and b.�; �/ continuous on V 
 Q

(hence on V 
W ) with ImB closed inQ0. We suppose in (4.3.128) that g1 2 ImB .
Taking as usual (4.3.127) with v D u� and subtracting (4.3.128) with q D p�, and
then using the coercivity of a, we have immediately

˛ku�k2 C �kp�k2W � kf kV 0ku�kV C kg1kQ0kp�kQ C kg2kW 0kp�kW ; (4.3.129)

where, as usual, p is the component of p in H?, with H D KerBt . On
the other hand, with the usual arguments, one still has from (4.3.127) that
ˇkp�kQ � kak ku�k C kf kV 0 . By classical arguments, one then gets the estimate

ku�k2V C kp�k2Q C �kp�k2W � C .kf k2V 0 C kg1k2Q0 C 1

2�
kg2k2W 0/; (4.3.130)
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where (here and in the sequel of this subsection) we denote by C any constant
that depends only on the bilinear forms a and b. If we have g2 D g2.�/

with kg2.�/k2W 0=� bounded independently of �, then the solution will become
unbounded inW for � ! 0 but will remain bounded inQ=KerBt , and we expect it
to converge to the solution of problem (4.2.6).

Before discussing further this matter, we would like to relax the ellipticity
condition on a, assuming ellipticity only in the kernel of B . This, however, will
produce unnecessary technical difficulties, so that we will compromise on a slightly
stronger condition: We have seen in Proposition 4.3.4 and in Remark 4.3.5 that,
when ImB is closed and a is symmetric, the ellipticity in the kernel of a is equivalent
to the property (4.3.111). Here, taking into account Remarks 4.3.7 and 4.3.6 as well,
we are going to assume that for every �� > 0 there exists an ˛� > 0 such that:

8� > �� 9 Q̨ > ˛� s. t. Q̨ kuk2V � a.v; v/C �kBvk2W 0 8 v 2 V: (4.3.131)

Note that, as W 0 is bigger than Q0 (and has a smaller norm), condition (4.3.131) is
stronger than the corresponding condition (4.3.111).

Finally, as we are interested in the case of � small, we will not care about the
possible behaviour for � ! C1, and we can limit ourselves to the case ���0
(implying that � is bigger that some fixed ��). In the next theorem, it will be
convenient to take �0 D 1=2, just to have slightly nicer formulae.

Theorem 4.3.4. Together with Assumption AB, assume that ImB is closed in Q
and that a.� ; �/ is positive semi-definite and verifies (4.3.131). Assume moreover
that W is a Hilbert space, continuously embedded in Q and dense in Q. Then,
for every � with 0 < � � 1=2, for every f 2 V 0, for every g1 2 ImB , and for
every g2 2 W 0, the problem (4.3.127) and (4.3.128) has a unique solution which,
moreover, satisfies

ku�kV Ckp�kQC�1=2kp�kW � C .kf kV 0 Ckg1kQ0 C 1

�1=2
kg2kW 0/; (4.3.132)

where p� is the component of p� in H?.

Proof. Since we do not yet have the existence of the solution, we apply a
regularisation argument. We first substitute a with a" given by

a".u; v/ D a.u; v/C ".u; v/V ;

with " > 0. Then, we prove a-priori bounds independent of " and we have the
solution in the limit for " ! 0C. For brevity, we do not re-write problem (4.3.127)
and (4.3.128) with a" in place of a, and we do not indicate the dependence of the
solution of the regularised problem on ". Taking the first equation (4.3.127) with
v D u�, and subtracting the second equation (4.3.128) for q D p�, we get

"ku�k2V Ca.u�; u�/C �.p�; p�/W

Dhf; u�i C hg1; p�iQ0�Q C hg2; p�iW 0�W :
(4.3.133)
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We note that we still have from the first equation that

ˇkp�kQ � C.ku�kV C kf kV 0/; (4.3.134)

and since we assumed g1 2 ImB , we have

hg1; p�i D hg1; p�i � Ckg1kQ0.ku�kV C kf kV 0/: (4.3.135)

On the other hand, we also have

hf; u�i � kf kV 0 ku�kV (4.3.136)

and

hg2; p�i � 1

�1=2
kg2kW 0�1=2kp�kW � 1

2�
kg2k2W 0 C �

2
kp�k2W : (4.3.137)

Inserting (4.3.135), (4.3.136), and (4.3.137) in (4.3.133) and dropping the term
with the " (which is positive), we then easily have

a.u�; u�/C �kp�k2W
� C

�kg1kQ0.ku�kV C kf kV 0/C kf kV 0 ku�kV C 1

�
kg2k2W 0

�

� C
�
ku�kV .kf kV 0 C kg1kQ0/C kf k2V 0 C kg1k2Q0 C 1

�
kg2k2W 0

�
:

(4.3.138)

On the other hand, from the second equation we have that �RW p� (where RW
is the Ritz operator in W, as in Theorem 4.1.2) is equal to Bu� � g1 � g2. Hence,

�kp�k2W D �kRW p�k2W 0 D 1

�
kBu� � g1 � g2k2W 0 : (4.3.139)

Hence, using .a C b/2 � 2a2 C 2b2, the assumption � � 1=2, (4.3.139) and
(4.3.125), we have:

kBu�k2W 0 � 2kBu� � g1 � g2k2W 0 C 2kg1 C g2k2W 0

� 1

�
kBu� � g1 � g2k2W 0 C 4kg1kW 0 C 4kg2kW 0

� �kp�k2W C 4kg1kQ0 C 4kg2kW 0 ;

(4.3.140)

which, joined with (4.3.138), gives immediately
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a.u�; u�/C kBu�kW 0 C �kp�k2W
� C

�
ku�kV .kf kV 0 C kg1kQ0/C kf k2V 0 C kg1k2Q0 C 1

�
kg2k2W 0

�
:

(4.3.141)

Finally, using (4.3.134) together with (4.3.131) and (4.3.141) gives

ku�k2V C kp�k2Q C �kp�k2W
� C1

�
ku�k2V C kf k2V 0 C �kp�k2W

�

� C2

�
a.u�; u�/C kBu�kW 0 C kf k2V 0 C �kp�k2W

�

� C3

�
ku�kV .kf kV 0 C kg1kQ0/C kf k2V 0 C kg1k2Q0 C 1

�
kg2k2W 0

�
;

(4.3.142)

which easily yields the result (4.3.132) ut
As we shall see, a particularly interesting case is met when both g1 and g2 are

zero. In fact, it is remarkable that in this case we do not need the inf-sup condition
(meaning that we do not need ImB to be closed). We have indeed the following
proposition.

Theorem 4.3.5. Together with Assumption AB, assume that a.� ; �/ is positive
semi-definite and verifies (4.3.131). Assume, moreover, that W is a Hilbert space,
continuously embedded in Q and dense in Q. Then, for every � with 0 < � � 1=2,
and for every f 2 V 0, the problem: find .u�; p�/ in V 
W such that

a.u�; v/C b.v; p�/ D hf; viV 0�V ; 8 v 2 V; (4.3.143)

b.u�; q/ � � .p�; q/W D 0; 8 q 2 W; (4.3.144)

has a unique solution, that moreover satisfies

Q̨ ku�k2V C �kp�k2W � 4kf k2
V 0

Q̨ ; (4.3.145)

where Q̨ is given in (4.3.131).

Proof. Mimicking the proof of Theorem 4.3.4, we now have, using (4.3.131), then
(4.3.139), and finally (4.3.133):

Q̨ ku�k2V C �kp�k2W
� a.u�; u�/C 1

�
kBu�k2W 0 C �kp�k2W D a.u�; u�/C 2

�
kBu�k2W 0

� 2
�
a.u�; u�/C 1

�
kBu�k2W 0

�
� 2hf; u�iV 0�V ; (4.3.146)
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and the result follows immediately since

2hf; u�iV 0�V � 2kf k2
V 0

Q̨ C Q̨ku�k2V
2

: ut

As we consider the augmented problem as a perturbation, we shall now try to get
an estimate on ku � u�kV and kp � p�kQ as � ! 0C.

Proposition 4.3.5. With the same assumptions of Theorem 4.3.4, and assuming
moreover that g2 D 0, let .u�; p�/ 2 V 
W be the solution of problem (4.3.127)–
(4.3.128) and .u; p/ 2 V 
Q be the solution of problem (4.2.6). We then have

ku � u�kV C kp � p�kQ � C inf
pw2W

h
kp � pwkQ C

p
� kpwkW

i
: (4.3.147)

Proof. Subtracting (4.3.127)–(4.3.128) from (4.2.6) with q 2 W , one easily has

(
a.u � u�; v/C b.v; p � p�/ D 0; 8v 2 V;
b.u � u�; q/ D � .p�; q/W ; 8q 2 W: (4.3.148)

The argument of Proposition 4.3.3 cannot be applied, for it would require (in the
second equation of (4.3.148)) q 2 Q. However, let pw be any element of W . We
rewrite (4.3.148) as

(
a.u � u�; v/C b.v; pw � p�/ D b.v; pw � p/; 8 v 2 V;
b.u � u�; q/C � .pw � p�; q/W D �� .pw; q/W ; 8 q 2 W: (4.3.149)

We can now apply Theorem 4.3.4 with hg2; qi D �.pw; q/W , and use estimate
(4.3.132) to get

ku � u�k2V C kpw � p�k2Q � C .kpw � pk2Q C � kpwk2W /: (4.3.150)

From the triangle inequality and the arbitrariness of pw, one deduces (4.3.147). ut
Remark 4.3.11. The right-hand side of (4.3.147) will, in general, tend to zero with
� whenever p is more regular than just p 2 Q. For instance, if p 2 W , we can take
pW D p and (4.3.147) will give

ku � u�kV C kp � p�kQ � C
p
�: (4.3.151)

See also Remark 4.3.14 here below. ut
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Remark 4.3.12. The above result is not optimal. For instance, it does not reduce to
the estimate (4.3.109) of Proposition 4.3.3 when W D Q. Let us suppose however,
for simplicity, that ImB D Q0, and consider the space W C defined as

W C WD R�1
W .Q

0/; (4.3.152)

where RW is as usual the Ritz operator inW as defined in Theorem 4.1.2. Since Q0
is a dense subspace of W 0, we easily have that W C is a dense subspace of W , and
moreover,

W C ,! W ,! Q: (4.3.153)

Furthermore, for every pC 2 W C, there exists, from the definition (4.3.152), a
g 2 Q0 such that

.pC; q/W D .R�1
W g; q/W D hg; qiW 0�W (4.3.154)

and, using (4.1.76), we have, for every q 2 W ,

.pC; q/W D hg; qiW 0�W D hg; qiQ0�Q � kgkQ0kqkQ 8 q 2 W; (4.3.155)

where we also used (4.3.126). We can think of W C as a subspace of W made of
more regular functions. Taking now pw D pwC

2 W C, we can now go back to
(4.3.149), considering this time that the right-hand side of the second equation (that
is � .pw; q/W ) corresponds to the choice g2 D 0 and hg1; qi D � .pwC

; q/W when
using Theorem 4.3.4. From (4.3.132), we now have

ku � u�kV C kp � p�kQ � C
�

inf
pw

C
2WC

kp � pwC
kQ C � kpwC

kWC

�
(4.3.156)

where we also took into account that we assumed ImB D Q0 and hence p� D p�.
Now, (4.3.156) is optimal for W C D Q. ut
Remark 4.3.13. The argument of the above remark can easily be extended to the
case in which ImB is closed but does not coincide with Q0. We simply have to take
W C WD R�1

W H
0 (whereH0 is the polar space ofH 	 KerBt ), so that .pwC; q/W �

CkqkQ. In general, such a W C will not be dense in W , but in many applications p
(belonging to H?) will still belong to its closure (that is, you can still approximate
p with a sequence of elements in W C). ut
Remark 4.3.14. In the spirit of Remark 4.3.11, we observe that, here again, the
right-hand side of (4.3.156) can be bounded in terms of � whenever p is more
regular. In particular for p 2 W C, we would have

ku � u�kV C kp � p�kQ � C �: (4.3.157)

ut
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Remark 4.3.15. In both (4.3.147) and (4.3.156), an intermediate regularity
betweenQ andW C can provide an intermediate speed of convergence for � ! 0.
More precisely, let us suppose that p belongs to ŒW C;Q��;1 for 0 < � < 1. The
space ŒW C;Q��;1 is an interpolation space between W C and Q. We refer the
reader to [62] for more details on these spaces. Here, we just recall that

kpkŒW C;Q��;1
D sup

�>0

inf
pw

C
2WC

.���kp � pwC
kQ C �1�� kpwC

k/: (4.3.158)

As a consequence, if p 2 ŒW C;Q��;1, then we have

inf
pw

C
2WC

.kp � pwC
k C � kpwC

kWC/

D �� inf
pw

C
2WC

.���kp � pwC
kQ C �1�� kpwC

k/

� ��kpkŒW C;Q��;1

(as in [62], Theorem 3.12). Hence, (4.3.156) can be written as

ku � u�kV C kp � p�kQ � C ��kpkŒW C;Q��;1
: (4.3.159)

Note that, in particular if W C WD H1.˝/ and Q WD L2.˝/, we have that

H�.˝/ ,! ŒW C;Q��;1:

Hence, if p 2 H�.˝/, we will also have p 2 ŒW C;Q��;1, and estimate (4.3.159)
will hold true. Clearly, a similar argument could be applied to the estimate (4.3.147)
for p having an intermediate regularity betweenQ and W . ut



Chapter 5
Approximation of Saddle Point Problems

This chapter concludes the abstract analysis of mixed formulations. After studying
the finite dimensional case in Chap. 3 and the infinite-dimensional case in Chap. 4,
we analyse here the problem of approximating the infinite dimensional case (that,
in practice, will come from a PDE problem) by means of a finite dimensional one,
treatable with a computer. We shall see that (apparently) reasonable approximations
of a well-posed infinite dimensional problem could produce an ill-posed finite
dimensional problem or, more generally, a problem whose solution is not an
approximation of the original problem. Hence, the typical results of this chapter
will be bounds for the difference between the exact solution (that is, the solution
of the original, infinite dimensional problem) and the approximate solution (that
is, the solution of the discretised, finite dimensional problem). The approximations
considered in this chapter are evidently targeted to the Finite Element spaces
introduced in Chap. 2. However, many results could be applied to other types of
approximation such as spectral methods or Finite Volume methods.

In the first section, we shall present the basic assumptions that will be mostly
used throughout this chapter and then discuss some basic relationships between
differential operators and their realisations in finite dimensional spaces. In Sect. 5.2,
we shall present, essentially, the main convergence and error estimates results,
together with some simple examples related to the mixed formulation of a toy
one-dimensional problem. In spite of the simplicity of this toy problem (and of its
negligible practical interest), we recommend these examples (Sect. 5.2.4) for their
enlightening capabilities. The third section will be devoted to a quick survey of the
main tricks that can be used in order to prove the inf-sup condition for the discretised
problem (once we know that it holds for the original infinite-dimensional problem).
Section 5.5 will deal with extensions of the error estimates of Sect. 5.2, including
perturbed problems, non conforming approximations, and dual error estimates.
Section 5.6 will present some numerical issues related with the actual resolution
of the discretised problems. Finally, the last section will anticipate, at an abstract
level, some stabilising techniques that will be detailed, for each particular problem,
in the following chapters.

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 5,
© Springer-Verlag Berlin Heidelberg 2013
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5.1 Basic Results

5.1.1 The Basic Assumptions

We now turn to the approximation of problem (4.2.6). For this, we place ourselves in
the framework of Assumption AB of Chap. 4, which we recall for the convenience
of the reader.

Assumption AB: We are given two Hilbert spaces, V and Q, and two continuous
bilinear forms: a.� ; �/ on V 
 V and b.� ; �/ on V 
 Q. We denote by A and B ,
respectively, the linear continuous operators associated with them. We also set

K WD KerB and H WD KerBt : (5.1.1)

ut
Given f 2 V 0 and g 2 Q0, we can consider our original problem of finding

u 2 V and p 2 Q solution of
(
a.u; v/C b.v; p/ D hf; viV 0�V 8 v 2 V;
b.u; q/ D hg; qiQ0�Q 8 q 2 Q: (5.1.2)

Recalling Theorem 4.2.2, we see that the necessary and sufficient condition for
the unique solvability of (5.1.2) is that the two following conditions are satisfied:

AKK0 is an isomorphism from K to K 0 (5.1.3)

(where AKK0 was defined in (4.2.17)) and

ImB D Q0: (5.1.4)

We also saw that (5.1.3) is equivalent to requiring that there exists an ˛1 > 0 such
that

inf
v02K

sup
w02K

a.v0;w0/

kv0kV kw0kV � ˛1

inf
w02K

sup
v02K

a.v0;w0/

kv0kV kw0kV � ˛1 (5.1.5)

and that (5.1.4) is equivalent to requiring that there exists a ˇ > 0 such that

inf
q2Q

sup
v2V

b.v; q/

kvkV kqkQ � ˇ: (5.1.6)

As we have seen already several times, in many applications, condition (5.1.1)
will be an immediate consequence of the (slightly) stronger ellipticity in the kernel
condition

9˛0 > 0 such that a.v0; v0/ � ˛0kv0k2V 8 v0 2 K; (5.1.7)
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or of the even stronger global ellipticity condition:

9˛ > 0 such that a.v; v/ � ˛kvk2V 8 v 2 V: (5.1.8)

We also recall that in Theorem 4.2.3 we also provided stability properties, showing
that the norm of the solution .u; p/ of (5.1.2) can be bounded in terms of the norms
of the data f and g, together with the values of the constants ˛ and ˇ and the norm
kak of the bilinear form a.

Then let Vh � V and Qh � Q be finite dimensional subspaces of V and
Q respectively. The index h will eventually refer to a mesh from which these
approximations are derived. We can obviously consider the restriction of the bilinear
forms a and b to Vh 
 Vh and to Vh 
Qh, respectively. Hence, we can consider the
corresponding approximation of problem (5.1.2), looking for a couple .uh; ph/ in
Vh 
Qh, solution of

(
a.uh; vh/C b.vh; ph/ D hf; vhiV 0�V 8 vh 2 Vh;
b.uh; qh/ D hg; qhiQ0�Q 8 qh 2 Qh:

(5.1.9)

Remark 5.1.1. As we did in the previous chapter, to be precise, we should actu-
ally write a.EVhuh; EVhvh/ instead of a.uh; vh/, and b.EVhvh; EQh

qh/ instead of
b.vh; qh/ (where obviously EVh and EQh

are the extension operators Vh ! V and
Qh ! Q, respectively). However, we shall not do that, unless it is really helpful in
order to clarify something. ut
Following again the previous chapter, we can consider the restrictions BVhQ0

h
, and

Bt
QhV

0

h

of the operators B and Bt respectively, which, for brevity we denote now by

Bh and Bt
h. Recalling the notation (4.1.84), we then have

Bh vh WD �Q0

h
BEVh vh 8vh 2 Vh Bt

h qh WD �V 0

h
BtEQh

qh 8qh 2 Qh: (5.1.10)

Similarly, Ah and Ath will be given by

Ah vh WD �V 0

h
AEVh vh and Ath vh WD �V 0

h
AtEVh vh 8vh 2 Vh: (5.1.11)

To avoid repeating the same assumptions in every statement, we condense
additionally the above discrete framework in the following Assumption ABh.

Assumption ABh: Together with Assumption AB, we assume that we are given
two finite dimensional spaces Vh � V and Qh � Q. Together with the kernels K
and H , we consider then the discrete kernels

Kh 	 KerBh WD fvh 2 Vh such that b.vh; qh/ D 0; 8 qh 2 Qhg; (5.1.12)

Hh 	 KerBt
h WD fqh 2 Qh such that b.vh; qh/ D 0; 8 vh 2 Vhg: (5.1.13)
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Finally, for every element g 2 Q0, we introduce the space

Zh.g/ WD fvh 2 Vh such that b.vh; qh/ D hg; qhi; 8 qh 2 Qhg; (5.1.14)

and for every element f 2 V 0, we introduce the space

Z�
h .f / WD fqh 2 Qh such that b.vh; qh/ D hf; vhi; 8 vh 2 Vhg: (5.1.15)

We observe that in (5.1.14) we could write

Bhvh D �Q0

h
g instead of b.vh; qh/ D hg; qhi; 8 qh 2 Qh (5.1.16)

while in (5.1.15) we could write

Bt
hqh D �V 0

h
f instead of b.vh; qh/ D hf; vhi; 8 vh 2 Vh: (5.1.17)

The problems that we have to solve here concern both the existence and
uniqueness of fuh; qhg and the estimation of ku � uhkV and kp � phkQ. In view of
the previous discussion, and considering that the two conditions (5.1.6) and (5.1.1)
are necessary, it is then natural to assume that, for every h, there exists an ˛h1 > 0

such that:

inf
vh02Kh

sup
wh02Kh

a.vh0 ;w
h
0/

kvh0kV kwh0kV
D inf

wh02Kh
sup
vh02Kh

a.vh0 ;w
h
0/

kvh0kV kwh0kV
� ˛h1 ; (5.1.18)

and a ˇh > 0 such that

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV kqhkQ � ˇh: (5.1.19)

Remark 5.1.2. Here and in all this section, we will accept that ˇh and ˛h1 (as well
as ˛h0 or ˛h here below) depend on h. Clearly, the desirable situation is that they are
actually independent from h. However, the latter case can be immediately derived
from the former. On the other hand, when one of the two constants (or both) depends
on h, our error estimates might still provide a convergence result, although, in
general, not an optimal one. ut
As natural, in most applications, condition (5.1.18) could be replaced by the simpler
ellipticity in the kernel condition

9˛0h > 0 such that a.vh0 ; v
h
0 / � ˛0hkvh0k2V 8 vh0 2 Kh; (5.1.20)

or by the even simpler global ellipticity

9˛h > 0 such that a.vh; vh/ � ˛hkvhk2V 8 vh 2 Vh: (5.1.21)
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Remark 5.1.3. We also recall from the previous chapters (Lemma 4.2.2) that if the
bilinear form a is symmetric and positive semi-definite, then the non-singularity on
Kh given in (5.1.18) implies the ellipticity in Kh given in (5.1.20) with

˛h0 D .˛h1 /
2=Mh

a ; (5.1.22)

where

Mh
a WD sup

vh2Vh
sup

wh2Vh
a.vh;wh/

kvhkV kwhkV : (5.1.23)

ut

5.1.2 The Discrete Operators

In (5.1.10) and (5.1.11), we defined the discrete operatorsAh, Bh and their adjoints.
It will be convenient to try to understand, from the very beginning, the relationships
between the discrete operators and their continuous counterpart. Let us consider Bh
(somehow, the most important) first. We recall that Bh maps Vh into Q0

h (while B
maps V into Q0). Hence, to be picky, the comparison should not be made between
B and Bh, but rather between BEVh and EQ0

h
Bh: for vh 2 Vh, we then consider the

difference between

EQ0

h
�Q0

h
BEVhvh and BEVhvh: (5.1.24)

It is clear that the operatorEQ0

h
�Q0

h
coincides with the identity operator only when

applied to objects that, loosely speaking, are already in Q0
h. Hence, for every v�

h in
Vh, we have

Bhv
�
h D BEVhv

�
h .D Bv�

h / iff Bv�
h 2 Q0

h (5.1.25)

and in general,

fBhvh D BEVhvh 8 vh 2 Vhg , B.Vh/ � Q0
h: (5.1.26)

We shall meet cases where this inclusion holds, but they are far from being the rule.
When B.Vh/ � Q0

h, the left-hand side of (5.1.26) could also be written, with a very
minor abuse of language that we are going to use quite often, as Bhvh D Bvh. In
this case (and only in this case), we might say that Bh is the restriction of B to Vh.

It is clear that similar considerations can be made for the operator Bt
h and for the

operatorsAh and Ath.

We also recall from Sect. 4.1.8 of the previous chapter that:

• The kernel Kh is not, in general, a subspace of K ,
• The kernel Hh is not, in general, a subspace of H ,
• As a consequence, property (5.1.1) will not imply (5.1.18),
• Similarly, property (5.1.6) will not imply (5.1.19).
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In a certain number of applications, as we have seen, we have however that the
bilinear form a is elliptic on the whole space V (that is, (5.1.8) holds). In these
cases, it is clear that both (5.1.1) and (5.1.18) will be satisfied, independently of the
nature of the kernelsK andKh.

Finally, we recall from Proposition 4.1.6 that

KerBh � KerB iff �V 0

h
.ImBt/ � ImBt

h (5.1.27)

and

KerBt
h � KerBt iff �Q0

h
.ImB/ � ImBh: (5.1.28)

Remark 5.1.4. The lack of inclusion of the discrete kernels has different practical
relevance in the two cases (Kh andHh).

On one hand, the inclusion Kh � K is a nice property, useful when you have it,
but not absolutely needed.

On the other hand, the inclusion Hh � H is extremely important. In the first
place, as we typically assume that H D f0g, the lack of this last inclusion will
imply that Hh will have dimension � 1, so that problem (5.1.9) might fail to have a
solution, and when it does, the solution will be determined up to an element of Hh.
Secondly, even in cases (as we did in Sect. 4.2.4) when we do not have H D f0g,
the elements of H should be considered as “physically natural”: for instance, the
pressure in some fluid mechanical problem is defined up to a constant, as it is often
the case for the electric potential; in electromagnetic problems, the vector potential
is often defined up to a gradient, and so on. As we have seen, the “solution” in these
cases is to restrict the space Q, taking for instance, in its place, the space Q=H (or
H?, which is essentially the same): for instance, in the case of a pressure (when it is
defined up to an additive constant), this will correspond to restrictQ to its subspace
made of functions with zero mean value. Similarly, the electric potential is often
assumed to vanish at a given point (chosen once and for all), the vector potential is
assumed to be solenoidal, and so on. In these cases, you would like the solutions of
the discretised problem to have the same gauge, which is, however, not true when
the inclusionHh � H is not satisfied. Hence, the elements ofHh that do not belong
to H should be regarded as spurious numerical artefacts, and in general, one does
not like to have them around. ut

The next results show how the inclusion of kernels is related to another
interesting property, which will play an important role in the sequel.

Proposition 5.1.1. In the Assumption ABh, suppose that there exists a linear
operator˘h W V ! Vh such that

b.v �˘hv; qh/ D 0 8 v 2 V; 8 qh 2 Qh: (5.1.29)

Then, the properties in (5.1.28) are verified.
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Proof. The proof is immediate. Indeed, (5.1.29) can also be written as

�Q0

h
Bv D �Q0

h
BEVh˘hv 	 Bh˘hv 8v 2 V; (5.1.30)

and the right-hand side of (5.1.30) obviously belongs to ImBh. ut
Remark 5.1.5. It can be easily seen that, conversely, the properties in (5.1.28) imply
the existence of an operator ˘h W V ! Vh that satisfies (5.1.29). Indeed, for every
v 2 V , we have from (5.1.28) that �Q0

h
Bv 2 ImBh. As both Vh and Qh are finite

dimensional, we can therefore apply Corollary 3.1.1 and set ˘hv WD LBh.�Q0

h
Bv/

which, using (3.1.40), will satisfy Bh.˘hv/ D �Q0

h
Bv, that is, (5.1.30). ut

ExchangingB andBt in the above discussion, we have the following proposition.

Proposition 5.1.2. The following statements are equivalent:

• There exists a linear mapping ˚h W Q ! Qh such that

b.vh; q � ˚hq/ D 0 8 q 2 Q; 8 vh 2 Vh: (5.1.31)

• �V 0

h
Btqh D Bt

h˚hqh 8qh 2 Qh:

• KerBh � KerB:
• �V 0

h
ImBt � ImBt

h: ut
Remark 5.1.6 (B-compatible operator). In the following, an operator satisfy-
ing (5.1.29) will be called a B-compatible operator. As we shall see later on, such
operators will play an important role to obtain inf-sup conditions. ut
Property (5.1.30) can be summarised by the fact that the following diagram
commutes:

V
B�����! Q0

˘h

??y
??y�Q0

h

Vh �����!
Bh

Q0
h

(5.1.32)

and the corresponding property �V 0

h
Btqh D Bt

h˚hqh in Proposition 5.1.2 could also
be summarised by a commuting diagram:

Q
Bt�����! V 0

˚h

??y
??y�V 0

h

Qh �����!
Bth

V 0
h

(5.1.33)

Remark 5.1.7. The case when Bh is the restriction of B to Vh (that is, when
B.Vh/ � Q0

h) is especially interesting. In this case, we can take ˚h D �Qh
. Indeed,
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if B.Vh/ � Q0
h, then as in (5.1.26), we have

BEVh 	 EQ0

h
�Q0

h
BEVh : (5.1.34)

Transposing both members of (5.1.34) and using the definition of Bt
h given

in (5.1.10), we obtain

�V 0

h
Bt 	 �V 0

h
BtEQh

�Qh
D Bt

h�Qh
; (5.1.35)

implying that the diagram (5.1.33) commutes taking ˚h D �Qh
. ut

Remark 5.1.8. The result of Proposition 5.1.1 is also directly linked to the inf-
sup condition. It may be worthwhile to point out some facts. As ImBh is finite
dimensional, we always have, recalling that from (5.1.13) we haveHh WD KerBt

h,

sup
vh2Vh

b.vh; qh/

kvhkV � ˇh kqhkQh=Hh
: (5.1.36)

However, as we stated in Remark 5.1.4, this may be useless if Hh is larger than H .
The following result shows that the existence of the operator˘h satisfying (5.1.29)
implies a stronger version of (5.1.36). ut
Corollary 5.1.1. In the assumptions of Proposition 5.1.1, we have that prop-
erty (5.1.29) is equivalent to

9ˇh > 0 such that sup
vh2Vh

b.vh; qh/

kvhkV � ˇh kqhkQ=H
: (5.1.37)

Proof. On the one hand, (5.1.29) implies the inclusion of kernels (5.1.27), which,
joined to (5.1.36), gives immediately (5.1.37). Conversely, (5.1.37) implies that
kqhkQ=H

D 0 for any qh 2 Hh, which impliesHh � H . ut
Remark 5.1.9. The reader should be aware of the differences between the (appar-
ently similar) inf-sup conditions (5.1.19), (5.1.36) and (5.1.37). Indeed, (5.1.36) is
always true as the finite-dimensional space Im.Bh/ is closed. Condition (5.1.19)
means thatBh is surjective, that is, KerBt

h D f0g. On the other hand, (5.1.37) implies
the inclusionHh � H . Thus, (5.1.19) coincides with (5.1.37) in the case ofB being
surjective. ut
Remark 5.1.10. We already pointed out that since Qh is finite dimensional, then
ImBh is closed. In particular, we can then apply Corollary 4.1.2 of the previous
chapter, and obtain that there exists a lifting operator LBh that for any gh 2 ImBh
gives an LBh.gh/ such that Bh.LBh.gh// D gh and

kLBhghkVh � 1

ˇh
kghkQ0

h
: (5.1.38)
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From (5.1.28), we have that if KerBt
h � KerBt , then for any u 2 V , we have

�Q0

h
Bu 2 ImBh and therefore for every u 2 V we have

kLBh.�Q0

h
Bu/kVh � k�Q0

h
BukQ0

h

ˇh
� kBukQ0

ˇh
� kbk
ˇh

kukV : (5.1.39)

ut
Finally, from Proposition 5.1.1 and Remark 5.1.10, we obtain the following result

that will be useful later on.

Proposition 5.1.3. In the same assumptions as in Proposition 5.1.1, we have that,
for any u 2 V ,

inf
wh2Zh.Bu/

ku � whkV � 2kbk
ˇh

inf
vh2Vh

ku � vhkV : (5.1.40)

Proof. Let vh be any element of Vh. We set

dh WD LBh.�Q0

h
B.u � vh//: (5.1.41)

We obviously haveBh.dhCvh/ D �Q0

h
Bu and therefore, from (5.1.16) and (5.1.14),

we have wh WD .dhCvh/ 2 Zh.Bu/. Moreover, from (5.1.39) we have that kdhkVh �
.kbk=ˇh/ku�vhkV . Since u�wh D .u�vh/�dh, we have from the triangle inequality

ku � whkV � .1C kbk
ˇh

/ku � vhkV (5.1.42)

and the result follows immediately since kbk � ˇh. ut
Remark 5.1.11. The above results show that boundingˇh from below, independently
of h, will enable us to transform approximation estimates in Zh.g/ into standard
approximation estimates in Vh. This is also clearly related to a bound on the norm of
the operator˘h. We shall come back to this in Sect. 5.4. It must again be emphasised
that the inclusionHh � H is essential for this result. Cases where this inclusion fail
will, at best, require a special analysis when they are not totally doomed. ut

5.2 Error Estimates for Finite Dimensional Approximations

5.2.1 Discrete Stability and Error Estimates

In the following sections, we are going to see some particular cases where conditions
(5.1.18) and (5.1.19) are satisfied. Here, however, we first want to see how they can
be used to prove error bounds on ku � uhkV and kp � phkQ. For this, we follow
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the strategy of [112]: we first consider general approximations uI and pI of u and
p, respectively, in Vh and Qh. You can think of them as suitable interpolations, or
as the best approximations in the norms of V andQ, respectively, or just as general
elements in Vh and Qh. Indeed, the following argument will hold for any uI 2 Vh
and for any pI 2 Qh. The idea is to first bound the distance of .uh; ph/ from
.uI ; pI / in terms of the distance of .uI ; pI / from .u; p/, and part of the theorems
of this chapter will express bounds of this type. The estimate of the distance of
.uh; ph/ from .u; p/ will then follow by the triangle inequality, and another part of
the theorems of this chapter will express the distance of .uh; ph/ from .u; p/ in terms
of the distance of .u; p/ from its best approximation .vh; qh/ in Vh
Qh. It will then
be convenient, from the very beginning, to define the approximation errors

Eu WD inf
vh2Vh

ku � vhkV ; (5.2.1)

Ep WD inf
qh2Qh

kp � qhkQ: (5.2.2)

Moreover, on several occasions, as intermediate steps, we will express the distance
of .uh; ph/ from .u; p/ in terms of the distance of .u; p/ from pairs .uI ; pI / where
one of the two (or both) are confined to belong to some affine manifold (typically,
uI 2 Zh.Bu/ and/or pI 2 Z�

h .B
tp/, as defined in (5.1.14) and (5.1.15)). To this

purpose, we introduce as well

EZ
u WD inf

vh2Zh.Bu/
ku � vhkV ; (5.2.3)

EZ
p WD inf

qh2Z�

h .B
tp/

kp � qhkQ: (5.2.4)

We also explicitly point out that in this procedure we will not, in general, require
us to assume the uniqueness of the solution .u; p/ of the continuous problem, but
only that of the discretised problem.

For this, we use the linearity of a and b to combine the continuous prob-
lem (5.1.2) with the discretised problem (5.1.9), adding and subtracting uI and pI .
We obtain:
(
a.uh � uI ; vh/C b.vh; ph � pI / D a.u � uI ; vh/C b.vh; p � pI / 8 vh 2 Vh;
b.uh � uI ; qh/ D b.u � uI ; qh/ 8 qh 2 Qh:

The following proposition is nothing more than an interpretation of the above
formula. We state it explicitly since we are going to use it at several occasions in the
sequel.

Proposition 5.2.1. In the framework of Assumption ABh, let .u; p/ and .uh; ph/ be
solutions of the continuous problem (5.1.2) and of the discretised problem (5.1.9),
respectively. Then, for every .uI ; pI / 2 Vh 
Qh, we have that .uh � uI ; ph �pI / is
the solution, in Vh 
Qh, of the variational problem



5.2 Error Estimates for Finite Dimensional Approximations 275

(
a.uh � uI ; vh/C b.vh; ph � pI / D hF ; vhiV 0

h�Vh 8 vh 2 Vh;
b.uh � uI ; qh/ D hG; qhiQ0

h�Qh
8 qh 2 Qh

(5.2.5)

where

hF ; vhiV 0

h�Vh WD a.u � uI ; vh/C b.vh; p � pI / 8 vh 2 Vh; (5.2.6)

and

hG; qhiQ0

h�Qh
WD b.u � uI ; qh/ 8 qh 2 Qh: (5.2.7)

ut
The formulation (5.2.5), together with (5.2.6) and (5.2.7), will be the starting

point of most of our estimates. Indeed, we can now go back to Theorem 4.2.3 and,
applying it to the present finite dimensional case, we obtain the following result.

Theorem 5.2.1 (The basic estimate). Under Assumption ABh, assume that Vh
and Qh verify (5.1.18) and (5.1.19). Let f 2 V 0 and g 2 Q0. Assume that the
continuous problem (5.1.2) has a solution .u; p/ and let .uh; ph/ be the unique
solution of the discretised problem (5.1.9). Then, for every uI 2 Vh and for every
pI 2 Qh, we have the estimates

kuh � uIkV � 1

˛h1
kFkV 0

h
C 2kak
˛h1ˇh

kGkQ0

h
; (5.2.8)

kph � pI kQ � 2kak
˛h1ˇh

kFkV 0

h
C 2kak2
˛h1ˇ

2
h

kGkQ0

h
; (5.2.9)

where F and G are defined in (5.2.6) and (5.2.7). If, moreover, a.�; �/ is symmetric
and satisfies

a.vh; vh/ � 0 8 vh 2 Vh; (5.2.10)

then we have the improved estimates

kuh � uIkV � 1

˛h0
kFkV 0

h
C 2kak1=2
.˛h0 /

1=2ˇh
kGkQ0

h
; (5.2.11)

kph � pI kQ � 2kak1=2
.˛h0 /

1=2ˇh
kFkV 0

h
C kak

ˇ2h
kGkQ0

h
(5.2.12)

with ˛h0 given by (5.1.22).

At this point, we just have to evaluate kFkV 0

h
and kGkQ0

h
:

kFkV 0

h
� kak ku � uIkV C kbk kp � pIkV ; (5.2.13)

kGkQ0

h
� kbk ku � uIkV ; (5.2.14)
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and then apply the triangle inequality to obtain, from Theorem 5.2.1, the following
error estimates.

Theorem 5.2.2 (The basic error estimate). Under Assumption ABh, assume that
Vh and Qh verify (5.1.18) and (5.1.19). Let f 2 V 0 and g 2 Q0. Assume that
the continuous problem (5.1.2) has a solution .u; p/ and let .uh; ph/ be the unique
solution of the discretised problem (5.1.9). Then, we have the estimate

kuh � ukV � 4kak kbk
˛h1ˇh

Eu C kbk
˛h1

Ep; (5.2.15)

kph � pkQ �
	
2kak2
˛h1ˇh

C 2kak kbk
ˇ2h



Eu C 3kak kbk

˛h1ˇh
Ep: (5.2.16)

If, moreover, a.�; �/ is symmetric and positive semi-definite (see (5.2.10)), then we
have the improved estimates

kuh � ukV �
	
2kak
˛h0

C 2kak1=2kbk
.˛h0 /

1=2ˇh



Eu C kbk

˛h0
Ep; (5.2.17)

kph � pkQ �
	
2kak3=2
.˛h0 /

1=2ˇh
C kak kbk

ˇ2h



Eu C 3kak1=2kbk

.˛h0 /
1=2ˇh

Ep (5.2.18)

with ˛h0 given by (5.1.22).

Remark 5.2.1. Important: in Theorems 5.2.1 and 5.2.2, we allowed, in principle,
the constants ˇh and ˛h1 (or ˛h0 ) to depend on h. It is obvious (but still worth
mentioning) that if there exist constants ˇ0 and ˛0 such that ˇh � ˇ0 and ˛h1 � ˛0
(or ˛h0 � ˛0) for all h, then the constants appearing in our estimates will be
independent of h. In almost all of this chapter (with a few exceptions, including
the next Theorem 5.2.5), we will keep allowing the stability constants to depend on
h. We rely on the reader to understand what happens whenever one has a uniform
lower bound for them. ut

5.2.2 Additional Error Estimates for the Basic Problem

There is actually ample room for improving the result of Theorems 5.2.1 and 5.2.2.
The principal source of non-optimality in their proof lies indeed in the rather poor
job that we made in estimating kFkV 0

h
and kGkQ0

h
in (5.2.13) and (5.2.14). Indeed,

in the first place, we essentially estimated the norms in V 0 andQ0, respectively. This
is correct, but not optimal. Indeed, for instance, although the norms in V and in Vh
are the same, from Vh � V , one easily deduces that for every v0 2 V 0:

sup
v2V

hv0; vi
kvkV � sup

vh2Vh
hv0; vhi
kvhkV : (5.2.19)
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In the second place, we carried out our argument for every .uI ; pI / 2 Vh 
Qh.
This has surely the advantage of allowing the classical estimates in terms of Eu and
Ep defined in (5.2.1) and (5.2.2). However, in particular cases, smarter choices of
uI and/or pI could produce a better result.

In particular, the discrete inf-sup condition (5.1.19) gives that KerBt
h D f0g and

this, according to Remark 5.1.5, ensures the existence of an operator˘h W V ! Vh
such that b.u �˘hu; qh/ D 0 for every qh 2 Qh. Hence, taking uI WD ˘hu, we will
have

b.u � uI ; qh/ D 0 8 qh 2 Qh; (that is, BhuI D �Q0

h
Bu) (5.2.20)

which, using the notation (5.1.14), can also be written as

uI 2 Zh.Bu/: (5.2.21)

We now observe that for every uI 2 Zh.Bu/ and for everypI , the estimates (5.2.14)
and (5.2.13) become

kGkQ0

h
D 0; (5.2.22)

kFkV 0

h
� kak ku � uIkV C kbk kp � pIkQ: (5.2.23)

If, moreover, we can also choose a pI 2 Z�
h .B

tp/, implying

b.vh; p � pI / D 0 8 vh 2 Vh; (5.2.24)

then the estimate (5.2.13) further simplifies to

kFkV 0

h
� kak ku � uIkV ; (5.2.25)

always for uI 2 Zh.Bu/. Note that we will always be able to find such a pI if
Kh � K , as pointed out in Proposition 5.1.2. If, moreover, Bh is the restriction of
B to Vh, then, according to Remark 5.1.7, we could even take pI WD �Qh

p.
Therefore, again from Theorem 5.2.1, we have the following results.

Theorem 5.2.3 (Taking uI in Zh.Bu/). Under Assumption ABh, assume that Vh
and Qh verify (5.1.18) and (5.1.19). Let f 2 V 0 and g 2 Q0. Assume that the
continuous problem (5.1.2) has a solution .u; p/ and let .uh; ph/ be the unique
solution of the discretised problem (5.1.9). Then, we have the estimate

kuh � ukV � 1

˛h1

�
2kakEZ

u C kbkEp
�

� 1

˛h1

	
4 kak kbk

ˇh
Eu C kbkEp



;

(5.2.26)
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kph � pkQ � 2kak2
˛h1ˇh

	
EZ

u C 2
kbk
kak Ep




� 2kak2
˛h1ˇh

	
2kbk
ˇh

Eu C 2
kbk
kak Ep



:

(5.2.27)

Theorem 5.2.4 (Taking uI in Zh.Bu/ and pI in Z�
h .B

tp/). Under Assumption
ABh, assume that Vh and Qh verify (5.1.18) and (5.1.19). Let f 2 V 0 and
g 2 Q0. Assume that the continuous problem (5.1.2) has a solution .u; p/ and
let .uh; ph/ be the unique solution of the discretised problem (5.1.9). Assume
moreover that Z�

h .B
tp/ is not empty (so that there exists at least one pI 2 Qh

that verifies (5.2.24)). Then,

kuh � ukV � 2kak
˛h1

EZ
u � 4kak kbk

˛h1ˇh
Eu; (5.2.28)

kph � pIkQ � 2kak2
˛h1ˇh

EZ
u 8pI 2 Z�

h .B
tp/ (5.2.29)

so that

kph � pkQ � 4kak2kbk
˛h1ˇ

2
h

Eu C EZ
p : (5.2.30)

Remark 5.2.2. If a.�; �/ is symmetric and positive semi-definite, then, using (5.2.12)
as in previous error estimates (as for instance in Theorem 5.2.2), we could slightly
improve our error estimates, using a softer dependence on the constants. ut

Following the above path, we could derive a number of possible other variants,
choosing one of the many theorems of Chap. 3, and then using one of the many
choices for uI and pI . We decided that this procedure is quite easy, and every reader
could do it by her/himself, if necessary. It might however be convenient to state
explicitly, for an easy use, the following theorem, which is just a particular case of
the above results, but might be helpful if one wants something reasonably simple. In
most cases, assumption (5.1.18) can be replaced by the (stronger) ellipticity in the
kernel (5.1.20); in this case we have the following theorem.

Theorem 5.2.5 (Commonly used). Let .u; p/ 2 V 
 Q and .uh; ph/ 2 Vh 
Qh

be respectively solutions of problems,

(
a.u; v/C b.v; p/ D hf; vi; 8 v 2 V;
b.u; q/ D hg; qi; 8 q 2 Q; (5.2.31)

and

�
a.uh; vh/C b.vh; ph/ D hf; vhi; 8 vh 2 Vh;
b.uh; qh/ D hg; qhi; 8 qh 2 Qh:

(5.2.32)
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Assume that the inf-sup condition

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV kqhkQ � ˇ > 0 (5.2.33)

is satisfied and let a.�; �/ be uniformly coercive onKh WD KerBh, that is, there exists
˛0 > 0 such that

a.v0h; v0h/ � ˛0kv0hk2V ; 8 v0h 2 Kh: (5.2.34)

Then, one has the following estimate, with a constant C depending on kak, kbk, ˇ,
˛0 but independent of h:

ku � uhkV C kp � phkQ � C
�

inf
vh2V ku � vhkV C inf

qh2Qh

kp � qhkQ
�
: (5.2.35)

Moreover, when we have the inclusion of kernels Kh � K , we have the better
estimate

ku � uhkV � C inf
vh2V ku � vhkV : (5.2.36)

Remark 5.2.3. It is clear that, in all the previous theorems, if H 	 KerBt is not
zero, then the constant ˇh must go to zero when h tends to zero. In these cases,
when g 2 ImB , the theorems should be applied with Q=H instead of Q (while for
g … ImB the solution .u; p/ does not exist). ut

5.2.3 Variants of Error Estimates

We have considered up to now the most basic form of mixed problems. Numerous
variations are however possible. Some of them are too special to merit an abstract
treatment and will be presented on specific examples in the subsequent chapters. We
consider here some problems arising in a quite large number of practical situations.

The first pathology that we consider is the case where coerciveness on KerBh
does not hold but can be replaced by a weaker condition.

Assume, in particular, that on V we have a (weaker) norm k � kV � such that

9˛�
h > 0 such that a.v; v/ � ˛�

h kvk2V � 8 v 2 Kh; (5.2.37)

together with

9M �
a such that a.u; v/ � M �

a kukV � kvkV � 8 u; v 2 V: (5.2.38)

We recall that by “a weaker norm” we mean that

kvkV � � kvkV 8 v 2 V: (5.2.39)

Typically, to fix the ideas, the V �-norm will be some kind of L2 norm, opposed to
anH1-norm (or anH.div/-norm) in V , and a.u; v/ some kind of L2 scalar product.
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Remark 5.2.4. To be precise, (5.2.39) is not the usual definition of a weaker norm,
which would allow the presence of a multiplicative constant giving, for instance,
kvkV � � C kvkV . However, in order to have a simpler notation, we forced the
constant to be equal to one (or rather, we assumed that the constant was inserted in
the expression of the V �-norm). ut
The situation described in (5.2.37) and (5.2.38) arises in several occasions. Let us
see two different kinds of applications.

The first kind of application occurs when k � kH , onK , becomes equivalent to the
original V -norm (so that (5.2.37) implies the usual coerciveness on K), but for the
discretised problem, one does not have Kh � K . Condition (5.2.37) nevertheless
ensures existence of the discrete solution by the equivalence of norms in a finite
dimensional space (see below). Convergence properties are however likely to be
altered: in particular, we might expect ˛h0 to depend on h. In the mixed formulation
of elasticity introduced in Chap. 1, we had V WD .H.divI˝//2s while the bilinear
form a.u; v/ WD R

˝ � W � dx is coercive only on .L2.˝//4s DW V �. This is enough
to have coerciveness on K but not in general on Kh unless one is clever and builds
Vh and Qh in order to have Kh � K . In general, the analysis of this problem is
difficult as we shall see in Chap. 10.

A second kind of application occurs when one considers an ill-posed problem in
the sense that the existence of .u; p/ cannot be obtained directly in V 
 Q by the
previous stability results, but only for instance through a regularity argument. Exis-
tence of a discrete solution however holds, and one would like to get error estimates.
Such is the case in the  �! mixed formulation of the biharmonic problem that we
have seen in (1.3.65). For a more detailed analysis of this case, see Chap. 10.

Remark 5.2.5. In general, as we said, the V �-norm and the V -norm will not be
equivalent with a constant independent of h. Hence, introducing the quantity

S.h/ WD sup
vh2Vh

kvhkV
kvhkV �

; (5.2.40)

we might expect that S.h/ tends to infinity when h goes to zero. Typically, in a finite
element context, the value of S.h/ will be given by some suitable inverse inequality.

ut
We now note, and this is an important point, that we have been using, in deriving

all the above results, only the stability in the finite dimensional spaces Vh 
 Qh,
and the only appearance of functions not belonging to them has been through the
right-hand sides F and G. Hence, being in finite dimensional spaces, we could use
the norm k � kV � on Vh, and nothing changes, apart from the definitions of kbk and
ˇh that now should be replaced by

kbk� D sup
q2Q; vh2Vh

b.vh; q/

kqkQ kvhkV �

(5.2.41)
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and

ˇ�
h D inf

qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV � kqhkQ ; (5.2.42)

respectively. Note that, from (5.2.39), we immediately have ˇ�
h � ˇh. Hence, we

can take into account the weaker condition

ˇ�
h 	 inf

qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV � kqhkQ > 0: (5.2.43)

On the other hand, the shift from kbk to kbk� will not be without a price, as in
practice we shall almost always need some sort of inverse inequality and pay some
power of h. Indeed, using (5.2.40), it is immediate to see that

kbk� � S.h/kbk (5.2.44)

and, in general, (5.2.44) cannot be improved.
In this framework, from Theorem 5.2.3 applied with the norms k � kV � and k � kQ,

we have the following result.

Theorem 5.2.6 (Ellipticity in a weaker norm). Under Assumption ABh, assume
further that the inf-sup condition (5.2.43) is satisfied, and that the bilinear form
a satisfies (5.2.37) and (5.2.38). Let f 2 V 0 and g 2 Q0. Assume that the
continuous problem (5.1.2) has a solution .u; p/, and let .uh; ph/ be the solution
of the discretised problem (5.1.9). Then, for every uI 2 Zh.Bu/ and for every
pI 2 Qh, we have the estimates

kuh � uIkV � � 1

˛�
h

.M �
a ku � uIkV � C kbk� kp � pIkQ/; (5.2.45)

kph � pIkQ � 2M �
a

˛�
h ˇ

�
h

.M �
a ku � uIkV � C kbk� kp � pIkQ/: (5.2.46)

If, moreover, Kh � K , then we also have

kuh � uIkV � � M �
a

˛�
h

ku � uIkV � (5.2.47)

and if, in addition, Bh is the restriction of B (see Remark 5.1.7), then

kph � �Qh
pkQ � 2.M �

a /
2

˛�
h ˇ

�
h

ku � uIkV � : (5.2.48)

Remark 5.2.6. Adding and subtracting u in (5.2.45), and also using Proposi-
tion 5.1.3, we could derive from (5.2.45) an estimate of ku � uhk in terms of
the infimum of ku � vhk and the infimum of kp � qhk, as done, for instance, in
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Theorem 5.2.3. Obviously, the same can be done for kp � phk. We leave these
variants to the reader. ut

Remark 5.2.7. The above “proof” of Theorem 5.2.6, made through the simple
change of norm, might puzzle somebody. As an exercise, we can give a direct proof
of (5.2.47) and (5.2.48) which is not based on the previous stability estimates for
finite dimensional problems. Consider uI D ˘hu in Zh.Bu/, and remember that

b.u �˘hu; qh/ D 0 8 qh 2 Qh: (5.2.49)

This implies in particular (using the second equations of the continuous and of the
discretised problems) that the difference uh �˘hu satisfies

b.uh �˘hu; qh/ D 0 8 qh 2 Qh; (5.2.50)

and hence belongs to Kh. As we assumed that Kh � K , condition (5.2.49) then
implies

b.uh �˘hu; q/ D 0 8 q 2 Q: (5.2.51)

Then: (1) we use (5.2.37), (2) we add and subtract u, (3) we use the first equations
of the continuous and of the discrete problems, (4) we use (5.2.51), and finally, (5)
we use (5.2.38):

˛�
h kuh �˘huk2V � � a.uh �˘hu; uh �˘hu/

D a.uh � u; uh �˘hu/C a.u �˘hu; uh �˘hu/

D �b.uh �˘hu; ph � p/C a.u �˘hu; uh �˘hu/

D 0C a.u �˘hu; uh �˘hu/

� M �
a ku �˘hukV � kuh �˘hukV � ; (5.2.52)

and (5.2.47) follows simplifying kuh �˘hukV � . Now, take a vh 2 Vh different from
0 such that

b.vh; ph � �Qh
p/ � ˇhkvhkV kph � �Qh

pkQ: (5.2.53)

The existence of such a vh is guaranteed from the inf-sup condition (5.1.19). Now,
(1) use (5.2.53), (2) use Proposition 5.1.2 and Remark 5.1.7, (3) use the first
equations of the continuous and of the discrete problems, (4) add and subtract˘hu,
(5) use (5.2.38) (twice) and (5.2.47), and finally, (6) compare (5.2.37) and (5.2.38)
to get ˛�

h � M �
a :

ˇhkvhkV kph � �Qh
pkQ � b.vh; ph � �Qh

p/

D b.vh; ph � p/ D a.u � uh; vh/

D a.u �˘hu; vh/C a.˘hu � uh; vh/
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� .M �
a C M �

a
2

˛�
h

/ku �˘hukV � kvhkV �

� 2M �
a
2

˛�
h

ku �˘hukV � kvhkV � (5.2.54)

and (5.2.48) follows using (5.2.39) since we took vh ¤ 0. ut
In Theorem 5.2.6, we used the constant ˇ�

h . We could, however, use the old ˇh, as
given by the usual inf-sup condition (5.1.19). Surprisingly enough, this often allows
a better estimate, as shown in the following theorem.

Theorem 5.2.7 (First duality). Under the same assumptions of Theorem 5.2.6,
assume that, moreover, we have the following property: for every qh 2 Qh, the
solution .wh;  h/ 2 Vh 
Qh of the problem

(
a.vh;wh/C b.vh;  h/ D 0; 8 vh 2 Vh;
b.wh; qh/ D .qh; qh/Q; 8 qh 2 Qh

(5.2.55)

verifies

kwhkV � CkqhkQ; (5.2.56)

with C independent of h and of qh. Then, for every uI 2 Zh.Bu/, we have

kph � �Qh
pkQ � C

�
M �
a ku � uIkV � C kbkkp � �Qh

pkQ
�
: (5.2.57)

Proof. Let pI WD �Qh
p and uI WD ˘hu as in the previous theorem. Consider the

auxiliary problem: find .wh;  h/ 2 Vh 
Qh such that

(
a.vh;wh/C b.vh;  h/ D 0; 8 vh 2 Vh;
b.wh; qh/ D .ph � pI ; qh/Q; 8 qh 2 Qh:

(5.2.58)

Then, we have

kph � pIk2Q D b.wh; ph � pI / D b.wh; ph � p/C b.wh; p � pI /

D a.u � uh;wh/C b.wh; p � pI /
D a.u � uI ;wh/C a.uI � uh;wh/C b.wh; p � pI /

D a.u � uI ;wh/C b.uh � uI ;  h/C b.wh; p � pI /
D a.u � uI ;wh/C b.wh; p � pI /
� M �

a kwhkV � ku � uIkV � C kbk kwhkV kp � pIkQ

(5.2.59)

and the result follows from (5.2.56). ut
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Remark 5.2.8. At first sight, the result (5.2.57) does not seem much better than
the previous (5.2.46). However, looking more carefully, one notices that the kbk�
appearing in (5.2.46) is actually replaced by kbk in (5.2.46). In most applications,
this means a factor O.h�1/ that is present in (5.2.46) and not in (5.2.57). ut
Remark 5.2.9. Results of the type of Theorem 5.2.7 are a particular case of a more
general class of estimates, called dual estimates that we will discuss in a while. ut

Another variant that will be useful in the study of some hybrid methods is the
following.

Let jvjV be a continuous semi-norm on V and let M denote its kernel (that is:
M is the subspace of V made by those v that satisfy jvjV D 0). We assume for
simplicity that M � Vh. The semi-norm j � jV is then a norm on the quotient space
V=M , as well as on Vh=M . We suppose that we have

9˛M > 0 such that a.v; v/ � ˛M jvj2V ; 8 v 2 V; (5.2.60)

and

ja.u; v/j � kak jujV jvjV ; 8 u; v 2 V: (5.2.61)

Proposition 5.2.2. Under Assumption ABh, assume further that the bilinear form
a satisfies (5.2.60) and (5.2.61). Let .u; p/ and .uh; ph/ be solutions of the
continuous problem (5.1.2) and of the discretised problem (5.1.9), respectively.
Define

Qh.p/ WD fqh j qh 2 Qh; b.vh; p � qh/ D 0 8 vh 2 M g: (5.2.62)

Then, we have the estimate

ju � uhjV �
h
1C kak

˛

i
inf

vh2Zh.g/
ju � vhjV C kbk inf

qh2Qh.p/
kp � qhkQ: (5.2.63)

Proof. The proof still follows from Theorem 5.2.1, working in Vh=M 
 Qh, and
observing that, for every qh 2 Qh.p/, we have obviously

b.vh; p � qh/ � kbk jvhjV kp � qhkQ 8 vh 2 Vh: (5.2.64)

ut
Remark 5.2.10. Note that we did not assume thatZh.g/ andQh.p/ are non empty.
However, Eq. (5.2.63), if one of the two sets is empty, will give ju � uhjV � C1
(which is always true) since the infimum over the empty set is, by definition, C1.
Hence, the result is “true” even when one of the two sets is empty (but in that case, it
will be totally useless). Please forgive this little mathematical coquetry, which could
have been used several times before. ut
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5.2.4 A Simple Example

We now want to present a very simple example which, however, could be very
instructive if one reads it carefully. Similar considerations have been made for the
corresponging eigenvalue problem in [77] (see, in particular, Sect. 5.4 of Part 1)

We consider the interval I WD� � 1; 1Œ and the problem of finding p 2 H1
0 .I /

such that p00 D g, where g is a given function in, say, L2.I /. Remember that the
condition p 2 H1

0 .I / implies, among other things (such as the continuity of p), that
p.�1/ D p.1/ D 0, so that our problem has clearly a unique solution. Particular
attention will be devoted to the case g D 1 (whose solution is obviously p.x/ D
.x2 � 1/=2).

The mixed formulation of our toy problem is easily reached by setting u WD p0,
and introducing the spaces Q WD L2.I / and V WD H1.I /. In two dimensions, we
would have V WD H.div/ which, however, in one dimension, coincides withH1 (as
the divergence coincides with the first derivative). We then set

a.u; v/ WD
Z 1

�1
u v dx; 8 u; v 2 V; (5.2.65)

b.v; q/ WD
Z 1

�1
v0q dx; 8 v 2 V; 8 q 2 Q; (5.2.66)

and we easily recognise that .u; p/ is the solution of
(
a.u; v/C b.v; p/ D 0; 8 v 2 V;
b.u; q/ D hg; qiQ0�Q; 8 q 2 Q: (5.2.67)

We easily see that the operator B is now the first derivative (fromH1.I / to L2.I /)
and that its kernelK is given by

K WD f constant functionsg: (5.2.68)

It is important to note that the bilinear form a (which is simply the L2 inner
product) is not elliptic in the whole V D H1.I /. Indeed, no matter how small you
take ˛ > 0, the inequality

a.v; v/ 	
Z

I

v2dx � ˛
� Z

I

v2dx C
Z

I

.v0/2dx
�

	 ˛kvk2V 8 v 2 V (5.2.69)

is false. To be convinced of the falsity of (5.2.69), we recall the situation of
Example 4.1.9 and consider, for k 2 N, the function vk.x/ WD sin.�kx/: we have

a.vk; vk/ D 1; kvkk2V D 1C k2�2=2; (5.2.70)

and you cannot find an ˛ > 0, independent of k, such that
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1 � ˛.1C k2�2=2/ 8 k 2 N: (5.2.71)

However, inequality (5.2.69) is obviously true (with ˛ D 1) if restricted to v 2 K

(see (5.2.68)), as constant functions have zero derivative. Hence, the ellipticity in
the kernel (5.1.7) holds with ˛0 D 1.

On the other hand, the operator B is clearly surjective from V to Q. Indeed, for
every q 2 Q, we can find a vq 2 V , given by

vq.x/ WD
Z x

0

q.t/dt; (5.2.72)

such that B vq 	 v0
q D q. It is also easy to see that

kvqkL2.I / � kv0
qkL2.I / 	 kqkQ; (5.2.73)

so that

kvqk2V 	 kvqk2L2.I / C kv0
qk2L2.I / � 2kqk2Q;

and therefore

inf
q2Q

sup
v2V

R
I
v0 q

kvkV kqkQ � inf
q2Q

R
I
v0
q q

kvqkV kqkQ

D inf
q2Q

kqk2Q
kvqkV kqkQ D inf

q2Q
kqkQ
kvqkV � inf

q2Q
kqkQp
2kqkQ

D 1p
2
; (5.2.74)

which is to say that the inf-sup condition (5.1.6) holds with a ˇ � 1=
p
2. As we

have already checked the ellipticity in the kernel, we can conclude that the mixed
formulation of the continuous problem is well posed. So far, so good.

We can now tackle the problem of discretising (5.2.67). We therefore start by
considering, for every positive integer N , a decomposition of the interval I D� �
1; 1Œ into N intervals of equal length h D 2=N . The spaces Lsk , with s 2 f0; 1g,
will then be the spaces of piecewise polynomials of local degree � k: globally
continuous when s D 1, and discontinuous when s D 0, in agreement with the
notation of Chap. 2. Our first choice is to take Vh WD L11 and Qh WD L00. It is a
simple and fortunate choice. Indeed, in the first place, we can note that the mapping
q ! vq , introduced in (5.2.72), applied to a function qh 2 Qh (hence, piecewise
constant) produces a vqh that is continuous and piecewise linear, and hence belongs
to Vh. Using exactly the same proof as before, we can now conclude that the inf-sup
condition (5.1.19) on the bilinear form b still holds for this choice of subspaces, with
a constant ˇh � 1=

p
2 (hence, in particular, bounded from below independently

of h). On the other hand, the discrete kernelKh (see (5.1.12)) can easily be identified
as being again made of global constants. Hence, we have Kh 	 K . Moreover, we
can use the fact that the bilinear form a coincides with the L2.I / inner product, so
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that (5.2.37) and (5.2.38) hold with ˛�
h D M �

a D 1. Finally, we remark that we can
construct the operator ˘h of Proposition 5.1.1 simply by taking ˘hu as the usual
nodal interpolant of u. We note indeed that if ˘hu.xk/ D u.xk/ at each subdivision
point xk , then for every qh 2 Qh and for every interval Ik D .xk; xkC1/ of our
subdivision, we have from the fundamental theorem of Calculus,

Z

Ik

.˘hu � u/0 qhdx D qhjIk
Z xkC1

xk

.˘hu � u/0dx

D qhjIk
h
.˘hu � u/.xkC1/� .˘hu � u/.xk/

i
D 0: (5.2.75)

We are happy, and we apply Theorem 5.2.6 with uI WD ˘hu.
From (5.2.47), (5.2.48) and usual interpolation estimates, we obtain

kuh �˘hukV � ku �˘hukV � C h2jujH2.I / (5.2.76)

and

kph � �Qh
pkQ � 2

p
2ku �˘hukV � C h2 jujH2.I /; (5.2.77)

which is, in fact, a super-convergence result, as Qh is only made of piecewise
constants. Indeed, using the triangle inequality and (5.2.76), we have

kuh � ukV � 2 ku �˘hukV � C h2jujH2.I / (5.2.78)

while from (5.2.77) we only have

kph � pkQ � kph � pkQ C 2
p
2ku �˘hukV � C.h jpjH1.I / C h2 jujH2.I //:

(5.2.79)

Everything works well, and the sun is shining for mixed formulations. We
become greedy, and we would like to increase one of the two spaces, Vh or Qh,
in order to have an even better performance.

Let us start by increasing Qh, and try Qh WD L01 (discontinuous piecewise
polynomials of local degree � 1). However, as soon as we look at this new choice,
we immediately perceive the disaster. Indeed, the Bh operator goes from Vh, which
has dimension equal to N C 1, toQ0

h, which has dimension 2N . On the other hand,
Vh contains the global constants, and Bh applied to one of them is 0. Hence, the
dimension of the image of Bh can be at most N , and there is no hope that Bh could
be surjective on a space of dimension 2N . Hence, the inf-sup condition (5.1.19) will
inevitably fail, and the discrete problem will have a singular matrix. To reduce Qh

to L11 (that is piecewise linear continuous functions) will not be enough either, as
the dimension of L11 is N C 1, and we are still down by one.
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It seems therefore much more reasonable to increase instead the space Vh. For
instance, we could take Vh WD L12 (piecewise quadratic continuous functions).
Indeed, increasing Vh for the sameQh, we could only improve the inf-sup condition:

inf
qh2Qh

sup
vh2L1

2

b.vh; qh/

kvhkV kqhkQ � inf
qh2Qh

sup
vh2L1

1

b.vh; qh/

kvhkV kqkQ � 1p
2
: (5.2.80)

The situation, therefore, looks much better than before and even more so for the
monomaniacs of the inf-sup condition, that consider it to be the condition ruling
mixed formulations. As we do not belong to this group, we know that we still have
to check the kernelKh and the ellipticity in the kernel (5.1.20).

We start by observing that the new Vh can be thought as obtained by increasing
L11 (which was the previous choice for Vh) with the addition of a quadratic bubble
bk in each element Ik (k D 1; 2 : : : ; N ). Let us give a closer look at these bubbles
that we are adding. We take, for simplicity, a model interval Ih WD� � h=2; h=2Œ.
The “unit” quadratic bubble (with value 1 at the midpoint and vanishing at the
endpoints) has equation b.x/ D 1 � .2x=h/2 and the mean value of its derivative
b0.x/ D �8x=.h2/ over Ih vanishes (as it was to be expected as b.x/ vanishes at the
endpoints of Ih). Hence, for every function vbh 2 L12 vanishing at all the subdivision
points xk , and for every piecewise function qh 2 L00, we have

Z

I

.vbh/
0 qh dx D 0 (5.2.81)

and the difference between L12 and the old L11 goes into the kernel Kh. This was,
however, to be expected, as we started from a case in which Bh was already
surjective, and we increased Vh.

We observe now that, as the kernel contains all quadratic bubbles, we cannot hope
to have the ellipticity in the kernel (5.1.20) with a constant ˛h0 which is independent
of h. Indeed, we have, for instance,

Z

Ih

b2.x/dx D 8h

15

Z

Ih

.b0/2.x/dx D 16

3h
; (5.2.82)

so that when we sum over the N intervals (as N D 2=h),

a.b; b/ D
Z 1

�1
b2.x/dx D 16

15
jbj2

H1.Ih/
D
Z 1

�1
.b0/2.x/dx D 32

3h2
: (5.2.83)

Hence, if we want a.b; b/ � ˛h0kbk2
H1.I /

, that is,

16

15
� ˛h0

�16
15

C 32

3h2

�
	 16˛h0

h2 C 10

15h2
;
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we cannot avoid taking

˛h0 � h2

h2 C 10
<
h2

10
; (5.2.84)

and ˛h0 cannot be taken to be independent of h as h goes to zero. The situation
looks dramatic: indeed, from the estimate (5.2.17) and usual interpolation estimates,
we cannot have anything better than a O.h�1/ estimate in the V norm for uh and,
from (5.2.18), boundedness for the Q norm of ph. The best we can do is to make
use again of the fact that (5.2.37) and (5.2.38) still hold with ˛� D M �

a D 1 and use
the first part of Theorem 5.2.6, which does not require Kh � K . For this, however,
we have to estimate kbk�, given in (5.2.41). In our case, we have

kbk� D sup
q2Q
vh2Vh

R
I
v0
h q dx

kqkL2.I / kvhkL2.I /
: (5.2.85)

As v0
h 2 Q 	 L2.I / for every vh 2 Vh, this gives

kbk� D sup
vh2Vh

kv0
hkL2.I /

kvhkL2.I /
D C

h
; (5.2.86)

(where, by the way, C D 2
p
15). This is bad news. Indeed, inserting (5.2.86) in

estimates (5.2.45) and (5.2.46) (and noting that kp � pIkQ cannot be better than
O.h/), we cannot get anything better than boundedness for both kuh �˘hukV � and
kph � �Qh

kQ.
We might still hope that our a priori estimates are not optimal. Indeed, if you do

numerical experiments, the linear part of uh and the whole ph converge nicely.
See, in Fig. 5.1, the behaviour of ph for f D 1. To make the picture clearer,

we reconstructed a Qph piecewise linear by taking the average of the true ph at the
subdivision points. The numerical convergence of Qph is clear. However, the worst
news of all is that (as it can be proved mathematically) Qph (andph as well) is actually
converging to the wrong solution! This can clearly be seen in Fig. 5.1, as we know,
in the present case, that the exact solution p D .x2�1/=2 has value �0:5 for x D 0,
while our discrete solution seems, definitely, to converge to something slightly less
than �0:08. A more careful analysis can show that, actually, we converge toward
p=6, that is, in our case, toward .x2 � 1/=12, so that its value at Qph.0/ converges to
�1=12 D �0:083.

Remark 5.2.11. This super-simple case allows a detailed analysis, that works
however in more general cases. Let us see it. We start by writing uh as uL C uB ,
where uL is the piecewise linear function that coincides with uh at the endpoints of
each subinterval, while the difference uB D uh � uL will be a piecewise quadratic
polynomial that vanishes at the endpoints of each subinterval, and is therefore made
of quadratic bubbles. In particular, from (5.2.81) we have
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Fig. 5.1 Convergence of Qph
.u0
B; qh/ D 0

for every piecewise constant qh. Hence,

.u0
L; qh/ D .u0

h; qh/ D .1; qh/ 8 qh 2 L00

and from this we immediately have u0
L D 1: This, for symmetry reasons,

immediately gives that uL D x in I . If you are picky and do not like symmetry
reasons, check that, if .ph; uh/ is a solution, then, setting eph.x/ D ph.�x/ and
euh.x/ D �uh.�x/, you get another solution. As our discretised problem has a
unique solution, this implies that ph must be even and uh odd. Having taken care of
the picky ones, we can restart. For every subinterval Ik D�xk; xkC1Œ, we denote by
bk the unit quadratic bubble on Ik , that is

bk.x/ D 4.x � xk/.xkC1 � x/=h2:

Testing the first equation for vh D bk , we have
Z xkC1

xk

uh bkdx D 0

Z xkC1

xk

.uB C x/ bkdx D 0: (5.2.87)

After some computation, this gives us the value of uh at the midpoint xkC1=2 of Ik ,
that turns out to be
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uh.xkC1=2/ D �1
8

�
.uh.xk/C uh.xkC1/

�
: (5.2.88)

Note that this is not the value of uB at the midpoint, which is obviously

uB.xkC1=2/ D uh.xkC1=2/� uL.xkC1=2/

D �1
8

�
uh.xk/C uh.xkC1/

�
� 1

2

�
uh.xk/C uh.xkC1/

�

D �5
4

uL.xkC1=2/: (5.2.89)

Hence, in Ik we have uB D Bk bk withBk D �.5=4/uL.xkC1=2/. Remembering that
the integral of bk over Ik is 2h=3, while the integral of uL over Ik is h uL.xkC1=2/,
we conclude that

Z

Ik

uBdx D �5
6

Z

Ik

uLdx (5.2.90)

and finally (as uh D uB C uL)
Z

Ik

uhdx D 1

6

Z

Ik

uLdx (5.2.91)

and the magic coefficient 1=6 shows up. Note that, from (5.2.87) to (5.2.91), we
never used the fact that f D 1 or uL D x. Hence, (5.2.91) applies to more general
cases. Now take ph WD �Qh

p=6 (the piecewise constant projection of the wrong
limit), and take  inH1

0 .I / with  00 D ph�ph. Then, take w D  0. Clearly, w will
be piecewise linear. Taking vh D w, we then have

kph � phk2L2.I / D .ph � ph;w0/

D .ph � p

6
;w0/ D .

u

6
� uh;w/

D
�u

6
� uh;w � �Qh

w
�

C
�u

6
� uh; �Qh

w
�
: (5.2.92)

At this point, for simplicity, we use the fact that actually, in our case, uL D u D x

and (5.2.91), so that the second term in the last line vanishes (but, otherwise, we
could estimate it). We then have, from usual interpolation estimates,

kph � phk2L2.I / D
�u

6
� uh;w � �Qh

w
�

� ku

6
� uhkL2.I / C h kw0kL2.I /

D ku

6
� uhkL2.I / C h kph � phkL2.I /; (5.2.93)
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Fig. 5.2 uh for h=1/10

and since we already know that uh is bounded in L2, we get a beautiful O.h/
convergence of ph towards the wrong solution p=6.

With similar arguments, we can also prove that uh converges weakly in L2

towards u=6 and actually with order O.h/ in H�1.I /. On the other hand, uh in
V (that is, in H1.I /) is actually unbounded, as it can also be seen experimentally
(see Fig. 5.2). ut
Hence, our tentative to improve the results either by increasingQh or by increasing
Vh are both failures. We observe, however, that, augmenting at the same time the
local degree of Vh and the local degree ofQh, we can restore optimality and improve
the results of the initial choice (that was Vh D L11 and Qh D L00). For instance,
taking Vh WD L12 and Qh WD L01, we have again that the inf-sup condition (5.1.19) is
verified (still by the same proof, still with ˇh � 1=

p
2) and that Kh D K is given

by the global constants. We can therefore apply Theorem 5.2.6 and we get

kuh �˘hukV � ku �˘hukV � C h3jujH3.I / (5.2.94)

and

kph � �Qh
pkQ � 2

p
2ku �˘hukV � C h3 jujH3.I /; (5.2.95)

which is again a super-convergence result, asQh is only made of piecewise linears.
Indeed, using the triangle inequality and (5.2.76), we have

kuh � ukV � 2 ku �˘hukV � C h3jujH3.I / (5.2.96)

while, from (5.2.76), we only have
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kph � pkQ � kph � pkQ C 2
p
2ku �˘hukV

� C.h2 jpjH1.I / C h3 jujH3.I //: (5.2.97)

The sun is shining back on mixed formulations. However, in this case, since Qh is
made of discontinuous piecewise linears, we might well feel the strong temptation
to take Qh WD L11, that is, piecewise linear continuous functions. Again, the inf-sup
is trivially satisfied, in particular since L11 � L01. But, now, the discrete kernel Kh is
no longer restricted to global constants, and in Kh one cannot expect any estimate
better than

˛h0 ' h2; (5.2.98)

as we had in (5.2.84). Again, this, inserted in (5.2.28), cannot give us anything
better than

kuh � uIkV � C jujH2: (5.2.99)

Our only way out seems therefore to use (5.2.45) that, together with (5.2.86) and
usual interpolation estimates, gives

kuh �˘hukL2 � C h .jujH1 C jpjH2/; (5.2.100)

which is clearly suboptimal. Indeed, on a non-uniform grid, the slope of the error
ku � uhk is not better than 1. See Fig. 5.3.

It is however puzzling to see (always in Fig. 5.3) that ph converges to p as
O.h2/, which cannot be obtained from (5.2.46). Indeed, for this we have to apply
Theorem 5.2.7. It is easy to see that its assumptions are verified, and that (5.2.57)
gives the desiredO.h2/ rate. Note that, on a uniform grid, we would have anO.h2/
convergence for ku � uhkL2 as well (which decays to O.h3=2/) if we restrict further
Qh to be the subspace of L11 made of functions that vanish at the endpoints of I .
These, however, are super-convergence phenomena on uniform grids that require a
different type of analysis.

5.2.5 An Important Example: The Pressure in the
Homogeneous Stokes Problem

Following the lines of Sect. 4.2.4 of the previous chapter, we will now briefly discuss
the case in which Hh 	 KerBt

h is not reduced to zero.
We start by considering the case in which H itself is not reduced to zero and

Hh is a subspace of it. As we have partially seen in Remark 5.1.4, this is a healthy
case. Indeed, in this case, the use of Q=H 	 Q=KerBt instead of Q, and Qh=H

instead of Qh, will essentially fix the problem. We can also, if we want, apply
Theorem 4.2.4 and deal with the standard case (the analogue of Theorem 5.2.1 of
the present chapter). This might be a psychological help for some practitioner, used
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Fig. 5.3 log � log plot of ku � uhkL2 and kp � phkL2 for P2 � P cont
1 element

for instance to work with pressures that do not have zero mean value, and escaping
the lack of uniqueness just by fixing the pressure to be zero at a given node.

The above example, of pressures with zero mean value, is an important one, and
deserves some further discussion dedicated to the readers that are less skilled in
functional analysis. This subsection is dedicated to them. The other readers can just
go on. Let us therefore abandon, for a while, the abstract framework, and stick to
the Stokes problem with Dirichlet boundary conditions for the velocities all over
the boundary of the domain: for instance, u WD 0. In this case, it is well known
that the pressure is determined up to an additive constant. This corresponds to the
fact that the operator B is the divergence (from V WD .H1

0 .˝//
d , where d D 2

or 3 is the number of dimensions, to Q WD L2.˝/), and Bt is just the gradient.
We all know that every constant function has its gradient equal to zero, and indeed
H 	 KerBt 	 R is the set of all constant functions.

You know that you cannot choose a g (as a right-hand side in the equation
divu D g) which does not have zero mean value (Gauss doesn’t want it, when
u � n D 0 on @˝), and this is what we mean, in this case, by asking that g 2 ImB:
we ask that g have zero mean value.

To deal with the lack of uniqueness for the pressure, what we propose here is to
work with L2.˝/=H 	 L2.˝/=R as pressure space. Now, to be precise, we recall
that L2.˝/=R is not a space of functions: its elements are classes of functions, and
every class is made of functions that differ from each other for an additive constant.
In a sense, the elements of L2.˝/=R could therefore be considered as “functions”
that are determined up to an additive constant, just as our pressure unknown.
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For instance, all the functions of the form q.x/ D x2 C 3xy C c, with c constant,
will be one element of these classes, and hence an element of L2.˝/=R. You surely
remember seeing something very similar when you did indefinite integrals in first
year Calculus:

Z
x dx D x2

2
C c: (5.2.101)

Here, it is just the same: x2=2 C c is not a function, but a bunch of functions that
differ from each other for a constant.

In principle, when you choose Qh to be a subspace of this mess, you should
consider a space whose elements are sets of all possible functions that can be
obtained by adding to a single piecewise polynomial function an arbitrary constant.
For instance, consider zh.x; y/ to be a specific piecewise constant (or a piecewise
linear, depending on what you want); then, the set of all functions of the form
zh.x; y/C c (where c is a global constant) will be an element of yourQh.

Needless to say, this is not a nice space to work with on a computer. Hence,
when you work with the computer program, you play smart. You fix a way to select
one (and only one) function in each element of Qh: for instance, you can specify
“the one that has zero mean value on ˝”. This works, because among all functions
of the form, say, zh.x; y/ C c, there is always one and only one of them that has
zero mean value on ˝ . On the other hand, you could fix a point (for instance, the
barycentre of a specified element, chosen once and for all), and specify “the one
that vanishes at this point”. This also works, because, among all functions of the
form, say, zh.x; y/ C c, there is always one and only one of them that vanishes at
that point you choose. Clearly, the second possibility is easier to implement. On the
other hand, for reasons that are crystal clear to those who know functional analysis
(but less clear to many other perfectly respectable researchers), the first choice is
more convenient for the theoretical treatment. Basically, our religion forbids us
to take the value of an L2 function at a point. However, in practice, there is no
difference. Hence, when you have to deal with a pressure that is determined up to
an additive constant, please feel free to fix its value to be zero at a given point of
your choice. However, when you read a theorem that speaks about pressures having
zero mean value, don’t be scared, and please do not say “Gasp! This does not apply
to my case!”: it is, essentially, the same thing. ut

5.3 The Case of KerBt
h

¤ f0g

5.3.1 The Case of KerBt
h

� KerBt

Coming back to our abstract framework, if H is not reduced to zero but Hh � H ,
we could either work with eQ WD Q=H , as we suggested before (several times), or
use the following result.



296 5 Approximation of Saddle Point Problems

Theorem 5.3.1. Under the Assumption ABh, assume further that ImB is closed,
that (5.1.18) is satisfied, and that Hh � H . Then, for every f 2 V 0 and for every
g 2 ImB , the discrete problem (5.1.9) has a solution .uh; ph/ in which uh is uniquely
determined, and ph is determined up to an element of Hh. Moreover, setting

ě
h WD inf

qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV kqhkQ=H

; (5.3.1)

we can say that: for every uI 2 Vh and every pI 2 Qh, we have the estimate

kuh � uIkV � 1

˛1h
kFkV 0

h
C 2kak
˛h1
ě
h

kGkQ0

h
; (5.3.2)

kph � pIkQ=H
� 2kak
˛1h
ě
h

kFkV 0

h
C 2kak2
˛1h
ě
h
2
kGkQ0

h
(5.3.3)

where F and G are defined by (5.2.6) and (5.2.7), respectively. If, moreover, a.�; �/ is
symmetric, satisfies (5.2.10) and is positive semi-definite, then we have the improved
estimates

kuh � uIkV � 1

˛h0
kFkV 0

h
C 2kak1=2
.˛h0 /

1=2ě
h

kGkQ0

h
; (5.3.4)

kph � pIkQ=H
� 2kak1=2
.˛h0 /

1=2ě
h

kFkV 0

h
C kak
ě2
h

kGkQ0

h
: (5.3.5)

where F and G are always defined by (5.2.6) and (5.2.7), respectively.

When applying Theorem 5.3.1, we can immediately make profit of the fact that
in its assumptions we have Hh � H , which, thanks to Proposition 5.1.1, ensures
the existence of an operator˘h W V ! Vh verifying (5.1.29). Hence, in the estimate
of the terms kFkV 0

h
and kGkQ0

h
, we can immediately consider the choice uI D ˘hu.

We therefore have the following results, which can be seen as an extension of
Theorems 5.2.3 and 5.2.4.

Theorem 5.3.2. Under the same assumptions as in Theorem 5.3.1, we have the
estimates

kuh � ukV � 1

˛1h

�
kakEZ

u C kbkh inf
qh2Qh

kp � qhkQ=H

�
; (5.3.6)

kph � pkQ=H
� 2kak
˛1h
ě
h

�
kakEZ

u C 2kbkh inf
qh2Qh

kp � qhkQ=H

�
; (5.3.7)

where kbkh is defined by
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kbkh WD sup
q2Q=H

vh2Vh

b.vh; q/

kqkQ=H
kvhkV : (5.3.8)

Theorem 5.3.3. Under the same assumptions as in Theorem 5.3.2, assume further
that Z�

h .B
tp/ is not empty. Then, we have the estimates

ku � uhkV � 2kak
˛1h

EZ
u ; (5.3.9)

kph � pkQ=H
� 2kak2
˛1h

Q̌
h

EZ
u C inf

pI2Z�

h .B
tp/

kp � pI kQ=H
(5.3.10)

Remark 5.3.1. We point out that even whenH ¤ f0g andHh ¤ f0g, a requirement
like pI 2 Z�

h .B
tp/ makes sense, as it does not depend on the choices of p and pI

in their (respective) classes. Indeed, if p and pI are such that b.vh; p � pI / D 0

for all vh 2 Vh, then for every p0 2 H and for every p0h 2 Hh we also have
b.vh; .p C p0/� .pI C p0h// D 0 for all vh 2 Vh. ut
Remark 5.3.2. Needless to say, in the above estimates, we could have applied
Proposition 5.1.3 and have gotten estimates in terms of the infimum of ku � vhk
over the whole Vh. ut

We could clearly keep going, repeating all the results we had for the case in which
the inf-sup condition (5.1.19) is true, and just changing Q into Q=H . We leave this
to the reader.

5.3.2 The Case of KerBt
h

ª KerBt

We consider instead the case where Hh is not a subspace of H . For simplicity, we
limit ourselves to the case whereH is reduced to zero. We know that, otherwise, we
can always changeQ into Q=H .

We shall see that as far as g 2 ImBh, the situation is not too bad. Roughly
speaking, we just have to filter the elements of Hh from our discrete solution. This
however, in practice, can be done easily in some cases (when Hh is known and
easy to deal with), and can be cumbersome in other cases. Similarly, the condition
g 2 ImBh can be easy to check in some cases (surely, for instance, if g D 0), and
much less easy in others.

Concerning error estimates, our advice, in general, is to change, whenever
possible, the definition of Qh using Qh=Hh

instead, and going back to the case in
which the inf-sup condition (5.1.19) is satisfied.

We have for instance the following result, that could be seen as an immediate
consequence of Theorem 5.2.1.

Theorem 5.3.4. Under the Assumption ABh, assume further that ImB D Q0
(hence the continuous inf-sup condition (5.1.6) is satisfied) and that (5.1.18)



298 5 Approximation of Saddle Point Problems

is satisfied. Then, for every f 2 V 0 and for every g 2 ImBh, the discrete
problem (5.1.9) has a solution .uh; ph/ in which uh is uniquely determined, and
ph is determined up to an element of Hh. Moreover, setting

ě
h WD inf

qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV kqkQ=Hh

; (5.3.11)

we have that: for every uI 2 Vh and every pI 2 Qh, we have the estimate

kuh � uIkV � 1

˛h
kFkV 0

h
C 2kak
˛h ěh

kGkQ0

h
; (5.3.12)

kph � pIkQ=Hh
� 2kak
˛h ěh

kFkV 0

h
C 2kak2
˛h ěh2

kGkQ0

h
: (5.3.13)

If, moreover, a.�; �/ is symmetric and positive semi-definite, then we have the
improved estimates

kuh � uIkV � 1

˛h0
kFkV 0

h
C 2kak1=2
.˛h0 /1=2

ě
h

kGkQ0

h
; (5.3.14)

kph � pIkQ=Hh
� 2kak1=2
.˛h0 /

1=2ě
h

kFkV 0

h
C kak
ě2
h

kGkQ0

h
: (5.3.15)

Here also, we can specialise the choices of uI and pI to derive better special
estimates for kFkV 0

h
and kGkQ0

h
. In particular, we have the following result.

Theorem 5.3.5. Under the same assumptions as in Theorem 5.3.4, ifZh.Bu/ is not
empty, then

kuh � ukV � 1

˛h

�
2kakEZ

u C kbkEp
�
: (5.3.16)

Remark 5.3.3. As we did before, we can use Proposition 5.1.3 to obtain

kuh � ukV � 1

˛h

�4kak kbk
ě
h

Eu C kbkEp
�
: (5.3.17)

ut
Remark 5.3.4. It is important to point out that, assuming that Zh.Bu/ is not empty,
we are already making an assumption on g as well. Indeed, requiring, for instance,
the existence of an operator ˘h satisfying (5.1.29) would be equivalent (using
Corollary 5.1.1) to requiring the inf-sup condition (5.1.37) (and, actually, (5.1.19),
as we assumed that H D f0g). ut
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5.3.3 The Case of ˇh or Q̌
h going to zero

A possible source of (major) trouble can however arise when the constants ˇh or Q̌
h

tend to zero when h is tending to zero. In principle, we accepted that, and this is the
reason why we keep using an index h for them. The idea is that, in certain applica-
tions, the bad behaviour of ˇh could be partly compensated by the approximation
error, leading possibly to a non-optimal error bound but still ensuring convergence.
When this is not the case, however, the best strategy would be to give up and choose
a different type of discretisation. In certain cases, however, the method in question
is particularly appealing, and this might justify some “triple backwards somersault”
in order to rescue it (or part of it). For instance, we have the following results.

Theorem 5.3.6. Under the assumptions ABh, assume further, for simplicity, that a
is elliptic on the whole V as in (5.1.8) and that ImB D Q0. Suppose moreover that
we have a couple of spaces OV � Vh and OQ � Qh such that the pair . OV ; OQ/ satisfies
the inf-sup condition

inf
Oq2 OQ

sup
Ov2 OV

b. Ov; Oq/
k Ov k OqkQ � Ǒ > 0; (5.3.18)

and that

b. Ov; qh/ D b. Ov; � OQqh/ 8Ov 2 OV 8qh 2 Qh: (5.3.19)

Finally assume that g is such that

hg; qhi D hg; � OQqhi 8qh 2 Qh: (5.3.20)

Then, we have the estimate

kuh � ukV � 4kak kbk
˛ Ǒ OEu C kbk

˛
Ep; (5.3.21)

where we set

OEu WD inf
Ov2 OV

ku � Ovk and, for future use, OEp WD inf
Oq2 OQ

kp � Oqk: (5.3.22)

Proof. From (5.3.18) and (5.3.20), we easily deduce that

OZh.g/ WD f Ov 2 OV s.t. b. Ov; Oq/ D hg; Oqi 8 Oq 2 OQg � Zh.g/: (5.3.23)

Therefore, we immediately have

inf
vh2Zh.g/

ku � vhk � inf
Ov2 OZh.g/

ku � OvkV � 2kbk
Ǒ inf

Ov2 OV
ku � OvkV ; (5.3.24)
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where in the last step we applied Proposition 5.1.3. Hence, (5.3.21) follows,
inserting (5.3.24) into (5.3.16). ut

Always with the same assumptions as in Theorem 5.3.6, we can also prove some
estimates on p � ph. As, in a certain sense, we are playing the game that the pair
.Vh;Qh/ is unstable, we have no hope to estimate p � ph flatly in Q. However,
we can have estimates in the only finite dimensional subspace of Q where we have
stability, and this is OQ.

Proposition 5.3.1. Using the same assumptions as in Theorem 5.3.6, we have

kp � � OQphkQ � kak
Ǒ .ku � uhkV C ku � OukV /C kp � OpkQ; (5.3.25)

where .Ou; Op/ 2 OV 
 OQ is the solution of the problem

a.Ou; Ov/C b. Ov; Op/ D .f; Ov/; 8Ov 2 OV (5.3.26)

b.Ou; Oq/ D .g; Oq/; 8Ov 2 OV : (5.3.27)

Proof. From (5.3.18), we have that there exists a Ov 2 OV with k OvkV D 1 such that

Ǒk Op � � OV phkQ � b. Ov; Op � � OV ph/: (5.3.28)

Using (5.3.26), (5.3.19), and the first equation of (5.1.9) in (5.3.28), then adding and
subtracting u, and finally, using the continuity of the bilinear form a, we have

Ǒk Op � � OV phkQ � b. Ov; Op � � OV ph/

D hf; Ovi � a.Ou; Ov/� b. Ov; ph/ D a.uh � Ou; Ov/
D a.uh � u; Ov/C a.u � Ou; Ov/

� kak .ku � uhkV C ku � OukV /k OvkV : (5.3.29)

Since k OvkV D 1, we have

k Op � � OV phkQ � kak
Ǒ .ku � uhkV C ku � OukV /; (5.3.30)

and (5.3.25) easily follows. ut
Remark 5.3.5. Using the ellipticity of a and the inf-sup condition (5.3.18), we can
apply, for instance, Theorem 5.2.3 and have

ku � OukV � 1

˛

�4kak kbk
Ǒ OEu C kbk OEp

�
; (5.3.31)
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kp � OpkV � 2kak
˛ Ǒ

�2kak kbk
Ǒ OEu C 2kbk OEp

�
; (5.3.32)

which, inserted in (5.3.25) together with (5.3.21), provides a bound for kp � � OQk
in terms of approximation errors. ut
Remark 5.3.6. We also have a more precise result on Ouh. Making vh D Ov and qh D
Oq in the two equations of (5.1.9), and subtracting equations (5.3.26) and (5.3.27),
we get

a.uh � Ou; Ov/C b. Ov; ph � Op/ D 0; 8 Ov 2 OV ; (5.3.33)

b.uh � Ou; Oq/ D 0; 8 Oq 2 OQ: (5.3.34)

Taking Ov 2 Ker OBh in (5.3.33), we have

Ou D � OZh.g/uh; (5.3.35)

meaning that Ou is the projection of uh on OZh.g/: ut
Finally, we must emphasise that this result will be useful only in certain special
cases. Its application will generally rely on strong assumptions on the finite element
meshes.

5.4 The inf-sup Condition: Criteria

5.4.1 Some Linguistic Considerations

In this section, we give some general strategies that can be used, in applications, to
prove that the discrete inf-sup condition (5.1.19) is satisfied, possibly with a constant
ˇh � ˇ0 > 0, with ˇ0 independent of h.

It is worth mentioning, from the very beginning, that, in the literature on mixed
formulations, there are various meanings for sentences of the type: The inf-sup condi-
tion is satisfied or The inf-sup condition is not satisfied. Indeed, we can distinguish, a
priori, two different situations. The branching is obtained when we decide whether to
look at the infimum of qh over the wholeQh, as in (5.1.19), or just overQh=H (where,
as usual, H D KerBt ) as in (5.3.11). Having made this choice (between (5.1.19)
and (5.3.11)), it is then commonly accepted that the meaning of the sentence The inf-
sup condition is satisfied is, when we choose (5.1.19), that ˇh has a positive lower
bound ˇh � ˇ0 > 0, independent of h. If instead we chose (5.3.11), the meaning
will be that Q̌

h has a positive lower bound Q̌
h � Q̌

0 > 0, independent of h.
This, we acknowledge, is not fully aligned with what is done in this book, where

we often say assume that the inf-sup condition (5.1.19) is satisfied. To be consistent,
we should say instead: assume that (5.1.19) is satisfied, recalling that the inf-sup
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condition should be considered to be satisfied only if the ˇh appearing in (5.1.19)
has a positive lower bound for h ! 0. We decided, however, as a didactic strategy,
to instate (whenever possible and convenient) a sort of nickname for our formulae
to easily refer to them. Indeed, we consider that a nickname could help the reader
better than a number in recognising a formula and we failed to find for (5.1.19) a
nickname better than the inf-sup condition.

5.4.2 General Considerations

Looking at the definition of the inf-sup condition (5.1.19), and also at the general
considerations made in Chap. 3, one can see that, roughly speaking, the inf-sup
condition requires the space Vh to be big enough with respect toQh. In other words,
still roughly speaking, the bigger Vh is (or the smaller is Qh), the more chances
we have of satisfying the inf-sup condition. A more precise statement of this fact is
expressed in the following proposition.

Proposition 5.4.1. In the framework of Assumption ABh, assume that the inf-sup
condition (5.1.19) is satisfied for a given choice of Vh andQh, and for a given value
of the constant ˇh. Then, for every subspace QQh � Qh, we have

inf
Qqh2 QQh

sup
vh2Vh

b.vh; Qqh/
kvhkV k QqhkQ � ˇh; (5.4.1)

and for every space QVh with Vh � QVh � V , we have

inf
qh2Qh

sup
Qvh2 QVh

b. Qvh; qh/
k QvhkV kqhkQ � ˇh: (5.4.2)

Proof. The proof is trivial. Indeed, if QQh � Qh, we have

inf
Qqh2 QQh

�
sup
vh2Vh

b.vh; Qqh/
kvhkV k QqhkQ

�
� inf

qh2Qh

�
sup
vh2Vh

b.vh; qh/

kvhkV kqhkQ
�

� ˇh; (5.4.3)

as the infimum on the smaller space is bigger (or equal) than the infimum on the
bigger space. On the other hand, if Vh � QVh, we have

inf
qh2Qh

sup
Qvh2 QVh

� b. Qvh; qh/
k QvhkV kqhkQ

�
� inf

qh2Qh

sup
vh2Vh

� b.vh; qh/

kvhkV kqhkQ
�

� ˇh; (5.4.4)

as the supremum on a bigger space is bigger (or equal) than the supremum on a
smaller space. ut
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The suggestion of Proposition 5.4.1 is clear: if your choice of spaces does not
satisfy the inf-sup condition (or if you are uncertain and you want to play safe), then
either take a bigger Vh or take a smaller Qh, and the situation should, in principle,
improve.

All this, however, is good and nice if you have a bilinear form a.�; �/ that is elliptic
on the whole space V . Indeed, in this case, its ellipticity on the kernelKh of Bh will
be automatically guaranteed, no matter how big or how small Kh comes out to be.
If, on the contrary, your bilinear form a is elliptic only on the kernel K of B (or,
even worse, satisfies an inf-sup condition of type (5.1.1) on K), then the ellipticity
on Kh (or the inf-sup for a on Kh as in (5.1.18)) will depend on the nature of Kh.
The bigger the kernel is, the more difficult it will be to have (5.1.18) (or (5.1.20))
satisfied. Here start the troubles: indeed, for the same Qh, a bigger Vh will, in
general, have a bigger kernel Kh. For the same Vh, the smaller you take Qh, the
bigger becomes the kernelKh.

Hence, the two conditions (5.1.18) and (5.1.19) play one against the other, and
the two spaces Vh andQh have, somehow, to match perfectly to each other. We have
seen all this at work in the example of Sect. 5.2.4.

These cases (in which the two conditions play against each other), in general,
require to be dealt with on a case by case basis. In what follows we concentrate
instead on the inf-sup condition for the bilinear form b, that is, in any case, a crucial
ingredient in almost all mixed formulations.

5.4.3 The inf-sup Condition and the B-Compatible
Interpolation Operator ˘h

In Proposition 5.1.1, we have seen that, if the continuous inf-sup condition (5.1.6)
is satisfied (and hence H D KerBt D f0g), and if there exists a B-compatible
operator, that is an operator˘h W V ! Vh such that

b.v �˘hv; qh/ D 0 8 qh 2 Qh; (5.4.5)

then Hh D KerBt
h is also reduced to f0g, and hence the discrete inf-sup condi-

tion (5.1.19) is also satisfied. However, we have no indications on the value of ˇh
for each h, and ˇh might as well tend to zero when h tends to zero.

In the next proposition, we connect the numerical value of ˇh with the norm of
the operator˘h. Indeed, we have the following result.

Proposition 5.4.2. Assume that, for each h, we are given an operator˘h W V ! Vh
that satisfies (5.4.5), and assume that there exists a constant C˘ > 0, independent
of h, such that

k˘hvkV � C˘ kvkV 8 v 2 V: (5.4.6)
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Assume moreover that the continuous inf-sup condition (5.1.6) is satisfied (for a
certain value of ˇ > 0). Then, we have

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

kvhkV kqhkQ � ˇ

C˘
> 0; (5.4.7)

that is: the discrete inf-sup condition (5.1.19) is satisfied with ˇh D ˇ=C˘ .

Proof.

sup
vh2Vh

b.vh; qh/

kvhkV � sup
v2V

b.˘hv; qh/

k˘hvkV D sup
v2V

b.v; qh/

k˘hvkV

� sup
v2V

b.v; qh/

C˘ kvkV � ˇ

C˘
kqhkQ: (5.4.8)

ut
Remark 5.4.1. Proposition 5.4.2 was first presented in [201], and is often called the
Fortin trick. ut
Remark 5.4.2. It is clear that, by the same proof, the result extends to the case where
H is not f0g and, instead of the norm in Q, we use the norm in QH . ut
Remark 5.4.3. Assume that, for every w 2 V , the discrete problem (5.1.9) with
g D Bw and f D Aw has a solution .wh; ph/. If one requires, as we did in
Theorem 3.5.1, that kwhkV � CkwkV for some constant C independent of h
(which is to say that the mapping w ! wh is uniformly bounded), then one can
set wh D ˘hw. It is easy to see that (5.4.5) and (5.4.6) are both satisfied, and hence
the inf-sup condition also holds with a constant independent of h. This shows that
the existence of an operator˘h which satisfies the assumptions of Proposition 5.4.2
(hence the validity of the inf-sup condition) is in a sense necessary if we want a
reasonable behaviour of the discrete problem. However, the explicit construction of
˘h will be easy in some cases but very difficult in others. ut

The following result generalises the above proposition, and, as we shall see later
on, is often much easier to apply in concrete cases.

Proposition 5.4.3. Assume that we are given a Banach space W ,! V , with norm
k � kW and a linear subspace Sh � Qh with a semi-norm j � jS . Suppose that

sup
w2W

b.w; sh/

kwkW � ˇW jshjS 8 sh 2 Sh; (5.4.9)

and assume that there exists a family of uniformly continuous operators˘h from W

into V satisfying
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(
b.˘hw � w; sh/ D 0; 8 w 2 W; 8 sh 2 Sh;
k˘hwkV � CW kwkW

; (5.4.10)

with CW independent of h. Then, we have

sup
vh2Vh

b.vh; sh/

kvhkV � ˇ0 jshjS ; 8 sh 2 Sh; (5.4.11)

with ˇ0 D ˇW =CW .

Proof. Indeed, we have

sup
vh2Vh

b.vh; sh/

kvhkV � sup
w2W

b.˘hw; sh/

k˘hwkV D sup
w2W

b.w; sh/

k˘hwkV

� sup
w2W

1

CW

b.w; sh/

kwkW � ˇW

CW
jshjS :

ut
Remark 5.4.4. In most applications, we shall take W D V and the semi-norm
j � jS WD k � kQ=H

. In this case, the first condition of (5.4.10) indeed implies from
Proposition 5.1.1 that Hh � H and we can summarise Proposition 5.4.3 by saying
that if the continuous inf-sup condition (5.1.6) holds, and if we have (5.4.10), then
the discrete inf-sup condition holds. ut

In some cases, it will be convenient to choose W to be a strict subspace of V .
This will, for instance, be the case when V is not smooth enough to allow a simple
construction of the operator˘h. Obviously, we shall then have to check the inf-sup
condition (5.4.9) on W , usually with S D Q and j � jS D k � kQ (or, exceptionally,
with j � jS D k � kQ=H

).
The more general statement of Proposition 5.4.3 will also be useful for some

special cases where KerBt
h is larger than KerBt and where we would like to use

j � jS D k � kQ
=KerBt

h

. In those cases, (5.4.10) will hold only for an ad hoc choice ofW

and the main trouble will be to obtain (5.4.9) for this W .
Finally, there will still be other cases in which a special choice of j � jS is needed.

We shall meet, for example, cases where Hh D H D f0g, where V is smooth
enough to allow the construction of ˘h, but where the continuous inf-sup condition
holds only if one takes a semi-norm j � jS “small enough” (and in particular � k�kQ).

5.4.4 Construction of ˘h

We can say that Proposition 5.4.2 and its generalisation Proposition 5.4.3 (that is,
the idea of constructing suitable operators˘h) are the main instruments to prove the
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inf-sup condition. On the other hand, the following result could be considered as the
main instrument to construct the operators˘h.

Proposition 5.4.4. Let W ,! V be a subspace of V for which (5.4.9) holds. Let
˘1 2 L.W; Vh/ and˘2 2 L.V; Vh/ be such that

8
ˆ̂<

ˆ̂:

k˘1wkV � c1 kwkW ; 8w 2 W;
b.˘2v � v; qh/ D 0; 8v 2 V; 8 qh 2 Qh;

k˘2.I �˘1/wkV � c2 kwkW ; 8w 2 W:
(5.4.12)

Then, the operator˘h WD ˘2.I �˘1/C˘1 satisfies (5.4.10) with c D c1Cc2 (and
hence the inf-sup condition (5.1.19) holds with a ˇh independent of h).

Proof. It is easy to check that (5.4.10) holds. Indeed,

b.˘hw; qh/ D b.˘2.w �˘1w/; qh/C b.˘1w; qh/

D b.w �˘1w; qh/C b.˘1w; qh/

D b.w; qh/

(5.4.13)

and

k˘hwkV � k˘2.w �˘1w/kV C k˘1wkV � .c2 C c1/kwkW : (5.4.14)

ut
Remark 5.4.5. In the applications, ˘1 will be a kind of “best approximation”
operator. To fix ideas, it will verify an estimate of type k˘1w � wkV � � chs kwkW
for some suitable norm k � kV � . On the other hand, ˘2 will be a local adjustment
(typically by bubble functions) in order to satisfy the first condition of (5.4.10). The
third condition of (5.4.12) expresses the fact that we can allow the norm of ˘2 in
L.V �; V / to go to C1 (when h goes to zero), but not faster than h�s . ut

5.4.5 An Alternative Strategy: Switching Norms

An alternative way to prove the inf-sup condition can be summarised, in the present
abstract context, as follows. Assume that we have two other Hilbert spaces V � and
Q�, with V ,! V � and Q� ,! Q, with dense embedding. For simplicity, we shall
assume that the embedding constants are equal to 1, that is

kvkV � � kvkV 8 v 2 V; and kqkQ � kqkQ� 8 q 2 Q�: (5.4.15)
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We also assume that there exists another continuous bilinear form b�.v; q/, defined
on V � 
Q�, which coincides with b.v; q/ whenever v 2 V and q 2 Q�:

b.v; q/ D b�.v; q/ 8 v 2 V; 8 q 2 Q�: (5.4.16)

Remark 5.4.6. All this might look strange, but this situation is quite common: for
instance, assume that V WD .H1

0 .˝//
2, that Q WD L2.˝/, and that

b.v; q/ WD
Z

˝

divv q dx:

Then, we could take V � WD .L2.˝//2 andQ� WD H1.˝/, and the bilinear form b�
will simply be given by

b�.v; q/ WD �
Z

˝

v � rq dx;

and clearly b.v; q/ D b�.v; q/whenever v 2 V and q 2 Q�, by a simple integration
by parts. Note that the density assumption implies that such a bilinear form b�, if it
exists, must be unique (essentially by the Hahn-Banach Theorem). ut
We then set

kb�k WD sup
v2V �

q2Q�

b�.v; q/
kvkV � kqkQ�

: (5.4.17)

We finally assume thatQh � Q�, and that there exists a constant !.h/ such that we
have both the approximation estimate in Vh

kv � �VhvkV � � !.h/kvkV 8 v 2 V (5.4.18)

(where �Vh is the projection operator, with the scalar product of V , over Vh) and the
inverse inequalities in Qh and Vh

!.h/kqhkQ� � kqhkQ 8 qh 2 Qh; !.h/kvhkV � kvhkV � 8 vh 2 Vh: (5.4.19)

The main idea is then to prove, instead of the original inf-sup condition (5.1.19), a
modified one, in the spaces V � and Q�:

inf
qh2Qh

sup
vh2Vh

b�.vh; qh/
kvhkV � kqhkQ�

� ˇ� > 0: (5.4.20)

We have indeed the following result.

Proposition 5.4.5. Under the Assumption ABh, assume that the continuous inf-sup
condition (5.1.6) holds. Assume moreover that all the assumptions of this subsection
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(namely (5.4.15)–(5.4.20)) are satisfied. Then, the discrete inf-sup condition (5.1.19)
holds with ˇh D ˇˇ�=.1C ˇ�/.

Proof.

ˇkqhkQ � sup
v2V

b.v; qh/

kvkV D sup
v2V

�b.�Vhv; qh/
kvkV C b.v � �Vhv; qh/

kvkV
�

� sup
v2V

b.�Vhv; qh/

kvkV C sup
v2V

b.v � �Vhv; qh/
kvkV

� sup
v2V

b.�Vhv; qh/

k�VhvkV C sup
v2V

b�.v � �Vhv; qh/

kvkV

� sup
vh2Vh

b.vh; qh/

kvhkV C sup
v2V

kb�k kv � �VhvkV � kqhkQ�

kvkV

� sup
vh2Vh

b.vh; qh/

kvhkV C !.h/kqhkQ� :

This shows, setting

S.qh/ WD sup
vh2Vh

b.vh; qh/

kvhkV ; (5.4.21)

that

S.qh/ � ˇkqhkQ � !.h/kqhkQ� : (5.4.22)

On the other hand,

S.qh/ D sup
vh2Vh

b.vh; qh/

kvhkV � sup
vh2Vh

!.h/b.vh; qh/

kvhkV �

D !.h/ sup
vh2Vh

b�.vh; qh/
kvhkV �

� !.h/ˇ�kqhkQ� : (5.4.23)

Taking ˇ� times equation (5.4.22) plus equation (5.4.23), we get

.ˇ� C 1/S.qh/ � ˇˇ�kqhkQ (5.4.24)

and the result follows. ut
Remark 5.4.7. In (5.4.18) and (5.4.19) we used, for simplicity, the same quantity
!.h/. Clearly, in each occurrence, we could have allowed, instead of !.h/, a
quantity of the type ci!.h/, where the ci ’s are suitable constants independent of
h. However, this would be the same as having exactly (5.4.18) and (5.4.19) after
substituting k � kV � and k � kQ� with equivalent norms. ut



5.5 Extensions of Error Estimates 309

Remark 5.4.8. Proposition 5.4.5 is a step-by-step remake, in abstract form, of a
result due to Verfürth, and it often goes under the name of the Verfürth trick [375]. Its
interest relies in the fact that, in some cases, the inf-sup condition with the “different
norms” (5.4.20) is easier to prove than the original one (5.1.19). We shall see an
application of it in the analysis of Hood-Taylor elements for the Stokes problem.

ut

5.5 Extensions of Error Estimates

5.5.1 Perturbed Problems

We shall now study the approximation of the perturbed problems considered already
several times, starting from Sect. 3.3, and seen last time in Sect. 4.2.2. There, we
considered a general framework summarised in Assumption ABC, that we repeat
here for the convenience of the reader.

Assumption ABC: Together with Assumption AB, we assume that we are given
a continuous bilinear form c.� ; �/ on Q 
 Q, and we denote by C its associated
operator Q ! Q0. We assume moreover that ImB is closed, and that both a.� ; �/
and c.� ; �/ are symmetric and positive semi-definite:

a.v; v/ � 0; 8 v 2 V c.q; q/ � 0; 8 q 2 Q: (5.5.1)

Together with assumption ABC, we introduced K WD KerB and H WD KerBt

and defined a splitting of elements of V and Q of the form

v D v0 C v q D q0 C q; (5.5.2)

with v0 2 K , v 2 K?, q0 2 H and q 2 H?, together with a splitting of right-hand
sides of the form

f D f0 C f g D g0 C g; (5.5.3)

with f0 2 K 0, f 2 .K?/0, g0 2 H 0 and g 2 .H?/0. We noted that

hf; vi D hf0; v0i C hf ; vi hg; qi D hg0; q0i C hg; qi;

with obvious meaning of the duality pairings. Then, we considered, for every f 2
V 0 and for every g 2 Q0, the continuous problem: find u 2 V and p 2 Q such that

(
a.u; v/C b.v; p/ D hf; viV 0�V 0 ; 8 v 2 V;
b.u; q/� c.p; q/ D hg; qiQ0�Q; 8 q 2 Q: (5.5.4)
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We shall now consider the question of finite dimensional approximations and
error estimation for this problem.

Following the path of the previous sections of the present chapter, we start by
introducing an Assumption ABCh to be used all over this section.

Assumption ABCh: Together with Assumption ABC, we assume that we are given
two finite dimensional subspaces Vh � V andQh � Q.

The corresponding discretised problem will then be: find uh 2 Vh and ph 2 Qh

such that
(
a.uh; vh/C b.vh; ph/ D hf; vhiV 0�V 0 ; 8 vh 2 Vh;
b.uh; qh/� c.ph; qh/ D hg; qhiQ0�Q; 8 qh 2 Q: (5.5.5)

In agreement with the previous notation, each vh 2 Vh and each qh 2 Qh might
be split, when convenient, as

v D vh0 C vh qh D qh0 C qh; (5.5.6)

with vh0 2 Kh, vh 2 K?
h , qh0 2 Hh and qh 2 H?

h . Similarly, the right-hand sides can
be split as

f D f h
0 C f h g D gh0 C gh (5.5.7)

with f h
0 2 K 0

h, f h 2 .K?
h /

0, gh0 2 H 0
h and gh 2 .H?

h /
0. Note that the

splitting (5.5.7) might, unfortunately, be different from the splitting (5.5.3) as, in
general, Kh ¤ K and Hh ¤ H . Note also that the spaces K?

h and H?
h should

always be understood as subspaces of Vh and Qh, respectively.
The following proposition is the counterpart of Proposition 5.2.1.

Proposition 5.5.1. In the framework of Assumption ABCh, let .u; p/ and .uh; ph/
be solutions of the continuous problem (5.5.4) and of the discretised problem (5.5.5),
respectively. Then, for every .uI ; pI / 2 Vh 
Qh, we have that .uh � uI ; ph �pI / is
the solution, in Vh 
Qh, of the variational problem

(
a.uh � uI ; vh/C b.vh; ph � pI / D hF ; vhiV 0

h�Vh ; 8 vh 2 Vh;
b.uh � uI ; qh/� c.ph � pI ; qh/ D hG; qhiQ0

h�Qh
; 8 qh 2 Qh;

(5.5.8)

where

hF ; vhiV 0

h�Vh WD a.u � uI ; vh/C b.vh; p � pI / 8 vh 2 Vh; (5.5.9)

and

hG; qhiQ0

h�Qh
WD b.u � uI ; qh/ � c.p � pI ; qh/ 8 qh 2 Qh: (5.5.10)



5.5 Extensions of Error Estimates 311

A direct application of Theorem 4.3.1 produces a rather cumbersome result, but
we shall simplify it later on in several particular cases.

Theorem 5.5.1. Together with Assumption ABCh, assume that a.� ; �/ is coercive
on Kh and c.� ; �/ is coercive on Hh. Let therefore ˛h0 , ˇh, and �h0 be such that

˛h0kvh0k2V � a.vh0 ; v
h
0 / 8 vh0 2 Kh; (5.5.11)

inf
qh2H?

h

sup
vh2Vh

b.vh; qh/

kqhkQ kvhkV D inf
vh2K?

h

sup
qh2Qh

b.vh; qh/

kqhkQ kvhkV D ˇh > 0; (5.5.12)

�h0 kqh0k2Q � c.qh0 ; q
h
0 / 8 qh0 2 Hh: (5.5.13)

Then, for every f 2 V 0 and g 2 Q0, we have that the discretised problem (5.5.5) has
a unique solution. Moreover, if .u; p/ is a solution of the continuous problem (5.5.4),
then for every uI 2 Vh and for every pI 2 Qh, we have the estimates

kuh � uIkV � kckkFhk
ˇ2h

C 2�kck1=2 kFh
0 k

.˛h0 /
1=2ˇ2h

C 2�kGhk
ˇ2h

C 3�2 kck1=2kGh0 k
.�h0 /

1=2ˇ2h
; (5.5.14)

k.uh � uI /0kV � kck kak1=2 kFhk
.˛h0 /

1=2ˇ2h
C 2�2kFh

0 k
˛h0ˇ

2
h

C 2�kak1=2kGhk
.˛h0 /

1=2ˇ2h
C 3�2kGh0 k
.�h0 /

1=2.˛h0 /
1=2ˇ2h

; (5.5.15)

kph � pIkQ � C2�kFhk
ˇ2h

C 3�2kFh
0 k

.�h0 /
1=2.˛h0 /

1=2ˇ2h

C kakkGhk
ˇ2h

C 2�kak1=2 kGh0 k
.�h0 /

1=2ˇ2h
; (5.5.16)

k.ph � pI /0kQ � C2�kck1=2kFhk
.�h0 /

1=2ˇ2h
C 3�2kak1=2kFh

0 k
.˛h0 /

1=2ˇ2h

kak kck1=2kGhk
.�h0 /

1=2ˇ2h
C 2�2kGh0 k

�h0 ˇ
2
h

; (5.5.17)
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where � is defined by

�2 WD kak kck C ˇ2h (5.5.18)

and where, referring to (5.5.6),

hFh; vhiV 0

h�Vh WD a.u � uI ; vh/C b.vh; p � pI / 8 vh 2 Vh; (5.5.19)

hFh
0 ; vhiV 0

h�Vh WD a.u � uI ; v
h
0 /C b.vh0 ; p � pI / 8 vh 2 Vh; (5.5.20)

hGh; qhiQ0

h�Qh
WD b.u � uI ; qh/ � c.p � pI ; qh/ 8 qh 2 Qh; (5.5.21)

hGh0 ; qhiQ0

h�Qh
WD b.u � uI ; q

h
0 /� c.p � pI ; q

h
0 / 8 qh 2 Qh: (5.5.22)

It is clear that all terms in (5.5.20) and (5.5.21) can be bounded, roughly, by

kFh
0 k C kGh0 k C kFhk C kGhk

� .2kak C 4kbk C 2kck/ .ku � uIkV C kp � pIkQ/: (5.5.23)

Hence, Theorem 5.5.1 immediately provides a rough estimate.

Proposition 5.5.2. Under the same assumptions as in Theorem 5.5.1, we have:

ku � uhkV C kp � phkQ

� K
�
kak; kbk; kck; 1

˛h0
;
1

ˇh
;
1

�h0

��
Eu C Ep

� (5.5.24)

with K bounded on bounded subsets. ut
Remark 5.5.1. Estimates of the type (5.5.23) or (5.5.24) are particularly ugly, as
they require that all the quantities in play are adimensionalised (otherwise we are
adding apples and oranges). They have, however, the merit to condense in a short
sentence what would otherwise need a lengthy and complicated one. ut

5.5.2 Penalty Methods

An improvement to the above situation can be obtained by requiring additional
assumptions. For instance, we can assume that the bilinear form c.�; �/ is of the
type (4.3.58) considered in Theorem 4.3.2, that is

c.p; q/ D �.p; q/Q; (5.5.25)

where � is a positive real number (that we might possibly think as tending to zero).
For this, for instance from Corollary 4.3.1, we have the following result.
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Theorem 5.5.2. Together with Assumption ABCh, assume that a.� ; �/ is coercive on
Kh and that c.� ; �/ is given in (5.5.25). Let again ˛h0 and ˇh be defined as in (5.5.11)
and (5.5.12), respectively. Then, for every f 2 V 0 and g 2 Q0, we have that the
discretised problem (5.5.5) has a unique solution. Moreover, if .u; p/ is a solution
of the continuous problem (5.5.4), then for every uI 2 Vh and for every pI 2 Qh

we have the estimates

kuh � uIkV � ˇh
2 C 4� kak
˛h0ˇh

2
kFhkV 0 C 2kak1=2

˛h0
1=2
ˇh

kGhkQ0 ; (5.5.26)

kph � pIkQ � 2 kak1=2
˛h0

1=2
ˇh

kFhkV 0 C 4 kak
�kak C 2 ˇh

2
kGhkQ0 ; (5.5.27)

k.ph � pI /0kQ � 1

�
kGh0 kQ0 : (5.5.28)

At this point, we can specialise our results further, assuming for instance that
Hh D KerBt

h D f0g. In this case, Gh0 D 0. Moreover, according to Proposition 5.1.1,
we can take uI D ˘hu such that b.u � uI ; qh/ D 0 for all qh 2 Qh.

In this case, we have

kFhkV 0h � kak ku � uIkV C kbk kp � pIkQ; (5.5.29)

kGhkQ0h � �kp � pIkQ: (5.5.30)

This would allow to make explicit the dependence of the estimates obtained
in Proposition 5.5.2 on the various constants, without making the formulae too
complicated.

Theorem 5.5.3. Under the same assumptions as in Theorem 5.5.2, assume further
that Hh D H D f0g (implying in particular that the inf-sup condition (5.1.19) is
satisfied). Then, for every uI satisfying b.u � uI ; qh/ D 0 8 qh 2 Qh, and for every
pI 2 Qh, we have:

kuI � uhkV � ˇh
2 C 4� kak
˛h0ˇh

2
kak ku � uIkV C

C
�
kbkˇh

2 C 4� kak
˛h0ˇh

2
C 2� kak1=2

˛h0
1=2
ˇh

�
kp � pIkQ (5.5.31)

and

kpI � phkQ � 2 kak3=2
˛h0

1=2
ˇh

ku � uIkV

C
�2 kak1=2kbk

˛h0
1=2
ˇh

C 4� kak
� kak C 2 ˇ2

�
kp � pIkQ: (5.5.32)
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Remark 5.5.2. The results of Theorem 5.5.3 imply, as usual, error estimates for
ku � uhk and kp � phk. In particular, setting

�2 WD �kak C kbk2; (5.5.33)

they can be expressed in a more compact way

ku � uhkV � 6�2

˛h0ˇ
2
h

.kakEu C kbkEp/ (5.5.34)

kp � phkQ � 6kak1=2
.˛h0 /

1=2ˇh
.kakEu C kbkEp/: (5.5.35)

ut
An alternative possibility, without using condition (5.3.1), is to proceed as in

Proposition 4.3.1. In this direction, we have the following result.

Proposition 5.5.3. Together with Assumption ABCh, assume that the bilinear form
a is coercive on the whole V (that is, it verifies (5.1.8)) and that the bilinear form c

is of the form (5.5.25). Let, for every � > 0, .u; p/ and .uh; ph/ be the solutions of
the continuous problem (5.5.4) and of the discretised problem (5.5.4), respectively.
Then, we have the estimate

˛ku � uhk2V C �kp � phk2Q � 3kak�2
˛�

E2
u C 3�2

˛
E2
p; (5.5.36)

where �2 is still given by (5.5.33).

Proof. Using the estimate (4.3.6) in Proposition 5.5.1, then the expressions of F
and G in (5.5.9) and (5.5.10), and then some algebra, we have

˛kuh � uIk2V C �kph � pIk2Q � 1

˛
kFk2

V 0

h
C 1

�
kGk2

Q0

h

� 1

˛

�
kakku � uIkV C kbk kp � pIkQ

�2 C 1

�

�
kbkku � uIkV C �kp � pIkQ

�2

� 2
�kak2
˛

C kbk2
�

�
ku � uIk2V C 2

�kbk2
˛

C �
�
kp � pIk2V ; (5.5.37)

and the result follows easily. ut
Remark 5.5.3. Usually, estimates of the type of Proposition 5.5.3 are interesting
when the term �.p; q/Q is used as penalty in order to stabilise a choice Vh 
Qh for
which the inf-sup condition does not hold. Then, � is chosen as a suitable power of
h in such a way that the right-hand-side of (5.5.36) still converges to zero (since,
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roughly speaking, ku � uIk2V tends to zero faster than �). We shall see such a
situation in more details in Sect. 8.13. ut
Remark 5.5.4. The result of Proposition 5.5.3, as well as the ones of the following
subsection, assume that the problem has been adimensionalised. This has been
done in order to have more concise formulae. ut

5.5.3 Singular Perturbations

We now go back to the situation that was considered at the end of Chap. 4, that we
(very) briefly recall for the convenience of the reader. We assumed that we were
given a Hilbert space W continuously embedded in Q (that is W ,! Q) and dense
in Q. For simplicity, we also assumed the embedding constant to be equal to 1, so
that

kwkQ � kwkW 8 w 2 W; and kwkW 0 � kwkQ0 8 w 2 Q0: (5.5.38)

We then considered, for every � > 0, a perturbation of the type

c.p; q/ D � .p; q/W ; (5.5.39)

that is, we considered problems of the form: find .u�; p�/ in V 
W such that

a.u�; v/C b.v; p�/ D hf; viV 0�V ; 8 v 2 V; (5.5.40)

b.u�; q/� � .p�; q/W D hg; qiQ0�Q; 8 q 2 W: (5.5.41)

Note that, in the previous chapter, we allowed the presence of an additional term
in the right-hand side of (5.5.41), of the form hg2; qiW 0�W . Here, for simplicity, we
only consider the case when g2 D 0.

Assuming that Qh � W , we can consider the discretised problem: find .uh; ph/
in Vh 
Qh such that

(
a.uh; vh/C b.vh; ph/ D hf; vhiV 0

h�Vh ; 8 vh 2 Vh;
b.uh; qh/ � � .ph; qh/W D hg; qhiQ0

h�Qh
; 8 qh 2 Wh:

(5.5.42)

As in Proposition 5.5.1, we now have, with obvious notation,

(
a.uh � uI ; vh/C b.vh; ph � pI / D hF ; vhiV 0

h�Vh ; 8 vh 2 Vh;
b.uh � uI ; qh/ � c.ph � pI ; qh/ D hG; qhiQ0

h�Qh
; 8 qh 2 Qh

(5.5.43)



316 5 Approximation of Saddle Point Problems

where

hF ; vhiV 0

h�Vh WD a.u � uI ; vh/C b.vh; p � pI /; 8 vh 2 Vh (5.5.44)

and

hG; qhiQ0

h�Qh
WD b.u � uI ; qh/� �.p � pI ; qh/W ; 8 qh 2 Qh: (5.5.45)

In the previous chapter, we derived error estimates with the additional assumption
that for every � > 0 there exists a positive Q̨ such that

Q̨ kuk2V � a.v; v/C �kBvk2W 0 8 v 2 V: (5.5.46)

Using the stability result of Theorem 4.3.4, we now have the following error
estimate.

Theorem 5.5.4. Together with Assumption ABh, assume that W is a Hilbert
space, continuously embedded in Q and dense in Q. Assume moreover that
the inf-sup condition (5.1.19) holds and that a.� ; �/ is positive semi-definite and
verifies (5.5.46). Assume finally that Qh � W . For every � with 0 < � � 1=2, let
.u; p/ and .uh; ph/ be the solutions of (5.5.40)–(5.5.41) and (5.5.42) respectively.
Then, for every .uI ; pI / 2 Vh 
Qh, we have

kuh � uIkV C kph � pIkQ C �1=2kph � pIkW
� C .kFkV 0

h
C kGkQ0

h
C �1=2k QGkW 0

h
/; (5.5.47)

where C depends on the constant Q̨ in (5.5.46), on the constant ˇh in (5.1.19), on
kak, and on kbk, and where

hF ; vhiV 0

h�Vh WD a.u � uI ; vh/C b.vh; p � pI /; 8 vh 2 Vh; (5.5.48)

hG; qhiQ0

h�Qh
WD b.u � uI ; qh/; 8 qh 2 Qh; (5.5.49)

h QG; qhiQ0

h�Qh
WD .p � pI ; qh/W ; 8 qh 2 Qh: (5.5.50)

Remark 5.5.5. Following the typical strategy of this chapter (as we did for instance
with Theorem 5.2.2 or in Proposition 5.5.1), the use of Theorem 5.5.4, in the
applications, is to provide the necessary error estimates after using interpolation
estimates to find bounds for F , G and QG, and then using the triangle inequality. Here,
however, we have an additional difficulty, concerning the estimate of �1=2k QGkW 0

h
.

Indeed, using (5.5.50), we have

k QGkW 0

h
k WD sup

qh2Qh

.p � pI ; qh/W

kqhkW � kp � pIkW : (5.5.51)
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Hence, we get

ku � uhk2V C kp � phk2Q C �kp � phk2W
� C

�
inf
vh2Vh

ku � vhk2V C inf
qh2Qh

fkp � qhk2Q C �kp � qhk2W g
�
:

(5.5.52)

ut
Remark 5.5.6. As in Theorem 4.3.4, we could avoid assuming the surjectivity ofB ,
assuming only that ImB is closed, and working in QHh instead of Q. In this case,
we would need g 2 ImB in order to have a solution that is uniformly bounded in �.
Moreover, the constant C would now depend on the constant Q̌

h in (5.3.11) instead
of ˇh in (5.1.19). ut

In some applications, including the important case of Reissner-Mindlin plates, it
will be however much more interesting (and powerful) to use Theorem 4.3.5 which,
in particular, does not use the inf-sup condition. Let us see how this can be done.

Theorem 5.5.5. Together with Assumption ABh, assume that W is a Hilbert
space, continuously embedded in Q and dense in Q. Assume moreover that
a.� ; �/ is positive semi-definite and verifies (5.5.46). For every � with
0 < � � 1=2, let .u; p/ and .uh; ph/ be the solutions of (5.5.40)–(5.5.41)
and (5.5.42) respectively. Then, for every pair .uI ; pI / 2 Vh 
Qh which satisfies

b.u � uI ; qh/� �.p � pI ; qh/W D 0; (5.5.53)

we have

Q̨ kuI � uhk2V C �kpI � phk2W � 4kFk2V 0

Q̨
� 4

Q̨
�
kak ku � uIkV C kbk kp � pIkQ

�2
(5.5.54)

where Q̨ is given in (5.5.46).

The proof is obvious, using (5.5.43)–(5.5.45) in Theorem 4.3.5.

5.5.4 Nonconforming Methods

We shall now rapidly consider the effect on error estimates of changing prob-
lem (5.1.9) into a perturbed problem of the form

(
ah.uh; vh/C bh.vh; ph/ D hf; vhih; 8 vh 2 Vh;
bh.uh; qh/ D hg; ghih; 8 qh 2 Qh;

(5.5.55)
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where ah.�; �/ and bh.�; �/ are, in a sense to be made precise, approximations of
a.�; �/ and b.�; �/, and where h�; �ih denotes an approximation of the duality brackets
h�; �iV 0�V or h�; �iQ0�Q:

Formulations of the type (5.5.55) arise when nonconforming approximations are
introduced. In this case we no longer have Vh � V and Qh � Q, so that the
problem must be embedded in larger spaces. We shall give an alternative treatment
of nonconforming methods using domain decomposition methods in Chap. 7.
However, their importance is worth their presence in our abstract discussion.

We suppose that there exist spaces X and Y such that Vh and V are closed
subspaces of X and, similarly, Qh and Q are closed subspaces of Y . We suppose
that ah.�; �/ and bh.�; �/ satisfy

ah.uh; vh/ � Cnc
a kuhkX kvhkX ; 8 uh vh 2 X; (5.5.56)

bh.vh; qh/ � Cnc
b kvhkX kqhkY ; 8 vh 2 X 8 qh 2 Y: (5.5.57)

We denote by Bnc
h the operator Vh ! Q0

h associated with the bilinear form bh
(that actually, with our notation, should be denoted by �Y 0!Q0

h
BX!Y 0EVh!X ).

Moreover, we set

Knc
h WD fvh j vh 2 Vh; bh.vh; qh/ D 0 8 qh 2 Qhg; (5.5.58)

and we suppose that ah.�; �/ is coercive on Knc
h , that is, we suppose that there exists

a positive constant ˛nc0 such that

ah.v0h; v0h/ � ˛nc0 kv0hk2X ; 8 v0h 2 Knc
h : (5.5.59)

We suppose, moreover, that there exists a constant ˇnc > 0, independent of h, such
that

sup
vh2Vh

bh.vh; qh/

kvhkX � ˇnc kqhkY ; (5.5.60)

implying that Bh is surjective from Vh to Q0
h (we shall consider the general case

later). Finally, we define

kf kh D sup
vh2Vh

hf; vhih
kvhkX ; kgkh D sup

qh2Qh

hg; qhih
kqhkY : (5.5.61)

We obviously have the following result.

Proposition 5.5.4. Under hypotheses (5.5.56) through (5.5.61), problem (5.5.55)
has a unique solution and there exists a constant C independent of h such that

kuhkX C kphkY � C.Cnc
a ; C

nc
b ;

1

˛nc0
;
1

ˇnc
/ .kf kh C kgkh/; (5.5.62)
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where C is bounded on bounded subsets. ut
We now want, as in Theorem 5.2.1, to use this stability result to obtain an error

estimate. For this, we first mimic Proposition 5.2.1.

Proposition 5.5.5. Under hypotheses (5.5.56)–(5.5.60), let .u; p/ and .uh; ph/ be
solutions of the continuous problem (5.1.2) and of the discretised problem (5.5.55),
respectively. Then, for every .uI ; pI / 2 Vh 
Qh, we have that .uh � uI ; ph �pI / is
the solution, in Vh 
Qh, of the variational problem

ah.uh � uI ; vh/Cbh.vh; ph � pI /

DŒah.u � uI ; vh/C bh.vh; p � pI /�

� Œah.u; vh/C bh.vh; p/ � hf; vhi�
C Œhf; vhih � hf; vhi�; 8 vh 2 Vh;

(5.5.63)

bh.uh � uI ;qh/

Dbh.u � uI ; qh/

� Œb.u; qh/ � hg; qhi�
C Œhg; qhih � hg; qhi�; 8 qh 2 Qh:

(5.5.64)

Remark 5.5.7. Proposition 5.5.5 covers the case of nonconforming approximations.
If instead we wanted to deal with numerical integration, we would have to change
the setting as, in general, numerical integration will not be allowed for generic
elements of V and Q: you will not have enough regularity to allow point-wise
values. Formulae (5.5.63) and (5.5.64) will, however, be true (after all, they are
just obtained by adding and subtracting) whenever u and p will be smooth enough
to allow all the terms to be meaningful. ut

Using the same arguments as in Theorem 5.2.1, we then have the following
proposition.

Proposition 5.5.6. Assume that the hypotheses of Proposition 5.5.4 hold, let
.u; p/ be the solution of problem (5.1.2) and let .uh; ph/ be the solution of
problem (5.5.55). Then, we have

ku � uhkX C kp � phkY �

C
�

inf
vh2Vh

ku � vhkX C inf
qh2Qh

kp � qhkY C
4X

iD1
Mih

�
(5.5.65)

where C D C.Cnc
a ; C

nc
b ;

1
˛nc0
; 1
ˇnc
/ is bounded on bounded subsets, and where the

“consistency terms” M1h; : : : ;M4h are defined as
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M1h WD sup
vh2Vh

jah.u; uh/C bh.vh; p/ � hf; vhij
kvhkX ; (5.5.66)

M2h WD sup
vh2Vh

jhf; vhi � hf; vhihj
kvhkX ; (5.5.67)

M3h WD sup
qh2Qh

jbh.u; qh/� hg; qhij
knqhkY ; (5.5.68)

M4h WD sup
qh2Qh

jhg; qhi � hg; qhihj
kqhkY : (5.5.69)

Remark 5.5.8. Using Proposition 5.5.6 in practice means to find proper bounds
for the terms M1h, M2h, M3h, M4h. In some problems, it will be natural to use
a nonconforming approximation of V but a conforming one on Q. For instance
in the Stokes problem (Chap. 8), we have Q D L2.˝/ and it is rather hard to
think of a non conforming approximation to this space. If we then suppose that
bh.u; qh/ D b.u; qh/, then we haveM3h D 0. On the other hand, the termsM2h and
M4h normally come from the use of numerical quadrature formulae for the right-
hand sides, and they can be handled by standard techniques [147, 148]. Finally, the
termM1h will be treated with the usual techniques of non conforming methods. ut
Remark 5.5.9. An important case is the use of conforming approximations where
a.�; �/ and b.�; �/ are computed by numerical quadrature. In this case, we have (if u
is smooth enough to give sense to ah.u; vh/)

a.u; vh/C b.vh; p/ � hf; vhi D 0 (5.5.70)

and we can transformM1h to

OM1h D sup
vh2Vh

ja.u; vh/ � ah.u; vh/j
kvhkV C sup

vh2Vh
jb.vh; p/ � bh.vh; p/j

kvhkV (5.5.71)

andM3h to

OM3h D sup
qh2Qh

jb.u; qh/� bh.u; qh/j
kqhkQ : (5.5.72)

ut
Nonconforming methods can also be used for perturbed problems, and even for

singularly perturbed problems. The basic ideas remain unchanged, and the way to
derive error estimates from stability results (applied to kuh � uIk and kph � pI k)
plus continuity and approximation results (applied to ku � uIk and kp � pIk) still
works. Here, we do not want to cover all the possible variants. We just present an
example of “nonconforming” approximations of singularly perturbed problems, that
extends to nonconforming methods the result of Theorem 5.5.5.
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For this, consider again the singularly perturbed problem (5.5.40)–(5.5.41), and
consider the following nonconforming approximation

8
<

:
a.uh; vh/C Qbh.vh; ph/ D hf; vhiV 0

h�Vh ; 8 vh 2 Vh;
Qbh.uh; qh/� � .ph; qh/W D hg; qhiQ0

h�Qh
; 8 qh 2 Wh;

(5.5.73)

where Qbh is a continuous bilinear form from V 
Q in R. We then have the following
proposition.

Proposition 5.5.7. Together with Assumption ABh, assume Qbh is a continuous
bilinear form from V 
 Q in R. Assume further that W is a Hilbert space,
continuously embedded in Q and dense in Q, and that a.� ; �/ is positive semi-
definite and verifies the following analogue of (5.5.46): for every � > 0, there
exists a positive Q̨ such that

Q̨ kuk2V � a.v; v/C �k QBhvkW 0 8 v 2 V: (5.5.74)

For every � with 0 < � � 1=2, let .u; p/ and .uh; ph/ be the solutions of (5.5.40)–
(5.5.41) and (5.5.73) respectively. Then, for every pair .uI ; pI / 2 Vh 
 Qh which
satisfies

Qbh.uI ; qh/ � �.pI ; qh/W D b.u; qh/� �.p; qh/W 8 qh 2 Qh; (5.5.75)

we have

Q̨ kuI � uhk2V C �kpI � phk2W

� 4

Q̨
�
kak ku � uIkV C sup

vh2Vh
b.vh; p/ � Qbh.vh; pI /

kvhkV
�2
; (5.5.76)

where Q̨ is given in (5.5.74).

Proof. We first observe that the difference .uh � uI ; ph � pI / verifies

8
<

:
a.uh � uI ; vh/C Qbh.vh; ph � pI / D h QF ; vhiV 0

h�Vh ; 8 vh 2 Vh;
Qbh.uh � uI ; qh/� �.ph � pI ; qh/W D 0; 8 qh 2 Qh;

(5.5.77)

where this time

h QF ; vhiV 0

h�Vh WD a.u � uI ; vh/C b.vh; p/� Qbh.vh; pI /; 8 vh 2 Vh: (5.5.78)

The result then follows immediately by applying Theorem 4.3.5 to problem
(5.5.77). ut
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Remark 5.5.10. It is not clear whether the discrete problem (5.5.42) should be
considered as a non conforming approximation of (4.3.127)–(4.3.128). In a sense,
we shouldn’t, since we have Vh � V and Qh � W . Possibly, we should say
that (5.5.40)–(5.5.41) introduces a consistency term in the error which, however, is
not very satisfactory either. We decided to follow the most common usage, though
unhappily. ut

To end this section, we briefly discuss how we can check an inf-sup condi-
tion (5.5.60) for the bilinear form bh.�; �/. We first give a criterion that will be
useful for some applications, in particular in Sect. 8.12.3 in the context of numerical
quadrature.

Proposition 5.5.8. Let us suppose that we have two bilinear forms b1.�; �/ and
b2.�; �/ on Vh 
Qh, and suppose that there exists a continuous operator˘h W Vh !
Vh such that

k˘hvhkX � c0 kvhkX ; (5.5.79)

and such that

b1.˘hvh; qh/ D b2.vh; qh/; 8qh 2 Qh: (5.5.80)

Then, if b1.�; �/ satisfies the inf-sup condition (5.5.60), then b2.�; �/ also does.

The proof is the same as for Proposition 5.4.2.

Remark 5.5.11. In practice, for an approximation using numerical quadrature, we
have b1.�; �/ D b.�; �/ and b2.�; �/ D bh.�; �/, so that (5.5.80) means that the numerical
quadrature is not exact for the computation of b.vh; qh/ but rather integrates
b.˘hvh; qh/ with ˘hvh near enough to vh. ut
It is also useful to consider the following result.

Proposition 5.5.9. Under the Assumption ABh, suppose that Bh 	 �Q0

h
BEVh

satisfies the inf-sup condition (5.1.19) with a constant ˇh � ˇ0 > 0. Let bh be a
bilinear form on Vh 
 Qh, and assume that there exists a constant C.h/, with
C.h/ ! 0 when h ! 0, such that

jb.vh; qh/� bh.vh; qh/j � C.h/ kvhkV kqhkQh
: (5.5.81)

Then, for h small enough, bh.�; �/ also satisfies the inf-sup condition (5.1.19) with a
constant ˇh � ˇ0=2.

Proof. Indeed, one may write b.vh; qh/ D bh.vh; qh/C .b.vh; qh/�bh.vh; qh// and
thus

sup
vh2Vh

b.vh; qh/

kvhk � sup
vh2Vh

bh.vh; qh/

kvhk C sup
vh2Vh

jb.vh; qh/� bh.vh; qh/j
kvhk : (5.5.82)
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Using (5.5.81) and the inf-sup condition (5.1.19) for b.�; �/, we get

sup
vh2Vh

bh.vh; qh/

kvhk � .ˇ0 � C.h//kqh kQh
(5.5.83)

which is the desired result. ut

5.5.5 Dual Error Estimates

We now present, to end this section on error estimation, an extension of the Aubin-
Nitsche duality technique [37, 313] to the analysis of problem (5.1.2). We consider
an abstract setting that will be general enough to include most cases where we will
like to use such techniques, for instance in Chap. 7 for Dirichlet’s problem (to get
H�1-estimates) or in Chap. 8 for the Stokes problem (to get L2.˝/-estimates).
We refer to [192] where similar, and in some cases more general, results are
presented.

Let us then consider two spaces V� andQ� (the minus index intuitively meaning
a “less regular” space) with the dense inclusions

V ,! V� and Q ,! Q�: (5.5.84)

We would like to estimate ku � uhkV�
and kp � phkQ�

. Let us denote

V 0C D .V�/0; Q0C D .Q�/0: (5.5.85)

In a sense, the above notation, with the plus index, suggests that we have “more
regular” spaces. Indeed, we have from (5.5.84) and (4.1.80)

V 0C ,! V 0; Q0C ,! Q0: (5.5.86)

It is then reasonable to make the following hypothesis.

Hypothesis H1: For any fC 2 V 0C; gC 2 Q0C, the solution .w; s/ of the problem

(
a.v;w/C b.v; s/ D hfC; vi; 8 v 2 V;
b.w; q/ D hgC; qi; 8 q 2 Q; (5.5.87)

belongs to VCC 
 QCC, where VCC ,! V and QCC ,! Q, and there exists a
constant OC (independent of fC and gC), such that

kwkVCC
C kskQCC

� OC .kf kV 0

C

C kgkQ0

C

/: (5.5.88)

ut
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Remark 5.5.12. The above Hypothesis H1 evidently means, in practice, that we
have a regularity property and that f 2 V 0C; g 2 Q0C yield a more regular solution.

ut
Remark 5.5.13. Note that, in the first equation of (5.5.87), we actually used a.v;w/
and not a.w; v/. This means that, in a sense, (5.5.87) is the adjoint problem of our
original problem (5.1.2), as it is common when doing duality estimates. ut

We then have the following result, which we consider under the (more commonly
used) assumptions of Theorem 5.2.5. Clearly, we could also extend many other
previous theorems of this chapter.

Theorem 5.5.6. Under the hypotheses of Theorem 5.2.5, assume that Hypothesis
H1 holds. Then, there exists a constantC1 (independent of h), such that if .u; p/ and
.uh; ph/ are the solutions of problem (5.1.2) and of problem (5.2.31), respectively,
then we have

ku�uhkV�
Ckp�phkQ�

� C1 .ku�uhkV Ckp�phkQ/.m.h/Cn.h//; (5.5.89)

where m.h/ and n.h/ are defined as

m.h/ WD sup
w2VCC

inf
wh2Vh

kw � whkV
kwkVCC

; (5.5.90)

and

n.h/ WD sup
s2QCC

inf
sh2Qh

ks � shkQ
ksjQCC

: (5.5.91)

Proof. Let us choose fC 2 V 0C and gC 2 Q0C with kfCkV 0

C

D 1 and kgCkQ0

C

D 1

such that one has
8
<

:

hfC; u � uhiV 0

C
�V�

D ku � uhkV�
;

hgC; p � phiQ0

C
�Q�

D kp � phkQ�
;

(5.5.92)

and let .w; s/ 2 VCC 
 QCC be the corresponding solution of (5.5.87), therefore
bounded by (5.5.88). We may thus write

kwkVCC
C kskVCC

� 2 OC: (5.5.93)

Making v D u � uh and q D p � ph in (5.5.87), we thus have from (5.5.92):

ku � uhkV�
Ckp�phkQ�

D a.u � uh;w/Cb.u � uh; s/Cb.w; p�ph/: (5.5.94)

However, we know that one also has, subtracting (5.2.31) and (5.2.32),
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(
a.u � uh;wh/C b.wh; p � ph/ D 0; 8 wh 2 Vh;
b.u � uh; sh/ D 0; 8 sh 2 Qh:

(5.5.95)

We may thus write in (5.5.94),

ku � uhkV�
C kp � phkQ�

D a.u � uh;w � wh/C b.u � uh; s � sh/C b.w � wh; p � ph/ (5.5.96)

for all wh 2 Vh and for all sh 2 Qh. We now note that (5.5.90) and (5.5.91) imply

inf
wh2Vh

kw � whkV � m.h/ kwkVCC
; (5.5.97)

and

inf
qh2Qh

ks � qhkQ � n.h/ kskQCC
; (5.5.98)

respectively, so that

inf
wh2Vh

kw � whkV C inf
qh2Qh

ks � qhkQ � 2 OC.m.h/C n.h//; (5.5.99)

and (5.5.89) follows easily from (5.5.96). ut
Remark 5.5.14. We shall also use in Chap. 7 a super-convergence result that can be
extended to the abstract setting of Theorem 5.5.6. ut

The following result generalises the result of Theorem 5.2.7.

Proposition 5.5.10. Under the same assumptions as in Theorem 5.5.6, assume
further that Kh � K . Assume moreover that Qh can be identified with a subspace
of RQ0.Q0C/ where RQ0 is the Ritz operatorQ0 ! Q. Then, we have

k˚hp � phkQ � ku � uhkV OC
�
kak sup

w2VCC

kw �˘hwkV
kwkVCC

C kbkn.h/
�
; (5.5.100)

where n.h/ is still given by (5.5.91), and ˘h and ˚h satisfy (5.1.29) and (5.1.31),
respectively.

Proof. As a first step, let us point out that the assumption that Qh can be identified
with a subspace of RQ0.Q0C/ means, in other (less technical) terms, that for every
qh 2 Qh, the solution .z; �/ 2 V 
Q of the problem

(
a.v; z/C b.v; �/ D 0; 8 v 2 V;
b.z; q/ D .qh; q/Q; 8 q 2 Q (5.5.101)

actually belongs to VCC 
QCC and, moreover,
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.kzkVCC
C k�kVCC

/ � OC kqhkQ: (5.5.102)

It is clear that this is strictly related to (5.2.55), which was used in the proof of
Theorem 5.2.7. Now, consider problem (5.5.101) with

qh WD ˚hp � ph: (5.5.103)

From (5.5.101) with (5.5.103), then (5.1.29), and then (5.1.31), we have

k˚hp�phk2Q D b.z; ˚hp�ph/ D b.˘hz; ˚hp�ph/ D b.˘hz; p�ph/: (5.5.104)

Using (5.1.31) in (5.5.104), we then have

k˚hp � phk2 D b.˘hz; p � ph/

D a.uh � u; ˘hz/

D a.uh � u; ˘hz � z/C a.uh � u; z/:

(5.5.105)

Taking v D uh � u in (5.5.101), this becomes, for all qh 2 Qh,

k˚hp � phk2 D a.uh � u; ˘hz � z/ � b.uh � u; �/

D a.uh � u; ˘hz � z/ � b.uh � u; � � qh/:
(5.5.106)

Finally, from (5.5.106), we have, always for all qh 2 Qh,

k˚hp � phk2 � kuh � ukV .kakkz �˘hzkV C kbkk� � qhkQ/; (5.5.107)

and the result follows using (5.5.91) and (5.5.102) with (5.5.103). ut
This result uses the strong assumption Kh � K and its use is rather technical.

Anyhow, the above analysis shows when it can be expected to hold, besides the
example of Chap. 7.

5.6 Numerical Properties of the Discrete Problem

This section will present a few general facts related to numerical computations
with the previously described problem. As we are still in a rather abstract setting,
we will not be able to obtain directly usable results. However, some basic facts
are common to a large number of methods and presenting them in a unified
frame may help understanding the relations existing between apparently different
methods.
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5.6.1 The Matrix Form of the Discrete Problem

We shall first consider problem (5.1.9) and develop a matrix form suited to
numerical computation. We shall set, for the finite dimensional spaces Vh and Qh,

(
N WD dim Vh;

M WD dim Qh;
(5.6.1)

and we shall use a basis of theses spaces, namely fvihj 1 � i � N g for Vh and
fqihj 1 � i � M g for Qh. We can now define,

Aij WD a.vjh; vih/; (5.6.2)

Bij WD b.vjh; qih/; (5.6.3)

fi WD hf; vihi; (5.6.4)

gi WD hg; qihi: (5.6.5)

We set AN�N WD .Aij /; BM�N WD .Bij /; fN WD ffig; gM WD fgi g and we denote
by u WD fuig and p WD fpig the vectors of RN and R

M (respectively) formed by the
coefficients of uh and ph in the expressions

uh D
NX

iD1
ui vih; (5.6.6)

ph D
MX

iD1
pi qih: (5.6.7)

Problem (5.1.9) can now be written in matrix form as

�
Au C B

T p D f;
Bu D g;

(5.6.8)

or

	
A B

T

B 0


	
u
p



D
	

f
g



: (5.6.9)

In practice, the bases fvihg and fqihg will be built using a finite element technique.
This will impose additional structure on problem (5.6.9). We can however see that,
for a symmetric bilinear form a.� ; �/, we have to solve a symmetric but in general
indefinite linear system. The fact that we have positive and negative eigenvalues is,
of course, directly related to the fact that we discretise a saddle point problem. As
an alternative, we can change the sign of the second equation of (5.6.9), getting
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A B

T

�B 0


	
u
p



D
	

f
�g



; (5.6.10)

having now a matrix which is not symmetric but that is positive semi-definite.
Problem (5.6.8) is clearly an example of what we had in Chap. 3 (see problem

(3.0.1)), and all the results obtained there apply here.
We observe that if the matrix A is invertible, one can eliminate the variable u

from this linear system. Indeed, one gets from the first equation of (5.6.8),

u D A
�1f � A

�1
B
T p (5.6.11)

and thus inserting it in the second equation of (5.6.8),

Bu D BA
�1f � BA

�1
B
T p D g: (5.6.12)

that is:

BA
�1
B
T p D BA

�1f � g: (5.6.13)

If BA�1
B
T is non-singular, problem (5.6.13) can be solved for p. Once p has been

computed, one can go back to (5.6.11) to get u.
This is a discrete form of the dual problem of Sect. 1.3. Let us consider the matrix

BA
�1
B
T . If the matrix A is positive definite, then BA

�1
B
T is also positive semi-

definite. Indeed, one has

pTBA�1
B
T p D .BT p/TA�1.BT p/ � ˛ kBT pk2; (5.6.14)

and we see that BA�1
B
T is positive definite if and only if KerBT D f0g (that is if

the inf-sup condition (5.1.19) is satisfied). Problem (5.6.13) seems therefore easier
to solve than problem (5.6.9), as numerical methods for positive definite systems
are more efficient and more stable.

Unfortunately, this simplification of the problem cannot, in general, be done in
practice. The trouble comes from A

�1 which is likely to be a full matrix even if A
is sparse. The system (5.6.13) is then too large to be stored and handled. We shall,
however, meet some cases where such a reduction of the problem can be done, thus
providing an efficient solution method.

An interesting special case concerning the matrix BA
�1
B
T arises when one can

identify the matrix A defined by (5.6.2) with the matrix associated with the scalar
product on Vh, while the norm in Qh is equivalent to the Euclidean norm. In this
case (see [207]), if �1 � �2 � : : : : � �k are the singular values of the matrix
SY BSX discussed in Proposition 3.4.5, we have

Cond.BA�1
B
T / D �max

�min
: (5.6.15)
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5.6.2 And if the inf-sup Condition Does Not Hold?

One of the most frustrating things in the analysis of mixed finite element methods
is often the apparent discrepancy between experience and theory. To quote [202],
“Computations were done, (with success!), using theoretically dubious elements or,
at best, using elements on which theory remained silent”. This is especially the case
for the Stokes problem of Chap. 8 where velocity results are generally quite good,
even with elements not satisfying the inf-sup condition, while reasonable pressure
results can often be recovered after a filtering post-treatment of the raw results.
The singular value decomposition introduced in Chap. 3 allows us to get a better
understanding of those disconcerting behaviours.

Let us go back to Proposition 3.4.5 and to the singular value decomposition that
brings the matrix QB WD SY BSX into the pseudo-diagonal form:

QB D

0
BBBBBBBBB@

�1 � � � 0 � 0
� �2 � � 0 � 0
� � � � � � �
� � � �k 0 � 0
� � 0 � 0 � 0
� � � � � � �
� � 0 � 0 � 0

1
CCCCCCCCCA

; (5.6.16)

where we suppose again that the singular values �i are written in decreasing order.
To simplify the matter even further, let us assume that on Vh and on Qh the norms
k � kV and k � kQ, respectively, are associated to the identity matrix, so that we can
consider that QB 	 B.

The solution of our problem will depend directly on the behaviour of those
singular values in a way which we shall now try to describe. Let us first note that
in (5.6.16), columns of zeros (i.e. j > k) correspond to the kernel of B while rows
of zeros correspond to the kernel of BT . Rows of zeros imply that it is possible to
solve Bu D g only if g takes the form

g D

0
BBBBBBBBBBB@

g1

g2
:::

gk

0
:::

0

1
CCCCCCCCCCCA

; (5.6.17)

that is, if g has no component in KerBT . We have already discussed the importance
of the dimension of KerBT . If this dimension happens to be larger than the
dimension of the kernel of the corresponding infinite dimensional operator, we
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have spurious zero energy modes in p together with artificial (non-physical)
constraints on g.

Another important point is the dimension of KerB, that is, the number of zero
columns. Think, for a while, of a problem where g D 0. Then, the exact solution u
will belong to the kernel K D KerB of the differential operator B , and the discrete
solution uh will belong toKh D KerBh (here represented by the kernel of the matrix
B). In order to get a uh that is a good approximation of the infinite dimensional u,
the dimension of Kh should then grow when the number of degrees of freedom
increases. Whenever this growth is not occurring properly, we shall have a locking
phenomenon, which may be:

• total when

Bu D 0 implies u D 0; (5.6.18)

• partial when u is constrained into too small a subspace. This will happen
whenever the space Qh is chosen too large, thus over-constraining the solution.

To complete our picture, we shall now divide the singular values of B into three
sets, writing

B D
0

@
˙1 0 0

0 ˙2 0

0 0 0

1

A ; (5.6.19)

where ˙1 contains the “stable part of B” (i.e., �i > ˇ0 � 0), and ˙2 contains the
singular values vanishing when h gets small. As we noted above, the columns (u3)
associated to zero singular values correspond to KerB while the rows correspond to
KerBT . We can now write system (5.6.9) as

0
BBBBBBB@

A11 A12 A13 ˙1 0 0

A21 A22 A23 0 ˙2 0

A31 A32 A33 0 0 0

˙1 0 0 0 0 0

0 ˙2 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCA

0
BBBBBBB@

u1
u2
u3
p1
p2
p3

1
CCCCCCCA

D

0
BBBBBBB@

f1
f2

f3
g1
g2
g3

1
CCCCCCCA

: (5.6.20)

If we want to solve (5.6.20), we must first have g3 D 0, leavingp3, the component of
p in KerBT , indeterminate. As we have already discussed, this condition may imply
artificial constraints if KerBT is too large: they could then eventually be satisfied
by suitably modifying the data, and the question would then be whether this can be
done without losing precision. Supposing that this point can be settled, we can now
proceed in (5.6.20) to solve for u1; u2 and u3,

8
<̂

:̂

u1 D ˙�1
1 g1;

u2 D ˙�1
2 g2;

u3 D A
�1
33 f3 � A

�1
31 u1 � A

�1
32 u2:

(5.6.21)
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The potential trouble obviously lies in u2, which depends on the inverse of the unsta-
ble part˙2. Again, if g2 is null (or sufficiently small), u2 will be null (or negligible)
while u1 and u3 will behave correctly. This can happen either because we can set g2
to zero without losing precision, or because “normal data” contain only a small g2
component corresponding, for example, to “high frequency components” which are
small for regular functions. In such a case, one can expect reasonable results even if
the inf-sup condition is not satisfied and B contains an unstable part˙2.

Finally, u1; u2 and u3 being known, we get from (5.6.20)

(
p1 D �˙�1

1 .A�1
11 u1 C A

�1
12 u2 C A

�1
13 u3 � f1/;

p2 D �˙�1
2 .A�1

21 u1 C A
�1
22 u2 C A

�1
23 u3 � f2/:

(5.6.22)

Here, p2 depends on the inverse of the unstable part ˙2, (and in fact, looking
at (5.6.21), can even grow as˙�2

2 , if g2 is not zero). Even for g2 D 0; p2 cannot be
expected to be correct, but p1 will then remain stable. If this stable part of p is rich
enough to approximate the exact infinite-dimensional solution, a post processing
procedure filtering out p2 will produce good results. This is indeed what happens in
many situations. One may however think that relying on such borderline conditions
is likely to lead to unreliable results at times, and, more generally, to a method that
is not robust.

The complete analysis of an approximation should therefore identify how well
a “normal problem” can be approximated by the “good part” u1; u3; p1 of the
numerical solution. This would imply the knowledge of the singular decomposition,
which is a rather strong requirement.

5.6.3 Solution Methods

As it was stated in Sect. 5.6.1, the matrix associated with a mixed formulation
as in (5.6.9) is indefinite. This is a problem both for direct methods (which may
require pivoting) and for many iterative methods. We shall describe, in Chap. 7,
Sect. 7.2, how the ‘Hybridisation technique’, using inter-element multipliers and
‘static condensation’, can be used to recover a positive definite problem. However,
this is not applicable, for example, to the important case of incompressible problems
described in Chap. 8. Nevertheless, the situation is far from desperate and there exist
methods which can solve efficiently those cases.

5.6.3.1 Solution by Penalty Methods

Penalty methods have been quite popular for the numerical solution of some saddle
point problems, especially the Stokes problem described in Chap. 8. The basic idea
behind these methods is general, and we believe it is worth presenting it in an
abstract setting.
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The idea is very simple and is quite classical in the theory of mathematical
programming. Let us consider problem (5.6.8) with A symmetric and positive
definite. This system is equivalent to

inf
BvDg

n1
2

vTAv � f
o
: (5.6.23)

Let then S be any positive definite matrix in R
N . We can replace (5.6.23) by

inf
v

n1
2

vTAv C 1

2"
.Bv � g/T S�1.Bv � g/� vT f

o
; (5.6.24)

whose minimiser is the solution of

Au" C 1

"
B
T
S

�1
Bu" D f C 1

"
B
T
S

�1g: (5.6.25)

If the matrix S is “easy to invert”, (in particular if S
�1 is a sparse matrix, by

preference block diagonal), (5.6.24) provides a way to reduce our problem to a more
standard quadratic unconstrained problem. This is a widely used technique and it is
indeed quite efficient.

Remark 5.6.1. It is clear that (5.6.24) can be used also when A is not symmetric
and positive definite, although in this case, the non-singularity of the matrix A C
.1="/BTS�1

B will not be automatically true. ut
Remark 5.6.2. Setting p" D .1="/S�1.Bu � g/, we have that Problem (5.6.25) can
be written in the form

(
Au" C B

T p" D f;

Bu" � "Sp" D g;
(5.6.26)

as already pointed out on several occasions (see Remarks 3.6.4, 4.3.7, or 5.5.3). ut
Remark 5.6.3. One of the main drawbacks of penalty methods is the fact that the
penalty term .1="/BTS�1

B has a strong negative impact on the condition number of
the linear system (5.6.25). For instance, using a penalty method is almost impossible
if an iterative method is used for the solution of the linear system (5.6.25), since
iterative methods are in general quite sensitive to the condition number of the matrix
at hand. For this reason, penalty methods (which have been the standard for two-
dimensional problems, where direct solvers are used) are much less suitable in the
three-dimensional case where, so far, iterative methods are the rule. ut
Remark 5.6.4 (Reduced penalty). In Proposition 4.3.3, we saw that the solution of a
penalised problem converges to the solution of the original (non penalised) problem.
The result can of course be applied to a discretised problem. The reader should
notice that discretising a penalised problem is not, in general, equivalent to penalis-
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ing a discrete problem. In this last case, a choice of spaces Vh � V and Qh � Q is
explicitly done and the penalty method is to be considered as a solution procedure.
Discretising the penalised problem is in general equivalent to choosingQh D B.Vh/

which is in general a poor choice. Reduced penalty methods have been introduced
to circumvent these difficulties and their equivalence with mixed method will be
discussed in Chap. 8 in the context of Stokes’ problem and in Chap. 10 for moder-
ately thick plates à la Mindlin, in a slightly more general setting. Let us see here the
general flavour of these methods. Let us go back to the continuous problem (4.3.108)
(with � D "), and assume for simplicity that g D 0 andQ is identified with its dual
space Q0. Then, the problem will be equivalent to finding u 2 V such that

a.u; v/C 1

"
.Bu; Bv/Q D hf; vi 8 v 2 V: (5.6.27)

To discretise (5.6.27), one normally takes Vh � V and looks for uh 2 Vh such that

a.uh; vh/C 1

"
.Buh; Bvh/Q D hf; vhi 8 vh 2 Vh: (5.6.28)

As we said before, this is equivalent to having discretised the mixed formulation

(
a.u; v/C .Bv; p/Q D hf; vi 8v 2 V;
.Bu; q/Q � ".p; q/Q D 0 8q 2 Q (5.6.29)

with Qh WD B.Vh/ (that, we repeat, is often a poor choice). Reduced penalty,
instead, would introduce a reduction operator Ph, linear from B.Vh/ to Q, and
consider, instead of (5.6.28), the problem

a.uh; vh/C 1

"
.Ph Buh; Ph Bvh/Q D hf; vhi 8 vh 2 Vh: (5.6.30)

It many cases, Ph will be a projection operator (meaning that P t
h D Ph and

P2
h D Ph) from Q into itself. We could then define Qh WD Ph.Q/, define ph as
ph WD .1="/Ph B uh, and discover that we are actually discretising problem (5.6.29)
by means of Vh � V and Qh � Q. ut

5.6.3.2 Iterative Solution Methods

In recent years, efficient iterative methods for problems of the form (5.6.8) have
been developed. We would like to give here a quick overview and some references
which may guide the reader.

Classically, the first iterative algorithm for (5.6.8), in the case where the matrix
A is invertible, was Uzawa’s algorithm. When A is invertible, we have already seen
that u can be eliminated and we get, in matrix form, problem (5.6.13). The matrix
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BA
�1
B
T that appears in this problem is positive semi-definite and is well suited for

a solution by a descent method such as the gradient method or the conjugate gradient
method. Moreover, in many important cases, the condition number of BA�1

B
T will

not grow as the discretisation mesh is reduced so that convergence properties will
be independent of the mesh, which is a very desirable feature. We refer to [205]
for more details and convergence proofs of the algorithms described below that are
nothing but a gradient method applied to (5.6.13) or a variant of (5.6.13). Multigrid
versions of the method can also be found in [374].

The basic algorithm can be written as:

• Let p0 be chosen arbitrarily,
• For n � 0, until convergence:

– Find unC1 solution of

AunC1 D �B
T pn C f (5.6.31)

– Compute pnC1 using, with 
 properly chosen,

pnC1 D pn C 
ŒBunC1 � g�: (5.6.32)

This algorithm can be improved by changing it to a conjugate gradient method.
It can also be married with the penalty method described above. In this case, it
can be considered as a way to eliminate the penalty error and to obtain the true
solution of the underlying limit problem. This extension of Uzawa’s algorithm is
called the augmented Lagrangian algorithm and it was introduced by Hestenes [246]
and Powell [325]. Its properties are discussed in detail in [205]. The algorithm
essentially consists in changing (5.6.31) into

AunC1 C 1

"
B
T
S

�1
BunC1 D �B

T pn C f C 1

"
B
T
S

�1g: (5.6.33)

Remark 5.6.5. When using (5.6.33), we can then take 
 D 1=" in (5.6.32), which
is very close to the optimal value for " small, and rewrite the method as

(
AunC1 C B

T pnC1 D f;

BunC1 � " S.pnC1 � pn/ D g:
(5.6.34)

Taking pn D 0, this is the standard penalty method already seen in (5.6.26), and,
according to Proposition 4.3.3, for " small, pnC1 is already a good approximation of
p. In general, two or three iterations will be sufficient to completely eliminate the
error due to the penalty term. ut
Remark 5.6.6. Although the Augmented Lagrangian algorithm is a powerful tool
for the numerical solution of Stokes’ problem (Chap. 8), it suffers from the same
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problem that plagued the penalty method, namely the ill conditioning of (5.6.33).
Moreover, the cost associated to the solution at each iteration of this equation to
obtain unC1 is important. ut

The idea of more efficient methods was already introduced in [205], where an
iterative method acting simultaneously on both variables un and pn was presented.
However, the algorithms proposed were doomed by the absence of an automatic
method for the choice of parameters. Fortunately, some progresses in this direction
have been made in the meantime. In [186], the reader can find an analysis of the Min-
imum Residual algorithm applied to indefinite problems of the form (5.6.9). Another
approach using the Generalised Conjugate Residual has been applied to large three-
dimensional incompressible elasticity problems in [185] where other references can
also be found. Hence, we are now allowed to say that solving the discrete problems
arising from mixed methods is not any more a drawback to their use.

5.7 Concluding Remarks

In this chapter, we tried to present the basic facts that will serve throughout the book
to the analysis of various applications. Many cases have not been treated. However,
we feel that our presentation should enable the readers to easily master the different
extensions that can be found in the literature and even to build by themselves the
variants that would be necessary to cover new problems. Some important problems
have not been treated in our presentation. This is the case, in particular, of eigenvalue
problems for which mixed and hybrid methods can provide an alternate approach.
These will be treated separately in Chap. 6.



Chapter 6
Complements: Stabilisation Methods,
Eigenvalue Problems

In this chapter, we shall consider two special topics related to the approximation of
saddle-point problems. The first one is about stabilised methods, which are more and
more widely used in many applications where it is difficult to build approximations
satisfying both the ellipticity in the kernel and the inf-sup properties. The second
section will be devoted to an abstract presentation of eigenvalue problems for
mixed problems, where an emphasis will be put on both necessary and sufficient
conditions.

6.1 Augmented Formulations

6.1.1 An Abstract Framework for Stabilised Methods

Stabilisation techniques have become quite popular and new methods have been
introduced along many avenues. Taking into account the enormous variety of
possible applications, stabilisation techniques would require a book of their own.
On the other hand, we might conceive stabilisation techniques as an arsenal of
tricks to manipulate the problem and transform it into one for which the general
stability theories (as the ones described in this book), can be applied. Hence, we
just give the flavour of some of these tricks, and refer to the specialised literature
for applications on the various particular problems. We will start with some general
considerations regarding augmented formulations (that are the basis of the so-called
“stabilisations à la Hughes-Franca”). Then, following [123], we shall describe a
general framework for the study of stability issues, in which one tries to reduce
the stabilising modifications at the strictly necessary minimum (whence the name
“minimal stabilisations”).

We have seen previously, in Sect. 1.5, that some augmented formulations cannot
be written as Euler’s equations of a Lagrangian but rather through an antisymmetric
bilinear form. To include these formulations, among others, in our framework, we

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 6,
© Springer-Verlag Berlin Heidelberg 2013
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start by introducing an abstract framework, that contains the mixed methods studied
in the previous chapters as a special case.

Let therefore W be a Hilbert space, let A be in L.W;W 0/ (the space of linear
continuous operators from W to W 0 as defined in Sect. 4.1.4), and let F be in W 0.
We consider the problem: find X 2 W such that,

AX D F; (6.1.1)

which in variational formulation can be written as

hAX; Y iW 0�W D hF; Y iW 0�W 8Y 2 W : (6.1.2)

From now on, we shall always assume that the bilinear form associated to A is
positive semi-definite, that is

hAY; Y i � 0 8Y 2 W : (6.1.3)

Remark 6.1.1. As we are mostly interested in mixed problems, it is worth showing
that this abstract formalism contains the usual theory for these problems. Indeed, let
W WD V 
Q, with X WD .u; p/, and Y WD .v; q/, and define

(
hAX; Y i WD a.u; v/C b.v; p/ � b.u; q/;
hF; Y i WD hf; viV 0�V � hg; qiQ0�Q:

(6.1.4)

In this context, it is clear that (6.1.2) is just another way of writing

(
a.u; v/C b.v; p/ D .f; v/V 8 v 2 V;
b.u; q/ D .g; q/ 8 q 2 Q: (6.1.5)

It must however be noted that we are implicitly using the non symmetric form

	
A Bt

�B 0


	
u
p



D
	
f

�g



(6.1.6)

rather than the symmetric one

	
A Bt

B 0


	
u
p



D
	
f

g



: (6.1.7)

As a consequence of this choice, assuming

a.v; v/ � 0 8 v 2 V; (6.1.8)

we clearly have that (6.1.3) holds. ut
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6.1.2 Stabilising Terms

We shall consider here a very wide class of stabilisations, the so-called augmented
formulations. Philosophically, we could think of them as based on the following
observation. Suppose that we are given a general problem of the type: find X 2 W
such that

hAX; Y iW 0�W D hF; Y iW 0�W 8Y 2 W; (6.1.9)

and assume that A is an isomorphism from W to W 0 (so that our problem has
a unique solution). In general, as we observed already in Remark 1.5.1, given a
subspace Wh � W , we cannot be sure that the discretised problem: find Xh 2 Wh

such that

hAXh; Y iW 0�W D hF; Y iW 0�W 8Y 2 Wh (6.1.10)

has a unique solution as well. On the other hand, still following Remark 1.5.1, if we
assume that we have an ellipticity condition of the form

9˛ > 0 such that hAY; Y iW 0�W � ˛kY k2W 8Y 2 W; (6.1.11)

(that clearly implies stability, with constant 1=˛, and unique solvability of (6.1.9))
then for every subspace Wh � W , we will immediately have

9˛ > 0 such that hAYh; YhiW 0�W � ˛kYhk2W 8Yh 2 Wh; (6.1.12)

and we have unique solvability of (6.1.10) (with the same stability constant 1=˛)
without any need to be smart. Hence, although simple-minded, the general idea
is: given the problem (6.1.9), try to present its solution as the solution of another
problem for which an ellipticity condition of the type (6.1.11) holds true. In these
precise terms, this is very easy. Indeed, the solution X of (6.1.9) will also be a
solution of the problem: find X 2 W such that:

.AX;AY /W 0 D .F;AY /W 0 8Y 2 W : (6.1.13)

Note that if A is an isomorphism between W and its dual W 0, then for every Y 2 W ,
we obviously have Y D A�1.AY / and problem (6.1.13) will satisfy the ellipticity
condition

.AY;AY /W 0 D kAY k2W 0 � kY k2W
kA�1k2 8Y 2 W : (6.1.14)

At this level of generality, it is difficult to explain why, in several applications, we
are not happy with this “solution”, and we still want to look for some different trick.
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Just to make an example, if A is a differential operator (say, the Laplace operator),
then problem (6.1.14) will correspond to a differential operator in which the order
is doubled (in our example: the biharmonic operator) and for which discretisation
would produce a matrix that is more ill-conditioned than the original one discretising
A. In this subsection, we will see some of these possible alternative techniques. We
develop our discussion in the general setting of [46] but we shall mostly restrict our
examples to the specific case of mixed methods.

We come back to the operator A. At a general level, the operator A has a
symmetric part As , defined as

As D .A C At /=2 (6.1.15)

and an antisymmetric part Aa, defined as

Aa D .A � At /=2: (6.1.16)

It is immediate to see that, for every Y 2 W , we have

hAsY; Y i D hAY; Y i and hAaY; Y i D 0: (6.1.17)

We point out that, keeping the assumption (6.1.3), we now have that As is
symmetric and non-negative. Hence, we can use Lemma 4.2.1 and then (6.1.17)
to obtain

kAsY k2W 0 � hAsY; Y i kAsk D hAY; Y i kAsk 8Y 2 W : (6.1.18)

We then define, for t 2 R,

At D Aa C tAs (6.1.19)

and we consider for � > 0 the following augmented problem: find X 2 W such
that

W 0hAX � F; Y iW C �.AX � F;At Y /W 0 D 0 8Y 2 W : (6.1.20)

Remark 6.1.2. We call the attention of the reader on the difference between At

(the transposed operator of A) and At , defined by (6.1.19). We apologise for the
similarity of these two symbols that have, however, a totally different meaning. ut

It is clear that every solution X of the original problem (6.1.9) will also
be a solution of the augmented problem (6.1.20). A possible advantage of the
formulation (6.1.20) over (6.1.13) is that we can hope to be allowed to take � small
enough, so that the condition number of the resulting matrix will not be much worse
than the condition number of the matrix coming from the discretisation of A.
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Example 6.1.1. As we already stated, we shall restrict our examples here to the case
of mixed methods, that we write again in the form (6.1.6):

A D
	

A Bt

�B 0



: (6.1.21)

We shall assume here that the bilinear form a.�; �/ defining A is symmetric and non-
negative, as in (5.5.1) (or in (4.2.28)). As already pointed out, the non-negativity of
a.�; �/ will imply, in particular, that (6.1.3) is satisfied. The symmetry of a.�; �/, on
the other hand, will imply that the symmetric part of the operator A is given by

As D
	
A 0

0 0



(6.1.22)

and the antisymmetric part is given by

Aa D
	

0 Bt

�B 0



: (6.1.23)

From the symmetry and non-negativity of a, using (4.2.30) we have

kAuk2V 0 � kaka.u; u/ D kAk hAu; uiV 0�V (6.1.24)

that represents (6.1.18) in our particular case. It is not difficult to check that the
stabilising term .AX;At Y /W 0 , for X D .u; p/ and Y D .v; q/ now becomes

.AX;At Y /W 0 D .Au C Btp; tAv C Btq/V 0 C .Bu; Bv/Q0

D t.Au C Btp;Av/V 0 C .Bu; Bv/Q0 C .Au C Btp;Btq/V 0 : (6.1.25)

ut
Example 6.1.2. The treatment of advection dominated equations is surely outside
the scope of this book. However, it might be interesting to see how the general
setting above can deal with a problem of the type: find u 2 H1

0 .˝/ such that

� "�u C c � grad u D f in ˝ (6.1.26)

where " is a given positive and “small” number, c is a given smooth vector field (that,
for simplicity, we assume to be divergence-free), and f is a given forcing term, say,
in L2.˝/. In this case, the stabilising term would be

.Au;At v/W 0 D .�"�u C c � grad u;�t "�v C c � grad v/H�1.˝/: (6.1.27)

ut
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Remark 6.1.3. The structure of an augmented problem can be described as follows.
First, we observe that the equation AX � F D 0 takes place in the dual space
W 0. Indeed, in its variational formulation (6.1.2), the equation is tested on a generic
element Y 2 W , giving hAX � F; Y i D 0 for all Y . In the augmented problem,
we keep this term, and we sum to it (with a suitable multiplier �) a term containing
the same equation, but this time tested on a term of the type At Y (always for Y
generic in W). Since the term At Y is itself in W 0 (as the difference AX � F ),
this new term cannot be written as a duality between W 0 and W , and we must take
the scalar product of the two terms in W 0. The idea of adding a term made by the
scalar product of the equation times a suitable operator acting on the test function
Y is, somehow, the essence of the original idea of Hughes and Brooks, that has been
extended and exploited in a more general setting by Hughes, Franca, and various co-
authors, and became popular under the name of stabilisation à la Hughes-Franca.
However, as we shall see, to take the inner product in W 0 is, in general, not so easy
and the stabilising terms that are found in the literature (starting from the earliest
ones by Hughes and his group) do not have exactly this form. Indeed, a big variety of
different stabilising terms have been introduced, studied, and used in the literature of
the last two or three decades (see, for instance, [10], [193], [214], [250] and [339]),
all (or almost all) based on L2 inner products (possibly multiplied by some suitable
power of the mesh-size h) rather than on the W 0 inner product. However, as pointed
out in [46], we could think at most of these variants as being different attempts to
mimic, in one way or another, the effect of �.AX � F;At Y /W 0 . ut

6.1.3 Stability Conditions for Augmented Formulations

Now, we want to study the behaviour of augmented problems of the type of (6.1.20).
To start with, we look for sufficient conditions on t and � ensuring that the
augmented problem (6.1.20) has a unique solution.

Theorem 6.1.1. Let W be a Hilbert space, and A 2 L.W;W 0/ be an isomorphism
which verifies (6.1.3). If t 2 R and � > 0 verify

�.1� t/2 < 4kAsk�1; (6.1.28)

then there exists ˛stab > 0 such that

hAY; Y iW 0�W C �.AY;At Y /W 0 � ˛stabkAY k2W 0 8Y 2 W; (6.1.29)

where At is defined in (6.1.19).
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Proof. We apply (6.1.18) and (6.1.19), and then Cauchy-Schwarz to obtain

hAY; Y iW 0�W C �.AY;At Y /W 0

� 1

kAskkAsY k2W 0 C �
�
kAaY k2W 0 C t kAsY k2W 0 C .1C t/ .AaY;AsY /W 0

�

�
� 1

kAsk C �t
�

kAsY k2W 0 C �kAaY k2W 0 � �j1C t j kAaY kW 0 kAsY kW 0 :

(6.1.30)

The last line of (6.1.30) is a quadratic form in kAsY k and kAaY k. Hence, the
desired (6.1.29) will be satisfied for some ˛stab > 0 if

4�
� 1

kAsk C �t
�
> .�.1C t//2: (6.1.31)

This can be written as

4

kAsk > �.1C t/2 � 4�t D �.t � 1/2; (6.1.32)

and the result follows. ut
Remark 6.1.4. We note that condition (6.1.28) implies in particular that the coeffi-
cient of kAsY k in the last line of (6.1.30) is positive. This is clear if we note that
(6.1.31) is actually equivalent to (6.1.28). ut
Remark 6.1.5. It is immediate to see that, for t D 1, we have that (6.1.28) is
satisfied for every value of � > 0. This is not so unreasonable since, for t D 1,
we have At D A. One could then argue that t D 1 is the best choice and that
other values for t have no interest. However, as we shall see, in several applications,
including mixed formulations and advection dominated elliptic equations, both the
choices t D 0 and t D �1 have been abundantly used. ut

Essentially with the same proof, one has the following result, which is slightly
more general.

Theorem 6.1.2. Under the same assumptions as in Theorem 6.1.1, let M be a
continuous, bilinear form on W 0 
 W 0 and let M and �0 be positive constants
such that

M.X 0; Y 0/ � M kX 0kW 0 kY 0kW 0 8X 0; Y 0 2 W 0 (6.1.33)

and

�0kY 0k2W 0 � M.Y 0; Y 0/ 8Y 0 2 W 0: (6.1.34)
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If t 2 R and � > 0 verify

�
�
M2.1C t/2 � 4�20t

�
<

4�0

kAsk ; (6.1.35)

then there exists ˛stab > 0 such that

hAY; Y iW 0�W C �M.AY;At Y / � ˛stabkAY k2W 0 8Y 2 W; (6.1.36)

where At is always defined in (6.1.19).

Proof. We use (6.1.18), (6.1.19), (6.1.34), and then (6.1.33) to obtain

hAY; Y iW 0�W C �M.AY;At Y /

� 1

kAskkAsY k2W 0 C�
�
�0kAaY k2W 0 Ct�0 kAsY k2W 0 C.1Ct/M.AaY;AsY /W 0

�

�
� 1

kAsk C��0t
�
kAsY k2W 0 C��0kAaY k2W 0 ��j1C t jM kAaY kW 0 kAsY kW 0 :

(6.1.37)

The last line of (6.1.30) is a quadratic form in kAsY k and kAaY k. Hence, the
desired (6.1.36) will be satisfied for some ˛stab > 0 if

4��0

� 1

kAsk C ��0t
�
> �2M2.1C t/2; (6.1.38)

and the result follows. ut
Remark 6.1.6. We note that condition (6.1.35) implies in particular that the coeffi-
cient of kAsY k in the last line of (6.1.37) is positive. This is again clear if we note
that (6.1.38) is actually equivalent to (6.1.35). ut
Remark 6.1.7. Looking at the proof of Theorems 6.1.1 and 6.1.2, we see that we
could also write more specialised estimates, of the type

˛
�kAsY k2W 0

kAsk C �kAaY k2W 0

�
� hAY; Y iW 0�W C �M.AY;At Y /: (6.1.39)

This would prove relevant in cases like advection dominated problems (6.1.26),
where kAsk ' " and kAsvk2W 0 ' k"�vk2W 0 ' k"vk2

H1 . ut
Remark 6.1.8. Theorem 6.1.2 reproduces Theorem 6.1.1 when we use M to define
the scalar product in W 0 (so that M D �0 D 1). ut
Remark 6.1.9. It is also obvious that the exact solutionX of (6.1.2) will also satisfy
the augmented formulation of the problem: find X 2 W such that
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hAX � F; Y iW 0�W C �M.AX � F;At Y / D 0 8Y 2 W : (6.1.40)

ut
Remark 6.1.10. In the same assumptions as in Theorem 6.1.2, and essentially with
the same proof, one could show that there exists an !0, depending only on kAsk, t ,
M , and �0, and an ˛0 > 0 such that, for every ! with 0 < ! � !0 and for every
Y 2 W , one has

hAY; Y iW 0�W C !2 M.AY;At Y / � ˛0

�
kAsY k2W 0 C !2kAaY k2W 0

�
: (6.1.41)

The interest of this variant, as we shall see, is that we would be allowed to take an
! D !.h/ that goes to zero with h. ut

We now consider our main example, that is, mixed formulations (6.1.5) inserted
in the present framework through (6.1.4). We have seen that the general stabilising
term takes the form (6.1.25). We point out that, in particular,

.AY;At Y /W 0 D tkAvk2V 0 C .1C t/.Av;Bt q/V 0 C kBtqk2V 0 C kBvk2Q0 ; (6.1.42)

while

kAsY kW 0 D kAvkV 0 and kAaY k2W 0 D kBtqk2V 0 C kBvk2Q0 : (6.1.43)

It is clear that the general philosophy, requiring that the stabilising term vanishes
when X is the exact solution, would still be respected by taking a more general
term, instead of .AX � F;At Y /. Hence, in some sense, we could specialise the
result of Theorem 6.1.2 and adapt it to the case (here most interesting) of mixed
methods. For instance, for general positive constants �1 and �2, we could consider
a stabilising term of the form

.Au C Btp � f; tAv C �1B
tq/V 0 C .Bu � g;�2Bv/Q0 : (6.1.44)

It is clear that if .u; p/ is a solution of (6.1.5), then it is also a solution of

V 0hAu C Btp � f; viV � Q0hBu � g; qiQ0

C �
�
.Au C Btp � f; tAv C �1B

tq/V 0 C .Bu � g;�2Bv/Q0

�
D 0 (6.1.45)

for all v 2 V and for all q 2 Q.
Concerning the stability (and hence, in particular, the uniqueness of the solution

of (6.1.45)), we note that

.Av C Btq; tAv C �1B
tq/V 0 C .Bv; �2Bv/Q0

D tkAvk2V 0 C .t C �1/.Av;B
t q/V 0 C �1kBtqk2V 0 C �2kBvk2Q0 : (6.1.46)
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Hence, mimicking the proof of Theorem 6.1.1, we easily have that

V 0hAvCBtq; viV �Q0hBv; qiQC�.AvCBtq; tAvC�1Btq/V 0C�.Bv;�2Bv/Q0

� 1

kAskkAvk2V 0 C�
�
tkAvk2V 0 C.tC�1/.Av;Bt q/V 0 C�1kBtqk2V 0 C�2kBvk2Q0

�

�
� 1

kAskC�t
�

kAvk2V 0C�
�
�1kBtqk2V 0C�2kBvk2Q0�jtC�1j kAvkV 0k kBtqkV 0

�

� C
�
kAvk2V 0 C �1kBtqk2V 0 C �2kBvk2Q0

�
(6.1.47)

whenever � is small enough, and precisely,

�.t � �1/2 < 4�1

kAsk : (6.1.48)

We can make this result more explicit in the following theorem.

Theorem 6.1.3. Let V and Q be Hilbert spaces, and a and b bilinear forms on
V 
 V and V 
 Q, respectively, as in Assumption AB of Chap. 4 (Sect. 4.2.1).
Assume that a is symmetric and positive semi-definite as in (6.1.8), and assume that
the continuous problem (6.1.5) is well posed (that is, a is elliptic on the kernel of B ,
and b satisfies the inf-sup condition). Let t 2 R and let �, �1, and �2 be positive
real numbers. If (6.1.48) is satisfied, then there exists an ˛M > 0 such that, for
every .v; q/ 2 V 
Q, we have

˛M

�
kAvk2V 0 C �1kBtqk2V 0 C �2kBvk2Q0

�

� V 0hAv C Btq; viV � Q0hBv; qiQ
C �.Av C Btq; tAv C �1B

tq/V 0 C �.Bv;�2Bv/Q0 :

(6.1.49)

6.1.4 Discretisations of Augmented Formulations

The augmented formulations (6.1.40) or (6.1.45) can then be transported into the
discretised problem.

Starting from the more general case of (6.1.40), we consider therefore the discrete
stabilised problem: find Xh 2 Wh such that

hAXh; YhiW 0�W C �M.AXh;At Yh/

D hF; YhiW 0�W C �M.F;At Yh/ 8Yh 2 Wh:
(6.1.50)
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It is clear that, whenever (6.1.35) holds true, the ellipticity property (6.1.36)
will be inherited by the discrete problem, that will therefore be stable. Hence, we
immediately have the following result.

Theorem 6.1.4. Let W be a Hilbert space, and A 2 L.W;W 0/ be an isomorphism
which verifies (6.1.3). Let moreover M be a continuous, bilinear form on W 0 
 W 0
and letM and �0 be positive constants such that (6.1.33) and (6.1.34) are satisfied.
Finally, let t 2 R and � > 0 verify (6.1.35), and let At be defined as in (6.1.19).
Then, for every F 2 W 0 and for every finite dimensional subspace Wh, denoting
by X and Xh the solutions of the continuous problem (6.1.40) and of the stabilised-
discretised one (6.1.50), respectively, we have

kX � XhkW � C inf
Yh2Wh

kX � YhkW ; (6.1.51)

where C is a constant depending on kA�1k, kAk, �, M , t and on the constant ˛stab

appearing in (6.1.36), bounded on bounded subsets, but independent of the choice
of Wh.

Proof (Hint). As usual, for everyXI 2 Wh, we apply the stability estimate (6.1.36)
to the difference ıX WD Xh�XI . Then, in the right-hand side, we substituteX in lieu
of Xh, using the fact that they are the solutions of (6.1.2) and (6.1.50), respectively.
Finally, we use the continuity of A, of A�1 and M to have an estimate of kXh �
XIkW in terms of kX � XIkW . Then, we add and subtract X and use the triangle
inequality. Finally, sinceXI is generic in Wh, we replace kX�XIk with the infimum
of kX � Yhk for Yh varying in Wh. ut
Remark 6.1.11. In the simplified case where M is the scalar product in W 0, the
above problem (6.1.50) could formally be obtained by writing

hAXh � F; Yh C �At Yhi D 0 8 Yh 2 Wh (6.1.52)

and we could call this a “Petrov-Galerkin” method as the test functions are not in
the same space as the solution. However, unless W can be identified to W 0, (6.1.52)
has no sense. One must make a certain number of additional manipulations in order
to reach a viable formulation. ut

Shifting now to the particular case of mixed formulations, and considering
(6.1.45), we assume that Vh and Qh are finite dimensional subspaces of V and Q,
respectively. It might be convenient to recall some definitions from the previous
chapters. We do it quickly:

Bh WD �Q0

h
BEV Bt

h WD �V 0

h
BEQ Ah WD �V 0

h
AEV (6.1.53)

K WD KerB D fv 2 V s.t. Bv D 0g;
Kh WD KerBh D fvh 2 Vh s.t. Bhvh D 0g: (6.1.54)
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We now consider the discretised problem: find .uh; ph/ 2 Vh 
Qh such that

V 0hAuh C Btph � f; vhiV C Q0hBuh � g; qhiQ0

C �.Auh C Btpf � f; tAvh C �1B
tqh/V 0

C �.Buh � g;�2Bvh/Q0 D 0 8 vh 2 Vh 8qh 2 Qh:

(6.1.55)

It is clear that the stability result of Theorem 6.1.3 can now be used to get the
following error estimate.

Theorem 6.1.5. In the same assumptions as in Theorem 6.1.3, assume further that
the continuous problem (6.1.5) is stable (that is, a is elliptic in the kernel, and b
satisfies the inf-sup condition). Let Vh � V and Qh � Q be finite dimensional
subspaces, and for f 2 V 0 and g 2 Q0, let .u; p/ and .uh; ph/ be the solutions of
the continuous problem (6.1.45) and of (6.1.55), respectively. Then, we have

ku � uhk2V C kp � phk2Q � C
�

inf
vh2Vh

ku � vhkV C inf
vh2Vh

ku � vhkV
�

(6.1.56)

where C is a constant depending on kA�1k, kAk, �, M , t and on the constant ˛M
appearing in (6.1.49), bounded on bounded subsets, but independent of the choices
of Vh and Qh.

Proof. The proof follows exactly the same lines as the proof of Theorem 6.1.4, and
the classical form of all the “stability+consistency” error bound. ut

We shall now make explicit problem (6.1.45) in a few special cases. It is not
difficult to see that (6.1.45) corresponds to have a linear “augmented operator” of
the type

Mstab D
	
A Bt

�B 0




C �
�
t

	
AtA AtBt

0 0



C �1

	
0 0

BA BBt



C �2

	
BtB 0

0 0


�
:

(6.1.57)

Let us see, for � D 1, three typical values of t , namely t D 1, t D 0 and
t D ��1.

(i) Case t D 1
The augmented system is:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

hAuh C Btph � f; vhiV 0�V C .Auh C Btph � f;Avh/V 0

C �2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;
h�Buh C g; qiQ0�Q

C �1.Auh C Btph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.58)
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(ii) Case t D 0
The augmented system is:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

hAuh C Btph � f; vhiV 0�V
C�2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;

h�Buh C g; qiQ0�Q
C �1.Auh C Btph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.59)

(iii) Case t D ��1

The augmented system is:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

hAuh CBtph � f; vhiV 0�V � �1.Auh C Btph � f;Avh/V 0

C �2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;
h�Buh C g; qiQ0�Q

C �1.Auh CBtph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.60)

Remark 6.1.12. From the point of view of “economy”, the case t D 0 implies the
smallest number of extra terms and would be our favourite. On the other hand, we
have seen that, in several cases, the choice t D 1 guarantees stability for every value
of the stabilisation parameter � in (6.1.50), and this is also a nice feature. Finally,
for the choice t D ��1, we can see that the final expression of Mstab in (6.1.57) is

Mstab D
	
A � �1AtAC �2B

tB Bt � �1AtBt

�B C �1BA �1BB
t



(6.1.61)

which, changing the sign of the second equation, becomes symmetric since obvi-
ously we have .Bt � �1A

tBt/t D B � �1BA. In conclusion, all the three choices
present some interesting aspects. ut
Remark 6.1.13. It is not too difficult to spot the role of each of the extra terms in
(6.1.58) and (6.1.57). Indeed, we can easily see that if A is coercive on the kernel
of B (a property that, in general, will not be inherited by the discretised problem),
then, according to Proposition 4.3.4,

hAu; uiV 0�V C �2.Bu; Bu/Q0�Q0 � Q̨kuk2V 8 u 2 V; (6.1.62)

for a suitable constant Q̨ , a property that will be inherited by the discretised problem.
It is then clear that the extra term on the first equation (that is, the term containing
�2) will allow to bypass problems related to the coercivity of the bilinear form a.
On the other hand, the extra term in the second equation will help in controlling p
as the (continuous) inf-sup condition implies

�1.B
tq; Btq/V 0�V 0 	 �1kBtqk2V 0 � �1ˇ

2kqk2Q: (6.1.63)
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The choice between the three possibilities above will obviously depend on the
type of discretisation that we want to use, as well as on many other possible
considerations. We will see some of them in the following chapters. ut
Remark 6.1.14. We point out that, in most applications, things are usually not
totally bad: in general, we will either have a lack of coercivity on the kernel but
a good inf-sup condition or the reverse. Very roughly speaking, the lack of the inf-
sup condition will occur when Vh is not big enough, compared with Qh (so that,
for instance, the image of Bh will not fill Q0

h). On the other hand, if Vh, compared
with Qh, is too big, then the kernel Kh of Bh will contain elements that are not
in the kernel K of the operator B , and the ellipticity in the kernel, for the discrete
problem, would fail. In these cases, we can limit ourselves to a lighter stabilisation.
Two typical cases are

1. To retrieve coercivity of a: in (6.1.61), take t D �1 D 0

� hAuh C Btph � f; vhiV 0�V C �2.Buh � g;Bvh/Q0 D 0 8 vh 2 Vh;
h�Buh C g; qhiQ0�Q D 0 8 qh 2 Qh:

(6.1.64)

2. To retrieve the inf-sup condition for b: in (6.1.61) take t D �2 D 0

� hAuh CBtph � f; vhiV 0�V D 0 8 vh 2 Vh;
h�Buh C g; qhiQ0�Q C �1.Auh C Btph � f;Btqh/V 0 D 0 8 qh 2 Qh:

(6.1.65)

It is easily seen, following the path of Theorem 6.1.1, that the above problems
are stable under suitable conditions. The simplest case would be that A is defined
by a bilinear form which is coercive on V such as in the Stokes problem. This will
be developed in Chap. 8. In that case, a stabilisation such as in (6.1.65) would be
sufficient. The first case (6.1.64) is nothing but the discretised version of (1.5.10).
We will come back to this line of thought in the next section. ut
Remark 6.1.15 (Caveat emptor). We recall that we have used the exact norms in V 0
and Q 0. In many cases, (e.g. when this would imply the use of the H�1 norm) this
may well be impossible (or very difficult) to implement numerically, and we shall
have to introduce an approximation of our stabilised problem. This will typically be
done by applying, in the discretised problem, the differential operators element-
wise, and then substituting the H�1 scalar product with h2 times the L2 scalar
product. ut

6.1.5 Stabilising with the “Element-Wise Equations”

To give an idea of the techniques mentioned in the above remark, we consider the
following variant of Theorem 6.1.4. As we shall see, the variant follows the spirit
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of Remark 6.1.10, and is closely connected with the family of methods of the next
subsection. For this, however, we have to introduce some new objects. We assume
that we have a space WC (made of smoother functions) and a Hilbert space H (that
we identify with its dual space H0) such that

WC � W � H 	 H0 � W 0 (6.1.66)

and

As.WC/ � H; Aa.WC/ � H; (6.1.67)

and for all h

Aa.Wh/ � H: (6.1.68)

We also assume that we have, for all h, a linear operator

Sh W H C As.Wh/C Aa.Wh/ ! H (6.1.69)

such that

kShY kH D kY kH 8Y 2 H; (6.1.70)

and we note that, together with (6.1.68), this gives

kSh.AaYh/kH � kAaYhkH 8Yh 2 Wh: (6.1.71)

We assume further that there exists a monotonically increasing function ! W RC !
RC such that

!.h/kSh.ArYh/kH � kArYhkW 0 where r D s or a; 8Yh 2 Wh: (6.1.72)

Remark 6.1.16. In the applications that we have in mind, the space H will be either
L2 or a Cartesian product of several copies of L2, and the operator Sh will be the
one that allows to take the element-by-element derivatives of functions that are
smooth (typically, polynomials) inside each element but might be discontinuous
from one element to the next (or are continuous but not C1, when you take second
derivatives). In mathematical words, Sh.�/ would take the restriction �jT to each
individual open triangle T , and then consider the L2 function that in each triangle
T is equal to �jT . In this way, possible Dirac masses concentrated on the inter-
element boundaries would be dropped. Having this in mind, it should be clear that
the assumption in (6.1.68) is a very strong one, and in all the applications that we
considered, it requires either that the antisymmetric part of A is an operator of lower
order (as it happens for advection dominated flows) or that the elements of Wh have,
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in a certain sense, more continuity than strictly necessary (as when using continuous
pressures in the Stokes problem). ut
Assuming further that

F 2 H (6.1.73)

where F is the right-hand side of (6.1.1), we can consider the discretised problem:
find Xh 2 Wh such that

hAXh � F; YhiW 0�W C �!2.h/.Sh.AXh � F /;Sh.At Yh//H D 0 (6.1.74)

for all Yh 2 Wh. Proceeding as in Theorems 6.1.1 and 6.1.2, it is not difficult to see
that if

.1 � t/2�!2.h/ <
4

kAsk ; (6.1.75)

then there exists ˛0 > 0 such that

hAYh; YhiW 0�W C �!2.h/ .Sh.AYh/;Sh.At Yh//H

� ˛0

�
kAsYhk2W 0 C �!2.h/kSh.AaYh/k2H

�
8Yh 2 Wh: (6.1.76)

We can now apply the above estimate to have a bound on the error.

Theorem 6.1.6. Let W be a Hilbert space and A 2 L.W;W 0/ be an isomorphism
which verifies (6.1.3). Assume that all the additional assumptions (6.1.66)–(6.1.73)
are satisfied, and assume further that the solution X of problem (6.1.2) belongs to
WC. For t 2 R and for � > 0, let Xh be the solution of (6.1.74). If (6.1.75) is
satisfied, then there exists a constant C , depending only on ˛0, t , and �, such that

kAs.X �Xh/kW 0 C !.h/kSh.Aa.X �Xh//kH

� C inf
Yh2Wh

�
.kX � YhkW C !�1.h/kX � YhkH

C !.h/kSh.Aa.X � Yh//kH
�
:

(6.1.77)

Proof. We first observe that the Galerkin orthogonality equation

hA.X �Xh/; YhiW 0�W C �!2.h/.Sh.A.X � Xh//;Sh.At Yh//H D 0 (6.1.78)

holds for all Yh 2 Wh. Then let XI be a generic element of Wh, and set as before
ıX WD Xh � XI and ıI WD X � XI . We apply the estimate (6.1.76) to ıX and then
we add and subtract X and use (6.1.78) to obtain
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˛0

�
kAsıXk2W 0 C �!2.h/kSh.AaıX/k2H

�

� hA ıX; ıXiW 0�W C �!2.h/ .Sh.AıX/;Sh.At ıX//H

D hA ıI ; ıXiW 0�W C �!2.h/ .Sh.AıI /;Sh.At ıX//H:

(6.1.79)

The first term in the last line of (6.1.79), using (6.1.19), (6.1.68), and then (6.1.71),
can be estimated by

hA ıI ; ıXiW 0�W � kıIkW � kAsıXkW 0 C kıIkH � kAaıXkH;

� kıI kW � kAsıXkW 0 C !�1.h/kıIkH � !.h/kSh.AaıX/kH;

� .kıI kW C !�1.h/kıIkH/ � .kAsıXkW 0 C !.h/kSh.AaıX/kH/

(6.1.80)

while the second term, using (6.1.19) and then (6.1.72), is easily estimated by

!2.h/ .Sh.AıI /;Sh.At ıX//H

� !.h/ kSh.AıI /kH � !.h/kSh.At ıX/kH

� !.h/ kSh.AıI /kH �
�
jt jkAsıXkW 0 C !.h/kSh.AaıX/kH

�
:

(6.1.81)

The result (6.1.77) now follows easily by a repeated use of the arithmetic-geometric
mean inequality and finally, the use of the triangle inequality to estimate X �Xh in
terms of ıX and ıI . Note that the last term in the right-hand side of (6.1.77) appears
only in this final step (using the triangle inequality).

Remark 6.1.17. In most applications, the constant!.h/ corresponds to some inverse
inequality applied to piecewise polynomial functions. The same constant (in terms
of powers of h) will often appear if we compare the best approximation of a smooth
function X taken in the norm of H rather than in the (stronger) norm of W . As a
result, the first two terms appearing in the right-hand side of (6.1.77) will, in general,
be of the same order, and the third will be either of the same order or smaller. ut
Remark 6.1.18. As we can see, the strong assumption (6.1.68) has been used only
to estimate the term hAaıI ; ıXi in (6.1.80). In a certain number of applications, one
could take advantage of some particular feature of the problem at hand, and survive
without it. To do so when dealing with the abstract problem would be, however, very
complicated. Hence, we defer the analysis of the different applications of the above
theory to the following chapters, mostly to Chap. 8 concerning the Stokes problem,
and we just consider here below some example of the possible stabilisations of
Laplace operator in mixed form. ut
Example 6.1.3 (Stabilisation of the mixed Poisson problem). In Sect. 1.5.1 of
Chap. 1, we have considered many augmented methods for the mixed formulation
of the Dirichlet problem. Most of these methods can be written in the framework
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that we have just developed. For simplicity, we refer to the simplest formulations
(1.5.2) and (1.5.9), that we briefly recall for the convenience of the reader:

.u; v/C.div v; p/�.div uCf; q/ D 0; 8 v 2 H.divI˝/ 8 q 2 L2.˝/ (6.1.82)

and

.u � gradp; v/C .u; grad q/� .f; q/ D 0 8 v 2 L2.˝/ 8 q 2 H1
0 .˝/: (6.1.83)

Other examples will be seen in the following chapters. We have therefore, for the
formulation (6.1.82), W D H.divI˝/ 
 L2.˝/ and, for the formulation (6.1.83),
W D .L2.˝//d 
H1

0 .˝/. In all cases, we take H WD .L2.˝//d 
 L2.˝/, and we
use the symbol .� ; �/ to denote the inner product in L2.˝/ or in .L2.˝//d . We also
assume, for simplicity, that the solution .u; p/ belongs to .H1.˝//d 
 H2.˝/ \
H1
0 .˝/. Finally, following the common usage, we denote by gradh q the element-

wise gradient Sh.grad q/ and by divh v the element-wise divergence Sh.div v/. In
the first case (that is when using the formulation (6.1.82)), we have

.u; v/C.div v; p/ � .div u C f; q/

C �h2
�
t..u; v/C .div v; p//

� �1.u � gradh p; gradh q/C �2.div u C f; div v/
�

D 0;

(6.1.84)

while in the second case (that is when using the formulation (6.1.83)), we have
instead

.u� gradp; v/C .u; grad q/ � .f; q/
C �h2

�
t.u � gradp; v/

� �1.u � gradp; grad q/C �2.divh u C f; divh v/
�

D 0:

(6.1.85)

Let us see some particular cases related to this last example. In all cases, we will
take, for simplicity, � D 1.

(i) Case t D 1. In this case, the augmented formulation is

.1Ch2/.u� gradp; v/C �2h
2.divh u C f; divh v/ D 0 8 v 2 .L2.˝//2;

.1��1h2/.u; grad q/C �1h
2.gradp; grad q/ � .f; q/ D 0 8 q 2H1

0 .˝/:

(6.1.86)

Note that stability holds for every choice of �2 � 0.
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(ii) Case t D 0. In this case, the augmented formulation is

.u� gradp; v/C �2h
2.divh u C f; divh v/ D 0 8 v 2 .L2.˝//2;

.1��1h2/.u; grad q/C �1h
2.gradp; grad q/� .f; q/ D 0 8 q 2H1

0 .˝/:

(6.1.87)

This formulation, in particular with �1 D 0, is particularly appealing for
discretisations in which the inf-sup condition holds already but the ellipticity
in the kernel is lacking.

(iii) Case t D ��1. In this case, the augmented formulation is

.1 � �1h
2/.u� gradp; v/C �2h

2.divh u C f; divh v/ D 0 8 v 2 .L2.˝//2;
.1��1h2/.u; grad q/C �1h

2.gradp; grad q/ � .f; q/ D 0 8 q 2H1
0 .˝/:

(6.1.88)

Note that, changing the sign of the second equation, we reach a symmetric
problem, as already pointed out in Remark 6.1.12. ut

6.2 Other Stabilisations

In this subsection, we still want to deal with methods for transforming the problem
in a stable one, but not necessarily reaching a formulation where ellipticity holds. In
particular, here, we want to analyse methods to fix discretisations that have already
some sort of stability, in a spirit similar to the one of Remark 6.1.14.

6.2.1 General Stability Conditions

We go back to our original abstract formulation (6.1.1) which we re-write for the
convenience of the reader. We consider the problem: find X 2 W such that

AX D F; (6.2.1)

together with its variational formulation

hAX; Y iW 0�W D hF; Y iW 0�W 8Y 2 W : (6.2.2)

We also recall that we assumed the non-negativity condition (6.1.3) that we also
repeat here

hAY; Y iW 0�W � 0; 8Y 2 W : (6.2.3)
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The following result is an exercise of functional analysis, but, for the convenience
of the readers, we sketch a proof.

Proposition 6.2.1. If (6.2.3) holds, then the two following conditions are equiva-
lent:

.i/ A is an isomorphism from W onto W 0 (6.2.4)

.i i/ 9˚ 2 L.W;W/ and a constant ˛˚ > 0 such that

hAY;˚.Y /iW 0�W � ˛˚kY k2W 8Y 2 W : (6.2.5)

Proof. Let J D RW 0 be the Ritz operator from W 0 to W as defined in
Theorem 4.1.2. The implication .i/ H) .i i/ follows by taking ˚ D JA. To
prove the converse implication, we denote by Id the identity operator in W , and
we remark that, if (6.1.3) holds, then for every positive real number s, we have, for
all Y 2 W ,

h.s˚ C Id/tAY; Y iW 0�W D hAY; .s˚ C Id/Y iW 0�W � s ˛˚kY k2W :

This easily implies that .s˚ C Id/tA is an isomorphism from W onto W 0. On the
other hand, we know that s˚ C Id is an isomorphism for s small enough (see for
instance Theorem 4.1.3), so that .s˚ C Id/t will also be an isomorphism, as well
as its inverse .s˚ C Id/�t . Hence, A D Œ.s˚ C Id/�t �Œ.s˚ C Id/tA� (as product
of two isomorphisms) is also an isomorphism, and .i/ holds. ut
Remark 6.2.1. If we further assume A D At (that is, if we assume the bilinear form
hAY; Y i to be symmetric), then, using Lemma 4.2.2, we see that in (6.2.5) we could
always use ˚ D Id , and the equivalence would still hold. ut
Remark 6.2.2. If (6.1.3) is not satisfied, we always have .i/ H) .i i/ but the
converse is false. This can be seen by considering in L2. �0;C1Œ / the mapping:

(
.Au/.x/ D u.x � 1/ for x > 1

.Au/.x/ D 0 for 0 < x � 1

(corresponding to shifting the graph of u to the right by 1, and inserting 0 in the
interval .0; 1/). Clearly, .i i/ is satisfied by taking ˚u WD Au, but .i/ is not, as A is
injective but not surjective. For an operator that does not satisfy (6.1.3), we would
need two conditions instead of (6.2.5), that is: 9˚1;˚2 2 L.W;W/ such that, for
all Y 2 W ,

(
hAY;˚1.Y /iW 0�W � ˛1kY k2W ;
h˚2.Y /;At Y iW�W 0 � ˛2kY k2W ;

(6.2.6)

implying that A is both injective and surjective. ut
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Remark 6.2.3. It must be noted that the stability constant of Problem (6.1.2), that
is, the smallest constant C such that

kXk � CkAXk 8X 2 W; (6.2.7)

is not 1=˛˚ (see (6.2.5)) but rather

C D k˚k=˛˚ : (6.2.8)

ut
Remark 6.2.4. We now consider again the case of (6.1.4), in which the abstract
problem (6.2.2) is just a different way of writing the mixed problem (6.1.5). For this
case, we want to get an explicit construction of some ˚ that satisfies (6.2.5) starting
from the usual stability conditions developed previously in Chap. 4. In other words,
we are going to see the equivalence of (6.2.5) with the ellipticity in the kernel and
inf-sup conditions. We thus consider, for any given X� D .u�; p�/ in V 
 Q, two
auxiliary problems, which have a unique solution if the mixed problem (6.1.5) is
well posed:

– Find .u1; p1/, solution of

(
a.v; u1/C b.v; p1/ D .u�; v/V 8 v 2 V;
b.u1; q/ D 0 8 q 2 Q; (6.2.9)

– Find .u2; p2/, solution of

(
a.v; u2/C b.v; p2/ D 0 8 v 2 V;
b.u2; q/ D .p�; q/Q 8 q 2 Q: (6.2.10)

In other words, we take .u1; p1/ D A�1.RV u�; 0/ and .u2; p2/ D A�1.0; RQp�/,
where RV and RQ are the Ritz operators from V to V 0 and from Q to Q0,
respectively (see (4.1.37)). We now set ˚..u�; p�// WD .u1 C u2;�p1 � p2/ and
we have:

A.X�; ˚.X�// D a.u�; u1 C u2/C b.u1 C u2; p�/C b.u�; p1 C p2/

D ku�k2V C kp�k2Q D kXk2W :
(6.2.11)

ut
Remark 6.2.5. Problems (6.2.9) and (6.2.10) could, by linearity, be combined into
one. We preferred to make more explicit the separate control of ku�kV and kp�kQ.
One should also note that (see Remark 6.2.3) the stability constant in (6.2.7)
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(which, using (6.2.8), is now equal to k˚k, since by (6.2.11) we have ˛˚ D 1)
depends through (6.2.9) and (6.2.10) on the usual constants defining, for example,
the coercivity in the kernel and the inf-sup condition. No free lunch. ut

6.2.2 Stability of Discretised Formulations

Let us now turn to the discretisation of problem (6.1.2). For a given sequence of
subspaces Wh of W (usually of finite dimension), we consider, for each h, the
discrete problem: find Xh 2 Wh such that

hAXh; Yhi D hF; Yhi 8Yh 2 Wh: (6.2.12)

In general, for an arbitrary choice of the sequence fWhg, (6.2.12) will not be
stable, that is, we cannot ensure that there exists a sequence of linear operators
˚h 2 L.Wh;Wh/, uniformly bounded in h, such that for some ˛˚ > 0 independent
of h:

hAYh; ˚h.Yh/i � ˛˚kYhk2W 8Yh 2 Wh: (6.2.13)

We suppose that we have, for each h, a stabilising term R with the structure

R.Xh; Yh/ WD L.Xh; Yh/C hN; Yhi (6.2.14)

where N , which is possibly null, will depend on F , and where L.Xh; Yh/ is a
continuous bilinear form on Wh with a continuity constant cL,

jL.Xh; Yh/j � cLkXhkWkYhkW : (6.2.15)

In practice, we shall buildR.Xh; Yh/ in such a way that it can be used as a stabilising
term in a sense that will be defined in hypothesis H.0 below. All the stabilisations
of the previous section (see, for instance, (6.1.20) or (6.1.40)) had indeed the above
structure. Here, however, we shall often use just the bilinear part L.Xh; Yh/.

We shall now consider an abstract error estimate based on the following
hypothesis.

H.0 We have:

(i) A continuous problem

hAX; Y i D hF; Y i 8Y 2 W; (6.2.16)

which we assume to have a unique solution,
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(ii) A sequence of stabilised discrete problems

hAXh; Yhi C rR.Xh; Yh/ D hF; Yhi 8Yh 2 Wh; (6.2.17)

where R.Xh; Yh/ is of the form (6.2.14) and r > 0 is a scalar,

(iii) Two constants Qc˚ and Q̨˚ , and an operator Q̊
h 2 L.Wh;Wh/ such that

k Q̊
h.Yh/k � Qc˚kYhk 8Yh 2 Wh (6.2.18)

and

hAYh; Q̊
h.Yh/iW 0 �W C rL.Yh; Q̊

h.Yh// � Q̨˚kYhk2W : (6.2.19)
ut

Under the assumption H.0, we have the following error bound.

Proposition 6.2.2. Assume that H.0 holds, and let X and Xh be the solutions of
(6.2.16) and (6.2.17) respectively. For every XI 2 Wh, let us set

R.XI / WD sup
Yh2Wh

R.XI ; Yh/

kYhk : (6.2.20)

We then have

Q̨˚
Qc˚ kXI � Xhk � kAk kX �XIk C rR.XI /; (6.2.21)

and consequently

kX � Xhk � Qc˚kAk C Q̨˚
Q̨˚ kX � XIk C Qc˚rR.XI /

Q̨˚ : (6.2.22)

Proof. Set ıX WD XI � Xh and QYh WD Q̊
h.ıX/. From (6.2.18), we immediately

have

k QYhk � Qc˚ kıXk: (6.2.23)

On the other hand, using (6.2.19), adding and subtractingX and using (6.2.14), then
using (6.2.16) and (6.2.17), and finally (6.2.20), we obtain:

Q̨˚ kıXk2 � hAıX; QYhi C r L.ıX; QYh/
D hA.XI � X/; QYhi C hAX; QYhi � hAXh; QYhi � rR.Xh; QYh/C rR.XI ; QYh/

D hA.XI � X/; QYhi C rR.XI ; QYh/
� k QYhk .kAk kXI �Xk C rR.XI //
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and (6.2.21) follows immediately using (6.2.23). Finally, (6.2.22) follows from
(6.2.21) using the triangle inequality. ut

On many occasions, as we have seen in the previous section, the perturbation
term R can be chosen in such a way that the strong consistency property (usually
called Galerkin orthogonality) still holds. In these cases, the solution X of (6.2.16)
would verify

R.X; Yh/ D 0 8Yh 2 Wh; (6.2.24)

implying that for the discrete stabilised problem we have

hAX; Yhi C rR.X; Yh/ D hF; Yhi 8Yh 2 Wh: (6.2.25)

In this case, we have, essentially by the same proof as in Proposition 6.2.2, the
following corollary.

Corollary 6.2.1. Assume that H.0 holds, and let X and Xh be the solutions of
(6.2.16) and (6.2.17) respectively. Assume moreover that X satisfies the strong
consistency condition (6.2.24). Then, we have

kX � Xhk � Qc˚.kAk C rcL/C Q̨˚
Q̨˚ inf

Yh2Wh

kX � Yhk (6.2.26)

where cL is defined in (6.2.15).

Remark 6.2.6. It is clear that the above results, and in particular Corollary 6.2.1,
could be applied to the methods of the previous section. ut
The results of Proposition 6.2.2 and of Corollary 6.2.1 are of a general nature and, in
order to obtain sharper results, we shall have to specialise somehow the construction
of R.Xh; Yh/ and its properties. This will be done in the following subsection.

6.3 Minimal Stabilisations

In several applications, we will have that there exists a subspace Wh � W and a
positive constant ˛ such that

hAZ;Zi � ˛k�Wh
Zk2 8Z 2 Wh; (6.3.1)

or, more generally,

W 0hAZ;˚h.Z/iW � ˛k�Wh
ZkW k˚h.Z/k 8Z 2 Wh; (6.3.2)
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for some linear mapping ˚h from Wh to Wh. In these cases, we can consider that
the part of the solution that belongs to W h will somehow be “under control” and
will not need to be stabilised.

In these cases, the stabilising term R in (6.2.14) could be chosen of the form

R.Xh; Yh/ D .GhXh �N;GhYh/H (6.3.3)

for some suitable Hilbert space H, a suitable N in H (either equal to 0 or
depending on f ), and a suitable linear operator Gh from Wh to H. Conditions
for .GhXh;GhYh/H to be stabilising will be given in the subsections below. Often,
roughly speaking, one would take N D 0 and use a Gh with

KerGh D Wh; (6.3.4)

so that Gh will act only on the part of Wh that is not in Wh. In other cases, as we
already did at the end of the previous section, we have to deal with several equations,
and Gh will act differently on each of them. Moreover, in several cases, Wh will
contain all the low frequencies of Wh, so that a smooth solution X 2 W could be
approximated fairly well by elements Xh 2 W h. Then, for every XI 2 Wh and for
every Xh 2 Wh, we will have that the term R.XI / in (6.2.21) can be estimated by

R.XI ; Yh/

kYhk D R.XI �Xh; Yh/

kYhk
� cLkXI � Xhk � cL.kXI � Xk C kX � Xhk/;

so that, from (6.2.21), we have in this case

Q̨˚
Qc˚ kXI � Xhk � .kAk C rcL/ kX � XIk C r cLkX � Xhk (6.3.5)

and the error estimate will depend on the approximation properties of both Wh and
Wh, on the value of cL and on the choice of r . We shall now provide a precise and
sharper analysis of some of these situations.

We still suppose that the discrete problem defined by (6.2.12) is not stable. We
may however suppose that a partial stability holds for some semi-norm ŒYh�h on Wh.

Remark 6.3.1. In general, the “biggest semi-norm” one could consider is clearly

ŒX�h WD sup
Yh2Wh

W 0hAX; YhiW

kYhkW
: (6.3.6)

However, in many applications, simpler (and more explicit) norms can be preferred.
ut

The following assumption expresses in a precise way the fact that a certain semi-
norm ŒXh�h is “under control”:
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H.1 For every h, there exists

(i) A semi-norm Œ � �h on W ,
(ii) An operator ˚h 2 L.Wh;Wh/,

(iii) A constant c˚ such that

k˚h.Yh/kW � c˚kYhkW 8Yh 2 Wh; (6.3.7)

(iv) A constant ˛˚ > 0 such that

hAYh;˚h.Yh/i � ˛˚ ŒYh�
2
h 8Yh 2 Wh: (6.3.8)

ut
Assumption H.1 might seem cumbersome or difficult to realise in practice. This is
not the case. Indeed, before proceeding, we point out that Assumption H.1 is indeed
verified in a number of applications. In particular, we consider the following (rather
typical) situations.

Minimal stabilisation of mixed formulations. Assume that hAX; Y i is defined as
in (6.1.4), and recall the definitions (6.1.53) and (6.1.54).

For every fixed Xh 	 .uh; ph/ 2 Wh, we consider, in the spirit of Remark 6.3.1,

S.Xh/ WD sup
.vh;qh/2Vh�Qh

W 0hA.uh; ph/; .vh; qh/iW

k.vh; qh/kW
: (6.3.9)

Assuming that (6.1.8) holds, we will always have

S.Xh/ � W 0hA.uh; pp/; .uh; ph/iW

k.uh; ph/kW

� a.uh; uh/

k.uh; ph/kW
DW juhj2a

k.uh; ph/kW
: (6.3.10)

Similarly, we have (always without any assumptions on Vh or Qh)

S.Xh/ � sup
.vh;0/2Kh�f0g

a.uh; vh/

kvhkV D k�K0

h
A uhkV 0 ; (6.3.11)

S.Xh/ � sup
.0;qh/2f0g�Qh

b.uh; qh/

kqhkQ D kBh uhkQ0 ; (6.3.12)

S.Xh/ � sup
.vh;0/2K?

h �f0g

a.uh; vh/C b.vh; ph/

kvhkV D k�K0
h
A vh C Bt

h qhkV 0 ; (6.3.13)
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but, in general, we would not be able to get estimates of the type

S.Xh/ � CkAhuhkV or S.Xh/ � kBt
hkQ0 (6.3.14)

separately. In most particular cases, however, one might have some good property
and exploit it. We have seen in the previous chapters that sufficient conditions that
ensure stability and error estimates are the ellipticity in the kernel Kh (elker) of the
bilinear form a.� ; �/ and the discrete inf-sup condition for the bilinear form b.� ; �/.
We also pointed out that the two conditions play, in a certain sense, one against
the other: taking a bigger Vh helps in ensuring the inf-sup condition but increases
the kernel and makes elker more at risk and the other way round. It is therefore
not unreasonable to assume that we already took care of one of the two conditions
(just by increasing or decreasing one of the two spaces), and ask the help of some
stabilising trick in order to take care of the other. More precisely, we assume, to start
with, that we have a continuous problem that is well posed.

A.1 We suppose that hAX; Y i is defined as in (6.1.4) and that

(i) The bilinear form a.�; �/ is K-elliptic, that is,

9˛0 > 0 s:t: a.v; v/ � ˛kvk2V 8 v 2 K D KerBI (6.3.15)

(ii) The bilinear form b.v; q/ satisfies the inf-sup condition in V 
Q where

ˇ WD inf
v2V

sup
q2Q

b.v; q/

kvkV kqkQ : (6.3.16)

ut
In what follows, we will discuss the cases in which one of the two conditions is not
satisfied for the discretised problem.

Example 6.3.1 (Minimal stabilisation of the inf-sup condition). For simplicity, we
further assume that the ellipticity condition holds on the whole V , that is,

9˛ > 0 s:t: a.v; v/ � ˛kvk2V 8 v 2 V: (6.3.17)

We know that the full ellipticity in V (6.3.17) implies automatically the full
ellipticity in Vh. On the other hand, this is not true, in general, for the inf-sup
condition. Hence, as we consider methods in need to be stabilised, we suppose
that the discrete inf-sup condition does not hold with a constant independent of h.
In order to see that, however, Assumption H.1 is satisfied; we consider the following
semi-norm:

ŒYh�
2
h D Œ.vh; qh/�

2 WD kvhk2V C ŒŒqh��
2
h (6.3.18)

where
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ŒŒqh��h WD sup
vh2Vh

b.vh; qh/

kvhkV 	 kBt
hqhkV 0 8 qh 2 Qh: (6.3.19)

The following proposition states that, in this framework, Assumption H.1 holds.

Proposition 6.3.1. Let A be of the form (6.1.4) and assume that A.1 holds, together
with the full ellipticity (6.3.17). Then, H.1 also holds. In particular, (6.3.7) and
(6.3.8) hold with

˛˚ D ˛

2
min

	
1;

1

kak2


; (6.3.20)

c˚ D 1C ˛

kak2 (6.3.21)

and with the semi-norm Œ � �h defined in (6.3.18) and (6.3.19).

Proof. For a given Yh WD .vh; qh/, let v�
h 2 Vh be such that

b.v�
h ; qh/

kv�
h kV D sup

wh2Vh
b.wh; qh/

kwhkV DW ŒŒqh��h (6.3.22)

scaled in such a way that

kv�
h kV D ŒŒqh��h: (6.3.23)

We now choose

˚h.Yh/ D .vh C ıv�
h ; qh/; (6.3.24)

with ı a positive real number to be specified later on. We have from (6.1.4) and
(6.3.24):

hAYh; ˚h.Yh/i D a.vh; vh/C ıa.vh; v
�
h /

C b.vh; qh/C ıb.v�
h ; qh/� b.vh; qh/

� ˛kvhk2V � ıkakkvhkV kv�
h kV C ıŒŒqh��hkv�

h kV
D ˛kvhk2V � ıkakkvhkV ŒŒqh��h C ıŒŒqh��

2
h; (6.3.25)

having used (6.3.17), (6.3.22), and, in the last step, (6.3.23). It is now clear that,
choosing ı D ˛=kak2, (6.3.25) implies

hAYh;˚h.Yh/i � ˛

2
kvhk2V C ı

2
ŒŒqh��

2
h (6.3.26)
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having used 2ab � a2 C b2. Hence, we have (6.3.8) with the constant ˛˚ given by
(6.3.20). On the other hand, (6.3.23) and the choice of ı imply (6.3.7) and (6.3.21)
since

kvh � ıv�
hk � kvhk C ıkv�

h k D kvhk C ıŒŒqh��h: ut

Remark 6.3.2. Looking at the above proof, we can see that, actually, we proved,
instead of (6.3.7), the stronger inequality

k˚h.Yh/k � c˚ ŒYh�h 8Yh 2 Wh: (6.3.27)

ut
Example 6.3.2 (Minimal stabilisations of the ellipticity condition). Another possi-
ble case in which H.1 is satisfied is the following one, in which we suppose, this
time, that the discrete inf-sup condition does hold with a constant independent of h,
but the ellipticity in the kernel does not. For instance, we might have that a is elliptic
on the kernel K of B , but the kernel Kh of Bh is not a subset of K , and ellipticity
does not hold for all vh 2 Kh.

In particular, we assume that A1 holds, that the discrete inf-sup condition

9ˇ� > 0 such that WD inf
v2V

sup
q2Q

b.v; q/

kvkV kqkQ � ˇ� (6.3.28)

holds with ˇ� independent of h, and that, moreover, as in (5.2.37) and (5.2.38), there
exists a Hilbert space V � with V ,! V � such that

9˛� > 0 such that a.v; v/ � ˛�kvk2V � 8 v 2 V; (6.3.29)

together with

9M �
a such that a.u; v/ � M �

a kukV � kvkV � 8 u; v 2 V: (6.3.30)

Then, we consider the following semi-norm:

ŒYh�
2
h D Œ.vh; qh/�

2 WD kvhk2V � C kqhk2Q: (6.3.31)

The following proposition states that in this framework, Assumption H.1 holds.

Proposition 6.3.2. Let A be of the form (6.1.4) and assume that A.1 holds, together
with assumptions (6.3.28)–(6.3.30). Then, H.1 also holds. In particular, (6.3.7) and
(6.3.8) hold with
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˛˚ D ˛

2
min

	
1;

ˇ2�
.M �

a /
2



; (6.3.32)

c˚ D 1C ˛�ˇ�
.M �

a /
2

(6.3.33)

and with the semi-norm Œ � �h defined in (6.3.31).

Proof. For a given Yh WD .vh; qh/, we use (6.3.28) to choose v�
h 2 Vh such that

b.v�
h ; qh/

kv�
h kV D sup

wh2Vh
b.wh; qh/

kwhkV � ˇ�kqhk2Q; (6.3.34)

scaled in such a way that

kv�
h kV D kqhkQ: (6.3.35)

We now choose

˚h.Yh/ D .vh C ıv�
h ; qh/; (6.3.36)

with ı a positive real number to be specified later on. We have from (6.1.4) and
(6.3.36):

hAYh; ˚h.Yh/i D a.vh; vh/C ıa.vh; v
�
h /

C b.vh; qh/C ıb.v�
h ; qh/� b.vh; qh/

� ˛�kvhk2V � � ıM �
a kvhkV �kv�

h kV � C ıˇ�kqhkQkv�
h kV

D ˛�kvhk2V � ıM �
a kvhkV kqhkQ C ıˇ�kqhk2Q; (6.3.37)

having used (6.3.15), (6.3.34), and, in the last step, (6.3.35). It is now clear that,
choosing ı D ˛�ˇ�=.M �

a /
2, (6.3.25) implies

hAYh; ˚h.Yh/i � ˛�

2
kvhk2V C ıˇ�

2
ŒŒqh��

2
h; (6.3.38)

having used 2ab � a2 C b2. Hence, we have (6.3.8) with the constant ˛˚ given by
(6.3.32). On the other hand, (6.3.35) and the choice of ı imply (6.3.7) with (6.3.33),
since

kvh � ıv�
hk � kvhk C ıkv�

h k D kvhk C ıkqhk: ut

Remark 6.3.3. Looking at the above proof, we can see that, together with (6.3.7),
we could also prove the inequality
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Œ˚h.Yh/�h � c˚ ŒYh�h 8Yh 2 Wh; (6.3.39)

which in this case is stronger than (6.3.7). ut
Remark 6.3.4. It is important to note that ˚h.vh; qh/, defined by (6.3.24) or
(6.3.36), leaves the second component of .vh; qh/ unchanged. This property can
be useful in several circumstances. ut
General results on minimal stabilisations. Having seen that Assumption H.1 is
indeed a reasonable one, we are now going to see how to use it in order to stabilise
the problem. Roughly speaking, as we have already mentioned, we are going to
add a bilinear form L.Xh; Yh/ on Wh 
 Wh, assuming that it could take care of
“the remaining part of the W norm”, that is “the part of the W norm which is not
controlled by the semi-norm Œ � �h”.

For technical reasons, we are going to make this assumption in two steps: we shall
first assume in H.2 that L.Yh; Yh/ controls a suitable intermediate term kGhYhk2H
(to be discussed later on), and then we shall assume, in H.3, that this intermediate
term, together with the semi-norm Œ � �h, can control the whole W norm. Let us see
this in a more precise way.

H.2 There exist a Hilbert space H, a bilinear form L 2 L.H;H/, three positive
constants cG , cL and ˛G , and, for every h, an operator Gh 2 L.Wh;H/,
withkGhkL.Wh;H/ � cG , such that

L.GhZh;GhYh/ � cLkGhZhkH kGhYhkH 8Yh; Zh 2 Wh; (6.3.40)

L.GhYh;GhYh/ � ˛GkGhYhk2H 8Yh 2 Wh: (6.3.41)

ut
Remark 6.3.5. It is clear that hypothesis H2 is tailored for using a stabilising term
R of the form (6.3.3). ut
We now consider, for some positive real number r , the stabilised operator QA defined
as

h QAXh; Yhi WD hAXh; Yhi C rL.GhXh;GhYh/ 8Xh; Yh 2 Wh (6.3.42)

and the corresponding regularised problem

h QAXh; Yhi D rL.N;GhYh/C hF; Yhi 8Yh 2 Wh: (6.3.43)

We have the following result.

Lemma 6.3.1. Assume that H.1 and H.2 hold, and assume moreover that, for the
mapping ˚h considered in H.1 and the map Gh considered in H.2, we have

kGh.˚h.Yh//kH � cG˚kGh.Yh/kH 8Yh 2 Wh (6.3.44)
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for some constant CG˚ independent of h. Then, there exist a linear mapping ˚�
h 2

L.Wh;Wh/ and two constants ˛�̊ and c�̊ , depending only on ˛˚ , c˚ ˛R , and cR
such that, for every h, for every r and for every Yh 2 Wh, we have

k˚�
h .Yh/kW � c�̊ kYhkW ; (6.3.45)

kGh.˚�
h .Yh//kH � c�̊ kGh.Yh/kH; (6.3.46)

and

h QAYh; ˚�
h .Yh/i � ˛�̊�ŒYh�2h C rkGh.Yh/k2H

�
; (6.3.47)

where QA is given in (6.3.42). ut
Proof. We set

˚�
h .Yh/ WD Yh C ı˚h.Yh/ (6.3.48)

with ı to be chosen later on. Then, using first (6.3.42) and (6.3.48), then (6.3.8),
(6.3.41), and using (6.3.44) to bound the last term, we have:

h QAYh; ˚�
h .Yh/i

� ı˛˚ ŒYh�
2
h C r˛GkGh.Yh/k2H � rcLkGh.Yh/kHıcG˚kGh.Yh/kH;

(6.3.49)

and the result follows easily for rı smaller than 4˛G˛˚=.cL cG˚/2. ut
Remark 6.3.6. It is easy to check that (6.3.44) holds easily whenever

L.Xh;˚h.Yh// D L.Xh; Yh/; (6.3.50)

implying that L.Xh; Yh/ depends only on the part of Yh which is left unchanged
by ˚h. ut
We finally need a further assumption that connects the right-hand side of (6.3.47)
with the norm in Wh.

H.3 With the notation of assumptions H.1 and H.2, we further assume that there
exist two positive constants �2 and �3 such that

ŒYh�
2
h C �2kGhYhk2H � �3kYhk2W 8Yh 2 Wh: (6.3.51)

ut
It is clear that, if Assumption H.3 is also verified, then (6.3.47) will give a
stability result of type (6.2.13), where the explicit value of the constant ˛˚ can
be easily deduced from the values of the other constants. On the other hand, the
estimate (6.3.47) will also be used in the sequel in cases when some constant
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(r mostly, and sometimes �2) might depend on h, so that it is convenient to leave it
in its present form.

We now consider the problem of error estimates. As we introduced sufficient
conditions to ensure stability, the question will be to check consistency, and in
particular the effect on consistency of the extra stabilising terms. As we said, in
many applications, the constants r , �2, and �3 appearing in (6.3.51) might be allowed
to depend on h. Hence, it is important that we keep track of them in our abstract
estimates. Mimicking (6.2.20), we now set

R.XI / WD sup
Yh2Wh

L.GhXI �N;GhYh/

kGhYhkH
: (6.3.52)

Theorem 6.3.1. Let X and Xh be the solutions of (6.2.16) and (6.3.43) respec-
tively. Assume that H.1, H.2, and H.3 hold. Then, for every XI 2 Wh, we have

ŒXI �Xh�2h C rkGh.XI �Xh/k2H
� C

	
r C �2

r�3
kAk2kXI �Xk2 C r.R.XI //2



; (6.3.53)

where the constant C depends on ˛G , ˛˚ , cL and c˚ , but does not depend on the
other parameters.

Proof. We set ıX WD XI �Xh and Yh WD ˚�
h .ıX/, with ˚�

h given in Lemma 6.3.1.
Using Lemma 6.3.1, then the continuous equation (6.2.16) and the stabilised discrete
one (6.3.43), and then (6.3.40), (6.3.45), and (6.3.46), we get

˛˚ŒıX�
2
h C r˛GkGhıXk2 � hA.ıX/; ˚�

h .ıX/i C rL.Gh.ıX/;Gh.˚
�
h .ıX///

D hA.XI � X/;˚�
h .ıX/i C rL.GhXI �N;Gh.˚

�
h .ıX///

� c�̊ kAk kXI � Xk kıXk C rR.XI /kGhıXk: (6.3.54)

We now use H.3 to bound kıXk:

kıXk �
� ŒıX�2h C �2kGhıXk2

�3

�1=2 � ŒıX�h C �
1=2
2 kGhıXk
�
1=2
3

: (6.3.55)

At this point, we need, just for a while, a lighter notation. We denote one of the two
terms on the right-hand side of (6.3.53) by D1 WD kAk kXI � Xk and the other
by D2 WD kGh.XI /kH. We also denote the second term in the left-hand side by
g WD kGh.ıX/kH. With this notation, the inequality that we have to prove becomes
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ŒıX�2h C rg2 � C
�r C �2

r�3
D2
1 C rD2

2

�
(6.3.56)

and what we have got, inserting (6.3.55) into (6.3.54) and using the new notation,
can be written as

ŒıX�2h C rg2 � C
� D1

�31=2
ŒıX�h CD1

� �2
r�3

�1=2
r1=2g C r1=2D2r

1=2g
�
: (6.3.57)

Then, we apply the inequality ab � c

2
a2 C 1

2c
b2 with suitable choices of c, move

three terms to the left and multiply the resulting equation by a suitable constant to
get (6.3.53). ut

As an immediate consequence of Theorem 6.3.1, we have the following error
estimate.

Theorem 6.3.2. Let X and Xh be the solutions of (6.2.16) and (6.3.43) respec-
tively. Assume that H.1, H.2 and H.3 hold, and assume that the operator Gh could
be extended to a space W.h/ � W containing both Wh and X . Then, there exists a
constant C D C.˛G; ˛˚ ; cL; c˚/ such that

ŒX �Xh�2h C rkGh.X �Xh/k2H
� C inf

XI2Wh

�r C �2

r�3
kAk2kX � XIk2 C r.R.XI //2

�
: (6.3.58)

Moreover, we have the following important corollary.

Corollary 6.3.1. Keep the same assumptions as in Theorem 6.3.2, and assume
moreover that for every h we have a space W.h/ containing both Wh and the
exact solution X of (6.2.16) such that Gh could be extended to an operator in
L.W.h/;H/, with norm cG uniformly bounded in h, and such that (6.3.40) and
(6.3.41) still hold for Yh andZh in W.h/. Finally, assume that, for the exact solution
X of (6.2.16), we have

L.GhX �N;GhYh/ D 0 8Yh 2 Wh; (6.3.59)

so that, with the notation of (6.3.52), we have R.X/ D 0. Then, there exists a
constant C D C.˛G; ˛˚ ; cL; c˚/ such that

ŒX �Xh�2h C rkGh.X �Xh/k2H
� C inf

XI2Wh

�r C �2

r�3
kAk2kX �XIk2 C rkGh.X � XI /k2H

�
: (6.3.60)
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Remark 6.3.7. It is not difficult to see that the approach described here, and in
particular the result of Corollary 6.3.1, has much in common with the ones described
and analysed in the previous section. Actually, many stabilising techniques available
on the market can be set equally well in the framework of the previous section as in
that of the present one. Still, in certain cases, one of the two would be easier to use,
and in other cases, only one of these two approaches will be usable. ut

As we mentioned already, in different applications, we might allow some of
the constants (and mainly r and �2) to depend on h. Hereafter, we shall rapidly
see some typical cases, taking as simplest example the one-dimensional version of
mixed formulations for the Poisson problem, already seen in (6.1.82) and (6.1.83).
Other examples will be seen in the following chapters, for different applications.

The first, and main difference, is whether the constant �2 can be assumed to tend
to zero (and fast enough) when h tends to zero. We first consider the case in which
it is more convenient to take a �2 that does not depend on h. In a certain number of
cases, Theorem 6.3.2 or Corollary 6.3.1 can be applied with all the constants (r , �2,
and �3) independent of h.

Example 6.3.3 (Both r and �2 are independent of h). It is clear that Corollary 6.3.1
is the natural candidate to be applied in these cases. Most augmented formulations
and their variants can be analysed in this way. Just to see an example, consider the
one-dimensional Poisson problem (6.1.82), and assume that we take Vh WD L21 and
Qh WD L00. We have already seen in the previous Chapter (in Sect. 5.2.4) that this
choice leads to a total disaster, due to the failure of the elker condition. However,
adding a term

R.Xh; Yh/ 	 R..uh; ph/; .vh; qh// D .u0
h C f; v0

h/ (6.3.61)

will restore the full ellipticity and give a good solution. On the other hand, the bound
(6.3.12) tells us, in this case, that the projection of Buh 	 u0

h onto Qh is already
under control, and a further analysis would show that indeed the term in (6.3.61)
could be multiplied by h2 and still provide a sufficient stabilisation (see [125]). ut
Example 6.3.4 (Taking �2 fixed and r depending on h). In this case, we are allowed
to use directly Theorem 6.3.1. The bound (6.3.53) will provide (for r “small”) an
estimate of the type

ŒıX�2h C rkGh.ıX/k2H � C

	
1

r
kXI �Xk2 C rkGh.XI /k2H



; (6.3.62)

which, when (6.3.4) holds, can become

ŒıX�2h C rkGhıXk2 � C

	
1

r
kXI � Xk2 C rkXh �Xk2




� C

	
1

r
hs1 C rhs2



; (6.3.63)
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by usual interpolation estimates with, in general, s1 � s2 � 0. Then, by taking
r D hs , we get

ŒıX�2h C hskGhıXk2 � C
�
hs1�s C hs2Cs

�
; (6.3.64)

with the optimal choice given by s D .s1 � s2/=2. We further develop such a case
in the following example. ut
Example 6.3.5 (Penalty methods for the inf-sup condition). Coming back to the
case of Proposition 6.3.1, a large class of stabilisations to cure methods where
the inf-sup condition fails can be built taking a subspace QQh of Qh, denoting by
QP the projection operator on QQh, and setting

(
Gh..vh; qh// WD QP .qh/;
R..uh; ph/; .vh; qh// WD . QPph; QPqh/Q:

(6.3.65)

The subspace QQh will be chosen so that H.3 holds. This means that, using the
notation (6.3.19), we should have

ŒŒqh��
2
h C �2kP QQh

qhk2 � �3kqhk2Q; (6.3.66)

for some positive constants �2 and �3. The stabilised problem then becomes

(
a.uh; vh/C b.vh; ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; qh/� r. QPph; QPqh/ D .g; qh/ 8 qh 2 Qh:

(6.3.67)

In this case, the estimate (6.3.53) would yield

kuI � uhk2V C ŒŒpI � ph��
2
h C rk QP .pI � ph/k2Q

� C
r C �2

r
.kAk2kuI � uk2V C kpI � pk2Q/

C rk QP .pI � p/k2Q C rk QP .p/k2Q: (6.3.68)

We now consider three cases:

(i) Stable penalty. The inf-sup condition is satisfied. In this case, we obviously
have ŒŒqh��h ' kqhkQ. We can then take �2 D 0 and QQh D Qh, which means
that QP D I . We can take r as small as we want and there is anO.r/ term in the
right-hand side. This means that the penalty is used as a computational trick to
obtain an otherwise good solution.

(ii) Brute force penalty. We have no (usable) inf-sup condition (roughly speaking:
ŒŒqh��h D 0 for any qh). We take again QQh D Qh and QP D I but we now need
�2 D O.1/. The error estimate becomes,
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kuI � uhk2V C rkpI � phk2Q
� C

1

r
.kAk2kuI � uk2V C kpI � pk2Q/C rkpk2Q: (6.3.69)

In that case, we only get a bound on kuI � uhk. Suppose, to fix ideas, that we
would expect an O.hk/ from the usual error estimates. It is clear that the best
that we can do is to take r D O.hk/ and get a final bound in O.hk=2/ instead
of O.hk/.

(iii) Clever-penalty. Let us suppose that there is a subspace Qh � Qh such that
Vh 
 Qh satisfies the inf-sup condition and let P be the projection onto Qh.
We set QP D .I � P/ and we now need �2 D O.1/. The bound would now be

kuI � uhk2V C k NpI � phk2 C rk.I � P /.pI � ph/k2Q
� C

1

r
.kAk2kuI � uk2V C kpI � pk2Q/C rk.I � P /pk2Q: (6.3.70)

Two possibilities arise, depending on the approximation properties inQh. If all
the terms kuI �ukV , kpI �pkQ, and k.I �P/pkQ in the right-hand side have
a similar order in h, then any positive r will provide an estimate of the best
possible order. Such stabilising methods have been considered in [349]. On the
other hand, suppose that the last term is of lower order than the other ones.
One could use a small value of r to get a better accuracy but to the expense of
loosing on the first terms. If, for instance, we expect

.kuI � uk2V C kpI � pk2Q/ D O.h4/ and k.I � P /.p/k2Q D O.h2/;

then the choice r D O.h/ will yield an estimate of O.h3=2/ on ku � uhkV and
of O.h/ on kp � phkQ. Such a procedure was introduced by Lovadina and
Auricchio [284] for the Stokes problem. ut

Example 6.3.6 (Using a �2 that depends on h). We now consider the cases in which
it is possible, and convenient, to use a �2 that tends to zero with h. At first sight,
one might think that this never (or almost never) occurs. However, this is not true.
Assume, for instance, that

Œqh�h � kqhkL2 ; (6.3.71)

where qh is the L2 projection of qh onto the space of piecewise constant functions.
It is elementary, by the Poincaré inequality, to see that, for a qh piecewise inH1, we
have

kqhk2L2 � kqhk2L2 C C h2k gradh qhk2L2 ; (6.3.72)
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where, as before, gradh is the piecewise gradient and C is a constant that depends
only on the minimum angle of the decomposition (and where, for simplicity, we
assumed a quasi-uniform decomposition). Hence, in this case, we would have

Œqh�
2
h C h2k gradh qhk2L2 � �3kqhk2L2 (6.3.73)

with a constant �3 independent of h: a formula of the type of (6.3.51) with �2 D h2.
Looking at (6.3.53), it seems natural, when �2 is small, to take r as small as �2 (that
is, going to zero with the same order). It is what we consider in the next example. ut
Example 6.3.7 (Both r and �2 depend on h). We consider the case in which both
r and �2 depend on h, and go to zero. For simplicity, we assume that we take,
brutally, r � �2, but everything will work just taking, say, r � 
�2 with a constant

 independent of h. Then, we have

ŒıX�2h C rkGh.ıX/k2H � ŒıX�2h C �2kGh.ıX/k2H � �3kıXk2 (6.3.74)

so that applying (6.3.53) to the left-hand side of (6.3.74) gives

�3 kıXk2 � C

	
2

�3
kAk2kXI �Xk2 C rkGh.XI /k2H



: (6.3.75)

For instance, dealing with the one-dimensional version of (6.1.82) and starting from
Vh WD L11 and Qh WD L12, it is easy to see that Œ.vh; qh/�2h � kvhk21 C kqhk20, where
again qh is the projection of qh on piecewise constants. In view of (6.3.72), we can
then take

R..u; p/; .v; q// D .p0; q0/ (6.3.76)

and r D �2 D h2. This will give linear convergence for both u and p. ut

6.3.1 Another Form of Minimal Stabilisation

We now develop a more sophisticated variant of the previous case (where �2 depends
on h) that is based, instead of (6.3.71), on a (possible) estimate of the type

Œqh�h � kqhkL2 � C h2k grad qhk2L2 : (6.3.77)

Estimates of this type are met in situations like the one analysed in Sect. 5.4.5 (see, in
particular Eq. (5.4.22)) and related to the technique known as Verfürth’s trick [375]
that we discussed in the previous chapter. We still suppose that Assumption A.1
holds and we complete it by the following assumption.
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A.2 There exists a Hilbert space H with V ,! H 	 H 0 ,! V 0 such that

Bt.Qh/ � H (6.3.78)

(where Bt W Q �! V 0 is, as usual, the linear operator associated with the
bilinear form b.v; q/), and there exist a monotone function ! W RC ! R

C and a
positive constant � , independent of h, such that

!.h/kvhkV � kvhkH 8 vh 2 Vh; (6.3.79)

!.h/kBtqhkH � kqhkQ 8qh 2 Qh (6.3.80)

and

kv � �VhvkH � �!.h/kvkV 8 v 2 V: (6.3.81)

ut
We note that, setting

ŒŒqh��h WD sup
vh2Vh

b.vh; qh/

kvhkV D sup
vh2Vh

.vh; B
tqh/H

kvhkV ; (6.3.82)

from (6.3.79) we have

ŒŒqh��h D sup
vh2Vh

.vh; B
tqh/H

kvhkH
kvhkH
kvhkV � !.h/ k�V 0

h
BtqhkH 	 !.h/kBt

hqhkH :
(6.3.83)

In agreement with the general procedure of this section, we can now take H D H

with

Gh..vh; qh// D Btqh � Bt
hqh D .I � �V 0

h
/Btqh (6.3.84)

and define:

R..uh; ph/; .vh; qh// D �
Btph � Bt

hph; B
tqh � Bt

hqh
�
H
: (6.3.85)

It is clear that both (6.3.40) and (6.3.41) will hold with constants independent of
h, so that H.2 holds. We are left with H.3 which will be proved in the next two
propositions using essentially the so-called Verfürth’s trick [375] that we already
discussed in Sect. 5.4.5.

Lemma 6.3.2. Assume that A.1 and A.2 hold. Then,

ŒŒqh��h WD sup
vh2Vh

b.vh; qh/

kvhkV � ˇkqkQ � �!.h/kBtqhkH 8 qh 2 Qh; (6.3.86)

where ˇ is the inf-sup constant appearing in (6.3.16), !.h/ is given in (6.3.79)–
(6.3.81), and � is given in (6.3.81).
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Proof. The proof is essentially the same as the one that was used to prove (5.4.22) in
the last chapter. Let us see it briefly. We start from the inf-sup condition (6.3.16), we
add and subtract the projection �Vhv of v over Vh and then use (6.3.82) and (6.3.81):

ˇkqhkQ � sup
v2V

b.v; qh/

kvkV D sup
v2V

	
b.�Vhv; qh/

kvkV C b.v � �Vh ; qh/
kvkV




� sup
v2V

b.�Vhv; qh/

k�VhvkV C sup
v2V

.v � �Vhv; Bt qh/H

kvkV
� sup

vh2Vh
b.vh; qh/

kvhkV C sup
v2V

kv � �VhvkHkBt .qh/kH
kvkV

� ŒŒqh��h C �!.h/kBtqhkH 8 qh 2 Qh:

(6.3.87)

ut
We can now easily get the following result.

Lemma 6.3.3. Under Assumptions A.1 and A.2, there exists a constant Q̌, inde-
pendent of h, such that

ŒŒqh��
2
h C !2.h/kBtqh � �VhB

tqhk2H � Q̌kqhk2Q 8 qh 2 Qh: (6.3.88)

Proof. Indeed, by the triangle inequality, we have, for every qh 2 Qh:

kBtqh � �V 0

h
BtqhkH C k�V 0

h
BtqhkH � kBtqhkH : (6.3.89)

On the other hand, summing (6.3.86) plus � times (6.3.83), we have

.1C �/ŒŒqh��h � ˇkqhkQ C �!.h/
�
k�V 0

h
BtqhkH � kBtqhkH

�
(6.3.90)

so that

.1C �/ŒŒqh��h C �!.h/kBtqh � �V 0

h
BtqhkH � ˇkqhkQ (6.3.91)

and the result follows easily. ut
Remark 6.3.8. Actually, by Pythagora’s theorem, we obviously have, for every qh 2
Qh:

kBtqhk2H D kBtqh � �V 0

h
Btqhk2H C k�V 0

h
Btqhk2H : (6.3.92)

However, as we have seen, the triangle inequality (6.3.89) is enough for our proof.
ut

Lemma 6.3.3 implies that H.3 holds, with the above choices for Œ � �h and Gh, with a
constant �3 independent of h, and with �2 D !2.h/.
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Remark 6.3.9. In certain cases, it would be more convenient to introduce another
finite element space QVh � H , and use a stabilising term like

R..uh; ph/; .vh; qh// D
�
Btph � � QV 0

h
Btph; B

tqh � � QV 0

h
Btqh

�

H
(6.3.93)

instead of (6.3.85). Then, Lemma 6.3.3 will still hold (and consequently H.3 will
also hold), provided that we have some additional result that guarantees, in the
particular case under study, that

kBtqhkH � C.kBtqh � � QV 0

h
BtqhkH C k�V 0

h
BtqhkH/ 8qh 2 Qh (6.3.94)

for some constant C independent of h. ut
In view of the above remark, it might be convenient to treat the two cases (that is:

using (6.3.85) or (6.3.93) when (6.3.94) also holds) together. For this, we introduce
the following assumption.

A.3 With the notation of Assumption A.2, we consider a space QVh � H and we
assume that there exists a positive constant Q
, independent of h, such that

k�VhBtqhkH C kBtqh � � QVhB
tqhkH � Q
 kBtqhkH 8 qh 2 Qh: (6.3.95)

ut
Assumption A.3 obviously holds, for instance, if QVh D f0g, or more generally
whenever QVh � Vh. The case of a QVh larger than Vh, instead, will work only in
some special case, and will require an ad hoc (and sometimes delicate) proof. We
can collect the result of Lemma 6.3.3 and the above discussion in the following
theorem.

Theorem 6.3.3. Assume that Assumptions A.1, A.2, and A.3 hold. Assume more-
over that the full ellipticity condition (6.3.17) holds. Assume that we are given
subspaces Vh � V and Qh � Q, and we take Wh WD Vh 
 Qh with (6.3.18)
and (6.3.19). Set

Gh..vh; qh// WD Btqh � � QVhB
tqh: (6.3.96)

Then, H.3 holds with a constant �3 independent of h, and with �2 D !2.h/.

We are therefore in a situation very similar to that of Example 6.3.6. A very
reasonable choice would then be to use an r that also behaves as !.h/2 as in
Example 6.3.7. Then using Theorem 6.3.1 as in (6.3.75), we have the following
theorem.

Theorem 6.3.4. Assume that A.1, A.2, and A.3 hold, and let .u; p/ be the solution
of Problem (6.1.5). Assume that, in (6.2.17), R is defined through (6.3.85), and
that r is a positive number � !.h/2. Then, Problem (6.2.17) has a unique solution
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.uh; ph/ and there exists a constant C , independent of h and r , such that, for every

.uI ; pI / 2 Vh 
Qh, we have:

kuI � uhk2V C kpI � phk2Q

� C
�
ku � uIk2V C kp � pIk2Q C rkGh.0; pI /k2

�
:

(6.3.97)

Proof. The proof is an immediate consequence of (6.3.53) as in (6.3.74) and
(6.3.75). ut
Remark 6.3.10. The convenience in using r > !2.h/ (including the case of an r
fixed that does not depend on h) can occur when the term kGh.0; pI /kH in (6.3.97)
is already small. Indeed, with a choice of the type (6.3.93), we would have

kGh.0; pI /kH D kBtpI � � QVhB
tpIkH

� kBt.pI � p/ � � QVhB
t .pI � p/kH C kBtp � � QVhB

tpk
� CkBt.p � pI /kH C k.I � �V th/BtpkH

(6.3.98)

that could be small whenever Btp is smooth and QVh has good approximation
properties. ut

Remark 6.3.11. It is clear that the condition r � !2.h/ could be replaced with
r � 
!2.h/ for some 
 > 0 independent of h. This, indeed, will make the notation
in the proof heavier, but the final result will end up in a different value of the constant
C in (6.3.97). ut

Remark 6.3.12. As usual, we can then take uI and pI as the best approximations
of u and p, respectively (in the respective norms), and then deduce an estimate for
ku � uhkV C kp � pIkQ by the triangle inequality. ut

We now consider the case of an r smaller that !2.h/.

Theorem 6.3.5. In the same assumptions as in Theorem 6.3.4, taking r � !2.h/,
we have:

kuI � uhk2V C ŒŒpI � ph��
2 C rkpI � phk2Q

� C
�2!2.h/

r
.ku � uIk2V C kp � pIk2Q/C rkGh.0; pI /k2

�
:

(6.3.99)

Proof. The proof is again an easy consequence of (6.3.53) in Theorem 6.3.1.

Remark 6.3.13. In applications, the choice of the form of r.h/ will be done in
order to get the best possible estimate. In particular, the choice r D 
!.h/2 will
be the best choice when QVh D 0 and first order approximations are employed.
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This situation will be met for instance in the Brezzi-Pitkäranta stabilisation for the
Stokes problem considered in Chap. 8, that however could be treated by the simpler
estimates of Example 6.3.7. ut

6.4 Enhanced Strain Methods

The so-called “enhanced strain” methods have become popular as a stabilising
device. We shall try to give a feeling of how they work and the way they can be
applied to mixed methods. We shall however first consider a more classical setting.
Let us thus consider two Hilbert spaces V and Q. To simplify the notation, we
assume, from the very beginning, that Q is identified with its dual space, that is
Q 	 Q 0. We then assume that we have a continuous operatorB from V toQ D Q 0
and a continuous isomorphism C from Q onto Q. We want to solve a variational
problem of the form,

inf
v2V

1

2
.CBv;Bv/Q � hf; viV 0�V : (6.4.1)

As usual, we consider an analogous problem in subspaces Vh and Qh where we
make the assumption that B.Vh/ � Qh. We want to solve

inf
vh2Vh

1

2
.CBvh; Bvh/Q � hf; vhiV 0�V : (6.4.2)

In some cases, for instance in an almost incompressible elasticity problem, the
numerical solution may behave badly: a locking phenomenon can occur when
problem (6.4.2) is too stiff. To build an enhanced method, we introduce a new space
Eh � Q and we change the problem into

inf
vh2V;�2Eh

1

2
.C.Bvh C �/; .Bvh C �//Q � hf; vhiV 0�V ; (6.4.3)

where � 2 Eh is some “enhancement” of Bvh. In terms of mathematical
programming, this would be called a “slack variable”. The optimality conditions
of (6.4.3) are

.C.Buh C �/; Bvh/Q � hf; vhiV 0�V D 0; 8 vh 2 Vh;

.C.Buh C �/; ı/Q D 0; 8 ı 2 Eh: (6.4.4)

Assuming, for simplicity, that C.Eh/ � Eh (as it is almost always the case in
practice), and denoting by PE the projection on Eh, the last equation of (6.4.4) can
be read:

C� D �PECBuh (6.4.5)
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and taking this expression into the first equation, we obtain

.C.I � PE/Buh; Bvh/Q � hf; vhiV 0�V D 0; 8 vh 2 Vh; (6.4.6)

which is clearly a weaker formulation of the original problem. This idea has
been used to obtain stable formulations for a variety of problems such as nearly
incompressible elasticity or simulation of very thin structures.

We shall now see briefly, following [284], how this idea can be extended to the
case of a mixed formulation (that we repeat once more for the sake of convenience)

(
a.u; v/C b.v; p/ D .f; v/V 8 v 2 V;
b.u; q/ D .g; q/Q 8 q 2 Q; (6.4.7)

assuming again that Q is identified with its dual space.
We shall not try to cover all cases: to avoid unnecessary technicalities, we shall
concentrate on the inf-sup condition. We shall then suppose that the bilinear form
a.u; v/ can be decomposed as

a.u; v/ D aD.u; v/C �.Bu; Bv/; (6.4.8)

where aD.u; v/ is coercive on the kernel ofB so that, according to Proposition 4.3.4,
a.u; v/ is coercive on the whole space V if � > 0. We write explicitly:

�
aD.uh; vh/C �.Buh; Bvh/C .Bvh; ph/ D .f; vh/ 8 vh 2 Vh;
.Buh; qh/ D .g; qh/ 8 qh 2 Qh:

(6.4.9)

Following the idea of enhanced methods, we introduce a subspace Eh of Q and we
change the problem into

8
ˆ̂<

ˆ̂:

aD.uh; vh/C �.Buh C �;Bvh/C .Bvh; ph/ D .f; vh/ 8 vh 2 Vh;
�.Buh C �; ı/C .ı; ph/ D 0 8 ı 2 Eh;
.Buh C �; qh/ D .g; qh/ 8 qh 2 Qh:

(6.4.10)

The second equation of (6.4.10) can be read as

� D �PEBuh � .1=�/PEph: (6.4.11)

Bringing (6.4.11) into the first and the last equation of (6.4.10), we get:

(
aD.uh; vh/C �..I � PE/Buh; Bvh/C b.vh; .I � PE/ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; .I � PE/qh/ � .1=�/.PEph; PEqh/ D .g; qh/ 8 qh 2Qh;

(6.4.12)
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where in the second equation we used the fact that ..I � PE/Buh; qh/ is equal to
b.uh; .I � PE/qh/.

We can now consider two interesting special cases. In the first one, we choose
Eh so that PEBvh D 0 for any vh. Equations (6.4.12) now simplify to

�
aD.uh; vh/C �.Buh; Bvh/C b.vh; ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; qh/� .1=�/.PEph; PEqh/ D .g; qh/ 8 qh 2 Qh:

(6.4.13)

This is clearly like using a penalty method to stabilise ph, as we have seen already
in Remark 4.3.7. We have already seen these methods in Example 6.3.5, and we
shall discuss their applications at various occasions in the following chapters, and
in particular in Chap. 8.

It is also interesting to give a look at the case where we choose as Eh a subspace
ofQh. Let us denote byQh the orthogonal complement of Eh and by P 	 I � PE
the projection onto Qh. We can now write (6.4.12) as

�
aD.uh; vh/C �.PBuh; PBvh/C b.vh; Pph/ D .f; vh/ 8 vh 2 Vh;
b.uh; P qh/� .1=�/.PEph; PEqh/ D .g; qh/ 8 qh 2 Qh:

(6.4.14)

Writing the second equation for qh D qh 2 Qh and then for qh D ı 2 Eh, we have

b.uh; qh/ D .g; qh/ 8 qh 2 Qh (6.4.15)

plus

cPEph D PEg: (6.4.16)

Thus, we have simply written a discrete problem in Vh 
Qh:

�
aD.uh; vh/C �.Buh; Bvh/C b.vh; ph/ D .f; vh/ 8 vh 2 Vh;
b.uh; qh/ D .g; qh/ 8 qh 2 Qh;

(6.4.17)

with B D P.B/, and then corrected ph D ph C .1=�/PEg.

Is that all? By no means! There are more things in Heaven and Earth, Horatio,
than are dreamt of in your philosophy.
And among all those things, “stabilisation methods” hold a non negligible place.

6.5 Eigenvalue Problems

We shall consider in this section a general setting for the approximation of
eigenvalue problems associated with the mixed problems introduced in Sect. 5.1.
To make the presentation clearer, we recall some basic assumptions. We thus have
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two Hilbert spaces,V and Q. Moreover, a.v; v/ and b.v; q/ are continuous bilinear
forms on V 
 V and V 
Q,

9Ma > 0 8u; v 2 V a.u; v/ � MajjujjV jjvjjV
9Mb > 0 8v 2 V; 8q 2 Q b.v; q/ � MbjjvjjV jjqjjQ: (6.5.1)

To simplify the presentation, we also assume that

a.�; �/ is symmetric and positive semi-definite. (6.5.2)

Setting jjvjja WD .a.v; v//1=2 (which in general will only be a semi-norm on V ),
this immediately gives

8u; v 2 V a.u; v/ � jjujjajjvjja: (6.5.3)

These properties will be assumed to hold throughout all the section. For any given
pair .f; g/ in V 0 
Q0, the standard mixed problem is then to find .u; p/ in V 
Q
such that

�
a.u; v/C b.v; p/ D hf; vi 8v 2 V
b.u; q/ D hg; qi 8q 2 Q: (6.5.4)

We now know that in order to have existence, uniqueness and continuous depen-
dence from the data for problem (6.5.4), it is necessary and sufficient that the bilinear
forms a.�; �/ and b.�; �/ satisfy conditions (5.1.6) and (5.1.1). We thus suppose to
have on b.�; �/ the inf-sup condition.

There exists ˇ > 0 such that

inf
q2Q

sup
v2V

b.v; q/

jjvjjV jjqjjQ � ˇ: (6.5.5)

We shall, for simplicity, assume the ellipticity on the kernel (5.1.7) instead of (5.1.1).
There exists ˛ > 0 such that

a.v; v/ � ˛jjvjj2V 8v 2 KerB (6.5.6)

where the kernel KerB is defined as:

KerB D fv 2 V such that b.v; q/ D 0 8q 2 Qg: (6.5.7)

In Chap. 1 (see Sect. 1.3.4), we have seen many examples of mixed formulations
of boundary value problems related to various applications in fluid mechanics and
in continuous mechanics and we have shown that there are eigenvalue problems
associated with most of them. We shall be interested, here, in the approximation
of these eigenvalue problems. We thus consider the discrete analogue of (6.5.4).
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We assume that we are given two families of finite dimensional subspaces Vh and
Qh of V andQ, respectively, and we consider the discretised problem: find .uh; ph/
in Vh 
Qh such that

�
a.uh; vh/C b.vh; ph/ D hf; vhi 8vh 2 Vh
b.uh; qh/ D hg; qhi 8qh 2 Qh:

(6.5.8)

We have seen in Chap. 5 that discrete analogues of (6.5.5) and (6.5.6) are sufficient
to ensure solvability of the discrete problem together with optimal error bounds.
More precisely, the spaces Vh and Qh should satisfy two conditions:

• The discrete ellipticity on the kernel: there exists ˛ > 0, independent of h, such
that

a.vh; vh/ � ˛jjvhjj2V 8vh 2 KerBh; (6.5.9)

where the discrete kernel KerBh is defined as

KerBh D fvh 2 Vh such that b.vh; vh/ D 0 8vh 2 Vhg;

• The discrete inf-sup condition: there exists ˇ > 0, independent of h, such that

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

jjvhjjV jjqhjjQ � ˇ: (6.5.10)

Then, we have unique solvability of (6.5.8) and the following error estimate

jju � uhjjV C jjp � phjjV � C

	
inf
v2Vh

jju � vjjV C inf
q2Qh

jjp � qjjQ


: (6.5.11)

We now turn to the eigenvalue problems. As we have seen, the eigenvalue problem
which is naturally associated with the corresponding boundary value problem in
strong form does not correspond to taking .�u; �p/ as right-hand side of (6.5.4).
Instead, according to the different cases, the natural eigenvalue problem is obtained
by taking .�u; 0/ or .0;��p/ as right-hand side of (6.5.4). One expects, as for
instance in [299], that (6.5.9) and (6.5.10), together with suitable compactness
properties, are sufficient to ensure good convergence of the eigenvalues. However,
when the problem is set in mixed variational form, compactness is more delicate
to deal with. It was shown in [82] that, for the particular case of (1.3.85) for the
mixed Poisson problem, even if the operator mapping g into u is clearly compact,
assumptions (6.5.9) and (6.5.10) are not sufficient to avoid, for instance, the presence
of spurious eigenvalues in the discrete spectrum. Here, we address a more general
problem, in abstract form, and we look for sufficient (and, possibly, necessary) con-
ditions in order to have good approximation properties for the eigenvalue problems
having either .� u; 0/ or .0;��p/ at the right-hand side. As we shall see, in each of
the two cases, (6.5.9) and (6.5.10) might be neither necessary nor sufficient for that.
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Our approach will be more similar to the one of [188] than to the one of [112]
or [40]. Important references for the study of eigenvalue problems in mixed form
are [43,299,316]. With respect to sufficient conditions, our development introduces
minor differences. For instance, our bilinear form a.�; �/ is not supposed to be
positive definite. Moreover, previous related papers deal mostly with cases in which
the two components of the solution of the direct problem are both convergent,
while we accept discretisations that can produce singular global matrices. On the
other hand, having assumed symmetry of a.�; �/, we do not have to consider adjoint
problems as in [188]. However, in practical cases, the actual gain is negligible. The
major interest of the present setting consists in showing that our sufficient conditions
are, mostly, also necessary, thus providing a severe test for assessing whether a
given discretisation is suitable for computing eigenvalues or not. This justifies, in
our opinion, the apparently excessive generality of our abstract approach. Indeed,
as we shall see, convergence of discrete eigenvalues does not even imply, for mixed
formulations, the non-singularity of the corresponding global matrices.

Finally, we point out that we do not look here for a priori estimates for eigenvalues
and eigenvectors, but only deal with convergence. This is somehow in agreement with
the fact that necessary conditions are a major issue here. However, in most cases, a
priori error estimates can be readily deduced, checking the last step in the proofs of
sufficient conditions and/or applying the general instruments of, say, [43, 109, 299]
(see also [76] for a review).

6.5.1 Some Classical Results

Before considering the case of eigenvalue problems in mixed form, we need to recall
some classical facts. Let H be a Hilbert space and T W H ! H be a self-adjoint
compact operator. To simplify the presentation, we assume that T is non-negative.

We are interested in the eigenvalues � 2 R defined by

�T u D u; with u 2 H n f0g: (6.5.12)

In the above assumptions, it is well-known that there exists a sequence f�i g and an
associated orthonormal basis fuig such that

�iT ui D ui ;
0 � �1 � �2 � � � � � �i � � � � ;
lim
i!1�i D C1:

(6.5.13)

We also set, for i 2 N, Ei D span.ui /.
The following mapping will be useful. Let m W N ! N be the application which

to every N associates the dimension of the space generated by the eigenspaces of
the first N distinct eigenvalues; that is
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m.1/ D dim f˚iEi W �i D �1g ;
m.N C 1/ D m.N/C dim

˚˚iEi W �i D �m.N/C1
�
:

(6.5.14)

Clearly, �m.1/; : : : ; �m.N/ .N 2 N/ will now be the first N distinct eigenvalues
of (6.5.12).

Assume that we are given, for every h > 0, a self-adjoint non-negative operator
Th W H ! H with finite range. We denote by �hi 2 R the eigenvalues of the problem

�Thu D u; with u 2 H n f0g: (6.5.15)

Let Hh be the finite-dimensional range of Th and dimHh DW N.h/; then, Th admits
N.h/ real eigenvalues denoted �hi such that

0 � �h1 � � � � � �hi � : : : �hN.h/: (6.5.16)

The associated discrete eigenfunctions uhi , i D 1; : : : ; N.h/, give rise to an
orthonormal basis of Hh with respect to the scalar product of H . Let Eh

i WD
span.uhi /.

We assume that

lim
h!0

jjT � ThjjL.H/ D 0: (6.5.17)

It is a classical result in spectrum perturbation theory that (6.5.17) implies the
following convergence property for eigenvalues and eigenvectors:

8� > 0; 8N 2 N 9 h0 > 0 such that 8h � h0

max
iD1;:::;m.N/ j�i � �hi j � �;

Oı.˚m.N/
iD1 Ei ;˚m.N/

iD1 E
h
i / � �;

(6.5.18)

where Oı.E; F /, for E and F linear subspaces of H , represents the gap between E
and F and is defined by

Oı.E; F / D maxŒı.E; F /; ı.F;E/�;
ı.E; F / D sup

u2E; jjujjH D1
inf
v2F jju � vjjH : (6.5.19)

Vice versa, it is not difficult to prove that (6.5.18) is a sufficient condition
for (6.5.17).

6.5.2 Eigenvalue Problems in Mixed Form

Let us go back to the abstract framework introduced above. In particular, assume,
for the moment, that (6.5.5) and (6.5.6) are satisfied and that (6.5.8) has a solution
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for every .f; g/ in V 0 
 Q0. Problems (6.5.4) and (6.5.8) then define, in a natural
way, two operators S.f; g/ D .u; p/ (solution of (6.5.4)) and Sh.f; g/ D .uh; ph/
(solution of (6.5.8)). To make things precise, we introduce, for every h > 0, the dual
norms:

jjf jjV 0

h
D sup

vh2Vh
hf; vhi
jjvhjjV jjgjjQ0

h
D sup

qh2Qh

hg; qhi
jjqhjjQ : (6.5.20)

From Theorem 3.4.4 of Chap. 3, we know that (6.5.10) and (6.5.9) imply that the
discrete operator Sh is bounded from V 0

h 
 Q0
h to V 
 Q, uniformly in h, and we

have the bounds (3.4.103) and (3.4.104) (with x D uh and y D ph). Moreover,
Lemma 3.5.2 tells us that the converse holds true.

Lemma 6.5.1. If there exists a constant C > 0 such that, for every h > 0 and for
every quadruplet .uh; ph; f; g/ 2 Vh 
Qh 
 V 0 
Q0 satisfying (6.5.8), one has

jjSh.f; g/jjV�Q � C.jjf jjV 0

h
C jjgjjQ0

h
/; (6.5.21)

then (6.5.10) and (6.5.9) are verified with ˇ D 1=C and ˛ D 1=.C 2Ma/. Then,
(6.5.8) has a solution for all f 2 V 0

h and g 2 Q0
H .

Proof. This is a mere rewriting of Lemma 3.5.2. ut
We now consider the eigenvalue problem. For the sake of simplicity, let us

assume for the moment that there exist two Hilbert spaces HV and HQ such that
we can identify

HV 	 H 0
V ;

HQ 	 H 0
Q

(6.5.22)

and such that

V � HV � V 0
Q � HQ � Q0 (6.5.23)

hold with dense and continuous embedding, in a compatible way.
The restrictions of S and Sh toHV 
HQ now define two operators fromHV 
HQ

into itself.
As a consequence of (6.5.11) and Lemma 6.5.1, it is immediate to prove the

following proposition.

Proposition 6.5.1. Assume that (6.5.10) and (6.5.9) hold. Then, Sh converges
uniformly to S in L.HV 
 HQ/ if and only if S (from HV 
 HQ into itself) is
compact. ut

This proposition concludes the convergence analysis for the eigenvalue prob-
lems associated to (6.5.4) and (6.5.8). However, in the applications, one usually
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finds eigenvalue problems associated to (6.5.4) and (6.5.8) when one of the two
components of the datum is zero. Let us set these eigenvalue problems in their
appropriate abstract framework introducing the following operators:

CV W V 0 ! V 0 
Q0
CV .f / D .f; 0/

CQ W Q0 ! V 0 
Q0
CQ.g/ D .0; g/

(6.5.24)

and their adjoints

C �
V W V 
Q ! V

C �
V .v; q/ D v

C �
Q W V 
Q ! Q

C �
Q.v; q/ D q:

(6.5.25)

We shall say that (6.5.4) is a problem of the type .f; 0/ if the right-hand side
in (6.5.4) satisfies g D 0. Similarly, we shall say that (6.5.4) is a problem of the
type .0; g/ if the right-hand side in (6.5.4) satisfies f D 0. Correspondingly, we
shall study the approximation of the eigenvalues of the following operators:

TV D C �
V ı S ı CV W V 0 ! V; for problems of the type .f; 0/;

TQ D C �
Q ı S ı CQ W Q0 ! Q; for problems of the type .0; g/:

(6.5.26)

Whenever the associated discrete problems are solvable, we can introduce the
discrete counterparts of TV and TQ as:

T hV D C �
V ı Sh ı CV W V 0 ! V; for problems of the type .f; 0/;

T hQ D C �
Q ı Sh ı CQ W Q0 ! Q; for problems of the type .0; g/:

(6.5.27)

6.5.3 Special Results for Problems of Type .f; 0/ and .0; g/

In the remaining part of this section, we recall the results obtained in Sect. 3.5.3
on the solvability and boundedness of the discrete operators with either the discrete
inf-sup condition or the discrete ellipticity on the kernel for the special type of data
associated with our eigenvalue problems.

Problems of the type .f; 0/: From Proposition 3.5.2, we have the following result.

Proposition 6.5.2. If the discrete ellipticity on the kernel (6.5.9) holds and g D 0,
then problem (6.5.8) has at least one solution .uh; ph/. Moreover, uh is uniquely
determined by f and

jjuhjjV � 1

˛
jjf jjV 0

h
; (6.5.28)

where ˛ is the constant appearing in (6.5.9). ut
We also have the reciprocal from Proposition 3.5.3.
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Proposition 6.5.3. Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet .uh; ph; f; 0/ 2 Vh
Qh
V 0 
Q0 satisfying (6.5.8),
one has

jjuhjjV � C jjf jjV 0

h
; (6.5.29)

then the operator T hV is defined in all V 0 and the discrete ellipticity on the
kernel (6.5.9) holds with ˛ D 1=.C 2Ma/,Ma being the continuity constant of a.�; �/
(see (6.5.1)). ut
Problems of the form .0; g/: In the same way, we have from Proposition 3.5.5 the
following result.

Proposition 6.5.4. Assume that the following weak discrete inf-sup condition
holds: for every h > 0, there exists a constant ˇh > 0 such that

inf
qh2Qh

sup
vh2Vh

b.vh; qh/

jjvhjjV jjqhjjQ � ˇh: (6.5.30)

Then, for every g 2 V 0 and f D 0, problem (6.5.8) has at least one solution .uh; ph/
and ph is uniquely determined by g. ut
Proposition 6.5.5. Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet .uh; ph; 0; g/ 2 Vh
Qh
V 0 
Q0 satisfying (6.5.8),
one has

jjphjjV � C jjgjjV 0

h
: (6.5.31)

Then, the operator T hQ is defined in all Q0 and the weak discrete inf-sup con-
dition (6.5.30) holds. In general, (6.5.31) does not imply the discrete inf-sup
condition (6.5.10). ut
Proof. As in Proposition 6.5.5, the assumption (6.5.31) implies that, with obvious
notation, Bt

h is injective, therefore Bh will be surjective and this implies (6.5.30).
However, (6.5.10) cannot be deduced in general: consider the case when a.�; �/ 	

0, Vh D Qh and b.�; �/ is h times the scalar product in Vh. ut
Proposition 6.5.6. Assume that there exists a constant C > 0 such that for every
h > 0 and for every quadruplet .uh; ph; 0; g/ 2 Vh
Qh
V 0 
Q0 satisfying (6.5.8),
one has

jjuhjjV C jjphjjQ � C jjgjjQ0

h
; (6.5.32)

then both T hQ andC �
V ıShıCQ are defined onQ0 and (6.5.10) holds with ˇ D 1=C .

ut
Proof. This results directly from Proposition 6.5.6. ut
Moreover, we have the following proposition.



6.5 Eigenvalue Problems 389

Proposition 6.5.7. If there exists C > 0 such that

jjC �
Q ı Sh ı CV jjL.V 0

h ;Vh/
� C (6.5.33)

for every h > 0, then (6.5.10) holds with ˇ D 1=C . ut
Proof. The proof can be done as we did for Lemma 3.5.2. ut

We therefore see from Propositions 6.5.3 and 6.5.7, that for problems of the type
.f; 0/, the estimate (6.5.29) on uh implies (6.5.9) and the estimate (6.5.33) on ph
implies (6.5.10). Analogue properties do not entirely hold for problems of the type
.0; g/.

6.5.4 Eigenvalue Problems of the Type .f; 0/

In this section, together with (6.5.1) and (6.5.2), we assume that ellipticity on the
kernel (6.5.6) and the inf-sup condition (6.5.5) are verified. We also assume that we
are given a Hilbert space HV (that we shall identify with its dual space H 0

V ) such
that

V � HV � V 0 (6.5.34)

with continuous and dense embeddings. We consider the eigenvalue problem: find
.�; u/ in R 
 V , with u ¤ 0 such that there exists p 2 V verifying

a.u; v/C b.v; p/ D �.u; v/HV 8v 2 V;
b.u; q/ D 0 8q 2 Q: (6.5.35)

In the formalism of Sect. 6.5.2, this can be written as

�TV u D u: (6.5.36)

We assume that the operator TV is compact from HV to V .
Suppose now that we are given two finite dimensional subspaces Vh andQh of V

andQ, respectively. Then, the approximation of (6.5.35) is: find .�h; uh/ in R
 Vh,
with uh ¤ 0 such that there exists ph 2 Qh verifying

a.uh; vh/C b.vh; ph/ D �h.uh; vh/HV 8vh 2 Vh;
b.uh; qh/ D 0 8qh 2 Qh;

(6.5.37)

which can be written as

�h T
h
V uh D uh: (6.5.38)
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We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of T hV to TV in L.HV ; V / which, as we have seen, implies
the convergence of eigenvalues and eigenvectors (see (6.5.18)).

To start with, we look for sufficient conditions and for this, we introduce some
notation. Let V H

0 andQH
0 be the subspaces of V andQ, respectively, containing all

the solutions u 2 V and p 2 V , respectively, of problem (6.5.4) when g D 0; that
is, with the formalism of the Sect. 6.5.2,

V H
0 D C �

V ı S ı CV .HV / D TV .HV /

QH
0 D C �

Q ı S ı CV .HV /:
(6.5.39)

Notice that the following inclusion holds true:

V H
0 � KerB:

The spaces V H
0 andQH

0 will be endowed with the natural norm: that is, for instance,

jjvjjV H0 WD inffjj�jjHV ; TV � D vgI
jjqjjQH

0
WD inffjj�jjHV ; C �

Q ı S ı CV � D qg: (6.5.40)

Definition 6.5.1. We say that the weak approximability of QH
0 is verified if there

exists !1.h/, tending to zero as h tends to zero, such that for every p 2 QH
0 ,

sup
vh2KerBh

b.vh; p/

jjvhjjV � !1.h/jjpjjQH
0
: (6.5.41)

Notice that, in spite of its appearance, (6.5.41) is indeed an approximability
property. Actually, as vh 2 KerBh, we have b.vh; p/ D b.vh; p � pI / for every
pI 2 Qh, which has, usually, to be used to verify (6.5.41).

Definition 6.5.2. We say that the strong approximability of V H
0 is verified if there

exists !2.h/, tending to zero as h tends to zero, such that for every u 2 V H
0 , there

exists uI 2 KerBh such that

jju � uI jjV � !2.h/jjujjVH0 : (6.5.42)

Theorem 6.5.1. Let us assume that the discrete ellipticity on the kernel (6.5.9)
is verified. Assume moreover the weak approximability of QH

0 and the strong
approximability of V H

0 . Then, the sequence T hV converges uniformly to TV in
L.HV ; V /, that is, there exists !3.h/, tending to zero as h tends to zero, such that

jjTV f � T hV f jjV � !3.h/jjf jjHV ; for all f 2 HV : (6.5.43)
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Proof. Let f 2 HV and let .u; p/ 2 V H
0 
 QH

0 be solution of (6.5.4):
.u; p/ D S.f; 0/. As we assumed (6.5.9), Proposition 6.5.2 ensures that T hV is well
defined on V 0. Recall that u WD TV .f /. Let uh WD T hV .f / and let pI be such that
.uh; pI / is a solution of (6.5.8) (such a pI might not be unique). In order to prove
the uniform convergence of T hV to TV , we have to estimate the difference jju�uhjjV .
We do it by bounding the term jjuI � uhjjV , where uI is given by (6.5.42), and then
by using the triangular inequality. We have

˛jjuI � uhjj2V � a.uI � uh; uI � uh/

D a.uI � u; uI � uh/C a.u � uh; uI � uh/

� MajjuI � ujjV jjuI � uhjjV � b.uI � uh; p � ph/

�
 
MajjuI � ujjV C sup

vh2KerBh

b.vh; p � ph/

jjvhjjV

!
jjuI � uhjjV

D
 
MajjuI � ujjV C sup

vh2KerBh

b.vh; p/

jjvhjjV

!
jjuI � uhjjV :

(6.5.44)

The result then follows immediately from the strong approximability of V H
0 and the

weak approximability ofQH
0 . In particular, we can take!3.h/D .1CMa=˛/!2.h/C

!1.h/=˛ . ut
In the following theorem, we shall see that the assumptions of Theorem 6.5.1 are

also, in a sense, necessary for the uniform convergence of T hV to TV in L.HV ; V /.

Theorem 6.5.2. Assume that the sequence T hV is bounded in L.V 0; V /, and con-
verges uniformly to TV in L.HV ; V / (see (6.5.43)). Then, the ellipticity in the kernel
property (6.5.9) holds true. Moreover, both the strong approximability of V H

0 and
the weak approximability of QH

0 are satisfied.

Proof. Condition (6.5.9) can be obtained applying Proposition 6.5.3. Let u be an
element of V H

0 . Then, by definition of V H
0 , there is f 2 HV such that u D TV f .

Define uI WD T hV f . Uniform convergence implies the strong approximability of
V H
0 .

In a similar way, let p be an element of QH
0 . Then, by definition of QH

0 , p D
C �
Q ıS ıCV f for some f 2 HV . There might be more than one such f . We choose

f such that jjf jjHV � 3
2

inff fjjf jjHV W C �
Q ı S ı CV f D pg D 3

2
jjpjjQH

0
. Let

u WD TV f . Correspondingly, let uh WD T hV f and let ph be such that .uh; ph/ is a
solution of (6.5.8) with the same right-hand side (such a ph might not be unique).
Then, we obtain

sup
vh2KerBh

b.vh; p/

jjvhjjV D sup
vh2KerBh

b.vh; p � ph/

jjvhjjV D sup
vh2KerBh

a.u � uh; vh/

jjvhjjV
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� Majju � uhjjV � Ma!3.h/jjf jjHV � 3

2
Ma!3.h/jjpjjQH

0
;

which gives (6.5.41) with !1.h/ D 3
2
Ma!3.h/, that is, the weak approximability

of QH
0 . ut

Remark 6.5.1. We shall present examples of eigenvalue problems of type .f; 0/ for
the Stokes problem in Sect. 8.11. ut

6.5.5 Eigenvalue Problems of the Form .0; g/

In this section, together with (6.5.1) and (6.5.2), we assume that, for every given
g 2 Q0 and f D 0, problem (6.5.4) has a unique solution .u; p/ and that there
exists a constant C (independent of g) such that

jjujjV C jjpjjQ � C jjgjjQ0 : (6.5.45)

It is easy to see that this implies the inf-sup condition (6.5.5) but not the ellipticity
on the kernel (6.5.6).

Remark 6.5.2. An example of this situation can be found in Sect. 10.1.1 for the
 � ! formulation of the biharmonic problem. ut
In the following, we assume that we are given a Hilbert space HQ (that we shall
identify with its dual space H 0

Q) such that

Q � HQ � Q0 (6.5.46)

with continuous and dense embeddings. For simplicity, we assume that for every
q 2 Q, we have jjqjjHQ � jjqjjQ (with constant equal to 1).

We consider the eigenvalue problem: find .�; p/ in R 
 V , with p ¤ 0 such that
there exists u 2 V verifying

a.u; v/C b.v; p/ D 0 8v 2 V
b.u; q/ D ��.p; q/HQ 8q 2 Q (6.5.47)

which in the formalism of Sect. 6.5.2 can be written as

�TQp D �p: (6.5.48)

As we shall see, problems of the type .0; g/ are more closely related to the
abstract theory of [188] than problems of the previous type .f; 0/.

From now on, we assume that the operator TQ is compact from HQ into Q.
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We introduce two finite dimensional subspaces Vh and Qh of V and Q,
respectively. Then, the approximation of (6.5.47) reads: find .�h; ph/ in R 
 Qh,
with ph ¤ 0 such that there exists u2Vh verifying

a.uh; vh/C b.vh; ph/ D 0 8vh 2 Vh
b.uh; qh/ D ��h.ph; qh/HQ 8qh 2 Qh;

(6.5.49)

that is,

�hT
h
Qph D �ph: (6.5.50)

We are now looking for necessary and sufficient conditions that ensure the
uniform convergence of T hQ to TQ in L.HQ;Q/, which implies the convergence
of eigenvalues and eigenvectors (see (6.5.18)).

To start with, we look for sufficient conditions.
We introduce some notation. Let V 0

H and Q0
H be the subspaces of V and Q

respectively, containing all the solutions u 2 V and p 2 Q, respectively, of
problem (6.5.4) when f D 0; that is, with the formalism of Sect. 6.5.2,

V 0
H D C �

V ı S ı CQ.HQ/

Q0
H D C �

Q ı S ı CQ.HQ/ D TQ.HQ/:
(6.5.51)

It will also be useful to define the space V 0
Q0 as the image of C �

V ı S ı CQ (from
Q0 to V ).

As before, the spaces V 0
H ,Q0

H and V 0
Q0 will be endowed with their natural norms

(see for instance (6.5.40)).

Definition 6.5.3. We say that the weak approximability ofQ0
H with respect to a.�; �/

is verified if there exists !4.h/, tending to zero as h goes to zero, such that for every
p 2 QH

0 and for every vh 2 KerBh,

b.vh; p/ � !4.h/jjpjjQ0
H

jjvhjja: (6.5.52)

Notice that (6.5.52) is indeed an approximation property, as we already pointed out
for its counterpart (6.5.41).

Definition 6.5.4. We say that the strong approximability of Q0
H is verified if there

exists !5.h/, tending to zero as h goes to zero, such that for every p 2 Q0
H there

exists pI 2 Qh such that

jjp � pI jjV � !5.h/jjpjjQ0
H
: (6.5.53)
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Notice that (6.5.52) and (6.5.53) are (much) weaker forms of assumption H.7
of [188].

Definition 6.5.5. Following Sect. 5.4.3, we say that an operator˘h from V (or from
a subspace of it) into Vh is a B-compatible operator with respect to the bilinear form
b.�; �/ and the subspaceQh � Q if it verifies, for all v in its domain,

b.v �˘hv; qh/ D 0 8qh 2 Qh; (6.5.54)

and there exists a constant C˘ , independent of h, such that:

jj˘hjjL.V 0
Q0
;V / � C˘: (6.5.55)

We now introduce a stronger form of (6.5.55).

Definition 6.5.6. B-Id-compatible operator
We shall say that the operator˘h is B-Id-compatible if it satisfies (6.5.54), (6.5.55)
and if moreover it converges to the Identity operator in norm, that is, if there exists
!6.h/, tending to zero as h tends to zero, such that for every v 2 V 0

H , we have

jjv �˘hvjja � !6.h/jjvjjV 0H : (6.5.56)

Remark 6.5.3. In Sect. 5.4.3, we have seen that (6.5.54) and (6.5.55) imply the
discrete inf-sup condition (6.5.10). Notice that (6.5.56) is strongly related to
assumption H.5 of [188]. As we shall see, the condition that!6.h/ goes to 0with h is
actually necessary for the convergence of eigenvalues. In [188], it is only assumed to
be bounded, that is, essentially (6.5.55). Indeed, their interest was in a priori bounds
(and not on necessity) and, moreover, they were dealing with direct problems (and
not with eigenvalues). In particular, (6.5.56) is not necessary to obtain point-wise
convergence of T hQ to TQ where the discrete ellipticity on the kernel (6.5.9) and the
discrete inf-sup condition (6.5.10) are sufficient. Notice that, from Remark 5.4.3, the
inf-sup (6.5.5) and its discrete counterpart (6.5.10) imply (6.5.55), but not (6.5.56).

ut
We can now prove the following result.

Theorem 6.5.3. Let us assume that there exists a B-Id-compatible operator ˘h W
V 0
Q0 ! Vh, that is satisfying (6.5.54)–(6.5.56). Assume moreover that the strong

approximability ofQ0
H is verified (see (6.5.53)) as well as the weak approximability

of Q0
H with respect to a (see (6.5.52)). Then, the sequence T hQ converges to TQ

uniformly from HQ into Q, that is, there exists !7.h/, tending to zero as h goes to
zero, such that

jjTQg � T hQgjjV � !7.h/jjgjjHQ; for all g 2 HQ: (6.5.57)
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Proof. As we recalled above (6.5.5) and (6.5.54)–(6.5.55) imply the discrete inf-sup
condition (6.5.10). Thanks to Proposition 6.5.4, T hQ is then well defined.

Let g 2 HQ and let .u; p/ 2 V 0
H 
 Q0

H be the solution of (6.5.4) with f D 0.
Recall that p D TQg. Let ph WD T hQg and let uh be such that .uh; ph/ is a solution
of (6.5.8) (such a uh might be not unique). In order to prove the uniform convergence
of T hQ to TQ, we have to find a priori estimates for the error jjp � phjjQ. Let Qg 2 Q0
be such that h Qg; p �phi D jjp�phjjQ and jj QgjjQ0 D 1. Take vt WD C �

V ı S ıCQ Qg,
hence jjvt jjV 0

Q0

� jj QgjjQ0 D 1 (see (6.5.40)). Then, we have

jjp � phjjQ D h Qg; p � phi D b.vt; p � ph/
D b.vt �˘hvt; p � ph/C b.˘hvt; p � ph/

D b.vt �˘hvt; p � pI/� a.u � uh;˘hvt/:

(6.5.58)

Let us estimate separately the two terms in the right-hand side:

b.vt �˘hvt; p � pI/ � Mbjjvt �˘hvt jjV jjp � pI jjQ
� Mb .jjvt jjV C jj˘hvt jjV / jjp � pI jjQ

a.u � uh;˘hvt/ � jj˘hvt jjajju � uhjja:
(6.5.59)

Using (6.5.55), we obtain the following estimate for ˘hvt

jj˘hvt jjV � C˘ jjvt jjV 0
Q0

� C˘: (6.5.60)

Putting together (6.5.58)–(6.5.60) and using (6.5.53), we obtain

jjp � phjjQ � Mb.1C C˘/jjp � pI jjQ C C˘ jju � uhjja
� Mb.1C C˘/!5.h/jjpjjQ0

H
C C˘ jju � uhjja:

(6.5.61)

To conclude the proof, there remains to estimate jju � uhjja. Thanks to the
triangular inequality and to (6.5.56), we bound only jj˘hu�uhjja using also (6.5.52)
and (6.5.54). Notice that ˘hu � uh belongs to KerBh

jj˘hu � uhjj2a D a.˘hu � u; ˘hu � uh/C a.u � uh;˘hu � uh/

� jju �˘hujjajj˘hu � uhjja � b.˘hu � uh; p � ph/
D jju �˘hujjajj˘hu � uhjja � b.˘hu � uh; p/

� jj˘hu � uhjja
�
jju �˘hujja C !4.h/jjpjjQ0

H

�
;

(6.5.62)
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which, due to (6.5.56), gives

jju � uhjja � 2jju �˘hujja C !4.h/jjpjjQ0
H

� 2!6.h/jjujjV 0H C !4.h/jjpjjQ0
H

(6.5.63)

and (6.5.57) holds with !7.h/ D Mb.1CC˘/!5.h/C 2C˘!6.h/CC˘!4.h/. ut
Remark 6.5.4. In Theorem 6.5.3, we have proved the uniform convergence of T hQ
to TQ in L.HQ;Q/. However, in Sect. 6.5.2, we have seen that the convergence
of the spectrum is equivalent to the uniform convergence of T hQ to TQ in L.HQ/.
Indeed, the latter holds under the weaker assumption that there exists a B-compatible
operator satisfying only (6.5.56) as we shall see in the following theorem. ut
Theorem 6.5.4. Let us assume that there exists a B-compatible operator
(see (6.5.54)) ˘h W V 0

Q0 ! Vh satisfying (6.5.56). Assume moreover that both

the strong approximability of Q0
H (see (6.5.53)) and the weak approximability

of Q0
H with respect to a.�; �/ (see (6.5.52)) are verified. Then, the sequence T hQ

converges uniformly to TQ in HQ.

Proof. We observe that (6.5.5) and (6.5.54) imply the weak discrete inf-sup
condition (6.5.30). Thanks to Proposition 6.5.4, T hQ is then well defined.

Let g 2 HQ and let .u; p/ 2 V 0
H 
 Q0

H be the solution of (6.5.4) with f D 0.
Recall that p D TQg. Let ph WD T hQg and let uh be such that .uh; ph/ is a solution
of (6.5.8) with right-hand side .0; g/ (such a uh might be not unique). We estimate
jjp � phjjHQ . Using a duality argument, let .ut; pt/ 2 V 
 V be defined by
.ut; pt/ WD S.0; p � ph/. Due to the definition (6.5.51), ut belongs to V 0

H with
the following estimate jjut jjV 0H � jjp � phjjHQ (see (6.5.40))

jjp � phjj2HQ D .p � ph; p � ph/ D b.ut; p � ph/

D b.ut �˘hut; p/C b.˘hut; p � ph/
D �a.u; ut �˘hut/ � a.u � uh;˘hut/

� jjujjajjut �˘hut jja C jju � uhjjajj˘hut jja
� jjujja!6.h/jjut jjV 0H C 2jju � uhjjajjut jjV 0H
� .!6.h/jjujja C 2jju � uhjja/ jjp � phjjHQ;

having assumed !6.h/ � 1. Hence,

jjp � phjjHQ � !6.h/jjujja C 2jju � uhjja:

The rest of the proof follows the same lines as the one of Theorem 6.5.3,
using (6.5.52) and (6.5.56) (see (6.5.62) and (6.5.63)). ut

The remaining part of this section is devoted to see what one can deduce from
the uniform convergence of T hQ to TQ.
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Theorem 6.5.5. Assume that the sequence T hQ is bounded in L.Q0;Q/. Then, there
exists a B-compatible operator (see (6.5.54)) ˘h W V 0

Q0 ! Vh such that

jju �˘hujja � C jjujjV 0
Q0

: (6.5.64)

Proof. Let u belong to V 0
Q0 . Then, by definition, u D C �

V ıS ıCQg for some g 2 Q0.
There is only one g in this condition, and therefore, by definition, jjujjV 0

Q0

D jjgjjQ0

(see (6.5.40)). Let p 2 Q be such that .u; p/ D S.0; g/. Let ph WD T hQg; notice that,
by assumption, jjphjjQ � C jjgjjQ0 . By Propositions 6.5.5 and 6.5.4, there exists at
least one uh such that .uh; ph/ 2 Vh 
 Qh is a corresponding discrete solution
of (6.5.8). If such a uh is unique, we define ˘hu WD uh. Otherwise, we still define
˘hu as the uh having minimum norm in V . By construction, we have (6.5.54) and

jj˘hujj2a D hg; phi � jjgjjQ0 jjT hQgjjQ � C jjgjj2Q0 D C jjujj2
V 0
Q0

: (6.5.65)

Let us bound jju �˘hujja:

jju �˘hujj2a D a.u �˘hu; u �˘hu/

D a.u; u �˘hu/� a.˘hu; u �˘hu/

D �b.u �˘hu; p/ � a.u �˘hu; ˘hu/:

(6.5.66)

The first term in the right-hand side can be handled as follows:

b.u �˘hu; p/ D b.u �˘hu; p � ph/

D hg; p � phi � b.˘hu; p � ph/

D hg; p � phi C a.u �˘hu; ˘hu/:

(6.5.67)

Inserting (6.5.67) in (6.5.66), we obtain

jju �˘hujj2a D �hg; p � phi � 2a.u �˘hu; ˘hu/

� jjgjjQ0jjp � phjjQ C 2jju �˘hujjajj˘hujja
� jjgjjQ0

�jjpjjQ C jjphjjQ
�C 2jju �˘hujjajj˘hujja;

(6.5.68)

and then the boundedness of T hQ and (6.5.65) imply (6.5.64). ut
Theorem 6.5.6. Assume that the sequence T hQ converges to TQ uniformly in

L.HQ;Q/. Then, for all p 2 Q0
H , there exists pI 2 Qh such that (6.5.53) holds

true.

Proof. Let p belong to Q0
H , then p D TQg for a suitable g in HQ. Let ph WD

T hQg be the corresponding discrete solution, then we define pI WD ph and the
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inequality (6.5.53) is an easy consequence of the uniform convergence of T hQg to
TQg in Q. ut
Theorem 6.5.7. Let us assume that the sequence T hQ is bounded in L.Q0;Q/ and
converges uniformly to TQ in L.HQ;Q/. In addition, we assume that the following
bound holds for the solutions of (6.5.8) with f D 0

jjuhjjV � C jjgjjQ0 : (6.5.69)

Then, there exists a B-compatible operator ˘h W V 0
Q0 ! Vh satisfying (6.5.55)

and (6.5.56). Moreover, we have the discrete inf-sup condition (6.5.10) and the weak
approximability of Q0

H with respect to a.�; �/ (see (6.5.52)) holds.

Proof. From Proposition 6.5.5, we have that C �
V ı S ı CQ is also well defined

and (6.5.10) holds. Let us check (6.5.55). For u 2 V 0
Q0 , there exists g 2 Q0 and

p 2 Q such that .u; p/ D S.0; g/. We set ˘hu WD C �
V ı Sh ı CQg. As we have

seen, (6.5.54) holds trivially, and now (6.5.55) also holds in virtue of (6.5.69), with
C˘ WD C .

Now, let us check (6.5.56). Let u belong to V 0
H ; by definition u D C �

V ı S ı CQg
for some g 2 HQ. As in the proof of Theorem 6.5.5, g is unique, and jjujjV 0H D
jjgjjHQ . Let p WD TQg; clearly, p 2 Q0

H . Let ph WD T hQg. By construction,
.˘hu; ph/ solves (6.5.8) with the right-hand side .0; g/. Moreover, by the same
computations as above, we arrive at (see the first line in (6.5.68))

jju �˘hujj2a D �hg; p � phi � 2a.u �˘hu; ˘hu/:

From this, we have

jju �˘hujj2a D �hg; p � phi � 2b.˘hu; p � ph/

� �jjgjjQ0 C 2Mbjj˘hujjV
� jjp � phjjQ

� .1C 2MbC /jjgjjQ0!7.h/jjgjjHQ
� .1C 2MbC /!7.h/jjgjj2HQ
D .1C 2MbC /!7.h/jjujj2

V 0H
;

(6.5.70)

where we used (6.5.69) and the uniform convergence of T hQ to TQ in L.HQ; V /

(see (6.5.57)). The bound (6.5.70) gives (6.5.56) with:

!6.h/ D ..1C 2MbC /!7.h//
1=2:

Now, let us check (6.5.52). If p 2 Q0
H , then p D TQg for a suitable g in HQ.

Let u be such that .u; p/ D S.0; g/ and set ph WD T hQg and uh WD ˘hu. Then we
get, for every vh 2 KerBh,
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b.vh; p/ D b.vh; p � ph/
D a.˘hu � u; vh/ � Majj˘hu � ujjajjvhjja

(6.5.71)

and (6.5.56) (already proved) ends the proof since, by definition:

jjujjV 0H D jjgjjHQ D jjpjjQ0
H
: ut

Examples for the mixed formulation of second order linear elliptic problems will
be presented in Chap. 7, Sect. 7.1.3. We also refer to Sect. 10.1.2 for an example
with the  � ! approximation of the biharmonic problems.



Chapter 7
Mixed Methods for Elliptic Problems

This chapter will present a first set of applications of the theory developed in the pre-
vious chapters. It will provide us with the occasion of introducing many ideas which
often have a more general scope than the simple considered case. We shall indeed
consider the most simple cases of non-standard methods for Dirichlet’s problem,
including hybrid methods. We then concentrate on numerical issues for the solution
of the discrete problems arising from the previous constructions. In the following
section, we sketch miscellaneous results on error estimates in different norms.
Section 7.6 is dedicated to an example of application to semiconductor devices
simulation. Section 7.7 discusses the sensitivity of low order mixed formulations to
mesh deformation. We shall then consider in Sect. 7.8 the relations between mixed
methods and the Finite Volume Method. A related idea, using a nonconforming
element, will then be discussed in Sect. 7.9 and shown not to be convergent. Finally,
Sect. 7.10 presents some applications of augmented formulations introduced in
Sect. 1.5.

Stabilised methods will also be developed. All this should provide the reader
with a first overview of non-standard methods and open the way to more complex
problems.

7.1 Non-standard Methods for Dirichlet’s Problem

7.1.1 Description of the Problem

This section presents a unified framework for the analysis of non-standard methods
for problems involving an elliptic, Laplacian-like, equation in R

n. Although we shall
mainly consider the case nD 2, most results can be extended to the case nD 3

using the construction developed in Chap. 2. We shall use the notation employed
in the simulation of Darcy’s law in reservoir simulation. The primal variable p will
represent a pressure and u WD gradp will be a velocity. We thus consider a problem
of the following type:

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 7,
© Springer-Verlag Berlin Heidelberg 2013
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8
ˆ̂<

ˆ̂:

� div A.x/gradp D f in ˝;

pj D g1 on �D

A.x/gradp � n D g2 on �N ;

(7.1.1)

where ˝ is a bounded domain in R
n and � D �D [ �N D @˝ . We assume A.x/

to be an n 
 n positive definite matrix and that its smallest eigenvalue is bounded
away from zero, uniformly with respect to x, that is,

hA.x/v; vi � ˛j vj2
Rn
; 8 v 2 R

n; (7.1.2)

with ˛ independent of x. We have already introduced this problem in Chap. 1
with A.x/ D I . Restricting ourselves temporarily to the case g1 D 0, the
standard variational formulation is the following minimisation problem (whenA.x/
is symmetric),

inf
q 2H1

0;�D
.˝/

1

2

Z

˝

Agradq:gradq dx �
Z

˝

f q dx �
Z

�N

g2 q d�; (7.1.3)

where (cf. Chap. 2)

H1
0;�D

.˝/ WD fq 2 H1.˝/j qj�D D 0g: (7.1.4)

It is classical that there exists a unique solution to this problem. We shall call
problem (7.1.3) the Primal Formulation.

Using duality methods, we also transformed, in Chap. 1, this problem to get a
Mixed Formulation, namely for f 2 L2.˝/ and g2 D 0,

inf
v2H0;�N .divI˝/

sup
q2L2.˝/

1

2

Z

˝

A�1v � v dx C
Z

˝

.div v C f / q dx

C
Z

�D

g1 v � n ds; (7.1.5)

where one has (cf. Sect. 2.1.1)

H0;�N .divI˝/ WD fv j v 2 H.divI˝/; v � nj�N D 0g; (7.1.6)

the sense of v � nj�N D 0 being defined as in Sect. 2.1.1. Later, we shall come back
to the non-homogeneous case v � n D g2 ¤ 0. Problem (7.1.5) is equivalent to the
Dual Formulation

inf
v 2H0;�N .divI˝/

div vCfD0

Z

˝

A�1v � v dx C
Z

�D

g1 v � n ds: (7.1.7)
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Problem (7.1.7) is a constrained problem (in the sense of mathematical program-
ming). The mixed formulation uses the Lagrange multiplier q to deal with the linear
constraint div v C f D 0.

It must be remarked that problem (7.1.7) is not, strictly speaking, the dual
of problem (7.1.3). That dual problem should be written with v 2L2.˝/n and
f 2H�1.˝/. Here, we use a modified form using a stronger space for v while
the regularity of q has been weakened. It must also be said that the approximation
of this problem is not the main interest. The reason for such a detailed study is
that it provides a simple framework that will later be generalised to other important
problems.

This section will thus be entirely devoted to the study of problems (7.1.3), (7.1.5)
and (7.1.7). We shall first consider approximations of problem (7.1.5), that is mixed
finite element methods. To work out such an approximation, we shall have to use
the finite element spaces approximatingH.divI˝/ built in Chap. 2.

To approximate the dual problem, we shall need to build vector functions v
satisfying the condition

div v C f D 0: (7.1.8)

This condition is the analogue of the equilibrium condition in elasticity theory and
approximations satisfying it will be called equilibrium methods. Finally, domain
decomposition methods will lead us to hybrid finite element methods. Hybrid
methods will be called primal or dual, depending on the formulation being used.
This distinction corresponds to assumed stress or assumed displacement hybrid
methods in elasticity theory.

Our analysis will rely directly on the properties ofH1.˝/ andH.divI˝/ and of
their approximations considered in Chap. 2.

7.1.2 Mixed Finite Element Methods for Dirichlet’s Problem

We are now able to consider in details the approximation of the mixed formulation

inf
v

sup
q

1

2

Z
A�1 v � v dx C

Z

˝

.div v C f /q dx C
Z

�D

g1 v � nds; (7.1.9)

with v 2 H0;�N .divI˝/ and q 2 L2.˝/. We can now see, by the results of
Sect. 7.1.1, that the last term of (7.1.9) makes sense if g1 2 HŒ1=2�.�D/ and that the
boundary integral must be read as a formal way of writing the duality between H

1
2

andH� 1
2 . Problem (7.1.9) is a saddle point problem. In the notations of Chaps. 3–5,

a.u; v/ D
Z

˝

A�1u � v dx (7.1.10)
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and

b.v; q/ D
Z

˝

q div v dx: (7.1.11)

The optimality conditions for (7.1.9) can be written as

8
<̂

:̂

a.u; v/C b.v; p/ D hg1; v � ni 8 v 2 H0;�N .divI˝/;

b.u; q/ D �
Z

˝

f q dx 8 q 2 L2.˝/:
(7.1.12)

We work with the spaces V WD H0;�N .div;˝/; Q WD L2.˝/. It is natural here to
identify Q and its dual space Q0. The operator B is then the divergence operator
from V into Q. This operator is surjective. Indeed, if f 2 L2.˝/ D Q is given,
we can solve the problem,

8
ˆ̂<

ˆ̂:

�4� D f in ˝;

�j�D D 0;
@�

@n
j�N D 0;

(7.1.13)

to find � 2 H1.˝/. Taking u D grad�, we have found u 2 H0;�N .divI˝/ with
div u C f D 0.

Remark 7.1.1. Note also that such a u will belong, for instance, to the space
.Ls.˝//n for some s > 2. Setting

W WD fv j v 2 .Ls.˝//n; div v 2 L2g \H0;�N .divI˝/; (7.1.14)

we have kukW � c kf kQ. Hence, B has a continuous lifting fromQ into W .
Moreover, we have coerciveness of a.�; �/ on KerB , although not on V . Using

assumption (7.1.2), we have, in fact, whenever div v D 0,

a.v0; v0/ � ˛ jv0j2.L2.˝//n D ˛ kv0k2H.divI˝/: (7.1.15)

The theory of Chap. 4 then applies in a straightforward way and we obtain existence
and uniqueness of a solution fu; pg to this problem. ut
Remark 7.1.2. Uniqueness of the Lagrange multiplier p is a consequence of the
surjectivity of B which implies KerBt D f0g. ut

The above results also enable us to consider a non-homogeneous problem, that
is, the case g2 ¤ 0 in (7.1.1). To do so, we consider any Qu such that

A�1 Qu � n D g2 on �N : (7.1.16)
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This is possible and can be done explicitly by considering a classical solution to
problem (7.1.1) with f D 0 and g1 D 0 and then taking Qu D gradp. We then look
for u D Qu C u0 with u0 2 H0;�N .divI˝/. This leads us to the problem

8
<̂

:̂

a.u0; v0/C b.v0; p/ D hg1; v0 � ni � a.Qu; v0/; 8 v 2 H0;�N .divI˝/;

b.u0; q/ D �
Z

˝

f q dx � b.Qu; q/; 8 q 2 L2.˝/:
(7.1.17)

This means that considering g2 ¤ 0 can be reduced to changing the right-hand side
of (7.1.2).

We are therefore ready to consider the approximation of the mixed formulation.
In Chap. 2, we built function spaces for the purpose of approximatingH.divI˝/.

We can now use to discretise problem (7.1.12) or (7.1.17) anyone of the spaces
Mk.˝; Th/ introduced in Sect. 2.5.2. The approximation of Q D L2.˝/ is then
implicitly done:Qh must be L0.Dk; Th/, where, for example,

Dk D L0k for RT k and BDFMk;

Dk D L0k�1 for BDMk:
(7.1.18)

To fix ideas, we shall use, following [331], RT k.˝; Th/ and we define

Vh WD fvh j vh 2 RT k.˝; Th/; vh � nj�N D 0g: (7.1.19)

Such a definition is possible if the partition into elements is made in such a way that
there is no element across the interface between �D and �N on � . Having chosen
Vh as in (7.1.19), we must take

Qh WD L0k.˝/ D fqh j qhjK 2 Pk.K/g: (7.1.20)

We could replace this choice with any of the elements listed in Sect. 2.5. In order
to apply results of Chap. 5 without unnecessary technicalities, we shall restrict
ourselves to the case of affine elements.

We may now introduce the discrete problem: find .uh; ph/ 2 Vh 
Qh such that

8
ˆ̂<

ˆ̂:

Z

˝

A�1uh � vh dx C
Z

˝

ph div vh dx D h Qg; vhi 8 vh 2 Vh;
Z

˝

qh div uh dx C h Qf ; qhi D 0 8 qh 2 Qh;

(7.1.21)

where Qf and Qg eventually include non-homogeneous boundary conditions as in
problem (7.1.17), that is,

h Qg; vi D hg1; v � ni � a.Qu; vi; (7.1.22)

h Qf ; qi D
Z

˝

fq dx � b.Qu; q/: (7.1.23)
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To apply the results of Chap. 5, we must check that the bilinear form a.�; �/ is
coercive on KerBh and that we have the inf-sup condition. These properties will be
an easy consequence of the commutative diagram (2.5.27). In particular, we already
know from (2.5.28) that

div Vh D Qh: (7.1.24)

This shows that Bh is nothing but the restriction to Vh of the divergence operator
and that it is surjective so that KerBt

h D f0g. Moreover, we have

Bh D BjVh D div jVh ; (7.1.25)

and this obviously implies that we are in the special and interesting case where

KerBh � KerB: (7.1.26)

We can then rewrite (2.5.27) in the abstract form

W
B�����! Q 	 Q0

˘h

??y Ph

??y

Vh
Bh�����! Qh 	 Q0

h

(7.1.27)

withPh theL2-projection fromQ ontoQh. From Remark 7.1.1, we know thatB has
a continuous lifting from Q to W . Since the operators ˘h are uniformly bounded
fromW to Vh, we have

8
<̂

:̂

Z

˝

.div v � div ˘hv/qh dx D 0; 8 qh 2 Qh;

k˘hvkV � c kvkW :
(7.1.28)

The first part of (7.1.28) is a direct consequence of the commuting property of
diagram (7.1.27). Using (7.1.28) and Proposition 5.4.3, we obtain that the discrete
inf-sup condition is satisfied with a constant independent of h.

On the other hand, (7.1.26) implies that the coercivity of a.�; �/ on KerBh is trivial
and follows directly from (7.1.15).

We can now apply our abstract results to obtain the following proposition.

Proposition 7.1.1. Problem (7.1.21) has a unique solution. Moreover, if .u; p/ is
the solution of problem (7.1.17), we have the estimates

ku � uhkV � c inf
vh 2V kv � vhkVh ; (7.1.29)

kp � phkQ � c
�

inf
qh 2Qh

kp � qhkQ C inf
v 2Vh

ku � vhkV
�
: (7.1.30)
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Proof. We just apply Theorem 5.2.5, and in particular (5.2.36) that deals with the
case where KerBh � KerB . ut
Remark 7.1.3. It would be possible to use the results of Chap. 5 in a more precise
way to make explicit the constants in (7.1.29) and (7.1.30). ut

This direct use of Chap. 5 is optimal when the spaces RT or BDFM are used
but not with BDM. This comes from the fact that, for RT k.˝; T /, we have an
estimate on inf

vh 2Vh
kv�vhk0 and inf

vh 2Vh
k div v�div vhk0 of the same orderO.hkC1/,

whereas the latter is only O.hk/ for BDMk.˝I Th/ (Proposition 2.5.4). We must,
however, not despair. Denoting

V � WD .L2.˝//n; (7.1.31)

we have, as in Sect. 5.2.3,

(
a.u; v/ � kukV � kvkV � ;

a.v; v/ � ˛ kvk2V � ;
(7.1.32)

and indeed kvkV � D kvkV for any v 2 KerB . We can thus apply estimate (5.2.47)
of Theorem 5.2.6 which yields,

ku � uhkV � � c inf
vh 2Zh.g/

ku � vhkV � � c ku �˘hukV � ; (7.1.33)

which is now optimal. Estimate (7.1.29) is now optimal for any of the spaces
considered in Chap. 2.

We can now join the above results with the approximation results (2.5.29) and
(2.5.30).

Proposition 7.1.2. Let Mk.˝; Th/ be any of the spaces defined from (2.5.22). Let
L0.Dk; Th/ be the corresponding space given by (2.5.23). Let .u; p/ be the solution
of problem (7.1.17). Let .uh; ph/ be the solution in Vh 
 Qh D Mk.˝; Th/ 

L0.Dk; Th/ of problem (7.1.21). Then, we have the estimates

ku � uhk0 � chs kuks;˝; (7.1.34)

for s � k C 1. Moreover, we also have

kp � phk0 � chs .kpks C kuks/; (7.1.35)

for s � kC1 for the spaces RT and BDFM, and s � k for the spaces BDM. ut
Remark 7.1.4. The case of non-affine elements is somewhat more tricky. In that
case, the contravariant transformation G of (2.1.69) no longer has a constant
Jacobian and we no longer have Bh D div jVh because
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div v D div.G Ov/ D F
�div Ov
J

�
; (7.1.36)

where F is the standard change of variables (2.1.59). As the Jacobian is not constant
in the general case, div Ov … Qh. It can however be checked that KerBh ,! KerB .
We refer to [366] for a study of this case. The reader should be warned that using
non-affine elements can be very dangerous for what the approximation properties of
finite elements spaces are concerned (see Sect. 2.2.4 and 2.2.5). ut
Remark 7.1.5. In the affine case (where div Vh D Qh), a direct subtraction of the
second equations in problems (7.1.17) and (7.1.21) yields

Z

˝

.div u � div uh/qh dx D 0; 8 qh 2 Qh: (7.1.37)

This means that div uh is the L2.˝/-projection of div u onto Qh. An estimate of
k div u � div uhk then directly follows. ut

We shall come back to this mixed method in Sect. 7.2.2. We shall then consider
sharper estimates and introduce Lagrange multipliers to deal with continuity of uh �n
at interfaces. This will allow us in particular to build an efficient solution method
and to obtain from the results a better approximation of u. This method of Lagrange
multipliers is in fact quite general and will lead to a more standard interpretation
of otherwise non-standard methods. In particular, BDM spaces will recover in the
scalar variable the same order of convergence as the other methods.

7.1.3 Eigenvalue Problem for the Mixed Formulation

We shall now consider the results of Sect. 1.2.1 in the context of the formulation of
the Dirichlet problem described in the previous subsection. This eigenvalue problem
has already been introduced in (1.3.85). We recall it here for the convenience of the
reader. We thus consider a mixed formulation for the eigenvalue problem

��p D �p; p 2 H1
0 .˝/ (7.1.38)

and we want to solve
8
ˆ̂<

ˆ̂:

Z

˝

u � v dx C
Z

˝

p div v dx D 0; 8 v 2 H.divI˝/;
Z

˝

div u q dx D ��
Z

˝

p q dx; 8 q 2 L2.˝/:
(7.1.39)

We now have V WD H.divI˝/ and Q WD L2.˝/. As usual, we identify L2.˝/
with its dual space so that in the notation of Sect. 6.5.2, we have Q D HQ D Q0 D
L2.˝/. Referring to definitions (6.5.39), it is easy to see (using e.g. [233]) that if
˝ is, for instance, a convex polygon, then V 0

H , the space where eigenvectors of the
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Laplace operator are to be found, is contained in H2.˝/\H1
0 .˝/ that V 0

H 	 V 0
Q0

and that Q0
H D grad.V 0

H / � .H1.˝//2.
Let Vh andQh be finite dimensional subspaces of V andQ respectively. We can

now define the discrete eigenvalue problem,

8
ˆ̂<

ˆ̂:

Z

˝

uh � vh dx C
Z

˝

ph div vh dx D 0; 8 vh 2 Vh;
Z

˝

div uh qh dx D ��h
Z

˝

ph qh dx;8 qh 2 Qh:

(7.1.40)

We consider, first, classical approximations of H.divI˝/; for instance, we can
choose as Vh the spaces of the elements RT k , BDMk and BDFMk introduced
in Chap. 2.

Correspondingly,Qh will be the space Dk D divVh defined in (7.1.18).
As stated in the previous section (see (7.1.28)), a B-compatible operator satisfy-

ing (6.5.55) can be constructed for all these choices of finite element spaces.
Moreover, we have, by Proposition 2.5.4, that (6.5.56) holds true for the

approximations that we consider. Since Qh D divVh, then KerBh � KerB , hence
the discrete ellipticity on the kernel (6.5.9) and (6.5.52) trivially hold. To apply the
theory of Sect. 6.5.5, there remains only to verify the strong approximability ofQ0

H ,
that is

jjq � qI jj0 � !5.h/jjqjj1 for all q 2 H1.˝/; (7.1.41)

which also holds thanks to standard approximation properties of piecewise poly-
nomial spaces. We may thus state that the eigenvalue problem (7.1.40) is a good
approximation of (7.1.39) when proper finite element spaces are employed.

However, for various reasons, see for instance [52, 378], one might want to
approximate Vh by continuous functions, for instance the space L11 introduced in
Chap. 2, using therefore finite element spaces that are not especially fit for mixed
formulations.

In constructing these new spaces, one might believe that the standard dis-
crete ellipticity and discrete inf-sup conditions would be sufficient in order to
approximate correctly eigenvalues and eigenvectors, once Qh satisfies the strong
approximability inQ0

H , assumption of (6.5.53). However, while conditions (6.5.52),
(6.5.54) and (6.5.55), defining a B-compatible operator, can be deduced from the
discrete ellipticity on the kernel and the discrete inf-sup condition, the bound
(6.5.56) does not, as it is shown by the following choice of the so-calledP1�div.P1/
element on a criss–cross mesh. For this example, we shall see that discrete ellipticity
in the kernel and discrete inf-sup condition are satisfied, while the eigenvalues are
not correctly approximated.

Example 7.1.1. We introduce an approximation which will be considered later, in
Example 8.10.2 of Chap. 8. As we shall then see, this is a case where the discrete
inf-sup condition is not satisfied for the couple of spaces .V; Q/D .H1

0 .˝/; L
2.˝//

which we have to consider for the Stokes problem. However, we are in a different
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situation, with V WD H.divI˝/ and an inf-sup condition that depends on the norms
of the spaces at hand.

Let us then assume that ˝ is a square, which is divided into 2N 
 2N sub-
squares, each of them partitioned into four trianglesK by its diagonals, thus defining
a triangulation Th. Then, we set

Vh WD L11;
Qh WD div.Vh/ � fqh j qhjK 2 P0.K/ 8K 2 Thg: (7.1.42)

In [82], it was proved that the pair .Vh;Qh/ defined in (7.1.42) satisfies both the
discrete ellipticity and the discrete inf-sup conditions but that the sequence T hQ
does not converge uniformly to TQ in L2.˝/. This fact produces in the numerical
computations spurious eigenvalues which converge to points not belonging to the
resolvent set of TQ. It was also proved in [82] that on the same regular mesh
as above, the Q

1
� P0 approximation of Sect. 8.10.2 also satisfies a discrete inf-

sup condition on .H.divI˝/;L2.˝// and leads to the same kind of spurious
eigenvalues.The point is that the proof of the inf-sup condition does not yield
(6.5.56). ut

Hence, (6.5.56), which we have seen to be necessary, has to be checked
independently of the discrete ellipticity and the discrete inf-sup conditions. On the
other hand, as we have seen in Sect. 1.2.1, discrete ellipticity on the kernel is not
necessary, and we can obtain convergence of eigenvalues with finite element spaces
that fail to satisfy it, as we see in the following example.

Example 7.1.2. Let us consider, on a quasi-uniform triangulation, an approximation
of our eigenvalue problem, taking Vh WD BDM3 and Q1

h WD L01 instead of L02,
which would correspond to Qh D divVh as in (7.1.18) and would provide, as
we noted above, a correct approximation. Now, however, having chosen a smaller
Qh, we obtain a bigger KerBh (not any more contained in KerB). This will not
jeopardise property (6.5.56) (the ˘h operator working for the pair .BDM3;L02/
will also work for the pair .BDM3;L01/) but (6.5.52) is now at risk. However, by
the inverse inequality (see (2.2.60)),

b.uh; q/ D b.uh; q � qI / � cjjuhjj1jjq � qI jj0 � ch�1jjuhjja h2jjqjj2; (7.1.43)

for uh 2 KerBh and qI D L2-projection of q onto L01. Notice that this argument
will work for any pair .BDMk;L0r / provided k � .r C 2/ > 2 (in particular,
.BDM2;L00/ will not work). ut

7.1.4 Primal Hybrid Methods

We now consider for the first time a non-standard method (cf. [332]) based on
domain decomposition. We place ourselves in the framework of Example 1.3.4.
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To avoid complicating our presentation, we shall restrict ourselves to problem
(7.1.1) in which �D D � , that is, with Dirichlet boundary conditions on the whole
of � . This restriction is in no way essential and does not diminish the generality of
our results. We thus want to find p 2 H1

0 .˝/ solution of the minimisation problem,

inf
q 2H1

0 .˝/

1

2

Z

˝

Agradq � gradq dx �
Z

˝

fq dx; (7.1.44)

or equivalently of the variational problem

Z

˝

Agradp � gradq dx D
Z

˝

fq dx; 8 q 2 H1
0 .˝/: (7.1.45)

Introducing now a partition of˝ into elements, it is natural (this is in fact one of the
basic ideas of the finite element method) to define p on each element and to impose
continuity conditions at the interfaces. The standard assembly process is based on
this idea. We now follow a slightly different route. We use X.˝/ D Q

r H
1.Kr/ as

defined by (2.1.43) with the product norm (2.1.44).H1
0 .˝/ is then a closed subspace

ofX.˝/ and the fact of belonging toH1
0 .˝/ can be considered as a linear constraint

on p. From this, we can transform (7.1.44) into a saddle point problem:

inf
q 2X.˝/

sup
v 2H.divI˝/

X

K

n1
2

Z

K

Agradq � gradq dx �
Z

@K

q v � n ds �
Z

K

f q dx
o
;

(7.1.46)

where we formally write
R
@K q v � n ds for the duality between H

1
2 .@K/ and

H� 1
2 .@K/. The optimality conditions of problem (7.1.46) are indeed:

X

K

�Z

K

Agradp � gradq dx �
Z

@K

q u � n ds �
Z

K

f q dx

�
D 08q 2 X.˝/;

X

K

�Z

@K

p v � n ds

�
D 0 8 v 2 H.divI˝/: (7.1.47)

From Proposition 2.1.1, we then have p 2 H1
0 .˝/ so that p satisfies (7.1.45). Let

us now set our problem in the framework of the general theory of Chap. 4. Taking
V WD X.˝/ and Q WD H.divI˝/, we then define

a.p; q/ WD
X

K

nZ

K

Agradp � gradq dx
o

8p; q 2 V (7.1.48)

and

b.q; v/ WD
X

K

n
�
Z

@K

q v � nd�
o

8 q 2 V; 8 v 2 Q; (7.1.49)
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always using the formal integral notation for the duality between H� 1
2 .@K/ and

H
1
2 .@K/. The bilinear form b.q; v/ defines an operator B from V into Q0. We have,

from Propositions 2.1.1 and 2.1.2,

KerB D H1
0 .˝/ (7.1.50)

and

KerBt D fv j v 2 H.divI˝/; v � nj@K D 0; 8K 2 Thg
D
Y

K

H0;@K.divIK/: (7.1.51)

Loosely speaking, the operator B associates to p its jumps on inter-element
interfaces. We could also have defined it from V onto the space

M 1
2 D

Y

K

H
1
2 .@K/: (7.1.52)

We thus want to check the closedness of ImB by obtaining an inequality of the form

sup
q 2V

b.q; v/

kqkV � k kvkQ=KerBt : (7.1.53)

In the present case, it is obvious that one has

sup
q 2V

b.q; v/

kqkV D 1

2

nX

K

.kv � nk�1=2;@K /2
o1=2

(7.1.54)

and to obtain (7.1.53), it is sufficient to show that one has (on each element)

inf
v0 2H0;@K.divIK/ kv C v0kH.divIK/ � kv � nk�1=2;@K : (7.1.55)

However, (7.1.55) is readily obtained by solving a Neumann problem
Z

K

grad � � gradq dx C
Z

K

�q dx D
Z

@K

v � n q ds: (7.1.56)

Setting Ov D grad�, we have Ov � n D v � n and div Ov D � 2 L2.K/. Moreover, we
have

kOvkH.divIK/ D k�kH1 � kv � nk�1=2;@K (7.1.57)

and (7.1.55) follows.

Proposition 7.1.3. Let f 2 L2.˝/ be given. There exists a solution .p; u/ to
problem (7.1.47). The first component is unique and the second one is defined up
to an element of KerBt as defined by (7.1.51).
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Proof. Assumption (7.1.2) made on A implies that a.�; �/ is coercive on KerB D
H1
0 .˝/. The result follows by the closedness of ImB and Theorem 4.2.2. ut

Remark 7.1.6. The first component p is of course the unique solution of problem
(7.1.1). The second component can be chosen so that div uCf D 0. Indeed, taking
q D 1 onK and 0 elsewhere, we have from (7.1.37) for any solution u0,

Z

@K

v0 � n d� D
Z

K

div v0 dx D �
Z

k

f dx: (7.1.58)

It is then possible to solve on K the Neumann problem,

8
<̂

:̂

�4� D f C div u0;

@�

@n

ˇ̌
ˇ̌
@K

D 0:
(7.1.59)

The solution exists and is defined up to an additive constant, as the right-hand side is
compatible. Then, v0 D grad� 2 KerBt and u1 D u0Cv0 satisfies div u1Cf D 0.

ut
Remark 7.1.7. It is moreover possible to choose u D Agradp. Indeed, there comes
from the first equation of (7.1.47) that u �nj@K D A gradp �nj@K on anyK 2 Th: ut

We are now able to consider a discretisation of problem (7.1.47). We shall use,
as an example,

Vh WD L0kC1.˝/ � V D X.˝/ (7.1.60)

Qh WD fvhj vh 2 H.divI˝/; vh � n 2 Rk.@K/; 8K 2 Thg: (7.1.61)

Note that only the traces of vectors in Qh are polynomials. Our space Qh is in fact
infinite dimensional. This is no problem in practice as only the (finite dimensional)
traces are used in computing. We then solve the discrete problem

X

K

nZ

K

Agradph � gradqh dx �
Z

@K

qh uh � n ds �
Z

K

f qh dx
o

D 0

8 qh 2 Vh;
X

K

nZ

@K

ph vh � n ds
o

D 0 8 vh 2 Qh:

(7.1.62)

The first step in the analysis of such a discretisation is to examine the properties of
the operator Bh associated with the bilinear form b.qh; vh/:

The first point that comes out is that we do not have, as in the previous example,
KerBh � KerB; that is, functions in KerBh do not belong toH1

0 .˝/. It is, however,
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easy to see that their moments up to order k are continuous across inter-element
boundaries. This in turn implies, as the traces are polynomials of degree k C 1, that
we have continuity of the functions in KerBh at the k C 1 Gauss-Legendre points,
associated to a quadrature formula of degree k C 2, on every interface. Eliminating
the Lagrange multiplier vh thus yields a nonconforming approximation of problem
(7.1.47), namely: find uh 2 KerBh solution of

X

K

nZ

K

Agradph � gradh dx
o

D
Z

˝

f qh dx 8 qh 2 KerBh: (7.1.63)

We have already considered such approximations in Chap. 2 and their analysis is
fairly well established [142, 147, 148, 165, 211, 358, 360].

One can therefore say that primal hybrid methods are another way of introducing
nonconforming methods. The new point is to introduce an approximation of u D
Agradp which is more regular than the approximation deduced directly from ph.
Moreover, this approximation can be built in order to satisfy the equilibrium
conditions. Finally, the convergence analysis through the saddle point approach is
simpler than the standard one and permits to introduce correctly the “patch test”
arising in the analysis of nonconforming methods.

Before coming to this point, we first have to show existence and uniqueness of a
solution. With respect to the existence and uniqueness of the solution ph of (7.1.63),
we fortunately have no problem. It is obvious that

jqhjVh D p
a.qh; qh/ (7.1.64)

defines on Vh a continuous semi-norm. The kernel of this semi-norm is

M WD fqh j qh 2 L2.˝/; qhjK 2 P0.K/g D L00; (7.1.65)

and we have M \ KerBh D 0 so that a.ph; qh/ is coercive on KerBh:

a.q0h; q0h/ � ˛h jq0hj2Vh 8 q0h 2 KerBh: (7.1.66)

We do not know, however, how ˛h depends on h. This would require a discrete
Poincaré inequality and is quite technical to prove.

We shall rather obtain an error bound in the semi-norm jqhjVh using
Proposition 5.2.2. In order to do so, we must build an interpolate˘hu of u such that

b.qh; u �˘hu/ D 0 8 qh 2 M: (7.1.67)

However, this is immediate by taking ˘hu as defined by (2.5.26), provided u is at
least in W , defined by (7.1.14). We thus obtain the error bound

jp � phjVh � c
�

inf
qh 2KerBh

jp � qhjVh C ku �˘hukQ
�
: (7.1.68)
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Continuity point

Vanishing point

Fig. 7.1 ker Bh

Such an estimate is typical of nonconforming methods. The first term is readily
estimated by standard methods, that is, by the use of some interpolation operator.
The second one has already been considered. It must be remarked that as u is defined
only up to an element of KerBt , this norm depends in fact only on the values of
u � n and uh � n on the boundary of the elements. If u is regular, we get the same
order of accuracy as in the first term. We therefore recognise here a form of the
classical patch test: moments up to order k must be continuous to get the optimal
convergence rate [142]. This corresponds to the choice of multipliers belonging to
Pk.ei / on interfaces and thus to the choice (7.1.61) for Qh. Consistency terms that
appear in the analysis of nonconforming methods are nothing but the contribution of
the dual variable to error estimates. Choosing a poorer approximation would destroy
convergence properties. The main difficulty in the present situation will be to study
the convergence of uh. To do so, we now have to check the inf-sup condition. We
shall try to do it by the criterion of Proposition 5.4.3, that is, by building a proper
interpolation operator for p 2 V : given p 2 V D X.˝/, one must find Qph 2 Vh
such that

b.p � Qph; vh/ D 0; 8 vh 2 Qh; (7.1.69)

and depending continuously on p. This would prove KerBt
h � KerBt and the

inf-sup condition. We must then distinguish between two cases depending on
whether k is even or odd. To make things simpler, we shall restrict our presentation
to k D 1 or 2 (which are, by far, the most important in practice).

Example 7.1.3 (Hybrid method kD 1). This is the simplest case of a primal hybrid
method (or nonconforming method). Functions of Vh are piecewise linear and
KerBh contains those of them which are continuous at mid-side points on interfaces
(Fig. 7.1).

The space Qh=KerBt
h can be assimilated here to RT 0.˝/. Now taking

p 2X.˝/, one readily builds Qph by taking on each K
Z

ei

Qph ds D
Z

ei

p ds; i D 1; 2; 3: (7.1.70)



416 7 Mixed Methods for Elliptic Problems

X1 X2

X3

X4

X6

X5

Fig. 7.2 Gauss-Legendre
points and the nonconforming
elliptic bubble

It is then obvious that (7.1.69) holds. Moreover, checking continuity is
straightforward so that we have the error bound:

ku � uhkQ=KerBt � c .ku � vhkQ=KerBt C jp � phjVh/; 8 vh 2 Qh: (7.1.71)

In practice, this means that one can extract from such a nonconforming formulation
an approximation of gradp that is better than the direct one gradph. We shall
see later (Remark 7.4.2) how this approximation can be easily deduced from the
standard one by a simple post-processing trick [291]. ut
Example 7.1.4 (Hybrid Method, k D 2). This hybrid formulation yields the next
simpler case of a nonconforming method. Its use was long rejected because of a
problem in the choice of the degrees of freedom. Although the functions of KerBh
are continuous at two Gauss–Legendre points on each side, these points cannot be
used as degrees of freedom for their values are linked by a linear relation. Indeed,
let ai .1 � i � 6/ be the six values of a second degree polynomial on the six Gauss-
Legendre points of the sides of a triangle (Fig. 7.2) that is ai D p2.xi /:

One then has

.a6 � a5/C .a4 � a3/C .a2 � a1/ D
Z

@K

@p2

@t
ds D 0 (7.1.72)

[209]. In Example 2.2.5, we called nonconforming bubble the second-degree
function vanishing at the six Gauss–Legendre points (ai D 0) and taking value
1 at the barycentre of K . There also follows from (7.1.72) that one cannot define
QphjK by the six moments

Z

ei

Qph �i ds; �i 2 P1.ei / (7.1.73)

and this precludes checking (7.1.69) by the simple method of the previous example.
Considering the problem a little more thoroughly, one then sees that KerBt

h 6�
KerBt and that (7.1.71) cannot hold.

Indeed, KerBt
h contains one vector v0h that does not lie in KerBt . It is sketched in

Fig. 7.3, where the symbols C and � represent equal absolute values of the normal
component of vh.
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Fig. 7.3 The vector q0
h

This is the first occurrence of a pathological situation where the inf-sup condition
does not hold. In principle, this should imply some compatibility condition on the
data. However, in the present case, the second equation of (7.1.47) is always solved
with a zero right-hand side and Zh.g/ D Zh.0/ D KerBh is always non-empty.

It must be noted that, contrarily to other cases of spurious modes that we shall
meet, for instance in Chap. 8, the existence of u0h does not depend on the mesh.
Moreover, we know that its existence does not compromise the error estimates on
ph. One may therefore wonder if some convergence of uh could not be obtained,
modulo v0h, that is, using an inf-sup condition of the form

sup
qh 2Vh

b.qh; vh/

kqhkV � k0 kvhkQh=KerBth
: (7.1.74)

From Proposition 5.4.3, this will hold if, given p 2 V; b.p; v0h/ D 0, one can build
Qph 2 Vh such that (7.1.69) holds.

This can, indeed, be done through a construction that is not local and for which
we do not know how to prove that the operation ˘h W p ! ph is uniformly
continuous (with respect to h). We shall however be able to prove a partial result:
uh will converge in a quotient spaceQh=Mh with KerBt

h � Mh. In order to see this,
we first define on every elementK

v0K D v0hjK; (7.1.75)

and we denote by Q0
K the one-dimensional space generated by v0K . We then define

Mh WD P
K Q

0
h and

Q�
h WD Qh CMh: (7.1.76)

It must be noted thatQ�
h 6� H.divI˝/ so that we must now consider a nonconform-

ing framework replacingQ by Q� D Q
K H.divIK/ as in Sect. 5.5.4.

Let us first remark that the proof given for ImB to be closed is directly extended
to the operator B� W V ! Q� now associated with the bilinear form b.�; �/ as
this proof did not rely on any continuity property. It is also easy to check that one
now has
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KerB�t
h D Mh C KerBt ; (7.1.77)

where B�
h is evidently defined by the extension of b.�; �/ to Vh 
Q�

h .
Now considering the problem

(
a.p�

h ; qh/C b.qh; u
�
h/ D hf; qhi; 8 qh 2 Vh;

b.p�
h ; v

�
h/ D 0; 8 v�

h 2 Q�
h ;

(7.1.78)

it is easy to see that p�
h D ph. This comes from

b.ph;mh/ D 0; 8mh 2 Mh; (7.1.79)

which is a direct consequence of (7.1.78). We thus have increased the indeterminacy
of vh without changing ph. To prove convergence, we shall use Proposition 5.3.1
which is directly suitable. Let us thus define in the notations of this proposition,

QQh WD Mh;

OQh WD Q�
hnMh;

OVh WD Vh:

(7.1.80)

From (7.1.79), we have b.qh; Qvh/ D 0; 8 qh 2 Vh; 8 Qvh 2 QQh, and there remains
to prove that b.�; �/ satisfies an inf-sup condition on Vh 
 OQh.

To do so, by Proposition 5.4.3, one must build in a continuous way ph D ˘hp

such that

b. Qph � p; Ovh/ D 0 8 Ovh 2 OQh: (7.1.81)

Working in OQh (from which components v0K have been removed) now enables us
to do it in a local way, that is, element by element. It is indeed sufficient, as in
the previous example (k D 1), to interpolate u using its moments. This does not
determine Qph in a unique way and a minimum norm solution has to be chosen to get
the desired uniform continuity property. We thus have the inf-sup condition (k being
independent of h),

sup
qh 2Vh

b.qh; v
�
h/

kqhkVh
� k0 kv�

hkQ�

h =Mh
8 v�

h 2 Q�
h : (7.1.82)

From the results of Sect. 5.3.3, we obtain that if the exact solution p satisfies

b.p;mh/ D 0 8mh 2 Mh D QQh; (7.1.83)

we have the estimate

ku � u�
hkQ�

h =Mh
�
	

inf
vh 2Qh

jju � vhjjQ C jp � phjVh



C inf
v�

h 2Q�

h

jju � v�
h jjQ� :

(7.1.84)
ut
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Remark 7.1.8. It must be noted that condition (7.1.83) is not so stringent as it may
appear. Indeed, given p 2 V and replacing Bp by B Oph, with Oph the interpolate of
p in Vh, introduces a perturbation of the problem which now has Oph as a solution.
This means that, by a slight modification of the data, it is possible to switch from a
non-compatible problem to a compatible one without really changing the solution.

ut
Remark 7.1.9. Knowing that v�

h 2 Q�
h implies that vh�n is continuous at mid-points

of the interfaces. It can be checked, using the results of [209], that the converging
part of uh is sometimes in fact equal to gradph which satisfies the same continuity
properties for some right-hand sides. However, the procedure sketched above can be
extended to higher approximations, the case k D 4 for instance, where this equality
will no longer hold. ut
Remark 7.1.10. In the case k D 2, it is possible to build the solution uh of (7.1.70)
starting from grad Qph with Qph 2 QQh. The trick is to use a spanning tree of the
elements: starting from the root, one can then adjust ˛Kv0K on each element so that
vh �n is continuous on the interfaces with previously visited elements. The properties
of gradph shown in [209] enable us to do so in a unique way as ˛Kv0K can be chosen
arbitrarily on the root of the spanning tree. This is obviously not a local construction.
Its continuity depends on the diameter of the spanning tree and thus on h and this
leads us to believe that our result is probably optimal. This is not the case for the
construction for k D 1 described earlier, which is local. ut

7.1.5 Primal Macro-hybrid Methods and Domain
Decompositions

We consider again problem (7.1.45), but this time we suppose that we have a
two level-decomposition of ˝: a coarse-level decomposition into macrolelements
(or subdomains) ˝1; : : : ;˝S of a rather arbitrary shape, and then a further
decomposition of each macroelelement into more traditional finite elements (let’s
say “triangles” to fix the ideas).

We now start by considering, this time,X.˝/ D Q
s H

1.˝s/ (again as defined by
(2.1.43) with the product norm (2.1.44)). Mimicking (7.1.47) we can now consider
the problem

X

s

�Z

˝s

Agradp � gradq dx �
Z

@˝s

q u � n d` �
Z

˝s

f q dx

�
D 0 8q 2 X.˝/;

X

s

�Z

@˝s

p v � nd`
�

D 0 8 v 2 H.divI˝/: (7.1.85)
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(again in the unknowns p and u � n) where we keep writing
R
@˝s

q v � nd`
for the duality between H

1
2 .@˝s/ and H� 1

2 .@˝s/. This time, however, the final
discretization (with the passage to the finite dimensional case) is not made by
choosing a polynomial space in each subdomain ˝s , but rather discretizing each
H1.˝s/ with a space V s

h made of piecewise polynomials on the finer-level subgrid,
while u�n (and v �n) are instead discretized by suitable piecewise polynomials spaces
Mh.e/ on each edge e (or face, in three dimensions). A convenient choice of this
last discretization (on the interfaces) gives rise to the popular “mortar method” of
Bernardi-Maday-Patera [69] in the framework of domain decomposition methods:

X

s

�Z

˝s

Agradph � gradqh dx �
Z

@˝s

qh uh � nd`

�
Z

˝s

f qh dx

�
D 0 8qh 2

Y

s

V s
h ;

X

s

�Z

@˝s

ph vh � nd`
�

D 0 8 vh 2
Y

e

Mh.e/:

(7.1.86)

(with the obvious convention that an element vh � n 2 Qe Mh.e/ changes sign when
considered as being defined on a certain @˝s or on the boundary of the abutting
macro-element)

Remark 7.1.11. It is clear that, in the mortar-like approach as well, the interelement
solution uh � n will be an approximation of the flux u � n D Agradp � n at the
interelement boundaries. Substituting (brutally) Agradph � n in place of uh � n in the
first equation of (7.1.86), and considering for simplicity that the two decompositions
(coarser and finer) coincide, we find then

X

K

�Z

K

Agradph � gradqh dx

�
Z

@K

qh Agradph � nd` �
Z

˝s

f qh dx

�
D 0 8qh 2

Y
Vh; (7.1.87)

that is exactly the non stabilised version of the most elementary Discontinuous
Galerkin approach [13] (often called Incomplete Interior Penalty Galerkin, or IIPG
[361]).

7.1.6 Dual Hybrid Methods

We now turn to another use of domain decomposition, this time to solve the dual
formulation (7.1.7) [333, 365]. In this formulation, the main difficulty is to work in
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the affine subspace of H.divI˝/,

Wf WD fvf j vf 2 H.div ˝/; div vf C f D 0g: (7.1.88)

If Neumann conditions were imposed on �N � � , it would also be necessary to ask
for vf to satisfy

vf � nj�N D g2: (7.1.89)

The idea of the dual hybrid formulation will again be to relax continuity, this
time for the normal trace v � n at interfaces between elements. Condition (7.1.89)
will also be treated weakly. We thus transform problem (7.1.7) into

inf
vf 2Vf

sup
qg1 2Qg1

1

2

Z

˝

A�1vf � vf dx C
X

K

Z

@K

vf � n qg1 ds �
Z

�N

g2 qg1 ds;

(7.1.90)

where, denoting Y.˝/ D Q
K

H.divIK/, one sets

Vf WD fv j v 2 Y.˝/; div vjK C f D 0; 8Kg; (7.1.91)

Qg1 WD fq j q 2 H1.˝/; qj�D D g1g: (7.1.92)

Taking an arbitrary element Ovf of Vf and an arbitrary element Oqg1 ofQg1 , one may
write (7.1.90) as

inf
v0 2V0

sup
q0 2Q0

1

2

Z

˝

A�1.v0 C Ovf / � .v0 C Ovf / dx

C
X

K

Z

@K

.v0 C Ovf / � n .q0 C Oqg1/ds �
Z

�N

g2.q0 C Oqg1/ds (7.1.93)

where V0 and Q0 are defined by (7.1.91) and (7.1.92) with f D 0 and g1 D 0.
Denoting as in the previous section

b.v; q/ D
X

K

Z

@K

v � n q ds; (7.1.94)

problem (7.1.93) is equivalent to finding .u0; p0/ 2 V0 
Q0 solution of
Z

˝

A�1u0�v0 dx C b.v0; p0/ D �
Z

˝

A�1 Ovf � v0 � b.v0; Oqg1/ 8 v0 2 V0;
(7.1.95)

b.u0; q0/ D �b. Ovf ; q0/C
Z

N

g2 q0 ds 8 q0 2 Q0: (7.1.96)
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This is now in standard form and we shall try to apply the general theory. First
note that we have

KerBt D
Y

K

H1
0 .K/ (7.1.97)

and

KerB D fv j v 2 H0;�N .divI˝/; div v D 0g: (7.1.98)

It is then clear that

a.u; v/ D
Z

˝

A�1u � v dx (7.1.99)

is coercive on V0, and in order to apply our general existence result, one must show
an inf-sup condition, that is, for all v 2 Q 	 Q0,

sup
v0 2V0

b.v0; q0/

kv0kH.div ˝/
� k0kq0kQ=KerBt : (7.1.100)

To obtain this, q being given, we select q0 2 Q such that

( �4q0 D 0 on each elementK 2 Th;

q0j@K D qj@K:
(7.1.101)

Now, we take v0 D gradq0 and we have

Z

˝

jgradq0j2 dxD
X

K

Z

K

jgradq0j2 dxD
X

K

Z

@K

q0 v0 � n dsDb.u0; q0/:
(7.1.102)

Moreover, div v0 D 0 and, using Poincaré’s inequality, we may write

ku0k.H divI˝/ D ku0k0 D jjgradq0jj0 � 1

C.˝/
kq0k1;˝ ; (7.1.103)

provided the domain is bounded and Dirichlet conditions are imposed on a part of
@˝ (that is �D ¤ ;). From (7.1.101) and (7.1.103), we then have

kqkQ=KerBt � kq0k1;˝ � b.u0; v/

ku0kH.divI˝/
� sup

v0

b.v0; q/

kv0kH.divI˝/
; (7.1.104)

which is the desired result.
We now know that problem (7.1.95) and (7.1.96) has a unique solution (up to an

element of KerBt for q0). Our concern is now to introduce a discretisation and, to do
so, we shall again use the spaces defined in Chap. 2. We define, using the notation
of Propositions 2.5.1 and 2.5.2,
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Vh WD
Y

K

Mk.K/; (7.1.105)

where Mk.K/ is one of the approximations of H.divIK/ introduced in Sect. 2.3.
We suppose f jK 2 Dk D div.Mk.K// so that it is possible to find Ovhf satisfying
div Oq

hf
C f D 0 in eachK . In general, f can be approximated onDk without loss

of precision.
Using (2.2.6), we also set

Qh WD fqh j qh 2 H1.˝/; qhj@K 2 TkC1.@K/; 8K 2 Thg;
Q0h WD fqh j qh 2 Qh; qhjD D 0g: (7.1.106)

We now have again the unusual situation where the approximation Q0h is infinite
dimensional. However, only the traces on K are relevant to computation and we do
not really have to worry about this. Moreover, the choice

V0h WD fvh j vh 2 Vh; div vhjK D 0; 8K 2 Thg (7.1.107)

ensures that we have no problem with coerciveness of a.�; �/. This comes from the
inclusion V0h � V0. The only crucial point with respect to convergence is thus to get
a discrete inf-sup condition. We must now show that for any q0h 2 Q0h, we have
with k independent of h and q0h

sup
v0 2V0h

b.v0; q0h/

kv0k
� kkq0hkQ=KerBth

: (7.1.108)

The correct situation is of course obtained for KerBt
h � KerBt . To prove (7.1.108),

we shall try, as usual, to use Proposition 5.4.3, that is to build a B-compatible
interpolation. To do so, v0 2 V0 being given, we should be able to build v0h D ˘hv0
such that

(
b.v0 � v0h; q0h/ D 0 8 q0h 2 Q0h

kv0hk0 � Ckv0k0;
(7.1.109)

with a constant C independent of h. To get this result, we shall build, for any v 2
V; vh D ˘hv in such a way that ˘hv 2 V0h if v 2 V0, satisfying

b.v � vh; qh/ D 0 8 qh 2 Qh: (7.1.110)

From the definition of b.�; �/, this will, a fortiori, hold whenever one has
Z

@K

.v �˘hv/ � n qh ds D 0 8 qh 2 Vh 8K 2 Th: (7.1.111)

Condition (7.1.110) is, however, nothing but a small linear system:
Z

@K

vh � n qh ds D
Z

@K

v � n qh ds 8 qh 2 TkC1.@K/: (7.1.112)
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M1 M2

M3

e3

e1e3

Fig. 7.4 The case k=0

We have again the same problem as in the previous section: solving (7.1.112)
for vh depends on the degree of polynomials at hand. As we shall see, the cure is,
however, much simpler here. To fix ideas, we shall therefore consider two simple
examples.

Example 7.1.5 (k D 0 triangular elements). This is the simplest case, and it is
easily seen that system (7.1.112) can always be solved. Indeed, the degrees of
freedom of M0.K/ are the constant values qi D .vh � n/i on each side ei of length
`i of K when D0 D P0.K/. System (7.1.112) takes the form (cf. Fig. 7.4)

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

1

2
Œ.v2/`2 C .v3/`3� D

Z

@K

.v � n/�1 ds;

1

2
Œ.v3/`3 C .v1/`1� D

Z

@K

.v � n/�2 ds;

1

2
Œ.v2/`2 C .v1/`1� D

Z

@K

.v � n/�3 ds;

(7.1.113)

which can always be solved. Moreover, (7.1.113) implies, by summing the three
equations,

v1`1 C v2`2 C v3`3 D
Z

@K

vh � n ds D
Z

@K

v � n ds (7.1.114)

so that v 2 V0 implies vh 2 V0h. ut
Remark 7.1.12. Let us recall that any divergence-free function of RT k.K/ is the
curl of a stream function  h 2 PkC1. If we want to check (7.1.112) only for
divergence-free functions, which is sufficient to get the inf-sup condition, we can
write, with @ =@� denoting the tangential derivative of  on @K ,

Z

@K

@ h

@�
qh ds D

Z

@K

@ 

@�
qh ds; (7.1.115)

where  is the stream function associated to v.
System (7.1.115) is then always singular as, for qh D constant on @K , both sides

vanish. For k D 0 (and all even k), the system can always be solved. For the case
k D 1 of our next example, an extra linear dependence will appear among the
equations. We refer to Lemma 10.2.2, where a similar situation will be encountered
in the analysis of hybrid methods for fourth-order problems. ut
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Example 7.1.6 (Case k D 1). We now use the space M1.K/ D RT 1.K/ with
D1 D P1.K/ (but this is not the only possible choice). The degrees of freedom of
vh are now given following Chap. 2 by two values (or moments) of the linear normal
trace vh � n on each side of K , plus two internal nodes which will be used to obtain
the divergence-free condition on vh.

When trying to solve (7.1.112), we are again facing the same pathology that we
had already met when studying primal hybrid methods: there exists a second-degree
polynomial �K , which we already called the “nonconforming bubble” such that

Z

@K

vh � n�K ds D 0; 8 vh 2 Vh: (7.1.116)

This implies that system (7.1.112) is not of maximal rank and cannot, in general,
be solved for a general v. Our local construction thus fails. It can, however, be
checked that KerBt

h � KerBt because no function of Qh can be built from
nonconforming bubbles, satisfying Dirichlet conditions on a part of @˝ . However,
we know of no way to prove an inf-sup condition (if one holds).

The standard cure in such a situation is to use a richer space for V0: we shall add
to M1.K/ one element of the next member of the family, that is, RT 2.K/. Let us
then define  3K 2 P3.K/ such that,

@ 3K

@�
D �K: (7.1.117)

We can now take  h 2 P2.K/˚ span . 3K/ and the system (7.1.115) becomes
of maximal rank and always has a solution. It is not unique and we may select the
solution of minimal norm. ut
Remark 7.1.13. Let b3;K be the cubic bubble on K . Taking Qvh D curl b3K and
working in the space RT 1.K/˚ span Qvh, we could have found a solution of
(7.1.112) and made it divergence-free using the internal nodes of RT 1.K/. ut

The above examples are quite representative of situations generally encountered
in hybrid methods: construction of approximations differ for odd or even degrees.
Whenever a difficulty arises, enrichment of Vh can be used to cure the trouble.
From a computational point of view, this enrichment is not troublesome, since
degrees of freedom of vh are internal to the element (Y.˝/ satisfies no continuity on
interfaces). The standard practice is then to use “static condensation” and to reduce
the problem to degrees of freedom in Vh. Dual hybrid methods can then be seen
as a variant of standard conforming methods in which the shape of approximations
inside K is not specified. We still have a technical point to set. In order to apply
Proposition 5.4.3, we must show that ˘h is continuous (uniformly in h) from V

into V0h. However, this reduces to continuity in L2.K/ as div v D 0 implies
div v0h D 0. This is easily obtained by a scaling argument or, equivalently, by
transforming the problem to a reference element. We must, however, do this through
the Piola transformation (2.1.69) to make Ov0 divergence-free. Continuity of ˘h is
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then easily deduced from (2.1.75) and (2.1.76) with a standard condition on the
shape of elements.

Remark 7.1.14. For an application of dual hybrid methods to the problem of the
torsion of an elastic bar the reader may refer to [320] and [113] for the corresponding
mathematical analysis. ut

7.2 Numerical Solutions

7.2.1 Preliminaries

In this section, we present some additional results on the application of mixed
finite element methods to linear elliptic problems. In particular, we shall discuss
some aspects of the numerical techniques that can be used for solving the linear
system of equations that one obtains after discretisation. The procedure suggested
here is essentially due (to our knowledge) to Fraeijs de Veubeke and, as we shall
see, involves the introduction of suitable inter-element Lagrange multipliers �.
Such a trick has the remarkable effect of reducing the total number of unknowns
and leads to solving a linear system for a matrix which is symmetric and positive
definite instead of the original indefinite one. A rough analysis of the computational
effort that this procedure requires for the various elements is presented in Sect. 7.3.
Moreover, as we shall see in Sect. 7.4, the new unknown�s that are obtained by such
a procedure allow the construction of a new approximation p�

h of p, depending on
� and ph, which is usually much closer to p. For the sake of simplicity, we shall
present the arguments on the homogeneous isotropic model case.

8
ˆ̂̂
<

ˆ̂̂
:

�4p D f in ˝;

p D g on �D;

@p

@n
D 0 on �N ;

(7.2.1)

although the range of generality is much wider. Similarly, we shall discuss in detail
the simplest case of the approximation by means of the RT 0 	 BDFM1 element
and give statements and references for the proofs of the other cases.

7.2.2 Inter-element Multipliers

As we have seen in Sect. 7.1, the mixed formulation of (7.2.1) is

(
.u; v/C .p; div v/ D hg; v � ni 8 v 2 H0;�N .divI˝/;
.q; div u/ D .f; q/ 8 q 2 L2.˝/;

(7.2.2)
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where p; f; g are the same as in (7.2.1) and u D gradp. Assume, for the sake
of simplicity, that ˝ is a polygon and let Th be a triangulation of ˝ . We recall,
following Sect. 2.5.2, that the use of the RT 0 element for the approximation of
(7.2.2) proceeds through the following steps. We had

RT 0.K/ D f.aC bx1; c C bx2/; a; b; c 2 Rg � .P1.K//
2; (7.2.3)

M0 D fv j v 2 L2.˝/; vˇ̌
K

2 RT 0.K/; 8K 2 Thg; (7.2.4)

M D M0 \H.divI˝/ D fv 2 RT 0.˝; Th/g: (7.2.5)

Thus, the elements of M are the elements of M0 such that v � n is continuous
across the inter-element boundaries. The discretised version of (7.2.2) is now

(
.uh; vh/C .ph; div vh/ D hg; vh � ni 8 vh 2 M;

.qh; div uh/ D �.f; qh/ 8 qh 2 L00;
(7.2.6)

where, clearly, uh is sought in M and ph in L00. We remind the reader that L00 is the
space of piecewise constant functions. The linear system of equations associated
with (7.2.6) has the form (see (5.6.9))

	
A Bt

B 0


	
U

P



D
	
G

F



(7.2.7)

and its matrix is indefinite. This is definitely a considerable source of trouble.
Therefore, following essentially the ideas of [210], we introduce the space

� WD L00.Eh/ (7.2.8)

of functions �h which are constant on each edge of the decomposition Th. For any
function � 2 L2.�D/, we consider

��;D WD f�h j �h 2 �;
Z

e

.�h � �/ ds D 0 8 e 2 Eh \ �Dg: (7.2.9)

It will finally be convenient to set, for vh 2 M0 and �h 2 �,

c.�h; vh/ WD
X

K

Z

@K

�h vh � n ds: (7.2.10)

The following lemma is a direct consequence of the definition (7.2.5).

Lemma 7.2.1. Assume that vh 2 M0. Then,

.c.�h; vh/ D 0 8�h 2 �0;D/ , vh 2 M: (7.2.11)
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Now let .uh; ph/ be the solution of (7.2.6) and consider the linear mapping

� W vh ! .uh; vh/C .ph; div vh/h � hg; vh � ni; (7.2.12)

where .�;  /h D P
K

R
K � dx. It is clear that �.vh/ D 0 for all vh 2 M. Therefore,

(7.2.11) implies that there exists a �0h 2 �0;D such that, by Proposition 4.1.5,

�.vh/ D c.�0h; vh/ 8 vh 2 M0: (7.2.13)

Let us show that such a �0h is unique. This will be an immediate consequence of the
following lemma.

Lemma 7.2.2. If �h 2 �0;D and

c.�h; vh/ D 0 8 vh 2 M0; (7.2.14)

then �h 	 0.

Proof. Let e� be an edge in Eh and K� 2 Th be a triangle such that e� � @K�. Let
v�
h 2 M0 be such that

v�
h jK D 0 8K ¤ K� (7.2.15)

and defined onK� by

(
v�

h � n D 0 on the edges e ¤ e�;

v�
h � n D 1 on e�:

(7.2.16)

Then, c.�h; v�
h/ D R

e� �h ds and (7.2.14) implies that �h D 0 on e�. Since e� was
any edge in Eh, this concludes the proof. ut

Let us now define �h by means of

�h 2 �g;D; �h 	 �0h on Ehn�D: (7.2.17)

Then, (7.2.12) and (7.2.13) imply that

.uh; vh/C .ph; div vh/h D c.�h; vh/ 8 vh 2 M0: (7.2.18)

We can summarise the results obtained so far in the next theorem.

Theorem 7.2.1. Let .uh; ph/ be the solution of (7.2.6) and let �h be defined through
(7.2.13) and (7.2.17). Then, the triplet .uh; ph; �h/ is the unique solution of the
following problem: find .uh; ph; �h/ in M0 
 L00 
�g;D such that
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8
ˆ̂<

ˆ̂:

.uh; vh/C .ph; div vh/h C c.�h; vh/ D 0 8 vh 2 M0;

.qh; div uh/h D �.f; qh/ 8 qh 2 L00;

c.�h; uh/ D 0 8�h 2 �0;D:

(7.2.19)

Proof. The matrix associated with (7.2.18) has now the form

0

@
NA NBt NC t

NB O O
NC O O

1

A

0

@
NU
NP
N�

1

A D
0

@
NG
NF
O

1

A (7.2.20)

and we still do not see any improvement on (7.2.7). However, consider that now,
the space M0 is completely discontinuous from one element to another. This was
not the case with M, which required the continuity of vh � n. As a consequence, we
can choose in M0 a basis, made of vectors vh which are different from zero only on
one triangle (as was the vector v�

h in (7.2.15) and (7.2.16)). Then, matrix NA becomes
block diagonal, each block being a 3 
 3 matrix corresponding to a single element,
and we can eliminate the unknown NU at the element level by solving

NU D NA�1. NG � NBt NP � NC t N�/: (7.2.21)

We are left with the system

	� NB NA�1 NBt � NB NA�1 NC t

� NC NA�1 NBt � NC NA�1 NC t


	 NP
N�



D
	� NB NA�1 NG C NF

0



: (7.2.22)

Now recall that L00 is made of piecewise constants. This means that the matrix
NB NA�1 NBt is diagonal (in a more general case, it will be block diagonal, each block

corresponding again to a single element). This means that we can eliminate the
unknown NP at the element level by solving

NP D . NB NA�1 NBt/�1Œ� NB NA�1 NC t N�C NB NA�1 NG � NF �: (7.2.23)

We are finally left with a system of the form

H N� D R (7.2.24)

with

H D NC NA�1 NBt. NB NA�1 NBt/�1 NB NA�1 NC t � NC NA�1 NC t (7.2.25)

and

R D NC NA�1 NBt. NB NA�1 NBt/�1Œ NB NA�1 NG � NF �: (7.2.26)
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It is clear that H is symmetric and positive definite. It is easy to see that the proce-
dure for getting from (7.2.20) to (7.2.24) is exactly the most common procedure for
eliminating internal degrees of freedom, better known as static condensation.

Clearly, all that we have described so far applies to the various RT k , BDMk and
BDFMk elements described in Chap. 2 for the mixed approximation of elliptic
problems, as well as to their corresponding elements for quadrilaterals. More
generally (and more philosophically), this procedure can be applied to systems of
the form (7.2.7) whenever the matrixA corresponds to a bilinear continuous form on
a space V which does not have continuity requirements at the vertices. See [23,118–
120] for the corresponding proofs in cases more general than the present one. Other
examples in which the procedure applies will be presented in Chap. 10. ut

7.3 A Brief Analysis of the Computational Effort

As we have seen, the introduction of the inter-element multiplier �h is in general
the most effective way of solving a discrete version of (7.2.2). This implies that
a comparison among different kinds of discretisations, as far as the computational
effort is concerned, must be done by the light of the “�-procedure”. In this respect,
two basic steps must be taken into account. The first step is the work which has to be
done at the element level : basically, the hard part of this work is the inversion of the
matrix NA (see (7.2.21)), and, if ph has many d.o.f. per element, also the inversion of
NB NA�1 NBt (see (7.2.23)). This, in our example, was trivial since NA, on each element,

was a 3 
 3 matrix and NB NA�1 NBt a 1 
 1 matrix (that is, a scalar). In more general
cases, those numbers can be bigger. Therefore, it is always a good feature, for a
space M approximating H.divIK/, to have a basis in which the two components
are independently assumed. Let us make this clearer with a simple example. If K is
a triangle and OK the reference element, a reasonable choice for a basis in RT 0. OK/ is

u1 D .1; 0/I u2 D .0; 1/I u3 D .x; y/: (7.3.1)

Now, since u3 has two components which are both different from zero, the
corresponding local matrix

AKij D
Z

K

ui � uj dx dy (7.3.2)

will have the structure
0

@
˝ 0 ˝
0 ˝ ˝
˝ ˝ ˝

1

A (7.3.3)

where ˝ means, a priori, a non-zero element. On the other hand, ifK is a rectangle,
one will choose as local basis for RT Œ0�.K/:
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u1 D .1; 0/I u2 D .x; 0/I u3 D .0; 1/I u4 D .0; y/: (7.3.4)

Now, each element of the basis (7.3.4) has one component identically zero, and the
corresponding matrix AK

AK D

0

BB@

˝ ˝ 0 0

˝ ˝ 0 0

0 0 ˝ ˝
0 0 ˝ ˝

1

CCA (7.3.5)

is block diagonal. An elementary inspection on the spaces RT k; BDMk and
BDFMk gives the following outcome:

�
for K = triangle, then BDMk.	 .Pk/

2/ gives rise to a block diagonal
elementary matrix Ak while RT Œk� and BDFMŒk� do not;

(7.3.6)

�
for K = rectangle, then RT Œk� and BDFMŒk� give rise to block

diagonal elementary matrices while BDMŒk� does not. (7.3.7)

It must also be noted that the total dimension of AK also comes into play. For
instance, forK D rectangle and k D 2, then RT Œk� produces a matrix AK (24
 24)
which is block diagonal and each of the two blocks is a 12 
 12 matrix, while
BDMŒk� produces a matrix AK which is 14 
 14 (actually made from a 12 
 12

block diagonal matrix with two 6 
 6 blocks, plus two full rows and columns). On
the other hand, BDFMŒkC1� gives two 9
 9 blocks. Obviously, on a uniform mesh
with constant coefficients, one just performs one inversion once, so that the total
cost is negligible. However, in a general case, the inversion of AK on eachK might
be expensive.

As far as the matrix NB NA�1 NBt is concerned, usually, one gets, on each element,
a full matrix so that the total dimension of it (that is, the number of degrees of
freedom for ph in each K) is the only way of comparison. Let us now consider
the second step which is the solution of the final system (7.2.23) in the unknown
�h. It is easy to observe that the total number of degrees of freedom for �h equals
the total number of degrees of freedom for uh which lie on the edges in Eh. In
this respect, BDMk produces the same number of �h unknowns as RT k while
BDFMk produces the same number of �h unknowns as RT k�1. The same is true
for both triangles and rectangles.

We have used, for the comparison, BDFMkC1 rather than BDFMk because,
as we shall see in the next section, the order of convergence of BDFMkC1 is
essentially the same as BDMk or RT k .

It must also be pointed out that the splitting of the vector space into two (or three)
independent components is a crucial starting point for the use of ADI solvers. See
for instance [118, 119, 173, 174, 176].
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7.4 Error Analysis for the Multiplier

Let us consider again, for the sake of simplicity, the approximation of (7.2.2) by
means of the discretisation (7.2.6). We consider the case of homogeneous Dirichlet
conditions, that is, we assume from now on that �N D ; and g1 D 0 in the
notation of Sect. 7.1. This, if˝ is for instance a convex polygon, will ensure at least
H2-regularity. We have seen in Sect. 7.1.2 error estimates (7.1.29) and (7.1.30) on
ku � uhkH.divI˝/ and kp � phk0. From the interpolation estimates of Chap. 2, this
yields

kp � phk0 C ku � uhkH.divI˝/ � ch .kpk2 C kf k1/: (7.4.1)

Now, if we are going to solve (7.2.6) through the introduction of the inter-element
multiplier �h, we compute the �h unknown first, from (7.2.24), and then ph and uh
out of it (this is done element by element). However we still have computed �h
which physically must be an approximation of p and we seek some further use of it.
In order to do that, we first need an estimate which is somehow better than (7.4.1)
and was proved first by Douglas and Roberts [177]. If Nph is the L2-projection of p
onto L00, then

k Nph � phk0 � ch2 .kpk2 C kf k1/: (7.4.2)

Estimates of this kind can be obtained from the abstract duality results of Chap. 5.
However, we found it more convenient to sketch a direct proof. To do so, let � 2
H2.˝/\H1

0 .˝/ be the solution of 4� D Nph � ph. Clearly, we have

k�k2 � c k Nph � phk0: (7.4.3)

Now set z D grad� and let ˘hz be the interpolate of z in RT 0. Recall that
.div .˘hz � z/; qh/ D 0; 8 qh 2 L00 (see Sect. 2.5.2), so that, in particular,
div ˘hz D Nph � ph. Then, we have

k Nph � phk20 D .div ˘hz; Nph � ph/ D .div ˘hz; p � ph/

D .uh � u; ˘hz/

D .uh � u; ˘hz � z/C .uh � u; z/

D .uh � u; ˘hz � z/C .uh � u; grad �/

D .uh � u; ˘hz � z/C .div .uh � u/; �/:

(7.4.4)

Remember that .div .uh � u/; qh/ D 0; 8 qh 2 L00. Hence, if N�h D L2-projection
of � onto L00, then (7.4.4) yields

k Nph � phk20 D .uh � u; ˘hz � z/C .div.uh � u/; � � N�h/: (7.4.5)
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Since

kz �˘hzk0 C k� � N�hk0 � ch k�k2; (7.4.6)

(7.4.2) follows from (7.4.1), (7.4.3), (7.4.5) and (7.4.6).
We are now ready to get some extra information from �h. First, if .u; p/ is the

solution of (7.2.2) and vh 2 M0, then by Green’s formula on each K , we have

.u; vh/C .div vh; p/h D
X

K

Z

@K

p vh � n ds D c.p; vh/: (7.4.7)

From (7.4.7) and the first equation of (7.2.18), one gets

.u � uh; vh/C .div vh; Nph � ph/h D c.p � �h; vh/ 8 vh 2 M0; (7.4.8)

where we were allowed to use Nph instead of p since div vh is constant in each
element. Let us now define p�

h and Qph to be the interpolate in LNC1 (Sect. 2.2.3) of
�h and p, respectively, by means of

Z

e

.p�
h � �h/ ds D

Z

e

. Qph � p/ ds D 0 8 e 2 Eh: (7.4.9)

Equation (7.4.8) now implies

X

K

Z

@K

. Qph � p�
h / vh � n ds D .u � uh; vh/C .div vh; Nph � ph/h

8 vh 2 M0:

(7.4.10)

On the other hand, we have, by Green’s formula,

Z

@K

. Qph � p�
h / vh � n ds D

Z

K

grad. Qph � p�
h / � vh dx

C
Z

K

. Qph � p�
h / div vh dx:

(7.4.11)

A simple scaling argument shows that, for any Qqh 2 LNC1 and for any K in Th,

k Qqhk0;K � c sup
vh 2RT 0.K/

R
K

grad Qqh � vh dx C R
K

Qqh div vh dx

h�1
K kvhk0;K C k div vhk0;K

(7.4.12)

so that from (7.4.12), (7.4.11) and (7.4.10), we have

k Qph � p�
h k0;K � c

�
hK ku � uhk0;K C k Nph � phk0;K

�
; 8K 2 Th; (7.4.13)
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which together with (7.4.1) and (7.4.2) gives

k Qph � p�
h k0 � ch2 .kpk2 C kf k1/: (7.4.14)

Since kp � Qphk0 � ch2 kpk2, we get, by the triangle inequality, that

kp � p�
hk0 � ch2 .kpk2 C kf k1/: (7.4.15)

We can now summarise the above results in a theorem.

Theorem 7.4.1. Let .uh; ph; �h/ be the solution of (7.2.19), let p be the solution of
(7.2.1) and let p�

h be the LNC1 -interpolant of �h defined by (7.4.9). Then,

kp � p�
hk0 � ch2 .kpk2 C kf k1/ (7.4.16)

with c independent of h and u.

Remark 7.4.1. The proof that we have given of Theorem 7.4.1 is somehow “uncon-
ventional”. The traditional proof (see for instance [23]) will, as an intermediate step,
estimate first the distance of �h from theL2.Eh/ projection N� of p onto�, defined by

Z

e

.p � N�/ ds D 0 8 e 2 Eh: (7.4.17)

In particular, in our case, one would get

kN� � �hkh;�1=2 � ch2 .kpk2 C kf k1/; (7.4.18)

where

k�hkh;�1=2 WD
�X

e

jej k�hk2o;e
� 1
2
: (7.4.19)

Then, (7.4.15) would follow from (7.4.18) by extending �h in the interior of eachK
(in our case, such an extension is p�

h ). ut
Results of type (7.4.18) hold in much more general cases. For instance, one has

kN� � �hkh;�1=2 � chkC2 (7.4.20)

for RT k or RT Œk� or BDFMkC1 or BDFMŒkC1�, whereas for BDMk or
BDMŒk�, one has

kN� � �hkh;�1=2 � chkC2 .k � 2/; (7.4.21)

kN� � �hkh;�1=2 � ch2 .k D 1/: (7.4.22)
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In (7.4.21) and (7.4.22), �h is still the inter-element multiplier, now in� D L0k.Eh/,
whereas N� is the L2.Eh/-projection of p onto�. For the proofs, we refer to [23,120]
and [119]. One has now to extend�h in the interior of each element in order to derive
from (7.4.20) to (7.4.22) estimates of type (7.4.15). This can be done in several
ways. We shall indicate here one possible choice.

If K is a triangle and k is even, we can define p�
h 2 PkC1.K/ simply by setting

Z

ei

.p�
h � �h/ pk D 0 8pk 2 Pk.ei /; i D 1; 2; 3; (7.4.23)

Z

K

.p�
h � ph/pk�2 dx D 0 8pk�2 2 Pk�2.K/; .k � 2/: (7.4.24)

It is easy to check that (7.4.23) and (7.4.24) determine p�
h 2 PkC1.K/ in a unique

way. In order to show this, check first that the number of conditions in (7.4.23) and
(7.4.24) matches correctly the dimension of PkC1:

3.k C 1/C .k � 1/k
2

D .k C 2/.k C 3/

2
: (7.4.25)

Then, it is enough to show that if �h D 0 and ph D 0, formulae (7.4.23) and
(7.4.24) yield p�

h D 0. First note that (7.4.23) (for �h D 0) implies that p�
h , on each

ei , coincides with `kC1.ei /, the Legendre polynomial of degree kC1, up to a scaling
factor. The continuity of p�

h at the corners and the fact that for k C 1 odd, `kC1 is
antisymmetric will then givep�

h j@K D 0. Hence, for k � 2, this means p�
h D b3pk�2

for some pk�2 2 Pk�2.K/ where b3 is the cubic bubble on K . Condition (7.4.24)
will now easily give p�

h 	 0.
Let us now go to the case where K is a triangle and k is odd. Here, the

construction (7.4.23), (7.4.24) does not work any more. We shall indicate another
choice that works. Other possible choices can be found in [23, 120]. Let us define,
for k odd � 1, �kC2 as the polynomial 2 PkC2 such that �kC2 D 0 at the vertices
of K and:

@�kC2
@t

jei D `kC1.ei /; i D 1; 2; 3; (7.4.26)

Z

K

�kC2 pk�1 D 0 8pk�1 2 Pk�1.K/: (7.4.27)

Note that in (7.4.26), @=@t is the anticlockwise tangential derivative and `kC1.ei / is
the Legendre polynomial of degree k C 1 taking the value 1 at the endpoints. We
also define  kC1 2 PkC1.K/ by

 kC1 D @�kC2
@t

on @K; (7.4.28)
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Z

K

 kC1 pk�2dx D 0 8pk�2 2 Pk�2.K/; k � 3: (7.4.29)

Note that from (7.4.28) to (7.4.29),  kC1jei D `kC1.ei / (1 D 1; 2; 3). Now we can
set

SkC1 D PkC1 ˚ f�kC2g: (7.4.30)

Our extension p�
h will be defined as the unique (we have to prove that!) element of

SkC1 such that

Z

ei

.p�
h � �h/ pkds D 0 8pk 2 Pk.ei / .i D 1; 2; 3/; (7.4.31)

Z

K

.p�
h � ph/ pk�2dx D 0 8pk�2 2 Pk�2.K/; k � 3; (7.4.32)

Z

K

.p�
h � ph/ 4 kC1dx D 0: (7.4.33)

Note that the dimensional count (7.4.25), being independent of the parity of k, still
holds since both sides are increased by one. Assume therefore that �h D ph D 0

and let us see that (7.4.31)–(7.4.33) imply p�
h D 0. For this, first note that, for every

pkC1 2 PkC1.K/, we have

Z

@K

pkC1
@ kC1
@t

ds D �
Z

@K

@pkC1
@t

 kC1ds D 0: (7.4.34)

On the contrary,

Z

@K

�kC2
@ kC1
@t

ds D �
Z

@K

. kC1/2ds ¤ 0: (7.4.35)

Hence, (7.4.31), with �h D 0, will first give p�
h 2 PkC1.K/ (by taking

pkjei D @ kC1=@t jei and summing over (i)); then again, (7.4.31) will imply that

p�
h D ˛  kC1 C bkC1 D ˛  kC1 C b3 qk�2 (7.4.36)

(where bkC1 is a bubble of degree kC1 and b3 is the cubic bubble) for some ˛ 2 R

and some qk�2 2 Pk�2.K/. Now using (7.4.36), (7.4.29) and (7.4.32) with ph D 0,
we easily get qk�2 D 0. Finally, (7.4.33) gives ˛ D 0.

A different approach for reconstructing an approximation p�
h 2 PkC1.K/ of p

which converges to p faster than ph can be found for instance in [354]. Basically,
one solves, in every K , a Neumann problem with uh � n as boundary data by using
p�
h in order to fix the mean value in each element.
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Remark 7.4.2. Let us go back to the simplest case of the lowest-order element
RT 0 	 BDFM1. It has been proved by Marini [291] that if we consider the space
LNC1 and define p�

h 2 LNC1 to be the solution of

X

K

Z

K

gradp�
h � grad qh dx D

Z

˝

fqh dx; 8 qh 2 LNC1 ; (7.4.37)

then, for f piecewise constant, one can compute, a posteriori, the solution .uh; ph/
of (7.2.6) through the formulae

uh.x/jK D gradp�
h C .x � xK/

f

2

ˇ̌
ˇ̌
K

; 8K 2 Th; (7.4.38)

phjK D 1

jarea.K/j
Z

K

p�
h dx CO.h2/; 8K 2 Th; (7.4.39)

where xK is the barycentre of K . Formulae (7.4.38) and (7.4.39) (in particular
(7.4.38)) are especially interesting because the principle of (7.4.37), and therefore,
its implementation and use is much simpler than the principle of (7.2.6). On the
other hand, experimental results show that, in some applications, the accuracy of
(7.2.6), as far as uh is concerned, is much superior to the accuracy of the traditional
methods (see e.g. [294]) and that the correction (7.4.38) away from xK (say, at @K)
has a relevant improving effect on the accuracy. ut

7.5 Error Estimates in Other Norms

We have seen in Sect. 7.1.2 that all the families of mixed finite element methods
for the Laplace operator (and hence for more general elliptic problems) satisfy
well the inf-sup condition and therefore provide optimal error estimates in the
“natural norms”, which are here the H.divI˝/ norm for u � uh and the L2.˝/-
norm for p � ph. We have also seen in this chapter that if one introduces Lagrange
multipliers �h in order to solve (7.2.6) (and in general one does want to do
so), then it is possible to obtain some additional information which allows to
construct a new approximation p�

h of p that provides some extra accuracy for p
in the H1.˝/-norm. In this section, we will present some other error estimates for
u�uh; p�ph and p�p�

h in other norms which might be interesting for applications.
In particular, we shall deal with L1-norms and H�s.˝/-norms. The interest of
using L1-norms (especially for u � uh) is quite obvious in the applications: a
large stress field in a very small region can have a small L2-norm but will be
very dangerous for safety reasons. The interest of having dual estimates, like the
estimates in H�s.˝/ .s > 0/, can only be understood as a prerequisite to the
use of a “smoothing post-processor” (see, e.g., [110, 111]). We shall not present
here such smoothing post-processors; however, we can describe their features: if
you have a continuous solution (say p) and an approximate solution (say ph) such
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that p � ph is small (say O.hsCk/) in some dual norm k � k�s , then you can
operate some “local” and relatively simple averages on ph in order to produce a new
approximation psh such that kp � ushk0 D O.hsCk/. We refer to [110, 111] for more
precise information. Let us now list the error estimates which have been proved
so far in the L1-norms. We shall only report the ones obtained by Gastaldi and
Nochetto [218,219]. Previous results were obtained by Johnson and Thomée [265],
Douglas and Roberts [177, 178] and Scholz [343, 345, 346].

Let us see, for instance, the spaces RT k or RT Œk�. Then, one has

ku � uhkL1 C kp � phkL1 � chkC1: (7.5.1)

Note that, for kD 0, (7.5.1) holds only if f is smooth enough inside each
element. Moreover, for k� 0, the assumption p 2W kC2;1.˝/ is obviously
required. We also have a super-convergence result for ph � Php (here
Php WD L2.˝/-projection of p onto L0k):

kPhp � phkL1 � chkC2 j loghj; (7.5.2)

where again p is assumed inW kC2;1.˝/ and some extra regularity for f is needed
for k D 0. Finally, for the case of rectangular elements, one gets, for k � 0,

ju.S/ � uh.S/j � chkC2 j loghj2 .kf kk;1;˝ C ık;0 kf kH1/ (7.5.3)

at the Gauss-Legendre points S of each element. It is also possible to study the error
p � p�

h . One has, for k � 0,

kp � p�
hkL1 � chkC2 j loghj2 .kf kk;1;˝ C ık;0kf kH1/; (7.5.4)

and, for p 2 W kC2;1 (and for smoother f if k D 0),

kp � p�
h kL1 � chkC2 j loghj: (7.5.5)

Similar results hold for BDM and BDFM spaces and for their analogues in
three dimensions. As far as the dual norms are concerned, we have for RT k or
RT Œk� of BDFMkC1 or BDFMŒkC1� elements, in two and three variables,

kp � phk�s C ku � uhk�s C k div.u � uh/k�s � chkCsC1; 0 � s � k C 1;

(7.5.6)

whereas for BDMk or BDMŒk� elements, in two or three variables, one has

kp � phk�s C k div.u � uh/k�s � chkCs ; 0 � s � k; (7.5.7)

and

ku � uhk�s � chkCsC1; 0 � s � k � 1: (7.5.8)
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For more precise estimates involving explicitly the regularity of the solution, we
refer to [118–120, 178]. Interior estimates can be found for instance in [175].

7.6 Application to an Equation Arising from Semiconductor
Theory

We now consider a special case of application of mixed finite element methods that
is interesting in the simulation of semiconductor devices. Let us assume that we
have to solve an equation of the type

div." gradp C p grad / D f in ˝ (7.6.1)

and assume, for the sake of simplicity, that we have Dirichlet boundary conditions

p D g on @˝: (7.6.2)

Note, however, that, in practice, we will always have a Neumann boundary condition
." grad u C p grad / � n D 0 on a part of @˝ . In (7.6.1), we may assume  to be
known, and in the computations, we shall also assume that is piecewise linear; this
is realistic since, in practice,  will be the discretised solution of another equation
(coupled with (7.6.1)). Assume moreover that " is constant and small. In order to
present the mixed exponential fitting approximation of (7.6.1) and (7.6.2), [128–
130], we first introduce the Slotboom variable


 WD e ="p (7.6.3)

with its boundary value

� WD e ="g: (7.6.4)

In order to simplify the notation, we shall often write

� WD  =": (7.6.5)

Using unknown 
, problem (7.6.1) and (7.6.2) becomes

(
" div.e�� grad 
/ D f in ˝;


 D � on @˝:
(7.6.6)

Note that the quantity

p D "e�� grad 
 D " gradp C p grad (7.6.7)

(which has here the physical meaning of the electric current J through the device)
is the most relevant unknown of the problem.
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We now apply a mixed method to the solution of (7.6.6). By choosing the lowest-
order Raviart–Thomas method, formulation (7.2.19) becomes: find .uh; 
h; �h/ 2
M0 
 L00 
�� such that

8
ˆ̂<

ˆ̂:

."�1e�uh; vh/C .
h; div vh/h D c.�h; vh/ 8 vh 2 M0;

.�h; div uh/h D .f; �h/ 8 �h 2 L00;

c.�h; uh/ D 0 8�h 2 �0;

(7.6.8)

where .�; �/h and c.�; qh/ are defined as in (7.2.19). By static condensation, (7.6.8)
can be reduced as in (7.2.24) to the form

H� D R; (7.6.9)

with H symmetric and positive definite. We also point out that H will be an
M -matrix (see for instance [372]) provided that the triangulation is of weakly
acute type. However, the scheme (7.6.8) (and the unknown 
) are not suitable for
actual computations. Indeed, one can see from (7.6.3) to (7.6.4) that 
 can become
very large or very small in different parts of the domain ˝ when " is very small.
Hence, we go back to the variable p. Since, as we have seen, �h in (7.6.8) will
be an approximation of 
 at the inter-element boundaries, we can use the inverse
transformation of (7.6.3) in the form

ph WD e� N�h �h (7.6.10)

where N�h 2 L00.Eh/ is defined as
Z

ei

e
N�hds D

Z

ei

e�hds 8 ei 2 Eh: (7.6.11)

Problem (7.6.8) now becomes: find .uh; 
h; ph/ 2 M0 
 L00 
�g such that

8
ˆ̂<

ˆ̂:

."�1e N�huh; vh/C .
h; div vh/h D c.e
N�hph; q

h
/ 8 vh 2 M0;

.�h; div uh/h D .f; �h/ 8 �h 2 L00;

c.�h; uh/ D 0 8� 2 �0:

(7.6.12)

The static condensation procedure applied to (7.6.12) now produces a system in the
sole unknown ph of the form

QHph D QR; (7.6.13)

where the unknown, the coefficients, and the right-hand side have a reasonable size.
Moreover, it is easy to check that the passage from H to QH involves only the
multiplication of each row by a factor of the type e� N�h , which does not alter the
M -character of the matrix. Hence, if the decomposition is of weakly acute type, QH
will be an M -matrix.
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The most relevant feature of this approach is, however, that the approximation uh
of the current obtained by (7.6.12) will now have continuous normal components at
the inter-element boundaries. We therefore have a strong conservation of the current.

Remark 7.6.1. Problem (7.6.6) could also be discretised by dual hybrid methods.
However, in this case, the conservation of the current will hold only in a weak
sense [130]. ut
Remark 7.6.2. It is easy to check that the one-dimensional version of this approach
reproduces the celebrated Sharfetter-Gummel method, also known as the exponen-
tial fitting method. The use and the analysis of non-standard formulations (involving
the harmonic average of the coefficients) in one dimension can be found in [42]. ut
Remark 7.6.3. It can be checked that, for very small ", the scheme (7.6.13) produces
an up-wind discretisation of (7.6.1). See [129] for this kind of analysis. ut
Remark 7.6.4. If (7.6.1) contains a zero-order term

div." grad u C p grad /C cu D f; (7.6.14)

then, in general, the matrix H in (7.6.9) will not be an M -matrix any longer, and
the same will be true for the matrix QH in (7.6.13). To circumvent this difficult,
one can change the choice of the space M0. We refer to [292] for a general theory
of nonconforming mixed methods and to [293] for applications to semiconductor
devices. ut

7.7 Using Anisotropic Meshes

In some mesh adaptation procedures [239, 252, 301], anisotropic meshes are
generated in regions where the solution varies slowly in some direction and rapidly
in the orthogonal one. Using such a procedure with mixed formulations can lead
to bad results for some choices of approximations of the space H.div;˝/. We
shall illustrate this by the same simple model problem that we used in the previous
section. We suppose that we want to solve on the interval .0; 1/ the problem

p00 D 2; p.0/ D p.1/ D 0: (7.7.1)

The exact solution is evidently

p.x/ D x2 � x; p0 D 2x � 1:

Instead of solving (7.7.1), we rather try to find p.x; y/ on ˝ D .0; 1/ 
 .0; b/,
solution of

4p D 2; p.0; y/ D p.1; y/ D 0; py.x; 0/ D py.x; b/ D 0: (7.7.2)
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0

b

hx

1

2

3

4

Fig. 7.5 Elongated mesh

Of course, using a bi-dimensional formulation to solve (7.7.1) is silly. What we
want to model is the situation where the solution of a bi-dimensional computation
happens to be more or less constant in some direction. A clever anisotropic mesh
adaptation procedure [239,301] would then create elements with a strong elongation
in this direction. In our model case, let us suppose that this resulted in a mesh of
regular triangles such as in Fig. 7.5.

If we use a standard formulation and piecewise linear elements to solve (7.7.2),
it is easy to see that we get a correct solution: ph.x; y/ is independent of y and
converges if we refine the mesh in the direction x. Let us now consider a mixed
formulation of the problem,

(
.u; v/C .p; div v/ D 0; 8 v 2 H0N .div;˝/

.q; div u/ D .f; q/ 8 q 2 L2.˝/;
(7.7.3)

�N being the lower and upper boundaries of our rectangle and f D 2. We discretise
this problem using a RT 0 approximation. We thus look for .uh; ph/, solution of the
discrete problem defined by

(
.uh; vh/C .ph; div vh/ D 0; 8 vh 2 M;

.qh; div uh/ D .f; qh/ 8 qh 2 L00;
(7.7.4)

where we define

M WD fv j v 2 H.div;˝/; q � n D 0 on �N g: (7.7.5)

The exact solution for u is

u D
	
2x � 1
0



: (7.7.6)

Taking, on every element K of Th, the interpolate ˘RT .u/ 2 RT 0.K/ of u, it is
easily seen that we have
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hx

0

0

0 −hx

0

Fig. 7.6 .˘RT .u/1 � u1/

1. In element 1

˘RT .u/ D
	
x � 1
y



; (7.7.7)

2. In element 2

˘RT .u/ D
	
x C hx � 1

y � b



; (7.7.8)

3. In element 3

˘RT .u/ D
	
x C hx � 1

y



; (7.7.9)

4. In element 4

˘RT .u/ D
	
x C 2h� 1

y � hy



; (7.7.10)

and so on. We now claim that the solution uh of our mixed formulation is nothing
but˘RT .u/. Indeed, as div˘RT .u/ D div uh D 2, uh can only differ from˘RT .u/
by curl �h where �h is a piecewise linear function. Given the boundary conditions
(u � n D 0 on �N ), this function must take constant values for y D 0 and y D b and
is thus of the form ˛ C ˇy. This means that curl � D fˇ; 0g, which implies that
.˘RT .u/� uh/2 D 0, but the first components could differ by a constant. However,
one checks that

Z

˝

.˘RT .u/ � uh/1 dx D 0 (7.7.11)

so that the first components also coincide. Indeed, we may take vh D f1; 0g in the
first equation of (7.7.4) and conclude that

R
˝
.uh/1 dx D 0. On the other hand, one

can check directly that
R
˝
˘RT .u/1 dx D 0. This can also be seen if we consider,

on the rectangle formed by two adjacent elements, the difference .˘RT .u/1 � u1/.
We represent the nodal values of this difference in Fig. 7.6. The pattern is the same
for all patches and the integral is obviously null.
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We also know that the average value Np of p is equal to �1=6 as is easily checked
from the exact solution. This is also easily obtained by taking v D u in the first
equation of (7.7.3) to obtain

2

Z

˝

pdx D �
Z

˝

juj2 dx: (7.7.12)

On the other hand, taking vh D uh D ˘RT .u/ in the first equation of (7.7.4), we get

2

Z

˝

phdx D �
Z

˝

juhj2 dx: (7.7.13)

This integral can be computed explicitly but it is more interesting to start from

Z

˝

juhj2dx D �
Z

˝

juj2dx C
Z

˝

ju � uhj2dx C 2

Z

˝

u � uhdx: (7.7.14)

Taking v D uh in the first equation of (7.7.3), one sees that

Z

˝

u � uhdx D
Z

˝

juj2dx; (7.7.15)

so that (7.7.14) becomes

Z

˝

juhj2 dx D
Z

˝

juj2 dx C
Z

˝

ju � uhj2 dx: (7.7.16)

We deduce from (7.7.12) to (7.7.13) that

2

Z

˝

ph dx D 2

Z

˝

p dx �
Z

˝

ju � uhj2 dx: (7.7.17)

Referring to Fig. 7.6, it is easy to compute the last term

Z

˝

ju � uhj2dx D b h2x
6

C b3

6
(7.7.18)

and we get

Nph D �1
6

� h2x
12

� b2

12
: (7.7.19)

Thus, even if hx becomes small, we do not get a correct value for Nph. However,
we could also have discretised the problem with many layers of thickness hy as in
Fig. 7.7.

It is intuitively obvious, and can be checked from the equations, that the solution
of our problem on this mesh can be obtained by piling the solution described above,



7.8 Relations with Finite Volume Methods 445

hy

hx

Fig. 7.7 Isotropic mesh

taking b D hy . One would then obtain

Nph D �1
6

� h2x
12

� h2y

12
(7.7.20)

and we thus recover convergence if the mesh is refined in an isotropic way (as indeed
the general theory predicts!).

Remark 7.7.1. If we had used a BDM1 approximation, that is, a full linear
approximation for both components of ph, we would have

˘BDM.u/ D u

and we would get a correct solution, even for elongated elements.Thus, even if a first
glance to the error estimates might lead one to believe that there is no advantage to
using the richer space BDM1 instead of RT 0, there are indeed situations where
such an advantage definitely exists. ut
Remark 7.7.2. It is also remarkable that the finite Volume method that we discuss
in Sect. 7.8 would yield, for the elongated mesh, a correct solution for ph at the
barycentre of the rectangles formed by two triangles sharing an oblique diagonal
in Th. ut

7.8 Relations with Finite Volume Methods

We shall rapidly present in this section some relations between the mixed finite
element methods considered in this chapter and some finite volume methods.
The kind of approximation employed in mixed methods of low degree is indeed
very close to what is used in finite volume formulations: constant values of the
unknown on elements and fluxes on interfaces. Moreover, both these methods
impose the same conservation of the fluxes on every element. The difference lies
in the procedure to compute the fluxes, which is local in finite volume methods and
global in mixed methods. We shall see that if we introduce an approximation of
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the bilinear form a.u; v/ to make the associated matrix diagonal, the computation
of the fluxes reduces to a finite volume procedure. This then enables the elimination
of the variable u, leading to a final system of linear algebraic equations MP D F

where each unknown Pi represents the constant value of the approximated solution
ph in a single element. Similar ideas can be found in [11, 383] or [266].

7.8.1 The One and Two-Dimensional Cases

We consider, from now on, the discrete problem (7.1.21), using the lowest degree
Raviart-Thomas element. We have already seen, in Sect. 7.2.2, how introducing a
Lagrange multiplier to ensure the inter-element continuity of the fluxes unknowns
uh can lead to the elimination of these unknowns, leaving a positive definite system
for the multipliers, a system which can be seen as a nonconforming standard
finite element method. We now consider another way of reducing the system by
eliminating the fluxes. Contrarily to the method of Sect. 7.2.2, this will necessitate
a modification of the problem. We shall first illustrate this by a simple one-
dimensional example. We use the model problem

Z 1

0

u v dx C
Z 1

0

pv0 dx D0
Z 1

0

u0q dx C
Z 1

0

f q dx D0
(7.8.1)

which we discretise using piecewise linear elements for u and piecewise constants
for p on a partition of .0; 1/ into n subintervals, separated by nodes xi D ih; 0 �
i � n.

Denoting by P and U the vectors of degrees of freedom of ph and uh, the first
equation gives rise to a matrix equation

AU C BtP D 0 (7.8.2)

with A being a mass matrix of the form

h

6

0

BBBBBBB@

2 1

1 4 1

1 4 1

� � �
1 4 1

1 2

1

CCCCCCCA

: (7.8.3)

This is a global problem which makes a local elimination of U impossible.
A standard trick to bypass this is to use mass lumping. In this procedure, matrix
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A is made diagonal by summing all the terms of each line to the diagonal. This
corresponds to using the trapezoidal rule to integrate (approximately)

R 1
0

u v dx. We
then obtain explicitly at node i , denoting PiC1=2, Pi�1=2, the values of ph in the
intervals at the right and the left of xi and by P0, Pn the given values at x D 0 and
x D 1,

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Ui DPiC1=2 � Pi�1=2
h

; for an internal node;

U1 D 2

h
.P1=2 � P0/;

Un D 2

h
.Pn � Pn � 1=2/:

(7.8.4)

The form of the last two equations comes from the fact that h=2 instead of h is
employed to compute the difference formula. One can then eliminate the unknown
Ui by taking the values of uh obtained from (7.8.4) into the second equation of
(7.8.1). One easily sees that the final result is a standard discretisation of �p00 D f

by the usual three-point formula for the second derivative.

7.8.2 The Two-Dimensional Case

We now try to follow a similar idea for two-dimensional problems. This means that
we must find a way to make the matrix A in (7.2.20) diagonal without impairing the
precision of the method. Historically, the first successful attempt to do so was made
by Baranger-Maitre-Oudin in [49]. Inspired by a previous result of Haugazeau-
Lacoste [241] concerningH.curl;˝/ spaces, they decided to look, in every element
K , for a suitable bilinear form aK;h.uh; vh/ of the type

aK;h.uh; vh/ D
3X

kD1
!i .uh.Mi/ � nik/ .vh.Mi/ � nik/: (7.8.5)

In (7.8.5), Mi represents the midpoint of the i -th edge, and niK is the unit outward
normal to that edge (i D 1; 2; 3). The weights !i must be chosen in order to have

aK;h.uh; vh/ D aK.uh; vh/ 8 uh vh constant on K: (7.8.6)

After some manipulations, one discovers that a bilinear form satisfying (7.8.6)
indeed exists, and that the weights !i can be computed in a simple geometrical
way. Referring to Fig. 7.8, let C be the circumcentre of K (that is, the centre of the
unique circle that passes through the vertices ofK), and for each i D 1; 2; 3, let Hi

denote the distance of C from the straight line `i containing the i -th edge ei (this is
in fact the distance from C to the midpoint of the edge). The straight line `i clearly
splits the whole plane into two half-planes. If C belongs to the same half-plane
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e1

H1

e2

H2

e3
H3

Fig. 7.8 Circumcenter and
weights

containing K , then we set !i D Hi . Otherwise, we set !i D �Hi . It is easy to
check that if for instance all the angles of K are acute, then C falls inside K , and
the choice !i D Hi will be made for all i ’s. In this case, all the weights come out
to be positive. If, however, the edge ei is opposite to an obtuse angle, then !i turns
out to be �Hi , and it will be negative. Up to a certain extent, this could be tolerated
(see [49] for further details). When ei is opposite to a right angle, then Hi is zero,
and so is !i .

Coming back to the RT 0 space, we have seen in Chap. 2 that a basis for it could
be obtained in the following way. For each edge ek in Th, we choose a unit vector nk

normal to ek. We do it for k D 1; � � � ; NE where NE is the number of edges in Th.
Then, for each k, we define the vector uk as the unique vector in RT 0 that satisfies

uk � nk D 1 and uk � nr D 0 8 r ¤ k: (7.8.7)

It is immediate to see that, with respect to this basis, the matrix

Ar;k WD
X

K 2Th

aK;h.u
k; vr / (7.8.8)

is diagonal. The idea is then the following one: change the original bilinear form
a.� ; �/ into

ah.uh; vh/ WD
X

K 2Th

aK;h.uh; vh/; (7.8.9)

then change the original mixed formulation (7.2.6) into: find uh 2 RT 0 and ph 2Qh

such that

ah.uh; vh/ D b.ph; vh/ 8 vh 2 RT 0; (7.8.10)

b.ph; qh/ D �.f qh/ 8 qh 2 Qh: (7.8.11)

In the sequel, we shall refer to this procedure as the BMO formulation. We remark
that in the discrete system associated to this formulation, A is a diagonal matrix.
Then, eliminate U D �A�1P to reach the form

B.A�1/BtP D �F; (7.8.12)
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Fig. 7.9 Shaded Lk

where now A�1 is explicitly known. Using the fact that the bilinear form ah.� ; �/ D
a.� ; �/ for piecewise constant vectors, it is proven in [49] that the consistency error
originated by the change of the bilinear form a.� ; �/ can be kept under control, in the
sense that the consistency error introduced by the numerical integration procedure is
of the same order as the approximation error in RT 0. Hence, we still have optimal a
priori error estimates. The resulting scheme coincides with a classical finite volume
scheme for diffusion operators (see e.g. [187]), where the flux on each edge e,
common to the triangles T1 and T2, is defined by dividing the jump p1h � p2h by
the distance C1 � C2 between the circumcentres of T1 and T2, respectively.

It is also possible to see that construction as a different mixed formulation that
allows a simpler analysis. It is worth looking at it since, as we shall see in the next
section, the interpretation of [49] does not hold in three dimensions.

Assume, for simplicity, that all the angles of all the triangles are acute. This is
not strictly necessary (in the sense that the condition can be weakened) but makes
the exposition much simpler. In this case, all the circumcentres will be internal to
their respective triangles. Split every triangle K in three sub-triangles using the
circumcentres. Every internal edge ek is adjacent to two such sub-triangles: take
the union of the two, and call it Lk as in Fig. 7.9.

For the boundary edges, we shall have just one sub-triangle, that we still call Lk .
The union of all the Lk (k D 1; : : : ; NE) obtained in that way is still equal to ˝ .
Consider now the new vector space

VL WD fvhj vhjLk D cnk with c 2 R 8 k D 1; : : : NEg (7.8.13)

where, as before, nk is the chosen unit vector normal to ek. For vectors vh 2 VL and
scalars qh 2 Qh, the bilinear form b.qh; vh/ still makes sense, provided we write
it as

b.qh; vh/ D
X

K

Z

@K

qh vh � nK: (7.8.14)
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One must not confuse nk (normal to the edge ek) and nK (outward unit normal to
@K). In what follows, it will be sometimes convenient to rearrange terms in the sum
appearing in (7.8.14), making the sum over the edges rather than over the triangles.
In order to do so, we first introduce the jumps of a piecewise constant function
qh 2 Qh on an edge ek in the following way. Let T 1 and T 2 be the two triangles
having ek as an edge, let q1h and q2h be the corresponding values of qh, and let nT 1 and
nT 2 be the corresponding unit outward normals. If ek is a boundary edge belonging
to a single triangle K , we set q1h D qhjK, q2h D 0, nT 1 D nK and nT 2 D �nK . The
jump of qh over ek is the vector

Œjqj�k WD q1h nT 1 C q2h nT 2 : (7.8.15)

It is now easy to see that, whenever convenient, the bilinear form b can be written
(for vh 2 VL and qh 2 Qh) as

b.qh; vh/ WD
NEX

kD1

Z

ek

Œjqj� � vh: (7.8.16)

It will be useful to introduce, for every piecewise constant function qh, its “gradient”
g.qh/ defined as the unique element in VL such that

2

Z

Lk

g.qh/ dx D
Z

ek

Œjqj�k 8 k D 1; : : : ; NE: (7.8.17)

Introducing, for every ek , the quantity hk defined as

hk WD 2
meas.Lk/

meas.ek/
(7.8.18)

(that is, for internal edges, the distance of the two circumcentres), it is easy to see
that (7.8.17) can be written as

g.qh/jLk D Œjqj�k=hk: (7.8.19)

In order to reproduce the BMO formulation, we also need to introduce for uLh and
vLh in VL

aL.uLh; vLh/ D 2a.uLh; vLh/: (7.8.20)

The reason for this factor 2 is that, in a sense, uL contains only one component of
gradp. If we define PLuh 2 RT 0 to VL by taking on every edge ek

PLjLk D uh � nk;

we have

aL.PLuh; PLvh/ D ah.uh; vh/; (7.8.21)
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where ah.uh; vh/ is defined by (7.8.9). We can now consider the mixed formulation:
find uLh 2 VL and ph 2 Qh such that

aL.uLh; vLh/ D b.ph; vLh/; 8 vLh 2 VL; (7.8.22)

b.qh; uLh/ D �.f; qh/; 8 qh 2 Qh; (7.8.23)

which, indeed, is just a different (and apparently a little more cumbersome) way
of writing the BMO formulation (7.8.10) and (7.8.11). The analysis, however, can
come out simpler. We simply give a quick outline of it.

We consider two different approximations of the exact flux u. The first one, that
we call uI , is defined as the unique element in VL that satisfies

Z

ek

.u � uI / � nk D 0 8 k D 1; : : : ; NE: (7.8.24)

Using the divergence theorem and (7.8.23), we immediately get

b.qh; uLh � uI / D 0 8 qh 2 Qh; (7.8.25)

which is a useful property. The second approximation for u, that we call u2, will be
obtained by considering first pC 2 Qh as the unique piecewise constant that verifies

pC .CK/ D p.CK/ for CK=circumcentre of K 8K 2 Th: (7.8.26)

We then set

u2 WD �g.pC /; (7.8.27)

where we used the operator qh 7! g.qh/ as defined in (7.8.17) or (7.8.19). Using
(7.8.16) and (7.8.27), it is an elementary matter to verify that

aL.u2; vLh/ D b.pC ; vLh/ 8 vLh 2 VL: (7.8.28)

The error estimate now goes easily: set w WD uLh � uI and use (7.8.25) to see that
b.qh;w/ D 0 for all qh 2 Qh. This implies, using (7.8.22) and (7.8.28), that

aL.uLh � u2;w/ D b.ph;w/� b.pC ;w/ D 0 � 0 D 0: (7.8.29)

Adding and subtracting u2 and using the above property, you get

jjwjj2 D aL.w;w/ D aL.uLh � u2;w/C aL.u2 � uI ;w/ D aL.u2 � uI ;w/;
(7.8.30)

which easily implies jjwjj � jju2 � uI jj. The proof ends by remarking that the line
joining two circumcentres C1 and C2 of two triangles T 1 and T 2 having an edge ek
in common is perpendicular to ek. This implies, using the definition (7.8.26) of pI
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and the definition of g (7.8.19), that u2 equals the value of the normal component of
u 	 � gradp on a point of the segment joining C1 and C2. On the other hand, uI is
the value of u � nk on a point of the edge ek , and the difference of the two is easily
bounded.

7.8.3 The Three-Dimensional Case

We now consider the three-dimensional problem. The definition of the local spaces
RT .K/ remains formally unchanged, as well as the definitions of the bilinear forms
a.�; �/ and b.�; �/. The first change with respect to the two-dimensional case is that a
formula of the type BMO (7.8.5), that we used to diagonalise the approximated
bilinear form ah.�; �/ (see (7.8.9)), does not exist, unless K is a very special
tetrahedron, as for instance a regular tetrahedron (see always [49]). The three-
dimensional analogue of the “quadrature formula” (7.8.5) was given in [241] and
reads

aK;h.uh; vh/ D
6X

iD1
ˇiK.uh.Mi/ � t i /.vh.Mi/ � t i /; (7.8.31)

where, now, Mi represents the midpoint of the edge ei and t i the tangent direction
to ei (the sign, for the moment, is immaterial). The theorem in [241] states that it
is possible to find the coefficients ˇiK in such a way that, as in (7.8.6), aK;h.uh; vh/
coincides with the exact integral aK.uh; vh/ whenever both uh and vh are constant
on K . Unfortunately, for the moment, this has no use for our purpose.

On the other hand, we have seen that, in two dimensions, the BMO trick could
be written in a different way, using the space VL (7.8.13) and the related mixed
formulation (7.8.22) and (7.8.23). Even though the BMO trick itself does not work
in three dimensions, its equivalent formulation using VL generalises rather easily to
the three dimensional case.

Assume again, for simplicity, that for every tetrahedron K , the centre CK of its
circumsphere (that is, the unique sphere that passes through the four vertices of K)
lies inside K . As in the two-dimensional case, this assumption can be relaxed, but
to the expenses of the simplicity of the presentation. We also point out that this
condition is stricter than assuming that the projection of each vertex on the opposite
face falls inside the face.

Using the assumption CK 2 K , we can now split every tetrahedron in four parts
and attach to each face fk a region Lk as we did for triangles. This allows us to
define the space VL, formally as in (7.8.13), and to proceed with the corresponding
mixed formulation (7.8.22) and (7.8.23).

The jump of a piecewise constant q can still be defined as in (7.8.15), and the
alternative way of writing b given in (7.8.16) still holds.

It is not difficult to check that the analysis sketched in the previous section works
practically with no changes. It can be seen that this gives back a classical finite
volume scheme for diffusion operators (see e.g. [187]).
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7.9 Nonconforming Methods: A Trap to Avoid. . .

We shall rapidly present, in this section, a formulation which appears at first sight
as very clever and promising but which turns out to be catastrophic. The idea is
to introduce a nonconforming approximation of H.divI˝/. Precisely, we use the
space � defined in (7.2.8) and the bilinear form c.�h; vh/ defined in (7.2.10), that
is,

c.�h; vh/ D
X

K

Z

@K

�h vh � n ds: (7.9.1)

We write

Hnc WD ˚
vh j vh 2 .L10/2; c.�h; vh/ D 0; 8�h 2 �� : (7.9.2)

The vectors of Hnc are therefore piecewise linear and their normal component is
continuous at mid-edge points of the triangulation. We complete our approximation
by a piecewise constant approximation for ph, that is,

ph 2 L00: (7.9.3)

In order to obtain a discrete problem using this nonconforming approximation, we
must introduce

bh.ph; vh/ D
X

K

Z

K

ph div vh dx; (7.9.4)

so that our discrete problem becomes, taking g D 0 to simplify,

a.uh; vh/C bh.ph; vh/ D 0; (7.9.5)

bh.qh; uh/ D �hf; qhi: (7.9.6)

Now, the nice thing is that there exists a numerical quadrature formula which is
exact for second degree polynomials and uses only mid-edge points. Denoting by
miK the three such point of K and (somewhat inaccurately) by n and t the normal
and tangential vectors at these points, we can thus write for uh and vh in Hnc

a.uh; vh/ D
X

K

area.K/

3

X

i

.uh.miK/ � n vh.miK/ � nC uh.miK/ � t vh.miK/ � t/:
(7.9.7)

In the present case, it is clearly natural to employ as degrees of freedom of Hnc the
normal and tangential components. The first are shared by adjacent triangles while
the latter are internal to each element. Given those degrees of freedom, we are in
a situation quite similar to the case of the finite volume method of the previous
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section: the matrix associated to a.uh; vh/ is diagonal. We now consider the first
equation of formulation (7.9.5),

a.uh; vh/C bh.ph; vh/ D 0: (7.9.8)

It is easy to see that, using (7.9.7), this yields a local formula for the normal
components,

area.K/

3
uh.miK/ � n D meas.ek/Œjphj�: (7.9.9)

Moreover, (7.9.7) implies

uh.miK/ � t D 0: (7.9.10)

What we have is a method very similar to the one which we have studied in
the previous section. The difference is that the construction is based on barycentres
instead of circumcentres. Another important difference is that we do not introduce
an approximation for the bilinear form a.uh; vh/, which is computed exactly, but
for the bilinear form b.ph; vh/, which has been approximated by bh.ph; vh/ defined
in (7.9.4). This looks nice! The trouble arises when we try to get an error estimate.
To do so, we have to introduce vh 2 Hnc in (7.2.2) and subtract the result from
(7.9.5). However, this cannot be done directly as b.p; vh/ is not defined. We rather
start from the strong form,

Z

˝

u � vh dx D
Z

˝

gradp � vh dx (7.9.11)

and integrate the right-hand side by parts to obtain
Z

˝

u � vh dx D �
X

K

Z

K

p div vh dx C
X

K

Z

@K

p vh � n ds; (7.9.12)

which yields

a.u; vh/C bh.p; vh/�
X

K

Z

@K

p vh � n ds: (7.9.13)

We can now proceed as usual for the error estimate. We obviously get

a.u � uh; vh/C bh.p � ph; vh/�
X

K

Z

@K

p vh � n ds D 0; (7.9.14)

bh.qh; u � uh/ D 0: (7.9.15)

With respect to the standard case, we shall have to bound the extra consistency term

X

K

Z

@K

p vh � nds:
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This is classical for nonconforming methods. Moreover, we know that

X

K

Z

@K

p vh � n D
X

K

Z

@K

.p � �h/ vh � n 8�h 2 L00 (7.9.16)

and that
Z

@K

.p � �h/ vh � n � inf
�h

kp � �hk1;KkvhkH.div;K/: (7.9.17)

Unfortunately, �h 2 L00 cannot be a good approximation in H1.K/. The best that
can be done is the bound

inf
�h

kp � �hk1;K � C (7.9.18)

which does not imply any convergence. Numerical evidence shows that this is true
and not a lack in the technique of proof.

7.10 Augmented Formulations (Galerkin Least Squares
Methods)

We have seen in the previous sections the importance of both conditions of the
general theory of Chap. 5, namely, the coerciveness on the kernel and the inf-sup
condition. We shall now apply the ideas of Sect. 1.5 to bypass one or both of these
conditions. The methods presented should be seen as models to more complex
situations and they do not have practical importance by themselves. We shall
consider a similar idea in Sect. 8.13 when studying Stokes problems.

Let us first consider the simplest modification, enabling us to obtain coerciveness
on the whole space and not only on the kernel. We shall use the augmented
formulation (1.5) for which we write the optimality conditions:

8
<̂

:̂

Z

˝

u � v dx C
Z

˝

p div v dx C ˇ

Z

˝

.div v C f / divv dx D 0 8v 2 H.divI˝/;
Z

˝

div vq dx C
Z

˝

fq dx D 0 8 q 2 L2.˝/:
(7.10.1)

The bilinear form a.u; v/ is now defined by

a.u; v/ D
Z

˝

u � v dx C ˇ

Z

˝

div u div v dx (7.10.2)

and we obviously have, for any ˇ > 0 with � D min.1; ˇ/,

a.u; u/ � � jjujj2H.divI˝/: (7.10.3)
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Hence, for the discretisation of (7.10.1), we only have to worry about the inf-sup
condition.

Similarly, in more general two-dimensional cases, if we were interested in
employing a continuous approximation for u, we might choose, for instance, the
MINI element or any other element well suited for the Stokes problem introduced
in Chap. 8.

If we now want to avoid as well the problem of the inf-sup condition, we can use
formulation (1.5.14) for which the optimality condition can be written as

Z

˝

u � v dx C
Z

˝

p div v dx C ˇ

Z

˝

.div u C f / divv dx

�˛
Z

˝

.u � gradp/ � v D 0; 8 v 2 H.divI˝/;
(7.10.4)

˛

Z

˝

.gradp � u/ � grad q dx �
Z

˝

q div u dx

�
Z

˝

fq dx D 0; 8 q 2 H1
0 .˝/:

(7.10.5)

It is easy to check that we now have a problem of the form (4.3.1)

�
a.u; v/C b.p; v/ D hF; vi 8 v 2 H.divI˝/
b.q; u/ � c.p; q/ D hG; qi 8 q 2 H1

0 .˝/;
(7.10.6)

where

a.u; v/ D .1 � ˛/

Z

˝

u � v dx C ˇ

Z

˝

div u div v dx; (7.10.7)

b.p; v/ D .1 � ˛/
Z

˝

p div v dx; (7.10.8)

c.p; q/ D ˛

Z

˝

gradp � grad q; dx: (7.10.9)

If we choose 0 < ˛ < 1 and ˇ > 0, conditions (4.3.4) and (4.3.5) are satisfied and
optimal error estimates follow.

Remark 7.10.1. It is obviously also possible to use the variational formulation
(7.6.11) instead of (7.6.6) and to obtain convergence for every ˛ > 0 and ˇ > 0. ut

We have rapidly presented here the basic idea of using augmented formulations.
We refer for more details to [125].
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7.11 A Posteriori Error Estimates

During the recent years, one of the important developments in applications of the
finite element methods has been mesh adaptation. Presenting this technique would
need a book in itself and indeed some were written. We refer to [376] for a general
presentation. Mesh adaptation grossly means the capacity of doing the work where
it must be done, to obtain a desired level of accuracy. This capacity has radically
changed the range of feasible computations. Many mesh adaptation methods have
been proposed and most of them permit to locally refine the mesh where the error
is large. But some methods are more powerful and permit to build new meshes
which are optimal under some criterion. This can be done through remeshing, as in
[221], where adapted meshes are built to fit a metric which is obtained from a post-
processing of the finite element solution. Another approach [96, 97, 235] applies
some transformations to a given mesh in order to minimise some measure of the
error.

Adapting a mesh must rely on some criterion to decide where elements have to
be added, deleted and eventually oriented and stretched. This is then imbedded in
an iterative process: given a mesh and a solution, some a posteriori error estimation
leads to a new mesh, a new solution and so on, until the desired accuracy, or the
“best possible” accuracy for a given number of degrees of freedom, is obtained.

For standard finite element approximations, this is now a well mastered proce-
dure. Many types of error estimators have been proposed. We just mention the most
popular.

• Residual methods were initiated by the work of [45]. They estimate the error
using a discrete norm of the residual obtained when the discrete solution is fed
to the continuous equation.

• Hierarchical methods [48] estimate the error by obtaining an approximate higher-
order solution.

• Another type of estimators is based on the recovery of derivatives through
some re-interpolation procedure [308]. In particular, obtaining an estimate of the
Hessian permits to build a metric and this is widely employed for solution by
piece-wise linear

All this has yielded hundreds of publications and any attempt to review this
would be, by far, out of the scope of this book. We just want to point out that these
ideas have also been applied to mixed methods.

A review of some methods can be found in [380]. Other results can be found in
[5, 137, 274, 285] or [220]. For elasticity problems, one can refer to[140] and [282].
Hierarchical methods have been applied to mixed methods in [1]. Discontinuous
Galerkin methods have been considered in [56].

This is, by far, not exhaustive and should only be considered as a starting point
for interested readers.



Chapter 8
Incompressible Materials and Flow Problems

Although the approximation of incompressible flows by finite element methods
has grown quite independently of the main stream of mixed and hybrid methods,
it was soon recognised that a precise analysis requires the framework of mixed
methods. In many cases, one may directly apply the techniques and results of
Chaps. 4 and 5. In particular, the elements used are often standard elements or
simple variants of standard elements. The specificity of the Stokes problem has
however led to the development of special techniques; we shall present some of
them that seem particularly interesting. Throughout this study, the main point will
be to make a clever choice of elements leading to the satisfaction of the inf-sup
condition which is here the important one as coercivity considerations are almost
always straightforward.

This chapter, after a quick description of the problem, will present some simple
examples of elements and techniques of proof which can be used as an introduction
to the subject. This will be followed by a more detailed presentation. It will not
be possible to analyse in detail all the elements for which results are known; we
shall try to group them by families which can be treated by similar methods. These
families will be arbitrary and will overlap in many cases.

Besides this presentation of elements, we shall also consider solution techniques
by penalty methods and we will develop the related problem of almost incompress-
ible elastic materials. We shall consider the equivalence of penalty methods and
mixed methods and some questions arising from it. Stabilisation techniques will
also be considered.

Finally, a section will be devoted to numerical considerations and to the choice
of elements.

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 8,
© Springer-Verlag Berlin Heidelberg 2013
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8.1 Introduction

We have already considered, in Example 1.3.1, the Stokes problem or creeping flow
problem for an incompressible fluid. We had written it as a system of variational
equations: find u 2 V and p 2 Q such that

8
ˆ̂<

ˆ̂:

2�

Z

˝

".u/ W ".v/ dx �
Z

˝

p div v dx D
Z

˝

f � v dx 8 v 2 V;
Z

˝

q div u dx D
Z

˝

g q dx; 8 q 2 Q;
(8.1.1)

where V WD .H1
0 .˝//

n and Q is the subspace of L2.˝/ consisting of functions
with zero mean value on ˝ . In this formulation, u is the velocity of the fluid and p
is its pressure. A similar problem arises for the displacement of an incompressible
elastic material.

Remark 8.1.1. Although incompressibility corresponds to the case g D 0, we shall
see in Remark 8.2.2 that non zero boundary conditions correspond implicitly to
introducing g ¤ 0. ut
Remark 8.1.2 (Almost incompressible materials). For a linear elastic material,
following Example 1.2.2, we have to solve the variational equation

2�

Z

˝

".u/ W ".v/ dx C �

Z

˝

div u div v dx D
Z

˝

f � v dx; 8 v 2 V: (8.1.2)

The case where � is large, or equivalently, when the Poisson ratio 	 D �=2.�C �/

approaches 1=2, can be considered as an approximation of (8.1.1) by a penalty
method as in Sect. 5.6.3. The limiting case is exactly (8.1.1) up to the fact that u
is a displacement instead of a velocity. Problems where � is large are quite common
and correspond to almost incompressible materials. Results of Sect. 5.5.2 can be
applied and give conditions under which error estimates can be found that do not
depend on �. Problem (8.1.2) will be considered in detail in Sect. 8.12. ut
It is also worth recalling that, defining

Au WD

8
ˆ̂̂
<

ˆ̂̂
:

@2u1
@x21

C 1

2

@

@x2

	
@u1
@x2

C @u2
@x1




@2u2
@x22

C 1

2

@

@x1

	
@u1
@x2

C @u2
@x1



;

(8.1.3)

that is, Au D div".u/, problems (8.1.1) and (8.1.2) are then respectively equiva-
lent to
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8
ˆ̂<

ˆ̂:

� 2�Au C gradp D f ;

div u D g;

uj� D 0

(8.1.4)

and

�2�Au � � grad div u D f : (8.1.5)

Remark 8.1.3. The above problems are sometimes written in a simplified way.
Indeed, we have, for incompressible materials,

�Au D �4u C � grad div u D �4u: (8.1.6)

However, this simplification of the operator is valid only if Dirichlet conditions are
considered everywhere. Otherwise, the natural Neumann conditions are different
and those associated with the simplified operator are unphysical. ut
Remark 8.1.4. The problems described above are, of course, physically unrealistic,
as they involve body forces and homogeneous Dirichlet boundary conditions. The
aim of doing so is to avoid purely technical difficulties and this implies no loss
of generality. The results obtained will be valid, unless otherwise stated, for all
acceptable boundary conditions. ut
To approximate the Stokes problem, two approaches follow quite naturally from the
preceding considerations. The first one is to use system (8.1.1) and to discretise u
and p by standard (or less standard) finite element spaces. The second one is to use
formulation (8.1.2) with � large as a penalty approximation to system (8.1.1).

It rapidly became clear that both these approaches could yield strange results.
In particular, the first one often led to non convergence of the pressure (see
Sect. 8.3.1) and the second one to a locking mechanism, the numerical solution
being uniformly zero, or unnaturally small for � large. For velocity-pressure
approximations, empirical cures were found by Hughes and Allik [255], Hood and
Taylor [249] and others. At about the same time, some elements using discontinuous
pressure fields were shown to work properly [165,200] from the mathematical point
of view.

For the penalty method, the cure was found in selective or reduced integration
procedures. This consisted in evaluating terms like

R
˝ div u div v dx by quadrature

formulae of low order. This sometimes led to good results.
It was finally stated [287], even if the result was implicit in earlier works [59],

that the analysis underlying the two approaches is the same. Penalty methods are
often equivalent to some mixed methods. In such cases, the penalty method works
if and only if the associated mixed method works [60]. This will be developed in
Sect. 8.12.

First, we must give a more precise framework to our problem.
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8.2 The Stokes Problem as a Mixed Problem

8.2.1 Mixed Formulation

We shall describe in this section how the Stokes problem (8.1.1) can be analysed in
the general framework of Chaps. 4 and 5. Defining V WD .H1

0 .˝//
n; Q WD L2.˝/

and

a.u; v/ WD 2�

Z

˝

".u/ W ".v/ dx (8.2.1)

b.v; q/ WD �
Z

˝

q divv dx; (8.2.2)

problem (8.1.1) can clearly be written in the form: find u 2 V and p 2 Q such that

(
a.u; v/C b.v; p/ D .f ; v/ 8 v 2 V;
b.u; q/ D .g; q/ 8 q 2 Q;

(8.2.3)

which is a saddle point problem in the sense of Chap. 4. Indeed, we have already
seen that p is the Lagrange multiplier associated with the incompressibility
constraint.

Remark 8.2.1. It is apparent, from the definition (8.2.2) of b.�; �/ and from the
boundary conditions of the functions in V , that p, if exists, is defined up to a
constant. Therefore, we change the definition of the space Q into

Q WD L20.˝/ D L2.˝/=R; (8.2.4)

where two elements q1, q2 2 L2.˝/ are identified if their difference is constant. It
is not difficult to show that Q is isomorphic to the subspace of L2.˝/ consisting of
functions with zero mean value on˝ . ut

With this choice, our problem reads: find u 2 V and p 2 Q such that

(
a.u; v/C b.v; p/ D .f ; v/ 8 v 2 V;
b.u; q/ D .g; q/ 8 q 2 Q:

(8.2.5)

Let us check the hypotheses of Theorem 4.2.2 to ensure that our problem is well-
posed. Using the notation of Chap. 4, we can write

B D � div W .H1
0 .˝//

n ! L2.˝/=R (8.2.6)

and

Bt D grad W L2.˝/=R ! .H�1.˝//n: (8.2.7)
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It can be shown (see, e.g., [362]) that

ImB D Q Š
�
q j q 2 L2.˝/;

Z

˝

q dx D 0

�
; (8.2.8)

hence the operator B has a continuous lifting and the continuous inf-sup condi-
tion (4.2.26) holds. We also notice that, with our definition of the space Q, the
kernel KerBt reduces to zero.

The bilinear form a.�; �/ is coercive on V : there exists ˛ such that

a.v; v/ � ˛kvk2V : (8.2.9)

This is the well known Korn inequality (see [183, 362]), whence (4.2.12) also will
follow (i.e., A is invertible on KerB).

We state the well-posedness of problem (8.2.5) in the following theorem. The
proof follows from Theorem 4.2.1.

Theorem 8.2.1. Let f be given in .H�1.˝//n and g in Q D L20.˝/. Then, there
exists a unique .u; p/ 2 V 
Q, solution to problem (8.2.5), which satisfies

jjujjV C jjpjjQ � C.jjf jjH�1 C kgkQ/: (8.2.10)

Now, choosing an approximation Vh � V and Qh � Q yields the discrete
problem

8
ˆ̂<

ˆ̂:

2�

Z

˝

".uh/ W ".vh/ dx �
Z

˝

ph div vh dx D
Z

˝

f � v
h

dx 8 vh 2 V;
Z

˝

qh div uh dx D .g; qh/ 8 qh 2 Qh:

(8.2.11)

The bilinear form a.�; �/ is coercive on V ; hence, according to the theory developed
in Chaps. 3 and 4, there is no problem for the existence of a solution fuh; phg to
problem (8.2.11), at least with g D 0. Indeed, we have a finite-dimensional problem
where ImB is closed and the right-hand side of the second equation of (8.2.11) is
zero. It should be noted, however, that we might have trouble with the uniqueness of
ph and that there might be compatibility conditions on g for some approximations.

We thus try to obtain estimates of the errors jju � uhjjV and jjp � phjjQ.
First, we observe that, even for g D 0, the discrete solution uh needs not

be divergence-free. Indeed, the bilinear form b.�; �/ defines a discrete divergence
operator

Bh D � divh W Vh ! Qh (8.2.12)
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(it is convenient here to identify Q D L2.˝/=R and Qh � Q with their dual
spaces). In fact, we have

.divh uh; qh/Q D
Z

˝

qh div uh dx (8.2.13)

and thus divh uh turns out to be the L2-projection of div u ontoQh.
The discrete divergence operator coincides with the standard divergence operator

if divVh � Qh. Referring to Chap. 5, we see that obtaining error estimates requires
a careful study of the properties of the operator Bh D � divh and of its transpose
that we denote by gradh.

The first issue is to characterise the kernel KerBt
h D Ker.gradh/. It might happen

that KerBt
h contains non-trivial functions. In these cases, ImBh D Im. divh/ will be

strictly smaller than Qh D PQh
.ImB/; this may lead to pathologies. In particular,

if we consider a modified problem, like the one that usually originates when dealing
with Dirichlet boundary conditions, the strict inclusion ImBh � Qh may even imply
trouble with the existence of the solution. This situation is made clearer with the
following example.

Remark 8.2.2. Let us consider problem (8.1.4) with non-homogeneous boundary
conditions, that is, let r be such that

uj� D r;

Z

�

r � n ds D 0: (8.2.14)

It is classical to reduce this case to a problem with homogeneous boundary
conditions by first introducing a function Qu 2 .H1.˝//2 such that Quj� D r . Setting
u D u0 C Qu with u0 2 .H1

0 .˝//
2, we have to solve

( � 2�Au0 C gradp D f C 2�AQu D Qf ;
div u0 D � div Qu D g; u0j� D 0;

(8.2.15)

with A defined in (8.1.3). We thus find a problem with a constraint Bu0 D g where
g ¤ 0. We have seen in Chap. 5 that the associated discrete problem may fail to
have a solution because gh D PQh

g does not necessarily belong to ImBh, whenever
KerBt

h 6� KerBt . Discretisations where Ker. gradh/ is non-trivial can therefore lead
to ill-posed problems in particular for some non-homogeneous boundary conditions.
Examples of such conditions can be found in [340,341]. In general, any method that
relies on extra compatibility conditions is a source of trouble when applied to more
complicated (non-linear, time-dependent, etc.) problems. ut
For a first attempt to error estimates, we shall use Theorem 5.2.2. Since the bilinear
form a.�; �/ is coercive on V , we only have to worry about the inf-sup condition. The
following proposition will be the starting point for the analysis of any finite element
approximation of (8.2.5).
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Proposition 8.2.1. Let .u; p/ 2 V 
 Q be the solution of (8.2.5) and suppose the
following inf-sup condition holds true

inf
qh2Qh

sup
vh2Vh

R
˝
qh div vh dx

jjqhjjQjjvhjjV
� kh: (8.2.16)

Then, there exists a unique .uh; ph/ 2 Vh 
Qh, solution to (8.2.11), and the
following estimate holds

kuh � ukV �
	
2kak
˛

C 2kak1=2kbk
.˛/1=2kh



Eu C kbk

˛
Ep; (8.2.17)

kph � pkQ �
	
2kak3=2
.˛/1=2kh

C kak kbk
k2h



Eu C 3kak1=2kbk

.˛/1=2kh
Ep (8.2.18)

with ˛ given by (8.2.9). ut
Remark 8.2.3. Actually, as it has been already observed, the existence of the
discrete solution .uh; ph/ (when the right-hand side in the second equation of (8.2.5)
is zero) is not a consequence of the inf-sup condition (8.2.16). However, we should
not forget about the possible situation presented in Remark 8.2.2. ut

Of course, we shall be looking for cases where

kh � k0 > 0: (8.2.19)

In this case, it may be useful to summarise the estimates (8.2.17) and (8.2.18) in the
following result.

Proposition 8.2.2. With the same hypotheses as in Proposition 8.2.1, let us suppose
that (8.2.19) holds. Then, there exists C , independent of h, such that

kuh � ukV C kph � pkQ � C.Eu CEp/: (8.2.20)

ut
Remark 8.2.4. We shall also meet cases in which the constant kh is not bounded
below by k0. We shall then try to know precisely how it depends on h and to see
whether a lower-order convergence can be achieved. When Ker.gradh/ is non-trivial,
we are interested in a weaker form of (8.2.16)

sup
vh2Vh

R
˝
qh div vh dx

jjvhjjV
� kh inf

q2Ker. gradh/
jjqh � qjjL2.˝/; (8.2.21)

and in the dependence of kh in terms of h. From (8.2.17) and (8.2.18), one sees that
the effect will be stronger on the error kp � phkQ. ut
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8.3 Some Examples of Failure and Empirical Cures

This section will present some classical troubles associated to the approximation of
incompressible materials. We shall thus recall the difficulties associated with some
‘obvious’ approximations. We shall consider some examples of possible choices for
the spaces Vh and Qh, namely the P 1 � P1 element, a case of continuous pressure,
and the P 1 � P0 element, a case of discontinuous pressure. These elements do not
satisfy the inf-sup condition (8.2.16) and are not applicable in practice. We shall
introduce some cures which will be developed and eventually justified later in this
chapter.

8.3.1 Continuous Pressure: The P
1

�P1 Element

As we stated in the introduction, the development of finite element methods for
incompressible problems was done, at least in the beginning, independently of the
theory of mixed methods. The natural idea when attempting to solve a problem
involving incompressibility would be to employ the same approximation for both
velocity and pressure, in the simplest case a P1 continuous interpolation

Vh WD .L11/n \ V; Qh WD L11 \Q: (8.3.1)

In the two-dimensional case, it is easy to check that if the number of triangles is large
enough, then there exist non-trivial functions satisfying the discrete divergence-free
condition. Thus, no locking will occur and a solution can be computed. Indeed,
this method would not provide an optimal approximation of the pressures by
virtue of the unbalanced approximation properties of the discrete spaces (while
Qh achieves second order in L2, Vh gives only first order in H1). On the other
hand, users of such methods (you can think of using also, for instance, .P 2 � P2/,
.Q

1
�Q1/, etc.) soon became aware that their results were strongly mesh dependent.

In particular, the computed pressures exhibited a very strange instability. This comes
from the fact that for some meshes, the kernel of the discrete gradient operator,
Ker.gradh/, is not the subspace of constant functions, as one would expect from the
continuous problem, but is a larger subspace. This means that the solution obtained
is determined only up to a given number of spurious pressure modes [340,341] and
that, at best, some filtering will have to be done before accurate results are available.
We shall come back later on to this phenomenon also named chequerboarding in
Sect. 8.10. We have already stated in Remark 8.2.2 that such spurious modes can
impose non physical conditions on the data. To better understand the nature of
spurious pressure modes, the reader may check the results of Fig. 8.1 in which
different symbols denote points where functions in Ker. gradh/ must have equal
values for a .P 1 � P1/ approximation.
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Fig. 8.1 Spurious modes for
the P 1 � P1 case

In this case, we have three spurious pressure modes. This also shows that there
exists on this mesh one non-trivial discrete divergence-free function whereas a direct
count would predict locking.

Remark 8.3.1 (Possible cures). A cure for this problem was found empirically
[249]: good results can be obtained using a P 2 approximation for velocity but a
P1 approximation for pressure. It is also clear that this does not impair the order of
accuracy. This will be analysed in Sect. 8.8.

Another possibility to obtain stable elements is to add some internal degrees
of freedom. The simplest case is the MINI element of [25] which we present in
Sect. 8.4.2 and in a more general form in Sect. 8.5.5. ut

8.3.2 Discontinuous Pressure: The P
1

�P0 Approximation

A second natural approach would be to try imposing directly the divergence-free
condition. The simplest element one can imagine for the approximation of an
incompressible flow would use a standard P 1 approximation for the velocities and
a piecewise constant approximation for the pressures. With the notation of Chap. 2,
this would read, again in the two-dimensional case,

Vh WD .L11/2 \ V; Qh WD L00 \Q: (8.3.2)

As the divergence of a P1 velocity field is piecewise constant, this would lead to
a truly divergence-free approximation. Moreover, this would give a well-balanced
O.h/ approximation in estimates (8.2.17) and (8.2.18).

However, it is easy to see that such an element will not work for a general
mesh. Indeed, consider a triangulation of a (simply connected) domain ˝ and let
us denote by

– t the number of triangles,
– vI the number of internal vertices,
– vB the number of boundary vertices.



468 8 Incompressible Materials and Flow Problems

Fig. 8.2 The cross-grid
element

We shall thus have 2vI degrees of freedom (d.o.f.) for the space Vh (since the
velocities vanish on the boundary) and .t�1/ d.o.f. forQh (because of the zero mean
value of the pressures) leading to .t � 1/ independent divergence-free constraints.
By Euler’s relations, we have

t D 2vI C vB � 2 (8.3.3)

and thus

.t � 1/ � 2.vI � 1/: (8.3.4)

A function uh 2 Vh is thus over-constrained and a locking phenomenon is likely to
occur: in general, the only divergence-free discrete function is uh 	 0.

When the mesh is built under certain restrictions, it is however possible that some
linear constraints become dependent: this will be the case for the cross-grid macro-
element (Fig. 8.2) which will be analysed in Example 8.10.3.

As we shall see in Sect. 8.8.1, in general, obtaining truly divergence-free
elements requires high degree approximations and some conditions on the mesh.
We shall give, in the next section, the simplest example of a stable discontinuous
pressure element, the P2 � P0 element.

8.4 Building a B-Compatible Operator: The Simplest
Stable Elements

We shall first recall here some of the results of Sect. 5.4.4 as applied to our
incompressible problems. Then, we present a complete analysis of the MINI and
P2 � P0 elements and of the nonconformingP 1 � P0 elements. We shall obtain in
Sect. 8.5.5 a more general proof for the MINI element.

It is not recommended to use the element P 2 � P0 because of its “unbalanced”
approximation properties (O.h2/ for Vh in the V -norm and only O.h/ for Qh in
the norm of Q), so that estimate (8.2.20) turns out to be suboptimal. However,
the analysis of this element contains basic issues for getting familiar with the
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approximation of the Stokes problem. Moreover, the stability properties of this
element will often be used as an intermediate step for the analysis of other, more
efficient, elements. It must also be said that this element is not directly generalisable
to the three-dimensional case.

8.4.1 Building a B-Compatible Operator

An efficient way (sometimes known as Fortin’s trick) of proving the inf-sup condi-
tion (8.2.16) consists in building a B-compatible interpolation operator ˘h like in
Sect. 5.4 (see [201]). We write down, here, how the hypotheses of Proposition 5.4.3
read in this particular situation.

Proposition 8.4.1. If there exists a linear operator˘h W V ! Vh such that

Z

˝

div.u �˘hu/qh dx D 0 8 v 2 V; qh 2 Qh; (8.4.1)

jj˘hujjV � cjjujjV ; (8.4.2)

then the inf-sup condition (8.2.16) holds true. ut
Remark 8.4.1. As it is shown in Chap. 5, condition (8.4.1) is equivalent to
Ker.gradh/ � Ker.grad/. An element with this property will present no spurious
pressure modes. ut
In several cases, the operator ˘h can be constructed in two steps as in Proposi-
tion 5.4.4. This was the case, for instance, in the proof of Proposition 8.4.3. In
general, it will be enough to build two operators˘1;˘2 2 L.V; Vh/ such that

jj˘1vjjV � c1jjvjjV 8 v 2 V; (8.4.3)

jj˘2.I �˘1/vjjV � c2jjvjjV 8 v 2 V; (8.4.4)
Z

˝

div.v �˘2v/qh D 0 8 v 2 V; 8 qh 2 Qh; (8.4.5)

where the constants c1 and c2 are independent of h. Then, the operator ˘h

satisfying (8.4.1) and (8.4.2) will be found as

˘hu D ˘1u C˘2.u �˘1u/: (8.4.6)

In many cases, ˘1 will be the interpolation operator of [154] (cf. Chap. 2) defined
in H1.˝/.

On the contrary, the choice of˘2 will vary from one case to the other, according
to the choice of Vh andQh. However, the common feature of the various choices for
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˘2 will be the following one: the operator ˘2 is constructed on each element K in
order to satisfy (8.4.5). In many cases, it will be such that

jj˘2vjj1;K � c.h�1
K jjvjj0;K C jvj1;K/: (8.4.7)

We can summarise this result in the following proposition.

Proposition 8.4.2. Let Vh be such that a “Clément’s operator”: ˘1 W V ! Vh
exists and satisfies (8.4.24). If there exists an operator ˘2 W V ! Vh such
that (8.4.5) and (8.4.7) hold, then the operator˘h defined by (8.4.6) satisfies (8.4.1)
and (8.4.2) and therefore the discrete inf-sup condition (8.2.16) holds. ut
We now consider some simple examples where this construction can be used.

8.4.2 A Stable Case: The MINI Element

We now show how we can enrich the space Vh of Example 8.3.1 so that, in the
end, the new choice will yield a stable and convergent approximation to the Stokes
problem (8.2.3). We set, as in (2.2.28),

B3 WD fb.x/ j b.x/jT 2 P3.T / \H1
0 .T /; 8T 2 Thg: (8.4.8)

Hence, each b.x/ of B3, on each triangle T , has the form ˛.T / �1.x/ �2.x/ �3.x/

with ˛.T / constant in T . Following [25], we set

Vh WD fL11.Th/˚ B3g2 \ V Qh WD L11.Th/ \Q (8.4.9)

and we want to show that (8.4.9) leads to a stable and convergent approximation of
the Stokes problem. For this, we are going to apply Proposition 8.4.2. We therefore
have to construct an operator˘h such that

Z

˝

div.v �˘hv/ qh dx D 0 8 qh 2 Qh 8 v 2 V; (8.4.10)

k˘hvkV � c kvkV 8 v 2 V: (8.4.11)

Following Proposition 8.4.2, we first take for˘1 the operator rh of Proposition 2.2.1
and Corollary 2.2.1. We set

˘1vjK D rhvjK (8.4.12)

which, from (2.2.20), yields

jv �˘1vjm;K � c
� X

NK0\ NK¤;
h1�mK0 jvj1;K0

�
: (8.4.13)
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In particular, (8.4.13) implies the first condition of (5.4.12)

k˘1vkV � c kvkV : (8.4.14)

We now define the operator˘2 W V ! .B3/
2 by means of

Z

˝

div.˘2v � v/qh dx D
Z

˝

.v �˘2v/ � grad qh dx D 0 8 qh 2 Qh: (8.4.15)

Since grad qh is piecewise constant, (8.4.15) is easily satisfied by choosing, in
each K , bubbles with the same mean value as v. It is easy to check that (under a
minimum angle condition)

k˘2vkr;K � ch�r
K kvk0;K 8 v 2 V; r D 0; 1: (8.4.16)

Indeed, for r D 1, this is the inverse inequality of Sect. 2.2.7.
From (8.4.15), it is then immediate to check that the second condition of (5.4.12)

is fulfilled and, from (8.4.16) and (8.4.13), we easily have the third condition.
We can thus apply Proposition 8.4.2 and the inf-sup condition holds. Now, we

apply Proposition 8.2.2 (or the more complete result of Proposition 8.2.1) and we
obtain

ku � uhkV C kp � phkQ � ch .kuk2;˝ C kpk1/; (8.4.17)

that is, an optimal error estimate for u.

8.4.3 Another Stable Approximation: The Bi-dimensional
P
2

�P0 Element

Let us now move, in the two-dimensional case, to the stable P 2 � P0 element.
Precisely, we use continuous piecewise quadratic vectors for the approximation of
the velocities and piecewise constants for the pressures.

The discrete divergence-free condition can then be written as

Z

K

div uh dx D
Z

@K

uh � n ds D 0; 8K 2 Th; (8.4.18)

that is, as a conservation of mass on every element. This is intuitively an approxi-
mation of div uh D 0, directly related to the physical meaning of this condition. It
is clear from error estimates (8.2.17), (8.2.18) and standard approximation results
(cf. Chap. 2) that such an approximation will lead to the loss of one order of
accuracy due to the poor approximation of the pressures. However, an augmented
Lagrangian technique can be used in order to recover a part of the accuracy loss (see
Remark 8.4.4).
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M1 M12 M2

M13 e2 M23e1

M3Fig. 8.3 The P 2 element

Proposition 8.4.3. The choice

Vh WD .L12/2 \ V; Qh WD L00 \Q (8.4.19)

fulfils the inf-sup condition (8.2.16).

Proof. Before giving the rigorous proof of Proposition 8.4.3, we are going to sketch
the main argument.

If we try to check the inf-sup condition by building an operator ˘h satisfy-
ing (5.4.10), then, given u, we have to build uh D ˘hu such that

Z

˝

div.u � uh/qh dx D 0 8 qh 2 Qh: (8.4.20)

Since qh is constant on every elementK 2 Th, this is equivalent to

Z

K

div.u � uh/ dx D
Z

@K

.u � uh/ � n ds D 0: (8.4.21)

This last condition would be satisfied if uh could be built in the following way. Let
us denote by Mi and ei , i D 1; 2; 3, the vertices and the sides of the triangular
elementK (Fig. 8.3); the mid-side nodes are denoted by Mij.

We then define

uh.Mi/ D u.Mi /; i D 1; 2; 3 (8.4.22)
Z

ei

uh ds D
Z

ei

u ds: (8.4.23)

Condition (8.4.23) can be fulfilled by a correct choice of uh.Mij/. Moreover, this
construction can be done at element level as the choice of uh.Mij/ is compatible on
adjacent elements (that is, with this definition, uh turns out to be continuous).

Although this is the basic idea, some technicalities must be introduced before a
real construction is obtained. Indeed, for u 2 .H1

0 .˝//
2, condition (8.4.22) does not

make sense.
Let us then give a rigorous proof of Proposition 8.4.3. We shall rely again

on Proposition 8.4.2. Denoting by ˘1 W V ! Vh the Clément interpolant [154]
described in Proposition 2.2.1, we then have
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X

K

h2r�2K jv �˘1vj2r;K � cjjvjj21;˝; r D 0; 1: (8.4.24)

Setting r D 1 and using the triangular inequality jj˘1vjj � jjv�˘1vjjC jjvjj gives

jj˘1vjjV � c1jjvjjV 8 v 2 V: (8.4.25)

We now modify ˘1 in a suitable way. Let us define ˘2 W V ! Vh in the following
way:

˘2vjK.M/ D 0 8M vertex ofK; (8.4.26)
Z

e

˘2u ds D
Z

e

u ds 8 e edge of K: (8.4.27)

By construction,˘2 satisfies

Z

˝

div.v �˘2v/qh dx D 0 8 vh 2 Vh; qh 2 Qh (8.4.28)

and a scaling argument (see Sect. 2.2.7) gives

j˘2vj1;K D jb˘2vj1; OK < c.K; �0/jj Ovjj1; OK � c.K; �0/.h
�1
K jvj0;K C jvj1;K/: (8.4.29)

We can now define, as in Proposition 5.4.4,

˘hu D ˘1u C˘2.u �˘1u/ (8.4.30)

and observe that (8.4.29) and (8.4.24) imply

jj˘2.I �˘1/ujjV � c2jjujjV 8 v 2 V; (8.4.31)

since

jj˘2.I �˘1/vjj21;˝ D
X

K

jj˘2.I �˘1/vjj21;K

� c
X

K

˚
h�2
K jj.I �˘1/vjj20;K C j.I �˘1/vj21;K

� � cjjvjj21;˝: (8.4.32)

Hence, Proposition 5.4.4 applies and the proof is concluded. ut
The above proof can easily be extended to more general cases. It applies to the

.Q2/
2 �P0 quadrilateral element, provided that the usual regularity assumptions on

quadrilateral meshes are made.

Remark 8.4.2 (The 2D SMALL element). The proof will hold for elements in which
only the normal component of velocity is used as a d.o.f. at the mid-side nodes
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M3 M13 M1

M23 M12

M2Fig. 8.4 The 2d SMALL
element

[70, 198, 202]. Indeed, if only the normal component of uh is used as a degree of
freedom, the .P2/2 �P0 element becomes the element of Fig. 8.4 in which, on each
side, the normal component of uh is quadratic, whereas the tangential component is
only linear.

In this case, we can define ˘2v by setting
Z

e

.˘2v � n/ ds D
Z

e

v � n ds: (8.4.33)

The same remark is valid for the .Q2/
2 � P0 quadrilateral element. ut

Remark 8.4.3. The philosophical idea behind the .P2/2�P0 element is that we need
one degree of freedom per each interface (actually, the normal component of the
velocity) in order to control the jump of the pressures. This is basically the meaning
of Green’s formula (8.4.21). For three-dimensional elements, however, we would
need a mid-face node instead of a mid-side node in order to control the normal flux
from one element to the other.

In particular, we point out that adding internal degrees of freedom to the velocity
space cannot stabilise elements with piecewise constant pressures which do not
satisfy the inf-sup condition. ut
Remark 8.4.4. To reduce the loss of accuracy due to the unbalanced approximation
properties of the spaces Vh and Qh, we can employ the augmented Lagrangian
technique of Sect. 5.6.3. The discrete scheme reads: find .uh; ph/ 2 Vh 
 Qh such
that

Z

˝

".uh/ W ".vh/ dx C h�1=2
Z

˝

div uh div vh dx

�
Z

˝

ph div vh dx D
Z

˝

f � vh dx; 8 vh 2 Vh;
Z

˝

qh div uh dx D 0; 8 qh 2 Qh:

(8.4.34)

Following [95], we have the following error estimate

jju � uhjjV C jjp � phjjQ � ch3=2 inf
v2Vh; q2Qh

�jju � vjjV C jjp � qjjQ
�
: (8.4.35)

ut
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P1
NC−− P0 element

Fig. 8.5 PNC
1 � P0 element

8.4.4 The Nonconforming P
1

�P0 Approximation

Finally, to conclude this section about simple examples, we consider the classical
(almost) stable nonconforming triangular element introduced in [165], in which
mid-side nodes are used as degrees of freedom for the velocities. This generates
a piecewise linear nonconforming approximation; pressures are taken constant on
each element as illustrated in Fig. 8.5. It is also possible to build a three-dimensional
version of this element, using mid-face nodes as degrees of freedom. We thus choose
againQh WD L00 \Q and

Vh WD fvh j vh 2 L1;NC.P1; Th/2 vanishing at the boundary midpoints:g (8.4.36)

We remark that this method is attractive for several reasons. In particular, the
restriction to an element K of the solution uh 2 Vh is exactly divergence-free, since
divVh � Qh.

As we have a nonconforming element, we must define discrete bilinear forms,

ah.uh; vh/ WD
X

K

Z

K

grad uh W grad vh dx; (8.4.37)

bh.vh; qh/ WD
X

K

Z

K

div vhqh dx (8.4.38)

and consider the problem

ah.uh; vh/C bh.vh; ph/ D .f ; vh/ 8 vh 2 Vh; (8.4.39)

bh.uh; qh/ D 0 8 qh 2 L00: (8.4.40)

Remark 8.4.5 (Problem with coercivity). It must also be recalled that coercivity is
a problem for the PNC

1 �P0 element. The trouble is that the bilinear form (8.2.1) is
not coercive on the nonconforming space Vh and we do not have the discrete version
of Korn’s inequality. This issue has been deeply investigated and clearly illustrated
in [16]. It is important to note that (8.4.37) is not the same as in (8.2.1). As we stated
earlier, the modified problem is valid only for Dirichlet boundary conditions. Even
for the Stokes problem, the inf-sup condition is not always the only relevant one.

ut
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Nevertheless, let us see how we can show the inf-sup condition. We may now
construct˘h W V ! Vh by

Z

@K

.˘hv � v/ � � ds D 0 8� 2 R0.@K/ (8.4.41)

and, again, it is easy to see that

j˘hvj1;h � c kvk1;h (8.4.42)

(where as usual jvhj21;h D P
K jvhj21;K ) and

bh.v �˘hv; qh/ D 0 8 qh 2 L00; (8.4.43)

which implies, by Proposition 5.4.2,

inf
q2Qh=R

sup
v2Vh

bh.v; q/

jvj1;hkqk0=R � c > 0: (8.4.44)

On the other hand, we also have

ah.vh; vh/ � ˛ kvhk21;h 8 vh 2 Vh: (8.4.45)

We may now apply Proposition 5.5.6 and get

ju � uhj1;h C kp � phk0;R � chC Eh.u; p/; (8.4.46)

where

Eh.u; p/ D sup
vh2Vh

jvhj�11;hfah.u; vh/C bh.vh; p/ � .f ; vh/g

D sup
vh2Vh

jvhj�11;h
X

K

Z

@K

Œ. grad u/ � n� � vh ds

� ch kuk2;˝ ;

(8.4.47)

so that, in the end, we have the optimal estimate

ju � uhj1;h C kp � phk0=R � ch kuk2;˝ : (8.4.48)

The present element has been generalised to second order in [209]. In this case,
there is no problem with coercivity.
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Remark 8.4.6. The generalisation of nonconforming finite elements to quadrilater-
als is not straightforward. In particular, approximation properties of the involved
spaces are not obvious. More details can be found in [330]. ut

8.5 Other Techniques for Checking the inf-sup Condition

Having presented a few simple examples, we now consider, in a more systematic
way, standard techniques for the proof of the inf-sup stability condition (8.2.16) that
can be applied to a large class of elements. For ease of presentation, in this section,
we develop the theory and postpone the examples to Sects. 8.6 and 8.7, for two-
and three-dimensional schemes, respectively. However, after the description of each
technique, we list some schemes to which that technique can be applied.

8.5.1 Projection onto Constants

Following [116], we now consider a modified inf-sup condition

inf
qh2Qh

sup
vh2Vh

R
˝
qh div vh dx

jjvhjjV jjqh � NqhjjQ � k0 > 0; (8.5.1)

where Nqh is the L2-projection of qh onto L00 (that is, piecewise constant functions).

Proposition 8.5.1. Let us suppose that the modified inf-sup condition (8.5.1) holds
with k0 independent of h. Assume moreover that Vh is such that, for any qh 2 L00\Q,

sup
vh2Vh

R
˝
qh div vh dx

jjvhjjV
� �0jjqhjjQ; (8.5.2)

with �0 independent of h. Then, the inf-sup condition (8.2.16) holds true.

Proof. For any qh 2 Qh, one has

sup
vh2Vh

b.vh; qh/

jjvhjjV
D sup

vh2Vh

�
b.vh; qh � Nqh/

jjvhjjV
C b.vh; Nqh/

jjvhjjV
�

� sup
vh2Vh

b.vh; Nqh/
jjvhjjV

� sup
vh2Vh

b.vh; qh � Nqh/
jjvhjjV

� �0jj NqhjjQ � jjqh � Nqhjj0;

(8.5.3)
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which implies

sup
vh2Vh

b.vh; qh/

jjvhjjV
� k0�0

1C k0
jj NqhjjQ: (8.5.4)

Putting together (8.5.1) and (8.5.4) proves the proposition. ut
Remark 8.5.1. In the case of continuous pressures schemes, hypothesis (8.5.2) can
be replaced with the following approximation assumption: for any v 2 V there
exists vI 2 Vh such that

jjv � vI jjL2.˝/ � c1hjjvjjV ; jjvI jjV � c2jjvjjV : (8.5.5)

The details of the proof can be found in [116] when the mesh is quasi-uniform.
The quasi-uniformity assumption is actually not needed, as it can be shown with an
argument similar to the one which will be presented in the next subsection (see, in
particular, Remark 8.5.2). ut
Example 8.5.1. The technique presented in this section will be used, for instance,
for the stability proof of the generalised two-dimensional Hood–Taylor element (see
Sect. 8.8.2 and Theorem 8.8.1). ut

8.5.2 Verfürth’s Trick

Verfürth’s trick [375], already presented in Sect. 5.4.5, applies to continuous
pressure approximations and is essentially based on two steps. The first step is quite
general and can be summarised in the following Lemma.

Lemma 8.5.1. Let ˝ be a bounded domain in R
n with Lipschitz continuous

boundary. Let Vh � .H1
0 .˝//

n DW V and Qh � H1.˝/\Q be closed subspaces.
Assume that there exists a linear operator ˘0

h from V into Vh and a constant c
(independent of h) such that

jjvh �˘0
hvjjr � c

X

K2Th

�
h2�2rK jjvjj21;K

�1=2 8 v 2 V; r D 0; 1: (8.5.6)

Then, there exist two positive constants c1 and c2 such that, for every qh 2 Qh,

sup
v2Vh

R
˝
qh div vh dx

jjvhjjV
� c1jjqhjjQ � c2

0

@
X

K2Th

h2K jj grad qhjj20;K

1

A
1=2

: (8.5.7)
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Proof. Given qh 2 Qh, let Nv 2 V be such that

R
˝
qh div Nv dx

jj NvjjV jjqhjjQ � ˇ > 0; (8.5.8)

where ˇ is the continuous inf-sup constant. Then,

sup
vh2Vh

R
˝
qh div vh dx

jjvhjjV
�
R
˝
qh div˘0

h Nv dx

jj˘0
h NvjjV � 1

2c

R
˝
qh div˘0

h Nv dx

jj NvjjV

D 1

2c

R
˝
qh div Nv dx

jj NvjjV C 1

2c

R
˝
qh div.˘0

h Nv � Nv/ dx

jj NvjjV

� ˇ=4cjjqhjjQ C 1

2c

R
˝

grad qh � .˘0
h Nv � Nv/ dx

jj NvjjV

� ˇ=4cjjqhjjQ �
0

@1
2

X

K2Th

h2K jj grad qhjj20;K

1

A
1=2

:

(8.5.9)

ut
Remark 8.5.2. Indeed, via a scaling argument, it can be shown that the last term in
the right-hand side of equation (8.5.7) is equivalent to jjqh� Nqhjj0, where Nqh denotes,
as in the previous subsection, the L2-projection onto the piecewise constants. ut
We are now in the position of stating the main result of this subsection. Note that
Verfürth’s trick consists in proving a kind of inf-sup condition where the zero norm
of qh is substituted by hjqhj1.
Proposition 8.5.2. Suppose that the hypotheses of Lemma 8.5.1 hold true. Assume,
moreover, that there exists a constant c3 such that, for every qh 2 Qh,

sup
vh2Vh

R
˝
qh div vh
jjvhjjV

� c3

0

@
X

K2Th

h2K jqhj21;K

1

A
1=2

: (8.5.10)

Then, the standard inf-sup condition (8.2.16) holds true.

Proof. Let us multiply (8.5.7) by c3 and (8.5.10) by c2 and sum up the two
equations. We have

.c3 C c2/ sup
vh2Vh

R
˝
qh div vh dx

jjvhjjV
� c1c3jjqhjjQ; (8.5.11)

that is, the inf-sup condition (8.2.16). ut
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Example 8.5.2. The Verfürth trick has been designed for the stability analysis
of the Hood–Taylor method. It will be used for this purpose in Sect. 8.8.2 (see
Theorem 8.8.1). ut

8.5.3 Space and Domain Decomposition Techniques

Sometimes, the spaces Vh and Qh decompose into the sum (direct or not) of
subspaces for which it might be easier to prove an inf-sup condition. This is the
case, for instance, when a domain decomposition technique is employed. Some of
the results we are going to present can be viewed as a particular case of the macro-
element technique which will be introduced in Sect. 8.5.4.

The next result has been presented and proved in [223].

Proposition 8.5.3. Suppose ˝ can be decomposed as the union of disjoint sub-
domains with Lipschitz continuous boundaries

˝ WD
R[

rD1
˝r : (8.5.12)

We make use of the following notation:

V0;r WD fv j v 2 Vh; v D 0 in ˝ n˝rg;

Q0;r WD fq j q 2 Qh;

Z

˝r

q dx D 0g;

K WD fq j q 2 Q; qj˝r is constant; r D 1; : : : ; Rg:

(8.5.13)

Suppose, moreover, that the spaces V0;r and Q0;r satisfy the following inf-sup
condition

inf
qh2Q0:r

sup
vh2V0;r

R
˝r
qh div vh dx

jjqhjjQjjvhjjV
� kr > 0; (8.5.14)

with kr independent of h (r D 1; : : : ; R) and that the following inf-sup condition
between Vh andK holds true

inf
qh2K

sup
vh2Vh

R
˝ qh div vh dx

jjqhjjQjjvhjjV
� kK > 0; (8.5.15)

with kK independent of h. Then, the spaces Vh and Qh satisfy the inf-sup
condition (8.2.16). ut
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Sometimes, it is not possible (or it is not the best choice) to partition ˝ into
disjoint sub-domains. Let us describe the case of two overlapping sub-domains. The
following proposition can be checked by a direct computation.

Proposition 8.5.4. Let ˝ be the union of two sub-domains ˝1 and ˝2 with
Lipschitz continuous boundaries. With the notation of the previous proposition,
suppose that the spaces V0;r and Q0;r satisfy the inf-sup conditions

inf
qh2Q0;r

sup
vh2V0;r

R
˝r
qh div vh dx

jjqhjjQjjvhjjV
� kr > 0; (8.5.16)

for r D 1; 2. Then, the spaces Vh andQh satisfy the condition

inf
qh2Qh

sup
vh2Vh

R
˝
qh div vh dx

jjqh � qhjjQjjvhjjV
� 1p

2
min.k1; k2/; (8.5.17)

where, as in Sect. 8.5.1, we have denoted by qh the L2 projection of qh onto the
space L00. ut

Another useful technique for proving the inf-sup condition can be found in [328].
This result is quite general; in particular, the decomposition of the spaces Vh and
Qh does not rely on a decomposition of the domain ˝ . In [328], the following
proposition is stated for a two-subspaces decomposition, but it obviously extends to
more general situations.

Proposition 8.5.5. Let Q1 andQ2 be subspaces of Qh such that

Qh WD Q1 CQ2: (8.5.18)

If V1, V2 are subspaces of Vh and ˛1, ˛2 positive constants such that

inf
qh2Qi

sup
vh2Vi

R
˝ qh div vh dx

jjqhjjQjjvhjjV
� ˛i ; i D 1; 2 (8.5.19)

and ˇ1, ˇ2 are non-negative constants such that

ˇ̌
ˇ̌
Z

˝

q1 div v2 dx

ˇ̌
ˇ̌ � ˇ1jjq1jjQjjv2jjV 8q1 2 Q1; 8 v2 2 V2;

ˇ̌
ˇ̌
Z

˝

q2 div v1 dx

ˇ̌
ˇ̌ � ˇ2jjq2jjQjjv1jjV 8q2 2 Q2; 8 v1 2 V1;

(8.5.20)

with

ˇ1ˇ2 < ˛1˛2; (8.5.21)
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then the inf-sup condition (8.2.16) holds true with k0 depending only on ˛i , ˇi ,
i D 1; 2. ut
Remark 8.5.3. Condition (8.5.21) is trivially true, for instance, when ˇ1ˇ2 D 0 and
˛1˛2 > 0. ut
Example 8.5.3. Most of the techniques presented in this section can be seen as a
particular case of the macro-element technique (see Sect. 8.5.4). Proposition 8.5.4
will be used in Theorem 8.8.1 for the stability proof of the Hood–Taylor scheme.

ut

8.5.4 Macro-element Technique

In this section we present a technique introduced by Stenberg (see [351–355])
which, under suitable hypotheses, reduces the matter of checking the inf-sup
condition (8.2.16) to an algebraic problem. We also refer to [98] for related results
in a somewhat different setting.

The present technique is based on a decomposition of the triangulation Th into
disjoint macro-elements, where we refer to a macro-element as an open polygon
(resp., polyhedron in R

3) which is the union of adjacent elements.
Let us introduce some notation.
A macro-elementM is said to be equivalent to a reference macro-element OM if

there exists a mapping FM W OM ! M such that

1. FM is continuous and invertible;
2. FM . OM/ D M ;
3. If OM D [ OKj , where Kj , j D 1; : : :m, are the elements defining OM , then
Kj D FM . OKj /, j D 1; : : : m, are the elements of M ;

4. FM j OKj D FKj ı F �1
OKj , j D 1; : : :m, where FK denotes the affine mapping from

the reference element to a generic elementK .

We denote by E OM the equivalence class of OM . We now introduce the discrete spaces
associated with Vh and Qh on the generic macro-element M (N is the dimension
of ˝):

V0;M WD ˚
v j v 2 .H1

0 .M//N ; v D wjM with w 2 Vh
�
;

Q0;M WD
�
p jp 2 L2.˝/;

Z

M

p dx D 0; p D qjM with q 2 Qh

�
:

(8.5.22)

We finally introduce a space which corresponds to the kernel of Bt
h on the macro-

elementM :

KM WD
�
p jp 2 Q0;M ;

Z

M

p div v dx D 0; 8 v 2 V0;m
�
: (8.5.23)
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The macro-elements condition reads

KM D f0g; (8.5.24)

that is, the analogous (at a macro-element level) of the necessary condition for the
discrete Stokes problem to be well-posed that the kernel of Bt

h reduces to the zero
function.

Proposition 8.5.6. Suppose that each triangulation Th can be decomposed into dis-
joint macro-elements belonging to a fixed number (independent of h) of equivalence
classes E OMi

, i D 1; : : : n. Suppose, moreover, that the pair Vh � L00=R is a stable
Stokes element, that is,

inf
qh2L0

0=R

sup
vh2Vh

R
˝
qh divvh dx

jjqhjjQjjvhjjV
� ˇ > 0; (8.5.25)

with ˇ independent of h. Then, the macro-element condition (8.5.24) (for everyM 2
E OMi

, i D 1; : : : n) implies the inf-sup condition (8.2.16).

Proof. We do not give the technical details of the proof, for which we refer to [351].
The basic arguments of the proof are sketched in Remark 8.5.4. ut
Remark 8.5.4. The macro-element condition (8.5.24) is strictly related to the patch
test used by engineers (cf., e.g., [388]). However, the count of the degrees of
freedom is clearly insufficient by itself. Hence, let us point out how the hypotheses
of Proposition 8.5.6 are important.

Hypothesis (8.5.24) (the macro-element condition) implies, via a compactness
argument, that a discrete inf-sup condition holds true between the spaces V0;M
and Q0;M . The finite number of equivalent macro-elements classes is sufficient to
conclude that the corresponding inf-sup constants are uniformly bounded below by
a positive number.

Then, we are basically in the situation of the domain decomposition technique
of Sect. 8.5.3. We now use hypothesis (8.5.25) to control the constant functions on
each macro-element and to conclude the proof. ut
Remark 8.5.5. Hypothesis (8.5.25) is satisfied in the two-dimensional case
whenever Vh contains piecewise quadratic functions (see Sect. 8.3). In the three-
dimensional case, things are not so easy: to control the constants, we need extra
degrees of freedom on the faces, as observed in Remark 8.4.3. For this reason,
let us state the following proposition which can be proved with the technique of
Sect. 8.5.1 (see Remark 8.5.1) and which applies to the case of continuous pressures
approximations. ut
Proposition 8.5.7. Let us make the same assumptions as in Proposition 8.5.6 with
(8.5.25) replaced by the condition of Remark 8.5.1 (see (8.5.5)). Then, provided
Qh � C0.˝/, the inf-sup condition (8.2.16) holds true. ut
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Remark 8.5.6. The hypothesis that the macro-element partition of Th is disjoint can
be weakened, in the spirit of Proposition 8.5.4, by requiring that each element K
of Th belongs at most to a finite number N of macro-elements with N independent
of h. ut
Example 8.5.4. The macro-element technique can be used in order to prove
the stability of several schemes. Among those, we recall the Q

2
� P1 element

(see Sect. 8.6.3) and the three-dimensional generalised Hood-Taylor scheme (see
Theorem 8.8.2). ut

8.5.5 Making Use of the Internal Degrees of Freedom

This subsection presents a general framework providing a general tool for the
analysis of finite element approximations to problems of incompressible materials.

The basic idea has been used several times on particular cases, starting from [165]
for discontinuous pressures and from [24] and [25] for continuous pressures. We are
going to present it in its final general form given by Brezzi and Pitkiäranta [131]. It
consists essentially in stabilising an element by adding suitable bubble functions to
the velocity field.

In order to do that, following the notation of Remark 2.2.4, we first associate to
every finite element discretisationQh � Q the space

B.bK gradQh/ WD
n
ˇ jˇ 2 V; ˇjK D bK grad.qhjK/ for some qh 2 Qh

o
;

(8.5.26)

where bK is a bubble function defined in K . In particular, we can take bK D b3;K
as the standard cubic bubble if K is a triangle, or a bi-quadratic bubble if K is
a square or other obvious generalisations in 3D. In other words, the restriction of a
ˇ 2 B.bK gradQh/ to an elementK is the product of the bubble functions bK times
the gradient of a function of QhjK .

Remark 8.5.7. In (8.5.26), we take the gradient onK so thatB.bK gradQh/ is well
defined even if Qh is a space of discontinuous pressures. ut
Remark 8.5.8. Notice that the space B.bk gradQh/ is not defined through a basic
space OB on the reference element. This could be easily done in the case of affine
elements, for all the reasonable choices ofQh. However, this is clearly unnecessary:
if we know how to compute qh on K , we also know how to compute grad qh and
there is no need for a reference element. ut
We can now prove our basic results, concerning the two cases of continuous or
discontinuous pressures.

Proposition 8.5.8 (Stability of continuous pressure elements). Assume that there
exists an operator ˘1 2 L.V; Vh/ satisfying the property of the Clément inter-
polant (8.4.24). If Qh � C0.˝/ and Vh contains the space B.bk gradQh/, then
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the pair .Vh;Qh/ is a stable element, in the sense that it satisfies the inf-sup
condition (8.2.16).

Proof. We shall build a B-compatible operator, like in Proposition 8.4.2. We only
need to construct the operator ˘2. We define ˘2 W V ! B.bk gradQh/, on each
element, by requiring

˘2vjK 2 B.bK gradQh/jK;
Z

K

.˘2v � v/ � grad qh dx D 0; 8 qh 2 Qh:
(8.5.27)

Problem (8.5.27) has obviously a unique solution and ˘2 satisfies (8.4.5).
Finally, (8.4.7) follows by a scaling argument. Hence, Proposition 8.4.2 gives
the desired result. ut
Corollary 8.5.1. Assume that Qh � Q is a space of continuous piecewise smooth
functions. If Vh contains .L11/2˚B.bK gradQh/, then the pair .Vh;Qh/ satisfies the
inf-sup condition (8.2.16).

Proof. Since Vh contains piecewise linear functions, there exists a Clément inter-
polant˘1 satisfying (8.4.24). Hence, we can apply Proposition (8.5.8). ut

We now consider the case of discontinuous pressure elements.

Proposition 8.5.9 (Stability of discontinuous pressure elements). Assume that
there exists an operator Q̆

1 2 L.V; Vh/ satisfying

jj Q̆
1vjjV � cjjvjjV 8 v 2 V;

Z

K

div.v � Q̆
1v/ dx D 0 8 v 2 V 8K 2 Th:

(8.5.28)

If Vh contains B.bK gradQh/, then the pair .Vh;Qh/ is a stable element, in the
sense that it satisfies the inf-sup condition (8.2.16).

Proof. We are going to use Proposition 8.5.8. We take Q̆
1 as operator ˘1. We are

not defining˘2 on the whole V , but only in the subspace

V 0 WD
�
v j v 2 V;

Z

K

div v dx D 0 8K 2 Th
�
: (8.5.29)

This will be enough, since we need to apply ˘2 to the difference v � Q̆
1v which is

in V 0 by (8.5.28).
For every v 2 V 0, we define ˘2v 2 B.bK gradQh/ by requiring that, in each

elementK ,
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˘2vjK 2 B.bK gradQh/jK;
Z

K

div.˘2v � v/qh dx D 0 8 qh 2 QhjK:
(8.5.30)

Note that (8.5.30) is uniquely solvable, if v 2 V 0, since the divergence of a bubble
function has always zero mean value (hence, the number of non-trivial equations
is equal to dim.QhjK/ � 1, which is equal to the number of unknowns; the non-
singularity then follows easily). It is obvious that ˘2, as given by (8.5.30), will
satisfy (8.4.5) for all v 2 V 0. We have to check that

k˘2vk1 � ckvkV ; (8.5.31)

which actually follows by a scaling argument making use of the following bound

jb˘2vj0; OK � c.�0/j Ovj1; OK: (8.5.32)

ut
Corollary 8.5.2 (Two-dimensional case). Assume that Qh � Q is a space of
piecewise smooth functions. If Vh contains .L12/2 ˚ B.bK gradQh/, then the pair
.Vh;Qh/ satisfies the inf-sup condition (8.2.16).

Proof. The stability of the .P2/2 � P0 element (see Sect. 8.3) implies the existence
of Q̆

1 as in Proposition 8.5.9. ut
Propositions 8.5.8 and 8.5.9 are worth a few comments. They show that almost

any element can be stabilised by using bubble functions. For continuous pressure
elements, this procedure is mainly useful in the case of affine elements. For
discontinuous pressure elements, it is possible to stabilise elements which are
already stable for a piecewise constant pressure field. Examples of such a procedure
can be found in [199]. Stability with respect to piecewise constant pressure implies
that at least one degree of freedom on each side or face of the element is linked to
the normal component of velocity (see [202] and Remark 8.4.3).

Example 8.5.5. Internal degrees of freedom can be used in the stability analysis
of several methods. For instance, we use it for the analysis of the MINI element
(see Sects. 8.6.1 and 8.7.1) in the case of continuous pressures and of the Crouzeix-
Raviart element (see Proposition 8.6.2 and Sect. 8.7.2) in the case of discontinuous
pressures. ut

8.6 Two-Dimensional Stable Elements

In this section, we shall make use of the techniques presented in Sect. 8.5 to prove
the stability for some of the most popular two-dimensional Stokes elements. The
degrees of freedom corresponding to some of those are collected in Fig. 8.6.
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Fig. 8.6 Some stable
two-dimensional Stokes
elements: (a) the MINI
element, (b) the
Crouzeix–Raviart element,
(c) the PNC

1 � P0 element,
(d) the Q

2
� P1 element

We start with triangular elements and then we present schemes based on
quadrilaterals.

The Hood–Taylor element (two- and three-dimensional) and its generalisation
will be presented in Sect. 8.8. Figure 8.6 presents the most simple cases of the
elements that we shall discuss.

8.6.1 Continuous Pressure Elements

We have already presented in Sect. 8.4.2 the MINI element. This element, which is
probably the simplest one for the approximation of the Stokes equation, has been
introduced in [25]. Using the results of Sect. 8.5.5, in particular Corollary 8.5.1, we
easily deduce the following result.
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Proposition 8.6.1. The following pair of spaces are stable for any k � 1

Vh WD .Lk1 ˚ B.b3;K gradQh//
2 \ V; Qh WD Lk1 \Q; (8.6.1)

Vh WD .LkC1
1 ˚ B.b3;K gradQh//

2 \ V; Qh WD Lk1 \Q: (8.6.2)

ut
For k D 1, (8.6.1) is the MINI element while (8.6.2) defines a variant of the Hood-
Taylor element, which we shall consider in Sect. 8.8, enriched by bubbles. This
produces an element with a slightly better kh in the inf-sup condition.

8.6.2 Discontinuous Pressure Elements

We have already considered in Sect. 8.4.3 the element P 2�P0. Using a P0 pressure
ensures an element-wise conservation of mass which is an advantage in some
situations. We now rely on Proposition 8.5.9 and more precisely on Corollary 8.5.2.

Example 8.6.1 (The Crouzeix-Raviart element). This element, presented in [165],
is an enrichment to the P2 � P0 scheme which provides well-balanced approxima-
tion properties. Given a mesh of triangles, the approximating spaces are

Vh WD .L12 ˚ B3/
2 \ V; Qh WD L01 \Q: (8.6.3)

The proof of the stability for this element is a direct consequence of Proposi-
tion 8.5.8. ut
The Crouzeix-Raviart element is the simplest one of a general family. Indeed, the
construction of the Crouzeix-Raviart element relies on the fact that, as we have seen
in Proposition 8.5.9 and Corollary 8.5.2, adding enough bubbles (that is, internal
degrees of freedom) to an element which is stable for pressures in L00 can make it
stable for pressures in L0k . We can thus state the following proposition.

Proposition 8.6.2. For k � 2, let

Vh WD .L1k ˚ BkC1/2 \ V; Qh D L0k�1 \Q: (8.6.4)

Then, the couple Vh 
Qh is stable. ut
Remark 8.6.1 (A nonconforming version). It can easily be checked [209] that one
obtains a stable element of second order accuracy by replacing the standard bubble
by the nonconforming bubble of (2.2.39), that is, taking

Vh WD .L12 ˚ BNC /
2 \ V; Qh D L01 \Q: (8.6.5)
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Besides some nice continuity properties of the stress at mid-side nodes, the fact
that second order polynomials are employed simplifies things for the numerical
integration when building the discrete problem. ut
Remark 8.6.2. Instead of enriching Vh, stability can be obtained by taking a smaller
Qh, in general to the expense of accuracy. It can easily be checked that if we take, for
k � 2, Vh D .L1k/2 and Qh D L0k�2, we have enough internal degrees of freedom
in Vh to ensure stability. This is not true in the three-dimensional case where one
would needQh D L0k�3 and, evidently, k � 3. This choice of elements would have
a severe impact on accuracy. ut

8.6.3 Quadrilateral Elements,Q
k

�Pk�1 Elements

We now discuss the stability and convergence of a family of quadrilateral elements.
The lowest order of this family, the Q

2
� P1 element, is one of the most popular

Stokes elements. These elements are discontinuous pressure elements and they
originate from attempts to use the reduced integration technique which will be
analysed in Sect. 8.12. Let us first consider what would appear to be a natural
construction. Given k � 1, the discrete spaces are defined as follows:

Vh WD .L1Œk�/2 \ V; Qh WD L0Œk�1� \Q: (8.6.6)

For k D 1, this yields the unstable Q
1

� P0 which will be considered in detail in
Sect. 8.10. For k D 2, we have the Q

2
�Q1 element which appears quite naturally

in the use of reduced integration penalty methods (see [60]). This element is not
stable and suffers from the same problems as theQ

1
� P0 element.

Let us now consider, instead of (8.6.6),

Vh WD .L1Œk�/2 \ V; Qh WD L0k�1 \Q: (8.6.7)

Using Pk pressure instead ofQk is not a natural choice, although it is the good one.
If the mesh is built of rectangles, the stability proof is an immediate consequence
of Proposition 8.5.9, since (8.5.28) is satisfied for Vh (indeed, the Q

2
� P0 is a

stable Stokes element, see Remark 8.4.3). In the case of a general quadrilateral
mesh, things are not so easy; even the definition of the space Qh is not so obvious
and there have been different opinions, during the years, about two possible natural
definitions. Following [90], we discuss in detail the case k D 2. We shall see that in
this case there are important issues related to the approximation properties of finite
elements on non-affine meshes.

8.6.3.1 The Q
2

�P1 Element

This element was apparently discovered around a blackboard at the Banff Confer-
ence on Finite Elements in Flow Problems (1979). Two different proofs of stability
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can be found in [223] and [351] for the rectangular case. This element is a relatively
late comer in the field; the reason for this is that, as we stated earlier, using a P1
pressure on a quadrilateral is not a standard procedure. It appeared as a cure for
the instability of the Q

2
� Q1 element which appears quite naturally in the use of

reduced integration penalty methods (see [60]). Another cure can be obtained by
adding internal nodes (see [199]).

On a general quadrilateral mesh, the space Qh can be defined in two different
ways: either Qh consists of (discontinuous) piecewise linear functions, or it is built
by considering three linear shape functions on the reference unit square and mapping
them to the general elements like it is usually done for continuous finite elements
(see (2.1.59)). We point out that since the mappingFK from the reference element OK
to the general elementK in this case is bilinear but not affine, the two constructions
are not equivalent. We shall refer to the first possibility as the unmapped pressure
approach and to the second one as the mapped pressure approach.

In order to analyse the stability of either scheme, we use the macro-element
technique presented in Sect. 8.5.4 with macro-elements consisting of one single
element.

The unmapped pressure approach yields the original proof presented in [351].
Let M be a macro-element and qh D a0 C axx C ayy 2 Q0;M an arbitrary
function in KM . If b.x; y/ denotes the bi-quadratic bubble function on K , then
vh D .axb.x; y/; 0/ is an element of V0;M and

0 D
Z

M

qh div vh dx dy D �
Z

M

grad qh � vh dx dy D �ax
Z

M

b.x; y/ dx dy

implies ax D 0. In a similar way, we get ay D 0 and, since the average of qh on M
vanishes, we have the macro-element condition qh D 0.

We now consider the mapped pressure approach, following the proof presented
in [90]. There, it is recalled that the macro-element condition (8.5.24) can be related
to an algebraic problem in which we are led to prove that a two-by-two matrix is
non-singular. Actually, it turns out that the determinant of such a matrix is a multiple
of the Jacobian determinant of the function mapping the reference square OK onto
M , evaluated at the barycentre of OK . Since this number must be non-zero for any
element of a well-defined mesh, we can deduce that the macro-element condition is
also satisfied in this case, and we can then conclude that the stability holds thanks
to Proposition 8.5.6.

So far, we have shown that both the unmapped and the mapped pressure
approach give rise to a stable Q2 � P1 scheme. However, as a consequence of the
results proved in [20], we have that the mapped pressure approach cannot achieve
optimal approximation order. Namely, the unmapped pressure space provides a
second order convergence in L2, while the mapped one achieves only O.h/ in the
same norm. In [90], several numerical experiments have been reported, showing that
on general quadrilateral meshes (with constant distortion), the unmapped pressure
approach provides a second order convergence (for both velocity inH1 and pressure
in L2), while the mapped approach is only sub-optimally first order convergent.
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It is interesting to remark that, in this case also, the convergence of the velocities is
suboptimal, according to the error estimate (8.2.17).

8.7 Three-Dimensional Stable Elements

Many elements presented in Sect. 8.6 have a three-dimensional extension. Some of
them are schematically plotted in Fig. 8.7. However, there are important differences
between the two and three-dimensional cases. One is that bubbles are at least of
fourth degree in the three-dimensional case. Another difference is that the P 2 � P0
element is not stable: to control piecewise constant pressure, we need some degrees
of freedom on the faces. It would indeed be possible to prove that the P 3 � P0 is
stable but this yields a highly unbalanced approximation.

8.7.1 Continuous Pressure 3-D Elements

The most important continuous pressure element is the Hood-Taylor element, and
its generalisations, which will be presented in the next section.

The families associated with the MINI element introduced in (8.6.1) and (8.6.2)
can be generalised to the three-dimensional with an appropriate choice of bubbles.
Consider a regular sequence of decompositions of˝ into tetrahedra.

Proposition 8.7.1. The following pair of spaces are stable for any k � 1

Vh WD .Lk1 ˚ B.b4;K gradQh//
3 \ V; Qh WD Lk1 \Q; (8.7.1)

Vh WD .LkC1
1 ˚ B.b4;K gradQh//

3 \ V; Qh WD Lk1 \Q: (8.7.2)

The proof follows easily, like in the 2D case, from Corollary 8.5.1. ut
The first member of the first family is the MINI element and the first member

of the second family is a version of the Hood-Taylor element where the velocities
are enriched by quartic bubbles. Paradoxically, this may increase the precision on
pressure through a better inf-sup constant.

8.7.2 Discontinuous Pressure 3-D Elements

As we stated earlier, the situation for discontinuous pressure elements is less
favourable than in the two-dimensional case. We first consider an example.
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a

b

c

Fig. 8.7 Some stable
three-dimensional Stokes
elements: (a) the MINI
element, (b) the
Crouzeix–Raviart element,
(c) the Q

2
� P1 element

Example 8.7.1. The SMALL element is the smallest three-dimensional one if one
wants to use piecewise constant pressure. It is the analogue of the two-dimensional
construction of Remark 8.4.2, but we now have to work on the faces and not on
the edges. Let us thus consider, on a tetrahedral element, the cubic bubble b3;F
associated to the face F D .i; j; k/ and defined, using barycentric coordinates, by

b3;F WD �i �j �k: (8.7.3)

We define our new space by adding on each face of a standard piecewise linear
element such a cubic bubble. We shall denote this extra space on an elementK by

BF3 WD
(
vh j vh 2 P3.K/; vh D

X

F

˛F b3;F

)
: (8.7.4)

The final space is thus

Vh WD .L11 C BF3/
3 \ V; Qh WD L00 \Q:

This provides the control of the flux on the face and one can easily check that we
have stability for piecewise constant pressure.
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Remark 8.7.1. In fact, the bubble on the face is needed only for the normal
component of the velocity. This implies some complexity for the implementation
but greatly reduces the global number of degrees of freedom. We could thus use,
instead of (8.7.4), denoting nF the normal to the face,

BFn3 WD
(
vh j vh 2 P3.K/; vh D

X

F

˛F b3;F nF

)
(8.7.5)

and Vh WD ..L11/3 C BF n
3 /\ V: ut

We must retain that discontinuous pressure elements in 3D require third degree
polynomials. ut
Example 8.7.2 (3D analogues of the Crouzeix–Raviart element). In order to gen-
eralise the Crouzeix-Raviart element, we must first get a stable element for
constant pressure. The previously defined SMALL element provides only first order
accuracy. We therefore start from a quadratic approximation and enrich it by face
bubbles to control the fluxes on the faces and by internal bubbles to control linear
pressure. This yields

Vh WD .L12 C BF3 C B4/
3 \ V; Qh WD L01 \Q:

The stability is an easy consequence of Proposition 8.5.9.
The face bubbles do not increase the order of accuracy and we could employ the

normal bubbles of (8.7.5) However, if one wants to stick to more standard elements,
the natural thing would be to start from the stableP 3�P0 element. To get a balanced
precision, we define

Vh WD .L13 C B5/
3 \ V; Qh WD L02 \Q: (8.7.6)

We would then have third order accuracy but to the price of a quite large number of
degrees of freedom. This can obviously be extended to higher degrees. ut
Example 8.7.3 (Nonconforming elements). A possibility to reduce the order of
polynomials needed to obtain stable elements is to use nonconforming elements.
The triangular PNC

1 � P0 easily generalises to tetrahedra in 3D. Also in this case,
since divVh � Qh, the restriction of the discrete solution to every element is truly
divergence-free. The problems of coercivity are still there.

However, it is also possible to obtain second order without this problem. We
have already seen in Remark 8.6.1 that one could get a variant of the Crouzeix-
Raviart element using nonconforming bubbles. The construction can be extended to
the three-dimensional case. Indeed, one can replace the face-bubble of (8.7.3) by its
nonconforming version of (2.2.39), that is,

bNC;F D .�2i C �2j C �2k/� 1: (8.7.7)
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The internal bubble is also replaced by .�2i C �2j C �2k C �2l / � 1 and we now
manipulate only second degree polynomials, which is definitely an advantage.
However, things are a little more complicated: we have too many degrees of freedom
and one must remove the vertices. We refer to [203] for details. ut
Example 8.7.4 (Quadrilateral Q

k
� Pk�1 elements). Given a mesh of hexahedra,

we define

Vh WD .L1k/3 \ V; Qh WD L0k�1 \Q; (8.7.8)

for k � 2. We refer to the two-dimensional case (see Sect. 8.6.3) for the definition of
the pressure space. In particular, we recall that Qh on each element consists of true
polynomials and is not defined via the reference element. With the correct definition
of the pressure space, the proof of stability for this element is a simple generalisation
of the corresponding two-dimensional version. ut

8.8 P
k

�Pk�1 Schemes and Generalised
Hood–Taylor Elements

The main result of this section (see Theorems 8.8.1 and 8.8.2) consists in showing
that a family of popular Stokes elements satisfies the inf-sup condition (8.2.16). The
first element of this family has been introduced in [249] and for this reason, the
members of the whole family are usually referred to as generalised Hood–Taylor
elements.

This section is organised in two subsections. In the first one, we discuss
discontinuous pressure approximations for the P k � Pk�1 element in the two-
dimensional triangular case; it turns out that this choice is not stable in the lower
order cases and requires suitable conditions on the mesh sequences for the stability
of the higher order elements.

The last subsection deals with the generalised Hood–Taylor elements, which pro-
vide a continuous pressure approximation in the plane (triangles and quadrilaterals)
and in the three-dimensional space (tetrahedra and hexahedra).

8.8.1 Discontinuous Pressure P
k

�Pk�1 Elements

In this subsection, we shall recall the statement of a basic result by Scott and
Vogelius (see [347]) which, roughly speaking, says: under suitable assumptions on
the decomposition Th (in triangles), the pair Vh WD .L1k/2 \ V , Qh WD L0k�1 \Q
satisfies the inf-sup condition for k � 4.
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On the other hand, the problem of finding stable lower order approximations has
been studied by Q in [328], where interesting remarks are made on this scheme and
where the possibility of filtering out the spurious pressure modes is considered.

In order to state in a precise way the restrictions that have to be made on the
triangulation for higher order approximations, we assume that ˝ is a polygon,
and that its boundary @˝ has no double points. In other words, there exist two
continuous piecewise linear maps x.t/, y.t/ from Œ0; 1Œ into R such that

(
.x.t1/ D x.t2/ and y.t1/ D y.t2// implies t1 D t2;

@˝ D f.x; y/ j x D x.t/; y D y.t/ for some t 2 Œ0; 1Œ g: (8.8.1)

Clearly, we will have lim
t!1

x.t/ D x.0/ and lim
t!1

y.t/ D y.0/. We remark that we

are considering a less general case than the one treated by Scott and Vogelius [347].
We shall make further restrictions in what follows, so that we are actually going to
present a particular case of their results.

Now let V be a vertex of a triangulation Th of˝ and let �1; : : : ; �n, be the angles,
at V , of all the triangles meeting at V , ordered, for instance, in the anticlockwise
sense. If V is an internal vertex, we also set �nC1 WD �1. Now we define S.V /
according to the following rules.

n D 1 ) S.V / D 0 (8.8.2)

n > 1; V 2 @˝ ) S.V / D max
iD1;n�1.� � �1 � �iC1/ (8.8.3)

V … @˝ ) S.V / D max
iD1;n.� � �i � �iC1/: (8.8.4)

It is easy to check that S.V / D 0 if and only if all the edges of Th meeting at V fall
on two straight lines. In this case, V is said to be singular [347]. If S.V / is positive
but very small, then V will be “almost singular”. Thus, S.V / measures how close
V is to be singular.

We are now able to state the following result.

Proposition 8.8.1 ([347]). Assume that there exist two positive constants c and ı
such that

ch � hK 8K 2 Th (8.8.5)

and

S.V / � ı for all V vertex of Th: (8.8.6)

Then, the choice Vh D .L1k/2 \ V; Qh D L0k�1 \ Q; k � 4, satisfies the inf-sup
condition with a constant depending on c and ı but not on h. ut
Remark 8.8.1. Condition (8.8.6) is worth a few comments. The trouble is that
S.V / D 0 makes the linear constraints on uh, arising from the divergence-free
condition, linearly dependent (see, also, Examples 8.10.2 and 8.10.3). When this
linear dependence appears, some part of the pressure becomes unstable. However,
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we have met this situation in Example 8.10.3 and this was in fact the key to
convergence, provided a condition on data was fulfilled. The same analysis would
hold here and the unstable part of pressure could be filtered out. ut
Remark 8.8.2. The Pk � Pk�1 element can obviously be stabilised by adding
bubbles to the velocity space in the spirit of Sect. 8.5.5 (see Proposition 8.5.9). For
a less expensive stabilisation, consisting in adding bubbles only in few elements,
see [72]. ut

8.8.2 Generalised Hood–Taylor Elements

In this subsection, we recall the results proved in [71, 73] concerning the stability
of the generalised Hood–Taylor schemes. On triangles or tetrahedra, velocities are
approximated by a standard Pk element and pressures by a standard continuous
Pk�1, that is, vh 2 .L1k/n \ V (n D 2; 3), p 2 L1k�1 \Q. This choice has an
analogue on rectangles or cubes using a Q

k
element for velocities and a Qk�1

element for pressures. The lowest order triangular element (i.e., k D 2) has been
introduced by Hood and Taylor in [249]. Several papers are devoted to the analysis
of this popular element.

The degrees of freedom of some elements belonging to this family are reported
in Fig. 8.8.

Remark 8.8.3. Another element that has been used because of the simplicity of
its shape functions is the so-called .P 1 � iso � P 2/ � P1 element, It is sketched
in Fig. 8.9. It is a composite element assembled from four piece-wise linear
elements for velocity while pressure remains linear on the macro-element. The same
technique of proof that yields stabiliy of the classical Hood-Taylor element could be
used to show the inf-sup condition for this composite element. ut

The first proof of convergence was given for the two-dimensional case in [61]
where a weaker form of the inf-sup condition was used. The analysis was subse-
quently improved in [375], who showed that the classical inf-sup condition is indeed
satisfied (see Verfürth’s trick in Sect. 8.5.2). The macro-element technique can easily
be used for the stability proof of the rectangular and cubic element (of any order)
as well as for the tetrahedral case when k D 2 (see [351]). In [122], an alternative
technique of proof has been presented for the triangular and tetrahedral cases when
k D 2. This proof generalises to the triangular case when k D 3 (see [121]). Finally,
a general proof of convergence can be found in [71] and [73] for the triangular and
tetrahedral case, respectively.

We now state and prove the theorem concerning the two-dimensional triangular
case (see [71]).

Theorem 8.8.1. Let ˝ be a polygonal domain and Th a regular sequence of
triangular decompositions of it. Then, the choice Vh WD .L1k \H1

0 .˝//
2 and
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Fig. 8.8 Some stable
elements belonging to the
Hood–Taylor family

Fig. 8.9 The
.P 1isoP 2/� P1 element
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Fig. 8.10 The reference
triangle and its symmetric

Qh WD L1k�1 \ L20.˝/ satisfies the inf-sup condition (8.2.16) for any k � 2 if
and only if each triangulation contains at least three triangles.

Proof (Step 1: necessary part). Let us show first that the hypothesis on the mesh
is necessary. If Th only contains one element, then it is easy to see that the inf-
sup constant is zero (otherwise, it should be divVh � Qh, which is not the case
since the functions in Qh are not zero at the vertices). We shall show that if Th
contains only two triangles T1 and T2, then there exists one spurious pressure mode.
This implies that, also in this case, the inf-sup constant vanishes. We choose the
coordinate system .x; y/ in such a way that the common edge of T1 and T2 lies
on the y-axis. Moreover, we suppose that T2 is the reference triangle and T1 the
symmetric one with respect to the x-axis (see Fig. 8.10). The general case can then
be handled by means of suitable affine mappings.

We denote by �i;a and �i;b the barycentric coordinates relative to the vertices a
and b, respectively, belonging to the element Ti , i D 1; 2. It is easy to check that it
holds: �1;a D 1C x � y, �1;b D y, �2;a D 1 � x � y, and �2;b D y. We shall also
make use of the function �2;c D x. Let L.x/ be the Legendre polynomial of degree
k� 2 on the unit interval with respect to the weight w.x/ D x.1� x/3 and consider
the function p.x/ 2 Qh defined as follows:

p0.x/ D
(

�L.�x/ for x < 0;

L.x/ for x > 0:
(8.8.7)

We shall show that gradp is orthogonal to any velocity v 2 Vh. Since p does not
depend on y, we can consider the first component v1 of v only, which, by virtue of
the continuity at x D 0 and of the boundary conditions, has the following general
form:

v1 D
(
�1;a�1;b.Ck�2.y/C xAk�3.x; y// in T1;

�2;a�2;b.Ck�2.y/C xBk�3.x; y// in T2;
(8.8.8)

where the subscripts denote the degrees of the polynomials A, B and C . We then
have
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Z

T1[T2
v � gradp dx dy D

Z

T1

v1p
0 dx dy C

Z

T2

v1p
0 dx dy

D
Z

T2

�2;a�2;bL.x/x.Bk�3.x; y/ �Ak�3.�x; y// dx dy

D
Z

T2

�2;a�2;b�2;cL.x/q.x; y/ dx dy;

(8.8.9)

where q.x; y/ is a polynomial of degree k � 3 and where the term involving C
disappears by virtue of the symmetries. The last integral reads

Z

T2

xy.1 � x � y/L.x/q.x/ dx dy D
Z 1

0

xL.x/Q.x/ dx (8.8.10)

and an explicit calculation shows that Q.x/ is of the form

Q.x/ D .1 � x/3pk�3.x/; (8.8.11)

where pk�3 is a polynomial of degree k � 3. We can now conclude with the final
computation

Z

T1[T2
v � gradp dx dy D

Z 1

0

x.1 � x/3L.x/pk�3.x/ dx D 0: (8.8.12)

Step 2: sufficient part. The idea of the proof consists in considering, for each
h, a partition of the domain ˝ in sub-domains containing exactly three adjacent
triangles. By making use of Proposition 8.5.4 and the technique presented in
Sect. 8.5.1, it will be enough to prove the inf-sup condition for a single macro-
element, provided we are able to bound the number of intersections between
different sub-domains (basically, every time two sub-domains intersect each other,
a factor 1=

p
2 shows up in front of the final inf-sup constant). Indeed, it is possible

to prove that, given a generic triangulation of a polygon, it can be presented as the
disjoint union of triplets of triangles and of polygons that can be obtained as unions
of triplets with at most three intersections.

Given a generic macro-element a0 [b0 [c0, consider the .x; y/ coordinate system
shown in Fig. 8.11, so that the vertices are B 0 D .0; 0/, D0 D .1; 0/, E 0 D .˛; ˇ/.
By means of the affine mapping x0 D xC˛y; y0 D ˇy, the Jacobian of which is ˇ,
we can consider the macro-element a[b[c shown in Fig. 8.12, so that b is the unit
triangle. Since ˇ ¤ 0, the considered affine mapping is invertible. With an abuse
of notation, we shall now denote by ˝ the triplet a [ b [ c and by Vh and Qh the
finite element spaces built on it.

We denote by �aAB the barycentric coordinate of the triangle a vanishing on the
edge AB (analogous notation holds for the other cases). Moreover, we denote by
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Fig. 8.11 A generic triplet of
triangles

Fig. 8.12 A macro-element
where b is the reference
triangle

Lai;x.x/ the i -th Legendre polynomial in ŒxA; 0�, with respect to the measure �a;x
defined by

Z 0

xA

f .x/ d�a;x D
Z

a

�aAB�
a
AEf .x/ dx dy 8 f .x/ W ŒxA; 0� ! R; (8.8.13)

where xA is the x-coordinate of the vertex A. We shall make use of the following
Legendre polynomials, which are defined in a similar way: Lbi;x (its definition
involves �bED and �bBD), Lbi;y (using �bBE and �bBD), and Lci;y (using �cBC and �cCD).

Standard properties of the Legendre polynomials ensure that we can normalise
them, for instance, by requiring that they assume the same value (say 1) at the origin.
We now prove by induction with respect to the degree k that a modified inf-sup
condition holds true (see Verfürth’s trick in Sect. 8.5.2). Namely, for any qh 2 Qh,
we shall construct vh 2 Vh such that

�
Z

a[b[c
v h � grad qh dx dy � c1jj grad qhjj20;

jj v hjj0 � c2jj grad qhjj0: (8.8.14)
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The case k=2. This is the original Hood–Taylor method. Given p 2 Qh, we define
vh D .v1.x; y/; v2.x; y//, triangle by triangle, as follows:

v1.x; y/ja D ��aAB�
a
AEjj gradpjj0�; (8.8.15)

v2.x; y/ja D ��aAB�
a
AE

@p

@y
; (8.8.16)

v1.x; y/jb D ��bED�
b
BDjj gradpjj0� � �bED�

b
EB

@p

@x
; (8.8.17)

v2.x; y/jb D ��bED�
b
BD

@p

@y
� �bED�

b
EBjj gradpjj0�; (8.8.18)

v1.x; y/jc D ��cBC�
c
CD

@p

@x
; (8.8.19)

v2.x; y/jc D ��cBC�
c
CDjj gradpjj0�; (8.8.20)

where the quantities � and � are equal to ˙1 so that the expressions

H D � jj gradpjj0
	Z

a

�aAB�
a
AE

@p

@x
C
Z

b

�bED�
b
BD

@p

@x



; (8.8.21)

K D � jj gradpjj0
	Z

b

�bEB�
b
ED

@p

@y
C
Z

c

�cBC�
c
CD

@p

@y



(8.8.22)

are non-negative. First of all, we observe that vh is an element of Vh: its degree is
at most two in each triangle, it vanishes on the boundary and it is continuous across
the internal edges because so is the tangential derivative of p.

It is easy to check that jjvhjj0 � c1jj gradpjj0. In order to prove the first equation
in (8.8.14), we shall show that the quantity
jjj gradpjjj D � R

˝
vh � gradp vanishes only when gradp is zero. From the equality

0 D jjj gradpjjj D
Z

a

�aAB�
a
AE

	
@p

@y


2
CH

C
Z

b

 
�bED�

b
EB

	
@p

@x


2
C �bED�

b
BD

	
@p

@y


2!

CK C
Z

c

�cBC�
c
CD

	
@p

@x


2
;

(8.8.23)

it follows that

@p

@y
D 0 in a; (8.8.24)
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@p

@x
D @p

@y
D 0 in b; (8.8.25)

@p

@x
D 0 in c; (8.8.26)

H D K D 0: (8.8.27)

These last equations, together with the fact that each component of gradp is
constant if p 2 Qh, easily imply that

gradp D .0; 0/ in ˝: (8.8.28)

The case k > 2. Given p in Qh, if p is locally of degree k � 2, then the result
follows from the induction hypothesis. Otherwise, there exists at least one triangle
of ˝ in which p is exactly of degree k � 1. Like in the previous case, we define
vh D .v1.x; y/; v2.x; y// as follows:

v1.x; y/ja D ��aAB�
a
AEjj gradpjj0Lak�2;x�; (8.8.29)

v2.x; y/ja D ��aAB�
a
AE

@p

@y
; (8.8.30)

v1.x; y/jb D ��bED�
b
BDjj gradpjj0Lbk�2;x� � �bED�

b
EB

@p

@x
; (8.8.31)

v2.x; y/jb D ��bED�
b
BD

@p

@y
� �bED�

b
EBjj gradpjj0Lbk�2;y �; (8.8.32)

v1.x; y/jc D ��cBC�
c
CD

@p

@x
; (8.8.33)

v2.x; y/jc D ��cBC�
c
CDjj gradpjj0Lck�2;y�; (8.8.34)

with the same assumption on � and � , so that the terms

H D � jj gradpjj0
	Z

a

�aAB�
a
AEL

a
k�2;x

@p

@x
C
Z

b

�bED�
b
BDL

b
k�2;x

@p

@x



; (8.8.35)

K D � jj gradpjj0
	Z

b

�bEB�
b
EDL

b
k�2;y

@p

@y
C
Z

c

�cBC�
c
CDL

c
k�2;y

@p

@y



(8.8.36)

are non-negative. The same arguments as for k D 2, together with the described
normalisation of the Legendre polynomials, show that vh belongs to Vh.

In order to conclude the proof, we need to show that if
jjj gradpjjj D � R

˝
vh � gradp D 0, then the degree of gradp is strictly less than

k � 2. As before, jjj gradpjjj D 0 implies
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@p

@y
D 0 in a; (8.8.37)

gradp D 0 in b; (8.8.38)

@p

@x
D 0 in c; (8.8.39)

H D K D 0: (8.8.40)

The last equalities imply

Z

a

�aAB�
a
AEL

a
k�2;x � @p

@x
D 0 (8.8.41)

and
Z

c

�cBC�
c
CDL

c
k�2;y � @p

@y
D 0: (8.8.42)

It follows that the degree of gradp is strictly less than k � 2 in contrast to our
assumption. ut
Remark 8.8.4. The proof of the theorem shows that the continuity hypothesis on
the pressure space Qh can be weakened up to require that qh is only continuous on
triplets of elements. ut
We conclude this subsection by stating the three-dimensional analogue to the
previous theorem and by recalling the main argument of the proof presented in [73].

Theorem 8.8.2. Let ˝ be a polyhedral domain and Th a regular sequence of
decompositions of it into tetrahedra. Assume that every tetrahedron has at least
one internal vertex. Then, the choice Vh WD .L1k \H1

0 .˝//
3 and Qh WD L1k�1 \Q

satisfies the inf-sup condition (8.2.16) for any k � 2.

Proof. We shall make use of the macro-element technique presented in Sect. 8.5.4.
In particular, we shall use Proposition 8.5.7 and the comments included in
Remark 8.5.6.

We consider an overlapping macro-element partition of Th as follows: for each
internal vertex x0, we define a corresponding macro-element Mx0 by collecting all
elements which touch x0. Thanks to the regularity assumptions on the mesh, we only
have to show that the macro-element condition (8.5.24) holds true (see, in particular,
Remark 8.5.6).

Let us consider an elementK 2 M D Mx0 and an edge e ofK which touches x0.
With a suitable choice of the coordinate system, we can suppose that the direction
of e coincides with that of the x axis. With the notation of Sect. 8.5.4, we shall
show that a function in KM cannot contain functions which depend on x in K .
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Namely, given a function p 2 Q0;M , we can define a function v 2 V0;M as
follows:

v WD
	

��1;i�2;i @p
@x
; 0; 0



in Ki;

where Ki is a generic element of M sharing the edge e with K and �j;i , j D 1; 2,
are the barycentric coordinates of Ki associated with the two faces of Ki which
do not touch e. On the remaining elements, each component of v is set equal to
zero. It is clear that v is a k-th order polynomial in Ki and, since p is continuous
in M , @p=@x is continuous across the faces which meet at e and the function v is
continuous as well. Hence, v belongs to V0;M .

From the definition of Q0;M , it turns out that

0 D
Z

M

p div u D �
Z

M

gradp � v D
X

i

Z

Ki

�1;i�2;i

ˇ̌
ˇ̌@p
@x

ˇ̌
ˇ̌
2

:

The last relation implies that p does not depend on x in Ki for any i and, in
particular, in K . On the other hand, we can repeat the same argument using as e
the other two edges of K meeting at x0 and, since the directions of the three used
edges are independent, we obtain that p is constant in K . ut
Remark 8.8.5. From the previous proof, we can deduce that the hypotheses on the
triangulation can be weakened, by assuming that each tetrahedron has at least three
edges which do not lie on the boundary of˝ and which are not in the same plane. On
the other hand, given a generic mesh of tetrahedra, it is not difficult to add suitable
elements in order to meet the requirements of the previous theorem. ut
Remark 8.8.6. The main argument in the proof of the previous theorem is the
straightforward generalisation of the two-dimensional case. Indeed, the proof of
Theorem 8.8.1 could be carried out using the macro-element technique as well. ut

8.9 Other Developments for Divergence-Free Stokes
Approximation and Mass Conservation

From the discussion presented so far, it is clear that, in general, the incompressibility
constraint divu D 0 is not satisfied exactly at the discrete level. More precisely, the
discrete velocity field uh fulfills the following equation

Z

˝

divuh qh dx D 0 8qh 2 Qh;

so that the equality divuh D 0 holds in general only if

div.Vh/ � Qh: (8.9.1)
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Almost all stable elements that we have presented up to now do not satisfy
(8.9.1), the only exception being the two dimensional Scott–Vogelius scheme
Pk � Pk�1, which however requires severe mesh restrictions (see Sect. 8.8.1).
Another example is presented in Example 8.10.3, On the other hand, discrete
schemes that fail to satisfy the divergence-free condition (at least locally) can lead
to undesired instabilities when used for the resolution of more complex problems.
This is the case, for instance, when a Stokes solver is used for the approximation of
non linear problems (see [39]), or when the incompressibility condition is related to
a physical mass conservation property, like in fluid-structure interaction problems
(see [78, 280]).

For this reason, a very active research area concerns investigations trying to
develop divergence-free Stokes elements, at least in a local sense.

8.9.1 Exactly Divergence-Free Stokes Elements, Discontinuous
Galerkin Methods

The simplest idea in order to satisfy (8.9.1) is to use a C1 approximation of the
velocity field and to take as space of pressures exactly Qh D div.Vh/. Here we do
not follow this approach, but we focus on suitably chosen mixed approximations of
the Stokes problem.

Early attempts to develop divergence-free finite elements for the approximation
of the Stokes problem made use of particular mesh sequences. Besides the already
mentioned Scott–Vogelius family (see Sect. 8.8.1), a two dimensional approxi-
mation involving a mesh of rectangles has been introduced in [253, 385]. The
lowest element of the family is constructed as follows: Vh D L1.P2;1 
 P1;2; Th/,
Qh D div.Vh/ � L1Œ1�. It is clear that the use of rectangular elements imposes
limitations to the geometry of the domain ˝ , which make the scheme unappealing
for practical applications.

8.9.1.1 Discontinuous Galerkin Approximations

A more interesting approach arises from the use of discontinuous Galerkin approxi-
mations. A first possibility is to use a completely discontinuous finite element space
for the approximation of the velocity together with a postprocessing procedure
(see [156]), or H.div/ conforming elements in order to avoid the postprocessing
(see [157]).

A more recent approach is based on the idea of using H.div/ conforming
elements for the approximation of the velocities and to enrich them in order to
obtain the stability (see [238]); the enrichment is performed locally by means
of divergence-free polynomials (defined as the curl of suitably chosen bubble
functions), so that the scheme remains conservative. The construction holds on
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simplicial meshes in two and three dimensions and is based on BDM and RT
spaces. This research is further improved in [237], where a conforming divergence-
free element, which can be implemented on two dimensional triangular meshes,
is presented. In this case the enrichment is based on rational functions which
ensure stability and modify the tangential components of the basis functions across
the interelements in order to guarantee their continuity. Some a posteriori error
estimators (Sect. 7.11) for these methods have been considered in [251].

8.9.2 Stokes Elements Allowing for Element-Wise
Mass Conservation

From what we have seen, it is not so easy to obtain a discrete velocity with
vanishing divergence pointwise. On the other hand, in several applications it might
be desirable to have a local (element-wise) conservation of mass. From (8.9.1) it is
clear that discontinuous pressure schemes enjoy automatically a local conservation
property. In particular, ifQh contains piecewise constants, then divuh has zero mean
value on each element. In this respect, we believe that the Q

2
� P1 scheme (see

Sect. 8.6.3.1) is one of the best performing method for quadrilateral meshes. For
simplicial meshes, the SMALL element of Example 8.7.1 provides what seems to
be the simplest element ensuring local mass conservation.

Non conforming schemes can also achieve this goal. In particular the use of non
conforming piecewise linear element for the velocity and piecewise constants for the
pressures yields a simple locally divergence-free scheme. (see [165] and Sect. 8.4.4
for a discussion about this method). The extension to quadrilateral meshes requires
a careful choice of the non conforming space (see [330]).

For continuous pressure schemes, however, the situation is more complicate.
Relation (8.9.1), in particular, shows that the discrete divergence-free condition has
to be considered in a non local sense. For this reason, there have been studies trying
to modify standard spaces in order to achieve a more local conservation of mass.
The main idea behind this technique consists in adding piecewise constants to the
pressure space. It is clear that this modification allows for a local mass conservation
(actually, the method is transformed into a scheme with discontinuous pressures),
but can work only if it does not affect the validity of the inf-sup condition: a larger
pressure space is indeed a potential source of trouble for the stability.

Indeed, it can be shown that generalised Hood–Taylor (see Sect. 8.8) can be
modified by adding piecewise constants to the pressure space and preserving the
inf-sup condition (k � 2 in two dimensions and k � 3 in three dimensions). The
same procedure can be applied to the P1isoP2 � P1 element. For the Hood–Taylor
scheme, the idea was suggested in [231,232,369], where numerical evidence of the
improvement was given (see also [144]). The proof of the stability of the enhanced
lowest order Hood–Taylor scheme for triangular and rectangular meshes, can be
found in [322, 329, 364]. A more comprehensive discussion, including a general
proof of stability, can be found in [83].
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8.10 Spurious Pressure Modes

As we stated in the introduction to this chapter, the approximation of the Stokes
problem has been developed mostly independently of the theory of mixed methods.
This led to the use of some approximations which did not satisfy the inf-sup con-
ditions and which generated strange results, specially for the pressure components.
This generated the concept of spurious pressure modes.

For the Stokes problem with Dirichlet boundary conditions, pressure is defined
up to a constant which is the kernel of the gradient operator. This is a natural pressure
mode. However, this mode may not be the only one in discrete problems. For a given
choice of Vh andQh, we define the space Sh of spurious pressure modes as follows:

Sh WD KerBt
h n KerBt : (8.10.1)

It is clear that a necessary condition for the validity of the inf-sup condition (8.2.16)
is the absence of spurious modes, that is,

Sh D f0g: (8.10.2)

In particular, if Sh is non-trivial, then the solution ph to the discrete Stokes
problem (8.2.11) can be changed to ph C sh, which is still a solution when sh 2 Sh.
Spurious modes correspond to null singular values as discussed in Sect. 5.6.2. The
existence of spurious modes is in many cases strongly mesh dependent. They
will appear on special regular meshes but will remain if such meshes are slightly
distorted.

We shall illustrate how this situation may occur with the following example.

Example 8.10.1 (TheQ1�P0 element). Among quadrilateral elements, theQ
1
�P0

element is the first that comes to mind. It is defined as (see Fig. 8.13):

Vh WD .L1Œ1�/2 \ V; Qh WD L00 \Q: (8.10.3)

This element is strongly related, for rectangular meshes, to some finite difference
methods [206]. Its first appearance in a finite element context seems to be in [255].

However simple it may look, the Q
1

�P0 element is one of the hardest elements
to analyse and many questions are still open about its properties. This element
does not satisfy the inf-sup condition: it strongly depends on the mesh. For a
regular mesh, the space of spurious modes is one-dimensional. More precisely,
gradh qh D 0 implies that qh is constant on the red and black cells if the mesh is
viewed as a chequerboard (Fig. 8.14).

This means that one singular value (cf. Chap. 3.4.3) of the operator Bh D divh
is zero. Moreover, it has been checked by computation [286] that a large number
of positive singular values converge to zero when h becomes small. In [263], it has
indeed been proved that the second singular value isO.h/ and is not bounded below
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Fig. 8.13 The Q
1

� P0
element

c1 c2 c1

c2 c1 c2
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Fig. 8.14 The chequerboard
mode
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M
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DC

Fig. 8.15 The reference
criss-cross

(see also [314]). The Q
1

� P0 element has been the subject of a vast literature. We
shall come back to it in Sect. 8.10.2. ut
We shall now present a few more examples and distinguish between local and global
spurious pressure modes.

Example 8.10.2 (The criss-cross P 1 � P0 element). Let us consider a mesh of
quadrilaterals divided into four triangles by their diagonals (Fig. 8.2). We observed,
in Example 8.3.2, that the P 1 � P0 element, on general meshes, is affected by
locking, that is, the computed velocity vanishes. On the mesh introduced above,
however, it is easy to see that non-zero divergence-free functions can be obtained.
The divergence is constant on each triangle. This means that there are four linear
relations between the values of the partial derivatives. It is easily seen that one of
them can be expressed as a combination of the others, this fact being caused by
equality of tangential derivatives along the diagonals. To make things simpler, we
consider the case where the diagonals are orthogonal (Fig. 8.15) and we label by
A, B , C , D the four triangles. We then have, by taking locally the coordinate axes
along the diagonals and by denoting by uK the restriction of a function of Vh to the
elementK ,
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@uK1
@x1

C @uK2
@x2

D 0; K D A;B;C;D: (8.10.4)

On the other hand, one has at the point M

@uA1
@x2

D @uB2
@x2

;
@uA1
@x1

D @uC1
@x1

;
@uC2
@x2

D @uD2
@x2

;
@uB1
@x1

D @uD1
@x1

: (8.10.5)

It is easy to check that this makes one of the four conditions (8.10.4) redundant.
The reader may check the general case by writing the divergence operator in a non
orthogonal coordinate system.

The consequence of the above discussion is that on each composite quadrilateral,
one of the four constant pressure values will be undetermined. The dimension of
KerBt

h will be at least as large as the number of quadrilaterals minus one. This is
what we shall call local modes.

Thus, three constraints remain on each composite quadrilateral element. If we
admit that two of them can be controlled, using the methods of Sect. 8.5.5, by the
“internal” nodeM , we obtain an element that is very similar to theQ

1
�P0 element

with respect to the degrees of freedom. Indeed, it can be checked that on a regular
mesh, an additional, global chequerboard mode occurs and that the behaviour of
this approximation is essentially the same as that of the Q

1
� P0 element that will

be discussed in details in Sect. 8.10.2. These analogies have been pointed out, for
instance, in [82]. ut
The above example has shown the existence of two kinds of spurious pressure
modes. In the case of the criss-cross P1 � P0 element presented in the previous
example, dimSh grows as h goes to 0 and there exists a basis of Sh with local support
(that is, the support of each basis function can be restricted to one macro-element).
We shall refer to these modes as local spurious modes. Such pressure modes can
be eliminated by considering a composite mesh (in the previous example a mesh
of quadrilaterals instead of triangles) and using a smaller space for the pressures by
deleting some degrees of freedom from the composite elements. If the original space
is to be employed, one must check the extra compatibility conditions. This can often
be done by a small change in the data. This will be the case in Example 8.10.3.

If we now consider the Q
1

� P0 example (see Example 8.10.1), the dimension
of Sh does not grow when h goes to 0 and no basis can be found with a local
support. We then have a global spurious mode which cannot be eliminated as easily
as the local ones. Global modes usually appear on special (regular) meshes and are
symptoms that the behaviour of the element at hand is strongly mesh dependent and
requires a special care. Some elements may generate both local and global modes
as we have seen in the criss-cross P 1 � P0 method (see Example 8.10.2).

Example 8.10.3 (The criss-cross P 2�P1 element). Another simple example where
a local mode occurs is the straightforward extension of the previous example to
the case of a P 2 � P1 approximation. This element has an interest because it is the
simplest really divergence-free element, that is, KerBh � KerB . Unfortunately, its
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Fig. 8.16 The criss-cross
P 2 � P1 element

three-dimensional counterpart does not seem to exist. We consider, as in Fig. 8.16,
a mesh of quadrilaterals divided into triangles by its diagonal. This means that on
each quadrilateral, we have 12 discrete divergence-free constraints, and it is easily
seen by the argument of Example 8.10.2, written at the pointM , that one of them is
redundant. Thus, one spurious mode will appear for each composite quadrilateral.
However, in this case, no global mode will appear. The analysis of this element is
also related to the work of [153] by considering the stream function associated with
a divergence-free function. Considering the space of discrete pressures where the
spurious modes are removed, a standard proof using internal degrees of freedom
shows that one has a stable approximation. ut

8.10.1 Living with Spurious Pressure Modes:
Partial Convergence

The presence of spurious modes can be interpreted as a signal that the pressure space
used is in some sense too rich. We therefore can hope to find a cure by using a strict
subspace OQh ofQh as the space of the discrete pressures, in order to obtain a stable
approximation. The question arises whether or not this stability can be used to prove
at least a partial result on the original approximation. One can effectively get some
results in this direction as discussed in Sect. 5.6.3. In general, we cannot make a
direct use of the singular value decomposition but, in some cases, we can identify a
guilty subspace.

We suppose, here, that Q and Qh can be identified to their dual, as it is indeed
the case for the Stokes problem.

Following Sect. 5.3.3, we suppose that we know subspaces OVh and OQh of Vh and
Qh such that the couple OVh
 OQh is stable. We denote QQh the orthogonal complement
of OQh inQh. To apply the result of Sect. 5.3.3, we shall need to obtain the following:

b. Ovh; Qqh/ D 0 8 Qqh 2 QQh; 8 Ovh 2 OVh: (8.10.6)

We emphasise that this will be generally possible only on special meshes. We now
make the hypothesis that in (8.1.1), g has no component in QQh, that is,

.g; Qqh/ D 0; Qqh 2 QQh: (8.10.7)
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This condition is a restriction on admissible data. In practice, it will imply an
extra regularity condition on g which will in turn enable us to obtain (8.10.7)
through a small modification of g. We mean by small that this modification should
not jeopardise the accuracy of the approximation. If we refer to Sect. 5.6.2, by
supposing (8.10.7), we have killed the unstable part of uh. On the other hand, ph
will have components in QQh. However, the part of ph in OQh will be stable and will
provide a reasonable approximation of the solution. More precisely, under these
hypotheses, Proposition 5.3.1 yields the following results:

ku � uhkV � c1

�
inf

Ovh2 OVh
ku � OvhkV C inf

qh2Qh

kp � qhkQ
�

(8.10.8)

kp � OphkQ � c2

�
ku � uhkV C inf

qh2Qh

kp � qhkQ
�

C inf
Oqh2 OQh

kp � OphkQ: (8.10.9)

Example 8.10.4. The simplest example is the case of Example 8.10.3. In this case,
we have OVh D Vh. When the local modes are filtered, pressure will converge,
provided g has no component in these modes. This implies a slight restriction of
data. ut

The most important case is, however, the Q
1

� P0 element which we discuss in
the next section.

8.10.2 The Bilinear Velocity-Constant Pressure
Q
1

�P0 Element

We now come back to a rapid analysis of what is probably (and unfortunately!) the
most popular of all elements for incompressible materials. This is perhaps also the
hardest to analyse and as we shall see, only partial results are known. Origins of
this element can be traced back to finite difference methods [206] and its peculiar
properties were soon recognised. In particular, the chequerboard pressure mode was
already a familiar feature long before the scheme used were written in terms of finite
elements.

Let us summarise the basic facts. On a regular mesh, for a problem with Dirichlet
boundary conditions, two singular values of the matrix (cf. Sect. 5.6.2) vanish
instead of one. We thus have a pure spurious pressure mode in the terminology of
[340,341]. This spurious mode implies a compatibility condition on the data, which
is, in most cases but not always, easily satisfied. When the mesh is slightly distorted,
only one singular value is zero, corresponding to constants, but the second one is
very small, as the zero has become some value depending on the mesh distortion,
thus implying an ill-conditioning of the problem. In many computations, this ill-
conditioning is fortunately almost restricted to pressure: we have what [340, 341]
call an impure pressure mode which can be eventually filtered but often does not
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Fig. 8.17 Macro-element
and degrees of freedom

seem to affect (at least substantially) the computation of velocity. This is still not,
however, the whole story. One could indeed hope from all this that an inf-sup
stability condition could hold for the third singular value instead of the second
and that we could have stability in a simple quotient space. Experimental evidence
showed this hope to be false: on a regular mesh, a large number of eigenvalues
converge to zero at order h [286]. Johnson and Pitkäranta [263] indeed proved the
constant kh to be O.h/ (see also [99, 100, 288, 314]). The standard estimates would
then lead to the conclusion that no convergence will occur, in complete contradiction
with experience. The paper of Johnson and Pitkäranta provided a first result by
showing, on a regular mesh, that under stricter regularity assumptions than usual on
the solution, convergence could take place.

Pitkäranta and Stenberg [324] proved a convergence result, without special
regularity assumptions for a special type of mesh. We have already discussed, in
Sect. 8.10.1, following Sect. 5.6.2, the underlying algebraical issues involved. If
there is a “stable part”, the data corresponding to the unstable modes should be
null or small. In this case, the velocity can indeed be expected to behave well but
the pressure part is doomed. We shall now consider these results for our particular
case. To make things simpler, we shall first consider the case of a regular rectangular
mesh. On such a mesh, we consider a macro-element (Fig. 8.17)M formed of four
quadrilaterals.

On this macro-element, a piecewise constant pressure has four degrees of
freedom. We introduce a local basis on M; �1; �2; �3; �4 described symbolically
on the Fig. 8.18.

A chequerboard mode will obviously take its roots in �4. We therefore introduce
quite naturally the space

OQh WD
X

M

� 3X

iD1
˛iM �i;M

�
(8.10.10)

which will be the stable part and

QQh WD
X

M

˛4M �4;M (8.10.11)
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Fig. 8.18 Pressure basis
functions on M

the unstable part. Stability of .Vh, OQh/ is thus immediate from the standard
techniques, building a B-compatible operator. In fact, we shall build it for a subspace
OVh of Vh which will make it, a fortiori, valid for Vh. The choice of OVh can be inferred

from other well-known elements. We now use, as degrees of freedom, the two values
of velocity at the vertices of M and at its barycentre and the normal value (rather a
correction to this value) at mid-side nodes. The tangential component is thus linear
on each edge and determined by the values at the vertices (Fig. 8.17). To build a
B-compatible operator, we set

Ouh.Pi / D u.Pi /; i D 1; 2; 3; 4: (8.10.12)

To determine the normal node on the edges of M , we take
Z

e

.u � Ouh/ � ne ds D 0; (8.10.13)

where n
e

is the normal to e. This is enough to control the flux at interfaces and the
part of pressure (�1;M ) which is constant on M is controlled. The �2:M and �3;M
components are controlled by

Z

K

div.u � Ouh/�i;M dx D 0; i D 2; 3: (8.10.14)

It is not difficult to check that˘hu D Ouh is a B-compatible operator for OVh 
 OQh.
We would now want to apply Proposition 5.3.1. First, this implies a condition on

data.

Remark 8.10.1. Following Sect. 5.3.3, to get reasonable results, the data should
satisfy

.g; Qqh/ D
Z

˝

Qqh div uh dx D 0 (8.10.15)
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which means, here,

.g; �4;M / D
Z

˝

�4;M div uh dx D 0: (8.10.16)

This in fact corresponds to a regularity condition. It is easy to check that on our
macro-element, we have

Z

M

�4;M div uh dx D O.h4/supjdiv
@2u

@x@y
j: (8.10.17)

This is enough to show that this integral can be made null through a small
perturbation of data. ut
In order to apply Proposition 5.3.1, we now need to check (5.3.19) that is now

Z

M

�4M div Ovh dx D 0 8M; 8Ovh: (8.10.18)

It should be seen, in order to check this, that the shape function w1 associated to
vertexP1, for instance, is a function ofQ1.M/ having the whole ofM as its support.
A straightforward computation then shows that one has

Z

M

�4M div w1 dx D
Z

@K1

w1 � n d� �
Z

@K2

w1 � n d�

C
Z

@K3

w1 � n d� �
Z

@K4

w1 � n d� D 0:

(8.10.19)

In the same way, the shape function w12 associated with node P12 satisfies

Z

M

�4M div w12 dx D
Z

@K1

w12 � n d� C
Z

@K2

w12 � n d� D 0 (8.10.20)

and this is also true in the adjacent element because the mesh is aligned. The
shape function associated with the barycentre trivially satisfies the condition.
Condition (5.3.19) therefore holds and we have, by Proposition 5.3.1,

ku � uhkV �
�

inf
Ovh2 OVh

ku � OvhkV C inf
qh2Qh

kq � qhkQ
�
: (8.10.21)

In the present case, it is clear that an error estimate in OVh has the same order as an
estimate in Vh and the result is therefore almost optimal. We also have convergence
of (filtered) pressure in OQh by estimate (5.3.25). Following [324], we can now
extend this result to the case where the mesh is made from super macro-elements
like in Fig. 8.19.
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M2 M3

M1
M4

Fig. 8.19 A super-macro
S M and its sub-macros

Fig. 8.20 A special
macro-element

A general quadrilateral is divided in a regular way into 16 quadrilaterals. It is
well-known [202] that on a non rectangular mesh, at least a four by four patch of
elements is needed to generate a non-trivial discrete divergence-free function. We
thus have four “sub-macros” like in the previous case. The space of filtered pressures
OQh is taken exactly as on the regular mesh and is still defined by (8.10.10). The

space QVh is defined by the following degrees of freedom: the values of velocity at
the vertices of the Mi , the values at the barycentres of the Mi and a correction
of the component of velocity parallel to the mesh at the mid-side nodes of the Mi

internal to SM . One can directly build an interpolation operator enabling us to check
the inf-sup condition. Mid-side nodes of SM control the part of pressure constant
on the whole of SM . Internal mid-side nodes ensure mass-balance on each Mi

and the nodes at the barycentres of the Mi end the job. It must be remarked that
the alignment of mid-side velocities along the mesh is an essential feature of the
construction.

In order to prove condition (5.3.18), the only hard point is to check that (8.10.18)
still holds on everyMi . We refer the reader to [324] for this proof. It is then possible
to use Proposition 5.3.1 and to get optimal error estimates.

This is still not the whole story about this peculiar element. It is also possible
to prove stability [276, 354] on meshes built from macro-elements like in Fig. 8.20
without filtering or using another subterfuge.

This is coherent with the known experimental fact that on a general distorted
mesh, pressure modes disappear and the inf-sup constant is independent of h. This
last fact is still resisting analysis. It is our hope that the above technique could be
generalised to yield the complete result.

The above discussion can be extended to the three-dimensional case. Things are
made still more complicated by the fact that on a regular mesh (let say a n 
 n 
 n
assembly of elements to fix ideas), we do not have one spurious pressure mode but
3n�2 of them. This will also mean the same number of compatibility conditions on
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a bFig. 8.21 Pressure modes

Fig. 8.22 Degrees of
freedom for OVh

a bFig. 8.23 Local spurious
modes

data so that trouble should be expected when using apparently reasonable boundary
conditions. These spurious modes are depicted in the following Fig. 8.21. One of
them is the genuine 3-D chequerboard mode (Fig. 8.21a). The other ones are built
from an assembly of 2-D nodes. In Fig. 8.21b, we have sliced the mesh in order to
make apparent the internal structure of this mode. There are 3.n� 1/ possible such
slices so that we find the number of modes stated above.

We now sketch the extension of the above proof to the 3-D case. We shall only
present the rectangular case to avoid lengthening unduly this exposition. We thus
suppose that the mesh is built from 2 
 2 
 2 macro-elements (Fig. 8.22).

Our pressure space OQh will be built fromQh by deleting on each macro-element
four D .3 
 2 � 2/ spurious modes sketched in Fig. 8.23.

The mode depicted in Fig. 8.23b has obviously two other symmetrical counter-
parts. On each macro-element, we thus keep the 3-D analogues of the basis functions
�1;M , �2;M , �3;M of Fig. 8.18. We must now introduce OVh. This is done again by
taking off some degrees of freedom from Vh. The remaining ones are sketched in
Fig. 8.22 The internal node at the barycentre of the element is also used. It is now
clear that . OVh; OQh/ is a stable pair that providesO.h/ convergence. There remains
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to check condition (5.3.19) that is that OVh is transparent with respect to QQh. This is
done exactly as in the 2-D case by a simple check of flow balance at the surface of
elements. Proposition 5.3.1 then applies and we getO.h/ convergence for velocities
and filtered pressures.

It could be hoped that the same kind of analysis could be done for equal
interpolation continuous pressure methods such as the Q

1
� Q1 approximation.

Unfortunately, we know of no way in which condition (5.3.19) could be made to
hold and an analysis of the convergence properties of these approximations remains
an open question. We can however introduce an alternate way of stabilising such
approximations and this is done in the following section.

Remark 8.10.2 (However, this is a dangerous element). As we stated at the begin-
ning of this Section, the Q

1
� P0 element is widely employed. We presented the

above results to provide the reader with enough information about this unduly
popular element. It remains that using an unstable element is a dangerous option
and that the price to pay for an apparent simplicity may be inaccurate results. ut
Remark 8.10.3 (The worst drawback). An important draw-back for the Q

1
� P0

element is that the condition number of the dual problem in p is mesh dependent
while it is not for stable Stokes elements. When an iterative solution method is used,
this leads to a strong slowdown of the convergence. This is especially disastrous for
3-D problems where iterative methods are likely to be necessary. ut

8.11 Eigenvalue Problems

We shall briefly consider, here, the application of the results of Chap. 6 to the
approximation of eigenvalues for the Stokes problem. The results will also be
applicable to incompressible elasticity. They have some importance in this case
because of the popular modal method in which a problem is approximated using
a few eigenvectors as a basis for a Galerkin’s method.

We thus consider the eigenvalue problem introduced in (1.3.84), which we recall
for simplicity. We now take V D .H1

0 .˝//
2 and Q D L2.˝/

ı
R and we look for

u 2 V and q 2 Q satisfying

8
ˆ̂<

ˆ̂:

2�

Z

˝

".u/ W ".v/ dx C
Z

˝

p div v dx D �

Z

˝

u � v dx 8v 2 V;
Z

˝

q div u D 0; 8q 2 L2.˝/:
(8.11.1)

The Lagrange multiplier p ensures the incompressibility of the eigenmodes. This is
a problem of the type .f; 0/. It is easy to see, in the notation of Sect. 1.2.1, that if
˝ is, for instance, a convex polygon,QH

0 is H1.˝/
ı
R and V H

0 is the subspace of
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.H2.˝/ \ H1
0 .˝//

2 made of divergence-free functions (see [267]). In particular,
we can check that jjujjV H0 D jj�ujj0 � jjujj2 and jjpjjQH

0
D jj gradpjj0.

Let Vh andQh be finite dimensional subspaces of V andQ respectively. We then
consider the discrete version of (8.11.1),

8
ˆ̂<

ˆ̂:

2�

Z

˝

".uh/ W ".vh/ dx C
Z

˝

ph div vh dx D �

Z

˝

uh � vh dx 8vh 2 Vh;
Z

˝

qh div uh D 0; 8qh 2 Qh:

(8.11.2)

In order to apply the theory of Sect. 1.2.1, we must check a few conditions. With
respect to ellipticity, we have no problem with conforming approximations. The
weak approximability (6.5.41) ofQH

0 will surely hold if

inf
qh2Qh

jjp � qhjj0 � !1.h/jjpjj1 for all p 2 H1.˝/
ı
R;

which is satisfied by all choices of finite element spaces that one may seriously think
to use in practice.

The strong approximability (6.5.42) of V H
0 , which now reads

jju � uI jj1 � !2.h/jjujj2 for all u 2 V H
0 ; (8.11.3)

is more delicate as uI has to be chosen in KerBh. If the pair .Vh;Qh/ satisfies the
inf-sup condition, then the property trivially holds.

Remark, however, that the typical way of proving the inf-sup condition, using
a B-compatible operator (Sect. 8.4.1) for every u, is more difficult than prov-
ing (8.11.3) directly. Moreover, there are choices of elements that fail to satisfy
the inf-sup condition, for which (8.11.3) holds true. For instance, we may think of
the Q

1
� P0 element of Sect. 8.10.2.

Let us assume, for simplicity, that ˝ is a square and that the decomposition
Th is made by N 
 N macro-elements M as in Fig. 8.17. We have seen that this
choice of elements does not satisfy the inf-sup condition: the operator Bt

h has a
non-trivial kernel (the chequerboard mode), and by discarding it, we still have at
best a discrete inf-sup condition with ˇh � h (see [101,264,314]). Nevertheless, for
u 2 V H

0 � KerB , we can construct uI as in the construction of OVh in Sect. 8.10.2: let
Ouh be the vector in OVh satisfying (8.10.12)–(8.10.14). It is not difficult to check that
uI D Ouh satisfies (8.11.3) with !2.h/ D O.h/. We have here an example where the
eigenvalues are approximated correctly even though the global matrix associated to
(6.5.8) is singular. The same kind of construction could be extended to a mesh of
macro-elements as in Fig. 8.19.

Remark 8.11.1. We have thus another instance in which the Q
1

�P0 element, very
popular for incompressible elasticity problems, manages to give an impression of
rectitude. ut
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8.12 Nearly Incompressible Elasticity, Reduced Integration
Methods and Relation with Penalty Methods

8.12.1 Variational Formulations and Admissible
Discretisations

We have already seen in Chap. 1 and in Remark 8.1.2 that there are difficulties asso-
ciated to approximations of nearly incompressible materials when using the standard
variational principle. This section will be devoted to showing how these problems
arise and how they can be cured from a proper mixed formulation. Consider, to make
things simpler, a problem with homogeneous Dirichlet conditions,

inf
v2.H1

0 .˝//
n
�

Z

˝

j".v/j2 dx C �

2

Z

˝

j div vj2 dx �
Z

˝

f � v dx: (8.12.1)

We already noted in Sect. 8.1 that this problem is closely related to the penalty
method used to solve the Stokes problem.

It was soon recognised in practice that a brute force use of (8.12.1) could lead,
for large values of �, to bad results, the limiting case being the locking phenomenon
that is an identically zero solution.

Example 8.12.1. The simplest case of such a bad situation would be to employ
piecewise linear elements. Then, for � large, (8.12.1) forces the piecewise constant
divergence to be almost null on each element, that is, implicitly using the P 1 � P0
element of Example 8.3.2. This led to the still persistent idea that triangular or
tetrahedral meshes could not be used for elasticity problems. ut

A cure was found in using a reduced (that is, inexact) numerical quadrature when
evaluating the term �

R
˝

j div vj2 dx associated with compressibility effects. We
refer the reader to the papers of [287] and [60] for a discussion of the long history of
this idea. We shall rather develop in detail in this example the relations of reduced
integrations and mixed methods and try to make clear to what extent they may be
claimed to be equivalent. For this, we first recall from Chap. 1 that problem (8.12.1)
can be transformed by a straightforward application of duality techniques into a
saddle point problem

inf
v

sup
q
�

Z

˝

j".v/j2 dx � 2

2�

Z

˝

jqj2 dx C
Z

˝

q divv dx �
Z

˝

f � v dx (8.12.2)

for which optimality conditions are, denoting .u; p/ the saddle point,

�

Z

˝

".u/ W ".v/ dx C
Z

˝

p div v dx D
Z

˝

f � v dx 8 v 2 .H1
0 .˝//

2; (8.12.3)
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Z

˝

div u q dx D 1

�

Z

˝

pq dx 8 q 2 L2.˝/: (8.12.4)

This is obviously very close to a Stokes problem and is also an example of the
perturbed problem studied in Chap. 4, that is: find u 2 V and q 2 Q such that

a.u; v/C b.v; p/ D .f; v/; 8 v 2 V; (8.12.5)

b.u:q/ � c.p; q/ D .g; q/; 8 q 2 Q: (8.12.6)

We then know from Chap. 5, Sect. 5.5.2, that an approximation of (8.12.3) and
(8.12.4) (that is, a choice of an approximation for both u and p) which leads to
error estimates independent of �must be a good approximation for the limiting case
� D 0.

Remark 8.12.1. The preceding sections of this chapter therefore give us a good idea
of what should (or should not) be used as an approximation. All stable elements of
Sects. 8.6 and 8.7 can be employed and the choice depends on the choice of solver
and the mesh generation algorithm. ut
What we shall now see is that reduced integration methods correspond to an implicit
choice of a mixed approximation with a discontinuous pressure approximation. The
success of the reduced integration method will thus rely on the qualities of this
underlying mixed method. We have seen in Sect. 8.8.1 that discontinuous pressure
imposing exactly the divergence-free condition requires high degree polynomials
and special meshes. Reduced integration is then a way of reducing the degree of the
underlying pressure in order to hopefully obtain a stable approximation.

8.12.2 Reduced Integration Methods

Let us consider a (more or less) standard approximation of the original prob-
lem (8.12.1). An exact evaluation of the “penalty term” �

R
˝ j div vj2dx means that

for � large, one tries to get an approximation of u which is exactly divergence-free.
However, as we have already seen, few finite elements can stand such a condition
that will in most cases lead to a locking phenomenon due to over-constraining.
In a mixed formulation, one relaxes the incompressibility condition by the choice
of the approximation for p. Let us now see how this will be translated as a
reduced integration method at least in some cases. Let us then consider Vh � V WD
.H1

0 .˝//
n; Qh � Q WD L20.˝/, these approximation spaces being built from finite

elements defined on a partition of ˝ . On each element K , let there be given a set
of k points xi and weights !i defining a numerical quadrature formula

Z

K

f .x/ dx D
kX

iD1
!i f .xi /: (8.12.7)
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Remark 8.12.2. It will be convenient to define the numerical quadrature on a
reference elementK and to evaluate integrals by a change of variables,

Z

K

f .x/ dx D
Z

OK
f . Ox/ J. Ox/ d Ox D

kX

iD1
!1 f . Oxi / J. Oxi /: (8.12.8)

The presence of the Jacobian J.x/ should be taken into account when discussing
the precision of the quadrature rule on K . ut
Let us now make the hypothesis that for vh 2 Vh and ph; qh 2 Qh, one has exactly

Z

K

qh div vh dx D
kX

iD1
!i Oqh. Oxi /1div vh. Oxi / J. Oxi / (8.12.9)

and

Z

K

ph qh dx D
kX

kD1
!i Oph. Oxi / Oqh. Oxi / J. Oxi /: (8.12.10)

Let us now consider the discrete form of (8.12.4),

Z

˝

div uh qh dx D 1

�

Z

˝

ph qh dx; 8 qh 2 Qh: (8.12.11)

When the space Qh is built from discontinuous functions, this can be read element
by element as

Z

K

qh div uh dx D 1

�

Z

K

ph qh dx 8 qh 2 Qh; (8.12.12)

so that using (8.12.9) and (8.12.10), one gets

Oph. Oxi / D �1div uh. Oxi / or ph.xi / D � div uh.xi /: (8.12.13)

Formula (8.12.8) can in turn be used in the discrete form of (8.12.3) which now
gives

2�

Z

˝

".uh/ W ".vh/ dxC�
X

K

� kX

iD1
!i J. Oxi /.1div uh. Oxi //.1div vh. Oxi //

�

D
Z

˝

f � v
h

dx: (8.12.14)
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In general, the term
P

K

 
kP
iD1

!i J. Oxi /.1divuh. Oxi //.1divvh. Oxi //
!

is not an exact

evaluation of
R
˝

divuh div vh dx and reduced integration is effectively introduced.
In the case where (8.12.9) and (8.12.10) hold, there is a perfect equivalence between
the mixed method and the use of reduced integration. Whatever will come from one
can be reduced to the other one. It will however not be possible, in general, to get
equalities (8.12.9) and (8.12.10) and therefore, a further analysis will be needed.
However, we shall first consider some examples of this complete equivalence case.

Example 8.12.2. Let us consider the Q
1

� P0 approximation on a rectangle and
a one-point quadrature rule. It is clear that div uh 2 P1.K/ and is integrated
exactly. In the same way, a one-point rule is exact for

R
˝
ph qh dx whenever

ph; qh 2 P0.K/. There is thus a perfect equivalence between reduced integration
and the exact penalty method defined by (8.12.11). ut
Example 8.12.3. We now consider again the same Q

1
� P0 element on a gen-

eral quadrilateral. To show that we still have equivalence requires a somewhat
more delicate analysis. Indeed, at first sight, the quadrature rule is not exact for
R

OK 1div uh JK. Ox/ dOx. Let us however consider in detail the term 1div uh D b@u1
@x1

C b@u2
@x2

.

Let B D DF be the Jacobian matrix of the transformation F from OK into K .
Writing explicitly

F D
(
a0 C a1 Ox C a2 Oy C a3 Ox Oy
b0 C b1 Ox C b2 Oy C b3 Ox Oy; (8.12.15)

one has

B D
	
a1 C a3 Oy b1 C b3 Oy
a2 C a3 Ox b2 C b3 Oy



(8.12.16)

so that we get

B�1 D 1

J. Ox/
	
b2 C b3 Ox �b1 � b3 Oy

�a2 � a3 Ox a1 C a3 Oy


: (8.12.17)

However,

c@u1
@x1

D
�@Ou1
@ Ox1 .b2 C b3 Ox/ � @Ou1

@ Ox2 .b1 � b3 Oy/
� 1

J. Ox/ ; (8.12.18)

c@u2
@x2

D
�@Ou2
@ Ox1 .�a2 � a3 Ox/C @Ou2

@ Ox2 .a1 C a3 Oy/
� 1

J. Ox/ : (8.12.19)

When computing
R

OK 1div uh J. Ox/ dOx, the Jacobians cancel and one is left with the
integral of a function which is linear in each variable and which can be computed
exactly by a one-point formula. ut
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Example 8.12.4. Using a 4-point integration formula on a straight-sided qua-
drilateral can be seen, as in the previous example, to be exactly equivalent to a
Q
2

�Q1 approximation [59, 60]. ut
The above equivalence is, however, not the general rule. Consider the following

examples.

Example 8.12.5. We want to use a reduced integration procedure to emulate the
Crouzeix-Raviart element (cf. Sect. 8.6.2). To define a P1 pressure, we need three
integration points which can generate a formula that will be exact for second degree
polynomials (but not more). The bubble function included in velocity, however,
makes that div uh 2 P2.K/ and

R
K div uh qhdx will not be evaluated exactly. ut

Example 8.12.6. A full isoparametricQ
2
�Q1 element is not equivalent to its four-

point reduced integration analogue. ut
Example 8.12.7. A Q

2
� P0 approximation is not, even on rectangles, equivalent

to a one-point reduced integration method, for div uh contains second order terms
which are not taken into account by a one-point quadrature. ut

8.12.3 Effects of Inexact Integration

If we now consider into more details the cases where a perfect equivalence does
not hold between the mixed method and some reduced integration procedure, we
find ourselves in the setting of Sect. 5.5.4. In particular, b.vh; qh/ is replaced by an
approximate bilinear form bh.vh; qh/. We shall suppose, to simplify, that the scalar
product on Qh is exactly evaluated. Two questions must then be answered.

– Does bh.:; :/ satisfy the inf-sup condition?
– Do error estimates still hold without loss of accuracy?

We have already introduced in Sect. 5.5.4 a general setting in which this situation
can be analysed. We shall first apply Proposition 5.5.8 in order to check the inf-sup
condition for two examples and we shall give an example where an inexact integral
changes the nature of the problem. We shall then consider consistency error for
those three examples.

Example 8.12.8. We in fact come back to Example 8.12.7 and study on a rectangu-
lar mesh the Q

2
� P0 approximation (see Sect. 8.6.3) with a one-point quadrature

rule. This is not, as we have said, equivalent to the standardQ
2
�P0 approximation.

We now want to check, using Proposition 8.4.1, that it satisfies the inf-sup condition.
We thus have to build a continuous operator (in H1.˝/-norm) such that

Z

˝

div uh qh dx D
X

K

Œ.div˘huh/.M0;K/qK� area.K/ (8.12.20)
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hy

hx

Fig. 8.24 Numbering for the
Q2 element

where M0;K is the barycentre of K and qK the restriction of qh to K . As qh is
discontinuous, we can restrict our analysis to one element and we study both sides
of equality (8.12.20). We have of course, taking qK D 1,

Z

K

div uh dx D
Z

@K

uh � n d�: (8.12.21)

Using the numbering of Fig. 8.24 and denoting by ui , vi the horizontal and
vertical components of velocity at node i , we can write (8.12.21) by Simpson’s
quadrature rule in the form

Z

K

div uh dx D hy

6
Œu5 C 4u4 C u3� � hy

6
Œu1 C 4u8 C u7�

C hx

6
Œv7 C 4v6 C v5� � hx

6
Œv1 C 4v2 C v3�:

(8.12.22)

If we write

u4 D u5 C u3
2

C Ou4; u8 D u1 C u7
2

C Ou8 (8.12.23)

v0 D v5 C v7

2
C Ov6; v2 D v1 C v3

2
C Ov2; (8.12.24)

where Ou4; Ou6; Ov6 and Ov2 are corrections with respect to a bilinear interpolation, we
may rewrite (8.12.22) as

Z

K

div uh dx D hy

2
Œu5 C u3 C 4

3
Ou4� � hy

2
Œu1 C u7 C 4

3
Ou8�

C hy

2
Œv7 C v5 C 4

3
Ov6� � hx

2
Œv1 C v3 C 4

3
Ov2�:

(8.12.25)

On the other hand, area .K/ div uh.M0;K/ can be seen to be equal to

hy

2
Œu5 C u3 C 2Ou4� � hy

2
Œu1 C u7 C 2Ou8�

�hx
2
Œu7 C v5 C 2 Ov6� � hx

2
Œv1 C v3 C 2Ou2�:

(8.12.26)
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If we thus split uh into a bilinear part u0h and a mid-point correction part Ouh, one can
define˘huh by setting

8
<̂

:̂

.˘huh/
0 D u0h;

.1˘huh/ D 2

3
Ouh:

(8.12.27)

Equality (8.12.21) will then hold and (8.12.27) is clearly continuous with a
continuity constant independent of h. ut
Example 8.12.9. We come back to Example 8.12.5 that is a three-point quadrature
rule used in conjunction with the Crouzeix-Raviart element. We shall not give
the analysis in detail but only sketch the ideas. The problem is again to check
that the inf-sup condition holds through Proposition 8.4.1. As the quadrature rule
is exact when qh is piecewise constant, the obvious idea is to build˘huh by leaving
invariant the trace of uh on @K and only modifying the coefficients of the bubble
functions. This can clearly be done. Continuity is now to be checked and the proof
is essentially the same as the standard proof of the inf-sup condition (Sect. 8.7.2).

ut
Example 8.12.10 (A modifiedQ

1
�P0 element). We now present a puzzling exam-

ple [127] of an element which is stable but for which convergence is tricky due to
a consistency error term. We have here a case where using a one-point quadrature
rule will change the situation with respect to the inf-sup condition. In fact, it will
make a stable element from an unstable one but will also introduce an essential
change in the problem. The departure point is thus the standard Q1 � P0 element
which was studied in Sect. 8.10.2 and which, as we know, does not satisfy the inf-
sup condition. We now make it richer by adding to velocity uhjK D fu1; u2g what
we shall call wave functions. On the reference element OK D�� 1; 1Œ
�� 1; 1Œ, those
functions are defined by

(
w1 D Ox b2. Ox; Oy/;
w2 D Oy b2. Ox; Oy/; (8.12.28)

where b2. Ox; Oy/ D .1 � Ox2/.1 � Oy2/ is the Q2 bubble function. If we now consider

OuhjK D fu1 C ˛Kw1; u2 C ˛Kw2g D uhjK C ˛kwk; (8.12.29)

we obtain a new element with an internal degree of freedom. The wave functions
that we added vanish on the boundary and nothing is changed for the stability of
the mixed method with exact integration. If we rather use a one-point quadrature
rule, things become different. We shall indeed check that the modified bilinear form
bh. Ovh; qh/ satisfies the inf-sup condition. We thus have to show that

sup
Ouh

P
K

div Ouh.M0;K/pK h
2
K

kOuhk1
� k0 kphk0: (8.12.30)
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This is easily checked by posing onK (we suppose that we have a rectangular mesh
to make things simpler)

OuhjK D hK pKwK: (8.12.31)

We then have div Ouh D ph and

kOuhk1;K D h pK kwKk1;K; (8.12.32)

which implies

kuhk1 � c kphk0; (8.12.33)

and (8.12.30) follows. A remarkable point is, now, that even the hydrostatic mode
has disappeared. This is an indication that something incorrect has been introduced
in the approximation. An analysis of consistency error indeed shows that usual
error estimates fail and that we are actually approximating a continuous problem in
which the incompressibility condition has been replaced by div u C kp D 0 where
k D a=b. We then see that if, in general for the Stokes problem, making the space
of velocities richer improves (at least does not reduce) the quality of the method,
this fact can become false when numerical integration is used. ut
Let us now turn our attention to the problem of error estimation. From Proposi-
tion 5.5.6 and Remark 5.5.9, all we have to do is to estimate the consistency terms,

sup
vh

jb.vh; p/ � bh.vh; p/j
kvhkV

(8.12.34)

and

sup
qh

jb.u; qh/ � bh.u; qh/j
kqhk0 : (8.12.35)

We thus have to estimate quadrature errors. It would be out of purpose to enter into
details, and we refer the reader to [147, 148] where examples of such analysis are
presented exhaustively. The first step is to transform (8.12.34) into a form which is
sometimes more tractable. We may indeed write

b.vh; p/� bh.vh; p/ D .bh.vh; p � qh/ � bh.vh; p � qh//
C .b.vh; qh/ � bh.vh; qh//

(8.12.36)

and

b.u; qh/� bh.u; qh/ D .b.u � vh; qh/ � bh.u � vh; qh//
C .b.vh; qh/� bh.vh; qh//:

(8.12.37)

The first parenthesis in the right-hand side of (8.12.36) and (8.12.37) can be reduced
to an approximation error. The second parenthesis implies only polynomials.
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Let us therefore consider (8.12.37) for the three approximations introduced
above. For the Crouzeix-Raviart triangle, taking vh the standard interpolate of u
makes the second parenthesis vanish while the first yields anO.h/ estimate. For the
two other approximations, taking vh to be a standard bilinear approximation of u
makes the second parenthesis vanish while the first yields an O.h/ estimate, which
is the best that we can hope for anyway. The real trouble is therefore with (8.12.34),
with or without (8.12.36). In the case of the Crouzeix-Raviart triangle, we can use
directly (8.12.34) and the following result of [147, 148].

Proposition 8.12.1. Let f 2 Wk;q.˝/; pk 2 Pk.K/ and denote Ek.fpk/ the
quadrature error on element K when numerical integration is applied to fpk .
Let us suppose that EK. O�/ D 0 8 O� 2 P2k�2.K/. Then, one has

jEK.fpk/j � chkK .meas.K//
1
2� 1

9 jf jk;q;K jpkj1: (8.12.38)

ut
Taking k D 2 ; q D 1 and using the inverse inequality to go from jpkj1 to jpkj0,
one gets an O.h2/ estimate for (8.12.34).

The two other approximations cannot be reduced to Proposition 8.12.1 and must
be studied through (8.12.36). We must study a term like

sup
vh

jb.vh; qh/ � bh.vh; qh/j
kvhk1

: (8.12.39)

This can at best be bounded. For instance in the case of theQ
2
�P0 approximation,

we can check by hand that the quadrature error on K reduces to h3K j div vhj2;K pk .

8.13 Other Stabilisation Procedures

We shall now consider, for the Stokes problem, stabilised formulations presented
in Sect. 6.1.1 of Chap. 6. It is clear or should be clear from the results presented in
the present chapter that the key of success in stabilising incompressible elements is
in weakening the discrete divergence-free condition. This was done, up to now, by
reducing the space Qh of pressures or by enriching the space Vh of velocity field.
We now consider the other possibility of a modified variational formulation. In many
cases, this will amount to explicitly weaken the condition divh uh D 0 by changing
it to

divh uh D gh; (8.13.1)

where gh is a (well chosen) “small” function. One step in this direction had been
done in the work of [131] who considered the relaxed condition
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Z

˝

div uh qh dx D ˇ
X

K

h2K

Z

K

grad ph � grad qh dx (8.13.2)

in the case of a continuous pressure approximation (that is Qh � H1.˝/).
In (8.13.2), ˇ is any positive real number. On a regular mesh, this is a discrete
form of

div u D �ˇh2 4p: (8.13.3)

It is easy to understand that appearance of oscillations due to spurious pressure
modes will make 4h ph large. This will relax the divergence-free condition, thus
preventing the growth of such oscillations. The practical use of (8.13.2) indeed
requires a delicate balance between two conflicting phenomena. When ˛ is chosen
too small, stabilisation is poor and spurious pressure modes persist. On the other
hand, taking ˛ too large spoils the value of ph near the boundary because of the
parasitic Neumann condition @ph

@n
D 0 which is implicit in (8.13.2).

This procedure was later generalised by Hughes and Franca [256] and Hughes
et al. [257] in order to improve its consistency, in a way that we present below.

We shall first try to give a unified presentation of this kind of methods using
the general theory of stabilisation procedures developed in Chap. 5. We shall first
consider augmented methods.

8.13.1 Augmented Method for the Stokes Problem

We consider the stabilised formulation (6.1.50) in the special context of the Stokes
problem (1.5.23). We now have

V WD .H1
0 .˝//

n; V 0 WD .H�1.˝//n;H WD .L2.˝//n;Q D Q0 WD L2.˝/

and the dense inclusions V � H � V 0. We also have, for u 2 V and p 2 Q,

b.v; q/ D R
˝ q divv dx;

Bu D � div u 2 Q; Btp D gradp 2 V 0:
(8.13.4)

As to the operator A, it is defined by

hAu; vi D a.u; v/ D 2�

Z

˝

".u/ W ".v/dx: (8.13.5)

The case t D 1 of Sect. 6.1.2 (with ˇ2 D 0) which corresponds to a stabilisation
method introduced by Douglas and Wang [179] now reads as
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8
ˆ̂̂
<̂

ˆ̂̂
:̂

hAuh C gradph � f ; vhiV 0�V

C ˇ.Auh C gradph � f ;Avh/V 0�V 0 D 0; 8 vh 2 Vh;
hdiv uh C g; qiQ0�Q

C ˇ.Auh C gradph � f ; grad qh/V 0�V 0 D 0; 8 qh 2 Qh;

(8.13.6)

while in the case t D 0, the extra term is only written in the second equation
8
ˆ̂<

ˆ̂:

hAuh C gradph � f ; vhiV 0�V D 0; 8 vh 2 Vh;
hdiv uh C g; qiQ0�Q

C ˇ.Auh C gradph � f ; grad qh/V 0�V 0 D 0; 8 qh 2 Qh:

(8.13.7)

We must now build a computable implementation of these formulations. Indeed, the
scalar product in V 0 is not directly handable. In the present case, as the operator A
is an isomorphism from V onto V 0, we can define the scalar product as

.u0; v0/V 0�V 0 WD hA�1u0; v0iV�V 0 : (8.13.8)

However, this means being able to compute the exact inverse of A. We now have to
introduce an approximation and many options are open.

Example 8.13.1 (Defining a scalar product by an approximation of A�1). The first
idea that comes to mind is to use some approximate operator S�1

h instead of A�1.
This could be done by solving an auxiliary problem in a space richer than Vh. Our
problem (8.13.7) would now be changed into

8
ˆ̂<

ˆ̂:

hAuh C gradph � f ; vhiV 0�V D 0; 8 vh 2 Vh;
hdiv uh C g; qiQ0�Q

C ˇhS�1
h .Auh C gradph � f /; grad qhiV�V 0 D 0; 8 qh 2 Qh;

(8.13.9)
with a similar expression for (8.13.6). ut
Example 8.13.2 (Defining a scalar product by a change of space). Another way of
defining a discrete formulation, introduced in [256] and [257], is to replace

ˇ.Auh C gradph � f ; grad qh/V 0�V 0 (8.13.10)

by an expression of the form

ˇ
X

K

h2K

Z

K

.AuhjK C grad ph � f / � grad qh dx (8.13.11)

and by a similar change on the term appearing in the first equation of (8.13.6) if we
want to use t D 1. This can be seen as another way (through an “inverse inequality”)
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of defining a discrete scalar product corresponding to theH�1.˝/ scalar product by
using a scalar product inH . If the exact solution u is regular enough, this expression
written for u vanishes and we have what has been termed as “strong consistency”.
Note that for piecewise linear uh; AuhjK vanishes, leaving only a corrective term of
the form

ˇ
X

K

h2K

Z

k

. grad ph � f / � grad qh dx; (8.13.12)

which is a variant of (8.13.2). The aim of (8.13.11) is largely to replace the Neumann
condition @ph

@n
D 0, which is implicit in (8.13.2), by a more correct one, hopefully

making the choice of ˇ easier. ut
We now come back to our discrete stabilised problems (8.13.6) or (8.13.9) and we
first consider the option of using a discrete operator S�1

h . We shall see that in one
important case, both options are equivalent, and that in other cases, we fall back
onto known methods.

8.13.2 Defining an Approximate Inverse S�1
h

Let Vh be the finite element space in which we compute uh. We introduce a space
V C
h of new degrees of freedom and the space Wh WD Vh ˚ V C

h . We can now define
sC
h WD S�1.Auh C gradph � f / 2 V C

h by a “hierarchical” computation in V C
h

a.sC
h ; v

C
h / D hAuh C gradph � f ; vC

h i; 8 vC
h 2 V C

h : (8.13.13)

In many cases, V C
h will be a space of “bubbles” and this problem will be solvable

element by element. For the case t D 0, our stabilised problem (8.13.7) would now
be read, sC

h being defined from (8.13.13), as

( h.Auh C gradph � f /; vhiV 0�V D 0; 8 vh 2 Vh;
hdiv .uh C ˇsC

h /C g; qiQ0�Q D 0; 8 qh 2 Qh;
(8.13.14)

which indeed contains a weakened condition of the form (8.13.1). The case t D 1

of (8.13.6) would yield
( hA.uh C ˇ1s

C
h /C gradph � f ; vhiV 0�V D 0; 8 vh 2 Vh;

hdiv .uh C ˇ1s
C
h /C g; qiQ0�Q D 0; 8 qh 2 Qh:

(8.13.15)

Taking into account equation (8.13.13), one can see that for ˇ D 1, this is nothing
but the solution of the Stokes problem using Wh 
 Qh as the finite element space.
This will obviously work if this choice of spaces is stable and we have rediscovered
that enriching the space Vh is a good way of getting a stable method. As for the
case (8.13.14), it would be an approximation of this case, which could hardly be
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considered as simpler as the matrix of the problem is not symmetric. Proving its
stability would require some “quasi-orthogonality” between Vh and V C

h of the same
type as what is used to study hierarchical error estimators [2, 47]. We shall not
try to get much further in this direction. There is however a simple case where
both (8.13.14) and (8.13.15) coincide and in fact are equivalent to (8.13.12).

Example 8.13.3 (Defining S�1
h with bubbles, the MINI element). Let us consider the

case of a piecewise linear approximation for both Vh and Qh, which is well known
to be unstable. To fix ideas, we shall use for V C

h the space B3 of conforming cubic
bubbles, although we might also use other shapes of bubbles or nonconforming
quadratic bubbles. Let then bK be the bubble associated to elementK . We can write
any function of V C

h in the form

vC
h D

X

K

ˇ
K
bK:

The key of what follows is the fact that we have orthogonality between the space of
bubbles and Vh in the sense that

a.sC
h ; vh/ D a.vh; v

C
h / D 0 8 vh 2 Vh;8 vC

h 2 V C
h : (8.13.16)

As we use bubbles, our Eq. (8.13.13) can be solved element by element and we have
on everyK

ıKˇK
D
Z

K

.f �Auh � gradph/ � bK dx D
Z

K

.f � gradph/ � bK dx (8.13.17)

where

ıK D �

Z

K

j".bK/j2 dx: (8.13.18)

To make things easier, suppose that f is piecewise constant so that we can
rewrite (8.13.17) as

ıKˇ
K

D �K.f � gradph/ (8.13.19)

where we denote

�K D
Z

˝

bK dx: (8.13.20)

We thus obtain

S�1.Auh C gradph � f / D
X

K

.�K=ıK/.f � gradph/bK: (8.13.21)
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Using (8.13.21), (8.13.14) becomes

8
ˆ̂̂
<

ˆ̂̂
:

hAuh C gradph C f ; vhiV 0�V D 0; 8 vh 2 Vh;
hdiv uh C g; qiQ0�Q

� ˇ
X

K

.�2K=ıK/.gradph � f ; grad qh/L2.K/�L2.K/ D 0; 8 qh 2 Qh;

(8.13.22)

and this is nothing but a slight variant of the stabilisation obtained from (8.13.11),
as we can check that

�2K=ıK D cKh
2
K (8.13.23)

with a constant cK depending on the shape of the element. The same reasoning can
be done with other choices for the space of bubbles.

Remark 8.13.1 (The MINI element). Given the orthogonality of (8.13.16), it is easy
to see that the formulations of (8.13.6) and (8.13.7) obtained from (8.13.17) coincide
and that for ˇ D 1, they are nothing but the solution of the Stokes problem with the
MINI element. ut

We thus see that the technique of Example 8.13.2 can be obtained in different
ways. We now proceed to develop an error analysis of these methods.

Example 8.13.4 (Error estimates for the Hughes-Franca stabilisation). We place
ourselves in the case of “equal interpolation”, that is, using polynomials in L1k for
Vh and Qh. Note however that the space Vh will satisfy boundary conditions while
Qh will not. We present the result in the two-dimensional case but it can easily be
extended to the three-dimensional case. We have a space of continuous pressures
and we have thus gradph 2 H D .L2.˝//2. To simplify the presentation, we
define on H

hu; viH D
X

K

h2K

Z

K

u � v dx; Œv�2H D hv; viH : (8.13.24)

For any uh 2 Vh, we also define Auh 2 H by

AuhjK D AujK (8.13.25)

and we write a stabilised formulation
(

hAuh C gradph � f ; vhiV 0�V D 0; 8 vh 2 Vh;
hdiv uh C g; qiQ0�Q C h.AuhjK C grad ph � f /; grad qhiH D 0; 8 qh 2 Qh;

(8.13.26)
which is the method of [256].
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Following the procedure of Chap. 5, Sect. 6.1.2, we must obtain a stability result and
estimate the consistency term. For stability, we define the bilinear form

Ah.uh; ph/; .vh; qh/i WD a.uh; vh/� b.vh; ph/C b.uh; qh/

C ˇh.Auh C grad ph/; grad qhiH :
(8.13.27)

For uh D vh and ph D qh, we obtain

Ah.vh; qh/; .vh; qh/i D ˛kvhk2V CˇŒgrad qh�2H CˇhAuhjK; grad qH iH : (8.13.28)

To prove stability, we recall that from Verfürth’s trick (cf. Sect. 8.5.2 and also
Chap. 6.3), we have

Œgrad qh�h � kkqhkQ: (8.13.29)

On the other hand, we bound the last term by

ˇhAuhjK; grad qH iH � ˇŒAuh�hŒ grad qh�H � ˇ

2
ŒAuh�

2
h C ˇ

2
Œgrad qh�

2
h: (8.13.30)

However, using an inverse inequality, we have

Z

K

jAuhj2 dx � M
1

ch2K
kuhk21;K (8.13.31)

and thus

X

K

h2K

Z

K

jAuhj2 dx � M

c
kuhk2V : (8.13.32)

Using this last result in (8.13.28), we have

Ah.vh; qh/; .vh; qh/i.˛ � ˇM

c
/kvhk2V C ˇŒ grad qh�

2
H ; (8.13.33)

which implies stability for ˇ small enough. It should be remarked that for the degree
of the approximationk D 1,AuhjK D 0 and that we then have stability for any value
of ˇ.

Following Sect. 6.1.1 of Chap. 6, we now have to bound, .uI ; pI / being an
interpolate of .u; p/, a term of the form

ˇ
X

K

h2K

Z

K

�
.j.AuI �Au/jK j2/C jp � pI j2

�
dx: (8.13.34)
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The crucial term is the first one. If polynomials of degree k are employed, we have,
by classical interpolation results, an estimate onK ,

Z

K

j.AuI �Au/jK j2 dx D O.h2k�2
K /

and the loss of precision is exactly compensated by the choice of the stabilising
parameter ˇh2K .

The method does work for any degree of polynomial. However, it should be noted
that for k > 1, it leads to a non-symmetric system which makes it less appealing.

ut

8.13.3 Minimal Stabilisations for Stokes

We now consider another class of stabilisations which contains, as a special case,
the method of (8.13.2). Although this could be written in general, we shall restrict
ourselves to the case of a first order approximation,Vh � .L11/n \ V;Qh � L1k \Q.
The method will be a direct adaptation of Sect. 6.3.1 of Chap. 6. We introduce
another space QVh 2 .L11/2, denoting QP the projection over QVh in the norm of
H WD .L2.˝//n and we consider the following problem:

8
ˆ̂<

ˆ̂:

hAuh C gradph � f ; vhiV 0�V D 0; 8 vh 2 Vh;
hdiv uh C g; qiQ0�Q

C r.gradph � QP gradph; grad qh/H D 0; 8 qh 2 Qh:

(8.13.35)

This fits entirely into the theory of Chap. 6 and we have the error bound

ku � uhk2V C kp � phk2Q

� C .
!2.h/C r

r
/

	
inf

vh2VH
ku � vhk2V




C .1C r

!.h/2
/ inf
qh2Qh

kp � qhk2Q C rk.I � QP /.gradp/k2H ;
(8.13.36)

provided that the following assumption holds:

A

8
<

:

There exists a positive constant �; independent of h ; such that
kPVh grad qhk2

Ck grad qh � QP grad qhk2 � �k grad qhk2 8 qh 2 Qh:

(8.13.37)
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Now, as we use an approximation of degree one, we would like all terms on the
right-hand side of inequality (8.13.36) to be O.h2/ and we consider three cases.

(i) The Brezzi-Pitkäranta formulation. If we take QVh D f0g and thus QP D I ,
assumption A evidently holds. The last term in (8.13.36) reduces to
rk gradpk2H and we need to make r D O.h2/ to get the error bound. The
drawback of the method is the boundary layer on gradph.

(ii) Projection on Vh. Assumption A is again immediate. We must again con-
sider the last consistency term. Some trouble arises because Vh satisfies
boundary conditions (e.g., vh D 0 on the boundary). We can then expect
k.I� QP/.gradp/k2H to be no better thanO.h/. Taking r D O.h/would restore
the optimal order but the problem with the boundary layer is not cured.

(iii) Optimal projection. From the previous discussion, one sees that taking QVh D
.L11/2, that is, suppressing boundary conditions, will work with r D O.1/ and
will eliminate the spurious boundary layer. The trouble is now with assumption
A. It was proved in [123] that it indeed holds. This method had been used
in [51].

In order to prove our assumption A, we first consider the following result.

Proposition 8.13.1. Let Qh and Vh be the space of piecewise linear pressures and
velocities as above, and let QVh be the space of piecewise linear continuous vectors
on Th (without boundary conditions.) There exists a constant ˇ� > 0, independent
of h, such that, for every qh 2 Qh and for every wh 2 QVh, there exists a v0h 2 Vh
verifying

kv0hk0 � k grad qhk0 (8.13.38)

and

.v0h; grad qh/0 C k grad qh � whk20 � ˇ�k grad qhk20: (8.13.39)

Proof. Let us consider first a macro-elementK made by the collection of triangles
having one vertex P of Th in common. Split qh D q0 C q`, where q0 is such that
grad q0 has zero mean value in K and q` is linear on K (hence grad q` = constant
in K .) It is clear that .grad q0; grad q`/K D 0. We now take v0h, piecewise linear,
continuous, vanishing on the boundary of K and having value

p
6 grad q` at the

internal vertex P . An easy computation shows that:

kv0hk0;K D k grad q`k0;K (8.13.40)

and

.v0h; grad q`/K D
r
2

3
k grad q`k20;K: (8.13.41)
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On the other hand, grad q0 belongs to a space (piecewise constant vectors on K ,
with continuous tangential components, and zero mean on K) whose intersection
with piecewise linear continuous vectors on K is reduced to the zero vector. As we
are in finite dimension, there exists a positive constant ıK such that, for every grad q0
and for every wh,

k grad q0 � whk20 � ıKk grad q0k20;K: (8.13.42)

As grad q` is clearly continuous and piecewise linear, (8.13.42) easily implies that

k grad qh � whk20 D k grad q0 C grad q` � whk20
D k grad q0 � Qwhk20 � ıKk grad q0k20;K ;

(8.13.43)

and a simple scaling argument shows immediately that ıK is independent of the size
of K (notice that (8.13.43) holds for every wh).

Finally, we explicitly point out that

.v0h; grad q0/K D v0h.P /

3

Z

K

grad q0dx D 0; (8.13.44)

where P is the only vertex internal to K . From (8.13.41) to (8.13.44), one then gets
that, for every qh and for every wh, there is a v0h, piecewise linear, continuous, and
vanishing on the boundary of K , such that (8.13.40) holds and

.v0h; grad qh/K C k grad qh � whk20;K � ˇKk grad qhk20;K; (8.13.45)

for some positive constant ˇK independent of qh and wh. The result (8.13.38) and
(8.13.39) then follows easily from (8.13.45) by typical instruments (continuity of
ˇK , splitting of ˝ into macro-elements such that each triangle belongs at most to
three different macro-elements, and so on). ut
With the aid of Proposition 8.13.1, we can now prove Assumption A.

Proposition 8.13.2. Let Qh, Vh and QVh be as in Proposition 8.13.1. Then, there
exists a constant Q̌ > 0 such that

kPVh grad qhk2 C k grad qh � P QVh grad qhk2 � Q̌ k grad qhk2 8 qh 2 Qh;

(8.13.46)
where all the norms are in L2.

Proof. We start by observing that, for every v0h and qh, we have

.v0h; grad qh/ D .v0h; PVh grad qh/ � kv0hk kPVh grad qhk

� ˇ�

2
kv0hk2 C 1

2ˇ� kPVh grad qhk2;
(8.13.47)
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where the last inequality clearly holds for every positive ˇ�, but we shall use it
for the value of ˇ� given in (8.13.39). For every qh, we now take v0h as given by
Proposition 8.13.1, and using (8.13.38), we have

.v0h; grad qh/ � ˇ�

2
k grad qhk2 C 1

2ˇ� kPVh grad qhk2; (8.13.48)

which, inserted in (8.13.39) with wh D P QVh grad qh, gives

ˇ�

2
k grad qhk2C 1

2ˇ� kPVh grad qhk2Ck grad qh�P QVh grad qhk2 � ˇ� k grad qhk2;
(8.13.49)

and (8.13.46) follows immediately. ut
Remark 8.13.2 (Enhanced strain methods). Finally, to conclude this section, we
would like to note that another example of stabilisation of the Stokes problem by an
enhanced method can be found in the work of [283]. ut

8.14 Concluding Remarks: Choice of Elements

We would first like to emphasise that the results of this chapter can be applied as
well to flow problems as well as to linear (or linearised) elasticity problems. In
this last case, displacement methods also need to be considered from a mixed point
of view. Indeed, we have already seen in Sect. 8.12 that there is a close relation
between the Stokes problem and linear elasticity problems. However, things are not
so simple: fluid people and solid mechanics people form two different communities
and information was long to cross the border.

8.14.1 Choice of Elements

We have presented discontinuous pressure and continuous pressure elements. They
both have advantages, even though discontinuous pressure is appealing as it enforces
an element wise conservation of mass. They can also be implemented by a penalty
procedure.

In this respect, the reader should have noticed an important difference between
the two-dimensional and the three-dimensional elements presented in this chapter.

• In the 2-D case, we have a choice of discontinuous pressure elements which
can be used with a penalty method. Direct solvers are not too sensitive to the
ill-conditioning of the resulting system and we thus obtain a good resolution
strategy. We can thus recommend the Crouzeix-Raviart element of Example 8.6.1
or its higher order variants.
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• In the 3-D case, discontinuous pressure elements satisfying the inf-sup condition
are expensive as one needs degrees of freedom on the faces. The equivalent of
the Crouzeix-Raviart element also uses bubbles of degree four. The ubiquitous
Q
1

� P0, for which the condition number of the dual problem depends on
h, behaves badly with iterative methods which are essential for large-scale
simulations. We therefore recommend the Hood-Taylor continuous pressure
element.

Remark 8.14.1 (Solvers). The choice of elements is also dictated by the choice
of solvers. In the two-dimensional case, where direct solvers are almost always
employed, discontinuous pressure elements are desirable as they are compati-
ble with penalty methods. In the three-dimensional case, where iterative solvers
are the rule for large problems, penalty methods are to be avoided as they destroy
the condition number of the problem. Recent progress in the construction of solvers
for indefinite systems [58,185,186] however make the use of a continuous pressure
element, such as the Taylor-Hood element, possible and efficient. ut
Remark 8.14.2 (Meshes). Another consideration is the choice of affine (triangular
or tetrahedral) or quadrilateral hexahedral elements. As we already noted, there
was a widespread legend that tetrahedra were not suitable for incompressible solid
mechanics problems. This was based on a lack of analysis and we advocate the
choice of affine elements for two reasons.

• Mesh generation is much easier with tetrahedra than with hexahedra. Indeed,
it can, most of times, be done automatically. This is important in complex
engineering problems where the domains may be of a complex shape.

• The second reason is mesh adaptation, which is also much easier for tetrahedra.
There exist algorithms which can make a mesh optimal to represent a given
solution. ut

Finally, let us recall that the approximation of incompressible materials is a central
issue in many industrial applications. It has therefore been the subject of a vast
literature. We believe to have presented the essential points but we also neglected
many aspects. Among those, we did not describe finite volume methods, which
are mostly amenable to an analysis by the theory of mixed methods. One can find
references in [194] and [195].



Chapter 9
Complements on Elasticity Problems

9.1 Introduction

Elasticity problems are probably the most common use of the finite element
method. Historically, they were indeed at the origin of the method. We have already
considered in Chap. 8, in particular in Sect. 8.12, standard formulations of elasticity
problems based on displacement variables. Considerations on the choice of elements
have also be presented in Sect. 8.14.1. Our main concern will now be to present
mixed methods using explicitly an approximation of the stress tensor, in which the
equilibrium condition is strongly imposed on each element.

Mixed methods are indeed an appealing technique for the numerical solution
of elasticity problems. They ensure the equilibrium condition (a basic property in
solid mechanics) and they make the constitutive law more explicit. The stress tensor
becomes the main variable but the symmetry of this tensor makes the construction
of suitable elements much more complicated than what can be done, for instance, in
thermal problems where families of elements such as the RT k and BDMk are now
classical.

In fact, one should recall that the symmetry of the stress tensor expresses the
conservation of angular momentum and that representing exactly a conservation
law is a difficult task. The idea of using stress tensors having only a reduced
symmetry goes back to Fraeijs de Veubeke [210], but the introduction and the
analysis of specific elements having symmetry only in average was done first
in [7], while an even weaker form of symmetry (namely, orthogonality to piecewise
linear continuous functions) was proposed and studied in [24]. Since then, their use
underwent alternate periods of popularity and oblivion. For more information, see
e.g. [120, 204, 305, 356, 357] and many others. See also [79, 80] and the references
therein.

Recently, a general construction of elements with reduced symmetry was
presented in [33] and [30]. Their construction relies on a very elegant but quite
abstract procedure, requiring rather sophisticated instruments. In [80], we presented
a different analysis of these elements and related ones, using much more elementary

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 9,
© Springer-Verlag Berlin Heidelberg 2013
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and classical techniques. It is clear to us that the construction in [30] still has the
merit of having inspired the choice of these elements (and having provided the first
proof of their convergence). However, its presentation requires the introduction of
a rather heavy theoretical machinery, and therefore we will follow essentially the
approach of [80] or, actually, an even simpler one. In particular, the present approach
provides a particularly simple analysis of virtually all reduced-symmetry elements
present in the literature, in addition to some new ones that generalise the original
element of Amara-Thomas [7], whence the name of Generalised Amara-Thomas
(GAT).

In this presentation, we shall restrict ourselves to linear isotropic problems. As
we are interested mainly in discretisation methods, this is not a real restriction: the
choice of elements will have in all cases to follow the same rules. Moreover, always
to simplify the discussion, we will concentrate on the (rather unrealistic) case of
homogeneous Dirichlet boundary conditions all over the boundary, and we shall
assume that the domain is convex.

9.1.1 Continuous Formulation of Stress Methods

We consider a mixed approach to linear elasticity problems, that is, we use as main
variable a symmetric stress tensor, chosen in a suitable space.

Remark 9.1.1. Throughout the chapter, we will often use 3 
 3 tensors, say ˚ , that

are obtained joining three different vectors �.1/, �.2/, and �.3/ of three components
each. In general, we will not distinguish between row vectors and column vectors.
However, in collecting three of them, we would have to distinguish between ˚ij D
�
.i/
j (patching row-vectors) and ˚ij D �

.j /
i (patching column-vectors).

Accordingly, given a space � of three-vectors, we will have to distinguish
between the space .�/3r obtained patching row-vectors and .�/3c obtained patching
column-vectors. If the space � is itself made as the cube of another space of scalars
V (that is, � D V 3), then .�/3r D .�/3c D V 3�3: ut
We therefore define, in n dimensions,

H.divI˝/ WD .H.divI˝//nr 	 f� j � 2 .L2.˝//n�n; div � 2 .L2.˝//ng;
(9.1.1)

H.divI˝/S WD f� j � 2 H.divI˝/; �i;j D �j;i 8 i; j D 1; ::; ng; (9.1.2)

˙ WD H.divI˝/; ˙S WD H.divI˝/S; U WD .L2.˝//n: (9.1.3)

We recall the definition of the trace of a tensor

tr.�/ WD
nX

iD1
�

ii
(9.1.4)
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and of the deviatoric

�D WD � � 1

n
tr.�/I ; (9.1.5)

where I is the identity tensor. Note that tr.I / D n so that in (9.1.5) we have

tr.�D/ D 0. Note as well that (9.1.5) can equally be written as

tr.�/I D n .� � �D/; (9.1.6)

which, applied to the case of a tensor � D grad v (for some v), gives

.div v/ I 	 tr.grad v/ I D n .grad v � grad vD/: (9.1.7)

At this point, we can set

a.�; �/ WD
Z

˝

h 1
2�
�D W �D C 1

n.n�C 2�/
tr.�/tr.�/

i
dx; (9.1.8)

b.�; v/ WD
Z

˝

div.�/ � v dx (9.1.9)

and we can write our simple linear elasticity problem as: find .�; u/ 2 ˙S 
U such
that

(
a.�; �/C b.�; u/ D 0; 8 � 2 ˙S;

b.�; v/C .f ; v/ D 0; 8 v 2 U:
(9.1.10)

Remark 9.1.2. The first equation represents the constitutive law and the second one
the equilibrium condition. It must be clear that although we consider a linear model,
the results can be transposed to more realistic non linear models. ut
We thus have to consider the standard conditions for existence and uniqueness of
the solution to this problem. It is very easy to check that there exists C > 0 such
that

inf
v2U

sup
�2˙S

b.�; v/

k�k1kvk0 � c (9.1.11)

and that

a.�; �/ � 1

n.n�C 2�/
k�k20; 8 � 2 ˙: (9.1.12)

We thus have an inf-sup condition and coercivity so that our problem is well
posed. However, trouble arises when we have to deal with a very large � (nearly
incompressible materials). In fact, it is clear that the coercivity constant which
appears in (9.1.12) goes to zero like 1=� when � ! C1 so that the stability
properties of problem (9.1.10) seem to deteriorate for large values of �. Actually,
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the situation is not as bad as it seems because we do not need coercivity to hold
for every � 2 ˙ (or ˙h) but only for � 2 KerB (respectively, KerBh for discrete
problems). In particular, the continuous formulation (9.1.10) does not break down
when � ! 1, because of the following proposition.

Proposition 9.1.1. There exists a constant C > 0 such that, for every � 2 ˙
satisfying

Z

˝

tr.�/ dx D 0; (9.1.13)

we have

k�k0 � C.k�Dk0 C k div �k0/: (9.1.14)

ut
Proof. It is obvious that

k�k0 � k�Dk0 C 1

n
k tr.�/Ik0 (9.1.15)

and hence it is enough to show that

k tr.�/k0 � C.k�Dk0 C k div �k0/ (9.1.16)

for some constantC . For this, note that (9.1.13) implies the existence of a v 2 .H1
0 /
n

such that

div v D tr.�/; (9.1.17)

kvk1 � C k tr.�/k0: (9.1.18)

Now, from (9.1.17) and (9.1.7), we have:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

ktr.�/k20 D
Z

˝

tr.�/ div v dx

D
Z

˝

� W I div v dx

D
Z

˝

� W .grad v � .grad v/D/ dx

D �n
Z

˝

div � � v dx � n

Z

˝

�D W grad v dx

� nk�Dk kvk1 C nk div �k0kvk0

(9.1.19)

and from (9.1.18) and (9.1.19), we get (9.1.16). ut
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If we work in the subspace

Q̇ WD
n
� j � 2 ˙;

Z

˝

tr.�/ dx D 0
o
; (9.1.20)

we know that the set

KerB D ˚
� j � 2 Q̇ such that b.�; v/ D 0 8 v 2 U � (9.1.21)

is precisely made of tensors satisfying (9.1.13) and

div � D 0: (9.1.22)

Hence, from Proposition 9.1.1, we have

a.�; �/ � 1

2�
k�Dk20 � C.�/ k�k20 D C.�/k�k2H.divI˝/s ; 8 � 2 KerB: (9.1.23)

The stability constant of our problem is therefore independent of �.

Remark 9.1.3. It must be noted that condition (9.1.13) refers to the fact that with
Dirichlet boundary conditions, in incompressible problems, pressure is defined
only up to an additive constant. The condition can then be applied a posteriori. It
disappears whenever Neumann boundary conditions are imposed on a part of the
boundary. From the mathematical point of view, we can also remark that, taking
� D I in the first equation of (9.1.10), we immediately have that the solution �

belongs to Q̇ .
To avoid unnecessary complications, we shall often use, in what follows, the

spaces˙ and˙S instead of Q̇ and Q̇
S . ut

9.1.2 Numerical Approximations of Stress Formulations

If we now choose some finite-dimensional subspaces ˙Sh of ˙S and Uh of U , we
must be careful to have the discrete analogues of (9.1.11) and (9.1.23) verified.
However, we have to face a delicate point. In order to prove an inequality of
type (9.1.23), we needed, in Proposition 9.1.1, to have div � D 0. Hence, our life
would be a lot easier if we had the “inclusion of the kernels property”: KerBh �
KerB . In other words, we would like our spaces˙Sh and Uh to satisfy the following
property:

KerBh D f�
h

2 ˙Sh W b.�
h
; vh/ D 0 8 vh 2 Uhg

� KerB D f� 2 ˙ jS W div � D 0g: (9.1.24)
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At the same time, the inf-sup condition (9.1.11) is related to the existence of a
B-compatible operator˘h W ˙S ! ˙Sh such that

b.� �˘h�; vh/ D 0; 8 vh 2 Uh; (9.1.25)

k˘h�k˙ � c k�k˙; 8 � 2 ˙: (9.1.26)

We have seen in Chap. 2 many possibilities to approximate H.divI˝/ and it
seems, at first sight, that building a tensor with rows inH.divI˝/ would be suitable
to approximate˙ , but we should not forget the symmetry of the tensors in ˙S . The
problem of finding subspaces of ˙S and U satisfying (9.1.24)–(9.1.26) is actually
very difficult. One of the (nowadays) classical remedies is to give up the symmetry
of � and enforce it back in a weaker form by some Lagrange multiplier. This is what
we are going to do in the next section.

9.2 Relaxed Symmetry

The idea of relaxing symmetry was, to our knowledge, first used by Fraeijs de
Veubeke [212] and his school; it was then used by Amara and Thomas [7] and then
by Arnold et al. [24]. Other recent results can be found in [120,305] and [356,357].

It is worth recalling that the symmetry of the stress tensor is, in fact, a
simplified way of expressing a conservation law, namely the conservation of angular
momentum. This should make it easier to understand why symmetry is difficult
to enforce. Conservation laws are not easily exactly imposed. In fact, the point of
using spaces like H.divI˝/ and its discrete counterparts is to get a strong form for
conservation of momentum. Imposing strongly a second conservation law is likely
to be difficult.

Before considering a suitable mixed formulation of elasticity problems, we shall
first present some results on tensors which will be used throughout the chapter.

9.3 Tensors, Tensorial Notation and Results on Symmetry

Given a second order tensor � , we define its skew-symmetric part as

as.�/ WD 1

2

n
� � � t

o
: (9.3.1)

The tensor as.�/ and in fact all the tensors in X can be identified with a vector in
the three-dimensional case and a scalar in the two-dimensional one. Indeed, in two
dimensions, for every scalar q, we can define the corresponding skew-symmetric
tensor S2.q/ by
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S2.q/ WD
	
0 q

�q 0


: (9.3.2)

Denoting by asp.�/ D �1;2 � �2;1 the asymmetric part of � , we have

2 as.�/ D S2.asp.�//. Similarly in three dimensions, we define, for every vector q,

the tensor S3.q/ given by

S3.q/ WD
0

@
0 q3 �q2

�q3 0 q1
q2 �q1 0

1

A : (9.3.3)

Then denoting

asp.�/ D
0

@
�23 � �32
�31 � �13
�12 � �21

1

A ; (9.3.4)

we have 2 as.�/ D S3.asp.�//.
As we shall deal mostly with the three-dimensional case, we will concentrate

on this case and we will often use just some remarks for the corresponding two-
dimensional results.

We first recall the definition of the permutation tensor (or pseudo-tensor): for
n D 3 the triple tensor P is given by

Pijk WD

8
ˆ̂<

ˆ̂:

1 if fi; j; kg D f1; 2; 3g or f3; 1; 2g or f2; 3; 1g
�1 if fi; j; kg D f3; 2; 1g or f1; 3; 2g or f2; 1; 3g
0 otherwise:

(9.3.5)

For a tensor � , we easily check that the vector asp.�/ defined in (9.3.4) can be
written as

asp.�/ D � W P (9.3.6)

and the tensor as.�/ defined in (9.3.1) becomes

2as.�/ 	 S3.� W P/: (9.3.7)

Similarly, for each vector s, we have

S3.s/ D P � s: (9.3.8)
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Then we denote, as usual, by x ^ y the external (or wedge) product of two vectors,
given by

.x ^ y/i D Pijkxjyk; (9.3.9)

where in (9.3.9) (and in all the rest of the section) the Einstein convention of
summation of repeated indices is employed.

In a similar way, we can define the left and the right wedge product of a vector v
with a double tensor � as

.v ^ �/ir WD Pijkvj �kr and .� ^ v/ri WD Pijk�rj vk: (9.3.10)

Remark 9.3.1. In the left product, we take the wedge product of v with the columns
of � . Instead, in the right product, we take the wedge product of the rows of � with v.

ut
We recall now some useful properties of tensor calculus. We denote by x 	

.x1; x2; x3/ the vector containing the independent variables and by @i the partial
derivative with respect to xi . We shall also write, in a classical way, r 	 .@1; @2; @3/.
In this notation, the (row-wise) curl of a tensor � is defined by

.curl �/ri D .� ^ r/ri D Pijk@k�rj;

while in the two-dimensional case, we have instead, for every vector  ,

curl 	
	�@2 1 @1 1

�@2 2 @1 2


: (9.3.11)

Coming back to the three-dimensional case, we then introduce the operator

A� D tr.�/I � � t (9.3.12)

and we note that it could also be written as

.A�/˛ˇ D P˛ik Pjrˇ ıri �kj: (9.3.13)

Remark 9.3.2. We point out that, apart from the presence of the trace operator on
the main diagonal, the operator A transfers to the rows the information stored in
the columns, and vice-versa. In particular, for a skew-symmetric tensor � , we have

A� D ��t . ut
We can now recall some useful identities in tensor calculus that will be used in a
while. They can be checked by boring but elementary computations.
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We thus have for every � in .H.curl//3r

curl.x ^ �/ D A� C x ^ curl� (9.3.14)

and

asp.curl�/ D div A�: (9.3.15)

We also note that for every � and every vector n

.A�/ � n D P W .� ^ n/; (9.3.16)

which shows that

� ^ n D 0 ) .A�/ � n D 0: (9.3.17)

Moreover, for every � given in H.divI˝/, we have

div.x ^ �/ D x ^ .div�/� asp.�/: (9.3.18)

In particular, from (9.3.18), we deduce

div.x ^ �/ D �asp.�/ 	 �� W P whenever div � D 0: (9.3.19)

Remark 9.3.3. The reader familiar with the theory of continuum mechanics will
recognise the similarity with the classical result that conservation of angular
momentum is equivalent to the symmetry of the stress tensor if one already has
conservation of momentum. ut

Multiplying (9.3.19) times a vector p 2 .H1.K//3 and integrating over a domain
K , we get

Z

K

div.x ^ �/ � p dx D �
Z

K

� W P � p dx whenever div � D 0; (9.3.20)

which, integrated by parts, reads

Z

K

� W P � p dx D �
Z

K

div.x ^ �/ � p dx

D �
Z

@K

p � .x ^ �/ � nKds C
Z

K

.x ^ �/ W grad .p/ dx whenever div � D 0;

(9.3.21)

where nK is the outward unit normal vector to @K .
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The above expressions (9.3.20) and (9.3.21) can also be written in a more suitable
form, as we do in the following lemma.

Lemma 9.3.1. On any three-dimensional domainK , for all divergence-free tensors
� 2 ˙ and for all p 2 .H1.K//3, we have

Z

K

asp.�/ �p dx 	
Z

K

� W P �p dx D
Z

@K

.x^p/ � � �nK ds�
Z

K

� W .x^gradp /:

(9.3.22)

Proof. The proof follows easily using (9.3.6), and then (9.3.21) and the identities

p � .x ^ �/ � nK D �.x ^ p/ � � � nK (9.3.23)

.x ^ �/ W grad .p/ D �� W .x ^ gradp/ : (9.3.24)

ut
We can now combine (9.3.22) with the obvious fact that asp.�/ D 0 if and only ifR
K

asp.�/ � p dx vanishes for all p 2 .H1.K//3 to get the following corollary

Corollary 9.3.1. On any three-dimensional domain K , for all divergence-free
tensors � 2 ˙ , the symmetry condition is equivalent to
Z

@K

.x ^p/ � � � nK ds �
Z

K

� W .x ^ gradp / dx D 0 8p 2 .H1.K//3: (9.3.25)

Remark 9.3.4. The formulation (9.3.25) of the symmetry property is particularly
suited for imposing reduced symmetry conditions. Indeed, requiring (9.3.25) to hold
only for certain subspaces of .H1.K//3 and using (9.3.22), we will obtain weaker
symmetry conditions which, however, might still provide discrete solutions with
enough accuracy. In particular, these formulations will be equivalent to require that
the conservation of angular momentum is satisfied in an element-wise-averaged way
(as well as the conservation of momentum). ut

9.3.1 Continuous Formulation of the Relaxed
Symmetry Approach

We can now define a variational formulation suitable for our purpose. To do so, we
first introduce a space of skew-symmetric tensors,

X WD f� j � 2 L2.˝/n�n; as .�/ D �g (9.3.26)

and we introduce a new bilinear form on ˙ 
X :

c.� ; �/ WD
Z

˝

as.�/ W � dx 	
Z

˝

as.�/ W � dx: (9.3.27)
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We can then consider the following continuous problem: find .�; u; !/ 2 Q̇ 

U 
X such that

8
ˆ̂̂
<

ˆ̂̂
:

a.�; �/C b.�; u/C c.� ; !/ D 0; 8 � 2 Q̇ ;
b.�; v/ D .f ; v/; 8 v 2 U;
c.�; �/ D 0; 8 � 2 X:

(9.3.28)

First of all, we have to prove an existence result for this problem. With respect to
the general theory, we first remark that the problem can be written in the form,
considered in Sect. 3.2.5,

	
A B

t

B 0



D
0

@
A Bt C t

B 0 0

C 0 0

1

A (9.3.29)

where A is associated with the bilinear form a.�; �/ (now operating in ˙ instead of
˙S ) while the operator B W ˙ ! .U 
X/0 is associated with the bilinear form

.�; .v; �// ! b.�; v/C c.� ; �/:

In particular, the kernel of the operator B is given by

ker.B/ D f� 2 ˙ s.t. b.�; v/C c.� ; �/ D 0 8 v 2 U;8 � 2 Xg D
D f� 2 ˙ s.t. div � D 0 and as.�/ D 0g: (9.3.30)

In view of (9.3.30) and (9.1.23), we immediately have the following result.

Proposition 9.3.1. There exists a constant C > 0, independent of �, such that for
every � in Q̇ \ ker.B/, we have

a.�; �/ � Ck�k2H .divI˝/: (9.3.31)

ut
ut

Hence, in order to see (9.3.28) is well posed, we just need an inf-sup condition
of the form

9C > 0 such that inf
v2U; �2X sup

�2˙

b.�; v/C c.� ; �/

k�k˙
�kvkU C k�kX

� � C: (9.3.32)

The above condition is indeed satisfied, as we can see in the following proposition.
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Proposition 9.3.2. There exists a constant C such that for any v 2 U and � 2 X ,

there exists � 2 ˙ such that

b.�; v/C c.� ; �/ D kvk2U C k�k2X (9.3.33)

and

k�k˙ � C .kvkU C k�kX/: (9.3.34)

Proof. We first give the proof for the two-dimensional case and afterwards for the
three-dimensional one. We give it in detail because the technique will be relevant
for the construction of the discrete approximations.

The two-dimensional case. The construction of � will be done in two steps. The

first one is to build a tensor �1 2 ˙ such that

(
b.�1;w/ D .v;w/; 8 w 2 U;
k�1k˙ � C kvkU : (9.3.35)

This is easily done, even with a symmetric �1. One could, for instance, solve a
classical elasticity problem and take the associated stress field. The second step is to
correct this tensor by a divergence-free tensor �2 such that as.�2/ D � � as.�1/. In

the two-dimensional case, this divergence-free tensor is obtained by taking the i -th
row (i D 1; 2) made by the curl (Remark 2.1.5) of the i -th component of a vector
� 	 . 1;  2/, that is, as we have seen in (9.3.11),

�2 D
	�@2 1 @1 1

�@2 2 @1 2


: (9.3.36)

One sees immediately that the condition as.�2/ D � � as.�1/ is equivalent to

S2.@1 1 C @2 2/ D S2.div�/ D as.�2/ D � � as.�1/ (9.3.37)

where S2.q/ is defined by (9.3.2). In order to satisfy equation (9.3.37) with the
required continuity condition, it is then sufficient to solve a Stokes problem for � .

The three-dimensional case. In the three-dimensional case, the situation is
slightly more complex. The first step (9.3.35) can still be carried out easily, but
the divergence-free tensor �2 will now be the curl of another tensor � . This means

that we will look for a �2 of the form:

�2 D curl�: (9.3.38)
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It is convenient to introduce another tensor ˚ given by

˚ WD A�: (9.3.39)

According to (9.3.38), it is easy to check that we would always have

div �2 D 0 (9.3.40)

independently of the choice of � . On the other hand, in order to have
as.�2/ D � � as.�1/ (or, rather, asp.�2/ D asp.�/ � asp.�1/), we have to require,

as in (9.3.37),

asp.�2/ 	 asp.curl�/ 	 div A� 	 div˚ D asp.�/� asp.�1/: (9.3.41)

Note that in (9.3.41), we used (9.3.15) and (9.3.39). Now, (9.3.41) can be easily
obtained by requiring each line of˚ to be the solution of a suitable Stokes problem,
that is,

( ��˚ C gradp D 0

div˚ D asp.� � �1/: (9.3.42)

It is also immediate to verify that the above construction, which relies on the solution
of well posed Stokes problems, satisfies the required continuity conditions as well.

ut
Remark 9.3.5. The above result shows that symmetry or average symmetry of
curl� is a condition related to the rows of the tensor ˚ and hence, in view of
Remark 9.3.2, to the columns of the tensor � . ut
Remark 9.3.6. The above construction is not the most general in the three-
dimensional case. It is not necessary to get � with all the regularity implied by our
procedure, that is, for a convex˝ , � 2 .H1.˝//3�3. In fact, it is sufficient to build

� 2 .H.curl;˝//3r . This will have as a consequence that some approximations
cannot be generated with the discrete solution of Stokes problems. ut

9.3.2 Numerical Approximation of Relaxed-Symmetry
Formulations

We can now start considering the approximation of the variational formula-
tion (9.3.28). We want to choose subspaces ˙h;Uh;Xh of ˙;U;X and to solve
the problem: find .�

h
; uh; !h/ 2 Q̇

h 
 Uh 
Xh such that
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8
ˆ̂̂
<

ˆ̂̂
:

a.�
h
; �
h
/C b.�

h
; uh/C c.�

h
; !

h
/ D 0; 8 �

h
2 Q̇

h;

b.�
h
; vh/ D .f ; vh/; 8 vh 2 Uh;

c.�
h
; �

h
/ D 0; 8 �

h
2 Xh:

(9.3.43)

Before starting to look for sufficient conditions on the spaces ˙h;Uh;Xh
that might ensure existence and uniqueness of the solution of (9.3.43), possibly
with optimal error bounds, we will need the following slightly refined form of
Proposition 9.3.2.

Proposition 9.3.3. Assume that ˝ is convex. Assume that Uh is a subspace of U
and that Xh 	 S3.W 3

h / is a finite dimensional subspace of X . Assume further

that �h is a piecewise polynomial space such that .�3
h ;Wh/ is a stable element for

Stokes. Then, for every vh 2 Uh and for every �
h

2 Xh, we can find �.h/, �1.h/,

and �2.h/ such that

(
�.h/ D �1.h/C �2.h/

�1.h/ 2 .H1.˝//3�3; �2.h/ 2 curl .�3�3
h /; div �.h/ 2 Uh

(9.3.44)

satisfying

div � D vh; c.� ; ı
h
/ D c.�

h
; ı
h
/ 8 ı

h
2 Xh; (9.3.45)

and

k�1.h/kH1 C k�2.h/kL2 � C
�kvhkU C k�

h
kX
�
; (9.3.46)

with C independent of vh, �
h
, and h.

Proof. The proof follows immediately, going back to the proof of Proposition 9.3.2
and checking that everything fits in place. ut

In what follows, whenever the assumptions of Proposition 9.3.3 are satisfied, we
will denote by ˙.h/ the space

˙.h/ WD f�.h/ 2 ˙ such that �.h/ has the form (9.3.44) g: (9.3.47)

We now start choosing suitable assumptions on our discretisations. First of all,
in view of Proposition 9.1.1 and of (9.3.30), in order to have ellipticity in the kernel
with a constant independent of �, we shall try to build approximations satisfying the
“inclusion of kernels property” that we now have to require in ˙h (rather than ˙Sh

as in (9.1.24)):
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KerBh 	 f�
h

2 ˙hj b.�
h
; vh/ D 0 8 vh 2 Uhg � KerB 	 f� 2 ˙ j div � D 0g:

(9.3.48)

To do so, we can use n copies (one for each line) of some of the finite element
discretisations of H.div;˝/ available in the literature. In particular, for all our
methods, we will assume that the following properties are satisfied. We shall assume
that ˙h and Uh are such that

div.˙h/ � Uh; (9.3.49)

and we shall also assume that we can construct an operator ˘1
h from ˙.h/ to ˙h

such that for each element K and for each �.h/ 2 ˙.h/:

k˘1
h�

1.h/kH.divIK/ � C k�1.h/k.H1.K//n�n (9.3.50)

with C a constant independent of �.h/ and h, together with

˘1
h� D div � 8 � 2 .H1.K//n�n: (9.3.51)

Assuming that we made a choice that takes care of that, we still must check the
discrete inf-sup condition:

inf
vh2Uh; �

h
2Xh

sup
�
h
2˙h

b.�
h
; vh/C c.�

h
; �

h
/

k�
h
k˙ .kvhkU C k�

h
kX/ � C > 0: (9.3.52)

In order to apply the general theory, we will want to build, following Proposi-
tion 5.1.2, a B-compatible interpolation operator˘h W ˙ ! ˙h satisfying

b.� �˘h�; vh/C c.� �˘h�; �
h
/ D 0;8 vh 2 Uh;8 �

h
2 Xh;

k˘h�k˙ � Ck�k˙ :
(9.3.53)

To do this, we shall try to proceed in the same way that we used to prove the
continuous inf-sup condition: we shall first build �1

h
so that its divergence satisfies

the first requirement

b.� � �1
h
; vh/ D 0; 8 vh 2 Uh;

k�1
h
k˙ � Ck�k˙;

(9.3.54)

and then we correct this tensor by a divergence-free tensor �2
h

to obtain the required
asymmetry:
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c.� � �2
h
; �

h
/ D c.�1

h
; �

h
/; 8 �

h
2 Xh;

k�2
h
k˙ � Ck� � �1

h
k˙ :

(9.3.55)

Remark 9.3.7. Referring to the continuous case, we can try to build �2
h

by solving
(discrete) Stokes problems (one in two dimensions and three in three dimensions),
returning a tensor�

h
, and then by taking �2

h
D curl.�

h
/. It follows that one possible

key to our constructions will be stable elements for the Stokes problems, together
with the inclusion of the kernels property (9.3.48). However, the approach through
Stokes problems is less effective for the three-dimensional case, and we shall present
an alternative one in Sect. 9.3. ut

Before considering specific constructions, let us state the error estimate that one
can expect for the discrete problem (9.3.43).

Theorem 9.3.1. Let us suppose that the spaces ˙h 
 Uh 
Xh are such that

• ˙h 
 Uh satisfies (9.3.48)
• ˙h 
 Uh 
Xh satisfies (9.3.52).

Then, (9.3.43) has a unique solution. Moreover, if .�; u; !/ 2 ˙ 
 U 
 X is the
solution of (9.3.28) and .�

h
; uh; !h/ 2 ˙h 
 Uh 
 Xh is the solution of (9.3.43),

then we have

k�
h

� �k0 C kuh � uk0 C k!
h

� !k0
� C

�
inf
�2˙h

k�
h

� �k0 C inf
vh2Uh

kvh � uk0 C inf
�
h
2Xh

k�
h

� !k0
�
:

(9.3.56)

The proof is an easy consequence of the general theory on mixed formulations, for
example Theorem 5.2.2. One can see from (9.3.56) that it is important to balance the
quality of the approximation for the three components of the solution. In particular,
symmetry must be imposed at least to the same precision as the approximation
properties for the other variables.

Remark 9.3.8. It is clear that the inclusion of kernels (9.3.48) is not necessary, but
it makes the theory easier. We shall discuss later how it can be replaced by a suitable
stabilising term. ut
Remark 9.3.9. It is easy to see that if the space ˙h contains (as we implicitly
assume) the constant identity tensor I , then solving the problem in Q̇

h 
 Uh 
Xh
or in ˙h 
 Uh 
Xh gives exactly the same result. ut
Remark 9.3.10. In a few cases, we shall be able to build explicitly a basis for the
space ˙Sh of discrete symmetric tensors. We shall then be able to consider the
problem
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8
<

:
a.�

h
; �
h
/C b.�

h
; uh/ D 0; 8 �

h
2 ˙Sh;

b.�
h
; vh/ D .f ; vh/; 8 vh 2 Uh:

(9.3.57)

ut
Remark 9.3.11 (Hybrid methods). We have seen in Chap. 7, in particular in
Sect. 7.2.2, that inter-element continuity can be efficiently treated through the
introduction of Lagrange multipliers. This technique can evidently be employed
here. This was indeed how things were done in [7]. The multipliers can be
assimilated to values of the displacement on the boundary of the element and
elimination of internal degrees of freedom yields a problem with only displacement
unknowns. For incompressible materials, pressure also remains as a variable, as it
should be. ut

9.4 Some Families of Methods with Reduced Symmetry

Our general strategy will be to show, mimicking essentially Propositions 9.3.2
and 9.3.3, that for every vh 2 Uh and for every �

h
2 Xh, we can find a tensor

�
h

2 ˙h of the form

�
h

D �1
h

C �2
h

(9.4.1)

such that

div �1
h

D vh; div �2
h

D 0; c.�2
h
; ı
h
/ D c.�

h
� �1

h
; ı
h
/ 8 ı

h
2 Xh; (9.4.2)

and

k�1
h
k˙ C k�2

h
k˙ � C

�kvhkU C k�
h
kX
�

(9.4.3)

with C independent of vh, �
h
, and h.

It is clear that this will imply (9.3.52). In the sequel, we will present some
families of choices for the spaces˙h,Uh andXh that will satisfy the above property,
together with (9.3.48). For these choices, the assumptions of Theorem 9.3.1 will
therefore be satisfied, and consequently, convergence and the optimal error bounds
for (9.3.43) will be ensured.

9.4.1 Methods Based on Stokes Elements

The following methods will be based on the availability of stable finite element
pairs for Stokes. As already pointed out in [80], this approach will easily allow the
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introduction and the analysis of all the most interesting reduced elasticity methods
in the two-dimensional case, but only a few methods with some interest in the
three-dimensional one. Hence, for this class of methods, we will not neglect the
two-dimensional case, and we will give a detailed statement and proof for both
the three-dimensional and the two-dimensional cases. We start with the three-
dimensional one.

Theorem 9.4.1. Assume that the assumptions of Proposition 9.3.3 are satisfied,
together with (9.3.49), and that the space �h of Proposition 9.3.3 satisfies

curl.�3�3
h / � ˙h: (9.4.4)

Suppose moreover that the mapping ˘1
h from ˙.h/ into ˙h satisfies (9.3.50)

and (9.3.51). Then, the triplet

˙h 
 Uh 
Xh with Xh D S3.W 3
h / (9.4.5)

satisfies the conditions of Theorem 9.3.1.

Proof. For every pair .vh; �h/ in Uh 
 Xh, we construct �.h/ following Proposi-

tion 9.3.3, and then �1
h

WD ˘1
h�

1.h/. Using the fact that (in the assumptions of

Proposition 9.3.3) the pair .�3
h ;Wh/ is a stable Stokes element, we proceed as in the

proof of Proposition 9.3.2 and choose �
h

2 �3�3
h such that

Z

˝

div�
h

� ıh dx D
Z

˝

asp.�.h/ � �1
h
/ � ıh dx 8ıh 2 W 3

h : (9.4.6)

Then, we take �2
h

WD curl.A�1�
h
/, that belongs to ˙h due to (9.4.4), and set �

h
WD

�1
h

C �2
h
. Using (9.3.15), it is then an easy matter to see that (9.3.53) is satisfied. ut

The theorem describing the two-dimensional case would instead be the follow-
ing one.

Theorem 9.4.2. Assume that ˝ is convex. Assume that Uh is a subspace of U and
that Xh 	 S2.Wh/ is a finite dimensional subspace of X . Assume further that �h is

a piecewise polynomial space such that .�2
h ;Wh/ is a stable element for Stokes and

that, with the notation of (9.3.11),

curl.�2
h/ � ˙h: (9.4.7)

Assume further that (9.3.49) holds and that there exists a mapping ˘1
h from ˙.h/

into ˙h satisfying (9.3.50) and (9.3.51). Then, the triplet

˙h 
 Uh 
Xh with Xh D S2.Wh/ (9.4.8)

satisfies the conditions of Theorem 9.3.1.
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Proof. The proof follows closely the one of Theorem 9.4.1. For every pair .vh; �h/

in Uh
Xh, we construct �.h/ following Proposition 9.3.3, and then �1
h

WD ˘1
h�

1.h/.

Using the fact that .�2
h ;Wh/ is a stable Stokes element, we proceed as in the proof

of Proposition 9.3.2 and choose a �
h

2 �2
h such that

Z

˝

div�
h
ıh dx D

Z

˝

asp..�.h/ � �1
h
// ıh dx 8ıh 2 Wh: (9.4.9)

Then we take �2
h

WD curl�
h
, that belongs to ˙h due to (9.4.4), and set �

h
WD �1

h
C

�2
h
. We note that asp.�

h
/ D div�

h
as in (9.3.37). It is then an easy matter to see

that (9.3.53) is satisfied. ut
Remark 9.4.1. The analysis through a Stokes problem was first introduced for the
two-dimensional case in [204] but it was implicit in [7]. There are several examples
in the literature of approximations that could be inserted in the above theory.

• The PEERS element of Arnold-Brezzi-Douglas [24], or its variant by
Brezzi-Douglas-Marini [120] is obtained through the stability of the MINI
element.

• The element of Amara-Thomas [7] can be analysed through the Crouzeix-Raviart
element. We shall introduce below a generalisation of this element.

• The elements of Arnold, Falk and Winther recalled below can, as we shall see,
be amenable to the Stokes approach in the two-dimensional case. ut
We already noted that using a Stokes problem was not the most general way of

obtaining the continuous inf-sup condition. In the same way, the above result will
enable us to obtain some useful constructions of relaxed symmetry tensors but it
does not yield all constructions. However, there exists a good number of elements
which are stable for Stokes which can yield useful constructions.

Example 9.4.1 (A three-dimensional family using generalised Taylor-Hood ele-
ments). On tetrahedra, we define˙h WD .RTk/

3r and Uh WD .L0k/3; it is immediate
that we have (9.3.48) and (9.1.11). For the Stokes problem, we consider the
generalised Taylor–Hood elements in which velocity is approximated by a space
of polynomial elements (L1k/3 and the pressure is continuous piecewise linear (i.e.
it belongs to L1k�1). In particular, this immediately yields a second order elasticity
element in which we have

˙h WD .RT1/
3;

Uh WD .L01/3;
Xh WD S3..L11/3/:

(9.4.10)

Symmetry is enforced as in the PEERS element of Example 9.4.2 but we now have
second order (or higher if wanted) accuracy. Using degrees of freedom on vertices
for Xh is a very economical option. It should also be noted that using a continuous
Xh is not a serious drawback. Recent developments in iterative methods [185, 186]
for saddle-point problems provide an efficient solution method. ut
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At this point, we recall (see Proposition 8.5.8) that every Stokes pair .Vh;Qh/,
provided that Qh is made of continuous functions and Vh contains piecewise linear
vectors, can be stabilised by bubbles, meaning that there exists an extended space
V e
h 
 Vh (obtained adding suitable bubble functions to Vh) such that .V e

h ;Qh/ is a
stable Stokes pair. As a corollary, we have the following result.

Corollary 9.4.1. Assume that the assumptions of Proposition 9.3.3 are satisfied,
together with (9.3.49). Suppose moreover that the mapping ˘1

h from ˙.h/ into ˙h

satisfies (9.3.50). Assume finally thatWh � C0.˝/. Then, there exists a space˙e
h 


˙h (obtained from ˙h through the addition of suitable H.div/-bubbles) such that
the triplet

˙e
h 
 Uh 
Xh with Xh D S3.W 3

h / (9.4.11)

satisfies the conditions of Theorem 9.3.1.

Indeed, it will be enough to set

˙e
h WD ˙h C curl.A�1.V e

h /
3/ (9.4.12)

and note that, as V e
h is made of bubbles, the normal component of each element of

curl.A�1.V e
h /
3/ will vanish at the boundary of each element. On the other hand,

div.˙h/ will not be changed, as we add only divergence-free tensors.

Example 9.4.2. As examples of applications of the above strategy to the three-
dimensional case, we could consider the three-dimensional version of the PEERS
element. We define ˙h as the space of tensors (in three dimensions) where each
line is an element of the lowest order Raviart-Thomas space on tetrahedra. Using
for Uh a space of piecewise constant vectors, it is immediate that we have (9.3.48)
and (9.1.11). For the Stokes problem, we use the three-dimensional MINI element:

Vh WD .L11/3 ˚ .B4/
3;

Qh WD L11;
(9.4.13)

where B4 is the space generated by the element-wise quartic bubbles b4 defined
in Remark 2.2.4. We can then augment the space ˙h by adding, in each element,
curl.A.B4/3�3/. This will leave (9.3.48) and (9.1.11) still holding true, and (9.4.7)
will now hold as well. All the assumptions of Theorem 9.4.1 will then be satisfied.

ut

9.4.2 Stabilisation byH.curl/ Bubbles

We have already stated that constructions based on Stokes elements are not a general
procedure in the three-dimensional case. A second variant can be found, assuming
some additional properties for the operator˘1

h and less on the space �h.
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Theorem 9.4.3. Assume again that the assumptions of Proposition 9.3.3 are
satisfied, together with (9.3.49). Suppose moreover that the mapping˘1

h from ˙.h/

into ˙h satisfies (9.3.50), (9.3.51), and

Z

˝

asp.� �˘1
h�/ dx D 0: (9.4.14)

Let the operator grad
h

be the element-wise gradient and assume finally that we have
a space Hh made of H.curl/-bubbles such that there exists C > 0 such that

inf
wh2W 3

h

sup
 
h
2.Hh/3r

R
˝
 W A grad

h
wh dx

k 
h
k.H.curlI˝//3r kwhk.L2.˝//3

� C (9.4.15)

and

curl..Hh/
3r / � ˙h: (9.4.16)

Then, the triplet

˙h 
 Uh 
Xh with Xh D S3.W 3
h / (9.4.17)

satisfies the conditions of Theorem 9.3.1.

Remark 9.4.2. Before presenting the proof, we recall that  is an H.curl/-bubble
if it belongs to H.curl;˝/ and its tangential components vanish at the boundary
of each element. We have presented examples of such bubbles in Sects. 2.6.3 and
2.6.4. ut

Proof. For every pair .vh; �h/ in Uh 
 Xh, we construct �.h/ following Proposi-

tion 9.3.3, and then �1
h

WD ˘1
h�.h/. We now note that (9.4.15) implies that we can

choose an element  
h

2 H
3r
h such that

Z

˝

 
h

W A grad wh dx D �
Z

˝

asp.�.h/ �˘1
h�.h// � wh dx 8wh 2 W 3

h

(9.4.18)

with

k 
h
k.H.curlI˝//3r � .1=C /kwhk.L2.˝//3 : (9.4.19)
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Note that (9.4.18) is compatible, thanks to (9.4.14). We then choose

˘2
h�.h/ WD curl 

h
: (9.4.20)

Now, for all wh 2 W 3
h , we use successively (9.4.20) and (9.3.15), then we integrate

by parts using the fact that the lines of  
h

are H.curl/-bubbles and (9.3.16). From

the symmetry of A and finally (9.4.18), we have

Z

˝

asp.˘2
h�.h// � wh dx D

Z

˝

asp.curl 
h
/ � wh dx

D
Z

˝

.div A 
h
/ � wh dx D �

Z

˝

.A 
h
/ W grad wh dx

D �
Z

˝

 
h

W A grad wh dx D
Z

˝

asp.� �˘1
h�.h// � wh dx: (9.4.21)

From (9.4.20) and the first part of (9.4.2), we then easily get

div.˘1
h�.h/C˘2

h�.h// D div.˘1
h�.h// D div.�.h// D vh; (9.4.22)

while from (9.4.21) and the second part of (9.4.2) we have for all ı
h

D S3.wh/ with

wh 2 .Wh/
3

c.˘1
h�.h/C˘2

h�.h/; ıh
/ D c.�.h/; ı

h
/ D c.�

h
; ı
h
/: (9.4.23)

The bounds on ˘1
h�.h/ C ˘2

h�.h/ then follow easily from (9.3.50), (9.4.19)

and (9.4.3). Consequently, setting �
h

WD ˘1
h�.h/C ˘2

h�.h/, we have that (9.3.53)
is satisfied. ut

In a way identical to that of Corollary 9.4.1, we have moreover the following
result.

Corollary 9.4.2. Assume that the assumptions of Proposition 9.3.3 are satisfied,
together with (9.3.49). Suppose moreover that the mapping ˘1

h from ˙.h/ into
˙h satisfies (9.3.50), (9.3.51) and (9.4.14). Then there exists a space ˙e

h 
 ˙h

(obtained from ˙h by adding suitableH.div/-bubbles) such that the triplet

˙e
h 
 Uh 
Xh with Xh D S3.W 3

h / (9.4.24)

satisfies the conditions of Theorem 9.3.1. ut
Indeed, we just have to find a space ofH.curl/-bubbles satisfying (9.4.15) and then
enlarge˙h to enforce (9.4.16).
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9.4.3 Two Examples

We now consider two families of elements which can fit into the present framework.
The first one has been introduced in [34].

Example 9.4.3 (The Arnold-Falk-Winther family). For k � 1, we denote by
AFWk the following choice of finite element spaces.

˙h WD .BDMk/
3r ;

Uh WD .L0k�1/3;
Wh WD .L0k�1/3; Xh WD S3.Wh/ 	 S3..L0k�1/3/:

(9.4.25)

The choice of degrees of freedom made in Chap. 2, Proposition (2.3.2) and
Definition 2.3.37, implies that the (standard) interpolation operator ˘h into ˙h can
be defined on each K by

Z

f

.� �˘h�/ � nfK � p
k

D 0; 8 face f; 8p
k

2 .Pk.f //3; (9.4.26)

and for k � 2,

Z

K

.� �˘h�/ W �
h

dx 8�
h

2 Nk�2.K/ (9.4.27)

or equivalently

Z

K

.� �˘h�/ W . v
h

C w
h

^ x/ dx D 0;

8 v
h

2 .Pk�2/3�3;8 w
h

2 . OPk�2/3�3: ut

The choice of .L0k�1/3 to enforce symmetry yields an unbalanced element. We
can obtain the same order of accuracy using fewer degrees of freedom from the
following example, which has also been introduced in a different way in [155, 230]
and [236].

Example 9.4.4 (The Generalised Amara-Thomas elements family). For k � 2, we
denote by GAT k the following approximation

˙h WD .BDFMk/
3r ;

Uh WD .L0k�1/3;
Xh WD S3..L0k�1/3/:

(9.4.28)

Using again Proposition 2.3.2, the standard interpolation operator ˘h on ˙h D
.BDFMk/

3r will be defined on each K by
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Z

f

.� �˘h�/ � nK � �
h

ds D 0; 8 face f; 8�
h

2 .Pk�1/3 (9.4.29)

and as in (9.4.27),
Z

K

.� �˘h�/ W . v
h

C w
h

^ x/ dx D 0

8 v
h

2 .Pk�2/3�3; 8 w
h

2 . OPk�2/3�3: (9.4.30)

ut
For k D 2, one sees that this is an analogue of the two-dimensional element of

Amara and Thomas [7] where divergence-free bubbles enable to enforce symmetry
to the right order. ut
Remark 9.4.3. It must be noted that we did not add bubbles to our spaces. We
shall use existing bubbles to get symmetry. One could also consider GAT k as an
enrichment of AFWk�1 made using “H.div/-bubbles”. ut
It is not difficult to check that taking for ˘1

h the standard interpolation operator
defined for AFWk by (9.4.26) and (9.4.27) and for GAT K by (9.4.29) and (9.4.30),
we have that (9.3.50)–(9.4.14) are satisfied. This last point can easily be deduced
from Corollary 9.3.1, taking p 2 P 0 and replacing � by � �˘h.�/.

It must be noted that AFWk.K/ and GAT k.K/ contain the same divergence-
free bubbles generated by the Curl of the bubbles of Nk.K/ which are the same as
those of N r

k .K/. Indeed, if we define Hk as

Hk D
n
 
k
j 

k
2 .Nk.K//

3r ;  
k

^ nf D 0; 8 face f
o
; (9.4.31)

it is immediate to check that (9.4.16) is satisfied. Moreover, from the degrees of
freedom in Nk.K/ presented in Sect. 2.3.2, we easily deduce that

Z

K

 
k

W p
k�2

dx; 8p
k�2

(9.4.32)

can be used to define degrees of freedom on Hk. This easily implies that (9.4.15) is
also satisfied.

Remark 9.4.4 (The two-dimensional case). In the two-dimensional case, the stabil-
ity result for the AFW elements could be easily obtained from Theorem 9.4.2.
Indeed, we can use the fact (Remark 8.6.2) that the couple PkC1 � Pk�1; k � 1,
is stable for Stokes and note that, with the notation of (9.3.11), curl.L1kC1/ �
.BDMk/

2r . On the other hand, the three-dimensional case is not amenable to an
analysis by the Stokes-based technique as, for instance, the P2 � P0 element is not
stable in the three-dimensional case.
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Similarly, the stability result of GAT k elements could have easily been obtained
from Theorem 9.4.2, using the stability (Proposition 8.6.2) of the PC

k � Pk�1
element for Stokes (where PC

k is the space of polynomials of degree k enriched by
the bubbles of degree k C 1). Indeed, it is immediate to see that, with the notation
of (9.3.11), curl.PC

k / � .BDFMk/
2r . ut

9.4.4 Methods Based on the Properties of˘ 1
h

The following result instead assumes in some cases that the operator˘1
h itself takes

care of the asymmetry condition.

Theorem 9.4.4. Suppose that the assumptions of Proposition 9.3.3 are satisfied,
together with (9.3.49). Suppose moreover that the mapping ˘1

h from ˙.h/ into ˙h

satisfies (9.3.50) and for all � 2 ˙.h/, for all vh 2 Uh, and for all wh 2 Wh:

Z

K

.� �˘1
h�/ W .grad vh C x ^ grad wh/dx D 0 8 elementK; (9.4.33)

Z

f

.� �˘1
h�/ � nK � .vh C x ^ wh/ ds D 0 8 face f: (9.4.34)

Then, the triplet

˙h 
 Uh 
Xh with Xh D S3.Wh/ (9.4.35)

satisfies the conditions of Theorem 9.3.1.

Proof. The inclusion of kernels (9.3.48) follows easily from (9.3.49). Then, for
every vh 2 Uh and for every �

h
2 Xh, we use Proposition 9.3.3 to construct

� D �.h/ of the form (9.4.1) satisfying (9.4.2) and (9.4.3). Then, using (9.4.33)
and (9.4.34) with wh D 0, we have

Z

K

div.� �˘h�/ � vh D 0 8vh 2 Uh; (9.4.36)

which, joined with (9.3.49), easily gives (9.3.51). Hence, we can apply for-
mula (9.3.22). Using now (9.4.33) and (9.4.34) with vh D 0 in (9.3.22), we get

Z

K

asp.� �˘1
h�/ � wh dx D 0 8wh 2 W 3

h (9.4.37)

which, using (9.3.6)–(9.3.7) and (9.3.27), gives for all �
h

	 S3.wh/ 2 Xh

c.� �˘1
h�; �

h
/ 	

Z

K

as.� �˘1
h�/ W S3.wh/ dx D 0:
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This result, together with (9.3.50) and (9.4.36), gives (9.3.53), which concludes the
proof. ut
Remark 9.4.5. It is important to point out that, in general, conditions (9.4.33)
and (9.4.34) do not define the interpolation operator ˘1

h , meaning that the number
of degrees of freedom (9.4.33) and (9.4.34) (always in general) is smaller than the
dimension of ˙h, so that other degrees of freedom need to be added in order to
define ˘1

h in a unique way. However, we shall thereafter show that some otherwise
defined operator also satisfies the conditions of Theorem 9.4.4. ut
Remark 9.4.6. Taking for Wh a space of continuous functions, condition (9.4.34)
would reduce to

Z

@K

.� �˘1
h�/ � nK � vh D 0 8 vh 2 Uh; (9.4.38)

which is satisfied by most reasonable choices of spaces. Hence, somehow, the
reduced symmetry would then rely only on internal degrees of freedom. One could
thus get an alternate proof for the three-dimensional PEERS element. ut
Remark 9.4.7. It is immediate to see that (9.4.26) implies (9.4.34). On the other
hand, we underline the difference between x ^ grad wh in (9.4.33), a condition
on columns, and w

h
^ x, a condition on the rows, in (9.4.27). Such a difference

forbids the direct use of the interpolator (9.4.26) and (9.4.27) in Theorem 9.4.4
for k > 1. However we will be able to prove, for AFWk , that this interpolator
indeed satisfies (9.4.33), while in [80] we had to build explicitly some alternative
interpolation operator. On the other hand, the original proof by Arnold-Falk-Winther
was based on totally different techniques, related to exterior calculus [30]. ut

We shall now show that the standard operator˘h defined in (9.4.26) and (9.4.27)
for the AFWk family in three dimensions satisfies the assumptions of Theo-
rem 9.4.4. We shall first need a technical Lemma.

Lemma 9.4.1. For any p
k�1 2 P k�1, there exists a q

k
2 P k and a tensor �

k�2
2

.Nk�2/3r such that

x ^ gradp
k�1 D grad q

k
C �

k�2
: (9.4.39)

Proof. Using (9.3.14), we see that curl.x^gradp
k�1/ D A gradp

k�1 and therefore

belongs to P
k�2 (and, actually, to the subspace of .BDMk�2/3r having zero

divergence). At this point, we can use the properties of the spaces Nk�2 (see
e.g. [79]): every vector-valued polynomial of degree k � 2 with zero divergence
can be seen as the curl of an element of Nk�2. Applying this property to each row
of curl.x ^ gradp

k�1/ D A gradp
k�1, we construct the rows of �

k�2
, that is,

curl.x ^ gradp
k�1/ D A gradp

k�1 D curl �
k�2
: (9.4.40)
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Hence, x^gradp
k�1 and �

k�2
have the same curl, and therefore the difference from

each row of x^gradp
k�1 and the corresponding row of �

k�2
is an element in Pk�1

with zero curl and is therefore the gradient of an element in Pk . ut
Proposition 9.4.1. For AFWk , the (standard) interpolation operator defined
by (9.4.26)–(9.4.27) satisfies (9.3.50) and (9.4.33)–(9.4.34). Hence, the conditions
of Theorem 9.4.4 are fulfilled.

Proof. We already noted that (9.4.26) implies (9.4.34). Moreover, we know that
Nk�2 contains gradPk�1 so that (9.4.33) holds for w

h
D 0. Then, for every � 2

˙.h/, we have that � �˘h� is divergence-free and therefore for every q
k

2 Pk we
have, integrating by parts and using (9.4.26):

Z

K

.� �˘h�/ grad q
k

dx D �
Z

K

div.� �˘h�/q
k

dx �
Z

@K

.� �˘h�/q
k

ds D 0:

(9.4.41)

Then we can consider the second part of (9.4.33), that is, with vh D 0.
Using (9.4.39), then (9.4.41), and then (9.4.27), we have

Z

K

.� �˘h�/ W .x ^ grad wh/ dx

D
Z

K

.� �˘h�/ W .grad q
k

C n
k�2/ dx

D
Z

K

.� �˘h�/ W n
k�2 dx D 0; (9.4.42)

showing that (9.4.33) is satisfied, and concluding the proof. ut
Remark 9.4.8. It must be noted that on the inter-element boundaries, AFWk has
the same number of degrees of freedom as GAT kC1 but has the same order of
convergence as GAT k . The elements of AFWk are indeed unbalanced with respect
to the order of approximation of the different components. The GAT k family
reaches the same order with much less degrees of freedom on the boundary of
the elements. For k D 2 in three dimensions, for example, the number of degrees
of freedom per face is reduced from 18 to 9, nevertheless permitting to get the
same order of convergence. It must also be noted that internal degrees of freedom
can be efficiently eliminated by the static condensation process, as we observed in
Remark 9.3.11, so that the actual cost is mainly depending on the number of degrees
of freedom on interfaces. ut
Remark 9.4.9 (Reduced elements). In the case k D 1, to specify the tensor �

h
we

need 9 d.o.f. on each face. This is obviously not optimal in regards to (9.4.33)
and (9.4.34) where only six conditions are generated by vh and wh in Uh D .L00/3.

It is indeed stated in [30] that it is possible to reduce the number of degrees of
freedom on each face from nine to six. This is not as good as in the two-dimensional
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case where the tangential part can be taken constant. The proper choice of space,
using the right number of degrees of freedom, will be a consequence of the following
general result. ut

Let f be a face of some tetrahedron of a mesh. Let Pk.f / and OPk.f / denote
respectively the set of polynomials and homogeneous polynomials of degree k on
f . Let n be the normal to the face and denote �nn and �nT D �n � �nnn the normal
and tangential part of the vector �n. We also denote x?

T WD x ^ n. With an abuse
of language, we shall consider �nT and x?

T as two-dimensional vectors, and more
generally, we will identify, whenever convenient, all vectors tangential to the face
f with their two-dimensional projection on f .

Theorem 9.4.5. In order to satisfy (9.4.34), we need on each face f

�nn 2 Pk.f / (9.4.43)

and, for the tangential part,

�nT 2 Nk�1.f / WD P k�1.f /C x?
T

OP k�1.f /: (9.4.44)

Proof. Let Uh WD .L0k�1/3 and consider the space Uh Cx ^Uh. It is easy to see that
in order to generate this space, it is sufficient to consider functions of the form

p C x ^ Oq; (9.4.45)

where p 2 P k�1 is a general vector-valued polynomial of degree k � 1, but Oq 2
OPk�1 is a vector-valued homogeneous polynomial of degree k � 1. Now, we want

to evaluate on a face f of some tetrahedron

.p C .x ^ Oq
h
// � � � n: (9.4.46)

To do so, we use, on the face, a set of orthogonal co-ordinates defined by the normal
n and two tangential vectors, s and t . We then write

x D xnnC xss C xt t ;

p D pnnC pss C pt t;

Oq D OqnnC Oqss C Oqt t ;
� � n D �nnnC �nss C �ntt :

(9.4.47)

An elementary computation then yields

.p C .x ^ Oq// � � � n D .pn � xt Oqs C xs Oqt /�nn C .ps � xn Oqt C xt Oqn/�ns

C .pt C xn Oqs � xs Oqn/�nt: (9.4.48)
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We now see that �nn is multiplied by a full polynomial of degree k and we need it
to be of the same order. For the tangential terms, we recall that xn is constant on the
face so that the terms xn Oqt and xn Oqs can be absorbed by ps and pt respectively. This
leaves us with something of the form

	
�ns

�nt



�
	
ps C xt Oqn
pt � xs Oqn



(9.4.49)

which shows that the tangential part of �n needs only to be in Nk�1.f /, which is a
space smaller than P k.f /. ut
Remark 9.4.10. A simple count shows that the number of degrees of freedom on
each face is then

.k C 1/.k C 2/=2C k.k C 1/C k

while for the whole .BDMk/
3 we would have

3.k C 1/.k C 2/=2:

For k D 1, we have 6 instead of 9 and for k D 2, 14 instead of 18. We refer to [80]
for the actual construction of the reduced spaces. ut

9.5 Loosing the Inclusion of Kernel: Stabilised Methods

Although the inclusion of kernel condition (9.3.48) is a useful property, it imposes
severe restrictions on the construction of approximations. We now present two
examples where a simple stabilising term enables to bypass this restriction. Indeed,
we have introduced, in Chap. 6, procedures to compensate for the loss of coercivity
on the kernel which is the direct consequence of this loss.

We first present an example where the inclusion of the kernel is totally lost so
that coercivity on the kernel also is. We only sketch the results and we refer to [125]
for more details.

Example 9.5.1. We build a space˙h following the idea employed in Sect. 8.4.2. We
define, as we did in (8.4.9) to approximateH.divI˝/,

˙h D .L11 ˚ B3/
4
s ; (9.5.1)

Uh D .L11/2: (9.5.2)

With this choice of space, we only have, as in (9.1.12),

a.�; �/ � 1

2.�C �/
k�k20 (9.5.3)
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and the coercivity constant depends on �. We cannot obtain something similar
to (9.1.9) as inclusion of kernels does not hold. However, using the results of
Sects. 1.5 and 6.1.2, that is modifying the variational formulation, we can obtain
an approximate solution with error bounds independent of �. Let us indeed consider
the modified variational problem

Z

˝

1

2�
�D W �D dx C 1

n.n�C 2�/

Z

˝

tr � tr � dx C ˛

Z

˝

.div � C f / � .div �/ dx

C
Z

˝

.div �/ � u dx D 0 8� 2 H.divI˝/s; (9.5.4)

Z

˝

.div � C f / � v dx D 0 8 v 2 .L2.˝//2: (9.5.5)

This problem is clearly equivalent to the original formulation. However, we now
have, instead of (9.1.8),

a.�; �/ D 1

2�

Z

˝

�D W �D dx C 1

n.n�C 2�/

Z

˝

tr � tr � dx C ˛

Z

˝

div � � div � dx

(9.5.6)
and from Proposition 9.1.1 we get the coerciveness property

a.�; �/ � ˛0k�k2H.divI˝/s ; (9.5.7)

where ˛0 depends on ˛, �, and c but is independent of �.
The bilinear form b.�; v/ defined by (9.1.9) is unchanged, but the proof needs

the inf-sup condition (cf. [27])

inf
v2.L2.˝//2

sup
�2.H1.˝//4s

b.�; v/

k�k1kvk0 � k > 0: (9.5.8)

We now introduce the discretisation already defined by (9.5.1) and (9.5.2). As we
have the coercivity property on the whole space ˙ , the only delicate point is to
obtain a discrete inf-sup condition. We use Proposition 5.4.3 and an operator ˘h

defined as in Sect. (8.4.2) to deduce that

k˘h�k˙ � ck�k1: (9.5.9)

However, (9.5.8) and (9.5.9) imply, by Proposition 5.4.3, that we have

inf
vh2Vh

sup
�2˙h

b.�; vh/

k�k˙kvhk0
� k0 > 0 (9.5.10)
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with k0 independent of h. From the standard theory, we therefore obtain the error
estimate

k� � �
h
k˙ C ku � uhk0 � C

�
inf
�h2˙h

k� � �hk˙ C inf
vh2Vh

ku � vhk0
�

� Ch.kuk2 C k�k2/:
(9.5.11)

ut
We now turn to a construction closer to the approximations studied in the

previous Sections. For example, in the construction of the GAT k family, we
employed a technique which can be seen in two different ways: reducing the number
of degrees of freedom at the boundary of elements or adding internal bubbles. In the
GAT k case, using a reduced version of BDMk provided enough internal degrees
of freedom to control symmetry.

We shall consider here the reduction of RT k or rather an enrichment of RT k�1.
This will allow a simple control of symmetry at the price of the loss of coercivity.
We shall overcome this loss using the results of Sect. 6.3. The main interest of
this construction is that it requires, for a given order of accuracy, fewer degrees of
freedom at interfaces than what we had in the AFW , even in the reduced version,
or the GAT families. We shall also consider in detail the lowest order case which
provides a stabilised form of the non-conforming method already considered in
Sect. 8.4.4 for the Stokes problem.

The construction will rely on internal H.div/-bubbles. We thus consider on a
simplicial element K , for k � 1, the space BRT

kC1 of vectors bkC1 in the space
RT k which have a null normal component on the boundary of the element. They
are polynomial vectors of degree k C 1 and are bubbles of H.div; K/ in the
sense introduced in Sect. 2.6. The elements of BRT

kC1 do not include divergence-free
bubbles.

Example 9.5.2. In the two-dimensional case, RT 1.K/ contains two bubbles. They
are also bubbles of BDM2.K/ but this space also contains one divergence-free
bubble. In the three-dimensional case, we have three bubbles in RT 1.K/ while
BDM2.K/ has six, three of them being divergence-free. ut

From (2.3.32), we can specify the elements of BRT
kC1 through the degrees of

freedom
Z

K

bkC1 � p
k�1dx: (9.5.12)

From this, using the notation introduced in Sect. 9.1.1, we can build a space of
tensors

BRT
kC1 D .BRT

kC1/3r : (9.5.13)
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The degrees of freedom will then be defined by

Z

K

b
kC1 � p

k�1
8p

k�1 2 P
k�1.K/: (9.5.14)

We could now add this space of bubble tensors to RT 3n
k�1 to obtain a space

suitable for our purpose. This is equivalent to using a reduced version of RT k in
which the normal component is of degree k � 1.

In the sequel, we shall use only the elements of BRT
kC1 which are, loosely

speaking, antisymmetric, that is,

Z

K

b
kC1 � pS

k�1
dx D 0 8pS

k�1 2 PS

k�1.K/; (9.5.15)

wherePS

k�1.K/ is the symmetric part of P
k�1.K/. We denote this space byBRT as

kC1 .
Its elements are specified by the degrees of freedom

Z

K

bas
kC1 � Sn.p

k�1/dx: (9.5.16)

Our enriched space will then be

˙h D .RT k/
nr ˚ BRT as

kC2 : (9.5.17)

Example 9.5.3. In the two-dimensional case, we enrich RT 0 by one bubble and by
three in the three-dimensional case. This means that we use the minimum to get
symmetry. ut
To complete our choice of spaces, we take

Uh WD .L0k/3;
Wh WD .L0k/3; Xh WD S3.Wh/ 	 S3..L0k/3/:

(9.5.18)

Following Sect. 2.3.1, we then define on ˙h the interpolation operator˘h by

Z

@K

.� �˘h�/ � nK � p
k

D 0; 8p
k

2 Rk.@K/; (9.5.19)

Z

K

.� �˘h�/ W p
k�1

dx D 0; 8p
k�1

2 P
k�1: (9.5.20)

Moreover, we determine the extra bubbles by
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Z

K

.� �˘h�/ W Sn.p
k
/ dx D 0; 8p

k
2 P k: (9.5.21)

This implies

Z

K

div.� �˘h�/ W pk dx D 0 8pk 2 P .K/: (9.5.22)

We could now consider the non stabilised problem

8
ˆ̂̂
<

ˆ̂̂
:

a.�
h
; �
h
/C b.�

h
; uh/C c.�

h
; !

h
/ D 0; 8 �

h
2 ˙h;

b.�
h
; vh/ D .f ; vh/; 8 vh 2 Uh;

c.�
h
; �

h
/ D 0; 8 �

h
2 Xh:

(9.5.23)

The discrete kernel is thus defined by

KerBh D f�
h
j
Z

K

div � � p
k

dx D 0 and
Z

K

.� �˘h�/ W S3.q
k
/ dx D 0g (9.5.24)

for any p
k

2 Pk; qk�1 2 P k . It should be clear that the interpolation operator on
˙h is B-compatible and we thus have an inf-sup condition.

However, we do not have the inclusion of kernels as (9.5.22) is valid for pk and
not for pkC1. We therefore cannot employ directly this construction in the normal
framework, where this condition is a basic assumption. We can, however, employ,
instead of the discrete formulation (9.3.43), a stabilised form. To do so, we define

R.�
h
; �
h
/ WD

X

K

Z

K

..div �
h

� Projk div �
h
/ � div �

h
/ dx; (9.5.25)

where Projk is the L2.K/ projection on Pk.K/.
We then introduce a stabilised version of (9.3.28),

8
ˆ̂̂
<

ˆ̂̂
:

a.�
h
; �

h
/C r s.�

h
; �

h
/C b.�

h
; uh/C c.�

h
; !

h
/ D 0; 8 �

h
2 ˙h;

b.�
h
; vh/ D .f ; vh/; 8 vh 2 Uh;

c.�
h
; �

h
/ D 0; 8 �

h
2 Xh:

(9.5.26)

To study the convergence of this formulation, we shall employ the results of
Sect. 6.3. We thus have to verify the three hypotheses of this section. We first
consider H.1 and we define on ˙h the norm

Œ�
h
�2h D k�

h
k20 C kPk div �

h
k20: (9.5.27)
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From the definition of KerBh in (9.5.24), we then have

a.�
h
; �

h
/ � Œ�

h
�2 8�

h
2 KerBh: (9.5.28)

Coming back to the non stabilised problem (9.5.23), as we have an inf-sup
condition, we deduce that this problem has a unique solution, which is stable in
the norm (9.5.27).

Remark 9.5.1. We could try to employ Theorem 5.2.6 to get an error estimate in
the norm (9.5.27). As discussed in Sect. 5.2.3, the trouble arises with the continuity
constant of the bilinear form b.�; �/ and we cannot obtain the right order of
convergence. We have to stabilise the formulation. ut

Using the construction of Example 8.2.6 to define the operator ˚h, we get H.1
of Sect. 6.3. It is clear that the stabilising term (9.5.25) has been tailored to provide
H.2 and H.3. We also remark that R.�; �

h
/ is well defined for any tensor � in ˙ .

From Theorem 6.3.2, we thus get the following estimate for any �
I

2 ˙h.

Theorem 9.5.1. If .�; u; !/ 2 ˙ 
 U 
X is the solution of (9.3.28) and
.�

h
; uh; !h/ 2 ˙h 
 Uh 
Xh is the solution of (9.5.26), we then have

k�
h

� �k0 C kuh � uk0 C k!
h

� !k0
� C

�
k�

I
� �k0 C kuI � uk0 C k�

I
� !k0 C rR.�

I
/
�
: (9.5.29)

If we take � 2 .RT k/
3, the consistency term disappears and we get an O.hk/

estimate, which is the best that we can hope for.

Example 9.5.4. For k D 0, we enrich the RT 0 element by three bubbles in the
three-dimensional case. On faces, we only have one value of �

h
� n to specify. This

is really the smallest possible choice. . . ut
Augmented formulations therefore appear as a powerful tool to overcome

difficulties associated with problems of coerciveness and enable us to bypass the
inclusion of kernel property which is very difficult to obtain in practice. We refer to
Chap. 7 for examples where one can employ similar arguments to avoid the inf-sup
condition. Examples of applications to elasticity problems can be found in [215].

9.6 Concluding Remarks

We were not able, in this chapter, to present all the possible avenues that have been
explored for mixed methods applied to elasticity problems. In particular, we did nor
consider some constructions using composite elements which have been developed
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in [262] and more recently in [27]. The main reason to do this is that we are not
aware of any extension of these ideas to the three-dimensional case.

We also did not develop the Hellan-Hermann-Johnson formulation of
Example 1.4.5. We refer to the recent results of [318] and [319] for a study of
this formulation.

Discontinuous Galerkin methods have been considered in [229].
We also refer to [190], where other possibilities are presented along with many

references.



Chapter 10
Complements on Plate Problems

In this chapter, we shall present a few among many applications of mixed methods
to plate problems. In the first section, we shall describe a mixed method for the
linear thin plates theory and in the second, a dual hybrid method. In the last section,
we shall report some recent results on the discretisation of the Mindlin-Reissner
formulation for moderately thick plates.

10.1 A Mixed Fourth-Order Problem

10.1.1 The  �! Biharmonic Problem

Let us now see, as a new example of application of the abstract results of
Chaps. 4 and 5, some simple cases of fourth-order problems. We shall start with
formulation (1.3.65) which we may now rewrite in the form (4.2.6) by setting

V WD H1.˝/; Q WD H1
0 .˝/; (10.1.1)

a.!; �/ WD
Z

˝

!� dx 8!; � 2 V; (10.1.2)

b.�; �/ WD
Z

˝

grad� � grad � dx 8� 2 Q; � 2 V: (10.1.3)

We shall denote by .!;  / instead of .u; p/ the solution of the problem in order
to be consistent with the usual physical notations. It is easy to see that we are
now in the situation of Sect. 3.6: the bilinear form a.!; �/ is not coercive on V
(nor is it on KerB but only on H WD L2.˝/). A loss of accuracy is therefore to
be expected. Another pitfall is that we cannot use the abstract existence results of
Chap. 4 for the continuous problem and that we must deduce the existence of a

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 10,
© Springer-Verlag Berlin Heidelberg 2013
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solution through another channel. In the present case, we know that the solution of
our mixed problem: find  2 H1

0 .˝/ and ! 2 H1.˝/ such that

8
ˆ̂<

ˆ̂:

Z

˝

!� dx C
Z

˝

grad � grad � dx D 0 8� 2 H1.˝/;

Z

˝

grad! � grad� dx D
Z

˝

f� dx 8� 2 H1
0 .˝/;

(10.1.4)

should be a solution of a biharmonic problem

42 D f;  2 H2
0 .˝/: (10.1.5)

From a regularity result on the biharmonic problem, we know, for instance, that if
˝ is a convex polygon [234, 281, 362], for f 2 H�1.˝/, the solution of (10.1.5)
belongs to H3.˝/ so that ! D �4 belongs to H1.˝/. It is then direct to
verify that we have thus obtained a solution of (10.1.4). This is an example of an
“ill-posed” mixed problem. It should be remarked that the discussion of existence
made above does not apply when the right-hand side of the first equation of (10.1.4)
is not equal to zero.

To get a discrete problem, we take, following the notations of Chap. 2,

Vh WD L1k; Qh WD L1k \H1
0 .˝/; k � 2: (10.1.6)

The case k D 1 requires a more special analysis [197, 226, 344]. We then have that
the constant S.h/, appearing in (5.2.40), can now be bounded by S.h/ � ch�1 so
that a direct application of Proposition 5.2.6 gives

k! � !hk0 C k �  hk1 � chk�1: (10.1.7)

Indeed, the inf-sup condition is quite straightforward. The operator B is nothing
here but the Laplace operator from H1.˝/ to H�1.˝/, which is obviously
surjective. To check the discrete condition, we use the criterion of Proposition 5.4.3:
given ! 2 H1.˝/, we want to build !h 2 Vh such that

Z

˝

grad!h � grad�h dx D
Z

˝

grad! � grad�h dx; 8�h 2 Qh: (10.1.8)

We recall, however, that we have chosen Qh � Vh so that (10.1.8) will, a fortiori,
hold if we take �h 2 Vh. However, (10.1.8) is then nothing but a discrete Neumann
problem for which a solution exists and can be chosen (it is defined up to an additive
constant) so that

k!hk1 � c k!k1: (10.1.9)

It must be noted that the condition Qh � Vh is essential to the above result.
In practice, this is not a restriction as (10.1.6) is a natural and efficient choice.
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Result (10.1.7) is far from optimal and may suggest at first sight that the method is
not worth being used. It can however be sharpened in two ways. First it is possible
to raise the estimate on j! � !hj0 by half an order [197, 345] by a quite intricate
analysis using L1-error estimates. The second way is a more direct variant of the
duality method of Sect. 5.5.5 and shows that the expected accuracy can be obtained
for  2 H3.˝/, that is,

k �  hk1 � chk; (10.1.10)

and under a supplementary regularity assumption

k �  hk0 � chkC1: (10.1.11)

We refer the reader to [107, 189, 342, 345] and [192] for this analysis.
On the other hand, the particular structure of problem (10.1.4) allows the use

of sophisticated but effective techniques for the numerical solution [150, 225, 227],
so that this method and its variants have a considerable practical interest. In fact, it
provides a correct setting for the widely used  � ! approximations in numerical
fluid dynamics. We refer to [222] for more informations on this subject. Still in the
case of fourth-order problems, we could also consider instead formulation (1.3.70)
which is more related to plate bending problems. We now set

V WD .H1.˝//2�2s ; Q WD H1
0 .˝/; (10.1.12)

and we define, following (1.3.70) for � and � in V ,

a.�; �/ WD 12.1� 	2/

Et3

Z

˝

Œ.1C 	/ � W � � 	 tr.�/ tr.�/� dx: (10.1.13)

In order to consider a weaker form of the saddle point problem (1.3.70), we
introduce

b.v; �/ WD
Z

˝

.div �/ � grad v dx D
Z

˝

X

i;j

@�ij

@xj

@v

@xi
dx: (10.1.14)

This enables us to look for w 2 H1
0 .˝/ instead of H2

0 .˝/, the second boundary
condition being implied by this variational formulation as a natural condition. This is
again an “ill-posed” mixed problem: we must obtain existence of a solution through
a regularity result on the standard problem. Two approaches have been followed in
the approximation of this mixed problem. One of them consists in taking (see [300])

Vh WD .L1k/2�2s ; Qh WD L1k \H1
0 .˝/: (10.1.15)

With respect to (10.1.14), it is, however, possible to use a second approach and
to work not in V D .H1.˝//2�2s but in the weaker space

H.divI˝/s WD f� j �ij D �ij; �ij 2 L2.˝/; div � 2 .L2.˝//2g: (10.1.16)
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Discretisations of this space can be built through composite elements. We refer
to [262] and [27] for the analysis of this case.

In the first case, the results are the same as for the �! approximation discussed
above. We get, by Proposition 5.2.6, an error estimate which is O.hk�1/. Duality
methods (see [192]) would enable us to lift the estimate on  at the right level. For
the second case, we can have optimal error estimates (see the above references).

10.1.2 Eigenvalues of the Biharmonic Problem

We now briefly consider the possibility of computing eigenvalues of the biharmonic
problem using the elements introduced above. If we refer to Sect. 1.2.1 of Chap. 6,
we are considering a .0; g/ situation. This means that, fortunately for us, we do not
need a coercivity condition. Our eigenvalue problem can indeed be written as: find
 2 H1

0 .˝/ and ! 2 H1.˝/ such that

8
ˆ̂<

ˆ̂:

Z

˝

!� dx C
Z

˝

grad � grad � dx D 0 8� 2 H1.˝/;

Z

˝

grad! � grad� dx D �

Z

˝

 � dx 8� 2 H1
0 .˝/:

(10.1.17)

In the notation of Sect. 6.5.5, we have V D H1.˝/ and Q D H1
0 .˝/. We take

HQ D L2.˝/ and we assume that ˝ is a convex polygon. We then have

V 0
Q0 Dfz 2 H1.˝/ W 9v 2 H2

0 .˝/ with z D �vg
Dfz 2 H1.˝/ W .z; �/ D 0 8� 2 L2.˝/ with �� D 0g

(10.1.18)

so that with obvious notation

V 0
Q0 D H3.˝/\H2

0 .˝/: (10.1.19)

For any given polygon, V 0
H and Q0

H will be slightly more regular, according to the
maximum angle (see e.g. [233]).

For every given regular sequence fThg of triangulations of ˝ and for every
integer k � 2, we can take as in [152, 224, 298]:

V k
h WD L1k
Qk
h WD L1k \H1

0 .˝/:
(10.1.20)

Notice that Qk
h D V k

h \H1
0 .˝/. We can now define˘hw in Vh as the solution of:

.�˘hw; �vh/ D .�w; �vh/ 8vh 2 V k
h : (10.1.21)
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Clearly, (6.5.54)–(6.5.56) hold. Similarly, (6.5.53) holds by taking pI (here  I )
as the usual interpolant. On the other hand, to check (6.5.52), we have to assume
quasi-uniformity of the decomposition and then proceed, as we did for Dirichlet’s
problem in (7.1.43), using an inverse inequality to obtain: for vh 2 KerBh and
q 2 H3.˝/\H2

0 .˝/,

.�vh;�q/ D .�vh;�q ��qI/ � Ch�1jjvhjja Ch2jjqjj3:

This shows the utility of the requirement k � 2. However, a more sophisticated
proof, following the arguments of Scholz [344], shows that (1.2.50) also holds for
k D 1.

We thus have checked all the hypotheses of Theorem 6.5.3 and our eigenvalue
problem is properly posed.

10.2 Dual Hybrid Methods for Plate Bending Problems

We now consider as a final example an application of our general theory to hybrid
methods. We go back again to Example 1.3.8 and set, for the sake of simplicity,
	 D 0 and Et3=12 D 1. The consideration of the true values would not change
the mathematical structure of the problem, but would result in more lengthy
formulae. The condition D�

2 .�/ D f in (1.3.74) is, in general, difficult to enforce
directly. Hence, following [321], we may think of working with stresses satisfying
D�
2 .�/ D f inside each element of a given decomposition. This will imply that we

have to enforce some continuity of the stresses by means of a Lagrangian multiplier;
moreover, it will be convenient to assume f 2 L2.˝/. In order to make the
exposition clearer, we need some Green’s formulae. We have indeed, on any triangle
K of a triangulation Th of ˝ ,

Z

K

� W D
2
.v/ dx D

Z

K

D�
2 .�/v dx C

Z

@K

ŒMnn.�/
@v

@n
�Kn.�/v� ds (10.2.1)

for all � 2 .H2.T //2�2s and v 2 H2.T /, where

Mnn.�/ WD .� � n/ � n; (10.2.2)

Kn.�/ WD @

@n
tr.�/ � @

@t
Œ.� � n/ � t �; t D tangent unit vector: (10.2.3)

It is essential, in the definition of Kn, to consider the derivative @=@t in the
distributional sense, that is, to take into account the jumps of .� �n/ � t at the corners
of K (the so-called corner forces).
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It is easy to check that the conditionD�
2 .�/ D f in ˝ is equivalent to

8
ˆ̂<

ˆ̂:

D�
2 .�/ D f in each T;

X

K

Z

@K

ŒMnn.�/
@v

@n
�Kn.�/v� ds D 0; 8v 2 H2

0 .˝/:
(10.2.4)

Setting

b.�; v/ WD
X

K

Z

@K

ŒMnn.�/
@v

@n
�Kn.�/v� ds

	
Z

˝

� W D
2
.v/ dx �

X

T

Z

T

D�
2 .�/v dx;

(10.2.5)

Vf .Th/ WD f� j � 2 .L2.˝//2�2s ; D�
2 .�/ D f in eachKg; (10.2.6)

the problem can now be written as

inf
�2Vf .Th/

sup
v2H2

0

1

2
k�k20 � b.�; v/: (10.2.7)

If now �f is a given element of Vf .Th/, that is, a particular solution ofD�
2 .�/ D f

in each K , we have
8
<

:
.�0 C �f ; �/� b.�;w/ D 0 8� 2 V0.Th/;

b.�0 C �f ; v/ D 0 8v 2 H2
0 .˝/;

(10.2.8)

where obviously �0 C �f WD � . Problem (10.2.8) has now the form (4.2.6), where

V D V0.Th/, Q D H2
0 , a.�; �/ D .�; �/, and b.�; v/ is given by (10.2.5). The

right-hand side is obviously �.�f ; �/ for the first equation and �b.�f ; v/ for the

second equation. It is natural to use in V the L2-norm, and in Q the norm kvkQ D
kD

2
vkV D kD

2
vk0. It is clear that condition (4.2.12), that is, the ellipticity of

a.�; �/, is trivially satisfied in the whole V (and not only in KerB) with ˛ D 1.
A different value for E; t; 	 would obviously yield a different value for ˛, but the
V -ellipticity will still be true. It is clear that KerBt cannot be empty; indeed, any
v with support in a single K will satisfy b.�; v/ D 0 for all � , and hence is a zero
energy mode. However, it is not difficult to see that ImB is closed.

Proposition 10.2.1. The image of B is a closed subset of Q0 WD H�2.˝/.

Proof. We have to show that if a sequence �n WD B�
n

converges to � in H�2, then
� D B� for some � 2 V0.Th/ DW V . We first note that

if � 2 V0.Th/ and � 2 H2
0 .˝/, then b.�; �/ 	 .�;D

2
�/; (10.2.9)
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which is quite obvious from (10.2.5) and (10.2.6). Now let � 2 H2
0 .˝/ be such that

42� D � and let � WD D
2
� (so that D�

2 � D �). For every � 2 H2
0 , we have

h�; �iH�2�H2
0

D hD�
2 �; �iH�2�H2

0
D .�;D

2
�/: (10.2.10)

Now, since �n D B�
n

! � in H�2, we have

.�
n
;D

2
�/ D b.�

n
; �/ D hB�

n
; �i D h�n; �i ! h�; �i D .�;D

2
�/; (10.2.11)

that is, .�
n

� �;D
2
�/ ! 0 for all � 2 H2

0 .˝/. This easily implies D�
2 � D 0 in

each T , so that � 2 V0.Th/. Hence, h�; �i D .�;D
2
�/ D b.�; �/ D hB�; �i, that

is, � 2 ImB . ut
Proposition 10.2.2. We have KerBt D Q

K

H2
0 .K/.

Proof. It is obvious from (10.2.5) that if �jK 2 H2
0 .K/ for all K , then b.�; �/ D 0

8� and hence � 2 KerBt . Therefore, we only need to prove that KerBt �Q
K

H2
0 .K/. For this, let � 2 KerBt , that is,

b.�; �/ 	 .�;D
2
�/ D 0 8� 2 V0.Th/: (10.2.12)

We want to show that � 2 QK.H
2
0 .K//, that is,

�jK 2 H2
0 .K/ for all K: (10.2.13)

Let  be defined in eachK by

 2 H2
0 .K/ and 42 D 42�I (10.2.14)

clearly, .�;D
2
 / D 0 for all � in V0.T0/ so that from (10.2.12),

b.�;  � �/ D .�;D
2
. � �// D 0 8� 2 V0.Th/: (10.2.15)

However, D�
2 D2

. � �/ D 42. � �/ D 0 in each K , so that we can take � D
D
2
. � �/ in (10.2.15) and obtain D

2
. � �/ 	 0. Since both  and � are in

H2
0 .˝/, this implies  D � so that from (10.2.14), we get (10.2.13). ut

Proposition 10.2.3. We have

k�kQ=KerBt D kD
2

N�k0; (10.2.16)

where N� is the function in H2
0 .˝/ such that

� � N� 2 H2
0 .K/ for eachK; (10.2.17)

42 N� D 0 in each K: (10.2.18)
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Proof. By definition, we have

k�kQ=KerBt D inf
 2KerBt

k� �  kQ: (10.2.19)

Now from Proposition 10.2.2 and the definition of k�kQ WD kD
2
�k0, we have

k�kQ=KerBt D inf
 2QK H

2
0 .K/

kD2.� �  /k0;K : (10.2.20)

It is now an easy matter to check that, for each K ,

inf
 2H2

2 .K/

kD
2
.� �  /k20;K D inf

. ��/2H2
0 .K/

kD
2
 k20;K D kD

2
N�k20;K ; (10.2.21)

for N� defined in (10.2.17) and (10.2.18). Hence, (10.2.21) and (10.2.20)
prove (10.2.16). ut

We are now able to prove the inf-sup condition

sup
�2V0.Th/

b.�; �/

k�k0k�kQ=KerBt
D sup

�2V0.Th/

.�;D
2
�/

k�k0kD
2

N�k0

� .D
2

N�;D
2
�/

kD
2

N�k20
D 1 (10.2.22)

because � � N� is the projection (in Q) of � onto KerBt so that N� and � � N� are
orthogonal in Q.

Remark 10.2.1. A way of getting rid of KerBt (which is infinite dimensional) is to
consider as a space of Lagrange multipliers the space

QQ WD f� j� 2 H2
0 .˝/; 42� D 0 in each T g: (10.2.23)

This is what has been done in [114, 127]. The drawback in the choice (10.2.23) is
that the actual transversal displacement w does not belong to QQ so that, as a solution,
we have the unique function Nw in QQ that coincides with w (with its first derivatives)
at the inter-element boundaries (as in (10.2.17) and (10.2.18)). ut

Let us continue our analysis of problem (10.2.8). We already noted that (4.2.12) is
satisfied in our case. Hence, we have to check that the right-hand side of the second
equation in (10.2.8) (that is �b.�f ; v/) is in ImB; this means that we have to find a

particular solution of (10.2.8), which is obvious by taking �f WD D
2
w � �f .

We can now go to the discretisation of (10.2.8); for this, we have to choose
subspaces Vh � V0.Th/ and Qh � Q. For instance, for any triple .m; r; s/ of
integers, we may choose
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V m
h WD .L0m.Th//2�2s \ V0.Th/; (10.2.24)

Qr;s
h WD f� j� 2 H2

0 .˝/; �j@T 2 Tr.@T /; @�
@n

j@T 2 Rs.@T / 8T 2 Thg:
(10.2.25)

Note that Vh is made of tensor-valued polynomials of degree �m which are
completely discontinuous from one element to another and verify D�

2 � D 0 in
each T . On the other hand, Qh is clearly infinite dimensional (which is quite
unusual); however, this does not show up in the computations, where only the values
of � and @�=@n on Eh are considered. To get coercivity, we now have to choose
.m; r; s/ in such a way that KerBt

h � KerBt . This means, in our case, that we have
to show
(

if � 2 Qr;s
h and b.�; �/ D 0 8� 2 V m

h (that is, if � 2 KerBt
h/;

then � D grad� D 0 on Eh; (that is, � 2 KerBt ):
(10.2.26)

The proof of (10.2.26) (or, rather, the finding of sufficient conditions on m for
having (10.2.26)) will be easier with the following characterisation of V m

h .

Lemma 10.2.1. We have

V m
h 	 S Œ.L0mC1.Th//2�; (10.2.27)

where S is defined, for q D .˛; ˇ/,

S W .q/ !
	

@˛=@y � 1
2
.@˛=@x C @̌ =@y/

� 1
2
.@˛=@x C @̌ =@y/ @̌ =@x



: (10.2.28)

Proof. The inclusion S Œ.L0mC1.Th//2� � V m
h is trivial; the opposite inclusion is an

exercise (see [127] for more details). ut
We now notice that if � D S.q/, then

b.�; v/ D
X

K

Z

@K

grad v � @
@t
q ds; (10.2.29)

where t is the tangent to @T . We also notice that
(

� 2 H2
0 .˝/ and grad � D constant on Eh

imply � D 0 and grad� D 0 on Eh:
(10.2.30)

We may now use (10.2.27)–(10.2.30) in (10.2.26) which becomes

8
<̂

:̂

if � 2 Qr;s
h and

X

K

Z

@K

grad � � @
@t
q ds D 0 8q 2 .L0mC1.Th//2;

then grad� D constant on Eh:
(10.2.31)
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Now, (10.2.31) is implied by

8
<̂

:̂

if � 2 Qr;s
h and

Z

@K

grad � � @
@t
q ds D 0 8q 2 .PmC1.K//2

then grad � D constant on @T

(10.2.32)

(but not vice-versa). Now let k be the degree of grad� on @T , that is,

k D max.s; r � 1/: (10.2.33)

The following technical lemma is proved in [127].

Lemma 10.2.2. If � 2 H1.K/ and �jei 2 Pk.ei / (i D 1; 2; 3), and if

Z

@K

�
@q

@t
ds D 0 8q 2 Pk.K/; (10.2.34)

then

�jei D c`ik.s/C c1; .i D 1; 2; 3/; (10.2.35)

where, on each ei , we define `ik as the kth Legendre polynomial (normalised with
value 1 in the second endpoint in the anticlockwise order).

Formula (10.2.35), for k odd, directly implies that � is constant on @K . We therefore
have a first result.

Proposition 10.2.4. If m C 1 D k D max.r � 1; s/ and k is odd, then (10.2.32)
holds.

If mC 1 is even, we can apply Lemma 10.2.2 to both @�=@x and @�=@y and get

@�

@x
D c`ik C c1;

@�

@y
D �`ik C � (10.2.36)

on each ei . If now r � 1 ¤ s, there must exist a combination of @�=@x and @�=@y
on each ei (to get @�=@n) which has degree lower than k. This easily implies that
both @�=@x and @�=@y are constants on @K . We therefore have the following result:

Proposition 10.2.5. If mC 1 D k D max.r � 1; s/ and r � 1 ¤ s, then (10.2.32)
holds.

We are finally left with the last and worst case in which r�1 D s is even. We have
several escapes. First, brutally, we may take m C 1 D k C 1. It is easy to see that,
then, (10.2.32) always holds. As a second possibility, we may take mC 1 D k and
enrich .L0mC1.Th//2 into .L0mC1.Th//2enr by adding, in each K , a pair of functions q
in .PmC1/2 such that @qj =@t jei D `ik (j D 1; 2 and D 1; 2; 3). Again, it is easy to
check that (10.2.32) is satisfied if we take the enriched space .L0mC1.Th//2enr instead
of the original one. Then, of course, we must consider V m

h;enr D S Œ.L0mC1.Th//2enr�
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instead of Vh. Finally, we might give up (10.2.32) and go directly to (10.2.31). It is
easy to check that in (10.2.36), the values of c, c1, �; and �1 must remain constants
from one K to another due to the continuity of grad�je across the edges. Hence,
since � 2 H2

0 .˝/, we must have c D c1 D � D �1 D 0 and, actually, (10.2.31)
holds for m C 1 D k D max.r � 1; s/ in any case, that is, also for r � 1 D s D
even. However, we shall see in a moment that (10.2.32) has other basic advantages
over (10.2.31) that we are not very willing to give up. We summarise the results in
the following theorem.

Theorem 10.2.1. The condition KerBt
h � KerBt holds whenever

mC 1 � k D max.r � 1; s/: (10.2.37)

Moreover, (10.2.32) holds when (10.2.37) is satisfied, unless r � 1 D s D even. In
that case, (10.2.32) is satisfied by taking mC 1 > k or by using an enriched V k�1

h;enr

(between V k�1
h and V k

h ) as described above.

The condition KerBt
h D KerBt implies, by Proposition 5.5.2, the existence of an

operator˘h from V0.Th/ to V m
h such that

b.� �˘h�; v/ D 0 8v 2 Qr;s
h : (10.2.38)

However, in view of the use of Proposition 5.4.3, we would also like to show that
there exists a ˘h which satisfies (10.2.38) and

k˘h�k0 � c k�k0; 8� 2 V0.Th/; (10.2.39)

with c independent of h. Since V m
h is finite dimensional, (10.2.39) will always

hold, but the constant might depend on h. Now, if (10.2.32) holds, we see that
˘h can be defined element by element. Now, the dimension of V m

h jK depends
only on m, but not on h. A continuous dependence argument on the shape of the
element can now prove (10.2.39) without major difficulty (but, to be honest, not
quickly); we refer to [127] for a detailed proof of (10.2.39). Once we have (10.2.38)
and (10.2.39), we apply Proposition 5.4.3 to prove the discrete inf-sup condition.
Then, Theorem 5.2.5 immediately gives

k� � �
h
k0 D kD

2
.w � Qwh/k0

� c
n

inf
�2V mh

k�0 � �k0 C inf
�2Qr;s

h

kD
2
.w � �/k0

o
;

(10.2.40)

where Qwh is the (unique) element in Qr;s
h that satisfies 42 Qwh D f in each K and

belongs to the set of discrete solutions.
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Theorem 10.2.2. If mC 1 � max.r � 1; s/ (andmC 1 > s for r � 1 D s is even),
we have

k� � �
h
k0 C kD

2
.w � Qwh/k0 � cht .kwktC2 C

X

K

k�f k2t;K/
1
2 (10.2.41)

with t D min.mC 1; r � 1; s/.
Proof. The proof is obvious from (10.2.40) and the standard approximation results.

ut
We end this section with a few computational remarks. First, we notice that our

discretisation of (10.2.8) has obviously the matrix structure

	
A Bt

B 0



; (10.2.42)

where A, corresponding to the approximation of the identity in V m
h , is obviously

block diagonal because V m
h is made of discontinuous tensors. Hence, one usually

makes an a priori inversion of A, to end with the matrix BA�1Bt which operates on
the unknown wh and is symmetric and positive definite. However, the computation
of the right-hand side is, in general, a weak point in the use of dual hybrid methods,
unless f is very special (zero, Dirac mass, constant, etc.) and allows the use of a
simple �f . A few computational tricks for dealing with more general cases can be
found in [127,289,290]. Here, we recall from [115] a simple method that works for
low-order approximations (more precisely, when t in Theorem 10.2.2 is �2). We
first define the operator R WD orthogonal projection onto Vh. We then remark that
the discretisations (10.2.24) and (10.2.25) of (10.2.8) may be written as

8
<

:
.�0

h
C �f ; �/ D .D

2
wh; �/ 8� 2 Vh;

.�
h

C �f ;D
2
�/ D .f; �/ 8� 2 Qh:

(10.2.43)

Solving a priori in �0
h

from the first equation and substituting into the second
equation, we obtain

.RD
2
wh;D

2
�/ D .f; �/ � .�f � R�f ;D

2
�/ 8� 2 Qh: (10.2.44)

Now, the left-hand side of (10.2.44) corresponds to the matrix BA�1Bt acting on
the unknown wh. The right-hand side is actually computable because both .f; �/ �
.�f ;D

2
�/ and .R�f ;D

2
�/ depend (looking carefully) only on the values of � and

its gradient at the inter-element boundaries. However, the computation, in general, is
not easy. Therefore, in some cases, it can be convenient to use a rough approximation
of it, for instance

.f; �/ � .�f � R�f ;D
2
�/ '

X

K

meas.K/

3

3X

jD1
f .Vj /�.Vj /; (10.2.45)
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r = 5
s = 3

r = 5
s = 3

r = 3
s = 3

r = 4
s = 3

r = 3
s = 1

r = 3
s = 2

Symbol Values of

φ

∂
2
φ/∂n∂t

∂φ/∂n

∂
2
φ/∂n∂t∂φ/∂t, ∂φ/∂t,

grad φ

D

Fig. 10.1 Some common
choices for the space Qr;s

h

where the Vj are the vertices of K . It can be shown (see [115]) that this involves an
additional error of orderO.h2/ (essentially because Vh contains all piecewise linear
stress functions and therefore k�f � R�f k0 � ch2) and hence this procedure is
recommended whenever t � 2 in (10.2.41).

Finally, we provide a few remarks on the choice of the degrees of freedom in
V m
h and Qr;s

h . As we have seen, the unknown �0
h

is usually eliminated a priori at
the element level due to the complete discontinuity of V m

h . As a consequence, the
choice of the degrees of freedom in V m

h is of little relevance. In general, it is more
convenient to start from .L0mC1.Th//2 and to derive Vh through (10.2.27).

When m is “large” (say m � 4, to fix the ideas), however, the resulting matrix A
can be severely ill-conditioned unless the degrees of freedom in V m

h are chosen in a
suitable way. We refer to [289,290] for a discussion of this point. On the other hand,
the degrees of freedom in Qr;s

h are the ones that count in the final stiffness matrix,
and, besides, they have to take into account the C�1 continuity requirements. We
sketch in Fig. 10.1 some commonly used choices for different values of r and s.

Remark 10.2.2. It is impossible to say what is, in general, the best choice for r
and s. Numerical evidence shows obviously that the accuracy/number of degrees of
freedom ratio is improved for large r and s, at least when the solution is smooth.
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However, it is clear that the simplest (and most widely used) choice r D 3; s D 1

allows a much easier implementation. Similar considerations also hold with the
choice of m, in particular in the case of an even r � 1 D s, for instance for
r D 3; s D 2. The use of the enriched V 1

h;enr implies a smaller matrix to be inverted
on each element than with the “brutal” choice V 2

h (11 
 11 instead of 17 
 17), but
the latter may allow some simplification in writing the program. ut
Remark 10.2.3. We have used, so far, homogeneous Dirichlet boundary condi-
tions corresponding to a clamped plate. Nothing changes when considering non-
homogeneous Dirichlet conditions. If, instead, a part of the plate is simply supported
(w D given; Mnn D 0) or free (Mnn D 0; Kn D 0), then we have two possibilities
for dealing with them. Let us discuss a simple case: let @˝ D �D [�N and assume
that w D @w=@n D 0 on �D and Mn D Kn D 0 on �N . One possibility is to
chooseQr;s

h so that its elements vanish only on �D, and to let V m
h unchanged. In this

case, the conditions Mn D Kn D 0 on �N will be satisfied only in a weak sense.
A second possibility is to choose V m

h in such a way that its elements satisfy, a priori,
the boundary condition Mn D Kn D 0 on �N . However, care must be taken in
this case to enrich conveniently the stress field in the boundary elements so that the
inf-sup condition still holds. Otherwise, a loss in the order of convergence is likely
to occur. ut
Remark 10.2.4. One may think to use other discretisations of the dual hybrid
formulations than the ones discussed here (see, for instance, the previous remarks).
In any case, the inf-sup condition should be checked. Although this is not evident
from our discussion (because we wanted to deal with many cases at the same time),
nevertheless, it is true that to check the inf-sup condition in hybrid methods is
basically an easy task. What is really needed is the following: for any element K ,
the only displacement modes with zero energy on K , that is, the only modes � such
that

Z

@K

�
Mnn.�/�=n�Kn.�/�

�
ds D 0 8� 2 Vh; (10.2.46)

must be the rigid modes (that is, grad � D constant on T ). If this condition is
violated, one can expect trouble (minor or major, depending on the cases). ut

10.3 Mixed Methods for Linear Thin Plates

We consider the variational formulation of a problem discussed in Chap. 1 which
we recall here for the convenience of the reader. We had

L.�;w/ D inf
�2.L2.˝//2�2s

sup
�2H2

0 .˝/

L.� ; �/ (10.3.1)

where
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L.�; �/ WD 1

2

	
12

Et3


Z

˝

Œ.1C 	/� W � � 	.tr.�//2� dx

�
Z

˝

� W D
2
� dx C

Z

˝

f � dx

(10.3.2)

E D Young’s modulus; (10.3.3)

t D thickness of the plate; (10.3.4)

	 D Poisson’s ratio; (10.3.5)

f D transversal load / unit surface; (10.3.6)

w D transversal displacement; (10.3.7)

� D stresses (in the Kirchoff assumption): (10.3.8)

In order to use a more compact notation, we set

C� WD 1

2
Et3..1C 	/� � 	 tr.�/ı/ (10.3.9)

and write L.�; �/ as

L.�; �/ D 1

2
.C �; �/ � .�;D

2
�/C .f; �/: (10.3.10)

Assume that we are given a triangulation Th of ˝ and that we are willing to
discretise the stress field � by means of piecewise polynomials for which the normal
bending moment

Mnn.�/ D .� � n/ � n (10.3.11)

is continuous from one element to another. We recall the following Green’s
formulae,

Z

K

� W D
2
� dx D �

Z

K

div � � grad� dx C
Z

@K

Mnn.�/
@�

@n
ds

C
Z

@K

Mnt.�/
@�

@t
ds;

(10.3.12)

�
Z

K

div � � grad� dx D
Z

K

D�
2 .�/ � dx �

Z

@K

Qn.�/ � ds; (10.3.13)

valid for all � and � smooth in K; we recall again that, here, t is the unit tangent
(anticlockwise) vector and

Mnt.�/ D .� � n/ � t ; Qn.�/ D div.�/ � n: (10.3.14)
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If Mnn.�/ is continuous and � is smooth, we can write

L.�; �/ D 1

2
.C �; �/C

X

K

nZ

K

div.�/ � grad � dx �
Z

@K

Mnt.�/
@�

@t
ds
o

C .f; �/:

(10.3.15)

A little functional analysis shows that every integral in (10.3.15) makes sense
(at least as a suitable duality pairing), provided � and � are, respectively, in the
following spaces:

V WD f� j � jK 2 .H1.˝//2�2s ; Mnn.�/ continuous g; (10.3.16)

Q WD W 1;p.˝/; p > 2: (10.3.17)

Remark 10.3.1 (For mathematicians). We have to choose p > 2 in (10.3.17)
because for � 2 H1.K/ we have @�=@t 2 H�1=2.@K/ whereas Mnt.�/ is inQ
ei
H1=2.ei / but not in H1=2.@K/. On the other hand, for � 2 W 1;p , we have

@�=@t 2 W �1=p;p.@K/. Since Mnt.�/ is in Hs.@K/ for all s < 1=2 and since

W �1=p;p.@K/ � H�1.@K/ for s > 1=p, the boundary integral which appears
in (10.3.15) can now be interpreted as a duality pairing between H�s.@K/ and
Hs.@K/ for 1=p < s < 1=2 (which is possible since p > 2). ut

The Euler equations of (10.3.15) can now be written as:

.C�; �/C
X

K

nZ

K

div.�/ � grad w dx �
Z

@K

Mnt.�/
@�

@t
ds
o

D 0 8� 2 V;
(10.3.18)

X

K

nZ

K

div.�/ � grad� dx �
Z

@K

Mnt.�/
@�

@t
ds
o

D .�f; �/ 8� 2 Q;
(10.3.19)

which has the form (5.1.9) if we set

a.�; �/ WD .C�; �/; (10.3.20)

b.�; �/ WD
X

K

nZ

K

div.�/ � grad� dx �
Z

@K

Mnt.�/
@�

@t
ds
o
: (10.3.21)

Unfortunately, problem (10.3.18) and (10.3.19), as it stands, does not satisfy any of
the conditions given in Chap. 4 in order to have a well posed problem. However,
we know that the original problem (1.2.4) has a solution w. If � D C�1.D

2
w/ is

in H1.˝/, that is if the solution w of (1.2.4) is smooth enough, it is easy to check
that the pair .�;w/ solves (10.3.18) and (10.3.19). Hence, we only have to prove the
uniqueness of the solution of (10.3.18) and (10.3.19).
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Proposition 10.3.1. Problem (10.3.18) and (10.3.19) has a unique solution.

Proof. It is obvious that

a.�; �/ � ˛ k�k20; 8� 2 V: (10.3.22)

Let us now check a weaker inf-sup condition. For every � in Q, we define �.�/ by

�11 D �22 D �; �12 D �21 D 0: (10.3.23)

It is immediate to check that Mnt.�/ is continuous across the inter-element
boundaries, so that

X

K

Z

@K

Mnt.�.�//
@�

@t
ds D 0 (10.3.24)

and therefore

b.�.�/; �/ D j�j21;˝: (10.3.25)

It is also easy to check, using (10.3.23) and the Poincaré’s inequality (1.2.14), that

k�.�/kV � c j�j1;˝ I (10.3.26)

hence, we have from (10.3.25) and (10.3.26) that

inf
�2H1

0 .˝/

sup
�2V

b.�; �/

k�kV j�j1;˝ � inf
�2H1

0 .˝/

b.�.�/; �/

k�.�/kV j�j1;˝

� j�j1;˝
k�.�/kV � 1

c
> 0:

(10.3.27)

Now using (10.3.22) and (10.3.27), we have the desired uniqueness by standard
arguments. ut
We are now ready to discretise our problem. Following [132] and [261], for any
integer k � 0, we set

Vh D .L0k/2�2s \ V (10.3.28)

Qh D L1kC1 (10.3.29)

with the notation of Chap. 2. Note that the space Vh in (10.3.28) is made of tensors
whose normal bending moment is continuous across the inter-element boundaries.
The degrees of freedom for Qh will be the usual ones (see Sect. 2.2). As degrees of
freedom for Vh, we may choose, for instance, the following ones:

Z

e

Mnn.�/p.s/ ds 8p 2 Pk.e/; 8e 2 Eh; (10.3.30)

Z

T

� W p dx 8p 2 .Pk�1.T //2�2s ; 8K 2 Th; .k � 1/: (10.3.31)
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The possibility of choosing (10.3.30) and (10.3.31) as degrees of freedom in Vh
is shown by the following lemma and by a standard dimensional count.

Lemma 10.3.1. Let � 2 .Pk�1.T //2�2s be such that

Z

ei

Mnn.�/p.s/ ds D 0 8p 2 Pk.ei /; .i D 1; 2; 3/; (10.3.32)

Z

K

� W p dx D 0 8p 2 .Pk�1.T //2�s ; .k � 1/: (10.3.33)

Then, � 	 0.

Proof. We only give a hint of the proof. From (10.3.32), we get Mnn.�/D 0. We
first show that D�

2 .�/ D 0. This is trivial for k � 1; for k > 1, take p D D
2
b with

b D b3D
�
2 � in (10.3.33) to get

R
K
b3.D

�
2 .�//

2 dx D 0 and hence D�
2 .�/ D 0. Now

use the formula (see Sect. 10.2)

Z

K

� W D
2
� D

Z

K

D�
2 .�/ � C

Z

@K

ŒMnn.�/
@�

@n
� Kn.�/�� ds (10.3.34)

for � 2 PkC1.T /; thus, we get

Z

@K

Kn.�/ ds D 0 8� 2 PkC1.T /; (10.3.35)

and easily obtain that Kn.�/ D 0. It is now simple to show that � D S.q/

(see (10.2.27) for the definition of S ) for some q 2 .PkC1.K//2 with q D 0 on
@K . Therefore, q1 (for instance) has the form b3z with z 2 Pk�2.K/. Let us now
choose, in (10.3.33), p11 such that @p11=@y and p12 D p22 D 0. We then get

0 D
Z

K

�11p11 dx D
Z

K

@q1

@y
p11 dx D �

Z

K

q1z dx D �
Z

K

b3z
2 dx (10.3.36)

so that z D 0 and q1 D 0. Similarly, one proves that q2 D 0. ut
We are now able to define the operator˘h. We set, for � 2 V ,

Z

e

Mnn.˘h� � �/ p.s/ ds D 0 8p 2 Pk.e/; 8e 2 Eh; (10.3.37)

Z

K

.˘h� � �/ W p ds D 0 8p 2 .Pk�1.K//2�2s ; 8K 2 Th: (10.3.38)

Lemma 10.3.2. Let ˘h be defined by (10.3.37) and (10.3.38). Then, we have

k˘h�kV � c k�kV 8� 2 V (10.3.39)
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and

b.� �˘h�; �h/ D 0 8� 2 V 8�h 2 Qh: (10.3.40)

Proof. Formula (10.3.39) is easy to check. Let us prove (10.3.40). From (10.3.12)
and (10.3.21), we have

b.� �˘h�; �/ D �
X

K

nZ

K

.� �˘h�/ W D
2
� dx �

Z

@K

Mnn.� �˘h�/
@�

@n
ds
o

(10.3.41)

and from (10.3.41), (10.3.37), and (10.3.38), we get (10.3.40). ut
Lemma 10.3.3. If �

h
2 Vh is such that

b.�
h
; �h/ D 0; 8�h 2 Qh; (10.3.42)

then

b.�
h
; �/ D 0; 8� 2 Q: (10.3.43)

Proof. We have, from (10.3.13) and (10.3.21),

b.�
h
; �/ D �

X

K

nZ

K

D�
2 .�h

/� dx C
Z

@K

ŒMnt.�
h
/
@�

@t
�Qn.�

h
/�� ds

o
: (10.3.44)

Integrating
R
@K Mnt

@�

@t
ds by parts and recalling the definition of Kn in (10.2.3), we

then have

b.�
h
; �/ D �

X

K

nZ

K

D�
2 .�h

/ � dx �
Z

@K

Kn.�
h
/� ds

o
: (10.3.45)

Note that (10.3.45) holds for any �
h

and � piecewise smooth. If now (10.3.42) holds,
we first have D�

2 .�h
/ D 0 by choosing �jK D b3D

�
2 .�h

/ (for k � 2, otherwise the
property is trivial). Hence, we are left with

X

K

Z

@K

Kn.�
h
/�h ds D 0 8� 2 Qh: (10.3.46)

Since Kn is made of Dirac measures at the vertices and of polynomials of degree less
or equal to k � 1 on each edge, it is easy to see that (10.3.46) implies Kn.�

h
/ D 0.

Therefore, we have proved that if �
h

2 Vh satisfies (10.3.42), then D�
2 .�h

/ D 0 and
Kn.�

h
/ D 0. We now insert those two equations into (10.3.45) and we get (10.3.43).

ut
This last property was denoted, in Chap. 5, as Zh.0/ � Z.0/. We have seen that,
together with the existence of the operator ˘h, this property is so important that it
can provide optimal error estimates even in desperate situations (no ellipticity, no
inf-sup condition) like ours.
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Actually, we first remark that (10.3.27) and Lemma 10.3.2 provide, through
Proposition 5.4.3, the following inf-sup type condition:

inf
�h2Qh

sup
�
h
2Vh

b.�
h
; �h/

k�
h
kv j�hj1 � c > 0 .c independent of h/: (10.3.47)

On the other hand, since Qh and Vh are finite dimensional, (10.3.22)
and (10.3.47) ensure that the discrete problem has a unique solution. We are now
ready for error estimates.

Proposition 10.3.2. If .�;w/ is the solution of (10.3.18) and (10.3.19) and
.�

h
;wh/ is the discrete solution of (10.3.18) and (10.3.19), then, through (10.3.28)

and (10.3.29), we have

k� � �
h
k0 � c k� �˘h�k0: (10.3.48)

ut
The proof is immediate from the standard theory of Chap. 5.

From (10.3.48) and standard approximation results, we then have

k� � �
h
k0 � chkC1k�kkC1: (10.3.49)

Proposition 10.3.3. With the notation of Proposition 10.3.2, we have

kw � whk1 � c fhkC1k�kkC1 C hkC1kwkkC2g: (10.3.50)

Proof. Let �h 2 Qh to be chosen. From (10.3.47), we have for some �
h

2 Vh

ck�h � whk1k�
h
kV � b.�

h
; �h � wh/

D b.�
h
; �h � w/C b.�

h
;w � wh/

D b.�
h
; �h � w/C a.� � �

h
; �
h
/:

(10.3.51)

It is now elementary to see that �h can be chosen in such a way that

Z

e

p
@

@t
.w � �h/ ds D 0 8p 2 Pk.e/; 8e 2 Eh; (10.3.52)

kw � �hk1 � chkC1kwkkC2: (10.3.53)

With such a choice, we have
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b.�
h
;w � �h/ D

X

K

Z

K

div.�
h
/ � grad.w � �h/dx

� k�
h
kV kw � �hk1

� chkC1 k�
h
kV kwkkC2;

(10.3.54)

so that from (10.3.51), (10.3.54) and (10.3.49) we get (10.3.50). ut
Remark 10.3.2. Result (10.3.50) is not optimal as far as the regularity of w is
involved. Actually, it says

kw � whk1 � chs kwksC2 .s � k C 1/; (10.3.55)

while an .s C 1/-norm on w should be enough for optimality. Furthermore, a more
sophisticated analysis [44, 192] shows that

kw � whkr � chs�rkwks .s � k C 2; 0 � r � 1/ (10.3.56)

for k � 1 and

kw � whk0 � ch2 kwk4 for k D 0: (10.3.57)

In particular, the approach of [44] has a special interest because, by a suitable
use of mesh-dependent norms in Vh and Qh, they can show that the discretised
problem (in the new norms) satisfy the abstract assumptions (5.2.33) and (5.2.34)
so that optimal error estimates (in the new norms) can be directly obtained by
Theorem 5.2.5. Their approach also works for other fourth-order mixed methods,
like those analysed in Sects. 10.1 and 10.2. ut
Remark 10.3.3. For the actual solution of the discretised problem, the most con-
venient method is to disconnect the continuity of �

h
� n and to enforce it back

via Lagrange multipliers �h. Then, one eliminates �
h

at the element level and one
solves a symmetric and positive definite system for the unknowns �h and wh. The
procedure is identical to the one described in Sect. 7.2 and we refer to it for a
detailed description. As far as the error estimates for the Lagrange multipliers �h
are concerned, recent results have been obtained in [158]. ut
Remark 10.3.4. It is interesting to analyse the relationship between the mixed meth-
ods described here and some nonconforming methods for fourth-order problems.
For instance, the following result is proved in [23]. Let us consider the space built
by means of the Morley element L2;NC

2 described in Example 2.2.6 and let us define

ah. h; �h/ WD Et3

12.1� 	2/

X

K

Z

K

Œ.1 � 	/D
2
 h W D

2
�h C 	4 h4�h� dx:

(10.3.58)
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For every �h 2 L2;NC
2 , let �Ih be the piecewise linear interpolant of �h (that is �Ih 2

L11 and �Ih D �h at the vertices). Consider now the modified Morley problem: find
 h 2 L2;NC2 such that

ah. h; �h/ D .f; �Ih / 8�h 2 L2;NC
2 : (10.3.59)

Then, we have

D
2
 h D �

h
;  Ih D wh; (10.3.60)

where .�
h
;wh/ is the discrete solution of the mixed problem (10.3.18) and (10.3.19)

through (10.3.28) and (10.3.29) for k D 0. We note explicitly that, in the
case of variable coefficients, the equivalence is more complicated. Also note that
@ h=@nje D �hje for all e 2 Eh, where �h is the Lagrange multiplier introduced in
the previous remark. Notice that we have, from [23],

k h � wk1;h � ch2 kwk3; (10.3.61)

which improves (10.3.50) and (10.3.57) since it requires only H3-regularity on w.
This is particularly striking since the cost for computing  h is cheaper (or equal,
using �h) than the cost for computing .�

h
;wh/. ut

10.4 Moderately Thick Plates

10.4.1 Generalities

We end this chapter with a hint on the theory for the so-called “Mindlin–Reissner
plates”. The corresponding model stands somehow in between the standard three-
dimensional linear elasticity and the two-dimensional Kirchhoff theory for thin
plates. Let us recall it briefly. Assume that we are given a three-dimensional elastic
body that, in absence of forces, occupies the region˝ 
 ��t; t Œ, where˝ � R

2 is a
bounded smooth domain and t > 0 is “small” (but not “too small”) with respect to
diam(˝). This is what we call a “moderately thick” plate. We shall assume, for the
sake of simplicity, that the plate is clamped along the entire boundary @˝ 
 ��t; t Œ
and that a vertical load f D .0; 0; f3/ is imposed.

Here below, we present the “Mindlin-Reissner” model following the classical
engineering “derivation”. Such derivation is questionable, from the mathematical
point of view, at some points, but it has the clear merit of being short and
simple. From the mathematical point of view, the derivation of [35] is much more
convincing, but it is surely longer and more complicated. As the aim of this book
is mainly concentrated on the mathematical properties of models and on their
discretisations rather than on the modelling aspects, we decided to stick to the
simpler choice.
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The Mindlin model assumes that the “in plane” displacements u1 and u2 have
the form

u1.x; y; z/ D �z �1.x; y/; u2.x; y; z/ D �z �2.x; y/ (10.4.1)

and that the “transversal” displacement u3 has the form

u3.x; y; z/ D w.x; y/: (10.4.2)

The corresponding strain field therefore takes the form:
(
"11 D �z @�1=@xI "22 D �z @�2=@yI "33 D 0I
2"12 D �z.@�1=@y C @�2=@x/I 2"13 D @w=@x � �1I 2"23 D @w=@y � �2I

(10.4.3)
and assuming a linear elastic material, the stress field is

(
�11 D ."11 C 	"22/ E=.1 � 	2/I �22 D ."22 C 	11/E=.1� 	2/I
�ij D "ijE=.1C 	/I i; j D 1; 2; 3; i ¤ j:

(10.4.4)

If we now write the total potential energy

˘ D 1

2

Z

˝���t;t Œ
.� W " � 2 f � u/ dx dy dz (10.4.5)

in terms of � and w through (10.4.1)–(10.4.4), we obtain (after some calculations)

˘ D t3

2
.a.�; �/C �t

2

Z

˝

j grad w � � j2 dx dy �
Z

˝���t;t Œ
f3 w dx dy dz; (10.4.6)

where the symmetric bilinear form a is identified by

a.�; �/ WD E

12.1� 	2/

Z

˝

h�@�1
@x

C 	@�2

@y

�@�1
@x

C
�	@�1
@x

C @�2

@y

�@�2
@y

C .1 � 	/
2

�@�1
@y

C @�2

@x

��@�1
@y

C @�2

@x

�i
dx dy;

(10.4.7)

where

� WD E k

2.1C 	/
(10.4.8)

and k is a correction factor which is often used to account for the “nonconformity”
of (10.4.4). Indeed, from (10.4.1)–(10.4.4), we deduce that �13 and �23 are constants
in z, whereas the physical problem has �13 D �23 D 0 on the upper and lower face
of the plate: ˝ 
 ftg and ˝ 
 f�tg; hence, (10.4.4) is often corrected by assuming
that �13 and �23 behave parabolically in z, vanishing for z D ˙t and assuming the
value (10.4.4) for z D 0. For a mathematically more convincing justification of the
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classical 5=6 factor, we refer again to [35]. Actually, for the sake of simplicity, we
shall assume, from now on, that

� D 1:

In fact, as far as we do not expect the true value (10.4.8) to go to zero or to C1,
assuming � D 1 will just change the numerical value of the constants appearing in
the stability estimates or in the a priori error estimates, but it will not change the
behaviour in function of the thickness t or the mesh-size h.

10.4.2 The Mathematical Formulation

The assumed boundary conditions lead to the kinematic constraints

�1 D �2 D w D 0 on @˝: (10.4.9)

Hence, we define the spaces

� WD .H1
0 .˝//

2I Z WD H1
0 .˝/I V WD � 
Z (10.4.10)

with the norm

k.�; �/k2V WD k�k21 C k�k21: (10.4.11)

When convenient, the generic element of V will be denoted v D .�; �/ with � D
.�1; �2/ 2 � and � 2 Z. We finally recall the Korn inequality

9˛Korn > 0 such that a.�; �/ � ˛Korn k�k21 8� 2 �; (10.4.12)

where, from now on in this section, the symmetric bilinear form a will be the one
given in (10.4.7).

It is easy to check that, for any fixed t > 0, functional (10.4.5) has a unique
minimiser .�;w/ on V which satisfies

t3 a.�; �/C t

Z

˝

.grad w � �/ � � dx dy D 0 8� 2 �; (10.4.13)

t

Z

˝

.grad w � �/ � grad � dx dy D
Z

˝���t;t Œ
f3 � dx dy dz 8� 2 Z: (10.4.14)

In particular, we have

t3

2
a.�; �/C t

2

Z

˝

j grad � � �j2 dx dy � c.t/ .k�k21 C k�k21/; (10.4.15)



10.4 Moderately Thick Plates 599

for any v D .�; �/ 2 V . Note that for fixed t , (10.4.15) always guarantees
that (10.4.13), (10.4.14) is a nice linear elliptic problem so that, for instance, any
reasonable conforming approximation of V will have optimal order of convergence.

The troubles start when we take a small t ; then, the constant in (10.4.15)
deteriorates and so does the constant in front of the optimal error bound. In practice,
it is well known that if we use “any reasonable conforming approximation of V ”, we
will get pretty bad answers for small t . Here, we shall make an analysis of the nature
of the trouble. We shall also give some sufficient conditions on the discretisation so
that it stays good for t smaller and smaller. The one-dimensional case was treated
in [15], but the two-dimensional case, as we shall see, is more complicated.

The first thing that we have to do is to construct a sequence of physical problems
Pt (for t > 0 and, say t < T0) that fulfil the following requirements:

(1) Each Pt is of type (10.4.13) and (10.4.14) and so has a unique solution �.t/,
w.t/;

(2) There exists two constants c1, c2 with 0 < c1 < c2 such that

c1 � k�.t/k1 C kw.t/k1 � c2 8 t 2�0; T0Œ: (10.4.16)

A possible answer is to fix ˝ , E , and 	, and to choose, for each t > 0, the load
f3.x; y; z/ of the form

f3.x; y; z/ WD t2

2
f .x; y/; (10.4.17)

with g.x; y/ fixed (once and for all) independent of t . It is clear that (10.4.17)
implies

Z

˝���t;t Œ
f3 w dx dy dz D t3

Z

˝

f w dx dy D t3.f;w/; (10.4.18)

where as usual .f;w/ denotes theL2.˝/ inner product or (with an abuse of notation)
whenever f is assumed to be only inH�1.˝/, the duality pairing betweenH�1.˝/
and H1

0 .˝/. Hence, dividing (10.4.6) by t3, each problem Pt will amount to
minimise, in V ,

˘t.�;w/ D 1

2
a.�; �/C t�2

2

Z
j grad w � � j2 dx dy � .f;w/: (10.4.19)

Proposition 10.4.1. Let �.t/, w.t/ be the minimiser of (10.4.19) in V .
Then, (10.4.16) holds with c1 and c2 independent of t .

Proof. We obviously have

a.�; �/C t�2k grad w � �k20 D .f;w/: (10.4.20)
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Using (10.4.12) and a little algebra, we deduce from (10.4.20) that

k�k21 C kwk21 � c.˛Korn/kf k�1kwk1; (10.4.21)

which implies the boundedness of k�k1 C kwk1 from above. Then, one observes
that the minimum of ˘t over all V is surely smaller than the minimum of ˘t over
V0 D f.�; �/ j � D grad �g (which is clearly independent of t and negative). Hence,

1

2
a.�; �/C t�2

2
k grad w � �k20 � .f;w/ � �c < 0 (10.4.22)

for some positive c independent of t , which immediately gives

.f;w/ � c > 0 (10.4.23)

which implies that kwk0 (and hence k�k1 C kwk1) is bounded from below by a
positive constant. This completes the proof. ut
According to Proposition 10.4.1, we have now a sequence of problems, indexed
by the thickness t , whose solutions are bounded uniformly (in t) and also bounded
uniformly away from zero.

For the convenience of the reader, we repeat explicitly the general problem of
our sequence.

The sequence of minimum problems. Given a bounded domain ˝ � R
2 with

diameter T WD diam.˝/ and an element f 2 L2.˝/, for every thickness t 2�0; T Œ,
we consider the problem: find .�.t/;w.t// in V WD .H1

0 .˝//
2 
H1

0 .˝/ such that

˘t.�;w/ � ˘t.�; z/ 8.�; z/ 2 V; (10.4.24)

where˘t is given by (10.4.19).
The sequence (10.4.24) is what we need to analyse the performance of numerical

methods. Indeed, we expect a “good and reliable” numerical method to perform
uniformly well on all the problems of our sequence, regardless of the possible
smallness of t . We therefore look for error bounds (in terms of powers of the mesh-
size h) which hold uniformly in t .

10.4.3 Mixed Formulation of the Mindlin-Reissner Model

It will be convenient, in order to carry on the analysis, to introduce the auxiliary
variable

�.t/ WD t�2.grad w.t/ � �.t// (10.4.25)
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which is related to the shear stresses but does not go to zero with t (and could
be considered as a sort of normalised shear stress). We can now write the Euler
equations for˘t in the form

a.�; �/C .�; grad � � �/ D .f; �/; 8.�; �/ 2 V; (10.4.26)

� D t�2.grad w � �/: (10.4.27)

This is now taking the form of the abstract problems studied in Chap. 4, especially
in Sect. 4.3. In particular, we can define the bilinear forms

A..�;w/; .�; z// WD a.�; �/; (10.4.28)

where a is defined in (10.4.7), and

B..�; �/; ı/ WD .grad � � �; ı/ (10.4.29)

corresponding to the operator

B W .�; �/ �! .grad � � �/; (10.4.30)

and finally the functional

.F; .�; �// WD .f; �/: (10.4.31)

With this notation, Eqs. (10.4.26) and (10.4.27) can be written as

A..� ;w/; .�; �//C B..�; �/; �/ D .F; .�; �// 8 .�; �/ 2 V; (10.4.32)

B..�;w/; ı/� t2.�; ı/ D 0 8 ı: (10.4.33)

As we have already seen on several other examples, it is convenient, from many
aspects, to consider (10.4.32) and (10.4.33) as a perturbation of the “limit problem”
that we have for t D 0, namely

A..�0;w0/; .�; �//C B..�; �/; �
0
/ D .F; .�; �// 8 .�; �/ 2 V; (10.4.34)

B..�0;w0/; ı/ D 0 8 ı: (10.4.35)

It is easy to check that the kernelK WD KerB is given by

K D f.�; �/ j .�; �/ 2 V such that � D grad �g: (10.4.36)

It is then clear that the Korn inequality (10.4.12) implies that the bilinear form A,
defined in (10.4.28), is elliptic in the kernel K of B:

A..�; �/; .�; �// � ˛0k.�; �/k2V 8 .�; �/ 2 K; (10.4.37)

with ˛0 depending only on the Korn constant ˛Korn appearing in (10.4.12).
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On the other hand, we note that we did not decide yet what the space Q should
be, and hence where ı is allowed to vary in (10.4.33) or in (10.4.35). Recalling the
general theory of Chap. 4, we observe that the space Q should be defined in such a
way that the operator B, associated with the bilinear form B, is surjective from V to
Q0 (or, at least, that its image is a closed subspace of Q0). It is therefore clear that
the next, crucial, step has to be the characterisation of the image of B, that is B.V /
with V given in (10.4.10).

In what follows, we are going to use the notation introduced in Chap. 2 for the
two-dimensional operators

curl W � �! curl� D
�
@�

@y
;�@�
@x

�
;

curl W � �! curl� D �@�1
@y

C @�2

@x
:

(10.4.38)

Note as well that (for the same reason) we are using here .x; y; z/ instead of
.x1; x2; x3/.

Proposition 10.4.2. The mapping B is surjective from V onto the space � D
H0.curl;˝/ defined by

H0.curlI˝/ D f� j� 2 .L2.˝//2; curl� 2 L2.˝/; � � t D 0 on @˝g (10.4.39)

k�k2H0.curlI˝/ WD k�k20 C k curl�k20 (10.4.40)

(where t is the unit tangent to @˝) and admits a continuous lifting.

Proof. We shall show that there exists a ˇRM > 0 such that: for every � 2
H0.rotI˝/ there exists .�; �/ 2 V verifying

� D grad � � � 	 B.�; �/; (10.4.41)

and

k�k1 C k�k1 � 1

ˇRM
k�kH0.curlI˝/: (10.4.42)

For this, we first choose v 2 .H1
0 /
2 such that

div v D � curl�; (10.4.43)

kvk1 � ck curl�k0I (10.4.44)

this is obviously possible because

Z

˝

curl� dx dy D
Z

@˝

� � t ds D 0: (10.4.45)
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Then, we set

� D .�1; �2/ WD .�v2; v1/ (10.4.46)

so that from (10.4.43) and (10.4.44) we have

curl� D � curl�; (10.4.47)

k�k1 � k curl�k0: (10.4.48)

Now choose � as the unique solution in H1
0 .˝/ of

4� D div�C div� 2 H�1.˝/I (10.4.49)

we have, using (10.4.48) and (10.4.49),

k�k1 � c .k div�k�1 C k div �k�1/ � c .k�k0 C k curl�k0/: (10.4.50)

We now have

8
ˆ̂<

ˆ̂:

div.grad � � �/ D div� in ˝;

curl.grad � � �/ D curl� in ˝;

.grad � � �/ � t D � � t D 0 on @˝;

(10.4.51)

which easily implies (10.4.41). On the other hand, (10.4.42) follows from (10.4.48)
and (10.4.50). ut

Proposition 10.4.2 tells us how to choose Q in order to have that B is surjective
from V to Q0. Actually, we have little choice: Q0 must be equal to the space � D
H0.curl;˝/ defined in (10.4.39). As we are dealing with Hilbert space, this implies
that Q has to be the dual space of � :

Q 	 � 0 WD .H0.curlI˝//0: (10.4.52)

On the other hand, a little functional analysis allows us to characterise� 0 as follows:

� 0 WD .H0.curlI˝//0

D H�1.divI˝/
D f� j � 2 .H�1.˝//2; div � 2 H�1.˝/g

(10.4.53)

with the norm

k�k2Q 	 k�k2� 0 WD k�k2�1 C k div �k2�1 : (10.4.54)
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Then, the Closed Range Theorem (see Sect. 4.2.2) tells us that Proposition 10.4.2
can be written in the form of an inf-sup condition:

9ˇRM > 0 such that inf
�2Q

sup
.�;�/2V

R
˝
.grad � � �/ � � dx dy

k.�; �/kV k�kQ � ˇRM: (10.4.55)

Hence, to start with, we can make precise the limit problem (10.4.34) and
(10.4.35) as follows

8
ˆ̂<

ˆ̂:

find .�0;w0/ 2 V and �
0

2 Q such that

A..� ;w/; .�; �//C B..�; �/; �
0
/ D .f; �/ 8 .�; �/ 2 V;

B..�0;w0/; ı/ D 0 8 ı 2 Q:
(10.4.56)

From (10.4.37) and (10.4.55), using Theorem 4.2.3, we then have the following
result on the limit problem (10.4.34) and (10.4.35) in the form (10.4.56).

Proposition 10.4.3. Let A and B be defined as (10.4.28) and (10.4.29), respec-
tively. Then, for every f 2 L2.˝/, the limit problem (10.4.56) has a unique solution
.�0;w0; �0/ and we have

k�0k1 C kw0k1 C k�
0
k� 0 � ckf k�1: (10.4.57)

ut
Remark 10.4.1. Actually, the abstract theory of Chap. 4 tells us that we could take
any framework that is much more general than the one used for problem (10.4.56).
For instance, we could have allowed a general F 2 V 0 (not necessarily of the
form (10.4.31)) in the right-hand side of the first equation. Besides, we did not
need to assume f 2 L2.˝/, as f 2 H�1.˝/ would clearly have been sufficient.
Moreover, a right-hand side in Q0 D � would also be allowed (instead of zero) in
the second equation. We decided, however, to present the result in the framework of
our original plate problem. ut
Remark 10.4.2. It is not difficult to check that the unique solution of (10.4.56) is
related to the solution of the Kirchhoff model: find wK 2 H2

0 .˝/ such that

E

12.1� 	2/
�2wK D f (10.4.58)

by the relations

w0 D wK; �0 D grad wK: (10.4.59)

ut
Remark 10.4.3. In the case of beam problems, the space � 0 is replaced by L2,
which makes things much easier. ut
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Remark 10.4.4. We now remark that, with our choice, we have Q0 	H0

.curlI˝/ ,! .L2.˝//2. As Q0 is clearly dense in .L2.˝//2, we also have
(identifying, as usual, .L2.˝//2 with its dual space) .L2.˝//2 ,! Q. This
implies that the perturbation introduced, for positive t , in the full problem (10.4.32)
and (10.4.33) has to be regarded as a singular perturbation of the limit
problem (10.4.34) and (10.4.35). Hence, it has to be dealt with using the instruments
of Sect. 4.3.2. ut

In view of the previous remark, we introduce the space

W WD .L2.˝//2 (10.4.60)

and set the mathematical framework for the Mindlin-Reissner problem (10.4.32)
and (10.4.33) as follows

8
ˆ̂̂
<

ˆ̂̂
:

find .�.t/;w.t// 2 V and �.t/ 2 W such that

A..�.t/;w.t//; .�; �//C B..�; �/; �.t// D .f; �/ 8 .�; �/ 2 V;
B..�.t/;w.t//; �/ D t2.�; �/W 8� 2 W D .L2.˝//2:

(10.4.61)

Having chosen W as well as Q, we can now prove the following result.

Proposition 10.4.4. Let the spaces V , Q, and W be defined as in (10.4.10)–
(10.4.60), respectively, and let the bilinear forms A and B and the opera-
tor (10.4.30) be defined in (10.4.28), (10.4.29) and (10.4.30), respectively. Then,
there exists an Q̨ > 0 such that

Q̨ k.�; �/k2V � A..�; �/; .�; �//C kB.�; �/k2W : (10.4.62)

Proof. The result is essentially trivial. Indeed, using (10.4.11), the triangle inequal-
ity, and the Poincaré inequality (1.2.14), we have first

k.�; �/k2V � k�k21 C C1k grad �k20 � C2.k�k21 C k grad � � �k20/;

where C1 and C2 depend only on the Poincaré constant. Then, we can use the Korn
inequality (10.4.12) and the definition of A and B to obtain

k�k21 C k grad �k20 � 1

˛Korn
A..�; �/; .�; �//C kB.�; �/k20;

and the result follows. ut
We can now apply Theorem 4.3.4 (with g D 0) and obtain the following result.
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Theorem 10.4.1. With the same assumptions as in Proposition 10.4.4, for
every f 2V 0 and for every t 2�0; 1Œ, problem (10.4.61) has a unique solution
.�.t/;w.t/; �.t//. Moreover, there exists a constant c, depending only on ˝ ,
such that

k�.t/k1 C kw.t/k1 C k�.t/k� 0 C tk�.t/k0 � ckf kV 0 : (10.4.63)

ut
We can now study the behaviour of the solutions of problem (10.4.61) when

t ! 0.

Proposition 10.4.5. With the same assumptions as in Theorem 10.4.1, we have

�.t/ * �0 in .H1
0 .˝//

2;

w.t/ * w0 in H1
0 .˝/;

�.t/ * �
0

in � 0;

(10.4.64)

where .�0, w0, �0/ is the solution of the limit problem (10.4.56).

Proof. The weak convergence (a priori, up to a subsequence) in (10.4.64)
just follows from (10.4.16) and (10.4.57). A passage to the limit in (10.4.61)
gives (10.4.56). ut
Remark 10.4.5. Additional results in this direction can be found in [171]. ut

We can now apply the results of Proposition 4.3.5 and of Remarks 4.3.12
and 4.3.14 to estimate the convergence rate as a function of t2 which plays here the
role of �. This leads us to a convergence rate in

p
� D t . In order to improve this

bound and also to enable us later to get sharper error estimates, we now introduce a
decomposition principle for (10.4.26) and (10.4.27).

10.4.4 A Decomposition Principle and the Stokes Connection

We shall first prove the following decomposition principle for vector-valued func-
tions in � 0 D H0.curlI˝/.
Proposition 10.4.6. Every element � 2 � 0 can be written in a unique way as

� D grad C curl p; (10.4.65)

with  2 H1
0 .˝/, p 2 L2.˝/=R, and curlp D

n
�@p=@y; @p=@x

o
. Moreover, we

may use

k�k2� 0 D k k2
H1
0 .˝/

C kpk2
L2.˝/=R

(10.4.66)

as a norm on � 0.
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Proof. Set � WD div � 2 H�1.˝/. We define  to be the unique solution of
�4 D �,  2 H1

0 .˝/ and we set ˛ D � � grad . One has div˛ D 0 so
that ˛ D curlp and p is determined up to a constant in L2.˝/. Condition (10.4.66)
is then immediate. ut
Remark 10.4.6. The decomposition introduced in Proposition 10.4.6 also holds for
.L2.˝//2 andH.curlI˝/. The difference between these spaces lies in the regularity
of the p component. Indeed, taking � D grad Ccurlp with  2 H1

0 .˝/, we have

� 2 .L2.˝//2 , p 2 H1.˝/=R; (10.4.67)

� 2 H.rotI˝/ , p 2 H2.˝/=R; (10.4.68)

� 2 H0.rotI˝/ , p 2 H2.˝/=R and
@p

@n
D 0 on @˝: (10.4.69)

ut
It is now a simple exercise to transform problem (10.4.61) in terms of the new

unknowns �.t/, w.t/,  .t/, and p.t/. We have indeed the following basic theorem,
which is of considerable help in understanding the nature of the Mindlin-Reissner
equations.

Theorem 10.4.2. Any solution of (10.4.61) is a solution of the following
problem (and conversely) through the change of variables (10.4.65): find
.�.t/;w.t/;  .t/; p.t// in � 
Z 
H1

0 .˝/ 
 L2.˝/=R such that

.grad ; grad �/ D .f; �/ 8� 2 H1
0 .˝/; (10.4.70)

(
a.�.t/; �/ � .curlp.t/; �/ D .grad ; �/ 8� 2 .H1

0 .˝//
2;

� .�.t/; curl q/� t2.curlp.t/; curl q/ D 0 8q 2 H1.˝/=R;
(10.4.71)

.grad w.t/; grad�/ D .�.t/; grad�/C t2.grad ; grad�/ 8� 2 H1
0 .˝/:

(10.4.72)

Proof. The proof is immediate: it is enough to make the substitution (10.4.65), and
observe that both (10.4.61) and (10.4.70)–(10.4.72) have a unique solution. ut
Remark 10.4.7. It must be noted that (10.4.71) implies @p=@nj@˝ D 0 and p 2
H2.˝/ so that � D grad C curlp is indeed an element of � D H0.curlI˝/.
Note also that  .t/ is actually independent of t . ut
Remark 10.4.8. It is important to note that although (10.4.70)–(10.4.72) seems,
at first sight, a system of four equations, it actually decomposes immediately
into equation (10.4.70) (which allows to compute  directly from f ), plus
equations (10.4.71) (which allow to compute �.t/ and p.t/ once we know  ) plus
equation (10.4.72) (which allows to compute w.t/ once we know �.t/ and  ). We
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have thus reduced, through Theorem 10.4.2, our original problem into the following
sequence

– A Dirichlet problem (10.4.70) that is independent of t ,
– A “Stokes-like” problem (10.4.71),
– A Dirichlet problem (10.4.72).

ut
The decomposition provided by Theorem 10.4.2 shows us that it is the p

component of � which depends on t . Before coming back to the quantification of
this dependency, we rapidly develop the analogy between (10.4.71) and a Stokes
problem. Let us set �? D f��2; �1g . We can write (10.4.71) in the form

8
<

:
a.�?; �?/C .p; div �?/ D .grad ; �?/ 8�? 2 .H1

0 .˝//
2;

.div �?; q/ D t2 .gradp; grad q/ 8q 2 H1.˝/=R:
(10.4.73)

The limit problem .t D 0/ is thus a standard Stokes problem and we shall be able
to rely on results of Chap. 8 to build approximations. We shall not analyse here the
case t ¤ 0 in too much detail. However, it is important to see the behaviour of p as
t ! 0.

Proposition 10.4.7. Let �.t/, w.t/, p.t/, and  be the solution of (10.4.70)–
(10.4.72). We then have

k�.t/k2 C kw.t/k2 C k .t/k2 C kp.t/k1 C t kp.t/k2 � c kf k0 (10.4.74)

where the constant c is independent of t . ut
We refer to [122] for the proof of this result which is based essentially on the

regularity properties of the Dirichlet problem and the Stokes problem.
An important point is that (10.4.74) does not improve too much for a more

regular f (even in a smooth domain). It is not possible to bound kp.t/k2 uniformly
in t . The reason is that the normal derivative of p.t/ vanishes although this is not the
case for the solution p.0/ of the limit problem. We thus have a boundary layer effect
which has been studied in [29]. This analysis shows that an analogue of (10.4.74)
exists for k�k 5

2
and kpk 3

2
but not for more regular spaces.

Remark 10.4.9. We can now try to apply Remarks 4.3.12 and 4.3.14 to our problem.
DenotingWC WD fp j p 2 H2.˝/=R; @p=@nj@˝ D 0g, it is clear that we have

j.curlp; curl q/j � ckpkW
C

kqk
L2.˝/=R

: (10.4.75)

Whenever the solution p0 of the limit problem is regular enough (this is the case for
smooth data and a smooth domain), we shall have
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p0 2 ŒL2.˝/;WC�� 8 � < 3

4
: (10.4.76)

No improvement is possible because of the fact that @p.0/=@n ¤ 0. We can thus
apply Remark 4.3.14 to get for � < 3

4

k�.t/ � �0k1 C kp.t/ � p0k0 C kw.t/ � w0k1 � ct2� kp0k� ; (10.4.77)

where kp0k� is the norm of p0 in ŒL2.˝/;WC�� . We can summarise (10.4.77) by
saying that we have an O.t3=2�"/ convergence. This requires, however, a smooth
domain. In the case where @˝ is only Lipschitz continuous, the best we can get
is O.t/. ut

10.4.5 Discretisation of the Problem

We now turn our attention to the discretisation of our problem (10.4.26) and
(10.4.27). Let us thus assume that we are given finite-dimensional subspaces �h
and Zh of � and Z and use Vh D �h 
 Zh as a subspace of V . We also discretise
the space W D .L2.˝//2 by �h and we consider the discretised problem: find
.�h;wh; �

h
/ such that

8
<

:
a.�h; �h

/C .�
h
; grad �h � �

h
/ D .f; �h/ 8.�

h
; �h/ 2 Vh;

.grad wh � �h; �h
/� t2.�

h
; �

h
/ D 0 8�

h
2 �h:

(10.4.78)

This could also be written with the notation of Sect. 10.4.3, that is, in particular,
making use of the bilinear form A and B defined in (10.4.28) and (10.4.29). The
discrete problem (10.4.78) becomes: find ..�h;wh/; �h/ 2 Vh 
Qh such that

8
<

:
A..�h;wh/; .�; �//C B..�; �/; �

h
/ D .F; .�; �// 8 .�; �/ 2 Vh;

B..�;w/; �/� t2.�; �/ D 0 8� 2 Qh 	 �h:
(10.4.79)

In what follows, we shall use either the form (10.4.78) or the form (10.4.79),
according to the notational convenience.

Remark 10.4.10. Note that from the second equation of (10.4.78), we do not have
in general �

h
D �t�2.grad wh � �h/ unless we take �h, Zh, and �H such that

gradZh ��h � �h. This, as we shall see, could be a problem regarding the actual
implementation of the method. Indeed, in the common engineering practice, one
prefers to solve the discrete problems in terms of �h and wh alone. In this case, the
use of the mixed formulation (and the introduction of the variable �

h
) should be

regarded as a mathematical artefact used in order to have a better understanding of
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the mathematical structure of the discretised problem. We will come back several
times to this important point. ut
It is easy to check that, now, the discrete kernel Kh WD KerBh is given by

Kh D f.�; �/ j �; �/ 2 Vh; .� � grad �; ı/ D 0 8ı 2 �hg; (10.4.80)

and we consider the problem of having, for our discrete problem, the ellipticity in
the discrete kernel;

A..�; �/; .�; �// � ˛h0k.�; �/k2V 8 .�; �/ 2 Kh: (10.4.81)

For the continuous case, the Korn inequality (10.4.12) implied that the bilinear form
A is elliptic in the kernelK (see (10.4.37)). As the variable � does not appear in the
actual expression of A..�; �/; .�; �//, we deduce that the only possibility in order to
have the ellipticity in Kh is that the following property holds

9
 > 0 s. t. f.�; �/ 2 Khg ) fk�k1 � 
k�k1g (10.4.82)

and a simple necessary condition for it is that

f.grad �; ı/ D 0 8ı 2 �hg ) fgrad � D 0g: (10.4.83)

This can easily be satisfied assuming for instance that

grad.Zh/ � �h: (10.4.84)

As we shall see, the above condition (10.4.84) is not difficult to enforce when
choosing the finite element spaces and the vast majority of the good and reliable
methods will satisfy it. On the other hand, the discrete inf-sup condition

9ˇRM > 0 such that inf
�2Qh

sup
.�;�/2Vh

R
˝.grad � � �/ � � dx dy

k.�; �/kV k�kQ � ˇRM (10.4.85)

is a major difficulty, and most methods will be designed in order to get around
it. For this, the first methods that we are going to consider are those based on the
decomposition principle given in Proposition 10.4.6 and on the re-formulation of
the problem given in Theorem 10.4.2.

Remark 10.4.11. It will often be convenient to look as well at the limit problem:
find .�0h;w0h; �0h/ 2 �h 
Zh 
 �h such that

8
<

:
a.�0h; �h

/C .�
0h
; grad �h � �

h
/ D .f; �h/ 8.�

h
; �h/ 2 Vh;

.�
h
; grad w0h � �0h/ D 0 8�

h
2 �h;

(10.4.86)
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that could also be expressed in the form (10.4.79) with t D 0. It also comes from
the results of Sects. 4.3.2 and 5.5.3 that to get a good approximation of (10.4.61)
by (10.4.79) (that is, with convergence properties independent of t), it is necessary
for (10.4.86) to be a good approximation of (10.4.34) and (10.4.35). ut

We shall first consider the most “naive” case.

Example 10.4.1 (The direct approach). Let us suppose that we are given �h � �

and Zh � Z, and let us choose

�h D grad.Zh/��h: (10.4.87)

This choice implies that

KerBh D f.�
h
; �h/ j �

h
D grad �hg � KerB; (10.4.88)

so that the ellipticity in Kh (10.4.81) evidently holds. It is important to note that
the choice (10.4.87) is very easy to use on the computer, as it actually corresponds
to minimising the energy functional ˘t given by (10.4.19) on Vh D �h 
 Zh and
that you do not even see �

h
(nor �h). The choice (10.4.87) is then one of the most

widely used choices for �h although, in general, one does not realise it.
However, in the limit t ! 0, one is lead to minimise

˘t 	 a.�
h
; �
h
/ � .f; �h/ (10.4.89)

on KerBh. Now, a quick glance to KerBh will make us understand that we have a
long way to go. Consider �?

h
D f��2h; �1hg, that is, a rotation of �=2 of �

h
. It is

clear that if .�
h
; �h/ belongs to KerBh, we then have, by (10.4.88),

div �?
h

D curl�
h

D 0: (10.4.90)

Therefore, with choice (10.4.87), we are minimising ˘t in (10.4.89) on a subset of
functions �

h
satisfying (10.4.90). However, we have already seen in Chap. 8, for the

linear Stokes problem, that it is not recommended to work with velocity fields which
are exactly incompressible (because there are too few of them in general). A direct
application of (10.4.87) is likely to lead to bad results (e.g. locking) unless a very
special choice of�h and Zh has been made. ut

In what follows, we shall mainly concentrate on two groups of finite ele-
ment approaches: the Methods based on the decomposition principle, and the
Methods based on a nonconforming approximation of the original minimisation
problem (10.4.24).
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10.4.5.1 Methods Based on the Decomposition Principle

The first group of methods that we present is directly guided by the decomposition
principle of Propositions 10.4.6 and 10.4.2 in which a Stokes-like problem explicitly
appears. For the sake of simplicity, we shall describe one possible method in
this group, based on the MINI element for Stokes. However, it will be clear that
starting from every finite element stable approximation for the Stokes problem using
continuous pressures, one can derive a Reissner-Mindlin method belonging to the
present group.

The basic idea is to give up a direct approximation of � and to approximate
instead each component of its decomposition into grad h C curlph. Moreover,
as (10.4.71) shows us that �h and ph are analogous to a velocity field and a pressure
field in a Stokes problem, we shall try to use some results of Chap. 8 to build a
suitable approximation.

We assume that ˝ is a convex polygon and that we are given a sequence fThg of
partitions of ˝ into triangles. Let �h be built by employing the MINI element of
Chap. 8 , that is, in the notations of Chap. 2,

(
�h D .L11 \H1

0 .˝//
2 ˚ B3;

Zh D L11 \H1
0 .˝/:

(10.4.91)

These are spaces of piecewise linear polynomials enriched by a bubble function in
the case of �h. We also introduce

�h WD grad.L11 \H1
0 .˝//˚ curl L11 	 gradZh ˚ curl L11: (10.4.92)

This space is then a strict subspace of piecewise constant vector functions
constructed by discretising the ingredients of the decomposition principle of
Proposition 10.4.6 and Remark 10.4.6.

It is straightforward to check that KerBh is made of the pairs .�
h
; �h/ in�h 
Zh

such that

.�
h
; curl qh/ D 0 8qh 2 L11; (10.4.93)

.grad �h; grad �h/ D .�
h
; grad�h/ 8�h 2 Zh 	 L11 \H1

0 .˝/: (10.4.94)

Now, condition (10.4.94) is especially nice as it implies

k�hk1 � c k�
h
k1; 8.�

h
; �h/ 2 KerBh; (10.4.95)

and hence, (10.4.82) holds and we have the ellipticity in the kernel (10.4.81).
We still have to check the inf-sup condition (10.4.85) and we can do it using
Proposition 5.4.3: given .�; �/, we must then be able to build .�

h
; �h/ D ˘h.�; �/

such that
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B..�; �/� .�
h
; �h/; ıh/ D 0 8ıh; (10.4.96)

with

k�
h
k1 C k�hk1 � c .k�k1 C k�k1/: (10.4.97)

Using the structure ı D grad�h C curl qh, condition (10.4.96) becomes:
8
<

:
.grad �h; �h � grad �h/ � .grad �h; � � grad �/ D 0 8�h 2 Zh;
.curl qh; �

h
� grad �h/� .c url qh; � � grad �/ D 0 8qh 2 L11:

(10.4.98)

In order to construct the operator ˘h, we use the result already obtained in
Chap. 8 to deal with the inf-sup condition for the MINI element. In particular, we
proved that there exists an operator˘S , from� D .H1

0 .˝//
2 into �h, such that

.grad qh; � �˘S.�// D 0 8qh 2 L11; (10.4.99)

with k˘S.�/k1 � C k�k1 and C independent of h. With the same arguments, we
can obviously prove that there exists an operator˘R from � D .H1

0 .˝//
2 into �h

such that

.curl qh; � �˘R.�// D 0 8qh 2 L1 � 1; (10.4.100)

with

k˘R.�/k1 � C k�k1; (10.4.101)

with C independent of h. Condition (10.4.100), taking into account the fact that
.curlqh; grad �h/ D .curl qh; grad �/ 	 0 (by Green’s formula), tells us that the
second equation of (10.4.98) is satisfied if we take �

h
D ˘r.�/. We now observe

that the first equation of (10.4.98) reduces to

.grad�h; grad �h/ D . grad�h; grad � � �C˘R.�// 8�h 2 Zh; (10.4.102)

and this is a discrete Dirichlet problem for the Laplace operator for which we have
easily k�hk1 � c .k�k1 C k�k1/, yielding the second part of (10.4.97).

Remark 10.4.12. It should be clear from our construction that the crucial step is to
have an operator˘R satisfying (10.4.100) and (10.4.101). This, always changing as
we did the div operator into rot, essentially means that we could take, instead of the
MINI element, any other finite element pair that is stable for the Stokes problem and
which uses continuous pressures. ut
Having proved the inf-sup condition (10.4.85), we can therefore apply to the limit
problem (10.4.86) the basic results of Chap. 5. We can summarise this in the
following proposition.
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Proposition 10.4.8. Problem (10.4.86) with the choice (10.4.91) and
(10.4.92) has a unique solution. Moreover, if .�0;w0; �0/ is the solution of (10.4.34)
and (10.4.35), we have

k�0��0hk1 C kw0�w0hk1 C k�
0
��

0h
k� 0

� ch fkw0k3 C k�
0
kH.divI˝/g: (10.4.103)

ut
Remark 10.4.13. The result of Proposition 10.4.2 can be applied to the discrete
problem in the present case. Indeed, we built, a priori, �h in order to obtain
a decomposition principle. Problem (10.4.78) can be written in the form: find
.�h.t/;wh.t/;  h.t/; ph.t// in �h 
Zh 
Zh 
 L11=R such that

.grad h; grad �/ D .f; �/ 8� 2 Zh; (10.4.104)
(
a.�h; �/ � .curlph; �/ D . grad h; �/ 8� 2 �h;
� .�h; curl q/� t2.curlph; curl q/ D 0 8q 2 L11=R;

(10.4.105)

.grad wh; grad�/ D .�h; grad�/C t2.grad h; grad�/ 8� 2 Zh: (10.4.106)

These problems can be solved sequentially and (10.4.105) is a Stokes-like problem
using the MINI element of Chap. 8. This approximation has been introduced and
studied for t ¤ 0 in [122]. Using this decomposition and Proposition 10.4.8,
recalling that

k�k� 0 D k k1 C kpk0=R; (10.4.107)

and bringing in the regularity result of Proposition 10.4.7, we have, for t D 0, the
following estimate:

k 0h �  0k1 C kp0 � p0hk0=R � ch fkw0k2 C k 0k2 C kp0k1g � ch kf k0:
(10.4.108)

From a numerical point of view, (10.4.104)–(10.4.106) can lead to an efficient
method, provided one has a Stokes solver available. ut
Remark 10.4.14. An easy duality argument would also show that we have the
estimate

k�0 � �0hk0 C kw0 � w0hk0 � ch2fkw0k3 C k�
0
kH. divI˝/g: (10.4.109)

ut
To end the discussion on this group of methods, we rapidly show how the results

of Sect. 5.5 can be applied to the case t ¤ 0. We consider the error estimate (5.5.52)
from Remark 5.5.5, where we denote V D .H1

0 .˝//
2 
H1

0 .˝/, Q D � 0 and
W D .L2.˝//2. The parameter � is, of course, t2 in the present case. It is
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easily verified that all conditions are satisfied and that we have, taking into account
regularity properties of Remark 10.4.6,

k�.t/��h.t/k21 C kw.t/�wh.t/k21 C k�.t/��
h
.t/k2� 0

C t2 k�.t/ � �
h
.t/k20 � C

�
inf
�
h

k�.t/ � �
h
k21 C inf

qh
kw.t/ � qhk21

C inf
�
h

fk�.t/��
h
k2� 0 C t2k�.t/��

h
k20g
�
: (10.4.110)

Using the decomposition principle and the estimate (10.4.74), we can recover the
following result of [122].

Theorem 10.4.3. For every t 2�0; T Œ, problem (10.4.104)–(10.4.106) with the
choices (10.4.91) and (10.4.92) has a unique solution .�h.t/;wh.t/;  h.t/; ph.t//.
If moreover .�.t/;w.t/;  .t/; p.t// is the solution of (10.4.70)–(10.4.72), then we
have

k�.t/ � �h.t/k21 C kw.t/ � wh.t/k21
C k .t/ �  h.t/k21 C jp.t/ � ph.t/j20 C t2 kp.t/ � ph.t/k21

� c h2fk�.t/k22 C kw.t/k22 C k .t/k22 C jp.t/j21 C t2kp.t/k22g; (10.4.111)

with c independent of h and t .

We therefore have an O.h/ convergence uniform in t . This result cannot be
(much) improved because of the boundary layer effect already described.

10.4.5.2 Nonconforming Approximations of the Minimum Problem

The previous class of methods is, although interesting, rather remote from the
actual engineering practice in which one tries to stick as closely as possible to
the original formulation. In particular, as already pointed out in Remark 10.4.10,
what is preferred in the engineering practice is to work only in terms of the original
unknowns � and w, and, possibly, having their degrees of freedom at the same nodes
(in particular if one wants to extend the methods to shell problems).

As we have seen, however, in Example 10.4.1, working directly on the minimi-
sation problem (10.4.24) would require approximations �h.t/ and wh.t/ that, in the
limit for t ! 0, satisfy �h.0/ D grad wh.0/, and if we want to use a conforming
approximation�h � � this would require wh 2 Zh to belong to H2

0 .˝/, which is
not so easy to obtain, in particular for low degree elements.

The most common escape to the troubles that we are facing is to use some
kind of numerical integration (or a nonconforming approximation) for the term
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t�2k grad w � �k2 which appears in (10.4.19), thus weakening condition (10.4.90).
A way of formalising it is the following. We assume that we are given a linear
operator r which maps �h 
 Zh into (for instance) L2.˝/. To see an example,
consider for instance the possible, but not necessarily recommended, choices:

r.�; �/ 2 L00 and r.�; �/jK D mean value of .grad � � �/ on K (10.4.112)

or

r.�; �/ 2 L00 and r.�; �/jK D value of .grad � � �/ (10.4.113)

at the barycentre of K . Then, one minimises, instead of ˘t (as in (10.4.24)), the
functional

Mr
t WD 1

2
a.�; �/C t�2

2
kr.�;w/k20 � .f;w/ (10.4.114)

on�h 
Zh. This can be regarded as obtained from the problem find .�h;wh; �h/ 2
�h 
Zh 
 �h such that

8
<

:
a.�h; �h

/C .�
h
; r.�

h
; �h//� .f; �h/ D 0 8.�

h
; �h/ 2 Vh;

.�
h
; r.�h;wh// � t2.�h; �

h
/ D 0 8�

h
2 �h;

(10.4.115)

whenever its second equation is equivalent to

�
h

D t�2r.�h;wh/: (10.4.116)

This will always be the case for choices of �h that verify

r.�h;Zh/ � �h: (10.4.117)

In this case, the limit problem (for t D 0) will be: find .�h;wh; �h/ 2 �h 
Zh 
 �h
such that

8
<

:
a.�h; �h

/C .�
h
; r.�

h
; �h//� .f; �h/ D 0 8.�

h
; �h/ 2 Vh;

.�
h
; r.�h;wh// D 0 8�

h
2 �h:

(10.4.118)

With the notation (10.4.28) for A and setting

QBh..�; �/; �/ D .r.�; �/; �/.L2.˝//2 8.�; �/ 2 Vh 8� 2 �h; (10.4.119)

we can write the problem (10.4.115) as
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8
ˆ̂̂
<

ˆ̂̂
:

find .�h.t/;wh.t// 2 Vh and �
h
.t/ 2 Wh 	 �h such that

A..�h.t/;wh.t//; .�; �//C QBh..�; �/; �h.t// D .f; �/ 8 .�; �/ 2 Vh;
QBh..�h.t/;wh.t//; �/ D t2.�; �/W 8� 2 W D .L2.˝//2:

(10.4.120)
The kernel of the operator QBh associated with QB will then be

Ker QBh D f.�
h
; �h/ 2 Vh such that .r.�

h
; �h/; �/ D 0 8� 2 �hg;

(10.4.121)

which, assuming that (10.4.117) is satisfied, can also be written as

Ker QBh D f.�
h
; �h/ 2 Vh such that r.�

h
; �h/ D 0g: (10.4.122)

All this should be connected to the ellipticity in the kernel, or, better, to the following
(more powerful) property, strongly related to (5.5.46)

9 Q̨RM > 0 such that A..�; �/; .�; �//C t�2kBh.�; �/k2W
	 A..�; �/; .�; �//C t�2kr.�; �/k20
� Q̨RMk.�; �/k2V 8 .�; �/ 2 Vh 8t 2�0; T Œ; (10.4.123)

where T is always the diameter of ˝ as in (10.4.19).
We have for this the following result.

Proposition 10.4.9. Let A and QBh be defined as in (10.4.28) and (10.4.119) for
an r that satisfies (10.4.117). If moreover we have

9cr and Cr > 0 such that kr.�; �k20 � Crk grad �k20 � crk�k21 8 .�; �/ 2 Vh;
(10.4.124)

then (10.4.123) holds.

Proof. The proof is almost immediate using the Korn inequality (10.4.12). It is
sufficient to combine the two inequalities

A..�; �/; .�; �//C t�2kr.�; �/k20 � A..�; �/; .�; �// � ˛Kornk�k21
and

A..�; �/; .�; �//C t�2kr.�; �/k20
� T �2kr.�; �/k20 � T �2�Crk grad �k20 � crk�k21

�
:

Condition (10.4.124) might look cumbersome. We have, however, a simple
sufficient condition for that.
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Proposition 10.4.10. Assume that r.�; �/ has the form

r.�; �/ WD Rh.�/� grad �; (10.4.125)

where R is a mapping from �h to �h such that

kRh.�/k0 � CRk�k1; (10.4.126)

for some constant CR independent of h. Then, (10.4.124) holds.

The proof is an easy exercise.
We can now use Theorem 5.5.5 and obtain the following abstract error bound.

Theorem 10.4.4. Assume thatR is an operator from�h to�h satisfying (10.4.126),
and assume that the bilinear form QB is defined through (10.4.125) and (10.4.119).
For every t 2�0; T Œ, let .�.t/;w.t/; �.t/ be the solution of Problem (10.4.61)
and let .�h.t/;wh.t/; �h.t/ be the solution of (10.4.120). Then, for every
.�I .t/;wI .t/; � I .t/ in �h 
Zh 
 �h such that

Rh.�I / � grad wI D t2�
I
; (10.4.127)

we have

k�h.t/ � �I .t/k1 C kwh.t/ � wI .t/k1 C tk�
h
.t/ � �

I
.t/k0

� C
�
k�.t/ � �I .t/k1 C kw.t/ � wI .t/k1 C k�.t/ � �

I
.t/kQ

C sup
�2�h

.Rh�; �/� .�; �
I
/

k�k1
�

(10.4.128)

where C is a constant independent of t and h.

Proof. The proof is elementary: using (10.4.126) and Proposition 10.4.10, we
obtain (10.4.124). Using Proposition 10.4.9, we obtain (10.4.123), which is the
crucial assumption needed to apply Theorem 5.5.5. ut
Remark 10.4.15. In many cases, the last term in the right-hand side of (10.4.128)
can be better estimated by

sup
�2�h

.Rh�
I

� �; �/
k�k1 C sup

�2�h

.�; � � �
I
/

k�k1 (10.4.129)

which, in a sense, separates the errors k�.t/� �
I
.t/k�1 and kRh � Identityk. It has

to be pointed out that, in most cases, the difference Rh�
I

� � will be orthogonal to
all (vector-valued) polynomial of a certain degree ` so that
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sup
�2�h

.Rh�
I

� �; �/

k�k1 � C hk� � �`�k0 (10.4.130)

where �` is the projection operator on polynomials of degree `. ut
As we did for the previous class of methods (the ones based on the decompo-

sition), we will not present here a list of all methods of this type available on the
market. We will instead present a single method, as an example, in order to show
the general guidelines that rule their construction.

We assume again that ˝ is a convex polygon and then we are given a sequence
fThg of partitions of ˝ into triangles. We set, with the notation of Chap. 2,

�h WD .L12 C B3/
2 \ .H1

0 .˝//
2; Zh WD .L12 CB3/\H1

0 .˝/; (10.4.131)

�h WD f� 2 .L02/2 s. t. � j� � t 2 P1.e/ 8 edge eg \H0.curlI˝/: (10.4.132)

Note that this is the rotated BDFM2, following Remark 2.3.2. Together with the
spaces (10.4.131), we consider the operator˘h from, say, .H1.˝//2 into �h defined
in each triangle K by

Z

e

.˘h� � �/ � t�1 ds D 0 8e 2 @K 8�1 2 P1.e/; (10.4.133)

Z

K

.˘h� � �/ � q dx D 0 8q 2 RT 0.K/; (10.4.134)

where RT 0.K/ is the lowest order Raviart-Thomas space (see Chap. 2).
We can now define the operator r . Following the structure (10.4.125), we set

r.�
h
; �h/ D grad �h �˘h�

h
2 �h: (10.4.135)

The kernel of Bh as defined in (10.4.121) is now easily characterised as the set of
.�
h
; �h/ such that

˘h�h
D grad �h: (10.4.136)

Since k˘h�
h
k0 � ck�

h
k1 for some constant c independent of h, we can apply

Proposition 10.4.10 and then Proposition (10.4.9) to get

A..�; �/; .�; �//C t�2kr.�; �/k20 � Q̨RMk.�; �/k2V (10.4.137)

that is, more precisely, condition (10.4.137). In order to apply Theorem 10.4.4, we
just need to check that condition (10.4.127) holds for suitable �I ;wI ; �I having
optimal approximation properties. For the construction of �I ;wI ; �I , we can use
the following lemma.
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Lemma 10.4.1. Assume that

f� 2 �h such that curl� D 0g � grad.Zh/: (10.4.138)

Set �
I

WD ˘h� and assume that we can find �i and wi verifying

curl˘h.�
i � �/ D 0 ˘h.grad wi � grad w/ D 0: (10.4.139)

Then, from (10.4.138) and (10.4.139), one obviously has

˘h.�
i � �/ D grad �h (10.4.140)

for some �h 2 Zh. Then setting

�I WD �i wI D wi � �h; (10.4.141)

one has (10.4.127) as well as

k˘h.�I � �/k1 C kwI � wk1 � 2 k˘h.�
i � �/k1 C kwi � wk1: (10.4.142)

Note that, in other words, inequality (10.4.142) tells us that we can “arrange”
(10.4.127) without losing accuracy. The proof is simple: first we check that

˘h�I � grad wI

D ˘h�
i � grad wI D ˘h� C .˘h� i �˘h�/� grad wI

D ˘h� C grad �h � grad wI D ˘h� � grad wi

D ˘h� �˘h grad wi D ˘h.� � grad wi / D ˘h.t
2�/

D t2�
I
; (10.4.143)

giving us (10.4.127). Inequality (10.4.142) then follows immediately from

kwI � wk1 � kwi � wk1 C k�hk1 � kwi � wk1 C k˘h.�
i � �/k1: (10.4.144)

ut
Then, we just have to construct �i and wi satisfying (10.4.139). The construction

of �i is easy. Indeed, denoting ˘CR the B-compatible operator for the Couzeix-
Raviart element for the Stokes problem and by �1 the projection onto L01, one has
from Example 8.6.1

�1 curl.� � curl˘CR�/ D 0 (10.4.145)

and similarly, from the properties of the BDFM element,

�1 curl � � curl˘h� D 0: (10.4.146)
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We deduce that

curl˘h� D �1 curl � D �1 curl˘CR� D curl˘h˘CR�: (10.4.147)

This says that the choice

�i WD ˘CR� (10.4.148)

will satisfy the first condition of (10.4.139). On the other hand, taking

wi .P / D w.P / for all node P in Th; (10.4.149)
Z

e

.wi � w/ ds D 0 for all edge e in Th; (10.4.150)

and
Z

K

.wi � w/ dx D 0 for all triangleK in Th; (10.4.151)

we easily have that

Z

e

grad.wi � w/ � t �1; ds D 0 8 edge e in Th; 8�1 2 P1.e/ (10.4.152)

and
Z

T

grad.wi � w/ � q dx D 0 8 triangle T in Th; 8q 2 RT 01.T /; (10.4.153)

implying the second condition of (10.4.139).
We can therefore use Theorem 10.4.2 and standard interpolation estimates

(together with Remark 10.4.15) to obtain the following result.

Theorem 10.4.5. Consider the discretised problem (10.4.120) with the choices
(10.4.131)–(10.4.135). Then, for every t 2�0; T Œ, it has a unique solution
.�h.t/;wh.t/; �h.t/. Let moreover .�.t/;w.t/; �.t/ be the solution of Prob-
lem (10.4.61). Then we have

k�h.t/ � �I .t/k1 C kwh.t/ � wI .t/k1 C t k�
h
.t/ � �

I
.t/k0

� C h2
�
k�.t/k3 C kw.t/k3 C tk�.t/k2 C k�kH1.divI˝/

�
(10.4.154)

where C is a constant independent of t and h.

As we already noted, this estimate is overoptimistic because it ignores the
boundary layer effects. From the results of [29], anO.h3=2/ convergence rate should
be expected.



622 10 Complements on Plate Problems

Remark 10.4.16. Similar estimates have been obtained in [117] for the presently
discussed element and related ones, including elements defined on quadrilaterals.
More refined estimates can be found in [126]. A recent review of different Mindlin-
Reissner approximations, including the Linked interpolation techniques (that have
not been considered here), can be found in [190]. ut
Remark 10.4.17. The choice of second-order accuracy has been made only for the
sake of simplicity. Higher-order elements are possible and we shall indicate at
the end of this chapter a general framework within which they could be built. On the
contrary, lower-order elements are more difficult to get; see for instance [54] for the
convergence analysis of a similar method, which is only O.h/ accurate [55, 258].
We also refer to [28, 54, 122, 126, 181, 182, 323] for other examples. ut
Remark 10.4.18. It is possible to use a duality argument to get an O.h3/ estimate
for k� � �hk0 and kw � whk0. See [126]. ut

Now to end this lengthy section, we are in a position to present general guidelines
for the discretisation of Mindlin–Reissner problems.

We must emphasise again that the decomposition principle makes apparent a
direct link with the Stokes problem. Indeed, all examples for which a satisfactory
analysis could be achieved contained an already proven Stokes element. If we distin-
guish the case of continuous pressure approximation and the case of discontinuous
pressure element, we get two types of strategies.

10.4.6 Continuous Pressure Approximations

– Suppose one knows �h 
Qh to be a good approximation of the Stokes problem
with Qh � H1.˝/.

– Choose Zh an approximation of H1
0 .˝/ of the same order of accuracy.

– Write �h D gradZh C curlQh.

In this context, the definition of �h does not lead, in general, to a standard space
and the decomposition principle of Theorem 10.4.2 and Remark 10.4.5 is the only
way to handle things from a computational point of view. It may, however, happen,
for a clever choice of Zh and Qh, that �h turns out to be a standard polynomial
space. Such a situation has been encountered in [28] where, using for �h 
Qh the
MINI element, but takingZh to be L1;NC

1 , that is, a nonconformingP1 approximation
ofH1

0 .˝/, �h comes to be the whole space .L00/2 and not a proper subspace. For an
extension of the Arnold-Falk element to higher degree, see [14, 26].

10.4.7 Discontinuous Pressure Elements

This second class of approximations to the Stokes problem has been the basis for the
“reduced integration” method of the last subsection. Here, we shall try to outline the
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principal features of this strategy in order to provide a guide for possible extensions,
some of which can be found in [117].

1. Here again, our starting point is an approximation of the Stokes problem�h
Qh,
Qh being a space of discontinuous polynomial functions. This approximation
should, of course, satisfy the inf-sup condition.

2. We need to match this with an approximation �h ofH0.curl;˝/. More precisely,
we need a couple of spaces .�h;Qh/ (where Qh is the same as before) and a
uniformly bounded linear operator ˘h ! �h such that we have the commuting
diagram:

H
curl�����! L2.˝/

˘h

??y Ph

??y

�h
curl�����! Qh

(10.4.155)

where � D .H1.˝//2 \H0 .curl;˝/ and Ph is the L2-projection operator.
3. We finally need a space Zh � H1

0 .˝/ such that

gradZh D fıh 2 �h; curl ıh D 0g: (10.4.156)

Ingredients (1), (2), (3) will produce a plate element for which one can essentially
repeat the proof of Theorem 10.4.5 and obtain optimal error estimates for � and w.



Chapter 11
Mixed Finite Elements for Electromagnetic
Problems

The finite element approximation of problems arising from electromagnetism has
reached a discrete level of maturity and a huge literature is available in different
fields of research: in particular in mathematics, engineering, and physics. It is out
of the aims of this chapter to give a thorough survey on the topic. We refer the
interested reader, for instance, to [248, 302], and to the references therein, for an
introduction on computational electromagnetism.

We are interested in showing how the analysis developed in this book can be
successfully applied to an active and important research area. For this reason, we
are focusing our analysis on the time harmonic formulation of Maxwell’s system.
The analysis of the finite element approximation of the time harmonic Maxwell
system, and of the closely related eigenvalue problem associated with Maxwell’s
equations, has been a challenging problem for several researchers during at least the
last two decades.

It is impossible to understand the approximation of Maxwell’s equations without
a reasonable knowledge of the properties of the main functional space used for
the analysis: H.curlI˝/. We thus start the chapter recalling some important
concepts (in particular, about traces and the de Rham complex). We then link the
approximation of the time harmonic Maxwell’s system to the good approximation
of Maxwell eigenvalues and continue our discussion with the state of the art in the
approximation of the eigenvalue problem associated with Maxwell’s equations.

We conclude the chapter with a short introduction of discrete exterior calculus. It
is clear that the de Rham complex and discrete differential forms play an important
role in the analysis of the problems we are going to present (indeed, a differential
complex and a compatible discretisation of it are recognisable behind all presented
results, even when the authors perhaps did not make them explicit).

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5 11,
© Springer-Verlag Berlin Heidelberg 2013
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11.1 Useful Results About the SpaceH.curlI˝/,
its Boundary Traces, and the de Rham Complex

Most of the topics of the present section have been already presented in Chap. 2.
We summarise them here in a unified setting, in order to recall the main results
and the notation. We focus on the three-dimensional setting; some remarks on the
two-dimensional case will be given at the end.
H.curlI˝/ is the space of vector fields v from ˝ to R

3 which satisfy curl v 2
L2.˝/3 with the natural norm kvk2curl D kvk20 C k curl vk20. The following Green
formula, which is valid for smooth functions, is the starting point for the definition
of the boundary trace .v ^ n/ for functions v 2 H.curlI˝/

Z

˝

v � curl� dx �
Z

˝

curl v � � dx D
Z

@˝

.v ^ n/ � � ds: (11.1.1)

We denote by H0.curlI˝/ the subspace of H.curlI˝/ consisting of vector fields v
with vanishing trace v ^ n along the boundary of ˝ .

11.1.1 The de Rham Complex and the Helmholtz
Decomposition When˝ Is Simply Connected

Using the terminology of exterior algebra, the space H.curlI˝/ can be identified
with an element of the following de Rham complex

R ,! H1.˝/
grad�����! H.curlI˝/ curl�����! H.divI˝/ div�����! L2.˝/ ! 0:

(11.1.2)

If we consider homogeneous boundary conditions, then the de Rham complex takes
the following form

0 ,! H1
0 .˝/

grad�����! H0.curlI˝/ curl�����! H0.divI˝/ div�����! L2.˝/ ! R:
(11.1.3)

If ˝ is simply connected, then the two sequences (11.1.2) and (11.1.3) are exact,
that is, the range of each operator equals the kernel of the next one. This means,
for instance, that every divergence-free vector field of H.divI˝/ is the curl of an
element of H.curlI˝/ or that a curl-free vector field of H0.curlI˝/ is the gradient
of an element of H1

0 .˝/.
The previous sequences are related to an important tool of vector calculus: the

so called Helmholtz decomposition. In the case of a simply connected domain (see,
for instance, [223]), the Helmholtz decomposition says that any vector field can
be split as the sum of an irrotational and a solenoidal part which refer to a scalar
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and a vector potential, respectively. More precisely, for any v 2 L2.˝/3, there
exists a unique scalar potential ' 2 H1.˝/=R and a unique vector potential  2
H.curlI˝/\H0.divI˝/ with div D 0 such that

v D grad' C curl : (11.1.4)

If, moreover, v belongs to H0.curlI˝/, then ' can be chosen in H1
0 .˝/. The

Helmholtz decomposition is orthogonal in the sense that .grad'; curl / D 0.

11.1.2 The Friedrichs Inequality

The Friedrichs inequality is an important tool when dealing with the space
H0.curlI˝/. It plays the same role as the Poincaré inequality for the spaceH1

0 .˝/.
Let us consider the space K D H0.curlI˝/ \ H.div0I˝/ consisting of vector

fields in H.curlI˝/ with vanishing tangential component along the boundary and
with zero divergence in ˝ . Then, there exists ˛ > 0 such that the following
inequality holds true

k curl vk0 � ˛kvk0 8 v 2 K: (11.1.5)

It will be clear in the following sections that the Friedrichs constant ˛ is
related to the minimum frequency of Maxwell’s eigenvalue problem (see (11.2.7)).
An immediate consequence of (11.1.5) is that the bilinear form .curl u; curl v/ W
H0.curlI˝/ 
 H0.curlI˝/ ! R is coercive in L2.˝/3 when restricted to
divergence-free vector fields in K .

11.1.3 Extension to More General Topologies

Electromagnetic devices often involve complicated geometries, so that the sim-
plification made so far (˝ simply connected) is not realistic for several practical
applications.

In order to deal with multiply connected domains, a natural mathematical setting
consists in assuming the existence of a finite number of mutually disjoint cuts
�1; : : : ; �N such that˝ n [�i is simply connected. The mathematical justification
of the functional setting required for the description of realistic applications has
been the object of a wide investigation. We refer the interested reader, for instance,
to [8, 105, 196, 248, 302]. In this case, the sequences (11.1.2) and (11.1.3) are no
longer exact. However, the image of each operator is a closed subset of the kernel
of the next one. A standard procedure is to consider quotient spaces, which are then
called cohomology spaces. For instance, looking at the kernel of the curl operator,
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thought as a subset of H0.curlI˝/, we can consider the orthogonal complementK
of gradH1

0 .˝/. While on simply connected domains K D f0g, it turns out that on
multiply connected domains the dimension of K is exactly equal to N (the number
of cuts that we need in order to make ˝ simply connected). The space K consists
of vector fields v which satisfy curl v D 0, divv D 0 in ˝ and v ^ n D 0 on @˝ .

It is clear that the presence of a non-trivial cohomology spaceK has the effect of
changing the construction of Helmholtz’s decomposition which now reads

v D grad' C curl C � (11.1.6)

with � belonging to K .

11.1.4 H.curlI˝/ in Two Space Dimensions

We conclude this section with some remarks concerning two-dimensional domains.
As we have already observed in Remark 2.1.5, when ˝ belongs to R

2 we have
two different curl operators: a vector curl operator which acts on scalar functions
and returns a vector field and a scalar curl operator which acts on vector fields and
returns a scalar function.

More precisely, given a vector u.x1; x2/ D .u1; u2/ we have curl u D @u2
@x1

� @u1
@x2

and, given a scalar �.x1; x2/, we have curl� D
�
@�

@x1
;� @�

@x2

�
.

In this case, the de Rham complex reads

R ,! H1.˝/
curl�����! H.curlI˝/ curl�����! L2.˝/ ! 0; (11.1.7)

or, in presence of boundary conditions,

0 ,! H1
0 .˝/

curl�����! H0.curlI˝/ curl�����! L2.˝/ ! R: (11.1.8)

It is clear that the two-dimensional situation is much simpler than the three-
dimensional one. In particular, the isomorphism between curl (resp. curl) and grad
(resp. div) operators implies that it is enough to study the de Rham complex
associated to H.divI˝/ in order to have all information about H.curlI˝/.

The Helmholtz decomposition takes the same form as in the three-dimensional
case, the only difference being that both potentials are scalar. More precisely, if
˝ 2 R

2 is simply connected, for any vector field v 2 L2.˝/2, there exist a unique
scalar potential ' 2 H1.˝/=R and a unique stream function  2 H1

0 such that

v D grad' C curl : (11.1.9)
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11.2 The Time Harmonic Maxwell System

The classical electromagnetic field is described by the four vectors E , D, H, and B
which are functions of the position x 2 R

3 and of the time t 2 R. The vectors E and
H are referred to as the electric and magnetic field, while D and B are the electric
and magnetic displacements, respectively.

The time harmonic formulation of Maxwell’s equations is based on the following
assumptions on the involved quantities:

E.x; t/ D < �
e�.i!t/E.x/

�
;

D.x; t/ D < �
e�.i!t/D.x/

�
;

H.x; t/ D < �
e�.i!t/H.x/

�
;

B.x; t/ D < �
e�.i!t/B.x/

�
:

(11.2.1)

These assumptions make sense, for instance, when using the Fourier transform
in time or when studying the propagation of electromagnetic waves at a given
frequency.

In Example 1.2.5 of Chap. 1, we already noticed that the time harmonic
assumptions lead to the following time harmonic version of Maxwell’s system

� i!�H C curlE D 0;

div."E/ D r;

� i!"E � curlH D �J;
div.�H/ D 0;

(11.2.2)

where 
.x; t/ D < �
e�.i!t/r.x/

�
denotes the scalar charge density and J .x; t/ D

< �
e�.i!t/J.x/

�
is the vector current density.

We can write (11.2.2) as a second order equation by eliminatingH as follows

curl.��1 curlE/� !2"E D F (11.2.3)

with F D i!J and the divergence condition

� !2 div."E/ D divF: (11.2.4)

Remark 11.2.1. Some of the main mathematical challenges for the approximation
of the time harmonic Maxwell system already arise in the case when a unique
isotropic material is involved. In such case, one has that the material coefficients
� and " are equal to global constants � and " times the identity matrix. For this

reason and in order to make the presentation more readable, we take in this section
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� D " D 1 and denote by u the unknown field E . Another assumption that we
are going to make in this chapter is that the domain ˝ is simply connected. This
simplification rules out significant examples of applications but allows us to start
with the study of this topic in a simple setting where the mathematical properties of
the continuous problem and of its finite element approximation can be presented in
a more immediate way.

More general situations can be studied with the help of the considerations made
in Sect. 11.1.3. ut

In view of Remark 11.2.1 and taking into account perfect conducting boundary
conditions, our problem reads: let ˝ be a simply connected domain; given a
divergence-free vector field f and a positive number !, find a vector field u such
that

curl curl u � !2u D f in ˝;

div u D 0 in ˝;

u ^ n D 0 on @˝:

(11.2.5)

Remark 11.2.2. It can be easily observed by taking the divergence of the first
equation in (11.2.5) that divf D 0 implies div u D 0, so that the second equation is
indeed redundant. ut

From the mathematical point of view, it is clear that the solvability of sys-
tem (11.2.5) is strictly related to the frequency value!. In particular, system (11.2.5)
is ill-posed if !2 D �, where � satisfies

curl curl u D �u in ˝;

div u D 0 in ˝;

u ^ n D 0 on @˝

(11.2.6)

for some non-vanishing vector field u. Problem (11.2.6) is the so called cavity
problem for Maxwell’s equations, which is also known as interior Maxwell’s
eigenvalue problem. We shall refer to the solution of this problem as interior
Maxwell’s eigenvalues and eigenfunctions.

It is clear from this introduction that the study of the Maxwell eigenvalue problem
will be of fundamental importance for the understanding of the time harmonic
Maxwell’s system (11.2.5). This will be done in the next subsection.

11.2.1 Maxwell’s Eigenvalue Problem

We are interested in the finite element approximation of problem (11.2.6): find �2R

such that, for a non-vanishing u, it holds
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curl curl u D �u in ˝;

div u D 0 in ˝;

u ^ n D 0 on @˝:

The finite element approximation of this problem will be considered in Sect. 11.3.
We shall consider the space H0.curlI˝/; some properties related to this space

have been summarised at the beginning of this chapter. More information, includ-
ing finite element spaces approximating it, can be found in Chap. 2. Let V
be the subspace of H0.curlI˝/ consisting of divergence-free vector fields, i.e.,
V DH0.curlI˝/\H.div0I˝/.

A weak formulation of problem (11.2.6) can be written in a natural way as
follows: find � such that for a non-vanishing u 2 V it holds

.curl u; curl v/ D �.u; v/ 8 v 2 V: (11.2.7)

Thanks to the fact that the bilinear form .curl u; curl v/ is symmetric, continuous
and coercive on the space V and to the compact embedding of V in L2.˝/3, the
solution operator associated to problem (11.2.7) is compact and self-adjoint. It
follows that problem (11.2.7) admits a countable set of real and positive eigenvalues
and that each eigenspace is finite dimensional. Moreover, all the eigenfunctions can
be chosen to be real, so that the entire analysis can be performed using real spaces.
It is clear that, within this framework, the space V can be decomposed as the direct
sum of the eigenspaces.

We observe that � D 0 is not an eigenvalue of problem (11.2.7). Indeed, taking
v D u, we get curl u D 0, which implies u D 0 (since div u D 0, ˝ is simply
connected, and u ^ n D 0 on the boundary). Moreover, putting � ¤ 0 in the first
equation of (11.2.6), easily implies that u is divergence-free.

The last remark suggests the introduction of the following unconstrained formu-
lation: find � ¤ 0 such that for a non-vanishing u 2 H0.curlI˝/ there holds

.curl u; curl v/ D �.u; v/ 8 v 2 H0.curlI˝/: (11.2.8)

Remark 11.2.3. As a consequence of the previous comments, it turns out that all
the eigenvalues of (11.2.8) are positive and coincide with those of (11.2.7). The
equivalence is true for the corresponding eigenspaces as well. If the condition
� ¤ 0 is dropped from problem (11.2.8), then the infinite dimensional eigenspace
gradH1

0 .˝/ associated with the value � D 0 is added to the spectrum. This fact is
related to the identity H0.curlI˝/ D V ˚ gradH1

0 .˝/. ut
In order to study problem (11.2.6), mixed variational formulations are generally

used. A first mixed formulation, due to Kikuchi (see [268]), is generally referred to
as Kikuchi’s formulation and consists in looking for eigenvalues � and eigenfunc-
tions u 2 H0.curlI˝/ with u 6D 0 such that there exists p 2 H1

0 .˝/ satisfying
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(
.curl u; curl v/C .gradp; v/ D �.u; v/ 8 v 2 H0.curlI˝/;
.grad q; u/ D 0 8 q 2 H1

0 .˝/:
(11.2.9)

A second mixed variational formulation has been introduced in [89] and makes
use of the space F WD curl.H0.curlI˝//. In this case, we are seeking eigenvalues
� and eigenfunctions  2 F with  ¤ 0 such that there exists � 2 H0.curlI˝/
satisfying

(
.�; �/C .curl �;  / D 0 8 � 2 H0.curlI˝/;
.curl �; '/ D ��. ; '/ 8 ' 2 F :

(11.2.10)

It is well known that problems (11.2.7), (11.2.9), and (11.2.10) are equivalent in
the sense of the following Proposition (see [268] and [89]).

Proposition 11.2.1. The equivalence of problems (11.2.7), (11.2.9) and (11.2.10)
is expressed by the following three statements.

(a) Let .�; u/ be an eigenmode of problem (11.2.7). Then, the following properties
hold:

(i) � is strictly positive;
(ii) There exists p 2 H1

0 .˝/ such that .�; u; p/ solves problem (11.2.9);
(iii) There exists  2 F such that .�; �;  / solves (11.2.10) with the choice

� D u.

(b) Let .�; u; p/ be a solution to (11.2.9). Then,

(i) � is strictly positive;
(ii) .�; u/ solves (11.2.7).

(c) Let .�; �;  / be a solution to (11.2.10). Then,

(i) � is strictly positive;
(ii) .�; u/ solves (11.2.7) with u D � . ut

Example 11.2.1. When ˝ is a two-dimensional domain, interior Maxwell’s eigen-
problem (11.2.6) can be reduced to a more standard eigenvalue problem for
the Laplace equation with Neumann boundary conditions. Indeed, if . ; �/ is a
solution to

�� D � in ˝;

@ 

@n
D 0 on @˝;

(11.2.11)

then it is not difficult to check that u D curl satisfies curl curl u D �u (since
� D curl curl ) and that u meets the boundary condition u � t D 0; it can
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actually be shown that all two-dimensional solutions to (11.2.6) coincide with those
to (11.2.11) via the identification u D curl .

For instance, if ˝ is the square .0; �/2, then the interior Maxwell eigenvalues
are given by �mn D m2 C n2 with m; n D 0; 1; 2; : : : and m C n > 0, and the
corresponding eigenfunctions are

umn D .�n cos.mx/ sin.ny/;m sin.mx/ cos.ny//:

On the other hand, the situation in three dimensions is quite different. Since this
is not the main object of this chapter, we do not stress the reader with the three-
dimensional details which can be found with the help of [9, 304]. ut

11.2.2 Analysis of the Time Harmonic Maxwell System

A weak formulation of problem (11.2.5) can be naturally obtained with the use of
the spaceH0.curlI˝/ of vector fields v satisfying curl v 2 L2.˝/3 and v^n D 0 on
@˝ . We refer to the beginning of this chapter and to Chap. 2 for more information on
this space and its finite element approximation. After multiplying the first equation
of (11.2.5) by a test function v 2 H0.curlI˝/, integrating over ˝ , and integrating
by parts taking into account the boundary conditions, we get in a standard way the
following variational formulation of our problem: given f 2L2.˝/3 with divf D 0,
find u 2 H0.curlI˝/ such that

.curl u; curl v/ � !2.u; v/ D .f ; v/ 8 v 2 H0.curlI˝/: (11.2.12)

We did not take into account explicitly the divergence-free condition thanks to
Remark 11.2.2. However, it is clear that enforcing the divergence- free condition at
the discrete level might be a significant source of trouble. We shall actually observe
that suitable mixed formulations will help the understanding of the problem under
consideration and its numerical approximation.

One of the most common ways of deriving a mixed formulation for prob-
lem (11.2.12) is to consider the first (left) part of the de Rham complex (11.1.2).
More precisely, the divergence-free condition can be enforced by requiring u to be
orthogonal to any element of gradH1

0 .˝/. In this framework, the mixed variational
formulation is: given f 2 L2.˝/3 with divf D 0, find u 2 H0.curlI˝/ and

p 2 H1
0 .˝/ such that

(
.curl u; curl v/� !2.u; v/C .gradp; v/ D .f ; v/ 8 v 2 H0.curlI˝/;
.grad q; u/ D 0 8 q 2 H1

0 .˝/:
(11.2.13)



634 11 Mixed Finite Elements for Electromagnetic Problems

Let us show that problems (11.2.13) and (11.2.12) are equivalent. It is clear
that a solution of (11.2.12) is also solution of (11.2.13) with pD 0. Vice
versa, we remark that it is admissible to take vD gradp in (11.2.13) since
gradH1

0 .˝/�H0.curlI˝/. Hence, since curl gradpD 0, .gradp; u/D 0 and
divf D 0, we get .gradp; gradp/D 0 which, together with the boundary
conditions, easily implies pD 0.

Remark 11.2.4. We have just observed that formulations (11.2.12) and
(11.2.13) are equivalent. This is mainly due to the inclusion

gradH1
0 .˝/ � H0.curlI˝/: (11.2.14)

ut
It is then natural to define the following bilinear forms

a.u; v/ W H0.curlI˝/ 
H0.curlI˝/ ! R

WD .curl u; curl v/� !2.u; v/
b.q; v/ W H1

0 .˝/ 
H0.curlI˝/ ! R

WD .grad q; v/:

(11.2.15)

The following theorem gives the conditions for the well-posedness of
problem (11.2.12).

Theorem 11.2.1. Let us assume that !2 is not an interior Maxwell eigenvalue (see
problem (11.2.6)); then, problem (11.2.12) has a unique solution which satisfies the
a priori estimate

kukcurl � C max
n
1C !2;

1C �i

j�i � !2j ; i D 1; 2; � � �
o
kf k0; (11.2.16)

where �i , i D 1; 2; � � � , are the interior Maxwell eigenvalues.

Proof. The proof might be carried on by means of the Fredholm alternative theorem.
We prefer, however, to make use of the mixed formulation (11.2.13) and to prove
appropriate inf-sup conditions for the bilinear forms introduced in (11.2.15). This
approach will prove very useful when considering the discretisation of our problem.

It is clear that the forms a and b (see (11.2.15)) are linear and continuous, the
continuity constant of a being 1 C !2. In order to show existence and uniqueness
for problem (11.2.13), let us prove the inf-sup conditions for a and b.

The inf-sup condition for the bilinear form b is trivial: given q 2 H1
0 .˝/, we can

take v D grad q 2 H0.curlI˝/ and get

sup
v2H0.curlI˝/

b.q; v/

kvk1 � k grad qk20
kqk1 � Ckqk1; (11.2.17)

where the constant C is related to the Poincaré inequality.
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The inf-sup condition for the bilinear form a is less immediate. It is clear that if
!2 D 0, the bilinear form a is elliptic in the kernel K consisting of divergence-
free vector fields in H0.curlI˝/. This fact is a consequence of the Friedrichs
inequality (11.1.5) as it has been already remarked in Sect. 11.1.2.

We need to prove that

sup
v2K

a.u; v/

kvkcurl
� Ckukcurl 8 u 2 K: (11.2.18)

We observe that any element of K can be presented as a Fourier series in terms
of interior Maxwell’s eigenfunctions. More precisely, let fui g and f�gi , i D 1; : : :

be the set of interior Maxwell’s eigenmodes, such that

.curl ui ; curl v/ D �i.ui ; v/ 8 v 2 H0.curlI˝/;
div ui D 0;

kuik0 D 1;

.ui ; uj / D .curl ui ; curl uj / D 0 for i ¤ j:

(11.2.19)

Since K D spanfui g, we can write generic elements u and v in K as

u D
1X

iD1
aiui ; v D

1X

iD1
biui : (11.2.20)

We also observe explicitly that eigenfunctions ui satisfy the Friedrichs equality

k curl uik20 D �i

1C �i
kuik2curl: (11.2.21)

Given u 2 K as in (11.2.20), let us construct v 2 K in order to prove (11.2.18).
Since !2 does not coincide with �i for any i , we have that

.ai curl ui ; bi curl ui /� !2.aiui ; biui / ¤ 0I (11.2.22)

we define bi D ˙ai with the signs suitably chosen such that the expressions
in (11.2.22) are positive for every i . In particular, it turns out that

kvkcurl D kukcurl: (11.2.23)



636 11 Mixed Finite Elements for Electromagnetic Problems

We then have

a.u; v/ D
�X

i

ai curl ui ;
X

j

bj curl uj

�
� !2

�X

i

aiui ;
X

j

bj uj

�

D
X

i

ai bi .curl ui ; curl ui /� !2
X

i

ai bi .ui ; ui /

D
X

i

ai bi .curl ui ; curl ui /� !2
X

i

ai bi

�i
.curl ui ; curl ui /

D
X

i

a2i .curl ui ; curl ui /

ˇ̌
ˇ̌1 � !2

�i

ˇ̌
ˇ̌

D
X

i

a2i
�i

1C �i
kuik2curl

ˇ̌
ˇ̌1 � !2

�i

ˇ̌
ˇ̌

� min
i

j�i � !2j
1C �i

kuk2curl:

(11.2.24)

Combining (11.2.23) and (11.2.24) gives the inf-sup condition for the bilinear form
a (11.2.18) with a constant equal to

C D min
i

j�i � !2j
1C �i

: (11.2.25)

Putting together this estimate for the inf-sup constant and the continuity constant of
a.�; �/ gives the a priori estimate (11.2.16). ut

11.2.3 Approximation of the Time Harmonic Maxwell
Equations

The finite element approximation of problem (11.2.12) is done as usual by consid-
ering a finite dimensional subspace Vh � H0.curlI˝/ and by looking for uh 2 Vh
such that

.curl uh; curl v/� !2.uh; v/ D .f ; v/ 8 v 2 Vh: (11.2.26)

From the discussion of the previous section, it should be clear that a discrete
counterpart of the mixed formulation (11.2.13) will play an important role for
the analysis of (11.2.26). Let us consider a finite dimensional approximation of
H1
0 .˝/, that is, Qh � H1

0 .˝/. We can consider the discretisation of (11.2.13):
find .uh; ph/ 2 Vh 
Qh such that
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(
.curl uh; curl v/� !2.uh; v/C .gradph; v/ D .f ; v/ 8 v 2 Vh;
.grad q; uh/ D 0 8 q 2 Qh:

(11.2.27)

The following proposition states that (11.2.26) and (11.2.27) are equivalent,
provided that the inclusion

gradQh � Vh (11.2.28)

is satisfied (see Remark 11.2.4).

Proposition 11.2.2. Let u1 2 Vh be a solution to (11.2.26) and .u2; ph/ 2 Vh 
Qh

be a solution to (11.2.27) with the same data ! and f with divf D 0. Let us assume
that the inclusion (11.2.28) is satisfied. Then, ph D 0 and u1 D u2.

Proof. Taking v D grad q in (11.2.26), it is clear that we get the second equation
of (11.2.27).

It is then enough to show that in (11.2.27) we have ph D 0. Since
gradQh � Vh, we can take vD gradph in the first equation of (11.2.27) and,
due to curl gradph D 0 and .u2; gradph/ D 0, we get .gradph; gradph/ D
.f ; gradph/ D 0. The boundary conditions on ph easily imply ph D 0. ut
Remark 11.2.5. It is worth spending a few words about the inclusion (11.2.28). It
is clear that (11.2.28) might be satisfied by takingQh D f0g but this would not be a
significant situation. On the other hand, it has been shown in Chap. 2 that edge finite
elements satisfy the inclusion with Qh chosen to be made of standard Lagrangian
finite elements. This is part of the de Rham complex which is associated with edge
finite elements (see (2.3.64)). In general, a maximal definition of Qh can be made
according to the following argument. Let V0 be the kernel of the curl operator in
the space Vh. Then, any function v in V0 can be written as grad q for a suitable q
which is uniquely determined up to an additive constant. By virtue of the boundary
conditions on v, the function q has a constant value on the boundary @˝ and we can
choose the constant in such a way that q belongs to H1

0 .˝/. The space Qh can then
be defined as the set of all such q’s. ut

In order to find the discrete version of Theorem 11.2.1 which will provide us
with an a priori error bound for our approximation, we have to consider the discrete
interior Maxwell eigenvalues �i;h, i D 1; � � � ; Nh, which satisfy

uh 2 Vh; .curl uh; curl v/ D �h.uh; v/ 8 v 2 Vh: (11.2.29)

Theorem 11.2.2. Let us assume that !2 is not an interior Maxwell eigenvalue
(see (11.2.7)) and let u be the unique solution to (11.2.12). Let us assume, moreover,
that !2 and h are such that !2 does not coincide with any discrete interior
Maxwell’s eigenvalues �i;h, i D 1; : : : ; Nh (see (11.2.29)). Then, problem (11.2.26)
has a unique solution uh which satisfies the error estimate
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ku � uhkcurl � C max
n
1C !2;

1C �i;h

j�i;h � !2j ; i D 1; 2; : : :
o

inf
v2Vh

ku � vkcurl:

(11.2.30)

Proof. The proof is analoguous to the one of Theorem 11.2.1. In particular, we shall
show the well-posedness of the mixed problem (11.2.27). This consists in showing
the discrete inf-sup conditions for the bilinear forms a and b introduced in (11.2.15).

Let us choose Qh such that inclusion (11.2.28) is satisfied. As observed in
Remark 11.2.5, this can be done for any choice of Vh.

The inf-sup condition for the bilinear form b is immediate (given q 2 Qh, take
v D grad q 2 Vh).

The inf-sup condition for the bilinear form a can be proved as in the continuous
case by considering a basis of Vh consisting of discrete Maxwell eigenfunctions ui;h
(see (11.2.29)). The discrete Friedrichs equality in this case reads

k curl ui;hk20 D �i;h

1C �i;h
kui;hk2curl: (11.2.31)

Arguing as in the proof of Theorem 11.2.1, we get the inf-sup constant for the
bilinear a

C D min
i

j�i;h � !2j
1C �i;h

: (11.2.32)

The final estimate (11.2.30) is then obtained by observing that we do not need to
estimate the terms kp � phk1 and infq2Qh

kp � qk1 since both p and ph are zero.
ut

Remark 11.2.6. The conclusion of Theorem 11.2.2 can be summarised by saying
that any choice of Vh which guarantees a good discretisation of H0.curlI˝/
provides an optimally convergent scheme for the approximation of the time
harmonic equation (11.2.12) under the condition that the distance between the
discrete spectrum of Maxwell’s eigenproblem and !2 remains bounded away from
zero. Condition

min
i

j�i;h � !2j � k > 0 (11.2.33)

is achieved, in particular, if Vh provides a good discretisation of Maxwell’s
eigenvalues. This is the statement of the following corollary ut
Corollary 11.2.1. If Vh is such that the eigenvalues of Maxwell’s cavity problem
are correctly approximated (see Sect. 11.2.1), then a scheme based on (11.2.26) is
solvable for h small enough and provides a convergent approximation to the time
harmonic Maxwell system (11.2.12). Moreover, the error estimate

ku � uhkcurl � C inf
v2Vh

ku � vkcurl

holds true with a constant C which can be computed as in (11.2.26).



11.3 Approximation of the Maxwell Eigenvalue Problem 639

Remark 11.2.7. According to the above discussion (see in particular Proposi-
tion 11.2.2), it is clear that the solution of (11.2.26) is equivalent to the one
of the mixed formulation (11.2.27) in exact arithmetic. For this reason, it is
recommendable to use the standard formulation (11.2.26) which turns out to be
less expensive and easier to solve. It has been however reported that in some
cases, one gets more stable results when performing the computation using the
mixed formulation (11.2.27). This is particularly visible for very small frequencies
(see [371]) or for curvilinear geometries. Computing with the mixed formulation
can also be a good debugging tool, since if the Lagrange multiplier is not a machine
zero, then this is a good indication that something is wrong. ut

11.3 Approximation of the Maxwell Eigenvalue Problem

Remark 11.2.6 raises the question of whether a finite element space sequence fVhg
provides a good approximation of interior Maxwell’s eigenvalues or not. We recall
that � 2 R is an interior Maxwell’s eigenvalue and u a corresponding eigenfunction
if u 6	 0 and

curl curl u D �u in ˝;

div u D 0 in ˝;

u ^ n D 0 on @˝:

This topic has been intensively discussed in the mathematical and engineering
literature. The analysis of the two-dimensional case is more standard and can be
carried with the help of a mixed formulation which is related to the Neumann
problem for Laplace eigenproblem. We refer to [192] for the required estimate and
to Sect. 11.3.1 for the details of the two-dimensional analysis. On the other hand,
in three space dimensions, the situation is more complicated and has been studied
by several authors. We refer, among others, to the pioneer works by Bossavit [102–
104] and to the first analysis attempt by Kikuchi [269], where it has been proved
that lowest order tetrahedral edge elements satisfy a discrete compactness property.
The first rigorous analysis of the three-dimensional case appeared in [89] and it is
based on a suitable projection operator which has been constructed in [74]. A proof
based on the discrete compactness property can be found in [303] and in [137] where
the situation of non-constant coefficients (allowing for heterogeneous and different
materials) has been considered. A comprehensive analysis can be found in [76] and
we refer the interested reader to [248, 302] and [77] for review contributions.

Here we are adopting the presentation of [76]. We recall that, in Sect. 11.2.1, we
introduced a variational formulation of our problem and two equivalent mixed for-
mulations (see, in particular, Proposition 11.2.1). For the reader’s convenience, we
recall here the three equivalent variational formulations. The first unconstrained for-
mulation is: find � 2 R such that for a non-vanishing u 2 H0.curlI˝/ there holds
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(
.curl u; curl v/ D �.u; v/ 8 v 2 H0.curlI˝/;
� 6D 0:

(11.3.1)

Notice that the divergence-free constraint has been replaced by the requirement
� 6D 0 (see also Remark 11.2.3).

The Kikuchi formulation is: find � 2 R such that for u 2 H0.curlI˝/ with u 6D 0

there exists p 2 H1
0 .˝/ satisfying

(
.curl u; curl v/C .gradp; v/ D �.u; v/ 8 v 2 H0.curlI˝/;
.grad q; u/ D 0 8 q 2 H1

0 .˝/:
(11.3.2)

Finally, the second mixed formulation reads: find � 2 R such that for  2 F
with  ¤ 0 there exists � 2 H0.curlI˝/ satisfying

(
.�; �/C .curl �;  / D 0 8 � 2 H0.curlI˝/;
.curl �; '/ D ��. ; '/ 8 ' 2 F :

(11.3.3)

Let Vh � H0.curlI˝/, Qh � H1
0 .˝/, and Fh � F be finite element spaces.

The approximation of (11.3.1) consists in looking for eigenvalues �h and
eigenfunctions uh 2 Vh such that uh 6D 0 and

(
.curl uh; curl v/ D �h.uh; v/ 8 v 2 Vh;
�h 6D 0:

(11.3.4)

Notice again that the divergence-free constraint has been replaced by the
requirement �h 6D 0 which is common practice in the numerical approximation
of (11.2.7).

The approximation of Kikuchi’s formulation (11.3.2) consists in looking for
eigenvalues �h and eigenfunctions uh 2 Vh with uh 6D 0 such that there exists
ph 2 Qh satisfying

(
.curl uh; curl v/C .gradph; v/ D �h.uh; v/ 8 v 2 Vh;
.grad q; uh/ D 0 8 q 2 Qh:

(11.3.5)

Finally, the approximation of problem (11.3.3) consists in looking for eigenval-
ues �h and eigenfunctions  

h
2 Fh with  

h
¤ 0 such that there exists �h 2 Vh

satisfying

(
.�h; �/C .curl �;  

h
/ D 0 8 � 2 Vh;

.curl �h; '/ D ��h. 
h
; '/ 8 ' 2 Fh:

(11.3.6)
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In order to state the discrete analogue of Proposition 11.2.1, we need some
compatibility assumptions on the discrete spaces Qh, Vh, and Fh. We shall assume
that the following inclusions hold

gradQh � Vh; curlVh � Fh: (11.3.7)

Remark 11.3.1. Inclusion (11.3.7) extends (11.2.28). In general, a numerical
scheme for the approximation of (11.2.6) is given by a suitable definition of Vh.
The spaces Qh and/or Fh are then constructed in order to consider the mixed
formulations (11.3.5) and/or (11.3.6). In Remark (11.2.5), we already described a
possible non-trivial construction of Qh, while Fh can simply be defined as curlVh.

ut
The following proposition is the discrete analogue of Proposition 11.2.1.

Proposition 11.3.1. Let us assume that property (11.3.7) holds true. Then, the
equivalence of problems (11.3.4), (11.3.5) and (11.3.6) is expressed by the following
three statements.

(a) Let .�h; uh/ be an eigenmode of problem (11.3.4). Then, the following proper-
ties hold:

(i) �h is strictly positive;
(ii) There exists ph 2 Qh such that .�h; uh; ph/ solves problem (11.3.5);

(iii) There exists  
h

2 Fh such that .�h; �h;  h
/ solves (11.3.6) with the choice

�h D uh.

(b) Let .�h; uh; ph/ be a solution to (11.3.5). Then,

(i) �h is strictly positive;
(ii) .�h; uh/ solves (11.3.4).

(c) Let .�h; �h;  h
/ be a solution to (11.3.6). Then,

(i) �h is strictly positive;
(ii) .�h; uh/ solves (11.3.4) for uh D �h. ut

11.3.1 Analysis of the Two-Dimensional Case

For the study of the two-dimensional case, we recall that Maxwell’s eigen-
value problem can be identified to the more standard Laplace eigenproblem with
Neumann boundary conditions (11.2.11) (see Example 11.2.1). Moreover, in this
particular situation, the second mixed formulation 11.3.6 reads as follows: find
� 2 R such that for  2 L20.˝/ with  ¤ 0 there exists � 2 H0.curlI˝/ satisfying



642 11 Mixed Finite Elements for Electromagnetic Problems

(
.�; �/C .curl �;  / D 0 8 � 2 H0.curlI˝/;
.curl�; '/ D ��. ; '/ 8 ' 2 L20.˝/:

(11.3.8)

It is clear that the only formal difference between this formulation and the
mixed approximation of the Laplace eigenvalue problem with Neumann boundary
conditions is the presence of the curl operator instead of the div one. On the
other hand, in two dimensions, we already observed that curl and div operators
are isomorphic, and since curl curl D div grad D � , we have that (11.3.8)
provides indeed the same eigenvalues as the standard mixed approximation of the
Laplace eigenproblem. Moreover, the component  of the solution is the same as
the eigenfunction of the standard Laplace problem, while the component � is rotated
by an angle �=2 (it is an approximation of curl instead of grad ). This statement
is summarised in the next proposition.

Proposition 11.3.2. When ˝ � R
2, the eigensolutions .�; u/ of problem (11.3.1)

are related to the eigensolutions .�; / of the following standard Laplace problem

(
.�; �/C .div �;  / D 0 8 � 2 H0.divI˝/;
.div �; '/ D ��. ; '/ 8 ' 2 L20.˝/;

with the identification � D � and u D curl D �?.
Moreover, the discrete eigensolutions .�h; uh/ 2 R 
 Vh of problem (11.3.4) are

related to the eigensolutions .�h;  h/ 2 R 
 F of the following mixed problem

(
.�h; �/C .div �;  h/ D 0 8 � 2 V ?

h

.div �h; '/ D ��h. h; '/ 8 ' 2 F

with the identification �h D �h, uh D �?
h , and where F D divV ?

h D curlVh. ut
We now come to the choice of finite element space Vh. As already discussed

in Chap. 2, if we take as V ?
h any good approximation of H0.divI˝/, then Vh will

provide a good approximation of H0.curlI˝/. Indeed, the next comments apply to
any choice of V ?

h equal to RT , BDM, or BDFM.
The error analysis can be performed by the standard tools already presented in

Sect. 1.2.1 and is essentially a consequence of the error estimates of [192]. In partic-
ular, according to the theory presented in Sect. 1.2.1 for the eigenvalue problems of
the form .0; g/, the key condition to be checked is the B-Id-compatibility condition
of Definition 6.5.6, we thus need to construct a B-compatible operator satisfying
(6.5.56), that is, which converges to the identity in norm. More precisely, we need
to construct˘h W H1.˝/2 ! V ?

h such that

.div.� �˘h�/; '/ D 0 8 � 2 H1.˝/2; 8 ' 2 F (11.3.9)
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and

k� �˘h�k0 � !.h/k�k1; (11.3.10)

with !.h/ tending to zero as h tends to zero.
It is immediate to check that the standard interpolation operator in Vh satis-

fies (11.3.9), so that (11.3.10) follows by standard interpolation estimates.
The use of Proposition 11.3.1, and in particular of problem (11.3.8), for the

analysis of two-dimensional Maxwell’s eigenproblem, does not follow the same
path when considering quadrilateral finite elements. In this case, we already
observed that RT , BDM, or BDFM do not achieve optimal approximation orders
on general quadrilateral meshes. It is clear that poor approximation properties will
influence the eigenmode convergence. In particular, lowest order Raviart–Thomas
elements do not achieve convergence at all. We refer the interested reader to [64,65].

A possible cure to this bad phenomenon is to use the ABF element introduced
in [21]. In this case, however, problem (11.3.8) does not help for the analysis since
it is not immediate to characterise the space F D curlVh as a standard finite
element space. A careful convergence analysis has been however performed in [216]
where it has been shown that the ABF element is optimally convergent for the
approximation of the eigenvalue problem we are interested in.

Another possible cure for the bad behaviour of Raviart–Thomas spaces on
general quadrilateral meshes is to use the following reduced integration technique
presented in [94]: find �h 2 R such that for a non-vanishing uh 2 Vh it holds

(
.P curl uh; P curl v/ D �h.uh; v/ 8 v 2 Vh;
�h ¤ 0;

(11.3.11)

where Vh is the rotated RT space of order k and P denotes the L2 projection onto
L1Œk� (the lowest order is k D 0, so that in this case, P turns out to be the L2

projection onto piecewise constants). In [94], it is shown that the scheme (11.3.11)
is optimally convergent and that the projection P can be actually evaluated with
the help of a suitable quadrature rule (in the lowest order case, this is the standard
midpoint rule). In particular, scheme (11.3.11) turns out to be cheaper with respect
to the standard one (which in this case is only suboptimally convergent) and to
the scheme based on ABF element (which is optimally convergent but uses more
degrees of freedom).

Another strategy for modifying standard RT –based spaces is presented in [348]
and analysed in [93] within the framework of mimetic finite differences. It consists
in modifying the standard shape functions of RT elements by adding an interior
bubble which depends on the distortion of the quadrilateral element (no modification
on parallelograms).

Remark 11.3.2. The two-dimensional Maxwell eigenvalue problem (together with
models related to it) has been considered by many authors; among others, we
recall [66], where edge elements are used for the computation of dielectric
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waveguides, and [169], where a discrete compactness property is proved for
two-dimensional edge elements. ut
Remark 11.3.3. The extension to three dimensions of the results of the present
section is pretty much straightforward for problems involving H.divI˝/ and
has been the object of an intensive research, in particular, for fluid-structure
interaction problems [63, 67]. Indeed, also in three space dimensions, the interpola-
tion operator for standard H.divI˝/ approximations satisfies the B-compatibility
condition (11.3.9).

On the other hand, the situation is not so immediate for problems involving
H.curlI˝/ in three dimensions. In particular, three-dimensional Maxwell’s eigen-
value problem cannot be analysed with the tools of this section, since the interpola-
tion operator for H.curlI˝/ approximations is not a B-compatible operator. ut

For the reasons explained above, in the next sections, we will develop a more
general theory for the analysis of Maxwell’s eigenvalue problem.

11.3.2 Discrete Compactness Property

We have already used the name discrete compactness; it has been considered for
the approximation of interior Maxwell’s eigenvalues for the first time by Kikuchi
in [269]. In this section, we give a formal definition of this concept and show how it
relates to the variational formulations of the problem we are studying (see also [77,
Part 4]).

Definition 11.3.1. We say that the space sequences fVhg and fQhg satisfy the
Discrete Compactness Property if any sequence fung uniformly bounded in
H0.curlI˝/, with un 2 Vhn , such that

.un; grad qn/ D 0 8 qn 2 Qhn; 8 n; (11.3.12)

contains a subsequence strongly converging in L2.˝/3 to a limit u.

Remark 11.3.4. The definition of discrete compactness is often found in the
literature without referring to the arbitrary index choice hn. This is needed to avoid
abstract situations occurring in cases such as when the family fVhg comprises good
spaces interspersed with an infinite number of bad spaces. Without extracting the
first arbitrary subsequence associated with hn, the negative effect of the bad spaces
might be annihilated by a suitable subsequence choice.

Remark 11.3.5. It is not difficult to see that the limit u is actually in H0.curlI˝/
(with norm not exceeding the constant that bounds the whole sequence in
H0.curlI˝/) and that div u D 0 if the space [hQh is dense in H1

0 .˝/. ut
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As it should be clear from its name, the DCP mimics, at the discrete level, the
compact embedding of H0.curlI˝/ \ H.div0I˝/ into L2.˝/3. The divergence-
free constraint is replaced by condition (11.3.12), which is often called the discrete
divergence-free constraint. We would like to emphasise that the use of a weak
divergence condition, like in (11.3.12), is required since functions in Vh are in
H0.curlI˝/ but need not be (and generally are not) in H.divI˝/.

The DCP for Maxwell’s eigenproblem is a particular situation of a more general
picture. We refer the interested reader to the pioneer works by Stummel [359]
and Vaı̆nikko [373]. Some essential results are summarised in the book of
Chatelin [145]. In particular, the discrete-compact convergence defined on page
268 of [145] (Sect. 2 of the Appendix) reads exactly the same as Definition 11.3.1
in our setting.

According to Remark 11.3.5, we shall call Strong Discrete Compactness Prop-
erty (SDCP) the following property.

Definition 11.3.2. We say that the space sequences fVhg and fQhg satisfy
the Strong Discrete Compactness Property if they satisfy the DCP (see
Definition 11.3.1) and the limit u has the property div u D 0.

In [76], it has been proved that there is a strong connection between DCP, SDCP
and the natural conditions for the approximation of eigenvalues in mixed form that
have been reported in Sect. 1.2.1. We recall here the main results; the interested
reader can find the proofs in [76].

First of all, let us write the main definitions (already given throughout this book
and in particular in Sect. 1.2.1) in the specific case of Maxwell’s eigenvalue problem.

The continuous and discrete kernels of the divergence operator are

Kd WD fv j v 2 H0.curlI˝/; div v D 0 in ˝g; (11.3.13)

Kdh WD fvh j vh 2 Vh; .vh; grad qh/ D 0 8 qh 2 Qhg: (11.3.14)

Definition 11.3.3. The ellipticity in the discrete kernel is satisfied if there exists a
positive constant ˛, independent of h, such that

.curl vh; curl vh/ � ˛kvhk2L2 8 vh 2 Kdh : (11.3.15)

Definition 11.3.4. The weak approximability ofQ is satisfied if there exists !1.h/,
tending to zero as h goes to zero, such that for every p 2 H1

0 .˝/,

sup
vh2Kdh

.vh; gradp/

kvhkcurl
� !1.h/kpkH1: (11.3.16)

Let now V0 be the subspace of H0.curlI˝/ containing the solutions u to the
problem
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(
.curl u; curl v/C .gradp; v/ D .f ; v/ 8 v 2 H0.curlI˝/;
.grad q; u/ D 0 8 q 2 H1

0 .˝/;
(11.3.17)

for all possible f 2 L2.˝/3. We have V0 � Kd and, due to the hypotheses on the

domain ˝ , functions v in V0 satisfy v 2 H1=2.˝/3 and curl v 2 H1=2.˝/3. The
space V0 will be endowed with its natural norm.

Definition 11.3.5. The strong approximability of V0 is satisfied if there exists
!2.h/, tending to zero as h goes to zero, such that for every u 2 V0, there exists
uI 2 Kdh such that

ku � uIkcurl � !2.h/kukV0 : (11.3.18)

The continuous and discrete kernels of the curl operator are

Kc WD f� j � 2 H0.curlI˝/; curl � D 0 in ˝g; (11.3.19)

Kch WD f�h j �h 2 Vh; .curl �h; 'h/ D 0 8 ' 2 Fhg: (11.3.20)

Let now V 0 be the subspace ofH0.curlI˝/ and F0 the subspace of F containing
the solutions � and  to the source problem

(
.�; �/C .curl �;  / D 0 8 � 2 H0.curlI˝/;
.curl �h; '/ D �.g; '/ 8 ' 2 F :

(11.3.21)

Definition 11.3.6. The weak approximability of F0 is satisfied if there exists !3.h/,
tending to zero as h goes to zero, such that, for every ' 2 V 0 and every �h 2 Kch,

.curl �h; '/ � !3.h/k�hkL2k'kF0 : (11.3.22)

Definition 11.3.7. The strong approximability of F0 is satisfied if there exists
!4.h/, tending to zero as h goes to zero, such that, for every  2 F0, there exists
 
h

2 Fh satisfying

k �  
h
kL2 � !4.h/k kF0 : (11.3.23)

Let ˘h W V 0 ! Vh be a B-compatible operator that is (see (6.5.55))

(
.curl.� �˘h�/; '

h
/ D 0 8 � 2 V 0; 8 '

h
2 Fh;

k˘h�kcurl � Ck�kV 0 8 � 2 V 0:
(11.3.24)
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Definition 11.3.8. We shall say, following Sect. 6.5.5, that we have a
B-Id-compatibility condition if there exists !5.h/, tending to zero as h goes to
zero, such that

k� �˘h�kL2 � !5.h/k�kV 0 8 � 2 V 0: (11.3.25)

It is clear that, according to the theory developed in [81] and summarised in
Sects. 6.5.4 and 6.5.5, conditions stated in Definitions 11.3.3, 11.3.4, and 11.3.5 are
the natural conditions for the good convergence of the eigensolutions of (11.3.5)
towards those of (11.2.9) (problem of the form .f; 0/), while conditions stated in
Definitions 11.3.6, 11.3.7, and 11.3.8 correspond to the good convergence of the
eigensolutions of (11.3.6) towards those of (11.2.10) (problem of the form .0; g/).

Let us add a final definition which is related to standard approximation properties
of Vh.

Definition 11.3.9. Vh is a good approximation of V0 if for any v 2 V0, there exists
a sequence fvIhg � Vh such that

kv � vIhkcurl ! 0 as h ! 0: (11.3.26)

The next theorem states the link between DCP and conditions for mixed
approximations.

Theorem 11.3.1. Let us suppose that we are given a finite element space sequence
fVhg approximating H0.curlI˝/ and construct fQhg and fFhg according to
Remark 11.3.1 so that the inclusions (11.3.7) hold true. Then, the following three
sets of conditions are equivalent.

1. SDCP and approximation property (11.3.26);
2. Ellipticity in the kernel, weak approximability of Q, and strong approximability

of V0 (Definitions 11.3.3, 11.3.4, and 11.3.5, respectively);
3. Weak approximability of F0, strong approximability of F0, and B-Id-

compatibility (Definitions 11.3.6, 11.3.7, and 11.3.8, respectively).

Remark 11.3.6. Theorem 11.3.1 basically states that SDCP, together with the
natural approximation property (11.3.26), is equivalent to the standard conditions
for the approximation of eigenmodes in mixed form. For a more detailed discussion
on the differences between DCP and SDCP, we refer the interested reader to [76].

ut

11.3.3 Nodal Finite Elements

It is common practice in the approximation of interior Maxwell’s equations to call
nodal elements the finite element spaces which are based on the degrees of freedom
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associated to nodal values. The simplest situation is to consider Vh as the finite
element space which approximates each component of a vector of H0.curlI˝/
by means of a continuous piecewise linear function; namely Vh WD .L11/n. In
this section, we shall discuss this lowest-order case when ˝ is a two-dimensional
domain and shall see that, in general, nodal elements do not provide a good scheme
for the approximation of Maxwell’s eigenvalues. Similar considerations hold for
higher-order approximations and for three-dimensional domains. The computations
shown in this section have been presented in [89].

We use the two-dimensional version of formulation (11.3.4); that is, we are
not enforcing the divergence-free condition, but we are discarding a posteriori the
vanishing eigenvalues. Let us take ˝ D�0; �Œ
�0; �Œ (see Example 11.2.1) so that
the exact eigenvalues are given by �mn D m2Cn2,m; n D 0; 1; : : :,mCn > 0. The
eigenvalues computed on the unstructured mesh of Fig. 11.1 are plotted in Fig. 11.2.

It is clear that the discrete eigenvalues do not have any apparent correlation with
the continuous ones. On the other hand, looking at the computed eigenfunctions, it
is possible to recognise some reasonable approximations to the correct eigenvalues
which are interspersed among a lot of spurious solutions. This is reported in
Fig. 11.3 where it is shown that the 49-th and 50-th discrete eigenfunctions provide
a good approximation to the first two continuous eigenfunctions, which correspond
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to the double eigenvalue � D 1. Figure 11.4 shows that the actual value of the 49-th
and 50-th eigenvalues is very close to 1.

The behaviour of the plot presented in Fig. 11.2 demonstrates, in particular, that
for this discretisation scheme a discrete Friedrichs inequality does not hold with a
constant bounded below (see (11.2.31)).

It has been observed that on some particular mesh sequences, the behaviour of
the discrete eigenvalues is much better and that the presence of spurious modes is
reduced. The mesh presented in [381] and reported in Fig. 11.5, for instance, seems
to produce correct results, even if no rigorous proof of convergence has been given
so far.

The next example should discourage people from trusting the numerical results
when standard nodal elements are used for the approximation of interior Maxwell’s
eigenvalues. Let us consider the same computational domain˝ D�0; �Œ
�0; �Œ and
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Fig. 11.5 The mesh
presented in [381]

Fig. 11.6 A criss-cross
triangulation of the square

a sequence of criss-cross meshes like the one presented in Fig. 11.6. The eigenvalues
computed with vector-valued piecewise linear elements are reported in Table 11.1.

While the correct eigenvalues are correctly approximated together with the
non-physical zero frequency (see last line of the table, where the number of
vanishing discrete eigenvalues is reported), it is clear that an additional spurious
eigenvalue, which seems to converge to the value 6, is present. In Fig. 11.7, the
corresponding eigenfunction is plotted. The reader can recognise a chequerboard
pattern (typical of criss-cross meshes). This is not the only spurious eigenfunction
present on the criss-cross mesh: there are many other spurious solutions with
higher frequencies. A theoretical analysis of this phenomenon can be found in [82].
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Table 11.1 Nodal
approximation on criss-cross
mesh

Exact Computed

1 1.00428 1.00190 1.00107 1.00068
1 1.00428 1.00190 1.00107 1.00069
2 2.01711 2.00761 2.00428 2.00274
4 4.06804 4.03037 4.01710 4.01095
4 4.06804 4.03037 4.01710 4.01095
5 5.10634 5.04748 5.02674 5.01712
5 5.10634 5.04748 5.02674 5.01712

5.92293 5.96578 5.98074 5.98767
8 8.27128 8.12151 8.06845 8.04383
9 9.34085 9.15309 9.08640 9.05537
9 9.34085 9.15309 9.08640 9.05537
d.o.f. 254 574 1,022 1,598
# zeros 63 143 255 399

Fig. 11.7 A spurious
eigenfunction on the
criss-cross mesh

A simple explanation for the appearance of spurious solutions has been given in [88]
and [92] for two slightly different situations.

Remark 11.3.7. The quoted references consider the eigenvalue problem corre-
sponding to (11.3.4) for the space H.divI˝/. This is equivalent to the problem
in which we are interested (see discussion of Sect. 11.3.1). ut
The analysis of [88] applies to the approximation of the electric field by bilinear
elements (component-wise) on a square mesh sequence, where the variational for-
mulation (11.3.4) has been modified by projecting curl v onto a piecewise constant
space. In [92] a modification (P1�) of the standard linear element on the criss-cross
mesh has been presented. The P1� element had been introduced in [82] for the
analysis of the standard criss-cross element: assuming that a criss-cross mesh of the
square is constructed by diving the domain into N2 sub-squares (macro-elements)
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which are then partitioned into four sub-triangles by their diagonals, the P1� element
is defined by eliminating the degrees of freedom corresponding to the centres of the
macro-elements in such a way that the curl of the vectors is constant on each macro-
element.

Figure 11.8 represents the surface generated by the discrete eigenvalues
(computed on a 50-by-50 criss-cross mesh with the P1� element) as a function
of m and n. For this particular mesh and element, it was actually possible to order
the discrete eigenvalues in such a way that each of them can be uniquely identified
in terms of m and n. While the surface corresponding to the exact eigenvalues
should be the paraboloid m2 C n2, it is clear that the surface reported in Fig. 11.8
does not have the correct behaviour for largem and n. The bad approximation of the
highest modes is easily detected with the help of Fig. 11.9, where we represented on
the same graph a cut for m D n of the computed surface and of the curve m2 C n2

corresponding to the exact frequencies. It can be directly computed that, if we fix
m and n, then the discrete eigenvalue corresponding to the .m; n/ mode converges
to m2 C n2, which is the correct value, as the level of refinement N increases. On
the other hand, the .N � 1;N � 1/ mode (that is, the value at the right endpoint of
Fig. 11.9) converges to six.

From the mathematical point of view, on a criss-cross mesh sequence, piecewise
linear elements satisfy a uniform discrete Friedrichs inequality (see (11.2.31)).
Ellipticity in the kernel and inf-sup properties are satisfied for the mixed formu-
lation (11.3.6), but the eigenvalues are not correctly approximated.

As a final remark, we notice that the number of zero eigenvalues in Table 11.1
is equal to the number of gradients which can be represented by a continuous
piecewise linear function on the corresponding mesh; it is equal to the number of C1

piecewise quadratic functions vanishing on the boundary (in this case the number of
criss-crosses minus one, see [326]).
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11.3.4 Edge Finite Elements

The use of edge elements is universally recognised as the natural discretisa-
tion scheme for the approximation of Maxwell’s eigenvalue problem. We refer
to Sect. 2.5.3 for the description of conforming finite element spaces for the
approximation of H.curl;˝/, also known as edge element spaces. The same two-
dimensional version of (11.3.4) as in the previous section is considered; i.e., we
are solving the unconstrained formulation and the divergence-free condition is dealt
with by discarding the vanishing eigenvalues. We use lowest-order edge elements.
The results are presented in Fig. 11.10.

It turns out that, in this case, the eigenvalues are well separated into two
families: a number of vanishing (up to machine precision) eigenvalues which
correspond to the infinite kernel of the curl operator (see Remark 11.2.3), and
positive eigenvalues which are good approximations to the continuous ones. The
number of vanishing eigenvalues is equal to the number of gradients which can
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be represented on the mesh; in the case of lowest order edge elements, this is the
number of internal vertices. We refer the interested reader to [89] for more numerical
results (including discontinuous materials and non-convex domains) and for a plot
of the eigenfunctions.

The convergence analysis for edge element approximations of Maxwell’s eigen-
value problem can be carried out in several equivalent ways. With the help of
Theorem 11.3.1 and using the results of [81], we can prove directly the Discrete
Compactness Property. We could also use the mixed formulation (11.3.5) (thus prov-
ing ellipticity in the kernel, weak approximability ofQ, and strong approximability
of V0), or use mixed formulation (11.3.6) (which is analysed by means of weak and
strong approximabilities of E0 and of B-Id-compatibility).

It turns out that all these three approaches have been successfully exploited in the
literature.

The first convergence proof has been given in [74] where the theoretical setting
of [89] is used. The mixed formulation (11.3.6) is considered; while weak and
strong approximabilities of E0 are easy consequences of the space definitions, it
is less immediate to see how to construct a B-compatible operator˘h such that the
B-Id-compatibility condition of Definition 11.3.8 is satisfied. This is the main result
of [74].

The Discrete Compactness Property (DCP, see Sect. 11.3.2) has been discussed
in several papers. Among those, we recall [269] where the DCP has been proved for
lowest order edge elements on tetrahedra, even though it is not shown there that DCP
implies eigenvalues convergence. DCP is also the main result of [303] where it is
given a general result for edge element eigenvalue approximation, and of [137,138]
where a convergence result is given and general domains/materials are considered.
In [86, 87], DCP has been used for the analysis of hp edge finite elements.

The mixed formulation (11.3.5) has also been used for the analysis of the problem
under consideration. For instance, [85] shows the validity of ellipticity in the kernel,
weak approximability of Q, and strong approximability of V0 for the analysis of a
modified eigenvalue problem which arises from band gap computation for photonic
crystals.

11.4 Enforcing the Divergence-Free Condition
by a Penalty Method

We have seen in the previous examples that the divergence-free condition can be
(as usual) a source of trouble. In general, we have shown that nodal elements do
not deal with such a constraint very well, while edge elements are able to separate
in a natural way the solenoidal part of the solution. On the other hand, someone
may prefer to deal with nodal elements and for this reason, people have thought of
using a penalty method to enforce the constraint in order to be able to use standard
nodal elements. The aim of this section is to show that this strategy can be very
dangerous: although the method is stable, on general domains, it can converge to
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wrong values! This has been observed in [161] (see also [84]) and is a consequence
of a coerciveness result by Costabel [160].

To explain this fact, let us consider the penalty formulation of the Maxwell
eigenvalue problem (similar remarks apply to the penalty formulation of the time
harmonic Maxwell equations): find � 2 R such that for u 2 H0.curlI˝/ \
H.divI˝/ with u 6D 0 it holds

.curl u; curl v/C ˛.div u; div v/ D �.u; v/ 8 v 2 H0.curlI˝/\H.divI˝/;
(11.4.1)

where ˛ > 0 is the penalty parameter.
Formulation (11.4.1) is very appealing and it can be easily shown that ˛ need

not be very large in order to enforce the divergence-free constraint. Actually,
since from the Helmholtz decomposition, the vector u can be decomposed into a
solenoidal and an irrotational part, problem (11.4.1) admits two separate families of
solutions: the first one (independent of ˛) corresponds to the physical solutions we
are interested in

.curl u; curl v/ D �.u; v/ 8 v;
div u D 0;

(11.4.2)

while the second one depends linearly on ˛ and solves the following problem

˛.div u; div v/ D �.u; v/ 8 v;
curl u D 0:

(11.4.3)

Figure 11.11 shows some exact eigenvalues of (11.4.1) as functions of ˛ when˝
is the square of size � . The horizontal lines correspond to the eigenvalues of (11.4.2)
(Neumann Laplace eigenproblem), while the oblique lines refer to the eigenvalues
of (11.4.3) (Dirichlet Laplace eigenproblem scaled with ˛). It is clear that, in this
case, a penalty parameter ˛ D 5 is sufficient in order to have that the first six distinct
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eigenvalues of problem (11.4.1) are interior Maxwell’s eigenvalues corresponding
to divergence-free eigenfunctions.

One might then think that a conforming discretisation of (11.4.1) can provide a
good scheme for the approximation of interior Maxwell’s eigenmodes. Moreover,
it is not difficult to check numerically if a discrete eigenfunction belongs to
family (11.4.2) or (11.4.3) of the spectrum, so that it can be easy to detect whether
the penalty parameter ˛ is large enough. While this approach provides good results
on convex domains, it is definitely not to be used when the domain presents
re-entrant corners. More precisely, any Galerkin approximation of (11.4.1) gives
wrong results whenever the space .H1.˝//n \ H0.curlI˝/ is a proper subset of
H0.curlI˝/ \ H.divI˝/. The reasons for the troubles come from the following
proposition which is a consequence of an ellipticity result proved in [160].

Proposition 11.4.1. The space .H1.˝//n \ H0.curlI˝/ is a closed subspace of
H0.curlI˝/ \ H.divI˝/ (with respect to the norm of H0.curlI˝/ \ H.divI˝/).

ut
It turns out that any conforming (piecewise polynomial) finite element space

for the approximation of H0.curlI˝/ \ H.divI˝/ must be made of continuous
functions. Indeed, the conformity in H.curlI˝/ requires the continuity of the
tangential component from one element to the other, while the conformity in
H.divI˝/ imposes the continuity of the normal component (cf. Chap. 2). Hence,
any conforming approximation ofH0.curlI˝/\H.divI˝/ is actually a conforming
approximation of .H1.˝//n \H0.curlI˝/ as well. Proposition 11.4.1 implies then
that no finite element subspace of H0.curlI˝/ \ H.divI˝/ can approximate a
vector field which is inH0.curlI˝/\H.divI˝/ and not in .H1.˝//n. This means
that if the domain ˝ is such that an eigenfunction u is not in .H1.˝//n (and this
typically occurs in presence of re-entrant corners, vertices, edges, etc.), then no
conforming finite element discretisation of (11.4.1) can approximate it correctly.
This phenomenon is shown in Fig. 11.12 where the discrete eigenvalues are shown
for different values of ˛ and using continuous finite element spaces (bi-quadratic
elements in each component for this test which makes use of a uniform mesh
of squares). It is apparent that the two families of solutions (11.4.2) and (11.4.3)
do not separate well: there are some values corresponding to horizontal lines
(discrete divergence-free eigenvalues) and some values corresponding to oblique
lines (discrete irrotational eigenvalues), but also some values lying on curved
lines which do not correspond to either family. The eigenvalues of the third
set of solutions are originating from exact eigenvalues associated with singular
eigenfunctions (i.e., not in .H1.˝//2) which cannot be approximated correctly by
the finite element space. We refer the interested reader to [161] for more comments
on this issue.

The penalty formulation of Maxwell’s equations has been investigated by many
authors due to the appeal of using nodal elements instead of the (more natural)
edge ones and several methods have been proposed in order to overcome the
difficulties that we have just described. Some of these methods are based on
heuristic facts, others have been analysed rigorously. Due to the already mentioned
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isomorphism between H.curlI˝/ and H.divI˝/ in two space dimensions, we
also recall here some two-dimensional schemes originally proposed for a problem
analogous to (11.4.1) where an irrotational eigenfunction is sought in H0.divI˝/.

A first possible workaround is to add to the discrete space some suitable functions
that can approximate the singular part of the spectrum which is in H0.curlI˝/ \
H.div/ but not in .H1.˝//n \ H0.curlI˝/. This procedure has been successfully
exploited in two dimensions where the dimension of the singular complement is
finite, but it seems difficult to generalise to three-dimensions where the dimension
of the singular complement is infinite. We refer the reader interested in this topic
to [36, 242] and to the references therein.

Another approach, known as weighted regularisation, has been proposed in [162]
(see also [163] for a nice review) and consists in weakening the penalisation term
in a neighbourhood of non-convex corners. This method has a complete analysis
(which in particular shows exponential convergence for its hp version [164])
and generalises to three-dimensional non-convex domains. In [327], it has been
suggested to drop the penalty term close to re-entrant corners and numerical tests
show the good performance of this method for which no analysis is provided.

We conclude this section with some comments on a scheme which has been
proposed in [52] for the approximation of a fluid-structure problem. With the natural
identifications, the method can be used for the approximation of (11.4.1). It makes
use of three finite element space sequences Vh,M1

h andM2
h , and consists in looking

for discrete eigenvalues �h 2 R such that for a non-vanishing uh 2 Vh it holds
(
.PM1 curl uh; curl v/C ˛.PM2 div uh; div v/ D �h.uh; v/ 8 v 2 Vh;
�h ¤ 0;

(11.4.4)

where PMi denotes the L2 projection ontoMi
h (i D 1; 2). The use of the projections

PMi in (11.4.4) may introduce spurious vanishing frequencies and for this reason,
the scheme has to be supplemented with the additional condition �h ¤ 0.
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The original scheme proposed in [52] uses a mesh of squares and takes Vh as
the space of continuous piecewise bi-quadratic functions .L1Œ2�/2 with the correct

boundary conditions, and M1
h and M2

h consisting of discontinuous piecewise linear
elements L01. The reason of this choice is clearly driven by the analogy with the
Q
2
–P1 Stokes element (see Sect. 8.6.3). We shall refer to this element as the

Q
2
–P1–P1 element. This element has been shown to be robust for the problem under

consideration, even in presence of non-convex domains (see, for instance, [84]),
but a complete analysis for it is still lacking. The method performs reasonably
well also when using a mesh of general quadrilaterals, provided that the spaces
M1
h and M2

h are constructed using the unmapped approach described in Sect. 8.6.3
(see [22]), even though the convergence rates become suboptimal in this case for
some eigenvalues.

In [217], an inf-sup condition has been shown for theQ2–P1–P0 element and this
result has been used for proving the inf-sup condition for theQ2–P1–P1 element as
well, with the addition of a stabilising term. In [84], it has been actually shown
numerically that there is no need for the stabilisation in order to have the inf-sup
condition.

11.5 Some Remarks on Exterior Calculus

As we have already mentioned several times in this book, the de Rham complex
and exterior calculus have become powerful tools for the analysis of mixed finite
elements. Even though a rigorous and complete description of this topic is out
of the aims of our work, we give here a quick summary on this subject within
the framework of edge element approximation of Maxwell’s equations. It is not
so easy to provide the reader with a comprehensive list of references, since many
people worked on this subject using different view points and various approaches: in
particular, Douglas and Roberts in [178] identified the commuting diagram property
as a key ingredient for the estimates of mixed elements. Bossavit in [102], used
the de Rham complex of differential forms for the description of finite element
involved with the approximation of Maxwell’s equations. Hiptmair [247, 248] used
intensively finite element exterior calculus for the approximation of Maxwell’s
equations; the de Rham complex has been shown as the natural setting for the
study of Maxwell’s eigenvalues [75] and edge elements [170]. Arnold [17] gave
a fundamental contribution to the development of finite element exterior calculus;
the state of the art of the theory can be found in [31–33].

The first aim of this section is to provide the reader with suitable tools in order
to understand the meaning of the following de Rham complex

0 ��! �0.˝/
d��! �1.˝/

d��! � � � d��! �n.˝/ ��! 0 (11.5.1)

when˝ is a domain in R
n.
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Given an integer number k with 0 � k � n, we consider the space AltkR of
alternating k-forms which has dimension equal to

�
n

k

�
and is spanned by dx�1 ^ � � � ^

dx�k , for 1 � �1 � � � � � �k � n. An element ! 2 �k.˝/ is then a C1 function
! W ˝ ! AltkR; this gives, for x 2 ˝ ,

!x D
X

�

f� .x/dx�1 ^ � � � ^ dx�k :

In particular, it turns out that �0.˝/ admits a scalar proxy !x D f .x/ as well
as �n.˝/: !x D f .x/dx1 ^ � � � ^ dxn. This implies that we can identify objects
of �0.˝/ and �n.˝/ with scalar functions. Analogously, �k.˝/ admits vector
proxies for k D 1 and k D n� 1 with the identifications !x D Pn

jD1 fj .x/dxj for

k D 1 and !x D Pn
jD1 fj .x/.�1/j�1dx1 ^ � � � ^ bdxj ^ � � � ^ dxn for k D n � 1.

Example 11.5.1. When n D 3, we have the following four spaces: �0.˝/ can be
identified with the space of scalar functions on ˝

!x 2 Alt0R $ f .x/ 2 RI

�1.˝/ is identified with the space of three-dimensional vector fields

!x 2 Alt1R $ .f1.x/; f2.x/; f3.x// 2 R
3I

�2.˝/ can also be identified with a space of three-dimensional vector fields by
! D f1dx2 ^ dx3 � f2dx1 ^ dx3 C f3dx1 ^ dx2, that is,

!x 2 Alt2R $ .f1.x/; f2.x/; f3.x// 2 R
3I

in the same way, using the rule ! D f dx1 ^ dx2 ^ dx3, the space �3.˝/ can be
identified with the space of scalar functions by

!x 2 AltnR $ f .x/ 2 R: ut

The exterior derivative is an operator d W �k
R ! �kC1

R (formally, it should
be denoted by dk , but in general, people use d as this does not generate confusion)
defined as follows:

d
X

�

f�dx�1 ^ � � � ^ dx�k D
X

�

nX

jD1

@f�

@xj
dxj ^ dx�1 ^ � � � ^ dx�k :

In particular, we have for 0-forms,

df D
nX

jD1

@fj

@xj
dxj :
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It turns out that d is a differential, that is,

d ı d D 0;

and that the following Leibniz rule holds true

d.� ^ 	/ D d� ^ 	 C .�1/k� ^ d	; � 2 �k.˝/; 	 2 �l.˝/:

Example 11.5.2. Coming back to Example 11.5.1, we can now identify for n D 3

the exterior derivatives dk (k D 0; 1; 2) with standard differential operators. For
k D 0,we have df D @f1

@x1
dx1 C @f2

@x2
dx2 C @f3

@x3
dx3 which gives

df $
	
@f1

@x1
;
@f2

@x2
;
@f3

@x3



;

that is,

d0 $ grad :

For k D 1, the definition of exterior derivative gives

d.f1dx1 C f2dx2 C f3dx3/ D
@f1

@x1
dx1 ^ dx1 C @f1

@x2
dx2 ^ dx1 C @f1

@x3
dx3 ^ dx1

C @f2

@x1
dx1 ^ dx2 C @f2

@x2
dx2 ^ dx2 C @f2

@x3
dx3 ^ dx2

C @f3

@x1
dx1 ^ dx3 C @f3

@x2
dx2 ^ dx3 C @f3

@x3
dx3 ^ dx3

D
	
@f3

@x2
� @f2

@x3



dx2 ^ dx3

C
	
@f1

@x3
� @f3

@x1



dx3 ^ dx1

C
	
@f2

@x1
� @f1

@x2



dx1 ^ dx2

so that we have the identification

d.f1dx1 C f2dx2 C f3dx3/ $
	
@f3

@x2
� @f2

@x3
;
@f1

@x3
� @f3

@x1
;
@f2

@x1
� @f1

@x2




or

d1 $ curl :
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For k D 2, we have analogously

d.f1dx2 ^ dx3 � f2dx1 ^ dx3 C f3dx1 ^ dx2/ D @f1

@x1
dx1 ^ dx2 ^ dx3

� @f2

@x2
dx2 ^ dx1 ^ dx3

C @f3

@x3
dx3 ^ dx1 ^ dx2

which gives

d.f1dx2 ^ dx3 � f2dx1 ^ dx3 C f3dx1 ^ dx2/ $ @f1

@x1
C @f2

@x2
C @f3

@x3
;

that is,

d2 $ div :

These identifications allow us to write the de Rham complex (11.5.1) in the more
common form

0 ��! C1.˝/
grad��! .C1.˝//3

curl��! .C1.˝//3 div��! C1.˝/ ��! 0: ut
Remark 11.5.1. The sequence (11.5.1) is a complex, since d is a differential. It is
sometimes interesting to see whether a complex is also exact (that is the range of
each derivative dk coincides with the kernel of the next one dkC1, meaning that the
cohomology of the complex is trivial). This is related to the topology of ˝ and/or
to the boundary conditions we want to consider. In particular, if n D 3,˝ is simply
connected and no boundary conditions are considered, then the following complex
is exact

R ��! C1.˝/
grad��! .C1.˝//3

curl��! .C1.˝//3 div��! C1.˝/ ��! 0:

Moreover, if standard boundary conditions are considered, the following complex is
exact for˝ simply connected:

0 ��! C1.˝/\H1
0 .˝/

grad��! .C1.˝//3 \H0.curlI˝/
curl��! .C1.˝//3 \H0.divI˝/ div��! C1.˝/ ��! R: ut

The next step in the theory consists in the definition of finite element differential
forms. It turns out that basically all conforming spaces presented in Chap. 2 can be
reproduced within this framework. Actually, this theory is very powerful and allows
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the definition of many more finite element spaces (in particular, we observe that we
can deal with general n-dimensional spaces and k-forms). The definition starts from
the introduction of polynomial differential forms Pr�k.T / on a simplex T � R

m

and from the space P�
r �

k.T / which is constructed with the help of the Koszul
differential. We refer the interested reader to [33] for the technical details of such
a construction, but would like to point out again that the theory includes all basic
ingredients of standard mixed finite elements. For instance, we recall the following
result which is the translation of the commuting diagram property into the language
of differential forms: it is possible to define suitable degrees of freedom, such that
we can construct canonical projection operators ˘ W �k.T / ! Pr�k.T / or ˘ W
�k.T / ! P�

r �
k.T / which commute with the exterior derivative. For instance, the

following diagram commutes

�k.T /
d��! �kC1.T /

˘

??y ˘

??y

Pr�k.T /
d��! Pr�1�kC1.T /

as well as the following one

�k.T /
d��! �kC1.T /

˘

??y ˘

??y

P�
r �

k.T /
d��! P�

r �
kC1.T /:

More details on finite element differential forms can be found, for instance,
in [12, 18, 19].

11.6 Concluding remarks

In this chapter we have tried to convince the reader that mixed finite elements can
be useful for the approximation of partial differential equations arising from the
modelling of electromagnetic problems.

It should be acknowledged that the use of mixed (edge) finite element has
been widely accepted by the community of people working on the numerical
approximation of Maxwell’s equation (also because it was soon apparent that the
use of standard (nodal) finite element was source of trouble.

For a more comprehensive introduction to the finite element approximation of
Maxwell’s system, more focused references are available. Among those, the reader
is referred to [248] and [302]. The finite element approximation of Maxwell’s
eigenvalue has been discussed in [77], while an extensive discussion on finite
element exterior calculus can be found in [34] and the references therein.
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39. F. Auricchio, L. Beirão da Veiga, C. Lovadina, and A. Reali. The importance of the exact

satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus
NURBS-based approximations. Comput. Methods Appl. Mech. Engrg., 199(5–8):314–323,
2010.
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157. B. Cockburn, G. Kanschat, and D. Schötzau. A note on discontinuous Galerkin divergence-
free solutions of the Navier-Stokes equations. J. Sci. Comput., 31(1–2):61–73, 2007.

158. L. Comodi. The Hellan-Hermann-Johnson method: error estimates for the Lagrange multipli-
ers and post processing. Math. Comp., 52:17–30, 1989.

159. P. Constantin and C. Foias. Navier-Stokes Equations. University of Chicago Press, Chicago,
1988.



670 References

160. M. Costabel. A remark on the regularity of solutions of Maxwell’s equations on Lipschitz
domains. Math. Methods Appl. Sci., 12(4):365–368, 1990.

161. M. Costabel and M. Dauge. Maxwell and Lamé eigenvalues on polyhedra. Math. Methods
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263. C. Johnson and J. Pitkäranta. Analysis of some mixed finite element methods related to
reduced integration. Math. Comp., 38:375–400, 1982.
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global, 30
mixed elliptic problem, 409
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Arnold-Falk-Winther, 561
generalised Amara-Thomas, 561
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Finite elements
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definition, 67
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Friedrichs inequality, 627
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standard, 50
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continuous, 228, 230
different meanings, 301
elementary discussion, 161
when it fails, 329

Injective, 128
Inter-element multipliers, 426
Internal approximation, 65, 113
Interpolate, 70

Interpolation operators, 106, 108, 110, 112,
113

global, 109, 113

Kato’s theorem, 209
Kernel, 127

Lagrange multiplier, 11
Lamé coefficients, 10
Laplace operator

boundary value problems, 7
Dirichlet problem, 8

Lax-Milgram lemma, 214
Least-squares, 34
Lebesgue measure, 4, 204
Legendre transformation, 17
Linear mapping, 61
Lipschitz continuous boundary, 4
Locking phenomenon, 330

partial, 330
total, 330

Macro element
condition, 483
technique, 484

Macro-element technique, 482
MAC space, 99
Mass lumping, 446
Materials

almost incompressible, 459
incompressible, 459, 461, 538
nearly incompressible, 541

Maxwell problem, 13
eigenproblem, 645
eigenvalues, 625, 638, 639, 641, 644, 649,

655, 658
approximation, 625
interior, 633, 634
quadrilateral elements, 643
three dimensional, 644
two-dimensional, 643

finite element approximation, 625
interior eigenvalues, 644
Kikuchi’s formulation, 631

approximation of, 640
time-harmonic formulation, 13, 625, 629

Mesh
asymptotically affine, 80
quadrilateral, 115
shape-regular familiy

quadrilateral, 114
Mixed formulation, 49, 265, 287, 301
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existence and uniqueness: necessary and
sufficient, 225

Morley’s triangle, 76
Mortar methods, 420

Neumann problem, 8
Laplace eigenproblem, 639
variational, 49

Non conforming approximations, 318, 319
singularly perturbed problems, 320

Non symmetric bilinear form, 28
Norm

continuous bilinear form, 210
depending on dimension, 156
dual, 48, 158, 207, 208
induced norm for a matrix, 158
pre-Hilbert, 199
quotient, 222
weaker, 279, 280

Numerical computation of mixed problems,
326

Operator
B-compatible, 271
B-Id-compatible, 394
bounded, 205
bounding, 206
kernel, 211
linear continuous, 5
transposed, 211

Optimally convergent family of finite element
spaces, 114

Orthogonal subspace, 129

Parallelogram identity, 199
Patch test, 76, 77, 414
Penalised problem, 332
Penalty method, 372

brute force, 372
clever, 373
discrete, 333
stable, 372
standard, 334

Perturbed problem, 151
Petrov-Galerkin method, 347
Piola’s transformation, 59, 64, 114, 116
Plate bending problem, 27, 577

hybrid methods, 579
Mindlin-Reissner, 317, 596, 601

approximation, 622
equations, 607

links with the Stokes problem, 622
mixed methods on, 575

Poincaré inequality, 6, 216
Poisson problem, 8

domain decomposition, 234
dual, 24
dualisation, 22
mixed formulation, 232
stabilisation, 353

Poisson’s coefficient, 12
Polar set, 216
Polyhedral surface, 54
Polynomial spaces, 66
Positive

definite, 145
semi-definite , 145

Projection, 130
Projection operator, 203

Quadrature formula, 453
Quadrilateral meshes, 80

Range, 127
Reduced integration, 523
Regular family of decompositions, 110
Ritz’s method, 2
Ritz’s Theorem, 209

Saddle point
condition, 3
problem, 224

Scalar product, 198
Semi-norm, 4, 48

continuous, 284
Shadow solution, 255
Sharfetter-Gummel method, 441
Singular value decomposition, 136, 164
Sobolev norms, 24
Sobolev spaces, 4, 47, 48

fractional order, 6
generalized, 49
standard approximations of, 65

Solvability, 123
finite dimensional, 142

Space
Banach, 200, 304
complete, 200
dual, 207
Hilbert, 200–202, 205, 306, 315–317, 321,

338
of polynomials, 66
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polar, 209, 212
of polynomials, 66
pre-Hilbert, 199
quotient, 221

Spectrum perturbation theory, 385
Stabilisation

error estimates, 359, 369
minimal, 360

Stabilised methods, 337
Stabilising term, 358
Stability, 124, 156

precise definition, 160
Stability constants, 126
Standard norm, 48, 51
Static condensation, 430
Stokes problem, 168, 233, 331, 334, 459

approximation of eigenvalues, 517
approximation of the, 461
Brezzi-Pitkäranta formulation, 535
chequerboard mode, 511, 512, 516
continuous pressure approximation, 483
Dirichlet boundary, 294
discontinuous pressure approximation, 485
dual problem, 20
elements

Crouzeix-Raviart, 488, 493, 523, 527
Hood-Taylor, 494, 538
MINI, 470, 531, 532
non conforming, 475
P 1 � P1, 466
P 2 � P0, 471
Pk � Pk�1, 494
Q
1

� P0, 507, 517, 518, 525
Q
2

� P0, 473
Q
2

� P1, 484
Quadrilaterals, 489
SMALL, 492
two-dimensional, 486

error estimates, 464
mixed formulation, 462
pressure, 19, 294
spurious pressure modes, 507, 509, 511
stabilised formulation, 527
for viscous incompressible flow, 11

Strang’s lemma, 75

Subspace
dense, 202, 216
dual, 215

Surface divergence, 54
Surface operators, 53
Surjective, 128

Tangential components trace, 55
Tensor

deviatoric, 9, 541
Kronecker, 9
linearised strain , 9
skew-symmetric part, 544
symmetry, 544

Tensor-valued functions, 61
Trace

of functions, 5
normal component, 51
normal derivative, 6, 49
operator, 49, 54
tangential, 53, 54
tensor, 540

Transmission problem, 31
Triangulation

family, 72

Uniform bounds, 181
Uzawa’s algorithm, 333

Variational formulation, 2, 4
augmented, 37, 38
modified, 37
perturbed, 37, 45
stabilised, 41

Verfürth’s trick, 309, 374, 478
Virtual elements, 81

Weighted regularisation, 657

Young’s modulus, 12
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