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Preface

About 10 years ago, Mixed and Hybrid Finite Element Methods by F. Brezzi and
M. Fortin went out of print and we were asked to allow a second printing. The world
had evolved and we thought that a revision was due and that some topics had to be
added to the book. For this task, D. Boffi joined the team and we began to write the
improved version. It turned out that this meant doubling the number of pages and
essentially producing a new book.

We hope that the result is now a better, self-contained, presentation of the
underlying issues, either from linear algebra or from functional analysis. The
presentation of the basic results should now be accessible to readers which are
not familiar with functional analysis, although willing to invest some effort in
understanding mathematical issues.

The scope of finite element approximations was extended to H(curl; £2) and
the three-dimensional cases are now fully covered. Tensor elements were also
considered for elasticity problems. The approximation of eigenvalue problems has
been included as well.

Moreover, new applications have been introduced: mixed elasticity and electro-
magnetism. New results have been added to already treated applications such as the
Stokes problem or mixed formulations of elliptic problems. Even so, some topics
have been merely addressed. This is, for example, the case of a posteriori estimators,
Discontinuous Galerkin methods and new developments on virtual elements which
would have required a long development in an already (too?) long book. Indeed,
each of these topics could be the subject of a whole book. The analysis of mixed
methods is also relevant to many applications such as mortar methods or contact
problems which were also reduced to a few remarks. This does not mean that these
are not important. We had to stop somewhere. Indeed, we took a long time to do so.

We thus hope that this book will provide a good starting point for all those
interested in mixed (and related) finite element methods.

Pavia, Italy D. Boffi and F. Brezzi
Québec, Canada M. Fortin
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Chapter 1
Variational Formulations and Finite
Element Methods

Although we shall not define in this chapter mixed and hybrid (or other non-
standard) finite element methods in a very precise way, we would like to situate them
in a sufficiently clear setting. As we shall see, boundaries between different methods
are sometimes rather fuzzy. This will not be a real drawback if we nevertheless know
how to apply correctly the principles underlying their analysis.

After having briefly recalled some basic facts about classical methods, we shall
present a few model problems. The study of these problems will be the kernel
of this book. Thereafter, we rapidly recall basic principles of duality theory as
this will be our starting point to introduce mixed methods. Domain decomposition
methods (allied to duality) will lead us to hybrid methods. Then we shall briefly
discuss modified variational formulations that can be used to obtain better stability
properties for the discretised versions.

1.1 Classical Methods

We recall here, in a very simplified way, some facts about optimisation methods and
the classical finite element method. Such an introduction cannot be complete and
does not want to be. We refer the reader to [146] or [334], among others, where
standard finite element methods are clearly exposed. We also refer to [167] where
an exhaustive analysis of many of our model problems can be found.

Let us consider a very common situation where the solution of a physical problem
minimises some functional (usually an “energy functional”), in a “well chosen”
space of admissible functions V that we take for the moment as a Hilbert space:

inf J(v). (1.1.1)

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series 1
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5_1,
© Springer-Verlag Berlin Heidelberg 2013



2 1 Variational Formulations and Finite Element Methods

If the functional J(-) is differentiable (cf. [184] for instance) the minimum (when-
ever it exists) will be characterised by a variational equation

(J'(u),v)yrxy =0, YveV, (1.1.2)

where (-,-)y/xy denotes duality between V and its topological dual V', the
derivative J'(u) at point u being considered as a linear form on V.

The classical Ritz’s method to approximate the solution of (1.1.1) consists in
choosing a finite dimensional subspace V,, of V, and then looking for u,, € V},
solution of the problem

inf J(vy,), (1.1.3)
Vi €Vin
or, differentiating,
(I m), vm)vixy =0, VY, € V. (1.1.4)

Let us consider, to fix ideas, a quadratic functional
1
J() = Ea(v,v) — L(v), (1.1.5)

where a (-, -) is a bilinear form on V', which we suppose continuous and symmetric,
and L(-) a linear form on V. The variational equation (1.1.2) can then be written as

a(u,v) = L) VYvev, (1.1.6)

while the discrete problem (1.1.4) becomes

a(y, V) = L), YU, € Vi, thy € Vy. (1.1.7)
If a basis wy, wa, ..., w, of V,, is chosen, and if we write
m
Uy = Y Wi, (1.1.8)

i=1
problem (1.1.7) is reduced to the solution of the linear system
Za,;iot,- = bj, 1<j=<m, (1.1.9)
i=1
where we set
aj :=a(w;,w;), bj:=L(w;). (1.1.10)

This formulation can be extended to the case where the bilinear form a(, -) is not
symmetric and where problem (1.1.7) no longer corresponds to a minimisation
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problem. This is then usually called a Galerkin method. Let us recall that problems
of type (1.1.7) will have a unique solution if, in particular, the bilinear form a(-, ) is
coercive, that is if there exists a positive real number « such that for all v in V

a(v,v) > a|jv[[}. (1.1.11)

The above described methodology is very general and classical. We can consider
the finite element method as a special case in the following sense.

The finite element method is a general technique to build finite dimensional
subspaces of a Hilbert space V in order to apply the Ritz-Galerkin method to a
variational problem.

This technique is based on a few simple ideas. The fundamental one is the
partition of the domain §2 in which the problem is posed, into a set of “simple”
sub-domains, called elements. These elements are usually triangles, quadrilaterals,
tetrahedra, etc. A space V of functions defined on 2 is then approximated by
“simple” functions, defined on each sub-domain with suitable matching conditions
at interfaces. Simple functions are usually polynomials or functions obtained from
polynomials by a change of variables.

This, of course, a very summarised way of defining finite elements and this is
surely not the best way to understand it from the computational point of view. We
shall come back to this in Chap. 2 with a much more workable approach.

The point that we want to emphasise here is the following. A finite element
method can only be considered in relation with a variational principle and a
functional space. Changing the variational principle and the space in which it is
posed leads to a different finite element approximation (even if the solution for the
continuous problems can remain the same).

In the remaining of this Chapter, we shall see how different variational formu-
lations can be built for the same physical problem. Each of these formulations will
lead to a new setting for finite element approximations. The common point of the
methods analysed in this book is that they are founded on a variational principle
expressing an equilibrium (saddle point) condition rather than on a minimisation
principle. We shall now try to see, on some examples, how such equilibrium
principles can be built.

1.2 Model Problems and Elementary Properties of Some
Functional Spaces

The aim of this section is to introduce some notation and to present five model
problems that will underlie almost all cases analysed in this book. They will
be the Dirichlet problem for Laplace’s equation, the linear elasticity problem,
Stokes’ problem, a fourth-order problem modelling the deflection of a thin clamped
plate, and, finally, the time-harmonic Maxwell system. These problems are closely
interrelated and methods to analyse them will also be.
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We shall present, in this section, the most classical variational formulation of
these problems. The following sections will lead us to less standard forms.

We shall assume, in our exposition, that the problems are posed in a domain
£2 of R", with a sufficiently smooth boundary d§2 = I" (for instance a Lipschitz
continuous boundary). In practice n = 2 or 3 and we shall present most of our
examples in a two-dimensional setting for the sake of simplicity.

In the problems considered here, working in R? rather than in R? is not really
restrictive and extensions are generally straightforward. (This is however not always
the case for numerical methods.) Let us first recall some definitions. We shall
constantly use Sobolev spaces [3,281,309]. They are based on

LA(2) :=M /Q|v|2dx=||v||iz(m<+oo , 1.2.1)

the space of square integrable functions on £2. To be precise, instead of functions we
should actually say classes of measurable functions, meaning that a class is made
of functions that differ from each other only on a subset of §2 of zero Lebesgue
measure. Having said this once, we shall keep calling them simply functions. We
then define in general, for m integer >0,

H™(£2) := {v| D*v € L*(2), V]a| <m}, (1.2.2)
where

dlely

D% = ———M,
Ox{! -+ dxy"

o] =y + -+ + ayp,

these derivatives being taken in the sense of distributions. On this space, we shall
use the semi-norms

Wig =D IDWag,  k=0.1,...m, (1.2.3)
la|=k
and the norm
ize = ke (1.2.4)
k<m

Remark 1.2.1. The norm in (1.2.4) is definitely the weirdest aspect of the whole
theory of Sobolev spaces. Indeed, one should take a typical length £ of the problem
(as for instance the diameter of £2) and use, instead of (1.2.4):

iz g =Y Pl . (1.2.5)
k<m

avoiding, in this way, to sum objects with different physical dimensions. The expres-
sion (1.2.4), which is by far the most widely used in all the international literature
assumes implicitly that the problem has been adimensionalised, something that one
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is not always willing to do. Needless to say, (1.2.4) has a lot of advantages, and we
are often going to use it. Nevertheless, we felt compelled to give at least a minor
warning to our readers. O

The space L?(£2) is then H°(£2) and we shall usually write ||[v]|o.e, to denote its
norm ||v||;2(g). Let us denote as usual by D($2) the space of infinitely differentiable
functions having a compact support in £2. We denote by H/"(§2) the completion
of D(£2) for the topology defined by the norm (1.2.4). If the boundary is smooth
enough (e.g. Lipschitz continuous boundary) this simple definition will coincide,
without troublesome pathologies, with the more common

HMQ) = H™(£2 T o) a2
0().—{v|v€ ()s.t.v—%—---—W—Oon } (1.2.6)
where n is the normal direction to I” = 9£2. The drawback in the definition (1.2.6)
is however the difficulty in giving sense to the value of v (and, if m > 1, to its
derivatives) on the boundary of £2. We shall shortly give a hint on how this could be
made precise for the most common cases m = 1 and m = 2.

Indeed, among the spaces introduced so far, the most commonly used, apart from
L*(2), willbe H'(£2), H} (£2), H*(2) and H}(R2).

If the boundary 942 is sufficiently smooth (and, again, Lipschitz continuity will
be enough), one can show that there exists a linear and continuous operator y :
H'(22) — L*(I") such that yyv coincides with the restriction of v to I' whenever
v is smooth (say, to fix the ideas, for every v € C l(S_Z)). It seems then natural to
call ypv “the trace of v on I"” and denote it by v | even if v is a general function in
H'(£2) that might not be in C'(£2).

A deeper analysis shows that by taking all the traces of all the functions of
H'(£2), one does not obtain the whole space L?(I") but only a subspace of it.
Further investigations show that such a subspace contains H ! (I") as a proper subset.
Hence we have,

HYI') c yo(H' (2)) c L*(I"') = H(I), (1.2.7)

where every inclusion is strict. It is finally recognised that the space yo(H'(£2))
belongs to a family of spaces H*(I") (defined for all s € R, that we are not going
to detail here) and corresponds exactly to the value s = % Hence we have

H(T') := yo(H'(2)), (12.8)
with
gl sy = Uegllf(m o]l 1 g)- (1.2.9)
Yov=g

In a similar way we could see that the traces of functions in H?(£2) belong to a
space H*(I") for s = % We may therefore set
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H3(I) = yo(H*(2)). (1.2.10)
”g”H%(F) = ueglzf(g) ”U”HZ(Q)- (1.2.11)
Yov=g

This can be generalised to the traces of higher order derivatives. For instance, if the
boundary I" is Lipschitz continuous, one can define a linear continuous operator y; :
H?*(2) — L?*(£) such that y;v coincides with the trace of the normal derivative
of v whenever v is smooth (say, v € C2(£2)). Proceeding as before we could then
define, for v € H?(£2), the trace of the normal derivative:

8v|
3_nr

If the boundary I" is smooth enough (but, here, Lipschitz continuity will not be
enough: one needs at least C!) one gets

=V1v.

YiI(H*(2)) = H? r) (for 0§2 smoother: not for a polygon).

Note however that for less regular domains this will no longer be true: for instance, if
£2 is a polygon we have that y;v belongs to a more complicated space that, roughly
speaking, is made of functions whose restriction to each edge e belongs to H 2 (e).
We shall not discuss in a more precise way trace theorems on Sobolev spaces of
fractional order. (The reader may refer to the authors quoted above.) Intuitively,
Sobolev spaces of fractional order can be considered as having regularity properties
that are intermediate between the properties of the neighbouring integer order spaces
and they can indeed be defined as interpolation spaces. Taking this as granted, we
then have

Hy(£2) := {v|ve H'(R), v|,. =0}, (1.2.12)
)
2 _ 2 _ -
H;(2) ={v|ve H*(R), v|. =0, %|F_o . (1.2.13)
For v € H, (£2), we have the Poincaré inequality
[vllo.e = C(82)[v]1.0. (1.2.14)
and the semi-norm | - |1 o is therefore a norm on H; (§2), equivalent to || - [|1 . We

shall also need to consider functions that vanish on a part of the boundary; suppose
that I' = D U N is a “reasonable” partition of I" into disjoint parts; then we can
define

Hy (22) :={v|ve H(R), v|, =0} (1.2.15)

and one has H| (£2) C H()l,D (2) c H'(Q).
When considering vector-valued functions, additional spaces will be useful.
In particular we shall use
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H(div; 2) := {v € L*(2)"|divv € L*(2)}, (1.2.16)
H(curl; 2) := {v € L*(2)"| curlv € L*(2)%}, (1.2.17)

where in (1.2.17) we have d = 1 whenn = 2 and d = 3 when n = 3. The
divergence and curl operators are defined as usual; particular care has to be taken for
the definition of the two-dimensional curl operator which in this case is understood
as curlv = div(vt), where v is the rotation of v by an angle of 7/2. It can be
shown that functions in H (div; §2) (resp. H(curl; £2)) admit traces of the normal
(resp. tangential) component on I'; namely, there exists a linear and continuous
operator y, : H(div;2) — H~Y2(I') such that y,v = trace of v - n for every
smooth v, where n is the outward normal unit vector, and a similar property holds
for the traces of the tangential components of vectors in H (curl; §£2). More details on
H (div; £2) and H (curl; £2) will be given in Chap. 2. Spaces including homogeneous
boundary conditions are denoted as follows

Ho(div; 2) :={v |v e H(div;2), v-n=0o0n I}, (1.2.18)
Hy(curl; 2) :={v |v e H(curl; 2), yxn =0o0nI"}. (1.2.19)

We shall come back in Chap.2 to the properties of these spaces; the above
definitions are sufficient to allow us to present some examples.

Example 1.2.1 (Boundary value problems for the Laplace equation). This is a very
classical case that in fact led to the definition of Sobolev spaces. For f given in
L*($2), let us consider the following minimisation problem on H_ (£2):

1
inf (E/Q|ggdq|2dx—/gfqu), (1.2.20)

()
2 aq 2 dq 2 .
where | gradg|” = |a—’ + |a—’ = grad g - grad g. One shows easily (cf. [141,
X X2

281,309] for instance) that this problem has a unique solution p, characterised by:
p € Hi(£2) and

/ grad p - gradq dx = / fqdx, Vqce€ Hol([?). (1.2.21)

2 2

This is of the form (1.1.6), by setting

a(p.q) = / grad p - gradg dx
2

This solution p satisfies, in the sense of distributions,
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—Ap = fin £2,
(1.2.22)
plp =0

which is a standard Dirichlet problem for the Laplace operator A, commonly called
Poisson problem. If H;(§2) were replaced by H, ,(£2) one would get instead
of (1.2.22) a mixed type problem

—Ap = fin £2,
p=0onTYp. (1.2.23)
@ =0on .
on

We thus have Dirichlet boundary conditions on I'p and Neumann conditions on
I'y. In particular for I'y = I', we get a Neumann problem. It must be noted that
minimising (1.2.20) on H'(£2) instead of H_ (£2) will define p up to an additive
constant and requires the compatibility condition

/Qfdxzo,

which can be seen to be necessary from (1.2.21) by taking g = 1 in £2.

If we denote by H™: (I') the dual space of H: (I'), and we take g € H_%(F),
we can consider the functional

1
—/ Ig&dqlzdx—/ fqdx +(g.q), (1.2.24)
2 ) .

where the bracket (-,-) denotes the duality between H _%(F) and H %(F). We
shall sometimes write formally [, gq ds instead of (g, v). Minimising (1.2.24) on
H; 1,(£2) leads to the problem

“Ap=fingQ,
p=0onTYp. (1.2.25)
P _ gonly.
on

When I'p = @ the solution is defined up to an additive constant and we must choose

f and g such that
/fdx—/gds=0.
o) r

These problems are among the most classical of mathematical physics and we
do not have to emphasise their importance. In the following chapters we shall need
to use regularity results for the problems introduced above. We have supposed up
tonow f € L*(£2). For the Poisson problem (1.2.22) we could have assumed f to
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belong to a weaker space, namely f € H™'(2) = (HO1 (£2))’, and nevertheless
obtained p € HO1 (£2). On the other hand if f is taken in L2(£2) and £2 is convex
one can prove [309] that p € H?(£2) and that

Ipl2.e <cllflloge- (1.2.26)

where ¢ is a constant depending only on §2. Regularity results are essential to
many approximations results and are fundamental to obtain error estimates. We
refer the reader to [233] for the delicate questions of the regularity of the general
problem (1.2.23) in a domain with corners. |

Example 1.2.2 (Linear elasticity). We want to determine the displacement u =
{u1, up} of an elastic material under the action of some external forces. We suppose
the displacement to be small and the material to be isotropic and homogeneous [ 146,
295]. The domain £2 is the initial configuration of the body. To set our problem,
we must introduce some notation from continuum mechanics. First we define the
linearised strain tensor &(u) by

) = (244 2,

1.2.27
2 an axi ( )

The trace, tr(¢), of this tensor is nothing but the divergence of the displacement field
tr(e)(v) = div v. (1.2.28)
We shall also use the deviatoric ¢” of the tensor ¢ that is

D

=&—

1L}
S| =

tr(e)d, (1.2.29)

where § is the standard Kronecker tensor and n is the space dimension. The

deviatoric is evidently built to have tr(e”) = 0. Let then I be a part of I" on
which we assume u = 0. We also assume the existence in £2 of a distributed force
f (e.g. gravity) and on I of a traction g that is decomposed into a normal part g,
and a tangential part g,. We denote by n and ¢ the normal and tangential unit vectors
to I". Let us denote

e =g:e:=) & (1.2.30)
i,J
and let us consider in V := (Hy ;; (§2))* the minimisation problem

inf%/ l()&ldivy|2+2,u|§(v)|2)dx—/ fvdx
2?2 = o= ~

vevV
—/ gnyﬂds—/ gty'LdS}-
I I

(1.2.31)
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Constants A and u, the Lamé coefficients, depend on the physical properties of the
material considered. The solution u of this problem is then characterised by

2,u/ &(u) :g(g)dx+k/ div u div v dx
@ @ (1.2.32)

= f-vder/ gny'ﬂder/ gv-tds, Vvev,
2 = 21 I,

which is still clearly of the form (1.1.6). We now use the classical integration by
parts formula

/m:g@dx:—/(divm)'gdx—}-/m,my'gds—f—/ myv-tds (1.2.33)
= = Q2 = r r

where m is a (smooth enough) tensor, and m,, and m,, denote the normal and
tangential parts of the traction vector m,, i.e.

Myn = E mijninj = E {E mijnj}ni = E (m,,)i ni,
ij j i

i

(1.2.34)
My = Zmijli nj = Z{Zmzjﬂj}li = Z(mn)i li.
ij i i
Equation (1.2.32) can now be interpreted as
—(2pdive(u) + A graddivu) = f in £2,
ul. =0,
| (1.2.35)

2uepn + A divu = g,
2uey = g only.

Let us now introduce the stress tensor o := s + p§ and the constitutive law

gD = ZMED@’

p =2+ ) div u,

(1.2.36)

relating stresses to displacements. It is now clear that the first equation of (1.2.35)
expresses the equilibrium condition of continuum mechanics,

dive + f = 0. (1.2.37)
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In applications, the constitutive law (1.2.36) will vary depending on the type
of materials and will sometimes take very non linear forms. In this case, the
expression of the energy functional (1.2.31) will change accordingly. Moreover,
large displacements will require a much more complex treatment. Nevertheless,
the problem described above remains valuable as a model for more complicated
situations.

The case of an incompressible material is especially important. It leads to the
same equations as in the study of viscous incompressible flows. O

Example 1.2.3 (Stokes’ problem for viscous incompressible flow.). We now con-
sider a low velocity flow of a viscous incompressible fluid in a domain £2. We
denote by u the velocity field and by &(u) the (linearised) strain rate tensor defined
in the same way as in (1.2.27). We thus consider the minimisation problem with
the same notation and the same space V' as in Example 1.2.2, but now with the
incompressibility condition divy = 0, that is,

inf u/|§@|2—/f-vdx+/ g,,y-nds—i—/ grv-tds. (1.2.38)
vev Q- o ~ n

; I
divv=0

As we shall see later, problem (1.2.31) can be considered, when A is large, as an
approximation (by a “penalty method”) of problem (1.2.38). Indeed when A is large
the second constitutive relation of (1.2.36) forces, in some sense, div v to be zero.
In the limit for A = 400 (1.2.36) becomes meaningless: we shall see in Sect. 1.3
that pressure can then be introduced as a Lagrange multiplier associated with the
constraint div u = 0. O

We now present a fourth-order problem. It is again, from the physical point of
view, an elasticity problem but in a special modelling.

Example 1.2.4 (Deflection of a thin clamped plate). We consider here the problem
of a thin clamped plate deflected under a distributed load f. The physical model
will be described in Chap. 10. We also refer to [147,148] and [149] for more details
on plate problems. Under reasonable assumptions (and setting, for simplicity, some
physical constants equal to 1), one obtains that the vertical deflection ¥ is solution
of the minimisation problem

1
inf -/ |A<p|2dx—/ fodx. (1.2.39)
2Je 2

PEH(R2)

The unique solution v is characterised by

/Aw A(pdx:/ fodx, Yo e H}(), (1.2.40)
2 2
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and is the solution of the boundary value problem

Ay = f,

vir =0 (12.41)
oy
o =0

For these boundary conditions (representing a clamped plate) (1.2.39) is equiva-
lent to

1 Po)’ Po )’ Pvg)’
inf 3o [ {1580 42 dx— [ foaxt,
we%<9>{2/:z[{3x12} i {3X18x2} +{ axg} * /Qf(p ¥

(1.2.42)

which is, in general, more physically sound. These two mathematically equivalent
forms can lead to different numerical methods. It must also be noted that natural
boundary conditions (those arising from integration by parts) will not be the same
if (1.2.39) and (1.2.42) are minimised on a space larger than HOZ(Q), so that the
equivalence only holds for plates that are clamped all over the boundary. Actually
the true potential energy of the plate (that is, the true functional which has to be
minimised) is given, for a clamped plate, by

J(p) := % /Q {v1ae + <1—”>[(%)2+2(aj§;)2

+(§22) dx—/f(pdx (1.2.43)

where E is Young’s modulus, v is the Poisson’s coefficient and ¢ is the thickness of
the plate. In particular £ and v can be expressed in terms of the Lamé coefficients
A, p in the following way

LA+ 2u) o

E:= , -t
A+ R YF A

(1.2.44)

We also recall that the Stokes problem (1.2.38) can also be expressed as a
biharmonic problem by the introduction of a stream function ¥ such that

_ {3_1,, _3_1#}

, . 1.2.45
8x2 8x1 ( )

We shall come back to this point in Sect. 1.3. O
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Example 1.2.5 (The time-harmonic Maxwell system). Maxwell’s equations repre-
sent one of the most elegant and concise ways to state the fundamentals of electricity
and magnetism. The classical electromagnetic field is described by the four vectors
&, D, H, and B which are functions of the position x € R3 and of the time ¢ € R.
The vectors £ and H are referred to as the electric and magnetic field, while D and
B are the electric and magnetic displacements, respectively.

The Faraday law of induction states

d
E-ds = ——/ B-n, (1.2.46)
/ax dt Jx

for any closed orientable surface ¥ in R? with normal ; namely, the circulation of
the electric field equals the negative of the rate of change of the magnetic flux.
The Ampere law says

szi/D@+/J@ (1.2.47)
iz dt Jx z

with the same notation as above and where J denotes the current density vector.
From Egs. (1.2.46) and (1.2.47) it can be noticed that the fields £, H, 5 and D
have a different nature. Indeed, the first two are integral 1-forms, while the latter
two are integral 2-forms in the spirit of [247] (Definition 1). This remark is of
fundamental importance for the design of finite element schemes.
The differential forms of (1.2.46) and (1.2.47) read

B
— 4 curl€ =0,
ot -

aD
— —curlH =—-7,
ot -

(1.2.48)

which are usually referred to as Maxwell’s equations, together with the two Gauss
Laws

divD = p,

(1.2.49)
divB =0,

where p denotes the charge density function. It is clear that in (1.2.48) and (1.2.49)
the quantities 7 and p cannot be taken independently: taking the divergence of
the second equation in (1.2.48) and comparing with the time derivative of the first
equation in (1.2.49) we have indeed:

dp

o +div7 =0, (1.2.50)

which could be seen as a compatibility condition when J and p are considered as
given data.
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The time-harmonic Maxwell system is considered, for instance, when the Fourier
transform in time is used or when the propagation of electromagnetic waves at a
given frequency is studied. Then, given a frequency w, we consider the ansatz:

Ex.1) =R(e""E(x)).
D(x,1) = % (e D(x)),

‘ (1.2.51)
Hx,t) =R (e_"‘”H(Q) ,
B(x,t) =% (e‘“‘”B(g)) ,
where i denotes the real part. We define also
J(x.1) =R(e7""J(x),
. (1.2.52)
plx,1) =N (e7'r(x)).
Standard constitutive equations for linear media read
D =¢E, B =uH, (1.2.53)

where ¢ and p denote the electric permittivity and the magnetic permeability,
respectively. For general inhomogeneous, anisotropic materials & and y are 3 x 3

positive definite matrix functions.

Inserting constitutive relations (1.2.53) into (1.2.48) and (1.2.49), and consider-
ing the time-harmonic assumptions (1.2.51) and (1.2.52), we get the time harmonic
Maxwell equations

curl £ —iw&H =0,
div(eE) =r,

B (1.2.54)
curl H +iweE = J,

div(uH) = 0.

It is a standard procedure to eliminate one variable and to write (1.2.54) as a
second order system. Eliminating for instance the field H, we get

curl(p™" curl E) — 0’¢E = F, (1.2.55)

where F is given by iwJ, together with the divergence condition (which follows
from the equation)

— o’ div(¢E) = div F. (1.2.56)
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Equation (1.2.55) is usually equipped with suitable boundary conditions. The
simplest one is the perfect conducting boundary condition which reads:

Exn=0, (1.2.57)

where 7 is the outward unit vector. We shall discuss variational formulations of the
time harmonic Maxwell equations in Chap. 11. O

The examples presented above are among the most fundamental of mathematical
physics and engineering problems. A good understanding of their properties will
enable to extend the results obtained to more complex situations.

1.2.1 Eigenvalue Problems

The above examples can also be associated to eigenvalue problems. It is worth
making them explicit as we shall be concerned later with alternate formulations
and their numerical properties. In the case of Example 1.2.1, restricting ourselves to
the case of Dirichlet’s conditions, we have

—Ap = Apin 2,
(1.2.58)

pl,=0.

The solutions of this problem describe, for instance, the vibrational modes of a
membrane. It can be written in a more precise way as,

/ grad p - gradq dx = A/ pqdx, Vqe Hi (). (1.2.59)
o) o)

It is classical [172,382] that this problem has an infinite countable set of solutions
(pk, Ak, k € N) with ; — oo as k increases. The key to this result is the compact
inclusion of H{ (£2) into L*(£2).

In the same way, the eigenvalue problem associated with the elasticity problem
of Example 1.2.2 is fundamental for the study of vibrations in elastic structures. The
problem is then, restricting ourselves again to Dirichlet’s conditions,

—(2udive(u) + A graddivu) = Auin 2,
= (1.2.60)

E|F0 =0.

We have denoted the eigenvalue as A to distinguish it from the Lamé coefficients.
The variational form is then,

2u/§@:§(g)dx+/\/ div u div vdx
fe = 2

:i/ u-vdxds, YveV. (1.2.61)
2
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Here again we have an infinite set of eigenvalues. Introducing in this problem the
constraint divy = 0, we would get an eigenvalue problem for the Stokes problem
of Example 1.2.3, or to a problem of incompressible elasticity as we shall see later.
Eigenvalue problems related to Maxwell’s equations will be discussed in Chap. 11.

1.3 Duality Methods

1.3.1 Generalities

Up to now, we have introduced equations that can be written as minimisation
problems of some functionals in properly chosen functional spaces. This is the
most classical way of setting these problems. Finite element approximations, based
on the formulations described above, are routinely used in commercial codes.
Various reasons justified the introduction, for these same problems and many other
ones, of different variational formulations and therefore different finite element
approximations. This was done at the beginning by many engineers. The reader
may refer, for example to [321,335,336].

The first reason can be the presence in the variational formulation of a constraint,
such as the condition div ¥ = 0 in problem (1.2.38). As we shall see, it is difficult
(and not necessary) to build finite element approximations satisfying exactly this
constraint. It will be more efficient to modify the variational formulation and to
introduce pressure.

A second reason may lie in the physical “importance” of the variables appearing
in the problem. In elasticity problems, for example, it is often more useful to
compute accurately stresses rather than displacements. In the standard formulation,
stresses can be recovered from the displacements by (1.2.36) or some other similar
law. Their computation requires the derivatives of the displacement field u. From a
numerical point of view, differentiating implies a loss of precision. It is therefore
appealing to look for a formulation in which constraints are readily accessible.

A third reason comes from the difficulties arising in the discretisation of spaces
of regular functions such as HZ(£2) appearing in Example 1.2.4. Approximating
this space by a finite element method implies ensuring continuity of the derivatives
at interfaces between elements. This is possible but more cumbersome than approx-
imating, say, H'(£2) or H}(£2). A variational formulation enabling to decompose
a fourth-order problem into a system of second order problems permits to avoid
building complicated elements, at the price of introducing some other difficulties.

Finally, a last reason could be to look for a weaker variational formulation
corresponding better in some cases to available data (e.g. punctual loads) for which
standard formulations may become meaningless due to a lack of regularity of the
solution.

We must also point out that the “non-standard” formulations which we shall now
describe have been initially introduced by engineers for one or some of the reasons
discussed above. We quote in this respect, but in a totally non exhaustive way, [210,
243,245,320,370]. On the other hand, very powerful tools for the transformation of
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variational problems can be found in convex analysis and duality theory [38,50, 184,
338]. It is neither possible nor desirable to develop here duality theory and we shall
restrict ourselves to the most basic facts. The fundamental idea of duality theory is
that one can represent a convex function by the family of its tangent affine functions.
This is indeed the principle of the classical Legendre transformation. More precisely,
let us define for a given convex function G(v), defined from a space V to R, the
conjugate function G*(v*) on the dual space V' of V by

G*(v*) := sup{v, v*)yxy — G(v). (1.3.1)

veV

Note that when V' = R, G*(v*) is the intercept with the v axis of the tangent to G
of slope v*. The important point for what follows is that one can build G(v) from
G*(v*) by the following formula, symmetrical to (1.3.1)

G(v) = sup (v, v)yrxy — G*(v"). (1.3.2)

v*¥eV’

Given then a problem of the form

inf F(v) + G(v), (1.3.3)
veV
we can use (1.3.2) to obtain
mf{F(v) + sup (0%, 0)pixy — G*(v )} (1.3.4)
v¥ey’

that is, the saddle point problem

inf sup F(v) + (v*,v)pxy — G*(v™). (1.3.5)

veV v*eV’/

Under simple regularity assumptions, one can also consider the dual problem

sup {mf F@) + (v, v)yxy — G*(v )} (1.3.6)

viey’ Ve

To fix ideas, it is worth considering a special and important case where we have
asin (1.1.2), for f € V',

F(v) = %a(u, v) — (f,v). (1.3.7)

We then introduce another Hilbert space Q and an operator B from V into Q’
defined by a continuous bilinear formon V' x Q,

(Bv,q) = b(v,q). (1.3.8)



18 1 Variational Formulations and Finite Element Methods

We then want to solve for g € Q' the constrained problem

inf J(v). (1.3.9)
Bv=g

This constrained problem can be written as an unconstrained problem, introducing
the characteristic function §(-|{0}) defined on Q’ by

0 ifv=g,
S(alig}) := ¢ (13.10)
otherwise.
We can then write (1.3.9) as
12‘f/ F(v) + §(Bvl{g}), (1.3.11)
which can be readily transformed into the saddle-point problem
i 1
inf sup Ea(u, v) —b(,q) — (fiv)vxy +(g.9)o'x0- (1.3.12)
veV geQ
for which the optimality system is
a(u,v) + b, p) = {(fiv)vxy, Yvel,
(1.3.13)
b(qu) = (ng>Q/XQv Vq € Qv

or in operator form, denoting A the operator from V into V’ defined by a(-, -),

Au+ B'p = f,
(1.3.14)
Bu=g.
Remark 1.3.1. Problem (1.3.12) has the general form
inf sup L(v, q), (1.3.15)

veV qgeQ

where L (v, q) is a convex-concave functional on V x Q. If one first eliminates g by
computing

J(v) = sup L(v,q),
q€Q

one falls back on the original problem, the primal problem. Reversing the order of
operations, (this cannot always be done, but no problems arise in the examples we
present) and eliminating v from L (v, ¢) by defining

D(q) = irUlfL(v,q) (1.3.16)
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leads to the dual problem

sup D(q). 1.3.17)
q€0

|

The dual problem in Q corresponding to (1.3.12) would take the form
N -
inf (4 'B'q. B'q)vxy — (A7 f.B'q)vxv + (8.9) 0'x0. (1.3.18)

or in operator form,
BAT'B'p = BA7' f —g. (1.3.19)

We now apply this idea to the previous examples. This form of problem and
its variants will be central to our study and we shall proceed to introduce some
examples.

1.3.2 Examples for Symmetric Problems

Example 1.3.1 (Introduction of pressure in Stokes’ problem.). Let us consider
problem (1.2.38) in which, to make the presentation easier, we take Iy = I
that is pure Dirichlet conditions on the boundary. This constrained problem can
be written as an unconstrained problem, introducing as above the characteristic
function §(-|{0}) defined on L?(£2) by

0 ifv=0,
§(v{0}) = ne (1.3.20)
400 otherwise.
It is thus a pure change of notations to write instead of (1.2.38)
inf u/ le(v)]* dx —/ f-vdx + 8(div v|{0}), (1.3.21)
veV o~ o —
where V' = (H, (£2))?. On the other hand, one clearly has,
8(div ul{0}) = sup / q divudx, Yue (H} ()% (1.3.22)
qeL?(2) /%2

and the minimisation problem (1.3.21) can be transformed into the saddle point
problem,

inf sup ,u/ |§(Q)|2dx—/ f~vdx—/ q div vdx. (1.3.23)
Q- e - Q

veV ¢el2(2)
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This apparently simple trick has in reality completely changed the nature of the
problem. We now have to find a pair (u, p) solution of the variational system

2,u/§@):§(ydx—/f'vdx—/pdivgdx:O, Vv eV,
fola = e = Q2

/ g divudx =0, Vqe L*().
2
(1.3.24)

The second equation of (1.3.24) evidently expresses the condition div 4 = 0. In
order to use (1.3.24), we shall have to show the existence of a saddle point (u, p),
and in particular the existence of the Lagrange multiplier p. This will be done in
Chap. 4. The variational system (1.3.24) can be interpreted in the form

—2pAu+gradp = f,

div u = 0, (1.3.25)

ulr =0,

where we used the operator Au = div &(u)

321/11 3 1 8u1 3u2
a—+a—2§a— a—xl}

Au = . (1.3.26)
02uy 0 1 (duy Oup

Under the divergence-free condition div u = 0, this can also be written as

—pAu+gradp = f,
- (1.3.27)
divu =0,
which is the classical form of the Stokes problem. O

Example 1.3.2 (Dual problem for the Stokes problem). In the case of the Stokes
problem, the dual problem can be expressed, as we shall see, in many equivalent
ways. In order to find it we must, ¢ being given, find the minimum in respect to v
of L(v,q) = i [ le@?dx — [, f -vdx — [5q div vdx. The minimum, that
we denote by u,, is characterised by

2,u/§@q):§(g)dx—/f'vdx—/qdivgdxzo, YveV. (1.3.28)
ol = 2 = 2
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Taking v = u, this gives,

25 . _ . _
ZM/Q@%N dx /Qi Equ /qulvqux 0. (1.3.29)

Using (1.3.29) to evaluate L(u,, ¢), the dual problem can be written as an optimal
control problem,

sup —M/ le(u,)|* dx, (1.3.30)
2

q€L?(2)

where u, is the solution of

=2 Au, +gradg = f,
- (1.3.31)
u,lr =0.
Denoting by G the Green operator defining the solution of (1.3.31), that is
u, = G(f —gradq) (1.3.32)
and using (1.3.32) in (1.3.30), one can get from (1.3.29)
inf/ gradq - G(gradgq) dx — / G(f)-gradqdx. (1.3.33)
7 Ja 2 =

One notices that this dual problem is a problem in grad q. It is well-known that the
solution p is defined (for Dirichlet conditions on u) only up to an additive constant.
One can interpret (1.3.33) as the equation,

div(G gradg) = div(G f). (1.3.34)
If one defines on V' := (H~'(£2))? the norm

IAING = (G £, flvxrr, (1.3.35)

problem (1.3.33) can be written as a least-squares problem

1
inf =| gradg — f|>. 1.3.36
qeL2(9)2” gradg — f g ( )

|

The presence of a Green operator makes this dual problem difficult to handle
directly. It is however implicitly the basis of some numerical solution procedures
[205, 368]. We shall meet below other dual problems that will have a large direct
importance and that will be handled as such.
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Example 1.3.3 (A duality method for nearly incompressible elasticity). We already
noted in Examples 1.2.2 and 1.2.3 that the linear elasticity problem and the Stokes
problem are very similar when a nearly incompressible material is considered. We
now develop this analogy in the framework of Example 1.3.1. The starting point
will be the obvious result,

A 1
—/ |divv>dx = sup /qdivydx——/ lq|? dx. (1.3.37)
2Je geL2(2) /2 20 Ja

Substituting (1.3.37) into (1.2.31) we get, by the same methods as in the previous
examples, the problem

1
inf sup u/ |§(Q|2dx+/ q divgdx——/ lg|* dx
VEV ¢eL2(R2) Q- 2 21 2

(1.3.38)

- f-vdx—/ gny'ads—/ g v-tds.
- = I I

2

The solution (u, p) of problem (1.3.38) is characterised by the system,
Z,u/ e(w) : e(v)dx +/ pdivv dx
2~ - 2

=/ f-vdX+/ (gnv-n+guv-t)yds, VYveV, (1.3.39)
Q— — I

1
/qdivgdx——/ pgdx =0, Vqe L*(2).
2 A 2

This can be summarised by saying that we transformed our original problem into a
system by introducing the auxiliary variable p = A div u. It must be noted that this
also makes our minimisation problem become a saddle point problem. We shall see
in Chap. 8, that this apparently tautological change has implications in the building
of numerical approximations to (1.2.31) that remain valid when A is large. O

Example 1.3.4 (Dualisation of the Poisson problem). The result that we shall get
here can be obtained by many methods. Techniques of convex analysis permit one
to extend what appears to be a trick to much more complex situations. However it
will be sufficient for our purpose to follow the simple development below. Let us
then consider the Dirichlet problem,

1
inf —/ |ggdq|2dx—/ fqdx. (1.3.40)
genl @) 2 Ja 2

In many applications grad p rather than p is the interesting variable. For instance
in thermo-diffusion problems, grad p will be the heat flux which is (very often)
more important to know than the temperature p. What we now do is essentially to
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introduce the auxiliary variable ¥ = grad p to transform our problem into a system.
To do so, we use the same trick as in Example 1.3.3 and write

1 1
—/ | gradg|>dx = sup /y- gradg dx——/ v dx,  (1.3.41)
2Je ve(L2(@)2 2 2Ja

which we use in (1.3.40) to get the saddle point problem,

1
inf sup——/ [v]? dx—/ fq dx—i—/ v- gradqdx, (1.3.42)
geover 2 Jg 2 2

where Q := Hj(£2) and V := (L?(£2))>. The saddle point (p, u) is characterised
by

/g-ydx—/g'g@dpdxzo Yv eV,
2 2

(1.3.43)
/z- g@dquzf fqdx, VqeQ,
2 Q
and this can be read as
u= gradp, p € H} (),
0 (1.3.44)
divu+ f =0,

which is evidently equivalent to a standard Dirichlet problem for Laplace operator.
The dual problem is readily made explicit. Writing it as a minimisation problem
by changing the sign of the objective functional, we have

1
inf -/ lv]*dx, where Z; :={ve (L*(R))?| divyv+ f =0}. (1.3.45)
vEZy 2 Q :

This is the classical complementary energy principle. O

We now want to get a weaker form of this problem. In order to do so, we recall a
functional space already introduced in (1.2.16):

H(div; 2) := {v| v € (L}(R2))?, div v € L}(R2)}, (1.3.46)

and we consider on it the following norm
1203 @ive2y == N2ll5.0 + I1div 2]1G o (1.3.47)
that makes it a Hilbert space. As we have already said, vectors of H(div; £2) admit

a well defined normal trace on I' := 3£2. This normal trace v - n, lies in H~"/2(I")
and one has the following “integration by parts” formula,
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/y- g@dqu+/ divv g dx ={q,v-n) (1.3.48)
2 2

a3 yxH=3ry

for any v € H(div; £2) and any g € H'(£2). We shall often write formally S rqu-
n ds instead of the duality product (g, v - n).

Remark 1.3.2. The norm (1.3.47) is surely as weird as many other Sobolev norms.
See Remark 1.2.1. The proper way to write it would be to take a characteristic length
£ of the problem (for instance, the diameter of £2), and consider instead

ol ae) = l2l5e + €1 div v]§ . (1.3.49)

We do not do it here, nor, in general, throughout the book, in order to have simpler
formulae to deal with. But, nevertheless, we consider it as not healthy. O

Example 1.3.5 (Weak form of the dual Poisson problem). If we take f € L?*(2),
problem (1.3.45) which is a constrained problem can be changed into a saddle point
problem, as in Example 1.3.1, by introducing a Lagrange multiplier p € L?(£2),
that is, as v now belongs to H(div; £2),

1
inf sup —/ [v|? dx—i-/ fq dx+/ q div v dx. (1.3.50)
2 2 2

vEH(div;2) geL()
The functional spaces employed precisely enable us to write every term in (1.3.50)

without ambiguity. We now look for a saddle point (p, u) satisfying the variational
system,

/g-ydx+/p divvdx =0 Vv e H(div; 2),
2 o)

(1.3.51)
/ (divu+ flgdx =0 Vg e L*(Q).
2
Using (1.3.48) with v - n| = 0, we obtain from (1.3.51)
u = grad p. (1.3.52)

Now p € L*(2) and gradp = u € (L?*(£2))? imply that p € H'(£2) and it
is justified to consider its trace. Using again (1.3.48) with a general v shows that
plr = 0. The solution of our “weaker” problem is then the solution of the standard
problem. However the discretisations of problem (1.3.51) will be quite different
from those used for the standard formulation. O

Remark 1.3.3. The previous formulation enables us to write directly in a variational
form a non-homogeneous Dirichlet problem. Indeed the solution (p, u) of the saddle

point problem with g € H 2 (),
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1
infsup—/ lv|? dx—i—/(divy—i— g dx—/ gu-nds, (1.3.53)
vog 2Je o r

leadstou = grad p, divu+ f =0, plr = g.

On the other hand, Neumann conditions become essential conditions that have
to be incorporated into the construction of u, that is in the choice of the functional
space. O

Example 1.3.6 (Dualisation for the linear elasticity problem). We now want to
extend the previous results to the case of the linear elasticity problem. We shall
thus get a second way to dualise problem (1.2.31). It is a general fact that there is
no unique way to use duality techniques.

The lines of the development are the same as for the Poisson problem and we
shall avoid to write the details. We just point out that now u and v play the role of p
and ¢, while ¢ and t play the role of u and v, respectively.

We start by introducing the space

H(div: 2), :={z] v € L*(2). ©j = 5 divz € (L(2))*}, (1.3.54)

where div 7 is the vector %m + a—izt,'z. On this space we use the norm,

[HFEDS /Q 5l dx + 1 div ZlF 2 ) e (1.3.55)
if

which makes it a Hilbert space.
One can then define, as for H(div; §2), the vector 7, € (H_% (I))?

(@)=Y Tn, (1.3.56)
J

and we shall mostly use the normal and tangential components, t,, and t,;, of this
vector, as defined in (1.2.34). We then have the following “integration by parts”
formula,

/£3§@ dX+/ divr-vdx =(z,,v) = (tan, 0+ 1) + (T, v - 1), (1.3.57)
- = 2 -

which is valid for any T and v smooth enough. We have denoted (-, -) the duality

between H 2 (I')and H 2 (I") and shall often write the formal expression [} T, v-
nds+ [t v-tds.

We can now write our dual formulation for the linear elasticity problem.
Following the same line as for the Poisson problem, we now write
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A
u/ |§(E)|2dx+—/ |div v]*dx = sup /zDrgD dx
2" 2 Ja

TEH (div;2)5 /2 - -

1 1
—}—/trgtrgdx——/|£D|2dx——/(trt)2dx,
Q - - 4/L Q - 2(X+,u) Q -

which leads us to the saddle point problem in H (div; £2) x (L*(£2))?,

(1.3.58)

inf sup

2 D2
: 2@_’_ )/ |tr 7] dx+ /|T | dx+/(d1vr+f)vdx (1.3.59)

The solution (g, u) of this saddle point problem is characterised by the system

dive + f =0,
tro = A+p)tr 8U (1.3.60)
a” =2u "W).

which are the equilibrium condition (1.2.37) and the constitutive relations (1.2.36).
The dual problem then consists in minimising the complementary energy

1 / Do 1 / 5
inf — | |277dx + ———— [ |tr z|" dx, (1.3.61)
z 4u Jo = 20+ ) Jo =

under the constraint divz + i = 0. Both the mixed formulation (1.3.59) and
the dual formulation (1.3.61) are used in practice. They lead to different although
similar approximations. O

We now consider the thin plate problem of Example 1.2.4 to introduce a mixed
formulation due to [152] and [298].

Example 1.3.7 (Decomposition of a biharmonic problem). Again using the same
technique as in the dualisation of the Dirichlet problem in Example 1.3.4, it is a
simple exercise to transform problem (1.2.39) into the saddle point problem

inf sup / ||? dx +/ w Ap dx —+—/ fodx, (1.3.62)

HELXD) yep2(2) 2

and to get the dual problem,

inf -/ |p|? dx, (1.3.63)
ueMm 2

where M = {u € L*(2), An + f = 0}. Integrating by parts the term
f oM Agp dx, we get, as in Example 1.3.5, a weaker formulation
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1
inf sup —/ |pe]? dx—/ grad jt - g@dqodx—}-/ fodx. (1.3.64)
HEL%(R2) (peHOZ(Q) 2 2 2 2

Assume that (1.3.64) has a saddle point (w, ) with @ € H'(£2). Then (w, V) is
characterised by the variational system

/a)udx—/ gradu - gradyy dx =0 Vu e H(2),
2 2

(1.3.65)
/ gradw - g@dq)dx:/ fodx V(/)EHOI(.Q).
2 2
It is not difficult to see that the two equations of (1.3.65) imply
0
—-AY =w and _W =0,
on |r (1.3.66)

—Aw = f.

As we already have | = 0 (since ¥ € H,(£2)), we have in (1.3.66) too many
boundary conditions on ¥ and none on w. The system however has a solution (w, V)
(provided £2 and f are smooth enough) such that the solution of the Dirichlet
problem in ¢ also satisfies (through the choice of the right-hand side) the extra
Neumann condition. O

Example 1.3.8 (Decomposition of the plate bending problem). We now consider
the plate bending problem (1.2.43). In order to make the dual problem easier to
introduce, we first write the energy functional in the form

1 Ef
5(12(1 - v2)) /Q MD,p) = Dyp dx — /9 Jodx, (1.3.67)

where the operator gz is defined by

D ¢); = P9 1oy j<a (1.3.68)
%@l/ = 8x,-8xj’ =1, J =4 3.
and the operator 1t by
i+ v (1—=v)p
M) := , 1.3.69
@ ( (I=v)t2 v +m ( )

for any symmetric tensor z. Using the same kind of analysis as in the previous
examples, we then get the saddle point problem
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inf sup l(L—vz))/ EJR_ILE): Tdx
7]

re2@)t penr) 2 EP
+/g: D (pdx—/ fodx, (1.3.70)
o= —? Q

where (L%(£2))? is the space of square integrable 2 x 2 symmetric tensors. We
introduce, as dual variables, the bending moments, obtained from the second
derivatives of the primal solution i by

Ef?

= T3 sm(_ 1), (1.3.71)

or explicitly

o Et? (azw 821#)
= ——— V— .
S DY FTE) | W I
Et? Py Py
=——— (v—= 4+ =L 1.3.72
022 12(1 —v?) (V ox?  0x3 ) ( )
s — Et? 02y
2T TR0+ v) 0xp0x
The dual problem can then be written as
112 ) 2
lng(E—t?’) | )+ 200+ ) — T d, (1.3.73)
under the constraint
D;‘; = f. (1.3.74)
In (1.3.74) we denoted by D the transpose of the operator D , 80 that
821'11 82‘512 827:22
Dt = . 1.3.75
2; 8x12 3)613)62 8x§ ( )

It is possible, as in the previous case, to integrate by parts the expressions (1.3.74)
and to obtain formulations in different functional spaces. We shall see an example
of such a procedure in Sect. 10.2. O

1.3.3 Duality Methods for Non Symmetric Bilinear Forms

In all previous examples, our variational formulations were based on a minimisation
problem for a functional and we were led to introduce a genuine saddle point
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problem. Even if this classical framework is suitable for a first presentation, it is
not the sole possible, and the techniques developed before can also be applied
to problems which are not optimisation problems. Let us consider for instance in
H, (£2) a continuous and coercive bilinear form a(p, g). If we do not require a(, -)
to be symmetric, the variational problem

a(p,q)z/ fqdx, Yqe H) (), (1.3.76)
2

has for f € L*(£2) a unique solution p € H, (£2) but does not correspond to
the minimisation of any functional. To fix ideas, let us suppose that a(p, g) can be
written as

a(p,q) = m( grad p, gradq) =/ M( grad p) - gradg dx (1.3.77)
2

where m(-,-) is a continuous bilinear form on (L?(£2))?, which, of course, is non
symmetric, and M is the associated linear operator from (L?(£2))? into (L?(£2))>.
We can now introduce the auxiliary variable

u = M(grad p) (1.3.78)

and write problem (1.3.67) in the form

/z- ggdqu:/ fq dx,
2 2

/M_lg-ydxzfy-g@dpdx.
o) 2

This can be integrated by parts to yield, as in Example 1.3.5, for u in H(div; §2) and
pin L*(R2):

(1.3.79)

/ div u g dx+/ fqdx =0, VqeL*(),

@ @ (1.3.80)
/ M_lg~gdx+/ p divvdx =0, Vv e H(div; Q).

2 2

We shall thus consider in Chaps. 3 and 4 problems such as (1.3.80) without making
reference to a saddle point problem. The same remark would apply to the methods
of the following section. O

1.3.4 Mixed Eigenvalue Problems

We have considered earlier in Sect. 1.2.1 some eigenvalue problems associated with
our examples. We shall now rapidly consider their counterpart in mixed form. Let
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us thus come back to problem (1.3.13). It is now possible to consider three distinct
eigenvalue problems.

1. The primal eigenvalue problem,

a(u,v) + b, p) = Au,v)y, VYvevy,
(1.3.81)
b(u,q) =0, VgqeQ.
2. The dual eigenvalue problem,
a(u,v) +b(w,p) =0, VYvely,
(1.3.82)
3. The global eigenvalue problem,
a(u,v) + b, p) = Au,v)y, Vvel,
(1.3.83)
b(u,q) = =A(p.q)o. Vg€ Q.

In practice, the interesting cases, from the physical point of view, will be either the
primal or the dual problem.

Example 1.3.9 (Eigenvalue problem for incompressible elasticity and the Stokes
problem). This case is the simplest instance of a primal eigenvalue problem of
type (1.3.81). We consider the eigenvalue problem corresponding to (1.3.39) in the
limiting case of A infinitely large.

2,u/g@:g(g)dx+/pdivgdx:/\/g-ydx, Yv eV,
@ @ ? (1.3.84)

/ g divu =0, Vg e L*().
2

This problem is the equivalent of (1.2.60) in the incompressible case. The Lagrange
multiplier p ensures the incompressibility of the eigenmodes. O

Example 1.3.10 (Eigenvalue problem for the mixed Poisson problem). This is the
simplest example of a dual problem of type (1.3.82). We consider the eigenvalue
problem associated with the saddle-point problem of (1.3.51).

/g-gdx—f—/ p divvdx =0, Yv € H(div; £2),

@ @ (1.3.85)
/ divug dx = —A/ pqdx, YqeL*(R2).

Q Q
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This corresponds to the standard eigenvalue problem of (1.2.58). The Lagrange
multiplier p is now the important variable. O

As we shall see later in Chap. 6, the approximation of those two kinds of problems
will need specific assumptions.

1.4 Domain Decomposition Methods, Hybrid Methods

We have shown in Sect. 1.3 that duality techniques enable us to obtain alternate
variational formulations for some problems. The method that we shall now describe
will yield a new family of variational principles that can be more or less grouped
under the name of hybrid methods. The common point between the examples
that follow is that in all cases the variational principle will depend explicitly,
independently of any discretisation, on a partition of the domain §2 into sub-
domains. To clarify some of the facts that will appear later, we first recall a very
classical result.

Example 1.4.1 (A transmission problem). We consider the very classical case in
which a domain §2 is split into two sub-domains £2; and §2; by a smooth enough
internal boundary S (Fig. 1.1). We consider the case of a Dirichlet problem with
variable coefficients a;(x), a>(x), defined respectively in £2; and £2, and being
discontinuous on S. This classically leads to the variational problem: find p €
H{ (£2) such that

/ ai(x) grad p - gradg dx +/ a(x) grad p - gradg dx
21

2,

:/fqu, Vg € HI(Q). (14.1)
2

We would like to decouple the above problem into two problems, one in each
£2;, and add suitable continuity conditions at the interface S. For this we recall the
following classical result.

Proposition 1.4.1. Assume that 2 is a domain in R? with a Lipschitz continuous
boundary, and let S be a Lipschitz continuous curve that splits $2 in the two sub-
domains §2, and §2,. Let moreover a(x) be a piecewise smooth function, and denote
by a;(x) (i = 1,2) the restriction of a(x) to §2;. Let f € L*(R2) and let p be
solution of the problem (1.4.1) Then, setting p1 = plg, and p» = pleo,, it is
equivalent to say that p is solution of the problem

— div(ai(x) grad p\) = f in §2y,
— div(ax(x) grad py) = f in §2, (1.4.2)

pilrneg, =0, palrree, =0,
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Fig. 1.1 The decomposed domain

ad ad
pr=pronS, aj— P1 +a,— P2 =0onsS, (1.4.3)
3 an
where ny and ny are the exterior normals to §21 and §2;, (respectively) on S. O

O

An important special case is a;(x) = a,(x) = 1. In that case, problem (1.4.1) is
obviously equivalent to

_j'i ;({ (1.4.4)
and conditions (1.4.2) and (1.4.3) can be written as
— Apy = fin 2y,
— Apy = fin §2,, (1.4.5)
pilrnae, =0, palrnse, =0,
and
pr=ponsS,
g_f: gzz —oons. (1.4.6)

Example 1.4.2 (A domain decomposition method for the Dirichlet problem). What
we really want to do is to consider a general partition of £2

N
2= Uki. (1.4.7)

i=1

We now write the classical Dirichlet functional of Example 1.2.1 in the following
way. First, we write the Dirichlet functional as

J(q) :— / | gradg|®dx — fqu}. (1.4.8)
i=l Ki
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Then, introducing the functional space

N
X(2):= {4l 4lx, € H' (K} ~ [[H' (K. (1.4.9)

i=1

we can extend J(g) on X(£2). Moreover, Hj (£2) is a closed subspace of X(£2)
and we may consider “q € H(](£2)” as a linear constraint on ¢ € X(£2). This
constraint states that on e;; = 0K; N 0K; we must have (in H%(eij)) pi = pj,
where p; = plk,.

We shall therefore, following a now familiar procedure, impose this constraint
through a Lagrange multiplier properly chosen in H _%(e,;i). As we shall see in
Chap. 2, it will be more convenient to introduce v € H(div; £2) and to use the
normal trace of v on dK; as a multiplier. This leads us to the saddle point problem

N

1
inf sup Z{E/K | ggdq|2dx—/aK E.Q’.qu—/K fqu},

PEX(Q) veH(dviR) Ty

(1.4.10)
for which we have the following optimality conditions: fori = 1,..., N, find p; €
H'(K;) such that,

/ gradp; - gradg; dx = | fq; dx+/ u-ngqids, Vg € H'(K),
K; K; 0K;
(1.4.11)
N
Z/ v-n, pids =0, Vv e H(div: ). (1.4.12)
0K

i=1

Condition (1.4.12) expresses continuity of p at interfaces e;; and condition p|r = 0.
Condition (1.4.11) shows that each p; is solution in K; of a Neumann problem

—Api = f in Ki,

I (1.4.13)

b =u-n, onodk;.

8ni
Solving this problem obviously requires a compatibility condition (take g; = 1
in (1.4.11))

/ u-n, ds+ fdx=0 (1.4.14)
BK,' Ki

on every sub-domain K;. This condition can also be written as

/ (divu+ f)dx =0. (1.4.15)

i
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From (1.4.13) we have that the multiplier u - n can be seen as the normal derivative

of p. Indeed, when equilibrium is attained, we have on interfaces % =u-n; =

—u-n; = % and p; = p;. A suitable lifting of u in each K; in order to have
J

div u + f = 0 can always be done because of (1.4.14) and (1.4.15). O

Example 1.4.3 (Dual problem of the domain decomposition method). We now
consider the dual problem of the above saddle point formulation. It will be, as it
can be expected, very similar to the dual problem introduced in Sect. 1.3 for the
Poisson problem. Let us first remark that taking the infimum on the constant part of
q € X(£2) oneach K; leads to the constraint (1.4.15) on u. It is therefore possible to
suppose div u+ f = 0 as this can be attained by modifications to u that are internal
to K; (that is not modifying u - n;) and are transparent to formulation (1.4.10).
Writing

/ y-g,qu:/ divug dx+/ v- gradq dx, (1.4.16)
aK; K; K;
one may write from (1.4.10)

N

1
su inf {-/ rad ‘de—/ v- grad <dx}. 1.4.17
diV(y)+Pf=0 qieHl(Ki)/]Rizz; 2 Kil grad ;| K gradg; ( )

From (1.4.17) we evidently get, setting u; = ug;,
grad p; = P(u;), (1.4.18)

where P is the projection operator in (L*(K;))? on grad(H'(K;)). We shall indeed
prove in Chap. 2 that one has

(L*(£2))* = {grad H'(2)} & curl Hy(2)}. (1.4.19)

From this we can eliminate ¢; and write the dual problem,

N
1 / 5
sup  —= |P(v;)|” dx. (1.4.20)
veH(div:2) 22 K
div()+ £ =0

i=1
We are therefore back to a variant of (1.3.45). Indeed, (1.3.45) shows that the
projection operator P in (1.4.20) is unnecessary. O

Remark 1.4.1. One could obtain a variant of the above dual problem, without
constraint (1.4.15) by using a “least-squares” solution of (1.4.13) whenever (1.4.14)
does not hold. This could be done, for instance by solving on K;, in a weak
formulation that we shall not describe,
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Azp,' = Af in K,',

5 of
I AP = g, on 0K, (1.4.21)
api

i _ v-n; on 0Kj;,

al’li -

for which a solution always exists, defined up to an additive constant. Such a
procedure could be useful for algorithmic purposes for (1.4.21) is a local simple
problem even if it is a fourth-order problem. O

Example 1.4.4 (Dual hybrid methods). We now consider the dual problem (1.3.45),
that is the complementary energy principle, that we now pose in H (div; £2),

1
inf = / lv|? dx. (1.4.22)

veH(div;2) 2 Jgo

div ()+/=0

We can apply the domain decomposition principle to such a problem by introducing

N
Y(2) = {v| v|g, € H(div; K;)} ~ l—[H(div; K;). (1.4.23)
i=1
As we shall see in Chap.2, H(div;$2) is now a closed subspace of Y(£2)
characterised by

N

Y| @-n)gds=0. VqeHj(). (1.4.24)
JIK;

i=1

We can then transform (1.4.22) into the saddle point problem

N

1
inf  sup Z{— v |* dx +/ v nq ds} (1.4.25)
veY(®Q) genl@) o) 2 /K ;
under the local constraint
divv; + f =0on K. (1.4.26)

An advantage of this formulation is that it is easy to find v; satisfying (1.4.26). We
shall meet discretisation methods, based on such a principle, under the name of dual
hybrid methods for the treatment of almost any example considered in this book:
Dirichlet problems, elasticity problems, fourth-order problems, etc. O

Example 1.4.5 (The Hellan-Hermann-Johnson method in elasticity). This is an
example in which a domain decomposition is introduced, not by dualising a
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continuity condition but by defining a variational formulation able to bypass
this continuity by approximating weak derivatives. This formulation will not be
developed but is amenable to the techniques of the book. We shall first present
formal results and postpone a precise presentation of the functional framework.
Our starting point will be the saddle point problem (1.3.59) and its optimality
conditions (1.3.60) that we write, in variational form (with functional spaces to be
defined), as

1 1
—/gD:LDdx+—/trgtrgdx
mle= = 20+ Joo = =

+/ e(w):zdx =0, Ve H(div; )y, (1.4.27)
= = A

/g(y):gdx—}-/ fvdx =0 Yu e (H}(£2))*. (1.4.28)
- - Q2 =

These conditions make sense for a space of o chosen so that div g is well defined,
which implies, as we have seen, continuity of o , at interfaces. On the other hand v
can be taken as completely discontinuous on these same interfaces. What we now
try to do is to split continuity conditions between o - n and v. Let us consider indeed
the well-known integration by parts formula,

/divg-ydx+/£:§(g)dx=/ ‘C,my-ﬂds+/ Ty v-tds. (1.4.29)
2 = 2= - a2 a2

Whenever v is a smooth (let us say H'(£2)) vector, and 7, is continuous, we thus
have

N

/g(g):gdx:—z%/ divg'gdx—f—/ Unng-gds}, (1.4.30)
fol = K IK;

i=1

so that we can rewrite (1.4.27) and (1.4.28) in the following form,

— | o":t"dx+—— | trotrzdx
wlo® 2T a0 Jo RS
N

+Z{/K.divg-gdx—/a&r,mg-st}:0 vz,

i=1

(1.4.31)

N
Z{/ divg-gdx—/ a,my-ads}+/f-vdx=0 Vo, (1.4.32)
; - OK; Q-

i=1

Formally, this is well defined for g chosen with o,; continuous at interfaces while
u - n is continuous. Then the term
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ﬁ:{/a .Unny-nds} (1.433)

i=1

depends on the jump of 0,, on dK; and (1.4.32) can be read as divo + f = 0 in
the sense of distributions. -

Up to now we considered a purely formal problem. Giving a good framework
to (1.4.31), and (1.4.32) is a task that requires some care. The presence of traces,
appearing explicitly in the variational formulation, leads to deal with spaces
H %(8K,<) and H _%(BK,-) and to subtle considerations about the behaviour of
functions in these rather pathological spaces. Let us define

= [[H" &) = tal oilx, € H'(K). 05 = 0;i}. (1.4.34)
K;

This is a space of smooth tensors and we can consider o,,; on each interface e; =
0K; N 0K, (cf. Chap.2). We have 0, € H?> (e;7) but we do not have o,,, € H?> (0K)
for this would require some continuity at vertices which cannot in general take place
due to the change of direction of n and . We can nevertheless consider in X' tensor
functions ¢ such that o, is continuous on ¢;;. To make (1.4.33) meaningful, we now
have to choose v with v - # continuous on e;;. We have already seen that for v in
H(div; K;) we can define v - n in H _%(BK,-). Unfortunately it is not possible to
restrict v - n|,; and get a result in H -3 (ejj): something is lost at corners. In reality
we only need an “infinitesimal” amount of extra smoothness and this will lead us to
look for v in (L?(£2))? N H(div; £2) for p > 2. This will cause some problems in
applying the theory of Chap. 4 and existence of a solution will have to be deduced
through special considerations. O

1.5 Modified Variational Formulations

We shall present in this section modified variational principles associated to saddle-
point problems or more general mixed methods. We shall distinguish between
augmented formulations and perturbed formulations. In the following, augmented
formulations will correspond to a modification of the variational formulation of
the continuous problem. This will be done so that the solution is not changed
(under perhaps some regularity conditions). The discretised versions will however in
general be different. On the other hand, perturbed formulations will be meaningful
only on a discrete problem. The rationale behind the introduction of these modified
formulations is that they will have, for some discretisations, a better behaviour than
the original one, in particular with respect to stability issues.
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1.5.1 Augmented Formulations

As an example, let us consider the Galerkin least-squares methods introduced by
Hughes and Franca [256]. To fix ideas, let us consider the simple cases of the saddle
point formulation of the Poisson problem of Sect. 1.3,

1
inf sup 5/ lv|? dx+/ fq dx+/ g div v dx, (1.5.1)
2 2 2

vEH(div;2) geL?(R2)

for which the Euler equations are

/g'gdx—}—/p divvdx =0 Vv € H(div; £2),

@ @ (1.5.2)
/ (divu+ f)gdx =0 Vg € L*(R2).

2

To better understand stability issues, it will be convenient to write (1.5.2) using
an antisymmetric bilinear form, obtained by subtracting the two equations

E((p.u), (qv)) : = /

g-ydx—}—/p divydx—/qdivgdx
Q Q Q2

(1.5.3)
= / fq dx, Vv € H(div; 2),Vq € L*(2).
2

One sees that
E((p.u).(p.u)) = / lul* dx, (1.5.4)
2

so that our bilinear form is non-negative, but not coercive.
The approximation of (1.5.1) thus requires the special constructions that will be
described in Chaps. 3-5.

Remark 1.5.1. A basic philosophical issue: It is important, at this point, to
underline a basic philosophical issue: Assume that you are given a bilinear form
(say, E) on H x 'H, where H is a Hilbert space. There are several ways that could
be used to prove that E induces an isomorphism from H to its dual space H'. We
mean by that that there are several properties that will imply such a result. For
instance, if for simplicity H = R”, you can show that the associated matrix Mg
has a determinant that is different from zero. Otherwise, you can show that the
associated homogeneous system has only the (trivial) zero solution. Alternatively,
you can show that the associated non-homogeneous system has at least one solution
for every right-hand side, or you can show that there exists a constant ¢ such that
for every pair (X, F) that satisfies Mg X = F you have | X| < c|F]|. All
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these properties are indeed equivalent to each other (in finite dimension). As a last
possibility, you can show that E is coercive:

E(X,X)>a||X|? VXeH (1.5.5)

This last condition (some sort of Cinderella among the other equivalent step-
sisters) is not necessary and sufficient (as all the others are), but only sufficient.
Indeed, there are zillions of non-singular matrices that are not coercive. Assume
now that you want to play an additional game. You would like to consider proper
subspaces H of R” (say, to fix ideas, R™ with m < n) and the restriction E of
the bilinear form E to H x H. We ask whether the bilinear form £ induces an
isomorphism from H to its dual 7. In fact, not a single one of the above necessary
and sufficient conditions will be automatically inherited by E. Actually, as they are
all equivalent, if one does not the others cannot do either. Surely there are zillions
of non-singular matrices M whose first entry M ; is equal to 0. Then you take H
equal to R! (using the first component of every X € H = R”) and you are done:
EisO.

But Cinderella survives: if E is coercive on H, then E is coercive on 7:(, for
every subspace H C 'H and the same value of « that makes (1.5.5) true will make

E(X.X)>a|X|*> VXEeH, (1.5.6)

hold true as well. Hence, Cinderella becomes princess and superstar, and everybody,
for every problem, would like to have a coercive bilinear form. If it is not, one would
struggle to change the problem into an equivalent one, whose associated bilinear
form is coercive. This, in short, is the essence of many stabilisation techniques. 0O

We have already seen in Sect. 1.3 that the solution of the “weaker” problem (1.5.2)
is in fact the solution of the standard problem —Ap = f, written as the system

u—gradp=0,  peHJ(R2),
{ & 0 (1.5.7)

divu+ f =0, u € H(div; 2).

Starting from this system, we can also consider the other formulation

inf sup /Ivl2 dx+/ fq dx—/ gradq - v dx, (1.5.8)

V(LR qen(2) 2
for which the Euler equations are now
/z-ydx—/ gradp-vdx =0, Vv € (L*(2)),
2 2

(1.5.9)
—/g-g@dqu—}-/fqu:(), Vg € Hy(2).
2 7]
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Note that, comparing to (1.5.2), we had to change the regularity requirements
on ¢ in order to make the functional meaningful. One checks that the solution of
the continuous Poisson problem, which belongs to HOl (£2), is a solution of our new
saddle point problem. However, it is now clear that the discrete problems will now
have to employ finite element approximations of H (£2).

It is clear that we can always add (or subtract) the square of one of the equations
(1.5.7) to the Lagrangian of (1.5.1) or (1.5.8) without changing the min-max point.
For instance, we can add to (1.5.1) the square of the second equation of (1.5.7) to
obtain

1
inf sup —/ |y|2dx+/ fqu+/ q divvdx
veHiv;2) ger22) | 2 /e 2 2

+ﬂ/(divy+f)2dx§, (1.5.10)
2 Je

where k| > 0 is arbitrary. We write again the Euler equations using an antisymmet-
ric bilinear form,

E((p,w,(q,y»:/z-gdxm/ div u div v dx
2 2

+/p divgdx—/qdivgdx
2 2

:/ fqu—/q/ f div v dx,
2 2
Yv e H(div; 2), Vg € L*(2). (1.5.11)

It is clear that the solution of problem (1.5.10) is exactly the same as that
of problem (1.5.1). Approximate solutions might however be different and some
choices of elements will be stable for (1.5.10) but not for (1.5.1). Indeed, we now
have

E((q.v). (q.) = / wl dx + 1 / | divof?dx
2 2

> min(l,l(1)||2||%1(div;:2)’ (1.5.12)

which is not yet the coercivity property (1.5.5), but is much better than (1.5.4), as
now at least the full norm of v is under control. Indeed, as we shall see, this enables
the construction of otherwise impossible approximations such as in [124].

Remark 1.5.2. Terms like min(1, «;) appearing in (1.5.12) are also weird. Their
presence has still to do with the weird choice of the norm (1.3.47) in H(div; §2).
Had we chosen the more reasonable (but, alas!, almost never used in the literature)
definition (1.3.49), we would, instead, have reached a min(1, x;/¢) which looks
much more healthy, as k| is clearly a length. O
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Another reasonable possibility is available: one might take (1.5.8) and subtract
from it the square of the first equation of (1.5.7), to get

1
inf sup —/ lv|? dx+/ fq dx—/ gradq v dx
ve(L2(@)? genl@) 2/ 2 @

—2/ lv— gradg|®dx (1.5.13)
2 Je

and the Euler equations of this Lagrangian yield
E((r0.@) = (=) [ wvdx—(=s) [ eradpends
+(1—K2)/Q£' g@dc1abc+/<z/Q grad p - gradg dx
= /qu dx Vv e (L*(R))*, Vg € H}(2). (1.5.14)

This equation is a convex combination of equation (1.5.3) and of a standard
formulation of the Poisson problem. Although this may seem silly at first sight,
such methods have been used in [208] to stabilise formulations in which the discrete
space V}, for the approximation of u was too small with respect to the space spanned
by grad g, resulting in a failure of the inf-sup condition. The reason to employ such
a strange approximation was that the first equation was much more complex than
u — grad p = 0 but rather of the form u — grad p = F(u, p) where the function
F(u, p) contained terms prescribing low order elements in order to be manageable.
Unsurprisingly, we now have

E((¢.v).(q.v) = (1 —Kz)/ |v|* dx +K2/ | gradg| dx, (1.5.15)
2 2

and we have coercivity on (L?(£2))? x H{ (£2) for0 <k, < 1.
Now, if one is really eager for stability, one could consider a “super-stabilised”
formulation

1
inf sup _/ o] dx—/ v eradg dx+/ T4 &
VEH(V;2) geHl(2) 2Je @ ¢

+K—2/ |lv— g@dqlzdx+ﬂ/(divg+f)2dx
2 Ja 2 Jo

K
+ fll —Ag— f|2 (1.5.16)

where || - ||« is the norm in H ' (£2), which we can define from the corresponding
scalar product:

(P4 = (D700 ) myayxa—1)- (1.5.17)
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Taking the Euler equation and using
(=Ap—f.—Aq)s = (=Ap—f. @) p—1(@)xn) (@) = /Q grad p- gradgq dx—/gfq dx,
one obtains

(1+/c2)/gg'gdx+/q/9 div u divv dx — (1 —i—/cz)/Q grad p - v dx

= —/q/ f div v dx, Vv € H(div; 2)
@ (1.5.18)
- —i—Kz)/ u- g&dqu+(f<z+fc3)/ grad p - gradg dx
2 2

(k3 —1) /Q fq dx, Vq € HOI(Q).

Remark 1.5.3. Ifwetakek; = 1, k = —1/2, k; = 1/2,the above system (1.5.18)
reduces to

/(ﬂ— gr_adp)-gdx+/(divg+f) divvdx =0, Vve H(div;2)
o) o)
(1.5.19)
—/(z— grad p) - gradg dx =0, Vg € Hy(52)
2

which are the Euler equations of the problem

. . K2 2 K1 . 2

inf inf —/ v— gradqg|°dx + —/ divv+ dx, (1.5.20)
veHdivi2) genl2) 2 Jo o= gradg] 2 Q( vt/
which is the least squares method introduced by Bramble et al. [108] and has given
rise to a vast literature. O

Let us now consider the question of the stability of (1.5.18). This can be done
in two ways. In the first one we subtract the two equations to get an antisymmetric
bilinear form, E,((p, u), (¢, v)). Then, we clearly have

Eu((@0). (.0) = (1 + x2) [9 wl? dx + /Q | divef dx

—(K2+K3)/ | gradg|*dx. (1.5.21)
2

We thus get coercivity if k1 > 0, (1 4+ k) > 0, (k2 + «3) < 0. Itis easy to see that
these conditions imply k3 < 1 and that, this being given, one can take k; = —’(3—;1.
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On the other hand, one could want to consider a symmetrical bilinear form by
adding the two equations instead of subtracting them. One then has

Ed(@0).(q.0) = (40 [ oldx x| ] divePds
2 2
-2(1 +/<2)/ g@dq-ydx+(/<2+/c3)/ | gradg|>dx. (1.5.22)
2 2

It is not difficult to check that (1.5.22) yields coercivity if
kK1 >0, ko >—1, ko +K3>0,
and finally
(k2 + k)minfy, 14 K2} > (1 4 k2)2.

Now, if min{xy, 1 4+ k2} = 1 + k>, the last condition implies k5 + k3 < 1 + k3, that
isSk3y < 1.

Remark 1.5.4. As in Remark 1.5.2, instead of the expression min{ky, 1 + k,}, we
should actually have min{x; /¢, 1 + k,} where £ is a characteristic length of the
problem. O

Remark 1.5.5. We thus see that the least-squares formulation of Remark 1.5.3,
which is obtained with k3 = 1, is a difficult case which cannot be studied by simple
arguments and is therefore not a simple way to obtain a stable method. O

Remark 1.5.6. We presented here an example of a quite general idea which was
introduced in [256] and [213]. Other examples of these ideas will be developed in
the following sections of this chapter or in the following chapters. O

Remark 1.5.7. In the example presented above, Euler equations (1.5.2) were a
system of first order equations. This is not the case of the Stokes problem

inf sup ,u/ |§'(y)|2dx—/ f-gdx—/ q divvdx, (1.5.23)
2~ Q2 2

vE(HY(2))? €L ()

for which one of the equations in strong form contains second derivatives. Applying
the same procedure would lead to a fourth order problem in the variable u which
would lead to undesirable complications. Indeed the analogue of (1.5.13) would
here be obtained from (1.5.23) as follows:

inf sup ,u/|£(_)| dx—/f vdx

VE(H)(2))? 4€L*(2)

—/ q divydx—ﬂ/ |Au+ grad p—f|*dx, (1.5.24)
2 2 -
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which would force us to use a very regular approximation for the variable u or to
rather consider the formulation

inf sup ,u/ |§@|2dx—/ fvdx
ol foh

VE(H (2))? EL*(2)
~ [ g divody—pldut eadp—fIE. (1525)
i i

where || - ||« denotes the norm in H ~'(£2). If we take the derivative of (1.5.25) with
respect to v, we could write as in (1.5.17),

(Aut grad p—f, Av)s = (Au+ grad p—f, v)yxv, (1.5.26)
but the derivative with respect to p will yield a term of the form
(Aut+ grad p—f, Av)«,

which is not readily computable and which will require some special handling
when considering discrete approximations. The typical solution, when dealing with
a decomposition of §2 into elements K and piecewise smooth functions u, v, p and
q, is to consider terms of the form

> Bk (diam(K))? / |Au+ grad p—f dx. (1.5.27)
K K -

We shall consider solutions to this question in Chap. 8 where Stokes’ problem will
be studied in detail. O

Remark 1.5.8. If one looks carefully at the Euler equations of (1.5.14), one sees
that we could be in some trouble for 8 = 1 as the first equation disappears and we
obviously loose control over p. This justified, in [179], the introduction of another
variant of the general idea developed above. The formulation cannot in this case
be written as a modified Lagrangian but is rather derived from the antisymmetric
bilinear form (1.5.3). Indeed, let us write,

E((u, p), (v,q)) :/ p-qdx +/ p- gradv dx—/ q- gradudx
= = fo folen fo R
+ /3/ (p— gradu)-(g— gradv)dx
Rt 4

= —/ fudx, V(g.v) € (L*(2))*xH; ().
“ (1.5.28)
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This formulation cannot be obtained from a Lagrangian. It can easily be seen that it
remains valid for 8 > 0 arbitrary. Indeed (1.5.28) can also be written as

(1+8) /Q (p— eraduygdx =0, Vg € (L))

,3/ ggdu-ggdvdx—}—(l—ﬁ)/ p- g@dvdx—/ fvdx =0, VveHol(.Q),
I?) 2= I?)
(1.5.29)

and this is equivalent to (1.5.7) for any f > 0 with the control of p remaining
untouched. Moreover, we can easily see that, as long as § > 0, there exists a § > 0
such that

E((U,P)7(U,CI)) —/ |‘I|2dx -I—ﬂ/ |q— g@dv|2dx > 8/ |q|2 dx +/ | g@dv|2dx.
L k2 kS 1 1
(1.5.30)

We shall see later on how this technique can indeed be included in the same general
framework as the previous one. O

1.5.2 Perturbed Formulations

We can also consider another type of modified variational formulation which is
introduced in the discretised problems and in which, hopefully, the additional
term vanishes when the mesh is refined and the numerical solution converges
to the solution of the original problem. As an example, we consider the Stokes
problem presented above in (1.5.23). We now suppose that we have a subspace V}
of (H}(£2))* and Q}, of L?(£2) and we try to solve

inf sup M/ |e(va) Pdx — / S -on dx—/ qn divu, dx. (1.5.31)
Q- Q2 2 —

Vr€Vh qn€Qn

Let us suppose that the couple V;, x Q) does not satisfy the stability conditions
developed on Chap. 8 but that there exists a subspace Q;l9 of Qj, such that the couple
Vi x Q ;f is stable. If for some reason we want to use Qj, instead of QO ;f we could
retrieve stability by working with the problem

inf sup ,u/ |§(vh)|2dx—/ 1 dx—/ qndivvy dx
o R e Q -

Vr€Vh qn€Qn

- g/ lgn — Pqn|*dx, (1.5.32)
2 Ja
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where Pgq, stands for the projection of g; on Q;f, which we suppose to be
(easily) computable. This is now a stable formulation which, for u; large, yields
almost exactly the solution in Vj x Q;f . It must be noted that the modified
problem is meaningless for the continuous problem so that we have a different
way of stabilising. However, the difference sometimes disappears when augmented
versions are discretised.

1.6 Bibliographical Remarks

The purpose of this chapter was to present examples which will be used later as
a standing ground for our development. It was not possible in such a context to
consider every case. We already referred the reader to [166, 167] or [277] where
the mathematical analysis of the problems selected here (and of many others
problems) can be found in a unified setting. Advanced presentation of elasticity
problems can be found in [295] or in [147]. For the Navier-Stokes equations, among
the huge amount of literature, one may consult [278, 350, 363] or [159], and for
electromagnetic problems the classical [273]. We also refer to more engineering-
oriented presentations such as [53,254,271] and [387]. In particular, non-linear
problems and their treatment are described in these references.



Chapter 2
Function Spaces and Finite Element
Approximations

In this chapter we present function spaces and suitable finite element approxima-
tions of them, which we shall use in order to apply the abstract theory of the previous
chapters to problems of practical interest.

We do not aim at a general presentation of the subject of a vast literature, but we
present the basic properties of the spaces we are going to use in the sequel of this
book.

In particular, we consider standard results about the finite element approximation
of Sobolev spaces and about approximations of H(div; £2) and H(curl; §2). The
results of Sect. 2.1 are technical and may be skipped by a reader interested mostly
in numerical results.

Mainly for historical reasons, we present the finite element approximation of the
spaces H'(£2), H(div; £2), and H (curl; £2) separately, although they could be seen
altogether in the framework of de Rham diagram. We shall briefly comment on it in
Sect.2.1.4.

2.1 Properties of the Spaces H” (2), H(div; £2),
and H(curl; £2)

2.1.1 Basic Properties

Some of the results of this section have been already anticipated in Chap. 1. Here,
we present them in a unified setting.

* Sobolev spaces H"($2). Given an integer number m > 1, standard Sobolev
spaces read

H™(2):={v |v e L*(2), D% € L*(2), |a| < m}, (2.1.1)

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series 47
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5_2,
© Springer-Verlag Berlin Heidelberg 2013
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where

dlely

D= —(—————
. o] o2 (7
0x7'0x57 ... 0xy

lo| i= a1 +0op + -+ + . 2.1.2)

We shall consider the standard norm
ol = 3 [ D%l ax, 2.13)
la]<m
associated with the usual inner product and the semi-norm

o= > /|D%|2 dx. (2.1.4)

loe|=m

The most important of these spaces will be for us H'(£2) (and some of its sub-
spaces) and for fourth-order problems H?($2).

For the study of Sobolev spaces, we refer the reader to [281,309], and [3]. It is
well-known that if I" = 952 is smooth enough (for instance Lipschitz continuous),
it is possible to define the trace yu = u|r of u € H'(£2) on the boundary I". The

traces of functions in H'(£2) span a Hilbert space, denoted by H %(F), that is a
proper dense subspace of L?(I"). The mapping,

v HY(Q) = HX(I), 2.1.5)
is surjective and possesses a continuous lifting. The norm

lyvlly = inf lwlie (2.1.6)
’ weH(2)

yw=v

is then equivalent to more standard norms on H !(§2) as defined in [281]. Then we
can write

lolls = l7lh.e. (2.1.7)

where ¥ is the unique solution in H'(£2) of the Dirichlet problem,

—AT+7 =0,
(2.1.8)
1_)|p =7V
We shall denote by H —3 (I') the dual space of H 2 (I'") with the dual norm,
*
vl = sup (. v7) (2.1.9)

veH/2(I) [[v |%,r’
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where the bracket (-, -) denotes duality between H ~'/2(I") and H'/?(I"). It is easily
checked that one has

s r = 10"l (2.1.10)

where v* is the solution of the variational Neumann problem,
/ grad v* - grad v dx + / *v dx = (v*,v), Yv e H'(R2). (2.1.11)
Q Q

Remark 2.1.1. 'We shall sometimes write formally f r V*v do instead of (v*, v), to
denote duality between H 2 (I')and H =3 (r). O

We can define in the same way a trace operator y on H?(£2). It is now possible
to define v|r in a space denoted H 2 (I") but also traces of gradv|r € H 2 (I')" and
3

thus the trace of the normal derivative ﬁ We then define

H}(R):={v|ve H'(R), v|r =0}, (2.1.12)

H} () :={v|ve H*R), v|r =0, g—”|p =0}. (2.1.13)
n

Remark 2.1.2. Spaces H'/>(I") and H3/*>(I') are particular cases of generalized
Sobolev spaces H*(-) for s € R™T. The reader should be aware that handling Sobolev
spaces H*(-) where s = integer +1/2 requires some caution [281]. In the case
of H'2(I') it is important to recall some facts. Let I be a part of I"; then ¢ €
H'/2(I;) cannot be extended by zero outside I to a function in H'/2(I") (even if
paradoxically D(I) is dense in H'/?(I)). Dually, if I' = I U I, one does not
get the whole of H~'/2(I") by patching functions of H~'/2(I,) and H~'/2(I7).
Unfortunately, spaces H'/2(0K) and H~'/2(0K) with K an element of a partition
of 2 are met very often in the analysis of hybrid and mixed methods and one must
be very careful in handling them. O

¢ The space H(div; £2). Having considered standard Sobolev spaces, we now
present some properties of a space specially adapted to the study of mixed and
hybrid methods.
The mathematical analysis of mixed methods will use constantly

H(div: 2) == {q | g € (L*(R2))". divg € L*(2)} (2.1.14)
with the norm
g 5.0 = lgl5.c + | divgl[§ o (2.1.15)
It is then possible to define q-n |, the normal trace of g on I.

Lemma 2.1.1. For g € H(div, §2), we can define q - EI[" cH™ (I'") and we have
Green’s formula,
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/ divg v dx+/ g-gradvdx = (q-n,v), Yv e H(R2). (2.1.16)
2 = ol - -
Proof. Forq € (D(£2))" and v € D(£2), we have the standard Green’s formula

/q-nvda:/diqudx+/q-gr_advdx, (2.1.17)
r- = e = fohe

and therefore
|/ q-nvdo| < |qllav.elviie- (2.1.18)
r

Moreover, the expression |, odivg vdx+ /, o ¢ - grad v dx depends only on the trace

vir € H: (I"). The result follows by density of D(£2) and (D(£2))" in H'(£2) and
H(div; §2), respectively. O

The operator defined above also satisfies a surjectivity property.

Lemma 2.1.2. The trace operator ¢ € H(div;$2) — q -n|r € H_%(F) is
surjective.

Proof. Let g € H™: (I') be given. Then, solving in H'(£2)

/ g@dqb-gr_advdx—i-/ ¢v dx = (g.v), Yv € H'(R2), (2.1.19)
2 2

and making ¢ = grad ¢ implies ¢ -n|r = g. 0
Let us now suppose a partition (I" = D U N) of the boundary I". We define
Hyp(2):={v|veH (), v]p =0} (2.1.20)

In particular, we have Hj) ,(2) = HJ(2)if D = I' and Hy) ,(2) = H'(£2) if
D = (. We shall also need the space

Hon(div;$2) :=1{q | q € H(div$2), (¢-n,v) =0, Vv € H()I,D(‘Q)}‘ (2.1.21)

Remark 2.1.3. This space contains functions of H(div; £2) whose normal traces
vanish on N. For reasons related to pathological properties of H > (D) and
H™? (N), it is necessary to use definition (2.1.21) and not an expression such as
g-nly =0in H 2(N). O

In particular, we denote Hy(div; £2) = Hy y(div; £2) when N = I". Finally,
another important subspace of H (div; £2) will be

H'(div; 2) := {q | q € H(div; ), div ¢ = 0}, (2.1.22)

from which we deduce the following result.
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Lemma 2.1.3. The normal trace operator g — q-n|r is surjective from HO(div; 22)
onto {u* | p* € H73(I'). (u*.1) = 0},
Proof. By Green’s formula (2.1.14), we have (¢ -n,1) = 0if g € NO(div; ).

Reciprocally, if g € H™3 (I') is given with (g, 1 0, we can solve in H'(£2)/R

the Neumann problem

/ grad¢ - gradvdx = (g, ¢), V¢ € H (), (2.1.23)
2

and taking ¢ = grad ¢ yieldsg -n = g. O

Remark 2.1.4. In applications, D will be the part of I" where Dirichlet’s conditions
are given, and N the part with Neumann’s conditions. O

e The space H(curl; ). To conclude this section, we consider the space
H (curl; £2) which will be used, in particular, for the approximation of problems
arising from electro-magnetics in Chap. 11.

For 2 € R3, we define

Hcurl: 2) := {y | x € (L*(2))*. curl y € (L*(22))*}. (2.1.24)

where the curl operator is as usual defined as

i j k
o 99 9
cgll=2/\l.— det I G g (2.1.25)
X1 X2 X3
and where we are using the standard norm
I a2 == 11,0 + [ curl x[§ - (2.1.26)

Remark 2.1.5. To complete these definitions, we must discuss the definition of
H (curl; £2) when £2 belongs to R2. First of all, we recall the possible definitions of
the curl operator in this setting. Given a vector u(x, x) = (u, ), we can evaluate
curl(uy, up, 0), which is a vector oriented in the direction of x3. This suggests the
definition

8142 8u1

ly:=———. 2.1.27
curty 8x1 3)62 ( )

On the other hand, given a scalar function ¢ (x, x2), the vector curl(0, 0, ¢) is
perpendicular to the direction of x3 and drives to the following definition

curl ¢ := (8_¢> _8_¢>) . (2.1.28)

ax1’  Oxy
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Fig. 2.1 H(curl; £2) traces A
on the flat surface (xi, x)

|

L2

VX

;

Tt X

L1

It is clear that the operators curl and curl introduced above are equivalent to the
operators div and grad, respectively, after rotation of the vectors by a right angle.
More precisely, we have

curlu = —div(u’), (2.1.29)
curl ¢ = —(grad ¢)*, (2.1.30)

with the standard notation (vy, vz)l = (—wv,, v1). It turns out that in two dimensions
the space H(curl; £2) is isomorphic to H(div; £2). This fact has important conse-
quences for the construction of approximations of H(curl; £2); namely, any finite
element space which is a good approximation of H(div; §2) can be turned into a
good approximation of H (curl; £2) just by rotating the vectors by a right angle and
vice versa. O

We are now going to state results concerning traces of H(curl; £2) in three
dimensions, in analogy of what has been done in the previous subsection for
H(div; £2). Traces of H (curl; £2) have been the object of a recent and active research
by several authors [6, 133—-135,143,223,317] and it turns out that the theory is not as
straightforward as in the case of H(div; £2); in particular we shall see that different
trace definitions can be considered.

In order to get the reader acquainted with the topics which we are going to
present, let us start with an easy but significant example.

Example 2.1.1 (Traces of H(curl; $2) on a flat surface). Let 2 C R? be the half
space x3 < 0 and let I" be the plane x3 = 0. The aim of this example is to consider
the basic situation of a flat boundary, i.e., when the tangent plane at any point
of I' coincides with the surface I' itself. Given the vector ¥ = (x1, x2. x3)! €
H (curl; £2), we investigate the possible definitions of tangential component of y
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along I" (see Fig.2.1). As usual, we denote by n = (0,0,1)7 the unit vector
pointing in the outward normal direction of I" with respect to £2.
We are going to give a meaning to the trace of the tangential component of y

along I'. Whenever y € C 0(£2), it makes sense to consider the vector y, X =
( XN n)|r which, by definition, is orthogonal to n and hence is aligned with the
tangent plane x3 = 0. More precisely, it can be easily checked that

X2
vx=1\1-—-n . (2.1.31)
0 r
On the other hand, we can also consider the projection of y along the plane I,
that is the vector 7, x = n A (x A n)|r, which is again orthogonal to 7 and can be
evaluated explicitly as follows:

mr=\rnl| . (2.1.32)
\r

It is clear that in this simple example we have that y; y is orthogonal to 7, x.
Moreover, let us denote by divy and curl, the divergence and the curl operators
in the (x1,x,) plane (see Remark 2.1.5 for the definition of curl in two space
dimensions and the relation between operators); then, the following relationships
are easy to derive

divp y; x = curl . 7, x = (cutl x - n)r. (2.1.33)

Although it should be clear from the context, we remark that in (2.1.33) we are
formally applying surface operators divy and curl - to three dimensional vectors y; x
and 7, x. On the other hand, vectors y,  and 7; y are orthogonal to the direction of
x3 so that we can identify them with two dimensional vectors in the tangent space
x3 = 0. We shall implicitly make use of this standard abuse of notation in the sequel
of this chapter. O

Let us now come back to the general picture and see how the quantities
considered in the previous example extend to general domains and boundaries. The
following integration by parts, which is valid for smooth functions, constitutes the
starting point for the analysis

/)(-cglqﬁdx—/ cgl)(-qﬁdx:/()(/\@-qbds. (2.1.34)
fo - 2 - r— -

Green’s formula (2.1.34) allows us to define the trace y,xy of a function
X € H(curl; £2) by extending the classical tangential trace (y A n _)\ r.

The following lemma is the analogue of Lemma 2.1.1 and can be proved by a
similar technique.
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Lemma 2.1.4. For y € H(curl;§2), we can define the tangential trace y,x =
(xAm)re(H™ l/2(1“))3 and we have Green’s formula

/x-cu_rl¢>dx—/cu_rlx-¢dx=(ytx,¢>>, Vo e (H'(Q). (2133
2 - 2 - - - -

In particular, it is clear from our construction that, for smooth functions, the
tangential trace y; x is equal to (y A )| in the classical sense.

Let us now consider the range of the trace operator y;. The linear and continuous
operator y; cannot be surjective onto (H ~'/2(I"))? since it has vanishing component
in the direction of n. Moreover, as we already observed in the simplified situation of
Example 2.1.1, we remark that for smooth functions it makes sense to evaluate the
surface divergence of y; y along I and that the following identity holds true

divp(y x) = (cutl y - n)ir. (2.1.36)

Indeed, the range of y, is usually denoted by H~'/?(div; I") and its dual space
by H~'/?(curl; I'). In the case of smooth domains, it turns out that we have the
following identities

H™'2(div;I") = {q e(H"*(I"))*|g-n = 0ae.onT. divp g €H "/*(I')}

H™'"2(curl; ") = {q e(H_l/z(F))3|g'Q =0ae.on/l curlr.q eH™V2(IM)},
(2.1.37)

where the surface operators divr and curl- are applied, by abuse of notation, to the
(two-dimensional) tangential component of g.

In the case of non smooth domains, several insidious aspects have to be taken into
account. In general, computational domains are polyhedra and a polyhedron is not
a smooth domain. In particular, one major issue is hidden in (2.1.37) and is related
to the regularity of the normal vector n. If I" is a polyhedral surface, then n jumps
across the edges of I" and the product g - 1 is not well defined forg € (H~ 1/2(1"))3

since n is not a multiplier for (H'/?(I" ))? where j jumps are not allowed. We refer the
interested reader to [136] for the general picture and for more details on this issue.

Remark 2.1.6. In the most general situation, the definition of divy and curl is
not trivial. Even for smooth domains, we need suitable definitions of differential
operators on curved surfaces. This is a typical task of differential geometry and can
be performed by means of covariant derivatives. We refer the interested reader, for
instance, to [168] for a thorough introduction to this subject. On the other hand, if
the considered finite elements have flat faces (as it is the case for usual tetrahedra),
surface differential operators reduce to standard two-dimensional ones in a local
coordinate system on the face and covariant derivatives along the face are plain
directional derivatives. The situation is not trivial (and not completely understood
yet for what concerns the construction of good finite element spaces) in the case
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of non-flat faces (as it usually occurs for isoparametric elements or general non-
affine hexahedral decompositions). We shall detail some issues for non-affine finite
elements in Sect. 2.2.4. O

Looking again at Example 2.1.1, another definition which arises when dealing
with the space H(curl; £2) is the projection of y along the tangent plane of I,
also known as the tangential trace m; y, which can be defined as follows for smooth
functions: N

mx=nA(ADr. (2.1.38)

The following Theorem is a consequence of the results of [134-136] and states
the well-posedness of the trace operator m; together with the link between y, and ;.

Theorem 2.1.1. The trace operator mw, can be extended to an operator from
H (curl; 2) to H™'/*(curl; I") and the following Green’s formula holds

/cu_rlxwx—/ gcurlgdx = (b yix). Vpod € Hicurl; 2), (2.139)
2 - 2 - - - -

where the brackets denote the duality pairing between H~'/?(div;I") and
H™Y2(curl; ).

If the boundary of 2 is split into two parts I” = D U N, then we can consider
the space

Hoy(curl; 2) == {y | x € H(curl; 2). (v, x.¢) =0, V¢ € (Hy ,(2))}.
(2.1.40)

in analogy to what we have done in the previous subsection. When D = @ (and
hence N = I'), we shall make use of the notation Hy(curl; £2) = Hy r(curl; £2).

2.1.2 Properties Relative to a Partition of 2

This section presents a short introduction to properties of some functional spaces.
We refer to [331,366] for more details.

Partitioning £2 into sub-domains is an essential feature of both standard and non-
standard methods. Continuity properties at interfaces between sub-domains are an
essential part in the definition of a finite element approximation. Moreover, we shall
introduce here some notations that will be used throughout the book.

Let 2 = (J/_, K, be partitioned into a family of sub-domains. In practice, K,
will be a triangle or a quadrilateral (resp., a tetrahedron or a hexahedron in three
dimensions) and we shall call it element. We shall denote by 7}, a partition of £2 into
elements.

The edges of elements will be denoted by ¢; (i =1,2,3 ori =1,2,3,4) in the
two-dimensional case. For three-dimensional elements, unless differently stated,
we denote again the faces of the elements by ¢; (1 <i <4 or 1 <i <6). We also
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denote by
e;j = 0K; N 3K, (2.1.41)

the interface between element K; and K; and
& =Jes | =Jok. (2.1.42)
ij K
where I7, is the set of boundary edges or faces. We only deal with compatible meshes
in the sense that the intersection between two elements is a common face, side or
vertex. The situation when a mesh contains hanging nodes is out of the aims of this
work.

Remark 2.1.7. The index h will of course be related to mesh size, that is to the size
of elements. With an abuse of notation, we shall also use the symbol 4 for denoting
the maximum diameter of the elements of the decomposition. O

We introduce the functional spaces

X(2):={v|ve LX) vlg, € H'(K). Vi} = [[H'(K,). (2143)

with the norm

ol == Y vl (2.1.44)
r

Y(2):=1{q | q € L*(2).q |, € Hdiv: K), Vi} = [[ Hdiv:K,).  (2.1.45)

with the norm

lg113 ) = D lallEv.0 (2.1.46)

and
W(R):=1{x| x € LX(R). x |x, € H(curl: K;). Vi} = [ [ H(curl: K,).
(2.1.47)

with the norm

ey == D 12 (2.1.48)
r

We shall now characterize Holy p(82), Ho n (div; §2), and Hy y (curl; §£2) as subspaces
of X(£2), Y(£2), and W(£2) respectively. Let us first remark that for v € H'(£2) and
q€ H(div; £2), we have, denoting n, the normal to I, = 9K,

Z@'E,»Wﬂ = (q-n,v)r, (2.1.49)

r
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where (-, -) denotes duality between H 2 (I';) and H = (I}). Indeed we can decom-
pose the Green formula as

(g -n,v)r :Z{/ diqudx—}-/ q-g@dvdx} (2.1.50)
- - - - K

¥ r r

and apply it inside each element. A similar splitting holds for the functions y €
H(curl; $2) and ¢ € H 1(£2) when we consider the tangential trace y, X> namely

D vk dn = (vix-d)r- (2.1.51)

We can now state the following proposition.

Proposition 2.1.1. Hj) ,(2) = {v|v € X(£2), >{g-n_v) =0.VYq € Hoy(div;
r

)}

Proof. 1t is clear by definition that if v e Holy p(£2) we have by (2.1.49) that
Z(g'ﬁr, v) =0,Vq € Hon(div; £2). Let us consider the reciprocal. Using Green’s

"
formula, we get
/ v divg dx = —Z/ gradv - g dx, Yq € Hy y(div; £2). (2.1.52)
2 - — JK, - -
This implies for all ¢, for instance ¢ € (D(£2))",

1
[ v dvgadd = (k)" lgloa (2.153)

and therefore gradv € (L*(£2))", thus v € H'(£2). We then have (g - n,v) = 0,

Vq € Hy y(div; £2), so that v € HOI!D(.Q). O

The same kind of proof would yield the following analogous results for
H(div; £2) and H(curl; £2).

Proposition 2.1.2. Ho y(div;$2) = {q | ¢ € Y(£2), Z(g-ﬁr,v) =0, Yv €
r

H()I,D(Q)}~ O
Proposition 2.1.3. Hoy(curl; 2) = {x | x € W(2), X (\vix.¢) = 0, V¢ €
Hj ,(82)}. ]

The last results state that functions of Y (£2) (resp. W(£2)) belong to H(div; £2)
(resp. H(curl; £2)) if and only if their normal (resp. tangential) traces are “con-
tinuous” at the interfaces. This will be an essential point for finite element
approximations.
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2.1.3 Properties Relative to a Change of Variables

The use of a reference element, and therefore of coordinate changes, is an essential
ingredient of finite element methods, whether for convergence studies or for
practical implementation. We must therefore study the effect of a change of variables
on our function spaces. We refer to [147, 148] for a more complete presentation.

Let K C R". We denote by K its boundary, by 7 the outward oriented normal,
by d X the Lebesgue measure on K and by d & the superficial measure induced by it
on JK.

Let F be a smooth (at least C ') mapping from R” into R”. We define K = F (12 ).
We suppose that the Jacobian matrix DF(X) is invertible for any X and that F is
globally invertible on K. We then have

DF~'(x) = (DF(%))"". (2.1.54)

An important case is F(X) = xo + BX, that is if F is an affine mapping. Then
DF(x) = B is a constant matrix. We denote

DF(X
|DF||so := sup | sup IDE@)E] , (2.1.55)
tek \gerr  |§[Rr

the norm in L>®(K) of function £ — |[DF(%)]|, that is, matrix norm of DF(%). In
the same way, we have

IDF oo := sup (sup M) . (2.1.56)
vek \gerr  §[wr
We write
J(%) := |det DF(?)| (2.1.57)
and, for % € 9K,
Ji(®) = JR) |(DF™") il (2.1.58)

« Sobolev spaces H*(£2). If (%) is a function on K, we define v(x) on K by
vi=00F, (2.1.59)
and we denote this by v = F(0). We then have the classical formulas,

gradv = (DF ') gradd o F~! = F((DF ")’ grad ) (2.1.60)
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and
/ F(0) dx = / v J dx, (2.1.61)
K K
/ F@) do = / v J;dé. (2.1.62)
9K K

From this, it is immediate to deduce the following lemma.

Lemma 2.1.5. The mapping F is an isomorphism from LZ(IQ') onto L*(K) and
from H'(K) onto H'(K), satisfying,

[vlo.x = (sqp J()%)) Y2151, 20 (2.1.63)
X

5 : 2\)-1/2

0l k = (H}f J(X)) vlo.x (2.1.64)
X

lvhk < (Sl}p J()%)) Y2 IDF oo [0 ¢- (2.1.65)
X

A . . A~ —1/2

10l ¢ =< (H}f J(x)) [IDF|oo v]1.x- (2.1.66)
X

Remark 2.1.8. If F is an affine mapping, we also have [146]

vl k < c (det B)? | B7'|" |8],, ¢ (2.1.67)
and similarly,

[01,,.4 < ¢ (et BY™Z |[BI" vl (2.1.68)
where the constant ¢ depends only on m and on the space dimension 7. O

In the general case, one must use Leibnitz’s formula and the final result is much
more complex. For some comments in this directions, see Sect.2.2.4.

e The space H(div; $2). When building approximations of H (div; £2) in Sect.2.3,
we shall be led to use the normal component of vectors as degrees of freedom.
This is pretty natural according to Proposition 2.1.2. The above transformation
obviously does not preserve normal components. It does neither map H (div; K )
into H(div; K). To overcome this problem, we have to introduce a special
(contravariant) transformation known as Piola’s transformation.

Let, as before, DF(X) ‘be the Jacobian matrix of the transformation F (%).
We consider, for Q € (L*(K))", the mapping,

G(@)(x) = ﬁDF(fc) 4(2), x = FR). (2.1.69)
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It is then elementary to check that one has (in R2, but the result holds for R")

B L om (F5) o
agy oy | = 7P\ ag, a3, | (PF ). (2.1.70)

dx 3y Bx ay

As the trace of a matrix is invariant by a change of variables, we have
. L.
dlvg: 7d1vg. 2.1.71)

More generally, we have [366]
Lemma 2.1.6. Letv = F (V) and g = G(q), then

/q~g@dvdx:/@'ggdﬁdfc, (2.1.72)
K~ K~

/v-divq dx = /@divq d%, (2.1.73)
K - K

/ q-nvdo =/A€1-ﬁf)d6. (2.1.74)
) IR~

We refer to [366] and [331] for the proof of this result and most of the following
ones.

From (2.1.74), we see that G preserves the normal trace in H _A% and enables us
to define subspaces of H(div; K) through the reference element K. More precisely
we have,

Lemma 2.1.7. The mapping G is an isomorphism of H(div; k) onto H(div; K)
and of H°(div; K) onto H°(div; K). Moreover we have:

1

2
lglo < (inf J®)) " IDFlo ldlo 4. (21.75)

1

N 2 1
dloz = (sup J@))" IDF oo lglo. (2.1.76)
X

-4

|divglox < (in J(fc)) | divily ¢ 2.1.77)
A ~ 1 .

[divglyz < (sup J(x)) 2 [divglok- (2.1.78)

It is also possible to obtain relations between |¢|, x and |q| & or between
| divg|m k and | dlvqlm 7 We refer to [366] for details. The next lemma deals with
the case where F is an affine transformation and qeH"” (div; £2), where
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H™(div; 2) := {c_] | q€ (H™(£2))", divg e H™(R2)}. (2.1.79)

Lemma 2.1.8. If the mapping F is affine and if ¢ € H™(div; §2), the following
estimates hold, with B = DF, N

_1 _ ~
\glm.x < (det B)"Z| B~ " | Bl 141, £- (2.1.80)
|divglnk < (det BY 2| B™|" | divil, ¢- (2.1.81)

The reverse inequalities also hold by a simple exchange of roles between K and
K. Such results are of course essential in the proofs of error estimates. The Piola
transformation can be extended to tensor-valued functions with similar properties
(cf. for instance [127,295] or [146]).

e The space H(curl; §2). According to Remark 2.1.5, in this subsection we restrict
the discussion to the three-dimensional situation where K C R3 since the two-
dimensional case can be easily deduced from the result of the previous subsection
about approximations of H(div; §2). In general, when dealing with reference
elements, K will be a simple geometric entity like a cube or a tetrahedron. In
particular, it will contain vertices, edges and faces. We shall denote by é and f
generic edges and faces, respectively, and by e and f their corresponding images
under the action of F'. We shall then refer to an edge e or a face f of K. It is
clear that, for general isomorphisms F', an edge of K might be curved and a face
of K might not be contained in a plane. On the other hand, if F is a trilinear map,
then edges of K will be straight and if, moreover, F is affine, then faces of K
will be flat.

In order to deal with the approximation of H (curl; £2), we shall make use of
the following (covariant) transformation:

H()(x) := [DF®)] " 1(%). x = F(). (2.1.82)

We notice that formula (2.1.82) is formally identical to (2.1.60); i.e., we have
chosen to transform vectors of H(curl; £2) like gradients. In particular, one of
the main features of transformation (2.1.82) is that it preserves the tangential
components in a sense that will soon be made clear.

Before stating the general results, let us go back to the setting of
Example 2.1.1.

Example 2.1.2 (Case when I is flat.). We recall that, in our example, 2 C R? is
the half space x3 < 0 and that I" is the plane x3 = 0. Let us consider a linear
mapping F : R — R? defined as follows

F(£1, %2, %3) = (X + BRy, yX) 4 852, %3)7, (2.1.83)
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so that

apBo
DF=|ys0|. (2.1.84)
001

Basically, we are considering a mapping that corresponds to a motion of £2 only in
the direction of x; and x;. In particular, the restriction of F' to I" maps linearly the
plane I into itself. According to the notation introduced before, we shall denote by
§2 the reference domain and by £2 the transformed domain; analogously, I" is the
image of the reference boundary I". Let us consider a vector field X € H(curl; .Q);
we are interested in investigating how the traces of j transform under the effects of
the covariant map (2.1.82). N

It is immediate to evaluate the determinant of DF, given by the constant J =
a8 — By, and the matrix [DF]~7 given by

| § —y 0
[DF]™T = - —B a 0]. (2.1.85)
0 0J
Hence, transformation (2.1.82) reads
X 1 (S0 =y
x=1x|=HQ= 7 ajgr—Bii |- (2.1.86)
X3 J i3

The first important result which we are going to check is that the trace p, )

transforms like vectors in H(div; ﬁ). More precisely, let G denote the Piola
transformation defined in (2.1.69) related to the plane I, i.e.,

oo L fap .
Gr@) =~ (V 8)c_1. (2.1.87)

From (2.1.31) we obtain

s LfaB\( X 1 (ajr— B
g =—( )( == L) (2.1.88
rD =g yd )\ - J\rX2—=38xn )
On the other hand, comparing (2.1.31), (2.1.86), and (2.1.88), we easily get
Grv ) =vi(H(G)) = v (2.1.89)

In a similar way, we can find how the trace 7; ¥ transforms when ¥ is mapped

like in (2.1.82). It turns out that 7%,2 transforms like vectors in H (curl; r ). In this
case, we can make use of the mapping Hr, defined as
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o ((2)) :Zé(_gﬂ _ay)(g) (2.1.90)

in order to obtain the result
Hf(ﬁtz) = ﬂt(H(z)) =T X (2.1.91)

|

Let us now come back to the general situation. For properties of the covariant
transformation (2.1.82) and for the proofs of most of the results presented in the
sequel of this subsection, we refer the interested reader to [222], to the abstract
theory of differential forms presented in [248], to the book [302], and to the
comprehensive review [33].

We shall make use, in particular, of the following relationship between the curl
of y and the curl of ¥

1
curl y(x) = mDF(fc) curl y(X), x = F(x), (2.1.92)
A 3 A
so that we have curl y = G(curl X). Formula (2.1.92) is a consequence of the more
general transformation rule (see [310, Theorem 2] and [223])

curl y(x) = [DF]™" curl }()[DF]™!,  x = F(?), (2.1.93)

where the tensor is defined by curl y = (33)(7/ — g%) .
= = i IV

Before stating results which relate quantities evaluated on the reference element
to corresponding quantities evaluated on the actual element (in the spirit of
Lemma 2.1.6), we need to recall how tangent and normal vectors behave under
the action of the mapping F. Namely, if /i is a normal vector at a given point of K,
then

[DFI" - ii(%)

—_— 2.1.94
DA 4] (2199

n(x) =

is the corresponding normal unit vector on 0K . If { is a tangent unit vector, then

DF-{(3)

N T IE]

(2.1.95)

is the corresponding tangent unit vector on 0K . Moreover, if 7 is tangent to an edge
of K, then ¢ defined in (2.1.95) is tangent to the corresponding edge of K.

Lemma 2.1.9. Let y := H(z). Let additional functions on K be constructed from
reference functions as follows: v := F(0), ¢ := G(q), and T := H(Z). Then
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/l-gvdsz [g-iﬁdf, (2.1.96)
/JTtX'VtLdUZ/AJATt)A(');tidC}a (2.1.97)
fo- ;o

/X-qu:/)?'c}dfc. (2.1.98)
K=~ g= =

Remark 2.1.9. Formula (2.1.97) is worth some comments. For simplicity, let us
consider the case where f is flat. From Example 2.1.2, it follows that, when

= H(Z), then (y;1)|s is related to (y,)| by means of the two-dimensional
P101a transform (2.1.69) on the face f. If we call G such a transform, then
we have y,7 = G/ (y:Z). On the other hand, in an analogous way we have that
7 x = H (7)) on the face f. Then, Eq.(2.1.97) might be rephrased in terms of

functions defined on the face f as follows: let é and Q be vector fields on f , then

/A£~éd6:/ Hy ()G (9) do. (2.1.99)
7 f

Finally, the following analogue of Lemma 2.1.7 holds true.

Lemma 2.1.10. The mapping 'H is an isomorphism of H (curl; k) onto H(curl; K).
Moreover, we have:

Izl < (sup J(x)) IDF ool Zl - (2.1.100)
%
12 = (inf 7)) IDF ol 2l (2.1.101)
%
feart gl < (n6760))  IDF ol cut il ¢ 21102
A i _l
et 7l ¢ < (s0pJ0)) 1DF ol cut g 2.1.103)
X

2.1.4 De Rham Diagram

The topics introduced in this chapter can be presented in a general unified approach
by means of tools of exterior algebra. The De Rham complex, in particular, has
been rediscovered recently as a very convenient tool in order to provide a general
setting for handling function spaces and their finite element approximations. In this



2.2 Finite Element Approximations of H'(£2) and H?(£2) 65

framework, the commuting diagram property which will be presented throughout
this chapter can be seen as particular cases of a more general picture. Even though it
is out of the aims of this book to give a detailed presentation of this topic, we would
like to provide the reader with a short introduction to this subject, which proves to
be a very useful technique not only for the analysis of known finite elements, but
also for designing new ones.

The importance of the de Rham complex in the analysis of finite element
schemes has been detected independently by several authors in different fields. The
commuting diagram properties for finite elements in H (div; £2) (see [177,178]) has
been the driving force for an active research in the approximation of second order
elliptic problems in mixed form. Bossavit [102] was the first one who used the
full form of the de Rham complex for the approximation of problems arising from
electromagnetism. His pioneer idea has been exploited by several authors (see, for
instance, [75, 170, 247, 248]). The general framework has been designed in [31]
and successfully applied to the construction of new finite element spaces for the
elasticity equations (see [32]). References [33, 34] present an excellent review on
the state of the art of this active research field.

Here we recall the de Rham complex related with the spaces considered in this
chapter. Let us suppose that 2 C R3 is a simply connected domain, then the
following sequence is exact

1 grad curl . div 2
R<— H'(2) —— H(curl; 2) —— H(div;2) —— L°(£2) > 0O
(2.1.104)

We shall present in the sequel some discrete variants of (2.1.104), which will be
useful to understand interconnections between different approximations.

2.2 Finite Element Approximations of H'(£2) and H?(£2)

This section will be mainly devoted to the approximation of H'!(£2) and its
subspace of the form HOI, p (£2). We shall moreover sketch some results concerning
the approximation of H?(£2). Standard approximations of Sobolev spaces can be
subdivided into two classes: conforming and nonconforming methods. Even though
nonconforming methods will be studied in the context of hybrid finite element
methods, their importance makes it useful to introduce them here. We refer to
[41,146] or [334] for a detailed presentation of the following results.

2.2.1 Conforming Methods

Conforming methods are the most natural finite element methods. They yield
internal approximations in the sense that they enable us to build finite dimensional
subspaces of the function space that we want to approximate.
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Given a partition of the domain 2 into polygonal or polyhedral elements, a
conforming approximation of H!(£2) is a space of continuous functions defined
by a finite number of parameters (or degrees of freedom).

The last condition is usually met by using a space of piecewise polynomial
functions or functions obtained from polynomials by a change of variables like
(using the notation of Sect. 2.1.3)

vplg = Do F1, (2.2.1)

where K = F (16 ) and 9 is a polynomial function on K. Continuity is obtained by
a clever choice of degrees of freedom.

Remark 2.2.1. For triangular elements, it is usual and convenient to use piecewise
polynomial functions on K. For quadrilaterals, it is essential to use (2.2.1). It must
then be noted that vj|x is not in general a polynomial on K. This will be the case
only for affine transformations. More comments on this issue will be discussed in
Sect.2.2.4. O

To give a more precise definition of our finite element approximations, we shall
need a few definitions. Let us define on an element K

Pr(K) := the space of polynomials of degree <k. (2.2.2)

The dimension of Py (K) is %(k + 1)(k +2) forn = 2 and, forn = 3, it is
%(k + 1)(k 4+ 2)(k + 3). For a rectangular element, it will be convenient to define
(forn = 2)

Piy 1y (K) = {p(xl,Xz) | p(x1x) = Y a; x| x{} (2.2.3)

i<k
J<kz

the space of polynomials of degree <k; in x; and <k, in x;. In the same way, we
can define on a rectangular hexahedron Py, k, k,(K) for n = 3. The dimension of
these spaces is (k1 + 1)(k, + 1) and (k; + 1) (k> + 1) (k3 + 1), respectively. We then
define

P 1 (K), forn =2,
Pk,k,k(K), forn = 3.

Ok (k) := (2.2.4)

We shall also need polynomial spaces on the edges (or faces) of the elements.
Using the notations of Sect. 2.1.2, we define

Ri(0K):={¢ | p € L*(3K). $|.; € Pi(e:), Vei}, (2.2.5)
Ty (0K):={¢ | ¢ € R (0K) N C°(DK)}. (2.2.6)
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We define a subspace of Py, which could have traces of a lower degree on the
boundary of K

Pi:={p|p € Pclok. p € T,(3K), r < k}. (227

Functions of Ry (0K) are polynomials of degree <k on each side (or face) of
K. They do not have to be continuous at vertices. The dimensions of Ry (dK) and
Ty (0K) are respectively for k > 1:

— 3(k + 1) and 3k for triangles,
— 4(k + 1) and 4k for quadrilaterals,
— 2(k + 1)(k +2) and 2(k* + 1) for tetrahedra.

For hexahedra, it will usually be more convenient to consider functions in Qg (e;)
in the definition of Ry (dK) and T (0K).

In order to define a finite element, following [146], we need to specify three
things.

— The geometry: we choose a reference element K, a change of variables F(X)
and we set K = F(Ie).

— AsetP of polynomials on K. For pe P we define on K, p=poFL

— A set of degrees of freedom ﬁ, that is, a set of linear forms {Ei}1<i<dim13

on P. We say that this set is unisolvent when these linear forms are linearly
independent, i.e. the knowledge of ¢; (p) for all i completely defines p.

A finite element is of Lagrange type if its degrees of freedom are point values, that
is, if one is given a set {d; }, _; 4, p Of points in K and one defines

0:(p) = p(a;), 1 <i <dim P. (2.2.8)

For the approximation of H'!(£2), Lagrange type elements will be sufficient but
approximating H?(£2) requires Hermite type elements, that is degrees of freedom
involving derivatives.

Remark 2.2.2. The reader should be aware that not any choice of points will yield
a unisolvent set of degrees of freedom. Moreover, the points have to be chosen in
order to ensure inter-element continuity. O

Example 2.2.1 (Affine Finite Elements). This is the most classical family of finite
elements. The reference element is the triangle K of Fig. 2.2 and we use the affine
transformation

F(R) = xo + BX. (2.2.9)

The element K is still a triangle and it is not degenerate provided det(B) # 0.
We now take P = Py (12 ) and choose an appropriate set of degrees of freedom. The
standard choices for k < 3 are presented in Fig. 2.3.

It can be easily observed that this choice of points ensures continuity at interfaces.

0
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(070) il To

Fig. 2.2 An affine tranformation

Py(K) Py(K) Py(K)

Fig. 2.3 Standard conforming elements

Fig. 2.4 Isoparametric triangle of degree 2

Example 2.2.2 (Isoparametric triangular elements). We use the same reference
element and the same set P as in the previous example. We now take the
transformation F(X) such that each of its components F; belongs to Pk(Ie). For
k = 1, nothing is changed but for k > 2, the element K now has curved boundaries.
We present the case k = 2 in Fig. 2.4.

Using such curved triangles enables us to obtain a better approximation of curved
boundaries. It must be noted that the curvature of boundaries introduces additional
terms in the approximation error and the curved elements should be used only when
they are really necessary [152] or [146]. O

Example 2.2.3 (Isoparametric quadrilateral elements). This is also a very classical
family of finite elements. The reference element is the square K = 10, 1[ x ]0, 1[.
We take P = Qk(K ) and a transformation F with each component in Qk(K ).
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Fig. 2.6 Serendipity element

We present the standard choice of degrees of freedom for k < 2 in Fig. 2.5. It must
be noted that we need F' € (Q; (16 ))? to define a general straight-sided quadrilateral.

Finally we recall that it is possible to eliminate internal nodes to get the so-called
serendipity finite elements. For instance, if we take

4 8
P =04(K):={p|peQxK) 4p@o) + Y pla) —2)  p@) =0}
i=1 i=5

= P;(K) N 0>(K) (2.2.10)

we obtain the element of Fig. 2.6.
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Fig. 2.7 (a) P; triangle. (b)
Argyris’ triangle

¢ Value of the function
® Value of the function and its first derivatives
Value of the function and its first and second derivatives

— Value of the normal derivative

As before, the degrees of freedom have been chosen in order to ensure continuity
between elements. The use of serendipity elements should be avoided on distorted
(non-affine) meshes. More details on quadrilateral elements will be given in
Sect.2.2.4. O

Example 2.2.4 (Hermite type elements). Approximating H?($2) will require con-
tinuity of derivatives at inter-element boundaries and leads to the introduction of
elements in which values of the derivatives are used as degrees of freedom. The
simplest Hermite type element is the P triangle of Fig. 2.7a.

Here, the degrees of freedom are values of the function and its derivatives at
vertices plus the function value at the barycentre. This element does not enable
us to build an approximation of H2(£2). To do so, one must use Argyris’ triangle
(see Fig.2.7.b) where polynomials of degree 5 are used. (Composite elements can
also been used.) For quadrilaterals, the analogues are easily built. The difficulty
of building approximations of H?(£2) by standard methods was one of the major
reasons for the introduction of various kinds of mixed or hybrid methods for plate
problems (cf. Sects. 10.2 or 10.3). ]

The remaining part of this section is devoted to the analysis of the approximation
of a given function v by the finite element spaces just described or similar ones. We
shall not give proofs for which we refer to [146, 154, 358].

For a general set of degrees of freedom {E,} on K, we define the interpolate ;¥
of v by

(7)) := M(D), 1 <i <dim P. 2.2.11)

The operator M must be a well-defined continuous form. When the linear forms
{; are defined by (2.2.5), it is natural to set

(Fn0)(@i) = 0(a;). (2.2.12)
This definition makes sense only when v is a continuous function which is

not the case when v € H 1(£2). For Lagrange type elements in R? or R3, v €
H?(K) is a sufficient condition for (2.2.12) to be justified and 7,9 is just the
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Lagrange interpolate, in the classical sense, of 0. For v € H!(£2), [154] has defined
a continuous interpolate 7;, using averages of u instead of point values. This also
implies a more elaborate use of reference elements. In particular, the operator 75,0 is
no longer defined on one single element. In fact the nodal values of 7,0 depend on
the value of U on the adjacent elements through an averaging process.

Once 7,0 is defined, we can define on K

v = (Fa(vo F))o F~l = (F40) o FL. (2.2.13)

We rapidly recall a few classical results. We refer the reader to [146] for a detailed
presentation. We first consider the case of affine elements, assuming first rj, to be
defined by a usual interpolate (2.2.12).

Proposition 2.2.1. If the mapping F is affine, that is F(X) = xo + BX, and if
rnpr = px for any pr € Pr(K), we have forv e HS(2),m <s,1 <s <k + 1,

[v = rpvlmg <c IB7™ 1B |vlsk- (2.2.14)

The proof uses (2.1.67), its reciprocal, and the classical results stated below.

Lemma 2.2.1. |- |;41.¢ is a norm on H*Y1(2)/ Pi(2), equivalent to the standard
quotient norm.

From this lemma, the following classical result can be deduced.

Lemma 2.2.2 (Bramble-Hilbert’s lemma). Ler L be a continuous linear form on
H**1(2) such that L(pi) = 0 for any py € Py(82), then there exists a constant c
(depending on L and S2) such that one has

[IL()| < ¢ |v|ks1.0- (2.2.15)

Results similar to (2.2.14), although more complex, can be obtained for general
isoparametric elements [146,151,152]. Let then 2 g be the diameter of K. Provided
some classical conditions on the shape of elements forbidding degeneracy are
fulfilled [146], relation (2.2.14) can be converted into a relation involving a power
of hg. For affine elements, one defines for instance

= , (2.2.16)
PK

oK .

where pg is the diameter of the largest inscribed disk (or sphere) in K.

We shall, in the following, always assume that the interpolation operator rj, is
defined by the method of [154], that is, by a local projection instead of a point-wise
interpolate. This allows us to get rid of the condition s > 1 of Proposition 2.2.1. To
state this result, we define
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AK :={K'| K'N K # 0}, (2.2.17)

hag == sup hgs, (2.2.18)
K'eAK

OAK = Sup Og’. (2.2.19)
K'eAK

We then have the following proposition [154].

Proposition 2.2.2. If the mapping F is affine and if rnpx = pi for any py €
Pr(K), then there is a constant, depending on k and o, such that form <s, 1 <
s<k+1,

|U - rhv|m,K = CO—AKhsA_;?'Uls,AK- (2.2.20)

|

We then say that a family of triangulations (7)o is regular if
ok <0, YK € T;, Vh. (2.2.21)

For the geometrical meaning of this condition, we refer to [146]. We may recall
however that (2.2.21) can be written as a condition on angles excluding degenerate
elements. For general curved elements, there is also a condition on the curvature of
the sides.

We then have the following approximation result.

Corollary 2.2.1. If (Tn)ns>0 is regular family of affine partitions, there exists a
constant ¢ depending on k and o such that

lv —rpvlix < ch¥vlis1ak. (2.2.22)

For more general partitions including general isoparametric elements, the result
is qualitatively the same: we have an O (h*) approximation provided the family of
partitions is regular in a sense to be specified (see Sect. 2.2.4 for more details).

We also refer the reader to [260] where some degenerate cases are analysed.

From the elements described above, we can build approximations of H!(£2) and
H?(£2). The idea is of course to use functions whose restriction to an element
belongs to a set of polynomial (or image S of polynomial) functions. Let Si(K)
be a subspace of P (K). We define, for a partition 7}, of £2,

L35Sk, Tp) i= {v | v e H(2), v|x € Sk(K)}. (2.2.23)

Remark 2.2.3. Since the elements of L°(Sk,7,) are piecewise polynomials, we
have £*(Sk,7;) C C*~1(£2) although H*(2) ¢ C*~(£2). O

We shall reduce this notation when no confusion is to be feared and write

L£5(Sk) (2.2.24)
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when no ambiguity is possible as to 7;, and still more compactly
p =L (P, Ty), (2.2.25)

when 7}, is built from triangles and Sy = Py, the space of polynomials of degree
<k. In the same way, we shall write

= L(Qk. Th), (2.2.26)

when 7}, is built from quadrilaterals.

Remark 2.2.4 (Bubble functions). We shall often use in our constructions bub-
ble functions. We consider them here in the case of H'. For an element K, a bubble
function is a function vanishing on dK. Thus, we say that Sy is a set of bubble
functions if Sy C H, (K). We then denote

B(Sk) = L' (Sk, Tw) = L°(Sk, Tn) (2.2.27)

and we shall use the compact notation,

By = B(Px N Hy (K)),

X (2.2.28)
By = B(Qr N Hy(K)),

when no ambiguity will be possible. Spaces of bubble functions will be used to build

enriched spaces. For instance, the space ﬁ% @ B3 will be useful in Chap. 8 for the

approximation of Stokes’ problem. This space could also be written as £! (P32). O

When approximating a standard elliptic problem, the finite element spaces intro-
duced up to now can be used directly in the variational formulation of the problem
and error estimates follow from interpolation error estimates [146]. In many cases,
however, nonconforming methods have proved to yield accurate (and sometimes
easier to handle) approximations.

2.2.2 Explicit Basis Functions on Triangles and Tetrahedra

In the case of affine elements, it is often possible to define explicitly the basis
functions associated to a choice of degrees of freedom. This is done using the
following classical result.

Lemma 2.2.3. Let K be an dffine element of dimension k with vertices Xx;,
(1 <i <k). There exists a set A;(x), (1 <i <k) of linear functions on K, called
barycentric coordinates, satisfying

Ai(lj) = 5ij
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and

Do M) =1

 Itis then immediate that the barycentric coordinates are the basis functions of the
affine P;(K) element.

* For the P,(K) element of Fig.2.3 the basis function associated to the vertex x;
is A;(2A; — 1)/2 while for the node at midpoint of the edge ¢, between x; and
X, the basis function is 44;A ;.

The bubbles of lower degree are on affine elements

b3 x = A1A2A3  in the two dimensional case ,

2.2.29
bs.x = A1A2A344 in the three-dimensional case. ( )

We shall also define nonconforming bubbles in (2.2.39).
Barycentric coordinates will also be employed in Sect. 2.6.

2.2.3 Nonconforming Methods

We shall meet later nonconforming methods when studying hybrid finite element
methods. In many cases, it will however be more convenient to see them in the
framework of external approximations.

Let us consider a variational problem (with f € V'),

a(u,v) = (f,0)yxy, YEV, ueV, (2.2.30)

where V is some Hilbert space and a(u, v) is a bilinear (coercive) formon V x V.
Suppose that we can find a larger space S O V such that there exists a canonical
extension a(-,-) of a to S x S, satisfying

a(u,v) =a(u,v), Yu, veV. (2.2.31)

Moreover, let V, C S be a family of finite-dimensional subspaces of .S such that,
given v, € V;,

v = %in}) v, =>veV. (2.2.32)

When (2.2.32) is satisfied, V}, is said to be an external approximation to V.
Assuming that f* can be extended to an element f in S’, we can now approximate
problem (2.2.30) by: find u;, € V}, such that

a(up. va) = (f,vn)srxs, Yo, € Vi (2.2.33)
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Using standard coerciveness and continuity assumptions, one gets from (2.2.30)
and (2.2.33) a result known as Strang’s lemma [146,358].

: a(u Vp) — F vy
|l —uplls <c inf |ju—ovlls + sup |a(u, vi) — (f, vn)l
oV v €V ”vh”S

=c inf |lv—ovp|| + En(u, vp). (2.2.34)
v, €V

The last term can be seen as a consistency term: it measures how well the exact
solution satisfies the discrete equation. This term vanishes when V;, C V and we get
the standard result for the conforming case.

In classical situations we have V = H'(£2) or V = H?(£2) (or one of their
subspaces). Introducing a partition of the domain into m sub-domains K,, and
assuming V = H'(£2), we take S = X(£2) as defined in Sect.2.1.3. Any bilinear
form of the type

/ a(x) gradu - grad v dx (2.2.35)
Q2

can immediately be extended to X (£2) by writing
m
a(wv) =Yy / a(x) grad u - grad v dx. (2.2.36)
r=1 K

We now want to find a subspace of X (£2) approximating H '(£2) such that error
estimates obtained from (2.2.27) are “optimal”. Optimality is here relative to the
degree of the polynomials from which the approximation is built: we would like
to get O(h*) estimates when using polynomials of degree k. We are thus led to
study the second term in the right-hand side of (2.2.34). We shall make this analysis
later in the context of hybrid finite element methods; we shall therefore merely state
the result which is quite classical [142, 165, 211, 259], which was discovered on
empirical grounds, known as the Céa patch test: the moments up to degree k — 1 of
up on any interface of the partition must be continuous, that is,

/“hpk—l dx, Vpk—l S Pk_l(e) (2.2.37)
is continuous across any interface e between two adjacent elements.

A more general form was given by Lascaux and Lesaint [275]. It states that the
consistency term Ej, (i, vy) must vanish whenever u € P,(£2). For plate problems,
this implies a condition similar to (2.2.37) for u;, and its derivatives. To fix ideas we
recall a few classical examples.

In conformity to notation (2.2.23), we denote by £ V€ (Sy, T},) a nonconforming
approximation of H!(§2) built from functions of Sy(K). We shall simplify this
notation whenever possible as in the following example.
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Fig. 2.8 Continuity points

a b c
for nonconforming elements.
@k=1()k=2.
k=3

Example 2.2.5 (Nonconforming elements on the triangle). Let us consider a parti-
tion of £2 into straight-sided triangles and an approximation

LN = vy | vw € LA(R2), vhlk € Pu(K), VK € Ty,

Z/ wds =0, Vo € R (0K)}. (2.2.38)
K oK

It is then easy to see that the patch test implies that the functions of E}C’NC should
be continuous at the k Gauss-Legendre points on every side of the triangles (see
Fig.2.8).

For k odd, those points, with internal points for k > 3, can be used as degrees of
freedom, but for k even it is not so and the values at these points are not independent.
We shall come back to this point in Sect.7.1.4, in particular in Example 7.1.4.
The trouble is that the six Gaussian points of the k =2 case lie on an ellipse
centered at the barycentre. This ellipse is easily expressed, in terms of barycentric
coordinates by defining the nonconforming bubble, an ellipsoid taking value one at
the barycentre and vanishing at the Gaussian points of the edges

4
bye(K) =1— 3(/\% + A3+ 2%). (2.2.39)

It was however shown in [209] that this element can nevertheless be used in a
very simple way. This was extended to the three-dimensional case in [200]. In this
case the nonconforming bubble becomes

byve(K) = 1 —2(A7 + A3 + A3 + Ad). (2.2.40)

It must be noted that, in three-dimensional nonconforming elements, the patch test
implies, in general, no point continuity. However, there exists a six-point quadrature
formula on the triangle, exact for polynomials of degree 3, of which all points lie on
the ellipse defined by (2.2.40) and this ensures the patch-test. O

Nonconforming approximations of H?2(£2), [147, 148], have been widely used
because of the difficulty to obtain conforming elements. We refer the reader to [275]
where several examples are given. We shall however use in Chaps. 8 and 10 the
following nonconforming approximation of H?(£2).

Example 2.2.6 (Morley’s triangle). In plate problems, where an approximation
of H?(R2) is needed, an important nonconforming element is Morley’s triangle
(Fig.2.9).
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Fig. 2.9 Morley’s triangle

e point value

— normal derivative value

The functions v, are supposed to be in P,(K) for every K. The degrees of
freedom are point values at the vertices of the triangle and normal derivatives at mid-
side points. It can be shown by the method of [275] that this provides a consistent
approximation that will converge as O(h) in a discrete H?(£2)-norm. We shall
denote by E%’N € the approximation of H?(£2) built from such elements. O

Example 2.2.7 (Nonconforming elements on the rectangle). We consider a partition
of £ into straight-sided quadrilaterals, and an approximation of H'(£2) defined by

L€ =t | wy € LA(RQ), wylk, =y o F7', iy € Qx(K)
and (2.2.37) holds}. (2.2.41)

Here again the patch test implies continuity at the Gauss-Legendre points of the
interfaces. It is never possible to use these points as degrees of freedom. For k = 1,
the function (X — %)( y — %) € Q(K) vanishes at the four Gauss-Legendre points
of the sides that are indeed midpoints in this case. For k = 2, the points lie on
an ellipse, and so on. It is however possible to extend the method of [209] to
these cases. Another example of a nonconforming quadrilateral element is presented
in [330].

O

The above examples are in no way exhaustive: many other nonconforming

approximations can be built and some are indeed effectively used [244, 279]. As

we shall see in the sequel, nonconforming methods are strongly related, and often

equivalent, to hybrid methods or mixed methods. We think it is preferable to delay
further examples until they are met in a proper context.

2.2.4 Quadrilateral Finite Elements on Non Affine Meshes

We present here some general results about finite elements on non affine meshes.
A mesh 7}, is called affine when for all elements K € 7, the mapping F from the
reference element K to K is an affine function. If this is the case, the Jacobian matrix
DFk is constant and this property has important consequences for the theoretical
analysis.
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On the other hand, non affine meshes are met very frequently in real world
applications. They may occur in the approximation of general domains, when
isoparametric elements are used (see, for instance, Example 2.2.2). Moreover, non
affine meshes are generated when quadrilateral or hexahedral elements are used. The
fact that the Jacobian matrix DF ¢ may not be constant not only makes the analysis
of non affine elements more difficult, but may also lead to substantial degeneracy of
their approximation properties.

The aim of this section is to recall recent results which hold for the quadrilateral
finite element approximation of scalar functions (see [20]) and of vector-valued
functions in H (div; §2) (see [21]).

The possible sub-optimality of some quadrilateral finite elements has been
observed by several authors, often as a result of numerical experiments; a non
exhaustive list of relevant references is [270, 297, 330, 384,386].

In order to understand where the trouble come from, let us make some comments
on Corollary 2.2.1 in the case of non affine partitions. We consider, for instance, the
reference triangle K and its image K = F K(Ie ). Let us take a smooth function
b : K > R, the corresponding mapped function v = 9o Fg' : K — R, and
its linear interpolant r,v : K — R. When Fk is affine, then K is a triangle with
straight sides, the Jacobian matrix DF(X) = B is constant and Corollary 2.2.1 reads

|U—I‘hU|1,K EChK|U|2’K. (2.2.42)

A fundamental ingredient for such an estimate is the scaling (2.1.68), which in this
particular situation reads

9], ¢ < c|det(B)|”?||B|*|v]o.x < c|det(B)|*h v k- (2.2.43)
When the Jacobian matrix is not constant, we cannot use (2.1.68) and the chain rule
gives

—-1/2

|ﬁ|2,12 <c

inf(J(%))

(IDFI2 . [0k + D2 Fll o iy [0k ) - (22:44)

The term ||DF ||ioo ® in the right hand side is typically O(h%), while the norm of

the Hessian matrix D2 F might be a lower order term. This fact is clearly a potential
source of trouble for optimal order approximation.

Remark 2.2.5. Besides the situations presented in Sects.2.2.5 and 2.5.5, there are
other cases which could be studied but for which the analysis is not yet com-
pleted. Three dimensional H(div, £2) and H(curl; £2) approximations on general
hexahedral meshes, for instance, do not have a complete analysis yet (see, for
instance, [19, 191]), while it is known that standard finite elements are suboptimal
in several situations [64,307]. O
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2.2.5 Quadrilateral Approximation of Scalar Functions

Necessary and sufficient conditions for optimal order approximation by quadri-
lateral finite elements have been investigated in [20]. The theory applies to finite
elements defined on a reference square element K and mapped to the actual quadri-
lateral element K by the standard transformation (2.1.59). The generic mapping Fx
is bilinear in each component, so that K is a quadrilateral with straight sides.

Before stating the main results, let us recall a measure of shape regularity for
quadrilateral meshes.

Definition 2.2.1. Let {7} be a family of partitions of convex quadrilaterals. For
each K, consider the four triangles obtained by the possible choices of three vertices
from the vertices of K and denote by px the smallest diameter of the circles
inscribed in the four triangles. Define ox = hg/pg, where hg is as usual the
diameter of K. The family of partitions {7} is said shape-regular if

ox <C VK,

uniformly in /.

The shape regularity is equivalent to a uniform bound on the ratio of any two
sides of the elements and also to a bound away from 0 and = for the element angles.

Given a smooth function u : £2 — R and a finite element space family V},, we are
interested in the following optimal approximation properties (k is the polynomial
degree of the reference finite element space and grad,, is the element-by-element
gradient):

inf [u— vhllo.e = O, (2.2.45)

vy €V

inf || grad, (u — vp)loe = O(h"). (2.2.46)
h

v €Vy

It is well known (see, for instance, [146, 223]) that a sufficient condition
for (2.2.46) to hold is that the reference finite element space contains Qk(Ie ), the
space of polynomials of degree less than or equal to k in each variable, separately.
In this case, the following estimates are known to hold

inf [u—vplloe < ch* ' ulksi e, (2.2.47)
v EV)
inf || grad;, (u —vp)o.2 = ch**'| grad uli 11 0. (2.2.48)
eV,

Indeed, this is also a necessary condition. This result has been proved in [20] by
exhibiting a very simple (and far from pathological) counterexample: the domain is
a square, the mesh sequence, sketched in Fig. 2.10, is made of self similar trapezoids
and the function to be approximated is as smooth as possible (a polynomial of
degree k).
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Fig. 2.10 Distorted quadrilateral mesh based on a trapezoid macro-element

Remark 2.2.6. The presented result has important consequences for some
commonly used finite element space families. In particular, serendipity elements,
obtained from standard @ elements by eliminating some internal degrees
of freedom, cannot achieve optimal approximation order (2.2.46) on general
quadrilateral meshes. O

Remark 2.2.7. The presented results extend to three space dimensions in a straight-
forward way [296]. O

Remark 2.2.8. The degeneracy of the approximation properties is related to the
mesh distortion. In particular, on asymptotically affine partitions, the optimal
approximation order is achieved. We refer the interested reader to [20] for the
definition of an asymptotically affine mesh and for the proof of this result. O

2.2.6 Non Polynomial Approximations

2.2.6.1 Spaces L; (Ex)

In the applications involving hybrid methods, it will be useful to consider approxi-
mation spaces built from functions that have a polynomial trace on dK but which are
not necessarily polynomials inside K. These spaces will be useful whenever only
the trace is computationally important: they can be thought of as defined only on

& = U 0K (cf. (2.1.42)). We thus define for s > 1
K

L5 (&) ={v|ve H () v|k € Tr(0K), VK} (2.2.49)
and fors = 0

L&) = {v [v e L*(&r), v]ok € Re(IK), YK}. (2.2.50)
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For s > 1, functions of £j (&) are evidently approximations of H 1(£2) of
optimal order with respect to k. It is also possible to get error estimates on the
traces.

Virtual element methods. The spaces £ (&) can easily be defined on polygons
of arbitrary shape, but (as we already pointed out) they can be used only on
the boundary of elements, and, even restricted to a single element, are infinite
dimensional. To reach a finite dimensional version, one has to prolongate them
inside the elements. This can be done in several ways (see e.g. [367,377] or [306]
and the reference therein).

Recently a variant of these methods has been introduced, called Virtual Elements,
in which the extension is made as the solution of a partial differential equation, but
the construction is such that one does not need to know the solution of this PDE in
order to compute the stiffness matrix.

Let us see a simple example, just to give the flavour of the idea. On an element
K (a polygon of a practically arbitrary shape), we define VM (K) as the space of
functions that are linear on each edge of K and harmonic inside. The dimension of
such a space is clearly equal to the number of vertices of K. If we want to compute

ak, p) = / grad v - grad p dx, (2.2.51)
K

where v is generic in VM (K) and p is a polynomial of degree <1, we have

9
aK(u,p)E/dezwg@dpdx:/ v 2P g, (2.2.52)
K ok on

which is easily computable from the knowledge of v on 0K . This allows to compute
a projection operator (that we denote by IT IV ) from VM (K) to P,(K) by

(v—I1Yv)ds =0 and a®( -1 v,q) =0Vq € P/(K).  (22.53)
oK

Then we can take as approximate local stiffness matrix a ,f the following expression:
al(u,v) .= a® (1Y u, 1Y v) + ¥ — MY u,v — 1Y v), (2.2.54)

where SX is any bilinear form acting on the vertex values and scaling like 1 (for
instance, for a polygon with, say, five vertices, the usual scalar product in R> will
do). This will provide an optimal error bound (see [57]).

This can be extended to higher orders to improve the accuracy. Taking k = 2,
for simplicity, we now define VM, (K) as the space of functions that are quadratic
on each edge of K and whose Laplacian, inside K, is a constant (in general: a
polynomial in Pr—;(K)). The dimension of such a space is clearly equal to twice
the number of vertices of K plus one. As degrees of freedom we take the values
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at the vertices, the values at the midpoints of the edges, and the mean value on K.
Now, if we want to compute

ak, p) :=/g@dv-g@dpdx, (2.2.55)
K

where v is generic in VM, (K) and p is a polynomial of degree <2, we have

9
/g@dv-g@dpdx:—/ vApdx+/ v P g, (2.2.56)
K K ok On

which is easily computable, as we know v on dK and its average on K. This allows
to compute a projection operator (that we now denote by HZV ) from VM,(K) to
P,(K) by

/ (v —TI,Yv)ds =0 and a®(v —IT)v,q) = 0Vq € P,(K). (2.2.57)
K

Following (2.2.54) we can then take as approximate local stiffness matrix a,f the
following one:

a,f(u, v) = aK(szu, szv) + 5K — szu, v— szv), (2.2.58)

where again SX is any bilinear form acting on the vertex and inside values and
scaling like 1 (for instance, for a polygon with, say, five vertices, the usual scalar
product in R'" will do). We still refer to [57] for more details.

We observe that another possibility would be to consider the space VM, of
functions that are linear on each edge, whose Laplacian is constant, and such that

/ (v —ITYv)dx =0, (2.2.59)
K

where 1T, V is still defined by (2.2.53) usmg only the boundary values of v. The
advantage of VM, over VM| is that in VM, we can compute exactly the mean value
of a function using only its boundary values; this can be useful, for instance, to
define the Virtual Element spaces on a polygonal face of a polyhedron, in particular,
if thereafter we want to use a formula like (2.2.56). For more information in this
direction see [4].

2.2.7 Scaling Arguments

We shall briefly recall here the basic idea of the scaling arguments of [180]. We shall
do it on a very simple example, but it will be clear how the idea applies to more
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general cases. Assume that we want to prove the following inverse inequality for
elements v, € Lj: there exists a constant ¢ depending only on k and on the
minimum angle 6y in 7}, such that, on every element K, we have

lvili.x < chg' [valox. (2.2.60)

We construct first a new element K such that the mapping F : K — Kis simply
given by

x=hxk+b (2.2.61)

and K has a vertex at the origin. Formulas (2.1.67) and (2.1.68) then simply become
(in two dimensions)

A

|01, ¢ = W~ vlmk (2.2.62)
and we easily get

loilix = 18], ¢ < ek K) |9y 2 < ek, K) b [v]ox- (2.2.63)

Now we remark that ¢(k, K) actually depends continuously on the shape of K (a
similar argument was already used in [127]). In particular, if one considers the
family Kjg, of all the triangles having diameter = 1, one vertex at the origin and
a minimum angle > 6, one easily gets

sup c(k,K) < c(k, ) (2.2.64)
kEKeO

by compactness [180]. Hence from (2.2.63) and (2.2.64) we get
lonlix < c(k,60) h' [v]ok, (2.2.65)

that is (2.2.60).

Note that, in this particular case, it would have been equally easy (or even easier)
to derive directly (2.2.60) by using (2.1.67) and (2.1.68) and a fixed K = unit
triangle. However, (2.2.62) is easier to use and the continuity argument (2.2.64) is
always essentially the same in many different applications, so that using the scaling
(2.2.61) actually results in a simplification. For instance, one can get by this method
the inequality

[ toitdo =i [ 191105 < b0 b linl, ¢ = (k.80 oo 2266
0K 0K

In the same way, one can guess, for instance, that one has

v/ 0n || Loooxy < c(k,60) hi? |valo ks (2.2.67)
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because both sides scale like h}l in the transformation (2.2.61) and the inequality
holds on a fixed element of size = 1. However, note that an inequality of the type

lvrllLoo @) < c(k, 8) |vnlik (2.2.68)

is still hopeless (take v, = 1!) unless we specify, for instance, that v, has zero mean
value in K.

2.3 Simplicial Approximations of H(div; 2) and H(curl; £2)

Although this section and the following one are important by themselves (we
shall use H(div;£2) or H(curl; £2) in many applications throughout this book),
its importance also lies in its value as a model. The techniques introduced for the
approximation of H(div; §2) can indeed be applied to other situations and similar
constructions have been employed in the discretisation of the Hellan-Hermann-
Johnson mixed formulation for which we refer to [318] and [319]. The approxi-
mations that we shall present derive from the original work of [366], and [331]
later generalized and extended to the three-dimensional case by Nédélec [310]. We
shall also use the results of [118, 120], and [311] for the definition of elements that
contain (for simplicial elements) the elements of [310] and [331]. In the case of
rectangles, we introduce a general element containing the elements of [331], the
elements of [120] and the ones of [119], thus clarifying the relation between those
two. As the simplicial case is simple and more intuitive, we shall first consider it in
detail. Quadrilateral and hexahedral elements will be treated afterwards.

2.3.1 Simplicial Approximations of H(div; £2)

In this section, the element K will be either a triangle (n = 2) or a tetrahedron
(n = 3) and we will suppose that we have a mesh 7, built from such elements. We
denote by e; (i = 1,2,30ri = 1,2,3,4) the sides (or the faces) of K. We then
start from the general space of piecewise polynomial vectors. It will be convenient
to denote

P (K) = (Pr(K))". (2.3.1)
In analogy with (2.2.23), we want to build approximations of H (div; §2) of the form
L%(S,.Th) = {p € H(div:2) : p|x € S, (K)}, (2.3.2)

which will evidently imply continuity of the normal traces. We shall thus proceed
to build suitable subspaces of to ensure this continuity. We first define, using (2.2.5)

Py (K):={p e P (K): p-neR(IK)) (2.3.3)
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and
P (K) = {p € (P,(K) + xPi(K)) : p-n € R(K)}. (2.3.4)
where x = (x1, X2,...,Xy,). For these spaces, we shall write (2.3.2) in a compact
way:
Ley(Ty) = LT (P Th) (23.5)
Egl-‘;-ik’s(,'z;l) = Edlv(ﬁziikv 77!) (2'3'6)

or even L{" and L} , = when there will be no ambiguity as to the choice of 7;,.
The case s = k is the most natural and widely used. Taking s < k — 1 defines what
we shall call reduced spaces. We introduce special names for a few classical cases.
For s = k, the space ﬂZ'k (K) was introduced in [120] (for n = 2) and [118] (for

n = 3). We shall thus call it the Brezzi-Douglas-Marini space and write,
BDM(K) := P} (K). (2.3.7)
The dimension of BD M (K) is

dim BDAM, (k) | £+ D+ T2, forn =2, 235

1k + 1)k +2)(k +3), forn=3.

The space ﬁ’;ka was defined in [310] following [331]. We shall call it the Raviart-
Thomas space and write

RTk(K) = P .. (23.9)
Finally the reduced case ﬂZ’k_l was considered in [119] and we shall write

BDFM(K) := Pi* 7 (K). (2.3.10)

Remark 2.3.1. The original work of [331] used an expression equivalent to (2.3.4)
with s = k on the reference element K and defined R7 ¢ (K) by the change of
variable G of (2.1.69). It must be noted that this definition is not equivalent to
the definition of R7 (K given above: it depends on the orientation of space. For
simplicial elements, definition (2.3.4) is more natural and easier to handle. O

For the simplicial case, we thus have the following inclusions between the spaces
just defined:

RT -1 C BDFM C BDM; C RTy C B'D]:Mk-H C BDMk+1 C R'Tk_H.
(2.3.11)

We now have to define suitable degrees of freedom. For ¢ € £Z’S (K), we
evidently have divg € Pr—1(K). Moreover, the normal trace ¢ - n on 0K belongs
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to R,(dK). In order to build from P’ Z’S (K) an approximation of H(div; £2), it will
be necessary to ensure continuity of g -n at the interfaces. This will be made possible
by the choice of appropriate degrees of freedom.

Proposition 2.3.1. For k > 1 and for any q € P (K), the following relations
imply g =0

/ q-n pgds =0, Y ps € Rs(0K), (2.3.12)
-
/ q - grad pr—jdx =0, Pk—1 € Pr—1(K), (2.3.13)
K
g-p dx=0, ¥p eH/(K), (2.3.14)
/K_ Ly Ly k
where
H,(K) = {q, | ¢, € P,(K). divg, =0. g, -nlox = 0}. (2.3.15)

Indeed, it is easy to check that (2.3.12) and (2.3.13) are equivalent to q € H,(K) as
(2.3.12) implies ¢, - n|sx = 0. Moreover,

/ divg px—1 dx = —/ q - grad pyx—; dx—}—/ q-n pg— ds. (2.3.16)
K = K~ F) S

Thus (2.3.12) and (2.3.13) imply divc_] = 0. Reciprocally, it is trivial that (2.3.12)
and (2.3.13) hold forc_jk € H, (K). O

To prove that (2.3.12)—(2.3.14) can be used to define degrees of freedom for
P}*(K) by choosing bases for Ry(dK), Pr—i(K), and H, (K), there remains to
check that the set obtained from (2.3.12) and (2.3.13) is linearly independent. This
is the object of the next lemma.

Lemma 2.3.1. Let g € Ry(0K) and f € Py—1(K) be such that
/ gq-ndo +/ g -grad fdx =0, Yq € P} (K). (2.3.17)
K T T K~ -

Then, g = 0 and f = constant.

Proof. Using the change of variables (2.1.69) and Lemma 2.1.6, it is sufficient to
prove the result on the reference element (see Fig.2.11). We give the construction
for n = 3 as the case n = 2 is a simple restriction of it. One first uses in (2.3.17)

) ) )
q1 = X—fM, g = y—fM, qz = Z—f/h, (2.3.18)
0x dy 0z

where A4 is the fourth barycentric coordinate, thatis Ay =1 —x — y — z.
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o)

ST

s

Fig. 2.11 The reference element

Theng € P, (K) and g - n|yx = 0 and we get from (2.3.17)

/K[x<%)2 * y(%)z + Z(%)z]m —0, (23.19)

which implies grad f = 0 since all terms in the integral are positive. We now take
q1 =Xxps—1, q2»=¢q3=0. From this we obtain fm xg ps—1 ds=0. In the same

way we get fe4 Vg Ps—1 ds = fe4 78 ps—1 ds=0and, as x + y + z=1 on
ey, fe4 g ps—1 ds = 0. All these conditions imply gl|,, = 0. Finally, we take

3
qi = gle; = gi and (2.3.17) implies ) fe,- (gi)* ds =0, hence g = 0. O
i=1
Let us now count the number of conditions thus induced for BD M (K):

1k + 7k + 4 forn = 2,

1k3 + 15k + 38k + 18 forn = 3.
(23.20)

dim R (K) + dim Pr_i(K) — 1 =



88 2 Function Spaces and Finite Element Approximations
From this we can deduce, by standard arguments of linear algebra,

1
Ek(k — 1) =dim Py_(K) forn =2, k > 2,

dimH, = 1 | dim [( Py—2)*]—dim (P_3),
g3k3—3k—g(k—2)(k—1)k: n=23 k>3,
dim [(Pr—2)3], n=3, k=2.

(2.3.21)

In the two-dimensional case, the space H, (K') can easily be characterized.

Lemma 2.3.2. Forn = 2, we have,

H,(K) ={p, | p, = curl(bg pr-2). pr— € Pr—2(K)}, (2.3.22)
where by = AAA3 € B3(K) is the bubble function on K.

Proof. Any P, € H, (K) is the curl of a polynomial of degree k + 1. A simple count
of degrees of freedom concludes the proof. O

In the three-dimensional case, the construction of Hj (K) is less direct. It is still
true that P, € H, (K) implies that P, is the curl of a vector function polynomial of
degree k + 1. To characterise H, (K'), we need the polynomial spaces that will be
introduced in the next section for the approximation of H (curl; £2).

The next result shows, in particular, that the internal degrees of freedom coming
from (2.3.13) and (2.3.14) can be replaced by a term involving the space Nj_»(K)
which will be introduced in (2.3.37) for the approximation of H(curl; £2). The
reader is referred to Sect. 2.3.2 for more details.

Proposition 2.3.2. For k > 1 and for any q € P (K), the following relations
imply ¢ = 0,

/ g-npsds=0, ¥ p, e R,0K), (2.3.23)
a

/ q-Wi_pdx =0, Vw,_, € Nik—2(K), (2.3.24)
L

where Ni—»(K) is defined in (2.3.37).

Proof. Space Nj—»(K) contains the gradients of all polynomials of degree k — 1
so that condition (2.3.24) is stronger than (2.3.13). We thus get ¢ € H, (K). By
Proposition 2.3.4, a polynomial of degree k which is divergence-free is the curl of
¢ €N, k+ (K) and g - n = 0 implies that we must take the tangential trace 7;¢ to
vanish on dK. From Proposition 2.3.5 it follows that

/ ¢ p_,dx =0, VP, , €Lk (2.3.25)
K
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which implies ¢ = 0. On the other hand, (2.3.24) implies

/ curlp -w,_,dx = / ¢-curlw, _,dx =0, Vwi_, € Nikea(K)  (2.3.26)
K = K~

and curl N3 —»(K) spans BDMQ_Z(K) (see Proposition 2.3.4). From Lemma 2.3.3,
the complement of BDM{_,(K) is made of gradients and the result follows. O

One must also say that the degrees of freedom described above have mainly
a theoretical importance, for instance in building a B-compatible interpolation
operator for proving the inf-sup condition. In practice, as we shall see in the
applications of Chap.7, any basis of P, will be convenient and standard degrees
of freedom can be used.

We can now consider the case of R7 x(K) as defined in (2.3.9). It can easily be
checked that the dimension of R7 ;(K) is given by

k+1Dk+3) forn =2,

dim RT(K) = { |
Lk + 1)(k +2)(k +4) forn =3,

(2.3.27)

and that only the part of x P (K) involving homogeneous polynomials of degree k
is important. We now prove some basic results about R7  (K) spaces. These spaces
have indeed been tailor designed in order to satisfy the properties which we now
state in the following proposition.

Proposition 2.3.3. For any n-simplicial element K we have for ¢ €RT i (K),
divg € Pr(K),

(2.3.28)
q - nlokx € Ri(0K).

Moreover, the divergence operator is surjective from RT . (K) onto Py (K).

Proof. q € RT(K) can be written as ¢ = q, + xpk with q, € P, (K). Itis
then clear that div ¢ is a polynomial of degree k. This proves the results about div q.
On the other hand, let n = {ny,n,} be the normal to a side (we consider the two-
dimensional case for simplicity)

g-n=qo-n+ pr(xin + xn3). (2.3.29)

Along a side, xyn1 + x5 is constant, so that ¢ - n is a polynomial of degree k. The
same argument works in R”. To end the proof, we observe that in R”

1
/ div(xp)p dx = © / PP det / (x-m)|pl? ds. (23.30)
K 2 Jk 2 Jok

so that div(x pr) = 0 implies pr = 0. Hence, div(x Pi) has the same dimension
as Py. O
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Proposition 2.3.4. For k > 0 and for any q € RTk(K), the following relations
imply g =0

/ q-n peds=0, VY p € Ri(9K), (2.3.31)
L

/Z'Bk_l dx =0, Vp € (P1(K)" (2.3.32)
k

This is a variant of Proposition 2.3.1 and the proof is left as an exercise.
Let us now define

RT)(K) :={q | g € RT((K).div g = 0}. (2.3.33)
We can define in the same way BDM (K ) and BDF MY (K). From (2.3.4), we can
easily deduce the following result.

Corollary 2.3.1. RT{(K) C (Pr(K))".

Therefore R’Tg (K) = BDMQ (K) while BD}"MQ (K) = R’Tg_H contains the
same divergence-free vectors.

Corollary 2.3.2.

* Forn =2anyq, € RT%(K) = BDM°(K) is the curl of a stream-function
Vi+1 € Pry1(K)/R.
The dimension of’R’Tg (K) is equal to dim (Py+1(K)—1) = %(k +1)(k+4).
e Forn = 3, from Lemma 2.3.4, any q, € RTYV(K) is the curl of a vector Y€
NF(K) = Ni(K)/ grad Piyy = P,/ grad Prys .

Finally, one can obtain a complement of R7 ) (K) by the following construction.

Lemma 2.3.3. Any P, € P, can be written as the sum
p, = p° + grad(byc(K) pi—1) (2.3.34)

with EO € BDM(K) where the nonconforming bubble is defined by (2.2.39).

Proof. 1t is clear that b,.(K)Py—; vanishes on the ellipse b, = 0 and hence
contains no harmonic functions. ]

Before considering the case of H (curl; £2) we present a few examples.

Example 2.3.1 (The spaces RTy, R7T,, BDM;). From the results above, we
know that R7 is a space of dimension 3 containing polynomials of the form

ql(-xs y) =a+cx,
(2.3.35)

q2(x.y) =b+cy.
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a b

Fig. 2.12 (a) RT,. (b) BDM,. (¢c) RT,

Fig. 2.13 (a) BDM,. (b) BDFM,

a b c
Fig. 2.14 (a) RTy. (b) BDM,. (c) RT;

We can specify it by the three normal components of ¢ on dK as sketched in
Fig.2.12. Space BDM is of dimension 6 and R7 is of dimension 8. It must
be noted that div BDM; = divR7Ty = Py. In the same way, BDM, is the subset
of R7 | such that divg € P, instead of P;. The same concepts can be extended to
BDM; and BDF M, as shown in Fig. 2.13. ]

Example 2.3.2 (Three-dimensional elements: RTy, BDM;, RT ). The simplest
cases of three-dimensional elements are depicted in Fig. 2.14. O

Remark 2.3.2 (Two-dimensional approximations of H(curl; §2)). Due to Remark
2.1.5, in the two dimensional case, approximations of H(curl; £2) can be derived
directly from the approximations of H(div; £2) which we just presented since in
two dimensions H (curl; £2) is isomorphic to H (div; £2) through a rotation by the
angle /2. Vector fields approximating H (div; £2) will provide an approximation
of H(curl; £2) after a suitable rotation. O
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2.3.2 Simplicial Approximation of H (curl; 2)

As stated in Remark 2.3.2, two dimensional approximations of H(curl; £2) can
be derived directly from those of H(div; §2). For this reason, we restrict our
presentation to the three-dimensional case. In the following, K will therefore
be a tetrahedron. The problem of defining a subspace of P, (K) which would
lead naturally to the continuity of the tangential trace is more complex than for
H (div; £2). To understand this, we may consider the trace 7z, defined in (2.1.32).
From (2.1.37), this trace is in H _%(cgl; 0K) which will imply continuity along
the edges of K. This will also imply in the definition of degrees of freedom
the appearance of the duality pairing with H _%(div; dK). Finite element spaces
approximating H (curl; £2) have therefore often been referred to as edge finite
elements, in analogy to face finite elements approximating H (div; £2) and to nodal
finite element approximations of H'(£2) as degrees of freedom will be associated
to edges (see, in particular, Example 2.3.3), faces, and vertices, respectively.

Edge elements are also known as Nédélec elements since they have been origi-
nally presented in [310,311]. Important contributions to the analysis can be found
in [8, 102, 170, 223], in [248, 302] and in the references therein. In the simplicial
case, a comprehensive list can be deduced from the presentation of [33] (see, in
particular, Table 5.2) where they have been discussed in a more general setting.

Remark 2.3.3. As we did for approximations of H(div, £2), we shall define, for
S C Py,

LSy, Tw) i={p|p € H(curl: 2), plx € S;(K)}, (2.3.36)

which will imply continuity of the tangential traces as defined in the previous
sections. We now proceed to present classical ways of building some suitable S .

O

The most popular choice, which has been introduced by Nédélec [310] and
further analysed in [222] is often referred to as first kind Nédélec family.

Let K C R? be a tetrahedron and let ¢;, i = 1,..., 6, denote its edges and f;,

i =1,...,4,its faces. Given an integer k > 0, we define

Ni(K) := (P(K))’ @ [x A (PL(K))’], (2.3.37)
where x = (x,y,z) and th denotes the space of homogeneous polynomials of
degree k.

It is worth observing that definition (2.3.37) might also be given in the following
equivalent way. Let us define first

St i= {1 € (P(K))|z - x = O (2:3.38)

then we have NV (K) := (Py(K))> @ S¥+1.
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Proposition 2.3.5. For k > 0 and for any y € Ni(K), the degrees of freedom
of Ni(K) can be defined by

/ Xt pds Vpik € Pr(ei), Ve (2.3.39)
/ X 4o Vo, | € (P (i) YV S (2.3.40)
f'
/ Xop Vo, _, € (Pa(K))*. (2.3.41)
K

For the proof of the previous proposition, we refer the interested reader to [222].
In particular, let us check that the number of conditions involved with (2.3.39)-
(2.3.41) is the same as the dimension of the space Ny (K). Indeed, (2.3.39) imposes
k + 1 conditions on each edge, (2.3.40) gives k(k + 1)/2 conditions in each of
the two components of the tangential component on each face, and (2.3.41) adds
(k — Dk(k 4+ 1)/6 more conditions in each of the three components of the vector
field. As it can be easily seen, the sum of the three contributions is equal to

dim(Ni (K)) = (k + 1)(k + 3)(k + 4)/2. (2.3.42)

Following (2.3.36), in analogy with what has been done for approximations of
H(div; £2), we define

L e (Tn) = LN, Tn). (2.3.43)

Remark 2.3.4. 1t would be possible to introduce, if needed, reduced spaces where
the tangential trace is of a lower degree. We can, for example, introduce a reduced
space, NV} (K), which is the subspace of Ny (K) where the degree of the trace on
the faces of K is lowered by one. We thus have for k > 1 the following degrees of
freedom

/ L pieds Vpit € Proi(er), Ve, (2.3.44)
/f, MY by, do Vo, , € (Pa(f)) YV (2.3.45)
/Kl'ﬁk_z dx Vp, , € (Pioa(K)) . (2.3.46)

O

Proposition 2.1.3 states that in order to construct an approximation of
H(curl; 2), given y € Nji(k), we need to ensure continuity of the tangential
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component y; y across elements. The following proposition implies that the degrees
of freedom (2.3.39) and (2.3.40) guarantee such continuity.

Proposition 2.3.6. Assume that x € Ni(K) is such that (2.3.39) and (2.3.40)
vanish on a given face f C K and on all edges e of f. Then y An = Oon f.
O

Another possible choice for constructing approximations of H (curl; £2) has been
introduced in [311] and is often referred to as the second kind Nédélec family. On a
tetrahedron K, for k > 1, we consider the full polynomial space

NCi(K) := P,. (2.3.47)
This is the same set of polynomials which we used to define BD M. However, we

must now build a set of degrees of freedom which would ensure the continuity of
the tangential trace. Given x € NC(K), we introduce the following moments:

/ X Lpids, Vpr € Pi(ei), Ve; (2.3.48)

/ Ty P, do Vo, , € RTi=a(f), V (2.3.49)
f‘

/ X9, _yax, ¥q, 5 € RT—3(K). (2.3.50)
K

It is not difficult to check that the total number of degrees of freedom introduced
in (2.3.48)—(2.3.50) is equal to

(k + Dk +2)(k +3)

dim(NVCi(K)) = >

(2.3.51)
Indeed, moments in (2.3.48)—(2.3.50) correspond respectively to 6(k + 1), 4(k + 1)
(k —1),and (k + 1)(k — 1)(k — 2)/2 conditions. Lemma 2.1.9 guarantees that the
moments are compatible with the mapping H and, finally, we refer the interested

reader to [311] for the proof of the unisolvence.
We shall denote as in (2.3.43)

LT = LY NC T). (2.3.52)

Remark 2.3.5. We shall say that the vectors in Nj(K), N/ (K) or NCi(K) for
which y An = 0 on all faces of K and which are thus defined by the degrees
of freedom (2.3.41), (2.3.46), and (2.3.50) are H (curl)-bubbles. It is thus clear that
Ni(K) and N/ (K) contain exactly the same bubbles while N'Cy(K) has more. O

Remark 2.3.6. Another important property is that the spaces N (K), N/ (K) and
NCi(K) are invariant under the action of the covariant transform H in case of
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affine mappings (as it can be checked directly). Moreover, from Lemma 2.1.9 if
follows that the degrees of freedom introduced, for example, in (2.3.39)-(2.3.41)
are compatible with respect to H. O

Our last comment is about the characterization of the kernel of the curl operator
in Ny (K), NV} (K) and NCy (K). Using a similar notation to what we had introduced
in the previous section, we define

N2(K) := {x € Ni(K)| curl y = 0}, (2.3.53)
N(K) i= {x € N (K)| curl y = 0}, (2.3.54)
NC(K) := {x € NCx(K)| curl y = 0}. (2.3.55)
One easily sees that
NL(K) = grad Py 41(K). (2.3.56)
NO(K) := grad Py (K) + grad By(K) P! 5(K), (2.3.57)
NCYK) := grad Py 11(K), (2.3.58)

where B4(K) is the bubble defined in (2.2.28) and P,? (K) denotes, as above, the
space of homogeneous polynomials of degree k. Let us define

NE(K) = Ni(K)/ grad Piey1(K), (2.3.59)
NH(K) == N JNO(K), (2.3.60)
NC}(K) := NCy/ grad Piy1(K). (2.3.61)

We then have V" (K) = NC}! 1 (K) while N/ *(K) is smaller. The important point
is that we have

curl Vi (K) = curl NCi41(K) = curl VT (K) = BDMY(K) = RT%(K)
(2.3.62)
curl N (K) = curl V] T (K) = BDFM(K). (2.3.63)

We can, for example, check the following result.

Lemma 2.3.4. The curl operator is surjective from Nk+ (K) onto BDMY(K) =
RTV(K).

Proof. A simple count shows that the dimensions of A/, k+ (K) and the dimension of
BDMY(K) are equal. O
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Fig. 2.15 Lowest order edge
elements on a tetrahedron

This can be summarised in the exact sequences,

rad curl iv
Ly =N 2 Bom, -2 LY (2.3.64)
o, = N = BoEm 2 1 (2.3.65)

This relation is part of a more general commuting diagram property which will
be discussed in Sect. 2.1.4.

Example 2.3.3 (Lowest order edge elements). We conclude this section by explain-
ing in more detail the case k =0. This is probably the most used edge finite
element and it is also known as the Whitney element, since it has been used by
Whitney in a different context [379]. The case k =0 is very particular, since the
only meaningful degrees of freedom are those presented in (2.3.39) (and this is also
a good explanation for the name edge elements). The space N is simply given by

No o= (Po(K))’ @ [(x) A (Po(K))’]

1 0 0 0 -z y
= span ol.t1t4,10}).t z 1,1 0], —=x . (2.3.606)
0 0 1 -y X 0

The moments (shown in Fig. 2.15), are given by the six degrees of freedom (2.3.39),
that is

/l -tds (2.3.67)

and it can be checked that the quantity y - 7 is constant along the edges. O

2.4 Approximations of H(div; K) on Rectangles and Cubes

We now consider the extension of the previous construction to rectangular elements.
The general quadrilateral case is not straightforward; some considerations about
it are presented in Sect.2.2.4. In the present case, the use of a reference element
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is essential and we shall build our spaces on K = ] — 1, +1[". Contrarily to the
simplicial case, it will be simpler here to first introduce the approximations of
Raviart and Thomas. The extension to the three-dimensional case can be found
in [310].

2.4.1 Raviart-Thomas Elements on Rectangles and Cubes

We first consider a simple extension of the R7 approximation introduced above
for the simplicial case. Let us define

P P fi =2,
Ry = k41, X Ll k41 orn (2.4.1)
Pryikk X Pegs+1k X Pekik+1 forn = 3.
It is then easy to check that
2k + 1)(k + 2 f =2,
dim RT ) = (k+ 1k +2)  forn (2.4.2)
3(k + 1)%(k +2) forn =3.
These spaces have been defined in order to have
divgk € QOk. (2.4.3)
Moreover, we have
q '”k|ei € Pi(e;) on the edges forn = 2,
- (2.4.4)
q-n |5 € Qk(e;) on the faces forn = 3.
Defining as in the simplicial case
RTp) :=1{q | q € RTyj, divg =0}, (2.4.5)

we have the following result.
Lemma 2.4.1. Forn =2, ifq € RT[g](Ie), there exists ¥ € Qk+1(1€) such that
q = curl . The dimension ofRT[g](Ie) is (k + 1)(k + 3).

In order to choose an approximate set of degrees of freedom, we define

Pr—1x(K) X Py —1(K) forn=2,

llfk(K) =
Pr—1 ks (K) X Prj—14(K) X P p—1(K) forn=3.

(2.4.6)
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Proposition 2.4.1. For any q € RT (I% ), the relations

/ $iq-nds=0 V¢ € Qr(e;) forn =3
Voi € Pr(e;) forn =2, (2.4.7)
/Aﬁ-qu:o V¢ € ¥ (K)
K_ - —_—

imply ¢ = 0.

For n = 2 the proof is analogous to the proof of Proposition 2.3.4. Forn = 3
see [310]. Note that, for n = 2, the sides e; are one-dimensional, so that actually
Ok(ei) = Pr(e;) in (2.4.7).

The RT ) spaces just described are based on the idea that a finite element
approximation on the rectangle should use a space of type Q. This is however
by no means necessary in the present case.

2.4.2 Other Approximations of H(div; K) on Rectangles

In the following, we discuss rectangular finite element approximations of
H(div; K), which are based on Py polynomial spaces instead of Q. The original
idea of the construction was introduced in [120] and a suitable modification was
presented in [118]. Here we follow such approaches for n = 2. For the case when
n = 3, we use the definitions given in [18], which are more natural and provide
spaces which are independent of interchange of coordinate directions.

Let us define following [120] and [118], forn = 2, k > 1,

BDMyy :={q | ¢ = p (x,y) +rcurl(x**'y)
+ s curl(xy*th), P, € (Py)?). (2.4.8)
These spaces have been carefully defined in order to have
divg € Pr—1(K),
- (2.4.9)
q-nle € Pr(e).

It must be remarked that these last conditions are rather unusual for a rectangular
approximation. We have by a simple count,

dim BDMpy = (k + ) (k +2)+2=k>+3k+4 (n=2). (24.10)

For the choice of degrees of freedom, we have the following proposition.
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Proposition 2.4.2. For k > 1, the following conditions imply g = 0,

/ q-n pi ds, VY pi € Py(e;), 2.4.11)

€
/12931‘_2 dx=0.Vp, ,€(Pr2)". (2.4.12)

Proof. 1t is sufficient to prove that (2.4.11) implies ¢ € (Py)?, that is, all terms
introduced through curl vanish. Then, we have that if _6_1 € (Py)?, then q, n le, =0
implies ¢ = (1 — x*)p1x— and ¢ = (1 — ¥?) pax—2, so that (2.4.12) implies
q=0. Indeed, from (2.4.8) we have

q1 = pri(x,y) — rxkl 4 stk + 1)xyk
q» = pax(x,y) +rk + l)xky — syk+1. (2.4.13)

In order to have ¢; = 0 for x = +1 and g» = 0 for y = £1, we have that r and s
must vanish, so that q€ (Pk)z. O

Remark 2.4.1. Definition (2.4.8) has been designed in order to keep div ¢ in Pr—
by adding divergence-free functions to (Px)" while providing terms with a normal
component in Py (e;) on each side or face e;. O

We would now like to see what are the relations between BD M (K) and
RT(K). First, one obviously has BD M C R7T ). However, the space obtained
by restricting the normal component of BDM(; to belong to Pr_i(e;) on each
side has no direct relation to R7 x—;) and is a much smaller space (providing an
approximation of the same accuracy). In order to get a pattern of inclusions, we
define the space

Se41) = RT g + {curl x* T2y, curl yx**2 curl x* 2 curl y* 2}, (2.4.14)

This space obviously contains R7 ¢} but also contains BDM 4 1;.

We can also define the space BDJF M| 4] by restricting the normal component
of ¢ € BDMy 1) to belong to Py (e;) instead of Py 1(e;) on each side [119].

It can easily be checked that BDF My = RT . To make things clear, let us
consider a diagram in Fig. 2.16.

We can then summarize the previous facts in Fig.2.17 in which arrows indexed
by b represent a reduction in boundary degrees of freedom and arrows indexed by
i represent a reduction in internal degrees of freedom. Space R7T [ plays a special
role in this set of spaces. It is the simplest possible space and it is related to the
MAC space [240] that has been extensively used in fluid mechanical computations.
It is clear from Fig.2.17 that both R7 r) and BDF M +1) are a generalization of
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BD M) BDF M) RTiy Sti-+1]
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Fig. 2.16 Two dimensional approximations of H (div; K)
Sy —— R — Sy —— RTjy

! | ! !

BDM 41 LN BDF Mij+1) SN BDM i LA BDF M

Fig. 2.17 Relations between elements approximating H (div; K): operators b represent reduction
in boundary degrees of freedom and i reduction in internal degrees of freedom

this space with the same order of accuracy. One uses R7 ] whenever one wants
divc_1 € Qi and BDF My if divc_1 € Py is sufficient. It is thus worth considering
BDF Mk +1) in more details. It is easy to check that

BDF Mgy = (Pea1)*\{0, x* T\ 0} (2.4.15)

This shows that it is natural to move to BD M4 ) and get an extra order of accuracy
whenever one is ready to pay for extra boundary nodes.
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2.4.3 Other Approximations of H(div; K) on cubes

To make our presentation complete, we now consider the extension of the elements
of the previous section to the three-dimensional case. In [18] a general framework
for designing finite element spaces on tensor product elements has been introduced.
It turns out that this new construction is more natural than the original one. More
precisely, we are considering the space denoted Sy A? in this article: it turns out that,
while in two-dimensions this space coincides with BD M, in three-dimensions it
provides a finite element with the same degrees of freedom as the original BD M
space, but with no arbitrariness in the choice of the shape functions with respect to
the order of the variables.
Following [18], we thus define, forn = 3,k > 1,

BD My := (Pi(K))® + span(curl{yz(w(x,2) — w3(x, y)),
ZX(W3(X, y) - Wl(ys Z))v
Xxywi(y,2) —wa(x,2)}), (2416

where each w; belongs to Pj.. We have
dim BDMyy(K) = (k + 1)(k* + 5k + 12)/2. (2.4.17)

The following proposition is the natural extension of Proposition 2.4.2 and has
been proved in a more general setting in [18, Theorem 3.6].

Proposition 2.4.3. For k > 1, the following conditions imply q=0,
/ q-n pids, ¥ pi € Pr(ei),
€

/Iei P, dx =0, vp,_, € (P2)". (2.4.18)

We could also consider the three-dimensional BDF M| case by restricting the
degrees of the traces on the boundary. We leave this as an exercise for the reader.

2.4.4 Approximations of H(curl; K') on Cubes

Surprisingly enough, the construction of edge finite elements on cubes is less studied
than the corresponding spaces on tetrahedrons. Namely, only one finite element
family was basically known to provide a good approximation of problems involving
the space H (curl; §2) before the recent paper [18]. We shall describe the associated
space, also known as the Nédélec first kind space (see [310]). Given a cube K and
an integer k > 0, we introduce the polynomial space
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Nt i= Prsr1k+1(K) X Pryigk+1(K) X Pryigt14(K) (2.4.19)

and the following degrees of freedom

/ X Lpkds, Vpr € Pile), Ve (2.4.20)

e

/ ml.gk_l do, ng_l e RTp-u(f). Vf (2.4.21)
S

/ X4, dx Vg, _, € RTp—n(K). (2.4.22)
K

The number of degrees of freedom introduced in (2.4.20)-(2.4.22) is 12(k + 1),
12k(k + 1), and 3k*(k + 1), respectively, which sums up to

dim Ny = 3(k + 1)(k + 2)*. (2.4.23)

We refer the interested reader to [310] for the proof of unisolvence.

Remark 2.4.2. Sometimes people refer to second kind Nédélec finite elements on
cubes as well. Although such an element has been introduced in [311], it should be
noted that it does not seem to be a good choice for the approximation of problems
arising from electromagnetism. See, for instance, [163] and [86]. O

A second discretisation of H (curl; £2) on cubes comes from the general frame-
work of [18]. More precisely, the space Sy (A') can be defined as follows:

Se(AN)(K) = (Pi(K))? + span({yz(wa (x, 2) — w3 (x, y)),
x (w3 (x, y) —wi(y.2),
xywi(y,z) —wa(x,2))}
+ grads(x, y,2)), (2.4.24)

where each w; belongs to Py and s is a polynomial on K with superlinear degree
at most k + 1. The superlinear degree of a polynomial was defined in [18] as the
ordinary degree ignoring variables which appear linearly. We have

dim Sy (AN)(K) = (k + 1)(k? + 5k + 18)/2 (2.4.25)

and a set of degrees of freedom is given by
/l - tpr ds, Vpr € Pi(e), Ve (2.4.26)
/f”fl'fk—z do, Vo, , € Peo(f), VS (2.4.27)

/K x4, dx. ¥q,_, € Pr—a(K). (2.4.28)



2.5 Interpolation Operator and Error Estimates 103

2.5 Interpolation Operator and Error Estimates
2.5.1 Approximations of H(div; K)

Let now ¢ be some function of H(div; K). Using for each of the spaces the degrees
of freedom previously described, it is possible to define an interpolation operator
Pk 4, provided q is slightly smoother than merely belonging to H(div; K). Indeed
the degrees of freedom used always involve the moments of ¢ on the faces (or sides)

of an element. However, functions py € Ry (3dK) do not belong to H 2 (0K) and it
is not possible in general to compute expressions like fBK q-n pi dssince g -nis

only defined in H -3 (0K).
However, it is easy to check that if ¢ belongs to the space

W(K) :={g € (L*(K))" | div ¢ € L* € (2)} (2.5.1)

(for a fixed s > 2), then such a construction is possible.

Remark 2.5.1. Readers less familiar with functional analysis will normally wonder
why, given a triangle 7 and a function y belonging to H~'/2(dT), even if we are
allowed to take
| x
ar

/ x:={x,p) withep =1,
aT

by interpreting it as a duality pairing

we cannot take the integral over an edge £ of dT. The typical answer, at this point,
is: “Because the function identically equal to 1 on the whole boundary 7 belongs
to H'/?(dT), while the function that is equal to 1 on the edge £ and 0 on the rest
of T does not belong to H'/>(3T)”. The above answer is perfectly correct but,
in general, leaves the person who asked the question totally unhappy. Let us see,
therefore, some example which might help in shedding some more light.

Consider, to start with, the open circle

2= {(x, )| x> +y? < (1/e)*},
(where e = 2,718... as usual), and the function
u(x, y) == In(| In(v/x2 + y?)|). (2.5.2)

An easy computation (taking the derivatives of # and integrating their square) would
show to everybody that u € H|(£2). As a consequence, its restriction to the upper
quarter

0 :={(x.y) x>0, y>0 x*+y><(1/e)?},
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will belong to H'(Q) and its trace on dQ will belong to H'/2(dQ). So far so good.
Now we define y as the (anticlockwise) tangential derivative on dQ of the trace
of u. This will be a distribution over dQ, and it will belong to our puzzling space
H~'2(3Q). Now we have (finally!) in our hands an element of H~'/2(3Q) that is
irregular enough to show some of the pathologies of the space. Let us see it.

To start with, the action of the distribution y on a smooth function ¢ is easily
described by

(x.0) = —/8 u— (2.5.3)

where ¢ is the anticlockwise tangent direction on dQ. Using the expression of u in
(2.5.2) and taking the derivative, we easily see that in every open interval Ja, b[ C
10, 1 /e[ of the x axis we have

1
x Inx’

x(x) =—

while in every open interval |a, b[ C ]0, 1/e[ of the y axis we have

1
x(y) =
yIny
and in every open subset of the curved part of dQ we have y = 0 (being the

tangential derivative of the zero function).
The first (and now rather easy) fact that we can observe is that both

1/e
/ x(x)dx
0

1/e
/ x(y)dy
0

are diverging, so that neither of them can be properly defined. Hence, so to speak,
forget about taking the integral of an element of H~'/2(0Q) over a piece of 0.

One might still wonder, however, why we can take, instead, the integral on the
whole boundary of the product of y times a smooth enough function ¢ (including the
function identically equal to 1). To do so, we parametrise the part of the boundary
of Q where u does not vanish by a parameter 0 € | — 1/e, 1 /e[ such that

and

x(0) =0,y(0) = o] ifo <0,
x(0) =0,y(0c) =0 ifo >0.
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Then, taking into account that u = 0 on the remaining part of 45, (2.5.3) can be
written as

1/e
(¥, ) = /1/ In(| In|o]]) —dcr 2.54)

Moreover, integrating by parts, we easily see that in every open interval ]a, b| of the
x axis included in | — 1/e, 1/e[ and not containing 0 we have

1
olnlo|’

x(x) =—

Hence (as we can see), it is still forbidden to compute, for instance, the integral

1/e 1/e 1
/ x(0)do = / do = +o0.
0 o olnjo]

Let us see, however, what happens if we consider the integral

1/e 9
/ In(| In|o]) % do. (2.5.5)

—1/e
As a first step, we introduce the even and odd parts of ¢

¢(0) + ¢(—0) _ 90) —¢(=0)

Peven = ) Podd = )

It is obvious that ¢ = @yen + @oga, S0 that now (2.5.5) becomes

In(|In o)

/l/e 3(§oeven + (podd) dG —
—1/e do

1/e a(poeven /e (podd
/ In(|In|o]|) % do+/ In(|1In|o]])

—1/e 1/e

Clearly the derivative of ¢,,, is an odd function, and In(| In |0 ||) is even. Hence

1/e 9
/ In(| In |o|[) ‘g do =0,
—1/e (o2

and we only have to deal with

1/e 1/e
/ In(|1n |o|]) ‘/’”‘“ :2/0 N ‘”""“’ (2.5.6)

—1/e
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Now the discussion becomes delicate, as the regularity of ¢ plays a crucial role.
Roughly speaking, if ¢ is, say, in H'( | — 1/e,1/e[ ), then ¢,4;(0) = 0 and
moreover:

|@oda(0)] < Clo|'/? foroc -0,  with C = |goaalmr(poryer). (2:5.7)

This allows the integration by parts in (2.5.6), yielding

1/e 1
—/ ———— ¢oud(0) do,
o oln|o|

that can be easily seen to be convergent due to (2.5.7). On the other hand, if ¢ is
simply in H'/2('] —1/e, 1/e[ ), then @,qq will “vanish at 0” only in a very weak
sense, namely

1/e
/ cr_l(go,,dd(cr))2 do < +o0.
0

That however will be enough to make the integral in (2.5.6) convergent. O

For the convenience of the reader we consider a few spaces introduced in this
section and, for each of them, we shall define the corresponding operator pg that
we will always assume to be defined in W(K) (see (2.5.1)).

Example 2.5.1 (Interpolation operator for P}”*). pg: W(K) — P} is defined by

/ (¢ — pxq) -1 prds =0, Vpr € Re(3K),

o (2.5.8)
/ (g —pxq) - wy_p dx =0, Vwi € Ni—2(K), (k> 2).

K

O

Example 2.5.2 (Interpolation operator for BDM(K), case n = 2, K = unit
square). We recall that BDMk)(K) = (P (k))* @ curl(x**1y) @ curl(xy**1),
(k= 1). px : W(K) = BDMyy(K) is defined by

/ (g —pkq)-n prdo =0, Vpi e R(9K),
" (2.5.9)

[ @=pxay-p,_dr=0. Vp, € (BiaK) (k22

|

Example 2.5.3 (Interpolation operator for RT i (K) :ﬂZﬁxk (K)). px:W(K)—
RT(K) is defined by -
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/ (g —pkq) -n prdo =0, Vpi € Re(IK),
" (2.5.10)

fK@ —pkg)-p,_ dx=0, Yp_ €P;_(K).

O

Note that for rectangular elements we used the unit square for K (or the unit cube
for n = 3). For a general K, the spaces and the interpolation operators pgx have
to be modified by means of the contravariant mapping G of (2.1.69). In particular,
pxq = G(pgq) where § = G~'(¢) and K is the unit square or the unit cube. As we
already noted in Sect. 2.2.4, everything works in the case of affine elements while
some complications may arise for general elements.

In the following, whenever it may be convenient, we will denote by the symbol
M (K) anyone of the above approximations of H(div; K). Since, as we shall see,
the accuracy of these approximations in the L2-norm is particularly relevant, we
shall denote by M, (K) anyone of the above spaces such that P, (K) € M, (K)
but P, (K) ¢ M, (K). Hence, in the following, M, (K) might be, for exam-
ple, one the following spaces: BDM(K), BDM(K), RT«(K), RT i)(K),
BDF M 11(K), BDF M 11(K).

Using Lemmas 2.1.7 and 2.1.8 and usual techniques [146] we have immediately
the following result.

Proposition 2.5.1. Let K be an affine element and pg be the interpolation operator
W(K) — M, (K). There exists a constant ¢ depending only on k and on the shape
of K, such that, for | <m < k + 1, fors = 0 or I and for any q in (H™(K))",
we have a

g — pxqlls.x < chg™ |qlmk- (2.5.11)
O

We now want to analyse the behaviour of the error in H(div; K). We need to
characterize the space of the divergences of the vectors in M, (K). Let

Di(K) := div(M, (K)). (2.5.12)

For affine elements, we have, for example,

div(BDMi (K)) = div(BDMpy(K)) = P (K). (2.5.13)
div(BDF My 11(K)) = div(BDF My 1y(K)) = Pi(K). (2.5.14)
div(RT1(K)) = Py, (2.5.15)
div(RT 1y (K)) = F(Ox(K)). (2.5.16)

where the definition of F is given immediately after (2.1.59) (note that Qy is
not invariant under affine transformations). The following result is of paramount
importance in the study of these approximations.
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Proposition 2.5.2. Let K be an affine element and pk the interpolation opera-
tor: W(K) — M, (K). Let moreover mg be the L>-projection on Dy(K) =
div(M (K)). Then we have, for all ¢ € W(K),

div(pgq) = 7k div g. (2.5.17)

Proof. Since divk ¢ € D (K) by definition, we only have to prove that

/K v diV(ng) dx = /K v divc_1 dx, Yv € Dy (K). (2.5.18)
Indeed,
/K v(div pgg — divg) dx = /K(c_1— pxq) - grad v dx
— /K(c_1— ,ng) -n v dx, (2.5.19)
and it is easy to check that, for all the possible choices of pg, the right-hand side of

(2.5.19) vanishes. O

Remark 2.5.2. The statement of Proposition 2.5.2 can also be expressed as

WK) —2 . 12(K)
pkl nKl (2.5.20)
div
M (K) —— Di(K)
and is often called the “commuting diagram property” (see [177, 178]). We shall
comment more on this property in Sect. 2.5.6. O

From Proposition 2.5.2, using Lemmas 2.1.7 and 2.1.8 and usual techniques, we
easily have the following result.

Proposition 2.5.3. Let K be an affine element and px the interpolation operator:
W(K) — M, (K). There exists a constant ¢ depending only on k and on the shape
of K such that, for1 <m < ¢(M,), we have

[ div(g — pxg@)llo.x < ch [divg|mk, (2.5.21)

where ¢(M ) = k for BDM(K) or BDMyq and $(M ;) = k + 1 for the other

choices.

Remark 2.5.3. Proposition 2.5.3 shows that choosing R7 ), BDF M1 or
BDF Mk 41 leads to the same accuracy in H(div; K) as we have in (L*(K))".
This is not the case for BDM; or BDM(|, where the accuracy in H(div; K)
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is of one order less than the accuracy in (L*(K))". However, as we shall see in
Chap. 7, the commuting diagram property is so strong that this drawback can be
circumvented. O

Remark 2.5.4. For non-affine elements, the situation is more complicated. In
particular, we have now to define Dy (K) and F (D (16 )), where K is the reference
element and F is defined in (2.1.59). On the other hand, div(M,(K)) will be
F(JNdivM, (12 )). Hence it is clear that Proposition 2.5.2 will not hold any more.
Moreover, Proposition 2.5.3 does not hold (at least for R7 xj-elements; see again
[366]). More comments on these issues will be given in Sect. 2.5.5. O

2.5.2 Approximation Spaces for H(div; £2)

It is clear that the spaces defined in the previous sections can be used to define
internal approximations of H(div; £2). The choice of degrees of freedom has
obviously been made in order to ensure continuity of g - n at interfaces of elements.
We can then define, for each choice of M, (K), the space

M (2,7y) :=1{q | q € H(div; £2), q|x € M, (K)}. (2.5.22)
In a similar manner we have, in agreement with the notation (2.2.23),
LYD, Ty) = {v | ve L), vlg € Di(K)}. (2.5.23)
It is clear that for affine elements
div M, (2,T;) C L°(Dy, Tp). (2.5.24)
Moreover, we can now define a global interpolation operator from
W = H(div; 2) N L°(£2)" (2.5.25)
(for a fixed s > 2) into M, (£2;7;,) by simply setting
Ihiqlx = pk(qlk)- (2.5.26)

By defining P, := projection on L£°(Dy,7;) we have therefore the following
commuting diagram:

w0 )
nhl P,,l (2.5.27)

M (2.T) —= £2(Di. Tp)
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This will imply in particular that
div M, (2:T;) = LDy, Tp). (2.5.28)

Finally we have from Propositions 2.5.1 and 2.5.3 the following estimates for the
interpolation operator I7j,.

Proposition 2.5.4. Let 7;, be a regular family of decompositions of §2 and let ITj,
be defined as in (2.5.26). Then there exists a constant ¢ independent of h such that

lg — Migllog < k™ Iglno (2.5.29)
for1 <m <k 4+ 1. Moreover,
| divig — Mag)lloe < ch® divglse, (2:530)

where s < k for BDMj or BDM and s < k + 1 for the other choices of M.

|

2.5.3 Approximations of H(curl; $2)

Now, we show how to use the definitions given in the previous subsection in order to
construct conforming approximations of H (curl; §2). First of all, we need to define
an interpolation operator. We start with the description of the first case we discussed,
namely the tetrahedral space N.

We follow the theory developed in [8]; for the error estimate we refer to [248]
and to the improved modification proposed in [85].

The main question for the definition of the interpolant concerns the regularity
assumptions on the function to be interpolated. We have already seen that H'(£2)
regularity does not allow for the existence of a nodal interpolant (since point-wise
values are not defined in H'(£2)) and that H (div; £2) regularity does not guarantee
the existence of a face interpolant (essentially because it is not possible to evaluate
the integral of ¢ - n on a single face of K if ¢ - n belongs only to H~'/2(dK)). The
case of the edge interpolant is more tricky than the previous ones since, according to
the theory developed in the previous subsection, we have two families of degrees of
freedom associated with the boundary of K: degrees of freedom defined in (2.3.39)
(corresponding to the edges of K) and the ones defined in (2.3.40) (corresponding
to the faces of K). In [8] it has been proved that if y belongs to the following space

X(K) == {x | x € (L*(K))*,curl y € (L*(K))’, (x Am)jax € (L°(K))*}
(2.5.31)
(for a fixed s > 2), then the moments defined in Proposition 2.3.5 make sense.

We are then in the position of defining the interpolation operator for the edge
element spaces introduced in the previous subsection.
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Case 2.5.1 (Case n = 2). As it has been explained at the beginning of Sect.2.5.3
(see also Remark 2.1.5), two dimensional approximations of H(curl; £2) can be
obtained from corresponding approximations of H (div; £2) through a rotation by a
right angle.

Case 2.5.2 (Case n = 3, tetrahedral elements).
() Ni(K) == (P(K))* @ [x A (Pr(K))).
ok : X(K) = Ni(K) is defined by
/(1— Ok)X) tprds =0 Vpr € Pr(e), Ve
e

/f (rix—mok0) ¢, do=0 Vo _ € (Poa(f)2 VS

/K(l —ok))-p,_,dx=0 Vp,_, € (Pioa(K)) .
(2.5.32)
(i) NCk(K) := (Px(K))>.
ok : X(K) = NCi(K) is defined by

/(l— Ok X)-Lpkds =0 Vpr € Pi(e), Ve
e

/f(mg—moxp ¢, do=0 V¢  e€RT1(f). VS (2533)

/K(l_UKZ)'ﬂk_zdx:O ng_2eRTk_2(K).

Case 2.5.3 (Case n = 3, cubic elements).

1) Nw(K) == Prs+1k+1(K) X Petrkk+1(K) X Prg1 k414 (K).
ok : X(K) — Ny (K) is defined by

/(l_UKl) - Lpi ds, Vpi € Pr(e), Ye

/f(ml—mcmp -Qk_l do, ng_l € RTp-y(f). VSf (2.5.34)

/K(l—CTKl) 'C_Ik—l dx, Vc_lk—l S RT[k_l](K).

We now conclude this section with error estimates, in analogy to what has been
done for H(div; £2) at the end of Sect.2.5. Let us denote by N(K) any of the
elements presented so far. More precisely, let N (K) denote an approximation of
order k of H(curl; 2) (i.e., Ni(K), NCr(K), or Nxj(K)).
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An important difference between the error estimates for edge elements with
respect to the ones presented in Sect.2.5 for face elements is that, in general,
stronger regularity assumptions are required. The following result has been proved
in [85].

Proposition 2.5.5. Let K be an affine element and o be the interpolation operator
X(K) — Ni(K). Then there exists a constant ¢ depending only on k and on the
shape of K, such that, for 1 <m <k + 1, for any x € (H™(K))3, we have

X —okxllox < chi|xlmx-. (2.5.35)
Moreover, for 1/2 < s < 1, we have (p > 2)
X — ok xllo.x < chi(Ixls.x + Il cutl xllLr(x))- (2.5.36)

|

Let us now characterize the space
Er(K) := curl(Nk (K)). (2.5.37)

Taking into account (2.1.92), we have

curl(\) € Py (K), (2.5.38)
curl(NC) C Py (K), (2.5.39)
curl M) € G(RT y(K)). (2.5.40)

with G defined in (2.1.69). On the other hand, arguing as in Lemma I11.5.11 of [223]
it is possible to show that

curl(NV) = Py (K) N curl(H (curl; K)), (2.5.41)
curl VC) = Pr—1(K) N curl(H (cutl; K)), (2.5.42)
curl(Vi) = G(RT i (K) N curl(H (curl; K)). (2.5.43)

Arguing as in Propositions 2.5.2 and 2.5.3, we can get an estimate for the interpola-
tion error in the H (curl; £2) norm. Indeed, the following commuting diagram holds
true

X(K) —2, w(K)
| o | (2.5.44)

Ne(K) 25 Er(K)

from which the next result can be deduced.
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Proposition 2.5.6. Let K be an affine element and ok the interpolation operator:
X(K) — Ni(K). Then there exists a constant ¢ depending only on k and on the
shape of K such that

| curl(y — ok Y llo.x < ch|curl x|mx (2.5.45)

for1 <m < ¢y (k), where gy (k) = k + 1 for N or Ny and ¢y (k) = k for NC.
O

2.5.4 Approximation Spaces for H(curl; $2)

Let £2 be a domain in R? (the two-dimensional case can be dealt with according to
Remark 2.1.5).

The spaces introduced in the previous sections can be used to define internal
approximations of H (curl; £2). The choice of degrees of freedom has been made in
such a way that the continuity of the trace y, is enforced across the inter-element
boundaries, which is the natural condition for being conforming in H (curl; £2),
according to Proposition 2.1.3.

In analogy to what has been done in Sect.2.5.2, we can define, for each choice
of Ny (K), the spaces

Ni(82,7y) :=={x | x € H(curl; £2), x|k € Ne(K)} (2.5.46)
and
LUET) = 1{g | g € (L’ (). qlk € E(K)}. (2.5.47)
Given ¢ > 0, let us consider the space
X := H(curl; 2) N (H'?T4(2))%, (2.5.48)
so that the global interpolation operator
Znxlk = 0(xlk) (2.5.49)

can be defined (see (2.5.31)).
Given the space W, := curl(X), then we have the following commuting diagram

curl
X —_— Wo

zhl n,,l (2.5.50)

Ne(@.T)) —2 L(Ey. Th)

where [T}, is the face interpolant defined in (2.5.26).
The final error estimates are summarized in the following result.
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Proposition 2.5.7. Let 7;, be a regular family of decompositions of §2 and let X,
be defined as in (2.5.49). Then there exists a constant ¢ independent of h such that,
forl <m<k+1,

Ix = Znxllo.e < ch™|xlme- (2.5.51)

Moreover, for 1/2 < s < land p > 2,

2= Sixllos = eh* (Il + leur yllre).- (2.5.52)

Finally,
[ curl(x — i )llo.c < ch’| curl x|l;.c, (2.5.53)
where t <k + 1 for Ni or Njgyand t < k for NC. O

2.5.5 Quadrilateral and Hexahedral Approximation
of Vector-Valued Functions in H(div; 2)
and H(curl; 2)

The results of Sect.2.2.4 extend to vector valued functions. We refer the interested
reader to [21], where necessary and sufficient conditions have been presented for
optimal order approximations of functions in H(div; £2) in two dimensions. The
general situation is more complicated and only partial results exists so far. The most
general result can be found in [19] where sufficient conditions are investigated and
sharper results are shown in [191] for particular three-dimensional situations.

The theory of [21] applies to the approximation by means of vector-valued
discrete functions defined on a reference square element K and mapped to the actual
quadrilateral element K via the Piola transformation (2.1.69).

Given a smooth function ¢ : 2 — R?, we say that a finite element space family

{X}} is optimally convergent_in L* () if
inf [lg — palloe = OG™). (2.5.54)

Ph Xp — -
where k refers to the polynomial degree of the reference finite element space.

Similarly, the finite element space family {X,} is optimally convergent in the
H (div; £2) semi-norm if

inf [l divi(g — p)llo.e = O, (25.55)
PLEX) L =
where divy, is the divergence operator evaluated element by element.
Let 7/57'[;{](1%) be the subspace of co-dimension one of R7(K), where the
two highest order fields (£**!$%,0) and (0, £¥$**!) are replaced by the single
field (£F 19K, —x* $%+1). Then, for shape-regular families of quadrilateral meshes,
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condition (2.5.54) is valid if and only if the reference space contains 7/3\’?[;(] (1%)

Moreover, if the reference space contains 7/571[;(](12 ), then the following estimate
holds true:

inf |lg — palloe < ch**'glisie. (2.5.56)

Ph€Xp

Finally, let Q~k(I€' ) be the subspace of co-dimension one of Qk(Ie ) obtained by
eliminating the higher order term £* $¥. Then, condition (2.5.55) holds true if and
only if the divergence of the reference space contains Qk_H(K ). In this case the
following estimate holds true:

inf [|div(g — pn)llo.e < ch* T divglisie. (2.5.57)
PrEX) L = ks

Remark 2.5.5. The reported results have dramatic consequences for the finite
elements presented in Sect. 2.4. In particular, it turns out that none of the presented
finite element families achieve optimal convergence in H(div; £2) on general
quadrilateral meshes. Actually, R7 ) is optimal in L?(£2) (since, of course,
RT[k](I% ) contains 7/57'[;{](12 )), but not in H(div; £2) (in particular, there is no
convergence of the divergence for k = 0); while BDMy) and BDF My, are
suboptimal both in L2(£2) and H (div; £2). O

A possible cure to the pathologies outlined in Remark 2.5.5 has been presented
in [21] where the family of spaces ABF is introduced. The basic idea is to
add H(div)-conforming bubbles to the R7 spaces so that optimal convergence
properties can be achieved.

The results of this section, as it has been already observed, apply to finite element
spaces which are defined on the reference element and mapped to the actual element
by means of standard transformations. The suboptimal approximation orders have
been observed in practical computations (see [20-22,91]).

However, other finite element definitions are possible for which the (negative)
results of this section might not apply. An example of such definitions is the non-
conforming quadrilateral element presented in [330] which is constructed locally
on the physical element or the reduced integration technique (interpreted as a local
projection technique) presented in [94], where optimal convergence in H (div; §2)
for the R7 ) family is recovered.

2.5.6 Discrete Exact Sequences

We have introduced in Sect.2.1.4 the exact sequence (2.1.104). We now show
how this translates to some of the finite element approximations introduced above.
Let us make a particular choice of finite elements approximating the functional
spaces involved with (2.1.104). We consider a simplicial decomposition of a
simply connected domain £2 in R? and use the following finite elements: we take
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L}{ 4 (i.e., standard continuous piecewise polynomials of degree k + 1) for the
approximation of H'(£2), first kind Nédélec elements N for the approximation of
H (curl; £2), Raviart-Thomas elements R7  for the approximation of H (div; £2),
and discontinuous elements £ for the approximation of L*(£2). Moreover, we
consider the three sets of interpolation operators onto these spaces ry, X, I},
respectively, and the L? projection Pj,. With these particular choices, de Rham
complex reads as follows:

C®(Q) —25 (C®(2)) —2 (C®(Q) -2 c>(®)

rhl 2,,l n,ll phl (2.5.58)

grad curl div
L, — M —— RTy — L

Diagram (2.5.58) has to be understood in the sense that the two lines are exact and
the entire diagram commutes. Thus, for instance, we have that grad r,v = X, grad v
or [T, curl y = curl X}, y. Some of these properties have been already recalled in this
chapter (see, in particul_ar, (2.5.27) and (2.5.50)) when analysing the finite element
spaces. We refer the interested reader to [18,33] where the general results are stated
and where it has been shown that several other finite element choices are possible
for the diagram to commute. We could indeed consider, for example, instead of
(2.5.58),

div

c2@) 5 (c=@) s (@) —2 c=(@)

”’l zhl nhl P;,l (2.5.59)

1 grad curl div 0
L, — NC41 —— BDMiy —— LD

Remark 2.5.6. The information contained in Sect.2.1.4 and in this section are by
far not exhaustive of the connections between exterior calculus and finite element
analysis. This active research area, not only proves useful for the analysis and the
understanding of existing finite elements, but is also of fundamental importance
for the design of new schemes. The reader who needs an introduction into this
fascinating field is referred to the seminal papers [33, 34]. A more recent and
succinct overview of finite element spaces constructed in the language of differential
forms can be found in [12].

2.6 Explicit Basis Functions for H(div; K) and H(curl; K)
on Triangles and Tetrahedra

Although it is obviously possible to make explicit the previously defined spaces
on a reference element and to transfer them on an arbitrary element by the Piola
transformation (2.1.69) or (2.1.82), it is worth mentioning that there exist, on
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simplicial elements, general formulas using barycentric coordinates which are
therefore totally general. We shall first introduce some notation.

* In the two-dimensional case, x;, x o Xp are the three vertices of a triangle and
Ai, Aj, A the associated barycentric coordinates.

* In the three-dimensional case, x;, x o Xp, X are the four vertices of a tetrahedron
and A;, A, Ak, A; the associated barycentric coordinates.

* We shall denote by 7; = x; — x; the edge connecting x; and x; and similarly
for other pairs of indices. We shall write /;; the length of this vector.

* In the three-dimensional case, we denote fj; the face of the tetrahedron defined
by the vertices x;, x i» Xk and similarly for other indices.

* The height of the triangle from x; to the opposite edge 7,; will be denoted by /.

* The height of the tetrahedron from x; to the opposite face fj will be denoted by
hy.

¢ Inatriangle, the outward normal to an edge ¢;; is denoted by ;. In a tetrahedron
the outward normal to a face fju is denoted by n;.

The gradient of the barycentric coordinates is related to the normals. In the two-
dimensional case we have

1
grad Ay = ——n

I i (2.6.1)
and the similar three-dimensional formula is
1
grad A} = —h—lgijk. (2.6.2)

When building basis functions, we shall distinguish between those associated
with edge or face degrees of freedom and ‘bubble’ basis functions associated to
degrees of freedom internal to K. We shall make explicit the lower order cases.

2.6.1 Basis Functions for H(div; K): The Two-Dimensional
Case

A basis for BDM,(K) (6 degrees of freedom). Let us define for an edge
L ;» X, being the opposite vertex,

1
Gijj =Lk (2.6.3)
hi

and

1
bjij = e Lijhj- (2.6.4)
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Let njj be the normal to ;. We have

Giij-nij = A (2.6.5)
Gji-nig=2Aj. (2.6.6)

Using all possible indices, we get six such functions, two for each edge. From (2.6.5)
and (2.6.6), it is clear that we have thus obtained a basis for BDM;(K). O

A basis for R7T (K) (3 degrees of freedom). Summing (2.6.5) and (2.6.6), we
obtain

Giij-nij + Pjii-nig =1 2.67)
Defining
b= dijj+ bji (26.8)

we therefore have a basis function for R7 o(K), associated with the edge ¢, - It s
easy to see that we have

1
S E(ﬁ—x_k)- (2.6.9)

which is a more standard way of writing this basis. O

A basis for BDM,(K) (12 degrees of freedom). To make this construction, we
need to increase the order of polynomials on the edges. We can indeed define on
each edge,

Ly =ty +1y)/2 (2.6.10)
and
1
Pm.jj = h—zm,,-ikf/\,. (2.6.11)
L

To get BDM;(K), we add these three functions to those previously obtained in
(2.6.3) and (2.6.4). This yields 3 degrees of freedom per edge.

To complete the construction, we also need to consider ‘bubble’ functions in the
sense of H(div; K). This means that their normal component must vanish on 0K.
They can be built in an easy way from the quadratic functions

b,:,' = Lij/\ikj- (2.6.12)

We have three such expressions, one associated with each edge. With the previously
defined 9, we obtain a basis for BDF M, (K). O

A basis for BDF M,;(K) (9 degrees of freedom) and R7 ;(K) (8 degrees of
freedom). A basis for BDF M, (K) is readily obtained by suppressing the function
defined in (2.6.10) from the previous construction. To get a basis for R7(K)
we have to suppress a combination of the bubbles. This is allowed because there
exists such a combination which is divergence-free and which, in a sense, does not
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contribute. However, this construction shows that, in a way, the slightly richer space
BDF M, (K) is respecting better the symmetries of the triangle. O

A basis for BDF M3(K) (20 degrees of freedom). We follow the same lines. We
can build 4 degrees of freedom on each edge, using for example (2.6.3) and (2.6.4),
and

1 (1 2

IS e \3ta T3k ) (2.6.13)
1 (2 1

b2y = e glki + glkj . (2.6.14)

Bubbles can be generated from (2.6.12) using the following expression
bay i = LA AT AL, (i + o 4 ) = 3. (2.6.15)

We remark that b1+ b2104 =b; so that we still have the bubbles of
BDM;(K). Moreover, we note that the three functions of the form by are
not linearly independent as we have

L+ttt = 0. (2.6.16)

We should then select two linear combinations of these three functions to get a basis.
0

A basis for BDF M, (K) (17 degrees of freedom) and R7T »(K) (15 degrees of
freedom). To obtain BDF M, (K), the easiest way is to consider on the edges the
basis functions for BDM,(K) and the eight bubbles of BDM3(K). For R7,(K),
we must again eliminate the divergence-free combination of bubbles. O

2.6.2 Basis Functions for H(div; K): The Three-Dimensional
Case

We can now consider the three-dimensional case.

A basis for BDM,(K) (12 degrees of freedom) and R7 ¢(K) (4 degrees of
freedom). On the face f; we have three basis functions

1

Giijk = h—llli Ai (2.6.17)
1

Bjijk = h—lgl,» Aj (2.6.18)

1
Or.ijk = m L Ak (2.6.19)
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Considering all four faces, we have obtained a basis for BD M (K). It is interesting
to note that it employs the same edge-based basis functions as in the two-
dimensional case. The sum

1
ik = Piijk + Pjijk + Prijk = h—l(l—&) (2.6.20)

is a basis function for R7 (K). O

A basis for BDF M (K) (18 degrees of freedom) and R7T;(K) (4 degrees of
freedom). As in the two-dimensional case, we can associate a ‘bubble’, function
to each edge, using exactly the same formula (2.6.12) as in the two-dimensional
case. We now have six such bubbles which we can use to build BDF M, (K) by
adding them to the basis of BDM;(K). There exist three linear combinations of
these bubbles which are divergence free and which can be eliminated to obtain
RT(K). O

The reader should have now understood the mechanism and be able to move to
higher degrees.

2.6.3 Basis Functions for H(curl; K): The Two-Dimensional
Case

As we have noted previously, in the two-dimensional case, the space H (curl; K) is
essentially the same as H(div; K). A basis for the discrete spaces can readily be
obtained by a rotation of the vectors. However, we can write the basic construction
in a slightly different way that will be more suitable for the extension to the three-
dimensional case. Instead of (2.6.3) and (2.6.4), let us define for edge L

Vi =l Ai gradA; (2.6.21)
and

V=l A; gradA;. (2.6.22)
Given that grad A; is a vector orthogonal to 7;; of length 1/ /; it is easy to check that
those definitions correspond exactly to what we obtain when replacing in (2.6.3)

and (2.6.4) the vectors 7, and £;; by their orthogonal. It is also easy to see that the
tangential components of ¥; ; and ¥ ;; along £,; are respectively A;and —A;.

2.6.4 Basis Functions for H(curl; K'): The Three-Dimensional
Case

A basis for N'C1(K) (12 degrees of freedom) and Ny (K) (6 degrees of freedom).
In order to define the lowest degree spaces, we define 12 basis functions associated
to edges. The interesting fact is that we can still use on any edge 7 ; the expressions
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(2.6.21) and (2.6.22). On the other edges, the vectors obtained in this way are either
zero because, for example, A; is zero or orthogonal to the edge. It is thus clear that
we have obtained a basis for N'C;(K). Summing the two expressions (up to the
orientation), we get the basis for Np(K)

W,:,' = lij (A] g@d/\, — Ai g@dlj) (2623)

0
We can move to higher degree elements by using similar constructions.

H(curl; K)-Bubbles. We shall be interested in the H (cutl; K)-bubbles which
correspond to the internal degrees of freedom of N (K) and NCy(K). We recall
that from (2.3.46) and (2.3.50) these degrees of freedom are associated respectively
to (Pr—)? and to RT —»(K) = (Px—2)*> + x Py—>. We thus suppose that k > 2
and we define on a tetrahedron, for the four faces defined by the choice of three
barycentric coordinates A;, A ;, A,

@ijk = Pk—Z(fijk) Aikjkk Ezjk (2624)

For k = 2 this defines four functions which are associated with the four faces and
which are the bubbles of NCy+1(K). To obtain the bubbles of A (K) we must
suppress the gradient of the standard bubble A;A,A3A4 which is

AArAsz grad Ay + AjAsAg grad A3 4+ A1 A3Ag grad Ay + ApAsAggrad A (2.6.25)

which is a combination of the four bubbles of (2.6.24) by (2.6.2).
For k > 3 we must add to the functions defined by (2.6.24) standard bubbles of
the form

P y(K)hidahshs = Py_y(K)By(K), (2.6.26)

which vanish totally on the boundary of K. This defines a basis for the bubbles
of NCi(K) and to obtain N} (K) we need to remove the gradients of the standard
bubbles. For k = 3, for example, we must remove the gradients of the four bubbles
P (K)By(K).

2.7 Concluding Remarks

This chapter is evidently not a complete presentation of finite element approxima-
tion methods. It cannot be, unless it becomes a book by itself. Our aim was therefore
to present examples of the most classical cases and to consider a construction for the
less standard case H (div; §2) and H (curl; §2). On the other hand, approximations of
elasticity problems will also require special spaces. They will be described in due
time. We however believe that the present chapter will then provide a sound basis
for these developments.



Chapter 3
Algebraic Aspects of Saddle Point Problems

The examples of Chap. 1 clearly showed that several formulations typically lead to
linear systems of the general form

(5 06

where A and B are linear differential operators from some functional space to
another (which often is its dual space). The general abstract theory for systems of the
type (3.0.1) in Hilbert spaces will be given in Chap. 4. As we shall see, it involves
from time to time non-trivial results in functional analysis that can be difficult to
understand for readers with a weaker mathematical background.

The purpose of this chapter is to present first the basic results of the general
abstract theory in the much simpler context of finite dimensional spaces, where we
can avoid all the subtleties of functional analysis. We shall therefore study systems
of the form (3.0.1) where A and B are respectively an n X n matrix and an m x n
matrix, while x and f are n x 1 vectors and y and g are m x 1 vectors.

It is clear that the present finite dimensional case will usually be reached after the
discretisation of more general systems in abstract Hilbert spaces, so that we cannot
be afraid of wasting our time in analysing it in detail. Moreover, many results that
will be proved in the next chapter can be seen, formally, as simple extensions of the
present algebraic version (although the proofs in the infinite dimensional case are
often more tricky).

Hence, in a sense, the present chapter is dedicated to the readers that have a
weaker background in mathematics, and in particular in functional analysis. We
hope that, for them, a good grasp of the finite dimensional cases will be sufficient to
understand the results (if not the proofs) that will be discussed in the next chapter.

In the study of linear systems of the type (3.0.1), our first need will be to express
in proper form the conditions for their solvability in terms of the properties of the
matrices A and B. By solvability we mean that, for every right-hand side f and g,
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the system (3.0.1) has a unique solution. It is well known that this property holds if
and only if the (n + m) x (n + m) matrix

(%)
M = (3.0.2)
B 0

is non-singular, i.e. if and only if its determinant is different from zero. We shall
therefore give necessary and sufficient conditions on the sub-matrices A and B for
producing a non-singular M .

In order to have a good numerical method, however, solvability is not enough.
An additional property that we also require is stability. Let us see in more detail what
we mean by that. For a solvable finite-dimensional linear system, we always have
continuous dependence of the solution upon the data. This means that there exists a
constant ¢ such that for every set of vectors x, y, f, g satisfying (3.0.1) we have

IxIl -+ Iyl = cClifl + ligl. (3.0.3)

In turn, this property implies solvability. Indeed, if we assume that (3.0.3) holds for
every set of vectors x, y, f, g satisfying (3.0.1), then, whenever f and g are both zero,
x and y must also be equal to zero. This is another way of saying that the homoge-
neous system has only the trivial solution, which implies that the determinant of the
matrix (3.0.2) is different from zero, and hence the system is solvable.

However, formula (3.0.3) deserves another very important comment. Actually,
we did not specify the norms adopted for x, y, f, g. We had the right to do so since,
in finite dimension, all norms are equivalent. Hence, the change of one norm with
another would only result in a change of the numerical value of the constant c, but it
would not change the basic fact that such a constant exists. However, in dealing with
linear systems resulting from the discretisation of a partial differential equation, we
face a slightly different situation. In fact, if we want to analyse the behaviour of a
given method when the mesh-size becomes smaller and smaller, we must ideally
consider a sequence of linear systems whose dimension increases and approaches
infinity when the mesh-size tends to zero. As it is well known (and it can also be
easily verified), the constants involved in the equivalence of different norms depend
on the dimension of the space. For instance, in R”, the two norms

n n 1/2
=3l and  xh = (Z |xi|2) (3.04)
i=1 i=1

are indeed equivalent, in the sense that there exist two positive constants ¢; and c¢;
such that

cilixllz < [Ixll = callx|l2 (3.0.5)

for all x in R”. However, it can be rather easily checked that the best constants one
can choose in (3.0.5) are

Ix[l2 < [Ix[li < /nllx]l2; (3.0.6)
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in particular, the first inequality becomes an equality, for instance, when x; is equal
to 1 and all the other x;’s are zero, while the second inequality becomes an equality,
for instance, when all the x; are equal to 1.

When considering a discretisation method for a boundary value problem, which
gives rise to a sequence of algebraic problems with increasing dimension, we have
to take into account that n becomes unbounded. It is then most natural to ask the
following question. Is it possible, for a given choice of the sequence of matrices A
and B and norms ||x||, |y, |fll, and ||g||, to find a constant c independent of the
mesh-size that makes (3.0.3) hold true for all mesh-sizes? If this is true (with some
additional relations between the matrices and the norms that will be made precise
later on, in Sect. 3.4), we consider the method to be stable. We point out that, in this
context, stability is a property of methods and not a property of linear systems.

However, in this preliminary chapter, we will not deal directly with boundary
value problems and related methods. We will consider generic sequences of matrices
A and B with the corresponding sequences of norms; then we will require A and
B to satisfy suitable properties expressed in terms of constants (say, & and f) that
will be assumed to be the same constants for all the sequence; finally, we will show
that this gives rise to a constant ¢ in (3.0.3) that depends only on « and S, and is
therefore valid for all the linear systems of the sequence.

To read the present chapter, only a rudimentary background in linear algebra will
be needed, but we hope that the basic ideas will still come out clear enough. The
chapter is therefore mostly recommended for readers with a weak mathematical
background. Some proofs, in particular in the last two sections, although simple,
are somewhat lengthy. The readers with less mathematical inclination might skip
them. On the other hand, the chapter could be considered as useless for people with
a stronger mathematical formation. Indeed, essentially everything will be repeated,
in the more general context of Hilbert spaces, in the next chapter. However, the
examples and the counterexamples of the last two Sections might still have some
interest, and at least a glance at them is recommended for everybody.

We summarise the outline of the chapter: we first (in Sect.3.1) recall some
elementary facts in linear algebra. The main goal for that is to fix the notation,
and to refresh the memory for people with a low mathematical background. Then,
in Sect. 3.2 we consider the unique solvability of problems of the type (3.0.1), and
we describe necessary and sufficient conditions in terms of properties of matrices A
and B. At this level, all norms are considered to be equivalent. Next, in Sect. 3.3 we
extend part of the theory to matrices of the type

(s )
M = , (3.0.7)
B C

which is indeed very generic. However, we shall play the game that (3.0.7) is, in
some sense, a perturbation of (3.0.2). Roughly speaking, we shall assume that A
and B are such that, for C = 0, the matrix (3.0.7) is non-singular, and we look for
conditions on C that would preserve this non-singularity. In that section as well, all
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norms will be considered as equivalent. In the following Sect. 3.4, we start dealing
with big matrices, and for this we introduce different norms, together with the
problem of stability of a sequence of problems for a given choice of the sequences of
norms. As announced, our conditions will involve stability constants (to be precise:
M,, My, o, and B, that will be defined later on), depending on properties of matrices
A and B, respectively. The dependence of the global stability constants upon M,,
My, «, and B (and in particular upon « and f) will be tracked down with care,
and some simple examples will show the optimality of our results. Some additional
results are presented in Sect. 3.5. Finally, the stability conditions for the perturbed
problems of the type (3.0.7) will be considered in Sect. 3.6.

3.1 Notation, and Basic Results in Linear Algebra

3.1.1 Basic Definitions

Let r and s be positive integers, and M : R” — R® an s x r real matrix. We denote
by MT the transposed matrix of M, given by

Ml =M;;  i=1....rj=1.._z:. (3.1.1)

It is clear that M7 is an r x s matrix, and therefore M7 : R® — R’. It is also
immediate to check that

MHT = Mm. (3.1.2)
If we have two matrices M : R” — R® and N : R¥ — R’, the product M N of the
two matrices will be the usual rows times columns one, namely
r
(M N)yn =Y MpiNiy 1<m<s 1<n=<k (3.1.3)
i=1

Vectors in R” will be considered as columns, that is as n x 1 matrices. It is
elementary to check that, in the above assumptions on N and M, we have

MNT =NTMT (3.1.4)

and (since the transposed of a 1 x 1 matrix is the matrix itself)
yMx=x"M"y VxeR, VyeR'. (3.1.5)
Throughout this section, which is very elementary, we shall denote by 0, and 0;

the zero vectors in R” and in R* respectively. This notation will be abandoned in
the sequel, with only a few exceptions. Throughout the first three sections of this
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chapter, unless it is otherwise explicitly specified, the norm in R, for every integer
r > 1, will be the usual Euclidean norm defined by

x| ==Y " x7 =x"x. (3.1.6)

i=1
We define the kernel and the Range (or image) of M and M7 as follows:
(i) KerM := {x € R" such that Mx = 0,},
(i) KerM T := {y € R® such that My = 0,},

3.1.7)
(iii) ImM := {y € R’ such that Mx =y for some x € R"},

(iv) InM T := {x € R" such that M Ty = x for some y € R*}.

3.1.2 Subspaces

As usual, we shall say that Z is a subspace of R" if Z C R”" and Z is itself a linear
space.

Remark 3.1.1. We recall that a subset Z of a linear space R’ is itself a linear space
(and hence is a subspace) if, for any two elements z; and z, in Z, their sum z; + z,
also belongs to Z and moreover, for any z € Z and for any real number A, the
product Az also belongs to Z. O

Remark 3.1.2. According to the previous definition, when, for instance, r = 3,
any subspace Z of R? has to be made of triplets. However, it is quite common to
consider, say, R? as a subspace of R? by considering (x;, x,)7 as identified with the
triplet (x, x2, O)T. This, strictly speaking, is not 100% correct. However, on some
occasion, it might turn out to be convenient, as we are going to see immediately in
the Example 3.1.1 here below. Therefore we will accept it sometimes, while being
very careful with what we do. O

If Z is a linear subspace of R”, the image of the restriction of M to Z will be
denoted by M(Z). Hence,

M(Z) .= {y € R’ such that Mz = y forsome z € Z}. (3.1.8)

It is clear that M(R") = ImM.

Example 3.1.1. Assume that 7 = 5, s = 2, and consider the operator M : R> — R?

defined by
y 1 0 0 0 0 310
“\o 1 0 0 o (3.19
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If Z is the subspace Z := {x3 = x4 = x5 = 0} (that is the space of quintuples of
the type (x1,x2,0,0,0)7), the temptation to identify the restriction of M to Z with

the matrix

is actually quite strong. If, instead of a 2 x 5 matrix, we had a 2 x 500 matrix, then
the temptation would be much stronger (as well as the economy in using the form
(3.1.10)). O

Definition 3.1.1. Let M be an s x r matrix. Let Z be a subspace of R" and S a
subspace of R°*. We say that M restricted to Z is injective if

vz! € Z, V2> € Z we have: {Mz' = M7*} = {z' = 2%}. (3.1.11)
We say that M from Z to S is surjective if
Vwe S 3z € Z suchthat Mz = w. (3.1.12)

It is easy to see that, if for instance Z = R’, then M is injective if and only if
KerM = 0,. More generally, M restricted to Z is injective if and only if KerM N
Z = 0,. On the other hand, if S = R?, then M is surjective if and only if M(Z) =
R’. More generally, M is surjective from Z to S if and only if M(Z) 2 S.

From now on, if we say that an s x » matrix M is injective or surjective, without
specifying the subspaces Z and S, we intend that KerM = 0, or InM = R’
respectively. In other words, by default we intend that Z = R" and S = R’.

The dimension of a linear space will be denoted by dim. Hence, for instance,
dim(R") = r, and if Z is a subspace C R’, then dim(Z) < r. Moreover,

Z subspace of R" anddim(Z) =r = Z=R". (3.1.13)
The rank of M is defined as the dimension of its range:
rank(M) := dim(ImM ). (3.1.14)

Example 3.1.2. In order to become familiar with the notation, it will be convenient
to consider an elementary example, made by the family of matrices

0 0 1 0 0
My=]0 0 0 1 o0f, (3.1.15)
0 0 0 0 «

where « is a real parameter. We have clearly r = 5 and s = 3. For our present
purposes, only the cases « = 0 and @ = 1 will be relevant. The transposed matrix
will be
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0O 0 O
0O 0 O
MaT =11 0 0 (3.1.16)
0 1 0
0 0 «
It is immediate to check that for « = 0 we have:
KerMy = {x e R®>s.t. x3 = x4 = 0} dim(KerM,) = 3,
KerM] = {y e R¥s.t. y; = y» = 0} dim(KerM]) =1,
3.1.17)
ImM, = {y € R*s. t. y3 = 0} dim(ImM,) = 2,
ImM] = {xeR’s.t. x| = x; = x5 = 0} dim(ImM ) =2,
while for o = 1, instead, we have
KerM, = {x e R’s.t. x3 = x4 = x5 = 0} dim(KerM,) = 2,
KerM[ = 03 dim(KerM|') = 0,
(3.1.18)

ImM, =R? dim(ImM;) = 3,
IliT ={x¢€ R s.t.x] = x; = 0} dim(IliT) = 3.

In particular, M, is surjective from R to R?, and M IT is injective from R3 to R°.
The same properties are not true for M, and MOT respectively. These simple cases
might also be useful to check several other properties that will be discussed in the
rest of the section. O

3.1.3 Orthogonal Subspaces

For a given linear subspace Z of R”, we define its orthogonal subspace Z* as
follows

Zt:={xeR suchthatx'z=0Vz e Z}. (3.1.19)
It is not difficult (and quite intuitive) to check that
dim(Z*) +dim(Z) = r, (3.1.20)

and each x of R” can be split in a unigue way in its two components Xz € Z and X

X=Xz +XJ. (3.1.21)
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We also have that
ZNnz+=o,, (3.1.22)
that

(zH*

1
N

(3.1.23)

and that for two subspaces Z; and Z;
Z,CZ, = 7ZFCZi (3.1.24)

Example 3.1.3. For instance, with the notation of the previous example, if Z =
KerM,, we have in R®: fora = 0

(KerMo)* = {x € R® such that x; = x, = x5 = 0}
(3.1.25)
dim((KerMy)t) = 2,

and fora =1

(KerM;)* = {x € R’ such that x; = x, = 0}
(3.1.26)
dim((KerM,)*) = 3.

Always referring to the previous example, we have instead, in R3: fora = 0
(KerM[)* = {y € R? such that y; = 0} dim((KerM{)1) =2,  (3.1.27)
and fora =1
(KerM )t = { the whole R*} dim((KerM[)1) = 3. (3.1.28)

|

Remark 3.1.3. Note that the definition of the orthogonal subspace relies on the
choice of the whole space. For instance, as we have already seen in Remark 3.1.2,
it is quite common to accept that R” C R’*! by identifying (xi,...,x,) with
(x1,...,x,0). In this case, for Z C R" we could consider Z both to be a subspace
of R” and a subspace of R"T!. Clearly, its orthogonal in R” and its orthogonal in
R"+! will be different. We will try to be careful whenever this type of confusion
can occur. O

3.1.4 Orthogonal Projections

The notion of orthogonal projection on a subspace will play an important role in the
next Section. We recall it here, briefly.
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For a given subspace Z, say, of R", we introduce the orthogonal projection
wz: R" — Z as follows. For a given x € R, its orthogonal projection 72X is the
minimiser in Z of the quantity ||x — z||. Hence, we have

nzx € Z and ||x—azx|| <|x—2z|, VzeZ. (3.1.29)
An alternative and equivalent way of writing (3.1.29) is
TzX 1= al‘gIzIéiél lz — x| (3.1.30)
It is easy to see that such a minimiser exists, is unique and is the unique solution of
X € Z and ZTJrZX = sz, Vz e Z. (3.1.31)
An obvious consequence of (3.1.31) is

xezly & {azx=0,}. (3.1.32)

Example 3.1.4. Always referring to the cases of Example 3.1.2, if, for instance,
Z =KerMyandx = (1,2,3,4,5)7, then nzx = (1,2,0,0, S)T. |

It will also be convenient to associate to a subspace Z < R’ the extension
operator £z, defined as the linear operator that to every z € Z associates the
same z, thought as a member of R". At first sight, this appears to be obnoxiously
redundant. However, as we have seen in Remark 3.1.2, it is quite common, for
instance, to identify Z = R? as the subspace of R made by the triplets (x1, x2,0).
Note that, if we consider

Z = {(x1,x2.,0)"}, (3.1.33)
then E7 is just the identity matrix. If however we consider
Z = {(x1,x2)"}, (3.1.34)

then the operator £z would correspond to the matrix

E; = , (3.1.35)

(e
S = O

and its transposed operator would be

1 0 0
El = ( ) = 75. (3.1.36)
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Considering now the general case, we note that if we follow a notation of the
type of (3.1.34), then the equality

EL =ny,, (3.1.37)

in fact, holds for a general Z. Indeed, for every z € Z, we can consider the element
E 7z defined as z + 0,1 and for every y € R", we can split it into its components
on Z and on Z+ and writey =y, + y,., getting

Y Ezz=(yz74+y,)@+0,.)=2+0,) (yz+y,.) =2"nzy. (3.1.38)

On the other hand, following a notation of the type (3.1.33), we would have (also in
general)

E; = E; =7 = ng. (3.1.39)

3.1.5 Basic Results

We start by proving an easy but useful proposition.

Proposition 3.1.1. Let M be an s xr matrix. Then, the restriction of M to (KerM )+
is a one-to-one mapping between (KerM )* and ImM .

Proof. Let us see first that M, restricted to (KerM )+, is injective: according to the
definition (3.1.11), we have to prove that, if z! and 72 belong to (KerM )J-, and
Mz' = Mz?, then we must have z! = z°. Indeed, setting Z := z' — z> we have
Mz = 0 and hence Z € KerM . On the other hand, the vector z, as the difference
between two elements of (KerM )L, must also be in (KerM ). Hence, Z belongs, at
the same time, to KerM and to (KerM )J-. Due to (3.1.22), this implies Z = 0, that
means z' = 72, as we wanted.

Let us now see that M, as a mapping from (KerM )t to ImM, is surjective.
According to the definition (3.1.12), we have to prove that, for every element w €
ImM , there exists az € (KerM )J- such that Mz = w. For this, let w be an element
of ImM . By definition, there exists an x € R" such that Mx = w. Split this x
into its components along KerM and (KerM ). Let x = xg + z be the splitting,
with xx € KerM and z € (KerM )J-. By definition of kernel, Mxgx = 0, so that
Mz = Mxg + Mz = Mx = w, as we wanted. O

As immediate consequences, we have now the following properties.

Corollary 3.1.1. Let M be an s x r matrix. Then, there exists a lifting Ly, linear
from ImM to (KerM )L, such that

LyMx=x Vxe (KerM)'. (3.1.40)

Moreover, there exists a i > 0 such that
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pILuyll < Iyl VyeImM and plx| < [Mx| Vx e (KerM)*. (3.1.41)

Proof. The existence of L, satisfying (3.1.40) is obvious. Since all linear operators
are continuous in finite dimension, the two inequalities in (3.1.41) (that are actually,
in this context, the same inequality) are also obvious. O

Remark 3.1.4. We point out that (3.1.40) easily implies (applying M to both sides)
that

MLyy =y VyelmM. (3.1.42)

We also point out that exchanging M with M7 in (3.1.41) we have that there exists
a i > 0 such that

wlyl < IMTy| Vye (KerM ™)t (3.1.43)
O

Remark 3.1.5. We used the same letter (1) to denote the two constants that appear
in (3.1.41) and (3.1.43). This was not by chance. Actually, as we shall see in a while
(see e.g. Proposition 3.4.3), the two constants coincide, in the sense that if, for a
certain value of u, (3.1.41) is verified, then (3.1.43) is also verified, and vice-versa.

O
Corollary 3.1.2. Let M be an s x r matrix. Then,
dim((KerM)*) = dim(ImM), (3.1.44)
dim(ImM) + dim(KerM) = r, (3.1.45)
dim((KerM 7)) = dim(ImMT), (3.1.46)
and:
dim(ImM7T) + dim(KerM™) = s. (3.1.47)

Proof. Equation (3.1.44) is an obvious consequence of Proposition 3.1.1. Equa-
tion (3.1.45) follows from (3.1.44) using (3.1.20). Then (3.1.46) and (3.1.47) follow
by exchanging M and M T in (3.1.44) and in (3.1.45).

Remark 3.1.6. Note that (3.1.44) is well in agreement with the previous examples:
for @ = 0, we have from (3.1.17) that dim(ImM,) = 2 and from (3.1.25) that
dim((KerMy)*) = 2, while for & = 1, we have from (3.1.18) that dim(ImM;) = 3
and from (3.1.26) that dim((KerM;)) = 3. The agreement of (3.1.46), (3.1.45)
and (3.1.47) with the previous examples can be checked in a similar way. We leave
it as an exercise. O

Moreover, the following property is very commonly used.

Corollary 3.1.3. A square r x r matrix M is injective if and only if it is surjective.
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Proof. The proof follows immediately from (3.1.45). Indeed,
M is injective < KerM = {0,} < dim(KerM) = 0

(3.1.48)
& dim(ImM) = r < ImM = R" & M is surjective.

Remark 3.1.7. In different words, Corollary 3.1.3 says that, for a square r x r
matrix M, the system
Mx =f (3.1.49)

has a unique solution for every right-hand side f € R" (= surjectivity) if and only if
the homogeneous system Mx = 0, has x = 0, as a unique solution, that is if and
only if

(Mx =0} = {x=0,} (3.1.50)

(= injectivity). It can also be proved (although we are not going to do it here) that
both properties are equivalent to say that the determinant of the matrix M is different
from zero. O

In particular, we recall the following definition.

Definition 3.1.2. A square r x r matrix M is said to be non-singular if it is
injective (or, which is the same, if it is surjective, or, which is again the same, if
its determinant is different from zero).

It is well known that if M is a non-singular » X r matrix, then it has an inverse
matrix, denoted by M ~! such that

M M=MM'=1L (3.1.51)

where [, is the identity matrix in R". It is easy to check that whenever M is non-
singular, then M7 is also non-singular, and its inverse is given by (MT)™! =
(M~YT . With a (quite common) abuse of notation, we will indicate it simply by
M™T thatis

MT=mH"'=wmHT. (3.1.52)
An important property is given by the following proposition.

Proposition 3.1.2. Let M be an s x r matrix. Then,
KerMT = (ImM)*. (3.1.53)
Proof. We start by proving that KerM” € (ImM ). Lety € R* be in KerM T (that
is, MTy = 0,). We want to prove that y € (ImM )=, that is
yI(Mx) =0 VxeR. (3.1.54)
This, however, is immediate since

y/(Mx)=x"MTy = 0. (3.1.55)
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Now, we prove that (ImM )+ € KerM " Let therefore z € R be in (ImM )1 (that is
2" Mx = 0 for all x € R"). Then,

x'(MTz) =0 VxeR, (3.1.56)

implying that M7z = 0,, that is, z € KerM T

We then have the following theorem. ;
Theorem 3.1.1. Let M be an s X r matrix. Then:

KerMT = (ImM)*, (3.1.57)

ImM = (KerM T)t, (3.1.58)

KerM = (ImMT)*, (3.1.59)

ImM” = (KerM)*. (3.1.60)

Proof. Property (3.1.57) has already been seen in (3.1.53). Property (3.1.58) follows
from (3.1.53) and (3.1.23). Properties (3.1.59) and (3.1.60) then follow exchanging
M and MT. O

We note that from Theorem 3.1.1 we can easily deduce some useful properties:
{InM =R*} & {KerMT =0,}, Im{MT =R"} & {KerM =0,}. (3.1.61)

All the above properties can also be easily checked on the example of matrices
M,, in (3.1.15) and their transposed.

Remark 3.1.8. In spite of its immediate proof, Theorem 3.1.1 can be considered as
the finite dimensional version of a very important theorem of functional analysis
(that we shall see in the next chapter) which goes under the name of the Banach
Closed Range Theorem. O

Collecting the results of Proposition 3.1.1, of Corollary 3.1.40 and of Theo-
rem 3.1.1, we now have immediately the following result.

Corollary 3.1.4. Let M be an s x r matrix. Then, setting K := KerM and H :=
KerMT, we have:

M is one-to-one from K+ to ImM = H*, (3.1.62)
M7 is one-to-one from HYtolmM" = KJ‘, (3.1.63)
ALy : HY — K+ such that Lyy(Mx) =x Vx e K+, (3.1.64)
Lyr : K+ — H* suchthat Lyr(MTy)=y Vye H*, (3.1.65)

(Ly)" = Lyr. (3.1.66)
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Example 3.1.5. Assume that the matrix M has the following form

©i 0-0 0000
0 -0 0000

wel | i L6
0 0-4 0000 ( )
00-0 0000
00-0 0000

where k is the dimension of K+ = (KerM)J-, which, due to (3.1.44) and (3.1.58)
coincides with the dimension of H+ = (KerM ). Here we have r = k + 4 and
s = k + 2. We obviously have

ur 0-0 00
OMZ'O 00
0 0-ue 00
M" = , 1.
00-000 (5.1.65)
00-0 00
00-0 00
00-0 00
and
't 0 -0 00
0 uy'- 0 00 p' 0 - 00000
e 0 uy'- 0 0000
0 0 -u7'o0o0 .
Ly = k Lyr = 3.1.69
. 0 0 -0 00 m 0 0 -utoooof G
0 0 -000 0 0 -00000
0 0 -000 0 0 -00000
0 0 -000

Remark 3.1.9. Although the form of the matrix M in Example 3.1.5 might appear
very special, using the so-called singular-value decomposition (see e.g. [228]) for
every s X r matrix B, we can always choose an orthonormal basis in R” and an
orthonormal basis in R* that will transform the matrix B in the form (3.1.67). We
shall come back to this later on. O

3.1.6 Restrictions of Operators

Assume that we have a subspace Z € R’ and an s x r matrix M. To M we can
associate its restriction M, to Z defined as
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Mzz=M(Ez(z)) VzeZ thatis My = M Ez, (3.1.70)

where Ez, here and in all this chapter, is the extension operator as defined in
Sect.3.1.4.

If now S is a subspace of R, we can consider the operator Mg, from Z to S,
defined as

MZS =7'[5ME2. (3171)

Clearly, the transposed operator (Mzs)” will be

(Mzs)" =z M" Es = (M7)s2. (3.1.72)

Remark 3.1.10. We point out that all the results that we have seen in the previous

subsections (and in particular Theorem 3.1.1) still hold for operators like Mg,

but we have to be careful in the interpretation of the orthogonal complement. In
particular, we have

KerM!, = (ImMzs)™*s, (3.1.73)
ImMzs = (KerM©,)*s, (3.1.74)
KerMzs = (ImM[,)*7, (3.1.75)
ImM!I, = (KerMzs5)*7, (3.1.76)

where, for three spaces U € V C W, the notation U 1v stands (rather obviously)
for the elements of V' that are orthogonal to all the elements of U. O

Example 3.1.6. In the same spirit, considering once more the matrix (3.1.15)
(which describes a linear operator from R> to R?), if the subspace Z C R” is defined
by {x; = x4 = 0}, we can indeed either follow the example of (3.1.33) and consider
Z as the set of quintuplets (0, x5, x3, 0, x5)7 and describe the restriction of M to Z
again with the matrix (3.1.15). Otherwise, we can follow the example of (3.1.34),
and consider Z as a set of triples (x3, x3, xs)T, and describe it with the matrix

0 1 0
My;y=ME;,=|0 0 3.1.77)
0 0 «

So far there is no big difference, and the first option seems actually much cleaner.
|

Example 3.1.7. Coming back to the Example 3.1.6 above, if we consider now the
space S C R3, defined by {y, = 0}, and if we want to analyse the behaviour of M
as an operator from Z to S, the first option would lead us to consider the matrix
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0 0 1 0 O
M;¢=10 0 0 0 Of, (3.1.78)
0 0 0 0 «
while the second option would lead to the (simpler) matrix
M o b0 3.1.79
5=\ o0 ol (3.1.79)

Apparently, the advantage of Mzs over M is just simplicity. However, if you
want to apply the general results of the previous subsection (as e.g. (3.1.58)) to the
operator “M from Z to S”, you see that the use of the form (3.1.79) makes life
much easier: for instance, for ¢ # 0, the image of Mg coincides with the whole S
while the kernel of (M. ZS)T is reduced to 0. On the other hand, for « = 0, then the
image of Mz will be made by the pairs (y1,0)7 and the kernel of (Mzs)” is made
by the pairs (0, y2)” so that again ImM s is orthogonal to Ker(Mzs)”, and so on.
Looking carefully, you can also see everything using the form (3.1.78), but with a
bigger effort. O

Remark 3.1.11. We must be careful when discussing the kernel and the image of
operators restricted to subspaces. Indeed, in general, KerM 75 will not be a subspace
of KerM, and ImM 5 will not be a subspace of ImM . Let us see some examples.
Assume that we consider operators R?> — R?. We start with

1 1
M = L1l (3.1.80)

Clearly, the kernel of M is given by KerM = {(x;,x;)7| with x; = —x,} and the
image by ImnM = {(y1, y2)7| with y; = y,}. If we take

Z = {(xl,xz)T| with x; = x,} S = {(yl,yz)T| with y, = 0},

then KerMzs = {(0,0)”} and ImMzs := {(y1,y2)7|with y, = 0} so that
KerMzs € KerM but InMzg & ImM . If we take instead

I -1
M = 0 L] (3.1.81)

then KerM = {(0,0)”} and ImnM := R2. Choosing Z and S as before, we have
now KerM s = {(x;,x2)7| with x; = x,} and ImM g := {(0,0)7} so that now
ImMzg C ImM but KerMzg € KerM. O



3.1 Notation, and Basic Results in Linear Algebra 139
The following result deals with the possible inclusions of kernels and images of
Mzs and M and their transposed operators.

Proposition 3.1.3. Let M be an s x r matrix, let Z be a subspace of R’, let S be
a subspace of R® and let finally Mzs = ws M E 7 be the restriction of M operating
from Z to S. Finally, let MT and MSTZ be the transposed operators of M and M zg,
respectively. Then, the two following inclusions are equivalent

KerMzs C KerM (3.1.82)
Im(rzM") C ImMZ,. (3.1.83)
Moreover, exchanging the operators with their transposed, we obviously also have
KerM{, CKerM” & Im(zsM) C ImMys. (3.1.84)

Proof. We start by noting that (3.1.82) is equivalent to
KerMzs = Z N KerM. (3.1.85)

On the other hand, from (3.1.74) we have that an element of Z belongs to ImM ST 7 if
and only if it is orthogonal to all z € KerM 2. Taking into account that the generic
element of Im(rzM7) is mz My (with y generic in R*), and that obviously (by
transposition) z’ mz; M Ty = yT ME 7z, we deduce that (3.1.83) is equivalent to

yIME;z=0 VyeR*, VzeKerMyg, (3.1.86)

which in turn is clearly equivalent to (3.1.85). O

Remark 3.1.12. An equivalent way of looking at Proposition 3.1.3 is as follows.
Using (3.1.24), we immediately have that (3.1.82) holds if and only if (KerM )L <
(KerM ZS)J-, where both the orthogonals are taken in R". On the other hand, from
(3.1.60) we have that (KerM )L = ImM7 while an elementary argument using
(3.1.76) gives that

(KerMz5)Y* = (KerMzs)*2 U Z1# =1mMI, u Z+. (3.1.87)
Hence, (3.1.82) is equivalent to
ImMT ctmMm!, Uzt (3.1.88)

which is clearly equivalent to (3.1.83). O

Example 3.1.8. Inthe case of the matrix M of Example 3.1.5, we see that the matrix
My 1 would be
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#r 0 -0
Mgy =| 0P 0 |, (3.1.89)
0 0 - puk

showing its nice nature as a k x k non singular matrix. With this notation,
(L) gL 1 would just be the inverse matrix

uit 0 -0
0 uz'- 0

Lug, . =] " 7 (3.1.90)
0 0 -pu'

O

3.2 Existence and Uniqueness of Solutions: The Solvability
Problem

We go back to our general form (3.0.1), which we repeat here for the convenience
of the reader:

Ax+ BTy =, (3.2.1)
Bx =g. (3.2.2)

We assume that f and g are given in R” and R™ respectively (n and m being given
integer numbers > 1), and that x and y are also sought in R” and R™, respectively.
This implies that A must be a square matrix n X n and B a rectangular matrix m X n.

An important role will be played by the kernels of the operators B and
BT . Hence, we set

K :=KerB  H :=KerB”. (3.2.3)

An easy consequence of Theorem 3.1.1 that will be used quite often in the sequel
is: for all x € R" and for ally € R™,

xeKerB = x'Bly=y"Bx=0, (3.2.4)
or equivalently, for K = KerB,

nxkBTy=0 VyeR" (3.2.5)
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3.2.1 A Preliminary Discussion

Our present aim is to give conditions on A and B in order that (3.2.1) and (3.2.2)
have a unique solution.
Let us discuss first some heuristic ideas: according to Remark 3.1.7, the global

matrix
A BT
M = (3.2.6)
B 0

will be non-singular if and only if the corresponding homogeneous system

Ax+ BTy =0, (3.2.7)
Bx =0, (3.2.8)

has the pair x = 0 and y = 0 as a unique solution. Hence, we start our discussion
assuming that f and g are both zero. What do we know about x? From the second
equation (3.2.8), we see that

x € K = KerB. 3.2.9)

Moreover, we can take the projection wx of the first equation (3.2.7). We note that,
using (3.2.5), we have mx BTy = 0 so that the projection of the first equation onto
the kernel K is

g Ax = 0. (3.2.10)
We wonder whether
{xe Kand tx Ax =0} = {x =0} . (3.2.11)

Actually, it depends on the matrix A and on K. Either it does or it doesn’t. For the
moment, we just set, with the notation of (3.1.71),

AKK = HKAEK. (3212)

Coming back to the question (3.2.11), let us analyse the two cases.

o If the answer to (3.2.11) is no, then we surely lose (meaning that the matrix will
indeed be singular). Why do we say that? This is subtle, but not really difficult.
We claim that if the answer is no, then there exists a non-zero solution of the
homogeneous system. Let us see why. If the answer to (3.2.11) is no, it means
that there exists an x* # 0 such that both (3.2.9) and (3.2.10) hold. Now, using
(3.1.32), we note that (3.2.10) implies

Ax* € K+ (3.2.13)
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Moreover, we remember that K = KerB and that, from (3.1.60), (KerB)J- =
ImBT. Hence, from (3.2.13), we have Ax* € ImB7, and therefore there must
exist a y* such that

BTy* = Ax*. (3.2.14)

This is why we lose: indeed, the pair (x*, —y™) satisfies both equations Ax™ +
BT(—y*) = 0 and Bx* = 0, and we have a non-zero solution of the
homogeneous problem (3.2.7) and (3.2.8), since at least x* # 0.

» If instead the answer to (3.2.11) is yes, we can conclude that, for every pair
(x,y) solving the homogeneous system (3.2.7) and (3.2.8), we must have x = 0.
However, we still have to work on y. Once we know that x = 0, the first
equation (3.2.7) becomes

By =0, (3.2.15)
and we face a second dilemma: do we have
{B'y =0} = {y=0}? (3.2.16)

Clearly, the answer depends on the matrix B”. If it is injective, the answer to
(3.2.16) will be yes, otherwise it will be no. Here, however, the situation is
simpler: indeed, if the answer is no, it means that there exists a § # 0 such
that BTy = 0, and we lose again because the pair (0,,¥) will clearly be a
non-zero solution to the homogeneous system (3.2.7) and (3.2.8). If instead the
answer to (3.2.16) is also yes, then we can conclude: every solution (X, y) of the
homogeneous system (3.2.7) and (3.2.8) will necessarily be zero, and the matrix
M will be non-singular.

In conclusion to our heuristic analysis, it seems that, in order to have a non-
singular global matrix M, we need a “yes” for both questions (3.2.11) and (3.2.16).
This indeed is what we are going to prove, in a more precise way, in the next
subsection.

3.2.2 The Necessary and Sufficient Condition

We start with the basic result that provides necessary and sufficient conditions for
solvability.

Theorem 3.2.1. Let n and m be two integers > 1. Let A and B be an n x n matrix
and an m x n matrix, respectively. Let K be the kernel of B as in (3.2.3), and let
Agk be defined as in (3.2.12). Then, the matrix

%)
M = (3.2.17)
B 0
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is non-singular if and only if the following two conditions are both satisfied:

Agk : K — K is surjective (or, equivalently, is injective), (3.2.18)

B : R" — R™ is surjective (o1, equivalently, BT is injective). (3.2.19)

Proof. We start by noting that the equivalence claimed in (3.2.18) has been made
clear in Proposition 3.1.2, while the equivalence claimed in (3.2.19) is an easy
consequence of (3.1.61). We also note that, in some sense, the theorem has been
proved already during the heuristic discussion above. However, here we re-start and
give a more detailed proof.

To this aim, assume first that (3.2.17) is non-singular, that is to say that the
system (3.2.1) has a unique solution for every right-hand side (f,g) € R” x R”.In
particular, looking at (3.2.2) we see that it must have a solution for every g € R™, and
hence ImB = R and (3.2.19) holds. Moreover, for every f = fx € K the system

(5 5)6)-() 22

must have a solution. For every such solution, we clearly have Bx = 0, that is
x € K. We also note that for every y € R”, from (3.2.5) we have that 7x BTy = 0.
Hence, taking the projection x of the first equation of (3.2.20) yields:

K Ax = fK. (3221)

In other words, solving (3.2.20), we have that: for every f = fx € K, there exists an
x € K such that (3.2.21) holds. Hence, Agx is surjective from K to K, and (3.2.18)
holds.

Assume, conversely, that (3.2.18) and (3.2.19) hold. We want to show that the
matrix (3.2.17) is non-singular. This will follow if we show that the homogeneous
system (3.2.7) and (3.2.8) has x = 0, y = 0 as a unique solution. Indeed, from
Bx = 0, we first get that x € K. Taking the projection g of the first equation
(and noting again that mx BTy = 0), we have then mx Ax = 0. This, together with
x € K, implies x = 0 thanks to the injectivity in (3.2.18). Finally, the first equation
now becomes BTy = 0, and this gives y = 0 thanks to the injectivity in (3.2.19).

O

Remark 3.2.1. 1t follows easily from (3.2.19), using for instance (3.1.45), that a
necessary condition for the solvability is n > m. This was pretty obvious from the
very beginning, but it could be a valuable first simple check for users that are truly
illiterate from the mathematical point of view. O

Remark 3.2.2. We point out that a necessary and sufficient condition is somehow
a delicate mathematical item: all possible necessary and sufficient conditions for
a matrix to be non-singular are mathematically equivalent to each other, and all
equivalent to the obvious it is non-singular if and only if the determinant is different
from zero or even to the tautology it is non-singular if and only if it is non-singular.
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It is only the commodity of usage that, in each context, makes a necessary and
sufficient condition a useful instrument or a sterile mathematical exercise. In this
respect, we may say that it is not true, in practice, that all necessary and sufficient
conditions are equivalent. Moreover, it often happens that conditions that are only
necessary or only sufficient are more useful, in practice, than the necessary and
sufficient ones. This is what we shall discuss in the next subsection. O

Remark 3.2.3. We note that the result of Theorem 3.2.1 could have been obtained in
a different, more algebraic way. As the result is particularly important, we report this
alternative way as well, in the hope that two different points of view could provide
a deeper understanding of the whole result.

For this, together with the kernel K of B, we now consider its orthogonal
complement K L in R” that we call J. Let ng be the dimension of K and n; the
dimension of J. From (3.1.20) we have

ng +ny; =n. (3.2.22)

We now take a basis {x/,... ,x,{J} in J and a basis {xX, ... ,fo} in K. It is clear
that

{x{,...,xﬁj,xf,...,xf{(} (3.2.23)

will be a basis for R". With respect to this basis, we can re-write the matrices A, B,
and BT as follows:

A, A BT
A= ( o JK) B=(B, By) B'= ( J). (3.2.24)
BT

Axy Ak K

Now, from the definition (3.1.7) of K, we immediately have that Bx = 0 (that is
the zero m x nx matrix) so that BY = 0 as well. Splitting x and f in their orthogonal
components X; and X, and f; and fx, respectively, we can now write the original
system (3.2.1) as follows

Ay A BTN /x, f;
Ax; Agx O xx | =1t 1. (3.2.25)
B, 0 0]f\y g

With a little additional work we can see that B, is a non-singular square matrix
if and only if B is surjective, and the result of Theorem (3.2.1) follows from the
block-triangular structure of (3.2.25) since Axx = mg A. O

3.2.3 Sufficient Conditions

The problem of checking whether (3.2.18) holds or not could be simplified or even
avoided in some particular cases, as pointed out in the following corollaries to the
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basic Theorem 3.2.1. We recall that, in general, a square r x r matrix M is said to
be positive semi-definite if

xX' Mx>0  VxeR’ (3.2.26)
and it is said to be positive definite if
x' Mx>0 Vx € R" withx # 0. (3.2.27)

More generally, if Z is a subspace of R", we say that M is positive semi-definite
on Z if My is positive semi-definite, that is

vxeZ x Mpx=x' Mx>0, (3.2.28)
and we say that M is positive definite on Z if M, is positive definite, that is
Vxe Zwithx#0  x Mgyx=x’ Mx>0. (3.2.29)

We observe that a positive definite matrix is always non-singular, since (3.2.27)
easily implies (3.1.50). Hence, in particular, if M is positive definite on a subspace
Z, then M7z will be non-singular Z — Z. It is also obvious that if a matrix M is
positive definite (or positive semi definite), then its restriction to every subspace Z
will also be positive definite (resp. semi-definite).

From the above discussion, we have the following useful result.

Corollary 3.2.1. Let A be an n xn matrix, and B an m xn matrix. If B : R"* — R"
is surjective and A is positive definite on the kernel K of B, then the matrix M
in (3.2.17) is non-singular.

The proof follows immediately from Theorem 3.2.1. The following corollary has
more restrictive assumptions, but its use is even simpler.

Corollary 3.2.2. Let A be an n x n positive definite matrix, and B an m X n matrix.
If B : R" — R™ is surjective then the matrix (3.2.17) is non-singular.

Again, the proof is immediate. The advantage of Corollary 3.2.2 (when we can use
it!) is that there is no need to characterise the kernel K, which, in some cases, can
be a non-trivial task.

Among the various sufficient conditions, we could point out that if Agx is an
isomorphism from K to K, then the condition g € ImB will be sufficient to
guarantee the existence of a solution for the system (3.2.1). We have in particular
the following result.

Proposition 3.2.1. Let n and m be two integers > 1. Let A and B be an n xn matrix
and an m xn matrix, respectively. Let K be the kernel of B as in (3.2.3), and let Axx
be defined as in (3.2.12). Assume that Agk is an isomorphism from K to K and that
g € ImB. Then the system (3.2.1) has at least one solution. Moreover, if (X1,¥1)
and (X2, y») are two solutions of (3.2.1), thenx; = X, and (y,—y>) € H = KerBT.
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Proof. Indeed, if g € ImB then, by definition, there exists an X, € R” such that
Bx, = g. Looking for Xy € K, solution of the problem Axxxo = g (f — Ax,),
we can set X := Xo + X, and note that, projecting the first equation on K, we
have mg(f — Ax) = 0, because wxf — AgxXo — mx AX; = 0. In other words,
f— Ax € K1 which, thanks to (3.1.60), implies f— Ax € ImB T Hence, there exists
ay € R" such that BTy = f — Ax. It is immediate to check that (x, y) is a solution
of (3.2.1). Assume now that (x;,y;) and (X3, y2) are two solutions of (3.2.1), and set
x* := x; —xp and y* := y; —y,. Clearly, (x*, y*) is a solution of the homogeneous
system (that is, (3.2.1) with f = 0 and g = 0). In particular we have, from the
second equation, that x* € K, and from the projection on K of the first equation we
have Agxx* = 0 and since Agg is an isomorphism we have x* = 0. This implies
Ax* = 0 and, using again the first equation: B y* = 0 (thatis y* € H). O

Remark 3.2.4. In the framework of Proposition 3.2.1, the solution will never be
unique, unless we have H = 0,, (that however brings us back to Theorem 3.2.1).
On the other hand, we could change the problem and look for y in H . This actually
is the way to recover a well posed problem when B is not surjective. However, it
obviously works only when g € ImB. A particular case in which this would work
systematically is whenever g = 0 (as it is often the case when the second equation
expresses some incompressibility condition, or some sort of conservation property).

0

3.2.4 Examples

Let us see now some examples and exercises. We start by emphasising that the part
of A that must be non-singular is actually Axx, and not A itself. Take for instance,
forn = 2 and m = 1, the matrices

1 1 1
A= B=(1 0 BT = ) 3.2.30

Then, the rank of B is 1 (= m), and (3.2.19) holds true. On the other hand we
have that K = KerB = {x € R?suchthat x; = 0}. Hence, in this case, the
new basis (3.2.23) coincides with the original one, and the matrices are in the
form (3.2.24) already. It is then easy to check that A itself is non-singular, but
Agx = (0) and hence (3.2.18) does not hold. Indeed, the whole matrix is

1 1 1
M=]1 0 0 (3.2.31)
1 0 O

which is clearly singular.
On the other hand, consider the choice
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0 0 1
A= B=(1 0 BT = , 3.2.32

where A is singular. Since K is the same as before, the new coordinates (3.2.23)
coincide again with the old ones, and we have easily that Agx = (1). This is clearly
non-singular, so that (3.2.18) is now satisfied. Indeed, the whole matrix is now
non-singular:

0 0

M=10 1 0]. (3.2.33)
1 0 O

Along the same lines, referring to Corollary 3.2.2 we notice that it would not be

enough to require that A is positive semi-definite (that is x” Ax > 0 for all x € R").
Indeed, for the choice

1 0 1
A= B = (1 BT = , 3.2.34
( 0 0) ( O) (0) ( )

we have that A is positive semi-definite, we have that (3.2.19) is verified, but the
whole matrix

(3.2.35)

|
_— O =
o o O
oS O =

is clearly singular.
In many cases, however, it is not immediate to see, at first glance, what the matrix
Akx 1s. Consider for instance the case

A=<a b) B=(1 -1) BTz(l). (3.2.36)
c d -1

We have in this case

K := {x € R? such that x; — x, = 0}. (3.2.37)

Hence, K can be presented as the one-dimensional subset of R? made of vectors
of the type (a,a)” with « € R. In its turn, J can now be presented as the
one-dimensional subset of R?> made of vectors of the type (8,—B)" with B €
R. In order to reach the form (3.2.24), we now have to express the matrix A
in the new basis {x{.....x7 .x{,....xK} that is now simply {x{,x{} with
x{ = (1,-1)T and xK = (1, 1)7 (and if we want an orthonormal basis, we can
take x{ = (1/42,-1/4/2)T and xK = (1/4/2,1/+/2)T). After some classical
computations, we can see that, in this new basis, the matrix A takes the form
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1 f{a—b-—c+d b—c—d
A:—(a ctd atboc ) (3.2.38)

2\ a—-b+c—d a+b+c+d

From (3.2.38) we have that Agg is the 1 x 1 matrix (%(a 4+ b + ¢ 4+ d)), which is
non-singular if and only ifa + b + ¢ +d # 0.

Indeed, one can check easily (for instance, by computing the determinant) that
the conditiona + b + ¢ + d # 0 is necessary and sufficient for the matrix

a b 1
c d —1 (3.2.39)
1 -1 0

to be non-singular. In cases like this (which are the majority), it would possibly
be simpler to deal directly with the restriction of 7x A to K, which is Agk in the
original variables. This would require to apply the (original) matrix A

a b
3.2.40
(“ ) (3.2.40)
to the general vector (in the original coordinates) Xx = (&, )" in K, obtaining the
vector
ala+b
Axg = ( ) . (3.241)
alc+d)

Then, we have to check whether the component of Axx in K (that is g AX) is
different from zero. As K is one-dimensional, this amounts to take the scalar product

&5 Axg = (1/¥2.  1/V2)Axg = %(a Ybhtc+d), (3242

and see if it is different from zero when « is different from zero. We clearly obtain
again the conditiona + b +c +d # 0.

We point out, however, that if, by chance, a and d are positive and ad > bc,
then A will be positive definite on the whole R?, and we can have the solvability
directly from Corollary 3.2.2 without any additional work.

3.2.5 Composite Matrices

Sometimes, the matrix A itself has a block structure of the type

(%)
A= . (3.2.43)
D 0
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Then again, one has to be careful and require the non-singularity of A just on the
kernel of B. In some cases, together with an A with the structure (3.2.43), we have
a B with the structure B = (E 0) or B = (0 E), so that the whole matrix has
the block structure

c DT ET cC DT o0
M=|D o 0 oo M=|D 0 ET], (3244
E 0 0 0 E 0

respectively. In these cases, it can be a useful exercise to rewrite conditions (3.2.18)
and (3.2.19) in terms of properties of the matrices C, D, and E.

To fix the ideas, let us assume that, in the first case of (3.2.44), C isanr x r
matrix, D is an s X r matrix, and E a k x r matrix. We also assume thatr > s + k,
otherwise, according to Remark 3.2.1, the Matrix M will surely be singular. It is
clear that we can directly use Theorem 3.2.1, with

A:=Cwithn =r andB:= ( g) withm =5 + k. (3.2.45)

With a minor effort, one can recognise that

ImD
K := KerB = KerD N KerE ImB = (3.2.46)
ImE
and that
T __ Os
{KerB = (Ok }
s {{DTy FET2=0,) = {y=0,andz = Ok}} (3.2.47)

& {ImDT NImET = 0,}.
Conditions (3.2.18) and (3.2.19), in terms of the matrices C, D, and E, are then

ImDT NImET =0,,
(3.2.48)
Ckk is non-singular K — K where K = KerD N KerE.

It is not difficult to verify that conditions (3.2.48) are necessary and sufficient for
the non-singularity of the whole matrix M.

To deal with the second case of (3.2.44), we assume instead that C isan r X r
matrix, D is an s X r matrix, and E a k x s matrix. We also assume, this time, that
r +k > s > k, otherwise, according to Remark 3.2.1, the Matrix M will surely
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be singular. Possibly the easiest way to apply Theorem 3.2.1 consists in performing
first an exchange of rows and columns to reach the form

c o DT
o o E|. (3.2.49)
D ET 0

Then, we can take n = r + k and m = s with

A= (C O) B=(p ET) B = (DT). (3.2.50)

0 0 E
It is now immediate to see that
KerB” = KerDT N KerE

so that condition (3.2.19) (that now becomes: KerB” = 0, = 0,,) requires in this
case that KerDT NKerE = 0. Then, we have to look at the kernel of B and require
the non-singularity of A on it. It is clear that the kernel of B, in this case, is given by

K = {(x,z) € R" x R¥ such that Dx + ETz = 0,}. (3.2.51)

This includes all pairs of the form (0,,Z), with Z € KerE”. When we apply the
matrix A to one of these vectors, we obviously obtain the zero vector. Hence, if
we want the restriction of A to K to be non-singular, we must first require that
these pairs are reduced to (0,, 0x), that is, we must require first that Ker £ T = (.
However, K might also contain pairs (x,z) with x # 0,, provided Dx € ImE T,
This subset of R” can be characterised, using also (3.1.60), as

K = {x € R” such that Dx = E”z for some z € R¥}
(3.2.52)
={xeR suchthatz’ Dx =0 VZe KerE}.

Hence, the conditions for the second case can be summarised in terms of the
matrices C, D and E as:

KerDT N KerE = 0,
KerET = 0, (3.2.53)

Cig 1s non-singular K — K where K is given in (3.2.52).

Again, it is not difficult to verify that conditions (3.2.53) are necessary and sufficient
for the non-singularity of the whole matrix.
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There are obviously other equivalent ways to apply Theorem 3.2.1. For instance,
we can, in both cases, consider directly n = r + s, m = k and

c DT
A= B=(E 0)orB=(0 E). (3.2.54)
D 0

As we are dealing with necessary and sufficient conditions, we would find exactly
the same conditions as before, possibly with a longer argument.

In a similar way, one could treat the case when the space R™ x R”" is split into
a bigger number of subspaces (four, five, etc.). We do not insist too much on these
exercises.

3.3 The Solvability Problem for Perturbed Matrices

A different, more interesting variant arises when we consider the case of systems of

the type
(A BT) (X) (f)
= , (3.3.1)
B —-CJ\y g

where again A and B are n x n and m x n matrices, respectively, and C is an m x m
matrix. The name of the game here is to see C as a perturbation of the original
problem (3.2.1). We shall therefore assume that matrices A and B satisfy (3.2.18)
and (3.2.19), plus, possibly, some minor additional requirement, and we look for
conditions on C in order to have the unique solvability of (3.3.1).

The minus sign in front of the matrix C is due to the fact that, in what follows,
we are going to assume the perturbation, in some sense, to be negative (and hence
C to be positive), in order to have existence and uniqueness results.

3.3.1 Preliminary Results

A first sufficient condition for solvability is quite obvious.

Proposition 3.3.1. Assume that A and C are positive definite. Then problem (3.3.1)
is uniquely solvable. O

Indeed, it is easy to check that in this case the matrix

A BT
(_B C) (3.3.2)

is positive definite.
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Another more or less obvious sufficient condition is given in the following
proposition.

Proposition 3.3.2. Assume that (3.2.18) and (3.2.19) are satisfied. Then there exists
an ¢ > 0 such that, for every m x m matrix C satisfying

ICyll <elyll. VyeR", (3.3.3)

problem (3.3.1) is uniquely solvable. O

The proof is based on the following obvious fact: if the determinant of a matrix is
different from zero, and if we perturb the matrix by a small enough quantity, the
determinant will still be different from zero. We omit the mathematical details.

In the next subsection, we shall provide a theorem that is more interesting, and
more relevant for the applications. In order to prove it, however, we are going to
need the following elementary (and classical) lemma, that will also be useful in
other occasions.

Lemma 3.3.1. Assume that A is a symmetric n X n matrix satisfying
x'Ax >0, VxeR" (3.3.4)

(that is: A is positive semi-definite). Then, for every x € R" and for every z € R",
we have

(2" Ax)? < (xT Ax) (2" Az), (3.3.5)
and consequently, always for every x € R",
xX'Ax=0 = Ax=0. (3.3.6)
Proof. Using (3.3.4), we easily have that, for any z € R” and for any real number A,
(x+Az)T A(x 4 Az) > 0. (3.3.7)
Expanding (3.3.7) in powers of A and using the symmetry of A, we have
x! Ax + 2Az" Ax + A%z" Az > 0, (3.3.8)

implying that the equation (in the unknown 1) x” Ax + 2Az” Ax + A%z" Az = 0
cannot have distinct real roots, and therefore

A = (22" Ax)* — 4(x" Ax) (2" Az) <0, (3.3.9)

which, divided by four, gives exactly (3.3.5). From this we see that x” Ax = 0
implies that 2T Ax = 0 for all z € R", and therefore Ax = 0. This is what is
claimed in (3.3.6). ]
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3.3.2 Main Results

We are now ready to present the main theorem of this section.

Theorem 3.3.1. Let A be an n x n matrix, B an m x n matrix and let C be an
m x m matrix. Assume (as in the basic Theorem 3.2.1) that BT is injective and Agx
is non-singular from K to K, where K = KerB. Assume further that A and C are
positive semi-definite and that, moreover, A is symmetric. Then, problem (3.3.1) is
uniquely solvable for every right-hand side f, g.

Proof. The proof can be easily done by showing that the homogeneous version
of (3.3.1) (that is when f and g are both equal to zero) has x = 0,y = 0 as the unique
solution. For this, let (x,y) be the solution of the homogeneous system. Taking the
scalar product of the first equation of (3.3.1) times x, we get

x'Ax +x'BTy = 0, (3.3.10)
while, taking the scalar product of the second equation of (3.3.1) times y, we obtain
y'Bx—yT'Cy=0. (3.3.11)
Subtracting (3.3.11) from (3.3.10), and using (3.1.5), we therefore have
x'Ax+y'Cy =0. (3.3.12)
Using the fact that A and C are positive semi-definite in (3.3.12), we then have
x'Ax =y’ Cy =0. (3.3.13)

We can now use (3.3.13) and Lemma 3.3.1 to deduce that Ax = 0. Using this in the
first equation, we obtain now BTy = 0 which, as BT is injective, implies y = 0.
This, in turn, gives Cy = 0, so that, from the second equation, Bx = 0. Hence, x
belongs to KerB. Having already Ax = 0, we deduce Axxx = 0, and since Agg is
non-singular K — K, we conclude that x is also equal to zero. O

Remark 3.3.1. Looking at the proof of Theorem 3.3.1, we also see that we can
trade the symmetry assumption on A with the condition that A4 is positive definite
on the whole R". Indeed, the symmetry was only used in Lemma 3.3.1 to show that
x” Ax = 0 implies Ax = 0. If A is supposed to be positive definite, from x” Ax = 0
we have immediately x = 0 and then y = 0 as before. O

Theorem 3.3.1 has a counterpart, in which the symmetry assumption is shifted
from A to C.

Theorem 3.3.2. Let A be an n x n matrix, B an m x n matrix and let C be an
m x m matrix. Assume (as in the basic Theorem 3.2.1) that BT is injective and Agx
is non-singular from K to K, where K = KerB. Assume further that A and C are
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positive semi-definite and moreover that C is symmetric. Then, problem (3.3.1) is
uniquely solvable for every right-hand side f, g.

Proof. We proceed exactly as in the proof of Theorem 3.3.1. Let (x, y) be a solution
of the homogeneous system. Taking the scalar products of the first equation times x,
the scalar product of the second equation times y, and finally taking the difference,
we reach again (3.3.12) and (3.3.13). This time, we apply Lemma 3.3.1 to the matrix
C, obtaining Cy = 0. Then we can go back to Theorem 3.2.1 and, using (3.2.18)
and (3.2.19), we obtain x = O and y = 0. O

Remark 3.3.2. The above results could be summarised as follows. Assume that A
and B verify the assumptions of the basic Theorem 3.2.1, that is: B is surjective
(or, equivalently, BT is injective) and Ak is non-singular from K to K, where K
is the kernel of B. Then, problem (3.3.1) is uniquely solvable under the following
assumptions:

* Aand C are positive semi-definite and A is symmetric;
* A is positive definite and C is positive semi-definite;
* Aand C are positive semi-definite and C is symmetric. O

3.3.3 Examples

In the following Examples, we shall discuss the necessity of the conditions that
we have used so far. The form (3.3.1) is clearly too general to allow non-trivial
necessary and sufficient conditions. We shall therefore discuss the possibility of
finding more general, but still easy, sufficient conditions.

In the first example, we shall see that the symmetry assumptions in Theo-
rem 3.3.1 or in Theorem 3.3.2 cannot be easily reduced. Indeed, if we consider
the case

0 1 O 0 -1
A=]10 1 -1 B = C = , (3.3.14)
0 0 1 1 1
0 1 0

we see that 4 and C are positive semi-definite, B is surjective and A is non-singular
when restricted to the KerB which in this case is {x € R? such that x, = x3 = 0}.
Hence, all the assumptions of Theorem 3.3.1 are satisfied but the symmetry assump-
tion (since neither A nor C is symmetric). It is easy to see that the whole matrix

0
—1
(3.3.15)

Il
S o o o =
O = = = O
o o = O
—_— = O O
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is singular, since the third and fourth rows are equal. Note that A is symmetric when
restricted to Ker B, but this is not enough.

On the other hand, it is obvious that we cannot give up the assumption that A and
C have, in some weak sense, the same sign, because the elementary choice

A=) B=1) C=(-1) (3.3.16)

M = bl (3.3.17)
=\, ) 3.

Similarly, we cannot even accept that one of the two matrices, A or C, is
indefinite: for instance, the choice

gives rise to the singular matrix

0 1
A:(1 J B=(1 00 C=() (3.3.18)

with C symmetric and positive definite and A symmetric but indefinite, produces
the singular matrix

0 1
M=1]11 1 0]. (3.3.19)
1 0 -1

Hence, although the conditions discussed in Theorems 3.3.1 and 3.3.2 are clearly
only sufficient and by no way necessary, it does not seem easy to write down more
convenient ones.

3.4 Stability

We saw at the beginning of this Chapter that solvability will not be sufficient to
provide a good method to discretise partial differential equations, and some stability
(in a sense to be made precise) is actually needed.

Here, we suppose that we are actually given a sequence of problems with
increasing dimensions. It is clear that this will be the case when we are going to
consider discretisations of a given, say, partial differential equation, with a sequence
of finer and finer meshes. Consider therefore for k = 1,2, ... the problems

T
B, 0 Yk g/’ o
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where Ay is an n; X nj matrix, By an m; X nj; matrix, and the dimensions n; and
my, tend to infinity when k goes to infinity. Roughly speaking, we can imagine that
each value of k will correspond to a different decomposition, and when we will say
that some constant is independent of the decomposition, we will actually mean that
it does not depend on the index k in (3.4.1).

We are therefore interested in conditions that ensure not only the unique
solvability of each problem (3.4.1), but also a stability estimate of the type (3.0.3):

il + lyell < cClifill + g ). (3.42)

where the constant ¢ does not depend on k. This requirement is obviously meaning-
less, unless we specify the norms that we intend to use. As anticipated at the begin-
ning of this chapter, the choice of the norms, in this case, is not irrelevant: although
they are all equivalent, the constants involved in the equivalence may (and, in gen-
eral, do) depend on the dimensions, which we are assuming to be going to infinity.

On the other hand, if we want to use these abstract results in order to provide a
priori error bounds for some realistic discretisation of a differential problem, we
are not totally free in the choice of the norms.

In general, in the finite element context, the norms to be used will be the norms
in some functional space, where the differential problem itself is set. Hence, in
practice, we are going to have little choice.

For instance (anticipating some ideas from the following chapters), our unknown
vector x could represent the nodal values of a piecewise linear continuous function
defined on a domain £2 that has been decomposed into triangles 7. This means
that we have a one-to-one mapping from R” to the space L] of piecewise linear
continuous functions on £2, that associates to a vector v in R” the function ¢y such
that, at every node N; of the decomposition (j = 1,2...n), we have ¢y(N;) = v;.
In this case, a very natural choice of norm for v would be

1/2
Ivllo := (/Qwidﬂ) , (3.4.3)

or, alternatively,
1/2
W= ( [ 1vera2)” (44
Q

representing, respectively, the L2-norm and the H{-norm of the corresponding
function ¢, (if this function vanishes on boundary nodes). At the present level,
however, we have no functional spaces yet (nor, for what matters, a differential
problem). Hence, we are going to consider norms, or, rather, families of norms, that
are defined independently of functional spaces and discretisation schemes. However,
having that target in mind, we shall make assumptions that are somehow tailored for
it. In the present section, we shall then reconsider several aspects that were discussed
in Sect. 3.2 but, this time, introducing norms, and analysing the behaviour of the
various constants in dependence of the chosen norms.
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For the sake of simplicity, from now on we shall drop the index k unless it will
really be necessary, and we will just remember that m, n, A, and B depend on k.

Remark 3.4.1. We point out that, as we have already seen, stability is not a concept
that can be applied to a single discretised problem, but only to a sequence of
discretised problems, or to a discretisation method (that in turn gives rise to
sequences of discretised problems). O

Remark 3.4.2. Important warning In what follows, we will often consider the
infimum or the supremum of quotients of the type

w o e
H el

where £(&) is a real number depending linearly on &. It is clear that the quotients in
(3.4.5) make no sense for & = 0, so that the value & = 0 should be discarded when
taking the infimum or the supremum. On the other hand, due to the linearity of ¢, it
is clear that for every &, # 0 the quotients in (3.4.5) take the same value over the
ray & = k&, when « ranges over the positive real numbers. Hence, the limit of the
quotients (3.4.5) for & — 0, in general, will not exist (we would have a different
limit on every ray coming out of the origin), but the meaning of, say,

0e)
—2= 3.4.6
P el G40

(3.4.5)

will not be “seriously ambiguous”. Hence, for the sake of brevity, we shall write in
these cases

sup @ instead of  sup @ 3.4.7)

¢ &l g#0 €1

|

3.4.1 Assumptions on the Norms

We denote by X, Y, F, G, respectively, the spaces of vectors X, y, f, g. Hence, we
have

X=R' Y=R", F=R' G=R". (3.4.8)
Then, we assume that:

1. The spaces X and Y are equipped with norms || - |x and | - ||y. For the sake of
simplicity, we will assume that there exist two symmetric and positive definite
matrices Sy (an n x n matrix) and Sy (an m x m matrix) such that

I = (Sy )7 (Sx %) = x" ST Syx Vx e X,

(3.4.9)
Iyl} = (Syy)"(Syy) =y"Sf Syy VyeY.
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2. the spaces F and G are equipped with norms || - || r and || - || ¢ defined as the dual
norms of || - ||y and || - ||y, i.e.

x'f r
IfllF := sup —— and gl := sup y 8 . (3.4.10)
xex [x[x vey [I¥lly
It is not difficult to check that
I3 = (Sx' O (Sx' ) =7 S;"Sy't VEeF,
(3.4.11)

lglz = (Sy' 2" (S;y'g) =¢"S, 7Sy 'g YgeG.

3. Given the norms in X, Y, F and G, we can define the induced norms of the
matrices A and B as follows

I Ax|[¢ I1Bxlc
IA]l := sup IBIl :=

. (3.4.12)
xex [Ix[lx xex  [IXlx

4. The norms of the transposed matrices A7 and B are obviously defined in the
same way as in (3.4.12). Moreover, we have the following immediate result.

Proposition 3.4.1. In the above assumptions, we have

T z” Ax

Al = |A" | = supsup ———— (3.4.13)

xeX zeX |1Z[Ix [1x]|x

and
TR

IB|| =[BT = supsup —— > (3.4.14)

x€X yeY lylly Ixllx
O

The proof follows immediately from (3.1.5), which implies that z” Ax = x” A7z
and y” Bx = x” BTy.

5. We will assume that there exist two constants M, and M), independent of the
mesh-size, such that

lAl = 14T < Mo Bl =BTl < M. (3.4.15)

Sometimes, for K a subspace of X, we will also use the norm

T

[fll & := sup (3.4.16)

xeK ”X”X'

The following very useful properties are immediate consequences of the above
assumptions.
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Proposition 3.4.2. Assume that the properties (3.4.8)—(3.4.15) hold true. Then, for
every X and f in R" and for every y and g in R™, we have

x'f < |x||x [Ifll yig < Iyl lglc. (3.4.17)

IAX]| F < Mal|x]|x. IATx|F < Ma|x|x. (3.4.18)

IBx|lc < Mj|x]|x. IBTyllr < Mylylly, (3.4.19)

x" Az < M,||x||x |lz] x, x" BTy < My||x[|x Ilylly. (3.4.20)
and

Ifllx < (€]l F- (3.4.21)

If moreover A is symmetric and positive semi-definite, then (3.4.18) can be
improved to

[Ax|F < M} (x" Ax)'/%, (3.4.22)

Proof. The proof of (3.4.17) is immediate. For instance, the first inequality follows
from the fact that for every fixed X € X \ {0} we obviously have

X't g
X <sup—— = ||, (3.4.23)
Er=AT

which multiplied by ||X||x gives X" f < ||X||x |||l 7. The second one can be proven
in exactly the same way. The proof of (3.4.18) and (3.4.19) is also immediate, as
is the proof of (3.4.21) (in the right-hand side we take the supremum over a bigger
set). Let us see for instance the proof of (3.4.18) (as the proofs of the other two are
identical): using first (3.4.12) and then (3.4.15), we have:

[Ax][F < [|All [Ix]x < Mq [x]Ix- (3.4.24)

Property (3.4.20) will then follow immediately from (3.4.18) and (3.4.19), and the
proof of (3.4.21) is immediate. Finally, for the proof of (3.4.22), we can first use
Lemma 3.3.1, which, for every x, z € X, gives

|z Ax| < (27 Az)'/?(xT Ax)'/%. (3.4.25)

Then, we use (3.4.10), (3.4.25), and (3.4.20) to get

2z’ Ax 2" Az)V/2 (xT Ax)!/?
x| p = sup Z2X < up AP 0 AV

zeX |zllx — zex Izl x
Mo llzI2)2(xT Ax)!/2
< X( ol ”X|)|z”; 2 = M, (x"4x)'/. (3.4.26)
VAS

O
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From now on, in this chapter, the Euclidean norm will be denoted by || - || g, that is
||z||% =17z (3.4.27)

The following proposition is an elementary consequence of Corollary 3.1.4.

Proposition 3.4.3. Let B be an m x n matrix, and set K := KerB (as usual) and
H := KerBT. Then, there exists a positive constant B such that

. XTBTy X yTBx -
inf sup ———— = inf sup —— =f4>0. (3.4.28)
vertxext IXIx ¥l xextyenmt IXlx llylly

Moreover, with the notation of Proposition 3.1.1, we have exactly

1
= =Ll = |Lpr|. (3.4.29)

Proof. Corollary (3.1.4) implies that B is one-to-one from K Lto H+ and BT is
one-to-one from K+ to HL. It is not difficult to see that B in (3.4.28) is exactly
the value of the norms of L and Lgr (that are equal to each other). See also
Examples 3.1.5 and 3.1.8.

We are now ready to introduce a precise definition of stability.

Definition of stability. Given a numerical method that produces a sequence of
matrices A and B when applied to a given sequence of meshes (with the mesh-
size h going to zero), we choose norms || - ||x and || - ||y that satisfy the continuity
condition (3.4.20), and dual norms || - ||r and || - |¢ according to (3.4.10). Then,
we say that the method is stable if there exists a constant c, independent of the
mesh size, such that for all vectors X,y,f, g satisfying the general system (3.2.1)
and (3.2.2), it holds

Ixllx + lIylly < c(lflz + lglo)- (3.4.30)

Remark 3.4.3. We recall (as we have also seen in Remark 3.1.7) that for a square
matrix, we have unique solvability for every right-hand side if and only if the only
solution of the homogeneous system is the zero solution. We note here that (3.4.30)
implies that, whenever f and g are zero, the only possible solution of (3.2.1) and
(3.22)isx = 0 and y = 0. Hence, we deduce that (3.4.30) implies the unique
solvability of (3.2.1) and (3.2.2). This is the reason why, on several occasions in this
section, we will state theorems that ensure the stability (3.4.30) without mentioning
explicitly that we have unique solvability for every right-hand side f and g. O

Having now a precise definition of stability, we can look for suitable assumptions
on the matrices A and B that may provide the stability result (3.4.30). In Sect. 3.2,



3.4 Stability 161

we started with the basic Theorem 3.2.1, giving the necessary and sufficient
conditions for solvability, and then we discussed possible variants with stronger
assumptions which gave only sufficient conditions but were easier to deal with. In
the present section, we shall follow somehow the opposite path: we shall start with
stronger assumptions (allowing an easier proof) and move progressively towards
weaker assumptions.

In particular, as we did in the previous sections, we will consider essentially three
possible situations, with three different levels of generality. In all three cases, we
shall assume an inf-sup condition on the matrix B. On the other hand, for the matrix
A, we shall consider the three cases: ellipticity on the whole space V/, ellipticity only
on the kernel K, and a non-singularity condition on Agg of the type of (3.2.18).

Different assumptions on the symmetry of A will often affect the dependence of
the final stability constants on the inf-sup and ellipticity constants.

As a first step, however, we shall discuss the basic assumption to be made on the
matrix B (the inf-sup condition) that will be used in all the theorems of the Section.
In several applications, checking whether the inf-sup condition holds or not will be
the main difficulty. It is therefore necessary to try to have a good understanding of it.

3.4.2 The inf-sup Condition for the Matrix B: An Elementary
Discussion

As we are going to see at the end of this subsection, with the definitions and the
notation that we introduced in the previous part of this chapter, the so-called inf-sup
condition can be expressed rather quickly.

However, as it is often one of the main difficulties (to check or to enforce) in
many applications, we expect a certain number of readers to pick up the book and
start reading this subsection first.

This, clearly, is not recommended, and, frankly speaking, cannot be done.
Nevertheless, we tried, in the beginning of this subsection, to be softer than usual,
rephrasing many concepts that were seen before, and (if not really restarting from
scratch, that would be a total nonsense) to recover some concepts in a more heuristic
way.

Let us start from one of its most common formulations.

Inf-sup condition on B. There exists a positive constant B, independent of the
mesh-size h, such that:

VyeY 3xe X\ {0}suchthatx” BTy > B|x|x|yly- (3.4.31)

In order to understand it better, we start by rewriting condition (3.4.31) in
different equivalent forms, which will also clarify the reason why it is called
inf-sup condition.
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Since, by assumption, x is different from zero, condition (3.4.31) can equiva-
lently be written as:

x' BTy

Xl x

VyeY 3IxeX\{0} such that > Bllylly. (3.4.32)

Given y € Y, the most suitable x € X (for making the inequality in (3.4.32) hold)
is clearly the one that makes the left-hand side of the inequality as big as possible.
Hence, the best we can do is to take the supremum of the left-hand side when x
varies among all possible x € X different from 0. Hence, recalling also the notation
in (3.4.7), we may equivalently require that

TRpT

x' B'y

VyeY sup

> Bllylly- (3.4.33)
xex  [Ix|lx

In a sense, we got rid of the task of choosing x. We observe that, making use of the
notation of (3.4.10) for dual norms, we immediately have

x" BTy
sup

= B"ylr. (3.4.34)
xex  [Ix|lx

so that condition (3.4.33) could easily be rewritten as
VyeY  [BTylr = Blylyr. (3.4.35)

We recall now that the usual condition required in the previous section for the
matrix B (see (3.2.19)) was: B is surjective or, equivalently, BT is injective. We
also recall that the injectivity (3.1.11) could be written as

BTyl =0} = {lyl =0} (3.4.36)

Looking back at the basic algebraic property (3.1.41) (that, in finite dimension, is
always true), with M = BT we see that here we are first asking that the inequality
holds for every y € Y (and not, as in (3.1.41), for every y € (KerB”)1). Hence, we
require that, for every k in our sequence, (KerBT)1 = {0}. Moreover, we require
that the constant u that appears in (3.1.41) is uniformly bounded from below by a
uniform constant §.

We also easily recognise that the inf-sup condition, in its equivalent form
(3.4.35), easily implies (3.4.36). Hence, it can be seen as a stronger form of the
plain injectivity (3.4.36), depending on the choice of the norms, and requiring a
uniform bound, B, independent of the mesh-sizes.

However: why is it called inf-sup condition? We note that condition (3.4.35) still
depends on y. We also note that it clearly always holds for y = 0, and therefore
we can concentrate on the y’s that are different from 0; in particular, for y # 0,
condition (3.4.35) can be also written as
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1Byl

YeA® e

> B. (3.4.37)
The worst possible y is therefore the one that makes the left-hand side of (3.4.37)
as small as possible. If we want (3.4.37) to hold for everyy € Y \ {0}, we might
as well consider the worst case, looking directly at the infimum of the left-hand side
of (3.4.37) among all possible y’s, requiring that

BT
BTy

> B, (3.4.38)
vey |lylly

(still following the notation (3.4.7)) that is, recalling (3.4.34),

. x"B'y
inf sup ——— > B, (3.4.39)
vevxex [IX[[x [[¥lly

which is possibly the most used equivalent presentation of the assumption, and
which gave it its name. The advantage of formulation (3.4.39) over the original
formulation (3.4.31), if any, is that we got rid of the dependence on y and x. Indeed,
condition (3.4.39) is now clearly a condition on the matrix B, on the spaces X and
Y (together with their norms), as well as on the crucial constant f.

Remark 3.4.4. We point out once more that the inf-sup condition is stronger than
the simple injectivity (3.4.36). Considering for simplicity the matrix

(1 0 0
By ._( 0 6 o) (3.4.40)

and taking the Euclidean norm for all the spaces, we easily see that, for 0 < 6 < 1,

BTyl R4 (0D
inf = inf 5 NV R
ver2 |yl yerr  (yi+yHY

In a sequence of problems, sub-matrices as By can appear, in crucial places, with
smaller and smaller 0’s. In these cases, for every single problem of the sequence,
we shall have a positive infimum in (3.4.38), but there will not be a positive uniform
B bounding them all from below. O

We collect the previous discussion in the following proposition.

Proposition 3.4.4. Given a sequence of spaces X, Y, a sequence of matrices A
and B and a single positive constant B, then the inf-sup condition (3.4.31) is
equivalent to

Blyly <IB"ylr. VyeY. (3.4.41)
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Moreover, recalling Proposition 3.4.3, we have that the inf-sup condition (3.4.31) is
also equivalent to

3Lz : G — X suchthat BLzg =gVge G (3.4.42)
with
BlLggllx < lgllc VgeG. (3.4.43)

Therefore, in particular, the inf-sup condition (3.4.31) implies that all the matrices
B in the sequence are surjective and all the matrices BT are injective. O

3.4.3 The inf-sup Condition and the Singular Values

Now we shall see that, using the definitions and the notation of the previous part of
this chapter, the discussion of the previous subsection could be drastically shortened.
However, first we recall some basic notion on the singular value decomposition (see
e.g. [228]). Given an m x n matrix M, it is always possible to find an n X n unitary
matrix U and an m x m unitary matrix V' such that

M=VXU (3.4.44)

where X' is an m X n non-negative diagonal matrix. We recall that a rectangular
matrix X is said to be a non-negative diagonal matrix if all its entries are non-
negative and for all i # j we have 0;; = 0. On the other hand, an r X r matrix A
is said to be a unitary matrix when the product A7 A is equal to the identity r x r
matrix . Note that this implies that (Az)” Az = 2"z for all z € R”, so that A does
not change the Euclidean norm.

In (3.4.44), the diagonal entries of X are known as the singular values of M.
It can be shown that the non-zero singular values of M are the square roots of the
non-zero eigenvalues of M7 M.

We now focus our attention on a fundamental example already considered in
Sect.3.1.

Example 3.4.1. Let us go back to the Example 3.1.5, and consider the matrix (that
we now denote by X') given by

u 0-0 0000
0 -0 0000

s | 144S
0 0-u 0000 ( )
00-00000
00-0 0000
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where again k is the dimension of (KerX)+, which coincides with the dimension of
(KerXT)L. Here we have n = k + 4 and m = k + 2. Assuming that the singular
values p; have been ordered in decreasing order, that is

P1 > o > 0> et > ks (3.4.46)
we clearly have (referring to Corollary 3.1.4)

b L
IZ80e _ 0 na sup ME2ME _ (3.4.47)

£€R! 1€l e ne€lmy nll &

which, using Proposition 3.4.3, gives immediately

TE B
inf sp T2 B = (3.4.48)
ne®ersT)L gekers)L 1€ 11E 1nlle

Now, we remark that in (3.4.48) there would be no gain and no loss in taking the
supremum for £ € R” rather than for £ € (KerY)- C R”. In general, taking
the supremum on a bigger set will provide a bigger (or equal) supremum. Here,
for £ € KerX, the numerator in (3.4.48) (that is 7 X&) will always be zero and
therefore the supremum will not change. Hence,

T
X
inf sup —1 28 (3.4.49)
ne(KerxT)L E€R” ”E ”E ”’7”E
O
Now, given an m X n matrix B, we set (recalling assumption (3.4.9))
M := Sy BSy, sothat B=S,'M Sy (3.4.50)

Taking the singular value decomposition (3.4.44) for M will correspond to writing
B as

B=SyV XU Syk. (3.4.51)
It is not difficult to check that writing x = Sy'UT§ andy = S; 'V yields

y'Bx ' VTS'SyVIUSxySy'U™s  g'X&
xllx lylly ISx S'UTE|e ISy Sy Valle &£ lInlle

(3.4.52)

where, in the last step, we used the definition of the norms (3.4.9) and the fact that
U and V are unitary.

Noting that, as it can be easily checked, fory = S;'Vy and B given by (3.4.51)
(sothat BT = Sy UT XT VT Sy), we have
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y € KerBT iff neKerXT,

we conclude that

i y' Bx . n XE
inf  sup —— = inf sup ——— = k. (3.4.53)
veers™y L xek [Xlx 1Yy yegerzryr gerr 1ElE Inlle

We collect the result in the following proposition.

Proposition 3.4.5. Let B be an m x n matrix, let the norms in X and Y be defined
as in (3.4.9) through the matrices Sx and Sy, respectively, and let § be defined as

TBT TBT _
inf sup —— Y = inf sup—— 3 —: §, (3.4.54)
verdtxex L IXIx lI¥lly  yems xex [Xlx [lylly

where, as usual, K ‘= KerB and H := KerBT. Then, ,3 coincides with the
smallest positive singular value of the matrix Sy B Sx. In particular, the inf-sup
condition (3.4.31) is equivalent to say that “all the singular values of Sy B Sx are
positive, and the smallest singular value ,3 is bounded from below by a fixed positive
constant B, independent of the decomposition”. O

3.4.4 The Case of A Elliptic on the Whole Space

As we have seen when discussing solvability, the inf-sup condition alone cannot be
sufficient for having stability for problems of the general form (3.2.1) and (3.2.2).
In order to have sufficient conditions, we now introduce a further assumption on
the matrix A. As discussed at the end of Sect.3.4.1, we start considering a strong
condition. More precisely, we make the following assumption.

Ellipticity condition. There exists a positive constant o, independent of the mesh-
size h, such that

alx|} <x"4x  VxeX. (3.4.55)
We immediately note that, from (3.4.20) and (3.4.55), we easily deduce that
o< M,. (3.4.56)

We now have the following Theorem.

Theorem 3.4.1. Let the assumptions (3.4.8)—(3.4.15) on spaces, norms and matri-
ces be satisfied. Let X,y,f, g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume moreover that the inf-sup condition (3.4.31) and the elliptic-
ity (3.4.55) are satisfied. Then, we have
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1 M,
Il < Sl + 22 )glo. (3.4.57)
o of
vl = Mo ey, 4 Moy (3.4.58)
Yir = oz,B F oc,BZ gllG- 4.

Proof. 'We shall prove the result by splitting x = xs +xg, andy = y s +y,, defined
as the solutions of

Axs + Bly, =f,
! ! (3.4.59)
BXf = 0,
and
Ax, + BTy =0,
¢ ¢ (3.4.60)
Bx, = g.

We proceed in several steps.

» Step 1 — Estimate of Xy and AX ¢
We multiply the first equation of (3.4.59) to the left by XJT, and we note that

x| BTy, =y Bx; = 0 (by the second equation). Hence,
Xy Axy =x"f (3.4.61)

and, using the ellipticity condition (3.4.55), relation (3.4.61) and the first of the
dual norm estimates (3.4.17), we have

alxsly < x5 Ax; =x"t < |Ix/llx [f] £ (3.4.62)

giving immediately

1
sl < —lifll . (3.4.63)
and using (3.4.18),
M,
lAxrllr < —=IflF. (3.4.64)

» Step 2 — Estimate of y ¢
Using the equivalent form of the inf-sup condition (3.4.41), we have

Bllyslly <IB ysllr = |If — Axy]|F. (3.4.65)

Then, using (3.4.65), (3.4.64) and (3.4.56), we obtain

1 1 M, 2M,
Iyby < glt=axle < g (1422 e < 22000l Ga60)
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* Step 3 — Estimate of ||x||% by |lyelly
We use the ellipticity (3.4.55), then the first equation of (3.4.60), then (3.1.5),
then the second equation of (3.4.60), and finally the second of the dual norm
estimates (3.4.17):

allXg [y < XgAxe = =X BTy, = =¥, Bx, = —y;8 < [¥elrligl. (3.4.67)
» Step 4 — Estimate of ||yelly by |IXq|lx

Using again the inf-sup condition in the from (3.4.41), the first equation
of (3.4.60) and the continuity property (3.4.18), we have

Blyelly < IBTygllr = Al F < Ma|Ixgllx- (3.4.68)

» Step 5 — Estimate of ||Xg||x and ||yg|ly
We combine (3.4.67) and (3.4.68) to obtain

M,
alxgll} < fllgllcllxgllx, (3.4.69)
which immediately implies
M,
=— . 3.4.70
Ixgllx < op Iglle ( )
Using this in (3.4.68), we therefore have
MZ
a
Iyellx = a—ﬁzllglls- (3.4.71)

The final estimate then follows by simply collecting the separate esti-
mates (3.4.63), (3.4.66), (3.4.70) and (3.4.71).
O

Remark 3.4.5. In some applications (and in particular for the Stokes problem), the
matrix A will always be symmetric and positive definite, essentially for all possible
types of finite element discretisations, with an « easily bounded away from 0. In
these cases, the only condition that we must check will be the inf-sup condition on
B. This led some people to believe that the inf-sup condition for B is the assumption
to be made for getting a good method when dealing with mixed formulations. This,
however, is a superstition, based (as all superstitions) on a narrow horizon. We
will see in Chap.5, Sect.5.2.4, some examples of discretisations of simple one-
dimensional problems that illustrate this point. O
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Remark 3.4.6. In some applications it might happen that the constants « and S
either depend on 4 (and tend to zero as h tends to zero) or have a fixed value
that is however very small. It is therefore important to keep track of the possible
degeneracy of the constants in our estimates when « and/or B are very small. In
particular, it is relevant to know whether our stability constants degenerate and tend
to infinity, for example, as 1/8 or 1/8? or other powers of 1/ (and, similarly,
of 1/@). In this respect, we point out that the behaviour indicated in (3.4.57)
and (3.4.58) is optimal. This means that we cannot hope to find a better proof giving
a better behaviour of the constants in terms of powers of 1/« and 1/, as shown by
the following example. Considering the system

1 =1 b\ (x fi
1 a Ollx]l=1]r 0<a,b <1, (3.4.72)

b 0 0 y g

one easily obtains
g fHoog Si L (Q+ag

=2, JL_ 5 = 4 2= _ 2 7o 3.4.73
NEy =TT w YT T T aw (34.73)
Since « = a and B = b, from (3.4.73) we deduce that the bounds of Theorem 3.4.1
cannot be improved. O

The dependence of the stability constants on « and 8 can however be improved
if we add as a further assumption the symmetry of the matrix 4. We have indeed the
following result.

Theorem 3.4.2. Let the assumptions (3.4.8)—(3.4.15) on spaces, norms and matri-
ces be satisfied. Let X,y,f, g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume moreover that the inf-sup condition (3.4.31) and the elliptic-
ity (3.4.55) are satisfied, and assume moreover that A is symmetric. Then, we have

1 1/2

Ixllx < —lifllr + ~75 1/2/3 lglle. (3.4.74)
1/2

lylly < 1/2’3 €]l 7 4 Mo 52 =llglle. (3.4.75)

Proof. The following proof mimics rather closely the path of the previous one. In
particular, it is done again analysing separately the two problems: (3.4.59), for g =
0, and (3.4.60) for f = 0. However, instead of just indicating the differences between
the two proofs, we prefer to report also the second one in detail.

» Step 1 — Estimate of Xy and AX ¢
We multiply the first equation of (3.4.59) to the left by x? and we note that
x?BTy f= yTBxf = 0 (by the second equation). Hence,
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xjAx; =x'f (3.4.76)

and, using the ellipticity condition (3.4.55), relation (3.4.76) and the first of the
dual norm estimates (3.4.17), we have

allx/ i = xjAx; =x"f < |x/[lx [f]7.
giving immediately
1
Ixsllx < a||f||F (3.4.77)
as well as

X§Axf

IA

1
a||f||fp. (3.4.78)

Therefore, using (3.4.22), we also get

M,
[AxsllF < TN €]l 7 (3.4.79)

which improves estimate (3.4.64).

» Step 2 — Estimate of y ¢
We now use the equivalent form of the inf-sup condition (3.4.41) withy = y.
We have

Bllyslly <IB ysllr = Ilf— Axy||#. (3.4.80)
Then, using (3.4.80), (3.4.79) and (3.4.56), we obtain
1 MI/Z 2M1/2
Iyl = 5= Axlr < (E + l/zﬁ) Il = Jag il 348D

e Step 3 — Estimate ofxg Axg by |lyelly
We multiply the first equation of (3.4.60) by xg. Using the second equation
of (3.4.60) and the second of the dual norm estimates (3.4.17), we have

XgAXg = _XgBTYg = _Y§Bxg = _Y;g < llyellvliglo- (3.4.82)
» Step 4 — Estimate of ||yg|ly by (XZ;AXg)l/Z
Using now the inf-sup condition in the form (3.4.31) with y = y,, we get that
there exists an X # 0 such that X’ BTy, > B||X||x|ly,|ly - This relation, the first
equation of (3.4.60) and the continuity property (3.4.25), yield
BlIEIlxllyelly < %" By, = —%"Ax, < M |%|lx (xg Axp)'2, (3.4.83)

giving (as X # 0):
1/2

Iyelly < (xI Axy)'/2. (3.4.84)
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» Step 5 — Estimate of ||Xg|lx and ||yelly
We first combine (3.4.82) and (3.4.84) to obtain

M,
Ivelly = 27 ligle- (3.4.85)

Moreover, using the ellipticity assumption (3.4.55), then (3.4.82) and finally
(3.4.85), we have

A

M,
2 T 2
afxglly < x, Ax, < [Iycllyligle < ﬂ—fllgllc,

which can be rewritten as

M2
I llx < =5z llgle- (3.4.86)
g al2p

The final estimate follows then by simply collecting the separate esti-
mates (3.4.77), (3.4.81), (3.4.86) and (3.4.85). ]

Remark 3.4.7. We point out that the behaviour indicated in (3.4.74) and (3.4.75)
is also optimal, in the sense that, as in the previous case, we cannot hope to find a
better proof giving a better behaviour of the constants in terms of powers of 1/« and
1/B. Indeed, consider the system

2 Ja b X1 fi
Ja a 0llxl=]r 0O<a bk,
b 0 0 y 4

whose solution is

g _ g A S g
E» XZ—;_my y—?—m—ﬁ. (3.4.87)

Since the constants & and § are given by

X1 =

24+a—+a*+4 4a
o=

2 2(2+a+ Va1 4)

TR

and

p =0,

we see from (3.4.87) that there are cases in which the actual stability constants
behave exactly as predicted by the theory. O
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3.4.5 The Case of A Elliptic on the Kernel of B

We now consider, together with the inf-sup condition on B, a condition on A that is
weaker than the full ellipticity (3.4.55). In particular, we require the ellipticity of A4
to hold only in the kernel K of B.

More precisely, we make the following requirement.

Elker condition. There exists a positive constant o, independent of the mesh-size
h, such that

allx||} <x"Ax  VxeK, (3.4.88)

where K is the kernel of B.

The above condition is often called elker since it requires the ellipticity on the
kernel.

We remark, for future use, that from (3.4.20) and (3.4.88) we get

o < M,. (3.4.89)

The following Theorem generalises Theorem 3.4.1.

Theorem 3.4.3. Let the assumptions (3.4.8)-(3.4.15) on spaces, norms and matri-
ces be satisfied. Let X,y,f, g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume moreover that the inf-sup (3.4.31) and the elker condition (3.4.88)
are satisfied. Then, we have

2M,
oo

2

1
Ix]lx < a_OHfHF + lellc. (3.4.90)

2M,
Iylly < ” Ifll 7 + lgle- (3.4.91)

a
p aop?
Proof. We first set x, := Lg where L is the lifting operator defined by Proposi-

tion 3.4.4. We also point out the following estimates on X,: from the continuity of
the lifting L. (3.4.43) we have

Blixgllx < lgllc (3.4.92)
and using (3.4.18) and (3.4.92) we obtain

a

M,
B lglle- (3.4.93)

| Axg||F < Ma”Xg”X =<

Then we set

Xk :=x—X, =x—Lg (3.4.94)
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and we note that xx € K. Moreover, (Xg,y) solves the linear system

Axg + BTy = f— Ax,,
BXK =0.

(3.4.95)

We can now proceed as in Steps I and 2 of the proof of Theorem 3.4.1. We note
that our weaker assumption elker (3.4.88) is sufficient for allowing the first step
in (3.4.62). Proceeding as in the first part of Step 1, and using (3.4.93) at the end,
we get

1 1 M,
Ixkllx = —IIf — Ax,llr < — (”f”F + —IIgIIG) (3.4.96)
Qg Qo B

This allows to reconstruct the estimate on X:

1 M,
X[lx = [Ixx + Xgllx < —|If +( )
Ixllx = lIxx + xgllx ” £l 7 W; ﬂ Iglle

2M, (3.4.97)

where we have used (3.4.89) in the last inequality. Combining (3.4.18) and (3.4.97),
we also have

M, (3.4.98)
aop o
Then, we proceed as in Step 2 to obtain, as in (3.4.81),
Bllylly < [If — Ax]|r (3.4.99)
and, using the above estimate (3.4.98) on Ax in (3.4.99), we obtain
ol = (54 M)y 4 2 g < 2oy, 4 2Me oy 3100
YY_’B «op F 'Bng_ «op ﬂng’ 4
and the proof is concluded. O

Remark 3.4.8. In the spirit of Remark 3.4.6, we note that the dependence of the
stability constants on ¢ and 8 is optimal. Indeed, the dependence is the same as
the one proved in Theorem 3.4.1 under stronger assumptions. Hence, the optimality
is again shown by example (3.4.72), for which we have o9 = a and § = b. It
is interesting to note that, contrary to the result of Theorem (3.4.2), adding the
assumption that A is symmetric would not improve the bounds (!). Indeed,
considering the system
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1 1 b X1 fl
1 a Of]lx]=], 0<ab <1, (3.4.101)
b 00 y g
one easily obtains
g foog S o (I—a)g
=2, =1 _ 2> =L L4 o 3.4.102
ey T Tw YT Tt T ae (3.4.102)

Since &g = @ and B = b, system (3.4.101) shows the same behaviour as the bounds
of Theorem 3.4.3 (and not better), even though A is symmetric. O

In order to recover the better bounds found in Theorem 3.4.2, we have to assume
that A, on top of satisfying the ellipticity in the kernel (3.4.88), is symmetric and
positive semi-definite in the whole R” (a property that the matrix A in (3.4.101)
does not have for a < 1). This is because, in order to improve the bounds, one has
to use (3.4.22) that requires A to be symmetric and positive semi-definite. We have
indeed the following result, that we state without proof: indeed, we shall see in the
next section that this result can be obtained as a particular case of a more general
estimate (see Remark 3.6.4).

Theorem 3.4.4. Let the assumptions (3.4.8)—(3.4.15) on spaces, norms and matri-
ces be satisfied. Let X,y,f, g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume that the inf-sup (3.4.31) and the elker condition (3.4.88) are
satisfied, and assume moreover that A is symmetric and positive semi-definite on
the whole space X. Then, we have

1 2M,)?
Ixllx = —Iflr + —75—lgllc. (3.4.103)
(e %)) ao :3
oM, M,
Iyly < =5=lIfl7 + — lgllc- (3.4.104)
/ B
a) P

3.4.6 The Case of A Satisfying an inf-sup on the Kernel of B

As we have seen in the previous sections, the ellipticity in the kernel for the matrix
A is not the weakest condition we can use. Indeed, in order to get necessary and
sufficient conditions for solvability, we used the surjectivity of B (here replaced
with the inf-sup condition on B) and the non-singularity of Agx on the kernel K of
B. Hence, it is clear that we still have room to improve the result of Theorem 3.4.3
by assuming on A some property weaker than (3.4.88). In particular we can assume

Inf-sup condition on Agg: There exists a positive constant ay, independent of the
mesh-size h, such that
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. 27 Ax
inf sup ——— > ;. (3.4.105)
xek zek [|12[lx [IX[lx

We note that (3.4.105) can be equivalently written as

27 Ax
ap||X||x < sup—— VxeK, (3.4.106)
z€K ”Z“X
or
ai|xllx < |Axxx]|lk VxeKk, (3.4.107)

where we used the notation of (3.4.16).
We have then the following result.

Theorem 3.4.5. Let the assumptions (3.4.8)—(3.4.15) on spaces, norms and matri-
ces be satisfied. Let X,y,f, g satisfy the general system of equations (3.2.1) and
(3.2.2). Assume, moreover, that the inf-sup condition (3.4.31) on B and the bounding
condition (3.4.107) on Akk are satisfied. Then, we have

1 2M,

IxlIx < —Iflr + =gl (3.4.108)
o ap
2M, 2M?

Iylly < = Ifllr + =—% gl (3.4.109)
aip a1 p

Proof. The proof is identical to that of Theorem 3.4.3. The only change is in the
first inequality in (3.4.96). Using this time (3.4.107), and noting once more that
from (3.2.5), we easily obtain

arlxxllx < Axxxkllxr < IIf — AxxXgllxr < IfllF + [|AX¢ | F, (3.4.110)

so that the first inequality of (3.4.96) still holds if we replace oy by «. The rest of
the proof goes on unchanged. O

So far, for every type of bounding conditions on the matrix A (global ellipticity
and ellipticity on K), we considered separately the special cases in which A had
some additional property. In particular, after Theorem 3.4.1 (where A was assumed
to be elliptic on the whole X), we considered in Theorem 3.4.2 the case where
A was also symmetric. Similarly, after Theorem 3.4.3 (where A was assumed to
be elliptic on K), we considered in Theorem 3.4.4 the case where A was also
symmetric and positive semi-definite on the whole X. Now, after Theorem 3.4.5
(where A is supposed to satisfy the bounding condition (3.4.107) on K), we could
ask ourselves what happens if we assume further that A is also symmetric and
positive semi-definite on the whole X. This, however, would bring us back to the
case of Theorem 3.4.4, thanks to the following proposition.
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Proposition 3.4.6. Let A be an n x n matrix, and K a subspace of R". Assume
that A is symmetric, positive semi-definite, and verifies (3.4.107) on K. Then, A is
elliptic on K. O

Proof. Indeed, for x € K, using (3.4.106) and then (3.3.1), we have

TA 2 TA TA
2x|2 < sup & f) < sup 2 2 < pxT Ax, (3.4.111)
ek |z} zeK lzll%
and the result follows with o = a% /M,. O

3.5 Additional Results

In this section, we present some additional results concerning necessary conditions,
modified problems and special cases.

3.5.1 Some Necessary Conditions

We see in this subsection that the above sufficient conditions for having exis-
tence and uniqueness of the solution, together with stability estimates, are indeed
necessary.

Theorem 3.5.1. Assume that there exists a constant C such that, for any quadruple
(x,y,f,g)in X xY x F x G solution of (3.2.1) and (3.2.2), we have

Ixllx + llylly = C(fllF + [lglle)- (3.5.1)

Then, (3.4.107) and (3.4.31) are verified witho; = = 1/C.

Proof. For every y € Y, it is easy to see that (0,y, BTy, 0) satisfies (3.2.1) and
(3.2.2). Hence, (3.5.1) shows that the inf-sup condition (3.4.31) is satisfied in the
equivalent form (3.4.41), with 8 = 1/C. Then, for every x € K = KerB, set
f := mgAx = Aggx. Note that mg (f — Ax) = 0, and hence f — Ax belongs to
K+. From (3.1.60) we have that there exists ay € Y such that BTy = f — Ax,
and since x € K, we have that (x,y, Ax, 0) satisfies (3.2.1) and (3.2.2). Hence,
inequality (3.5.1) gives now (3.4.107) with oy = 1/C. O

Remark 3.5.1. Note that an inequality like (3.5.1) implies that the problem (3.2.1)
and (3.2.2) has been adimensionalised. This is not the case for the results of the
previous section. See also Remark 3.6.6 at the end of this chapter. O

Theorem 3.5.1 dealt with the necessity of the assumptions in Theorem 3.4.5.
The following result deals with the necessity of the assumptions in Theorem 3.4.4.
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Theorem 3.5.2. Let A be symmetric and positive semi-definite. Assume that there
exists a constant C such that for any quadruple (x,y,f,g) in X xY x F x G
solution of (3.2.1) and (3.2.2) we have that the bound (3.5.1) holds. Then, (3.4.88)
and (3.4.31) are verified with oy = 1/(C>M,) (where M, is the continuity constant
of A defined in (3.4.18)) and B = 1/C, respectively.

Proof. The result is an immediate consequence of Theorem 3.5.1 and Proposi-
tion 3.4.6 O
Remark 3.5.2. As we have seen in Theorem 3.2.1, the estimate (3.5.1) implies the
inf-sup condition (3.2.19) and the non singularity of Agx on the kernel K (3.2.18).
The purpose of Theorems 3.5.1 and 3.5.2 is mainly to show that a uniform bound
for C implies uniform bounds for the constants & (or «p) and . O

3.5.2 The Case of B Not Surjective. Modification
of the Problem

Here, we come back, somehow, to the case of Remark 3.2.1. To start with, we
observe that, proceeding as in Remark 3.2.1 we, immediately have the following
result.

Proposition 3.5.1. Assume that Agg satisfies (3.4.105), and g € ImB. Then,
problem (3.2.1) and (3.2.2) has at least one solution (X,y). Moreover, X is uniquely
determined and

1 M
Ixl[x < OTI(IIfIIF + fllgllc) (3.52)

where ,5 is defined in (3.4.28). O

We note that (3.5.2) does not provide any estimate for the variable y. This should
be expected since in Proposition 3.5.1 we did not assume that the inf-sup condition
(3.4.31) holds true. However, (3.4.28) will always hold so that for g € ImB we
might consider the problem (3.2.1) and (3.2.2) in X x H+ instead of X x Y, keeping
in H the same norm that we had in Y. Hence, we can apply any of the previous
theorems of this section (that is, one of the Theorems 3.4.1-3.4.5) and have an
estimate in X x HL as a functiog of the norms of f and g, of the constant «
(or o, or «1) and of the constant B appearing in (3.4.28). For instance, applying
Theorem 3.4.2, we have the following result.

Theorem 3.5.3. Assume that the assumptions (3.4.8)—(3.4.15) on spaces,
norms and matrices are satisfied. Let X,y,f, g satisfy the general system of
equations (3.2.1) and (3.2.2), with y € H*. Assume moreover that A is symmetric
and satisfies (3.4.55) and that the constant B is defined by (3.4.28). Then, we
have:
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1/2

1 M,

< |t _llells. 353

Il = Sl + < el (3.53)
om)? M,

e L L L (35.4)

3.5.3 Some Special Cases

In some applications, we shall encounter situations where the right-hand side has the
special form (f, 0) or (0, g). In fact, the proofs of the previous Theorems often used
explicitly those special cases. We now consider them in more detail. For the sake
of simplicity, we will restrict our attention to the case of A symmetric and positive
semi-definite.

3.5.3.1 The case (f, 0)

From Proposition 3.5.1, we have immediately the following particular case.

Proposition 3.5.2. Assume that A satisfies (3.4.105) and g¢ = 0. Then, prob-
lem (3.2.1) and (3.2.2) has at least one solution (X,y). Moreover, X is uniquely
determined by f and

f
il < [l (3.5.5)
23]

Finally, y is unique up to an element in H = KerB" and

M. |/fl|F

o]

llmgeylly < (3.5.6)

O
Conversely, we have that Theorem 3.5.2 has two correspondents in the (f, 0) case.

Proposition 3.5.3. Assume that A is symmetric and positive semi-definite, and
assume that there exists a constant C > 0 such that, for every quadruple
(x,y,f,0) € X xY X F x G satisfying (3.2.1) and (3.2.2), one has

1x]|x < C||f]|F. (3.5.7)

Then, the discrete ellipticity on the kernel (3.4.88) holds with ay = 1/(C>M,,), M,
being the continuity constant of A defined in (3.4.18). O
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Proof. The proof is identical to the first part of the proof of Theorem 3.5.1, using
Proposition 3.4.6. O

Proposition 3.5.4. Assume that A is symmetric and positive semi-definite, and
assume that there exists a constant C > 0 such that, for every quadruple
(x,y,f,0) € X XY X F x G satisfying (3.2.1) and (3.2.2), one has

llylly < ClIfllF. (3.5.8)

Then, the inf-sup condition (3.4.41) holds with B = 1/C. O

Proof. The proof is identical to the second part of the proof of Theorem 3.5.2. O

3.5.3.2 The case (0, g)

We begin with a simple lemma.

Lemma 3.5.1. Assume that A is symmetric and positive semi-definite, and let Z be
a subspace of X. Then, Ker(Azz) C Ker A.

Proof. 1f z is in the kernel of Az, we immediately have that
2T Az =0, (3.5.9)

which, using (3.4.22), implies Az = 0. O
We can now prove the following result.

Proposition 3.5.5. Assume that A is symmetric and positive semi-definite and
that the inf-sup condition (3.4.31) holds. Then, for every g € G and f = 0,
problem (3.2.1) and (3.2.2) has at least one solution (X,y). Moreover, y is uniquely
determined by g and we have the bound

M,
Ivlly = 25 llgll- (3.5.10)

|

Proof. Using Proposition 3.4.4, we have that, for every g € G, there exists at least
one X, € X such that Bx, = g and

1
Ixell = < ligllc- (3.5.11)
p
Using Lemma 3.5.1 with Z = K, we see that KerAxx < KerA. Then, using

Proposition 3.1.3 with r = s and § = Z = K, we have that 7xgImA C ImAgg.
Hence, the problem: find xx € K such that
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AKKXK = —ﬂKAXg (3512)

has at least one solution. Using (3.4.22), then using (3.5.12) (multiplied to the left
by Xx), and finally using the symmetry of A, one gets

[ Axk|% < M xkAxg = M,x5% Ax, < M, ||xg | x | AXk | £, (3.5.13)

which, using (3.5.11), gives immediately
M,
[AXk[lF < #Hgllc- (3.5.14)

Note that (3.5.12) implies that A(xx + X,) € K, so that by (3.1.60) there exists a
y € Y such that BTy = —(Axg + AX,), and by (3.4.41), (3.5.11), and (3.5.14) we
have

1 M,
Iylly = E“A(XK +x)F =< ﬂ—fllgllc- (3.5.15)

Finally, observe that (x, + Xk, y) solves (3.2.1) and (3.2.2) with (0, g) as right-hand

side.

To see the uniqueness, assume that (x’ , yi) (i = 1,2) are two solutions. Clearly,
g AKx' —x*) = 7x BT (y*> —y') = 0 and hence x' — x? is in the kernel of Agg.
Using Lemma 3.5.1, we see that A(x1 — xz) = 0 so that, from the first equations,

BT (y?> —y') = 0 and the inf-sup condition (3.4.31) implies y' = y>. O

Proposition 3.5.6. Assume that A is symmetric and positive semi-definite, and that
there exists a constant C > 0 such that, for every quadruple (x,y,0,g8) € X xY x
F x G satisfying (3.2.1) and (3.2.2), one has

llylly < Cllglle- (3.5.16)

Then, the inf-sup condition (3.4.31) holds. However, we cannot bound  in terms of
the constant C appearing in (3.5.16). O

Proof. Let us first remark that assumption (3.5.16) implies that B” is injective, and
this implies (3.4.31). In order to see that the value of B cannot be deduced in general,
consider the case when A = 0, X = Y and B is y times the identity. Then, the inf-
sup condition holds with 8 = |y| and (3.5.16) holds with C = 0. O

Proposition 3.5.7. Assume that A is symmetric and positive semi-definite, and that
there exists a constant C > 0 such that for every quadruple (x,y,0,g) € X xY X
F x G satisfying (3.2.1) and (3.2.2) one has,

[Ix||x + [lylly < Cllgllc, (3.5.17)

then (3.2.1) and (3.2.2) has a solution for any f € F and g € G, and (3.4.31) holds
with B =1/C. O
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Proof. Clearly, (3.5.17) implies that (3.2.1) and (3.2.2) for f = 0 and g = 0 has
only the zero solution. Hence, Corollary 3.1.3 implies the solvability of (3.2.1) and
(3.2.2) for general f and g, and then Theorem 3.2.1 gives us (3.2.18) and (3.2.19).
Hence, we just have to deal with the estimate of 8. Note that, now (as we already
have the unique solvability), (3.5.17) ensures the existence of a lifting operator that
associates to every g € G the first component x of the unique solution of (3.2.1) and
(3.2.2) with right-hand side (0, g). Hence, the result follows from Proposition 3.4.4.

0

3.5.4 Composite Matrices

In the previous section, we considered the case in which the matrix A has a block

structure of the type
c DT
A = , (3.5.18)
D 0

and B has the structure B = (E 0) or B = (0 E), so that the whole matrix has
the block structure

c DT ET
M=|D 0 0 (3.5.19)
E 0 0
or
c DT 0
M=|D o ET|, (3.5.20)
0 E 0

respectively. We were also able to find necessary and sufficient conditions for the
solvability, simply using in a reasonable way the conditions dictated by the basic
Theorem 3.2.1.

Here, we would like to consider the associated stability properties. These again
can be deduced from the general case. It is clear that we would need three sequences
of spaces X, Y and Z, with norms that ensure the continuity of the quadratic forms
associated with the matrices

- C (on X x X),
- D (on X xY),
— E (on X x Z for (3.5.19) and Y x Z for (3.5.20)),

as we did in (3.4.20), together with dual norms as in (3.4.10). Then, we just have to
change the non-singularity conditions into their corresponding uniform bounds.
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For instance, in the case (3.5.19), we easily obtained the algebraic condi-
tions (3.2.48), that we recall for convenience of the reader:

ImDT NImET =0,,
(3.5.21)
g C is non-singular K — K  where K = KerD N KerE.

It is not difficult to verify that the corresponding stability conditions are:
x' DTy +xTETz

inf  sup >4 >0,
waevxzxex [IX[x (lylly + llzllz)

(3.5.22)
x'Cx

inf sup ——— > o >0, where K = KerD NKerE.
sek xek |[X[x X[y

Clearly, we could simplify the condition on C by requiring ellipticity on K, or
ellipticity on the whole X.

For (3.5.20), we performed first an exchange of rows and columns, to reach
the form

C 0 DT
M=120 0 E |,
D ET 0

and we found the following solvability conditions:
KerDT N KerE = 0,
KerET =0, (3.5.23)
mzC is non-singular K — K,
where K (cfr. (3.2.52)) is given by
K = {x € X such that Dx € (Ker E)"}. (3.5.24)
Again, it is not difficult to verify that the corresponding stability conditions are:

TDx +y"ETz
inf  sup y +y >§>0,
veY xaexxz) (IXlx + llzllz) Iylly

, y ' E'z
infsup —— > > 0, (3.5.25)
zezyey [¥ly llzllz

. x'Cx
inf sup —— > a > 0.
%eK xeK Ixlx lIxly

Here too, the third condition could possibly by replaced by an ellipticity condition.
Moreover, it is easy to see that, in order to get the first condition, it would be
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sufficient to assume that one of the two matrices D or ET satisfies an inf-sup
condition by itself. However, this would often be an assumption too strong and
difficult to obtain in practice. As we did in the previous section, we do not insist
on these matters, and we shall not analyse the optimal dependence of the stability
constants from §, 7 and « appearing in (3.5.22) and (3.5.25).

3.6 Stability of Perturbed Matrices

We shall now discuss the case of problems of the type (3.3.1) where an additional
matrix C is present. We assume that we are given, for each k € N, an m (k) x m(k)
matrix Ci. Together with the matrices Ax and By, this will give us a sequence of

perturbed problems
A BT f,
P (M) = () (3.6.1)
B —Ci) \yk gk

As we did for the unperturbed case (3.4.1), we drop the index k, and we just
remember that we are actually dealing with a sequence of problems instead of a
single one.

As a first step, we have to extend our assumptions (3.4.20) on the continuity of
matrices A and B, requiring the continuity of C as well. Hence, we assume that
there exists a constant M., independent of k, such that

VzeY,VyeY z/Cy <M, |z|y |lylly. (3.6.2)

We note that, as in (3.4.18) and (3.4.19), we now have forevery y € Y:

T

z Ly
ICyllc = sup < Mc|lylly. (3.6.3)
ek ||Z]ly

We would like to extend the results of the previous subsection to the perturbed
problem (3.6.1).

3.6.1 The Basic Estimate

Following Theorem 3.3.1 we are going to assume that A is symmetric and non-
singular on K = Ker B. It will therefore be useful, in order to reach optimal
estimates in an easier way, to use directly (3.4.88), that we repeat for the conve-
nience of the reader

alx||3 <x"4x  VxeK, (3.6.4)
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instead of (3.4.105). For technical reasons, it will also be easier to deal separately
with the case f = 0 and the case g = 0, as we did, for instance, in the proofs of
Theorems 3.4.1 and 3.4.2. This time, however, it will be more convenient to split the
results in two different lemmata, and join them afterwards. We start therefore with
the following lemma.

Lemma 3.6.1. Let the assumptions (3.4.8)—(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric,
and A and C are positive semi-definite. Then, if X, 'y, and g satisfy

Ax+ BTy =0
(3.6.5)

Bx—-Cy=g,

we have the estimate
oM, (B> + M. M,)
Ity < 2He Pt MMy (3.66)
o, "B
M,

Ivlly = > llgle- (3.6.7)

Proof. Using the inf-sup condition in the form (3.4.41) together with the first
equation of (3.6.5), we obtain

Blylly = IB"yllr = lIAxI|F. (3.6.8)

Now, we take the scalar product of the first equation of (3.6.5) times x, we take the
scalar product of the second equation of (3.6.5) times y, and we take the difference,
obtaining

x'Ax+y'Cy=—y'g. (3.6.9)

Using (3.4.22), then Eq. (3.6.9) with the assumption that C is positive semi-definite,
and finally (3.4.17), we have

IAx[} < Mux"Ax < —M,y"g < Mullylly Iglic. (3.6.10)
which, combined with (3.6.8), yields
M,
[Ax|F < 3 lelc. (3.6.11)
so that, using again (3.6.8),
M,
Ivlly = 25 llgll. (3.6.12)

which proves (3.6.7). The proof now becomes similar to that of Theorem 3.4.2.
Using Proposition 3.4.4, we set
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x:=L(g+ Cy) (3.6.13)
so that, from (3.4.43),
Bx =g+ Cy, (3.6.14)

together with

Blxlx < llg+Cylle =1+ )IIgIIG, (3.6.15)

132
where, in the last step, we used (3.6.3) and (3.6.12). From (3.6.15), we have then
immediately

2
i +M.M
Iy < Pt MeMayoy (3.6.16)
B3
Setting now
XK'= X — X, (3.6.17)

we have from (3.6.14) and the second equation of (3.6.5) that xx € K (the kernel
of B). We then note that, from the first equation of (3.6.1):

xkAx = —xk BTy = —y" Bxx = 0. (3.6.18)
Moreover, using (3.6.17), (3.6.18), and then (3.3.5), we have
Xk Axg = —xk A% < (xk Axg)' 2 (&" A%)1/2, (3.6.19)
which easily gives
X Axg < X" A% (3.6.20)
Hence, we can use (3.6.4) and (3.6.20) to obtain
aolxk |y < xgxAxg < X" A%, (3.6.21)
and finally from (3.6.21) and (3.4.20)

M\1/2
Ixkllx < (a—o) X[l x - (3.6.22)

Finally, we can collect (3.6.17), (3.6.22) and (3.6.16) and have an estimate for x:

Ixllx < lIxxllx + IXllx <

(3.6.23)
< (M “)'1) “#n .

Using (3.4.89) in (3.6.23), we obtain (3.6.6) and the proof is completed. ]
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Remark 3.6.1. The dependence of the constants in (3.6.6) and (3.6.7) on oy and
B cannot be improved. Indeed, considering for instance (for 0 < a,b < 1) the
problem

2a Ja —a 0 0 X
Ja 2 1 b 0 X2
—Ja 1 2 0 b xsl=1 01, (3.6.24)
0 b 0 0 1 Y1 -1
0 0 b -1 0 Y2 -1
we easily have, as unique solution,
3 3+ b2 3-b?
X1 = b3(,1—1/2’ Xy = —T, X3 = T, (3625)
3 3
1= 5E Y2 = - (3.6.26)

We can easily check that we have oy = 2a and 8 = b, and we verify the optimality
of (3.6.12) and (3.6.23). O

We now consider the case where g is equal to zero and f is not.

Lemma 3.6.2. Let the assumptions (3.4.8)—(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric,
and A and C are positive semi-definite. Then, if X, y, and f satisfy

Ax+ BTy =f
Bx— Oy — 0 (3.6.27)
x—Cy=0,
we have the estimates
2 2 2
+2M M,)” + 4(M:M,)
Ixllx =< # Olo),34 €1l (3.6.28)
oMP oM M, + B?
Iyly < M CHM DD gy, (3.629)
o, B3

Proof. As in the previous lemma, we take the scalar product of the first equation
of (3.6.27) with x, then we take the scalar product of the second equation of (3.6.27)
with y, and we take the difference, obtaining

x'Ax +y'Cy =x't. (3.6.30)
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Using then (3.4.22), Eq.(3.6.30) with the assumption that C is positive semi-
definite, and finally (3.4.17), we have

I|Ax]% < M,x" Ax < M,x"f < M, ||x||x |If] £ (3.6.31)

Next, we use the inf-sup condition in the form (3.4.41) to obtain, from the first
equation of (3.6.27),

Blyly < 1B ylr = |If— Ax||F
< | Ax||F + |Ifl| F-

(3.6.32)

We now consider, as we did before, the lifting operator L as defined in Proposi-
tion 3.4.4 and we set

x := L(Cy) (3.6.33)
so that
Bx—-Cy=0. (3.6.34)
Then, using (3.4.43) and (3.6.3),
Blxllx < ICylle = M lylly- (3.6.35)
We now set
Xg ‘= X—X (3.6.36)

and we note that, clearly, Bxx = 0, so that xx € K = Ker B. Our next (and most
delicate) step will be to estimate Xk in terms of X. We first note that, using (3.6.4),

aollxk ||} < Xi Axk, (3.6.37)
which implies that
xD Axg\ 1/2
Ixkllx = (FE2E) (3.6.38)
o
Then, we estimate XQAXK. We remember again that x17;B Ty = 0 (since xgx €

Ker B), so that, using (3.6.36) and the first equation of (3.6.27),
Xk Axg = xp Ax — xE A% = x4 f — x§ A%, (3.6.39)
We now use (3.6.39) with (3.4.17) and (3.3.5), and then (3.6.38) to obtain

xkAxg < |fllF Ixkllx + (xkAxg) 2 & A%)"/?

T
Xy AXg

1/2 5 5
) + (XIY;AXK)I/z(XTAX)l/z (3640)

1
/2

S

< (xgAxg) (5 [l + &7 4%)72),
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implying

(xgAxg)'/? < Ifl 7 + & A%)"/>. (3.6.41)

1/2

Inserting (3.6.41) into (3.6.38), and then using (3.4.20), we now have

1 X7 A%\ 1/2 M,'?
Ixillx < el + (S2) —Mh+ IKlx.  (3.642)
(o)) (o)) 1/2

We can now collect (3.6.36), (3.6.42) and (3.6.35) to obtain an estimate for x

(MCM;/2 M.

Il < ekl + 181 < ool + (S + 5 ) vl
(3.6.43)
1/2
< ol + 2o

Now, we take the square of both sides of (3.6.32), we use (a + b)?> < 2(a® + b?),
we insert (3.6.31) and finally (3.6.43):
BlIyly < 204xI1% + 21f1% < 2MaIxx £l + 2[If]%

372 M, (3.6.44)
1/2ﬁ Iylly + _”f”F) + 2|£]1%-

We now use the fact that, for positive real numbers ¢, a, and b, if t2 < at + b, then
t < a + v/b. Applied to (3.6.44), this gives

2
<20flr(—73a

AM.M."? (M, + 2a9)'/?
Iylly < Tﬂ?,”f”F + ‘;OITIB [I£ll 7 (3.6.45)

Using again the fact that oy < M,, we can rewrite (3.6.45) as

2M, > QMM + B?)
Iylly = PRIETE £l £ (3.6.46)

Inserting (3.6.46) into (3.6.43), we obtain the corresponding estimate for x:

8(M.M,)* + 4M.M, >

L e
_ (B +2M Mo)* + 4(MM,)?
B aof!

which concludes the proof. O

IflF.  (3.6.47)
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Remark 3.6.2. The result (3.6.28) and (3.6.29) cannot be improved in its depen-
dence from the constants «g and §. Indeed, if we consider, for 0 < a,b < 1, the
system

2a  Ja —Ja 0 0 Xy 2

Ja 2 1 b 0 X2 0
—Ja 1 2 0 b x3|l=1]0], (3.6.48)

0 b 0 0 1 Y1 0

0 0 b -1 0 Y2 0

we easily have, as unique solution,
3+ b* —3—b? 3-b2
-xl = —a b4 B _x2 = —al/z b4 B _X3 = —al/z b4 y (3.6.49)
3-b? 3+ b2

+ (3.6.50)

V=i 2T g

It is not difficult to check that &y = 2a and B = b. Hence, (3.6.49) and (3.6.50)
shows the optimality of (3.6.28) and (3.6.29). O

We can now collect the results of the previous two lemmata.

Theorem 3.6.1. Let the assumptions (3.4.8)—(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric
and that A and C are positive semi-definite. Then, if X, y, f, and g satisfy

(3.6.51)
BX — Cy = g’
we have the estimates
(B + 2M M,)* + 4(M: M)
”X”X =< O{OIB4 ”f”F
oM, (B + M. M,)

+ 172 23 —llglle. (3.6.52)

oy B

2M1/2(2MCMa +:32) M,

I¥lly < == Il F + —5ligllo- (3.6.53)

oy B B

The proof easily follows by linearity.
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3.6.2 The Symmetric Case for Perturbed Matrices

The dependence of the constants in (3.6.52) and (3.6.53) on ¢ and B improves
noticeably if we assume that C is symmetric as well. As an example, we can
consider the particular case (relevant in applications) of systems still having the
structure (3.6.1), where C is a symmetric and positive definite matrix verifying

vlIvlly <y'Cy < Mlyl|} VyeY. (3.6.54)

We note that our assumption (3.6.54) easily implies that

1 2 T ~—1 Lo
—|z||ls <z CT 'z < —||z VzeY. (3.6.55)
o el el

From (3.6.54), we easily obtain as well that
1
Iylly < ;IICyIIG Vyey (3.6.56)

and from (3.6.55)
Izl < M. |C7'z|ly VzeY. (3.6.57)

We are now ready to prove our improved estimates.

Remark 3.6.3. We shall prove in the next chapter, Sect. 4.3, additional related
results (in the infinite dimensional case) which may be considered as more elegant,
but for which we have no example showing optimality. O

Theorem 3.6.2. Let the assumptions (3.4.8)—(3.4.15) and (3.6.2) on spaces, norms
and matrices be satisfied. Assume that the inf-sup condition (3.4.31) and the ellip-
ticity requirement (3.6.4) are satisfied, and assume moreover that A is symmetric
and positive semi-definite and that C is symmetric and satisfies (3.6.54). Then, if X,
y, £, and g satisfy (3.6.51), we have the estimate

B2+ 4M.M, 2M,*M,
Ixllx < —————Ifllr + T”g”G (3.6.58)
aof o vB
and
ol < MM 2MMety) (3.6.59)
e T M M+ )2 o

Proof. As we are already used to, we shall split the two cases f = 0 and g = 0, and
then combine the estimates by linearity.
Let us consider first the case f = 0, and assume that x, y, and g satisfy (3.6.5).
Following the notation of Lemma 3.6.1, we still have (3.6.11), (3.6.12)
and (3.6.22). Our target is to improve (3.6.16), which is suboptimal in our (stronger)



3.6 Stability of Perturbed Matrices 191

assumptions. For this we restart by taking once more the scalar product of the first
equation of (3.6.5) times X, getting

x'Ax +x"BTy =0 (3.6.60)

and we substitute y = C ! (Bx — g). Recalling that 4 is positive semi-definite, we
obtain

x'BTC'Bx <x"BTC'g =g C'Bx. (3.6.61)

Using (3.6.55) with z = BX, then (3.6.61), then (3.4.17), and finally (3.6.56) with
y = C7!'Bx, we have

IBx|z < M.(x" B"C™'Bx) < M.(g" C™'Bx)
i M,
< Mcligl €™ Bxlly < == lgllcl1Bxlc. (3.6.62)

which easily gives

M,
| Bx|l¢ < TIIgIIG- (3.6.63)

Asin Lemma 3.6.1, we set again (see (3.6.13) and (3.6.14)) x := L(g+CYy), getting
Bx = g 4+ Cy = Bx. Using (3.4.43), we have therefore

Blxllx = lIBxllc = [IBx|c (3.6.64)

and combining (3.6.63) and (3.6.64), we obtain

- M
IXlx < —lglle. (3.6.65)
vB
which is the required improvement of (3.6.16). We can now use this improved
estimate in (3.6.22), and we obtain

1/2

< (M) 151y < MeMa 3.6.66
il = () IRl = 2 el (3.6.66)

We note at this point that we have another way to obtain an estimate for y, apart
from (3.6.12) that we keep from the previous analysis; actually, from (3.6.56) and
the second equation of (3.6.5), and then (3.6.63):

1 1 M. Y + M,
Iyly = CIBx—glo < (+ 7 )lgle = = lgle- (667

With some manipulations, we see that (3.6.12) and (3.6.67) can be combined into

yly < ——Ma(Me )
T Muyr+ (M. +y)p?

lgllc- (3.6.68)
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We collect the results for f = 0:

- Mo \1/2 M,
Iy < el + 180 < ((5) 7 +1) 5 lelo (3.6.69)
2 My (M. +y)
< . 3.6.70
Iylly < Mo+ (M. 1 )p? lglle ( )

We also note that, using oyg < M, the estimate (3.6.69) becomes

2M,*M
Ixlx = —7—lels. (3.6.71)
a) "vB

We consider now the case in which g = 0 and assume that x, y, and f satisfy
(3.6.27). As before, we can keep part of the previous analysis, but we can improve
it in several places. From the proof of Lemma 3.6.2, we keep the definition of X and
X, and the estimates (3.6.41) and (3.6.42). We now take the scalar product of the
first equation of (3.6.27) times X, and substitute y = C ! Bx:

" Ax+x"BTC7!'Bx =%'t. (3.6.72)
We now recall that BX = BX, and rewrite (3.6.72) as follows
x'BTC7'Bx = "t — %" Ax. (3.6.73)

We now apply (3.6.55) with z = Bx and we use (3.6.73) to obtain:
1
M.

We then use (3.4.17) and the estimate B||X|l¢ < ||BX|l¢ = ||Bx||¢ as in (3.6.64)
and we reach

|Bx|2 <x"BTC7'Bx =%"f— %" Ax.

1
M.

1 -
I1Bxlg < E”f”F IBx[|g — X" Ax. (3.6.74)

We leave (3.6.74) for a while, and we estimate —X” Ax. Using the fact that x =
X + Xg, then (3.3.5), then (3.6.41), and finally some little algebra, we have

—xTAx = —x" Ax — %" Axg
< X7 A% + &7 A%) /2 (x% Axg)"/?

1
/2

< &A% + (iTAi)l/Z( I + (iTAi)l/Z)

1 ~ ~
NE Ifll - (X" A%)'/2, (3.6.75)
o
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which inserted in (3.6.74) gives

1 1
& < =5 IflF X" A%)'2 + —|If]| £ || Bx] . (3.6.76)
172 B
%y

Using the continuity of A (3.4.18) and once more f|X||x < ||Bx|¢g, inequality
(3.6.76) gives:

1/2

Ifll 7 1l Bxllc + E”f”F I1BxllG (3.6.77)

12
M, /,3

%
so that we can divide both sides by || Bx||, obtaining

1/2 M1/2 n é/z

1 M, 1
EHBXHG < 1/2/3 I£llF + E”f”F < Ol(l)/—zﬂ €]l 7 (3.6.78)

which is the basis of our improved estimates. From (3.6.78), we first derive

) . M, (Mal/z_’_al/z)
IXllx < <IIBx[l¢ < T Iflr. (3.6.79)
p oy B?
and then we use it in (3.6.42)
1/2
1 FU
Ixkllx = —IfllF + —7 lIXllx
(o)) 0‘0
1 M M (M o))
<o+ 1L
L) oy p
1 MM, + M.(Myo)'/?
< (a—o e )Iflr. (3680

From the second equation of (3.6.27), (3.6.56) and (3.6.78), we also derive our
improved estimate for y

- 1 M. MY? +al/?
Iylly = |C7"'Bx|ly < —|Bx|l¢ < — 1/—20||f||F- (3.6.81)
Y Y oy "B

We collect the results for g = 0, using the fact that « < M. From (3.6.79) and
(3.6.80), we have the estimate on x
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Ixllx = IIXllx + lIxxllx

MM a1 MM, + Mo(Maoo)'?
= ( tw Tt

) Il

o) B2 o opp?
2
+4M. M
< Pt AM My Ifll7, (3.6.82)
C((),B

while, from (3.6.81), we have the estimate on y

oM. M)?
Iylly < =—7—IflF. (3.6.83)

vy B

The final results can then be obtained collecting (3.6.70), (3.6.71), (3.6.82) and
(3.6.83). O

Remark 3.6.4. We remark that in several applications we have C = eldentity, so
that M, = y = ¢. In this case, the estimates (3.6.58) and (3.6.59) become

B2 + 4eM, oM,
lIxllx < g [ — Py gl (3.6.84)
and
12 4M,
lylly < 1/2’3 ——fllr + M—‘FZ,BZHgHG (3.6.85)

We also note that in the limit for ¢ — 0 we recover the result of Theorem 3.4.4. 0O

Remark 3.6.5. We also point out that (3.6.84) and (3.6.85) are optimal, with respect
to the dependency of the stability constants on the parameters «, 8 and . To see
that, consider for 0 < a,b < 1 the problem

2 Ja —Ja 0 0 X1 2f
Ja 2 1 b 0 X2 0
—Ja 1 2 b x| = , (3.6.86)
0 b 0 - 0 i 0
0 0 b 0 -—¢ Y2 2g

whose solution is given by
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x_f(b2+8)+ g o fe  3ge
T a2 ball?’ 2T 422 (e + b2)
fe 2(3e +2b?%)
= , 3.6.87
BT a0 T bGe 1 b?) (.0.87)
f 3g f 3g
__ _ 8 - J 5 3.6.88
NZ702 36+ b2 2T T 3 + b2 (3:689)

Indeed, it is easy to recognise that &y = 2a and 8 = b, and hence the optimality of
estimates (3.6.84) and (3.6.85). O

Remark 3.6.6. 1t is of some interest to check that all our estimates are “dimension-
ally correct”. Indeed, denoting by [a], [b], [c], [x], [v], [ f] and [g], respectively, the
physical dimensions of A, B, C, X, y, f and g, we have that M, and « have the
same dimensions as A (and hence, in particular, M, /« is a pure number). Similarly,
M, and y have the same dimension as [c]. Moreover, from the two equations of our
system, we have

[P L S 0 D ) -3 1} (3.6.89)

[a]  [b] TS T

from which we easily deduce that [a][c] equals to [b?], so that for instance
M, M. /B? is also a pure number. Taking this into account, we can verify that, in

every stability inequality, an [x] is bounded by a ﬁ [f] times a pure number or by a
a

1 1
m [g] times a pure number, while a [y] is bounded by a m [f] times a pure number
or by a la]

3]

[¢] times a pure number. O



Chapter 4
Saddle Point Problems in Hilbert Spaces

In the first chapter of this book, we introduced a large number of saddle point
problems or generalisations of such problems. In most cases, the question of
existence and uniqueness of solutions was left aside. In the previous chapter, we
considered the solvability of finite dimensional problems in mixed form, together
with the stability of sequences of such problems. We now introduce an abstract
frame that is sufficiently general to cover all our needs, from the problems of
existence and uniqueness in infinite dimension to the stability of their Finite Element
discretisations.

As a first step, we shall recall some basic definitions of Functional Analysis:
Hilbert spaces, continuous functionals, bilinear forms, and linear operators associ-
ated with bilinear forms.

In Sect.4.2, we discuss conditions that ensure existence and uniqueness for
mixed formulations in Hilbert spaces. Several examples of mixed formulations
related to Partial Differential equations will illustrate the theoretical results. Dif-
ferent stability estimates will then be provided for different sets of assumptions.

The last section (Sect. 4.2.2) will be devoted to the study of perturbed problems
(whose algebraic aspects were discussed in Sect. 3.6 of the previous chapter).

We shall follow essentially the analysis of [112] and [122]. We also refer the
reader to other presentations, as can be found in the books [41, 106,222,315,337].

4.1 Reminders on Hilbert Spaces

In this section, we recall some basic notions on Hilbert spaces. Most readers, and
in particular those with a better mathematical background, will already be familiar
with all the contents of the section. For them, the aim of the section will just be to
fix the notation. For other people with a weaker mathematical background, it could
be useful to refresh some notions. On the other hand, we do not pretend to provide
a complete mastering of Hilbert spaces to people that never heard of them before.

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series 197
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5_4,
© Springer-Verlag Berlin Heidelberg 2013
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For these people, a superficial reading will be enough to convince them that things,
in Hilbert spaces, are very similar to their counterparts in finite dimensional spaces.

4.1.1 Scalar Products, Norms, Completeness

We assume that the reader is familiar with the concept of linear space over R. This,
roughly speaking, means that you are allowed to sum two elements of the space, and
to multiply each element of the space times a real number.

Let H, and H; be two linear spaces over R. Amapa : H; x H, — Ris said to be
a bilinear form on H, x H, if, for every u;, v;,w; € Hj, forevery uy, vo,w, € H;
and for every A, u € R, we have

a(Auy + pvr,we) = Aa(ur, wa) + pa(vi, wa) @LD
a(wi, Auy + pvy) = Aa(wi, uz) + pa(wi, va). o

When both H; and H; coincide in a single linear space H, we shall often say that
a is a bilinear form on H, meaning that it is a bilinear form on H x H.
A bilinear form a on H is said to be symmetric if, for every u, v € H, we have

a(u,v) =a(v,u). 4.1.2)

A bilinear form s on H is said to be a scalar product if it is symmetric and if,
MOreover,

s(v,v) >0 VYveH and s(v,v) =0=>v =0. 4.1.3)

We assume that we have a scalar product given on H x H, and from now on
we shall write (u, v)y (or simply (&, v) when no confusion can occur) instead of
s(u, v). To a scalar product, we can always associate a norm

12
lvllg == ((v,v)H) YveH. (4.1.4)

Again, we shall simply write ||v|| instead of ||v||z when no confusion is likely
to occur. It is interesting to note that the norm, as defined in (4.1.4), has the usual
properties of the norms in finite dimension:

IAv] = [Alv]  VYveH YAeR,

lv| >0Vve H and |v|=0=v=0, 4.1.5)
[or +vall < lloall + o2l Yvrv2 € H.
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It is also worth noting that, even in infinite dimension, we have the Cauchy
inequality

(., v)p < ullgllvlz  YuveH, (4.1.6)

whose proof can be easily done mimicking the proof of Lemma 3.3.1 of the previous
chapter.

It is a strong temptation to start defining a norm first (as a mapping from H to R
satisfying (4.1.5)), and then getting a scalar product out of it, for instance by

(u,v) 1= (||u+v||2—||u—v||2)/4. 4.1.7)

Smart, isn’t it? But doomed. That would work if and only if the norm you started
with satisfies the so called parallelogram identity:

v+ ull® + llv —ul® = 2([lul® + [0]*). (4.1.8)

A norm that satisfies (4.1.5) and (4.1.8) is said to be a pre-Hilbert norm, and
induces a scalar product associated to it through (4.1.7).

A linear space H with a norm || - || that satisfies (4.1.5) is called a normed
space. If, on top of that, the norm satisfies the parallelogram identity (4.1.8), then
we say that H is a pre-Hilbert space.

As soon as we have a norm (no matter if it is a pre-Hilbert norm or not), we can
talk about convergence and limits. We say that the sequence {v,} of elements of H
converges to v € H (or that v is the limit of v, for n — +o00) if

lim |jv, —v|lg =0. 4.1.9)
n—-+00

The limit in (4.1.9) is obviously the one of elementary calculus (dealing with
sequences of real numbers). When the type of norm to be used cannot be confused,
we will also write, more simply, v, — v.

Example 4.1.1. Tt is immediate to see that for every integer k > 1 the space R¥
with the usual Euclidean norm (3.1.6) used in the previous chapter is a pre-Hilbert
space. Indeed, the Euclidean norm does come from a scalar product, so that

Ix+yl>+lIx=y1I> = x>+ IylI1*+2x"y + x>+ Iy 1> =2x"y = 2(Ix]* + |y[?).

On the other hand, for instance R? with the norm ||x||; := |x;| + |x2], already seen
in (3.0.4), is not a pre-Hilbert space, since the norm || - ||; does not satisfy (4.1.8):
try it withu = (1,0) and v = (0, 1). O

Once we have anorm in H, we can measure the distance of two elements u and v
of H by |ju—v||. Given a non-empty subset T C H, we can measure its diameter by

diam(T) := sup |lu—v]. (4.1.10)

uveT
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Loosely speaking, the diameter of 7 is the “maximum” distance of any two elements
in T. It is obvious that for two subsets S and 7', if T C S, then diam(T') < diam(S)
(if you increase the set of possible choices, the supremum cannot go down).

Now, for every sequence {v, },en of elements of H, and for every integer m € N,
we can consider its m-th tail T,,, defined as the set

T := {Vms Vm+1, Umt2...} ={va| n > mj. (4.1.11)

We clearly have T,,+1 € T,, forevery m € N (the farther you cut, the lesser is left in
the tail). Hence, whatever the sequence {v,} from which you started, the sequence
of real numbers diam(T,,) that you get out of it is obviously non increasing: that is,
diam(T,,+1) < diam(T,,) for every m. Hence, the sequence diam(T,) will always
have a limit, which is > 0. A sequence {v,} of elements of a normed space H is
said to be a Cauchy sequence in H if the sequence of real numbers {diam(T,,)}
that you get out of it verifies

lim diam(T,,) = 0. 4.1.12)

m—+o00

Note that, in order to speak about Cauchy sequences, what you need is to be able
to measure the distance of two objects. This is always possible if, as in our case,
you have a norm. This is also possible in more general situations, but we are not
interested in them here.

A normed linear space H is said to be complete if for every Cauchy sequence
{v,} in H there exists an element v € H such that v, — v in the sense of (4.1.9).
In other words, a normed linear space is complete if every Cauchy sequence has a
limit. We are almost done.

Definition 4.1.1. A Banach space is a normed linear space that is complete.
Definition 4.1.2. A Hilbert space is a pre-Hilbert space that is complete.

Note that we could have defined alternatively a Hilbert space as a Banach space
whose norm satisfies the parallelogram identity (4.1.8). Hence, every Hilbert space
is also a Banach space, but the converse is not true: in Hilbert spaces, you have a
scalar product, and in Banach spaces that are not Hilbert spaces, you do not (and
can not) have one.

Example 4.1.2. 1t is immediate to have, from elementary Calculus, that for every
integer k > 1 the space R¥, with the usual Euclidean scalar product and norm, is a
Hilbert space. In particular, R itself is a Hilbert space if we take the usual product
of two numbers as scalar product (and hence the absolute value as norm). We also
saw in the previous chapter that, for instance in R?, the norm ||x||; := |x| + |x2]
is equivalent to the Euclidean norm (in the sense of (3.0.5)). On the other hand, we
have already seen in Example 4.1.1 that R? with the norm || - ||; is not even a pre-
Hilbert space, and hence it cannot be a Hilbert space although, still by elementary
Calculus, it is easily seen to be a Banach space. Actually, it is not difficult to check
that the property of being complete is not lost if you exchange your norm with an
equivalent norm (while the property (4.1.8) might indeed be lost). O
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Example 4.1.3. Regarding the functional spaces already used in the first chapter,
we can see that if §2 is a bounded open domain, then L'(£2) (the space of Lebesgue
integrable functions over £2), with the norm

IvllLie) :=/ |v(x)| dx (4.1.13)
o)

is a Banach space, but not a Hilbert space. Note that, as we did already in the first
chapter (and as we are going to do all over this book), we used the term functions in
lieu of the (more precise) classes of measurable functions.

Instead, the space L?(£2) (the space of Lebesgue square integrable functions
over §2), with the norm

||v||iz(9) = /sz(x)dx (4.1.14)
is a Hilbert space, and the corresponding scalar product is given by
(u,v) 120 = /Q u(x)v(x)dx. (4.1.15)
Similarly, the space H, (§2) with the scalar product

(u, v)Hol(Q) :=/ grad u(x) - grad v(x) dx (4.1.16)
2

is a Hilbert space. O

In the following discussion, we shall mostly use only Hilbert spaces. Hence, from
now on, we shall mainly concentrate on them, although most of the concepts and
results could be extended easily to Banach spaces.

4.1.2 Closed Subspaces and Dense Subspaces

Definition 4.1.3. A subset 7' of a Hilbert space H is said to be closed if, for every
Cauchy sequence {v, },en of elements of 7', the limit v (which surely exists in H,
since H is complete) belongs to T as well.

If T is a linear subspace of a Hilbert space H, and if T is closed, then we will
say that 7' is a closed subspace of H. Then T itself will be a Hilbert space, with
the same norm as H.

Example 4.1.4. For instance, in L*(£2), we can consider the subspace L2(£2) made
of functions that have zero mean value in 2. It is easy to see that it is a closed
subspace (since the L2-limit of functions with zero mean value has itself zero
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mean value). On the other hand, C°(£2) is a linear subspace of L?(£2), but it is not
closed: for instance, for £2 =] — 1, 1[, the sequence f, (x) := arctan(nx) converges
in L2(£2) to foo(x) := (1/2) sign (x), which does not belong to C°(£2). O

Definition 4.1.4. Let H be a Hilbert space, and let Z be a subset of H. The closure
of Z, that we denote by Z, is the set of elements v € H such that there exists a
sequence {z, }nen of elements of Z that converges to v.

We abviously have that Z is closed if and only if Z = Z.
Another important concept regarding subspaces is that of a dense subspace.

Definition 4.1.5. A subset Z of a Hilbert space H is said to be dense if its closure
Z coincides with the whole space H. If Z is also a linear subspace of H, then we
say that it is a dense subspace.

In other words, Z is dense in H if for every element v of H there exists a
sequence {z, }nen of elements of Z such that

lim |jv—2zlg =0.
n—-+00

Example 4.1.5. Tt is not difficult to see that Z := H_](£2) is a dense subspace of
H = L*(£2). Itis also clear that Z is not a closed subspace of H: for instance, for
£2 =] — 1, 1], the sequence of functions defined by

1 when |x| <1-1/n

Zp(x) ;= min (1,n —nlx|) =
n(l—|x|) when|x|>1—1/n

verifies z,, € HOl (£2) for all n, and its limit in L? equals the constant 1, which is not

in H}(£2) (as it does not vanish at the boundary). O

Note that a dense closed subspace of a Hilbert space H coincides necessarily with
the whole space H. Hence, in general, we consider subspaces that are closed, but
not dense, and subspaces that are dense, but not closed. These two categories of
subspaces are both very important, and we cannot restrict our attention to just one
of them. We point out however, from the very beginning, that closed subspaces are
the ones that, loosely speaking, inherit most of the properties of subspaces of finite
dimensional spaces. In particular, a finite dimensional subspace is always closed
and is never dense (unless it coincides with the whole space).

4.1.3 Orthogonality

Some very useful instruments available in Hilbert spaces (and not in Banach spaces)
are related to the concept of orthogonality. We say that two elements # and v of
a Hilbert space H are orthogonal if (u,v)y = 0. It is the same as in the finite
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dimensional case, with the only difference that there, the scalar product was denoted
by v7u. If Z is a linear subspace of a Hilbert space H, we can define its orthogonal
complement Z+

Z+ :={we H suchthat (w,2) =0 Vz e Z}. (4.1.17)

It is not difficult to see that an orthogonal complement Z~ is always closed (even
when Z itself is not closed). As in (3.1.24), if Z; and Z, are both subspaces of a
Hilbert space H, then

Z\CZ, = Zyczi (4.1.18)

Moreover, we have the following useful property.

Proposition 4.1.1. Let H be a Hilbert space, let Z be a subspace of it, and let Z
be its closure. Then,

=zt (4.1.19)

Proof. Since Z C Z,we obviously have 7J' C Z+.Onthe otherhand, letw € Z1.
We want to see that (z, w)y = O forallz € Z. Indeed, for every z € Z, there exists
a sequence {z,},en Of elements of Z that convergesto 7. Asw € Z L. we have
(zn,w)g = 0 for all n. Hence,

Z,w)y = lim (z,,w) =0. (4.1.20)
n—-+00

|

Remark 4.1.1. Note that, as we had in Remark 3.1.3, the notion of orthogonal space
depends heavily on the choice of the “whole space” H. Indeed, if H; and H, are
Hilbert spaces, and Z is a subspace of H; and also a subspace of H;, then the
orthogonal of Z in H; will, in general, be different from the orthogonal of Z in
H,. This is rather obvious. However, the common notation (that we are using here)
does not distinguish among the two (we should, for this, use something like Z+#
and Z+#2, which would be tremendously ugly). As a consequence, one should be
careful when confusion is possible. O

As we did in the finite dimensional case, if Z is a closed subspace, we can define
the projection operator 7z : H — Z defined for every v € H by

Tzv € Z and (mzv—v) € A 4.1.21)

Compare with (3.1.31) to see that we are just extending the definitions given in the
previous chapter for the finite dimensional case. As we had in the finite dimensional
case, mzv can be seen as the element in Z that minimises the distance from v,
namely

|7zv —v|g = min|z —v| . (4.1.22)
2€Z
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Remark 4.1.2. In the definition of 7z, we assumed that Z was a closed subspace
of H. Of the two properties (of being closed, and of being a subspace), the second
is not very important. Indeed, it is easy to see that (4.1.22) can be used to define
the projection mapping 7z in more general cases, for instance when Z is not a
subspace but simply a closed convex subset, as for instance a closed affine manifold
(which, roughly speaking, is the translation of a closed subspace). On the other hand,
closedness is more essential. To see what can happen when you remove it, assume
that Z is a dense subspace. Then, for v in H but not in Z, the projection 7wz v cannot
be defined: indeed, we recall that, from Proposition 4.1.1, if Z is dense (and hence
Z = H), then Z+ = HL = {0}. Hence, looking at the definition (4.1.21), if Z
is dense the only w € H such that (w — v) € Z1 is w = v. However, such a w is
not in Z, so that there is no element that we could choose as 7z v that satisfies both
properties required in (4.1.21). Hence, wzv does not exist. Note that the alternative
definition (4.1.22) would not be of any help either. Actually, always for Z dense
and v € H with v ¢ Z, the minimum of ||z — v|| for z € Z does not exist, and the
infimum is equal to zero. O

Itis easy to check that if H is a Hilbert space, and if Z is a closed linear subspace,
then every element v of H can be split in a unique way into its two components in
Z andin Z+:

vV=vz + Uz, (4.1.23)

just by setting vz 1= mzv.

Example 4.1.6. For instance, if H := L*(22) and Z := L2(£2), then Z* is the
(one-dimensional) space made of constant functions. The projection of v € L?(£2)
onto Z is given by

1
nz =v—— [ v(x)dx, (4.1.24)
12| Jo
where |§2| is the Lebesgue measure of 2. O

We have, moreover, the following property.

Proposition 4.1.2. Let H be a Hilbert space and Z a closed subspace of it. Then,
either Z = H or Z* is not reduced to {0}.

Proof. 1f Z does not coincide with H, then there exists a v € H such that v ¢ Z.
Hence, mzv — v # 0. As (4.1.21) also gives v — v € Z=, the proof is concluded.

O
We can now see the equivalent of (3.1.23) in general Hilbert spaces.
Proposition 4.1.3. Let H be a Hilbert space, and Z < H a subspace. Then,
(zYY' =2z it Zis closed. (4.1.25)

Proof. Indeed, if Z = (ZJ-)J-, then Z, being the orthogonal of something, is
closed. To see the converse, we remark first that we always have the inclusion
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Z C (Z J-)J-. If Z is closed, suppose, by contradiction, that Z does not coincide
with (Z+)L. From Proposition 4.1.2 (applied with H = (Z1)1), we should have
ave((Z J-)J-, with v # 0, that is orthogonal to all z in Z. As such, v will hence be
also in Z+. However, Z+ N (Z+)1 = {0} and this contradicts the fact that v # 0.

O

Moreover, we have the following additional property.

Proposition 4.1.4. Let H be a Hilbert space, and let Z be a subspace of H. Then,

Zt ={0} iff Zisdense. (4.1.26)

Proof. Assume first that Z is dense. Then, Z = H and hence Z5 = {0}, and the
result follows from Proposition 4.1.1. Assume conversely that Z+ = {0}. Always

from Proposition 4.1 _l , we have now ZJ' = {0}. However, Z is closed, and hence,
by Proposition4.1.2 Z = H, and Z is therefore dense. O

4.1.4 Continuous Linear Operators, Dual spaces, Polar Spaces

We can now recall several other important definitions.

Definition 4.1.6. Let V' and W be Hilbert spaces, and let M be a linear mapping
from V to W. We say that M is bounded or that it is continuous if there exists a
constant ;* such that

IMvllw < u*lvly  YveV 4.1.27)

Note that we have two different names for that (bounded and continuous) because
the two definitions do not coincide if the operator is not linear. Actually, for a
more general operator, (4.1.27) defines a bounded operator, while continuity can
be taken as in the usual Calculus books: for every v € V' and for every sequence v,
converging to v, we have that M v, converges to M v. Here, however, we only deal
with linear operators, and the two concepts coincide.

v
Example 4.1.7. For instance, the operator v — P is continuous from HO1 (£2)
X1

to L?($£2). Similarly, if ¢ is a given (fixed) bounded function, then the mapping
v — ¢ v is continuous from L?(£2) into itself. O

The following definition is less common but very useful.
Definition 4.1.7. Let V and W be Hilbert spaces and let M be a linear mapping
from V to W. We say that M is bounding if there exists a constant 4 such that

[Mvllw = p«llvlly  YveW (4.1.28)
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In other words, bounding operators are injective operators whose inverse is
continuous.

The set of all linear continuous operators from a Hilbert space V' into another
Hilbert space W is also a linear space (after defining, in an obvious way, the sum
of two operators or the multiplication of an operator times a real number). Such a
space is usually denoted by L(V, W). In L(V, W), we can also introduce a norm:

M
M| zvw) := sup 1M viw (4.1.29)
' vev vy

When no confusion can occur, the norm in (4.1.29) is simply denoted by || M |
Hence, for instance, (4.1.29) implies

IMvlw < [IM]|vlly  VveV. (4.1.30)

One can prove that (4.1.29) actually defines a norm, and that such a norm verifies
(4.1.8), so that with this norm L£(V, W) is itself a Hilbert space.

A remarkable result concerning linear continuous and one-to-one operators is the
following one, due to Banach.

Theorem 4.1.1 (Banach Theorem). Let V and W be Hilbert spaces and let
M € L(V,W) be a one to one mapping. Then, its inverse operator M~", from
W to V, is also continuous.

Proof. The proof can be found in any book of Functional Analysis. O

As we did for finite dimensional spaces, given a subspace Z < V, we can
consider the extension operator E;_.y, from Z to V which to every z € Z
associates the same z, thought as an element of V. If there is no risk of confusion,
this will, more simply, be denoted by Ez as we did in the previous chapter. Always
in agreement with the finite dimensional case, given an operator M € L(V, W), we
can consider the restriction M, of M to Z, that could be defined as

Myz=MEzz VzelZ. (4.1.31)

Since for every z € Z C V we have obviously Mz z = M z, in several occasions,
the extension operator £z will not be explicitly written. In other cases, however,
such notation will turn out to be very useful.

If we assume that Z is a closed subspace of V, that S is a closed subspace of W
and M € L(V, W), we can also consider its restriction Mzs, defined as

Mzgz=ns MEzz Vze Z. (4.1.32)

Itis easy to check that Mz € L(Z, S )~. Conversely, given an operator L in £L(Z, §S),
we can always consider its extension L € L(V, W) defined by
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Lv=EsLmyv Yo e V. (4.1.33)

A particular case of linear operators, of paramount importance, is found when
the arrival space is R. In this case, linear operators V' — R are called linear
functionals on V. The space of all linear continuous functionals on a Hilbert
space V is called the dual space of V, and is usually denoted by V'. Hence,
V' = L(V,R). As a particular case of the previous situation, V" is itself a Hilbert
space, and its norm (often called the dual norm of || - ||) is given by

1l = sup LW

vev |Vl ’

(4.1.34)

We easily recognise the definition of dual norms that were given in finite dimension.
The value of f atv (denoted by f(v) in (4.1.34)) is often denoted in a different way:
either by y/ f, v)y or by ( f, v)y/xy, or simply ( f, v) when no confusion can occur.
It is not too difficult to check (although we shall not do it here) that, if V' is a Hilbert
space, then the dual space of V' (often called the bi-dual space), actually can be
identified with V itself (see the Ritz representation Theorem (4.1.37) here below).

Example 4.1.8. For instance, in one dimension, it is easy to see that the mapping
8o : v = v(0) € R is continuous from HO1 (] — 1, 1]) to R: indeed,

v(0) = /_01 v'(t)dt < (/_01 lzdt)l/z(/_o1 W) dt)l/z
< 1(/_11 (v’(t))zdt)l/z ol @139

Hence, §) is an element of the dual space of H](] — 1,1[) (usually denoted by
H~'(] = 1,1])). Note that a similar result does not hold in dimension d > 1.
Indeed, if 2 is the disk centred at the origin O and radius 1/ /e, a simple explicit
computation shows that the function

v(x,y) := log|log(x* + y?)|
is indeed in H (£2). Setting
Un(x, y) 1= min{n, v(x, y)},

it is not difficult to see that v, converges to v in H, (£2). However, v,(0,0) = n so
that the bound

un(0,0) = Cllvall gy (2

cannot be true with a constant C (no matter how big) independent of n, as the left-
hand side tends to 400 and the right-hand side stays finite. Similarly, the estimate
(4.1.35) becomes false if we try to replace, in the right-hand side, the H' norm with
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the L? norm: consider, for instance, the sequence of functions defined by

1 for x in [—1/n,1/n]

Un(x) = {
0 for x outside [—-1/n, 1/n].

We have

2 ! 2 In 2
”vﬂ”LZ]_l l[: vn(x)dx: ldx=—-—>0
' -1 —1/n n

while v, (0) = 1 for all n. Hence, there is no constant C (independent of 1) such
that

0, (0) < C [lvullL2(=1.1p)- o
Example 4.1.9. Let us also see an example of dual norm: let n be an integer (larger

than 1) and consider in £2 = ]0, x| the function f,(x) := sin(nx). It is immediate
to check that

I full 22y = v/7/2  and that ||fn||H01(Q):n,/_n/2.

To f, we can associate an element, that we still call f,, of H~'(£2) (that is the dual
space of H| (£2)) as follows

Unebbimay = [ o0 fi0)dr Yo € (@)

Let us compute the norm of f, in H~!(£2). For every ¢ € H](£2) we have
(integrating by parts):

o) = /0 " ) dr = /0 " Sin(nx)p(x) dr
/2

1 (" 1
= —/ cos(nx)g'(x) dx < —| cos(nx)| .2 ol = o1z
n Jo n

n

giving us, always for every ¢ € H/ (£2):

(4.1.36)

On the other hand, it is not difficult to see that, taking ¢ = sin(nx), we get
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(o) _ 7/2 _ V7/2
ey nym/2 n’

showing that (1/n)+/m/2 actually realises the supremum (over all possible ¢’s) of
the left-hand side of (4.1.36). In conclusion, we have

:‘?‘
~
1S

Ifallze) = vVa/2  Nhallupey =nva/2 N fallu-1e) =

This shows that the three norms || - ||z, || - ||H01, and || - || z—1 cannot be equivalent.
This also shows that a high frequency function can have, at the same time, an L>-
norm (and a maximum norm) of the order of 1, a huge H '-norm (~ energy norm),
and a tiny H ~'-norm. This will show up in the next chapter, when the use of finer
and finer grids will allow the presence of highly oscillating piecewise linear (or
piecewise polynomial) functions. O

While several properties that we saw and that we will see hold in a much more
general setting (for instance, in all Banach spaces), the following theorem is, in a
certain sense, characteristic of Hilbert spaces.

Theorem 4.1.2 (Ritz’s Theorem). Let H be a Hilbert space, and let Ry be the
operator H — H' that to each 7 € H associates the functional f, = Ryz € H'
defined as

(fesVY'xg = (z,v)g Yv e H. (4.1.37)

Then, Ry is one to one, and |Ry || cmury = IR |27,y = 1. Moreover, if we
identify (as it is natural) H with (H')', then Ry;' = Ry
Proof. The proof can be found in every Functional Analysis textbook. O

Another result that we are going to use later on is the following theorem, that can
be seen as a particular case of a more general result, known as the Kato Theorem.

Theorem 4.1.3 (Kato Theorem). Let V and W be Hilbert spaces and let T and
T, be in L(V,W). If T\ is bounding, then there exists an €y > 0 such that for all
e € R with |e| < g the perturbed operator T\ + T is also bounding, and we have
moreover

177" = (Ty + eT) N eawy) < C el (4.1.38)

with C depending on &y but independent of ¢.

If Z is a subspace of a Hilbert space H, we can spot a special subset of H’,
usually called the polar space of Z, made of all functionals f € H’ that vanish
identically on Z. The polar space of Z is usually denoted by Z°: hence, we have

Z%:={f e H suchthat (f.2)yrxy =0 Yz e Z}. (4.1.39)
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It is clear that the definition of polar space of Z makes sense only when Z is
considered as a subspace of another space (in this case, H). In particular, the polar
space of Z = {0} coincides with the whole H’ while the polar space of Z = H is
reduced to the zero functional.

Remark 4.1.3. 1t is easy to check that a polar space is always closed. Indeed,
roughly speaking, if ( f,,z) = O for every n and for every z, and if f, — f in
H', then (f,z) = 0 for all z. O

The concept of polar space is commonly used for general Banach spaces. In Hilbert
spaces, however, it becomes particularly simple using the Ritz Theorem. Indeed,
from (4.1.39), we immediately have

Z%= Ry (Zh). (4.1.40)
From this and Proposition 4.1.3, we then have

(z°)° =2z it Zisclosed, (4.1.41)
and from (4.1.26),
Z° ={0} iff Z isdense. (4.1.42)

Remark 4.1.4. Property (4.1.42) is a particular case (or, if you want, the restriction
to Hilbert spaces) of a fundamental theorem of Functional Analysis, known as the
Hahn-Banach Theorem. O

Remark 4.1.5. As we had in Remark 4.1.1 for orthogonal spaces, if Z can be seen
as a subspace of two different spaces H; and H>, then the polar of Z in H 1/ will be
different from the polar of Z in H,. o

Similarly to (4.1.18), when Z| and Z, are subspaces of the same space H, then

ZcZ, = 27Z9c2z (4.1.43)

4.1.5 Bilinear Forms and Associated Operators; Transposed
Operators

Another important particular case is that of bilinear forms. Assume that V' and Q
are Hilbert spaces: we say that a bilinear form b from V' x Q to R is continuous if
there exists a constant up, such that

b(v,q) < wsllvliv ligllo YvelV, VgeQ. (4.1.44)

The norm of the continuous bilinear form ||5| £(vx ¢ r) is then defined as
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b(v,q)

Ak EA (4.1.45)
lvllv llgllo

161l c(vxor) := sup
veV
q9€0

and it will be denoted simply by | 5| when no confusion can occur. Hence, from
(4.1.44) and (4.1.45), we have

bv.q) = lIb[lvllvliglle  YveV.VgeQ. (4.1.46)

It is important to note that continuous bilinear forms on V x Q are strictly connected
to linear continuous operators from V to Q’: indeed, if b is a bilinear formon V' x Q,
we can associate to it a linear operator B from V to Q’, defined as

(Bv.q)prxp :=b(v.q) VYveV,Vqgeo0. (4.1.47)

Conversely, if B is a linear operator from V' to Q’, we can associate to it the bilinear
form

b(v,q) == (Bv,q)o'x0 YveV, VgeQ. (4.1.48)

It is elementary to check that B is continuous (from V to Q') if and only if the
associated bilinear form b is continuous from V x Q toR. To B : V — Q' we can
also associate another operator, that we call transposed operator B’ : Q — V/,
given by

(U,th)VxV/ = (BV,C])Q/XQ = b(v,q). (4.1.49)

Example 4.1.10. 1t is easy to see that if V' := R” and Q := R™, then the linear
operators from V to Q' >~ Q are just (m X n) matrices. In particular, the transposed
operator will simply be the transposed matrix. O

It is worth noting that the continuity of the three objects b, B, and B’ is just the
same property. In particular we have

b(v,
1Bllcwon = 1B et = Ibllsrxom = sup —2®) 4.1.50)

v vllv llglle”
40 ¢

For a linear operator M from a Hilbert space V to another Hilbert space W, we
can define the kernel and the image (or range) as we did in (3.1.7) for the finite
dimensional case:

KerM := {v € V such that Mv = 0},
ImM :={w € W such that 3v € V with Mv = w}.

(4.1.51)

Remark 4.1.6. Note that the kernel of a continuous operator M is always closed.
Indeed, if M v, = 0 and v, — v in V, the continuity of M will imply that M v = 0.
This is not true for the image. Referring to the case of Example 4.1.5, take V =
Hj(£2) and W = L?*(£2), with Mv = v forevery v € V. Clearly, M is continuous,
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but InM = V is not a closed subspace of W. This fact (that the image might not
be closed) puts pains thousandfold upon the mathematicians (whether Achaians or
not). However, as you will see, one can survive. O

We concentrate now our attention on the case of linear operators B from V
to W = Q’, with their associated bilinear form b and transposed operator B’,
as in (4.1.49). In this case, we can see that KerB and KerB’ can be written,
respectively, as

KerB : = {v € V suchthatb(v,q) =0V q € Q}

(4.1.52)
= {v € V such that (v, B'q)yxy» =0V q € Q}

and
KerB' : = {g € Q suchthatbh(v,q) =0Vv eV}

(4.1.53)
= {q € O such that (Bv,q)g'xp =0Vv eV}

In finite dimensional problems (see Proposition 3.1.2), we did interpret (4.1.52)
and (4.1.53) as

KerB = (ImB”)* and KerB” = (ImB)* (4.1.54)

respectively. This, however, cannot be done in the present infinite dimensional case,
because, for instance, ImB is not a subset of Q but a subset of Q' (the two spaces
were identified in finite dimension without telling you anything; sorry for that!). We
have, however introduced a special definition for that: the polar space (see (4.1.39)).
Hence, we can interpret (4.1.52) and (4.1.53) as

KerB = (ImB")° and KerB' = (ImB)° (4.1.55)

respectively. In finite dimension, in Theorem 3.1.1, we also had ImnB” = (KerB)*
and ImB = (KerB”7)'. Here we might hope to have

(KerB) = ImB’ and (KerB")’ = ImB. (4.1.56)
Actually, for instance, the equality
(KerB)? = ImB’ (4.1.57)

will follow easily from the second of (4.1.55) using (4.1.41) if we only knew
that ImB is closed. However, unfortunately, this is not always the case. On the
other hand, if ImB is not closed, then (4.1.57) is hopeless, as a polar space is
always closed. Indeed, we can see that we have the following generalisation of
Corollary 3.1.1 and Theorem 3.1.1 to the infinite dimensional case.

Theorem 4.1.4. Let V and Q be Hilbert spaces, and B a linear continuous
operator from V to Q' (that is: B € L(V, Q")). Then, the following three properties
are equivalent:
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ImB is closed in Q' (4.1.58)
ImB = (KerB")° (4.1.59)
3Ly € LAmB, (KerB)Y) and B > 0 such that:

BLpg=g VgelmB and B|Lpglv <lgllor Vg €ImB.
(4.1.60)

Proof. We already discussed the equivalence of (4.1.58) and (4.1.59). Moreover,
if (4.1.58) holds, then B (or actually its restriction to (KerB)1) becomes (with the
same argument used in Proposition 3.1.1) a continuous one-to-one operator between
the two Hilbert spaces (KerB)* and ImB, and Theorem 4.1.1 gives us (4.1.60).
Finally, (4.1.60) easily implies (4.1.58): if g, = B v, is a Cauchy sequence in Q’
then, using (4.1.60), we have that v, (equal to L g,) is a Cauchy sequence in V.
Then, it converges to a v € V, and the continuity of B implies that g, converges to
B v in Q’. Hence, the limit of g, is in ImB. O

Exchanging B and B’, we immediately have the equivalence of the three

properties

ImB' is closed in V’ (4.1.61)
ImB' = (KerB)" (4.1.62)
3Lp € LAmB', (KerB")*) and B > 0 such that:

B'Lp f=f VfeImB' and BlLp flo =Ifllv ¥ f € ImB".
(4.1.63)

What is somehow remarkable is that, actually, the two triplets of properties (4.1.58)—
(4.1.60) and (4.1.61)—(4.1.63) are equivalent to each other. This actually follows
easily from the following proposition.

Proposition 4.1.5. Let V and Q be Hilbert spaces, and B a linear continuous
operator from V to Q' (that is: B € L(V, Q")). Then, ImB is closed iff ImB' is
closed.

Proof. In view of the above equivalences, we only need to prove that (4.1.58)—
(4.1.60) imply (4.1.61). For this, consider ¢ € (KerB’)* and set g = Roq where
Ry is the Ritz operator 0 — Q’. Using (4.1.40) we have g € ( KerB’)’. Hence,
using (4.1.59), we have g € ImB so that g = Bx for x = Lg, and from (4.1.60):
Bllxllv < ligllor = lgllo- Then, we have

lglp = 0 (Roq.q)0 = 0/(.49)0 = o(Bx.4)¢

1
= y(x,B'q)y < |xllv |1B'qllv < EIICIIIQ IB'qlly: (4.1.64)
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which easily gives
Bllalo < IB'qlly: Vg € (KerB)* (4.1.65)

which, in turn, proves that ImB’ is closed by the same argument used in the proof
of Theorem 4.1.4 O

We can summarise the above results in the following theorem, that is a particular
case of a more general (and important) theorem, also due to Banach, and mostly
known as the Closed Range Theorem.

Theorem 4.1.5 (Banach Closed Range Theorem). Let V and Q be Hilbert
spaces and let B be a linear continuous operator from 'V to Q'. Set

K:=KerBCV and H :=KerB' C Q. (4.1.66)

Then, the following statements are equivalent:

e ImB is closed in Q’,

e ImB' is closed in V',

e K%=TImB!,

e H?=1ImB,

e 3Lg € LAmB, KY) and 3B > 0 such that B(Lg(g)) = g Vg € ImB and
moreover B||Lpglv < |gllor Vg €ImB,

e 3 Lg € LAmB', HY) and 3B > 0 such that B' (L (f)) = f ¥V f € ImB!
and moreover B||Lg: fllo < | fllv: V f €ImB". O

In the following treatment, we shall often assume that B is surjective. Let us see
what the Closed Range Theorem has to say in this case.

Corollary 4.1.1. Let V and Q be Hilbert spaces, and let B be a linear continuous
operator from V to Q'. Then, the following statements are equivalent:

e ImB = Q/,

e ImB' is closed and B’ is injective,

* B'isbounding: 3B >0 st |[B'qllv = Blgllo Yqe0,

e ALpeL(Q.V)suchthat B(Lp(g)) =g YgeQ, with||Lg|=1/p.

The proof is immediate.
A useful consequence of Corollary 4.1.1 is the well known Lax-Milgram Lemma:

Theorem 4.1.6 (Lax-Milgram Lemma). Let V be a Hilbert space, and let a(-, )
be a bilinear continuous form on V. Assume that a is coercive, that is

Ja > 0such thata(v,v) > o |v|}, Yv e V. (4.1.67)

Then, for every f € V', the problem: find u € V such that
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a(u,v) = (fiv)yxy VYvevV (4.1.68)

has a unique solution.

Proof. Note that (4.1.68) is equivalent to Au = f, where A € L(V,V’) is the
operator associated to the bilinear form a. We have to prove that A4 is injective and
surjective. Condition (4.1.67) immediately implies that A is bounding:

a(v,w a(v,v
JAvly = sup 20 L a@V) (4.1.69)
wev\foy Iwllv lvllv

Hence, A is injective. With an identical proof, we see that A’ is also bounding.
Hence, A’ is injective and (due to Corollary 4.1.1) A is surjective. O

Remark 4.1.7. Roughly speaking, we can summarise the result of the Closed Range
Theorem by saying that operators with a closed range have essentially all the
well-known properties of operators in finite dimensional spaces (whose range is
always trivially closed) that we have seen in the previous chapter. In particular,
Corollary 4.1.1 is exactly what we need to extend the properties and the results of
Sect. 3.4 to the infinite dimensional case. See in particular Proposition 3.4.4. O

4.1.6 Dual Spaces of Linear Subspaces

We have seen two (very different) types of subspaces: closed subspaces and dense
subspaces. We shall see now that they also behave quite differently when we
consider their dual spaces. Let us see the difference.

Assume first that Z is a closed subspace of a Hilbert space H. Then, we already
pointed out that, using on Z the same norm that we already have on H, the space Z
becomes itself a Hilbert space, and, as such, it will have a dual space Z’ of its own.
It is easy to see that Z’ could be identified with a particular subset of H’, made of all
functionals f € H’ that vanish identically on the orthogonal complement Z+ of Z.
Note that we already have a name for that space, that is (Z1)°. We have therefore,
in a natural way,

Z'=ZY=Ry(Z)cH and (ZY) =2Z"=Ry(ZY) Cc H'. (4.1.70)

Hence, the dual space Z' of a closed subspace Z C H can be identified with
a closed subspace of H'. Once this identification is made, we can also consider
the extension operator Ez/_, g (that we shall often denote simply as Ez/), and
the projection operator w7 from H' to Z'. Note that, for ¢ € Z’, the functional
E 7/ /¢ can also be described as

H{Ez ¢, v == z/{¢,TzV) 7z (4.1.71)
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while for ¢ € H' the functional 77/ can be described as

2wz ¥, 2)z = n ¥, Ez>n2)u. (4.1.72)
In other terms
(nz))' = (Ez) (4.1.73)
and
(m2)" = (Ez). (4.1.74)

Example 4.1.11. For instance, if H = L?(£2) and Z is the space of constant
functions, it is not difficult to see that Z+ = L2($2) (the space of functions having
zero mean value). Now, the dual space of Z will be the space of functionals that can
be written as

q—)k/qu keR
2

(meaning that for each k € R we have a different functional). On the other hand,
the dual space of Z+ will be the space of functionals that can be written as

q—>/kqu kezt
Q

(meaning that for each k € Z L we have a different functional). On the other
hand, (Z1)’ could also be identified with the subset of H’ made of functionals
that vanish identically on constant functions (that is, with the polar set of the space
of constants, which is the polar set of Z, as in (4.1.70)). Using the Ritz operator Ry
of Theorem 4.1.2, we could write Z’ = Ry (Z) and (Z1) = Ry (Z%1). If, as is
done almost every time, we identify L?(£2) with its dual space, then we could write
7' =Zand (Z1t) = Z+. O

Let us consider now the case of a dense subspace S C H of a Hilbert space H.
If we take on S the same norm as on H, we cannot (in the present setting) consider
its dual space, as S will not be closed (unless S = H, a case without any interest).
Hence, we assume that on S we take a different norm. More precisely, we assume
that on S we are given another norm, || - ||s, that makes S a Hilbert space. We
assume, moreover, that this other norm is (up to a multiplicative constant) bigger
than the || - ||y norm:

3Csy > Osuchthat ||s||lg < Csulslls Vs eS. (4.1.75)

In this case, we will say that S is continuously embedded in H. Indeed, (4.1.75)
means exactly that the identity operator is continuous from S into H. There is a
special symbol for that: instead of S C H, we write S — H.

Example 4.1.12. 1f we take, as in Example 4.1.5, S = H}(£2) and H = L*(R2),
then inequality (4.1.75) is just the Poincaré inequality. O
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Now S, being a Hilbert space, has a dual space S’. Let us see the relationship
between S’ and H’. As S C H, for each element g € H’, we can consider its
restriction gs € S’ defined by (g|s.$)s'xs = (g.5)m/xu forall s € S. Indeed,
from (4.1.75) we have easily for every s € S

(g15:8)s'xs = (g.8)wxu < Igla’ Isla < Csu llglu lIslls. (4.1.76)

implying the continuity of g|s : S — R, as well as the continuity of the restriction
operator: namely,

lgislls’ < Csullglla- (4.1.77)

Using the Hahn-Banach theorem (here simplified to (4.1.42)), we see that we
cannot have in H' two different g’s having the same restriction to S: indeed, if g!
and g2 have the same restriction to S (that is, if g|ls = g‘zs), then the difference

g' — g?isin S, and hence it must be zero.

We can then summarise the above discussion by saying that: every g € H’ has
a restriction g|s in S’ and the mapping g — g|s from H' to S’ is injective. This
allows us to identify H' with a subset of S’:

H CS. (4.1.78)

On the other hand, there are, in general, elements in S’ that cannot be presented as
the restriction of any g € H': indeed, S has a norm which is bigger than that of H,
and g could be continuous from S to R and not from H to R. As we have seen for
instance in Example 3.1.6, for / :=] — 1, 1[, taking H := L*(/) and S := H} (1),
the mapping v — v(0) belongs to S’ but cannot be seen as the restriction to S of an
element of H’

In other words, (4.1.77) cannot be reversed. Hence, we have H' C S’, and using
(4.1.77), we see that we actually have H' < §’, and in general the inclusion is
strict. On the other hand, one can also prove that H’ is dense in S’. Moreover, out
of the previous discussion, we easily have that

(g.5)s'xs = (g.8)n'xy wheneverg € H and s € S. (4.1.79)

Hence, if we have two Hilbert spaces S and H with S C H and S dense in H,
then

S—H = H <S5 (4.1.80)

The difference between the two cases, (4.1.70) and (4.1.80), that might be surprising
at first sight, is due to the fact that in the first case we used on S the same norm that
we had on H, while in the second case we used a different, stronger norm.

Example 4.1.13. 'We have already seen the example of 6y, which belongs to the dual
space of S := H/(]—1, 1) but not to the dual space of H := L?(]—1, 1[). Letus
see another simple example. For a general domain £2, taking always S = H/(£2)
and H = L?*(£2), and taking in H’ the functional
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v—>/ vdx,
fos

it is clear that its restriction to S leaves the functional (essentially) unchanged. On
the other hand, for f fixed in L?(£2), the functional

v—>/fa—vdx,
Q 8x

linear and continuous on S, cannot be extended to a continuous functional on H .
O

4.1.7 Identification of a Space with its Dual Space

It is usually a strong temptation, when dealing with Hilbert spaces, to use the Ritz
Theorem 4.1.2 to identify a Hilbert space with its dual. After all, this is what
is done most of the times when dealing with finite dimensional spaces. However,
when dealing with functional spaces (that is, spaces made of functions), it is highly
recommended to limit such identification to L? with its dual (or of a closed
subspace Z of L? with its dual Z’). Every other identification will be calling for
a total disaster. Let us see why. Assume that in (4.1.80) we have H = L?*(£2) and
S = H}(£). Identifying L? with its dual space, we would have H = H’, and
(4.1.80) will become

S H=H <5 (4.1.81)

So far, so good. Everybody does that, and nobody suffers. Assume, however, that,
in spite of all recommendations, you also identify S with S’. Then, in (4.1.81), you
compress the four spaces S = H = H’ = S’ into one, identifying at the same
time a function with itself and with its Laplacian. This is the beginning of the end.
Now, the question that everybody asks (the first time one hears about that) is “What
is so special with L2?”. Itis a very good question. Actually, there is nothing special,
mathematically, about it, apart from the fact that we are so used to identify a function
f € L?(£2) with the mapping (defined for ¢ € L?(£2)):

@ —>/ Sfodx (4.1.82)
2

that we do it all the time, without even realising it. In principle, we might as well
identify a function f € H/(§2) with the mapping (defined for ¢ in H_ (£2)):

@ —>/ grad f - grad ¢ dx (4.1.83)
2
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and don’t use the identification (4.1.82). This will be mathematically correct but
psychologically very, very difficult; and before the rooster crows, you will have used
(4.1.82) three times. Hence, our advice is: No matter whether the above discussion
was clear or not, just avoid any identification of a functional space that is not L? (or
a multiple copy of it, o, exceptionally, a closed subspace of it) with its dual space!
This, of course, unless you are very skilled in Functional Analysis. Although, if you
are. .. why are you reading all this? O

4.1.8 Restrictions of Operators to Closed Subspaces

We shall now deal briefly with a situation that we will meet constantly in the
following chapter. We have (as before) two Hilbert spaces V' and Q, we have a linear
continuous operator B € L(V, Q’), and we have two closed subspaces Z C V and
S C Q. In the applications of the next chapter, Z and S will typically be finite
dimensional spaces (and hence automatically closed).

As we have seen, B (and its transposed operator B’) can be associated to a
bilinear form b defined on V x Q. It is not difficult to see that, restricting the bilinear
form to Z x S, we have as associated operators

By = ng'BE; and B, =nzB'Eg (4.1.84)

and obviously (Bzy)" = B,

Remark 4.1.8. As we have already pointed out in Remark 3.1.11 of the previous
chapter, in general, we cannot expect the kernel of B¢ to be a subspace of the
kernel of B, nor the image of Bzy to be a subset of the image of B. The same is

obviously true for the images and the kernels of B¢, and B'. a

Proposition 4.1.6. Let V and Q be Hilbert spaces, let B € L(V, Q’), and let Z C
Vand S C Q be closed subspaces, with S finite dimensional. Then, the inclusion

KerBg, C KerB' (4.1.85)
holds iff we have
ns/(ImB) - ImBZS/. (4186)

Proof. Assume first that (4.1.85) (that, to be precise, we should actually write as
EsKerBg, C KerB') holds, and let g = Bv € ImB. As ImByy is closed (since
S is finite dimensional), to show that 7g g € ImByy, we just have to check that
ns'g € (KerBj,)", thatis,

0'(8.9)0 =0 Vg € KerBg,,. (4.1.87)
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If the inclusion (4.1.85) is satisfied, then every g € Keng , will also be in KerB'.

Z
However, for ¢ € KerB’ we have

Q/(g,q)Q = Q/(Bv,q)Q = V(U,th>[// = 0, (4188)

giving (4.1.87) and ending the first part of the proof.

Assume now that (4.1.86) holds, and let g; € S be in KerBéZ,, that is:
7z B'qs = 0. For such a ¢, we have, for every z € Z, that
s{qs. ms' Bz) s/
= 0(qs. Bz) o' = v/(B'qs,2)v = z/(nzB'qs.2)2 (4.1.89)

=0,

meaning that g, is in the polar space of ImB,¢. Inclusion (4.1.86) together with
(4.1.43) implies then that ¢g; is in the polar space of ws/ImB, so that forallv € V
we have s (g, ms/Bv)ss = 0, hence y/(B'q,, v)y = 0 and therefore g, € KerB'.

0

Remark 4.1.9. The assumption that S is finite dimensional, in Proposition 4.1.6,
is clearly stronger than necessary. Indeed, looking at the proof, we see that for the
first part we only need ImB,y to be closed, while the second part does not even
need that. However, as we said, we are going to use the result in the case of Z
and S being finite dimensional, so that we did not struggle to minimise this type of
assumptions. O

Exchanging the roles of B and B’, we have, moreover, in the same assumptions
of Proposition 4.1.6 (but requiring Z to be finite dimensional instead of §), that

KerBzy € KerB (4.1.90)

is equivalent to
nz/(ImB") C ImBg,,. 4.1.91)

The case in which the subspaces Z and S are related to the kernels and images
of a linear operator B € L(V, Q') (and of its transposed) is obviously of special
interest. In particular, we can present a corollary of the Closed Range Theorem 4.1.5
that will often be useful.

Corollary 4.1.2. In the same assumptions of Theorem 4.1.5, if one of the six
equivalent properties is satisfied, then Ly € L(K*, H) is the transposed operator
of Ly € L(H*, K°) and in particular,

ILellckt moy = 1L |l gt ko) =2 1. (4.1.92)

Moreover, setting B := 1/u we have
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Bllvlly < IIBvly:  VveK™ (4.1.93)
and

Blgllo < IB'qllvy  VgeH. (4.1.94)

Proof. If, say, ImB is closed, then B will be an isomorphism from K 1 to ImB
which, however, coincides with HP. Similarly, B’ will be an isomorphism from
H* to ImB' that coincides with K°. Hence, L coincides with (BgLz0)~" and
L g+ coincides with (B;I B KO)_I. We also recall from (4.1.70) that

(KH =K' K=ty (HY =H' H'=HYY (4.1.95)

so that it is immediate to see that Lp: is the transposed operator of Lp. Now
(4.1.92) will follow immediately from (4.1.50). Finally, (4.1.93) and (4.1.94) are
now immediate since, forv € K1, we have v = L g(Bv) and forq € H L, we have
q = Lp:(B'q). O

4.1.9 Quotient Spaces

Assume that Q is a Hilbert space and let H be a closed subspace of Q. We also
assume that H is a proper subspace, meaning that H does not coincide with 0. We
consider then the quotient space Q /i defined as the space whose elements are the
equivalence classes induced by the equivalence relation:

vy = vy, ifandonlyif (v —v;) € H. (4.1.96)

In other words, two elements are equivalent if their difference belongs to H. It is
immediate to see that all the elements of H will then be equivalent to 0. In view of
this definition, an element of Qg will then be a subset of O made by elements that
are all equivalent to each other.

Example 4.1.14. For a bounded domain 2 C RY, we take Q := L*(£2) and
we consider the (one-dimensional) subspace H made of constant functions. Then,
Q,n will be made of classes of functions that differ from each other by a constant
function. O

Note that if two classes Cy and C, have an element v*in common, then they must
coincide. Indeed, for every v; in Cy, we have vy — v* € H and, for every v, € C,
we have v, — v* € H. As a consequence, for every v; € Cy and every vy € C,, we
have v; — v, = (v — v*) — (v — v*) € H (as difference of two elements of H).
This implies that for every v; € C, and for every v, € C,, we have v; = v,, which
is to say that the two classes C; and C, coincide. We conclude that two different
classes have no elements in common.
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It is then easy to verify that there is a one-to-one correspondence between Q/n
and the orthogonal complement H+ of H in Q. Let us see it in more detail. Let ¢*
be an element of H1: to it we associate the class C,+ defined by

Cor i ={veQlvzg*t={veQlv—q" € H}. (4.1.97)

It is clear that the mapping ¢* — C,+, from H* to Q /H» 18 injective: indeed,
assume that ¢* and ¢** are two elements in H~ such that the two corresponding
classes Cy+ and C,++ coincide. This implies that, say, ¢** € Cy+, thatis ¢** —g* €
H. Since ¢** — ¢* must also belong to H+ (as difference of two elements both in
H*'), we conclude that ¢** = g*.

Let us see that the mapping ¢* — C,+ is also surjective: let therefore the
class C* be an element of O,y and let § € C*. The class C* could then be
characterised as

C*={veQlv=gl={veQlv—qe H}. (4.1.98)

At this point, it is not difficult to see that C* is a closed convex subset of Q and
hence (see (4.1.22) and Remark 4.1.2) we can define qé* as the projection ¢ 0 of
0 on C* (that can also be seen as the element of C* having minimum norm). It is
then elementary to check that

(e, v) =0 VYveH, (4.1.99)

implying that ¢/ € H L and that, actually, C* = Cqé*- This also allows us to
define a norm in Qg for every C € Q,y, we define

ICllg,u = lmcOllo = ligcllo- (4.1.100)

Hence, if we prefer, we could choose in each class (= element of Q,p) the
unique element, in the class, which belongs to H+, and identify O /g with H L

Example 4.1.15. Let us go back to the case of Example 4.1.14 where Q := L?(£2)
and H is the subspace made of constant functions. We recall that Qg is made of
classes of functions that differ from each other by a constant function. For every
such class, we could always take one function ¢ in the class, and describe the class
as the set of all functions of the form g + ¢ with ¢ constant. In doing so, we could
however decide to choose as “representative” the unique function, in the class, that
has zero mean value. This is the same as picking g* € H*, since H is clearly the
subspace of Q made of functions having zero mean value. O



4.2 Existence and Uniqueness of Solutions 223

4.2 Existence and Uniqueness of Solutions

4.2.1 Mixed Formulations in Hilbert Spaces

From here to the end of this chapter, we will consistently remain in the same
notational framework. As this framework will also include some assumptions, we
summarise all these assumptions under the name of Assumption AB.

Assumption AB: We are given two Hilbert spaces, V and Q, and two continuous
bilinear forms: a(-,-) on V. x V and b(-,-) on V x Q. We denote by A and B,
respectively, the linear continuous operators associated with them. We also set

K := KerB and H := KerB'. (4.2.1)
We recall from the previous subsection that we have
la(u, v)| < llall ully lviv, (4.2.2)
and that the two linear continuous operators A : V — V' and A’ : V — V’ satisfy
(Au, v)yrxy = (u, A"v)yxyr = a(u, v), VvoeVVuelV. (4.2.3)
Similarly,
b, )l = 1]l [vliv ligllo. (4.2.4)
and the two linear operators B : V — Q’, and B' : Q — V' satisfy
(Bv,q)o'xo = (v. B'q)vxy» = b(v,q) YveV, Yqge0. (4.2.5)

We now consider our basic problem. Given f € V' and g € Q’, we want to find
(u, p) € V x Q solution of

a(,v) +b(v,p) = (fv)yxy, YvEV,
(4.2.6)
b(u,q) = (g.9)o'x0. Vq € Q.
Note that problem (4.2.6) can also be written as
Au+B'p=f inV’,
4.2.7)
Bu=g in Q’,

and from now on we shall consider the formulations (4.2.6) and (4.2.7) to be the
same, referring to one or the other according to the convenience of the moment. We
now want to find conditions implying existence and possibly uniqueness of solutions
to this problem.

Remark 4.2.1. 1f the bilinear form a(-, -) is symmetric, the equations (4.2.6) are the
optimality conditions of the minimisation problem
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1
inf —a(v,v) — (f,v)yxy. 4.2.8)
Bv=g 2

The variable p is then the Lagrange multiplier associated with the constraint
Bu = g, and the associated saddle point problem is

, 1
inf sup {5“(”’ v) +b(v,q) = (fiv)vxv — (g, (I>Q/><Q}. (4.2.9)
veV geQ

This is the reason for the title of this chapter, in spite of the fact that we deal in fact
with a more general case. O

Remark 4.2.2. The two equations in (4.2.6) can sometimes be written as a unique
variational equation, setting

A((uv p)s (U, q)) = a(uv U) + b(U, p) - b(us q) V(uv p)s (U, q) eV x Q
(4.2.10)
and then requiring that

A((M, p)v(vs q)) = (fsv)V/XV - (gv q)Q’XQ V(U, q) eV x Q (4.2.11)

One can obviously go from (4.2.6) to (4.2.11), subtracting the two equations, and
from (4.2.11) to (4.2.6) by considering separately the pairs (v,0) and (0, —¢). O

It is clear from the second equation of (4.2.7) that, in order to have existence
of a solution for every g € Q’, we must have ImB = Q’. Following the path of
the previous chapter, we first consider a simpler case, in which we have sufficient
conditions on a and b for having a unique solution.

Theorem 4.2.1. Together with Assumption AB, assume that InB = Q' and that
the bilinear form a(-,-) is coercive on K, that is

Jag > 0 such that a(vo, vo) > o ||voll3, Y vo € K. (4.2.12)

Then, for every (f,g) € V' x Q’, problem (4.2.6) has a unique solution.

Proof. Let us first prove the existence of a solution. From the surjectivity of B
and Corollary 4.1.1, we have that there exists a lifting operator Lp such that
B(Lpg) = g forevery g € Q’. Setting u, := Lpg, we therefore have Bu, = g.
We now consider the new unknown ug := u — ug and, in order to have Bu = g,
we require uy € K. For every vy € K, we obviously have b(vy,q) = 0 for every
q € Q, so that the first equation of (4.2.6) now implies

a(uo, vo) = (f,vo)v'xv —alug,vo), Yvo € K, (4.2.13)

and the Lax-Milgram Lemma, using (4.2.12), ensures that we have a unique uy €
KerB satisfying (4.2.13). Remark now that the functional
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v — L) := (fiv)yxy —a(ug + uo, v), (4.2.14)

thanks to (4.2.13), vanishes identically for every v € K. Hence, £ € K° (the polar
space of K), which, due to Theorem 4.1.4, coincides with ImB’. Hence, £ is in the
image of B’, and there exists a p € Q such that B’ p = £. This means that

(B'p,v)yrxy = (L, 0)vrxy = (f,v)yixy — alug + ug, v) (4.2.15)

for every v € V, and since u = u, + uy, the first equation is satisfied. On the other
hand, Bu = Bug + Bug = g and the second equation is also satisfied.

We now prove uniqueness. By linearity, assume that f = 0 and g = 0: then,
u € K. Testing the first equation on v = u we get a(u,u) = 0 and then u = 0
from (4.2.12). Using u = 0 and f = 0 in the first equation of (4.2.7), we have then
B'p = 0, and from Corollary 4.1.1 we have p = 0. Then, problem (4.2.6) has a
unique solution. O

Remark 4.2.3. The coercivity of a(:,-) on K may hold while there is no coercivity
on V. We have already seen examples of this situation in finite dimension and we
shall see in the next chapters many other examples coming from partial differential
equations. O

The result of Theorem 4.2.1 will be the most commonly used in our applications.
However, as we had in the finite-dimensional case of the previous chapter, it is clear
that it does not give a necessary and sufficient condition. To get it, we must weaken
the coercivity condition (4.2.12). For this, we recall that K is a closed subspace
of V', and hence it is itself a Hilbert space (with the same norm as V'). As such, as
we have seen, K has a dual space, that we denote by K’. Moreover, we note that,
restricting the bilinear form a(-,-) to K, we have two operators, which, according
to the notation (4.1.84), we denote by Axxs and A’KK,, from K to K’, given as in
(4.2.3) by

(Aggruo, vo) k'xkx = (o, Akgrvo) kxxr = a(uo, vo), Yuo,vo € K. (4.2.16)

We also recall that K’ could be identified, through (4.1.70), to a subspace of Q’, and
precisely to (K1) (the polar space of K1). Moreover, it is easy to check that

AKK’ = JIK/A EK (4217)

coincides, in the finite dimensional case, with the operator that (identifying K
and K') was denoted by Agx in the previous chapter.

We are now ready to state and prove the following theorem, which is, from
the theoretical point of view, the most relevant of this section. As we shall
see, it generalises Theorem 4.2.1 and gives the required necessary and sufficient
conditions.

Theorem 4.2.2. Assume that AB holds, and let Axgxr be defined as in (4.2.16).
Then, problem (4.2.6) has a unique solution for every (f,g) € V' x Q' if and
only if the two following conditions are satisfied:
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Agg is an isomorphism from K to K, (4.2.18)
ImB = Q’. (4.2.19)

Proof. Assume first that (4.2.18) and (4.2.19) are satisfied. The existence and
uniqueness of the solution of (4.2.6) follow as in the proof of Theorem 4.2.1. The
only difference is in the solution of (4.2.13), which in the present notation can be
written as

AKK/M() = NK/f — nK/Aug. (4220)

Indeed, here we now have to use (4.2.18) (in order to get the existence of a
solution up) instead of Lax-Milgram as we did there.

Assume conversely that the problem (4.2.6) has a unique solution for every
(f.g) € V/ x Q’.tis clear that, in particular for every g € Q’, we can take (0, g)
as right-hand side in (4.2.6) and have a u € V such that Bu = g (from the second
equation of (4.2.7)). Hence, InB = Q’ and therefore (4.2.19) holds. To show that
(4.2.18) also holds, we proceed as follows.

First, for every ¢ € K’', we take in (4.2.7) f = Ekx/—y¢ (as defined in (4.1.71)),
and g = 0. By assumption, we have a unique solution (u4, pgs), and we observe that
ug € K since g = 0. Testing the first equation of problem (4.2.6) on vy € K, and
using (4.1.71), we have

a(ug, vo) = (fp. Vo) k'xk = (P, Vo) k'xk Yy € K. (4.2.21)

This implies that Agg'uy = ¢, and hence that Agg is surjective. Hence, we are
left to show that Aggs is also injective. Assume, by contradiction, that we had
Agxg'w = 0 for some w € K different from zero. Then, we would have a(w, vy) = 0
for all vo € K, implying that Aw € K°. Due to Corollary 4.1.1 (as we already saw
that (4.2.19) holds), this would imply Aw € ImB’ and we would have the existence
of a p,, € Q such that B” p,, = Aw. Then, the pair (w, —p,,) (different from zero)
would satisfy the homogeneous version of problem (4.2.6), and uniqueness would
be lost. Hence, such a w #% 0 cannot exist. This shows that Axxs must also be
injective, and hence (4.2.18) holds. O

4.2.2 Stability Constants and inf-sup Conditions

In this subsection, we would like to express condition (4.2.19) and condition (4.2.18)
in a different way, to emphasise the role of the stability constants.

Let us start from condition (4.2.19). According to Corollary 4.1.1 of the Closed
Range Theorem, we already know that (4.2.19) holds if and only if the operator B’
is bounding, that is, if and only if there exists a constant 8 > 0 such that

IB'qllv: > Bllglo  VqeQ. (4.2.22)
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Always from the same corollary, we have that this is also equivalent to the existence
of alifting Lg : Q' — V of the operator B

B(Lp(g) =g VgeQ' (4.2.23)

with its norm being bounded by:

1
ILgllzov) < (4.2.24)

E )
where f is the same constant as in (4.2.22) and ImLz = K+,

We now want to define, somehow, the best possible constant that would fit in
(4.2.22). For this, we note that (4.2.22) is equivalent to

Biq|lv
e 1Bl

> B, (4.2.25)
€0 |lqllo

which, recalling the definition of norm in a dual space (4.1.34) and (4.1.49), becomes

b ’
inf sup ﬂ >

> B, (4.2.26)
qeQ veV ||U||V ”q“Q

which is possibly the most commonly used among the many equivalent formulations
of assumption (4.2.19).
With similar arguments, we see that condition (4.2.18) is equivalent to saying
that there exists an oy > 0 such that
inf Sup M 2 o
woek woek [[vollv [wollv
inf sup —20GWD_ o (4.2.27)
woek wek [[vollv [wollv
Remark 4.2.4. Note that in (4.2.25), in (4.2.26), and in (4.2.27), as we did in the
previous chapter and we shall do in the rest of the book, we assumed implicitly that
for fractions of the type

W )

[ollv lollv

where £(-) is a linear functional on a Banach space V, the supremum and the
infimum are taken for v # {0}, and therefore we wrote the supremum (or infimum)
for v € V rather than for v € V' \ {0} (as it would have been more correct, since
these fractions do not make sense for v = {0}). O

We now want to point out, for future use, the following extension of Lemma 3.3.1
of the previous chapter, that is an important ingredient in the proof of the present
Theorem 4.2.3.
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Lemma 4.2.1. Let V be a Hilbert space and let a(-,-) be a symmetric bilinear
continuous form on V. Assume that

a(v,v) >0 Yvel. (4.2.28)
Then, we have
(a(v,w))? < a(v,v)a(w,w) YoweV (4.2.29)
and, for the associated operator A,
14v]I}, < llalla(v,v) = [[4](Av,0)  YveV. (4.2.30)
Apart from the different notation, the proof is identical to that of Lemma 3.3.1.

Moreover, under the assumptions of the previous lemma, we also have the
following result.

Lemma 4.2.2. Let V be a Hilbert space, and let a(-,-) be a symmetric bilinear
continuous form on V. Assume that

a(v,v) >0 Yvel. 4.2.31)

Then, (4.2.27) implies ellipticity on the kernel (4.2.12).
Proof. Indeed, from (4.2.27), we have for vg € K, using (4.2.29),

2
a(v,w a(v,v)a(w,w
AR < sup 2L 2) < (v, v) g ) <lalla@v),  (4232)
wek Wl 7 wek wlly
hence the result with ag = &3 /|a]. O

4.2.3 The Main Result

As we had in the previous chapter (in Theorems 3.4.1 and 3.4.2), we have here the
following final result, that could be considered as the main result of this chapter.

Theorem 4.2.3. Together with AB, assume that there exist two positive constants o
and B such that the inf-sup condition (4.2.26) on b(-,-), and the double-inf-sup con-
dition (4.2.27) on the restriction of a(-,-) to K are satisfied. Then, for every f € V'
and for every g € Q’, problem (4.2.6) has a unique solution that is bounded by

1 2|all
lully < —Ifllv + —lglo (4.2.33)
oy a1
2|al| 2)la|?

<= flvF+=5lglo- 4.2.34
Irllo < i f If v F + W lgllo ( )
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If, moreover, a(-,-) is symmetric and satisfies
a(v,v) >0 Yvel, (4.2.35)

then we have the improved estimates

1 2|al|'/?
lully = =1L lv: + —7—lglle (4.2.36)
o oy p
2||a|'/? llall
Ipllo = —7=Ifllv + FH&’HQ', (4.2.37)
o, B

where « is the constant appearing in (4.2.12).

The proof is identical to that given in the previous chapter for Theorems 3.4.1
and 3.4.2. This is indeed the gift of the Closed Range Theorem, which allows us
to extend all the instruments that were used in finite dimension to the more general
case of Hilbert spaces.

Remark 4.2.5. As we did in Theorem 3.5.2, we could restate Theorem 4.2.2 in
terms of necessary and sufficient conditions. In the present context, this means that if
the bounds (4.2.33) and (4.2.34) hold for all right-hand sides f and g, then (4.2.27)
and (4.2.26) hold. Indeed, for an arbitrary ug € K, let us define f; € K’ by

(fo,vo) = a(up,vo) VYo e K. (4.2.38)

We then use the prolongation Ek- f of fo to V7, asin (4.1.71), and we take g = 0.
We now have that (u, 0) is solution of (4.2.6) with f = f;, and by (4.2.33) we have

1 1 a(ug, w
lally < 1 follyr = - sup 20w0). (4.2.39)
o] 1 woek ”WOH

Similarly, taking { f,,v) = b(v, p) and again g = 0, we have that (0, p) is solution
of (4.2.6) with f = f,, and (4.2.34) implies (4.2.26). All this can be seen as the
natural extension of Lemma 3.5.2 to the infinite dimensional case. O

If the bilinear form a(-, -) is coercive on the whole space, we have immediately
the following corollary (particularly useful for Stokes addicts that do not even want
to know what a kernel is).

Corollary 4.2.1. Let the assumptions AB hold. Suppose that there exist two
positive constants o and B such that the inf-sup condition (4.2.26) on b(-, ), and the
global coercivity condition (4.1.67) on a(-,-) are satisfied. Then, for every f € V'
and for every g € Q’, problem (4.2.6) has a unique solution that is bounded by

1 2||all
lully = =Nfllv: + lgllor, (4.2.40)
o af
2|l 2|al?
Ipllo = 1Ay =+ gl (4.2.41)

af af?
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If, moreover, a(-,-) is symmetric, then we have the improved estimates

! 2Ja]’?
lully < 21 + =Tz lgler (4242)
2" la]
IPllo = g v + g7 Il (4243)

4.2.4 The Caseof ImB # Q'

We now want to discuss briefly the case in which the inf-sup condition on the bilinear
form b does not hold.

Essentially, if ImB does not coincide with Q’, we can distinguish two cases.
Either ImB is closed in Q’, or it is not (everybody surely agrees with that).

If ImB is not closed, then we are in deep trouble. Generally speaking, we should
better look for a different formulation.

If instead the image of B is closed, we survive rather easily. Let us analyse the
situation. We first observe that in this case H = KerB’ will be a closed subspace
of Q thatis not reduced to {0}. In this case, it is clear that problem (4.2.7) cannot
have a unique solution for every f € V' and for every g € Q’. To start with, if
ImB # Q’, and if g € Q' does not belong to ImB, we cannot have a solution.
Hence, the existence of the solution will not always hold. Moreover, if by chance
we have g € ImB and we have a solution (u, p), then for every p* € H with
p* # 0, we easily have that (u, p + p*) is another, different solution. Hence, the
uniqueness of the solution will never hold. Apparently, we are not so well off.

However, if we have g € Im B, then there is an easy way out. Indeed, we observe
first that if Agx is non-singular, we could proceed as we did in the finite dimensional
case (see Proposition 3.2.1) and deduce that we still have at least one solution, whose
first component is unique and whose second component is unique only up to an
element of H. Moreover, we could note that b(v,q) = 0 for every ¢ € H. Hence,
following what has been done in Remark 3.2.4 (for the finite-dimensional case),
we can consider the restriction b of b to V' x H~ without loosing any information.
However, this time, B will be surjective from V' to (H~)'. Indeed, using (4.1.70) we
have that (H+) = H® (= ( KerB*)"). On the other hand, from the Closed Range
Theorem 4.1.5, we have (KerB?)? = ImB, and joining the two we get (H+) =
ImB and everything works.

Hence, the theory developed so far in the case of B surjective applies to the case
where ImB is closed and g € ImB, by just replacing Q with H*.

An alternative path (whose difference from the one above is mainly psychologi-
cal) consists in replacing Q with the quotient space

0:=0m. (4.2.44)
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We recall that the elements of Q are subsets of elements of Q that differ from each
other by an element of H. As we have seen in Sect.4.1.9, Q can be identified to
H+. Hence, as we said, the difference between using V' x H+ and using V x O JH 18
mainly psychological. Nevertheless, some people seem to be in love with this second
option and dislike the first. Just for them, we re-state one of our previous results
in terms of the original space Q and the original bilinear form b in the following
theorem, which is just Theorem 4.2.3 applied to V' x Q,p, and stated in terms of V

and Q.

Theorem 4.2.4. Together with Assumption AB, assume that ImB is closed and
that the double-inf-sup condition (4.2.27) is satisfied. Then, for every f € V’
and for every g € ImB, problem (4.2.6) has a solution (u, p) where u is uniquely
determined, and p is determined up to an element of H. Moreover, setting

b(v,q)

f:= infsup——2 (4.2.45)
qe€Q veV ”v”V ”q”Q/H
we have
1 2|a]
lully = —Ifllv: + —=llgllo’ (4.2.46)
oy o p
2|a| 2|
IPlom = ——=Wf v + —=ligllo"- (4.2.47)
a1 p ap
If, moreover, a(-,-) is symmetric and satisfies
a(v,v) >0 Yvel, (4.2.48)
then we have the improved estimates
1 2|ja||'?
lully = =1/ v + —77llgller (4.2.49)
o o, B
2|ja||'? llall
Ipllom = =/ llv + ==lgllor (4.2.50)
/H aé/Zﬁ ,32
where again oy is the constant appearing in (4.2.12). O

Remark 4.2.6. We point out that the estimates (4.2.46) and (4.2.47), valid for every
f € V'’ and for every g € ImB, imply in particular that, under the assumptions
of Theorem 4.2.4, the image of the operator Ml : (u, p) — (Au + B’ p, Bu) from
Vx QtoV' x Qisalso closed. O

Remark 4.2.7. Another type of generalisation was considered in [312] and [68].
They consider a problem of type (4.3.1) but employing two bilinear forms b, (-, -)
and by (-,-) on V' x Q, that is,
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a(u,v) + bi(v, p) = (fv)yxv, Yo eV

4.2.51)
by(u.q) = (8.9)o'x0. Yq € Q.
Conditions for existence of a solution are now that both b; (-, -) and b, (-, -) should
satisfy an inf-sup condition of the type (4.2.45), and a(u,v) should satisfy an
invertibility condition from KerB, on (KerB;)’, that s,

. a(uo, vo)

inf sup —— > oy, (4.2.52)
up€KerB| vo€KerB; ”’40” ”UO”

inf  sup SU0%) (4.2.53)

voE€KerB upg€KerB, ||M()|| ||U()|| N

This condition is in general rather hard to check, and the ellipticity on the whole
space V', when applicable, can bring a considerable relief.
For more details, we refer to [68]. O

Remark 4.2.8 (Special cases (f,0) and (0,g)). We have considered these special
cases in the Sect.3.5.3 in the finite dimensional framework. In these cases, it is
possible to obtain existence and stability results under weakened assumptions. We
shall not make them explicit here. However, we refer to the proofs of Theorem 3.4.1
and the following ones in Sect. 3.4 where detailed proofs of related situations are
presented. We just want to point out here that in the case (f, 0), the a priori estimates
(e.g. (4.2.46)) on u do not depend on the inf-sup constant of B. Conversely, in the
case (0, g), for a(-, -) symmetric and positive semi-definite, the estimates on p (e.g.
(4.2.50)) do not depend on the constant «. |

4.2.5 Examples

To fix ideas, we shall apply the results just obtained to some of the examples
introduced in Chap. 1.

Example 4.2.1 (Mixed formulation of the Poisson problem). We consider here the
case of Example 1.3.5. Given f in L%(£2), we look for u € H(div;2) =:
Vand p € L>(22) =: Q such that:

/g'gdx—i—/ p div vdx =0, Vv € H(div; £2),

@ ° (4.2.54)
/ (div u+ f)gdx =0, Vq € L*(2).

2

Here we have
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b(v,q) = / div v g dx, (4.2.55)
2

and B is the divergence operator from H(div; £2) into L?(£2). It is not difficult
to check that it is surjective: for instance, for every g € L?(£2), consider the
auxiliary problem: find ¥ € Hj (£2) such that Ay = g. Its (traditional) variational
formulation is

/gr_adl//- grad ¢ dx = —/g¢dx Ve H () (4.2.56)
2 2

and it has a unique solution thanks to the Lax-Milgram lemma. Then, take v, :=

grad ¢ and you immediately have v, € H(div; £2) and divy, = g as wanted.

The kernel of B is made of the vectors v, € H(div; §2) such that divy, = 0. The
bilinear form a is given by

a(u,v) = / u-vdx, (4.2.57)
2
while we remember that in (1.3.44) the norm in H (div; §2) was defined as
”E”%—I(div; ) = ||2||(2L2(.Q))2 + ” dlvy”iZ(_Q) (4’258)
Hence, a is coercive on KerB (although it is not coercive on H (div; £2)). Our

abstract theory (in particular Theorem 4.2.1) applies immediately, and we have
existence and uniqueness of the solution. O

Example 4.2.2 (The Stokes problem). Let us go back to Example 1.3.1. We take
V = (Hy(£2))* Q := L*(£2), and, given f € V', we look for (u, p) € V x Q,
solution of

ZM/ E@:E(Q)dx—/ p divgdx:/g'idx, Yvel,
% ° ° (4.2.59)

/q divudy =0, Vg € Q.
2

Here, we have g = 0. Moreover, the bilinear form a(u, v) = 2u fg e : e(v)dx
is coercive on V', due to the Korn inequality [183,362]

Jie=k(2) > 0s.t eIy Zklulie  Yue (Hy(2)>  (4.2.60)

On the other hand, we have

b(v,q) = —/ q divvdx (4.2.61)
o)
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and B is the divergence operator from (HO1 (£2))? into L?(£2). This time, the study
of its image is much harder than in the previous example. Due to a non-trivial result
by O. Ladyzhenskaya, we have [272,362] that

ImB = L3(2) = {q | g € L*(2), / qdx =0} (4.2.62)
2

and that this subspace of L2(£2) is closed and has co-dimension one. In agreement
with the Closed Range Theorem, KerB' has also dimension 1:

KerB' = Ker(— grad) = {g| g is constant on £2}. (4.2.63)

We are therefore in the case where B’ is not injective. As we did in the last
subsection (see Sect.4.2.4), we can easily survive by considering Q, defined as
in (4.2.44), instead of Q. However, in this case, the space Q (that is the space of
classes of functions in L2(£2) that differ from each other by an additive constant) is
often identified with the space H+ of functions in L?(£2) having zero mean value,
as discussed in Example 4.1.14. Actually, in practice, we simply take

0= {q|q e L*(2), / gdx = o} = LY(R) (4.2.64)
2

and we can apply directly Theorem 4.2.1, which will give the existence and
uniqueness of the velocity u, together with the existence of a pressure p that is
unique up to an additive constant.

The example of Stokes’ problem is paradigmatic of the typical escape that is
usually performed when ImB is closed but different from Q. O

Example 4.2.3 (Domain decomposition for the Poisson problem). Referring to
Example 1.4.2, we have to solve the following problem: find (p,u) with p €
X(£2) =:V, u e H(div; 2) =: Q, solution of

/ g@dpi'g@d%'dx—/ E'ﬂ,ﬂidff:/ S qi dx,
K; K; K;

K;

Vg € H(K), Y Ki, (4.2.65)

Z/ v-n; ppdo =0,Yv € H(div; £2).
;. JOK;

We thus have b(g,v) = =) fE)Ki v-n; g; do, and the operator B, roughly speaking,

associates to ¢ € X(£2) its “DG jumps” g;n; + q;n; on the interfaces e;; = 9K; N
0K ;. The kernel of B is nothing but Hj (£2) and the problem corresponding to
(4.2.65) is the standard Poisson problem. To prove the existence of u, we shall have
to prove that ImB is closed in (H (div; §2))’ and we shall have to characterise Ker B'.
This will be done in Chap. 7. O



4.2 Existence and Uniqueness of Solutions 235

We shall of course come back to these problems when studying more precisely
mixed and hybrid methods. Checking the closedness of ImB, even if existence
proofs can be obtained through other considerations, is a crucial step ensuring that
we have a well-posed problem and that we are working with the right functional
spaces. This last fact is essential to obtain “natural” error estimates.

We end this subsection with a few rather academic examples, just in order
to see formulations that do not work (or present some sort of difficulty) and
understand why.

We shall consider the problem (very loosely related to plate bending problems,
as in Example 1.2.4, or to the Stokes problem in the so-called streamline-vorticity
formulation):

A= f in 2 (4.2.66)

on a reasonably smooth domain £2 (for instance, a convex polygon). We introduce
o = —AvY, and we are going to consider various boundary conditions, and
different possible mixed formulations.

* We start with the easiest choice of boundary conditions, that is
Y=w=0 onl. (4.2.67)

In this case, we can set V = Q := H_(£2), and consider the formulation

/w,udx—/gr_ad,uggdex:O, YuelV,
e e (4.2.68)

—/ gradw grad ¢ dx = —(f, ¢}, VoeQ.
2

In this case, both the operators B and B’ coincide with the Laplace operator
A : Hj(2) - H7'(£2), which is an isomorphism. In particular, InB = Q'
and KerB = {0}, so that the ellipticity in the kernel (4.2.12) is also trivially
satisfied. All is well and good. However, one could object that, with the boundary
conditions (4.2.67), we are almost cheating. Indeed, the problem is equivalent to
the cascade of sub-problems: —Aw = f and —AY¥ = w which are both well
posed if we look forw € Hj and ¥ € H.
*  We now consider the “clamped plate” boundary conditions

Iy
5 =0

Setting V := L?(2) and Q := HZ(£2), it is immediate to see that (, ¥)
satisfies the equations

V= on I (4.2.69)

/a),udx+/,uA1//dx=O, Yuel,
@ e (4.2.70)

/Qa)Afpdx:—(f,(p), VoeQ.
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Here, the operator B’ is just the Laplace operator from Hg (2) to L*(£2), and it
is clearly injective and bounding, since ||¢|2.0 < C ||A¢|o.c2 for some constant
C. Hence, the image of B coincides with Q’. The kernel of B is a little more
sophisticated. With some work, we discover that it can be characterised as

KerB = (L2 )*, (4.2.71)
where L%arm is the (closed) subspace of L?(£2) made of harmonic functions (that

is, functions w such that Aw = 0 in the distributional sense). Indeed, for such
functions, it is not difficult to see that (w, Ap) = 0 for all ¢ € HZ(£2). In any
case, we don’t care too much about KerB, since the bilinear form a is coercive
on the whole V. Our theory applies, and we are happy.

 Still with the “clamped plate” boundary conditions (4.2.69), if we are not willing
to use spaces involving two derivatives (as HZ(£2)), we could take V := H'!(£2)
and Q := H/](£2). It is not difficult to see that (w, ) solves

/w,udx—/gr_ad,uggdex:O, Yuev,
@ e (4.2.72)

—/ gradw grad ¢ dx = —(f, ¢}, VoeQ.
2

This time, B is the Laplace operator from H'(£2) to H~'(£2) (dual space of H),
which is clearly surjective. However, its kernel is made of the harmonic functions
in H'(£2) and the bilinear form a (which in this case is just the L?-inner product)
cannot be coercive (in H'(£2)), not even if you restrict it to the harmonic
functions. If you are not convinced of that, consider in 2 :=10, 7[ x]0, 1] the
sequence of functions

o = sin(kx) eX’.
Clearly, A¢x = 0 for all k. However, a simple computation shows that

Il grad ¢ (1§ o = 2kl 15,0

and you cannot bound ||¢x||? (that is | grad ¢y ||%,_Q) with a(¢r, i) (that is
|| Pk ||% o) uniformly in k. Hence, formulation (4.2.72) is not really healthy, as the
ellipticity in the kernel fails. Indeed, if for instance the domain £2 is not convex,
you are likely to have a problem without existence, as ¥ usually will not be in
H?3($2) and therefore @ might not be in H'(£2). We shall see in the following
chapters that methods based on this formulation might exhibit a suboptimal rate
of convergence.
*  We now consider the boundary conditions

W _do o r (4.2.73)
on on
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Here, we can take V := L?(£2) and Q := o H?(£2) defined as
2 2 dy
oH (£2) :={p|p € H*(£2), n =0on[l'}

and use the formulation (4.2.70). We see that B’ is again the Laplace operator,
but this time ¢ H?(£2) — (L*(2))’ = L*(£2). If, for instance, the domain 2 is
convex, then H := KerB’ is the space of constants, and Im B’ will be the subset
of V! = V = L?(£2) made of functions with zero mean value. The kernel of B
will also be the space of constants, and the image of B will be the polar set of
KerB’, made of those functionals that vanish on constants. We are in a situation
similar to that faced for the Stokes problem in Example 4.2.2. Here, we can adjust
everything by redefining Q as the subset of o H?(£2) made of functions with zero
mean value (thatis, Q = H~). The compatibility condition ( f,c) = 0 for every
constant ¢ will still have to be required, in order to have f € Q' (now = (H*)').
Doing that, we have that a is elliptic on V and ImB = Q' (the new Q’, of
course), and everything will work.

e It is time to see a really weird case. Consider, to fix the ideas, the case of
§2 :=]0, 7[x]0, 1], and split its boundary into the bottom part I, :=]0, w[x{0},
the top part [;:=]0,7[x{1}, and the lateral part Iy := 082\ (I} U I}).
Consider now the boundary conditions

ad a a a
w:—w:Ooan; w:—w:OonF,; —w:—w:Ooan
on on an on
' (4.2.74)
and the spaces V := L% and Q := H? defined as

~ 0 0
H2:={¢|¢6H2(.Q),g0=a—¢=0 oananda—(szoan}.
n n

It is clear that, if you have a solution (w, ) of the problem, then it will satisfy

/a),udx+/,uA1//dx=O, Yuel,
@ ° (4.2.75)

/mepdxz (fg). Vegeo.

This time, B’ will be the Laplace operator from H? to L2(£2). A non-trivial result
of complex analysis (Cauchy-Kovalewskaya Theorem) ensures that KerB' = {0}
(the boundary conditions at the bottom are enough to give you that). However, we
can check that B is not bounding. To see that, consider the sequence

ok = % cos(kx)(1 — cosh(ky)).
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Itis clear that ¢ € H? forall k. A simple computation shows that —A¢y, = cos(kx),
so that

T

On the other hand, it is also simple to check that

eZk

||¢k ”22(9) x~ F
goes to +o00 for k — +00, so that a uniform bound (in k) of the form

1Al 2@y = Bllellzs Vo € H?

is hopeless. Hence, ImB’ is not closed and therefore ImB is not closed either.
Indeed, the problem is severely ill posed, and you cannot solve it in practice unless
you add some sort of regularisation.

4.3 Existence and Uniqueness for Perturbed Problems

Some applications, in particular nearly incompressible materials (Sect. 8.13), will
require a more general formulation than Problem (4.2.6). Although the first
generalisation introduced will appear to be simple, we shall see that its analysis
is rather more intricate.

4.3.1 Regular Perturbations

We assume that we are also given a continuous bilinear form ¢(-,-) on Q x Q, and
we denote by C its associated operator Q — Q.

We now consider the following extension of problem (4.2.6): given f € V' and
g€ Q) findueV and p € Q such that

a(u,v) + b, p) = (f,v)yxy, YveV, 431)
b(u.q) —c(p.q) = (g.9)o'x0- Yqe Q. o

Remark 4.3.1. Whenever a(-,-) and c(:, -) are symmetric, this problem corresponds
to the saddle point problem

. 1 1
inf sup Ea(v, v) +b(v,q) - 56(61, q) —{(fiv) +(g.q)
veV qgeQ

and it is no longer equivalent to a minimisation problem on u. O
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Remark 4.3.2. As in Remark 4.2.2, the two equations in (4.3.1) can sometimes be
written as a unique variational equation, setting

A((u, p), (v,9)) = a(u,v) + b(v, p) —b(u,q) + c(p,q) V(u, p). (v.q) € V(Z 3Q2

and then requiring again that

A((w, p). (v.q)) = (fv)vxy = (& q)oxo  V(v.q) €V x Q. (43.3)

O

We now want to look for conditions on @, b and ¢ ensuring the existence and
uniqueness of a solution to (4.3.1), together with the proper stability bounds.
Let us first consider a special case. We assume that ¢ (-, -) is coercive on Q, that is

3y > Osuchthatc(q.q) >y |lql%. Yqg € O (4.3.4)
and that a(-, -) is also coercive on V:
Ja > Osuch thata(v,v) > a |[v||}, Yv e V. (4.3.5)

Then, we have the following proposition.

Proposition 4.3.1. Together with Assumption AB, assume that (4.3.4) and (4.3.5)
hold. Then, for every f € V' and g € Q’, problem (4.3.1) has a unique solution
(u, p). Moreover, we have:

o y 1 1
Ellullzv + Ellpll2 < %Ilfllzw + Ellgll2 2 (4.3.6)

Proof. The proof is elementary (using, for instance, Lax-Milgram Lemma (4.1.6)
on the bilinear form (4.3.2)). ]

The estimate (4.3.6) is unsatisfactory. Actually, in many applications, we will
deal with a bilinear form c(-, -) defined by

c(p.q) = A(p,q)o, A =0, 4.3.7)

and we would like to get estimates that provide uniform bounds on the solution for
A small (say 0 < A < 1). Clearly, if ¢(-,-) has the form (4.3.7), one has y = A
in (4.3.4) and the bound (4.3.6) explodes for vanishing A. This fact has practical
implications, as we shall see, on the numerical approximations of some problems,
for instance when dealing with nearly incompressible materials. On the other hand,
Proposition 4.3.1 makes no assumptions on b (-, -) (except the usual (4.2.4)) and it is
then quite natural for the choice ¢ = 0 to be forbidden.
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It is then natural to start assuming, as we did in Sect. 3.6 of the previous chapter,
that the corresponding unperturbed problem (corresponding to the case ¢ = 0) is
well posed, and try to find sufficient conditions on ¢ that ensure the well-posedness
of the perturbed problem.

We shall start with the simplest case, generalising Proposition 3.3.1 in an obvious
manner.

Proposition 4.3.2. Together with Assumption AB, assume that Axg’ is an isomor-
phism from K to K' and that InB = Q’. Then, there exists an &y > 0 such that, for
every € with |e| < &g, condition |c| < e implies that problem (4.3.1) has a unique
solution for every | € V' and for every g € Q. O

As for Proposition 4.3.1, the proof is immediate, this time using the Kato
Theorem 4.1.3.

The result of Proposition 4.3.2 is also unsatisfactory. For once, it does give us
a result only for ¢ small enough. Besides, gy will be very difficult to compute in
practice. Without it, we basically never know, in every particular case, whether we
are solving a well posed problem or not, which is clearly a quite unhappy situation.

We therefore have to look for better results. We could start, as in the previous
subsection, by assuming that InB = Q’, and then try to adapt the results to the
case in which ImB is closed but not equal to Q'. We remark, however, that, this
time, the passage from the case when ImB = Q' (when H = {0}) and the case
when ImB is simply closed is no longer so simple, as the bilinear form ¢ could
mix together the components of p in H and in H+. Therefore, it is better to look
directly at the case where we simply have ImB closed. On the other hand, we have
already seen in the previous chapter that assuming symmetry of both a and c gives
much better stability bounds. Hence, we decide to concentrate on that case. This is
particularly reasonable since, in most applications, the symmetry assumptions are
satisfied.

Therefore, to start with, we enlarge our Assumption A5 to include the additional

bilinear form ¢ and the additional properties that we are going to use throughout this
subsection.
Assumption ABC: Together with Assumption AB, we assume that we are given
a continuous bilinear form c(-,-) on Q x Q, and we denote by C its associated
operator Q — Q'. We assume, moreover, that ImB is closed, and that both a(-,-)
and c(-,-) are symmetric and positive semi-definite:

a(v,v) >0, VveV c(q,q) =0, Vg e Q. (4.3.8)
We now introduce some additional notation, and a few related properties that hold

when a and ¢ are symmetric and positive semi-definite, and ImB is closed.
We define the semi-norms

)2 :=a,v)  |q)* =g, q), (4.3.9)

and we note that, thanks to the continuity of @ and c,
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iz <llalllvly YveV and gl <lcllligly Yg€ Q.  (43.10)
We also note that, from (4.2.29), we have

a(u,v) < |ulg|vle and c(p.q) <|plc|qlec. (4.3.11)
and from (4.2.30),
I Aull® < llal lul; and |Cp|* < ||l Ipl;. (4.3.12)

Setting again K = KerB and H = KerB' asin (4.1.66), we can spliteachv € V
andeach g € Q as

v=1v9+7v q=qo+q, (4.3.13)

with vy € K, € K+, qo € H,andq € H+L, and we note that
b(v,q) =b(v,q) = b(v,q9) = b(v,9q). (4.3.14)

In a similar way, we can split each f € V' and each g € Q’ as

f=fi+tf g=sg+% (4.3.15)

with fy € K/, f € (K+) = K°, go € H andg € (H+) = H°, and we note that

(fov) = (fo.vo) + (f.0) (g.q) = (g0.40) + (£.9) (4.3.16)

with obvious meaning of the duality pairings.
We therefore have the following result, in which the roles of a and ¢ are perfectly
interchangeable.

Theorem 4.3.1. Together with Assumption ABC, assume that a(-,-) is coercive on
K and c(-,-) is coercive on H. Let therefore o, B, and yo be positive constants
such that

Ol()”U()H%/ < a(vo, vo) Y € K, 4.3.17)

b(v,q) b(v,q)
sup ———— = —_—
get L vev qllo Vllv  vekt 4eo llgllo IVlv

vollgolly < ¢(@o.q0) ¥ qo € H. (4.3.19)

=B >0, (4.3.18)

Then, for every f € V' and g € Q’, we have that the problem

a(u,v) + b, p) = (fv)yxv. Yv eV,

(4.3.20)
b(u,q) —c(p.q) = (g.9)o'x0. Yq € Q
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has a unique solution, that moreover satisfies

lullv +11pllo < C (17 v + liglor) (4.321)

with C constant depending only on the stability constants oy, 8, yo and on the
continuity constants ||a| and ||c||. More precisely, we have:

el 71l L V2B el 11 fol

v <

e al/zﬂz
B+ wlizl 3\/132 +u ||C||1/2||go||
+ (4.3.22)
e J/1/2/3
el lall™ A1, 2087 + ) Al
Juolly < AL 2
' p? oo
B+ wlal'?Izll | 3uvB>+ 1llgoll
+ " + , (43.23)
/2 2 1/2 1/2 5
B B
17l _B+wIfI 3\//32+M lal> 11 foll
plio = B2 1/2,32
lalllll v2/32 + 12 a7 IIgoll
+ 7 1/2ﬂz (4.3.24)
Yo
Ipolo < LB+ Wlel 2171, 3uvB® + 12l Al
- yé/zlgz O{(l)/zyé/zﬂz
1215 2(B2 2
lal ”f"z 21, 267+ il o)
/282 YoB
where | is defined by
w? = lall el (4.3.26)

Proof. As the problem is symmetric, we just have to prove that the mapping M :
(u, p) — (f, g) is bounding (that is, we have to prove that the bounds (4.3.22)—
(4.3.25) hold true). Then, M will be injective and M’ = M will be surjective, and
the theorem will be proved.
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Then, we note that there is another (fundamental) symmetry in our assumptions
when we exchange a with ¢, u with p and B with B’. Hence, we can start proving
our bounds for the case, say, f = 0. These bounds, due to the above symmetry, will
imply similar ones for the case g = 0 (exchanging u with p, p with y, and so on).
Then, by linearity, we will sum the estimates for f = 0 and those for g = 0, and
obtain the final estimates for the general case.

Hence, we proceed by assuming f = 0. We first observe that, for f = 0, we
have from the first equation

a(u,ug) = —b(up, p) =0 (4.3.27)
since up € KerB. Hence, using (4.3.9), up = u — u, and (4.3.11),
luol? = a(uo, uo) = —a (@, uo) < |ilq |uolas (4.3.28)

which, combined with the ellipticity condition (4.3.17) and then with (4.3.10), gives

lolly < ——luola = —fi. < 12 g (4.3.29)
uollv = 1/214(),1_ l/zua._ 1/2 ully. .
&y &y %)

We also note that, in operator form, Egs. (4.3.20), for f = 0, give
Au=—B'p (4.3.30)
and
Bu=Cp+g. (4.3.31)

Moreover, taking in (4.3.20) v = u in the first equation, ¢ = p in the second
equation, and subtracting, we have

a(u,u) + c(p, p) = —{(g. p), (4.3.32)
implying through (4.3.12) that

2
Aul?, ICply
llall llel

< —(g. p). (4.3.33)

At this point, it will be convenient to further distinguish the cases go = 0 and g = 0,
to make the estimates separately, and then sum them. We start with the easier case
go = 0. Then, (4.3.33) becomes

| Au?, IICpIIZ/<
llall el —

—(g, D). (4.3.34)
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On the other hand, p — p = po € H so that B'p = B’ p. Hence, using (4.3.30),
then (4.3.34), and then (4.1.94), we have

IB'BIy =B pli = | Auly,

. _ S B (4.3.35)
< llalllglle Il < lall ”g”Q’E”B Plv:
which, using again (4.1.94), gives
— | lall
I7llo = EHBIP”V’ = F“g“Q’- (4.3.36)

At this point, we remark that, from the second equation of (4.3.20) tested on g = py,
we have

C(p, 170) = b(bt, 170) - (Ea pO) =0-0= 07 (4‘337)

since B’ pp = 0 and (g, po) = 0 as in (4.3.16). Proceeding exactly as in (4.3.27)-
(4.3.29), we then have

|pole < [Ple- (4.3.38)

Using the ellipticity condition (4.3.19), then (4.3.38), (4.3.10) and the previous
estimate (4.3.36) on p, we have

1 I lall lle)l'/?
Ipolle < —71pole = —751Ple = —757—1Zllo- (4.3.39)
vy vo! vy * B2

The estimates on u and uy can be obtained in a similar way: indeed we can use
(4.3.31), then (4.3.34), and then again (4.3.36) to obtain

_ = lell el —
1Bu—%l% = ICpIg < lcl Izl Pllo < T g1l

giving

(llell llalp*”> . p+p
— 5 Igllor + lIgllor =

where in the last step we used the definition of u given in (4.3.26). Hence, using
(4.1.93), Bu = Bu, and (4.3.40), we have

|Bullor < Igllor. (4.3.40)

w+p
'32

1

IBullor <
B 0

_ |- _
l[ally < EIIBMHQ' = Iglor- (4.3.41)

Finally, we can use (4.3.29) to obtain
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lall' e+ Bllall?
al/? lully < al/—zlgznqu"

uolly < (4.3.42)

The estimates in the case go = 0 are therefore completed.
We now consider the case g = 0. Using the definition (4.3.9), then (4.3.13), and
then the second equation of (4.3.20) with ¢ = po, we have

|pol2 = c(po. po) = c(p. po) — c(P. po)
= b(u, po) — (g0, po) — ¢(P. po) = —(go. po) — ¢(P. po) (4.3.43)
< llgollo’llpollo + 1Plc | pole

where the last equality holds since py € Ker B'. We also note that, due to (4.3.19),
1
Ipollo = —751pole- (4.3.44)
Yo

Joining (4.3.43) and (4.3.44), we then have

llgoll o’

| pol; < 2 |Pole +[Plelpole, (4.3.45)
Yo
implying
lgollor | —
Pole < 2252 + 1Pl (4.3.46)
Yo

and using once more (4.3.44), and then (4.3.10),

1 /llgollor | - lgollor | llell'?
pollo < W( 1/2Q + Iplc) < 2 4 7 I7lo- (4.3.47)
Yo Yo Yo Yo

Proceeding as in (4.3.35), and then using (4.3.47), and finally (4.1.94), we now have

IB'BIS = 1B ply, = I Aully < llall lIgollollpoll

lall ligoly Yallllgollor —
S 1/2 9 ||C||1/2||P||Q
” ) (4.3.48)

lalllgolll  llall lgolig i) ,—
< + BBl
Yo Bvo

Using the classical inequality xy < (x> + y?)/2 on the last term of (4.3.48), we
obtain
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1”Bt—”2 - lall gl N lall® llgoll% llell - 2B+ 1) lall llgoll
SID Plyr = = ,
2 Yo 2B2yo 2y0p? (43.49)
implying easily
1/2 1/2
_ @B + 1) llall'* llgoll o’
1B Pllv: < 0 e (4.3.50)
Yo B
From (4.3.50), using once more (4.1.94), we obtain the estimate on p
282 4 122 1/2 ,
1o < 210 lal 2 ol wash)

1/2
V()/ ,32

which, using (4.3.47), also gives the bound on py:

lgollor  Nell/2 282 + u»)'2|lall'? ||goll o’
+ 5 172 2,
Y0 Yo Yo B

B>+ n2p* + Mz)l/z 2(82 + 12)
= B lgollor = W”gOHQu (4.3.52)

This, in turn, gives us a bound on ||Cpl|| o/. Indeed, using (4.3.33) and remember-
ing that in this case

[ pollo <

(g, p) = (g0, P) = (go. Po) (4.3.53)

and then using (4.3.52), we easily have

llell 2(8% + 1?)
ICPIG =< —licll (go. po) < R

On the other hand, the second equation of (4.3.20) gives Bu = Cp + go, so that
using (4.3.54),

lgoll. (4.3.54)

lell'? 2(B2 + p?)

1/2
Vo/ﬂ

3B+ #el 2

+1)lgollr = T —lgllo,
V()/ B

I1Bullgr < (
(4.3.55)

where we used the fact that yy < ||c||. We now note that Bu = Bu, so that, using
(4.1.93) and (4.3.55), we have the estimate on u

3VE+ wlel 2

1/2
Vo/ B>

_ 1
[ally < EIIBMIIQ/ = ligollo- (4.3.56)
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The estimate on 1 then follows from (4.3.29), that is,

a2 3uv/B* + p

lally < —5—75—lgollo- (4.3.57)
1/2 1/2 1/2
O‘0/ )’0/ 0‘0/ B>

luolly <

As already discussed, the estimates for the cases g = O and f = f or f = f; are
“symmetrical”, and the proof is completed. O

Remark 4.3.3. Following the path of Theorem 3.6.1, we could have proved stability
also for the case in which a or ¢ are not symmetric (at least in the case InB = Q).
However, the dependence of the stability constants upon ¢ and 8 would have been
much worse. O

A very particular (but important) case is met when ¢ has the form, as in (4.3.7),

c(p.q) =AMp.q)o. A =0 (4.3.58)

where (-, )¢ is the scalar product in Q. We decided therefore to dedicate a theorem
especially to it.

Theorem 4.3.2. In the framework of Assumption ABBC, assume further that the inf-
sup condition (4.2.26) and the ellipticity requirement (4.2.12) are satisfied, and that
c is given by (4.3.58) with A > 0. Then, for every f € V' and for every g € Q’,
problem (4.3.20) has a unique solution, and we have the estimate

B>+ 4xa| 2|/
ully < ———— v + ’ (4359)
Il = =g 1 v+ S el
and
2 [la||'/? 4al

Ipllo = —7—Il/ v + (4.3.60)
oy’ P

Tjal + 252 lgllor-

Proof. As we are already used to, we shall split the two cases f = 0 and g = 0,
and then combine the estimates by linearity. Let us first consider the case f = 0,
and assume that u, p and g satisfy

a(u,v) + b(v, p) =0, Vvel,
4.3.61)
b(u,q) —A(p.q)o = (8.9)o'x0.  Vq€Q.
In operator form, (4.3.61) can be written as
Au+ B'p =0,
(4.3.62)
Bu—ARpp =g,

where R is the Ritz operator O — Q' (see (4.1.37)).
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Using (4.1.94) together with the first equation of (4.3.62), we obtain
Bllpllo < 1B pllor = IlAully. (4.3.63)
On the other hand, we already noted (see (4.3.32)) that
a(u.u) + Alply = —(g. Phorxo- (4.3.64)
Using (4.3.12), Eq. (4.3.64) and finally (3.4.17), we have
lA4ully < lalla(u,u) < Jallplo lgllor (4.3.65)
which, combined with (4.3.63), yields

el

[ Aully: < 7||g||Q', (4.3.66)
and using again (4.3.63),
llall
Ipllo < Fllgllgu (4.3.67)

Using the lifting operator L p defined in Theorem 4.1.5, we set

ii:= Lp(g+ ARy p) (4.3.68)
and we have from (3.4.43)
Bii = g + AR} p. (4.3.69)
Setting now
Uog = u— 1, (4.3.70)

we have from (4.3.69) and the second equation of (4.3.62) that uy € K. We then
note that, testing the first equation of (4.3.61) with v = ug, we have, as in (4.3.27):

a(u,up) = —b(uo, p) = 0. 4.3.71)
Moreover, using (4.3.70), (4.3.71) and (4.3.11), we have as in (4.3.28)
a(uo, ug) = —a(ug, ) < |uglalit]a, (4.3.72)
which easily gives
luola < litlq- (4.3.73)
Hence, we can use (4.2.12) and (4.3.73) to obtain

aolluolly < luoll < Il (4.3.74)
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and finally from (4.3.74) and (4.3.10),

lal
ol = (T ) lalv.

Finally, we can collect (4.3.70) and (4.3.75) and have an estimate for u:

- lall 7Y, -
ety < ol + by < (1 (%) Y.

We now consider the first equation of (4.3.61) with v = u, getting
a(u,u) + b(u, p) = 0.
Recalling that a is positive semi-definite (see (4.3.8)), we obtain
b(u, p) =0,

and substituting p = A~' R, (Bu — g):

0> (Bu.A™' Ry (Bu—g))prxo

! (IBully — (Bu. Rg' g)orxo).

which easily implies
1Bulyy < (Bu, Ry'g)orxo < IBullor llglors
giving
[Bullor < llgllor-
Using once more the inf-sup condition (4.1.93),

~ | S 1 1
lallv < E”B“”Q’ = E”B”“Q’ = EIIgIIQ”

and inserting (4.3.81) in (4.3.76), then using oy < ||a||, gives

lally2y, o 2lal
= (1 (7))l < ol el

249

(4.3.75)

(4.3.76)

(4.3.77)

(4.3.78)

(4.3.79)

(4.3.80)

(4.3.81)

(4.3.82)
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We note at this point that we have another way to obtain an estimate for p, apart
from (4.3.67); actually, from the second equation of (4.3.62), and (4.3.80):

1 2
Irllo < XIIBM —gllo = Xllgllg’- (4.3.83)

With some manipulations, we see that (4.3.67) and (4.3.83) can be combined into

4all
rllo < T lgllor- (4.3.84)

A+2p2

We now consider the case in which g = 0 and assume that u, p and f satisfy

a(u,v) +b(v, p) = (f,v)yxv, Vvel,
(4.3.85)
b(u,q) =A(p.q)o =0, VgqeQ,
which in operator form reads:
Au+ B'p=f
(4.3.86)
Bu — ARQp = O,

where again Ry is the Ritz operator Q — Q' (see (4.1.37)). We use again the lifting
operator L p of Theorem (4.1.5), this time setting & := LzARg p so that

Bii = Bu= ARy p. (4.3.87)

and, defining again ug as in (4.3.70), we still have uyp € K. Taking v = u as test
function in the first equation of (4.3.86), and substitute p = Rélk_lBu:

a(u,it) + b(i, Ry' A~ Bu) = (f.@). (4.3.88)
As Bii = Bu, we can rewrite (4.3.88) as follows
A7NBullg = (foi) —a(u.i) < || f v lally — a(u, @). (4.3.89)

We leave (4.3.89) for a while, and we estimate —a(u, ). Using the fact that
u =i + ug and (4.3.11), we obtain

—a(u, i) = —a(@ + uo, ) < —al3 + |ila |uoa- (4.3.90)
On the other hand, testing the first equation with v = ug, we get

a(u,ug) = (f,uo), (4.3.91)
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yielding

luol = aluo, uo) = alu,up) — a(@,uo) < £ || luollv + lala luola-

On the other hand, (4.3.17) gives
aolluolly < luol;
which, together with (4.3.92), yields

I/ 1lv-

|“0|a = 1/2
LA

+ litla.

Inserting this into (4.3.90), we have

- - - 1 ~ - 1
— i) < ~Jil} + lie (75 1S v+ li) = 1dla 7511
L2 o
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(4.3.92)

(4.3.93)

(4.3.94)

(4.3.95)

Inserting this into (4.3.89), then using (4.3.10), and finally using (4.1.93) gives

_ - - 1
AN Bullyr < (LS v llally + litla —7 I v
2

a2 i a2 !
= (1+ S )W vl < (14 5 )1 flvrg
o Q B

1/2
_ o’ + ]

/|| Bul| o
1/2 ”f”V ” [¢)
,30{0

Using again (4.1.93) and then (4.3.96), we have therefore

. 1 Al + [lallV?)
fall = 5 Bulor < Moy~ F el ™)

(PAIZE

Bray?

Using (4.3.93), (4.3.94), and (4.3.10) and then (4.3.97), we have then

’ u ’ al|\1/2 _
I/ v n o _ I/ lv +<|| ||) Il

o) a(l)/z )

lluollvy < —luola <
G172 10 o

0

=

1/2
( 1, M+ flall )l
&%) 060,32

Il

[1Bullor

(4.3.96)

(4.3.97)

(4.3.98)
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From the second equation of (4.3.86) and (4.3.97), we also derive the estimate for p

1/2 1/2
_ +lla]
Pl = 1A~ Bullgr < Bl LAl (4.3.99)
(07

0

We collect the results for g = 0, using the fact that ¢y < ||a||. From (4.3.97) and
(4.3.98), we have the estimate on u

leellv < llallv + lluollv

Alal? + e 1 Alall + (lafleo)/)
= ( T +—+ S ) I £ v
B2 ) aof
/32 + 4A|al|
<——7Iflv, (4.3.100)
opf?
while from (4.3.99) we have the estimate on p
2lall ™ 4.3.101
Ipllo = 1/2,3 I/l (4.3.101)

The final results can then be obtained collecting (4.3.82), (4.3.84), (4.3.100) and
(4.3.101). O

Corollary 4.3.1. In the framework of Assumption ABC, assume that ImB is closed,
that the ellipticity requirement (4.2.12) is satisfied and that c is given by (4.3.58)
with A > 0. Set g = g + go with g € H® and gy € H' (with H := kerB', as
usual), and set p = p+ po withp € H* and py € H. Then, for every f € V' and
forevery g € Q', problem (4.3.20) has a unique solution, and we have the estimates

B* 4 41 |a| 2la|/? _
llullv < Tllfllv + 25 gl (4.3.102)
— 2 la]|'’? 27—
= t , 4.3.103
I7llo < l/zﬂ — 75—l 2l ||+2ﬂ2” gllo ( )
1
[ pollo < xllgollgu (4.3.104)

Proof. It is immediate to check that, actually, the problem splits into two sub-
problems: find (u, p) € V x H* such that

a(u,v) +b(, p) = (fiv)yxv, Yvev,
_ _ o (4.3.105)
b(u,q) —A(D. 9o = (& Q) uLyxut Vge H™,
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and
APo = go. (4.3.106)

For problem (4.3.105), we can apply the results of Theorem 4.3.2 using H+ instead
of Q (with the same norm). Problem (4.3.106) is trivial. O

In the case where ¢ has the form (4.3.58), as in Theorem 4.3.2, it is also
interesting to estimate the distance between the solution of the perturbed problem
(4.3.20) and the solution of the limit problem, for A — 0.

We have in particular the following proposition.

Proposition 4.3.3. Together with Assumption AB, assume that a(-,-) is symmetric,
positive semi-definite and elliptic on K, and that TmB is closed. Let f € V’, let
g € ImB, and let (u*, p*) be the solution in V x H* of the problem

a*,v) + b, p*) = {f.v)yxy, Yvev,
. (4.3.107)
b(*.q) = (g.9)o'x0. Vg€ Q.
Let moreover, for A > 0, (uy, py) be the solutionin V x Q of
a(uy,v) + b(v, pr) = (fv)vxv, Yvel,
(4.3.108)
b(ur.q) —A(pr-@)o = (8. 4)ox0. Vg €Q.
Then, we have
lu* —unlly +11p* — pallo = C A, (4.3.109)

where C is a constant depending only on «y, ||a|| and B.

Proof. Setting §, := u; —u* and §, := pp — p* and taking the difference of
(4.3.108)-(4.3.107), we easily have

a(8y,v) +b(v,8,) =0, Yvel,
b(@u.q) —A(6p.9) =2 (p*.9)o. Vq€Q.
Hence, we can apply estimates (4.3.59) and (4.3.60) with g = AR p*. O

Remark 4.3.4. We point out that the validity of (4.3.109) for A — 0 could have
been obtained directly from Theorem 4.3.2 and the Kato Theorem (4.1.3). O

(4.3.110)

We also point out the following result, that is particularly useful if one is not too
keen on spotting the best dependence of the stability constants.

Proposition 4.3.4. Together with Assumption AB, assume that a(-,-) is symmetric,
positive semi-definite, and elliptic on K, and that ImB is closed. Then, for every
x > 0, there exist a constant &, depending on y, ||a||, oo and B (defined in (4.3.18)),
such that

alvlly < a(,v) + x|Bv|3, YvelV. (4.3.111)



254 4 Saddle Point Problems in Hilbert Spaces

Proof. It is easy to check that, for every ¢ €10, 1],

a(v,v) + x| Bully = |vol; + (017 + 2a(vo. D) + xIIBvG

2 4 52 =12 =
= |voly + Ivlg + xRl = 2lvola|v]a

1
2 =2 2015112 2 =2
= [volg + Pl + x BNV Iy = elvols — [0l

1. _
= (L=o)lol; + (1 = DI + 281715

lall, .
= (1= 9)lvolg + (lal = =Tl + 2821915

xB%e + llalle — |la||
ols + .

=(1-elv o1l

xB’e + llalle — llal

> ao(1 —e)lvolly + 19115
2
2
and the result follows by taking ¢ = M. O
2182 +2|al
Remark 4.3.5. 1t is clear that, conversely, the property (4.3.111) implies the ellip-
ticity of a on the kernel K of B. O

Remark 4.3.6. Looking at the proof of Proposition 4.3.4, we can analyse the
dependence of the constant & on y 2, on ||a||, and on a. Indeed, setting k := y 8>

+2m
and m := ||a||, for e = ———— we have
2k +2m
k£+m8—m:(k/2)+m—m :%:k(k+m) 43.112)
e e e k+2m
while
a0(2k +2m—k — 2}’)1) Ol()k
|—e) = - , 43.113
(1 =) 2k +2m 2k +2m ( )
On the other hand, since oy < m = ||a||, we have
k
e t+m) , _kao (4.3.114)

k+2m — 2k+2m

which finally gives (looking at the last line of the proof of Proposition 4.3.4)

2
&> % (4.3.115)
258+ 2|lall
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It is easy to see (taking the derivative) that the right-hand side of (4.3.115), as a
function of y, is monotonically increasing. Hence, we can say that, for every fixed
x= > 0, we have that for every y > y«,

2
R i (43.116)

© 2B+ 2all
u!

Remark 4.3.7. In the above theorem, there is no mention of any bilinear form c,
and one may wonder why the theorem has been put in this subsection. However, the
bilinear form a(u, v) + y(Bu, Bv) ¢ is exactly what we get from problem (4.3.20)
for c(p,q) = A(p,q)o (thatis, in the case of the problem (4.3.108)). Indeed, in
this case, the second equation of (4.3.108) can be written as: Bu = ARgp + g
where R is the Ritz operator in Q, as defined in Theorem 4.1.2. Solving for p and
substituting in the first equation gives

1 1,
a(u,v) + I(RQIBM, Bv)oxgr = (f,0) vy + I(RQIg, Bv) gxo-

Then, we use the fact that Rél = Ros, we set y = 1/A, and we obtain that the
problem (4.3.108) is equivalent to

a(u,v) + y(Bu, Bv)gr = (f,v)y'xv + x(g.Bv)gr Yvel,
P = x Ro/(g — Bu),

(4.3.117)

where clearly the first equation can be solved by itself, and its solution u used to
express the solution p of the second equation. O

We conclude the subsection on regular perturbations with the following general
theorem, which is often useful in these kinds of problems.

Theorem 4.3.3 (The shadow solution). Assume that 'H is a Hilbert space, and that
M and D are linear continuous operators from 'H into its dual space. Assume that
ImM is closed and that there exists a A* > 0 such that, for every A positive with
A < A*, we have

Ax|3, < C (Mx + ADX,X)7yx3 VX EH, (4.3.118)

for some C independent of A and x. Let F € ImM and consider, for every A positive
with A < A*, the solution x;, of the perturbed equation

Mx; + ADx, = F. 4.3.119)
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Then, X, has a unique limit X« for A — 0+ and
X3 —Xu«lle < CA (4.3.120)

where C is independent of A.
Proof. We give a hint of the proof. As F € ImM, we have 7 = MX for some
X € (KerM)* with ||X||7; bounded by || F||+¢ . Then,

(ME—-x3), X=x)) + A{DE—x3), ®—x3)) = A (DX, (X —x3)).
showing that

%1 —X[13 < Co (DX, (X —x1)) < Ci[|Fll2lIxr — X2, (4.3.121)

with Cy and C independent of A. Hence, x), —X is bounded, and (up to the extraction
of a subsequence) converges weakly in H. We define then x, as the weak limit (for
A — 0+4) of x,. Then, we can go back to the first inequality in (4.3.121), and see that
the convergence is strong. Now we remark that, for every A, equation (4.3.119) gives
that Dx; belongs to the image of M. As the image is closed, its limit Dx, is also in
the image. Let y. € (KerM)' be such that My, = Dx,. Set now y; := Xx — X,
y := Ay« and G := My. We easily have that

My, + ADy, = ADx, = M(Ayx) = G. (4.3.122)

Proceeding as in the previous part of the proof, we have then

(MF —y1),F—y)) +ADF -y, F—y1)
=1 (Dy.X—x;) =A* (Dy..Y—ya),

showing that

lys —¥13 < CoA(D(yx), (¥ —y1)) < AC|¥ — yalln. (4.3.123)

with C; independent of A. Hence, ||y) — ¥||» = O(X). Recalling the definition of
y, and y, we have then ||x. — X3 — Ay«|lx = O(A) and finally (4.3.120). O

Remark 4.3.8. We note that X and x, will both solve the limit equation Mix = F,
and they have the same component in (KerM)*. However, the perturbation AID,
although vanishing in the limit, leaves a unique choice of the part of the solution
that belongs to (KerM): it is the shadow of the perturbation. O

Remark 4.3.9. The above theorem applies for instance to perturbed mixed formula-
tions as (4.3.20) when a and c are positive definite, with H = V' x Q. In this case,
we can set M(u, p) = (Au + B’ p, —Bu) and D(u, p) = (0, Cp) and the theorem
applies. Note that ImM will be closed due to Remark (4.2.6). O
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4.3.2 Singular Perturbations

An important variant of problem (4.3.20) will occur in applications (cf. Sect. 10.4).
Assume that we are given a Hilbert space W continuously embedded in Q (that is
W < Q) and dense in Q. We recall that, as in (4.1.75), the continuous embedding
means that W C Q and, moreover,

Iwllo < Cwolwlw VYweW (4.3.124)

(and without loss of generality we can assume here that Cyyp = 1). As discussed in
Sect. 4.1.6, the density implies that O’ < W, that Q” is dense in W', the inequality

Iwllwr < lIwllor ~ Ywe Q' (4.3.125)
and finally that
(g.9)wxw = (g.9)o'xo Wheneverg € Q" and ¢q € W. (4.3.126)

Remark 4.3.10. Having assumed already that Cp = 1, and also in order to keep
the formulae reasonably simple, throughout this subsection, we implicitly assume
that the problem has been adimensionalised, so that all the quantities we deal with
are pure numbers. O

We now consider for every A > 0 a perturbation of the type c(p,q) = A (p,q)w,
that is, we consider problems of the form: find (uy, py) in V x W such that:

a(uy,v) + b, pr) = {(f,v)y'xy, Yv eV, (4.3.127)
bup,q) — A (pr.@)w = (81,9 o'x0 + (&2, @)w'sxw, Yqg € W, (4.3.128)

Depending on which space is identified to its dual space, we shall meet cases where
W Q0 = Q' < W orwhere Q' — W' = W < Q. In all cases, roughly
speaking, the solution of a problem in V x Q is approximated by the (smoother)
solution of a problem in V x W . To put the problem in the right frame, we suppose
first, for simplicity, that a(-,-) is coercive on V and b(:,-) continuous on V x Q
(hence on V' x W) with ImB closed in Q’. We suppose in (4.3.128) that g; € ImB.
Taking as usual (4.3.127) with v = u, and subtracting (4.3.128) with ¢ = p,, and
then using the coercivity of a, we have immediately

allwl? + Apallyy < I v llually + lIgillorIPallo + llg2llw Il pallw, (4.3.129)
where, as usual, p is the component of p in H 1 with H = KerB’. On

the other hand, with the usual arguments, one still has from (4.3.127) that
BlPallo < llall lluall + || f|lv,. By classical arguments, one then gets the estimate

— 1
lua I3 + 1, + Al palliy < € ALF I + el + ﬁllgzlliw), (4.3.130)
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where (here and in the sequel of this subsection) we denote by C any constant
that depends only on the bilinear forms a and b. If we have go = g2(1)
with ||g2(A)[|%,,/A bounded independently of A, then the solution will become
unbounded in W for A — 0 but will remain bounded in Q /KerB’, and we expect it
to converge to the solution of problem (4.2.6).

Before discussing further this matter, we would like to relax the ellipticity
condition on a, assuming ellipticity only in the kernel of B. This, however, will
produce unnecessary technical difficulties, so that we will compromise on a slightly
stronger condition: We have seen in Proposition 4.3.4 and in Remark 4.3.5 that,
when Im B is closed and a is symmetric, the ellipticity in the kernel of a is equivalent
to the property (4.3.111). Here, taking into account Remarks 4.3.7 and 4.3.6 as well,
we are going to assume that for every y« > O there exists an os. > 0 such that:

Vx> yx 30> aws. t.@lul’> < aw,v) + y||Bv|?, YveV. (43.131)

Note that, as W’ is bigger than Q' (and has a smaller norm), condition (4.3.131) is
stronger than the corresponding condition (4.3.111).

Finally, as we are interested in the case of A small, we will not care about the
possible behaviour for A — 400, and we can limit ourselves to the case A < Ag
(implying that y is bigger that some fixed y«). In the next theorem, it will be
convenient to take Ao = 1/2, just to have slightly nicer formulae.

Theorem 4.3.4. Together with Assumption AB, assume that ImB is closed in Q
and that a(-,-) is positive semi-definite and verifies (4.3.131). Assume moreover
that W is a Hilbert space, continuously embedded in Q and dense in Q. Then,
for every A with 0 < A < 1/2, for every f € V', for every g1 € ImB, and for
every g» € W', the problem (4.3.127) and (4.3.128) has a unique solution which,
moreover, satisfies

— 1
luz |y +173llo +A 2 pallw < € (”f”V""”gl||Q’+m”g2“W’)a (4.3.132)

where p, is the component of p; in H*.

Proof. Since we do not yet have the existence of the solution, we apply a
regularisation argument. We first substitute a with a, given by

a.(u,v) = a(u,v) + e(u,v)y,

with ¢ > 0. Then, we prove a-priori bounds independent of ¢ and we have the
solution in the limit for ¢ — 0+4-. For brevity, we do not re-write problem (4.3.127)
and (4.3.128) with a, in place of a, and we do not indicate the dependence of the
solution of the regularised problem on ¢. Taking the first equation (4.3.127) with
v = u,, and subtracting the second equation (4.3.128) for ¢ = p,, we get

ellually +a(us, un) + A(pa, pa)
v u (4.3.133)

=(four) + (g1, Pa)orxo + (g2, Pa)wrsw.
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We note that we still have from the first equation that

Blpalle = Cllurlly + 1.7 1lv). (4.3.134)

and since we assumed g; € ImB, we have

(1. p2) = (g1, P3) = Cllgllo Ulually + 11/ lv7). (4.3.135)

On the other hand, we also have

(fru) = f v Nluallv (4.3.136)
and
1 12 1 2 Ao
(g2, p1) = mngHW/)L I pallw < ﬁ”ngW/ + §||PA||W- (4.3.137)

Inserting (4.3.135), (4.3.136), and (4.3.137) in (4.3.133) and dropping the term
with the ¢ (which is positive), we then easily have

a(uy,uy) + Al pal3

1
= C(lgillo Uurlly + 1AMy + 1Lf by lually + xllgzlliw) (4.3.138)

1
= C (v (L7 v + Ngrllo) + 1F I + g1 + ez )-

On the other hand, from the second equation we have that A Ry p, (where Ry
is the Ritz operator in W, as in Theorem 4.1.2) is equal to Buy — g, — g». Hence,

1
Mpalliy = AlIRw pallyy = X”Bul — g1 — &l (4.3.139)

Hence, using (a + b)? < 2a® + 2b?, the assumption A < 1/2, (4.3.139) and
(4.3.125), we have:

|Bus |3 < 2||Bus — g1 — ga2|% + 2llgr + 2113
1
< ZIBu — g1 = gallf + Algillwr + 4llgallwe (43.140)
< Mpally +4llgillor + 4llg2llw,

which, joined with (4.3.138), gives immediately
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a(uz,w) + |Burllwr + Al pally,

1 (4.3.141)
< C(IILullv(llfllw +lgille) + 1L/ 15 + gy + Xllgzllﬁw)-
Finally, using (4.3.134) together with (4.3.131) and (4.3.141) gives
laally + 172015 + Al pally
< Cu(llnalfy + 11 + Al paly)
< Co(aGurw) + 1Burlw + 1 F 13+ Al palliy) R
< (v (17 v+ lgillo) + 171 + iy + 3 21,
which easily yields the result (4.3.132) O

As we shall see, a particularly interesting case is met when both g; and g, are
zero. In fact, it is remarkable that in this case we do not need the inf-sup condition
(meaning that we do not need ImB to be closed). We have indeed the following
proposition.

Theorem 4.3.5. Together with Assumption AB, assume that a(-,-) is positive
semi-definite and verifies (4.3.131). Assume, moreover, that W is a Hilbert space,
continuously embedded in Q and dense in Q. Then, for every A with0 < A < 1/2,
and for every f € V', the problem: find (uy, p,) in V- x W such that

a(uy,v) + b, pr) = {(f,v)y'xy, Yv eV, (4.3.143)
b(ur.q) —=A(pr.q)w =0, Vg e W, (4.3.144)

has a unique solution, that moreover satisfies

(4.3.145)

. A f15
allurlly + Al palyy < TV

where & is given in (4.3.131).

Proof. Mimicking the proof of Theorem 4.3.4, we now have, using (4.3.131), then
(4.3.139), and finally (4.3.133):

allually + Allpalliy

1 2
< a(uy,up) + IIIBMAII2 A+ APl = atu,u) + XHBIMH%V/

1
< Z(a(uk, ) + X||BuA||%V,) <2(fiw) vy, (4.3.146)
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and the result follows immediately since

21115, | allully
—

2{fiup)yrxy <

As we consider the augmented problem as a perturbation, we shall now try to get
an estimate on |lu — u, ||y and |[p — pallo as A — O+.

Proposition 4.3.5. With the same assumptions of Theorem 4.3.4, and assuming
moreover that g, = 0, let (uy, py) € V x W be the solution of problem (4.3.127)—
(4.3.128) and (u, p) € V x Q be the solution of problem (4.2.6). We then have

lu=wly + 1P~ Pillo = € inf [Ip=pullo + VA Ipullw ] (43.147)
Proof. Subtracting (4.3.127)—(4.3.128) from (4.2.6) with g € W, one easily has

a(u—uy,v)+b(w,p—p)) =0, Vv eV,
{ (4.3.148)

b(u—up.q) = A(pr.qQ)w. Vg € W.
The argument of Proposition 4.3.3 cannot be applied, for it would require (in the

second equation of (4.3.148)) ¢ € Q. However, let p,, be any element of W. We
rewrite (4.3.148) as

a(u—uy,v) +bw, py,—pr) =b(w,p,—p), YveT,
(4.3.149)

bu—uy,q) +A(pw—prr.w = =A(Pw.w. Yq €W.

We can now apply Theorem 4.3.4 with (g2,q) = A(pw,q)w, and use estimate
(4.3.132) to get

lu—wall} + 17, = Bl <€ (lpw—plb + 2 Ipul}). (43.150)

From the triangle inequality and the arbitrariness of p,,, one deduces (4.3.147). O

Remark 4.3.11. The right-hand side of (4.3.147) will, in general, tend to zero with
A whenever p is more regular than just p € Q. For instance, if p € W, we can take
pw = p and (4.3.147) will give

lu —urlly + 1P = Pallo < C V2. (4.3.151)

See also Remark 4.3.14 here below. O



262 4 Saddle Point Problems in Hilbert Spaces

Remark 4.3.12. The above result is not optimal. For instance, it does not reduce to
the estimate (4.3.109) of Proposition 4.3.3 when W = Q. Let us suppose however,
for simplicity, that ImB = Q’, and consider the space W™ defined as

wt .= Ry'(0Q), (4.3.152)

where Ry is as usual the Ritz operator in W as defined in Theorem 4.1.2. Since Q’
is a dense subspace of W', we easily have that W is a dense subspace of W, and
moreover,

Wt s W Q. (4.3.153)

Furthermore, for every p+ € W, there exists, from the definition (4.3.152), a
g € Q' such that

Pt w = (Ry'g.Ow = (8. @) wxw (4.3.154)

and, using (4.1.76), we have, for every g € W,

(Pt .ow = (& Q)wxw = (g.q)ox0 < glollgle YqeW. (43.155)

where we also used (4.3.126). We can think of W™ as a subspace of W made of
more regular functions. Taking now p,, = p,, € W, we can now go back to
(4.3.149), considering this time that the right-hand side of the second equation (that
is A (pw, q)w) corresponds to the choice g = 0 and (g1,q) = A (py,.q)w when
using Theorem 4.3.4. From (4.3.132), we now have

lu—wlly +lp=pillo =C (_inf lp=puslio +A [Py llw+) 43.156)
pw_‘_eW""

where we also took into account that we assumed ImB = Q' and hence p; = ps.
Now, (4.3.156) is optimal for W+ = Q. O

Remark 4.3.13. The argument of the above remark can easily be extended to the
case in which ImB is closed but does not coincide with Q’. We simply have to take
Wt .= Rg,l HO (where HY is the polar space of H = KerB'), so that (p,,+,q)w <
C |7 o- In general, such a W+ will not be dense in W, but in many applications p
(belonging to H+) will still belong to its closure (that is, you can still approximate
p with a sequence of elements in W ). O

Remark 4.3.14. In the spirit of Remark 4.3.11, we observe that, here again, the
right-hand side of (4.3.156) can be bounded in terms of A whenever p is more
regular. In particular for p € W™, we would have

lu—urllv +llp = pallo = CA. (4.3.157)

|
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Remark 4.3.15. In both (4.3.147) and (4.3.156), an intermediate regularity
between Q and W can provide an intermediate speed of convergence for A — 0.
More precisely, let us suppose that p belongs to [W ™, QJg.0o for 0 < 6 < 1. The
space [W™, Qlyp.0o is an interpolation space between W and Q. We refer the
reader to [62] for more details on these spaces. Here, we just recall that

1Plw+.01e =sup  inf  A7"Ip—puillo+ A" Ipwy ). (43.158)
A>0 Pw+5W+

As a consequence, if p € [W T, Qg.c0, then we have

inf  ([p=pwill + A Pwyllw+)
Pwy EWT

=1 inf ANp—puillo+ A" Py D
Pwy EWT

<A 12w+ .01 oo
(as in [62], Theorem 3.12). Hence, (4.3.156) can be written as
lu —willy + 112 = pallo < C APl +.01) oo - (4.3.159)
Note that, in particular if W+ := H'(£2) and Q := L*(£2), we have that
H(2) = W7, Qlyoo.
Hence, if p € H?(£2), we will also have p € [W ™, Qls.00, and estimate (4.3.159)

will hold true. Clearly, a similar argument could be applied to the estimate (4.3.147)
for p having an intermediate regularity between Q and W. O



Chapter 5
Approximation of Saddle Point Problems

This chapter concludes the abstract analysis of mixed formulations. After studying
the finite dimensional case in Chap. 3 and the infinite-dimensional case in Chap. 4,
we analyse here the problem of approximating the infinite dimensional case (that,
in practice, will come from a PDE problem) by means of a finite dimensional one,
treatable with a computer. We shall see that (apparently) reasonable approximations
of a well-posed infinite dimensional problem could produce an ill-posed finite
dimensional problem or, more generally, a problem whose solution is not an
approximation of the original problem. Hence, the typical results of this chapter
will be bounds for the difference between the exact solution (that is, the solution
of the original, infinite dimensional problem) and the approximate solution (that
is, the solution of the discretised, finite dimensional problem). The approximations
considered in this chapter are evidently targeted to the Finite Element spaces
introduced in Chap.2. However, many results could be applied to other types of
approximation such as spectral methods or Finite Volume methods.

In the first section, we shall present the basic assumptions that will be mostly
used throughout this chapter and then discuss some basic relationships between
differential operators and their realisations in finite dimensional spaces. In Sect. 5.2,
we shall present, essentially, the main convergence and error estimates results,
together with some simple examples related to the mixed formulation of a toy
one-dimensional problem. In spite of the simplicity of this toy problem (and of its
negligible practical interest), we recommend these examples (Sect. 5.2.4) for their
enlightening capabilities. The third section will be devoted to a quick survey of the
main tricks that can be used in order to prove the inf-sup condition for the discretised
problem (once we know that it holds for the original infinite-dimensional problem).
Section 5.5 will deal with extensions of the error estimates of Sect. 5.2, including
perturbed problems, non conforming approximations, and dual error estimates.
Section 5.6 will present some numerical issues related with the actual resolution
of the discretised problems. Finally, the last section will anticipate, at an abstract
level, some stabilising techniques that will be detailed, for each particular problem,
in the following chapters.

D. Boffi et al., Mixed Finite Element Methods and Applications, Springer Series 265
in Computational Mathematics 44, DOI 10.1007/978-3-642-36519-5_5,
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5.1 Basic Results

5.1.1 The Basic Assumptions

We now turn to the approximation of problem (4.2.6). For this, we place ourselves in
the framework of Assumption .AB of Chap. 4, which we recall for the convenience
of the reader.

Assumption AB: We are given two Hilbert spaces, V and Q, and two continuous
bilinear forms: a(-,-) on V. x V and b(-,-) on V x Q. We denote by A and B,
respectively, the linear continuous operators associated with them. We also set

K := KerB and H := KerB'. (5.1.1)

O
Given f € V' and g € Q’, we can consider our original problem of finding
u €V and p € Q solution of

a(u,v) + b, p) = (fv)yxy Vv eV,

(5.1.2)
b(u,q) = (g.q9)o'xo Yq € Q.

Recalling Theorem 4.2.2, we see that the necessary and sufficient condition for
the unique solvability of (5.1.2) is that the two following conditions are satisfied:
Agg is an isomorphism from K to K’ (5.1.3)
(where A gk was defined in (4.2.17)) and
ImB = Q’. (5.1.4)

We also saw that (5.1.3) is equivalent to requiring that there exists an «; > 0 such
that

a\Vo, W,
inf sup & > o
wek woek [[vollv [Iwollv
a\Vo, W,
inf sup _alo.wo) (5.1.5)

woek voek lvollv wolly —

and that (5.1.4) is equivalent to requiring that there exists a 8 > 0 such that

: b(v.q)
inf sup

LI Y (5.1.6)
qEQ veV ”v”V ”q“Q

As we have seen already several times, in many applications, condition (5.1.1)
will be an immediate consequence of the (slightly) stronger ellipticity in the kernel
condition

dap > 0 such that a(vg, vo) > oz0||v0||%, Y €K, 5.1.7)
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or of the even stronger global ellipticity condition:
Elot>Osuchthata(v,v)za||v||%/ YvelV. (5.1.8)

We also recall that in Theorem 4.2.3 we also provided stability properties, showing
that the norm of the solution (i, p) of (5.1.2) can be bounded in terms of the norms
of the data f and g, together with the values of the constants & and  and the norm
la|| of the bilinear form a.

Then let V, C V and Q, C Q be finite dimensional subspaces of V' and
Q respectively. The index & will eventually refer to a mesh from which these
approximations are derived. We can obviously consider the restriction of the bilinear
forms a and b to V}, x V}, and to V}, x Qy, respectively. Hence, we can consider the
corresponding approximation of problem (5.1.2), looking for a couple (uy, p;) in
Vi, x Qp, solution of

a(up, vp) + b(n, pr) = (fivn)vxy You € Vi,

(5.1.9)
b(un,qn) = (g, qn)o'x0 Y qn € Qh.

Remark 5.1.1. As we did in the previous chapter, to be precise, we should actu-
ally write a(Ey,up, Ev,vy) instead of a(uy, vy), and b(Ey,vs, Eg,q;) instead of
b(vi, gr) (where obviously Ey, and E, are the extension operators V;, — V' and
0, — 0, respectively). However, we shall not do that, unless it is really helpful in
order to clarify something. O

Following again the previous chapter, we can consider the restrictions BVhQ;’ and
B’Qh ,» of the operators B and B’ respectively, which, for brevity we denote now by
h

By, and B . Recalling the notation (4.1.84), we then have
By v, = ”Q,’IBEVh v, Yo, € Vp, B;l qn = ”Vh’BtEQh qh th € Qh- (5.1.10)
Similarly, 4;, and Aj, will be given by
Aoy = Jth/AEVh v, and  Aj vy, = th/AtEVh v, Yu, €V, (5.1.11)

To avoid repeating the same assumptions in every statement, we condense
additionally the above discrete framework in the following Assumption A5,.

Assumption AB;,: Together with Assumption AB, we assume that we are given
two finite dimensional spaces Vi, C V and Q C Q. Together with the kernels K
and H , we consider then the discrete kernels

Kj;, = KerBy, := {v;, € V}, suchthat b(vy,q;) =0, Vg, € Qn}, (5.1.12)

Hj, = KerB; := {qy € Q) suchthatb(v,,qp) =0, Vv, €V} (5.1.13)
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Finally, for every element g € Q’, we introduce the space

Zy(g) := {vp € Vj such that b(vy. qn) = (g.qn). VYqn € Q). (5.1.14)
and for every element f € V', we introduce the space
Z;(f) :=={qn € Oy such that b(vj.qn) = (fivn), Vv, € Vil (5.1.15)
We observe that in (5.1.14) we could write
Bjvy = mgrg  instead of b(vn, qn) = (g.qn), Y qn € O (5.1.16)
while in (5.1.15) we could write
Bjgn = my f instead of  b(vh,qn) = (fiva), Vvp € Vp. (5.1.17)
The problems that we have to solve here concern both the existence and
uniqueness of {uy, g5} and the estimation of |u — u;||v and || p — pxllo. In view of
the previous discussion, and considering that the two conditions (5.1.6) and (5.1.1)

are necessary, it is then natural to assume that, for every h, there exists an a{’ >0
such that:

h h h h
. a(vg, wg . a(vg, wy) h
o T e P el gy 2o O
viek, whek, 1o 1V IIWollv wheky viek, Vo llv IWo llv

and a 85, > 0 such that

inf sup W d) g (5.1.19)

qrE€Qn vhEV), ”Uh”V ”qh”Q -

Remark 5.1.2. Here and in all this section, we will accept that 8 and (x{l (as well
as ozg or o, here below) depend on h. Clearly, the desirable situation is that they are
actually independent from h. However, the latter case can be immediately derived
from the former. On the other hand, when one of the two constants (or both) depends
on h, our error estimates might still provide a convergence result, although, in

general, not an optimal one. O

As natural, in most applications, condition (5.1.18) could be replaced by the simpler
ellipticity in the kernel condition

Ja) > 0such thata(vy, vl > a||vl||3 Yol € Ky, (5.1.20)
or by the even simpler global ellipticity

Jay, > 0 such that a(vy, vy) > oth||vh||%, Yov, eV (5.1.21)
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Remark 5.1.3. We also recall from the previous chapters (Lemma 4.2.2) that if the
bilinear form a is symmetric and positive semi-definite, then the non-singularity on
K, givenin (5.1.18) implies the ellipticity in K, given in (5.1.20) with

o = (af)?/ ML, (5.1.22)
where
. a(v,, wh)
M} := sup sup —————. (5.1.23)
v €V whEV), ”Uh”V ”Wh“V
O

5.1.2 The Discrete Operators

In (5.1.10) and (5.1.11), we defined the discrete operators A;, By and their adjoints.
It will be convenient to try to understand, from the very beginning, the relationships
between the discrete operators and their continuous counterpart. Let us consider By,
(somehow, the most important) first. We recall that B, maps V}, into Q) (while B
maps V into Q'). Hence, to be picky, the comparison should not be made between
B and By, but rather between BEy, and E 0, By,: for v, € Vj, we then consider the
difference between

Eg, g BEy,uy and  BEy,uv. (5.1.24)

It is clear that the operator E ¢, 7o coincides with the identity operator only when
applied to objects that, loosely speaking, are already in Q). Hence, for every v} in
Vi, we have

Byv; = BEy,v, (= Bv}) iff Bvj € Q) (5.1.25)
and in general,
{Bhvy = BEVhUh Yo,eVp & BV C Q;, (5.1.26)

We shall meet cases where this inclusion holds, but they are far from being the rule.
When B(V},) C Q;w the left-hand side of (5.1.26) could also be written, with a very
minor abuse of language that we are going to use quite often, as B,v, = Bvy. In
this case (and only in this case), we might say that By, is the restriction of B to V},.

It is clear that similar considerations can be made for the operator B and for the
operators A;, and A} .

We also recall from Sect. 4.1.8 of the previous chapter that:

* The kernel K}, is not, in general, a subspace of K,
* The kernel Hj, is not, in general, a subspace of H,
* As aconsequence, property (5.1.1) will not imply (5.1.18),
* Similarly, property (5.1.6) will not imply (5.1.19).
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In a certain number of applications, as we have seen, we have however that the
bilinear form a is elliptic on the whole space V (that is, (5.1.8) holds). In these
cases, it is clear that both (5.1.1) and (5.1.18) will be satisfied, independently of the
nature of the kernels K and Kj,.

Finally, we recall from Proposition 4.1.6 that

KerB;, C KerB iff th/(Ime) C ImB;j, (5.1.27)
and

KerB C KerB' iff T, (ImB) C ImB;,. (5.1.28)

Remark 5.1.4. The lack of inclusion of the discrete kernels has different practical
relevance in the two cases (K and Hj).

On one hand, the inclusion K; C K is a nice property, useful when you have it,
but not absolutely needed.

On the other hand, the inclusion H, C H is extremely important. In the first
place, as we typically assume that H = {0}, the lack of this last inclusion will
imply that Hj will have dimension > 1, so that problem (5.1.9) might fail to have a
solution, and when it does, the solution will be determined up to an element of Hj,.
Secondly, even in cases (as we did in Sect. 4.2.4) when we do not have H = {0},
the elements of H should be considered as “physically natural”: for instance, the
pressure in some fluid mechanical problem is defined up to a constant, as it is often
the case for the electric potential; in electromagnetic problems, the vector potential
is often defined up to a gradient, and so on. As we have seen, the “solution” in these
cases is to restrict the space O, taking for instance, in its place, the space Q/x (or
H+, which is essentially the same): for instance, in the case of a pressure (when it is
defined up to an additive constant), this will correspond to restrict Q to its subspace
made of functions with zero mean value. Similarly, the electric potential is often
assumed to vanish at a given point (chosen once and for all), the vector potential is
assumed to be solenoidal, and so on. In these cases, you would like the solutions of
the discretised problem to have the same gauge, which is, however, not true when
the inclusion H, C H is not satisfied. Hence, the elements of Hj, that do not belong
to H should be regarded as spurious numerical artefacts, and in general, one does
not like to have them around. O

The next results show how the inclusion of kernels is related to another
interesting property, which will play an important role in the sequel.

Proposition 5.1.1. In the Assumption ABj, suppose that there exists a linear
operator I, : V. — Vj, such that

b(v —H;,v,qh) =0 Yvel, th € Qh- (5.1.29)

Then, the properties in (5.1.28) are verified.
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Proof. The proof is immediate. Indeed, (5.1.29) can also be written as
JrQ,;Bv = JTQ,/IBEVhHhU = ByIlv Yvev, (5.1.30)

and the right-hand side of (5.1.30) obviously belongs to ImB;,. O

Remark 5.1.5. It can be easily seen that, conversely, the properties in (5.1.28) imply
the existence of an operator IT, : V — V), that satisfies (5.1.29). Indeed, for every
v € V, we have from (5.1.28) that nQZBv € ImBy,. As both V), and Qy, are finite
dimensional, we can therefore apply Corollary 3.1.1 and set IT,v := Lp, (er;1 Bv)
which, using (3.1.40), will satisfy B, (IT,v) = nQZBv, that is, (5.1.30).

Exchanging B and B’ in the above discussion, we have the following proposition.
Proposition 5.1.2. The following statements are equivalent:
* There exists a linear mapping @, : Q — Q), such that
b(vy,g—Ppq) =0 VqgeQ, Vo, € V). (5.1.31)

* myB'qy = B, Pugn Yaqn € Qi
e KerB; C KerB.
. th/Ith C ImB;.

O
Remark 5.1.6 (B-compatible operator). In the following, an operator satisfy-
ing (5.1.29) will be called a B-compatible operator. As we shall see later on, such
operators will play an important role to obtain inf-sup conditions. O

Property (5.1.30) can be summarised by the fact that the following diagram
commutes:
|4 LN o’
n,,l FQ’/I (5.1.32)

Vi —— 9
4

and the corresponding property 7y B ‘qn = B ®pq; in Proposition 5.1.2 could also
be summarised by a commuting diagram:

QL)V/

@ll l”vh' (5.1.33)

Y p—
h

Remark 5.1.7. The case when Bj is the restriction of B to V) (that is, when
B(Vi) € Q) is especially interesting. In this case, we can take @, = mp,. Indeed,
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if B(V,) € Qj,, then as in (5.1.26), we have
BEy, = Eg;ng; BEv,. (5.1.34)

Transposing both members of (5.1.34) and using the definition of Bj given
in (5.1.10), we obtain

JTVh/Bt = JTVh/BtEQhJTQh = B;lJTQh, (5.1.35)

implying that the diagram (5.1.33) commutes taking @, = 7y, . O

Remark 5.1.8. The result of Proposition 5.1.1 is also directly linked to the inf-
sup condition. It may be worthwhile to point out some facts. As ImBy, is finite
dimensional, we always have, recalling that from (5.1.13) we have Hj, := KerB;l,

b(vn. qn)

> Bullanll o, - (5.1.36)
wevy  lvnlly Qi

However, as we stated in Remark 5.1.4, this may be useless if H is larger than H.
The following result shows that the existence of the operator [T}, satisfying (5.1.29)
implies a stronger version of (5.1.36). O

Corollary 5.1.1. In the assumptions of Proposition 5.1.1, we have that prop-
erty (5.1.29) is equivalent to

b ’
38, > 0 such that sup (0%, g1)

——— = Bulanllop- (5.1.37)
wevi lonllv

Proof. On the one hand, (5.1.29) implies the inclusion of kernels (5.1.27), which,
joined to (5.1.36), gives immediately (5.1.37). Conversely, (5.1.37) implies that
lgnllg,; = 0 forany g, € Hj, which implies H;, C H. O

Remark 5.1.9. The reader should be aware of the differences between the (appar-
ently similar) inf-sup conditions (5.1.19), (5.1.36) and (5.1.37). Indeed, (5.1.36) is
always true as the finite-dimensional space Im(B;) is closed. Condition (5.1.19)
means that By, is surjective, that is, KerB; = {0}. On the other hand, (5.1.37) implies
the inclusion Hy, € H. Thus, (5.1.19) coincides with (5.1.37) in the case of B being
surjective. O

Remark 5.1.10. We already pointed out that since Qj, is finite dimensional, then
ImBj is closed. In particular, we can then apply Corollary 4.1.2 of the previous
chapter, and obtain that there exists a lifting operator L, that for any g, € ImB;,
gives an L, (g5) such that B, (L, (gr)) = g» and

1
125 8ullvi = Z-lighll; (5.1.38)
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From (5.1.28), we have that if KerB; C KerB’, then for any u € V, we have
JrQZB u € ImBj, and therefore for every u € V' we have

o Bul| o ,
7o) Bullg; _ |Bullgr _ IIb]

. 5.1.39
B =75 = (Jael| ( )

| L, G Buly, <

|

Finally, from Proposition 5.1.1 and Remark 5.1.10, we obtain the following result
that will be useful later on.

Proposition 5.1.3. In the same assumptions as in Proposition 5.1.1, we have that,
foranyu eV,
2|1b]|

inf  Jlu—wplly < —— inf |lu—vyly. (5.1.40)
wh€Zy(Bu) Br wen

Proof. Let vj, be any element of V;,. We set
dp = Lp, (JTQZB(M —vp)). (5.141)

We obviously have By, (dj, +vp,) = o Bu and therefore, from (5.1.16) and (5.1.14),
wehave wy, := (dy+vy) € Z;(Bu). Moreover, from (5.1.39) we have that || dj ||y, <

1611/ Br) llu—vp ||y . Since u—wy, = (u—vy)—dj,, we have from the triangle inequality

2]
lu—wally < 1+ —=)lu—villy (5.1.42)
Bh
and the result follows immediately since ||b|| > B;. O

Remark 5.1.11. The above results show that bounding §;, from below, independently
of h, will enable us to transform approximation estimates in Z;(g) into standard
approximation estimates in V},. This is also clearly related to a bound on the norm of
the operator IT,. We shall come back to this in Sect. 5.4. It must again be emphasised
that the inclusion Hj;, C H is essential for this result. Cases where this inclusion fail
will, at best, require a special analysis when they are not totally doomed. O

5.2 Error Estimates for Finite Dimensional Approximations

5.2.1 Discrete Stability and Error Estimates

In the following sections, we are going to see some particular cases where conditions
(5.1.18) and (5.1.19) are satisfied. Here, however, we first want to see how they can
be used to prove error bounds on ||u — uy||y and ||p — py|lo. For this, we follow
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the strategy of [112]: we first consider general approximations u; and p; of u and
p, respectively, in 1}, and Q. You can think of them as suitable interpolations, or
as the best approximations in the norms of V' and Q, respectively, or just as general
elements in V} and Qj. Indeed, the following argument will hold for any u; € V)
and for any p; € Qp. The idea is to first bound the distance of (u;, pp) from
(us, pr) in terms of the distance of (u;, p;) from (u, p), and part of the theorems
of this chapter will express bounds of this type. The estimate of the distance of
(up, pr) from (u, p) will then follow by the triangle inequality, and another part of
the theorems of this chapter will express the distance of (i, pj,) from (u, p) in terms
of the distance of (u, p) from its best approximation (v, g;) in Vj, x Q. It will then
be convenient, from the very beginning, to define the approximation errors

E, = inf ||u—v|v, (5.2.1)
€V

Vh

Epi= inf lIp=aillo. (52.2)
Moreover, on several occasions, as intermediate steps, we will express the distance
of (up, py) from (u, p) in terms of the distance of (u, p) from pairs (u;, p;) where
one of the two (or both) are confined to belong to some affine manifold (typically,
ur € Zy(Bu) and/or p; € Z;(B'p), as defined in (5.1.14) and (5.1.15)). To this
purpose, we introduce as well

EZ:= inf |u—wlly, (5.2.3)
vy, €Z5(Bu)

Ef:= _inf |p=ailo. (5.2.4)
qn€Z; (B p)

We also explicitly point out that in this procedure we will not, in general, require
us to assume the uniqueness of the solution (u, p) of the continuous problem, but
only that of the discretised problem.

For this, we use the linearity of @ and b to combine the continuous prob-
lem (5.1.2) with the discretised problem (5.1.9), adding and subtracting u; and py.
We obtain:

a(up —uy,vp) + bp, pp— pr) = aw—uy,vy) +b(p, p—pr) Yu, €V,
b(up —uy,qn) =b(u—us,qy) Yqu € Q.

The following proposition is nothing more than an interpretation of the above
formula. We state it explicitly since we are going to use it at several occasions in the
sequel.

Proposition 5.2.1. In the framework of Assumption ABp, let (u, p) and (uy, py) be
solutions of the continuous problem (5.1.2) and of the discretised problem (5.1.9),
respectively. Then, for every (uy, p;) € Vi x Qp, we have that (u, —uy, p, — py) is
the solution, in Vj, x Qy, of the variational problem
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a(up —ur,vp) +bn, pp — p1) = (F.vn)y/xy, Y v € Vi,

(5.2.5)
b(un —ur.qn) =(G.4qn)o;x0, Y 4n € Qn
where
(Fovnhvrxy, == a(w—ur,vp) +b(wn, p = pr) VY €V, (5.2.6)
and
(G.aqn)orxo, =bw—ur,q1) Vaqne Q. (5.2.7)
O

The formulation (5.2.5), together with (5.2.6) and (5.2.7), will be the starting
point of most of our estimates. Indeed, we can now go back to Theorem 4.2.3 and,
applying it to the present finite dimensional case, we obtain the following result.

Theorem 5.2.1 (The basic estimate). Under Assumption ABj, assume that Vj,
and Qy, verify (5.1.18) and (5.1.19). Let f € V' and g € Q'. Assume that the
continuous problem (5.1.2) has a solution (u, p) and let (uy, py) be the unique
solution of the discretised problem (5.1.9). Then, for every u; € V), and for every
p1 € Qp, we have the estimates

1 2|a]l
llup, —uslly < ol IFllv + o By IG1lg; - (5.2.8)
2|a]l 2||a]f?
lpn—prllo < I F + 1G] o, (5.2.9)
C T s ety

where F and G are defined in (5.2.6) and (5.2.7). If, moreover, a(-,-) is symmetric
and satisfies

a(vp,vp) >0 Yo, € Vp, (5.2.10)

then we have the improved estimates

< LyF 2al” 52.11
”Mh_MIHV_a_g” ||V,l’+m||g||g,;s (5.2.11)
2||a"? llall
— < _ ’ —_— / e
lpn—prllo < @) 2B, Iy, + 7 191 o; (5.2.12)
with Olg given by (5.1.22).
At this point, we just have to evaluate || F ”Vh' and ||g||Q2:
IFllv; < llall e —urlly + 161 llp = prllv, (5.2.13)

1G] g; = DI llu —usllv. (5.2.14)
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and then apply the triangle inequality to obtain, from Theorem 5.2.1, the following
error estimates.

Theorem 5.2.2 (The basic error estimate). Under Assumption ABy, assume that
Vy, and Qy, verify (5.1.18) and (5.1.19). Let f € V' and g € Q'. Assume that
the continuous problem (5.1.2) has a solution (u, p) and let (uy, py) be the unique
solution of the discretised problem (5.1.9). Then, we have the estimate

4\lall ||b b
llun — ully = WE + ”—h”Ep, (5.2.15)
oy IBh o
2llall*  2lal 5] 3lall 1b]]
= pllo < ( + E,+ —E,. (5.2.16)
¢ o B B oy "

If, moreover, a(-,-) is symmetric and positive semi-definite (see (5.2.10)), then we
have the improved estimates

2|a]l 2||a||1/2||b||) 121l

_ < E,+—E,, 5.2.17

lup —ully _( ol @76, o P ( )
2falP? lall 5]l 3lall' 5]

lpn = pllo < ( N1/ 3 E, ~iniag Cp (5.2.18)
(ag)'2Bn B () B

with Olg given by (5.1.22).

Remark 5.2.1. Important: in Theorems 5.2.1 and 5.2.2, we allowed, in principle,
the constants fB; and a{’ (or aé’) to depend on A. It is obvious (but still worth
mentioning) that if there exist constants fy and o such that 8, > B, and a{’ >
(or aé’ > ) for all h, then the constants appearing in our estimates will be
independent of /. In almost all of this chapter (with a few exceptions, including
the next Theorem 5.2.5), we will keep allowing the stability constants to depend on
h. We rely on the reader to understand what happens whenever one has a uniform
lower bound for them. O

5.2.2 Additional Error Estimates for the Basic Problem

There is actually ample room for improving the result of Theorems 5.2.1 and 5.2.2.
The principal source of non-optimality in their proof lies indeed in the rather poor
job that we made in estimating ”]:”V;f and ||g||QZ in (5.2.13) and (5.2.14). Indeed,
in the first place, we essentially estimated the norms in ¥V’ and Q’, respectively. This
is correct, but not optimal. Indeed, for instance, although the norms in V and in V},
are the same, from V), C V, one easily deduces that for every v’ € V":

W) )

= . (5.2.19)
vev |[v]lv v, EV) lvally
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In the second place, we carried out our argument for every (ur, pr) € Vi, X Qp.
This has surely the advantage of allowing the classical estimates in terms of £, and
E, defined in (5.2.1) and (5.2.2). However, in particular cases, smarter choices of
uy and/or py could produce a better result.

In particular, the discrete inf-sup condition (5.1.19) gives that KerB! = {0} and
this, according to Remark 5.1.5, ensures the existence of an operator IT;, : V — V},
such that b(u — ITjyu, q;) = 0 for every q;, € Q). Hence, taking u; := IT,u, we will
have

b(u—uy,qy) =0 Yqn € Op, (that is, Byu; = ]TQ,;BM) (5.2.20)
which, using the notation (5.1.14), can also be written as
u; € Zp(Bu). (5.2.21)

We now observe that for every u; € Z,(Bu) and for every py, the estimates (5.2.14)
and (5.2.13) become

IGllo; =0, (5.2.22)

IFllv; < llall llu—urlly +16lHp — prllo- (5.2.23)

If, moreover, we can also choose a p; € Z;(B'p), implying
by, p—pr) =0 Y, €V, (5.2.24)
then the estimate (5.2.13) further simplifies to
IF vy < llall lle —wurllv, (5.2.25)

always for u; € Z,(Bu). Note that we will always be able to find such a p; if

K; <€ K, as pointed out in Proposition 5.1.2. If, moreover, By, is the restriction of

B to V},, then, according to Remark 5.1.7, we could even take p; := mp, p.
Therefore, again from Theorem 5.2.1, we have the following results.

Theorem 5.2.3 (Taking u; in Z,(Bu)). Under Assumption ABj, assume that V),
and Qy, verify (5.1.18) and (5.1.19). Let f € V' and g € Q'. Assume that the
continuous problem (5.1.2) has a solution (u, p) and let (uy, py) be the unique
solution of the discretised problem (5.1.9). Then, we have the estimate

A

1 z
i —ully = (21al EZ + 11011 £,)
(5.2.26)

<_L(4MHMH

< E,+ b E )
al Bn !
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Theorem 5.2.4 (Taking u; in Z,(Bu) and p; in Z; (B’ p)). Under Assumption
AB,, assume that V;, and Qj verify (5.1.18) and (5.1.19). Let f € V' and
g € Q. Assume that the continuous problem (5.1.2) has a solution (u, p) and
let (up, pn) be the unique solution of the discretised problem (5.1.9). Assume
moreover that Z; (B' p) is not empty (so that there exists at least one p; € Q,
that verifies (5.2.24)). Then,

IA

I 2n — pllo
(5.2.27)

2 4al| ||Ib
llun — ully = MEZ < wE (5.2.28)
o alﬂh
2lal* ,_, ot
lpn—pillo < ———Er YVpi€Z;(B'p) (5.2.29)
O51:311
so that
4llal?|b]
lpn—pllo < ———Eu+ E7. (5.2.30)
o) Bj,

Remark 5.2.2. 1f a(-,-) is symmetric and positive semi-definite, then, using (5.2.12)
as in previous error estimates (as for instance in Theorem 5.2.2), we could slightly
improve our error estimates, using a softer dependence on the constants. O

Following the above path, we could derive a number of possible other variants,
choosing one of the many theorems of Chap.3, and then using one of the many
choices for u; and p;. We decided that this procedure is quite easy, and every reader
could do it by her/himself, if necessary. It might however be convenient to state
explicitly, for an easy use, the following theorem, which is just a particular case of
the above results, but might be helpful if one wants something reasonably simple. In
most cases, assumption (5.1.18) can be replaced by the (stronger) ellipticity in the
kernel (5.1.20); in this case we have the following theorem.

Theorem 5.2.5 (Commonly used). Let (u, p) € V x Q and (up, py) € Vi x Oy,
be respectively solutions of problems,

{ a(u,v) +b(v, p) = (f.v), Vv eV,
(5.2.31)
b(u,q) =(g.9), Vq € 0,
and
a(up, vp) + b(vn, pr) = (fivn), Yuu € Vi,
5.2.32
{b(uh,qh) =(g.q1). Yan € Op. ( )
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Assume that the inf-sup condition

inf sup —20mdn) g (5.2.33)

aneon vevi lonllvlignllo —

is satisfied and let a(-, -) be uniformly coercive on K, := Ker By, that is, there exists
oo > 0 such that

a(von, vor) > aollvon 3, ¥ vor € K. (5.2.34)

Then, one has the following estimate, with a constant C depending on ||a|, ||b||, B,
oo but independent of h:

lu—willy +1p = pallo = € ( inf Ju—willy + inf lIp=gullg). (52.35)
vpEV qn€0h

Moreover, when we have the inclusion of kernels K, < K, we have the better
estimate

lu—uplly < C inf [u—vplly. (5.2.36)
v, EV

Remark 5.2.3. Tt is clear that, in all the previous theorems, if H = KerB’ is not
zero, then the constant 8, must go to zero when A tends to zero. In these cases,
when g € ImB, the theorems should be applied with Q5 instead of Q (while for
g ¢ ImB the solution (u, p) does not exist). O

5.2.3 Variants of Error Estimates

We have considered up to now the most basic form of mixed problems. Numerous
variations are however possible. Some of them are too special to merit an abstract
treatment and will be presented on specific examples in the subsequent chapters. We
consider here some problems arising in a quite large number of practical situations.

The first pathology that we consider is the case where coerciveness on KerBj
does not hold but can be replaced by a weaker condition.

Assume, in particular, that on V' we have a (weaker) norm || - ||y such that
Ja) > Osuchthat a(v,v) > af|v[3+  VYve K, (5.2.37)
together with
I M such that a(u,v) < M |ully= ||v]v= Yu,vev. (5.2.38)

We recall that by “a weaker norm” we mean that
[vllv= < lvlly  Yvel. (5.2.39)

Typically, to fix the ideas, the V' *-norm will be some kind of L? norm, opposed to
an H'-norm (or an H(div)-norm)in V', and a(u, v) some kind of L? scalar product.
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Remark 5.2.4. To be precise, (5.2.39) is not the usual definition of a weaker norm,
which would allow the presence of a multiplicative constant giving, for instance,
lv|lv= < C |v|ly. However, in order to have a simpler notation, we forced the
constant to be equal to one (or rather, we assumed that the constant was inserted in
the expression of the V' *-norm). O

The situation described in (5.2.37) and (5.2.38) arises in several occasions. Let us
see two different kinds of applications.

The first kind of application occurs when || - || 7, on K, becomes equivalent to the
original V-norm (so that (5.2.37) implies the usual coerciveness on K), but for the
discretised problem, one does not have K, C K. Condition (5.2.37) nevertheless
ensures existence of the discrete solution by the equivalence of norms in a finite
dimensional space (see below). Convergence properties are however likely to be
altered: in particular, we might expect ozé’ to depend on /. In the mixed formulation
of elasticity introduced in Chap. 1, we had V := (H(div; £2))? while the bilinear
form a(u,v) = fQ o : T dx is coercive only on (L%(£2))* =: V*. This is enough
to have coerciveness on K but not in general on K, unless one is clever and builds
Vi, and Qp in order to have K; C K. In general, the analysis of this problem is
difficult as we shall see in Chap. 10.

A second kind of application occurs when one considers an ill-posed problem in
the sense that the existence of (u, p) cannot be obtained directly in V' x Q by the
previous stability results, but only for instance through a regularity argument. Exis-
tence of a discrete solution however holds, and one would like to get error estimates.
Such is the case in the ¥ — @ mixed formulation of the biharmonic problem that we
have seen in (1.3.65). For a more detailed analysis of this case, see Chap. 10.

Remark 5.2.5. In general, as we said, the V*-norm and the V-norm will not be
equivalent with a constant independent of .. Hence, introducing the quantity

[oally

S(h) := sup

; (5.2.40)
wely [vnllv=

we might expect that S'(%) tends to infinity when /& goes to zero. Typically, in a finite
element context, the value of S (%) will be given by some suitable inverse inequality.
0

We now note, and this is an important point, that we have been using, in deriving
all the above results, only the stability in the finite dimensional spaces V} x Oy,
and the only appearance of functions not belonging to them has been through the
right-hand sides F and G. Hence, being in finite dimensional spaces, we could use
the norm || - |ly* on Vj, and nothing changes, apart from the definitions of ||5|| and
B that now should be replaced by

bl = sup 2@ (5.2.41)

gc0.uevy gl llvnllv+
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and

b )
,8;; — inf sup (Uh Qh)

—_—, (5.2.42)
an€Qh v €V onlv= ||(Ih||Q

respectively. Note that, from (5.2.39), we immediately have ,3; > B,. Hence, we
can take into account the weaker condition

Br= inf sup ) (5.2.43)

qhth v EV), ||vh||V* ”qh”Q

On the other hand, the shift from ||5|| to ||b||« will not be without a price, as in
practice we shall almost always need some sort of inverse inequality and pay some
power of /. Indeed, using (5.2.40), it is immediate to see that

6]l = S(R)[Ib]| (5.2.44)

and, in general, (5.2.44) cannot be improved.
In this framework, from Theorem 5.2.3 applied with the norms || - ||y« and || - || o,
we have the following result.

Theorem 5.2.6 (Ellipticity in a weaker norm). Under Assumption AB}, assume
further that the inf-sup condition (5.2.43) is satisfied, and that the bilinear form
a satisfies (5.2.37) and (5.2.38). Let f € V' and g € Q. Assume that the
continuous problem (5.1.2) has a solution (u, p), and let (up, pi) be the solution
of the discretised problem (5.1.9). Then, for every u; € Z,(Bu) and for every
p1 € Qn, we have the estimates

1
lun —urllys = — (Mg u—urlly= + 161 1lp = pillo). (5.2:45)
h
*

2M
lpn—pillo = T (M Nu—urllv++1bll« lp — prllg).  (5.2.46)
h”h

If, moreover, K, C K, then we also have

*
lun —urlly+ < a: lu— up|v= (5.2.47)
h

and if, in addition, By, is the restriction of B (see Remark 5.1.7), then

2(M*)2
lpn — 7o, pllo = a*g* llw—uplly=. (5.2.48)
hh

Remark 5.2.6. Adding and subtracting u in (5.2.45), and also using Proposi-
tion 5.1.3, we could derive from (5.2.45) an estimate of ||u — u|| in terms of
the infimum of ||u — vy| and the infimum of ||p — ¢;], as done, for instance, in
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Theorem 5.2.3. Obviously, the same can be done for ||p — py|. We leave these
variants to the reader. O

Remark 5.2.7. The above “proof” of Theorem 5.2.6, made through the simple
change of norm, might puzzle somebody. As an exercise, we can give a direct proof
of (5.2.47) and (5.2.48) which is not based on the previous stability estimates for
finite dimensional problems. Consider u; = ITyu in Z,(Bu), and remember that

b(u— Hhu,qh) =0 Vg€ Qh- (5.2.49)

This implies in particular (using the second equations of the continuous and of the
discretised problems) that the difference u;, — ITju satisfies

b(uh — Hhu,qh) =0 th (S] Qh, (5.2.50)

and hence belongs to K. As we assumed that K; € K, condition (5.2.49) then
implies

b(up — Myu,q) =0 YgqeQ. (5.2.51)
Then: (1) we use (5.2.37), (2) we add and subtract u, (3) we use the first equations

of the continuous and of the discrete problems, (4) we use (5.2.51), and finally, (5)
we use (5.2.38):

o llun — Myul3 < aluy — My, up, — Myu)
= a(up — u, up, — yu) + a(u — Myu, u, — I[u)
= —b(up — Myu, pp — p) + a(u — Myu, up — Iju)
=0+ a(u— Iyu,u, — ITHu)
< M} \lu— yully= lup — Hyully=,  (5.2.52)

and (5.2.47) follows simplifying ||u, — ITyul|y+. Now, take a v, € V}, different from
0 such that

b(vn, pn — o, p) = Bullvrllv llpn — 7o, Pllo- (5.2.53)

The existence of such a vy, is guaranteed from the inf-sup condition (5.1.19). Now,
(1) use (5.2.53), (2) use Proposition 5.1.2 and Remark 5.1.7, (3) use the first
equations of the continuous and of the discrete problems, (4) add and subtract I1,u,
(5) use (5.2.38) (twice) and (5.2.47), and finally, (6) compare (5.2.37) and (5.2.38)
to geto, < M

Bullvrllv Ilpn — 7o, Pllo < b(n, pp — 7o, P)
= b(vy, pr — p) = a(u — up, vy)
= a(” — Myu, Uh) + a(Hhu — Uy, Uh)
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M*?
<(M; + a“ M — Iyully= v ||y

*
h

*2

2M;
< ——llu—yully= llvallv= (5.2.54)
h
and (5.2.48) follows using (5.2.39) since we took v, # 0. ]

In Theorem 5.2.6, we used the constant ,8;‘. We could, however, use the old B, as
given by the usual inf-sup condition (5.1.19). Surprisingly enough, this often allows
a better estimate, as shown in the following theorem.

Theorem 5.2.7 (First duality). Under the same assumptions of Theorem 5.2.6,
assume that, moreover, we have the following property: for every q;, € Qp, the
solution (wy, Yr) € Vi, X Qy of the problem

a(up,wp) +b(up, ¥y) =0, Vo, eV,
. (5.2.55)
bwi,qn) = @n-qn)o. ¥ qn € Qn
verifies
Iwally = Clignllo. (5.2.56)
with C independent of h and of qy,. Then, for every u; € Z,(Bu), we have
lpn =70, pllo = C (Mg llu—urllvs + 1b1lp = 7, pllo). (5257
Proof. Let p; := mo, p and u; := ITu as in the previous theorem. Consider the
auxiliary problem: find (wy, Y¥,) € Vi, X Qy, such that
aup.wp) +b(p, ¥n) =0, Vuy €V,
(5.2.58)
bwn,qn) = (pn — P1.qn)o. Y qn € Oh.
Then, we have
lpn = pilly = bwh. py — p1) = b(wh. py — p) + b(wh. p — pr)
= a(u—up,wp) +bwp, p— pr)
=a(u—u;,wy) +alu; —uy,wy) +b(wy, p—
(u—ur,wp) +alur —up, wy) +bWn, p— pr) (5.2.59)

a(w—ur,wp) + by, —ur, Yy) + b(wp, p — pr)
a(u—ur,wp) +bwy, p— pr)
M ||willvs llu—urlly= + 16 lwrllv |2 = prllo

IA

and the result follows from (5.2.56). O
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Remark 5.2.8. At first sight, the result (5.2.57) does not seem much better than
the previous (5.2.46). However, looking more carefully, one notices that the |||«
appearing in (5.2.46) is actually replaced by ||b|| in (5.2.46). In most applications,
this means a factor O(h™") that is present in (5.2.46) and not in (5.2.57). O

Remark 5.2.9. Results of the type of Theorem 5.2.7 are a particular case of a more
general class of estimates, called dual estimates that we will discuss in a while. 0O

Another variant that will be useful in the study of some hybrid methods is the
following.

Let |v|y be a continuous semi-norm on V and let M denote its kernel (that is:
M is the subspace of V' made by those v that satisfy |v|y = 0). We assume for
simplicity that M C V},. The semi-norm | - |y is then a norm on the quotient space
Vym, as well as on Vj, /. We suppose that we have

Jay > Osuchthat a(v,v) > ay [v|}, YveV, (5.2.60)
and
la(u,v)| < lla|l |uly [vly, Yu,veV. (5.2.61)

Proposition 5.2.2. Under Assumption AB},, assume further that the bilinear form
a satisfies (5.2.60) and (5.2.61). Let (u, p) and (up, pn) be solutions of the
continuous problem (5.1.2) and of the discretised problem (5.1.9), respectively.
Define

0,(p) :=1{qn | qn € On. b(vp. p—qn) =0 Y v, € M}. (5.2.62)

Then, we have the estimate

lally . .
=y < [1+52] inf u—uly + 6] inf p—gillo. (52.63)
o JvezZy(g) €05 (p)

Proof. The proof still follows from Theorem 5.2.1, working in V3 x Qp, and
observing that, for every ¢, € Q,(p), we have obviously

b(UInP _q11) =< ”b” |Uh|V ”p _q11||Q A Uy € Vh- (5264)

|

Remark 5.2.10. Note that we did not assume that Z;,(g) and Q,,(p) are non empty.
However, Eq. (5.2.63), if one of the two sets is empty, will give |u — up|y < +00
(which is always true) since the infimum over the empty set is, by definition, 4cc.
Hence, the result is “true” even when one of the two sets is empty (but in that case, it
will be totally useless). Please forgive this little mathematical coquetry, which could
have been used several times before. O
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5.2.4 A Simple Example

We now want to present a very simple example which, however, could be very
instructive if one reads it carefully. Similar considerations have been made for the
corresponging eigenvalue problem in [77] (see, in particular, Sect. 5.4 of Part 1)

We consider the interval / :=] — 1, 1] and the problem of finding p € H/}(I)
such that p” = g, where g is a given function in, say, L?(I). Remember that the
condition p € H| (I) implies, among other things (such as the continuity of p), that
p(—=1) = p(1) = 0, so that our problem has clearly a unique solution. Particular
attention will be devoted to the case g = 1 (whose solution is obviously p(x) =
(x2—=1)/2).

The mixed formulation of our toy problem is easily reached by setting u := p’,
and introducing the spaces Q := L?(I) and V := H'(I). In two dimensions, we
would have V' := H(div) which, however, in one dimension, coincides with H I (as
the divergence coincides with the first derivative). We then set

1
a(u,v) :=/ uvdx, Vu,veV, (5.2.65)
—1

1
b(v,q) = /1 vigdx, YveV,VqgeQ, (5.2.66)

and we easily recognise that (u, p) is the solution of
a(u,v) +b(w,p)=0, Vvel,
(5.2.67)
b(u.q) = (g.9)o'x0. Vg €Q.

We easily see that the operator B is now the first derivative (from H'(I) to L*(1))
and that its kernel K is given by

K := { constant functions}. (5.2.68)

It is important to note that the bilinear form a (which is simply the L? inner
product) is not elliptic in the whole V = H'(I). Indeed, no matter how small you
take o > 0, the inequality

a(v,v) = /vzdx > a(/ v2dx + /(v’)zdx) =a|v|? YveV (5.2.69)
1 1 I

is false. To be convinced of the falsity of (5.2.69), we recall the situation of
Example 4.1.9 and consider, for k € N, the function vy (x) := sin(;rkx): we have

a(e, o) =1, |ully = 14+ k*2%/2, (5.2.70)

and you cannot find an o > 0, independent of k, such that
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1>a(l +k*2%/2) VkeN. (5.2.71)

However, inequality (5.2.69) is obviously true (with @ = 1) if restricted to v € K
(see (5.2.68)), as constant functions have zero derivative. Hence, the ellipticity in
the kernel (5.1.7) holds with oy = 1.

On the other hand, the operator B is clearly surjective from V to Q. Indeed, for
every ¢ € Q, wecanfinda v, € V, given by

vy (x) := /qu(t)dt, (5.2.72)
such that B v, = v, = ¢. Itis also easy to see that
g2y < lloglleay = llallos (5.2.73)
so that
10g I = 1vg 1By + 1012, < 2llg1%.

and therefore

v’ v, q
inf sup fl—q > inf ff—q
geovev lVllv llgllo ™ a€0 Jlugllv llgllo

lallo lalo lallo
= inf ——— = inf > inf ———— = —, (5.2.74)
a€Q lugllv liglle a0 llvgllv — a0 V2ljqllp V2
which is to say that the inf-sup condition (5.1.6) holds with a B > 1/+/2. As we
have already checked the ellipticity in the kernel, we can conclude that the mixed
formulation of the continuous problem is well posed. So far, so good.

We can now tackle the problem of discretising (5.2.67). We therefore start by
considering, for every positive integer N, a decomposition of the interval / =] —
1, 1[ into N intervals of equal length # = 2/N. The spaces L}, with s € {0, 1},
will then be the spaces of piecewise polynomials of local degree < k: globally
continuous when s = 1, and discontinuous when s = 0, in agreement with the
notation of Chap.2. Our first choice is to take V, := L] and Q) := Lg. Itis a
simple and fortunate choice. Indeed, in the first place, we can note that the mapping
q — vy, introduced in (5.2.72), applied to a function g;, € Qj (hence, piecewise
constant) produces a v, that is continuous and piecewise linear, and hence belongs
to V},. Using exactly the same proof as before, we can now conclude that the inf-sup
condition (5.1.19) on the bilinear form b still holds for this choice of subspaces, with
a constant B, > 1/+/2 (hence, in particular, bounded from below independently
of i). On the other hand, the discrete kernel K}, (see (5.1.12)) can easily be identified
as being again made of global constants. Hence, we have K; = K. Moreover, we
can use the fact that the bilinear form a coincides with the L?(1) inner product, so
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that (5.2.37) and (5.2.38) hold with o) = M = 1. Finally, we remark that we can
construct the operator 1, of Proposition 5.1.1 simply by taking IT,u as the usual
nodal interpolant of u. We note indeed that if IT,u(x;) = u(x;) at each subdivision
point x, then for every g, € Q) and for every interval I = (x,Xx+1) of our
subdivision, we have from the fundamental theorem of Calculus,

Xk+1

(Hhu—u)/qhdx = 4qh|1, / (Hhu—u)’dx

I Xk

= qn|1, [(Hh” —u)(Xk41) — (ITpu — u)(xk)] =0. (5.2.75)

We are happy, and we apply Theorem 5.2.6 with u; := ITju.
From (5.2.47), (5.2.48) and usual interpolation estimates, we obtain

lun — Mhully < llu— Myully < C h>|ul g2y (5.2.76)
and
Il pn — 70, Plo < 2v2|u — Myully < C k2 |ul g2y, (5.2.77)

which is, in fact, a super-convergence result, as Qj is only made of piecewise
constants. Indeed, using the triangle inequality and (5.2.76), we have

lun —ully < 2|lu— Myully < C h>ulp2) (5.2.78)

while from (5.2.77) we only have

1w = pllo < llpn — pllo + 23 2llu— Mully < C(h |plyiy + B2 lul o)
(5.2.79)

Everything works well, and the sun is shining for mixed formulations. We
become greedy, and we would like to increase one of the two spaces, V}, or Qj,
in order to have an even better performance.

Let us start by increasing Qj, and try Q) := LY (discontinuous piecewise
polynomials of local degree < 1). However, as soon as we look at this new choice,
we immediately perceive the disaster. Indeed, the Bj, operator goes from V},, which
has dimension equal to N + 1, to Q ;l, which has dimension 2N . On the other hand,
V}, contains the global constants, and B), applied to one of them is 0. Hence, the
dimension of the image of Bj, can be at most N, and there is no hope that Bj, could
be surjective on a space of dimension 2N . Hence, the inf-sup condition (5.1.19) will
inevitably fail, and the discrete problem will have a singular matrix. To reduce Q;,
to ﬁ% (that is piecewise linear continuous functions) will not be enough either, as
the dimension of £} is N + 1, and we are still down by one.



288 5 Approximation of Saddle Point Problems

It seems therefore much more reasonable to increase instead the space V). For
instance, we could take V; := Eé (piecewise quadratic continuous functions).
Indeed, increasing V}, for the same Q}, we could only improve the inf-sup condition:

b(vp, b(vp, 1
inf sup —2Om ) o e gy 2Omdw) 1 (5.2.80)

<@ yecy 1Vnllv Ignlle ~ gieon yect vrllv llallo — V2

The situation, therefore, looks much better than before and even more so for the
monomaniacs of the inf-sup condition, that consider it to be the condition ruling
mixed formulations. As we do not belong to this group, we know that we still have
to check the kernel K}, and the ellipticity in the kernel (5.1.20).

We start by observing that the new V), can be thought as obtained by increasing
L{ (which was the previous choice for V},) with the addition of a quadratic bubble
by in each element I (k = 1,2..., N). Let us give a closer look at these bubbles
that we are adding. We take, for simplicity, a model interval I, :=] — h/2,h/2].
The “unit” quadratic bubble (with value 1 at the midpoint and vanishing at the
endpoints) has equation 5(x) = 1 — (2x/h)? and the mean value of its derivative
b'(x) = —8x/(h?) over I, vanishes (as it was to be expected as b(x) vanishes at the
endpoints of 1;,). Hence, for every function vz € ﬁ% vanishing at all the subdivision
points xj, and for every piecewise function g € ﬁg, we have

/(vﬁ)’ gndx =0 (5.2.81)
1

and the difference between £} and the old £{ goes into the kernel Kj,. This was,
however, to be expected, as we started from a case in which Bj; was already
surjective, and we increased V,.

We observe now that, as the kernel contains all quadratic bubbles, we cannot hope
to have the ellipticity in the kernel (5.1.20) with a constant ozg which is independent
of h. Indeed, we have, for instance,

b*(x)dx = % () (x)dx = 16 (5.2.82)
I

I 3h°

so that when we sum over the N intervals (as N = 2/ h),

'y 16 ) Lo 32
a(b,b) = /_lb (x)dx = = b, = /_l(b) (x)dx = TER (5.2.83)

Hence, if we want a(b, b) > o' ||b||ill(1), that is,

16 /16 32\  ,h*+10
15 2o (55 + 3) =168 g
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we cannot avoid taking

W (5.2.84)

"= h2+10 " 10° -
and ozg cannot be taken to be independent of /& as & goes to zero. The situation
looks dramatic: indeed, from the estimate (5.2.17) and usual interpolation estimates,
we cannot have anything better than a O(h™") estimate in the V norm for u;, and,
from (5.2.18), boundedness for the Q norm of p;. The best we can do is to make
use again of the fact that (5.2.37) and (5.2.38) still hold with «* = M = 1 and use
the first part of Theorem 5.2.6, which does not require K, € K. For this, however,
we have to estimate ||b||«, given in (5.2.41). In our case, we have

v, g dx
Ibll« = sup Jivia . (5.2.85)
qe0 ||61||L2(1) ||Uh||L2(1)
DA

Asv; € Q = L*(I) for every vy, € Vj, this gives

v, C
Bl = sup 2l _ € (5.2.86)

v €V, ||Uh||L2(1) h

(where, by the way, C = ZJE). This is bad news. Indeed, inserting (5.2.86) in
estimates (5.2.45) and (5.2.46) (and noting that ||p — p;| o cannot be better than
O(h)), we cannot get anything better than boundedness for both ||u, — IT,u|y+ and
lpn — o, llo-

We might still hope that our a priori estimates are not optimal. Indeed, if you do
numerical experiments, the linear part of u, and the whole p;, converge nicely.

See, in Fig.5.1, the behaviour of pj, for f = 1. To make the picture clearer,
we reconstructed a p; piecewise linear by taking the average of the true py at the
subdivision points. The numerical convergence of p, is clear. However, the worst
news of all is that (as it can be proved mathematically) p, (and pj, as well) is actually
converging to the wrong solution! This can clearly be seen in Fig. 5.1, as we know,
in the present case, that the exact solution p = (x2>—1)/2 has value —0.5 for x = 0,
while our discrete solution seems, definitely, to converge to something slightly less
than —0.08. A more careful analysis can show that, actually, we converge toward
p/6, that is, in our case, toward (x> — 1)/12, so that its value at 5, (0) converges to
—1/12 = —0.083.

Remark 5.2.11. This super-simple case allows a detailed analysis, that works
however in more general cases. Let us see it. We start by writing u;, as u; + up,
where 1 is the piecewise linear function that coincides with u;, at the endpoints of
each subinterval, while the difference up = u;, — u; will be a piecewise quadratic
polynomial that vanishes at the endpoints of each subinterval, and is therefore made
of quadratic bubbles. In