
Matthew Roughan
Rocky Chang (Eds.)

 123

LN
CS

 7
79

9

14th International Conference, PAM 2013
Hong Kong, China, March 2013
Proceedings

Passive and Active
Measurement

Lecture Notes in Computer Science 7799
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Matthew Roughan Rocky Chang (Eds.)

Passive and Active
Measurement
14th International Conference, PAM 2013
Hong Kong, China, March 18-19, 2013
Proceedings

13

Volume Editors

Matthew Roughan
University of Adelaide
School of Mathematical Sciences
Innova21 Building, Adelaide, SA 5005, Australia
E-mail: matthew.roughan@adelaide.edu.au

Rocky Chang
The Hong Kong Polytechnic University
Department of Computing
Hunghom, Kowloon, Hong Kong SAR, China
E-mail: csrchang@comp.polyu.edu.hk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36515-7 e-ISBN 978-3-642-36516-4
DOI 10.1007/978-3-642-36516-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931228

CR Subject Classification (1998): C.4, C.2.0-6, C.5.3, D.4.6, D.4.8, K.6.5

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the Proceedings of the 2013 Passive and Active Measurement (PAM)
Conference. The event, which was held in Hong Kong this year, focusses on
research in and the practice of Internet measurements. This was the 14th PAM,
and the first to be held in China. Following its genesis in 2000, the conference has
maintained a strong workshop feel, providing an opportunity for the presentation
of innovative and early work, with lively discussion and active participation from
attendees.

In 2012 the conference broadened its scope, reflecting the widening uses of
network measurement and analysis methods. The aim was to facilitate the under-
standing of the expanding role that measurement techniques play as they become
building blocks for a variety of networking environments, application profiling,
and for cross-layer analysis. In 2013 we continued with this wider scope, although
we did not neglect PAM’s core topics.

PAM 2013 attracted 74 submissions. The papers came from academia and
industry from around the world. It was especially pleasing to see the strength
of the submissions from the Asia-Pacific region, adding to the historic strength
from Europe and the Americas.

The Technical Program Committee was chosen from a group of experts in
Internet measurement, drawing on past contributors to PAM including distin-
guished academic and industrial researchers, but also with a group of first-time
members. Additionally, we aimed to have a strong global representation on the
committee, and achieved this with eight members from Europe, the USA and
the Asia-Pacific region, and two from Latin America.

The final program of 24 papers was selected after each submission was care-
fully reviewed by at least three members of the Program Committee (PC), at
least one of whom rated themselves as “knowledgeable” with regard to the con-
tent of the paper. We were delighted with the quality of reviews – they were
careful, insightful, and paid attention to detail. The reviews were followed by an
extensive discussion phase. PAM has traditionally avoided a large PC meeting
and the difficulties it creates for a global PC and instead uses on-line discus-
sions. This year, these were impressively robust: reviewers provided more than
300 comments on papers, some almost as detailed as the reviews themselves. All
of the final papers were then shepherded by PC members.

This year’s conference also included new selection criteria related to repro-
ducible research. It is our belief that one of the most pressing issues in the field of
Internet measurement research is the fact that many papers report on datasets
that are never disclosed, and in the interest of promoting publication of data the
submission instructions contained the following:

We hold the view that an inherent principle of scientific research is
the ability to replicate and build upon existing published works. This

VI Preface

requires data and tools used in publications to be public, but as that
is sometimes in conflict with the requirement to preserve privacy, PAM
will adopt the following policy to encourage reproducible research:
1. Authors must state in the paper (both for review, and in the final ver-

sion) whether data and/or tools will be available to other researchers,
and under what conditions they will be available: e.g., general public
access, access under license, or only via NDA. Authors should also
describe the steps used to ensure that the data will remain available,
say after graduate students finish, or the current project ends.

2. If data or tools won’t be made available, authors are required to
explicitly justify this decision. Papers based on datasets and/or tools
that are made available to the research community will be given
higher priority.

Ethics and reproducibility compliance was then rated as part of the review
process. We are very interested to get feedback on these reproducibility criteria.

In addition, the PC selected nine papers to appear as posters at the confer-
ence, and these are included in this volume as extended abstracts.

The final program included papers on a wide range of measurement topics,
and included authors from 16 countries and five continents. Our most sincere
thanks go to the PC members for their diligence and care in reviewing, discussing,
and shepherding the papers that appear here, and to Weichao Li and Waiting
Fok for organizing and maintaining the HotCRP site for us.

We are also most grateful to the Steering Committee, and to The Hong Kong
Polytechnic University for providing the meeting venue and WIFI access.

We hope that you enjoy the papers in these proceedings.

March 2013 Matthew Roughan
Rocky K.C. Chang

Organization

Organizing Committee

Conference Chair
Rocky K. C. Chang The Hong Kong Polytechnic University,

Hong Kong SAR, China

Program Chair

Matthew Roughan The University of Adelaide, Australia

Local Arrangement Chair

Waiting Fok The Hong Kong Polytechnic University,
Hong Kong SAR, China

Webmaster
Weichao Li The Hong Kong Polytechnic University,

Hong Kong SAR, China

Steering Committee

Nevil Brownlee The University of Auckland, New Zealand
Ian Graham Endace
Arvind Krishnamurthy University of Washington, US
Bernhard Plattner ETH Zurich, Switzerland
Fabio Ricciato University of Salento/FTW, Italy
George Riley Georgia Institute of Technology, US
Neil Spring University of Maryland, US
Nina Taft Technicolor Palo Alto Research Center, US

Program Committee

Bernhard Ager ETH Zurich, Switzerland
Mark Allman International Computer Science Institute

(ICSI), US
Chadi Barakat INRIA, France
Nevil Brownlee The University of Auckland, New Zealand
Edmond W.W. Chan Huawei Noah’s Ark Lab,

Hong Kong SAR, China
Kenjiro Cho IIJ Research Laboratory, Japan
Italo Cunha Universidade Federal de Minas Gerais

(UFMG), Brazil

VIII Organization

Amogh Dhamdhere CAIDA, US
Elias P. Duarte Jr. Federal University of Paraná, Brazil
Marios Iliofotou NARUS, US
Changhyun Lee Korea Advanced Institute of Science and

Technology (KAIST), KR
Simon Leinen SWITCH, Switzerland
Xiapu Luo The Hong Kong Polytechnic University,

Hong Kong SAR, China
Olaf Maennel Loughborough University, UK
Bruce Maggs Carnegie Mellon University (CMU), US
Anirban Mahanti NICTA, Australia
Michael Rabinovich Case Western Reserve University, US
Fabian Schneider NEC Laboratories Europe, DE
Aaditeshwar Seth Indian Institute of Technology (IIT) Delhi,

India
Yuval Shavitt Tel Aviv University, Israel
Oliver Spatschek AT&T Labs, US
Rade Stanojevic Telefonica Research, ES
Paul Tune The University of Adelaide, Australia
Steve Uhlig Queen Mary, University of London, UK
Udi Weinsberg Technicolor Palo Alto Research Center, US
Zhi-Li Zhang University of Minnesota, US

Sponsoring Institutions

The Hong Kong Polytechnic University, Hong Kong SAR, China

Table of Contents

Measurement Design, Experience and Analysis

Measurement Artifacts in NetFlow Data . 1
Rick Hofstede, Idilio Drago, Anna Sperotto, Ramin Sadre, and
Aiko Pras

Efficient IP-Level Network Topology Capture . 11
Thomas Bourgeau and Timur Friedman

Detecting Third-Party Addresses in Traceroute Traces with IP
Timestamp Option . 21

Pietro Marchetta, Walter de Donato, and Antonio Pescapé

FlowSense: Monitoring Network Utilization with Zero Measurement
Cost . 31

Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh,
Guofei Jiang, and Harsha V. Madhyastha

Internet Wireless and Mobility

How to Reduce Smartphone Traffic Volume by 30%? 42
Feng Qian, Junxian Huang, Jeffrey Erman, Z. Morley Mao,
Subhabrata Sen, and Oliver Spatscheck

Modeling Cellular User Mobility Using a Leap Graph 53
Wei Dong, Nick Duffield, Zihui Ge, Seungjoon Lee, and Jeffrey Pang

Understanding Mobile App Usage Patterns Using In-App
Advertisements . 63

Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song

A Measurement of Mobile Traffic Offloading . 73
Kensuke Fukuda and Kenichi Nagami

Performance Measurement

Estimating TCP Latency Approximately with Passive Measurements . . . 83
Sriharsha Gangam, Jaideep Chandrashekar, Ítalo Cunha, and
Jim Kurose

Effect of Competing TCP Traffic on Interactive Real-Time
Communication . 94

Ilpo Järvinen, Binoy Chemmagate, Aaron Yi Ding, Laila Daniel,
Markus Isomäki, Jouni Korhonen, and Markku Kojo

X Table of Contents

A Comparative Study of Android and iOS for Accessing Internet
Streaming Services . 104

Yao Liu, Fei Li, Lei Guo, Bo Shen, and Songqing Chen

Performance Implications of Unilateral Enabling of IPv6 115
Hussein A. Alzoubi, Michael Rabinovich, and Oliver Spatscheck

Protocol and Application Behaviour

Measuring Occurrence of DNSSEC Validation . 125
Matthäus Wander and Torben Weis

On the State of ECN and TCP Options on the Internet 135
Mirja Kühlewind, Sebastian Neuner, and Brian Trammell

Measuring Query Latency of Top Level DNS Servers 145
Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, and Jianping Wu

IPv6 Alias Resolution via Induced Fragmentation . 155
Robert Beverly, William Brinkmeyer, Matthew Luckie, and
Justin P. Rohrer

Characterization of Network Usage

Unveiling the Patterns of Video Tweeting: A Sina Weibo-Based
Measurement Study . 166

Zhida Guo, Jian Huang, Jian He, Xiaojun Hei, and Di Wu

Measuring Home Networks with HomeNet Profiler 176
Lucas DiCioccio, Renata Teixeira, and Catherine Rosenberg

Characteristics of Real Open SIP-Server Traffic . 187
Jan Stanek, Lukas Kencl, and Jiri Kuthan

Trying Broadband Characterization at Home . 198
Mario A. Sánchez, John S. Otto, Zachary S. Bischof, and
Fabián E. Bustamante

Network Security and Privacy

Searching for Spam: Detecting Fraudulent Accounts via Web Search 208
Marcel Flores and Aleksandar Kuzmanovic

Characterization of Blacklists and Tainted Network Traffic 218
Jing Zhang, Ari Chivukula, Michael Bailey, Manish Karir, and
Mingyan Liu

Table of Contents XI

Characterizing Large-scale Routing Anomalies: A Case Study of the
China Telecom Incident . 229

Rahul Hiran, Niklas Carlsson, and Phillipa Gill

PhishLive: A View of Phishing and Malware Attacks from an Edge
Router . 239

Lianjie Cao, Thibaut Probst, and Ramana Kompella

Poster Abstracts

Remotely Gauging Upstream Bufferbloat Delays . 250
C. Chirichella, D. Rossi, C. Testa, T. Friedman, and
Antonio Pescapé

Scaling Out the Performance of Service Monitoring Applications with
BlockMon . 253

Davide Simoncelli, Maurizio Dusi, Francesco Gringoli, and
Saverio Niccolini

Understanding IPv6 Populations in the Wild . 256
Manish Karir, Geoff Huston, George Michaelson, and Michael Bailey

On Weather and Internet Traffic Demand . 260
Juan Camilo Cardona, Rade Stanojevic, and Rubén Cuevas

Spatial and Temporal Locality of Swarm Dynamics in BitTorrent 264
Taejoong Chung, Jinyoung Han, Hojin Lee,
Ted “Taekyoung” Kwon, Yanghee Choi, and Nakjung Choi

What SNMP Data Can Tell Us about Edge-to-Edge Network
Performance . 267

Demetris Antoniades, Kejia Hu, Alex Sim, and Constantine Dovrolis

Pathperf: Path Bandwidth Estimation Utilizing Websites 270
Kun Yu, Congxiao Bao, and Xing Li

The Day after Patch Tuesday: Effects Observable in IP Darkspace
Traffic . 273

Tanja Zseby, Alistair King, Nevil Brownlee, and KC Claffy

Towards Active Measurements of Edge Network
Outages . 276

Lin Quan, John Heidemann, and Yuri Pradkin

Author Index . 281

Measurement Artifacts in NetFlow Data

Rick Hofstede, Idilio Drago, Anna Sperotto, Ramin Sadre, and Aiko Pras

University of Twente
Centre for Telematics and Information Technology

Design and Analysis of Communications Systems (DACS)
Enschede, The Netherlands

{r.j.hofstede,i.drago,a.sperotto,r.sadre,a.pras}@utwente.nl

Abstract. Flows provide an aggregated view of network traffic by group-
ing streams of packets. The resulting scalability gain usually excuses the
coarser data granularity, as long as the flow data reflects the actual net-
work traffic faithfully. However, it is known that the flow export process
may introduce artifacts in the exported data. This paper extends the
set of known artifacts by explaining which implementation decisions are
causing them. In addition, we verify the artifacts’ presence in data from
a set of widely-used devices. Our results show that the revealed artifacts
are widely spread among different devices from various vendors. We be-
lieve that these results provide researchers and operators with important
insights for developing robust analysis applications.1

Keywords: Network management, measurements, NetFlow, artifacts.

1 Introduction

Cisco’s NetFlow [2] and the recent standardization effort IPFIX [11] have made
flow export technologies widely popular for network monitoring. They owe this
success to their applicability to high-speed networks and widespread integration
into network devices. The pervasiveness of these technologies has resulted in a
variety of new application areas that go far beyond simple network monitoring,
such as flow-based intrusion detection [13] and traffic engineering [4]. Regardless
of the application, flow data is expected to reflect the network traffic faithfully.

Flow export is a complex process that includes both real-time aggregation
of packets into flows and periodic export of flow information to collectors. This
aggregation naturally results in a coarser view on the network traffic. Several
works have already compared the precision of flow-based applications to their
packet-based counterparts [4, 12]. The scalability gain of using flow data nor-
mally excuses the loss of precision. Any flow-based application will, however, be
impaired by flow data of poor quality, which can be caused by implementation
decisions. For example, the imprecision in flow timestamps has already been
discussed in [9, 14]. Similarly, artifacts found in flow data from Juniper devices

1 All measurement scripts used for our analysis are made public at
http://www.simpleweb.org/wiki/NetFlow_Data_Artifacts

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.simpleweb.org/wiki/NetFlow_Data_Artifacts

2 R. Hofstede et al.

are extensively analyzed in [3]. However, these works do not investigate how
widespread these artifacts are in flow data from different flow export devices.

The goal of the paper is twofold. Firstly, we report on our experience acquired
while operating a Cisco Catalyst 6500, which is one of the most widely deployed
switching platforms [7]. We provide an analysis of artifacts identified in flow
data exported by this device, along with a detailed description of their causes.
Secondly, inspired by [3], we analyze whether these artifacts are also present
in flow data from other devices. Active experiments and flow data analysis are
combined to evaluate the quality of six different flow exporters.

This paper is organized as follows. In Sect. 2 we analyze and explain the arti-
facts observed on a Cisco Catalyst 6500. After that, we investigate whether the
revealed artifacts are also present in flow data from other devices. The experi-
ment setup is presented in Sect. 3. The results of our analyses are discussed in
Sect. 4. Finally, our conclusions are presented in Sect. 5.

2 Case Study: Cisco Catalyst 6500 (SUP720-3B)

The Cisco Catalyst 6500 is a widely deployed series of switches that can be found
in many service provider, enterprise and campus networks. In this section, we
discuss five artifacts that are present in flow data from a specific device of this
series2, located in our production network. This knowledge is, therefore, gained
from our operational experience. It is important to note that this list is by
no means comprehensive, since artifacts are load- and configuration-dependent.
Moreover, artifacts related to clock imprecisions discussed by previous works,
which we have observed as well, are not covered.

Imprecise Flow Record Expiration – Expiration is the process of removing
flow records from the NetFlow table (i.e., flow cache). This can be done for a
variety of reasons, such as timeouts and exporter overload. However, according
to the documentation, flow records can be expired as much as 4 seconds ear-
lier or later than the configured timeout [1] when the device is not overloaded.
Moreover, the average expiration deviation should be within 2 seconds of the
configured value. This is because of the way in which the expiration process
is implemented: A software process scans the NetFlow table for expired flow
records. Due to the time needed for scanning all flow records, expiration is often
pre- or postponed.

TCP Flows Without Flag Information – TCP flags are accounted for few
TCP flows, since they are solely exported for software-switched flows [1]. These
flows are processed by a generic CPU, while hardware-switched flows are pro-
cessed using Application Specific Integrated Circuits (ASICs). Whether a flow
has been switched in hardware or software can be concluded from the engineID
field in the flow records. Since most packets are hardware-switched, only few
TCP flows with flags can be found in the exported data. Another observation
can be made regarding the handling of flags of hardware-switched TCP flows:

2 The exact configuration can be found in Table 1 (Exporter 1).

Measurement Artifacts in NetFlow Data 3

In contrast to what is specified in [1], TCP FIN and RST flags trigger the ex-
piration of flow records. As such, TCP flags are considered in the expiration
process, even though they are not exported.

Invalid Byte Counters – It has been observed before that byte counters in flow
records are not always correct [9]. The counters represent the number of bytes
associated with an IP flow [2], which is the sum of IP packet header and payload
sizes. IP packets are usually transported as Ethernet payload, which should have
a minimum size of 46 bytes according to IEEE 802.3-2008. If the payload of an
Ethernet frame is less than 46 bytes, padding bytes must be added to fill up the
frame. However, stripping these padding bytes is not done for hardware-switched
flows, resulting in too many reported bytes.

Non-TCP Flow Records With TCP ACK Flag Set – The first packet of a
new flow is subject to Access Control List (ACL) checks, while subsequent pack-
ets bypass them for the sake of speed. Bypassing ACL checks could also be done
by fragmenting packets, since packet fragments are not evaluated. To overcome
this security problem, Cisco has implemented a poorly documented solution that
has two implications on software-switched flows. Firstly, flag information in flow
records is set to zero for all packet fragments, which are always software-switched.
Secondly, flag information in flow records of all other software-switched traffic is
set to a non-zero value, and TCP ACK was chosen for that purpose.

Gaps – Similarly to the devices analyzed in [3], this exporter often measures
no flows during short time intervals. This is caused mostly by hardware limita-
tions, combined with a configuration that is not well adjusted to the load of the
network. When a packet has to be matched to a flow record, its key fields are
hashed and a lookup is done in a lookup table (NetFlow TCAM). In our setup,
both the lookup table and the table storing the flow records (NetFlow table)
consist of 128k entries with a hash efficiency of 90%, resulting in a net utiliza-
tion of roughly 115k entries. A table (named alias CAM or ICAM) with only
128 entries is available to handle hash collisions, so that up to two flows with
different keys but identical hashes can be stored. The event in which a packet
belonging to a new flow cannot be accommodated because of hash collisions is
called flow learn failure. The evolution of flow learn failures in this device can
be monitored using the CISCO-SWITCH-ENGINE-MIB (SNMP).

3 Experiment Setup

To understand whether the artifacts presented in the previous section can also
be identified in flow data from other flow exporters, several devices from three
vendors, installed in campus and backbone networks throughout Europe, have
been analyzed. Table 1 lists these devices, together with their hardware config-
uration and software versions. Given the variety of hardware configurations, we
cover a wide range of hardware revisions of widely used devices.

4 R. Hofstede et al.

Table 1. Assessed flow exporters and their configurations

No. Model Modules Software version

1. Cisco Catalyst 6500 WS-SUP720-3B (PFC3B, MSFC3) IOS 12.2(33)SXI5

2. Cisco Catalyst 6500 WS-SUP720-3B (PFC3B, MSFC3) IOS 12.2(33)SXI2a

3. Cisco Catalyst 6500
VS-SUP2T-10G-XL (PFC4XL,

IOS 15.0(1)SY1
MSFC5) + WS-X6904-40G

4. Cisco Catalyst 7600 RSP720-3C-GE (PFC3C, MSFC4) IOS 15.2(1)S

5. Juniper T1600 MultiServices PIC 500 JUNOS 10.4R8.5

6. INVEA-TECH FlowMon - 3.01.02

The first two devices, both from the Cisco Catalyst 6500 series, have identical
hardware configurations and similar software versions, but are exposed to dif-
ferent traffic loads. We can therefore analyze whether the load of these devices
affects the presence of artifacts. The third Cisco Catalyst 6500 has a significantly
different hardware configuration and software version. The Cisco Catalyst 7600
series, represented by our fourth device, is generally similar to the Cisco Catalyst
6500 series, but uses different hardware modules. Device 1, 2 and 4 use the same
hardware implementation of NetFlow (EARL7), while Device 3 is significantly
newer (released in 2012) and uses Cisco’s EARL8 ASIC. The fifth analyzed de-
vice is a Juniper T1600, which has also been analyzed in [3]. The inclusion of
this device allows us to extend the results in [3]. Finally, we have included a
dedicated flow exporter (probe) from INVEA-TECH. In the remainder of this
paper, we denote each of the devices by its number in the table.

4 Artifact Analysis

Sect. 2 described a set of artifacts present in flow data from a Cisco Catalyst 6500
(Exporter 1). This section evaluates whether these artifacts are also present in
flow data from the other exporters listed in Sect. 3. For each artifact, we define
the experiment methodology, followed by a description of our observations in
both flow and SNMP data. After that, we show some examples in which the
artifacts have impact on specific analysis applications. Also, we discuss whether
the artifacts are repairable or non-repairable.

Imprecise Flow Record Expiration – Flow exporters are expected to expire
flow records at the configured active timeout Tactive and idle timeout Tidle, and
possibly after a packet with TCP FIN or RST flag set has been observed. We
perform the following experiments to evaluate the behavior of the flow exporters:

– Active Timeout: We send a series of packets with identical flow key to
the flow exporter for a period of Tactive + d. The inter-arrival time of the
packets is chosen to be less than Tidle. The experiment is performed for
d = −2,−1, . . . , 16 seconds. For each value of d, we repeat the experiment
100 times and count how often the flow exporter generates two flow records

Measurement Artifacts in NetFlow Data 5

from the received packets. Ideally, one should see only one flow record per
experiment for d < 0 and always two flow records per experiment for d ≥ 0.

– Inactive Timeout: We send two packets with identical flow key to the ex-
porter, separated by a time difference of Tidle+d. The rest of the experiment
is performed as for the active timeout. Again, one ideally sees only one flow
record per experiment for d < 0 and always two flow records for d ≥ 0.

– TCP FIN/RST Flag: We send one packet with the FIN or RST flag set,
followed by another packet after d time units. The rest of the experiment is
performed as for the active timeout (only for d = 0, 1, . . . , 16). Ideally, the
exporter always generates two flow records.

For all experiments, the packets are generated such that they are processed
in hardware by the exporter, if applicable3. In addition, several initial packets
are generated where necessary, to avoid that special mechanisms for the early
expiration of records of small and short flows (such as Cisco’s fast aging [1])
are applied. All exporters use an active timeout between 120 and 128 seconds,
and an idle timeout between 30 and 32 seconds. Note that we do not rely on
the timestamps in flow records, which means that we are not susceptible to the
errors described in [14]. Instead, we use the time from the machines running the
measurement scripts, which are placed close to the analyzed exporters.

The experiment results are shown in Fig. 1a–1c for the three expiration mech-
anisms, respectively. For each value of d (in seconds, on the x-axis) we give
the fraction of experiment runs (on the y-axis) for which the flow exporter has
generated two flow records. With regard to the active timeout (Fig. 1a), Ex-
porter 1–3 behave similarly: The number of experiments with two flow records
increases linearly for d ∈ [0, 8]. Although this timespan of 8 seconds is in line
with Cisco’s documentation, the center of the timespan is incorrect: Instead of
being at d = 0, our experiments show that it is at d = 4. Exporter 4 behaves
similarly to the previous exporters, although the linear increase takes place for
d ∈ [−2, 6]. Exporter 5 shows unexpected behavior: Even for d = 16, only 20% of
the experiments result in two flow records. Additional experiments have shown
that the expiration does not stabilize at all. Moreover, incorrect start times are
reported for flow records expired by the active timeout (which confirms the find-
ings in [3]). Finally, only Exporter 6 works as expected and always generates two
flow records for d ≥ 0.

The results obtained from the idle timeout experiments are shown in Fig. 1b.
Exporter 1–4 show identical behavior and the linear increase of the curve for d ∈
[0, 4] confirms that the flow record expiration works according to its specification
[1]. Exporter 5 performs better compared to the active timeout experiments: For
d ≥ 11 always two flow records are generated, which is in line with the findings
in [3]. Flow records from Exporter 6 are expired up to 15s after the idle timeout,
approximately linearly with d ∈ [0, 15]. We have observed that the behavior
of this exporter also depends on the absolute value of the inactive timeout. In
Fig. 1d, we show for different inactive timeouts the value of d (on the y-axis)

3 http://www.cisco.com/en/US/products/hw/switches/ps708/

products tech note09186a00804916e0.shtml

http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a00804916e0.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_tech_note09186a00804916e0.shtml

6 R. Hofstede et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 0 2 4 6 8 10 12 14 16

Fr
ac

tio
n

d (s)

Exporter 1
Exporter 2
Exporter 3
Exporter 4
Exporter 5
Exporter 6

(a) Active timeout

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 0 2 4 6 8 10 12 14 16

Fr
ac

tio
n

d (s)

Exporter 1
Exporter 2
Exporter 3
Exporter 4
Exporter 5
Exporter 6

(b) Idle timeout

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Fr
ac

tio
n

d (s)

Exporter 1
Exporter 2
Exporter 3
Exporter 4
Exporter 5

(c) TCP flags

 0

 3

 6

 9

 12

 15

 18

TIdle=30s TIdle=60s TIdle=150s

50
%

 T
hr

es
ho

ld
 (

s)

Exporter 1
Exporter 6

(d) Impact of idle timeout

Fig. 1. Results of the flow record expiration experiments

where 50% of the experiments yield two flow records, comparing the behavior
of Exporter 1 and Exporter 6. While these values are always close to 2s for
Exporter 1, they increase with the timeout for Exporter 6.

Fig. 1c shows the results for the expiration based on TCP flags. The expi-
ration behavior of Exporter 3 differs from the other Cisco devices, due to a
different implementation of NetFlow (see Sect. 3). Overall, the number of cor-
rectly exported flow records increases linearly with d. The deviation d for which
Exporter 5 wrongly exports only one flow record, is small: Three seconds after
the FIN/RST flag was sent, always two records are exported. Exporter 6 does
not expire flow records based on TCP flags by specification.

The flow record expiration behavior of Exporter 1-4 shows a clear linear slope
in Fig. 1a–1c, which suggests the presence of a cyclic process to expire and export
the (hardware) flow tables. The fact that flow records are not expired exactly
on the defined timeouts may not be a problem if flows are aggregated afterward.
This is especially the case for flow records expired by the active timeout. How-
ever, when the idle timeout or TCP flags are used to signal the end of a flow,
this artifact may result in non-repairable data damage. For example, in [12] it
is shown that some applications (e.g., peer-to-peer clients) often reuse sockets
shortly after a TCP connection attempt failure. When timeouts and TCP flags
are not observed strictly, packets from different connections may be merged into
a single flow record.

Measurement Artifacts in NetFlow Data 7

Table 2. Artifact analysis results

Exporter TCP Flows Without Flag Information Invalid Byte Counters

1 + 2 No flags exported for hardware-switched flows
Invalid byte counters for

3 Flags exported
hardware-switched flows

4 No flags exported for hardware-switched flows

5 + 6 Flags exported Byte counters OK

TCP Flows Without Flag Information – Our analysis results for this ar-
tifact are summarized in Table 2. The oldest assessed devices, Exporter 1, 2
and 4, do not export flags for hardware-switched TCP flows. Since the vast ma-
jority of flows is hardware-switched, TCP flags are rarely exported. We have
observed that approximately 99.6% of all TCP flow records exported by Ex-
porter 1 and 2 have no flag information set during a measurement period of one
week. However, flags are respected for flow record expiration, even in the case
of hardware-switched TCP flows. In the case of Exporter 3, 5 and 6, TCP flags
are exported.

The lack of TCP flag information in flow records can be problematic for several
types of data analysis. From a network operation perspective, TCP connection
summaries can help to identify connectivity or health problems of services and
devices. From a research perspective, many works rely on TCP connection state
information. For example, [5,6,8] use it for inferring statistics from sampled flow
data and [10] for optimizing sampling strategies. None of these approaches works
on flow data without TCP flags.

Invalid Byte Counters – The results for this artifact are also summarized
in Table 2. None of the Cisco devices strips the padding bytes from Ethernet
frames of hardware-switched flows. Exporter 5 and 6 strip these bytes properly.
The impact of this artifact depends on the fraction of Ethernet frames that
carry less than 46 bytes of payload. To understand the distribution of packet
sizes in current networks, we analyzed a packet trace from the University of
Twente (UT) campus (1 day in 2011), and a trace from the CAIDA ‘equinix-
sanjose’ backbone link4 (1 day in 2012). In both traces, around 20% of the frames
contains less than 46 bytes of payload, which would be reported incorrectly. The
number of incorrectly counted bytes lies around 0.2% of the total number of
bytes in both cases. The impact of this artifact on accounting applications is,
therefore, very small.

Non-TCP Flow Records With TCP ACK Flag Set – Our analysis has
shown that only flow data from older Cisco devices (i.e., Exporter 1, 2 and 4)
contains this artifact. On average, the number of non-TCP flow records with
TCP ACK flag set accounts for approximately 1% of the total number of flow
records on Exporter 1 and 2.

When analysis applications do not use properly-defined filters on flow data
containing this artifact, this can lead to unexpected results and misconceptions.

4 The CAIDA UCSD Anonymized Internet Traces 2012 - 16 February 2012
http://www.caida.org/data/passive/passive_2012_dataset.xml

http://www.caida.org/data/passive/passive_2012_dataset.xml

8 R. Hofstede et al.

 0

 1

 2

 3

 4

07:20 07:30 07:40 07:50
 0

 3

 6

 9

 12

R
ec

or
ds

/1
00

m
s

(k
)

Pa
ck

et
s/

s
(k

)

Flow records
Flow learn failures

(a) Flow learn failures

 0

 0.3

 0.6

 0.9

 1.2

09:00 09:10 09:20 09:30

R
ec

or
ds

/1
00

m
s

(k
)

Flow records

(b) NetFlow packet loss

Fig. 2. Impact of flow learn failures and NetFlow packet loss on flow time-series

For example, a filter for flow records with the TCP ACK-flag set includes also
UDP flows in the case of Exporter 1, 2 and 4. Popular analysis applications,
such as nfdump, accept these filters without showing any warning to the user.
As long as the transport-layer protocol is specified in the filter together with the
flags, this artifact will not have any semantic impact on data analysis.

Gaps – In this section we characterize the effects of flow learn failures on flow
data. This helps to understand whether this artifact is also present in data from
other exporters, without having access to any flow cache statistics. Our experi-
ments have shown that the first packets of flows are more likely to be subject to
flow learn failures, because subsequent packets of accounted flows are matched
until the records are expired. Smaller flows are therefore more likely not to be
accounted at all, while larger flows may have only their first packets lost. Fig. 2a
shows a time-series of the number of flow records in intervals of 100ms. This
data has been collected early in the morning, when Exporter 1 normally starts
to run out of capacity. A constant stream of flow records without gaps can be
observed until around 7:25, when the number of records increases. Simultane-
ously, flow learn failures (in packets/s) start to be reported by SNMP agents,
and several short gaps appear in the time-series. Note that the series are slightly
out of phase, because of the higher aggregation of the SNMP measurements.

Interestingly, the gaps caused by flow learn failures are periodic, especially
when the network load is constantly above the exporter’s capacity. When analyz-
ing data from Exporter 1 for two weeks, we have observed that the distribution
of the time between gaps is concentrated around multiples of 4s. Furthermore,
gaps are not larger than 2s in 95% of the cases. This confirms our assumption
about the presence of a cyclic process for expiring records from the flow cache.

Gaps can also be caused by other factors, such as the loss of NetFlow pack-
ets during their transport from exporters to collectors, or packet loss on the
monitored link. Both are typically random events that tend to result either in
a homogenous reduction in the number of flow records, or in non-periodic gaps.
Fig. 2b illustrates the example NetFlow packet loss by showing the time-series of
flow records observed at a highly overloaded collector. NetFlow packet sequence
number analysis confirms that more than 5% of the NetFlow packets have been

Measurement Artifacts in NetFlow Data 9

lost by the collector during this interval. Several short periods with a reduced
number of flow records can be observed, but the series never reaches zero in this
example. This demonstrates that gaps in flow data cannot be irrefutably traced
back to flow learn failures.

We can confirm the existence of gaps in flow data from Exporter 1 and 2.
Exporter 3-5 could not be tested, either because they are in production networks
or because we were not able to exhaust their flow capacity. Exporter 6 handles
collisions in software using linked lists and is, therefore, not subject to flow learn
failures. Under extreme load, it exports flow records earlier, ignoring timeout
parameters completely.

Although this artifact has a severe impact on any analysis because of the
resulting incomplete data set, we discuss only two examples: anomaly detection
and bandwidth estimation. The detection of anomalies (especially flooding at-
tacks) is often based on large sets of small flows. Since the first packets of a flow
are especially susceptible to flow learn failures, they are more likely to be lost
during the flow export process. Anomalies can therefore stay undetected. Besides
dropped flow records, peaks in the network traffic may be smoothed due to the
load-dependency of the artifact. Since the identification of peaks is essential for
bandwidth estimation, traffic analysis may provide invalid estimates.

5 Conclusions

In this paper we have identified, analyzed and quantified several artifacts occur-
ring in flow data exported by six different devices. These artifacts are related to
the way such devices handle the flow expiration, TCP flags and byte counters,
and to imprecisions in the number of exported flow records.

Our analysis shows that the impact of the identified artifacts on the quality
of flow data varies, and that in some cases mitigation and recovery procedures
can be considered. For example, non-TCP flow records with TCP ACK flag set
can be repaired easily. The imprecise flow record expiration artifact can in many
cases be ignored if the flow collector aggregates records belonging to the same
flow before analysis. However, the remaining artifacts cannot easily be mitigated
and they adversely impact the quality of the exported flow data.

The severity of the identified artifacts ultimately depends on their impact on
the applications that are using the data. Analysis applications are usually built
to be generic and applicable to any flow data. However, the experience gained
during this study convinced us that a better way for designing flow-based appli-
cations would be to take data artifacts into account. Since the types of artifacts
differ from exporter to exporter, we believe that researchers and operators need
to be aware of these artifacts to build more robust analysis applications.

One of the areas that remained untouched in this work is the influence of
packet sampling on the flow data artifacts, which we plan to address in future
work. Also, we plan to work on a data cleanup tool that aims at detecting and
repairing artifacts in flow data.

10 R. Hofstede et al.

Acknowledgements. This work has been supported by the EU FP7-257513
UniverSelf Collaborative Project and SURFnet’s GigaPort3 project for Next-
Generation Networks. Special thanks to Jeroen van Ingen Schenau and Roel
Hoek (University of Twente, NL), Jan Vykopal and Tomas Plesnik (Masaryk
University, CZ), and Luuk Oostenbrink (SURFnet, NL), for their valuable con-
tribution to the research.

References

1. Cisco Systems, Inc.: Catalyst 6500 Series Switch Cisco IOS Software Configuration
Guide (2009), http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/
ios/12.2SXF/native/configuration/guide/122sxscg.pdf (accessed on Decem-
ber 14, 2012)

2. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informa-
tional) (2004)

3. Cunha, Í., Silveira, F., Oliveira, R., Teixeira, R., Diot, C.: Uncovering Artifacts of
Flow Measurement Tools. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009.
LNCS, vol. 5448, pp. 187–196. Springer, Heidelberg (2009)

4. de Oliveira Schmidt, R., Sperotto, A., Sadre, R., Pras, A.: Towards Bandwidth
Estimation Using Flow-Level Measurements. In: Sadre, R., Novotný, J., Čeleda,
P., Waldburger, M., Stiller, B. (eds.) AIMS 2012. LNCS, vol. 7279, pp. 127–138.
Springer, Heidelberg (2012)

5. Duffield, N., Lund, C., Thorup, M.: Properties and Prediction of Flow Statistics
from Sampled Packet Streams. In: Proceedings of the 2nd ACM SIGCOMM Work-
shop on Internet Measurement, pp. 159–171 (2002)

6. Duffield, N., Lund, C., Thorup, M.: Estimating Flow Distributions from Sampled
Flow Statistics. IEEE/ACM Transactions on Networking 13(5), 933–946 (2005)

7. Follett, J.H.: Cisco: Catalyst 6500 The Most Successful Switch Ever (2006),
http://www.crn.com/news/networking/189500982/cisco-catalyst-6500-the-

most-successful-switch-ever.htm (accessed on December 14, 2012)
8. Gu, Y., Breslau, L., Duffield, N.G., Sen, S.: On Passive One-Way Loss Measure-

ments Using Sampled Flow Statistics. In: INFOCOM 2009, pp. 2946–2950 (2009)
9. Kögel, J.: One-way Delay Measurement based on Flow Data: Quantification and

Compensation of Errors by Exporter Profiling. In: Proceedings of the 25th Inter-
national Conference on Information Networking (ICOIN 2011), pp. 25–30 (2011)

10. Kompella, R.R., Estan, C.: The Power of Slicing in Internet Flow Measurement.
In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement
(IMC 2005), pp. 105–118 (2005)

11. Sadasivan, G., Brownlee, N., Claise, B., Quittek, J.: Architecture for IP Flow In-
formation Export. RFC 5470 (Informational) (2009)

12. Sommer, R., Feldmann, A.: NetFlow: Information loss or win? In: Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet Measurement, pp. 173–174 (2002)

13. Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., Stiller, B.: An
Overview of IP Flow-Based Intrusion Detection. IEEE Communications Surveys
& Tutorials 12(3), 343–356 (2010)

14. Trammell, B., Tellenbach, B., Schatzmann, D., Burkhart, M.: Peeling Away Tim-
ing Error in NetFlow Data. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS,
vol. 6579, pp. 194–203. Springer, Heidelberg (2011)

http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SXF/native/configuration/guide/122sxscg.pdf
http://www.cisco.com/en/US/docs/switches/lan/catalyst6500/ios/12.2SXF/native/configuration/guide/122sxscg.pdf
http://www.crn.com/news/networking/189500982/cisco-catalyst-6500-the-most-successful-switch-ever.htm
http://www.crn.com/news/networking/189500982/cisco-catalyst-6500-the-most-successful-switch-ever.htm

Efficient IP-Level Network Topology Capture

Thomas Bourgeau and Timur Friedman

LIP6-CNRS and LINCS Laboratories, UPMC Sorbonne Universités

Abstract. Large-scale distributed network route tracing systems obtain
the IP-level internet topology and can be used to monitor and understand
network behavior. However, existing approaches require one or more days
to obtain a full graph of the public IPv4 internet, which is too slow to cap-
ture important network dynamics. This paper presents a new approach
to topology capture that aims at obtaining the graph rather than full
routes, and that employs partial rather than full route tracing to achieve
this aim. Our NTC (Network Topology Capture) heuristics use infor-
mation from previous tracing rounds to guide probing in future rounds.
Through simulations based upon two months of traces that we obtained,
we find that the heuristics improve significantly on the state of the art
for reducing probing overhead while maintaining good graph coverage.
We also conduct the first study of how such a distributed tracing system
performs in its ability to capture network dynamics.

1 Introduction

A few large-scale distributed route tracing systems, Ark [1], DIMES [2], and
iPlane [3], are in continuous operation, each mapping a significant portion of
the public IPv4 internet. Each takes at least a day to complete a single prob-
ing round. The data that they produce are widely used for understanding the
structure of the internet. However, as Bourgeau (co-author on the present paper)
has described [4], looking at this timescale leaves out important aspects of net-
work dynamism. Those who wish to study network dynamics either turn towards
systems that conduct a narrower range of measurements at a higher frequency,
such as RIPE’s TTM [5] or our own TopHat TDMI [6], or they create their own
system, such as Latapy et al.’s (non-distributed) Radar for the Internet [7].

The three big distributed route tracing systems consist of tens (Ark) to thou-
sands (DIMES) of agents, continuously probing towards destinations in each of
the 9.1 million /24 IPv4 address prefixes. Implicit in these numbers is a net-
work discovery probe packet budget that is hard to compress. Lakhina et al.
demonstrated that measuring from too few sources can introduce biases in the
discovered graph [8] and Shavitt et al. have shown how a broad distribution of
sources and destinations yields good estimates of graph properties [9].

There is a small body of prior work on how to increase the efficiency of dis-
tributed route tracing systems while maintaining all sources and destinations.
The Doubletree algorithm, by Donnet et al. [10] (including a present co-author),
introduces cooperation between agents so that one can avoid probing where the

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 11–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

12 T. Bourgeau and T. Friedman

others have already probed. Gonen and Shavitt [11] examine what the minimum
set of source-destination pairs for route traces might be in order to fully cover
the network graph.

Our essential insight is that, the graph of the internet being an object of con-
siderable interest in its own right, a system can aim to obtain the network graph
rather than full end-to-end route traces. By conducting partial route traces, cho-
sen, on the basis of knowledge from the system’s own prior probing rounds, to
reduce redundancy, significant savings can potentially be realized in the probing
budget.

The Network Topology Capture (NTC) heuristics presented in this paper are
the first realization of such an approach. Emulating NTC on a measurement
dataset that we collected using TDMI on the PlanetLab [12], NTC consumes
as little as 6% of the probing budget of a classic system conducting end-to-
end traceroutes. In so doing, it still covers 95% of the network topology. This
outperforms the state of the art Doubletree approach, which (on another, similar,
dataset) required 25% of a classic probing budget and discovered 93% of the
network topology.

With such a reduced probing budget, it should be possible to speed up trac-
ing systems by an order of magnitude. This might make them more useful for
such tasks as network monitoring (e.g., [13]). It might also open the way for de-
velopment of accurate IP-level network dynamics emulators, to complement the
topology generators (e.g., [14]) that researchers use today. The present paper is
the first to evaluate the ability of a distributed route tracing system to capture
network dynamics.

2 A Generic Distributed Tracing (GDT) Framework

Distributed network tracing systems tend to be similar to each other. Each has
a number of lightweight agents and a heavier weight central server. Probing is
conducted in rounds, with each agent working from a fixed set of instructions
for a round. Results from the agents are sent back from time to time to the
central server. We formalize these notions into a Generic Distributed Tracing
(GDT) framework. The framework leaves room for many different specific prob-
ing heuristics to be applied. The following section describes related work in the
context of this framework, and the section after that describes our own NTC
(Network Topology Capture) heuristics.

The actors in the generic framework are a server and a set of agents. Tracing
is conducted in a series of rounds, with three phases to each round: dispatch,
in which instructions are sent from the server to the agents; probing by the
agents; and update, in which the probing results are sent back to the server,
which uses them to prepare the next round. Let us further detail each phase.

Dispatch Phase: The information classically provided to agents in a dis-
tributed tracing system is simply a list of destinations that each one should probe,

Efficient IP-Level Network Topology Capture 13

using full route traces. Once this information has been provided to the agents
for a first round, it tends not to change much in subsequent rounds. However,
the two changes that we introduce to tracing methodology – conducting partial
route traces and using previously detected features to guide probing – require
agents to receive fuller information and round-by-round updates. For the partial
traces, the server must communicate not only the destination, but also the hop
counts for a trace. And for the previously detected features, the server must
inform an agent about what to expect to see in each partial trace.

We formalize a partial trace instruction as a query, in the sense that the
agent will ‘query’ the network regarding the existence of a single edge of the
network graph. We must clarify what we mean by an edge because of the well-
known phenomenon of unresponsive interfaces, commonly called ‘stars’, that
often appear in route traces, as well as the less frequently seen non-public or
otherwise illegal IP addresses. For our purposes, an edge consists of two legal
IP addresses: v1, seen at a hop count h in a route trace from source s (the agent)
to destination d; and v2, seen at hop count h+ �, where � is a positive integer.
If � > 1, this means that there are intermediate hops consisting of stars and/or
illegal IP addresses, which we exclude from our graph of the network topology.
In order to try to revisit the edge e = (v1, v2), the query q = (s, d, h, �) instructs
agent s to probe towards d, starting at h and ending at h+ �.

We formalize the notion that the agent is launching query q explicitly to visit
edge e as an expected view c = (q, e). By knowing the expected view, the agent
can autonomously undertake additional probing if e should not be present. Not
all probing can be based on prior experience, however. Typically, an agent’s first
probing round will consist of full route traces towards a set of destinations. There
might be a reason to introduce full traces in other rounds as well, for instance
to promote additional exploration. So the full instructions that a server provides
to an agent consist in a set C of expected views complemented with a set D of
destinations for full traces.

Probing Phase: Agents carry out their instructions in the probing phase,
recording the results to send back to the server. Agents might take autonomous
action beyond their direct instructions, conducting more or less probing in re-
sponse to what they, and possibly other agents, are seeing in the current round.
A result might simply be that an expected edge has been seen. If it has not
been seen, or if additional probing was conducted, then the trace information
(destination, hop count, interface seen, for each hop) must be communicated. If
probing is less than instructed, then a reason might be communicated.

Update Phase: In the update phase, the server collects the results from each
agent and updates its database of expected views. If history extends back only
one round, all new information overwrites the old. A more sophisticated approach
stores information from all rounds, allowing the next dispatch phase to be based
on the fullest record possible.

14 T. Bourgeau and T. Friedman

3 Related Work

This paper situates itself in the context of the small body of work on improving
the efficiency of distributed route tracing systems. The distributed work builds
on earlier work on the efficiency of single-agent systems. The essential distin-
guishing feature of the distributed problem is that the work can be divided
among agents. (See Donnet et al. [10] for single-agent references.) There are two
prior approaches to the distributed problem: Donnet et al.’s Doubletree [10] and
Gonen and Shavitt’s work [11].

Seen within the GDT framework described above, Doubletree innovates in
the probing phase. It divides the destination set into as many subsets as there
are agents, and it divides the probing phase of each round into that many sub-
rounds. During each sub-round, an agent works on its own unique subset of
the destination set. When it passes that subset on to the next agent for the
next sub-round, it also passes along information about the IP addresses that it
has seen when probing towards each destination in the subset. Those address-
destination pairs form a tracing “stop set”, allowing the next agent to avoid
redundant probing. With each sub-round, each agent adds its own information
to the stop set. The stop sets are not kept beyond the end of the probing phase,
and each round begins anew.

Again, as seen within the GDT framework, Gonen and Shavitt have in-
novated in the dispatch phase. Their server designates destination sets for each
agent that are subsets of the full destination set. Based upon knowledge of the
route traces from a prior round, these instructions are aimed at reducing prob-
ing redundancy as much as possible while still maintaining 100% coverage in the
current round.

Both approaches function within the paradigm of the production route tracing
systems, in which route traces are full end-to-end traces from each agent to every
destination in a specified set. Doubletree allows partial traces to be conducted,
but only on the condition that other information is available from which all full
traces can be reconstituted (subject to some, hopefully small, error). Gonen and
Shavitt dispense with the aim of being able to reconstitute traces from each
agent to every destination in the set, focusing instead on obtaining the network
graph topology that results from the complete set of traces. They allow a subset
of the complete set of traces to be conducted.

Our NTC (Network Topology Capture) approach is the first to fully embrace
the graph-based perspective. As with Gonen and Shavitt, we aim at obtaining
the fullest possible graph, and are ready to dispense with some routing path
knowledge in order to do so efficiently. We are also ready, however, to dispense
with full route traces as the means to obtaining the graph, thereby opening up
the possibilities for much greater efficiency.

Previous work has looked, as we also do, at the effect of more efficient dis-
tributed tracing on network graph coverage. However, ours is the first work to
look at the impact on the ability of such systems to effectively capture network
topology dynamics.

Efficient IP-Level Network Topology Capture 15

4 Network Topology Capture (NTC) Heuristics

Within the GDT framework described above, we employ two heuristics (see
Fig. 1 and below) that, together, we call our Network Topology Capture (NTC)
approach to distributed tracing.

(a) Redundancy aware probing (b) Dynamism aware probing

Fig. 1. Network Topology Capture (NTC) heuristics

Redundancy Aware Probing: We know from the Doubletree work [10] that
a considerable amount of probing redundancy is due to a small proportion of
discovered edges (80% of the probes sent discover just 10% of the edges in their
case). Our redundancy aware probing heuristic looks at prior rounds’ probing
results and counts the number of different queries capable of seeing each edge.
These include both multiple queries from a single agent to various destinations
(“intra-monitor redundancy” in Doubletree terms) and queries from multiple
agents (which goes beyond Doubletree’s “inter-monitor redundancy” because
there is no constraint that the traces must be towards the same destination).
The heuristic intervenes at the dispatch phase by globally capping the number
of queries per edge, across all agents, in a round at a value α. These expected
views are chosen at random.

The dispatch phase of the first round is an exception. Since there is no prior
history, full traces are conducted from all agents towards all destinations. The full
results are collected in the update phase, which provides the basis for subsequent
dispatch phases. Since not all expected views are queried in each probing round,
the question arises as to how to age these views. NTC keeps them, replacing
them only when measurement indicates that they are no longer valid.

In Fig. 1(a), prior probing has show that four queries, two from S1 and S2
towards D1 and D2, yield the edge (B,C). With α = 1, redundancy aware probing
dispatches only a single expected view for (B,C), tracing from S1 towards D2 at
the appropriate hop counts. In practice, because network dynamics might cause
queries to fail, we might explicitly allow introduce edge redundancy by using an
α value greater than 1.

Dynamism aware probing: When a query fails to yield the expected edge,
this is a sign that routing has changed. An agent could content itself with

16 T. Bourgeau and T. Friedman

reporting back just the interfaces that it has seen, but to do so would be to forgo
the possibility of discovering more information surrounding the change. Our
dynamism aware probing heuristic intervenes at the probing phase, in which the
agent continues probing forwards and backwards from the expected view until
it has discovered a number β of legitimate IP addresses in both directions (or
until tracing terminates for the normal reasons of reaching source or destination
or a maximum hop count).

Fig. 1(b) shows that an expected view from round r of (B,C), when tracing
from S1 towards D2, fails in round r+1, yielding (E,C) instead. Based on β = 1,
agent S1 continues probing backwards until it discovers one additional legitimate
IP address, A. It also continues probing forwards, but just rediscovers D2. Note
that A has not been seen before, and we do not know what it connects to. The
higher the value of β, the more chances we have to connect newly-found vertices
and edges to the known topology.

5 Performance Evaluation

This section evaluates how well the NTC heuristics just described do at covering
the graph of the network in each probing round and how well they do at captur-
ing the graph dynamics between probing rounds. There is a trade-off between
the discovery budget, on the one hand, and the degrees of coverage and captured
dynamics on the other. We explore this trade-off through the two tunable pa-
rameters that we have introduced: α, governing how many different ways we try
to reprobe each edge, and β, governing how far we search for previously-seen IP
addresses when we encounter unexpected IP addresses in our reprobing. Higher
α and higher β both mean a greater discovery budget, and, as we see below, both
bring gains of different sorts for coverage and capture. The maximum values that
we have used (α = 10 and β = 30) correspond to a probing budget of roughly
25% of a full trace probing budget, which is the budget reported for the state of
the art Doubletree algorithm [10].

Our evaluation is based upon a real dataset that we have captured, with full
traces from every source to every destination, on which we simulate how discov-
ery would have proceeded if we had been conducting selected partial traces based
on the NTC heuristics. Existing datasets [1,2,3] were not suitable to our purposes
for a couple of reasons. First, their time granularity is coarser than we would wish
for a study of network dynamics. An individual probing round taking on the or-
der of days for Ark [1] and DIMES [2], and one day for iPlane [3]. Second, we were
concerned that traces that did not employ Paris Traceroute [15] would introduce
false dynamics due to the interaction between per-flow load-balancing routers
and the way in which classic Traceroute modifies the flow identifier for each probe
packet that it sends. Among the big three distributed probing systems, only Ark
has deployed Paris Traceroute. We collected our measurements1 over the course
of two months, from 25 May to 25 July 2010, using the TDMI measurement

1 Our dataset and algorithm description are available at http://ntc.top-hat.info

http://ntc.top-hat.info

Efficient IP-Level Network Topology Capture 17

0 200 400 600 800 1000 1200 1400 1600
r

0

5

10

15

20

25

30

35
%

E
r

V
r

(a) Portion of dynamic events observed

1 2 3 4 5 6 7 8 9 10
α

0

5

10

15

20

25

%

β=30

β=3

β=1

β=0

(b) Proportion of discovery budget used

Fig. 2. Network topology analysis and NTC discovery budget reduction

infrastructure that is associated with the TopHat system [6]. We employed TDMI
agents at over 230 PlanetLab nodes worldwide (accessed through PlanetLab Eu-
rope, http://planet-lab.eu) that we chose for their relative stability. Each
agent performed one measurement round per hour, for a total of R = 1480
rounds. A round consisted of Paris Traceroutes towards 800 destinations, which
are themselves PlanetLab nodes. With Paris Traceroute, we traced a single path
per source-destination pair, taking care to use the same flow identifier each
time.

For each round r, we aggregate the discovered paths to build a directed graph
Gr = (Er,Vr) that we refer to as the network topology. Since there are typi-
cally unresponsive interfaces, or ‘stars’, in a route trace, and since non-public or
otherwise illegal IP addresses can also appear, we define an edge e ∈ Er to consist
of two consecutive legitimate interfaces (public IP addresses), v1, v2 ∈ Vr, sep-
arated by a number �−1, possibly zero, of unknown interfaces: e = (v1, v2, �).
We term network topology dynamism to be the symmetric difference be-
tween two consecutive discovered graphs: Gr ΔGr−1. The appearance or disap-
pearance of a vertex or an edge between rounds is a dynamic event.

The graphs on average contained 13,950 vertices and 61,881 edges. Fig. 2(a)
plots the rate of dynamic events per round. We see that vertex dynamism,
|Vr ΔVr−1|/|Vr|, represents a small portion of approximately 2% of all vertices,
whereas edge dynamism, |Er Δ Er−1|/|Er|, represents on average 20% of the
edges. We attribute the relatively high proportion of edge dynamism to the
appearance and disappearance of unknown interfaces, a phenomenon already
noted by Gunes and Sarac [16].

Discovery Budget: The discovery budget is the number of probes that are sent
per round. Fig. 2(b) shows the budget when using NTC as a proportion of the
budget consumed by conducting full traces, plotting the averages over all rounds.
Depending upon the particular values of α and β that we choose, the budget is
anywhere from 6% to 24% of the full trace budget. Since we still obtain excellent

http://planet-lab.eu

18 T. Bourgeau and T. Friedman

1 2 3 4 5 6 7 8 9 10
α

98.0

98.5

99.0

99.5

100.0

%

β=30

β=3

β=1

β=0

(a) Proportion of vertices covered

1 2 3 4 5 6 7 8 9 10
α

80

85

90

95

100

%

β=30

β=3

β=1

β=0

(b) Proportion of edges covered

Fig. 3. Proportion of vertices and edges covered when using NTC heuristics

coverage (see below), this means that our NTC heuristics outperform the state
of the art Doubletree, which in a similar scenario uses a probing budget of at
best 25% of the full trace budget [10].

Network Topology Coverage: The network topology coverage is the propor-
tion of the graph that is discovered in an NTC round, in comparison to the graph
that is obtained from full traces. If V(α, β)r ⊆ Vr is the set of vertices discov-
ered under NTC, with parameters α and β, in round r, the vertex coverage for
that round is |V(α, β)r |/|Vr|, edge coverage being calculated similarly. We plot
the mean coverage over all rounds. We see in Fig. 3(a) that vertex coverage is
between 98% and 99%, and in Fig. 3(b) that edge coverage varies between 82%
and 95%, depending upon the parameter choices. For comparison, Doubletree,
in similar circumstances, covers at most 93% of the edges that are seen in a full
trace (and, as just noted, for a higher discovery budget).

Dynamic Event Capture: As for budget and coverage metrics, we calculate
dynamic event capture as a proportion, comparing the results when applying the
NTC heuristics to those of full traces. If dr is the vertex dynamism, as defined
above, for full traces, and d(α, β)r is the vertex dynamism between the vertices
V(α, β)r ⊆ Vr found in round r, and the vertices V(α, β)r−1 ⊆ Vr−1 found in
round r − 1, under NTC, then the vertex capture rate is d(α, β)r/dr. Similarly
for the edge capture rate.

Fig. 4(a) shows that the NTC heuristics capture over 80% of the vertex dy-
namics, and as much as 96% for the parameters that we studied. In Fig. 4(b),
we see that the corresponding figures for edge dynamics are 44% and 75%. As
we have already noted, we believe that a large part of edge dynamism results
from changes in unknown interfaces, such as a ‘star’ appearing or disappearing
in a route trace, and these dynamic events prove comparatively hard to capture.

Efficient IP-Level Network Topology Capture 19

1 2 3 4 5 6 7 8 9 10
α

75

80

85

90

95

100
%

β=30

β=3

β=1

β=0

(a) Proportion of vertex dynamics

1 2 3 4 5 6 7 8 9 10
α

40

50

60

70

80

90

100

%

β=30

β=3

β=1

β=0

(b) Proportion of edge dynamics

Fig. 4. Proportion of dynamic events captured when using NTC heuristics

6 Summary and Future Work

This paper has opened a new approach to distributed network route tracing: one
that uses partial traces, guided by knowledge from prior probing, in order to more
efficiently obtain the network graph. Simulations of our NTC (Network Topology
Capture) heuristics on actual route traces show the potential for considerable
savings (in this case, of 94% in the discovery budget while still covering 95%
of the edges in the graph that is revealed by full traces). This should make it
possible to conduct significantly more probing rounds within the same time on
a fixed budget.

Approaches such as this should make it possible for large-scale tracing systems
to better capture network dynamics. This paper looked, for the first time, at the
impact of lowering the probing budget on the quality of dynamics capture.

We have only started to examine possible heuristics, and future work will look
for yet more efficient ones than we describe here. We will strive to have such
heuristics incorporated into production systems. These systems would provide
the basis for a range of interesting studies of the network dynamics that they
reveal.

Acknowledgements. We thank Jordan Augé and Marc-Olivier Buob for their
assistance in providing measurement data through the TopHat measurement sys-
tem (http://top-hat.info). The research leading to these results has received
funding from the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 287581 – OpenLab.

References

1. Claffy, K., Hyun, Y., Keys, K., Fomenkov, M., Krioukov, D.: Internet mapping:
from art to science. In: Proc. CATCH (2009)

2. Shavitt, Y., Shir, E.: DIMES: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review 35(5), 71–74 (2005)

http://top-hat.info

20 T. Bourgeau and T. Friedman

3. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An Information Plane for Distributed Services. In:
Proc. Usenix OSDI (2006)

4. Bourgeau, T.: Monitoring network topology dynamism of large-scale traceroute-
based measurements. In: Proc. CNSM (2011)

5. Alves, M., Corsello, L., Karrenberg, D., Ogut, C., Santcroos, M., Sojka, R., Uijter-
waal, H., Wilhelm, R.: Providing active measurement as a regular service for ISP’s.
In: Proc. PAM (2002)

6. Bourgeau, T., Augé, J., Friedman, T.: TopHat: Supporting Experiments through
Measurement Infrastructure Federation. In: Magedanz, T., Gavras, A., Thanh,
N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 542–557. Springer,
Heidelberg (2011)

7. Latapy, M., Magnien, C., Ouédraogo, F.: A radar for the internet. Complex Sys-
tems 20, 23–30 (2011)

8. Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling biases in IP topology
measurements. In: Proc. IEEE INFOCOM (2003)

9. Shavitt, Y., Weinsberg, U.: Quantifying the importance of vantage points distribu-
tion in internet topology measurements. In: Proc. IEEE INFOCOM (2009)

10. Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Deployment of an algorithm for
large-scale topology discovery. IEEE Journal on Selected Areas in Communications
(JSAC) 24, 2210–2220 (2006)

11. Gonen, M., Shavitt, Y.: A Θ(log n)-approximation for the set cover problem with
set ownership. Information Processing Letters 109(3), 183–186 (2009)

12. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIG-
COMM Computer Communication Review 33(3), 3–12 (2003)

13. Katz-Bassett, E., Scott, C., Choffnes, D.R., Cunha, I., Valancius, V., Feamster,
N., Madhyastha, H.V., Anderson, T., Krishnamurthy, A.: LIFEGUARD: practical
repair of persistent route failures. In: Proc. ACM SIGCOMM (2012)

14. Quoitin, B., Van den Schrieck, V., Francois, P., Bonaventure, O.: IGen: Generation
of router-level internet topologies through network design heuristics. In: Proc. ITC
(2009)

15. Augustin, B., Friedman, T., Teixeira, R.: Measuring multipath routing in the in-
ternet. IEEE/ACM Transactions on Networking (TON) 19(3), 830–840 (2011)

16. Gunes, M.H., Sarac, K.: Analyzing Router Responsiveness to Active Measurement
Probes. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448,
pp. 23–32. Springer, Heidelberg (2009)

Detecting Third-Party Addresses

in Traceroute Traces with IP Timestamp Option

Pietro Marchetta, Walter de Donato, and Antonio Pescapé

University of Napoli Federico II Italy
{pietro.marchetta,walter.dedonato,pescape}@unina.it

Abstract. Traceroute is one of the most famous and widely adopted di-
agnostic tool for computer networks. Although traceroute is often used
to infer links between Autonomous Systems (ASes), the presence of the
so-called third-party (TP) addresses may induce the inference of false
AS-level links. In this paper, we propose a novel active probing tech-
nique based on the IP timestamp option able to identify TP addresses.
For evaluating both the applicability and the utility of the proposed
technique, we perform a large-scale measurement campaign targeting –
from multiple vantage points – more than 327K destinations belonging
to about 14K ASes. The results show how TP addresses are very com-
mon and affect about 17% of AS-level links extracted from traceroute
traces. Compared to a previously proposed heuristic method, our tech-
nique allows to identify many more TP addresses and to re-interpret part
of its results.

1 Introduction

An accurate knowledge of the Internet topology is essential for a deep under-
standing of such a complex and ever-evolving system [7, 11, 19, 20]. In the last
decade many attempts have been done to overcome the incompleteness of BGP-
derived AS-level topologies [12] using traceroute [4, 8, 13]. However, traceroute
is known to be inaccurate and to induce errors when its results are used to infer
the Internet topology [15, 17, 27].

One source of inaccuracy is represented by the so called third-party (TP)
addresses [14, 18], i.e. addresses associated to interfaces which are not actually
traversed by the IP packets sent toward the traceroute destination. While several
other causes may impact the accuracy of AS links derived from traceroute – such
as divergence between data and control paths, anonymous hops, unmapped hops,
Internet exchange points (IXPs), multi-origin AS prefixes, and siblings – TP
addresses (when shared between peering AS neighbors) were recently defined
by Zhang et al. [27] as “the last and the most difficult cause to be inferred”
and as “a huge obstruction towards the accuracy of traceroute measurements”.
Several works, by using heuristic methods, tried to deal with such issues with
different objectives: to explain the mismatches between BGP- and traceroute-
derived AS paths [8, 27], or to complement the AS-level topology inferred from
BGP repositories [4, 8, 13]. However, to the best of our knowledge, only two

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 21–30, 2013.
� Springer-Verlag Berlin Heidelberg 2013

22 P. Marchetta, W. de Donato, and A. Pescapé

works tried to isolate and study the phenomenon of TP addresses in order to
quantify their impact, achieving different conclusions. By adopting a heuristic
method based on IP-to-AS mapped traceroute traces, Hyun et al. [14] conclude
that TP addresses mostly appear at the border of multi-homed ASes and cannot
be a significant source of AS map distortion. On the other hand, by using pre-
computed AS-level graphs and pre-acquired knowledge about routers interfaces,
Zhang et al. [27] conclude that TP addresses cause 60% of mismatches between
BGP- and traceroute-derived AS paths, where mismatches affect from 12% to
37% of the paths depending on the vantage point.

In this paper, for shedding light on this controversial topic, we propose the
first active probing technique able to directly detect the presence of TP addresses
in traceroute IP paths. Our technique is based on the IP prespecified timestamp
option [5] and requires no previous knowledge about routers interfaces, nor AS
paths provided by BGP or IP-to-AS mapping. Performing a large scale measure-
ment campaign, we evaluate the technique showing that: (i) the same IP address
may be a TP or not depending on both the source and the destination of the IP
path; (ii) TP addresses affect 17% of the AS links extracted from our dataset
and (iii) they appear in a significant portion of the detected AS-level loops. We
further compare our technique with the method proposed by Hyun et al. [14],
which is the only other method not using AS paths extracted from BGP. The
comparison reveals that only 1.5% of IP addresses detected as TP by our tech-
nique are recognized as such by their heuristic, explaining the underestimation
of the phenomenon.

The paper is organized as follows. Sec. 2 introduces TP addresses and ex-
plain their effect when traceroute is used to infer topological information; Sec. 3
presents our active probing technique to identify TP addresses in traceroute
traces; Sec. 4 describes the methodology adopted to evaluate the proposed tech-
nique as well as the main findings; Sec. 5 concludes the paper.

2 Understanding TP Addresses and Their Impact

The RFC1812 [5] states that the source address of an ICMP error packet should
correspond to the outgoing interface of the ICMP reply, rather than the interface
on which the packet triggering the error was received [14]. This behavior can
cause a traceroute IP path to include addresses associated to interfaces not
included in the path actually traversed. For instance, the trace from S to D in
Fig. 1 contains the sequence (a, b, c) of IP addresses (hereafter IPs), where a
and b are associated to the incoming interfaces of routers A and B respectively,
and c is the interface used by router C to send ICMP replies to the traceroute
originator. The IP c is a TP address since it is associated – in this specific trace
– to an interface not effectively traversed by the packets sent from S to D.

The occurrence of TP addresses can have a significant impact on some tracer-
oute applications. The major impact is related to the inference of AS-level links
from traceroute traces: as shown in previous works [14, 27], TP addresses may
cause the inference of false AS links. Consider again Fig. 1: if the IP address b

Detecting Third-Party Addresses in Traceroute Traces 23

Fig. 1. TP addresses inducing the inference of false AS links

belongs to ASx, and c belongs to the ASz addressing space, then the IP-to-AS
mapping of the trace will induce the inference of a false AS link, i.e. ASx−ASz.
Note also how the TP address hides the ASy which, tough traversed, does not
appear in the mapped AS-level trace.

While TP addresses may also impact subnet positioning [26] and alias reso-
lution [25], forcing the adoption of several complex heuristics, in this paper we
focus on their impact on the AS-level links inferred from traceroute traces.

3 Detecting TP Addresses

Our technique only requires two probes to understand if an IP address discovered
by traceroute lies on the path (OP) or not (TP).

Basic Principles. Our technique is based on the IP prespecified timestamp
(TS) option [23]. It allows to prespecify in a single packet up to four IP ad-
dresses from which a timestamp is requested. Hereafter, we adopt the notation
PROBE X

∣∣ABCD introduced in [24], where PROBE is the probe type, X is the
targeted destination and ABCD is the ordered list of prespecified IPs from which
a timestamp is requested1.

Thanks to a large-scale measurement campaign targeting more than 1.7M
IP addresses [10], we detected that most routers (including Cisco devices), when
processing such option, insert one timestamp every time the probe passes through
the interface associated to the prespecified address. Such behavior can be easily
detected by targeting Y with an ICMPecho

request Y
∣∣YYYY probe. According to [10],

if the ICMPecho
reply message contains 1 timestamp, it means that the interface Y

was only traversed by the probe when entering the router. If it contains 2 times-
tamps, Y was traversed by the probe providing either one timestamp when both
entering and leaving the router or two timestamps just when entering. Finally,
3 timestamps occur if the probe was stamped twice when entering the router,
but only once when leaving it. In such three cases the targeted router exposes a
per network interface stamping behavior, which can be exploited to understand
if a traceroute hop is part or not of the forward IP path.

1 The order implies that B cannot insert its own timestamp before A, and so on.

24 P. Marchetta, W. de Donato, and A. Pescapé

Fig. 2. Classification of the hop Y discovered by traceroute toward D

TP Address Detection Technique. In order to understand if the hop Y
discovered by traceroute toward D is a TP address, the proposed technique
works according to the following steps (see Fig. 2): (1.) it targets Y with an
ICMPecho

request Y
∣∣YYYY probe to verify if it is classifiable or not (see below); (2.) if

Y is classifiable, it targets D with UDP D
∣∣YYYY2: if the TS option brought back

into the payload of the ICMPport
unreach message contains at least one timestamp, Y

is classified as OP, otherwise it is a TP address.
The first step is necessary because there are other less common router be-

haviors that may lead the technique to misleading results. Indeed, adopting a
conservative approach, a traceroute hop Y is considered non−classifiable ev-
ery time there is no clear evidence that its router has a per network interface
stamping behavior, as in the following circumstances:

– Private Address (PVT): Y is part of a private addressing block and it
may be unreachable by the ICMPecho

request message or it may be employed in
different networks along the path toward the destination. In the latter case, a
timestamp in the ICMPport

unreach message may be inserted by a different router.
– Lack of Reply (NO−REP): No reply is received to ICMPecho

request Y
∣∣YYYY,

thus either the targeted device dropped the probe or the reply was filtered
along the path3.

– The TS Option is Removed (NO−OPT): The ICMPecho
reply message re-

ceived from Y contains no TS option, thus either the targeted hop did not
replicate the option in the reply or the option was removed along the path.

– Zero Timestamps (NO−TS): The targeted device simply ignores the TS
option, without inserting any timestamp in the ICMPecho

reply message.
– Four Timestamps (JUN): The targeted device provides 4 timestamps.

Such behavior has been already observed in the case of Juniper routers, which
insert their timestamp also when the prespecified address is associated to any
owned interface [10]. Hence, the presence of a timestamp in the ICMPport

unreach

message obtained during the second step would not allow to classify Y.

In other words, a traceroute hop Y is considered classifiable only if it provides
from 1 to 3 timestamps when directly probed with ICMPecho

request Y
∣∣YYYY.

2 UDP probes allow to avoid ambiguities caused by the reverse path [10].
3 In [10], we observed how equipping classic active probes with the TS option causes
a strong reduction of the responsiveness.

Detecting Third-Party Addresses in Traceroute Traces 25

We also implemented and made publicly available 4 an enhanced traceroute
version, based on paris−traceroute [3], which applies our technique to classify
the hops discovered along the path toward the destination.

4 Experimental Evaluation

In this section, we describe the large scale measurement campaign conducted to
evaluate the proposed technique as well as the main findings.

4.1 Measurement Campaign

To evaluate our technique, we selected more than 327K destinations in 14K
ASes among the ones showing stable responsiveness to both ping, according to
the PREDICT project [2], and UDP probes carrying the TS option5. To perform
a large scale measurement campaign, we used 53 PlanetLab nodes [6] located in
different ASes as vantage points (hereafter VPs).

In particular, each node was instructed to (1.) send UDP probes toward
the destinations and select those which reply and preserve the TS option; (2.)
launch UDP paris-traceroute toward the selected destinations; (3.) launch an
ICMPecho

request Y
∣∣YYYY toward each intermediate hop Y; (4.) select the classifi-

able hops as the ones providing 1−3 timestamps; (5.) send an UDP probe toward
the traceroute destination prespecifying each time a different classifiable hop col-
lected on the path. In order to avoid ambiguities caused by load balancers, the
UDP probes used to classify the hops and the ones generated by traceroute are
crafted as part of the same flow according to [3].

After removing the traces affected by filtering, the final dataset – publicly
available 4 – consisted of ∼12M traces for a total number of ∼ 443K addresses.

4.2 Main Findings

Since every VP traced IP paths toward the same destinations, a specific IP
address may be discovered by multiple VPs: this happens especially for those
located close to the destinations. Fig. 3 shows how many distinct VPs discovered
the same IP address: more than 96% of IPs were captured by at least two VPs,
while about a half were captured by more than 35 VPs.

Hops Classifiability. When an IP address is captured by multiple VPs, each
node independently states if it is classifiable or not. However, the TS option may
trigger the filtering of the ICMPecho

reply message on some paths inducing a subset
of VPs to consider the targeted device as non−classifiable (NO−REP). Fig. 4
reports the number of nodes not receiving replies from a device which successfully
replied to at least one VP: only 15% of addresses did not experience such in-
transit filtering, while on average 4 VPs were forced by filtering to consider a
device as non−classifiable. We can conclude that the number of VPs is a key
point for applications based on the TS option [16, 24].

4 http://traffic.comics.unina.it/tpa/
5 According to a campaign conducted from our laboratory at University of Napoli.

http://traffic.comics.unina.it/tpa/

26 P. Marchetta, W. de Donato, and A. Pescapé

0 20 40 60
0

0.2

0.4

0.6

0.8

1

#VPs observing the same address

C
D

F

Fig. 3. VPs observing each
IP of the dataset

Fig. 4. In−transit
filtering

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Classifiable Hops per Path

C
D

F

Worst VP
Entire Dataset
Best VP

Fig. 5. Classifiable hops
per traceroute trace

When some VPs labeled an IP address as non−classifiable and the other VPs
judged the same address as classifiable, we did not consider it as a conflict. Our
VPs unanimously agreed about more than 97% of IPs labeling 51% of addresses
as classifiable and 47.6% as non−classifiable. Conflicting verdicts regarded a
limited number of IPs (1.4%) and were mainly caused by the removal of the TS
option on some reverse paths. Tab. 1 reports a breakdown of non−classifiable IPs
per category (see Sec. 3): our technique was unable to classify such IPs mostly
because of devices not replying (16.4%), ignoring the TS option (14.6%), or
belonging to the JUN category (10.4%). We also found 9 IPs exposing multiple
behaviors to distinct VPs, mainly caused by non−RFC compliant routers (a
phenomenon deeply investigated in [10]).

Besides non−classifiable hops, more than a half of IPs in the dataset were
classifiable by our technique. Adopting a per-trace point of view, Fig. 5 shows
the fraction of classifiable hops per trace (i) for each VP and (ii) over the
entire dataset: on average 4%, 52% and 30% hops are classifiable in each trace
respectively by the most filtered node (Worst VP), the less filtered one (Best
VP) and over the entire dataset. As reported in the following, although not all
the hops in each trace are classifiable, our technique allows to investigate the
TP addresses impact on traceroute applications.

Classification Results. Most classifiable hops appeared in several paths from
multiple VPs toward multiple destinations. Fig. 6 shows the percentage of clas-
sifiable IPs always classified as TP or OP and those classified as both (Mix), on
the paths in which they appeared. Such paths are aggregated in three different
ways: paths originated (1.) by the same VP toward multiple destinations, (2.) by
multiple VPs toward a single destination, (3.) by multiple VPs toward multiple
destinations. The obtained results highlight an unexpected general trend: most
traceroute traces contain many more TP than OP addresses. Hence, according
to the router behavior described in Sec. 3, most of the intermediate routers en-
countered along the path reply to the traceroute originator using an interface
different from the ones traversed by the packets sent to the targeted destination.
For both the aggregations 1 and 2, most of addresses were always classified as
TP or OP. However, some IPs were also variably classified and this phenomenon
is much more important in the aggregation 3. Such an evidence allows to con-
clude that the same address discovered with traceroute may lie or not on the
IP path depending on the (i) originating node and (ii) the targeted destination,
essentially due to both inter- and intra-domain routing.

Detecting Third-Party Addresses in Traceroute Traces 27

Table 1. Root cause analysis of non−classifiable IPs

Category (Sec. 3) IPs %IPs

PVT 9,428 2.2
NO−REP 72,775 16.4
NO−TS 64,641 14.6
JUN 45,963 10.4
NO−OPT 18,039 4

Multiple Behaviors 9 ∼0

Non−classifiable IPs 210,885 47.6

Impact on Derived AS Links. While 224K IPs were classified at least once
as TP address, not all the TP addresses impact the AS-level links derived from
traceroute. Mapping each hop to the owner AS [9], we identified in our dataset
14, 783 different ASes. In order to avoid ambiguities caused by the presence of
IXPs, we removed from our traces the hops associated to them according to the
datasets provided by peeringDB [22] and PCH [21]. From the resulting 34, 414
AS-level links, we removed 38 links involving sibling ASes according to [1].

Taking into account that the same AS link may appear in several traces toward
distinct destinations and depending on the involved IPs, a single AS link may be
associated to multiple classifications according to how the two involved IPs were
classified each time by our technique. In order to deal with this phenomenon, we
applied the following methodology: (1.) if both the involved IPs were classified
as OP at least once, we are confident that the corresponding AS link actually
exists; else, by adopting a conservative approach, (2.) if both the involved IPs
were non−classifiable by our technique at least once, we consider the link as
possible; finally, (3.) the AS links which always involved at least one TP address
are considered potentially false (see link ASx−ASz in Fig. 1). We counted 1, 897
existing links and 25, 990 possible links. On the other hand, we found 6, 299
potentially false AS links corresponding to about 17% of the links extracted
from the dataset.

AS-Level Loops. False AS links caused by TP addresses may also generate bo-
gus AS-level loops. In our dataset, we registered 587, 126 traces normally reaching

TP OP Mix0

20

40

60

80

100

Cl
as

si
fia

bl
e

IP
s

(%
)

One SRC −Many DESTs
Many SRCs −One DEST
Many SRCs −Many DESTs

Fig. 6. Addresses classification

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Consecutive TP addresses

C
D

F

Fig. 7. TP address patterns

28 P. Marchetta, W. de Donato, and A. Pescapé

the destination, in which an AS-level loop appeared. Among these traces, about
4, 144 loops involved sibling ASes. Thanks to our technique, we discovered that
TP addresses are involved in at least 37% of such loops6: 105K and 149K loops
respectively started or ended with a TP address, while 6, 083 loops involved a se-
quence of consecutive TP addresses. For instance, considering the AS1 AS2 AS3

AS1 sequence, if AS2 and AS3 are associated to TP addresses, one possibility
is that the corresponding path is entirely contained in AS1, thus generating a
bogus loop.

4.3 Implications of the Results of Our Technique

The surprising high value of potentially false AS links suggests that TP addresses
can be a significant source of AS maps distortion. Such conclusion confirms the
one drawn by Zhang et al. [27] and is totally different from the one given by
Hiun et al. [14]. Here, we investigated the basic reasons of such contradiction.
According to the heuristic method proposed by Hiun et al., a candidate TP
address is an intermediate hop that resolves to an AS that differs from the ASes
of both adjacent IPs in the same path. The method takes into account also path
stability, AS ownerships and hostnames.

On the one hand, applying the Hiun’s method on our dataset, 7, 457 IPs
were classified as candidate TP addresses. Such addresses appeared in 56,595
different IP1 IP2 IP3 sequences where all the IPs were mapped to different
ASes and IP2 represents the candidate TP address. Each sequence appeared in
multiple traces and each time the involved IPs were classified by our technique7:
(i) 166 sequences resulted as real AS1 AS2 AS3 transitions, since all the three
IPs were classified at least once as OP; (ii) although the candidate TP address
was non−classifiable by our technique in 39, 824 sequences, in 15, 850 of them
we recognized as TP address the previous or the next hop, which could be the
real responsible of a false AS link; (iii) in the remaining 16, 605 sequences, our
technique always classified the central address as TP in 85% of cases (the two
techniques validate each other in such cases) and as OP in 14% of sequences (in
contradiction to the response of the Hiun’s method). In the last case, we also
found 52 sequences classified as both TP and OP depending on the traceroute
destination and the VP used.

On the other hand, only 1.5% of the TP addresses identified by our technique
is detected by the Hiun’s method. The main reason is that a TP address is
such independently from the AS point of view. In addition, a traceroute path
may contain multiple consecutive TP addresses – a possibility considered remote
in [14]. Considering the sequences of consecutive TP addresses detected in our
traces, Fig. 7 shows the distribution of their lengths. Globally, we registered
680K unique sequences: about 25% were isolated TP addresses, but more than
a half consisted of more than 3 consecutive TP addresses. As for ASy in Fig. 1,

6 Since we used a conservative approach, the real impact may be potentially wider.
7 As described above, the address identified by Hyun as candidate TP address may
effectively lie or not on the IP path depending on the source and the destination.

Detecting Third-Party Addresses in Traceroute Traces 29

if a traceroute path only crosses border routers exposing TP addresses mapped
to other ASes, consecutive TP addresses may entirely hide an AS from the path.

5 Conclusion

In this paper, we presented and evaluated – to the best of our knowledge, for the
first time in literature – an active probing technique able to identify TP addresses
in traceroute traces. Differently from most previous works, our technique does
not rely on information provided by BGP monitors and it allows to conclude
that TP addresses can be a significant source of AS map distortion. Thanks to
a large scale measurement campaign, we draw the following general conclusions:
(i) the same address may be a TP address or not depending on the originating
host and the targeted destination; (ii) TP addresses may also be responsible
for bogus AS-level loops. We further observed that our technique was able to
classify more than half of the total discovered IPs and, surprisingly, about 17%
of traceroute-derived AS-level links were affected by TP addresses, being thus
potentially false. Finally, our results confirmed the conclusion drawn by Zhang
et al. [27] on the severity of this phenomenon and allowed to explain why such
conclusion conflicts with the one achieved by Hyun et al [14]: on our dataset, their
heuristic method was able to discover only 1.5% of the TP addresses recognized
by our technique.

In our ongoing work, we aim at quantifying the magnitude of the map dis-
tortion introduced when combining traceroute- and BGP-derived information to
infer the AS-level topology of Internet. We also plan to investigate if and how
TP addresses can explain known incongruities, such as extra, missing, and sub-
stitute hops arising when comparing the AS paths derived from traceroute with
the ones extracted from BGP monitors [27].

Acknowledgements. The work of the authors is partially funded by the
PLATINO (PON01 01007) and S2−MOVE (PON04a3 00058) projects financed by
MIUR.

References

1. The CAIDA AS Relationships Dataset (June 2012),
http://www.caida.org/data/active/as-relationships/

2. IP Address Hitlist, PREDICT ID USC-LANDER internet- address- hitlist- it47w-
20120427, 2010-03-29 to 2012-05-30, http://www.isi.edu/ant/lander.

3. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with paris traceroute.
In: Proc. ACM SIGCOMM IMC (2006)

4. Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: mapped? In: ACM SIG-
COMM IMC (2009)

5. Baker, F.: IETF RFC1812: Requirements for IP version 4 routers
6. Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L.,

Roscoe, T., Spalink, T., Wawrzoniak, M.: Operating system support for planetary-
scale network services. In: NSDI (2004)

 http://www.caida.org/data/active/as-relationships/
http://www.isi.edu/ant/lander

30 P. Marchetta, W. de Donato, and A. Pescapé

7. Botta, A., de Donato, W., Pescapè, A., Ventre, G.: Discovering topologies at router
level: Part ii. In: GLOBECOM, pp. 2696–2701 (2007)

8. Chen, K., Choffnes, D., Potharaju, R., Chen, Y., Bustamante, F., Pei, D., Zhao,
Y.: Where the sidewalk ends. In: Proc. ACM CoNEXT (2009)

9. Cymru, T.: IP to ASN mapping (2012),
http://www.team-cymru.org/Services/ip-to-asn.html

10. de Donato, W., Marchetta, P., Pescapé, A.: A Hands-on Look at Active Probing
Using the IP Prespecified Timestamp Option. In: Taft, N., Ricciato, F. (eds.) PAM
2012. LNCS, vol. 7192, pp. 189–199. Springer, Heidelberg (2012)

11. Donnet, B., Friedman, T.: Internet topology discovery: a survey. IEEE Communi-
cations Surveys and Tutorials (2007)

12. Gregori, E., Improta, A., Lenzini, L., Rossi, L., Sani, L.: On the incompleteness of
the AS-level graph: a novel methodology for BGP route collector placement. In:
Proc. ACM SIGCOMM IMC (2012)

13. He, Y., Siganos, G., Faloutsos, M., Krishnamurthy, S.: Lord of the links: a frame-
work for discovering missing links in the internet topology. IEEE/ACM Transac-
tions on Networking (2009)

14. Hyun, Y., Broido, A., Claffy, K.C.: On third-party addresses in traceroute paths.
In: Proc. PAM (2003)

15. Hyun, Y., Broido, A., Claffy, K.C.: Traceroute and BGP AS path incongruities.
Technical report, CAIDA (2003)

16. Katz-Bassett, E., Madhyastha, H.V., Adhikari, V.K., Scott, C., Sherry, J., van
Wesep, P., Anderson, T.E., Krishnamurthy, A.: Reverse traceroute. In: Proc. NSDI
(2010)

17. Luckie, M., Dhamdhere, A., Murrell, D., et al.: Measured impact of crooked tracer-
oute. ACM SIGCOMM Computer Communication Review (2011)

18. Marchetta, P., de Donato, W., Pescapé, A.: Detecting third-party addresses in
traceroute ip paths. In: Proc. ACM SIGCOMM (2012)

19. Marchetta, P., Mérindol, P., Donnet, B., Pescapè, A., Pansiot, J.-J.: Topology
discovery at the router level: A new hybrid tool targeting isp networks. IEEE
JSAC (2011)

20. Marchetta, P., Mérindol, P., Donnet, B., Pescapé, A., Pansiot, J.J.: Quantifying and
Mitigating IGMP Filtering in Topology Discovery. In: Proc. IEEE GLOBECOM
(2012)

21. Packet Clearing House. IXP directory, https://prefix.pch.net/
22. PeeringDB. Exchange points list, https://www.peeringdb.com/
23. Postel, J.: Internet Protocol. RFC 791 (Standard) (September 1981)
24. Sherry, J., Katz-Bassett, E., Pimenova, M., Madhyastha, H.V., Anderson, T., Kr-

ishnamurthy, A.: Resolving ip aliases with prespecified timestamps. In: IMC 2010,
pp. 172–178. ACM, New York (2010)

25. Tozal, M., Sarac, K.: Palmtree: An ip alias resolution algorithm with linear probing
complexity. Computer Communications (2010)

26. Tozal, M., Sarac, K.: Tracenet: an internet topology data collector. In: Proc. ACM
SIGCOMM IMC (2010)

27. Zhang, Y., Oliveira, R., Wang, Y., Su, S., Zhang, B., Bi, J., Zhang, H., Zhang,
L.: A framework to quantify the pitfalls of using traceroute in as-level topology
measurement. IEEE JSAC (2011)

http://www.team-cymru.org/Services/ip-to-asn.html
https://prefix.pch.net/
https://www.peeringdb.com/

FlowSense: Monitoring Network Utilization

with Zero Measurement Cost

Curtis Yu1, Cristian Lumezanu2, Yueping Zhang2, Vishal Singh2,
Guofei Jiang2, and Harsha V. Madhyastha1

1 University of California, Riverside
2 NEC Labs America

Abstract. Flow-based programmable networks must continuously mon-
itor performance metrics, such as link utilization, in order to quickly
adapt forwarding rules in response to changes in workload. However, ex-
isting monitoring solutions either require special instrumentation of the
network or impose significant measurement overhead.

In this paper, we propose a push-based approach to performance mon-
itoring in flow-based networks, where we let the network inform us of
performance changes, rather than query it ourselves on demand. Our
key insight is that control messages sent by switches to the controller
carry information that allows us to estimate performance. In OpenFlow
networks, PacketIn and FlowRemoved messages—sent by switches to the
controller upon the arrival of a new flow or upon the expiration of a
flow entry, respectively—enable us to compute the utilization of links
between switches. We conduct a) experiments on a real testbed, and b)
simulations with real enterprise traces, to show accuracy, and that it can
refresh utilization information frequently (e.g., at most every few sec-
onds) given a constant stream of control messages. Since the number of
control messages may be limited by the properties of traffic (e.g., long
flows trigger sparse FlowRemoved’s) or by the choices made by operators
(e.g., proactive or wildcard rules eliminate or limit PacketIn’s), we dis-
cuss how our proposed passive approach can be combined with active
approaches with low overhead.

1 Introduction

Enterprises are deploying flow-based programmable networks to support diverse
performance- or reliability-based application requirements such as deadline guar-
antees [8], quick failure recovery [4], or fast and reliable big data delivery [5,10].
In flow-based networks, a centralized controller locally computes the routes that
satisfy a set of requirements and installs them remotely in the forwarding tables
of switches. To ensure that traffic flows according to the pre-defined goals and
to adapt rules quickly to workload or infrastructure changes, the network must
continually monitor the utilization of every link.

Flow-based network utilization monitoring must be not only accurate and re-
sponsive in detecting variations, but it must also scale with minimal overhead on

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 31–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 C. Yu et al.

the network [3]. Existing monitoring techniques do not satisfy all of these goals
simultaneously. Active monitoring techniques (e.g. SNMP polling) inject mea-
surement probes and require careful scheduling to scalably monitor the entire
network. Passive “capture-and-analyze” tools (e.g., SPAN, netflow, tcpdump)
need expensive instrumentation and infrastructure to gather and process mea-
surements. Recently, several tools take advantage of the functionality provided
by software-defined networks (SDNs), which allow the controller to poll switches
for utilization-based statistics [11,6]. Though this eliminates the need for addi-
tional instrumentation, control packets used for polling still impose overhead.

In this paper, we propose a new approach for high accuracy utilization moni-
toring with zeromeasurement cost. Rather than rely on on-demand active polling
of switch counters, we infer performance by passively capturing and analyzing
control messages between the switches and the centralized controller. This is made
possible by the physical separation of the control and data planes in SDNs. In
particular, we use the control messages that notify the controller of changes in
network traffic (e.g., flow arrival, flow expiration). Such changes in traffic may
result in changes in performance; by detecting the time and magnitude of these
changes, the controller can monitor network utilization locally, without addi-
tional instrumentation or overhead.

To explore the feasibility of our control traffic based monitoring, we design
FlowSense to measure link utilization (the bandwidth consumed by flows travers-
ing the link) in OpenFlow networks [7]. FlowSense relies on PacketIn and FlowRe-
moved messages, sent by switches to the controller when a new flow arrives or
when a flow entry expires. FlowRemoved messages contain information about
the size and duration of flows matched against the entry. To compute utilization
over an interval, the controller analyzes all PacketIn and FlowRemoved messages
corresponding to the arrival of flows and to the expiration of the flows that were
active during the interval.

Relying on control traffic to compute network utilization fails when there is
little or no control traffic. This may happen due to the properties of data traffic
(e.g., long flows that lead to few flow expiration events) or due to measures taken
by network operators (e.g., to limit the amount of control traffic and preserve
scalability, they install flow rules proactively that potentially never expire). In
this paper, we study the feasibility of our monitoring approach, both in terms of
effectiveness (how accurate is it?) and compatibility with current networks (how
is it affected by traffic patterns and network deployment scenarios?).

To summarize, our primary contributions are two-fold. First, we introduce a
push-based approach to flow-based network performance monitoring with zero
measurement cost, where we let the network inform us of performance changes,
rather than query it ourselves. We describe FlowSense, a system to measure
link utilization that is simultaneously fast, accurate, and imposes no overhead.
Using preliminary experiments on a small OpenFlow deployment, we show that
the utilization computed using control plane messages closely resembles that
measured on the data plane.

FlowSense: Monitoring Network Utilization with Zero Measurement Cost 33

Second, we explore the feasibility of FlowSense in today’s networks. We use
real world traffic measurements to estimate the impact that the properties of data
traffic have on the performance of FlowSense. We find that we can refresh link
utilization measurements at most as frequently as every few seconds. Although,
to compute utilization at any point in time, FlowSense must wait for all the
flows active at that time to finish and trigger FlowRemoved, the wait time is
reasonable: we can accurately estimate link utilization in under 10 seconds of
delay. Since the network deployment can limit the effectiveness of FlowSense, we
discuss combining active and passive techniques. Ultimately, passively capturing
control messages can serve as a building block towards more scalable, accurate,
flexible, and general flow-based network monitoring.

2 OpenFlow Overview

In this section, we describe the general operation of an OpenFlow network and
review research that uses OpenFlow to monitor network performance.

2.1 Operation

We consider a network of OpenFlow-enabled switches that are connected with
a logically centralized controller using a secure, lossless TCP connection. The
network operates in the following (simplified) way:

Flow Arrival. On the arrival of the first packet of a new flow, the switch looks
for a matching rule in the flow table and performs the action associated with
the rule (e.g., forward, drop). If there is no matching entry, the switch buffers
the packet and notifies the controller that a new flow has arrived by sending a
PacketIn control message containing the headers of the packet. The controller
responds with a FlowMod message that contains a new rule matching the flow
that is to be installed in the switch’s flow table. The switch installs the rule and
forwards the buffered packet according to it. Subsequent packets in the flow are
forwarded without triggering PacketIn’s.

Flow Completion. Each flow table rule is associated with two timeout values
that define when the entry should expire: a hard timeout counted from the
time at which the entry was installed, and an soft timeout counted from the
time of the last packet which matched the entry. When the flow entry expires,
the switch notifies the controller by sending a FlowRemoved control message.
The FlowRemoved contains, among others, the duration for which the entry was
present in the switch, and the number of packets and number of bytes that
matched the entry.

2.2 Monitoring with OpenFlow

The OpenFlow protocol provides functions to query switches for the number of
packets or bytes in flows matching against a specific rule or traversing a spe-
cific port. Prior work relies on this capability to compute utilization in the net-
work [11,6]. OpenTM [11] measures network-wide traffic matrix by periodically

34 C. Yu et al.

OpenFlow Controlller

Control
Traffic
Parser

Utilization
Monitor

Utilization
Table

t1 t2 t5 t6t4t3control
plane

time

P
ac
ke
tI
n

P
ac
ke
tI
n

P
ac
ke
tI
n

F
lo
w
R
em

F
lo
w
R
em

F
lo
w
R
em

f1
f2 f3

Fig. 1. (left) FlowSense design: Parser module captures control traffic and sends it
the monitor. The monitor updates utilization values at every checkpoint according to
Algorithm 1. (right) Visualization of how link utilization is estimated with the aid of
PacketIn and FlowRemoved messages.

polling one switch on each flow’s path and then combining the measurements.
Polling a single switch does not impose significant load on the network but
may affect accuracy if the switch is not carefully chosen. Jose et al. [6] detect
heavy hitters by continually adapting polling rules to focus on the flows that
are more likely to have high volume. Both approaches have to carefully schedule
measurements to limit the polling overhead and maintain reasonable accuracy.
FlowSense, on the other hand, incurs zero measurement cost because it relies on
control traffic that the switches already send to the controller.

Ballard et al. use OpenFlow to enable flexible monitoring of network traffic
for security problems [1]. Their tool, OpenSAFE, directs spanned network traffic
towards pre-defined sinks (e.g., IDS) according to pre-specified policies. While
such an approach could be used to compute network utilization (by analyzing
the redirected traffic), the overhead it creates by copying all network traffic is
prohibitive.

3 FlowSense

In this section, we describe the design of FlowSense and how it uses control
traffic to measure the utilization of every link in the network.

3.1 Design

FlowSense uses FlowRemoved and PacketIn messages to compute network utiliza-
tion on inter-switch links. FlowRemoved’s are triggered by switches when flow
entries expire, and they inform the controller of several properties of the expired
entry. Three of these properties are most important to us: (1) the duration of the
entry in the flow table, (2) the amount of traffic matched against it, and (3) the
input port of traffic that matches the entry (we do not consider wildcard rules

FlowSense: Monitoring Network Utilization with Zero Measurement Cost 35

Algorithm 1. Pseudocode of FlowSense’s utilization monitor.
1: procedure UtilizationMonitor(Utilization Table UT , Packet p)
2: Active List ← set of p.in port’s active flows
3: if p is a PacketIn packet then
4: if p’s flow /∈ Active List then
5: Flow active flow
6: active flow.flow ← p.flow
7: active flow.time ← p.time
8: Add active flow to Active List
9: end if
10: else if p is a FlowRemoved packet then
11: flow ← matching flow from A
12: Remove flow from Active List
13: Checkpoint chkpt
14: chkpt.time ← p.time
15: if p was from soft timeout then
16: chkpt.time ← chkpt.time − p.soft timeout
17: end if
18: chkpt.active ← |Active List|
19: chkpt.util ← p.byte count/p.flow length
20: for active c in UT do
21: if c.time is between flow.time and chkpt.time then
22: c.active ← c.active− 1
23: c.util ← c.util + chkpt.util
24: end if
25: if c.active = 0 then
26: Declare c final and inactive
27: end if
28: end for
29: Insert chkpt into UT
30: end if
31: end procedure

for now). This information helps us infer the number of bytes that the flows that
matched this entry contributed to the utilization on the link that ends in the
specified input port.

Whenever a flow entry expires and triggers a FlowRemoved message, we add a
new checkpoint for the corresponding link. We set the timestamp for the check-
point as the time at which traffic last matched the expired flow entry. If an
entry’s soft timeout expires, the checkpoint is the FlowRemoved timestamp mi-
nus the soft timeout. If the entry’s hard timeout expires, we cannot tell how long
the flow was actually active for, so we set the checkpoint as the FlowRemoved
timestamp and assume it has been active for the entire flow duration.

At every checkpoint, FlowSense can estimate the contribution to the link’s
utilization made by flows that matched the expired entry as the ratio of the
number of bytes matched against the expired entry to the duration of the flows
that matched the entry. However, there may be other active flows on the same
link that contribute to the total utilization. FlowSense uses information from
PacketIn messages, which are triggered when a new flow arrives at a switch, to
infer which flows are active at a given time. To compute the utilization con-
tribution of these active flows, we must wait for them to expire and trigger
FlowRemoved’s. Thus, we incur a delay in estimating the instant total utilization
on a link at a checkpoint. We evaluate the magnitude of this delay in Section 4.

36 C. Yu et al.

Figure 1(right) illustrates an example scenario for our estimation of link uti-
lization as above. In this example, f1, f2, and f3 are flows that start at times
t1, t2, and t3, and t4, t6, t5 are the times at which those flows end; FlowSense
determines the start and end times based on PacketIn and FlowRemoved mes-
sages. If f1, f2 and f3 had utilizations of 10, 20 and 40 MBps, then, when the
first FlowRemoved message arrives at t4, FlowSense will know the utilization for
f1 by dividing the byte count from the FlowRemoved message by the duration of
the flow, and it also creates a checkpoint at t4. When the FlowRemoved packet at
t5 arrives, flow f3 ends and its utilization of 40 MBps is recorded and added to
the checkpoint at t4 leaving it with a current known utilization of 50 MBps (the
sum of f1 and f3). Finally, at t6, flow f2 ends and its utilization is added to the
checkpoints at both t4 and t5 giving the final checkpoint utilizations recorded to
be: 70 MBps at t4, 60 MBps at t5, and 40 MBps at t6.

FlowSense consists of two main modules: the control traffic parser and the
utilization monitor. The parser captures control traffic and extracts information
from FlowRemoved and PacketIn messages. The utilization monitor maintains a
utilization table where it records the current utilization value and a list of active
flows at all known checkpoints. The monitor updates the table on every new
PacketIn or FlowRemoved data received from the parser. Figure 1(left) shows the
design of FlowSense.

The algorithm that FlowSense uses for monitoring utilization on a network
works as follows. When the controller receives a PacketIn message, FlowSense
creates a new flow and adds it to a list of active flows (Active List) associated
with the new flow’s input port. On a FlowRemoved message, FlowSense removes
the corresponding flow from Active List and creates a checkpoint (chkpt) with
a timestamp (chkpt.time) equal to the current time minus the soft timeout. It
then makes note of the number of currently active flows (chkpt.active) and uses
the utilization of the flow as the starting utilization of the checkpoint chkpt.util.
Each previously known active checkpoint (c) for the same input port in the
Utilization Table (UT) is then checked to see if its timestamp is between the
start and end time of the newly ended flow. If it is, then c’s number of active
flows and utilization are updated. When a checkpoint’s number of active flows
hits 0, FlowSense declares that checkpoint final and inactive. Finally, FlowSense
inserts chkpt into UT for future lookup purposes. Algorithm 1 describes the
steps involved in the utilization monitoring in a more detailed manner.

3.2 Limitations

Using control traffic to compute utilization has two limitations. First, we are
able to compute utilization only at discrete points in time. These checkpoints
are determined by FlowRemoved arrivals at the controller and by the values of
the timeouts associated with the expired entry. In Section 4.2, we show that the
average difference between consecutive checkpoints on a link is less than two
seconds.

FlowSense: Monitoring Network Utilization with Zero Measurement Cost 37

Second, how quickly we are able to estimate the utilization at a checkpoint
depends on the type of traffic; long flows that last forever can delay indefinitely
the computation of utilization. Our results in Section 4.3 show that, if FlowSense
is willing to tradeoff 10% of accuracy, it can measure total utilization at a check-
point in under 10 seconds. We also discuss ways to improve the estimation delay
by combining active and passive measurements.

Finally, FlowSense is limited to reporting the average utilization over a flow
entry’s duration and cannot capture instant utilization at any point in time.
Thus, it works best in environments with many short flows, such as data centers
or enterprises [2], where the small duration of a flow and the small difference
between consecutive checkpoints make the average utilization a good approxi-
mation of the instant utilization.

4 Evaluation

We evaluate FlowSense from three perspectives: (1) how accurate are its utiliza-
tion estimates?, (2) how often can it refresh its estimate for a link’s utilization?,
and (3) how quickly can it estimate the utilization at a specific time? To answer
these questions, we perform experiments using a small OpenFlow testbed and
simulations on a real-world enterprise trace.

4.1 Accuracy

To estimate the accuracy of utilization monitoring, we set up a small testbed
comprising two OpenFlow switches, A and B, that are connected to each other.
hostA is connected to A, and hostB1 and hostB2 to B. Initially, the rule tables
of the two switches are empty. When new flows arrive, we always add rules
with no hard timeout and a soft timeout of 1s. We use iperf to simultaneously
perform two data transfers from hostA to hostB1 and hostB2 for a period of three
minutes. The transfer from hostA to hostB2 has a constant rate of 10MBps, while
the transfer from hostA to hostB1 varies across three different rates over time:
20MBps, 45MBps, and 30MBps. Before changing the transfer rate, we briefly
interrupt the transfer for a little more than a second to allow the soft timeout
to expire and trigger FlowRemoved messages.

We compare the utilization obtained by FlowSense with that gathered from
continually polling A and B at 1s intervals. Figure 2(left) presents the results
obtained for the link connecting A and B. FlowSense reports utilization values
that are similar to those inferred through polling. In comparison to the values
obtained with polling, utilization measured with FlowSense shows a small shift
to the right because flow entry timeouts have a precision at the granularity of
seconds. Thus, it may take up to a second for FlowRemoved to trigger after a
timeout expires. Since FlowSense is only working with a single PacketIn and
FlowRemoved message per flow, it does not experience the same jittery behavior
as the polling method because its readings are an average utilization over that
flow’s lifetime.

38 C. Yu et al.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

U
til

iz
at

io
n

(M
B

ps
)

Time Elapsed (sec)

Polling
FlowSense

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12

C
D

F
 o

f p
or

ts

Average time between checkpoints (sec)

All
90% util reported

Fig. 2. (left) Accuracy of utilization monitoring. We compare FlowSense’s esti-
mates with the values obtained by continually polling the switch counters at 1s inter-
vals; (right) Granularity of utilization monitoring for all flows and for flows that
have 90% of their utilization reported after 10s. We assume flows are mapped to 24
distinct links.

4.2 Granularity

Many applications need to monitor utilization as often as possible to quickly
react to traffic changes. How often FlowSense captures utilization depends on
the distribution of flows, in particular on how frequently and how rapidly flow
entries expire and trigger FlowRemoved’s.

To evaluate the granularity of measurements, we simulate FlowSense on a real-
world enterprise trace. We use the EDU1 trace collected by Benson et al. [2],
capturing all traffic traversing a switch in a campus network for a period of two
hours. We identify all network flows (i.e., pairs of IP addresses and application
ports) in the trace, along with their start and finish times. The finish time of a
flow is an approximation of when the flow entry associated with the flow would
expire and trigger a FlowRemovedmessage in an OpenFlow network. We consider
a flow as finished if there is no traffic between the associated endpoints for at
least five seconds. We compute the average time between FlowRemoved events,
under the assumption that all flows arrive on the same link, and find that a flow
expires, and thus enables us to refresh the utilization measurements, every 16ms.

In reality, however, flows arrive at a switch on different input ports. Because
the traffic trace does not contain input port information, we simulate a 24-port
switch using the following heuristic. We first associate every distinct /p prefix
(where p is, in turn, 32, 30, 28, 20, or 24) of source IP addresses in the trace with
a port and then assign each individual flow to the link (or input port) associated
with its source IP /p prefix. We group flows by prefix because routing in the
Internet is typically prefix-based. Below, we present results for p = 28.

We compute the average time between two consecutive utilization checkpoints
for each port and plot the cumulative distribution in Figure 2(right). Here, con-
sider the line labeled “All”. For half of the incoming links, the average time
between two utilization measurements is at most one second and for almost

FlowSense: Monitoring Network Utilization with Zero Measurement Cost 39

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

F
ra

ct
io

n
of

 c
he

ck
po

in
ts

Time until last active flow ends (s)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

F
ra

ct
io

n
of

 c
he

ck
po

in
ts

% of utilization reported

After 1 sec
After 5 sec

After 10 sec

Fig. 3. (left) Distribution of waiting times to compute the total utilization value at
every FlowRemoved event. (right) Utilization reported after 1s, 5s, and 10s following
the expiry of a flow entry. Around 70% of links have 90% or more of total utilization
reported after 10 seconds.

90% of the links under 3 seconds. We also performed the heuristic to simulate a
48-port switch with various prefix sizes and obtained similar results.

4.3 Staleness

To compute the total utilization at a checkpoint, FlowSense must wait for all
the flows active at the checkpoint to finish and trigger FlowRemoved messages.
For each checkpoint, we define the utilization wait time as the time until the
last active flow expires. Figure 3(left) shows the cumulative distribution of the
utilization wait times for each checkpoint in the trace described in Section 4.2,
where flows are assigned to one of 24 incoming links. The median utilization
wait time is 98s: for almost half of the checkpoints, FlowSense would have to
wait more than 100s to capture the complete utilization.

The long delay in computing the total utilization may be caused by active
flows that are very long but do not send a lot of traffic (e.g., ssh sessions). Next,
we show that if an application is willing to tradeoff some accuracy for timeliness,
it can have a reasonable estimate of a link’s utilization at a particular checkpoint
in under 10s, rather than having to wait for 100s. We compute how much of the
total utilization at a checkpoint is reported by FlowSense 1s, 5s, and 10s after
the checkpoint is created. Figure 3(right) shows that FlowSense reports around
60% of the total utilization for 50% of the checkpoints after 1s, and 90% of the
total utilization for 70% of the checkpoints after 10s.

The granularity of measurements does not decrease by much when considering
only the 70% of checkpoints that capture 90% after 10s. The line labeled “90%
util reported” in Figure 2(right) shows the distribution of the average time be-
tween these checkpoints. The median time is only around 1.7s (increasing from
1.1s when considering all checkpoints).

To summarize, FlowSense is able to refresh utilization less than every 2s on
average and obtain 90% of the total utilization at these refresh checkpoints
in under 10s. We are investigating ways to predict the utilization wait time

40 C. Yu et al.

at each checkpoint. Such a prediction would give applications another knob to
tune measurement performance: if the wait time is too high, the application
could decide to trigger on-demand polling, thus trading off scalability for lower
measurement staleness.

5 Discussion

We designed FlowSense to work for reactive OpenFlow deployments, where
switches trigger control messages every time a new flow arrives or a flow entry ex-
pires. The presence of a large number of flows triggers many control packets and
can overwhelm both the controller, which cannot process all control traffic in a
timely fashion, and the switches, which cannot operate at line speed and quickly
exhaust their flow tables [12]. Previous research shows that such deployments are
feasible for medium-sized networks with a powerful controller or a collection of
controllers. For example, controllers in networks of 100 switches, with new flows
arriving every 10μs, may have to process up to 10 million PacketIn messages per
second [2].

In practice, the need for scalability pushes operators to increasingly adopt
alternative OpenFlow deployments: distribute controller functionality across dif-
ferent machines, set up rules proactively to never expire (e.g., with infinite time-
outs) so as to avoid triggering control traffic, and use wildcard rules to reduce
the amount of control traffic. We discuss next the applicability of FlowSense in
such scenarios.

Distributing the Controller. Distributing the controller does not affect the
amount or frequency of control traffic. Using a mechanism similar to FlowVi-
sor [9], FlowSense could still capture incoming control traffic and synchronize
the information gathered across controllers.

Proactive Rules and Large Timeouts. When operators install rules proac-
tively, new flows at a switch do not trigger PacketIn’s because they find a match-
ing rule in the flow table. Further, if rules have large timeouts, they take long to
expire and trigger FlowRemoved’s. Some entries may even be set up to never ex-
pire or to not trigger a FlowRemoved when they expire. In such scenarios, control
traffic is scarce or missing completely and polling switch counters for utilization
provides more frequent utilization estimates, albeit at the expense of network
overhead. For reactive applications that rely on traffic changes, they will have
to either rely on stale data or begin active polling as previously stated.

Wildcard Rules. Wildcard rules limit the number of FlowRemoved messages
and forces us to resort to active solutions such as polling counters more often.
More importantly, certain wildcard rules can make the utilization computation
impossible. If a rule has a wildcard for the input port then the rule is not
associated with a single link. Thus, we cannot infer how the traffic that matches
against the rule is divided among the input ports to which the wildcard refers
to and we cannot compute utilization on the links that end in these input ports.

FlowSense: Monitoring Network Utilization with Zero Measurement Cost 41

6 Conclusions

We presented FlowSense, a tool to efficiently infer link utilization in flow-based
networks by capturing and analyzing control messages between switches and the
controller. Using experiments on a small OpenFlow testbed and simulations on
a traffic trace from a campus network, we showed that our method is accurate
and provides up-to-date information when control messages are abundant. Our
work is the prelude to a larger research direction that we intend to explore in
the future: how can we leverage information carried on the control channel of
flow-based networks, that is unavailable in traditional networks, to build more
robust and accurate monitoring systems and tools.

References

1. Ballard, J.R., Rae, I., Akella, A.: Extensible and scalable network monitoring using
OpenSAFE. In: INM/WREN (2010)

2. Benson, T., Akella, A., Maltz, D.: Network traffic characteristics of data centers in
the wild. In: ACM IMC (2010)

3. Cai, Z., Cox, A.L., Ng, T.E.: Maestro: A System for Scalable OpenFlow Control.
Technical Report TR11-07, Rice University (2011)

4. Genesis Hosting Solutions, http://www.nec.com/en/case/genesis/index.html
5. IBM and NEC team up,

http://www-03.ibm.com/press/us/en/pressrelease/36566.wss

6. Jose, L., Yu, M., Rexford, J.: Online measurement of large traffic aggregates on
commodity switches. In: USENIX Hot-ICE (2011)

7. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
ACM Sigcomm CCR 38, 69–74 (2008)

8. Selerity, http://seleritycorp.com/
9. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N.,

Parulkar, G.: Can the production network be the test-bed. In: USENIX OSDI
(2010)

10. Tervela, http://www.tervela.com/
11. Tootoonchian, A., Ghobadi, M., Ganjali, Y.: OpenTM: Traffic Matrix Estimator

for OpenFlow Networks. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010.
LNCS, vol. 6032, pp. 201–210. Springer, Heidelberg (2010)

12. Yu, M., Rexford, J., Freedman, M.J., Wang, J.: Scalable flow-based networking
with DIFANE. In: ACM Sigcomm (2010)

http://www.nec.com/en/case/genesis/index.html
http://www-03.ibm.com/press/us/en/pressrelease/36566.wss
http://seleritycorp.com/
http://www.tervela.com/

How to Reduce Smartphone Traffic Volume by 30%?

Feng Qian1, Junxian Huang2, Jeffrey Erman1, Z. Morley Mao2,
Subhabrata Sen1, and Oliver Spatscheck1

1 AT&T Labs – Research
2 University of Michigan

Abstract. The unprecedented growth in smartphone usage has fueled a massive
increase in cellular network traffic volumes. We investigate the feasibility of
applying Redundancy Elimination (RE) for today’s smartphone traffic, using
packet traces collected from 20 real mobile users for five months. For various
RE techniques including caching, file compression, delta encoding, and packet
stream compression, we present the first characterization of their individual
effectiveness, the interaction among multiple jointly applied RE techniques, and
their performance on mobile handsets. By leveraging several off-the-shelf RE
techniques operating at different layers, we can achieve an overall reduction of
smartphone traffic by more than 30%.

1 Introduction

Mobile data traffic is experiencing unprecedented growth. Cisco predicted that from
2011 to 2016, global smartphone traffic will increase by 5000% [4]. Meanwhile, in
2011, the cellular infrastructure expenditure was expected to be only a 6.7% increase
over 2010 [1]. From the customers’ perspective, reducing the bandwidth consumption
effectively lowers usage-based data charges, and decreases page download times.

Network Redundancy Elimination (RE) plays a crucial role in bandwidth reduction
by preventing duplicate data transfers and making the transferred data more com-
pact [8]. In our recent work [17], we investigated HTTP caching on smartphones. We
found that for web caching, there exists a huge gap between the protocol specification
and the implementation on today’s mobile devices. A surprisingly high 17% reduction
in the traffic volume can be achieved if just the HTTP caching protocol is fully
supported and strictly followed by smartphone applications and mobile browsers. This
begs the question: What about other off-the-shelf RE techniques? The potential savings
from applying these techniques to smartphone traffic are not known quantitatively.

To answer this question, we investigate the feasibility of redundancy elimination
for today’s smartphone traffic, using packet traces collected from 20 real mobile users
for five months. For various RE techniques including caching, file compression, delta
encoding, and packet stream compression, we present the first characterization of:

– Their effectiveness on smartphone traffic. Previous studies [8][6][7][15] inves-
tigated RE techniques for wired traffic, whose content and protocol compositions
significantly differ from those of smartphone traffic.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 42–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

How to Reduce Smartphone Traffic Volume by 30%? 43

– Their interaction when jointly applied. Prior work [10][14][18] only studied RE
techniques in isolation for mobile networks. Jointly employing multiple techniques
can potentially save more bandwidth.

– Their computation load on mobile handsets. Such considerations are important
given mobile handsets are more limited in computation capabilities compared to
desktop counterparts.

Our key finding is that, a judicious composition of several off-the-shelf RE techniques
operating at different protocol layers can achieve an overall reduction in smartphone
traffic by more than 30% with acceptable runtime overheads. In comparison, HTTP
caching by itself saves as much as 17% of the overall traffic (§5.2). Such high savings
become more interesting and somewhat surprising given that a major fraction of the
traffic is video, audio, or image which are already compactly encoded.

2 Related Work

We describe related work in three categories.

RE Algorithms. Data compression techniques, such as gzip, are the most well-known
RE approach. An orthogonal approach is caching. Specifically, web caching can be
extremely useful in reducing HTTP traffic [10]. Other methodologies include delta
encoding [13] and packet stream compression [19][14]. We study the effectiveness and
efficiency of these well-established techniques for smartphone traffic.

RE Measurements. A recently study [10] explored the potential benefits of in-network
caching at the cellular gateway. Gember et al. [12] reported high intra-user redundancy
of handheld traffic in campus Wi-Fi networks. The above studies motivated us to make
a further step by examining different RE techniques and their interplay when applied
jointly for mobile traffic. Anand et al. [8] conducted a trace-driven study of packet
stream compression [19] for university and enterprise traffic. Earlier RE measurements
also focused on delta encoding and file compression [15].

RE Systems. [6] proposed incorporating RE into an IP-layer service on routers.
The SmartRE [7] architecture eliminates network-wide redundancy by coordinating
multiple devices. EndRE [5] is an end-to-end service where packet-stream-based RE is
put into the protocol stack. PACK [20] is an RE system designed for cloud computing
customers. Our measurement provides useful insights for designing future RE systems
for mobile networks, which none of the above systems specifically focuses on.

3 The Measurement Data

The dataset used in this study was collected from 20 users from May 12 to October
12 2011. They were given 11 Motorola Atrix and 9 Samsung Galaxy S smartphones,
all running Android 2.2, with unlimited voice, text and data plans from a large 3G
carrier in the U.S. This dataset was also used in our earlier study of smartphone HTTP
caching [17]1. We deployed custom data collection software on the 20 handsets. It runs

1 The dataset will be available for verification purposes under NDA after relevant IRB approvals.

44 F. Qian et al.

in the background and collects the full packet traces (with payload) for both cellular
and Wi-Fi traffic. We collected 118 GB of packet traces during the five-month trial.

The participants were selected to be students from 8 departments at University of
Michigan. Their individually contributed traffic volume ranges from 0.3 GB to 23.6
GB. Overall, 15,683 distinct values of Host fields appeared in HTTP requests. Across
all user pairs (X,Y), the overlaps of Host sets |HX ∩HY |/|HX ∪HY | range from 1%
to 25% (HX consists of all Host strings in the requests made by user X). We therefore
believe the 20 participants are reasonably diverse smartphone users.

4 Explored RE Techniques

We explored four different RE approaches. These are extremely popular and represen-
tative techniques for reducing network traffic redundancy.

HTTP Caching. In [17], we found for web caching, there exists a huge gap between
the protocol specification and the implementation on today’s mobile devices. A 17%
reduction in the overall traffic volume can be achieved if the HTTP caching protocol is
fully supported and strictly followed by smartphone apps and mobile browsers.

Delta Encoding. In Delta encoding, instead of transferring a file in its entirety, only
any difference from its previously transferred version (if exists) is sent. We used
VCDIFF [13] (RFC 3284), known as the best overall delta encoding algorithm[16].

File Compression. We study three off-the-shelf file compression techniques selected
due to their popularity: gzip, bzip2, and 7-zip2. gzip is based on the well-known DE-
FLATE algorithm [9]. bzip2 employs diverse compression techniques such as Huffman
coding, Burrows-Wheeler transform, and run-length encoding. 7-zip uses Lempel-Ziv-
Markov chain algorithm (LZMA), which is also a dictionary-based approach similar to
DEFLATE but features a higher compression ratio.

Packet Stream Compression. Compression can also be performed in an application-
agnostic manner where the IP packet stream is compressed at one end of a network
path (e.g., the cellular gateway) and is decompressed at the other end (e.g., a handset).
We employ MODP [19], a representative packet stream compression algorithm. MODP
was also used in existing RE systems such as [6].

We briefly explain how MODP works. Two packet caches, whose contents are
synchronized, are deployed at both ends of a network path. To compress an incoming
packet, the ingress end (i) fingerprints byte subsequences in the packet by sliding a
running window over it, (ii) matches the fingerprints against a signature table, which
contains mappings from fingerprints to pointers to the cached packets, (iii) for matched
fingerprints, replaces their byte subsequences with the pointers, (iv) inserts the new
packet into the packet cache and updates the signature table. The decompression
procedure is straightforward: the egress end simply follows the pointers and replaces
them with byte sequences in the cache. The algorithm involves two parameters:

2 http:// www. gzip. org, http:// bzip. org,
http:// www. 7-zip. org

http://www.gzip.org
http://bzip.org
http://www.7-zip.org

How to Reduce Smartphone Traffic Volume by 30%? 45

the packet cache size n, and the sampling rate for fingerprint generation p3. Selecting
their values involves trading off the compression ratio and the processing speed.

5 Measurement Results

We apply the aforementioned RE techniques to our dataset to study their effectiveness.

5.1 Evaluation Methodology

We perform RE in the following order. In the remainder of this paper, we refer to a web
object (e.g., an HTML document) carried by an HTTP response as a file.

Step 1: Web Caching. We eliminate redundant transfers due to problematic caching
behaviors by assuming a good HTTP caching implementation that (i) strictly follows
the protocol specification [11], and (ii) has a non-volatile LRU cache shared by all
applications. The cache size is assumed to be 256 MB. As long as the cache size is not
too small (e.g., >50 MB), it has little impact on the RE effectiveness, as shown in [17].

Step 2: Delta Encoding. Assume a handset has requested for file f , and there is already
a copy of f in the cache (a file is keyed by its full URL including query strings). If the
content of f has changed, we use VCDIFF to encode the delta between the new and
the old version, to save the bandwidth. If f is not expired or not changed, the standard
caching procedure (Step 1) is used although VCDIFF can also handle two identical
inputs and output a delta of zero.

Step 3: File Compression. The file is compressed by an off-the-shelf compression
technique such as gzip, unless it is already compressed in the trace or by Step 2.

Step 4: Packet Stream Compression. We use MODP to compress all the IP packets in
both directions between the cellular gateway and the handset.

Steps 1 to 3 are object-level RE schemes. In theory these general techniques can
be applied to any application-level objects. However, here we apply them to only
HTTP traffic that dominates smartphone traffic usage [8][12]. In particular, encrypted
HTTPS traffic over TCP port 443 accounts for 11.2% of the bytes – we are unable
to apply objected-based RE techniques to them (the data collector runs below the
SSL library). Hence the reported RE effectiveness is an underestimation of the actual
possible gains. Also, Step 1 and 3 are already part of the HTTP specification [11] but
today’s smartphones and web servers may not strictly follow or fully utilize them. We
quantify the additional benefits that can be gained if they do so.

The Ordering of the Four Steps is justified as follows. We consider caching (Step 1)
first since it can potentially avoid transferring the entire file. If Step 2 is performed, then
Step 3 will be skipped, because delta encoding usually yields a more compact output
than compressing a single file does. Note that in Step 2, the output of VCDIFF (i.e.,
the delta) is always compressed (using gzip by default). Step 4 is applied at the end of
the pipeline because packet stream compression is performed on a network path after
packets leave the server.

3 Fingerprints are indexed probabilistically since indexing all is computationally impractical.

46 F. Qian et al.

Table 1. Compression Ratios (CR) for caching, file compression, and delta encoding, when each
of them is individually applied. The “HTTP” row and the “All” row correspond to CR values
computed for only HTTP traffic, and the overall traffic, respectively.

1. 2-4. File Compression (lv 1–9) 5-7. Lower Bound (lv5) 8-9. Δ Encoding
Caching gzip bzip2 7-zip gzip bzip2 7-zip T & NT∗ NT only

HTTP 79.8% 83.9–84.5% 84.4–84.9% 82.5–82.5% 80.4% 78.9% 71.7% 77.8% 98.0%
All 82.7% 86.3–86.8% 86.7–87.1% 85.1–85.1% 83.3% 82.0% 75.8% 81.0% 98.3%

∗ “T”: trivial cases (two versions are identical); “NT”: non-trivial cases (two versions are different).

Implementation of RE Techniques. Step 1 was realized by a standard web caching
simulator correctly following the HTTP protocol. Step 2 and 3 were implemented by
using open-source projects of xdelta 3.0 (http:// xdelta. org/, for VCDIFF),
LZMA SDK 9.20 (for 7-zip), bzip2 1.0.6, and gzip 1.2.4, all having a tunable parameter
between 1 (least compact but fastest) and 9 (most compact but slowest) allowing users
to balance between compression ratio and speed. We implemented the MODP algorithm
in C++ based on a recent paper [14] that improves the original algorithm [19].

The Key Evaluation Metric is the Compression Ratio (CR), defined as the ratio of
traffic volume after compression to the traffic volume of the original trace. A smaller
CR indicates more effective compression. CR is consistently used in Tables 1 to 4.

5.2 Applying Individual RE Approaches

We first examine each individual RE approach.

Overall Statistics. The dataset consists of 118 GB of packet traces dominated by
downlink traffic (93% of the bytes go from the Internet to handsets). As identified by
the HTTP parser, 85.4% of all traffic is HTTP that can be potentially optimized by the
object-based RE techniques described in §5.1.

TCP/IP Headers. We exclude all TCP/IP headers from our analysis because they
can be effectively compressed by mobile networks (e.g., UMTS uses the Packet Data
Convergence Protocol [2] for header compression) but in our data collected on handsets
they were captured as uncompressed.

We discuss key results in Table 1. As indicated by the “Caching” column (Column
1), good web caching implementation reduces the overall traffic volume by 17%.

File Compression. In Columns 2 to 4, all three file compression techniques effectively
achieve compression ratios (CR) between 82.5% and 84.9% for HTTP traffic. Neither
the algorithm nor the compression level impacts the CR significantly. This can be
explained as follows. We first note that compression is likely to yield more gains for
smaller files, which tend to be uncompressed text files. In contrast, large files are
usually audio, video, or files already compressed in the data. Compressing them further
brings little additional benefits regardless of the compression method (Table 2). This
is validated by the fact that the overall CR value (gzip level 5) for all responses under
100KB (they account for 33% of the total HTTP response volume) is 71%, compared
to 93% for all responses of at least 100KB. This confirms the intuition that most

http://xdelta.org/

How to Reduce Smartphone Traffic Volume by 30%? 47

Table 2. Effectiveness of gzip compression (lv 5) on different content types. Content types with
CR values less than 30% (i.e., compression is under-utilized) are highlighted.

Content-Type % bytes % NC∗ CR (gzip) Content-Type % bytes % NC∗ CR (gzip)
video/mp4 19.34% 100.00% 97.84% video/x-flv 4.65% 99.85% 98.64%
app/octet-stream 13.14% 99.44% 95.21% text/html 3.74% 70.11% 23.49%
(App market) 12.46% 100.00% 86.83% text/javascript 2.57% 58.17% 27.44%
image/jpeg 10.20% 99.47% 88.90% image/png 2.40% 97.77% 90.86%
audio/mpeg 8.14% 99.99% 97.07% app/x-javascript 2.34% 59.48% 29.45%
video/3gpp 6.34% 100.00% 96.86% video/flv 1.61% 100.00% 97.86%
text/xml 5.23% 98.18% 14.59% text/css 1.27% 85.84% 19.34%
∗ “NC”: The fraction of bytes that are Not Compressed.

gains come from small files. Secondly, most reasonable compression techniques tend
to perform similarly for small files – probably because redundancy patterns in smaller
files are usually easier to discover so even using a lightweight compression technique
less aggressively (e.g., gzip with a small dictionary) can achieve a reasonable CR.

Under-utilization of compression can be caused by either a handset or the server.
Specifically, 60% of HTTP requests, whose responses account for 79% of the total
HTTP response traffic4, do not contain an Accept-Encoding header field, making it
impossible for the server to transfer a compressed file. Compressing the responses using
gzip yields a CR of 82% for the corresponding 79% of the HTTP response traffic. Also
26% of HTTP requests do have Accept-Encoding header fields but their responses are
not compressed by the server. Compressing them reduces their HTTP response traffic
volume by 10%.

Table 2 lists the top Content-Type strings appearing in HTTP responses (Column
1), their contribution to the overall HTTP traffic volume (Column 2), the fraction
of bytes that are not compressed in the original data (Column 3), and their CR
values (Column 4). For example, for all bytes in the original trace belonging to
text/xml files, they are responsible for 5.23% of the total HTTP traffic volume, and
98.18% of such bytes belong to files that were not compressed in the original trace.
By compressing those files, the transferred text/xml data size can be reduced to
5.23%*14.59%=0.76% of all (unoptimized) HTTP traffic volume. Table 2 indicates a
bimodal distribution of CR values across content types. Compression is under-utilized
in the original trace for most text files (html, xml, javascript, and css) accounting for
15% of all HTTP traffic. For each of such content types, 58% to 98% of the response
data is not compressed. If compression is used, more than 70% of their bytes can
be saved. In contrast, images, videos and most binary data already have compact file
formats so further compression brings marginal benefits.

To understand the limits of the effectiveness of the file compression techniques, we
combine all HTTP requests and responses for each of the 20 users into a single large file,
run compression for each file, and then compute a CR value across all these 20 files. The
gaps between these lower bounds (Columns 5 to 7 in Table 1) and their corresponding
CRs of object-based compression (Columns 2 to 4) vary between 3.5% and 10.8%,
depending on the compression technique. Also, HTTP/1.1 does not compress HTTP

4 Unless otherwise specified, a percentage such as “x% of HTTP traffic” and “x% of all traffic”
refers to the percentage of traffic in the original data before being optimized by RE techniques.

48 F. Qian et al.

p=1/4 p=1/8 p=1/16 p=1/32
n=512k 70.2% 71.9% 73.7% 75.3%
n=256k 71.8% 73.4% 75.2% 76.8%
n=128k 73.1% 74.7% 76.4% 78.0%
n=64k 74.3% 75.8% 77.5% 79.0%
n=512k (no loss) 69.3% 71.0% 72.8% 74.4% 0.4 0.6 0.8 1

0

0.5

1

Compression Ratio (CR)

C
D

F

Table 3. Applying the MODP algorithm on all traffic
Fig. 1. CR distribution across
users (caching+gzip+delta)

headers [11], which account for 5% of the total HTTP bytes in the trace. Compressing
them reduces CR of HTTP traffic by about 1.4% (considered by Columns 2 to 4). This
is performed by SPDY [3] that has been implemented in the Google Chrome browser.

Delta Encoding. Consists of two scenarios: a trivial case where the two versions are
identical (i.e., the delta is zero), and a non-trivial case where they are different. The
trivial case is already handled by today’s HTTP caching. Column 8 in Table 1 includes
both cases while Column 9 in Table 1 only considers additional benefits brought by
handling non-trivial cases using VCDIFF, a feature not widely deployed. We observe
that doing so only slightly outperforms using only standard caching because trivial cases
are much more prevalent than non-trivial cases. Specifically, 19.0% of HTTP bytes
belong to cacheable files whose previous instances remain unchanged. Requests for
these files can be served either by the local cache before expiration, or by a 304 Not

Modified response after expiration. In contrast, only 4.7% of HTTP bytes belong to
files whose previous instances (with the same URL) differ. But for those 4.7% of HTTP
bytes, VCDIFF does make them more compact than gzip does: VCDIFF achieves a
CR value of 57.4%, while using gzip without leveraging similarities between the two
versions yields a much higher CR of 72.4%.

Packet Stream Compression. Table 3 quantifies the effectiveness of MODP by
changing two critical parameters n, the size of the packet cache in terms of the number
of packets, and p, the sampling rate for fingerprint generation (§4). The overall CR is
encouragingly good, between 70.2% and 79.0%. Exponentially decreasing p from 1/4 to
1/32 does not dramatically increase CR because the similarity between an input packet
and a cached packet is often high so generating fingerprints less frequently can still
yield a reasonably high matching rate. Decreasing n from 512k to 64k causes limited
increase of CR as well due to the temporal locality of cache access [5].

Table 3 considers packet loss, which may hinder the MODP algorithm from func-
tioning correctly. Consider a packet P that is lost after entering the ingress end’s cache.
The egress end thus cannot decode any subsequent packet that is compressed using the
reference packet P . To address this issue, we assume that if the receiver cannot decode
a packet, it immediately requests that the sender retransmit the lost reference packet(s)
to synchronize the two packet caches [14].

We measured the overall retransmission rate of TCP traffic, which accounts for
98% of the overall traffic volume, to be 2.1% (1.8% for Wi-Fi and 2.2% for 3G).
For all but the last row in Table 3, we conservatively treat all TCP packets that are
later retransmitted as lost packets. The last row corresponds to a hypothetical scenario

How to Reduce Smartphone Traffic Volume by 30%? 49

Table 4. Jointly applying multiple RE techniques

caching caching caching
caching caching caching All ∗ All ∗ All ∗ All ∗

+gzip +bzip2 +7-zip
+gzip +bzip2 +7-zip n=512k n=256k n=128k n=64k
+delta +delta +delta p=1/4 p=1/8 p=1/16 p=1/32

HTTP 71.4% 71.6% 70.4% 71.1% 71.3% 70.1% - - - -
All 75.5% 75.8% 74.7% 75.3% 75.5% 74.5% 68.1% 68.6% 69.2% 69.9%

∗ All = caching + gzip (lv 5) + delta + MODP (for all traffic). n and p are MODP parameters.

with no loss. In that ideal case, the CR decreases by about 1% due to the eliminated
retransmission overhead of reference packets, implying that the impact of packet loss
observed in the five-month dataset on CR is small.

5.3 Combining Multiple Approaches

We now apply multiple RE techniques together by following the order described
in §5.1. The left seven columns in Table 4 indicate that jointly employing caching,
file compression, and delta encoding is beneficial in that it reduces the CR to as low as
70.1% (for HTTP traffic) and 74.5% (for all traffic). Caching and file compression are
complementary schemes: the former makes traffic due to multiple requests of the same
file more efficient, while the latter improves the efficiency of a single file transfer.

Figure 1 plots the CR distribution (for all traffic) across the 20 users, assuming
caching, gzip (lv 5), and delta encoding are jointly used. The CR for each user ranges
from 34% to 89%, implying the heterogeneity of traffic generated by diverse users (§3).
Clearly, the effectiveness of RE techniques depends on traffic content that differs across
users, but the incurred bandwidth savings are unanimously non-trivial (> 10%).

We then take a further step by applying MODP in addition to the three object-based
RE techniques. By further looking at the right four columns in Table 4, we learn the
additional CR reduction due to MODP is non-trivial (ranging from 5.4% to 7.2%)
but is much smaller than the saving brought by using MODP alone (21.0% to 29.8%
as depicted in Table 3). This implies that object-based RE techniques have already
eliminated most redundancies for the HTTP traffic that dominates the trace. In fact,
MODP further reduces the HTTP traffic volume by 6.2% to 7.8%, most of which comes
from cross-file redundancy of non-cacheable files. In contrast, MODP results in much
more reduction of CR for non-HTTP traffic, between 16.1% and 21.7%.

5.4 Performance

We measure the performance of each RE technique on a real server and a smartphone
device. Our equipment includes a Dell PowerEdge server with an Intel Xeon E5620
quad-core CPU at 2.4 GHz and a Motorola Atrix 4G smartphone with a Tegra 2 dual-
core CPU at 1 GHz. The server ran Ubuntu 11.04 and the phone used Android 2.2.

Two Macro-benchmarks were employed to evaluate the file compression and the
packet stream compression technique, respectively. The file benchmark consisted of
1000 HTTP responses randomly sampled from the dataset. The packet stream bench-
mark was a 2GB packet trace generated by a random user. We produced five instances

50 F. Qian et al.

Table 5. Throughput (in Mbps) of object-based RE techniques on the File Benchmark

gzip (level 1 – 9) bzip2 (level 1 – 9) 7-zip (level 1 – 9) VCDIFF (δ 10%–90%)
comp decomp comp decomp comp decomp comp decomp

Server 80–132 380–392 24–25 57–60 14–17 20–20 5.4–5.5 479–808
Phone 19–37 223–231 5.2–5.6 18–21 4.4–5.4 10–10 1.9–1.9 231–392

Table 6. Throughput (in Mbps) of MODP on the Packet Stream Benchmark

Compress n=128k p=1/16 n=64k p=1/32 Decompress n=128k p=1/16 n=64k p=1/32
Server 19 41 Server 320 348
Phone 4.2 8.9 Phone 40 41

of this benchmark, all yielding very similar performance results. We report the results
for one instance.

We measured the in-memory compression/decompression time (excluding disk I/O)
for the two benchmarks on both the server and the phone, using binaries compiled from
the same source code. Table 5 shows the results for the file benchmark. Each file was
compressed (decompressed) separately and the measured throughput is the total file
size divided by the sum of the processing time of all files. For VCDIFF, we artificially
generated a previous version of each file by randomly changing its content by a fixed
percentage of δ. Table 6 summarizes the packet stream benchmark results. We measured
the processing time of the second-half data of the 2GB packet trace, whose first-half
data of 1GB was used to fill the packet cache and the signature table (for compression).
Changing this 1GB to 0.5GB or 1.5GB has negligible impact on the results.

In Table 5 and Table 6, the throughput was estimated in an extreme case where
the data was fed into the compressor/decompressor as fast as possible without any
interruption. We repeated each test 10 times and measured the average running time,
from which we derived the throughput value. The standard deviation of the running
time across 10 runs was always less than 2% of the average.

The benchmark results deliver several observations. (i) As expected, compression
is slower than decompression. But compressed files can be cached by servers to avoid
having to repeat the compression for each incoming request for the same file. (ii) gzip
is much faster than the more sophisticated bzip2 and 7-zip (for both compression and
decompression) while its achieved CR is only slightly higher for small files from which
most benefits of compression come (§5.2). (iii) VCDIFF is more expensive than all three
file compression techniques, because it involves heavy computation for comparing two
versions of a file. (iv) For gzip, bzip2, VCDIFF, and MODP, their low decompression
overheads make it possible to keep up with a high data rate (e.g., 15Mbps), incurring
very small impact on page processing/rendering time on a handset. (v) MODP is quite
efficient for small n and p. Exponentially increasing n and p worsens the performance
(not shown in Table 6), and doing so provides little additional traffic savings when
object-based RE is performed beforehand (Table 4). The performance could be further
improved by enhancements of MODP, such as MAXP and SAMPLEBYTE [5].

How to Reduce Smartphone Traffic Volume by 30%? 51

6 Summary and Recommendations

We summarize our main findings and recommendations as follows.

1. Under-utilization of compression contributes to significant redundancy, i.e., 15%
of the overall traffic volume for our trace. It is imperative that the content providers
utilize the compression feature supported by all mainstream Web servers. Handsets
should use the Accept-Encoding header field, which appeared in only 40% of HTTP
requests within the dataset, to enable compression.

2. Considering both effectiveness and performance, gzip is the best compression
approach for small files from which most benefits of compression come (yet the
traffic volume contribution of such small files is considerable, see §5.2). Applying
delta encoding on non-trivial cases (§5.2) brings limited benefits, because less than
5% of HTTP bytes belong to files with a different previous version. Except for 7-zip,
decompression performance is generally not an issue on mobile devices, leading to very
small impact on page processing/rendering time.

3. Special emphasis should be put on html, xml, javascript, and css files. They
account for 15% of the HTTP traffic in the dataset (17% reported in [12] for hand-
held traffic in campus Wi-Fi networks), but are usually (58% to 98% bytewise) not
compressed. More than 70% of their bytes can be saved using compression.

4. Using packet stream compression alone, represented by the MODP algorithm,
effectively reduces the traffic volume by up to 30%. If object-based RE techniques,
which are already part of the HTTP specification, are applied beforehand, the benefit of
MODP decreases but is still non-trivial, i.e., a reduction of 5.4% to 7.2% of all traffic.
In that case, the impact of the aggressiveness level on CR is much less significant.
We therefore recommend that MODP be deployed in a less aggressive manner, e.g.,
n≤64k packets and p≤1/16 for downlink. This achieves most of the bandwidth savings
possible from MODP while limiting the performance overhead for compression as
well as decompression. Note that packet stream compression provides benefits despite
idiosyncrasies in application implementations.

5. A judicious combination of all RE techniques achieves an overall reduction of
the smartphone traffic studied in this measurement by more than 30% with acceptable
computational overhead. This is even more interesting and somewhat surprising given
that a major fraction of the traffic is video, audio, or image that are already compressed.
In comparison, caching by itself only saves 17% of the overall traffic (§5.2).

Acknowledgements. This work is partly funded by NSF grants CNS-1059372, CNS-
1050157, CNS-1039657 and Navy grant N00014-09-1-0705. We thank Emir Halepovic
and the shepherd Marios Iliofotou for their valuable comments on the paper. We would
also like to thank anonymous reviewers whose comments improved the final version.

References

1. Invest in Cell Phone Infrastructure for Growth in 2010 (2010), http://pennysleuth.
com/invest-in-cell-phone-infrastructure-for-growth-in-2010/

2. Packet Data Convergence Protocol (PDCP) specification. 3GPP TS 25.323

http://pennysleuth.com/invest-in-cell-phone-infrastructure-for-growth-in-2010/
http://pennysleuth.com/invest-in-cell-phone-infrastructure-for-growth-in-2010/

52 F. Qian et al.

3. SPDY: An experimental protocol for faster web, http:// dev. chromium. org/
spdy

4. Cisco Visual Networking Index (2012), http:// newsroom. cisco. com/
press-release-content? type=webcontent& articleId=668380

5. Aggarwal, B., Akella, A., Anand, A., Balachandran, A., Chitnis, P., Muthukrishnan, C.,
Ramjee, R., Varghese, G.: EndRE: An End-System Redundancy Elimination Service for
Enterprises. In: NSDI (2010)

6. Anand, A., Gupta, A., Akella, A., Seshan, S., Shenker, S.: Packet Caches on Routers: The
Implications of Universal Redundant Traffic Elimination. In: SIGCOMM (2008)

7. Anand, A., Sekar, V., Akella, A.: SmartRE: An Architecture for Coordinated Network-wide
Redundancy Elimination. In: SIGCOMM (2009)

8. Anand, A., Muthukrishnan, C., Ramjee, R.: Redundancy in Network Traffic: Findings and
Implications. In: SIGMETRICS (2009)

9. Deutsch, P.: DEFLATE Compressed Data Format Specification version 1.3. RFC 1951
(1996)

10. Erman, J., Gerber, A., Hajiaghayi, M., Pei, D., Sen, S., Spatscheck, O.: To Cache or not to
Cache: The 3G case. IEEE Internet Computing (2011)

11. Fielding, R., Gettys, J., Mogul, J., Masinter, H.F.L., Leach, P., Berners-Lee, T.: Hypertext
Transfer Protocol - HTTP/1.1. RFC 2616 (1999)

12. Gember, A., Anand, A., Akella, A.: A Comparative Study of Handheld and Non-handheld
Traffic in Campus Wi-Fi Networks. In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS,
vol. 6579, pp. 173–183. Springer, Heidelberg (2011)

13. Korn, D., MacDonald, J., Mogul, J., Vo, K.: The VCDIFF Generic Differencing and
Compression Data Format. RFC 3284 (2002)

14. Lumezanu, C., Guo, K., Spring, N., Bhattacharjee, B.: The Effect of Packet Loss on
Redundancy Elimination in Cellular Wireless Networks. In: IMC (2010)

15. Mogul, J., Douglis, F., Feldmann, A., Krishnamurthy, B.: Potential benefits of delta encoding
and data compression for HTTP. In: SIGCOMM (1997)

16. Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland, Y., van Hoff, A.,
Hellerstein, D.: Delta encoding in HTTP. RFC 3229 (2002)

17. Qian, F., Quah, K.S., Huang, J., Erman, J., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.:
Web Caching on Smartphones: Ideal vs. Reality. In: Mobisys (2012)

18. Sanadhya, S., Sivakumar, R., Kim, K.H., Congdon, P., Lakshmanan, S., Singh, J.P.:
Asymmetric Caching: Improved Network Deduplication for Mobile Devices. In: Mobicom
(2012)

19. Spring, N.T., Wetherall, D.: A Protocol-Independent Technique for Eliminating Redundant
Network Traffic. In: SIGCOMM (2000)

20. Zohar, E., Cidon, I., Mokryn, O.O.: The Power of Prediction: Cloud Bandwidth and Cost
Reduction. In: SIGCOMM (2011)

http://dev.chromium.org/spdy
http://dev.chromium.org/spdy
http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=668380
http://newsroom.cisco.com/press-release-content?type=webcontent&articleId=668380

Modeling Cellular User Mobility Using a Leap Graph

Wei Dong1, Nick Duffield2, Zihui Ge2, Seungjoon Lee2, and Jeffrey Pang2

1 The University of Texas at Austin
2 AT&T Labs – Research

Abstract. User mobility prediction can enable a mobile service provider to opti-
mize the use of its network resources, e.g., through coordinated selection of base
stations and intelligent content prefetching. In this paper, we study how to per-
form mobility prediction by leveraging the base station level location information
readily available to a service provider. However, identifying real movements from
handovers between base stations is non-trivial, because they can occur without
actual user movement (e.g., due to signal fluctuation). To address this challenge,
we introduce the leap graph, where an edge (or a leap) corresponds to actual
user mobility. We present the properties of leap based mobility and demonstrate
how it yields a mobility trace more suitable for mobility prediction. We evaluate
mobility prediction on the leap graph using a Markov model based approach. We
show that prediction using model can substantially improve the performance of
content prefetching and base station selection during handover.

1 Introduction

Mobile network providers have a strong desire to optimize network resources due to the
scarcity of radio frequency spectrum and the rapidly increasing bandwidth demands of
mobile users. The ability to predict short-term user mobility can be useful in optimizing
these resources. For example, at the network layer, accurate prediction can inform the
choice of basestation(s) used to communicate with a mobile device. At the application
level, different delivery strategies in the network based on expected movement (e.g.,
prefetching) could improve both the user experience and network efficiency.

A recent body of work has examined user mobility prediction from data collected on
user devices, e.g., by using GPS or Wi-Fi associations readings [10,15,16,19]. However,
the spatial information most relevant from a provider’s perspective would be the cellular
basestations that mobile devices associate with. This data is readily and ubiquitously
available to mobile operators without requiring additional instrumentation of devices,
and does not pose the coverage, energy-consumption, and privacy concerns of GPS
and Wi-Fi association based techniques. Thus, this paper takes a novel provider-centric
approach: we study how to perform mobility prediction by using the base station-level
location information readily available to a cellular service provider. This data reports
the active set of basestations with which a given mobile device is currently associated,
and, in particular, a data record is generated for each soft handover event that changes
a user’s active set.

Despite the advantages of handover traces, there are a number of challenges that
make it non-trivial to use handover data directly as a mobility trace. First, while it seems
natural to use the active set to define a user’s location, fine granularity of the coverage
intersections is unachievable or unreliable due to the dynamic nature of radio environ-
ment. Using the active set to define location can also suffer from the state-explosion

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 53–62, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

54 W. Dong et al.

problem, since a mobile device may see any combination of tens of sectors in densely
covered regions. Secondly, not all handovers happen due to user mobility. Other causes
include radio signal and workload fluctuations. In these cases, it is not obvious how to
distinguish fluctuations from real user mobility.

To address these challenges, we introduce a leap graph, where an edge (or a leap)
between two sectors denotes that moving from one sector to the other requires actual
user mobility. A leap consists of two or more sector-level transitions. We use a data
driven approach to identify sectors that overlap, and find leaps in the handover data be-
tween non-overlapping sectors. We then design procedures to effectively leverage the
transitions that are not leaps and fully extract the leap information. The resulting leap
graph differs significantly from the direct handover graph in terms of the number of
state changes and degree. It effectively reduces fluctuations, yielding a mobility trace
more suitable for mobility prediction. We study mobility prediction on the leap graph
using a Markov-based approach. We also show the performance of our mobility pre-
diction in two example applications: prefetching and handover optimization. Using a
month of handover data from a cellular service provider, we show that our approach
can improve content prefetching hit-rate to 84%, compared with 40% for a popularity-
based approach. We also show that our approach can potentially reduce the number of
handovers by 38% on average.

The rest of the paper is organized as follows: Section 2 introduces background on
cellular handovers and discusses the challenges of using handover data for mobility
prediction in detail; Section 3 describes our approach to extract the leap based mo-
bility; in Section 4 we study properties of leap traces and evaluate leap based mobility
prediction; we study prediction performance in real applications in Section 5; we review
related works in Section 6 and conclude in Section 7.

2 Background and Challenges

2.1 Soft Handover and Active set

To maintain a data connection in a UMTS cellular network, each mobile device connects
to several cell sectors when it is actively sending or receiving. A cell sector is defined by
an antenna on the base station and the frequency that it transmits in. There are typically
1–3 sectors pointing in each of three directions on each macrocell base station. The
set of sectors to which a mobile device is connected is called the active set. The size
of active set typically varies from 1 to 4 sectors depending on the quality of the radio
channel and the load on the base stations. In a UMTS network, any or all of these cell
sectors may transmit to the device at once, depending on the radio technology used.
Most modern devices use HSPA technology and only receive data from a single serving
sector in the active set at a time although this serving sector can change very quickly.

The process of adding or removing sectors from the active set is called soft han-
dover and is controlled by the radio network. A sector is added if its signal strength
is greater than a threshold and the sector has not already admitted the maximum num-
ber of connections, while a sector is removed if its signal strength falls below another
threshold [17]. Hence, the active set typically contains the sectors with the highest sig-
nal strength with respect to the mobile device. Since signal strength falls off with the
square of the distance from the antenna, the active set cells are usually close to the
mobile device in geographic space as well. We leverage this fact to use soft handover
traces to predict a device’s mobility.

Modeling Cellular User Mobility Using a Leap Graph 55

17:46:59.296 S1 S2
17:46:59.976 S2
17:47:00.936 S1 S2
17:59:41.395 S3 S2
17:59:43.195 S2
17:59:43.875 S3 S2
17:59:46.995 S2
17:59:48.355 S3 S2
18:00:35.194 S4 S5
18:04:09.481 S6

Fig. 1. Example records
of timestamp and active
set for a stationary de-
vice

13:22:32.012 U0
13:22:47.795 U1
13:22:56.088 U2
13:23:57.005 U1
13:24:56.118 U3
13:24:59.625 U4
13:25:38.340 U5
13:25:38.775 U6
13:25:40.593 U3
13:36:38.473 U7

Fig. 2. Example raw trace. Each
pair of adjacent sectors overlap.
In addition, U3, U4, U5, and U6
mutually overlap.

Trace 1 13:22:32.012 U0
13:22:56.088 U2
13:24:56.118 U3

Trace 2 13:22:47.795 U1
13:24:59.625 U4
13:36:38.473 U7

Trace 3 13:23:57.005 U1
13:24:59.625 U4
13:36:38.473 U7

Fig. 3. 3-hop leap traces for
Figure 2

2.2 Challenges

As described in Section 1, modeling user mobility through handover traces offers many
advantages. Yet there are several rather unique challenges with this approach. The first
challenge is on how to define users’ location. Different cell sectors have overlapping
coverage areas, and a mobile user is located within the intersect of the coverage areas
of all the sectors in the active set. It seems natural to use the active set to define the
user’s location as it may offer high precision. However, it turns out that the radio envi-
ronment dynamics and sectors’ workload variability can lead to significant fluctuation
in the active set, making the fine granularity of the coverage intersects unachievable or
unreliable. In addition, the combinatorial nature of the active set can potentially create
a state-explosion problem in densely covered regions where tens of sectors are visible
to a mobile device. Another approach is that we cluster/partition the geo-space into re-
gions and take the union of sectors in the region to define the location. However, we
lose the precision with this approach. In this work, we choose to use the serving cell in
the active set as the representative for location as we find it achieving a good balance
between precision and accuracy.

Another major challenge of examining the handover trace is to identify real user
mobility from handovers due to radio signal fluctuations. To understand this aspect,
we performed a controlled experiment where a stationary phone owned by a cellular
provider is set up to transmit data packets periodically. We obtained the handover logs
shown in Figure 1. We observe that handovers occur even when a user is stationary.
We also see a diverse set of sectors in the active sets. While we present more details
later in Section 4.2, it is clear that these handovers are inherently different from the
ones induced by user movement and hence present noise for mobility modeling. Signal
strength triangulation does not help in identifying which handover is due to real user
movements as signal strength at a single location can vary a lot [14].

Before describing our solution, we examine the limitations of two heuristics:

Loop Detection and Elimination: Stationary users are much more likely to alternate
among a small set of sectors than mobile users. Hence, one simple approach to elim-
inate non-mobility handovers would be to remove trace segments between repeated
occurrences of the same serving sector. However, not all stationary traces manifest a
loop, and thus this approach does not eliminate superfluous handovers. Moreover it is
possible that a users comes back to the same location after making real movements in a
short period of time, in which case the real movements will be discarded.

56 W. Dong et al.

Low-Pass Filter: Low-pass smoothing is a principled approach to suppress member-
ship fluctuations in the active set among near-by sectors. For example, we can pass
the the sectors in each consecutive active set through a queue. If a sector is already in
queue, we move it to the tail of queue. When the queue is full, we evict the oldest mem-
ber and produce a “smoothed” trace using the eviction sequence. However, the number
of sectors visible to a user varies, making it difficult to determine a single fixed queue
size. When we apply this approach to real traces with a fixed queue size, we find that it
admits superfluous handovers as mobility-induced and misses true user movement.

3 Mobility and Leaps

Individual changes in the active set do not in themselves indicate whether a handover
was due to user mobility. Thus in trying to infer mobility from the handovers, we try
to eliminate handovers involving changes whose interpretation is ambiguous, and fo-
cus instead on minimal groups of successive handovers which together likely indicate
mobility. The boundaries of these groups will be termed a leap, and a set of succes-
sive adjacent leaps together constitute a leap trace. These are constructed in a two step
procedure.

Step One: Identifying Overlapping Sectors
Informally, two sectors overlap if a handover can take place between them. Although
overlap could in principle be inferred from auxiliary sector configuration data (such as
sector antenna locations, directions and powers), this would be a complex task in gen-
eral. Instead we designate two sectors si and sj as overlapping (written si ∼ sj) if at
least one of the following two criteria holds: (i) Configurational: si and sj are based at
the same cell tower; (ii) Empirical: si and sj appear within an active set reported in the
handover trace during a specified time period (3 weeks in our evaluation). We consid-
ered alternate ways of determining overlap (e.g., considering serving sector transitions),
and they yielded marginal performance differences and thus are not discussed further.

Step Two: Creating Leap Traces
We partition the handover trace by user, then further extract the sequence of serving
sectors reported for each such user. We call each such sequence a raw trace. A segment
is a maximal ordered subset of a raw trace in which the time between handovers does not
exceed a specified timeout value. A leap is a pair sisj , i < j of sectors within a segment
such that si 	∼ sj but si ∼ sk ∀i < k < j. A leap trace on a segment {s1, s2, . . . , sm} is
a maximal set of some number � of adjacent leaps si(1)si(2), si(2)si(3), . . . , si(�)si(�+1).
A first leap trace constructed by finding a leap with initial node si(1) = s1 and then
using that leap’s final node as the initial node for the next leap, and so on until reaching
the end of raw segment. As many as m− 2 further leap traces may be constructed from
the segment by the same procedure, taking each sk, k = 2, . . . ,m−1, as the initial node
si(1) of the initial leap. But in order to avoid double counting of leaps, we stipulate that
if a leap trace starts to repeat leap segments already identified in trace from a previous
starting sector, we ignore the remaining trace after including at most some number n of
further leaps. The n is determined by the mobility modeling requirement. For example,
n = 1 for first order Markov model and n = 2 for second order Markov model.

To illustrate, we show an example raw trace in Figure 2, where all adjacent sectors
overlap (e.g., U0∼U1, U1∼U2, etc.). In addition, U3, U4, U5, and U6 overlap with
each other. Starting from U0, we can get Trace 1 in Figure 3. There can be multiple leap

Modeling Cellular User Mobility Using a Leap Graph 57

traces from the same raw trace. For example, starting from U1, we can get Trace 2 in
Figure 3. In fact, the number of different leap traces can be exponentially large to the
length of raw trace. Moreover, leap traces from different starting sectors may become
identical after a few leaps since they are derived from the same raw trace. In this case
we only keep the useful information and discard the repeated part as described above.

The leap trace ignores handovers due to signal fluctuations or user movements in
small areas, while focusing on longer trips. This is sufficient for our target applications
because we focus on improving handovers or prefetching in larger areas. We study
application specific performance in section 4.

4 Properties of Leap Traces and Leap-Based Mobility Prediction

4.1 Data Set

We use anonymized event logs collected from several RNCs (Radio Network Con-
trollers) in a major U.S. cellular operator in December 2011. These RNCs control a
significant fraction of the base stations in a large U.S. city. The logs record soft han-
dover events, i.e., additions and removals from each device’s active set. Each log entry
has a timestamp, and devices are anonymously identified by an irreversible hash of the
device’s IMSI, which is unique per SIM card. All device and subscriber identifiers are
anonymized to protect privacy without affecting the usefulness of our analysis. Fur-
thermore, the data set does not permit reversing the anonymization or re-identification
of subscribers. We use the data of the whole month (the first 3 weeks are considered
known and used for training, the last week is considered unknown for testing purpose)
and include all users from the trace. The logs recorded 67 million soft handover events
for 413K users distributed over 5K sectors. The logs are generated only for active de-
vices transmitting data, but not for idle devices. In our evaluation, if two subsequent
soft handover records for a given device is apart by more than 30 minutes, we assume
that the device has been idle, and start a new mobility segment using the latter record.

Our data set contains proprietary information and cannot be made public.

4.2 Characteristics of Leap Traces

We extract the leap traces from the above data set. In this subsection, we present a
high-level characterization of the aggregate leap traces.

We first compare the length of raw trace segments and leap segments. Figure 4(a)
plots their CDF. We can see that leap segments are much shorter than raw segments.
Specifically, over 80% of the raw segments generate no leap at all, indicating limited
or no user mobility. In contrast, around 20% of raw segments contain only 1 active
set report. This result illustrates that many soft handovers in raw traces either do not
involve serving sector transition or the transition happens between close-by sectors and
are likely not due to user mobility. This highlights the importance of our approach in
separating the different causes for handovers. In Figure 4(b), we compare the inter-leap
time and inter-handover time. We observe that the inter-leap time is much longer than
inter-handover time. Specifically, the median of inter-leap time is 636 seconds, while
for inter-handover time the number is 2.8 seconds.

58 W. Dong et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Segment length

Raw segments
Leap segments

(a) Segment length: Raw trace vs. Leap graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000 10000 100000

C
D

F

Time (s)

Inter-leap time
Inter-handover time

(b) Inter-leap time vs. Inter-handover time

Fig. 4. Segment Characteristics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
D

F

Degree

Leap
Transition

Overlapping
2nd-order Overlapping

Fig. 5. Degree distribution comparison

 0

 20

 40

 60

 80

 100

Popular S S_w/dst. T T_w/dst.

P
re

di
ct

io
n

ac
cu

ra
cy

Prediction algorithm (# sector = 2)

Overlapping sector
Exact sector

Fig. 6. Prediction accuracy. S and T denotes
second- and third- order Markov models,
respectively.

We define the leap graph as the graph of sectors in which the edges represent the
presence of a leap transition in any of the leap traces. Similarly, we also consider graphs
obtained from serving sector changes, from overlapping sets, and from second-order
overlapping sets1. In Figure 5, we compare their degree distributions. We first observe
that the size of overlapping set can be quite large (e.g., more than 20 for around 30% of
cases), while the second-order overlapping set is even larger. Compared to the second-
order overlapping set, the degree of leap graph is significantly low (e.g., 10 or less for
more than 60% of cases). For many sectors, it is even smaller than the number of serv-
ing sectors they can transition to (marked as “Transition”), which suggests that people
follow similar patterns (e.g., along a highway) and only move out of a region with very
limited choices of ways. While fewer choices can make the mobility prediction using
the leap graph easier, we also observe in the tail part that the leap degrees may approach
the size of second-order overlapping, indicating that areas with dense cellular coverage
tend to have more mesh-like transportation paths (e.g., downtown areas) – posing a
challenge for mobility prediction. A very small fraction of sectors have larger leap de-
gree than the degree of second-order overlapping, that is because a leap may happen
between two sectors more than two hops away, e.g., when a user stops using his phone
for a short period of time while he is still moving.

1 u is in the second-order overlapping set of s if s and u are not overlapping, and there exists t
that overlaps with s and u.

Modeling Cellular User Mobility Using a Leap Graph 59

4.3 Mobility Prediction on Leap Graph
In this subsection we study mobility prediction on the leap based graph. We adopt
Markov-based approaches for prediction, as it has been proven effective in the liter-
ature [12,19]. We consider two variants: second-order Markov model using one leap as
a state and third-order Markov model using two consecutive leaps as a state. Using a
higher-order model allows us to make predictions based on not only the user’s current
location but also the recent path trajectory. We further consider a variant where we as-
sume the knowledge of the destination of a segment, to understand how such additional
information can help with mobility prediction. This is motivated by the observation
that many people have highly predictable daily routine and that the destination may be
projected simply based on the time of day [8,9]. In the data trace, we estimate the prob-
ability of state s being the next state as P (s|d, o) where d is the destination (the last
sector in trace segment) and o is the current state.

We train our prediction models with the first 3 weeks’ data and evaluate them with
the leap segments extracted from the last week’s data. Given the current state o, we
predict m next sectors using the m highest-probability leaps, while we vary m from
1 to 3. We evaluate how often we can correctly predict the next leap. We adopt two
accuracy measures: (1) the predicted sector exactly matches the actual sector in the
testing data, and (2) the predicted sector is in the overlapping set of the actual sector.
We also count how often we cannot make a prediction and report the result. To form
a base for comparison, we also employ a naive scheme (denoted by “Popular”), where
among all possible next leaps, we pick m leaps with the most transitions.

In Figure 6, we compare the prediction accuracy of the popularity based approach,
second- and third-order Markov models (with and without destination information). We
select m=2 and report both accuracy measures. In the figure, the accuracy of predict-
ing any one among the overlapping set is significantly higher than predicting the exact
match, which is well expected. We make three observations. First, the Markov mod-
els significantly outperform the simple popularity-based approach. Specifically, when
using the overlapping set of the actual sector, the accuracy of the popularity-based ap-
proach is 68%, while the accuracy of Markov models is 80% or higher. Second, the
knowledge of destination information can further improve the prediction accuracy of
the exact sector (e.g., from 33% to 46% in second-order Markov model) but helps little
when we use the overlapping set of the predicted sector to measure accuracy. Finally
we observe that the accuracy gain from using longer history in the third-order Markov
models is marginal. On the other hand, the probability of being able to predict a sector
is lowest with the third-order Markov model with destination information (62%). This
is because training data is often unavailable for consecutive leap transitions with a par-
ticular destination. In contrast, the popularity based approach, due to its simplicity, can
make a prediction for 99.5% of the cases, and the second-order Markov model without
destination information can make a prediction for 98.4% of the cases. In practice, we
can start with as much information as possible and fall back to less demanding settings
if needed [16].

5 Applications

There are many potential applications of future sector prediction. In this section we
focus on two example applications, namely prefetching and handover optimization, and
quantify the application specific performance of our prediction schemes.

60 W. Dong et al.

5.1 Prefetching

In this application scenario, we prefetch user requested content to a predicted future
cell tower, such that the user can retrieve the content upon entering the range of the cell
tower. The content a user is going to request is often predictable [5, 18]. Users can also
request for prefetching since it saves time for them.

Once a prefetching request is made, a prediction is made based on the user’s current
mobility history. One complication here is that at a given sector in a raw trace, there
could be multiple different leap traces leading to it as well as multiple different leap
traces “leaping over” it, e.g., depending on which sector we start with in the raw trace.
We lose information by considering only leap trace and ignoring the rest. In this paper
we combine the predictions made with these different leap traces using the following
simple heuristic (assuming second order Markov model).

We extract all possible leap traces and from them we get the different ending leaps.
Let Lij = (si, sj) be one of the ending leaps, where si and sj are sectors. Let P (S|Lij)
be the probability vector predicted using Lij , where S is a vector of potential future
sectors. The final prediction is then computed as P (S) =<< P (S|Lij) >i>j (<>i

means taking average over all i).
For prefetching, the criteria for a good prediction is that the cell tower of the pre-

dicted sector become within reach later. In our evaluation we consider a prediction
correct if the sectors on the predicted cell tower appears in the active set in the future.

Due to space limit, we only present herein the result using second order Markov
model without assuming destination knowledge. We make a prediction in the middle of
the segment, and we choose the segments that have more than 3 leaps after the predic-
tion is made to ensure that the user remains active after our prediction point. Then we
prefetch the content to the cell tower of the top m predicted sectors. We vary m from 1
to 3. We run 10k tests and record how many times the prefetched content become avail-
able to the user after the prediction. We find that we can make a prediction for 99.6%
of the times, which is slightly higher than the leap-based case (98.4%) because we ef-
fectively combine the predictions of different ending leaps. Out of the predictions we
make, the accuracy is 84.7% when m = 1, suggesting 84.7% of the times the prefetched
content becomes available to the user. Increasing m to two and three increase the num-
ber to 91.3% and 94.4%, respectively. We also find that 97% of the time the content
becomes available within an hour. In comparison, prefetching to the cell tower at the
most popular leap achieves lower than 40% accuracy.

5.2 Handover Optimization

Next we use future sector prediction to optimize handovers. The idea is based on the
predicted leap, we can suggest which sector to hand over to, such that we reduce the
total number of handovers. Detailed simulation of handovers is not trivial, as it requires
a detailed modeling of signal strength variations, traffic load, load changes, etc. In this
paper we only consider an idealized scenario to demonstrate the potential gain we can
achieve. Specifically, after each leap we make a prediction of the next leap. Based on
the prediction we first rank the sectors in the active set by giving preference to sectors
that overlap with the predicted sector. Then we break ties using physical distance to the
predicted sector (the closer the better). We use the highest ranked sector as the suggested
handover target. To evaluate how many handovers we can potentially save, we count

Modeling Cellular User Mobility Using a Leap Graph 61

how many consecutive future handovers in the real trace have the suggested sector in
the active set before the next leap actually happens, as these handovers can potentially
be replaced by one handover to the suggested sector. In our evaluation we only consider
the traces that have at least 2 leaps. We predict the second leap based on the first one
using second-order Markov model without assuming destination information. We run
the test for 10k times and we find that less than 0.1% of the times the suggested sector
does not appear in future handovers, which means the prediction is wrong and may
cause extra handovers; 59% of the times we can save at least one handover by using
the suggested sector, and 32% of the times we can save three or more. On average, our
handover optimization reduces the handover count by 38%.

6 Related Work

Despite the plethora of work in mobility modeling, we believe that this is the first work
to address the unique challenges of mobility prediction using cellular handover traces
and to present an approach that works well on real data. We survey a key selection of
prior work here.

An important body of work focused on predicting locations as defined by Wi-Fi as-
sociations [10,15,16,19]. Much of this work focused on evaluating the effectiveness of
well known location predictors such as Markov-models [19], compression-based pre-
dictors [16], and CDF predictors [15]. Others have focused more on modeling [10]. In
contrast to cellular handover traces, which include many handovers that occur when a
user is stationary, changes in Wi-Fi associations represent real movement in most cases.
Thus, our work is unique in addressing the inherent challenge of ambiguity in predict-
ing future cell sectors in cellular traces. Nonetheless, we build upon the same principled
predictors, such as Markov-models.

There have been previous proposals on location prediction in cellular networks [1,3,
4,11,13]. However, they either make unrealistic assumptions (e.g., that basestations are
mobile [13] or a prefect sector structure [4]), require information that is not typically
available to a cellular operator (e.g., reports of device location and velocity [1, 11]), or
are designed for different purposes (e.g., to limit cell updates [3] and paging [6]). As a
result, all of these approaches have only been evaluated on synthetic data. Our approach
is the first to be evaluated on real cellular handover traces.

Finally, there have been studies on the predictability of wireless attributes, such as
cellular connectivity [7], Wi-Fi connectivity [12], and commute routes [2]. The predic-
tors for them use similar data to our work, but are orthogonal in design and purpose.

7 Conclusion

In this paper we introduced a novel leap based approach to extract user mobilities from
soft handover data, which is readily available but also contains significant fluctuations
even for a stationary device due to signal strength change or load balancing. Our study
showed that our approach can effectively reduce fluctuations in the raw handover data
while maintaining real user mobility pattern. In our experiments, we demonstrated sig-
nificant gain in prediction accuracy using our leap based approach, and performance
improvement in two example applications that we considered. While our approach is
provider-centric, a service provider can potentially make location prediction for a user

62 W. Dong et al.

available to selected applications on the user’s device, so that the applications can pro-
vide a better service to the user. In the future, we plan to apply our approach to real
world location based services to find further application specific optimizations and see
its benefit in real systems.

References

1. Akyildiz, I.F., Wang, W.: The predictive user mobility profile framework for wireless multi-
media networks. IEEE/ACM Trans. Netw. 12(6), 1021–1035 (2004)

2. Becker, R.A., Caceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.:
Route classification using cellular handoff patterns. In: UbiComp 2011, pp. 123–132. ACM,
New York (2011)

3. Bhattacharya, A., Das, S.K.: Lezi-update: an information-theoretic approach to track mobile
users in pcs networks. In: MobiCom 1999, pp. 1–12. ACM, New York (1999)

4. Chellappa, R., Jennings, A., Shenoy, N.: The sectorized mobility prediction algorithm for
wireless networks. In: In Proc. ICT (2003)

5. Chen, X., Zhang, X.: A popularity-based prediction model for web prefetching. Com-
puter 36(3), 63–70 (2003)

6. Das, S., Das, S.K., Sen, S.K.: Adaptive location prediction strategies based on a hierarchical
network model in cellular mobile environment. The Computer Journal 42, 473–486 (1996)

7. Deshpande, P., Kashyap, A., Sung, C., Das, S.R.: Predictive methods for improved vehicular
wifi access. In: MobiSys 2009, pp. 263–276. ACM, New York (2009)

8. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility
patterns. Nature 453(7196), 779–782 (2008)

9. Isaacman, S., Becker, R.A., Cceres, R., Kobourov, S.G., Rowland, J., Varshavsky, A.: A tale
of two cities. In: HOTMOBILE 2010, pp. 19–24 (2010)

10. Kim, M., Kotz, D.: Extracting a mobility model from real user traces. In: Proceedings of
IEEE INFOCOM (2006)

11. Liang, B., Haas, Z.J.: Predictive distance-based mobility management for multidimensional
pcs networks. IEEE/ACM Trans. Netw. 11(5), 718–732 (2003)

12. Nicholson, A.J., Noble, B.D.: Breadcrumbs: forecasting mobile connectivity. In: MobiCom
2008, pp. 46–57. ACM, New York (2008)

13. Pathirana, P.N., Savkin, A.V., Jha, S.: Mobility modelling and trajectory prediction for cel-
lular networks with mobile base stations. In: MobiHoc 2003, pp. 213–221. ACM, New York
(2003)

14. Schulman, A., Navda, V., Ramjee, R., Spring, N., Deshpande, P., Grunewald, C., Jain, K.,
Padmanabhan, V.N.: Bartendr: a practical approach to energy-aware cellular data scheduling.
In: MobiCom 2010, pp. 85–96. ACM, New York (2010)

15. Song, L., Deshpande, U., Kozat, U.C., Kotz, D., Jain, R.: Predictability of wlan mobility and
its effects on bandwidth provisioning. In: INFOCOM. IEEE (2006)

16. Song, L., Kotz, D., Jain, R., He, X.: Evaluating location predictors with extensive wi-fi mo-
bility data. In: Proceedings of INFOCOM, pp. 1414–1424 (2004)

17. Su, S.-F.: The UMTS Air-Interface in RF Engineering. McGraw-Hill (2007)
18. Su, Z., Yang, Q., Zhang, H.-J.: A prediction system for multimedia pre-fetching in internet.

In: MULTIMEDIA 2000, pp. 3–11. ACM, New York (2000)
19. Yoon, J., Noble, B.D., Liu, M.: Building realistic mobility models from coarse-grained traces.

In: In Proc. MobiSys, pp. 936–5983. ACM Press (2006)

Understanding Mobile App Usage Patterns

Using In-App Advertisements

Alok Tongaonkar1, Shuaifu Dai2,3, Antonio Nucci1, and Dawn Song3

1 Narus Inc, USA
2 Peking University, China

3 University of California, Berkeley, USA
{alok,anucci}@narus.com, daishuaifu@pku.edu.cn, dawnsong@cs.berkeley.edu

Abstract. Recent years have seen an explosive growth in the number
of mobile devices such as smart phones and tablets. This has resulted
in a growing need of the operators to understand the usage patterns of
the mobile apps used on these devices. Previous studies in this area have
relied on volunteers using instrumented devices or using fields in the
HTTP traffic such as User-Agent to identify the apps in network traces.
However, the results of the former approach are difficult to be extrapo-
lated to real-world scenario while the latter approach is not applicable
to platforms like Android where developers generally use generic strings,
that can not be used to identify the apps, in the User-Agent field. In this
paper, we present a novel way of identifying Android apps in network
traces using mobile in-app advertisements. Our preliminary experiments
with real world traces show that this technique is promising for large
scale mobile app usage pattern studies. We also present an analysis of
the official Android market place from an advertising perspective.

1 Introduction

In recent years, there have been dramatic changes to the way users behave,
interact and utilize the network. More and more users are accessing the internet
via mobile devices like smart phones and tablets. According to recent statistics by
Canalys [1], 488 million smart phones have been sold in the year 2011, compared
to 415 million personal computers. Users of these devices typically download
applications (commonly called mobile apps) that provide specific functionality.
A majority of these apps access the internet. For example, 84% of the 55K
Android apps in the official Android app market [2] that we randomly picked,
required permission for Internet access. This has led to a burgeoning interest
amongst network operators in understanding the mobile app usage patterns in
their networks.

Recent years have seen an increasing number of research works that analyze
network traffic to understand usage behaviors of mobile apps ([3,4]). However,
these papers rely on techniques for app identification which are not applicable for
Android apps or rely on having access to the Android devices and monitoring the
specific devices. For example, Xu et al [3] and Maier et al [5] use User-Agent

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 63–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

64 A. Tongaonkar et al.

field in the HTTP header to identify the app. Apple has a guideline for iOS
which requires that this field contain app identifier. However, this guideline is
not strictly enforced. For Android apps the situation is even worse since devel-
opers generally put some generic string (not unique to the app but identifying
the Android version and such) in this field. On the other hand the approach
taken of making some users use apps on specific devices to collect network trace
and profile app usage does not give real-world data ([4,6]). Moreover, manual
execution of apps suffers from the problems of scalability. The approach of using
Host field in the HTTP header for identifying the apps does not work all the
time because the same host may serve multiple apps. This is typically true when
the same app developer such as Zynga publishes multiple apps. Also many plat-
forms, such as Facebook mobile app development platform support apps from
different developers. The apps which are developed on these platforms typically
use the servers from the platform provider to provide their service. For instance,
m.facebook.com hosts diverse apps such as Pirates Mobile, a gaming app, and
Squats, a personal training app.

In this paper, we present a new technique of identifying app usage patterns
based on the advertising traffic originating from the apps. This technique is
based on the observation that mobile apps may communicate with many differ-
ent servers for different purposes. A typical Android app may contact the web site
of the app provider to obtain the API information, connect to a cloud service like
Amazon EC2 for downloading some files, contact sites such as doubleclick.com
and mobclix.com to retrieve ads, and provide usage stats to sites such as
googleanalytics.com. We can classify network traffic from an app into three
main categories similar to the classification used by Wei et al [6] as follows:
(i) Origin: traffic that comes from the servers owned by the app provider (e.g.
pandora.com for Pandora). (ii) Content Distribution Network (CDN)+Cloud:
traffic that comes from servers of CDNs (e.g., Akamai) and cloud providers (e.g.
Amazon AWS). (iii) Third-party: traffic from various advertising services (e.g.,
AdMob) and analytical services (e.g., Omniture).

Previous studies of mobile app usage have focused on either origin traffic ([3])
or CDN+cloud traffic ([7]). We present a different approach by studying usage
behavior of mobile apps based on advertising traffic. Advertising is a critical
component of the mobile app ecosystems from a financial perspective. We believe
that usage patterns studies based on advertisements will be very valuable in
future. Many mobile apps use one or more advertising services as a source of
revenue. To use these services, developers must register their apps with the
advertising service provider. Developers bundle third-party, binary-only libraries
(called ad libraries) from the advertising service providers into their apps. The
information about the ad libraries being used by an app is usually present in
the meta-data provided in the installable package of the apps. We can use this
information to understand the distribution of advertisements in the apps.

Another interesting observation is that typically an advertising service provider
identifies the app using the app name provided by the developer or unique
app identifier generated by the service provider at the time of the registration.

Understanding Mobile App Usage Patterns Using In-App Advertisements 65

These app names or identifiers are present in network flows to the advertising
service providers. We can use these identifiers to study the patterns of mobile
app usage from real world network traces.

Mobile in-app ad libraries have been studied before in the context of security
and privacy [8,9,10] and energy consumption [11]. This is the first work to present
a systematic study of usage patterns of mobile apps using ad flows. We believe
that considering the critical role of advertisements on mobile app ecosystems,
our research paves the way for new studies which can be very useful for a variety
of players like network operators, advertising service providers, advertisers, and
mobile app developers. We focus on understanding the app usage patterns on
the Android platform in this work. However, the ideas and techniques presented
here are equally applicable to iOS and Windows Mobile platforms.

The main contributions of this work are as below.

•We present a systematic study of advertising libraries on the Android platform.
• We present results of analyzing more than 50K Android apps from an adver-
tising perspective.
• We present results from evaluating the network traces from a Tier 2 cellular
service provider.

The rest of the paper is organized as follows. In Section 2 we present our analysis
of advertisements in apps in the official Android market. In Section 3 we present
mobile app usage behavior patterns from real world network traces. We discuss
the limitations and future work in Section 4. Finally we present the conclusions
in Section 5.

2 App Market Analysis

In this section we present an analysis of the official Android app market, Google
Play Store, with respect to the different categories of apps. Note that our goal
is not to do a comprehensive study of all apps in the store but give a flavor of
the kinds of analysis possible with the advertising information.

2.1 Background

Google Play Store is the most popular Android app market with over 500K apps
which includes both free and paid apps. Developers of many of the free apps rely
on advertisements (ads) for generating revenue so we focus only on free apps
in this paper. Android apps are distributed as special files, called Application
Package File (APK), with .apk file extension. Along with the application bina-
ries and resources, each APK file contains an AndroidManifest.xml file. The
manifest file is an XML file that contains meta-data about the app such as the
name of the app, permissions required, resources used, libraries used, etc.

Developers of free apps typically use third-party advertising service providers
such Google Ads or Smaato to display ads in the app. Ad service providers
may differ in the way that ads are provided to the app but they have some
common characteristics. Most ad networks provide libraries for user-interface

66 A. Tongaonkar et al.

Ad Library

App Identifier for Ad Library

Fig. 1. Sample of Zedge Manifest File

code (to present their ads) and network code (to request ads from the ad networks
servers). The libraries are designed to be tightly bundled with host apps to
make it more difficult to disable the ad functionality or defraud the ad network.
When a developer registers an app with an ad service provider, she may receive
a developer identifier or app identifier. The SDK for the ad library contains
instructions, on how to embed the ad library in the app, such as the permissions
required by the ad library and the mechanism used by the ad service provider
to identify the app or the developer. The ad service provider may use either app
name or an identifier generated at registration time to identify the app or the
developer.

To understand how ad libraries are used, consider Zedge, which is a very pop-
ular app (more than 1M downloads) that is used for downloading wallpapers and
ringtones.We use a tool for reverse engineering third-party, closed, binaryAndroid
apps, called apktool [12], to extract the manifest file in the .apk file into a human
readable form. Figure 1 shows themanifest file for Zedge. We can see that theman-
ifest file lists three ad libraries that are embedded in Zedge - (i) Google Ads, (ii)
InMobi, and (iii) MoPub.Many (but not all) of the ad service providers require the
identifier to be mentioned explicitly in the manifest file. For instance, in Figure 1,
the identifier of Zedge for Google Ads (a14d2b448c73a08) is provided in the meta-
data field for AdMob (owned by Google). An interesting point to note is that even
though AdWhirl is not explicitly mentioned in the activity list there is an identi-
fier of Zedge (523e4ae0705248b0b2b770a91d33d1c6) for AdWhirl. The package
name for Zedge is net.zedge.android. Users can search for an app in the Google
Play Store using its package name. Google Play Store provides a lot of informa-
tion regarding the app such as the developer name, the number of downloads, and
the category of the app. We can make use of this information to perform in-depth
analysis of the app market from an advertising point of view.

2.2 Dissecting Google Play Store

We downloaded 55K free apps from Google Play Store. These apps were chosen
randomly to avoid any bias towards the most popular apps or any particular
category of apps. 46K of the apps asked for the android.permission.INTERNET

Understanding Mobile App Usage Patterns Using In-App Advertisements 67

0
1000
2000
3000
4000
5000
6000

N
um

be
ro

fA
pp

s

(a) All Apps

0
500

1000
1500
2000
2500
3000
3500

N
um

be
ro

fA
pp

s

(b) Apps Containing Ads Library

Fig. 2. Top 10 Categories for Apps

which is needed by any app that needs to access the network. We obtained
the category of each app by querying the Play Store. We identified 30 different
categories to which the apps belonged. Our analysis showed that the top 10
categories accounted for ≈60% of the apps. Figure 2a shows the distribution of
the apps in these top 10 categories.

We picked 30 popular ad libraries on Android platform [8] and generated rules
for identifying these libraries from the manifest files. For 19K of these 46K apps
we were able to identify the ad libraries that were being used. Figure 3a shows
the number of ad libraries used by each app. We can see that a majority of the
apps (≈15K) use only 1 ad library and less than 0.3% of the apps use more than
5 ad libraries. Figure 3b shows the most popular ad libraries in these apps. We
can see that Google Ads is the most popular ad library as it is embedded in close
to 12K apps, followed by Millennial Media (1.7K apps) and Mobclix (1.3K apps).
The long tailed nature of the distribution suggests that, in practice, studying
any data with respect to the top 50-100 ad libraries would result in high coverage
in terms of apps.

We categorized the 19K apps which contained identifiable ad libraries. Fig-
ure 2b shows the distribution of the apps in the top 10 categories that we identi-
fied above. We see that of the 5.5K apps in the Tools category only 2K contained
ads. On the other hand the percentage of Entertainment apps containing ads is
much higher (2.6K out of 5.2K). Brain apps (related to puzzles and such) have
the highest proportion of apps containing ads (3.2K out of 3.9K). The proportion
of apps containing ads in other categories which have similar number of apps in
our dataset such as Business, Books and Reference, Travel and Local, News and
Magazines, Education, and Casual, shows a large variance. Such information is
very useful for new developers looking to pick a category to develop apps in or for
ad providers to target development community in any particular category. We
can further drill down into the distribution of categories per ad library or pop-
ularity of different ads library in a given category. Figure 4a and Figure 5 show
the distribution of apps in three of the most popular ad networks in our data
set: Google Ads, Mobclix, and Millennial Media. We can see that Google Ads is
quite evenly spread amongst various app categories while Millennial Media and

68 A. Tongaonkar et al.

0
2000
4000
6000
8000
10000
12000
14000
16000

1 2 3 4 5 5+

N
um

be
ro

fA
pp

s

Number of Ads Library

(a) Distribution of Ad Libraries in Apps

google.ads,
11780

millennialmedia,
1742

mobclix, 1328

pontiflex, 491
airpush, 418
mobfox, 363

greystripe, 318
youmi, 205
tapjoy, 169

others,
1954

(b) Number of Apps Per Ad Library

Fig. 3. Ads Library Info

Mobclix ad libraries are very unevenly distributed amongst the categories. The
top 2 categories for Mobclix are Entertainment and Casual, while for Millenial
Media they are Brain and News and Magazines.

The popularity of an app is commonlymeasured in terms of the number of down-
loads of the app. Having the information about the ad libraries in an app allows
us to obtain many different perspectives from the downloads data. For instance,
for each ad network, we can determine the number of downloads for each app.
Figure 4b shows the downloads data for apps containing Google Ads. We can see
that the maximum download numbers are for 10K-50K downloads (3K of the 12K
apps). We can plot similar graphs for other ad networks or even include app cate-
gory dimension in these graphs. This information is useful to various entities such
as network providers or developers looking to select an ad library.

3 Network Trace Analysis

In this section we present the analysis of real-world network traces from a Tier 2
cellular service provider. We collected the HTTP headers for all users in the net-
work for a week (June 18-25, 2011). Here we present our analysis of the traces from
two days in the week - one a weekday (June 21) and the other a weekend (Jun 24).
We note that due to company non-disclosure agreements we can not release our
dataset/tools. However, this paper contains sufficient details to perform similar
analysis on any publicly available trace containing mobile data.

3.1 Methodology

We have developed a system for analyzing Android apps that installs and runs
eachAndroid app in a separate emulator running in a virtualmachine [13]. Here we
describe the parts of the system relevant for collecting ad flows.We can identify an
ad flow from the Host field in the HTTP header field. We created a database of the
host names used by different ad networks as follows. For each ad library we picked
a few apps using the library. We used tcpdump to collect all the network traffic
from the virtual machine. We ported the strace utility to Android to log each
networking system call performed by the app.We identified all the threads started

Understanding Mobile App Usage Patterns Using In-App Advertisements 69

0

200

400

600

800

1000

1200

1400
N
um

be
ro

fA
pp

s

(a) Distribution of Categories

0 500 1000 1500 2000 2500 3000

1 5
5 10

10 50
50 100

100 500
500 1,000

1,000 5,000
5,000 10,000

10,000 50,000
50,000 100,000
100,000 500,000

500,000 1,000,000
1,000,000 5,000,000
5,000,000 10,000,000
10,000,000 50,000,000

50,000,000 100,000,000
100,000,000 500,000,000

Number of Apps

N
um

be
ro

fD
ow

nl
oa

ds

(b) Number of Downloads Per App

Fig. 4. Google Ads

0

50

100

150

200

250

300

N
um

be
ro

fA
pp

s

(a) Mobclix

0

50

100

150

200

250

300
N
um

be
ro

fA
pp

s

(b) Millenial Media

Fig. 5. Distribution of Categories

by the app using the process id (pid) of the app. Based on this thread information,
we can filter out the traffic that does not origin from the app. We extracted the
host names for the ad library by manually inspecting these traces and identifying
the host names that contain parts of the ad library name.

The main challenge in performing any meaningful analysis on real-world traces
is to identify the app from the ad flow. As mentioned in Section 2.1, ad networks
identify the app using either app name or an identifier that is unique to the app or
the developer. It is easy to identify an app from an ad flow that uses app name to
identify the app. All we need to know is the key name used in the query. We can
do that by running a single app, that contains the given ad library, as explained
above, and obtain the key name that is used for the identifier. For instance, for
Google Ads flows, the app name is stored in the query parameter with the key
msid. So we can just look for msid= for any flow to Google Ads and the value of the
parameter will give the app name such as net.zedge.android. Figure 6b shows
a Google Ads flow. We can see that the flow belongs to the app with the package
name com.portugalemgrande.LiveClock. For the ad networks that use unique
alphanumeric strings as identifier, the identifiers may be present in the manifest
files.We can download all apps from anymarket, extract the manifest file, and gen-
erate a mapping of the identifier for each app for each ad library. Figure 6(a) shows

70 A. Tongaonkar et al.

GET /mads/gma?preqs=2&...&u_w=320&msid=com.portugalemgrande.LiveClock&...

GET /getInfo.php?appid=523e4ae0705248b0b2b770a91d33d1c6&appver=300&client=2
(a) HTTP Traffic of AdWhirl

(b) HTTP Traffic of Google Ads

Fig. 6. HTTP Traffic Examples

an AdWhirl flow with the identifier value 523e4ae0705248b0b2b770a91d33d1c6.
Currently we are in the process of building a comprehensive mapping from iden-
tifiers to app names for the popular ad networks. However, due to the restrictions
imposed by Google on the number of apps that can be downloaded every day, the
mapping currently does not cover a large percentage of apps. Hence, we focus our
analysis on two popular ad networks (Google Ads and Smaato) that use app names
for identifying the apps in the ad flows.

3.2 Dissecting Real World Traces

We analyzed the two days of data to see if the results presented by Xu et al [3]
hold in terms of temporal patterns of different categories from an advertising
perspective. We broke up each day’s data into 1 hour buckets and analyzed the
traffic at three different times of the day - (i) 6.00am-7.00am, (ii) 12pm-1pm,
and (iii) 6.00pm-7pm. Figure 8 shows the number of apps identified that belong
to Google Play Store and the ones from the unofficial third-party markets. We
can see that out of the identified apps for Google Ads (Figure 7a), only 35-38%
belong to the official Google Play Store. For Smaato, (Figure 7b), we have a much
smaller number of identified apps, but the percentage of those apps belonging to
Google Play Store is much higher (70-80%). What this seems to indicate is that
Google Ads is a popular choice for many of the app developers for the unofficial
third-party app markets.

Xu et al [3] had observed some interesting diurnal patterns in different app
categories. For example, they report that the weather and news apps are used
most frequently in the morning while sports apps peak in the early evening.
Similarly, an ad network provider, or a network operator, or a developer is likely
to find the patterns of usage of apps containing ads very insightful. Figure 8a
shows the top 5 categories of apps present in the traffic at different times for
Google Ads. We see that the app usage goes down at noon compared to early
morning and early in the evening. This is true for both weekday and weekend.
Another interesting observation is that the top 5 categories for apps using Google
Ads remains same irrespective of the time of the day or the day of the week.
What changes is the proportion of apps being used in one of these categories.
For instance, maximum number of Arcade apps are used on a weekend evening.
The top category differs for Smaato (Arcade) from Google Ads (Brain) but
surprisingly it remains the same over time just as for Google Ads. Figure 8b
shows the usage patterns for the same categories over 12 hours on 21st June for
Google Ads. Again, we see the number of apps vary through the day but the
mix of categories remains more or less same.

Understanding Mobile App Usage Patterns Using In-App Advertisements 71

0

500

1000

1500

2000

2500

3000

3500

21 June
6am

21 June
12pm

21 June
6pm

24 June
6am

24 June
12pm

24 June
6pm

(a) Google Ads

0

10

20

30

40

50

60

21 June
6am

21 June
12pm

21 June
6pm

24 June
6am

24 June
12pm

24 June
6pm

Third Party

Official Market

(b) Smaato

Fig. 7. Apps Belonging to Official Market in Network Traffic

0

100

200

300

400

500

600

700

21 June
6am

21 June
12pm

21 June
6pm

24 June
6am

24 June
12pm

24 June
6pm

N
um

be
ro

fA
pp

s

Time

TOOLS

ENTERTAINMENT

ARCADE

CASUAL

BRAIN

(a) Patterns Over 2 Days

0

20

40

60

80

100

120

140

160

6 7 8 9 10 11 12 13 14 15 16 17 18

N
um

be
ro

fA
pp

s

Time

BRAIN

ENTERTAINMENT

ARCADE

CASUAL

TOOLS

(b) 12 Hours Pattern

Fig. 8. Apps Containing Google Ads in Network Traffic

4 Limitations and Future Work

Many of the free apps have corresponding paid apps that do not show any
ad. These paid apps can not be identified using our ad flow based technique.
However, we observe that many flows to third-party platforms like Facebook
and analytical services such as Google Analytics also contain identifiers that can
be used to identify the apps. We plan to extend our technique to include these
flows in the future studies. However, we just like to point out that 73% of the
apps in Google Play are free [10].

A limitation of this technique is that some of the ad networks require developer
identifiers which can be shared by different apps from the same developer. We
have observed that queries from many apps have certain unique patterns (such
as certain key-value parameters in the URL query) that can be used to identify
them [13]. In the future we plan to analyze patterns in the URL queries in ad
flows to form fingerprints that can be used to correctly attribute the flow to the
originating app.

Grace et al [8] have observed that many of the ad libraries require user’s loca-
tion for targeted advertising. We confirmed that many of the ad flows contained
location information. In future, we plan to use this location information to iden-
tify spatial patterns in app usage. Moreover, if the traces contain information
about users, then we can build app usage profiles for each user which can be
used in applications such as targeted app recommendation.

72 A. Tongaonkar et al.

5 Conclusion

In this paper, we presented a new direction for analyzing usage behavior of
mobile apps based on ad flows. We described techniques for associating apps
with the ad flows. We showed a flavor of the kinds of analysis possible from app
markets and real world mobile network traffic from advertising perspective. We
believe that usage pattern analysis from advertising perspective is going to be
very important research area in the near future.

References

1. http://www.canalys.com/

2. https://play.google.com/store/apps/

3. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of the 11th Internet
Measurement Conference, IMC (2011)

4. Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look
at traffic on smartphones. In: Proceedings of the 10th Internet Measurement Con-
ference, IMC (2010)

5. Maier, G., Schneider, F., Feldmann, A.: A First Look at Mobile Hand-Held Device
Traffic. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp.
161–170. Springer, Heidelberg (2010)

6. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Profiledroid: Multi-layer profiling of
android applications. In: Proceedings of the 18th Annual International Conference
on Mobile Computing and Networking, MobiCom (2012)

7. Aioffi, W.M., Mateus, G.R., Almeida, J.M., Mendes, D.S.: Mobile dynamic content
distribution networks. In: Proceedings of the 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM
(2004)

8. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of mo-
bile in-app advertisements. In: Proceedings of the 5th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WISEC 2012 (2012)

9. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: Addroid: Privilege separation for ap-
plications and advertisers in android. In: Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security, ASIACCS (2012)

10. Leontiadis, I., Efstratiou, C., Picone, M., Mascolo, C.: Don’t kill my ads!: Balancing
privacy in an ad-supported mobile application market. In: Proceedings of the 13th
Workshop on Mobile Computing Systems and Applications, HotMobile (2012)

11. Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, Y., Papagiannaki,
K., Haddadi, H., Crowcroft, J.: Breaking for commercials: Characterizing mobile
advertising. In: Proceedings of the 12th Internet Measurement Conference, IMC
(2012)

12. http://code.google.com/p/android-apktool/

13. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: Towards
automatic fingerprinting of android apps. In: Proceedings of the 32nd IEEE Inter-
national Conference on Computer Communications, INFOCOM (2013)

http://www.canalys.com/
https://play.google.com/store/apps/
http://code.google.com/p/android-apktool/

A Measurement of Mobile Traffic Offloading

Kensuke Fukuda1 and Kenichi Nagami2

1 National Institute of Informatics, Japan
2 INTEC, Inc, Japan

Abstract. A promising way to use limited 3G mobile resources effi-
ciently is 3G mobile traffic offloading through WiFi by the user side.
However, we currently do not know enough about how effective the mo-
bile traffic offloading is in the wild. In this paper, we report the results
of a two-day-long user-based measurement of mobile traffic offloading by
over 400 android smartphone users in Japan. We first explain that the
variation of aggregated traffic volume via WiFi is much greater than that
via 3G in our dataset. Next, we show that the traffic volume offloading
through WiFi is common over whole weekend and weekday night, though
weekday rush hours have less chance of traffic offloading. Our results
emphasize that a small fraction of users contribute to a large fraction of
offload traffic volume. In fact, our per-user level analysis reveals that the
top 30% of users downloaded over 90% of their total traffic volume via
WiFi. However, bottom 20% of users stuck to 3G only and over 50% of
users turned off the WiFi interface in business hours. Also, 17.4% of the
total traffic volume was generated by users whose WiFi traffic volume was
less than 1MB. We observed that some hybrid users downloaded most of
their traffic volume via WiFi in shorter durations. In this sense, there is
more room to improve the current traffic offloading by promoting users
to use WiFi more effectively. Furthermore, we demonstrate that WiFi
offloading is mainly performed by access points (APs) in homes while
the use of public WiFi APs is still uncommon in our dataset.

1 Introduction

Smartphones, intelligent mobile phones, are becoming ever more popular around
the world. The Ministry of Internal Affairs and Communications of Japan re-
ports that 3G mobile network traffic is now doubling every six months in Japan
[13]. This rapid increase in the mobile 3G traffic is a big problem for 3G carriers,
because the frequency and bandwidth of the 3G network are limited resources
that largely differ from residential FTTH access lines. In addition to the increas-
ing number of users, another reason for this growth is that the monthly fee for
a mobile phone is basically a flat-rate. Some 3G carriers have started to force
bandwidth capping to heavy-hitters on the basis of their traffic. Furthermore,
the 3G carriers promote migration of 3G mobile traffic to high-capacity and less
congested fixed networks. For this reason, the offloading of 3G traffic through
WiFi (IEEE 802.11{a,b,g,n}) has been attracting more attentions. There are
two main usage scenarios of traffic offloading by WiFi. One is to use public
WiFi access points (APs) provided by 3G carriers or other WiFi providers in

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 73–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 K. Fukuda and K. Nagami

downtown areas (e.g, cafes, stations, airports) to avoid congestion at 3G base
stations. The total number of such public APs provided by 3G carriers is esti-
mated to be over 300, 000 APs in Japan according to their web pages. The other
is APs in homes where the high-speed network has been rapidly deployed. In
particular, increasing penetration of the fiber access in residential users (over
40%) is reported in Japan [3]. Some 3G carriers started to provide customized
WiFi APs to non-professional users so they can easily use WiFi at home. The
deployment of WiFi APs in homes accounts for roughly 65% of the total number
of residential broadband users.

However, it becomes more and more difficult to understand the behavior of
such mobile traffic by traffic offloading, because 3G carriers cannot track such
offloaded traffic at their backbone network. Even ISPs providing FTTH services
cannot distinguish traffic volume generated by smartphones and others in homes.
Thus, in this paper, we intend to characterize the usage of the 3G and WiFi of
smartphones in terms of the traffic offloading. We developed special software for
android smartphones to measure its usage and collected two day’s worth of traffic
data from over 400 smartphone monitor users using the measurement software
in Japan. The main findings of our measurements are as follows: (1) The traffic
offloading in homes is common in our dataset. The total amount of traffic volume
via WiFi is much larger than that via 3G. The average traffic offload ratio (i.e.,
ratio of penetration to WiFi) is 0.64 and the peak traffic offload ratio could reach
0.95, indicating that offloading is effective in terms of traffic volume. (2) However,
a small fraction of users contributed a large fraction of traffic offloading. The
top 30% of users downloaded over 90% of their traffic volume via WiFi, though
20% of users only used 3G networks. Also, 17.4% of the total traffic volume was
generated by users whose WiFi traffic was less than 1MB. In particular, over 50%
of users turned off their WiFi interface in business hours, and some hybrid users
downloaded most of their traffic volume via WiFi in shorter durations. These
results indicate that there is more room for improving the offload by promoting
the use of WiFi. (3) WiFi offloading was mainly done by APs at home while
public WiFi APs are still not commonly used in our dataset.

2 Dataset and Preprocessing

We developed special software to measure the traffic volume via the 3G network
and WiFi for android smartphone. It reports the values of the byte and packet
of network interfaces of a smartphone to an external server every 10 minutes,
as well as the WiFi information (e.g., ESSID, BSSID), 3G network information
(e.g., base station information), and device information (e.g., hardware and OS
types). For privacy reasons, it does not collect user IDs, GPS information, or
application usage. We recruited 435 monitor users who own android smartphones
in Japan that were sampled from a thousand potential candidates, considering
demography and the market share of the 3G carriers in Japan. Moreover, over
90% of monitor users reported that they have WiFi APs at home. In this sense,
the results we will present are likely biased to the behavior of advanced users who

A Measurement of Mobile Traffic Offloading 75

have less difficulty using WiFi. The measurement experiment was performed on
May 13th (Sun) and 14th (Mon), 2012 (48 hours long).

For preprocessing, we removed the traffic volume by tethering, which means
a smartphone simply relays traffic from other devices (i.e., laptop PC) to the In-
ternet, from the dataset. This is because we intended to focus on traffic patterns
generated by the smartphone itself, though tethering is a promising applica-
tion of smartphones. Also, some smartphones have a mobile WiMAX interface
(IEEE802.16e) more than 3G and WiFi interfaces, but we removed their traffic.

3 Results

3.1 Global View

Figure 1 displays the variation of aggregated traffic volumes and that of the
aggregated number of packets in 30-minute bins. Each plot indicates a different
type of media: mRx (3G received), mTx (3G sent), wRx (WiFi received), and
wTx (WiFi sent). The direction of the traffic is from the view of users (i.e., “re-
ceived” corresponds to user’s download). First, we observed higher WiFi traffic
volumes than 3G ones, and the peak of the traffic volume is 1.5 times larger
than that of mRx. In particular, the volumes on Sunday are higher than those
on Monday, though Monday night is also characterized by high WiFi traffic vol-
ume. Thus, the availability of the WiFi network is lower on the weekday in our
dataset. Second, we emphasize that peaks in both traffic volumes are not always
synchronized, meaning that some users switch the media appropriately depend-
ing on the availability. In particular, we confirmed a sharp peak of mRx traffic
volume at 6pm on Monday, corresponding to the rush hour in Japan. This peak
does not appear in wRx, suggesting that WiFi was hard to use during the rush
hours. The same type of non-synchronized peak appears at 9pm on Sunday. The
correlation coefficient of time series of mRx bytes and wRx bytes is 0.03, and
that of packet based time series is 0.11. Although each user switches between
two interfaces exclusively, the variations of aggregated traffic volumes neither
positively nor negatively correlate.

 0

 200

 400

 600

 800

 1000

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

B

yt
es

 (
M

)

(sun) Time (JST) (mon)

(a) mRx
mTx
wRx
wTx

 0

 100

 200

 300

 400

 500

 600

 700

 800

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

P

ac
ke

ts
 (

K
)

(sun) Time (JST) (mon)

(b) mRx
mTx
wRx
wTx

Fig. 1. Traffic variation (bin size = 30 min): (a) bytes and (b) packets

76 K. Fukuda and K. Nagami

The Tx volumes are lower than Rx volumes, likely due to the typical applica-
tion type of smartphone (i.e., server-client type). In addition, the traffic pattern
of Tx resembles that of Rx in 3G packets, while that in WiFi is synchronized
but with some gaps. This suggests that typical usage and application of 3G and
WiFi are likely different. These results are consistent with the observation that
most application traffic is server-client in 3G smartphone traffic [14,15].

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

T
ra

ffi
c

of
flo

ad
 r

at
io

 (
by

te
)

(sun) Time (JST) (mon)

(a)
Rx byte
Tx byte

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

U
se

r
of

flo
ad

 r
at

io

(sun) Time (JST) (mon)

(b) 3G (wifi on)
3G (wifi off)

WiFi (wifi on)

Fig. 2. WiFi offload ratio (bin size = 30min) (a) bytes and (b) users

Next, we investigate the degree of traffic offloading. We define a traffic offload
ratio as the ratio of WiFi traffic volume to the total volume and a user offload
ratio as the ratio of the number of WiFi users to the total number of users in
30-minute bins. The ratio closer to 1.0 means the penetration to a WiFi network
while that closer to 0.0 means the penetration to a 3G network.

Figure 2 (a) represents the traffic offload ratio over time. The average traffic
offload ratio was 0.64 though it varied largely depending on the usage of smart-
phone; the peak and bottom ratios are 0.97 and 0.19, respectively. The figure
highlights the fact that the offloading ratio on Sunday is relatively higher than
that on Monday. The average ratio was 0.70 on Sunday and 0.58 on Monday.
The lower offloading ratio in the morning and afternoon on Monday suggests
fewer opportunities to connect to the Internet via WiFi during work time. As
expected, again, the ratio increased on Monday night.

Figure 2 (b) shows the breakdown of users: (1) 3G users whose WiFi interface
was also up, (2) 3G users whose WiFi interface was down, and (3) WiFi users.
The average user offload ratio corresponding to case (3) was smaller (0.22) than
the average traffic offload ratio. We, again, confirm higher ratios during night
and lower ones in the afternoon. Only 15% of users connected to WiFi in business
hours on Monday, moreover, over 50% of users explicitly turned off their WiFi
interface in business hours as shown in case (2). Similarly, the ratio of 3G users
whose WiFi was also up is stable (≈ 0.3), indicating that they had few chances
to encounter any available APs. In particular, the ratios of 3G users whose
WiFi was up and WiFi users in night are closer. This means that WiFi APs
were actually effective for almost half of users who turned on WiFi in night. In
contrast, only about 35% of users who turned on WiFi interface could download
data via WiFi in business hours.

A Measurement of Mobile Traffic Offloading 77

Comparing both figures, we can conclude that the traffic offload was mainly
exploited by a relatively smaller number of users. In other words, such heavy
users switched their network interfaces explicitly.

3.2 Per-User View

Here, we focus on a microscopic view of traffic offloading. Figure 3 displays
the scatter plot of 3G traffic and WiFi traffic volume per user for two days.
We confirm horizontal dots in the bottom and vertical dots in the left of the
figure, corresponding to the users who only used 3G and WiFi respectively. The
former did not use WiFi even at home, and the latter likely saved the fee for
3G network access. A diagonal line in the figure represents users who used 3G
and WiFi equally. A non-negligible number of dots below the diagonal, i.e., 3G
traffic volume is greater than WiFi traffic volume, show that there is a possibility
of increasing traffic offloading. For example, the traffic volume of 3G-only users
accounted for 9.6% of the total traffic volume, while that of users whose WiFi
traffic is less than 1MB accounted for 17.4% of the total volume.

In addition, Figure 4 displays the cumulative user distribution of the ratio of
using WiFi and 3G per user. As explained before, a high (or low) traffic offload
ratio corresponds to the penetration of WiFi (or 3G) usage. From the figure, we
observe that the 3G-only users accounted for approximately 20% of all users and
the WiFi-only users accounted for 10%. The median of users used more WiFi
than 3G (0.62). Notably, the top 30% of users switched 90% of traffic volume
to WiFi. These results are consistent with the previous results that revealed a
relatively small portion of users penetrate to WiFi offloading.

Similarly, Figure 5 shows the relationship between total download traffic vol-
ume per user and its traffic offload ratio. We confirm a positive correlation (0.35)
between two metrics, indicating that heavy-hitters consume more bandwidth via
WiFi and that 3G-only users received less data than offloading users. We con-
clude that heavy-hitters efficiently use WiFi for their download traffic.

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

W
IF

I (
M

B
)

3G (MB)

Fig. 3. Scatter plot of 3G andWiFi down-
load traffic volume per user

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Offload ratio (WIFI byte/Total byte)

Fig. 4. Cumulative distribution of offload
ratio per user

78 K. Fukuda and K. Nagami

0.0

0.2

0.4

0.6

0.8

1.0

10-1 100 101 102 103 104

O
ffl

oa
d

ra
tio

Total volume (MB)

Fig. 5. Total traffic volume and traffic of-
fload ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
ffl

oa
d

ra
tio

 (
W

IF
I b

yt
e

/ T
ot

al
 b

yt
e)

WIFI duration / Total duration

Fig. 6. Ratio of WiFi duration and traffic
offload ratio

Finally, we examine the traffic penetration to WiFi and the duration using
WiFi interface. Figure 6 displays the scatter plot of the ratio of duration using
WiFi to the total duration and the traffic offload ratio per user. The diagonal
in the figure indicates the users whose WiFi traffic volume is proportional to its
duration. As expected, we see plots concentrated near (0, 0) (i.e., 3G only user)
and (1, 1) (i.e., WiFi only user). A notable point, however, is that we still observe
plots scattered around lower ratios of the duration and higher offload ratios. This
means that these hybrid users downloaded most of their traffic volume via WIFi
in shorter periods, consistent with the macroscopic observation in Figure 2.

3.3 WiFi Usage

Here, we investigate the location where users associate with WiFi APs. SSID is
an identifier of AP in WiFi, and administrators of APs could set their name by
themselves, or it could also be left as the default setting. Thus, by categorizing
the names of ESSIDs, we could infer the types of location of APs with which
users associated. We gathered all SSIDs appearing in the dataset (418 unique
ESSIDs) and manually classified them into the following four categories.

– public (8 ESSIDs) is SSIDs that 3G carriers freely provide to their customers
(e.g., “docomo”, “au WIFI”, “0001softbank”) and the third-party WiFi car-
riers provide to their customers (basically at charge) (e.g., “FON”, “0033”)
and administrators freely open to all users (e.g., “freespot”).

– home (261 ESSIDs) is default ESSIDs when AP manufacturers shipped.
Thus, administrators of such APs do not change their ESSID from the de-
fault setting. We assumed that such access points are located at home rather
than in an office, because the number of devices at home is small and these
administrators are likely to be less careful in changing ESSIDs than admin-
istrators in office networks.

– mobile (19 ESSIDs) is default ESSIDs for a portable WiFi router with a 3G
uplink and WiFi down link provided by 3G carriers. The user’s smartphone
connects to this router via WiFi to obtain an Internet connection.

A Measurement of Mobile Traffic Offloading 79

 0

 100

 200

 300

 400

 500

 600

 700

 800

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

B

yt
es

 (
M

)

(sun) Time (JST) (mon)

(a) home wRx
wTx

 0

 10

 20

 30

 40

 50

 60

 70

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

B

yt
es

 (
M

)

(sun) Time (JST) (mon)

(b) mobile wRx
wTx

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

B

yt
es

 (
M

)

(sun) Time (JST) (mon)

(c) other
wRx
wTx

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

B

yt
es

 (
M

)

(sun) Time (JST) (mon)

(d) public
wRx
wTx

Fig. 7. WiFi traffic usage patterns

– other (130 ESSIDs) is named ESSIDs, i.e., administrators of APs explicitly
changed their ESSIDs. This can be located in homes, offices, shops, etc. Also,
it included unclassified ESSIDs.

Figure 7 indicates the variation of traffic volumes for different categories of SSIDs
users associated with: (a) home, (b) mobile, (c) other, and (d) public. We confirm
that the variation of traffic volume in home dominates the total amount of the
WiFi traffic volume shown in Figure 1. Similarly, the traffic variation of the other
category is similar to that of home users, indicating that most of these APs are
also likely located at home. One interesting point in the mobile category is that
its traffic pattern was closer to that of 3G traffic shown in Figure 1 than that of
the home category; high traffic in the morning and evening on Sunday and the
evening on Monday. The usage pattern of a portable WiFi router is similar to
that of the 3G device, indicating that such users save 3G traffic costs by paying
the cheaper monthly fee for a portable WiFi router as an alternative. Indeed,
the correlation coefficient of wRx bytes of the mobile category and mRx bytes is
higher (0.16) than that of wRx bytes of the mobile category and wRx bytes of
the home category (−0.01) Also, one unexpected result is a much smaller traffic
volume in public WiFi. Sharp and discrete spikes indicate that a small number
of users generate traffic volume in a short time; indeed, the biggest peak of the
spikes was traffic volume via a FON AP.

In summary, traffic offloading in homes currently works well, though that in
public WiFi APs is not very high in our dataset.

80 K. Fukuda and K. Nagami

4 Related Work

There have been many measurement activities to understand wireless network
traffic better, including traffic from 3G and WiFi networks.

3G Smartphone Usage: There have been attempts to characterize 3G smart-
phone traffic in some countries by measurements at backbone networks or at
smartphones. These studies mainly showed the diversity of usage of smartphones
in many aspects; differences in device types and carriers [9], user pattern and
protocol [4], application [14,15], geolocation [1], geographical differences [15], and
mobility [14,10,16]. Related to our work, Ref [14] pointed out the difference in
usage of applications depending on the stationarity of users. Our data had no
application information, but the penetration of traffic volume to WiFi in homes
suggests that the application is used differently inside and outside homes.

WiFi Usage: The network usage of campus WiFi networks has also been well
studied [8,6]. They pointed out that the application mixtures in the campus
WiFi network differed from those in 3G mobile traffic because a wide variety
of devices were connected to the campus WiFi network. Moreover, the WiFi
network usage of specialized public transportation has also been analyzed [7]. A
recent study of WiFi traffic of hand-held devices focused on home WiFi traffic
in residential traffic [12]. It reported that hand-held devices were appeared in up
to 3% of residential DSL traffic in 2009.

Availability of 3G and WiFi: 3G and WiFi availability and performance
have been compared in [2,11,5]. They investigated availability and performance
by vehicle and/or walking based measurements. However, some studies only
discussed availability of the WiFi network by the appearance of APs rather than
actual connectivity.

The originality of our work to others is to characterize the 3G traffic offload-
ing through WiFi on the basis of a large-scale device-based measurement and
analysis of a combination of 3G and WiFi traffic.

5 Discussion

Our monitors were recruited by a web-based application and most have APs
at home. This means that they are more familiar with using the Internet and
smartphones than the average user. Thus, our results are likely biased towards
the behavior of such advanced users, and the user and traffic offloading ratios
of the current average users will be smaller than in our results. However, these
results can be interpreted as corresponding to the situation in the very near
future if 3G carriers successfully promote to average users the option of offloading
more of their traffic volume to WiFi, considering the fact that the majority of
residential users have high-speed Internet connections at home. Even in the
current results, the high usage of WiFi was only by a relatively small number
of users, and still 17.4% of the total volume was generated by users whose WiFi
traffic volume was less than 1MB. In addition, over 50% of users turned off their

A Measurement of Mobile Traffic Offloading 81

WiFi interface in business hours, and most of the traffic volume of some hybrid
users was downloaded via WiFi in shorter durations. Therefore, the traffic and
user offloading ratios could have been higher if the promotion by 3G carriers had
been more effective.

Different from the high traffic offload ratio in homes, we observed lower traffic
volumes in public WiFi. We cannot currently identify the exact reason for this
low availability of public WiFi, but there are several plausible reasons: (1) Most
users turned off WiFi connectivity outside the home to save energy. (2) Handover
of WiFi APs did not work well due to fast movement of users. (3) Outside of
downtown areas, the availability of public WiFi may be not very high. (4) There
is wave interference due to a large number of APs at downtown areas. Our
results at least demonstrated the possibility of reason (1) being true as shown in
Figure 2(b). In particular, the advanced users may proactively save the battery
by turning off the WiFi interface. Also, considering the usage of WiFi and 3G
networks outside homes and offices, users likely need Internet connection only for
e-mail checking or simple web browsing, rather than rich bandwidth applications
such as streaming. Such short and simple usage of smartphones generates a
smaller amount of traffic volume. In this sense, the availability and connectivity
are likely more important than bandwidth for such public WiFi.

Connecting a user’s private smartphone to APs at offices is currently not com-
mon in Japan because of security policies of companies, and we also confirmed a
low traffic volume of named WiFi in office hours. However, some companies have
started to allow their employees to connect their private smartphone to APs at
offices. In future, WiFi offloading at offices may become more common.

6 Conclusion

We reported the results of our measurement of mobile traffic offloading. We first
pointed out that the variation of aggregated traffic volume via WiFi is much
greater than that via 3G in our dataset. The average traffic offload ratio was
0.64 and the peak traffic offload ratio could reach 0.95 at midnight. On the
other hand, the user offload ratio stayed lower, meaning that a small fraction
of users contributed to a large fraction of traffic offloading. In fact, our user
level data revealed that the top 30% of users downloaded over 90% of their total
traffic volume via WiFi, while 10% of users only used WiFi. However, 20% of
users only stuck to 3G, whose traffic volume accounted for 9.4% of the total
traffic volume, and over 50% of users turned off their WiFi interface in business
hours. Moreover, we observed that some hybrid users downloaded most of their
traffic via WiFi in shorter durations. In this sense, there is more room to improve
the current situation of traffic offloading by promoting users to use WiFi more
effectively. We also showed that WiFi offloading was mainly performed by APs
in homes, and public WiFi APs are still not very commonly used in our dataset.

Acknowledgements. We would like to thank Kenjiro Cho, Romain Fontgune,
and the anonymous reviewers for their helpful comments. Also, we thank the
Ministry of Internal Affairs and Communications of Japan for its support.

82 K. Fukuda and K. Nagami

References

1. Balakrishnan, M., Mohomed, I., Ramasubramanian, V.: Where’s that phone?: Ge-
olocating IP addresses on 3G networks. In: IMC 2009, Chicago, IL, pp. 294–300
(November 2009)

2. Balasubramanian, A., Mahajan, R., Venkataramani, A.: Augmenting mobile 3G
using WiFi. In: MobiSys 2010, San Francisco, CA, pp. 209–222 (June 2010)

3. Cho, K., Fukuda, K., Esaki, H., Kato, A.: Observing slow crustal movement in
residential user traffic. In: ACM CoNEXT 2008, Madrid, Spain, p. 12 (December
2008)

4. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.:
Diversity in smartphone usage. In: MobiSys 2010, San Francisco, CA, pp. 179–194
(June 2010)

5. Gass, R., Diot, C.: An Experimental Performance Comparison of 3G and Wi-Fi.
In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp. 71–80.
Springer, Heidelberg (2010)

6. Gember, A., Anand, A., Akella, A.: A Comparative Study of Handheld and Non-
handheld Traffic in Campus Wi-Fi Networks. In: Spring, N., Riley, G.F. (eds.)
PAM 2011. LNCS, vol. 6579, pp. 173–183. Springer, Heidelberg (2011)

7. Hare, J., Hartung, L., Banerjee, S.: Beyond deployments and testbeds: Experiences
with public usage on vehicular WiFi hotspots. In: MobiSys 2012, Low Wood Bay,
UK, pp. 393–405 (June 2012)

8. Henderson, T., Kotz, D., Abyzov, I.: The changing usage of a mature campus-wide
wireless network. In: MobiCom 2004, Philadelphia, PA, pp. 187–201 (2004)

9. Huang, J., Xu, Q., Tiwana, B., Mao, Z.M., Zhang, M., Bahl, P.: Anatomizing appli-
cation performance differences on smartphones. In: MobiSys 2010, San Francisco,
CA, pp. 165–178 (June 2010)

10. Jang, K., Han, M., Cho, S., Ryu, H.-K., Lee, J., Lee, Y., Moon, S.: 3G and 3.5G
wireless network performance measured from moving cars and high-speed trains.
In: MICNET 2009, Beijing, China, pp. 19–24 (October 2009)

11. Lee, K., Rhee, I., Lee, J., Chong, S., Yi, Y.: Mobile data offloading: How much can
WiFi deliver? In: CoNEXT 2010, Philadelphia, PA, p. 12 (December 2010)

12. Maier, G., Schneider, F., Feldmann, A.: A First Look at Mobile Hand-Held Device
Traffic. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp.
161–170. Springer, Heidelberg (2010)

13. Ministry of Internal Affairs and Communications. Growth of Mobile Traffic in
Japan (2011),
http://www.soumu.go.jp/johotsusintokei/field/tsuushin06.html

14. Trestian, I., Ranjan, S., Kuzmanovic, A., Nucci, A.: Measuring serendipity: Con-
necting people, locations and interests in a mobile 3G network. In: IMC 2009,
Chicago, IL, pp. 267–279 (November 2009)

15. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage of behaviors of smartphone apps. In: IMC 2011, Berlin, Germany,
pp. 329–344 (November 2011)

16. Zhu, Z., Cao, G., Keralapura, R., Nucci, A.: Characterizing data services in a 3G
network: Usage, mobility and access issues. In: ICC 2011, Kyoto, p. 6 (2011)

http://www.soumu.go.jp/johotsusintokei/field/tsuushin06.html

Estimating TCP Latency Approximately
with Passive Measurements

Sriharsha Gangam1, Jaideep Chandrashekar2, Ítalo Cunha3, and Jim Kurose4

1 Purdue University
sgangam@purdue.edu
2 Technicolor Research

jaideep.chandrashekar@technicolor.com
3 UFMG, Brazil

cunha@dcc.ufmg.br
4 Univ. of Massachussetts, Amherst

kurose@cs.umass.edu

Abstract. Estimating per-flow performance characteristics such as latency, loss,
and jitter from a location other than the connection end-points can help locate
performance problems affecting end-to-end flows. However, doing this accurately
in real-time is challenging and requires tracking extensive amounts of TCP state
and is thus infeasible on nodes that process large volumes of traffic. In this paper,
we propose an approximate and scalable method to estimate TCP flow latency in
the network. Our method scales with the number of flows by keeping approximate
TCP state in a compressed, probabilistic data structure that requires less memory
and compute, but sacrifices a small amount of accuracy. We validate our method
using backbone link traces and compare it against an exact, baseline approach. In
our approximate method, 99% of the reported latencies are within 10.3 ms of the
baseline reported value, while taking an order of magnitude less memory.

1 Introduction

Latency is a key determinant in the performance of a network flow and large values can
adversely affect bulk transfers, increase buffering, and make interactive sessions unre-
sponsive. Thus, tracking flow latency is a critical tool in monitoring the performance of
TCP-based applications; these form the bulk of Internet traffic today. While estimating
this latency is an intrinsic part of TCP and thus trivial at the end-points of a connec-
tion, it is extremely challenging in the middle of the network, i.e., at a network node
along the path connecting the end-points. At the same time, the ability to infer the flow
latency at such locations would be extremely valuable to users and network operators.
Consider a typical WiFi-enabled home network with DSL broadband connectivity. To-
day, when applications underperform or latencies to destinations are larger than usual,
it is extremely difficult to reason about where the bottleneck is. Is the increased latency
occurring inside the wireless network? or is the server slow to respond? Answering this
seemingly simple question directly is quite difficult (even if we could query the end-
points for their estimates). This question is easy to answer if the home gateway could

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 83–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 S. Gangam et al.

estimate latencies of the connections on the wireless link. Similar applications could be
imagined at data center borders or egress routers in enterprise networks.

This area has attracted a lot of attention in the past and several methods have been
proposed; these broadly fall into two categories—active or passive. Active methods rely
on probing the destination(s) independent of the TCP flow (various flavors of ping ex-
ist), or else by inserting a transparent TCP proxy on the path of the TCP flow [4]. This
has the effect of terminating one half of the connection, and creating a new connection
from the midpoint. Clearly, this is impractical for large numbers of concurrent flows.
Moreover, terminating the flow in the middle of the network alters the flow and may not
be acceptable. The other set of methods is based on passive observations of the traffic. A
single RTT estimate can be obtained by matching SYNs and ACKs in the beginning of a
TCP connection [11]; this is useful, but of limited utility since latency can change con-
siderably over the connection duration. Another idea is to infer the RTT by computing
the delay between the transmission of two consecutive congestion windows [10,12,15].
In [2, 10], the TCP state machine is emulated offline, using passively recorded traces,
to infer RTT estimates by matching ACKs and TCP sequence numbers. Some of these
methods can track latency over the entire duration of a connection in the middle of the
network; however, they are not scalable and are not designed to be run in real-time.

The challenge in accurately estimating TCP latency in the network centers on the
amount of state that needs to be maintained. Packets going in one direction need to be
stored and matched with acknowledgements coming back the other way. In measure-
ment points that handle a large number of flows (routers in ISP networks, data center
switches) or embedded devices that are resource constrained, it is generally infeasible
to store sufficient TCP state information, or to process it fast enough to support very
accurate TCP latency estimates in real-time. The key observation we make is that when
estimating latency, a strict accuracy constraint limits how well a solution can scale.
There are applications that need to measure latency accurately and with a high degree
of precision (electronic trading systems, B2B applications). Correspondingly, there are
particular solutions that target these markets, relying on specialized hardware and mul-
tiple vantage points (see [13, 14]). However, most other applications, particularly those
that focus on troubleshooting or performance diagnosis, are more interested in track-
ing whether latencies are within a specified range or if they have exceeded a threshold.
Importantly, such applications can tolerate approximate answers and a certain amount
of error. Take for example an application that monitors VoIP call quality; acceptable
quality might require that accuracy not exceed 150ms [9]. Similar latency thresholds
are associated with other applications: 100 ms for online first person shooter and rac-
ing games [6], and in the same region for video streaming applications [16]. In such
applications, tracking approximate latencies is good enough.

In this paper we investigate the problem of performing scalable and approximate
latency estimation in real-time inside the network. We describe such a method, called
ALE (Approximate Latency Estimator), present its key ideas and introduce two vari-
ants ALE-U (Uniform) and ALE-E (Exponential). These methods work by sacrificing
accuracy, which requires (exactly) tracking a great deal of TCP state, and instead keep-
ing approximate state, which uses far less memory, but have a certain inherent amount
of error. Importantly, this loss of accuracy can be controlled by using more (or less)

Estimating TCP Latency Approximately with Passive Measurements 85

memory. These methods were implemented and compared against tcptrace [2], a
well established, offline analysis tool for TCP. We carried out a validation study using
two different traces obtained from CAIDA. On these traces, we show that ALE can
achieve accuracy very close to tcptrace, while using far less memory and requiring less
computation. In the best performing latency estimator, 99% of the reported latencies
are within 10.3 ms of the actual value and over 97% of the median flow latencies re-
ported are within 10.2 ms of the actual medians; all while taking about one thirtieth of
the memory used by the baseline.

2 TCP Latency Estimation

TCP estimates RTT by matching ACKs against a set of data segments sent (but not yet
acknowledged). For example, suppose host A is sending data to host B on a path that
goes through M . At time t1, A sends a data segment with k bytes of data to B. This
segment contains a sequence number range [s, s+k] (bytes are individually numbered).
After B processes this segment, it sends back an acknowledgement to A which explic-
itly indicates the next byte in the stream it expects to receive, i.e., s+k+1 (this is exactly
one more than the last sequence number in the packet sent by A), and this reaches A
at t2. Since the acknowledgement can be matched with the segment sent previously, A
estimates the RTT as t2 − t1. Now, node M can also perform a similar estimation by
matching data segments with acknowledgements (ACKs, in short) seen in flight. The
RTT estimate for the path segment M ↔ B is ta−td, where td and ta are when the data
segment and the acknowledgement were observed at M . Note that there is not enough
information to estimate the RTT on the path segment A ↔ M ; this requires B sending
data to A and receiving ACKs back. To obtain accurate RTT estimates at M , for either
side of the path, we need to remember all the unacknowledged data segments seen in
one direction, and match them against ACKs coming back the other way. This makes
straightforward RTT estimation infeasible at nodes that handle a large flow volume, or
at memory constrained embedded devices of the type used in home and small business
gateways. That being said, if we are willing to tolerate a small amount of error in the
RTT estimates or a few missed RTT estimates, we significantly reduce the amount of
memory required.

In our approach, we exploit the following two observations: (i) storing the exact
timestamp associated with each TCP segments is overkill. It is sufficient to remember
having seen it in a particular time interval, and (ii) we can avoid storing the sequence
number range and just store a single sentinel value instead. Following the first obser-
vation, we can divide time into discrete intervals and just associate the segments with
particular intervals. Thus, with each interval, we now associate a (possibly) large set
of segments that arrived in that interval (specifically, the sequence number ranges and
flowids). The second observation does away with having to store the sequence number
range and lets us store a single number for each unacknowledged segment. Specifically,
this number is just one larger than the end of the sequence range in the segment, i.e., the
number that is expected to be returned in the acknowledgement. We note that this is not
guaranteed to always be the case; the TCP specification permits partial segments to be
acknowledged. However, this is not the norm and when it does happen, it is an indica-
tion of a performance bottleneck at the receiver. If we overlook this corner case, we can

86 S. Gangam et al.

simply record the expected acknowledgement number for each segment (this is exactly
one larger than the last sequence number in the segment) and match this against incom-
ing ACKs. By exploiting this “most likely behavior” in TCP, the problem of searching
through a number of ranges or intervals now becomes that of set membership queries
which can be done very efficiently with probabilistic data structures (such as Bloom
filters).
Approximate Latency Estimator (ALE). Looking into the recent past, we divide time
into fixed size discrete intervals, [w0, w1], [w1, w2], . . . , [wn−1, wn], over a sliding win-
dow. Here, [w0, w1] is always the most recently elapsed interval, the sliding window
covers a span of W = w0 −wn seconds, and each interval is of length w = wi −wi+1

(we use interval and bucket interchangeably). This time discretization is shown in Fig. 1.
We denote by Bi the data structure currently associated with interval i. Apart from the
buckets associated with the sliding window, we use another bucket B to hold state for
the immediate present. At the end of every w seconds, we move B (to the left in the
figure) into the past and into the sliding window. The data structures Bi and B are
Counting Bloom Filters (CBF) [7], a variation that supports set member deletions.

B
BBBBB 01234

wwww 012345 ww

tALE

flowid 30 10
se

qn
um

le
ng

th

data

hash(flowid, 41)

wwww 012345 ww

tALE flowid 41
A

C
K

data

hash(flowid, 41)

t1

t2t +2w+w/2ALE

Fig. 1. Operation of the ALE Algorithm

4w 2w w

A

A

A

A

A

A

B

B

B

B

B

C

C

C

C

D

D

D E

E

F

B1 Elapsed
Time

w

2w

3w

4w

5w

6w

B2 B0

Fig. 2. Buckets Being
Shifted and Merged in ALE-E

The TCP segment insertion operation in ALE records the flow identifier and the
expected sequence number into a bucket by hashing the concatenation of the two and
incrementing the appropriate counters (see [7] for details). Deletion proceeds the same
way, but with the counters decremented. Set membership reads the counters indexed by
the hash functions and reports ‘yes’ if all of them are non-zero, and ‘no’ otherwise.

We use the diagram in Fig. 1 to walk through an example. The upper half demon-
strates a just arrived TCP segment being recorded. The TCP data segment that arrives
at t1 is recorded into B (with sequence number 30 and containing 10 data bytes). After
every w seconds, the data structure associated with each interval is shifted to the left,
i.e., Bi+1 ← Bi. Thus, the contents of the current window B move to B0, the most
recently elapsed interval in the sliding window, and B is reset. At the same time, Bn

reaches the end of the sliding window and is discarded. Rather than keep track of each
of the interval boundaries (which have fixed size), we use a single running timestamp
tALE that points to the end of the sliding window, i.e., corresponds to w0. After every
w seconds tALE is incremented by w. Thus, an entry stored in Bi would have arrived in
the time interval tALE − wi and tALE − w(i + 1).

Estimating TCP Latency Approximately with Passive Measurements 87

Now, suppose an acknowledgement arrives (possibly piggybacked on a data packet)
at time t2 (see lower half of Fig. 1): we need to look backwards in time and find the
(first) bucket where the corresponding segment was recorded. We first check B (and if
there is a match, the RTT is just (t2 − tALE)/2). Then we check B0, B1, . . . , Bn until
we find a match. In the figure, we find a match in the window [w2, w3]. We estimate the
RTT as t2− tALE+2w+w/2. More generally, when a match is located in Bi, the RTT
is t− tALE + (2i+1)w/2. If there is no match after checking the last bucket Bn, ALE
does not return an RTT estimate.

Notice that there are two parameters, w and W , that control accuracy and coverage.
For a given span W , increasing the accuracy requires smaller w; thus, more buckets and
associated data structures. A similar argument holds if we were to hold accuracy fixed
(i.e., fix w) but increase W . Rather than require accuracy to be uniform in each bucket
(necessitating a lot of buckets), one could also use non-uniform buckets. We now in-
troduce a variation of the estimator just introduced that we call ALE-E, which employs
exponentially increasing intervals. ALE-E attempts to support relative accuracy for the
same number of buckets i.e., better accuracy for smaller latency samples and lesser ac-
curacy for larger latencies. To differentiate the two, we use ALE-U to denote the use of
uniform sized buckets.

ALE with Exponential Buckets. ALE-E follows the same general idea of moving the
contents of buckets to its older neighbor. However, the buckets follow a slightly different
rule for the shift operation. Like before, bucket B0 shifts its contents to B1 after every
w seconds. However, bucket Bi is shifted (and merged) into Bi+1 every 2iw seconds.
This is illustrated in Fig. 2. Here, we see that every w seconds, B0 is merged with B1;
B1 is merged with B2 every 2w seconds; B2 is merged with B3 every 4w seconds
(not shown) and so on. Whenever the buckets are merged, we adjust their starting and
ending times appropriately. The actual merging is trivial if Bi is maintained as a CBF:
we simply add up the corresponding counters. Intuitively, the size of each interval is
twice as long as the one preceding it. That is to say the i-th interval is of size 2iw. If the
width of the smallest bucket is w, monitoring the span W requires 1 + �log2(W/w)�
buckets. ALE-E can cover the same range using fewer buckets. However, this comes
at a price: larger buckets cause larger errors in RTT estimate. Moreover, the merging
of bloom filters causes them to attenuate with each merge, i.e., the bitmaps get more
“crowded” and prone to false positives. Thus, ALE-E makes the estimation of longer
latencies inaccurate in return for parsimonious use of memory and better accuracy for
smaller latencies.

Other Sources of Error. When multiple data segments are acknowledged by a single
cumulative acknowledgement (e.g, a delayed ACK), we can only match (and remove)
the last data segment and generate a single RTT sample. The other data segments are
not removed from the CBFs until they drop out of Bn. The same phenomenon occurs
if the ACKs are not flowing (or flowing fast enough) towards the sender. If this persists
over time, the counting bloom filter becomes saturated and exhibits a high false positive
rate. We can deal with this by increasing the size of the CBFs.

Since ALE does not maintain the state for the TCP segments, we cannot identify
reordered packets. When this does happen, ALE will return an incorrect answer (rather

88 S. Gangam et al.

than discarding the RTT sample). Retransmitted packets also pose a source of error. In
general, retransmitted segments can be identified (and excluded from the RTT estima-
tion) in ALE by first checking through all the buckets before recording the segment. If a
copy is found, one of the segments being matched is a duplicate and they should both be
discarded. However, this additional check makes the TCP segment insertion operation
go to O(n) from O(1).

Accuracy and Overhead Bounds. ALE has simple discretization error bounds on the
estimated latencies. Let w denote the width of the bucketB0. For ALE-U, the worst case
error is w/2 and the average case error is w/4. In ALE-E, when an ACK has a match
in bucket i, the worst case error is 2i−1w and the average case error is (3w/16)2i. We
omit the proofs due to a lack of space.

ALE with h hash functions takes O(h) time to insert an expected acknowledgement
number in the CBF of bucket B. Matching an ACK takes O(hn) time (answering CBF
membership queries on n buckets). For every time interval w, shifting buckets takes
O(1) time, if the buckets are implemented as a linked list. Additionally, ALE-E takes
O(C) time to add counters of two CBFs (merging). Finally, ALE takes n× C × d bits
of memory, where d is the number of bits in each counter of the CBFs.

ALE Parameters. The sliding window size, or span (W) should be chosen to ensure
that most of the normal latencies observed fall inside of it. It is a limitation of ALE to
use a preconceived estimate of the maximum latencies in the network. Interval width
(w), the other ALE parameter, is mainly dictated by accuracy requirements. In an appli-
cation like VoIP, which needs latencies lower than 150ms, an error of 20ms is accept-
able to identify problematic scenarios. This requires setting w to 40ms in ALE-U.

We use CBFs with 4 hash functions. For m entries and C counters, the optimal
number of hash functions h is given by h = (C/m) ln 2 and the corresponding false
positive rate is ≈ (2− ln 2)C/m [5]. With 4 hash functions, this false positive probability
is 0.0625. One can estimate C based on the traffic rate, the time interval w, and the
number of hash functions h. The traffic rate R in our traces varies between 350, 000
and 600, 000 TCP packets per second [1]. For w = 20ms, h = 4, and m = R×w, the
constraint for optimal h (h = (C/m) ln 2) yields C = 40396. In practice, we require
fewer counters (30000) as the matched ACK numbers are deleted from the CBFs. We
use CBFs with 4-bit counters as they work well in practice [7].

3 Evaluation

We compare different ALE variants against tcptrace as the baseline solution. The
terms tcptrace and baseline are interchangeable. We use two 60-second traces captured
at a backbone link of a tier-1 ISP obtained from CAIDA. The traces capture headers of
all packets in both directions of the link. Trace 1 starts on 07-21-2012 at 13:55 UTC,
contains 2,115,802 TCP flows, and 50,022,761 TCP packets; Trace 2 starts on 02-17-
2011 at 13:01 UTC, contains 2,423,461 TCP flows, and 54,089,453 packets. We find
that only 1.8% and 2.1% of the captured flows are bidirectional, a result of most Inter-
net paths being asymmetric at the core [8]. However, closer to the network edge (home
gateways and even most access networks), traffic is bidirectional. Since we do not han-
dle unidirectional flows in our current implementation, we pre-processed the traces to

Estimating TCP Latency Approximately with Passive Measurements 89

La
ten

cy
 di

ffe
ren

ce
 fro

m
Ba

se
lin

e L
ate

nc
y (

ms
)

−50

0

50

E(
12

)
U(

12
)

U(
24

)
U(

48
)

U(
96

)

[0, 60]

E(
12

)
U(

12
)

U(
24

)
U(

48
)

U(
96

)

[60, 120]

E(
12

)
U(

12
)

U(
24

)
U(

48
)

U(
96

)

[120, 300]

E(
12

)
U(

12
)

U(
24

)
U(

48
)

U(
96

)

[300, 2000]

Fig. 3. Distribution of estimation error (RTTbaseline − RTTALE) over all samples

filter out unidirectional flows. We point out that it is indeed feasible to filter out such
flows in an online fashion, but this discussion out of the scope of this paper. In the rest
of the section, unless explicitly stated, we show results from Trace 1, but results for
Trace 2 are qualitatively similar.

We compare 4 different configurations of ALE-U with n = 12, 24, 48, and 96 buck-
ets; we refer to these configurations as ALE-U(n). Using tcptrace, we find that the
majority of RTTs in Trace 1 are less than 100 ms and only 0.5% are larger than 2 s. We
thus configure ALE with a window span of two seconds, i.e., W = 2 s. This results
in intervals w ranging from 167 ms (when n = 12) to 21 ms (when n = 96). Finally,
we configure ALE-E with 12 intervals and we refer to this configuration as ALE-E(12).
To accommodate the high traffic rates in our traces, we use CBFs with C = 30000
counters and 4 hash functions.

RTT Estimation Accuracy. We first report on the per-sample RTT estimation accuracy
across the various methods. While this is not a very natural metric of comparison—
most applications would be in interested in some statistic over these—it does serve to
illustrate some of the intuition for why ALE performs comparably, and talks to its suit-
ability for certain situations. Fig. 3 presents a box and whisker plot of the differences
between the RTT reported by each method and tcptrace. In other words, it shows
the distribution of RTTtcptrace − RTTALE over all RTT samples in Trace 1 for dif-
ferent ALE configurations. Recall that the size of the interval bounds the accuracy for
ALE. To draw out how ALE might perform at different regimes, the plot is partitioned
into four latency regions (unrelated to w): (0, 60]ms, (60, 120]ms, (120, 300]ms, and
(300, 2000]ms. For example, the first group (left) plots the distribution for all samples
where the baseline approach reported a latency between 0 and 60 ms. The horizontal
line in the center of the figure marks the region where the difference is zero (the val-
ues reported by the baseline and ALE are identical). The height of the box spans the
inter-quartile range of the differences in the RTT estimate and the point in the box is
the median difference.

Not surprisingly, across all latency ranges, increasing the number of buckets im-
proves accuracy. We also note that ALE-U(96), which almost completely agrees with
the far more expensive baseline approach. There are a few rare large differences, but
this may be quite acceptable considering the savings in memory; especially keeping

90 S. Gangam et al.

Number of Samples

E(
12

)U(1
2)U(2

4)U(4
8)U(9

6)
0e

+0
0

1e
+0

5
2e

+0
5

3e
+0

5
4e

+0
5

(0,60]

0
20

00
0

40
00

0
60

00
0

80
00

0

(60,120]

0
50

00
0

10
00

00
15

00
00

(120,300]

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

(300,2e+03
EXCESS MISSED VALID.SAMPLES

Fig. 4. Comparison of excess and missed samples
across the different approaches

Sampling Rate

T
im

e
 (

s)

0
20

40
60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7

TCPTRACE U(96)

Fig. 5. Compute time for ALE-U(96)
and tcptrace and for different thinned
traces

in mind that per-sample RTT estimates are rarely used directly. In Fig. 3, we note that
ALE-E(12) does almost as well as ALE-U(96) for latencies less than 60 ms even though
ALE-E(12) uses 8 times less memory. The price, however, is reduced accuracy for la-
tencies above 60 ms.

Excess and Missed Samples. As discussed previously, the ALE algorithms sometimes
miss RTT samples reported by the baseline approach (RTT misses, e.g., when CBF false
positives decrement counters prematurely); and sometimes report RTTs not reported by
the baseline (excess RTTs, due to, e.g., CBF false positives or reordered packets). We
plot the absolute numbers of each, separated by latency regions in Fig. 4. We observe
that adding more memory (buckets) reduces both missed and excess RTTs. With respect
to ALE-E, we see that missed and excess RTTs are few when latencies are small, but
the excess samples are common for large latency values. As the CBFs for each bucket
in ALE-E are shifted and merged, they are increasingly attenuated and have higher false
positive rates. Nevertheless, ALE-E is still accurate up to 120 ms, which may be enough
for interactive applications.

Fig. 4 can qualitatively explain the contribution of the different sources of error. For
example, when ALE-U uses sufficiently large memory (e.g., U(96)) the effects of false
positives and negatives are mitigated. U(96) has few misses and excess values indicating
that there are few retransmitted and reordered packets in the CAIDA traces. If the results
in Fig. 3 and Fig. 4 do not improve with additional memory, one can conclude that the
errors are due to re-ordered and retransmitted packets.

Errors in Flow Latency Properties. Typical flow performance monitoring applications
track some statistic of the flow latencies, rather than use the RTT samples directly.
Consider the example of VoIP quality tracking, very sensitive to jitter. This involves
monitoring and tracking the variation in latencies of a flow, relating this to the user
perceived quality of the session. We study the impact of the approximations native
to ALE on two relevant flow statistics: (i) median latency of a flow, which impacts
the quality of interactive applications (network games, web browsing), and (ii) jitter
(latency variation) in a flow, which impacts the perceived quality of most real-time
streaming applications (VoIP, video conferencing).

Fig. 6a plots the distribution of differences in the median latency computed by the
baseline and ALE. Each curve is a distribution of the values of medianbaseline−medianALE

Estimating TCP Latency Approximately with Passive Measurements 91

Median_B − Median_ALE (ms)

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

−40 −20 0 20 40

E(12)
TCPTRACE

U(12)
U(24)

U(48)
U(96)

(a) Difference in median latency.

SD_B − SD_ALE (ms)

C
D

F

0.0

0.2

0.4

0.6

0.8

1.0

−100 −50 0 50 100

x
=

0

E(12)
TCPTRACE

U(12)
U(24)

U(48)
U(96)

(b) Difference in latency std. dev.

Fig. 6. Accuracy for latency statistics over all flows

over all flows. The vertical black line in the middle represents perfect agreement with
the baseline. In the figure, we note that ALE-U(96) performs best over the other in-
stances: at least 97% of the flows have medians within 10 ms of the baseline (shown
by the vertical red lines). To put this in context, the acceptable latency for VoIP is be-
tween [20, 150]ms: being off by 10 ms does not affect the monitoring application to a
large degree. The other ALE-U instances perform as expected: larger number of buckets
tends to make the curve steeper (and more aligned with the center line). We also note
that ALE-E performs reasonably well: about 65% of the flows have median latency es-
timate within 15 ms of the actual value. Since the median is robust to outliers, some of
the large errors that ALE-E reports for individual samples are filtered out. Thus, along
with ALE-U(96) and perhaps ALE-U(48), ALE-E might be effective as a lightweight
method to monitor the quality of low latency sessions.

In a similar comparison, Fig. 6b plots the CDF of disagreement in the standard de-
viations of flow latencies, i.e., σbaseline − σALE. The vertical black line (at x = 0)
marks the region where the std. dev. reported by ALE matches that of the baseline per-
fectly. Firstly, we notice that the baseline approach in general reports lower variance
than the ALE approaches (the cases when the difference is negative). This is because
the latencies are dispersed over a time interval w. In the figure, the red vertical lines
indicate the 20ms boundary from zero. We again see that ALE-U(96) performs better
than any of the others, and 95.7% of the flows have delay variance that differ from the
baseline reported version by at most 20 ms. We also see that ALE-E performs poorly
on this comparison. About 80% of the flows disagree with the baseline reading by at
least 20 ms. This is most likely due to CBF attenuation in the larger intervals leading to
a large number of false positives.

Memory and Compute Overhead. We thin out the trace by sampling flows uniformly
at random at rates 0.1, 0.2, . . . 0.7, such that there are 5 pcap sub-traces at each rate. For
a given rate, all the 5 pcap sub-traces have about the same number of flows. A sub-trace
with higher sampling rate requires processing of more packets and flows per unit time.
Using these sub-traces, we run ALE-U(96) and tcptrace (both implemented in GNU C),
on an AMD quad core 512 KB cache, 2.6 GHz, 8 processor machine with 32 GB RAM
to study the overhead. We use tstime [3] tool which leverages the GNU Linux taskstats
API to get user time, system time, high water RSS (resident segment size) memory and
high water VSS (virtual segment size) memory of a process.

92 S. Gangam et al.

As expected, ALE-U(96) takes constant high water RSS memory of 2.0 MB and
high water VSS memory 9.8 MB for all sampling rates. In contrasting, tcptrace requires
RSS memory ranging from ≈ 64 MB (at rate 0.1) to ≈ 460 MB (at rate 0.7). The VSS
memory requirement ranges from ≈ 74 MB to ≈ 468 MB. These experiments confirm
our hypothesis that ALE has significantly less memory overhead.

Fig. 5 shows the times taken to process at different sampling rates for ALE and
tcptrace. As the data rates increase, tcptrace takes increasingly longer time than ALE.
tcptrace has higher variability in compute times. ALE, by avoiding TCP state, has less
variability and takes constant per-packet processing time (on average) at all traffic rates.

4 Discussion

Though our implementation does not incorporate computational optimizations, we hope
that a performance-focused implementation (e.g., parallelizing ACK lookups in the n
buckets) would be even faster. An optimized implementation can fit the data required
by a wide range of ALE configurations in the caches of low-end Atom and ARMv8
processors (currently between 256 KiB and 1 MiB). The evaluated configuration with 48
buckets and 30,000 4-bit counters per bucket would require about 700 KiB of memory
for processing 10 Gbit/s links. We note that ALE lends itself well to implementation in
hardware: ALE’s basic building blocks are hashing functions, 4-bit accumulators, and
4-bit comparators.

Current home DSL gateways usually run local area networks that run at 100 Mbit/s
and connect to the Internet with connections up to 28 Mbit/s. In an heavy-loaded sce-
nario with an Internet download at 28 Mbit/s and a local transfer at 100 Mbit per second,
the gateway would receive 11000 full-size (1500 B) packets/s (the absolute number of
flows does not impact ALE in any way). Configuring ALE-U(12) with 12 buckets and
W = 200ms would require bucket sizes of 1058 counters per bucket, for a total mem-
ory utilization of 12× 1058× 4÷ 8÷ 1024 = 6.2KiB. This fits easily in the cache of
current MIPS and ARM processors used in home DSL gateways.

References

1. CAIDA: Passive network monitors,
http://www.caida.org/data/realtime/passive/

2. tcptrace, http://www.tcptrace.org/
3. tstime, https://bitbucket.org/gsauthof/tstime/
4. Web10G, http://www.web10g.org
5. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An Improved Con-

struction for Counting Bloom Filters. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 684–695. Springer, Heidelberg (2006)

6. Dick, M., Wellnitz, O., Wolf, L.: Analysis of Factors Affecting Players’ Performance and
Perception in Multiplayer Games. In: Proc. ACM Netgames (2005)

7. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

8. He, Y., Faloutsos, M., Krishnamurthy, S., Huffaker, B.: On Routing Asymmetry in the Inter-
net. In: Proc. IEEE GLOBECOM (2005)

9. ITU-T. Recommendation G.114: One-way Transmission Time (May 2000)

http://www.caida.org/data/realtime/passive/
http://www.tcptrace.org/
https://bitbucket.org/gsauthof/tstime/
http://www.web10g.org

Estimating TCP Latency Approximately with Passive Measurements 93

10. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring TCP connection char-
acteristics through passive measurements. In: Proc. IEEE INFOCOM (2004)

11. Jiang, H., Dovrolis, C.: Passive estimation of TCP round-trip times. SIGCOMM Comput.
Commun. Rev. 32(3), 75–88 (2002)

12. Lance, R., Frommer, I.: Round-trip time inference via passive monitoring. SIGMETRICS
Perform. Eval. Rev. 33(3), 32–38 (2005)

13. Lee, M., Duffield, N., Kompella, R.R.: Not all microseconds are equal: fine-grained per-flow
measurements with reference latency interpolation. In: Proc. ACM SIGCOMM (2010)

14. Lee, M., Duffield, N., Kompella, R.R.: Leave them microseconds alone: Scalable architecture
for maintaining packet latency measurements. Technical report, Purdue Univ. (2011)

15. Veal, B., Li, K., Lowenthal, D.: New Methods for Passive Estimation of TCP Round-Trip
Times. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 121–134. Springer, Heidelberg
(2005)

16. Xiu, X., Cheung, G., Liang, J.: Delay-cognizant interactive streaming of multiview video
with free viewpoint synthesis. IEEE Trans. on Multimedia 14(4), 1109–1126 (2012)

Effect of Competing TCP Traffic

on Interactive Real-Time Communication

Ilpo Järvinen1, Binoy Chemmagate1, Aaron Yi Ding1, Laila Daniel1,
Markus Isomäki2, Jouni Korhonen3, and Markku Kojo1

1 University of Helsinki
2 Nokia

3 Nokia Siemens Networks

Abstract. Providing acceptable quality level for interactive media flows
such as interactive video or audio is challenging in the presence of TCP
traffic. Volatile TCP traffic such as Web traffic causes transient queues to
appear and vanish rapidly introducing jitter to the packets of the media
flow. Meanwhile long-lived TCP connections cause standing queues to
form which increases the one-way delay for the media flow packets. To
get insights into this problem space we conducted experiments in a real
high-speed cellular network. Our results confirm the existence of issues
with both Web-like traffic and long-lived TCP connections and highlight
that current trend of using several parallel connections in Web browsers
tends to have high cost on media flows. In addition, the recent proposal
to increase the initial window of TCP to ten segments, if deployed, is
going to make the jitter problem even worse.

1 Introduction

Introducing delay sensitive end-to-end media flows such as interactive video and
audio between Internet users introduces a number of challenges with congestion
control. These challenges involve two interrelated problems. First, how to ensure
that real-time communications behave fairly with other competing Internet traf-
fic. Second, how to ensure good quality to the interactive media, in particular
with the other competing traffic that the users potentially generate to share the
bottleneck(s) on the end-to-end path. In this paper we focus on the latter chal-
lenge. In a common case the bottleneck resides in the access network of the end
user, where most of the traffic, if not all, is that generated by the user. When we
consider the link speed in developing or underdeveloped areas, we can see that,
most of the users are still using residential access such as DSL or mobile broad-
band as the primary Internet access. Even in developed areas the link capacity
for residential Internet access is quite often not more than a few megabits per
second.

Web traffic in general is very bursty and easily creates transient queues at bot-
tlenecks in front of slow and moderate speed access links. These queues interfere
with any competing traffic by introducing delay spikes that delay sensitive flows

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 94–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Effect of Competing TCP Traffic on Interactive Real-Time Communication 95

encounter as harmful jitter. Moreover, a browser of today is quite aggressive us-
ing many parallel TCP connections to speed up retrieval of the Web pages [2,15].
At the same time, websites “optimize” the end user experience by taking advan-
tage of the parallel TCP connections feature of the browser. The “optimized”
Web pages contain objects that seem to reside in different domains but are in-
stead coming from the same server. Such fake domains trick the browser to allow
more parallel connections as browsers limit the number of parallel connections
per domain. The use of a large number of parallel TCP connections with typical
Web traffic tends to intensify queuing effect and may dramatically increase the
effect of the delay spikes, which is likely to be particularly harmful to delay sen-
sitive traffic such as interactive audio and video. Moreover, in the recent years
some efforts have been made to increase the initial window of TCP from three to
ten segments [3,5]. Such increase together with the large number of parallel TCP
connections introduces rapidly changing environment for any traffic competing
with the parallel TCP flows.

While solutions such as LowExtraDelay BackgroundTransport (LEDBAT) [14]
that attempt to keep queuing delay low exist, their use for Web traffic would be
controversial as the Web traffic is certainly not less than best effort type. Quite
contrary, the browsers and websites aim to minimize the latency in Web page
transmission which is in direct conflict with the carefulness that approaches such
as LEDBAT need. Considering that current browsers and websites disregard ad-
vice on number of concurrent connections [6] to shorten latency, it is unlikely that
browsermakers or website administratorswould find LEDBATor similar approach
an acceptable solution. Besides, deployment of a new TCP variant in large scale
would be a challenge in itself. On the other hand, if such TCP variant would be
used only on-demand when a threat to harm media flows exists, additional sig-
nalling between the end hosts would be required as LEDBAT is implemented at
the sender. Such signalling again would face deployment challenges.

On the network side, phenomenon called bufferbloat [8,11] has recently at-
tracted some attention. Because of bufferbloat, devices in the network can end
up buffering enormous amount of traffic such as the initial windows of all par-
allel web responses. Active queue management (AQM) and its most prominent
representative Random Early Detection (RED) [7] is often proposed as a solu-
tion to the bufferbloat but that is challenging to realize in practice. The access
network devices that are typically bottlenecks lack support for AQM/RED, and
even if available, RED does not work with the default settings as it is “too gen-
tle to handle fast changes due to TCP slow start when the aggregate traffic is
limited” [10]. As tuning of the RED parameters requires modifications on the
intermediate network nodes, it is not deployable in the short run on large scale
even if RED itself is supported by the devices.

Media flows are typically reduced in size for transmission by a codec which
tries to retain human observable properties of the original content while removing
information where human senses cannot detect the changes. Usually codecs can
conceal sporadic losses quite well, but when more losses occur consecutively,
quality deteriorates and distortions become noticeable. A jitter buffer between

96 I. Järvinen et al.

the receiving codec and the network absorbs jitter that occurs in the packet
transmission over the network. The codec needs the data on time because the
media playback is time bound. If a sudden delay increase occurs in the network,
the media packet might not arrive in time for the playback and needs to be
discarded unused. Selecting a larger jitter buffer size is a tradeoff as it would
allow larger jitter to occur but at the same time it increases the total end-to-end
delay, potentially resulting in unacceptable interactive media quality.

Another problem for media flows are long-lived TCP connections such as soft-
ware updates and file downloads. A long-lived TCP connection tends to create
long queues that occupy the bottleneck buffers for a long period of time. The long
term queues often cause high end-to-end one-way delay for interactive media,
resulting in unacceptable interactive media quality.

Some studies explored media flows andWeb Traffic in 3G/3.5G network [9,16].
In these studies, however, the different traffic types might not be competing
with each other over the cellular data channel. In this study we focus on the
effect of simultaneous TCP flows on interactive media, and also on the effect
of the larger TCP initial window [3]. To our best knowledge, neither effect has
been explored in a 3G/3.5G environment before. Although cellular access is
used in the experiments, we believe that the results are representative for any
access with similar moderate link capacity because deep buffers are a widespread
phenomenon [8]. TCP performance and the interactions between parallel TCP
connections are out of scope for this study.

In this paper we measure the effect of competing TCP traffic to interactive
media flows in a real high-speed cellular network environment. The rest of this
paper is organized as follows. In Section 2 we introduce the test setup and
workloads for the experimentation. In Section 3 we analyze how TCP traffic
affects the one-way delay and delay variation of a media flow. In Section 4 we
analyze the transient effect of jitter-induced loss periods on a media flow and in
Section 5 we conclude our findings.

2 Test Setup and Workloads

The experiments have been carried out over a real cellular Internet access using
emulated traffic flows to allow full control over the workloads and more accurate
analysis of the results. The test system comprises of a mobile host and fixed
server, as presented in Figure 1.

Fig. 1. Test environment

Effect of Competing TCP Traffic on Interactive Real-Time Communication 97

In order to get the baseline for interactive media flow behavior without com-
peting traffic in the test environment we first measure the performance of an
emulated audio only workload. We then focus on the two major workloads that
roughly mimic two typical TCP traffic loads competing with an interactive me-
dia flow: (1) Software update during a voice call (Audio+Bulk) and (2) Web
browsing when a voice call is ongoing (Audio+n short TCP flows). In the Au-
dio+Bulk workload, an emulated audio flow starts first and then a Bulk TCP
transfer of 28 MB starts. Bulk TCP’s start time is distributed uniformly between
10 to 12 seconds after the start of the audio flow. In the Audio+n short TCP
flows workload, an emulated audio flow starts first and then n short TCP flows
start at the same time, the start time being distributed uniformly between 10
to 12 seconds after the start of the audio flow. The n short TCP flows can be
one TCP flow, two TCP flows or six TCP flows. The total size of the short TCP
flows is 372 kB. In both scenarios the audio flow is ongoing while TCP traffic
is starting in the middle of the audio flow. The audio flow lasts long enough to
cover the whole duration of the TCP transfer.

The direction of traffic in all test cases is from the fixed server to the mobile
host. We also send enough warming up packets right before each test run to
ensure that a dedicated channel (DCH state) is allocated for the actual test
data, and thereby radio state changes are not affecting the results. The n short
TCP flows are tested with initial window of three (IW3) and initial window of
ten (IW10). The audio flow is a constant bit-rate (CBR) type with bit-rate of
16 kbps yielding 32 kbps total bit-rate with IP, UDP, and RTP headers, that
is, an IP packet of 80 bytes is transmitted every 20 ms. We run 50 replications
with each different combination of test parameter values. All the test traffic is
captured using tcpdump [17] on both the mobile host and the fixed server. We
carefully synchronized the end host clocks prior each test run using Network
Time Protocol (NTP) [13] allowing initially enough time for the clocks to be
slowly adjusted towards almost equal rates. This enabled us to measure one-way
delay [1] for each media packet with reasonable accuracy by taking the difference
in timestamps found in the tcpdump logs at each end.

3 Effects on One-Way Delay and Delay Variation

In the conducted experiments, the HSPA network introduced hardly any losses
during the observed period. Therefore, the effect of competing TCP traffic is
mainly due to the delay and the changes in the delay. While analyzing the
results, we noticed that on a few occasions the wireless link introduced very long
delays to packet delivery ranging from 3 seconds to rare occurrences with more
than 60 seconds of delay. Also a large number of consecutive losses, reordering,
or packet duplication occurred during such events. We choose to filter out the
cases where clear symptoms of such event occurred because we are interested in
how TCP affects media flow rather than wireless link problems. As we do not
have access to the cellular operator network to collect traces, we cannot confirm
the exact cause for this “wireless phenomenon” but in most of the cases they are
likely to be caused by the cellular access deciding to switch access technology.

98 I. Järvinen et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

One-way delay (s)

Fig. 2. CDF of one-way delay for 15 secs
audio only workload, 50 replications

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

One-way delay (s)

Fig. 3. CDF of one-way delay for an audio
flow with a competing Bulk TCP connec-
tion, 50 replications

Figure 2 shows the cumulative distribution function (CDF) of end-to-end one-
way delay [1] for 15 secs audio only workload. The one-way delay is good enough
for inter-active audio conversation. The loss-rate is only 0.05 %. The delays
remain below 40 ms except for a handful of packets, the median and maximum
measured one-way delay being 18.0 ms and 70.4 ms, respectively.

Figure 3 shows the CDF of one-way delay for the media flow packets during a
bulk TCP transfer. With the competing bulk TCP transfer interactive audio is
impossible because the one-way delays during the TCP transfer are prohibitive.
Already the 25th percentile of the one-way delay is 0.5 secs and the median is 1.42
secs. We confirmed from the traces that deep buffering is the main cause for the
delay increase; soon after the bulk TCP transfer starts the delay increases and
remains around 1.5-2.5 secs consistently for the duration of the TCP transfer.
Such a delay increase was not present in audio only results. Few values especially
in the highest end, however, might be due to wireless network phenomena on
top of the deep buffering.

Figure 4 shows CDF of the one-way delay for the media flow with short TCP
flows when different number of TCP connections and different TCP initial win-
dow sizes are in use. The one-way delay with one competing TCP flow using
initial window of three segments is reasonably low and seems to allow smooth
packet delivery for interactive media. Increasing the number of TCP connec-
tions from one to two causes only a moderate increase in the end-to-end delay.
However, increasing the TCP connection count to six introduces larger one-way
delays, and the sharp knee transition with one or two flows is transformed into
an earlier increase in the one-way delay affecting roughly 40 % of the packets.
However, in all cases with competing TCP traffic using IW3 the one-way delay
remains below 150ms all the way up to 75th percentile.

The one-way delay with competing TCP traffic using initial window of ten
segments is notably higher than when using initial window of three in all cor-
responding cases. In all cases with the initial window of ten the one-way delay
is higher than with the case of six TCP connections using the initial window
of three. The median one-way delay with six competing TCP flows using IW10

Effect of Competing TCP Traffic on Interactive Real-Time Communication 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Audio flow one-way delay (s)

Audio+1 TCP flows, IW=3
Audio+1 TCP flows, IW=10

Audio+2 TCP flows, IW=3
Audio+2 TCP flows, IW=10

Audio+6 TCP flows, IW=3
Audio+6 TCP flows, IW=10

Fig. 4. CDF of one-way delay for an audio
flow competing with n short TCP flows,
50 replications

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

40m
s

60m
s

80m
s

100m
s

150m
s

200m
s

40m
s

60m
s

80m
s

100m
s

150m
s

200m
s

40m
s

60m
s

80m
s

100m
s

150m
s

200m
s

40m
s

60m
s

80m
s

100m
s

150m
s

200m
s

40m
s

60m
s

80m
s

100m
s

150m
s

200m
s

40m
s

60m
s

80m
s

100m
s

150m
s

200m
s

Lo
ss

 r
at

e
(m

ed
ia

n,
 2

5t
h-

75
th

 p
er

ce
nt

ile
)

 Audio+1 short TCP flow Audio+2 short TCP flows Audio+6 short TCP flows

IW3
IW10

Fig. 5. Loss rate with different jitter
buffer sizes for Audio+n short TCP flows
workload

approaches 200ms but remains below 150ms even with one and two competing
TCP flows.

IP Packet Delay Variation (IPDV) [4] for the media flow is shown in Table 1.
As the high-end values seemed to correlate well with the increase in the size of the
combined initial windows of parallel TCP flows, we extracted from the packet
traces those TCP data packets that are received between two audio packets
and confirmed that the large IPDV values typically occur when the TCP initial
windows are among those TCP packets. In particular, with IW10 the large IPDV
values are mostly introduced when the TCP flows inject the initial windows into
the network.

4 Estimated Delay Induced Loss Period Effects

In order to explore the transient effect of the delay jitter on the media flow,
we introduce a jitter filter to mimic receiving codec behavior in dropping late
arriving media flow packets. First, there are “pure losses” when a packet is
dropped in the network, either due to congestion or link errors. With interactive
media, there is also “delay-based loss” when a media flow packet delay exceeds
the jitter buffer limit and thereby misses the deadline for codec to decode and
play the transmitted content. Such a packet is unusable similar to the pure loss.
Delay-based losses are flagged when one-way delay of the packet exceeds “base

Table 1. CDF of IPDV for an audio flow competing with n short TCP flows, 50
replications

IW n Min 25% Median 75% 90% 95% 96% 97% 98% 99% Max

3 1 -0.020107 -0.011373 -0.000206 0.009194 0.020072 0.029445 0.031174 0.034697 0.043296 0.070158 0.111526

3 2 -0.020102 -0.011242 -0.000281 0.008824 0.018924 0.028301 0.029892 0.039526 0.050787 0.100523 0.182076

3 6 -0.020107 -0.011696 -0.000588 0.001666 0.012330 0.025413 0.031916 0.059762 0.081594 0.125042 0.282826

10 1 -0.020414 -0.012084 -0.000482 0.001835 0.016195 0.020696 0.029253 0.030297 0.050413 0.172464 0.242798

10 2 -0.020128 -0.019264 -0.000919 0.003032 0.019432 0.030032 0.031393 0.041291 0.070785 0.160448 0.322197

10 6 -0.020098 -0.019541 -0.009664 0.000454 0.018741 0.030004 0.040417 0.069099 0.121090 0.220447 0.589717

100 I. Järvinen et al.

delay” plus jitter buffer size. The “base delay” is calculated as the minimum
delay over the period of two seconds prior to the arrival of the TCP flows.

Figure 5 shows the loss rate with different jitter buffer sizes, number of con-
nections, and initial window settings. The loss rate is determined by combining
pure losses and delay-based losses. IW10 increases the loss rate dramatically to
nearly 100% with lower jitter buffer sizes. However, also IW3 with a large num-
ber of parallel connections produces significant number of losses. We want to
reiterate that these losses occur almost solely due to excessive delay, not due to
pure losses.

As codecs often are able to conceal isolated losses quite well, we specify a
metric to estimate loss period effect on the interactive media from codec and end
user perspective. The estimate is based on loss periods [12] that are encountered
by the codec when several consecutive media flow packets are dropped due to
jitter delay. We combine also pure losses into this metric though pure losses occur
infrequently in our experiments. For a given jitter buffer size, each data packet
carrying interactive media (Audio) is assigned a loss period level according to
the definition in Table 2.

We intentionally chose to use minimum delay as base delay in order to report
the worst-case behavior. As a real codec might choose higher value, it is rea-
sonable to assume that the loss period effect is unlikely to be worse than that
indicated by the loss period level.

In order to better understand transient effects that are hidden with CDF,
Figures 6a, 6b, and 6c estimate the loss period effect in a function of time for a
media flow using 40 ms jitter buffer size and competing with 1, 2, and 6 short
TCP flows, respectively. 50 replications are included in each test case. The loss
period level values are filtered to only include the media flow packets that overlap
with the TCP transfers and therefore the number of samples starts to decline
around 1 second when the TCP flows in individual test replications start to
complete.

Almost immediately when the TCP flows start the TCP traffic generates
significant loss period effect on the media flow packets, as the SYN handshakes
complete and the TCP flows inject their initial windows into the network. We
note that the arrival of the initial windows causes the worst effect during the
whole transfer. When only a single TCP connection is competing with the media

Table 2. Loss period level definition for estimating loss period effects

Value Description

0 no loss
1 20 ms gap in the stream, no adjacent packet lost
2 40-60 ms of the stream was lost
3 80-100 ms of the stream was lost
4 120-180 ms of the stream was lost
5 200+ ms of the stream was lost

Effect of Competing TCP Traffic on Interactive Real-Time Communication 101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 p

ac
ke

ts
 (

no
rm

al
iz

ed
)

Time (s)

Loss Period Level for Audio with 1 short TCP flow, Jitter Buffer of 40 ms

Best - 0
1
2
3
4

Worst - 5

(a) With one competing TCP flow, IW3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 p

ac
ke

ts
 (

no
rm

al
iz

ed
)

Time (s)

Loss Period Level for Audio with 2 short TCP flows, Jitter Buffer of 40 ms

Best - 0
1
2
3
4

Worst - 5

(b) With two competing TCP flows, IW3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 p

ac
ke

ts
 (

no
rm

al
iz

ed
)

Time (s)

Loss Period Level for Audio with 6 short TCP flows, Jitter Buffer of 40 ms

Best - 0
1
2
3
4

Worst - 5

(c) With six competing TCP flows, IW3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 p

ac
ke

ts
 (

no
rm

al
iz

ed
)

Time (s)

Loss Period Level for Audio with 1 short TCP flow, Jitter Buffer of 40 ms

Best - 0
1
2
3
4

Worst - 5

(d) With one competing TCP flow, IW10

Fig. 6. Estimated loss period levels for audio packets when an audio flow using 40 ms
jitter buffer competes with TCP transfers, 50 replications

flow the loss period effect is not falling to the worst level and the level is rapidly
restored after the initial window around 0.2 seconds. With two TCP flows the
initial window injection causes much worse effect than with one concurrent flow
but still the media flow is able to restore better level once the initial windows
have been transmitted. However, as the two TCP flows start to open up their
window resulting in more jitter the loss period effect again becomes notable.
With six concurrent connections the loss period level is very bad right from the
beginning and affects almost the whole duration of the TCP transfers. Figure 6d
shows the loss period level with one competing TCP flow using IW10. The worst
loss period level immediately becomes dominant like in case of six TCP flows
with IW3 and remains dominant all the way until the completion of the TCP
flows.

Figure 7 summarizes the estimated loss period effect on the media flow with
n competing TCP flows when different IW sizes are used. The loss period levels
0 and 1 are combined to determine “acceptable” level (i.e., no lost packet has
an adjacent packet lost) and all the cases with one, two, or six short TCP flows
are considered together. We observe that the number of acceptable media flow

102 I. Järvinen et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 p

ac
ke

ts
 (

no
rm

al
iz

ed
)

Time (s)

200ms
150ms
100ms

80ms
60ms
40ms

(a) IW3, 150 replications (n=1,2,6)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
um

be
r

of
 p

ac
ke

ts
 (

no
rm

al
iz

ed
)

Time (s)

200ms
150ms
100ms

80ms
60ms
40ms

(b) IW10, 150 replications (n=1,2,6)

Fig. 7. Overview of the acceptable loss period level for an audio flow with different
jitter buffer sizes when 1, 2, and 6 TCP flows using (a) IW3 and (b) IW10 compete
with the audio flow

packets is clearly lower with IW10 than with IW3 for all corresponding jitter
buffer sizes. The aggressive start with IW10 is also likely to make the later
periods of transfer to trigger more delay-based packet discarding at the codecs.

5 Concluding Remarks

In this paper we present how interactive media flows are affected by concur-
rent TCP transmissions in a high-speed cellular network. Our measurements
show that the packets of the media flow are heavily delayed when competing
with TCP connections, which is likely to prevent a codec from using significant
portion of the packets before the playback deadline. Even a moderate number
of parallel TCP connections that are typically used for carrying Web page re-
sponses, for example, causes irreparable harm for a concurrent interactive media
transfer. Startup dynamics for individual TCP connections may vary between the
browsers and Web pages but we believe that our current measurements captured
the major effect regardless of different mechanisms in browsers for launching par-
allel connections. Such variations are just likely to result in numerous variants
of similar behavior.

Our experiments also indicate that during a short TCP transmission the worst
effect on the media flow is measured during the burst of packets that occur
because of the initial TCP window transmission, and that initial window of ten
segments is worse for the competing media flow than initial window of three
segments. With a competing bulk TCP transfer, the media stream becomes
unusable for interactive purposes.

As the media flow performance degradation is caused by the behavior of Web
traffic and deep buffers, we believe that the results are representative also for
other than cellular access. The performance data is available at:
http://www.cs.helsinki.fi/group/wibra/pam2013-data/.

Effect of Competing TCP Traffic on Interactive Real-Time Communication 103

References

1. Almes, G., Kalidindi, S., Zekauskas, M.: A One-way Delay Metric for IPPM. rfc
2679 (September 1999)

2. Browserscope, http://www.browserscope.org/?category=network&v=1
3. Chu, J., Dukkipati, N., Cheng, Y., Mathis, M.: Increasing TCP’s Initial Window.

Internet Draft (November 2012) (work in progress)
4. Demichelis, C., Chimento, P.: IP Packet Delay Variation Metric for IP Performance

Metrics (IPPM). rfc 3393 (November 2002)
5. Dukkipati, N., et al.: An Argument for Increasing TCP’s Initial Congestion Win-

dow. ACM SIGCOMM Computer Communications Review 40(3), 26–33 (2010)
6. Fielding, R., et al.: Hypertext Transfer Protocol – HTTP/1.1. rfc 2616 (June

1999)
7. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoid-

ance. IEEE/ACM Transactions on Networking 1(4), 397–413 (1993)
8. Gettys, J.: IW10 Considered Harmful. Internet Draft (August 2011) (work in

progress)
9. Huang, J.: et al.: Anatomizing Application Performance Differences on Smart-

phones. In: Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services (MobiSys), pp. 165–178 (June 2010)

10. Järvinen, I., Ding, Y., Nyrhinen, A., Kojo, M.: Harsh RED: Improving RED for
Limited Aggregate Traffic. In: Proceedings of the 26th IEEE International Con-
ference on Advanced Information Networking and Applications (AINA) (March
2012)

11. Jiang, H., Liu, Z., Wang, Y., Lee, K., Rhee, I.: Understanding Bufferbloat in Cellu-
lar Networks. In: Proceedings of the Workshop on Cellular Networks: Operations,
Challenges, and Future Design (CellNet) at SIGCOMM 2012 (August 2012)

12. Koodli, R., Ravikanth, R.: One-way Loss Pattern Sample Metrics. rfc 3357 (Au-
gust 2002)

13. Mills, D., Martin, J., Burbank, J., Kasch, W.: Network Time Protocol Version 4:
Protocol and Algorithms Specification. rfc 5905 (June 2010)

14. Shalunov, S., Hazel, G., Iyengar, J., Kuehlewind, M.: Low extra delay background
transport (LEDBAT). rfc 6817 (December 2012)

15. Souders, S.: Roundup on Parallel Connections (March 2008),
http://www.stevesouders.com/blog/2008/03/20/roundup-on-parallel-

connections/

16. Tan, W., Lam, F., Lau, W.: An Empirical Study on the Capacity and Performance
of 3G Networks. IEEE Transactions on Mobile Computing 7(6), 737–750 (2008)

17. TCPDUMP/LIBPCAP public repository, http://www.tcpdump.org/

http://www.browserscope.org/?category=network&v=1
http://www.stevesouders.com/blog/2008/03/20/roundup-on-parallel-connections/
http://www.stevesouders.com/blog/2008/03/20/roundup-on-parallel-connections/
http://www.tcpdump.org/

A Comparative Study of Android and iOS
for Accessing Internet Streaming Services

Yao Liu1, Fei Li1, Lei Guo2, Bo Shen3, and Songqing Chen1

1 Dept. of Computer Science, George Mason University
{yliud,lifei,sqchen}@cs.gmu.edu

2 Dept. of CSE, Ohio State University
lguo@cse.ohio-state.edu

3 Vuclip
bshen@vuclip.com

Abstract. Android and iOS devices are leading the mobile device market. While
various user experiences have been reported from the general user community
about their differences, such as battery lifetime, display, and touchpad control,
few in-depth reports can be found about their comparative performance when
receiving the increasingly popular Internet streaming services.

Today, video traffic starts to dominate the Internet mobile data traffic. In this
work, focusing on Internet streaming accesses, we set to analyze and compare
the performance when Android and iOS devices are accessing Internet streaming
services. Starting from the analysis of a server-side workload collected from a
top mobile streaming service provider, we find Android and iOS use different ap-
proaches to request media content, leading to different amounts of received traffic
on Android and iOS devices when a same video clip is accessed. Further studies
on the client side show that different data requesting approaches (standard HTTP
request vs. HTTP range request) and different buffer management methods (static
vs. dynamic) are used in Android and iOS mediaplayers, and their interplay has
led to our observations. Our empirical results and analysis provide some insights
for the current Android and iOS users, streaming service providers, and mobile
mediaplayer developers.

1 Introduction

Mobile devices are gaining increasing popularity among common users. While the
market competition between different devices has been intense, iOS devices (such as
iPhone, iPad, and iPod Touch) and Android devices (such as Galaxy Nexus, Motorola
Droid, and Kindle Fire) are most popular today. It is reported that iOS and Android
devices comprise more than 79% of all existing mobile devices [1].

Today more and more mobile users use their devices for Internet streaming accesses.
While various streaming protocols are supported, Pseudo Streaming [2] is the most
popular among mobile devices. Both iOS and Android have native support for Pseudo
Streaming from the very beginning. YouTube [3], Dailymotion [4], and Veoh [5] all
support Pseudo Streaming for mobile devices to access their video content.

As streaming accesses typically involve a large amount of data transferring in a con-
tinuous fashion for a relatively long duration, two aspects are of particular concerns to a
mobile device user. The first is about the battery power consumption. Today the limited

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 104–114, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Comparative Study of Android and iOS 105

battery power supply is still the Achilles’ heel of all mobile devices, and a breakthrough
of the battery technology is still not on the horizon yet. On the other hand, for most com-
mon mobile users, their mobile traffic amount is closely related to the monetary cost that
they need to pay to the cellular service provider. Streaming accesses often involve bulk
data transmission, resulting in more traffic than other routine activities. Thus it is of a
user’s greatest interest if a less amount of traffic is delivered while the service quality
remains unchanged.

In this work, focusing on Internet streaming accesses, we set to analyze and compare
the performance when Android and iOS devices are accessing Internet streaming ser-
vices. We start with the analysis of a server-side workload collected from a top mobile
streaming service provider. In this workload, about 26,713,708 HTTP requests were
observed to access 15,725 video clips in 28 days, generating a total of 27.4 TB video
traffic. Analyzing this workload, we find that Android and iOS devices use different
approaches to request media content, leading to a different amount of received traffic
on Android and iOS devices when a same video clip is accessed.

To figure out the underlying causes, we further conduct client-side experiments with
the state-of-the-art iOS and Android devices. Through extensive experiments and by
delving into the source code of the Android mediaplayer, we find that the current
Android and iOS mediaplayers employ different data requesting approaches (standard
HTTP request vs. HTTP range request) and different playout buffer management meth-
ods (static vs. dynamic). These contrasting approaches and methods lead to a significant
amount of redundant traffic received on iOS devices but not on Android devices. Intu-
itively, this causes more battery power consumption on iOS devices and potentially
results in more monetary cost to iOS users.

Our study provides some insights for common users when they access online stream-
ing services. In addition, our experiments and analysis show that different mediaplayer
frameworks have been used in Android and iOS with different media content requesting
approaches and playout buffer management methods. These insights can help the future
mediaplayer development as well as streaming service providers. The client-side trace
is available for download at [6].

2 Server-Side Observations

The server log we have collected is from a top mobile streaming video site, Vuclip,
which serves worldwide mobile users. The workload is collected from Feb 1st to Feb
28th, 2011. In this workload, about 26,713,708 HTTP requests are observed to access
15,725 video clips in 28 days, generating a total of 27.4 TB video traffic.

Vuclip supports both iOS and Android. Users can install an application [7] on their
mobile devices from iOS AppStore or Google Play. The application provides the same
user interface to both iOS and Android users, and allows them to access the same pool
of videos via WiFi or cellular connections. Thus, it provides a good base for our study.

Vuclip allows users to watch videos on their mobile devices using Pseudo Streaming.
With Pseudo Streaming, a client can download the video file via HTTP requests, and
can start video playback without waiting for the file being completely downloaded. It
can also support a user’s request to jump to a certain position for playback by down-
loading the desired part of the file directly via HTTP range requests – HTTP requests

106 Y. Liu et al.

with properly specified range headers. In order to provision for the variance of network
speed during playback, Pseudo Streaming usually requires a buffer, often referred to as
playout buffer, on the client side to store video data to be played. Typically, download-
ing should be faster than the playback for good user experience, and it is very common
that the entire video file has been downloaded while the playback just proceeds to an
earlier part of the video.

Fig. 1. Ratio Between Session Dura-
tion and Video Duration (CDF)

Fig. 2. # of HTTP Requests per Ses-
sion (CDF)

We use the User-Agent string to exam-
ine whether a request comes from an iOS
device or an Android device. For example,
when sending HTTP requests, iOS devices use
AppleCoreMedia/1.0.0 for its User-Agent
string, while Android devices identify themselves
with stagefright/1.x (Linux;Android
x.x.x). In the workload, we extract 397,940
unique video sessions from iOS devices and
884,648 unique video sessions from Android de-
vices. Each session may consist of multiple HTTP
requests. In these sessions, the users do not neces-
sarily watch the entire video from the beginning to
the end. Users may find the video uninteresting, and
terminate the playback in the middle.

Figure 2 shows the distribution of download-
ing session duration for both iOS and Android ac-
cesses1. Note that the downloading session duration
may be shorter than the user’s actual viewing dura-
tion, because in Pseudo Streaming, the download-
ing is often faster than the playback. Comparing the
accesses from iOS with these from Android devices, we find that the patterns of session
duration as opposed to the video duration are quite similar (although Android devices
generally have a slightly longer session duration than that of iOS devices). This indi-
cates similar accessing behaviors of Android and iOS devices to this streaming service.

More Requests Are Sent Out by iOS Devices. Figure 2 shows the distribution of the #
of HTTP requests that were sent to the server from mobile devices in these sessions. We
find that more than 80% of Android sessions consist of only one single HTTP request,
and only less than 2% sessions consist of more than 10 HTTP requests. On the contrary,
iOS devices always send more HTTP requests. The median number is 13 HTTP requests
per iOS session. This is quite surprising because intuitively, only one HTTP request is
needed, which happened to most Android sessions. We are interested in why so many
more HTTP requests have been used in iOS sessions.

Based on the log, we find that the MediaPlayer on a mobile device can request the
video file in two ways: (1) it requests the entire video file with a standard HTTP request,
and the server responds with HTTP 200 OK, or (2) it requests a portion of the video
file using an HTTP range request, and the server responds with HTTP 206 Partial

1 iOS and Android accesses (or sessions) refer to accesses (or sessions) originated from an iOS
or Android device. They are used for brevity.

A Comparative Study of Android and iOS 107

Content. Typically an HTTP range request is used when a user wants to skip part
of the video, and jump to the desired content directly. However, in this server log, we
find that iOS devices always use HTTP range requests, even for the first request. But
Android devices always use standard HTTP requests, and only use HTTP range requests
to fetch desired content directly if the user decides to jump to another part of the video.
Table 1 shows the percentage of different types of HTTP requests that have been used by
iOS and Android devices, respectively. As shown in the table, more than 80% Android
traffic is delivered using standard HTTP responses (200), while almost all iOS traffic is
delivered using HTTP partial content response (206). Note that although the percentage
of HTTP range requests in Android sessions seems also high, it is mainly because once
a user starts to use interactive functions, a sequence of range requests often have to
be used. Nevertheless, over 80% of Android traffic is delivered via standard HTTP
connections.

Table 1. HTTP Request/Reply (Num-
ber and Traffic Amount)

HTTP 200
Name #Requests Traffic Amount
iOS 0.01% 0.001%
Android 27.30% 80.594%

HTTP 206
Name #Requests Traffic Amount
iOS 99.99% 99.999%
Android 72.70% 19.406%

Fig. 3. Ratio Between Received Traffic
and File Size (CDF)

More Traffic Is Received at iOS Devices. We
further sum up the size of HTTP responses that
belong to the same video session, and examine
if such different content requesting approaches
on Android and iOS devices have any impact on
the traffic delivered to them. Figure 3 shows the
result. As we can observe from this figure, for
Android devices, about 55% Android sessions
downloaded the same amount of traffic as the
video file size, and only a very small percentage of
the sessions downloaded more data than the video
file size. This could be caused by user re-watching
the video. The rest (about 43%) only downloaded
partial video content and terminated earlier.

On the other hand, for iOS devices, about 72%
iOS sessions terminated earlier before the entire
file is downloaded. But the most surprising re-
sult is that for about 28% iOS sessions, the down-
loaded traffic is larger than the video file size. Be-
cause we are comparing the requests of Android
and iOS devices from a same streaming service,
it is reasonable to assume that the users’ interest
and access patterns are similar. Thus, among the 28% sessions that iOS devices down-
loaded more data than the actual video file size, only a very smaller portion is likely due
to users’ real re-watching activities. We are interested in about 28% iOS sessions that
have received extra traffic (than the actual file size).

3 Analysis of Android and iOS Mediaplayers

While the server-side workload has provided us a high-level overview of different con-
tent requesting approaches of iOS and Android devices when accessing Internet stream-
ing services as well as different amounts of traffic received, the workload cannot provide

108 Y. Liu et al.

Table 2. Devices Used

Name OS version Memory Size

iPod Touch iOS 3.1.2 128 MB
iPhone 3G iOS 4.2.1 128 MB
iPhone 3GS iOS 5.0.1 256 MB
iPhone 4S iOS 5.1 512 MB

Nexus One Android 2.3.4 256 MB
Kindle Fire Android 2.3.4 512 MB

Table 3. iOS Devices Accessing a 36.7 MB
YouTube Video

Name # of HTTP Received Re-downloaded
Connections Traffic (Bytes) (Bytes)

iPod Touch 261 83,410,351 26,450,851
iPhone 3G 301 82,616,828 37,449,911
iPhone 3GS 105 63,713,281 11,523,915
iPhone 4S 67 51,625,429 9,292,410

more details for us to explore the underlying reasons. Thus, in this section, we further
investigate these observations using the state-of-the-art Android and iOS devices.

For iOS, because we cannot access its source code, we mainly conduct client-side
experiments in a controlled environment to infer how it works by analyzing the captured
traffic. For Android, in addition to the client-side experiments, we are able to get a better
idea of how it works by accessing the source code of its mediaplayer.

The client-side experiments are conducted in our lab with a dedicated 802.11 b/g ac-
cess point (AP). We use six different mobile devices running different mobile operating
systems and different versions of the mobile OS. Table 2 lists these devices. We use 4
different iOS devices and 2 different Android devices. Note that although Kindle Fire
uses a customized version of Android, it uses the same mediaplayer framework as other
Android devices including the Nexus One we use in our experiments.

In order to examine all the incoming and outgoing traffic to/from our testing devices,
we set up Wireshark [8] running on a laptop computer to listen on the same channel as
the AP in promiscuous mode. Packets are captured in real-time and processed offline.

3.1 iOS and AppleCoreMedia

The mediaplayer in iOS is called AppleCoreMedia. When Pseudo Streaming is used to
access a video file, AppleCoreMedia will send out HTTP requests for the video file. On
the server’s side, it can be identified with User-Agent of AppleCoreMedia/1.0.0.
On iOS devices, a mobile user may access the video streaming service in various ways,
e.g., from the mobile browser of MobileSafari, or a third party streaming application
installed on the iOS device. AppleCoreMedia will be called when the mobile browser
or the application has to handle a streaming request. AppleCoreMedia usually specifies
a range in its HTTP requests. For example, if it is requesting the entire video file, it will
send out an HTTP request with the range specified from 0 to filesize−1.

To study the behavior of AppleCoreMedia in downloading media content, we use our
testing devices to access a same 480-second YouTube video via their mobile browsers.
The file size of that video is 38,517,389 Bytes. In each experiment, we let an iOS device
watch the entire video (8 minutes) from the beginning to the end without any manual
activities. Figure 4 shows the accumulative traffic pattern of 4 different iOS devices
accessing this video along time as well as the playback progress. Note the total traffic
in this figure only includes the media content. That is, protocol headers are all excluded.
We find that during the first 30 seconds of each session, AppleCoreMedia downloads
with a high speed, and slows down afterwards. Clearly, this is the initial buffering phase
of a video streaming session, which is also called fast start [9]. More interestingly, we
notice that the amount of received traffic by iOS devices is larger than the video file size

A Comparative Study of Android and iOS 109

(a) iPod Touch (b) iPhone 3G (c) iPhone 3GS (d) iPhone 4S

Fig. 4. Traffic Pattern of iOS Devices Accessing a YouTube Video

(36.7 MBytes). For iPod Touch and iPhone 3G, the total received traffic amount is even
more than twice of the actual video file size.

Table 3 summarizes the amount of total traffic received during these sessions by 4
iOS devices. Note that these sessions are normal sessions without early terminations or
any replays. Analyzing the corresponding packet-level workload we have captured, we
find that multiple HTTP range requests are issued to download the streaming content.
That is, instead of using a standard HTTP request, iOS devices always issue multiple
range requests to download media content. This is consistent with what we have ob-
served from the server-side workload shown in Figure 2. It is noticeable that iPhone 3G
even issued more than 300 HTTP requests to download the video file. For devices with
an increased memory size, such as iPhone 3GS and iPhone 4S, the number of HTTP
requests is reduced to 105 and 67, respectively.

The above results show that the multiple HTTP range requests used by iOS are not
due to Vuclip, as the same phenomenon has been observed in other popular streaming
services as well. Besides YouTube, we have also tested against two other popular sites
Dailymotion and Veoh, we have found similar patterns.

In addition, we also find in Table 3 that the received traffic amount on these iOS
devices is significantly larger than the actual file size. Recall that we have observed
different amounts of traffic delivered to Android and iOS devices in the server-side log.
We are interested in whether such extra traffic received on iOS devices is related to the
content requesting approach, i.e., the multiple HTTP range requests.

Inspecting the packet-level workload we have captured for these experiments, we
find that while AppleCoreMedia always starts with an HTTP range request instead of
a standard HTTP request, it constantly terminates the HTTP connection spontaneously
before the full response to that range request is received. Subsequently, it will issue
another HTTP range request. Having carefully studied the workload, our conjecture is
that such behaviors are closely related to the available memory space in a mobile device.
Our packet level traces across all these experiments consistently show that AppleCore-
Media always resets (via TCP-RST) the active connection used for the HTTP request.
The most likely reason is due to the lack of the memory space for the playout buffer.
With a small amount of available memory, AppleCoreMedia has to frequently abort the
current connection because the playout buffer is going to overflow.

Besides highly frequent connection aborts (which also necessitates multiple HTTP
range requests after aborts), we also find that AppleCoreMedia always re-downloads
the beginning part of the video after it has received the entire video file. Recall that
with Pseudo Streaming, the entire file is usually received before the user finishes the
playback. However, as shown by the last column in Table 3, a significant amount of

110 Y. Liu et al.

traffic has been transmitted afterwards for re-downloading the beginning part of the
video again. Such re-downloading is also found in our experiments with Vuclip, Daily-
motion, and Veoh. Intuitively, this seems to prepare for the potential re-play activities
of the user. With the beginning part in the buffer, the user would experience low start-
up delay. However, due to the insufficient memory supply on the mobile devices, the
beginning part might have been evicted from the buffer after its first-time playback in
order to make room for the to-be-played content. Such re-downloading behavior, likely
due to insufficient memory size as well, apparently contributes to the redundant traffic
we have observed in Figure 3.

For the same reason, for iOS devices with a larger memory size (such as iPhone 3GS
and iPhone 4S), the re-downloading traffic amount is much smaller as shown in Table 3.
This indicates that with more available memory, AppleCoreMedia can get more buffer
space, and put a larger portion of the video file in its buffer.

Table 4. Transferred Traffic vs. File Size
(Bytes)

Video1 Video2 Video3
Duration (sec) 360 480 657
File Size 29,503,221 38,517,389 53,405,910

iPod Touch 42,379,164 57,176,659 90,445,044
iPhone 3G 42,322,498 74,442,375 86,933,886
iPhone 3GS 37,702,143 47,460,396 72,388,936
iPhone 4S 32,248,384 44,538,836 61,731,408

We further examine the impact of the
memory size by instructing our testing de-
vices to access different video files with an
increasing file size. We use three different
YouTube videos. Videos are of different du-
rations but are encoded with the same data
rate. Table 4 shows the results we have ob-
tained. These results are the average results
over multiple experiments. This table shows
that devices with different physical memory
sizes have different traffic efficiency. If we compare the results in a same row, we can
see that when the video file size becomes larger, the amount of redundant traffic would
also increase. For example, from Table 4 we can see that the redundant traffic for iPhone
4S is increased from 9% when accessing Video1 to more than 15% when accessing
Video2 and Video3.

3.2 Android and Stagefright

The study of iOS and AppleCoreMedia shows that the memory available to the playout
buffer of the mediaplayer is dynamically changing and it plays a critical role in the
entire streaming session. In this subsection, we examine if a different type of buffer
management method has been used in Android as Android devices have shown different
behaviors in accessing streaming media.

Starting from Android 2.3 Gingerbread, a new mediaplayer framework called Stage-
fright is used in Android. Similar to AppleCoreMedia, Stagefright also supports Pseudo
Streaming by using HTTP for requesting video data. On Android devices, a mobile user
can access video streaming services from either the mobile browser or applications
installed, similar to that on iOS devices. Stagefright is called when a video request
needs to be handled. From the server’s side, it can be identified with User-Agent of
stagefright/1.x (Linux;Android x.x.x). As we shall show later, Stage-
fright results in a completely different traffic pattern from that of AppleCoreMedia.

To examine how Stagefright works on Android devices, we use our testing devices
to access the same 480-second YouTube video (36.7 MBytes) via their native browsers.
Again, for each experiment, we let the Android devices watch the entire video for 8

A Comparative Study of Android and iOS 111

(a) Nexus One (b) Kindle Fire

Fig. 5. Traffic Pattern of Android Devices Ac-
cessing a YouTube Video

Table 5. Android Devices Accessing a 36.7
MB YouTube Video

Name # of HTTP Received Re-downloaded
Connections Traffic (Bytes) (Bytes)

Nexus One 1 38,517,389 0
Kindle Fire 1 38,517,389 0

minutes without any manual activities. Figure 5 shows the accumulative traffic pattern
of our 2 different Android devices, Nexus One and Kindle Fire, with the corresponding
playback speed. We find that downloading is explicitly and periodically paused during
the 8-minute playback. With multiple experiments conducted, we find that although
the data burst length is different across Nexus One and Kindle Fire, such pausing and
resuming behaviors can be consistently observed.

Further inspection of the corresponding packet level workloads reveals that only one
single HTTP request is used to download the video file by both Nexus One and Kindle
Fire as shown in Table 5. When the downloading is paused, instead of terminating the
current TCP connection as AppleCoreMedia does, Stagefright sets the TCP window
size to 0, so that the server would not send any more packets to it. When it wants to
resume the downloading, it will send a TCP window update message, and the server
will start to deliver the data again. Moreover, we find that the total traffic amount is
always equal to the video file size, indicating no re-downloading of the beginning part.
This is also different from AppleCoreMedia.

Such different behaviors observed on Stagefright in these experiments and in the
server-side log motivate us to explore the underlying reasons. Next, we study the An-
droid source code to better understand how Stagefright works.

enum {
kPageSize = 65535,
kDefaultHighWaterThreshold = 20 * 1024 * 1024,
kDefaultLowWaterThreshold = 4 * 1024 * 1024,
kDefaultKeepAliveIntervals = 15000000,

};

Fig. 6. Code Snippet From
/libstagefright/include/NuCachedSource2.h

In the libstagefright frame-
work, the underlying media
playout buffer is handled by
NuCachedSource2.cpp.
Basically, it sets a
HighWaterThreshold.
When the total buffer size
reaches this threshold, the
downloading would be paused. As the playback progresses, the buffer depletes.
When the to-be-played data in the buffer drops below another pre-defined threshold
LowWaterThreshold, the downloading will be resumed. Figure 6 shows some
code snippet from the latest Stagefright source code we extract from the Android
base. We can see that buffer space is allocated in terms of 65,536 Bytes (64 KB).
When the total buffer size reaches 20 MB, downloading would be paused; when the
remaining not-played data is less than 4 MB, Stagefright will resume the downloading.
As the downloading is paused, in order to keep the connection with the server, it would
temporarily resume to download a PageSize (64 KB) of data every 15 seconds and

112 Y. Liu et al.

pause the downloading after that. This buffer management method well explains what
we have observed in both the server-side log and the client-side experiments.

Further studying the history of earlier versions in the Android code base, we find
that the value of these 4 parameters shown in Figure 6 have changed over time. For
example, in the earliest version, the HighWaterThreshold was set to 3 MB, and
the LowWaterThreshold was 512 KB. This indicates as Android devices are get-
ting more physical memory, a larger amount of buffer is allocated to the mediaplayer.
Nevertheless, the HighWaterThreshold can be seen as the total buffer size used
by Stagefright on Android devices. That is, Stagefright would only use a fixed amount
of memory despite different video file sizes, and that only a fixed amount of video
data would be kept in the buffer. Compared to iOS, this is a simple and static buffer
management method.

In addition, different Android devices may use different values for these parameters
in their out-of-factory settings. For example, based on Figure 5, we can estimate that
the HighWaterThreshold for Nexus One is around 5 MB, while Kindle Fire uses
a larger value of about 13 MB. By analyzing the debugging log from these Android
devices, we are also able to get the accurate value of LowWaterThreshold, which
is 768 KB for Nexus One and 10 MB for Kindle Fire, respectively.

3.3 Comparisons

Through client-side experiments, we confirm that Android devices often use a single
HTTP connection to download the video file unless there is manual interruption of cur-
rent playback. On the contrary, iOS devices always use multiple HTTP range requests
to download the video file. Buffer management wise, by analyzing the source code of
Android mediaplayer, we find that Stagefright always uses a fixed/preset amount of
memory for the playout buffer, while AppleCoreMedia of iOS devices always adjust
the playout buffer dynamically at runtime.

We believe such different buffer management policies have caused iOS and An-
droid devices to exhibit different behaviors when they are used to access stream-
ing videos. Stagefright would always and only store a fixed amount (set by
HighWaterThreshold) of video data, and may download at most this amount of
video data ahead of the playback. If the user stops watching the video in the middle, at
most HighWaterThreshold amount of data may be wasted. But in normal stream-
ing sessions with few user manual inter-activities, Stagefright on Android devices al-
ways downloads the exact amount of data as the video size, while AppleCoreMedia on
iOS devices always tries to keep as much video data as possible in the buffer for user’s
experience, including re-downloading the beginning part. This results in a significant
amount of redundant traffic delivered to iOS devices.

4 Related Work
With the increasing video accesses from mobile devices, a lot of research has been
conducted to examine Internet mobile streaming, from the client’s perspective [2] [10],
the video server’s perspective [11], and the ISP’s perspective [12] [13]. For example, in
our prior work, we conduct extensive measurements from the client’s perspective about
the energy-efficiency of various streaming protocols used by mobile devices today [2].

A Comparative Study of Android and iOS 113

Li et al. present a detailed analysis of user behaviors and access patterns in mobile video
streaming from a server’s perspective [11].

Researchers have also studied how accesses from mobile devices and desktop com-
puters are served differently by the video service providers. For example, Rao et al.
characterize the traffic pattern of YouTube and Netflix on both desktop computers and
mobile devices [10] . Finamore et al. [12] compare the playback performance of PC-
players and mobile-players accessing YouTube, and examine the potential causes for
the inferior performance of mobile-players.

Different from prior work, in this study, we focus on the streaming access perfor-
mance of two dominant types of mobile systems Android and iOS. We find that the
different content requesting patterns and different playout buffer management policies
have caused these devices to have sharply different behaviors.

5 Conclusion

Internet mobile streaming has attracted significant attention from both industry and re-
search community, due to the dominant streaming traffic volume in the entire mobile
data traffic. In this work, we focus on the Internet mobile streaming delivery to Android
and iOS devices, with an aim to investigate their performance when receiving Inter-
net streaming content. With both server-side log analysis and client-side experiment-
based investigations, we find that Andriod and iOS mediaplayers are using different
content requesting approaches and different buffer management methods when access-
ing streaming content, which result in a non-trivial amount of redundant traffic received
by iOS devices. This would lead to extra battery power consumption on iOS devices and
additional monetary cost if cellular networks have been used. Our study not only pro-
vides some guidelines for common mobile device users, but also offers some insights
for Internet streaming service providers and mobile mediaplayer developers.

Acknowledgements. We appreciate constructive comments from anonymous referees
and our shepherd Edmond W. W. Chan. The work is partially supported by NSF under
grants CNS-0746649, CNS-1117300, CCF-0915681, CCF-1146578.

References

1. Mobile/Tablet OS Market Share,
http://marketshare.hitslink.com/
operating-system-market-share.aspx?qprid=8&qpcustomd=1

2. Liu, Y., Guo, L., Li, F., Chen, S.: An Empirical Evaluation of Battery Power Consumption
for Streaming Data Transmission to Mobile Devices. In: Proc. of ACM Multimedia (2011)

3. YouTube, http://m.youtube.com/
4. Dailymotion, http://touch.dailymotion.com/
5. Veoh, http://www.veoh.com/iphone/
6. Trace, http://cs.gmu.edu/˜sqchen/open-access/pam13-trace.tgz
7. Vuclip-Chinese Cinema, http://www.vuclip.com/
8. Wireshark, http://www.wireshark.org
9. Fast Start,

http://www.microsoft.com/windows/windowsmedia/howto/articles/
optimize web.aspx#performance faststreaming

http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
http://m.youtube.com/
http://touch.dailymotion.com/
http://www.veoh.com/iphone/
http://cs.gmu.edu/~sqchen/open-access/pam13-trace.tgz
http://www.vuclip.com/
http://www.wireshark.org
http://www.microsoft.com/windows/windowsmedia/howto/articles/optimize_web.aspx#performance_faststreaming
http://www.microsoft.com/windows/windowsmedia/howto/articles/optimize_web.aspx#performance_faststreaming

114 Y. Liu et al.

10. Rao, A., Legout, A., Lim, Y.-S., Towsley, D., Barakat, C., Dabbous, W.: Network Character-
istics of Video Streaming Traffic. In: Proc. of ACM CoNext (2011)

11. Li, Y., Zhang, Y., Yuan, R.: Measurement and Analysis of a Large Scale Commercial Mobile
Internet TV System. In: Proc. of ACM IMC (2011)

12. Finamore, A., Mellia, M., Munafo, M., Torres, R., Rao, S.G.: YouTube Everywhere: Impact
of Device and Infrastructure Synergies on User Experience. In: Proc. of ACM IMC (2011)

13. Erman, J., Gerber, A., Ramakrishnan, K.K., Sen, S., Spatscheck, O.: Over The Top Video:
The Gorilla in Cellular Networks. In: Proc. of ACM IMC (2011)

Performance Implications

of Unilateral Enabling of IPv6

Hussein A. Alzoubi1, Michael Rabinovich1, and Oliver Spatscheck2

1 Case Western Reserve University
2 AT&T Research Labs

Abstract. While some IPv6-enabled Web sites such as Google require
an explicit opt-in by IPv6-enabled clients before serving them over the
IPv6 protocol, we quantify performance implications of unilateral en-
abling of IPv6 by a Web site. In this approach, the Web site enables
dual-stack IPv4/6 support and resolves DNS queries for IPv6 addresses
with the IPv6 addresses of its Web servers, and legacy DNS queries
for IPv4 addresses with the IPv4 addresses. Thus, clients indicating the
willingness to communicate over IPv6 are allowed to immediately do
so. Although the existence of the end-to-end IPv6 path between these
clients and the Web site is currently unlikely, we found no evidence of
performance penalty (subject to 1sec. granularity of our measurement)
for this unilateral IPv6 adoption. We hope our findings will help facili-
tate the IPv6 transition and prove useful to the sites considering their
IPv6 migration strategy.

1 Introduction

The address space of IPv4 is practically exhausted: the last block was allocated
to regional Internet registries in February 2011. While registries can still dis-
tribute their allocated addresses internally, the last allocation brought the issue
of IPv6 transition into stark focus. With the revived efforts for IPv6 transition,
many clients are now dual-stack, that is, are capable to using both IPv4 and v6
protocols. High profile Web sites, e.g., Google, started to likewise deploy IPv6
platforms to serve these clients [6]. However, as the overall Internet transition to
IPv6 is lagging, the network paths between these clients and the Web site com-
monly do not support IPv6, in which case the two end-hosts cannot communicate
over IPv6 even if they both are IPv6-enabled. Despite a recent recommendation
on how end-hosts should handle this situation [19], in practice the lack of end-to-
end IPv6 path may expose the user to excessive delays or outright connectivity
disruption. The possibility of these delays can influence the Web site’s IPv6 tran-
sition strategy – e.g., Google only directs clients to its IPv6 servers if they have
verified the end-to-end IPv6 connectivity and explicitly opted in [6].

This paper quantifies the basis for such a conservative strategy. In other words,
it asks an important question: what are the implications of a Web site unilater-
ally switching to a dual-stack mode, whereby it would simply send IPv6-enabled

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 115–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 H.A. Alzoubi, M. Rabinovich, and O. Spatscheck

clients to an IPv6 server, and IPv4 clients to an IPv4 server? We found no evi-
dence of any performance penalty (subject to 1 sec. granularity of our measure-
ment) and an extremely small increase in failure to download the object (from
0.0038% to 0.0064% of accesses). This suggests the feasibility of the unilateral
IPv6 deployment, which could in turn spur a speedier overall IPv6 transition.

2 Background

A user access to a Web site is usually preceded with a DNS resolution of the
site’s domain name. An IPv6-enabled client would issue a DNS query for an
IPv6 address (an AAAA-type query) while an IPv4 client would send an A-type
query for an IPv4 address. Our goal is to assess the implications of a unilateral
enabling of a dual-stack IPv4/6 support by the Web site. In this setup, the Web
site would deploy both the IPv6 and IPv4 HTTP servers. It would then resolve
AAAA DNS queries to the IPv6 address of the IPv6 server, and A-type queries
to the IPv4 address of the IPv4 server. Thus, clients indicating the willingness
to communicate over IPv6 are allowed to immediately do so.

The danger of this approach is that, given the current state of IPv6 adoption
in the core networks, the likelihood of the valid end-to-end IPv6 path or tunnel
between any host-pair is low, even if both end-points are IPv6-enabled. When
the IPv6 path does not exist, plausible scenarios for IPv6-enabled clients can be
grouped into two categories. In the first scenario, the client follows the recent
IETF recommendation [19] to avoid any delay in attempting to use an unreach-
able IPv6 Web server. Basically, clients would issue both AAAA and A queries
to obtain both IPv6 and IPv4 addresses, then establish both the IPv4 and IPv6
HTTP connections at the same time using both addresses; if the IPv6 connec-
tion advances through the TCP handshake, the IPv4 connection is abandoned
through an RST segment. The other scenario is that the client attempts to use
IPv6 first and then, after failure to connect, resorts to IPv4, which leads to a
delay penalty.

The macro-effects of dual IPv4/6 Web site deployment are the result of com-
plex interactions between behaviors of browsers, operating systems, and DNS
resolvers, which differ widely, leading to drastically different delay penalties (see
[5] for an excellent survey of different browser and OS behaviors). Consequently,
to avoid the possibility of high delay penalty, high-profile Web sites, such as
Google, only resolve AAAA DNS queries to IPv6 addresses for clients that have
verified the existence of an end-to-end IPv6 path between themselves and Google
and explicitly opted-in for IPv6 service. This procedure is valuable as a demon-
stration and testbed for IPv6 migration but it does not scale as making a client
network to duplicate this procedure for every Web site is infeasible.

Note that the client typically resolves DNS queries through a client-side DNS
resolver (commonly referred to as “local DNS server”, or “LDNS”), which is often
shared among multiple clients. It is possible that the resolver submits AAAA
queries even if some (or all) of its clients are not IPv6-enabled. A Web site that
unilaterally deploys IPv6 as described above has no way of knowing the status

Performance Implications of Unilateral Enabling of IPv6 117

of IPv6 support of the actual client when the AAAA query arrives - it simply
responds with the IPv6 address. Our measurement methodology captures any
possible effects of this uncertainty. Thus, unless it may cause confusion, we refer
to all clients behind the resolver that sends AAAA queries as IPv6-enabled or,
interchangeably, dual-stack.

3 Methodology

We used the following methodology to measure the performance implications of
unilateral IPv6 deployment when the client cannot reach the IPv6 server due
to the lack of the end-to-end IPv6 path or tunnel. We registered the domain
dns-research.com and built a specialized DNS server to act as its authorita-
tive DNS server (ADNS) as well as a specialized Web server to host a single
object (a one-pixel image) from subdomain sub.dns-research.com. Assume for a
moment that we can reliably associate a given DNS query with the subsequent
HTTP request (we describe the approach we use to accomplish this shortly).
We configured our specialized DNS server to respond to IPv6 queries (type-
AAAA requests) for any hostname from domain sub.dns-research.com with a
non-existent IPv6 address, and to any IPv4 DNS queries (type-A requests) with
the valid IPv4 address of our Web server. Responding to IPv6 queries with a
non-existent IPv6 address mimics the situation where there is no end-to-end
IPv6 path between the client and server and thus the server is unreachable1. We
then measure the delay penalty as the time between when we send the unreach-
able IPv6 address to the client’s DNS resolver and when the client falls back to
IPv4 (i.e., the corresponding HTTP request from the client arrives over IPv4).
We deployed both our ADNS and Web servers on the same host so that we could
measure time intervals between DNS and HTTP events without clock skew.

Our setup is illustrated in Figure 1. As mentioned, we need to associate a
given DNS query with the subsequent HTTP request. To do so, we first as-
sociate a DNS query with the originating client using the approach from [14].
Our Web server hosts a special image URL, dns-research.com/special.jpg.
When a user accesses this image, their browser first sends a DNS query for
dns-research.com (we refer to this as a “base domain” and “base query”) to the
user’s DNS resolver (step 1 in the figure), which then sends it to our ADNS server
(step 2). An IPv6-enabled client network is likely to send both A and AAAA
DNS queries. Since the base DNS queries can not be reliably associated with
the clients, our ADNS responds with NXDOMAIN (“Non-Existent Domain”) to
the AAAA query and with the proper IPv4 address of our Web server to the A
query (step 3). The resolver forwards the response to the client (step 4), which
then sends the HTTP request for this image to our server (step 5). Our Web
server returns an HTTP 302 (“Moved”) response (step 6) redirecting the client

1 Indeed, attempting to communicate with our non-existent address has the same effect
as an attempt to communicate with an existing IPv6 destination over a non-existent
path, which is the same as a path that is not end-to-end IPv6-enabled.

118 H.A. Alzoubi, M. Rabinovich, and O. Spatscheck

Instrumented
ADNS/HTTP server

1.
 d

ns
-r

es
ea

rc
h.

co
m

?

2/3. dns-research.com (A, AAAA)?

1.2.3.4

5.6.7.8

5.6.7.8; NXDOMAIN for AAAA

4.
 5

.6
.7

.8

5. GET special.jpg

302 Moved to 1_2_3_4.sub.dbs-research.com/special.jpg

6/
7.

 1
_2

_3
_4

.su
b.

db
s-

re
se

ar
ch

.c
om

 (A
, A

A
A

A
)?

7.

 1
_2

_3
_4

.su
b.

db
s

re
se

ar
ch

.c
om

 (A
,

6/
77.

1
2

3
4.

su
b.

db
s-

re
se

ar
ch

.c
om

(A
,

6/
7

A
A

A
A

A
A

A
A

)?)

I
ADN

com (A, AAAA)?

A

5.6.7.8; NXDOMAIN for AAAAAAA

8/9. 1_2_3_4.sub.dbs-research.com (A, AAAA)?

5.6.7.8; bogus IPv6 addr

10
/1

1.
 5

.6
.7

.8
; b

og
us

 IP
v6

 a
dd

r

e

12. GET special.jpg to bogus IPv6

13. GET special.jpg to 5.6.7.8

i l jpg 3 4.sub.dbs r

5. GET special.jpg

302 Moved to 1_2_3_4.

12. GET GET pspecial.jpg to bogus IPv6

13. 13 GET special.jpg to 5.6to 5.6.7.8

200 OK

Client Side

Fig. 1. Measurement Setup. Presumed interactions are marked in blue font.

to another URL in the sub.dns-research.com domain2, but with the host name
that embeds the client’s IP address (we refer to these queries as “sub” requests).
The client needs to resolve this name through its resolver again (steps 6-9). This
time the DNS query can be reliably attributed to the HTTP client through the
client’s IP address embedded in the hostname.

Having associated the DNS query to the originating client, we measure the de-
lay between the arrival of AAAA query in step 8 and the first subsequent HTTP
request from the same client in step 13 as the delay penalty for unilateral IPv6
deployment. To eliminate HTTP requests that utilized previously cached DNS
resolutions (as their time since the preceding DNS interaction would obviously
not indicate the delay penalty) we measure the incidents of IPv6 delays for an
HTTP request only if it was immediately preceded (i.e., without another inter-
posed HTTP request) by a full DNS interaction, including both A and AAAA
requests, for that client. We contrast these delays with the delays for non-IPv6
enabled clients, whose resolvers did not send AAAA queries. We use the same
technique to associate these HTTP clients with DNS queries, and measure the
delays as the time between a type-A DNS query in step 2 and the first subsequent
HTTP request in step 13.

2 In reality our setup involved more redirections to enable other measurements; we
omit these details for clarity as they are unrelated to the present study.

Performance Implications of Unilateral Enabling of IPv6 119

Table 1. High-level dataset characterization

LDNS IP addreses 278,559

Client IP addresses 11,378,020

Unique Client/LDNS IP Pairs 21,432,181

We have collaborated with a major consumer-oriented Website to embed our
image starting URL into their home page. Whenever a Web browser visits the
home page, the browser downloads the linked image and the interactions in Fig-
ure 1 take place. We used a low 10 seconds TTL for our DNS records. This
allowed us to obtain repeated measurements from the same client without over-
whelming our setup. Further, our Web server adds a “cache-control:no-cache”
header field to its HTTP responses to make sure we receive every request to
our special image. Unfortunately, the conditions for this collaboration prevent
us from releasing the datasets collected in the course of our experiment.

4 The Dataset

We have collected the DNS logs (including the timestamp of the query, LDNS
IP, query type, and query string) and HTTP logs (request time, User-Agent and
Host headers) resulting from the interactions described in the previous section.
Our experiment lasted 28 days, from Jan 5th, 2011 to Feb 1st, during which
we collected over 34.4 million DNS “sub” requests and around 56 million of the
HTTP downloads of the final image (step 13 in Figure 1).3

Table 2. The basic IPv6 statistics

Base DNS ”Sub” DNS
Requests Requests

Requests 19,945,037 2,398,367

LDNS IP addrs 59,978 32,291

Client IP addrs No data 1,134,617

Table 1 shows high-level characteristics for our dataset. We have collected
over 21M client/LDNS associations between 11.3M unique client IP addresses
from 17,778 autonomous systems (ASs) and almost 280K LDNS resolvers from
14,627 ASs.

3 While one could have expected the number of final HTTP downloads to be roughly
equal to the number of “sub” DNS requests since each client access would normally
generate a “sub” DNS request and one final HTTP download, the number of these
HTTP downloads in our dataset is much greater than that. We verified that this is
due to clients and LDNSs caching our replies to “sub” queries for much longer than
our specified TTL value. These wide-spread TTL violations were first reported in
[15].

120 H.A. Alzoubi, M. Rabinovich, and O. Spatscheck

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10

C
D

F

Number of seconds between (AAAA and A) Sub Requests

Fig. 2. Time difference between A and AAAA “sub” requests

Table 2 summarizes the general statistics about IPv6 requests, as well as
clients and LDNSs behind them. Out of the 278,559 LDNSs we observed during
our experiment, almost 22% were IPv6-enabled (i.e., sent some AAAA queries).
However, only around 54% of the latter sent AAAA “sub” requests, and the
number of “sub” requests was much lower than that of the base queries. This
is because some LDNS servers seem to cache the NXDOMAIN response (which,
as discussed earlier, our DNS server returns to the IPv6 queries for the base
domain) and not issue queries for subdomains of the base domain, while other
LDNS servers seem to not cache NXDOMAIN responses at all and send repeated
base queries even when serving subsequent “sub” requests from the cache.

5 The Results

We now present our measurement results. We first consider if unilateral IPv6
enabling entails any penalty clients’ DNS resolution, and then report our mea-
surements of the overall delays.

5.1 DNS Resolution Penalty

Our first experiment investigates any potential delays in obtaining the IPv4
DNS resolution given that our IPv6 Web server is unreachable. If clients fail-
over to IPv4 only after being unable to connect to the IPv6 Web server, then it
could be that the DNS A-type query would only arrive after the corresponding
timeout. To test for this behavior, we consider the time between A and AAAA
“sub” request arrivals from the same client. Our immediate observation is that
almost 88% out of the 2.3 Million AAAA “sub” requests were received after their
corresponding A request. This says that not only do these clients/LDNSs perform
both resolutions in parallel but, between the two wall-to-wall DNS requests, they
most likely send the A query first. For the remaining 12% of requests, Figure

Performance Implications of Unilateral Enabling of IPv6 121

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100

C
D

F

Number of Seconds between (DNS and HTTP) Sub requests

All IPv4 Delays
All IPv6 Delays

Fig. 3. Comparison of all IPv6 and IPv4 delays

2 shows the CDF of the time difference between A and AAAA “sub” requests.
The figure indicates that even among these requests, most clients did not wait
for a failed attempt to contact the IPv6 Web server before obtaining the IPv4
address. Indeed, even assuming an accelerated default connection timeout used in
this case by Safari and Chrome (270ms and 300ms respectively [5] - as opposed
to hundreds of seconds for regular TCP timeout [1]), roughly 70% of type-A
queries in these requests came within this timeout value. We conclude that a
vast majority (roughly 88+ 0.7× 12 ≈ 95%) of requests do not incur extra DNS
resolution penalty due to IPv6 deployment.

5.2 End-to-End Penalty

Our first concern is to see whether unilateral IPv6 enabling can lead to disruption
of Web accesses, that is, whether the IPv6-enabled clients successfully fail over
to IPv4 for HTTP downloads. We compare the rate of interactions where HTTP
request fails to arrive following the AAAA DNS query, either until the next
DNS interaction from the same client or until the end of the trace. For IPv6-
enabled clients, these lost HTTP requests amounted to 154 out of 2,398,367
total interactions, or 0.0064%. For IPv4-only clients, this number was 1217 lost
requests out of the total (34.4M-2.4M), or 0.0038%. Although the rate of lost
requests in IPv6-enabled clients is higher, both rates are so extremely low that
they can both be considered insignificant.

Turning to assessing the upper bound on the overall delay for IPv6-enabled
clients, we measure the time between the arrivals of the AAAA “sub” DNS re-
quest (a conservative estimate of when the client receives the unreachable IPv6
address) and the actual subsequent HTTP request by the client. As a reminder,
to eliminate HTTP requests that utilized previously cached DNS resolutions,
we measure the incidents of IPv6 delays for an HTTP request only if it was
immediately preceded (i.e., without another interposed HTTP request) by a
full DNS interaction, including both A and AAAA sub requests for that client.

122 H.A. Alzoubi, M. Rabinovich, and O. Spatscheck

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100

C
D

F

Number of Seconds between (DNS and HTTP) Sub requests

IPv4 Avg. Delays
IPv4 Max. Delays
IPv6 Avg. Delays
IPv6 Max. Delays

Fig. 4. IPv4 and IPv6 delays per client

Applying this condition resulted in 1,949,231 instances of IPv6 delays from
1,086,323 unique client IP addresses. Our HTTP logs provide timestamps with
granularity of one second; thus we can only report our delays at this granularity.

Figures 3 and 4 compare delays incurred by IPv6-enabled and IPv4-only
clients. Figure 3 shows CDFs of all delays across all clients in the respective cat-
egories (i.e., multiple delay instances from the same client are counted multiple
times) and Figure 4 shows the CDFs of average and maximum delays observed
per client. Both figures concentrate on delays within 100s. There were 0.063% of
IPv6 delays and 0.076% of IPv4 delays exceeding 100s, with the maximum IPv6
delay of 1.2M sec and IPv4 delay of 1.8M sec. We attribute exceedingly long
delays to a combination of clients commonly violating DNS time-to-live (as first
observed in [15]) with corner cases such as duplicate DNS requests resulting from
a single client interaction (the behavior that we directly observed in a different
study). For instance, one HTTP request on January 7 was surrounded by 6 DNS
queries, two of which arrived after the HTTP request; since there were no more
DNS requests until the next HTTP request on January 27 (presumably due to
a TTL violation), this scenario contributed a delay of 1.7M sec.

Neither figure shows significant differences in delay between the two categories
of clients. In fact, where one can discern the difference, the delay distributions
actually show lower delay penalty for IPv6-enabled clients. The maximum per-
client delays shows the most discernible difference; this could be explained by
the fact that there are an order of magnitude more IPv4-only interactions, thus
there is a higher chance of an outlier value of maximum delay. While the one-
second measurement granularity is clearly a limitation of this experiment, our
study finds no evidence of delay penalty and in any case provides the upper
bound of 1 sec. for any penalty that could not be measured.

6 Related Work

Much effort has been devoted to IPv6 transition. A number of transition tech-
nologies have been proposed that help construct end-to-end IPv6 paths without

Performance Implications of Unilateral Enabling of IPv6 123

the need for ubiquitous deployment of IPv6 network infrastructure (see, e.g.,
[2,18,12,4,8]). We look at another aspect of IPv6 migration, namely, the penalty
for unilateral IPv6 enabling when the end-to-end path does not exist. A num-
ber of studies have reported on the extent of IPv6 penetration from a variety
of vantage points. In particular, Shen et al. [17] used netflow data from a Chi-
nese tier-1 ISP, Savola [16] and Hei and Yamazki [7] analyzed data collected on
6to4 relays, Kreibich et al. [11] employed user-launched measurements, Malone
[13] and Huston [9] studied IPv6 traffic attracted to IPv6-connected Web sites,
and Karpilovsky et al. [10] considered IPv6 penetration from several vantage
points including netflows in core networks, address allocations, and BGP route
announcements. A general conclusion of these studies is that IPv6 deployment
remains low. For example, Huston found that in 2009, end-to-end IPv6 connec-
tivity was only available to around 1% of the clients of the two Web sites he
considered. These findings motivate our study by showing that most clients re-
ceiving an IPv6 address from a unilaterally IPv6-enabled Web site would have
no end-to-end IPv6 connectivity to the site.

Several studies considered the performance of the current IPv6 network in-
frastructure. Zhou and Van Mieghem [20] compared the end-to-end delay of IPv6
and IPv4 packets between selected end-hosts and observed that IPv6 paths had
higher variation in delay. Colitti et al. [3] compared latency experienced by clients
accessing the Google platform over IPv4 and IPv6 and found little difference once
the effect of processing at tunnel termination points is factored out (otherwise
the IPv6 latency was slightly higher). While this study considered performance
of the IPv6 clients that had the end-to-end IPv6 path to their platform, we focus
on the performance implications for IPv6-enabled clients that do not have this
connectivity.

7 Conclusion

While many end-hosts have become IPv6-enabled, the overall IPv6 adoption in
the network is lagging and thus it is common for two IPv6-enabled hosts to have
no end-to-end IPv6 network path between them. Consequently, Web sites such
as Google that pioneer IPv6 adoption only direct those clients to their IPv6
servers that previously verified their end-to-end IPv6 connectivity to the IPv6
servers in question and explicitly opted in. This paper studies the performance
implications of a unilateral enabling of IPv6 by a Web site, without requiring
any verification or opt-in from the clients. We found no evidence of performance
penalty for such unilateral IPv6 adoption and an extremely small increase in
failure to download the object (from 0.0038% to 0.0064% of accesses). While
the one-second measurement granularity is clearly a limitation of our study, it
in any case provides the upper bound of 1 sec. for any penalty that could not
be measured. We hope these findings will help sites as they consider their IPv6
migration strategy.

124 H.A. Alzoubi, M. Rabinovich, and O. Spatscheck

References

1. Al-Qudah, Z., Rabinovich, M., Allman, M.: Web Timeouts and Their Implications.
In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032, pp. 211–
221. Springer, Heidelberg (2010)

2. Carpenter, B., Moore, K.: Connection of IPv6 domains via IPv4 clouds. RFC 3056
(2001)

3. Colitti, L., Gunderson, S.H., Kline, E., Refice, T.: Evaluating IPv6 Adoption in the
Internet. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS, vol. 6032,
pp. 141–150. Springer, Heidelberg (2010)

4. De Clercq, J., Ooms, D., Prevost, S., Le Faucheur, F.: Connecting IPv6 islands
over IPv4 MPLS using IPv6 provider edge routers (6PE). RFC 4798 (2007)

5. Dual stack esotropia, http://labs.apnic.net/blabs/?p=47
6. Google over IPv6, http://www.google.com/intl/en/ipv6/
7. Hei, Y., Yamazaki, K.: Traffic analysis and worldwide operation of open 6to4 relays

for ipv6 deployment. In: IEEE Int. Symp. on Applications and the Internet, pp.
265–268 (2004)

8. Huitema, C.: Teredo: Tunneling IPv6 over UDP through network address transla-
tions (NATs). RFC 4380 (2006)

9. Huston, G.: IPv6 Transition. Presentation at the 3d Meeting of the Australian
Network Operators Group (2009),
http://www.potaroo.net/presentations/2009-09-01-ipv6-transition.pdf

10. Karpilovsky, E., Gerber, A., Pei, D., Rexford, J., Shaikh, A.: Quantifying the extent
of IPv6 deployment. In: Passive and Active Measurement Conf., pp. 13–22 (2009)

11. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: The 10th ACM Conf. on Internet Measurement, pp. 246–259 (2010)

12. Lee, Y., Durand, A., Woodyatt, J., Droms, R.: Dual-Stack Lite broadband deploy-
ments following IPv4 exhaustion. RFC 6333 (2011)

13. Malone, D.: Observations of IPv6 addresses. In: Passive and Active Measurement
Conf., pp. 21–30 (2008)

14. Mao, Z.M., Cranor, C.D., Douglis, F., Rabinovich, M., Spatscheck, O., Wang, J.:
A precise and efficient evaluation of the proximity between web clients and their
local DNS servers. In: USENIX Annual Technical Conference, pp. 229–242 (2002)

15. Pang, J., Akella, A., Shaikh, A., Krishnamurthy, B., Seshan, S.: On the respon-
siveness of DNS-based network control. In: The 4th ACM Conf. on Internet Mea-
surement, pp. 21–26 (2004)

16. Savola, P.: Observations of IPv6 traffic on a 6to4 relay. SIGCOMM Comput. Com-
mun. Rev. 35(1), 23–28 (2005)

17. Shen, W., Chen, Y., Zhang, Q., Chen, Y., Deng, B., Li, X., Lv, G.: Observations of
IPv6 traffic. In: ISECS Int. Colloq. on Computing, Communication, Control, and
Management, vol. 2, pp. 278–282. IEEE (2009)

18. Townsley, M., Troan, O.: IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)–
Protocol Specification. RFC 5969 (2010)

19. Wing, D., Yourtchenko, A.: Happy eyeballs: Success with dual-stack hosts. IETF
draft (October 2011),
http://tools.ietf.org/html/draft-ietf-v6ops-happy-eyeballs-05

20. Zhou, X., Van Mieghem, P.: Hopcount and E2E delay: IPv6 versus IPv4. In: Passive
and Active Measurement Conf, pp. 345–348 (2005)

http://labs.apnic.net/blabs/?p=47
http://www.google.com/intl/en/ipv6/
http://www.potaroo.net/presentations/2009-09-01-ipv6-transition.pdf
http://tools.ietf.org/html/draft-ietf-v6ops-happy-eyeballs-05

Measuring Occurrence of DNSSEC Validation

Matthäus Wander and Torben Weis

University of Duisburg-Essen, Duisburg, Germany
dnssec@vs.uni-due.de

http://dnssec.vs.uni-due.de

Abstract. DNSSEC is a security extension that adds public-key signa-
tures to the Domain Name System for the purpose of data authenticity
and integrity. While DNSSEC signatures are being deployed on an in-
creasing number of name servers, little is known about the deployment
advancements of client-side DNSSEC validation. In this paper we present
a methodology to determine whether a client is protected by DNSSEC
validation. We applied our methodology over a period of 7 months collect-
ing results from different data sources. After data cleaning, we gathered
131,320 results from 98,179 distinct IP addresses, out of which 4.8% had
validation enabled. The ratio varies significantly per country, with Swe-
den, the Czech Republic and the United States having the largest ratios
of validating clients in the field.

1 Introduction

The original Domain Name System (DNS) specification did not provide any se-
curity measures to protect from forged domain names. As DNS heavily relies
on UDP messages, an attacker can send spoofed DNS responses, as e.g. demon-
strated by Kaminsky in 2008 [1]. In order to mitigate DNS spoofing, senders cur-
rently encode random entropy into DNS messages without breaking the message
format, e.g. random transaction ID and source port. This lowers the attackers’
spoofing success rate, but still attacks remain feasible for insistent remote at-
tackers and trivial for local attackers, e.g. when eavesdropping on a public Wi-Fi
hotspot. Cryptographic DNS protocol extensions have been proposed to make
DNS spoofing infeasible, most notably DNSSEC [2] which is being deployed right
now. DNSSEC utilizes public-key cryptography to sign and verify public DNS
data. For verification, the public key of the root zone must be known beforehand
to the resolver (DNS client). A delegation signer (DS) record indicates whether a
child zone is signed and contains the fingerprint (hash value) of the child zone’s
public key. The resolver can thus securely retrieve the public key of the child
zone when needed.

Apart from establishing secure name resolution, DNSSEC deployment implies
some side effects. The cryptographic enhancement increases CPU and network
load on name servers and validating resolvers. Distributed denial of service at-
tacks which abuse the public DNS infrastructure for traffic amplification become
more effective with large DNSSEC responses. Rogue DNS redirects become im-
possible for malicious attackers but also for governments and ISPs which may

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 125–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 M. Wander and T. Weis

act legitimated by national law or company policy. This includes redirects to
governmental censorship or legal notices, DNS injection [3] and redirects to ad-
vertisement web pages [4]. Unlike e.g. SSL/TLS certificate failures, there is cur-
rently no application-level handling of DNSSEC validation failures [5]. When
validation fails on a DNSSEC-enabled resolver, it passes a general name resolu-
tion error back to the application (e.g. web browser) which is indistinguishable
from a network error.

Our contribution in this paper is a methodology to measure the occurrence
of client-side DNSSEC validation and an analysis of such a measurement in
practice. Different validation measures are possible, e.g. the number of clients
protected by validation, the number of resolvers performing validation or the
number of responses received by validating resolvers. We chose to count the
number of clients because from this measure one can deduce the amount of
users protected by DNSSEC.

2 Methodology

We set up a DNS zone verteiltesysteme.net, signed it and added a DS record
to the .net zone. Two domain names in our zone return an A record, sigok with
a valid signature and sigfail with a placeholder signature, which is syntactically
correct but fails to validate. We are using two test types: a scripted test that
provides user feedback [6] and a hidden test that can be embedded into other
web pages.

2.1 Scripted Test

The web-based scripted test uses client-side JavaScript to load an image from the
sigfail domain name. When loading the image succeeds, the resolver does not
validate DNSSEC signatures as it failed to recognize the invalid signature. When
loading fails, the script attempts to load an image from the sigok domain name.
This happens to rule out other error sources, e.g. a stalled network connection
or an unrelated DNS resolution fault. If the second image has been loaded, the
resolver correctly validates DNSSEC signatures. Should the second image fail to
load as well, then the test was inconclusive. The result is displayed to the user
and posted to our web server in background.

2.2 Hidden Test

The web-based hidden test uses two tags which can be embedded into
existing web pages (Fig. 1). The two image URLs redirect the client browser
to a transparent 1 × 1 pixel image at ID .sigok and ID .sigfail. ID is a hex-
adecimal number 0000 to FFFF used to identify the client. As most clients do
not resolve domain names by themselves, the client IP address seen by our web
server usually differs from the resolver IP address seen by our name server. The
ID number relates browser queries to resolver queries and enables us to analyze

Measuring Occurrence of DNSSEC Validation 127

Browser

Resolver

/r/a SigOk

SigFail /r/b

SigOk

SigFail

DNSKEY
Name Server

HTTP 302 HTTP 200

Fig. 1. Static HTML code block and queries of hidden test

their coherent behavior. This method is similar to the one used by Mao et al. in
2002 [7] but instead of embedding the IP address a 16 bit hash value is derived
from the IP address. The rationale behind this method is as follows:

1. By using an HTTP redirect we can embed a static HTML code snippet into
existing web pages and track the queries by client ID. When including the
ID directly into the image URLs this would require to dynamically generate
the HTML code.

2. The DNS zone is moderately sized when using 16 bit for the ID. As we need
to deliver valid and invalid signatures, we pre-generate the DNS zone, sign
it and then replace the sigfail signatures with broken placeholders. This
results in an 88 MB zone file with 219 resource records (A and RRSIG, NSEC
and RRSIG, for both sigok and sigfail). If we dynamically created and
signed the resource records as needed, this would require either a customized
name server or an unusual zone layout which might pose a pitfall for some
resolvers.

3. By deriving the ID number from the client IP address we get a simple state-
less mapping which does not change while the same client is visiting multiple
web pages and is unlikely to collide with another client at the same time.

DNSSEC validation is enabled if there were HTTP GET requests for the two
redirect URLs and the sigok image but none for the sigfail image. It is disabled
if there were HTTP GET requests for the redirect URLs and both images.

2.3 Accuracy

For a positive test result we require the client to load an image from the signed
sigok domain name. This is meant to catch faults that could spoil the result,
e.g. blocking our signed domain name, not automatically loading images, not
following cross-domain HTTP redirects or failing to receive EDNS0 messages

128 M. Wander and T. Weis

> 512 bytes. The responses for sigok and sigfail are nearly the same size with
a packet size of < 1000 bytes. Nevertheless, one of the images could fail to load
for an unrelated reason, e.g. temporary network fault or user closes web page
before it has been loaded completely. Should this happen, then the following
faults are possible:

1. None of the images are loaded: does not affect our results.
2. sigfail loads and sigok does not load: does not affect our results.
3. sigok loads and sigfail does not load: causes a false positive in our results.

To estimate the ratio of false positives caused by case 3, we calculate the number
of occurrence of case 2. Both cases can only occur with non-validating resolvers
and correspond to the same fault pattern. Note that this type of fault can not
cause false negatives.

Another possible fault source is caching. All tests mentioned above use a
time to live (TTL) value of 60 seconds for the sigok and sigfail resource
records. To minimize the impact of browser caching, we return no-cache headers
in image responses. Caching can spoil the result if the validation configuration
has changed, i.e. when the resolvers have been reconfigured or when a client has
moved to another network.

3 Analysis

We logged 3,387,622 DNS and HTTP requests over a period of 7 months starting
in May 2012. This comprises three data sources: 1) participants of our scripted
test 2) visits from autosurf websites which generate page views1 in exchange
for community credits 3) visits from websites which kindly included our hidden
test. The results were evaluated offline by parsing the web server and name server
logfiles. We grouped the requests together by ID into Bernoulli trials when the
time delta between two requests was < 30s. Larger time deltas were grouped
into different trials which resulted in 419,747 trials.

3.1 Data Cleaning

We removed 146,786 invalid trials which were lacking the minimum required set
of requests. A valid trial requires at least both HTTP redirects to sigok and
sigfail, both DNS queries and an HTTP query to the sigok image. Fig. 2
shows the occurrence of invalid trials. Most are caused by a client browsing a
website over a couple of minutes, loading the hidden test URLs with each page
view. While the HTTP redirects are intended to be cached, web browsers also
excessively cache DNS responses in disregard of their low TTL values. Another
cause for invalid trials are web crawlers or similar noise. As explained in Sec-
tion 2.3, incorrectly missing sigfail image queries are causing false positives in

1 Visits are mostly unattended but in end user environment and thus serve our pur-
pose.

Measuring Occurrence of DNSSEC Validation 129

Missing query Both sigok sigfail

HTTP redirect 55,052 4,431 5,010
DNS query 74,560 3,673 2,050
HTTP image 1,634 376 -

Fig. 2. Invalid trials

Filter condition Count

12h duplicates 141,433
ID hash collision 11
DNSKEY missing 425

Fig. 3. Filtered trials (overlapping)

our measurement. The equivalent fault pattern of a missing sigok image query
occurred in 376 trials, which makes an estimate of 0.14% false positives of all
valid trials.

We then applied different filters to the remaining trials to remove duplicate
or dubious results. In total one or more filter conditions applied to 141,641 trials
(Fig. 3). Most trials are filtered by ignoring duplicate results: we consider each
client IP address only once every 12h. When users browse a participating website
for a couple of minutes, they leave several trials, one for each page view. The
deduplication period should be long enough to cover the whole browsing session
of the user but not longer than the assignment of a dynamic IP address. Dynamic
IP addresses cause two problems in combination with deduplication: 1. the same
client may be counted twice with different IP addresses (unlike clients with
static IP addresses) 2. another client may be filtered when assigned the same IP
address. Xie et al. estimated the time interval between two different users on the
same dynamic IP address to be >12h in 80% of all cases [8]. With a period of 12h
we expect to filter duplicates without adding significant bias due to differences
between dynamic and static clients. Experiments with different deduplication
periods from 2h to 7d show a minor influence on the overall validation ratio
(±0.3% points).

A negligible amount of trials (<0.01%) became useless because a hash colli-
sion occurred in our IP address to ID mapping. 425 trials (0.16%) were filtered
because they were classified as positive but lacked a DNSKEY query. This in-
dicates a false positive and is comparable to the estimate above. We do not
count these as negative results because there is a possible scenario in which we
might mistakenly include an actually true positive. When a validating resolver
uses two or more non-validating forwarders2, we may receive queries for sigok
and sigfail from one IP address and a query for DNSKEY from another IP
address. The DNSKEY query would be missing in this trial because we corre-
late DNSKEY queries by IP address and not by ID. This limitation could be
improved in future by including the ID into DNSKEY records.

We did not attempt to identify single users behind the same public NAT IP
address because clients within a local network typically share the same DNS
configuration. In some cases we observed inconsistent client IP addresses. The
HTTP redirects need to be queried from the same client IP address, otherwise
this would result in two different IDs and thus invalid trials. The HTTP images
may be queried from a different IP address as they are correlated by ID. This

2 Such setup is debatable as it limits the ability to scatter retries when validation fails.

130 M. Wander and T. Weis

happened in 1.4% of all valid trials, often clearly by the same user with multiple
client IP addresses due to enterprise NAT. We also identified a German regional
ISP which operates carrier-grade NAT for broadband customers. As we did not
find any unwanted effect on our results, we kept trials with inconsistent client
IP addresses in our result set.

3.2 Results

After data cleaning there are 131,320 remaining trials from 98,179 distinct client
IP addresses. According to HTTP referers, most clients originate from the web-
site CrypTool.org (67%) and from the autosurf communities TrafficSpam-

mer (10%) and eBesucher (9%). We consider a trial as negative if it contains
an HTTP query to sigfail or if all DNS queries are sent without DNSSEC
OK flag. In contrast, a positive result does not contain any sigfail HTTP
query and at least one DNS query was sent with EDNS0 and DNSSEC OK flag.

Jun Jul Aug Sep Oct Nov Dec
0

2

4

6

8

V
a
li
d
a
ti
o
n
ra
ti
o
%

Fig. 4. Overall validation

Jun Jul Aug Sep Oct Nov Dec
0

2,000

4,000

6,000

8,000

10,000

N
u
m
b
er

o
f
tr
ia
ls

other/unknown

autosurf

hidden

Fig. 5. Data sources

Jun Jul Aug Sep Oct Nov Dec
0

20

40

60

80

100

S
ta
ck
ed

p
a
rt
ic
ip
a
ti
o
n
ra
ti
o
%

other RU IN GB US DE

Fig. 6. Top 5 participating countries

AS V
Vtotal

V
V +N

cli=dns

Comcast 7922 29.1% 69.0% 0.5%
KabelBW 29562 14.3% 86.4% 0.3%
M-Net 8767 6.1% 46.6% 3.9%
Telia SE 3301 3.3% 73.8% 1.5%
O2 CZ 5610 3.0% 69.2% 0.5%
Telenor 2119 2.2% 54.1% 0.7%
pt.lu 6661 1.7% 83.5% 0.0%
rub.de 29484 1.6% 34.1% 0.0%
TELE2 1257 1.5% 52.4% 0.0%
DFN 680 1.5% 3.3% 4.3%
other 35.9% 1.9% 17.8%

Fig. 7. Top 10 validating ASes

Measuring Occurrence of DNSSEC Validation 131

Country Trials Validation ratio

1. SE 1099 56.3% ± 1.5
2. CZ 957 31.1% ± 1.5
3. US 15368 13.1% ± 0.3
4. HU 526 9.9% ± 1.3
5. CH 2975 5.6% ± 0.4
6. FR 3043 4.8% ± 0.4
7. BR 1319 4.5% ± 0.6
8. NL 2076 4.1% ± 0.4
9. PL 2107 3.9% ± 0.4
10. DE 46624 3.8% ± 0.1

Country Trials Validation ratio

11. GR 1939 3.7% ± 0.4
12. IT 1537 3.5% ± 0.5
13. ID 1332 2.6% ± 0.4
14. PT 602 2.5% ± 0.6
15. UA 1922 1.9% ± 0.3
16. AU 1053 1.5% ± 0.4
17. CA 1562 1.4% ± 0.3
18. GB 4312 1.3% ± 0.2
19. AR 577 1.2% ± 0.5
20. RS 983 1.1% ± 0.3

Fig. 8. Validation ratio per country (± standard deviation in binomial distribution)

Overall 6,323 trials were positive (4.8%) and Fig. 4 shows the results per week.
The dips in May and November correlate with the distribution of data sources
(see Fig. 5) and can be explained by differences per country. The autosurf com-
munities have a broad user base from various countries while the hidden website
test was accessed mainly from Germany (43% of all “hidden” accesses) and the
United States (12%). Changes in the country participation ratio (Fig. 6), e.g.
fewer accesses from the U.S. in November, influence the overall validation ratio.
The results per country are hence more meaningful than the overall ratio which
is inclined towards the DE and US numbers.

There are 79 countries in the data set with >100 trials and 40 countries with
>500 trials. Fig. 8 shows the top validating countries out of the >500 trials
subset, sorted by validation ratio. Half of the countries in the >500 trials subset
have a validation ratio of ≤1%.

Fig. 7 shows the top validating autonomous systems (AS) by absolute number
of trials. V

Vtotal
is the fraction of the positive results of one AS to all ASes. V

V+N
is the fraction of positive to all results within one AS. While some are fairly
high, no AS is fully protected by DNSSEC. The last column cli=dns is the
fraction of trials in which the client IP address equals at least one DNS resolver
being used. The low number indicates that most validating clients use the DNS
infrastructure of the AS operator as forwarder.

2,150 trials are negative results despite containing a DNSKEY query, sug-
gesting that a single DNSKEY query is an unsuitable validation indicator. This
comprises trials with one and with multiple resolver IP addresses. Using multi-
ple resolvers (or forwarders) is quite common, though mostly within the same
AS. In 4,991 trials DNS resolvers appeared from different ASes. Most commonly
seen AS numbers for resolvers outside of the client AS were AS15169 (Google),
AS36692 (OpenDNS) and AS3356 (Level 3). The complete anonymized data set
grouped into trials is available for public download [6].

132 M. Wander and T. Weis

4 Related Work

There exists thorough work on measuring and analyzing the server-side DNSSEC
deployment advances [9] [10], i.e. the number and status of signed zones. Our
scope in this paper is the client-side DNSSEC deployment, i.e. the number of
clients protected by validators.

4.1 Passive Measurements

Public statistics from RIPE NCC [11] indicate that about 70% of all queries at
the K-root name server are coming from resolvers that are capable of parsing
DNSSEC answers. However, one can not deduce from this indicator whether val-
idation is actually enabled. Another number measured at K-root are the queries
for DNSKEY resource records which was about 2 queries/s in August 2012.
Validating resolvers are expected to refresh the root DNSKEY within specified
intervals [12] but the total number of resolvers querying K-root is unknown and
so is the amount of extra DNSKEY queries due to pollution [13]. Hence, this
measurement allows for observing the validation tendency but not the actual
validation ratio.

Gudmundsson and Crocker [14] measured the validation ratio in 2010/11 by
analyzing network traces from authoritative name servers for .org. Capturing
and processing network traces is resource-intensive, therefore they were limited
to 50 min traces from a subset of name servers. As resolvers do not distribute
evenly across redundant name servers but instead prefer low latency, this subset
might pose an incomplete view. They applied different criteria and found out
that looking for DS queries is more effective in their scenario than looking for
DNSKEY queries. The ratio of validating resolvers was 0.8% (mistakenly stated
as 1.2%) which accounted for 8–10% observed queries to .org, though part of the
queries may have been pollution due to dropped EDNS0 packets or amplification
attacks. The geographical distribution and the number of clients served by these
resolvers is unknown.

Fujiwara performed a similar measurement for .jp over a period of one year
[15] [16]. He acquired 2 day network traces from all authoritative name servers for
.jp on selected dates and interpolated interjacent numbers by analyzing partial
log files. The number of resolvers querying for DNSKEY rose from 3,000 (0.2%)
in March 2011 to 10,000 in February 2012.

4.2 Web-Based Tests

VeriSign runs a web-based project to quantify validating resolvers [17]. It uses
the link prefetching feature of web browsers but does not require any HTTP re-
quests. The target domain name resolves to an unsigned record, though there is
a DS record indicating that it ought to be signed. A non-validating resolver will
accept this response while a validating one will retry several times. The query
pattern observed is used to fingerprint the resolver implementation. Despite us-
ing a different measure—counting resolvers not clients—the overall validation

Measuring Occurrence of DNSSEC Validation 133

Test JavaScript Images Criteria

dnssec.vs.uni-due.de yes yes image loads
dnssec.vs.uni-due.de (hidden) no yes image loads
test.dnssec-or-not.net no no 3× query retry
dnssectest.sidn.nl yes yes DNSKEY

Fig. 9. Comparison of web-based test methods

ratio is comparable to our results. The geographic distribution confirms our top
two results for Sweden and the Czech Republic. The U.S. result is much lower,
presumably because the large user base of AS7922 (Comcast) is served by few
resolvers. VeriSign also provides a web page test.dnssec-or-not.net for users
to check their validation status.

Another web-based DNSSEC test is provided by SIDN [18]. The client loads
a web page dnssectest.sidn.nl which embeds an tag pointing to a 1×1
pixel image. The domain name of the image URL contains a random ID and is
signed with a valid chain of trust. Validating and non-validating resolvers both
resolve the domain name, but only the validating resolver is expected to retrieve
the DNSKEY record. When the image has been loaded, the JavaScript code
queries the SIDN database whether the DNSKEY was retrieved and displays
the result to the user. SIDN does not provide public statistics.

Fig. 9 shows an overview of all tests described above. As the tests use different
mechanics, they may return different results under certain conditions. We con-
firmed this for mixed validation when a client uses validating and non-validating
resolvers. The VeriSign and SIDN tests are positive if the pattern of one validating
resolver is found, even if the client falls back to a non-validating secondary resolver
and actually resolves the domain name without validation. Our tests are positive,
if all resolvers queried by the client reject the incorrectly signed domain name.

5 Conclusions

We presented a web-based methodology to determine whether a client uses
DNSSEC validation. After applying this methodology in a practical measure-
ment, we identified and eliminated various effects that could distort the results.
DNSSEC validation does occur in practice but there are major differences in the
adoption between countries. Most countries covered in our measurement have a
validation ratio of less than 5%. A remaining issue is the investigation of using
mixed validating and non-validating resolvers. We expect our test to yield a neg-
ative result in case of mixed validation but the effect on the client application is
not well understood yet.

References

1. Kaminsky, D.: Black ops 2008: It’s the end of the cache as we know it. Black Hat
USA (August 2008)

134 M. Wander and T. Weis

2. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduc-
tion and Requirements. RFC 4033 (March 2005)

3. Anonymous: The collateral damage of internet censorship by dns injection. SIG-
COMM Comput. Commun. Rev. 42(3), 21–27 (2012)

4. Weaver, N., Kreibich, C., Paxson, V.: Redirecting DNS for Ads and Profit. In:
USENIX Workshop on Free and Open Communications on the Internet (FOCI),
San Francisco, CA, USA (August 2011)

5. Hirsch, T., Lo Iacono, L., Wechsung, I.: How Much Network Security Must Be
Visible in Web Browsers? In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G.
(eds.) TrustBus 2012. LNCS, vol. 7449, pp. 1–16. Springer, Heidelberg (2012)

6. Wander, M., Weis, T.: Dnssec resolver test, http://dnssec.vs.uni-due.de
7. Mao, Z.M., Cranor, C.D., Bouglis, F., Rabinovich, M., Spatscheck, O., Wang, J.:

A precise and efficient evaluation of the proximity between web clients and their
local dns servers. In: Proceedings of USENIX Annual Technical Conference, pp.
229–242. USENIX Association (2002)

8. Xie, Y., Yu, F., Achan, K., Gillum, E., Goldszmidt, M., Wobber, T.: How dynamic
are ip addresses? In: Proceedings of the 2007 Conference on Applications, Tech-
nologies, Architectures and Protocols for Computer Communications, SIGCOMM
2007, pp. 301–312. ACM, New York (2007)

9. Osterweil, E., Massey, D., Zhang, L.: Deploying and monitoring dns security
(dnssec). In: Proceedings of the 2009 Annual Computer Security Applications
Conference, ACSAC 2009, pp. 429–438. IEEE Computer Society, Washington, DC
(2009)

10. Deccio, C., Sedayao, J., Kant, K., Mohapatra, P.: Quantifying and improving
dnssec availability. In: 2011 Proceedings of 20th International Conference on Com-
puter Communications and Networks (ICCCN), July 31- August 4, pp. 1–7 (2011)

11. RIPE NCC: Status for k.root-servers.net,
http://k.root-servers.org/statistics/ROOT/daily/ (accessed September
2012)

12. St.Johns, M.: Automated Updates of DNS Security (DNSSEC) Trust Anchors.
RFC 5011 (September 2007)

13. Castro, S., Wessels, D., Fomenkov, M., Claffy, K.: A day at the root of the internet.
SIGCOMM Comput. Commun. Rev. 38(5), 41–46 (2008)

14. Gudmundsson, Ó., Crocker, S.D.: Observing dnssec validation in the wild. In: Se-
curing and Trusting Internet Names, SATIN (2011)

15. Fujiwara, K.: Dnssec validation measurement. In: DNS-OARC Workshop, San
Francisco, CA, USA (March 2011)

16. Fujiwara, K.: Number of possible dnssec validators seen at jp. In: IEPG Meeting
@ IETF 83, Paris, France (March 2012)

17. Yu, Y., Wessels, D.: Quantifying dnssec validators. In: DNS-OARC Workshop,
Toronto, Canada (October 2012)

18. SIDN: Dnssec test, http://dnssectest.sidn.nl (accessed August 2012)

http://dnssec.vs.uni-due.de
http://k.root-servers.org/statistics/ROOT/daily/
http://dnssectest.sidn.nl

On the State of ECN and TCP Options

on the Internet�

Mirja Kühlewind1, Sebastian Neuner1, and Brian Trammell2

1 Institute of Communication Networks and Computer Engineering (IKR)
University of Stuttgart, Germany

2 Communication Systems Group, ETH Zürich, Switzerland

Abstract. Explicit Congestion Notification (ECN) is a TCP/IP exten-
sion that can avoid packet loss and thus improve network performance.
Though standardized in 2001, it is barely used in today’s Internet. This
study, following on previous active measurement studies over the past
decade, shows marked and continued increase in the deployment of ECN-
capable servers, and usability of ECN on the majority of paths to such
servers. We additionally present new measurements of ECN on IPv6,
passive observation of actual ECN usage from flow data, and observa-
tions on other congestion-relevant TCP options (SACK, Timestamps and
Window Scaling). We further present initial work on burst loss metrics
for loss-based congestion control following from our findings.

1 Introduction

Since the initial design of TCP, there have been a number of extensions de-
signed to improve its throughput and congestion control characteristics. Explicit
Congestion Notification (ECN) is a TCP/IP extension that allows congestion
signaling without packet loss. Though it has been shown to have performance
benefits [1] and has been a standard since 2001 [2,3], ECN deployment lags sig-
nificantly. Initial deployment problems where middleboxes cleared the ECN IP
bits or even dropped packets indicating ECN-capability, as well as firewalls that
would reset ECN-capable connections [4], led to mistrust of ECN.

In this work, we examine how much this situation has improved, adding an-
other datapoint to a series of active measurements of ECN usage going back a
decade. We also measured the usage of three other congestion-control-relevant
TCP options: Selective Acknowledgment (SACK) [5], Timestamps (TS), and
Window Scale (WS) [6]. SACK allows more precise signaling of loss, TS im-
proves round-trip-time estimation, and WS allows a larger receiver windows.

Our measurement methodology consists of active probing of the ECN-readiness
of a large set of popular web-servers (section 3.1) as well as passive measure-
ment of ECN usage from flow data collected on a national-scale research and
education network (section 3.2).

� This work is partly funded by ETICS and mPlane, FP7 research projects supported
by the EU. Thanks to SWITCH for the flow data used in this study.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 135–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

136 M. Kühlewind, S. Neuner, and B. Trammell

Table 1. ECN implementation status

year OS version

2007
Microsoft Server 2008,
Windows 7, Vista

2007 Mac OS X 10.5

2006 Cisco IOS 12.2(8)T

2001 Linux 2.4 (full support)

1999 Linux 2.3 (router support)

Table 2. History of ECN and options
deployment

Reference Date ECN SACK TSOPT

Medina ea. [7] 2000 1.1% 28% -
Medina ea. [7] 2004 2.1% 68% 30%
Langley ea. [8] 2008 1.06% - -
Bauer ea. [9] 2011 17.2% - -

Deployment of ECN and related TCP options has been periodically stud-
ied in the literature over the past decade [7,8,9]; the most relevant results for
the present work are summarized in Table 2. Bauer et al [9] probed the same
set of servers as in the present work, so these results are directly comparable.
Also related are measurements on TCP extensibility, which focus on middlebox
treatment of packets with TCP options. Here findings vary between 0.17% [8]
and 70% [9] of hosts dropping packets with unknown options, and 4–14% of
middleboxes dropping such packets [10].

We find a recent acceleration in deployment of ECN-capable servers (sec-
tion 4.1) and greater ECN support on IPv6-enabled servers (section 4.2). We
compare this to actual ECN usage, passively measured from flow data captured
from the border of a national-scale network, and find that while ECN is more
frequently deployed, it is still seldom used (section 4.3).

In section 5, we define a metric for burst loss taking into account the peridic
probing of congestion-control algorithms, and show that different types of traffic
have different burst loss characteristics. Given the continued lag of ECN usage,
we advance this initial work as a way to better understand loss dynamics and
its relation to application behavior. Section 6 presents our conclusions.

2 Explicit Congestion Notification (ECN): A Review

ECN allows routers using active queue management (AQM) (e.g., Random Early
Detection (RED)) to mark packets in case of congestion instead of dropping
them. Two bits in the IP header provide four possible marks: No-ECN (00),
Congestion Experienced (CE, 11), and two codepoints for ECN-Capable Trans-
port (ECT(0), 01; and ECT(1), 10). An ECN-capable sender sets ECT(0) or
ECT(1), which can be changed to CE by a router to signal congestion.

ECN uses two additional flags in the TCP header: ECN-Echo (ECE) is set
on all packets from the receiver back to the sender to signal the arrival of a
CE-marked packet until the sender sets Congestion Window Reduced (CWR)
to acknowledge the ECE. These flags are also used to negotiate ECN usage:
a connection initiator requests ECN by setting ECE and CWR on the initial
SYN, and the responder acknowledges by setting ECE on the SYN/ACK. After
successfully completing the negotiation, the senders can set an ECT codepoint
on all subsequent packets over the connection.

On the State of ECN and TCP Options on the Internet 137

Today, ECN is implemented in most operating systems (see Table 1). However
even if enabled by default, it is often in “server mode” only: ECN will be ne-
gotiated if requested by a remote node initiating a connection, but connections
opened by the node will not attempt to negotiate ECN usage.

3 Measurement Methodology

3.1 Active Probing of Web Servers

We measure ECN-readiness and usage of options by sending a TCP SYN with
ECN negotiation and the SACK, TS, and WS options enabled to a target server,
immediately closing the connection by sending a FIN. The resulting SYN/ACK
responses are captured using tcpdump and evaluated offline using scapy1, an
open source Python-based framework for manipulation and evaluation of TCP
packets. The target servers were selected from the Alexa Top 100,000 webservers
list, as resolved by the Google public DNS server. If more than one IP address
was resolved, we choose the first under the assumption that all servers operated
by one provider have the same configuration.

We implemented a tool, also based on scapy, to determine whether ECN is
usable on a path to a target. First, it generates a SYN with ECN negotiation. If
the target is ECN-capable, it then sends one data segment with the CE codepoint
set, and evaluates whether ECE was set on the corresponding ACK.

We evaluated the IP Time-to-Live (TTL) of the response as an estimate of
the operating system in use at the target. When the TTL is smaller than 64,
we assume Linux/BSD, 128 for Windows, and 255 for Solaris. Moreover, we
checked the number of hops to be smaller than 64 based on ICMP traceroute.
Anyway, this is not a reliable indication, as the initial TTL is configurable; one
conspicuous exception is Google, which generally uses Linux but a TTL of 255.

The measurements were performed on a Linux host located in the Univer-
sity of Stuttgart network, connected via the Baden-Württemberg extended LAN
(BelWü) to the DE-CIX Internet exchange in Frankfurt. We also performed these
measurements over two German mobile network providers (O2 and Vodafone)
and got similar results for both.

3.2 Analysis of Aggregated Flow Data

Though active measurement shows increasing deployment of ECN-ready web
servers, this gives no information on the actual use of ECN in the network.
To measure this, we examine NetFlow version 9 flow data collected from the
border of SWITCH2, the Swiss national research and education network. This
network originates about 2.4M IPv4 addresses (the rough equivalent of a /11),
with typical daily traffic volumes on the order of 100 TB, and contains both
client machines as well as servers for universities.

1 http://www.secdev.org/projects/scapy
2 http://www.switch.ch/

http://www.secdev.org/projects/scapy

138 M. Kühlewind, S. Neuner, and B. Trammell

Table 3. April 25, 2012, 77969 unique hosts (of 93573 responding hosts)

All TTL < 64 64 ≤ TTL ≤ 128 TTL > 128

hosts 77969 (100.00%) 57610 (73.89%) 12794 (16.41%) 7590 (9.73%)

hosts 77969 (100.00%) 57610 (100.00%) 12794 (100.00%) 7590 (100.00%)
ECN 19616 (25.16%) 18954 (32.90%) 521 (4.07%) 143 (1.88%)

SACK 69037 (88.54%) 52409 (90.97%) 11506 (89.93%) 5145 (67.79%)
TSOPT 65307 (83.76%) 49667 (86.21%) 10729 (83.86%) 4928 (64.93%)
WSOPT 68419 (87.75%) 53137 (92.24%) 10047 (78.53%) 5258 (69.28%)

Table 4. August 13, 2012, 77854 unique hosts (of 93756 responding hosts)

All TTL < 64 64 ≤ TTL ≤ 128 TTL > 128

hosts 77854 (100.00%) 57651 (74.05%) 12471 (16.02%) 7769 (9.98%)

hosts 77854 (100.00%) 57651 (100.00%) 12471 (100.00%) 7769 (100.00%)
ECN 22948 (29.48%) 22193 (38.50%) 616 (4.94%) 145 (1.87%)

SACK 69334 (89.06%) 52783 (91.56%) 11226 (90.02%) 5353 (68.90%)
TSOPT 65220 (83.77%) 49749 (86.29%) 10379 (83.23%) 5112 (65.80%)
WSOPT 68684 (88.22%) 53420 (92.66%) 9846 (78.95%) 5446 (70.10%)

Our methodology focuses on counting distinct sources, to give us a number
comparable to that produced by active measurements. Our flow data unfortu-
nately does not include the TCP flags used for ECN negotiation3; however, it
does include the ECN Field in the IP header for the first packet observed in
each flow record. Since the first packet in a ECN TCP flow is not ECN-capable,
we observe continued flows: records created after an existing record for a long-
lived flow is exported on active timeout (in the measured data, 300s). These
capture the ECN field from mid-flow. So, in a given time interval, we count any
source address appearing in at least one continued TCP flow record with either
the ECT(0) or ECT(1) codepoint set as an ECN-capable source. We note this
presents only a lower bound for ECN-capable sources, as it will not count any
source which never sends a flow longer than the active timeout.

4 Results

4.1 ECN and TCP Option Deployment

We first measured ECN and TCP option support in web servers in April 2012.
As shown in Table 3, 25.16% of web servers negotiated ECN, a substantial
increase over that measured by Bauer [9] using a compatible methodology and
comparable set of hosts. We measured again in August 2012 (Table 4) and found
a further increase to 29.48% using the current Alexa list, or 29.35% using the
set of targets probed in April. We presume that operating system upgrades are

3 While the devices can be configured to export ECE and CWR, they are always
exported as zero, due to apparent implementation faults.

On the State of ECN and TCP Options on the Internet 139

the primary cause of increased ECN deployment, as ECN has been supported
by all major OSes only since 2007 (see Table 1).

We find that ECN is still less supported than SACK, TS, and WS, though
these latter three show no discernible trend between April and August. We also
find that ECN is far better supported on Linux hosts (TTLs less than 64) than
on Windows (TTL between 64 and 128) or Solaris (TTL greater than 128)4.

To validate the start TTL estimates, we checked the path length of the top
10,000 servers to ensure less than 64 hops. The minimum path length was 10
hops, as there are 9 hops within the BelWü network; the median was 17.47 hops,
the maximum 29, and the mode 13; further investigations are needed on this last
point to check for caching or CDNs in Frankfurt.

With respect to ECN usability on the path, we tested 22487 hosts in Au-
gust 2012 which had negotiated ECN. Of these, 20441 (90.9%) sent an ECE in
response to an CE. 1846 (8.2%) replied with an ACK without ECE, and 200
(0.9%) sent no ACK at all. These 9% of cases where ECN is not usable represent
middleboxes which clear CE, which drop packets with CE set, or implementa-
tion errors at the endpoints. Additionally, experiments on two UMTS network
showed 100% ECN support but 0% ECN feedback; we presume due to an ECN-
capable HTTP proxy setup and clearing of CE in the mobile network. In any
case, these observations show that middleboxes can still significantly affect the
end-to-end use of ECN in the network.

We observed one curiosity in our options measurements: with our latest mea-
surement run in September 2012 (31.2% ECN-capable), we also probed all
servers without ECN or any options, to check general responsiveness. We found
429 more unique hosts responding to a SYN without any TCP extension. 828
out of 78204 unique hosts (1.06%) attempted to use SACK in the SYN/ACK
even if not requested. 294 (0.38%) similarly attempted to use WS, most of them
presumably Windows hosts. None responded with TS or ECT. Moreover, while
probing facebook.com we observed oscillation in RTT between about 100ms
and 150ms, with an irregular period on the order of hours. This is indicative of
load balancing between data centers on the (US) east and west coasts.

4.2 ECN Deployment on IPv6

We investigated the use of ECN over IPv6, in April and August as well as during
the World IPv6 Launch event on 6 June 2012; the results are shown in Table 5.
Here we find more support for ECN (47.52%) than over IPv4, as well as more
support for other TCP options, but without a comparable increase over time.
There was a significant increase in the proportion of Alexa Top 100,000 web
servers supporting IPv6 after World IPv6 launch, though only 2.28% support
IPv6 as of August 2012. Most IPv6 servers have been installed within the last
two years, so we expect greater ECN support in IPv6: these systems should be
more up-to-date than average.

4 As noted above, Google uses an initial TTL of 255, but disables ECN.

140 M. Kühlewind, S. Neuner, and B. Trammell

Table 5. ECN and options deployment on IPv6

IPv4 Aug’12 IPv6 April’12 IPv6 June’12 IPv6 Aug’12

responding hosts 93573 980 1819 2132
unique hosts 77854 (100.00%) 785 (100.00%) 1075 (100.00%) 1208 (100.00%)

ECN 22948 (29.48%) 370 (47.13%) 522 (48.56%) 574 (47.52%)
SACK 69334 (89.06%) 733 (93.38%) 1006 (93.58%) 1093 (90.48%)

TSOPT 65220 (83.77%) 713 (90.83%) 986 (91.72%) 1049 (86.84%)
WSOPT 68684 (88.22%) 734 (93.50%) 1011 (94.05%) 1136 (94.04%)

4.3 Passive Measurement of ECN Adoption

Using the methodology in section 3.2 we examine data for the full day Wednes-
day, August 29, 2012, from midnight local time, from four of six border routers.
Our results are not particularly surprising: while hosts and devices supporting
ECN are seeing increased deployment, we confirm that ECN is mostly not used.

We observed 11,039 total distinct ECN-capable IPv4 sources. This is 0.774%
of 1,426,152 distinct sources of continued flows, or 0.161% of 6,837,387 distinct
sources observed in all TCP traffic. We estimate the true proportion is somewhere
between these measurements. ECN-capable sources were responsible for 1.77TB
(3.01%) of 58.84TB of measured TCP traffic.

Of the top 50 ECN-capable sources, there are 19 public-facing web servers, 13
of which appear in the Alexa list used in section 3.1; 12 DHCP clients; 8 servers
apparently used for development, testing, or other non-public services; 6 network
infrastructure machines, 2 of which are part of an active network performance
measurement system; and 5 cloud servers.

Notably, the count of observed ECN-capable sources is on the same order of
magnitude as clear errors in ECN usage: 24,580 sources set ECT(0), ECT(1), or
CE on a TCP SYN packet. Most of these (16,911 or 68.9%) can be traced to a
single ISP which sets the CE codepoint on 99.1% of its outgoing traffic. That
there are more sources of persistent misuse of the ECN field from a misconfigu-
ration at a single operator than sources of ECN-capable traffic is a discouraging
sign for ECN adoption. We did not observe a single continued flow whose first
packet had CE set, other than from sources which set CE on all packets: the
extent of use of ECN on routers is too small to measure using this method.

To estimate the historical trend in ECN capability, we count all ECN-capable
sources between 13:00 and 14:00 UTC on the last Wednesday of each month on
six-month intervals leading up to October 27, 2010, and monthly intervals from
January 25 to August 29, 20125. We see a general increase in the proportion
of ECN-capable sources, from 0.02% in April 2008 to 0.18% in August 2012. In
Figure 1 we compare this trend to our datapoints as measured in section 4.1 as
well as to prior measurements summarized in Table 2.

5 We do not have TCP flags data prior to July 2012; therefore, historical trends detect
ECN-capable sources on all flows. This leads to overcounting, as some sources set
the ECT bits on the SYN packet as well. We treat these numbers as comparable, as
they are all subject to the same overcounting.

On the State of ECN and TCP Options on the Internet 141

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Medina Medina Langley

Bauer

observed

2000 2002 2004 2006 2008 2010 2012 2014
Date

pr
op

or
tio

n
of

 E
C

N
−

ca
pa

bl
e

ho
st

s

(a) Actively measured

0.0000

0.0005

0.0010

0.0015

2009 2010 2011 2012
Date

pr
op

or
tio

n
of

 E
C

N
−

ca
pa

bl
e

so
ur

ce
s

(b) Passively measured

Fig. 1. Trends in ECN capability

5 Identifying Conditions of Congestion: Burst Loss Study

As ECN usage remains negligible, packet loss remains the only practical signal
for congestion control. We therefore turn our attention to loss patterns in typ-
ical Internet usage scenarios in order to identify conditions of congestion. This
information can be used to improve congestion control or network measurements.

In related work, Allman et al [11] showed that 0.6% of connections experience
a loss rate of more than 10% with a loss of at least 1 packet in more than 50% of
the cases and a loss period, which is a number of losses in a row, of 1 packet in over
60%. Mellia et al [12] measure an average total amount of anomalous segments,
including loss and reordering, of 5% of outgoing traffic and 8% for incoming
traffic on an enterprise network. However, these metrics are given independent
of usage pattern and algorithm. Additionally, usage of known TCP congestion
control algorithms has been investigated by [13,7,14].

Typically, the loss patterns depend not only on the usage scenario, as con-
gestion control periodically induces overload to probe for available bandwidth.
Therefore, the observed loss patterns themselves are also algorithm-dependent.
Here we define a burst loss as an event consisting of all losses occurring on a
TCP connection within one RTT of the first loss; counting these events provides
a metric which captures packet loss in a congestion-control-aware way, as losses
occurring within a single RTT will be treated as a single event by TCP.

Moreover, application behavior does influence the loss pattern as well. Thus we
investigated three common classes of Internet activity – web browsing, download,
and YouTube – to study their loss patterns individually. In initial trials we
emulated these three types of network traffic on a residential access network
with a maximum measured datarate of 5.7MBit/s: web browsing of 33 common
websites with a 12 second delay after each site, viewing of two YouTube videos

142 M. Kühlewind, S. Neuner, and B. Trammell

Fig. 2. Decision Diagram for TCP Loss/Retransmission Estimation

(4.62MB and 11.59MB), and FTP download of a 80.56MB file from a host using
cubic congestion control. 24 trials were conducted over a single day. The resulting
traffic was captured, individual losses or retransmissions were estimated using an
algorithm similar to those in the literature [11,15,12]; the decision tree is shown
in Figure 2. Losses were then grouped into bursts.

Web browsing consists of many short flows; over all trials, we saw only 5.8%
of flows experiencing any loss at all. 82.7% of bursts consists of only a single
loss while also bursts of up to 71 losses occurred. The FTP download, on the
other hand, involves one single, long flow, and a very regular loss pattern due
to congestion control can be observed. As cubic congestion control was used, we
observed 70.7% of single losses as well as frequent bursts of up to 12 losses. In
our 24h measurement series we found three probes (at 3am, 10am and 5pm) with
a very large number of small burst losses (4058, 3905, and 4157, respectively).
Those cases presumably show an anomaly in the network or at the server side.
Youtube presents an entirely different pattern, including regular, larger bursts
due to its block sending behavior [16] even though YouTube uses TCP congestion
control. In 18 of 24 trials, the longer video experienced exactly five bursts, while
we always observed one burst for the smaller video. But, given the application
behavior, in both cases the mean burst size was around 33. These results are
summarized in Table 6.

Table 6. Active measurement from September 10, 2012 [mean number of packets
(PKTS), of retransmissions (RET), of burst losses (B), of packets per burst loss (P/B);
mean loss rate (RATE); time between burst losses (TBB)]

PKTS RET RATE B P/B TBB

Web-browsing 80779 533.96 0.66% 227.88 2.37 -

Download (all) 58643 703.04 1.2% 535 2.10 2.88
Download (21 of 24) 58639 76.14 0.13% 34.29 2.23 3.28

YouTube1 (11.59MB) 8469.2 176.29 2.08% 5.58 31.72 27.31
YouTube1 (18 of 24) 8469.4 159.83 1.89% 5 31.97 29.40
YouTube2 (4,62MB) 3386.2 34.04 1% 1 34.04 -

On the State of ECN and TCP Options on the Internet 143

0.2

0.4

0.6

0.8

1.0

Downloads

YouTube

Web

0 20 40 60
Burst size (losses)

cd
f

Fig. 3. Burst size (in losses) measured per scenario

These initial findings on loss patterns indicate burst losses to be a well-
observable metric. As shown in the distribution of burst loss sizes in Figure 3, the
burst loss sizes depend on the scenario. This distribution may therefore provide
information to identify the origin of losses, not available with simple metrics
such as average loss rate. E.g. a greedy flow using the Reno congestion con-
trol algorithm over different network paths (different available bandwidth and
RTT) will lead to a different average loss rate but the same pattern in burst
size and regularity. Further theoretical or simulation-based work is needed to
develop a loss model for different traffic classes and then relate this model to the
loss patterns observed in today’s Internet to differentiate other sources of losses.
Similar influence of congestion control and application behavior can be expected
for ECN-based congestion marking, with the additional influence of the AQM
at the bottleneck queue.

6 Conclusions and Future Work

This study has shown that deployment of ECN-capable hosts in the Internet
continues: about 30% of the top 100,000 web servers can now negotiate ECN
usage. We suspect this is due to normal upgrade and replacement cycles affecting
the operating systems deployed. Of further interest is that Linux servers are far
more likely to support ECN, as are IPv6 servers. Additionally we could measure
a general increase in IPv6 support over the IPv6 Launch Day.

While we found 91% of paths to ECN-capable servers are ECN-capable, a fail-
ure rate of 9%, including 1% of paths where CE-marked or ECE-marked packets
are lost in the network, indicates that earlier problems with ECN deployment
are not completely solved. Further, passive measurements give a lower bound for
actual ECN usage which was measured to be two orders of magnitude less com-
mon than ECN capability. Even worse: twice as many observed sources misused
the CE codepoint as properly used the ECT codepoints. Of course, the ECN

144 M. Kühlewind, S. Neuner, and B. Trammell

readiness on network routers is necessary to realize the full benefits of ECN,
as well. This is much more difficult to measure, and thus a problem for future
work. Given the difficulty of passive measurement of ECN dynamics, work on
the development and deployment of an ECN-aware flow meter is ongoing.

The deployment of ECN would have many benefits, not just for congestion
control but for measurement studies of network congestion and traffic engineer-
ing, as well. To obtain better information on the conditions of congestion when
ECN information is not available, we performed initial studies on the loss pattern
of Internet traffic of certain usage scenarios. A broader analysis to understand
the effects of congestion control and application behavior observable in the loss
pattern resulting in a loss model of today’s Internet is underway.

References

1. Salim, J.H., Ahmed, U.: Performance Evaluation of Explicit Congestion Notifica-
tion (ECN) in IP Networks. RFC 2884, IETF (July 2000)

2. Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit Congestion No-
tification (ECN) to IP. RFC 3168, IETF (September 2001)

3. Kuzmanovic, A.: The power of explicit congestion notification. SIGCOMM Com-
put. Commun. Rev. 35(4), 61–72 (2005)

4. Floyd, S.: Inappropriate TCP Resets Considered Harmful. RFC 3360 (Best Current
Practice) (August 2002)

5. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgement
Options. RFC 2018, IETF (October 1996)

6. Jacobson, V., Braden, R., Borman, D.: TCP Extensions for High Performance.
RFC 1323, IETF (May 1992)

7. Medina, A., Allman, M., Floyd, S.: Measuring the evolution of transport protocols
in the Internet. SIGCOMM Comput. Commun. Rev. 35(2), 37–52 (2005)

8. Langley, A.: Probing the viability of TCP extensions (2008),
http://www.imperialviolet.org/binary/ecntest.pdf

9. Bauer, S., Beverly, R., Berger, A.: Measuring the state of ECN readiness in servers,
clients and routers. In: Proc. of Internet Measurement Conference (2011)

10. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is
it still possible to extend TCP? In: Proc. of IMC 2011, pp. 181–194. ACM, New
York (2011)

11. Allman, M., Eddy, W.M., Ostermann, S.: Estimating loss rates with TCP. ACM
Performance Evaluation Review 31 (2003)

12. Mellia, M., Meo, M., Muscariello, L., Rossi, D.: Passive analysis of TCP anomalies.
Comput. Netw. 52(14), 2663–2676 (2008)

13. Padhye, J., FLoyd, S.: On Inferring TCP Behavior. In: Proceedings of ACM SIG-
COMM, pp. 287–298 (2001)

14. Yang, P., Luo, W., Xu, L., Deogun, J., Lu, Y.: TCP Congestion Avoidance Algo-
rithm Identification. In: 31st International Conference on Distributed Computing
Systems (ICDCS), pp. 310–321 (June 2011)

15. Benko, P., Veres, A.: A passive method for estimating end-to-end TCP packet
loss. In: Global Telecommunications Conference, GLOBECOM 2002, vol. 3, pp.
2609–2613. IEEE (November 2002)

16. Ghobadi, M., Cheng, Y., Jain, A., Mathis, M.: Trickle: Rate limiting YouTube
video streaming. In: Proc. of the USENIX Annual Technical Conference (2012)

http://www.imperialviolet.org/binary/ecntest.pdf

Measuring Query Latency

of Top Level DNS Servers

Jinjin Liang1,2, Jian Jiang1,2, Haixin Duan1,2, Kang Li3, and Jianping Wu1,2

1 Institute for Network Science and Cyberspace, Tsinghua University
2 Tsinghua National Laboratory on Information Science and Technology

3 Department of Computer Science, University of Georgia

Abstract. We surveyed the latency of upper DNS hierarchy from 19593
vantage points around the world to investigate the impact of uneven
distribution of top level DNS servers on end-user latency. Our findings
included: 1) generally top level DNS servers served Internet users effi-
ciently, with median latency 20.26ms for root, 42.64ms for .com/.net,
39.07ms for .org; 2) quality of service was uneven, Europe and North
America were the best while Africa and South America were 3 to 6 times
worse; 3) most of the root servers performed well in Europe and North
America, but only F, J, L roots showed low query latency in other con-
tinents; 4) query latency of F and L roots showed that only about 60%
resolvers were routed to the nearest anycast instances. We also revealed
two problems that lead to constantly large query latency (6s∼18s) for re-
solvers. One was buggy implementation of some resolvers on IPv4/IPv6
dual-stack hosts, the other was misconfigured middle-boxes that filtered
large or fragmented DNSSEC packets.

1 Introduction

The Domain Name System (DNS) is a fundamental component of Internet which
translates domain names into IP addresses for most of the Internet applications.
This makes DNS query latency a critical factor that affects the quality of Internet
experienced by end-users.

Essentially, DNS is a distributed database organized as a hierarchical tree. On
the top of the hierarchy are root zone and some top level domain (TLD) zones
such as .com and .net. DNS authority servers of top level zones are crucial
for Internet operation since these servers serve Internet users all over the world
as the start points of the whole domain name space. Their performance is also
important to end-users as some popular implementations could still visit top
level DNS servers frequently even with the local caches [10].

A common technique to increase DNS robustness and performance is DNS
zone replication, in which one DNS zone can be served by multiple authority
servers in various locations. For example, root zone is currently served by 13
logical root servers and hundreds of anycast instances.

An important issue of deploying replications of top level zones is geographic
distribution. Historically, most of the root servers were located in the

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 145–154, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

.com/.net
.org
.com
.net

146 J. Liang et al.

United States. Internet users of other regions inevitably stood longer DNS query
latency due to geographic distance. Previous research indicated that Europe and
Asia were underprovisioned while North America was overprovisioned [7], sug-
gesting that some root servers should be relocated.

Recently, the deployment of replication instances for top level zones grows
massively with wide adoption of anycast, which further allows multiple instances
in different locations to use a same IP address. Publicly available information 1

shows 319 anycast instances for 13 root servers have been deployed all over the
world. Our curiosity is that how Internet users from different regions experience
this progress and whether the uneven quality of service has been improved.
One recent article compared the number of root instances and the population
served in different continents and concluded that the distribution of root servers
was still very uneven [1]. However, the conclusion of [1] is based on simplistic
statistics of users served per root server. We hope to have a more technical and
comprehensive evaluation of the quality of services of upper DNS servers.

We probed 19,593 open recursive resolvers to query top level servers using
a method we called NXDOMAIN-Query and King technique [5]. NXDOMAIN-
Query could obtain the overall latency from resolvers to root or TLD level while
King technique could measure the latency between a resolver and an arbitrary
nameserver. With the measured latency, we compared the DNS performance in
different regions and further analyzed the current state of top level zones’ replica-
tion deployment. We find: 1) generally top level DNS servers serve Internet users
efficiently, with median latency 20.26ms for root, 42.64ms for .com/.net(they
share the same infrastructure), 39.07ms for .org; 2) quality of service is still
uneven: Europe and North America are the best while Africa and South Amer-
ica are 3 to 6 times worse; 3) in Europe and North America, most of the root
servers perform well, but in other continents only F, J, L roots show low query
latency; 4) query latencies of F and L roots show that only about 60% resolvers
are routed to the nearest anycast root instances.

Along with the results for initial motivation, we also observed anomalous large
latency from a group of resolvers, ranging from 6s to 18s. Our further investi-
gation revealed two reasons. One was buggy implementation of some resolvers
on IPv4/IPv6 dual-stack hosts. The other was misconfigured middle-boxes on
certain paths which filtered large or fragmented DNSSEC responses.

2 Methodology

We collect plenty of open recursive resolvers and then drive these resolvers to
query our targets. Using the round trip times (RTTs) observed from these re-
solvers, we further estimate DNS query latency between these resolvers and the
targets. This approach has two advantages: 1) we do not need the direct control
of our vantage points, which allows us to scale our study extensively; 2) probing
open resolvers triggers real DNS lookup behaviors in the wild, which helps us to
observe anomalous behaviors and further identify the causes.

1 http://www.root-servers.org

.com/.net
.org
http://www.root-servers.org

Measuring Query Latency of Top Level DNS Servers 147

2.1 Collecting Open Recursive Resolvers

We collect 19593 open resolvers in total by three ways: 1) extracting open re-
solvers from the query log of a busy DNS authority nameserver (42%); 2) probing
DNS authority servers of Alexa top 1M sites (42%); 3) inquiring help from other
researchers (16%). 2 It is worth to note that we must exclude DNS forwarders
since they would query their upper resolvers rather than query authority servers
directly. The geographic distribution of these resolvers is detailed in Table 1.

Table 1. Distribution of Open Resolvers (Based on GeoIP database)

Continent # of countries # of ASes # of resolvers % of total

Europe 45 2821 7169 36.59
North America 25 1837 5525 28.20

Asia 40 940 6056 30.91
South America 11 173 426 2.17

Oceania 7 131 248 1.27
Africa 26 77 149 0.76

Unknown - - 20 0.10

Total 154 5979 19593 100.00

2.2 NXDOMAIN-Query Technique

We utilize a method called NXDOMAIN-Query to indirectly measure the query
latency from a resolver to a domain level. The main idea of NXDOMAIN-Query
is leveraging non-existent domain names to control recursive resolvers to stop at
specified domain levels. Besides, NXDOMAIN-Query uses a fresh non-existent
domain name for each request to avoid cached negative responses. For example,
to measure the query latency from a resolver to root level, we issue the resolver
with a DNS query containing a fresh non-existent TLD from a client. When
the resolver receives this query, it asks one of the root servers, then receives a
NXDOMAIN response and replies to the client with the NXDOMAIN answer.
Assume Tc−root is the whole query latency observed from the client, Tr−root is
the latency between the resolver and the root server, Tc−r is the latency between
the client and the resolver which can be measured by issuing the resolver with a
non-recursive query. Then we can estimate Tr−root by Tr−root = Tc−root− Tc−r.
Similarly, we can also measure DNS lookup latency from resolvers to TLD level.

The limitation of NXDOMAIN-Query is that this method only allows us to
measure the overall latency from selected resolver to a group of DNS servers
serving a specified level of DNS domain, rather than to a certain DNS server. The
reason is that different resolvers implement different server selection strategies
which cannot be controlled indirectly.

2 The limitation of using open resolvers as vantage points is that query latency may
be affected by network condition of the resolvers. However, our exploration verifies
that about 70% of these resolvers are also authority servers, thus we believe networks
may only have limited influence on our measurement results.

148 J. Liang et al.

2.3 King Technique

We leverage King technique [5] to indirectly measure DNS lookup latency from
selected resolver to one certain DNS server, as a complement to the above
NXDOMAIN-Query. The basic idea of King technique is tricking recursive re-
solver to query any designated IP address through pointing the nameserver of
a controllable domain to that IP address, and then estimating latency between
the resolver and the designated IP with the observed RTTs. Please refer to the
original paper [5] for more technical details.

3 Measurements and Results

Using methods introduced above, we investigated the impact of geographic dis-
tribution of top level DNS servers by measuring overall query latency of both
root and TLD level, as well as the individual query latency of each of the 13
root servers from different regions. We also analyzed anycast proximity of F and
L roots and compared the differences among continents 3.

3.1 Query Latency of Root and TLD Hierarchy

We assessed the overall query latency of root level and popular TLDs through
NXDOMAIN-Query approach. For each open resolver we collected, we measured
its query latency to root, .com/.net, .org respectively. To reduce measurement
noises, we continuously measured the latency over 500 times during a two days
period for each resolver and used median value as a resolver’s final latency.

Figure 1 shows the CDF of all resolvers’ query latency to the three mea-
sured top DNS zones. We can see that generally these three zones serve global
users efficiently. For most of the resolvers the latency are small, and the me-
dian latency for all three zones are less than 50ms. Specifically, root zone has
the lowest overall query latency and the median latency is about 20.26ms. .org
slightly outperforms .com/.net, the median latency for .org is 39.07ms while
for .com/.net is 42.64ms.

A surprising result from Figure 1 is that a few resolvers constantly show very
large query latency, with the values mostly around 6, 8, 12, 18 seconds. We
present our investigation for this strange behavior in Section 4.

We break down the measurement results to compare the differences among
various continents. Figure 2 shows the quartiles of all resolvers’ latency to the
three zones in each continent. The results show that the cost of querying the three
top DNS zones is uneven across continents. All six continents can be categorized
into three groups. Most of the resolvers in Europe (EU) and North America (NA)
have distinctly smaller latency than other continents, especially comparing to
resolvers in South America (SA) and Africa (AF), the median latency of which
are 3 to 6 times larger. Asia (AS) and Oceania (OC) are more complicated.
While the median latency can be equal (OC) or slightly larger than those of

3 The results are available at https://github.com/dnsmeasurement/latency.

.com/.net
.org
.org
.com/.net
.org
.com/.net
https://github.com/dnsmeasurement/latency.

Measuring Query Latency of Top Level DNS Servers 149

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Latency (ms)

1k 8k 32k

root
com/net

org

Fig. 1. Cumulative distribution of latency of root, .com/.net, .org

 0

 50

 100

 150

 200

 250

 300

 350

N
A

E
U

O
C

A
S

S
A

A
F

N
A

E
U

O
C

A
S

S
A

A
F

N
A

E
U

O
C

A
S

S
A

A
F

La
te

nc
y

(m
s)

root .com/.net .org

Fig. 2. DNS query latency of root, .com/.net, .org, breaking down by continent

EU and NA, the quartile values are usually much bigger. This indicates the
quality of service of top level DNS servers varies greatly among countries or
autonomous systems (ASes). We leave the detailed analysis of country-level or
AS-level differences as our future work.

3.2 Query Latency of Thirteen Root Servers

Using King technique, we measured the query latency from each open resolver to
each of the thirteen root servers. Same as above, we launched the measurement
over 300 times in two days continuously and for each root server we extracted
the median value as each resolver’s final query latency.

We categorize the resolvers by continents and show all their query latency
to the thirteen root servers in Figure 3. Since the number of resolvers in each
continent is different, we normalize the results in Figure 3 before analyzing them.

150 J. Liang et al.

’all.changed’ matrix

AF AS EU NA OC SA

A
B
C
D
E
F
G
H
I
J
K
L
M

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

La
te

nc
y(

se
c)

Fig. 3. Query latency of 13 root servers in different continents

In Figure 3, the most remarkable root servers are F, J, L. They perform well
in all of the continents. Their median query latency for each continent are all
below 200ms. On the contrary, B root performs the worst among all the roots.
Most of its query latency are over 300ms in all continents except North America.
The results are consistent with public information of root server deployment. F,
J, L root anycast nodes have been deployed widely all over the world while B
root only has one nodes in America.

Figure 3 also shows the uneven performance of root servers in different conti-
nents. Europe and North America are the best and their query latency to most
root servers are quite small. By contrast, latency of most roots in Africa, Oceania
and South America are much larger. Especially in Africa, query latency of some
roots, like B and G, are even over 600ms. This result reflects the current state
of root anycast deployment that Europe and North America deploy much more
root instances than other continents do.

Compared with the result in Section 3.1, we observe that although not all
the roots perform well in each continents, the overall latency of root level are
relatively small. This results from the resolvers’ server selection mechanisms
which usually choose a best server to request.

3.3 Proximity of Root Anycast

Anycast instances of a logical root server share a same anycast address, but
have different unicast addresses for management. Comparing query latency of
anycast address with the minimum latency for all the unicast addresses could
infer whether a resolver is indeed routed to the nearest anycast node. In previous
research, this property was referred to as anycast proximity [2].

We used King technique to measure the anycast proximity of F and L roots,
whose unicast addresses were publicly available. Our measurement repeated
about 200 times in two days and used medians as the final latency for each

Measuring Query Latency of Top Level DNS Servers 151

 0

 0.2

 0.4

 0.6

 0.8

 1

-50 0 50 100 150 200

P
er

ce
nt

ag
e

Difference of Latency (msec)

L-ROOT
F-ROOT

(a) Overall proximity

 0

 0.2

 0.4

 0.6

 0.8

 1

-50 0 50 100 150 200

P
er

ce
nt

ag
e

Difference of Latency (msec)

AS
OC
NA
AF
EU
SA

(b) L root proximity

Fig. 4. The proximity of root anycast

resolver. Finally, we computed the proximity of a root Tproximity by Tanycast −
min(Tunicast), where Tanycast was the latency of a root’s anycast address and
min(Tunicast) was the minimum latency of all that root’s unicast addresses.

Figure 4(a) shows the overall proximity of F and L roots. We find that a
fair fraction of resolvers are not routed to the anycast nodes closest to them. For
example, about 40% of the resolvers are routed to servers more than 50ms farther
away from the nearest anycast nodes for both F and L roots. This is most likely
caused by routing policies like BGP and the hierarchical deployment 4. What’s
more, we observe that about 2% and 1% of resolvers whose Tproximity are below
-30ms for F root and L root, which means that the queries are routed to servers
that are nearer than the closest nodes. Several possible reasons could lead to
such strange phenomenon: errors in measurement results, paths for anycast are

4 F-root are deployed hierarchically, only 2 of 49 nodes advertise the anycast prefix
globally.

152 J. Liang et al.

faster than that for unicast to a server or missing some unicast nodes in our
experiment list (e.g. lack of timely update or masquerading roots [4]). We leave
this investigation as our future work.

We also classified the resolvers by continents to analyze the anycast proximity
in different regions. Figure 4(b) shows the proximity of L roots in six continents.
We see that the quality of anycast proximity in Oceania and Europe outperforms
those in other continents for L root, only 13% and 15% of the resolvers are
directed to the nodes 50ms farther than the closest servers. On the other hand,
resolvers in Asia suffer the worst quality of proximity, Tproximity for 65% of its
resolvers are over 50ms.

4 The Cause of Large Query Latency

In Section 3.1, we observe that a group of open resolvers (totally 664, 3.2% of all)
constantly show very large query latency (larger than 2 seconds) when visiting
root and TLDs. For root, the latency are mainly around 6, 18 seconds, while for
TLDs, the latency are 4, 6 seconds and 6, 12 seconds for .com/.net and .org

respectively.
After exploring these problematic resolvers, we find out two causes that are

responsible for the large latency: buggy implementation of certain resolvers on
IPv4/IPv6 dual-stack hosts and misconfigured middle-boxes on certain paths
which filter large or fragmented DNSSEC responses.

4.1 Buggy Implementation on IPv4/IPv6 Dual-Stack

We first focus on resolvers that consume 18 seconds constantly when traversing
root level. We use fpdns tool to gather information of these resolvers and find
that nearly all of them are running on BIND 9.2. To observe these resolvers’
resolution process, we set up a testing domain with three name servers and
drive the problematic resolvers to visit our name servers through querying them
for subdomains under the testing domain.

We find that everytime we put a new IPv6 address into the glue record, two
seconds extra delay will be added. We infer that the large latency are related to
the IPv6 address of name servers. 9 of the 13 root servers are configured with
IPv6 addresses, so these resolvers need about 18 seconds to traverse the root
level. Similarly, 2 .com/.net and 6 .org TLD servers use IPv6 addresses, which
lead to 4 and 12 seconds latency respectively. Further investigation on source
code confirms that BIND 9.2.x running on IPv4/IPv6 dual-stack host always
prefers IPv6 authorities even if they are unreachable. New versions of BIND (>=
9.3) have fixed this problem.

4.2 Filtering of DNSSEC Response

Excluding large latency explained above, the rest ones are mostly around 6 sec-
onds. Using fpdns tool again, we find that most of the rest problematic resolvers

.com/.net
.org

Measuring Query Latency of Top Level DNS Servers 153

are BIND 9.3.x. We also drive them to query our name servers to observe their
behaviors.

We notice that when we configure our testing domain with DNSSEC, the 6
seconds’ resolution will occur. Observing from our name server, we find that
resolvers firstly send 3 queries with EDNS0 every 2 seconds sequentially and then
send a query without EDNS0 at last. Since DNSSEC is enabled, responses for
the first three EDNS0 queries contain DNSSEC records which are larger than 512
bytes. We infer that large DNSSEC responses are dropped on the paths to these
problematic resolvers, which eventually causes 6 seconds resolution latency.

5 Related Work

Quite a few measurements were carried out to study the DNS infrastructure.
Brownlee et al. [3] and Lee et al. [6] investigated the performance indicators of
root and some TLD nameservers, such as DNS response time and request loss
rate. Liston et al. [8] and Lee et al. [7] analyzed the performance impact of top
level nameserver placement. Our work measured the query latency to top level
DNS servers from a large number of vantage points and tried to correlate the
query latency with the current nameserver deployment. Yu et al. [11] measured
the placement of top level DNS servers. While they focused on identifying the
locations of nameservers and assessing their robustness, our work aimed at re-
vealing the impact of nameserver deployment on performance. Sarat et al. [9]
and Ballani et al. [2] measured the availability and the proximity of DNS root
anycast, and also provided suggestions for deployment strategies. Our work fo-
cused on the proximity of F and L roots anycast and investigated the differences
among various regions.

6 Conclusion

DNS is a public resource shared by Internet users all over the world. However, his-
torically, top level DNS servers are unevenly deployed, which leads to unfair qual-
ity of DNS service in different regions. Recently top level DNS servers, especially
root servers have been deployed massively with wide adoption of anycast. Our
measurement shows that this progress improves the overall DNS performance.
However the quality is still uneven among different regions. Nevertheless, the
adoption of anycast enables rapid deployment of replication in underprovisioned
areas. ISPs should be more proactive to deploy local root anycast instances to
improve their DNS query performance.

Our measurement also observed anomalous large latency. While the cause of
buggy implementation might not be an issue, the other cause of filtering large
DNSSEC response is more important. With DNSSEC being a crucial protocol
of Internet in future, large DNS response and IP fragment should be considered
as regular rather than harmful traffic. The community should take more efforts
to measure unexpected DNS packet filtering and discuss possible implications.

154 J. Liang et al.

Acknowledgements. We are grateful to the anonymous reviewers and our
shepherd Simon Leinen for their valuable comments. This work is supported
by the National Basic Research Program of China (973 Project, Grant No.
2009CB320505) and National Natural Science Foundation of China (Grant No.
61161140454). Kang Li’s research on this work is partially supported by US Na-
tional Science Foundation (NSF) Office of Cyberinfrastructure grant 1127195.

References

1. The (very) uneven distribution of DNS root servers on the internet,
http://royal.pingdom.com/2012/05/07/

the-very-uneven-distribution-of-dns-root-servers-on-the-internet/

2. Ballani, H., Francis, P., Ratnasamy, S.: A measurement based deployment proposal
for ip anycast. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, IMC 2006, pp. 231–244. ACM, New York (2006)

3. Brownlee, N., Claffy, K., Nemeth, E.: DNS root/gtld performance measurements.
In: USENIX LISA, San Diego, CA (2001)

4. Fan, X., Heidemann, J., Govindan, R.: Identifying and characterizing anycast in
the domain name system. Tech. rep. (2011)

5. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet Measurement, IMW 2002, pp. 5–18. ACM, New York (2002)

6. Lee, B.S., Tan, Y.S., Sekiya, Y., Narishige, A., Date, S.: Availability and effective-
ness of root DNS servers: A long term study. In: 2010 IEEE Network Operations
and Management Symposium (NOMS), pp. 862–865 (April 2010)

7. Lee, T., Huffaker, B., Fomenkov, M., et al.: On the problem of optimization of
DNS root servers’ placement (2003)

8. Liston, R., Srinivasan, S., Zegura, E.: Diversity in DNS performance measures.
In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment,
IMW 2002, pp. 19–31. ACM, New York (2002)

9. Sarat, S., Pappas, V., Terzis, A.: On the use of anycast in DNS. In: Proceed-
ings.15th International Conference on Computer Communications and Networks,
ICCCN 2006, pp. 71–78 (October 2006)

10. Wessels, D., Fomenkov, M., Brownlee, N., Claffy, K.: Measurements and Labo-
ratory Simulations of the Upper DNS Hierarchy. In: Barakat, C., Pratt, I. (eds.)
PAM 2004. LNCS, vol. 3015, pp. 147–157. Springer, Heidelberg (2004)

11. Yu, Y., Cai, J., Osterweil, E., Zhang, L.: Measuring the placement of DNS servers
in top-level-domain

http://royal.pingdom.com/2012/05/07/the-very-uneven-distribution-of-dns-root-servers-on-the-internet/
http://royal.pingdom.com/2012/05/07/the-very-uneven-distribution-of-dns-root-servers-on-the-internet/

IPv6 Alias Resolution via Induced

Fragmentation�

Robert Beverly1, William Brinkmeyer1,
Matthew Luckie2, and Justin P. Rohrer1

1 Naval Postgraduate School, Monterey, CA
2 CAIDA, University of California, San Diego, CA

{rbeverly,wdbrinkm,jprohrer}@nps.edu, mjl@caida.org

Abstract. Discovering router-level IPv6 topologies is important to un-
derstanding IPv6 growth, structure, and evolution and relation to IPv4.
This work presents a fingerprint-based IPv6 alias resolution technique
that induces fragmented responses from IPv6 router interfaces. We lever-
age the way in which IPv6 implements fragmentation to provide reliable
inferences. We demonstrate perfect alias resolution accuracy in a con-
trolled environment, and on a small subset of the production IPv6 In-
ternet for which we have ground-truth. Internet-wide testing finds that
over 70% of IPv6 interfaces probed respond to the test. Our promising
results suggest a valuable technique to aid IPv6 topology discovery.

1 Introduction

IPv6, standardized nearly 15 years ago [6] as the successor to Internet Protocol
version 4 (IPv4), is experiencing commercial deployment – primarily due to eco-
nomic and business constraints, rather than any technical impetus [4]. Modern
systems and hardware support IPv6, service and content providers are deploying
IPv6 [17], and government networks are mandating IPv6 [13].

The number of global IPv6 BGP routing prefixes is growing exponentially
[11]. More than 6,000 autonomous systems, approximately 15%, now announce
IPv6 reachability [16]. Amid IPv6 measurement efforts underway [7] [22], under-
standing the evolution of the IPv6 router-level topology is an ongoing challenge.

This paper investigates IPv6 alias resolution – the process of determining if
two IP addresses are assigned to different interfaces of the same physical router
[12]. Alias resolution reduces an interface-level graph, e.g. discovered via active
probing, into a router-level graph [3], thereby permitting a better understanding
of the resilience and robustness properties of the network [21].

Taking inspiration from prior IPv4 alias resolution work, we present a fin-
gerprint based IPv6 alias resolution technique that relies on eliciting fragmented
responses from IPv6 router interfaces. Although IPv6 has no in-network fragmen-
tation, sources can send large IPv6 packets in fragments. We find that, as with
IPv4 routers, the IPv6 fragment identifier counter is frequently common across a

� The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 155–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

156 R. Beverly et al.

router’s interfaces. While all IPv4 control-plane packets sourced by a router re-
quire a unique fragment identifier, IPv6 fragment identifiers increase only when
the router must source a fragmented packet. Thus, in contrast to fragmentation-
based IPv4 alias resolution that is prone to false positives due to background
control-plane traffic incrementing a small 16-bit counter, our IPv6 technique is
highly accurate because control-plane messages are rarely fragmented.

This paper seeks to detail and validate a new IPv6 alias resolution algorithm;
we leave Internet-wide alias resolution, scaling, and comparison against other
techniques to future work. We make four primary contributions:

1. Development of a fingerprint-based IPv6 alias resolution technique1.
2. Validation on a large virtualized testbed of common commercial routers.
3. Internet-wide probing of more than 49,000 distinct live IPv6 router interfaces

where we discover approximately 70% respond to our test.
4. Validation of the technique on a small subset of the production IPv6 network

for which we have alias ground-truth, where we obtain perfect accuracy.

2 Related Work

Significant prior research investigates IPv4 alias resolution; see [12] and [9] for
an overview of major techniques. Design differences between IPv4 and IPv6
obsolete some techniques used in IPv4, while enabling new ones. For instance,
the elimination of in-network fragmentation and the simplification of the IPv6
header prevents the trivial reapplication of IPv4 techniques that utilize the IPID
field [19]. Alias resolution through IPv6 source-routing has been explored in
Atlas [20], RPM [15], and the “option header method” [14]. Given a potential
alias pair (x, y), Atlas performs a UDP traceroute to y via x with the hop limit
set to expire at x and relies on the fact that routers will generally process the
routing extension header before checking the hop limit. If x and y are aliases,
“hop limit exceeded” and “port unreachable” ICMP6 messages are generated.

RPM finds that the source address of “hop limit exceeded” ICMP6 messages
for packets that are not destined to the router at which the expiration occurs
is frequently the ingress address. To discover aliases for address y, probes are
sent from p via x and y destined to p, with the hop limit set to expire at
y. Performing this probe for a large enough set of addresses x will result in
ICMP6 “hop limit exceeded” messages originating from aliases of y. The option
header method makes use of the fact that setting an invalid bit sequence in
the IPv6 options header will generate an ICMP6 “parameter problem” message,
originating from the ingress interface of the packet generating the response. By
probing via multiple intermediate routers (similar to RPM), multiple aliases of
the target address may be discovered. Our alias resolution method is distinct
from those listed here in that it does not depend on IPv6 source routing and
therefore is not defeated on hosts where source routing is disabled due to security
concerns, as has become the norm in IPv4.

1 A freely licensed prototype Python implementation is available from: [2].

IPv6 Alias Resolution via Induced Fragmentation 157

Lastly, the THC IPv6 [10] toolkit employs false ICMP6 packet too big mes-
sages (discussed next) as part of its attack suite. However, the tool’s goal is to
maliciously reduce the MTU of a target rather than to resolve IPv6 aliases.

3 Methodology

Our technique is fingerprint-based: we require some identifier or signature that
is both common to all interfaces on an IPv6 router, and is unique across routers
such that we do not make false inferences. Further, it must be possible for a
remote probing host to obtain the identifier without any privileged access.

We take inspiration from prior work in IPv4 alias resolution that relies on
fragment identifiers [19]. The IPv4 header contains a 16-bit identifier that is
used by an end-host receiving fragmented packets such that it can reconstruct
the original packet. Prior research [19] has shown that packets originated by
IPv4 routers often use a common counter, irrespective of physical interface, for
the identifier field. Since this counter increases sequentially, it is possible to infer
whether two interfaces are aliases by querying the router, e.g. via ping.

Two factors complicate IPv4 identifier-based alias resolution. First, the natu-
ral rate of counter increase as the router sends other control plane traffic implies
that observed counters from two true aliases may have large gaps. Second, the
16-bit identifier space is small relative to the number of possible Internet router
interface aliases, yielding false positives.

This section describes our IPv6 alias resolution technique and how we induce
a remote router to send fragmented packets. We then describe our controlled
environment for ground-truth testing where we show that our technique does
not suffer from the false positive problems inherent in similar IPv4 approaches.

3.1 Eliciting Fragmented Responses

IPv6 does not permit in-network fragmentation, and the IPv6 header does not
include any identifier field akin to IPv4. However, IPv6 supports end-host frag-
mentation. If a router’s forwarding table entry for a packet is via an interface
with a Maximum Transmission Unit (MTU) smaller than the size of the packet,
the router drops the packet and sends an ICMP6 “packet too big” message to the
source of the packet [5]. It is then the responsibility of the end-host to maintain
state, typically in the destination cache, of the path MTU (PMTU) feasible for
a particular destination. The host then sends packets smaller than the PMTU,
or can fragment large packets by using the IPv6 fragment header [6].

Our approach, which we term the “Too-Big Trick” (TBT) induces a remote
router to originate fragmented packets. Figure 1 is a timing diagram of TBT
between a prober and an IPv6 interface. The prober first sends a 1300 byte
ICMP6 echo request to a candidate IPv6 interface. The request is 1300 bytes –
larger than the IPv6 minimum MTU of 1280 bytes, but small enough to pass
most tunnels. The prober receives an 1300 byte ICMP6 echo response and then
sends an ICMP6 packet too big message with its own source IPv6 address to the
interface under test, and includes an MTU of 1280 along with the first 1184 bytes

158 R. Beverly et al.

ICMP6 Echo Resp 1300B

ICMP6 Echo Req 1300B, Seq=1

ICMP6 Echo Req 1300B, Seq=0

ICMP6 Too Big

Frag ID=x, Offset=0

Frag ID=x, Offset=1232

ICMP6 Echo Req 1300B, Seq=2

Frag ID=x+1, Offset=0

Frag ID=x+1, Offset=1232

IPv6 Interface
Pr

ob
er

Fig. 1. TBT, the “Too-Big Trick:” A prober spoofs an ICMP6 too big message such
that subsequent large ping responses are fragmented

of the original ICMP6 echo request ([5] states that the packet-too-big message
include “as much of the invoking packet as possible without the ICMP6 packet
exceeding the minimum IPv6 MTU.”). This “false” too big message mimics a
PMTU constraint coming from a router along the reverse path from the interface
to our prober. While we use the prober’s source IPv6 address for the too big
message rather than an intermediate router, the receiving router is indifferent.

We then send a series of 1300 byte ICMP6 echo requests. These arrive at
the interface without fragmentation, but the end IPv6 stack now has a cached
PMTU of 1280 for packets destined to the prober. Each ping causes the router to
send two fragments, each with the same fragment identifier, but different offsets.
As we will show next (§3.2), popular commercial routers use a common counter
for the fragment identifier, regardless of the physical interface. Further, in §4 we
show that this counter frequently is monotonic and sequential.

A natural question is whether the ICMP6 too big packet is required. The
prober could instead send a larger than typical MTU echo request packet, e.g.
2000 bytes. Once received and reassembled, the remote router should respond
in-kind with a 2000 byte reply that would be fragmented. Thus, the echo packets
would be fragmented in both the forward and reverse direction. However, as we
find in our real-world testing in §4, such fragmented requests are frequently either
blocked or not processed by the receiving router. Using TBT results in ≈ 6%
more interfaces successfully identified than when sending large request packets,
most likely due to destination hosts only being required to accept fragments with
a reassembled size of 1500 bytes [6].

3.2 Ground-Truth Testing

To develop, test, and validate TBT, we employ the Graphical Network Simulator
(GNS3) [8] to build virtual test topologies of routers and virtual hosts.

TBT emulates a normal operational mode whereby the forward path from the
prober to an interface can carry full 1500 byte packets, while the reverse path is
asymmetric and has a smaller, 1280 byte MTU. To understand the behavior of
commercial routers in such situations, we implement the topology of Figure 2 in

IPv6 Alias Resolution via Induced Fragmentation 159

GNS3. In this test, static IPv6 routes pin traffic from Host 1 to Host 2 to take
the upper path from R1 → R2 → R4. Reverse traffic from Host 2 to Host 1 is
statically configured to take R4 → R3 → R1. We set the MTU of all links to
1500 bytes, except for the R1C ↔ R3A link which is set to 1280 bytes.

A
Host 1

R2

R3

Host 2R4R1

A B

A B

A

B

C

B

C

Fig. 2. GNS3 Test topology with asymmetric MTU paths inducing ICMP6 too big

A 1300 byte ICMP6 ping request from Host 1 to Host 2 induces a 1300 byte
ping response (blue arrows). However, R3 sends an ICMP6 too big message to
Host 2 (red arrows). Host 1 receives no reply to this first ping since the packet
is dropped at R3. Host 2 records a new PMTU for traffic destined to Host 1 and
maintains soft-state resulting in Host 2 fragmenting future responses to Host 1.

Next, we send 1300 byte ICMP6 ping requests from Host 1 to the router inter-
face R4A. R4 receives the ICMP6 packet too big message from R3 upon sending
the ping response to Host 1, and R4 updates its destination cache PMTU value.
We observe that subsequent pings to R4A results in fragments with sequential
identifiers, with the first identifier after router boot being 1.

We then send ICMP6 ping requests to R4B and R4C. Critically, we observe
that identifiers come from a common counter, i.e. the fragment identifier is one
more than the last identifier received from the other interface. Specifically, for
a large ICMP6 echo request to R4A that returns fragments with identifier x, a
subsequent probe to R4B returns x+1, and a third probe to R4C returns x+2.
Probing R4A again returns x + 3. Thus, with the Cisco images we test, these
routers use a fragment identifier counter that is common across interfaces.

Based on these findings, we reset all links to the standard Ethernet 1500 byte
MTU. Here we seek to determine whether we can masquerade as an in-path
router instructing the probed router to update its PMTU for traffic sent to Host
1. We first verify that large 1300 byte echo requests traverse the network to
and from the target without fragmentation. We then repeat testing, but send
an ICMP6 too big message with Host 1’s source IPv6 address to the target.
We verify that the ICMP6 too big message arrives at Host 2 and that Host 2
fragments subsequent echo replies, confirming that our technique is indeed able
to induce remote interfaces to send fragmented traffic.

Lastly, we find that while the routers use a common fragment counter, the
destination cache appears to be per-interface. After sending an ICMP6 too big
message from host 1 to e.g. R4A, a large probe to R4C does not return frag-
mented responses to host 1. In our testing, the ICMP6 too big message must be
sent to each interface to reliably induce fragmentation.

160 R. Beverly et al.

Algorithm 1. v6aliases(A,B): Determine whether A and B are IPv6 aliases

send(A, TooBig)
2: send(B, TooBig)

for i in range(5) do
4: ID[0] ← echo(A)

ID[1] ← echo(B)
6: if (ID[0]+1) �= ID[1] then

return False
8: ID[2] ← echo(A)

if (ID[1]+1) �= ID[2] then
10: return False

return True

3.3 IPv6 Alias Resolution Algorithm

Given the success in the controlled test environment, we develop an IPv6 alias
resolution algorithm. There are several points of note. First, as we will detail in
§4, more than 28% of live Internet interfaces we probed had sequential identifiers
that start at either zero or one. In other words, prior to our probing these routers
had sourced no fragmented IPv6 traffic. Therefore the alias algorithm must be
careful to avoid false positives. Second, because the counter only increases when
sending fragmented IPv6 traffic, which is a rare event, we can reasonably expect,
in the absence of our probing, the counter to remain static.

Algorithm 1 provides the alias resolution pseudocode [2]. To determine whether
two IPv6 addresses (A and B) are aliases, an initial echo request probe is sent
to each destination, then the fake ICMP6 too big messages are sent. Next, a
probe is sent to A. Once the fragment ID from A is received, B is probed (each
step proceeds synchronously; no race condition exists). The fragment identifiers
from A and B are compared. If at anytime the fragment IDs are not sequential,
the test returns false to avoid generating needless traffic. Note that when per-
forming O(n2) alias comparisons between all pairs of discovered interfaces, the
common case will be a true negative where our algorithm quickly exits. Only
if the fragment IDs are sequential are further probes sent to ensure no false
positives. Based on the above observations, we ensure that, in each round of
execution through the for loop, address A is probed a different number of times
than B to avoid potential counter synchronization issues in the case that the
addresses are not true aliases.

4 Results

To understand the real-world efficacy of our technique, we perform Internet-wide
probing. For candidate IPv6 router interfaces, we utilize two traceroute datasets.
The first dataset includes 23,892 distinct IPv6 interfaces discovered via tracer-
outes from 33 vantage points belonging to a commercial Content Distribution
Network (CDN) to approximately 12,300 destinations. Interestingly, we find nine

IPv6 Alias Resolution via Induced Fragmentation 161

Table 1. TBT Response Characteristics

CDN CAIDA

ICMP6 responsive 18486/23892 77.4% 18959/25174 75.3%

Post-TBT unresponsive 235/18486 1.3% 66/18959 0.4%

Post-TBT nofrags 5519/18486 29.9% 5800/18959 30.6%

TBT responsive 12732/18486 68.9% 13093/18959 69.1%

TBT sequential 8288/12732 65.1% 9183/13093 70.1%

TBT sequential (1) 3455/12732 27.1% 3496/13093 26.7%

TBT random 4320/12732 33.9% 3789/13093 28.9%

link-local (fe80::/10) addresses included in this dataset, suggesting that these
non-public IPv6 addresses are being used for a small number of public links. The
second data set is from CAIDA [1] with 38,300 distinct IPv6 interfaces, 25,174
of which are not present in the CDN trace. For those traces that complete, we
ignore the last hop IPv6 address of the target so as to only use router interfaces.
Thus, we probe a total of ≈ 49k distinct live Internet IPv6 router interfaces,
belonging to networks advertised by 2,617 different autonomous systems. The
largest number of interfaces belonging to a single AS is 2,014 (from ASN 3356,
Level 3), and the median number of interfaces per AS is 3. The CDN trace was
collected on May 3 and 23, 2012, while the CAIDA traces were collected in Au-
gust, 2012. We actively probed interfaces derived from the CDN trace on August
28, 2012, while the CAIDA interfaces were probed on August 29, 2012.

4.1 Efficacy of TBT

Our goal is two-fold, determine: i) how many live IPv6 interfaces respond to
TBT; and ii) in what way these interfaces respond. We perform all testing from
a single IPv6 vantage point. For each interface, we first send a 1300 byte ICMP6
echo request in order to determine if the interface is live and responding to pings.
We then use TBT to send the ICMP6 message too big that will update the
interface’s PMTU to our vantage point. Finally, we send ten 1300 byte ICMP6
echo requests. Contemporaneous to our probing, we capture all IPv6 packets to
disk for analysis; our packet monitor did not experience any packet loss.

Table 1 summarizes the responsiveness of our sample of Internet interfaces
to TBT. We observe 18,486 of 23,892 (77.4%) and 18,959 of 25,174 (75.3%)
interfaces respectively responding to “normal” ICMP6 pings. The unresponsive
interfaces may be due to router behavior, or ICMP6 filtering. As these interfaces
cannot be expected to respond to TBT, we exclude them from our analysis. Of
the interfaces responding to our initial echo request, we find ≈ 70% returning
fragmented echo replies after we send a packet too big to the interface. Thus,
our technique works for a significant fraction of Internet IPv6 routers we probe.

Three primary conditions result from sending the TBT: subsequent ping re-
sponses are sent fragmented, subsequent ping responses are sent unfragmented,
or the router stops responding to ping requests. We observe approximately 29%
of the interfaces we probe continuing to send unfragmented responses after we
send TBT. Between 1.3 and 0.4 percent of interfaces respond to the initial echo

162 R. Beverly et al.

1 11 2 0 3 10 12 21 13 4 5 22 20 14 31 9

Initial Fragment ID

0

5

10

15

20

25

30

F
ra

c
ti

o
n
 o

f
R

e
s
p
o
n
d
in

g
 I
n
te

rf
a
c
e
s

(a) CDN

1 11 2 21 0 12 3 31 10 13 41 20 4 22 23 14 51 30

Initial Fragment ID

0

5

10

15

20

25

30

F
ra

c
ti

o
n
 o

f
R

e
s
p
o
n
d
in

g
 I
n
te

rf
a
c
e
s

(b) CAIDA

Fig. 3. Histogram of IPv6 Fragment Identifiers Occurring ≥ 0.3%

request, but then respond to no subsequent echo requests after the packet too
big for a few minutes. We conjecture that these behaviors are due to paths that
filter fragments or ICMP6 too-big messages, routers incorrectly implementing
IPv6, or security measures. In future work we plan to more precisely understand
the root causes of such non-responsive behavior.

Next, we characterize the sequence of returned fragment identifiers. Recall
that we send ten ICMP6 echo requests after the TBT, therefore we expect to
receive ten responses where each response consists of two fragmented packets,
i.e. 20 total packets with identifiers. As shown in Table 1, ≥65% of interfaces
that respond to TBT return sequential identifiers, e.g. 120, 121, ..., 130.
However, as many as 34% return random identifiers, a behavior consistent with
BSD systems and BSD-based routers [18]. While TBT works for these interfaces,
it does not admit a fingerprint for alias resolution.

An interesting characteristic of those interfaces with sequential identifiers is
that a significant fraction (27.1% and 26.7% respectively) had an initial identifier
of one. This suggests that, in the uptime of the router, it had sent no fragmented
IPv6 packets prior to our probing. As discussed in §3, we take into account non-
alias interfaces that begin with correlated counters; our algorithm advances them
at different rates to prevent false positives.

To understand the initial values of fragment counters in the wild, Figures 3(a)
and 3(b) are histograms of initial fragment identifiers that occur with at least a
0.3% frequency. We see that one is the most common initial identifier for every
sequence echoed and that all common identifiers are less than 50.

While this paper presents and validates a new technique for IPv6 alias reso-
lution, we leave large-scale alias resolution on the IPv6 Internet for future work.
However, we observe that the second most common initial identifier within a re-
turned identifier sequence is 11, while there are modes at 21, 31, and 41. These
modes are due to our probing naturally encountering aliases. Since we probe
each interface 10 times, if we happen to later probe an alias, the counter will
have advanced to 10 and we expect to receive 11.

Finally, a natural question is whether we can induce routers to send frag-
mented responses without TBT. Instead, we experiment with sending large

IPv6 Alias Resolution via Induced Fragmentation 163

ICMP6 echo requests that are themselves fragmented, such that the receiving
IPv6 router interface must reassemble the fragments to respond, and then send
a fragmented response. We again probe our two datasets of IPv6 interfaces and
find that this method results in 64.2% and 65.1% of interfaces successfully re-
sponding. However, using TBT results in over 5% more responses, which can
equate to significantly more absolute interfaces. More importantly, sending large,
fragmented probes results in much more traffic whereas our technique is more
efficient. For these reasons, we focus on TBT for alias resolution.

4.2 Accuracy of TBT Alias Resolution

Imperative to understanding the performance of our TBT alias resolution tech-
nique is having known ground-truth. In this subsection we test the inference
accuracy of our tool on both a virtual network topology in GNS3 [8], as well as
on a small subset of the live IPv6 Internet for which we have ground-truth.

First, we construct a virtual network topology in GNS3 [8] consisting of 26
Cisco routers, each containing up to four interfaces. Using our TBT tool, and
Algorithm 1 as implemented in our publicly available ScaPy tool [2], we run
a complete test comparing each interface to every other interface in the topol-
ogy, i.e. the O(n2) all pairs testing that would be performed in the wild, and
verify the results against known truth. The test results provide a count of iden-
tified aliases and identified non-aliases. This controlled test results in 92/92 alias
matches and 1584/1584 non-alias matches for a total accuracy of 100 percent
with perfect precision and recall. The results, although constrained by the vir-
tual topology and simulation available in GNS3, help validate the ability of our
tool in identifying IPv6 aliases and non-aliases.

Finally, we obtain a list of IPv6 interfaces from eight physical production
routers of a commercial IPv6 service provider. This small ground-truth dataset
includes 72 interfaces with each router having between 2 and 21 interfaces. Using
TBT we correctly identify 808/808 true alias pairs with no false positives. Given
this encouraging result, we plan more extensive probing in the future.

5 Conclusion

This research develops and tests a new method for IPv6 alias resolution. Our
technique, the “Too-Big Trick” (TBT), elicits a fragment identifier fingerprint
from a significant fraction of production IPv6 router interfaces. We demonstrate
that our alias resolution algorithm, a prototype of which is publicly available, is
highly accurate among networks for which we have ground truth.

To understand instances where TBT fails, we plan to use multiple vantage
points to help distinguish between path and host filtering of fragments. We
plan to test additional routers, both in hardware and within GNS3 to better
understand the variety of behaviors we observe in Table 1.

We leave to future work the task of leveraging TBT to perform Internet-
wide IPv6 alias resolution. An important step is making the algorithm robust

164 R. Beverly et al.

to packet loss, or another TBT-like process causing the fragment counter to
increase. Toward this goal, we are investigating sequential hypothesis detection
to provide a bounded confidence in the alias pair. Further, at scale, we must
modify the algorithm to be more intelligent than pair-wise resolution.

As IPv6 grows and gains importance, understanding its router-level topology
and relationship to the IPv4 topology is increasingly important. In particular,
our current research examines how TBT compares with and compliments existing
resolution schemes, while generating router-level IPv6 topologies. Comparing
these topologies to those previously inferred will yield valuable insights into the
structure of the IPv6 network, and how it differs from the IPv4 topology.

Acknowledgments. We thank Arthur Berger and Geoff Xie for invaluable early
feedback, and Ítalo Cunha for shepherding. Special thanks to Aaron Hughes and
6connect for operational support and insight. This work supported by collabo-
rative NSF grant CNS-1111445 and CNS-1111449. Views and conclusions are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. government.

References

1. The CAIDA UCSD IPv6 Topology Dataset (2012),
http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml

2. Brinkmeyer, W.: Too-Big Trick prototype (2012), http://www.cmand.org/tbt/
3. Claffy, K., Hyun, Y., Keys, K., Fomenkov, M., Krioukov, D.: Internet mapping:

From art to science. In: Conference For Homeland Security (March 2009)
4. Claffy, K.: Tracking IPv6 evolution: data we have and data we need. SIGCOMM

Comput. Commun. Rev. 41(3), 43–48 (2011)
5. Conta, A., Deering, S., Gupta, M.: Internet Control Message Protocol (ICMPv6)

for the Internet Protocol Version 6 Specification. RFC 4443 (March 2006)
6. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. RFC

2460 (Draft Standard) (December 1998)
7. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.:

Measuring the deployment of ipv6: topology, routing and performance. In: Pro-
ceedings of the 2012 ACM Internet Measurement Conference, pp. 537–550 (2012)

8. Grossman, J., Marsili, B., Goudjil, C., Eromenko, A.: GNS3 Graphical Network
Simulator (2012), http://www.gns3.net/

9. Gunes, M.H., Sarac, K.: Resolving ip aliases in building traceroute-based internet
maps. IEEE/ACM Trans. Netw. 17, 1738–1751 (2009)

10. Heuse, M.: THC-IPv6 tool suite (2012), http://www.thc.org/thc-ipv6/
11. Huston, G.: IPv6 BGP Statistics (2012), http://bgp.potaroo.net/v6/as2.0/
12. Keys, K.: Internet-scale IP alias resolution techniques. SIGCOMM Comput. Com-

mun. Rev. 40, 50–55 (2010)
13. Mohan, R.: Will U.S. Government Directives Spur IPv6 Adoption? (September

2010)
14. Qian, S., Wang, Y., Xu, K.: Utilizing Destination Options Header to Resolve IPv6

Alias Resolution. In: GLOBECOM, pp. 1–6 (December 2010)
15. Qian, S., Xu, M., Qiao, Z., Xu, K.: Route Positional Method for IPv6 Alias Reso-

lution. In: Computer Communications and Networks, ICCCN (August 2010)

http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml
http://www.cmand.org/tbt/
http://www.gns3.net/
http://www.thc.org/thc-ipv6/
http://bgp.potaroo.net/v6/as2.0/

IPv6 Alias Resolution via Induced Fragmentation 165

16. RIPE-NCC: IPv6 Enabled Networks (2012), http://v6asns.ripe.net/v/6
17. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 Traffic.

In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp. 11–20. Springer,
Heidelberg (2012)

18. Silbersack, M.J.: Improving TCP/IP security through randomization without sac-
rificing interoperability. In: Proceedings of BSDCan (2006)

19. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with rocketfuel.
SIGCOMM Comput. Commun. Rev. 32, 133–145 (2002)

20. Waddington, D.G., Chang, F., Viswanathan, R., Yao, B.: Topology discovery for
public IPv6 networks. SIGCOMM Comput. Commun. Rev. 33, 59–68 (2003)

21. Willinger, W., Alderson, D., Doyle, J.C.: Mathematics and the internet: A source
of enormous confusion and great potential. Notices of the AMS 56(5) (2009)

22. Zander, S., Andrew, L.L., Armitage, G., Huston, G., Michaelson, G.: Mitigating
sampling error when measuring internet client ipv6 capabilities. In: Proceedings of
the 2012 ACM Internet Measurement Conference, pp. 87–100 (2012)

http://v6asns.ripe.net/v/6

Unveiling the Patterns of Video Tweeting:

A Sina Weibo-Based Measurement Study

Zhida Guo1, Jian Huang1, Jian He1, Xiaojun Hei2, and Di Wu1

1 Dept. of Computer Science, Sun Yat-Sen University, China
2 Dept. of Electronics & Info. Engineering, Huazhong University of Sci. & Tech.,

China
{guozhida,huangj77,hejian9}@mail2.sysu.edu.cn, heixj@hust.edu.cn,

wudi27@mail.sysu.edu.cn

Abstract. Sina Weibo is the most popular Twitter-like microblog ser-
vice in China. Contents, such as texts, pictures, music, videos, are prop-
agated rapidly by tweeting and retweeting among users. In this paper,
we conduct a measurement study on the patterns of video tweeting over
the Sina Weibo system. We build a customized measurement platform
to collect a huge amount of data (e.g., video tweets, user/video infor-
mation, etc)1 from 1 million Weibo users on the Sina Weibo system.
Our measurements enable us to understand the sources and characteris-
tics of tweeted videos, geographical distribution of viewers, distribution
of viewing devices, popularity dynamics of tweeted videos, etc. We ob-
serve frequent flash crowds occur for popular tweeted videos due to social
tweeting. We also analyze how social links among Weibo users impact
video tweeting and it is found that the majority of viewers are within
3 hops from the original tweet publisher. Finally, we discuss potential
implications of our measurement results on the design of future social
video distribution infrastructures.

1 Introduction

Microblogging has emerged as a pillar application in the era of Web 2.0. Different
from traditional blogs, a microblog user is only allowed to post messages with no
more than 140 characters (referred to as “tweets”). A tweet can be propagated
to a large number of followers timely via the underlying microblog platform. On
Aug 14th, 2009, Sina Inc. launched its own Twitter-like microblog service called
“Weibo”. To date, Sina Weibo [1] has become the largest microblog service in
China, with 300 million registered users by 2012 [2].

SinaWeibo allows the sharing of contents other than texts, such as pictures, mu-
sic, videos, etc, by embedding a short encoded link (e.g., http://t.cn/zOfjzlL)
in a tweet. Such a short link can be decoded into the original URL that points to
the content using Weibo APIs. A tweet that contains a video link is often called a
“Video Tweet”. AWeibo user can post a video tweet either by directly uploading a

1 Our dataset is currently made available at
http://netlab.sysu.edu.cn/\simjhe/weibo-dataset-2012.rar.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 166–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://t.cn/zOfjzlL
http://netlab.sysu.edu.cn/$\sim $jhe/weibo-dataset-2012.rar

Unveiling the Patterns of Video Tweeting 167

video clip or pasting an external URL in the tweet. Once a video tweet is published,
the followers will see the tweet in a nearly real-time manner. They can watch the
video embedded in the tweet, comment and retweet that video as they wish.

Such microblog-triggered video sharing is inherently different from the shar-
ing model of traditional UGC (user-generated content) sites, such as YouTube,
Youku, Tudou, etc. Instead of watching videos suggested by search engines or
recommendation systems, Weibo users tend to watch videos pushed via video
tweets, which are suggested by their friends, social stars, etc. Thus, the spreading
of videos is much faster and happens in a granularity of minutes. For a social star
with millions of followers, one video tweet may bring forth a flash crowd in trig-
gering millions of video views in a very short period. Such kind of sudden surge
of video traffic will pose great challenge to the underlying video distribution
infrastructure. However, there has been little work to date on the measurement
of video tweeting. It is of great significance to study the characteristics of video
tweets/retweets and their implications on video distribution.

The main purpose of this paper is to investigate video tweeting by real mea-
surements and unveil its impacts on the underlying distribution infrastructure.
To the best of our knowledge, this is the first attempt to measure the patterns
of video tweeting over the largest microblog system in China. We focus our
measurements solely on video tweets as we are more interested in their impact
on video distribution. We build a customized measurement platform to obtain
tweet/video information from the Weibo system and other video-sharing sites.
By analyzing the obtained data set, we have the following observations:

– We observe that most of tweeted videos are from third-party video-sharing
sites instead of Sina Video itself. Due to the collaboration between Sina and
Tudou, Tudou is the largest source of tweeted videos over Sina Weibo, in
spite that Tudou’s market share is much smaller than that of Yukou. The
length of 80% tweeted videos is less than 10 minutes.

– Our results show that only 3% of viewers of tweeted videos are outside
of China, which implies that Weibo is not an internationalized service as
Twitter. We also find that over 30% of viewers are using mobile devices to
watch tweeted videos, with iPhone and Android phones being the top two
widely used devices. Due to the diversity of user devices, it is essential to
provide multiple video versions or adopt realtime transcoding.

– We find that the popularity dynamics 2 of top tweeted videos exhibit a clear
flash-crowd pattern, which is a direct consequence of social tweeting. For
87% of tweeted videos, the first viewing event occurs within ten minutes
after the tweet is posted. By examining active periods of tweet videos, we
observe that most of active periods are less than 10 hours.

– We measured the propagation distance of tweeted videos and find that the
average propagation distance of 98% tweeted videos is within 3 social hops.

2 The popularity of a video is defined as the number of users who have viewed that
video. In our paper, the popularity is estimated by summing up the number of
comments and the number of retweets.

168 Z. Guo et al.

It implies that prefetching videos according to social distance can be an
effective approach to improve user experience.

In the above, we only present some preliminary results from our measurement.
Further work is required to obtain more in-depth understanding. The remainder
of the paper is organized as follows. Section 2 describes the methodology of
our measurements. Section 3 shows the patterns of video tweeting. Section 4
introduces related work and explains the difference of our work. Finally, Section
5 summarizes this paper and discusses potential extensions.

2 Methodology

It is difficult if not impossible to obtain video tweets of all Weibo users due to
the huge scale of Weibo users. Instead, we focus our analysis on a sample set of
Weibo users and their posted video tweets to make the task tractable.

In the Weibo system, each registered user is randomly assigned a unique user
ID (UID) with a length less than 12 digits. Therefore, we can obtain an unbiased
sample of Weibo users by uniformly sampling in the UID space. To verify the
existence of a user account, we develop an automatic HTTP querying program
to query the Weibo system for a given UID. In case that the given UID has been
assigned to a valid user, the system will return the status page of that user;
otherwise, an error page will be returned. By repeatedly generating a random
UID and checking its validness, we obtain a random sample set that consists
of one million Weibo users. The whole sampling process takes nearly five days.
During the process, all the invalid UIDs are eliminated from the sample set.

Next, we proceed to retrieve all their posted video tweets and analyze the
patterns of video tweeting. Like Facebook, Sina Weibo also provides specific
APIs to facilitate the development of third-party Weibo-based applications. A
Weibo-based application can obtain tweets and user statistics information via
Weibo APIs. For one third-party application in the development stage, at most
15 accounts are allowed to register for the testing purpose, and each account can
only initiate 150 API queries per hour. To speedup the crawling of video tweets,
we define 40 Weibo-based applications on the Weibo platform and register 15
accounts for each application. Meanwhile, we modify our crawling program to
automatically switch the application and account when the quota of current
account is exhausted.

Using our Weibo crawler, we retrieve the total video tweets posted or
retweeted by one million users in the sample set during the period from Jun
1, 2012 to Jun 30, 2012. Among all the tweets, there are totally 254,135 video
tweets. By removing duplicated video tweets with same video links (by compar-
ing tweet IDs and URLs) and unavailable video tweets (e.g., deleted by users
themselves or Weibo administrators), we obtain 121,366 root video tweets. Here,
a root video tweet refers to a video tweet directly posted by a user himself, instead
of being retweeted from others’ tweets. Next, we filter out root video tweets that
have never been retweeted and finally obtain 87,699 active root video tweets,
which also corresponds to 87,699 unique video links. Starting from these video

Unveiling the Patterns of Video Tweeting 169

links, we collect video-related information (including video length, view count,
etc) from their corresponding video-sharing web sites, such as Youku, Tudou,
Sohu, etc. We again build a customized crawler to conduct the crawling tasks.
Finally, all the collected data are dumped into a mySQL database for data
processing. The whole measurement platform contains around ten machines to
enable parallel crawling and processing.

3 Patterns of Video Tweeting

Next, we will study the features of tweeted videos in the dataset.

3.1 Statistics of Tweeted Videos

By decoding the short video link embedded in the tweet, we are able to extract
the original URL linked to the video. Thus, it is possible to know the source
of tweeted videos. We develop a URL parser to automatically extract all the
original video URLs and categorize videos according to their origins.

tudou youku sina 56 yinyuetaisohu ku6 ifeng other
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
er

ce
nt

ag
e

Fig. 1. Video source distribution

1 10 100 300
0

0.2

0.4

0.6

0.8

1

Minutes

C
D

F

tudou
youku
sina
sohu
56

Fig. 2. Video length distribution

Fig. 13 shows where tweeted videos are originated. We observe that most of
video sources are UGC sites, such as Tudou, Youku, Sohu, Ku6, etc., among
which Tudou(32%),Youku(28%) and Sina Video(10%) are the top three sources
of tweeted videos on Sina weibo. The statistics are different from the published
information on the market shares of UGC sites [3], in which Youku and Tudou
account for 39.1% and 20.3% of China’s Internet video market respectively. We
believe this is mainly caused by the collaboration agreement between Tudou and
Sina [10], in which Sina provides Tudou with a privilege that allows Weibo users
to upload their videos to Tudou via the Weibo interface directly. We also observe
that, although YouTube is the largest UGC video site in the world, YouTube
videos are rarely observed in the video tweets of our dataset, as YouTube is
unaccessible in China if not using VPN or proxies.

3 Fig.1 and Fig.2 are based on the dataset with 87,699 active root video tweets.

170 Z. Guo et al.

By using our video-sharing site crawler, we further retrieve video length infor-
mation from multiple video-sharing sites, including Tudou, Youku, Sina video,
Sohu video and 56.com. Fig. 2 shows the length distribution of tweeted videos.
It is observed that most of tweeted videos are short videos. The length of videos
from different video-sharing sites follows similar distributions. For Tudou, Youku,
Sohu video and 56.com, the length of about 65% tweeted videos is less than 5
minutes and 80% is less than 10 minutes. For Sina video, nearly 30% of tweeted
videos is less than 1 minute, and 80% is less than 5 minutes. It confirms well
with the behaviors of typical Weibo users who are more likely to upload or share
short video clips.

We use the sum of retweets and comments to estimate the popularity of a
tweeted video. In our paper, we make a reasonable assumption that, a Weibo
user will normally only retweet or comment after viewing the video in a tweet.
However, it should be emphasized that the sum of retweets and comments can
only serve as a lower bound of the number of views, as many Weibo users will
not retweet or comment after viewing a video. We randomly select 6,500 videos
from the 87,699 root video tweets and plot the distribution of video popularity
in Fig. 3 4. Only 1.6% of tweeted videos have more than 10,000 views5 and 85%
of tweeted videos have less 1,000 views.

1 10 100 1000 6500
10

0

10
2

10
4

10
6

Video ID

N
um

nb
er

 o
f v

ie
w

s

Fig. 3. Popularity distribution of videos

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Region ID

P
er

ce
nt

ag
e

Guangdong

ShanghaiBeijing
Other

Countries
HK

Fig. 4. Geographical distribution of viewers

3.2 Patterns of Viewer Behaviors

In the above, we conduct measurements from the perspective of tweeted videos.
In the following, we will study the behaviors of viewers of tweeted videos.

We first describe how to obtain all the viewers for a tweeted video. For each
root video tweet, which is the first tweet sharing a certain video, there are
two associated lists: one is the Root-level Retweet List (RRL), and the other
is the Root-level Comment List (RCL). For each retweet in the RRL, it can also
have its own comment list, referred as Secondary-level Comment List (SCL).

4 Note that, all other figures (except Fig.1 and Fig.2) are based on the randomly
selected 6,500 video tweets.

5 In our paper, a view corresponds to a retweet/comment. We use the number of
retweets/comments to estimate the number of views.

Unveiling the Patterns of Video Tweeting 171

Each retweet will appear in the RRL and each comment will appear in either
RCL or SCL. All the Weibo users who appear in one of the above three lists
are most likely to have viewed the video; otherwise, they will not retweet or
comment on that video. Our Weibo crawler can travel through the RRL, RCL
and SCL of each video tweet, and aggregate all the viewers for that video. Later,
the parser will remove all the duplicated viewers to avoid the issue of double
counting.

For popular tweeted videos, the above process is time-consuming due to
the limitation of Weibo APIs. Without impacting the conclusion, we randomly
choose 6,500 tweeted videos from all the 87,699 videos and analyze their viewers’
behaviors. Starting from these 6,500 tweeted videos, we finally obtain 5,512,130
viewers by crawling their RRL, RCL and SCL lists. For each viewer (also a Weibo
user), we again query the Weibo system to retrieve the viewer’s information, such
as location, following/followed list, etc.

Fig. 4 depicts geographical distribution of 5.5 million viewers. Most of the
viewers are from China, with only 3% of viewers are from other countries. Guang-
dong (35%), Beijing (7.6%) and Shanghai (7.6%) are the top three regions with
the largest viewer population. Only 3% of viewers are outside of China.

Mobile Users PC Users
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

ag
e

Fig. 5. Distribution of user devices

iPhone Android phone iPad Android pad WP Symbian Other
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
er

ce
nt

ag
e

Fig. 6. Distribution of mobile clients

The retweet or the comment of a tweet also contains the device type of a Weibo
user. Thus, we are able to know which devices Weibo users are commonly using
to watch tweeted videos. Fig. 5 shows that 32% of viewers use mobile devices
to watch videos, and the left 68% use personal computers. We further plot the
distribution of mobile clients in Fig. 6, which shows that among all the mobile
clients, iPhones and Android phones account for 32.7% and 34.2% respectively.
For other devices, iPads, Android Pads, and Symbian devices account for 8%,
1.8%, and 10% respectively. The percentage of Windows Phones is less than
0.1%. In addition, there are 12% devices with unknown types. As the number of
mobile users continues to increase, P2P-based solution may not be a practical
approach considering the limited battery and bandwidth of mobile clients. In
addition, due to the diversity of mobile clients (e.g., different screen sizes, video
codec, etc), the video service provider should provide multiple versions of a video
so as to be compatible with different devices.

172 Z. Guo et al.

10
0

10
1

10
2

0

0.5

1

1.5

2
x 10

4

Hours

N
um

be
r

of
 v

ie
w

s

video1
video2
video3
video4
video5

Fig. 7. Popularity dynamics of Top 5 pop-
ular videos

1 10s 1m 10m 1h 10h1d 3d1w 1M 3M
0

0.2

0.4

0.6

0.8

1

Elapsed Time

C
D

F

1st Viewer
10th Viewer
100th Viewer
1000th Viewer
5000th Viewer

Fig. 8. Time lag between the original
video tweet and its n-th view

For a Weibo user, we use the timestamp embedded in a retweet or comment
to approximate the viewing time of a video. Such approximation is feasible as
most Weibo users prefer to retweet/comment a video right after viewing the
video. In Fig. 7, we show the evolution of the number of views (approximated
by the sum of retweets and comments) for the top 5 popular videos in our
dataset. Note that the number of views shown in Fig. 7 is only a lower bound
of the actual number of views. In Fig. 7, we can clearly observe the occurrence
of flash crowds. For Video 1, the number of views can suddenly increase to
nearly 20,000 within one hour. Such flash crowds are possibly induced by a
social star’s retweet/comment, or the Weibo system’s recommendation. Due to
the huge number of followers (e.g., the top 1 social star in Weibo, Chen Yao,
has 24 million followers), flash crowds incurred by popular tweets (with over
1000 comments and retweets) happen more frequently and fiercely than that of
unpopular tweets (with less than 1000 comments and retweets) in the Weibo
system. The underlying distribution infrastructure should be able to efficiently
meet such sudden surging demand of video traffic.

In Fig. 8, we plot the distribution of time lag between the original video tweet
and its n-th view. It depicts how fast the followers start to watch the tweeted
videos. We observe that, for 87% of tweeted videos, the first viewing event occurs
less than 10 minutes after the root video tweet is posted. For 60% of tweeted
videos, the first 1000 views arrive within one day. It is largely due to the fast
spreading nature of microblog service.

To further investigate the viewing patterns of tweeted videos, we define a
new metric called k-active period, k ∈ N+. A period is composed of multiple
consecutive time slots, and each slot lasts for one hour. A k-active period refers
to a period in which each of its slot contains at least k views. For 6,500 tweeted
videos, we identified 7,039 50-active periods, 4,974 100-active periods, 2,856 150-
active periods and 2,186 200-active periods6. We plot the distribution of the
number of k-active periods per video in Fig. 9. It is observed that most of tweeted

6 Note that, small fluctuations of video activity may introduce bias to the statistics of
k-active periods, but for k ≥ 50 less than 2% of the active periods show fluctuations.

Unveiling the Patterns of Video Tweeting 173

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

#of active periods

C
D

F

50−active
100−active
150−active
200−active

Fig. 9. Number of active periods

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration(hours)

C
D

F

50−active
100−active
150−active
200−active

Fig. 10. Duration of active periods

videos are not highly active with 49% of them having no 50-active period. In the
left 51%, around 39% of tweeted videos have less than three 50-active periods.
Fig. 10 shows the distribution of the duration of active periods. 48% of 50-active
periods, 55% of 100-active periods, 59% of 150-active periods and 63% of 200-
active periods are no greater than one hour. Over 90% of all active periods are
less than ten hours. It means that the popularity of tweeted videos cannot last
for a long period.

3.3 Effects of Social Links

In this section, we will investigate how the social links among users impact video
tweeting. For a tweeted video, we define the Propagation Distance between the
original tweet publisher and the Weibo viewer as the number of social hops
between them. For example, suppose A is the publisher of a root video tweet,
B, who is A’s follower, retweets that video, then we can think the propagation
path is A → B and the associated propagation distance is one. For each video,
we obtain all its viewers by crawling the video tweet’s RRL, RCL and SCL, and
then calculate the propagation distance between the publisher and viewers.

Fig. 11 depicts the distribution of propagation distance. We find that, for over
90% of viewers, their propagation distance is not greater than 3 (see Fig. 11(a)). It

1 2 3 4 5 >=6
0

0.1

0.2

0.3

0.4

0.5

Propagation distance

P
er

ce
nt

ag
e

(a) Propagation distance of all viewers

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Propagation distance

C
D

F Total
of views > 10,000
of views 1,000 ~ 10,000
of views 100 ~ 1,000
of views < 100

(b) Propagation distance for videos
with different popularities

Fig. 11. Distribution of propagation distance

174 Z. Guo et al.

means that video tweeting mostly occurs among close friends/followers. Fig. 11(b)
further shows the distribution of propagation distance for videos with different
popularities. We observe a common pattern for all types of videos. Namely, no
matter the popularity of a tweeted video, the majority of viewers are within 3
hops from the original tweet publisher.

3.4 Discussion

In this section, we discuss a few implications of patterns of video tweeting on
the design of future microblog-oriented video distribution platforms: (1) Short
video length: Like UGC sites, most of the tweeted videos are short videos. The
design of content distribution infrastructures should take the patterns of user-
generated contents into account. (2) Diverse user devices: The diversity of user
devices requires to distribute videos in different versions. A promising direction
is to conduct real-time transcoding for different devices (e.g., cloud-based video
transcoding). (3) Frequent flash crowds : Real-time tweeting enables many users
to learn and watch a new video almost simultaneously. The induced flash crowds
pose a large challenge to the video distribution platform. Online bandwidth
provisioning strategies are needed to meet the unpredictable surging demand.
(4) Small propagation distance: The majority of viewers are within 3 hops of the
publisher. It is possible to perform efficient prefetching based on social distance
to improve the user experience.

4 Related Work

In recent years, researchers have conducted extensive measurement work to un-
derstand the characteristics of popular Web 2.0 applications.

In the aspect of user-generated contents, most of previous work focused on
the measurement of YouTube, including its video sharing patterns [4], traffic
characterization[9], etc. To realize efficient distribution of user-generated con-
tents, Liu et al. [8] proposed a peer-assisted approach to reduce the load on
CDN servers. In [5], Cheng et al. conducted an online Web survey among tens
of users and proposed a P2P-based design for video sharing. Krishnappa et al.
[7] performed a measurement study of Hulu-like TV services and studied the
feasibility of prefetching and caching.

Different from previous work, our work focuses on analyzing the characteristics
of microblog-triggered video sharing, and our main purpose is to direct the design
of future video distribution infrastructure. We are among the first to study video
tweeting by real measurements. In addition, our measurements are based on Sina
Weibo, which is the largest microblog service in China. To our knowledge, no
similar work has been conducted on either the Weibo or Twitter systems before.

5 Conclusion

In this paper, we perform a measurement study on video tweeting over the Sina
Weibo system. With a customized measurement platform, we collect the video

Unveiling the Patterns of Video Tweeting 175

tweets posted by 1 million Weibo users and further obtain video information
from their corresponding web sites. We find that most of tweeted videos are
short videos and there exist frequent flash crowds for video tweeting. Diverse
mobile devices are used to watch tweeted videos. In addition, Weibo users mostly
intend to only watch videos tweeted by their friends within a few hops. Next,
we plan to extend our measurement to a larger scale, and to design efficient
caching and prefetching strategies to further improve the effectiveness of social
video distribution.

Acknowledgement. We thank anonymous reviewers and our shepherd, Bern-
hard Ager, for their valuable comments. This work has been supported by NSFC
(60972014, 61003242, 61272397), Program for New Century Excellent Talents in
University (NCET-11-0542), the Fundamental Research Funds for the Central
Universities (12LGPY53, HUST:2011QN015), and Guangzhou Pearl River Sci.
& Tech. Rising Star Project (No. 2011J2200086), and the National Technol-
ogy Support Plan of China (No. 2009BAH51B00). Di Wu is the corresponding
author.

References

1. Sina Weibo, http://weibo.com
2. Sina Weibo Has More Than 300 Million Registered Users,

http://tech.ifeng.com/internet/detail_2012_05/16/14546599_0.shtml

3. China Online Video Market Update,
http://www.chinainternetwatch.com/1041/online-video-q1-2011

4. Cheng, X., Liu, J., Dale, C.: Understanding the Characteristics of Internet Short
Video Sharing: A YouTube-based Measurement Study. IEEE Transactions on Mul-
timedia (2010)

5. Cheng, X., Liu, J.: Tweeting Videos: Coordinate Live Streaming and Storage Shar-
ing. In: Proc. of ACM NOSSDAV (2010)

6. Xu, K., Li, H., Liu, J., Zhu, W., Wang, W.: PPVA: A Universal and Transparent
Peer-to-Peer Accelerator for Interactive Online Video Sharing. In: The Proc. of
IEEE IWQoS 2010 (2010)

7. Krishnappa, D.K., Khemmarat, S., Gao, L., Zink, M.: On the Feasibility of
Prefetching and Caching for Online TV Services: A Measurement Study on Hulu.
In: Spring, N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579, pp. 72–80. Springer,
Heidelberg (2011)

8. Liu, Z., Ding, Y., Liu, Y., Ross, K.: Peer-Assisted Distribution of User Generated
Content. In: IEEE P2P (2012)

9. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: YouTube Traffic Characterization: A View
From the Edge. In: Proc. of ACM IMC (2007)

10. Tudou Becomes The First Partner Of Sina Weibo On Video Upload,
http://ir.tudou.com/releasedetail.cfm?ReleaseID=646038

http://weibo.com
http://tech.ifeng.com/internet/detail_2012_05/16/14546599_0.shtml
http://www.chinainternetwatch.com/1041/online-video-q1-2011
http://ir.tudou.com/releasedetail.cfm?ReleaseID=646038

Measuring Home Networks with HomeNet Profiler

Lucas DiCioccio1,2, Renata Teixeira2, and Catherine Rosenberg3

1 Technicolor
2 CNRS and UPMC Sorbonne Universités

3 University of Waterloo

Abstract. This paper designs HomeNet Profiler, a software that runs on any
computer connected inside a home network, to collect a wide range of measure-
ments about home networks including the set of devices, the set of services (with
UPnP and Zeroconf), and the characteristics of the WiFi environment. To attract a
larger number of users, HomeNet Profiler runs one-shot measurements upon user
demand. We evaluate this design choice against periodic measurements taken
from six home networks. Data collected from these six homes and with Home-
Net Profiler in more than 1,600 homes in France shed light on the diversity of de-
vices that connect to home networks and of the WiFi neighborhood across home
networks.

1 Introduction

The availability of cheap broadband Internet is popularizing Internet access from homes.
A household today can have a variety of networked devices ranging from personal de-
vices like laptops and smartphones to printers and media centers. These devices connect
among themselves and to the Internet via a local-area network—the home network. Al-
though there is increasing interest in home networking [1–3, 12, 19], there is yet little
data on current home networks. Most prior work has focused on measuring and charac-
terizing residential Internet access [4, 5, 9, 11, 13, 14, 17, 18]. The lack of data on home
networks is partially due to the challenges of measuring home networks at large scales.
The vast majority of home networks are behind network-address translators, so a de-
vice outside the home often cannot measure the characteristics of the home network
itself. Some prior studies have deployed measurement points inside the homes of a few
volunteers [10, 12, 15], but it is hard to get representative results from a few homes.

This paper designs HomeNet Profiler, a tool to measure home network configuration
and performance (§2). Users run HomeNet Profiler on-demand from an end-system di-
rectly connected to their home network. HomeNet Profiler scans the local network for
active devices and services advertised via protocols such as Universal Plug and Play
(UPnP). It also measures the wireless environment per home. HomeNet Profiler incor-
porates features to help recruit a large number of volunteers. For example, it performs
on-demand, one-time measurements, because many users feel uncomfortable down-
loading software that will run continuously in their machines. We evaluate this design
choice with a periodic measurement from six homes in France (§3).

Between April 2011 and May 2012, users from 46 different countries ran HomeNet
Profiler. This paper presents our analysis of home networks in France, where we have

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 176–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Measuring Home Networks with HomeNet Profiler 177

data from over 1,600 homes. We analyze devices present in home networks (§4) and
the WiFi environment (§5). Our results show that in 80% of homes, users connect less
than a dozen devices to their home network. In addition, only a small number of these
devices, mainly home gateways, are active at any given time. We also observe that the
density of the WiFi neighborhood varies considerably across homes.

The main contribution of this paper is the design and evaluation of HomeNet Profiler.
Our initial experience shows that HomeNet Profiler was able to reach a large number
of users (2,432 homes worldwide). Our periodic measurements from six homes in Paris
put HomeNet Profiler results into perspective by analyzing the dynamics of both the set
of devices and the WiFi neighborhood, which we cannot study with HomeNet Profiler’s
one-shot experiments. As more users run HomeNet Profiler, we plan to conduct a larger
characterization study to shed light on home networks performance and configuration
worldwide.

2 Design

This section discusses the requirements of HomeNet Profiler as well as our design and
implementation decisions.

2.1 Requirements

The primary requirement for a home network data collection tool is that it runs from
inside the home. Measurements from outside the home cannot have visibility into the
home network configuration and its devices. The goal of measuring a large diversity of
home networks and the fact that it is not possible to collect data inside a user’s home
without explicit user participation impose the following additional requirements:

– Ease of Use. The tool should be simple to run, even for non-expert users.
– Portability. The tool should run on all home networks and end-systems.
– Respect Users’ Privacy. Users are unlikely to run a measurement tool inside their

homes if the tool collects information that they consider private or any personally
identifiable information. Our data collection effort has to comply with the rules of
the French National Commission of Informatics and Freedom.1

– Light User Commitment. We ask home users to do us a favor by allowing us
to collect data in their homes. We cannot ask users to commit too much time or
resources without running the risk of reducing the number of users willing to par-
ticipate.

– Incentive for Participation. Some users will run research tools altruistically. How-
ever, if users can get something out of the experiment, then we are more likely to
get a larger number of participants.

2.2 Design and Implementation Decisions

The design requirements outlined in the previous section lead to some high-level design
and implementation decisions.

1 Commission nationale de l’informatique et des libertés (CNIL):
http://www.cnil.fr/english/.

178 L. DiCioccio, R. Teixeira, and C. Rosenberg

First, HomeNet Profiler runs on end-systems. We considered deploying measure-
ments on the home router/gateway or on one of the end-systems connected to the home
network. Although some home users deploy routers with measurement capabilities [18],
a hardware deployment has higher cost and more complicated logistics.

Second, inspired by the success of Netalyzr [13], HomeNet Profiler runs one-shot
measurements on user demand. On one hand, long term, periodic measurements would
give us a complete picture of home networks. On the other hand, users may be uncom-
fortable with installing a permanent software on their machine for privacy concerns and
because of the possible impact on machine performance. We evaluate one-shot mea-
surements against periodic measurements in § 4.1 and § 5.1.

Third, HomeNet Profiler is a Java executable JAR. We considered implementing
HomeNet Profiler as a signed Java applet similar to prior work [13, 16], but it is hard
to load system libraries such as the Windows Native WiFi interface from an applet and
we need sudo rights on some Linux distributions, which is not possible from an applet.
Instead, a Java executable JAR can collect the datasets we want and yet it is portable
and simple for users to run.

Finally, HomeNet Profiler takes the user perspective. We include a user survey to
obtain information that would be hard to infer automatically from the measurements
(such as finding devices which are turned off). To see the survey questions, we invite
the reader to run HomeNet Profiler. As an incentive for users to run HomeNet Profiler,
we output a detailed report of their home network.2 Before the measurements begin,
HomeNet Profiler lets the user select which measurements to execute. Hence, users
who are uncomfortable with some measurements can still run HomeNet Profiler with a
subset of the measurements.

System Overview. We design HomeNet Profiler as a client-server application. The
server hosts the HomeNet Profiler website, which users visit to fetch and run the Home-
Net Profiler client. HomeNet Profiler starts in a separate window. Users then complete
the survey while the measurement modules run in the background. Upon completion,
the client sends all collected data to the server and redirects the web browser to the
report page. When HomeNet Profiler exits, it leaves a random identifier on the user’s
machine to track multiple runs from the same end-system. A run refers to one execution
of HomeNet Profiler.

2.3 Measurement Modules

We select a broad range of measurements to learn as much as possible about the home
network. At the same time, measurements should not take too long to execute, otherwise
users might give up in the middle of the experiment. Our main goal is to discover the
devices connected to the home network and the services they provide as well as the
network technologies connecting the home to the Internet and inside the home. We
also characterize the WiFi neighborhood by measuring the quality of all visible WiFi
networks. In addition to these direct measurements, we collect the configuration of the
machine running HomeNet Profiler as well as the list of applications running on the

2 For an example report refer to: http://cmon.lip6.fr/hnp/example

http://cmon.lip6.fr/hnp/example

Measuring Home Networks with HomeNet Profiler 179

machine. This extra information helps us interpret the results in case some configuration
affects some of our measurements (e.g., a firewall or a VPN).

The HomeNet Profiler client has the following measurement modules.3

Device Scan: Searches the home network for active network devices. This module
first populates the ARP cache by sending UDP packets on Port 9 (i.e., the discard port)
to all IP addresses in the sub-network of the end-system. We force a 10 seconds timeout
on the scan to avoid long delays when sub-networks are too large. Our data confirms
that the vast majority of scans finishes before the timeout. This module then reads the
ARP cache to collect the vendor ID (OUI) and the SHA1 hash of the MAC of each
network interface on the LAN. If the associated IP address is private we also collect it,
otherwise we just record the presence of a public IP.

WiFi Scan: Collects a list of access points found with one WiFi scan. For each access
point we collect the ESSID (the network name), the BSSID (the MAC address of the
access point), the channel number, and the Received Signal Strength Indicator (RSSI).
We anonymize ESSIDs and BSSIDs. We distinguish between the home WiFi, which is
the one the end-system is connected to, and neighbor WiFis. On MacOS, the airport
command-line tool provides all this information. On Linux, we use iwconfig and iwlist.
On Windows, we use the Win32 Native WiFi API, which is not available on windows
XP prior to SP3. We also observe that some Linux WiFi drivers only report information
for the network the end-system is associated to.

Service Scan: Queries two protocols commonly-used to advertise services in home
electronics: Zeroconf and UPnP. We opt for querying these protocols instead of a port
scan per device because a port scan is intrusive and may take too much time.

Netalyzr [13]: Performs a number of tests related to the access network configura-
tion, security, and performance. At each execution, HomeNet Profiler downloads and
runs the latest version of Netalyzr’s command-line client.

Configuration of the UPnP Gateway: In cases where the home gateway supports
UPnP, HomeNet Profiler collects the model of the gateway, the connection type, and
the connection speed. It also tests traffic counters using UPnP queries.

Aside from these measurements taken from the client, when HomeNet Profiler’s
server receives the collected measurements, it maps the client’s public IP address to
its geographical location and AS number using the Maxmind database. We then discard
the public IP address. HomeNet Profiler also sends meta-data such as the time taken by
each module and whether HomeNet Profiler was running with sudo privileges.

This paper reports preliminary results on devices (§ 4) and WiFi (§ 5). We report on
the Netalyzr and UPnP gateway configuration measurements in prior work [6].

3 Measurements

Testbed. In most cases, users run HomeNet Profiler once, but both the WiFi neighbor-
hood and the devices connected to a home network vary over time. We thus complement
HomeNet Profiler by instrumenting six different home networks in Paris. We installed
laptops in homes of colleagues from Technicolor and UPMC Sorbonne Universités.

3 To address privacy concerns and comply with French laws, we anonymize all personally-
identifiable information using SHA1 hash.

180 L. DiCioccio, R. Teixeira, and C. Rosenberg

The households have between one and three members. Each laptop runs the WiFi scan
module every ten seconds using an Intel WiFi card. Every ten minutes, laptops also run
the device scan module on an Ethernet adapter. We collect data from March 19, 2012 to
July 31, 2012. These six homes are not representative of the population at large, but in-
strumenting a larger number of homes is a practical challenge. Nevertheless, this testbed
allows us to evaluate HomeNet Profiler and put the collected data into perspective.

HomeNet Profiler Data. We announced HomeNet Profiler by email to family, friends,
colleagues, and mailing lists of networking researchers as well as through grenouille.com,
a French website for people who want to monitor their ISP performance. Between April
2011 and May 2012, a total of 2,721 distinct end-systems ran HomeNet Profiler 3,634
times. Some users run HomeNet Profiler multiple times on the same end-system or
from multiple end-systems in the same home. Users may also run HomeNet Profiler
when they are not at home. For our analysis, we select a single representative run per
home using two heuristics described in our technical report [7]. After applying these
heuristics, we infer that our data comes from a total of 2,432 distinct homes. Users ran
HomeNet Profiler from home networks in 46 countries and 210 different ASes (more
details in our previous work [8]). This paper focuses on the 1,682 homes in France.
Two thirds of French users answering the survey say that they ‘know Internet tech-
nology well’. Hence, our dataset is biased towards experts users. This bias may be an
advantage because expert users may have home networks more representative of future
trends than other users.

4 Set of Devices in Home Networks

This section studies the set of devices that connects to home networks. We first use our
testbed to analyze the dynamics of devices over time. Then, we analyze differences in
number of devices across homes in the HomeNet Profiler data.

4.1 Completeness of Device Scans

Some devices may be disconnected from the home network at the time when users run
HomeNet Profiler. We evaluate whether HomeNet Profiler would benefit from addi-
tional device scans.

Repeated device scans in our testbed observe different sets of devices. Fig. 1 shows
the presence of a given device during the four months of data collection. The x-axis is
the time of each device scan. The y-axis represents individual devices measured in each
home network (identified by their MAC address). We label the y-axis with the home-id
and below each home-id, the number of devices observed in that home network during
our measurements. We order devices per home based on their occurrence. The most
prevalent device of all six homes is the home gateway. Note that there are gaps in the
data collection because of maintenance or other measurement campaigns running on
the same testbed. These gaps are easily identified by the vertical bars with no points per
home. We ignore these gaps in the following discussion.

The number of devices measured per home in four months varies between 6 and 19
depending on the home. We ask each home user to manually label each device ob-
served over the whole data collection period. We divide devices into types: home de-
vices, which are those that belong to members of the household; and visitor devices,

Measuring Home Networks with HomeNet Profiler 181

Fig. 1. Observed devices per home network

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of devices

F
ra

ct
io

n
of

 h
om

es

Devices

Total − 514
Active − 1594
Difference − 487

Fig. 2. Number of active devices versus the
total number of devices per home. The
number in the legend represents the number
of homes included in the respective curve.

which belong to friends who are just using the home network for a short stay. The top-
most devices of each home, those we only observed in a small fraction of the scans,
correspond to visitor devices. We observe two types of home devices: always-on de-
vices and on-off devices. Always-on devices are the ones users leave on all the time
after the device first connects to the home network and until the device is decommis-
sioned. These typically include home gateways and access points/routers. In Home-6
we also observe an IP printer and an IP security camera that were always on, and in
Home-1 a network disk appears just before Week 5. On-off devices have prevalence
between always-on home devices and visitor devices. We observe two types of on-off
devices: personal mobile devices (such as laptops and smartphones) that leave the house
with their owners; and devices that people turn on when needed (e.g., a weighing scale
and a gaming console).

We compute the fraction of the home devices observed in a single scan over the total
number of home devices. Given that HomeNet Profiler requires at least one user in the
home to run the tool, we only count device scans when at least one laptop or desktop is
on. Overall, we find that a single device scan only observes a small fraction of the home
devices. For example, 92% of the scans with at least one laptop/desktop observe at most
half of the home devices. Nevertheless, one single device scan captures all always-on
devices more than 99.5% of the time. Hence, one-shot measurements are well-suited
for studies that measure always-on devices such as home gateways [6].

We do not observe many more devices by aggregating the results of two scans made
10 minutes apart (85% of pairs of scans would still observe at most half of the home
devices). Only periodic measurements of the home network can observe all the home
devices. We find that it takes approximately eight days on average (and a median of
four days) to discover all home devices in the six homes we measured. To alleviate the
lack of periodic measurements, HomeNet Profiler’s survey explicitly asks users to list
the devices they typically connect to their home network.

182 L. DiCioccio, R. Teixeira, and C. Rosenberg

4.2 Set of Devices in Home Networks in France

We use the HomeNet Profiler data to study the devices that connect to home networks
in France. We infer the number of active devices in a home network by counting MAC
addresses present in the device scan. We remove devices with a MAC address belong-
ing to a virtual device.4 Given that we only have one-shot measurements, we take the
answers to the survey as ground truth for the total number of devices. Although users
may misreport the number of devices in their home, we expect most users to answer
this question correctly.

Fig. 2 shows the cumulative distribution of the number of active devices and the total
number of devices across measured homes as well as the difference for homes where
users selected both measurements (i.e., the number of total minus active devices for each
home). The total number of devices per home ranges between 2 to 29, presenting a much
wider spread than what we observe in our testbed. The range of the number of active
devices, however, is smaller than that of the total number of devices. Approximately
75% of homes have at most four active devices during our measurements. This result is
in agreement with our evaluation that shows that just a small fraction of home devices
are on at any given time. The ‘difference’ curve confirms that many home devices are
not connected when HomeNet Profiler runs.

The size of each household (i.e., the number of members living in a household)
may explain the number of devices in a home network. However, some devices such as
printers serve all members of a household. For the 400 homes for which users reported
the size of their household, we find that the number of active devices and the size of the
household have a Pearson correlation coefficient of only 0.18. The coefficient increases
to 0.33 when considering the total number of devices and to 0.37 when considering
only laptops and desktops. These results imply that the size of a household does have
a moderate positive correlation with the total number of devices and hence it should be
considered to model the total number of devices in the home.

5 WiFi Neighborhood

This section characterizes the WiFi neighborhood as seen by end-systems at home. We
first study the dynamics of the results of WiFi scans in our testbed to evaluate the single
WiFi scan in HomeNet Profiler. We then study the WiFi neighborhood of French homes.

5.1 Accuracy of Neighborhood Characterization in One-Shot Measurements

The set of neighbor WiFis can vary considerably even in short time windows (of sec-
onds), because lost WiFi beacons prevent us from inferring the presence of an ESSID-
BSSID pair. We study the short-term dynamics of the WiFi neighborhood of each of
the six homes in two-minute intervals; during each two-minute interval we perform 12
consecutive WiFi scans. We assume that the aggregate set of measured ESSID-BSSID
pairs in the 12 scans represents the complete WiFi neighborhood during the two-minute
interval. 5 Then, we compute the fraction of the WiFi neighborhood observed, which is

4 In our dataset, the OUI for virtual machines are VMWare, Hyper-V, and Parallels.
5 It is practically impossible to get ground truth on the WiFi neighborhood.

Measuring Home Networks with HomeNet Profiler 183

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RSSI bins

F
ra

ct
io

n
of

 th
e

W
iF

i n
ei

gh
bo

rh
oo

d
ob

se
rv

ed

Fig. 3. Fraction of the WiFi neighborhood
observed with one scan for different RSSI
bins

1 2 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of neighbors ESSID−BSSID pairs (logscale)

F
ra

ct
io

n
of

 h
om

es

Channels:

Any
Overlapping
Same

Fig. 4. CDF of the number of neighbor
ESSID-BSSID pairs

the number of ESSID-BSSID pairs observed in the first scan of a two-minute interval
divided by the number of ESSID-BSSID pairs of the WiFi neighborhood in this interval.

Intuitively, the probability of a WiFi scan to observe an ESSID-BSSID pair will be
lower if the pair has low RSSI. To better understand this effect, we group the ESSID-
BSSID pairs into ten RSSI bins based on the mean RSSI of each pair during a two-
minute interval. We pick bin boundaries at every 10th-percentile of the distribution of
mean RSSI per two-minute interval for all ESSID-BSSID pairs to ensure that every
RSSI bin has 10% of the points. Fig. 3 shows the boxplot of the fraction of the WiFi
neighborhood observed. The x-axis presents the RSSI bins (note that the x-axis is not
linear). Boxes represent the inter-quartile range of the distribution of the fraction of the
WiFi neighborhood observed for ESSID-BSSID pairs in a given RSSI bin; the solid
line inside the box is the median, the whiskers represent the minimum and maximum
values. The 802.11 standards do not specify units for RSSI and each vendor may use
a different scale. All machines in our testbed have the same hardware and software, so
we can aggregate RSSIs from the six machines in our testbed.

Fig. 3 confirms the intuition that ESSID-BSSID pairs with stronger signals are easier
to observe. For example, the leftmost bin shows that half the time, a single WiFi scan
observes no more than 34% of the ESSID-BSSID pairs with RSSI lower than −87,
whereas a single scan is sufficient to observe all ESSID-BSSID pairs with RSSI higher
than −76. One scan is enough to collect all the ESSID-BSSID pairs with strong RSSI
and to frequently get a large fraction of those with lower RSSI. This result implies that
performing a single WiFi scan is a good compromise to speed-up the data collection.
ESSID-BSSID pairs with strong RSSI are more likely to interfere with the home WiFi
and are also the ones that home users could use for backup connectivity, for instance.

5.2 WiFi Neighborhood in France

HomeNet Profiler successfully collects WiFi results in 1,131 homes in France. Some
end-systems do not have a WiFi interface or lack support from the OS to run the WiFi
scan. Some WiFi access points broadcast ESSID-BSSID pairs for more than one net-

184 L. DiCioccio, R. Teixeira, and C. Rosenberg

work (e.g., a guest network) and HomeNet Profiler anonymizes ESSID-BSSID pairs, so
we cannot tell if two ESSID-BSSID pairs originate from the same WiFi access point.
We consider that all ESSID-BSSID pairs other than the one the end-system is associ-
ated to are neighbor WiFis. In total, aggregating home and neighbor WiFis, we study
7,154 distinct ESSID-BSSIDs.

We focus on the 2.4 GHz band, which is the most used (96% of homes we measured).
When two neighbor WiFis operate on the same or close channels, they might interfere.
We say that two neighbor ESSID-BSSID pairs are overlapping if they are on channels
where numbers differ by 4 or less. Channels 1, 6, and 11 are the non-overlapping chan-
nels in the 2.4 GHz band and hence are recommended for use. In our measurements,
18% of the ESSID-BSSID pairs operate on non-recommended channels. We also no-
tice that 39% of ESSID-BSSID pairs operate on Channel 11. We believe that some ISPs
ship home gateways with hardcoded WiFi configuration.

WiFi neighborhoods are generally crowded in France. Fig. 4 plots the cumulative
distribution of the number of neighbor ESSID-BSSID pairs across all measured homes.
We present three distributions: for all neighbor WiFis; for ESSID-BSSID pairs that
overlap with the home WiFi; and for ESSID-BSSID pairs on the same channel as the
home WiFi. Overall, the number of ESSID-BSSID pairs of the WiFi neighborhood
varies considerably across homes (from 1 to 52 neighbor WiFis) and more than 75%
of homes have an overlapping WiFi neighbor. The actual number of WiFi neighbors is
likely larger because HomeNet Profiler misses some WiFi neighbors with low RSSI.

The quality of the home WiFi also depends on the strength of the received sig-
nal. Since end-systems have different WiFi adapters, their RSSI measurements are not
directly comparable. Thus we only compare RSSIs of different ESSID-BSSID pairs
measured on the same end-system. Further, if the home access point broadcasts ESSID-
BSSID pairs for a guest network, then their RSSI will be similar to the RSSI of the
home WiFi. French ISPs offer country-wide community networks with well-known ES-
SIDs. After removing these ESSIDs, we find that in 13% of homes, the end-system has
stronger RSSI to a neighbor WiFi that overlaps with the home WiFi. We have high
confidence on this result because our testbed evaluation shows that we always observe
WiFis with strong RSSI and here we are only studying the two strongest WiFis.

6 Conclusion

This paper designs HomeNet Profiler, a tool that home users run on an end-system to
measure home networks. HomeNet Profiler scans the local network for active devices
and services, observes the WiFi neighborhood, and complements measurements with a
user survey. We design HomeNet Profiler as a one-shot measurement tool. Our testbed
results show that one-shot measurements capture practically all always-on devices, but
only a small fraction of on-off devices. As a result, HomeNet Profiler’s survey is an
important complement to understand the full set of home devices at a large number of
homes. In addition, the testbed results show that one-shot measurements are sufficient
to capture all WiFi neighbors with strong signal and a significant fraction of neighbors
with lower signal. WiFi neighbors with strong signal are more likely to interfere with
the home WiFi or to be useful as backup links. The biggest advantage of this one-shot
approach is that it requires little effort/commitment from users and hence allow us to

Measuring Home Networks with HomeNet Profiler 185

reach a large number of users. So far, users have run HomeNet Profiler from over 2,400
homes. Our analysis of 1,600 homes in France shows that the number of home devices
vary considerably across homes and that only a small fraction of home devices are
active at any given time. We also find that WiFi neighborhoods are crowded in France.
We hope to attract more users in other countries in the near future to perform a larger
scale characterization. We also plan to develop a service to query HomeNet Profiler
data online and give an up-to-date view on home networks to the community.

Acknowledgment. We thank all HomeNet Profiler users. This work was supported
by the European Community’s Seventh Framework Programme (FP7/2007-2013) no.
258378 (FIGARO). Part of the work presented in this paper was carried out at LINCS
(www.lincs.fr).

References

1. Calvert, K.L., Edwards, W.K., Feamster, N., Grinter, R.E., Deng, Y., Zhou, X.: Instrumenting
Home Networks. In: ACM SIGCOMM HomeNets Workshop (2010)

2. Chetty, M., Banks, R., Harper, R., Regan, T., Sellen, A., Gkantsidis, C., Karagiannis, T., Key,
P.: Who’s Hogging The Bandwidth?: The Consequences Of Revealing The Invisible In The
Home. In: Proc. ACM CHI (2010)

3. Chetty, M., Halsem, D., Baird, A., Ofoha, U., Summer, B., Grinter, R.E.: Why Is My Internet
Slow?: Making Network Speeds Visible. In: Proc. ACM CHI (2011)

4. Choffnes, D.R., Bustamante, F.E., Ge, Z.: Crowdsourcing Service-Level Network Event
Monitoring. In: Proc. ACM SIGCOMM (2010)

5. Croce, D., En-Najjary, T., Urvoy-Keller, G., Biersack, E.: Capacity Estimation of ADSL
links. In: Proc. CoNEXT (2008)

6. DiCioccio, L., Teixeira, R., May, M., Kreibich, C.: Probe and Pray: Using UPnP for Home
Network Measurements. In: Proc. PAM (2012)

7. DiCioccio, L., Teixeira, R., Rosenberg, C.: Characterizing Home Networks With HomeNet
Profiler. Technical Report CP-PRL-2011-09-0001, Technicolor (2011)

8. DiCioccio, L., Teixeira, R., Rosenberg, C.: Measuring and Characterizing Home Networks
(Poster). In: Proc. ACM SIGMETRICS (2012)

9. Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing Residential Broad-
band Networks. In: Proc. IMC (2007)

10. Dixon, C., Mahajan, R., Agarwal, S., Brush, A., Lee, B., Saroiu, S., Bahl, V.: An Operating
System for the Home. In: Proc. NSDI (2012)

11. Han, D., Agarwala, A., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Seshan, S.: Mark-
and-Sweep: Getting the Inside Scoop on Neighborhood Networks. In: Proc. IMC (2008)

12. Karagiannis, T., Athanasopoulos, E., Gkantsidis, C., Key, P.: HomeMaestro: Order from
Chaos in Home Networks. Technical Report MSR-TR-2008-84, MSR (2008)

13. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: Illuminating the Edge Network.
In: Proc. IMC (2010)

14. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On Dominant Characteristics of Residen-
tial Broadband Internet Traffic. In: Proc. IMC (2009)

15. Papagiannaki, K., Yarvis, M., Conner, W.S.: Experimental Characterization of Home Wire-
less Networks and Design Implications. In: Proc. IEEE INFOCOM (2006)

16. Ritacco, A., Wills, C., Claypool, M.: How’s my Network? A Java Approach to Home Net-
work Measurement. In: ICCCN (2009)

www.lincs.fr

186 L. DiCioccio, R. Teixeira, and C. Rosenberg

17. Siekkinen, M., Collange, D., Urvoy-Keller, G., Biersack, E.W.: Performance Limitations of
ADSL Users: A Case Study. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM
2007. LNCS, vol. 4427, pp. 145–154. Springer, Heidelberg (2007)

18. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè, A.: Broad-
band Internet Performance: A View From the Gateway. In: Proc. ACM SIGCOMM (2011)

19. Yang, J., Edwards, W.K.: A Study on Network Management Tools of Householders. In: ACM
SIGCOMM HomeNets Workshop (2010)

Characteristics of Real Open SIP-Server Traffic

Jan Stanek1, Lukas Kencl1, and Jiri Kuthan2

1 Czech Technical University in Prague
Technicka 2, 166 27 Prague 6, Czech Republic
{jan.stanek,lukas.kencl}@fel.cvut.cz

2 Tekelec
Am Borsigturm 11, 13507 Berlin, Germany

jiri.kuthan@tekelec.com

Abstract. Voice-over-IP (VoIP) is currently one of the most commonly
used communication options and Session Initiation Protocol (SIP) is
most often used for VoIP deployment. However, there is not a lot of gen-
eral knowledge about typical SIP traffic and research in this area largely
works with various assumptions. To address this deficiency, we present
a thorough study of traffic of a real, free and publicly open SIP server.
The findings reveal, among others, a surprisingly high overhead of SIP
due to connection maintenance through Network Address Translation
(NAT) nodes, differences from typical Web server Zipf’s-law patterns
and various unexpected creative uses of SIP servers.

1 Introduction

With proliferation of Voice-over-IP (VoIP) communication, its infrastructure –
the signaling protocol (Session Initiation Protocol (SIP) [1, 2]) and the control
nodes (SIP servers) – attracts much interest from the perspective of practical
functioning within the Internet infrastructure. SIP traffic characteristics form a
necessary basis for considerations of deployment in the light of emerging trends.
SIP is lightweight, has easily understandable and human-readable structure and
as a signaling protocol, it does not generate much traffic by itself. A lot of research
is dedicated to VoIP improvement in reliability, stability, quality of service, se-
curity and other areas. However, publicly available analyses of SIP traffic are
rare and thus not a lot of knowledge exists in the networking community about
typical behavior of SIP servers (as opposed to, e.g. HTTP servers). Typically, a
lot of assumptions are made about SIP traffic, but are they realistic?

The goal of this paper is to study properties of real SIP-server traffic. We ana-
lyze a freely accessible and open SIP server with a worldwide user base. Anyone
can register and use this SIP server, free of charge and with no restrictions on the
client device. A vibrant and multi-faceted community of users from all around
the world form the user base, using various SIP devices, including proprietary
ones. These often do not behave exactly as they should. This creates very in-
teresting and sometimes non-standard SIP traffic that we also examine in this
paper.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 187–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 J. Stanek, L. Kencl, and J. Kuthan

Fig. 1. Server-based connection maintenance through NAT

In more detail we study the problem of Network Address Translation (NAT)
traversal, still not well-solved in SIP. The server and clients typically need to
execute other mechanisms (STUN [3], TURN [4], ICE [5] etc.) to facilitate NAT
traversal. The monitored server, too, uses its own mechanism to keep NAT con-
nections alive (see Fig. 1).

The main contributions of this work are as follows:

– a thorough traffic analysis of three days of an operational SIP server, includ-
ing geographic spread and time-series analysis;

– identification, measurements and demonstration of the large overhead in SIP
traffic caused by NAT and keep-alive mechanisms;

– discussion of the findings and suggestion of possible remedies;
– analysis of geographic traffic distribution.

2 Related work

Sparks [6] and Prasad and Kumar [7] describe SIP basics and some typical
extensions used. The problem of NAT traversal in SIP and its various solutions
have been described in numerous papers e.g by Yeryomin et al. [8] and Song et
al. [9]. Despite the many proposals for solving the NAT traversal issue, some
of which are very popular (STUN, ICE), none of these was adopted generally
as they impose strict extra requirements on the SIP clients and servers. Much
work has also focused on identifying SIP anomalies. Heo et al. [10] studied the
use of statistical distances for respective SIP message types, Cortes et al. [11]
used performance metrics to identify SIP processing times and Kang et al. [12]
used known profilers on various real SIP datasets. Ehlert et al. [13] used decision
modules and Nassar et al. [14] vector machines to detect anomalous SIP traffic.

Significant amount of papers was dedicated to SIP security. Hentehzadeh et
al. [15] used statistical approach to filter out potentially hazardous SIP traffic.
Akbar et al. [16] proposed using evolutionary algorithms, able to adapt to the
changing nature of SIP traffic. Sisalem, Kuthan and Ehlert [17] proposed some
best practices for secure SIP deployment. Despite this body of works, many SIP
deployments remain unprotected even against the simplest of attacks.

Characteristics of Real Open SIP-Server Traffic 189

Considering cloud environment, deploying only SIP server itself in cloud is
not economical due to its typical stable and continuous resource consumption.
However, next to SIP there is a large body of related media traffic (typically in
the form of RTP streams) and routing it through the best available paths is an
important open problem. One solution, using anycast, was proposed by Andel
et al. [18]. Considering the distributed nature of the cloud and its location-
awareness, using it to deploy media relays might be beneficial.

3 SIP Server Setup and Dataset Description

We have analyzed SIP traffic from a publicly, globally and freely available SIP
server a long time in operation. It is configured so that it expects user devices
not to be able to do any advanced tasks and tries to solve any issues (such
as maintaining the bindings for clients behind NAT) on the server side. Users
are encouraged to use it for testing of their experimental set-ups and devices.
Despite these differences from a typical commercial SIP server, analysis of its
traffic is very useful as it exhibits many interesting and unexpected aspects of
SIP traffic. Observations based upon this traffic are generally applicable since a
lot of the “unexpectances” comes from client behavior or misconfiguration.

The respective iptel.org SIP server runs on a single host, located in Berlin,
Germany. It is an instance of SIP Express Router (SER) [19], running on top of
Linux on a Dell Poweredge 1850 server. The only services running on the server
are SER, STUN (mystun) and a UDP relay for NAT traversal. The processing
capacity is sufficient to process typical SIP-server traffic. About 3400 users are
typically registered generating call rate between 2 and 50 concurrent calls.

We captured all network traffic on the server continuously for 67 hours using
tcpdump [20]. The capture started on March 16 2012 at 13:00 GMT and ended
on March 19 2012 at 8:00 GMT, its size is 40GB and it contains about 85 million
packets. Of these, about 39GB are SIP and 1GB non-SIP packets, yet about 74
million are SIP and 11 million non-SIP packets. The difference in size and packet
counts is caused by the non-SIP packets being mostly very small – TCP related,
or UDP keep-alives.

Note that we focus solely on the signaling traffic. We do not analyze the media
traffic as it is does not influence the signaling processing.

4 Data Analysis Methodology

We split the larger traffic dump so we could process it faster in parallel. We
had 3 servers available so we split the dump accordingly – the first two parts
corresponding to the first two days and the third to the remaining 19 hours. We
used programs from the Wireshark [21] program suite for trace splitting and the
various analyses. We divide the analysis into several phases:

Phase 1 - Load over time. We focused on the evolution of load over time. Using
Wireshark we extracted the timestamp in unix time format from every packet.

190 J. Stanek, L. Kencl, and J. Kuthan

We then imported these timestamps to Matlab and created a timeline for each
part. As the timestamps in plaintext format consumed about 2GB of disk space,
we aggregated them to blocks of 1 second for faster processing.

Phase 2 - SIP request types. We analyzed types of SIP requests and responses
contained in the dump. We used tshark (a command-line version of wireshark)
to produce SIP statistics (tshark -z sip,stat) i.e. a list of SIP message types with
numbers of occurrences per each type observed. As the three blocks are still too
large to be efficiently processed by tshark, we split them again to parts of 250000
SIP packets in size. The resulted reports were concatenated and an awk script
was used to extract the necessary information. Final aggregation was executed
in Matlab, producing a sorted lists of SIP requests and responses.

Phase 3 - Traffic sources. We analyzed the traffic according to its sources. We
reused the parts from Phase 2 and analyzed them using tshark, now with -
z conv, udp/tcp options. These options aggregate traffic between source and
target locations (identified by IP address and port pair) and produce summary
containing numbers of packets (bytes, frames) exchanged between every pair of
locations that communicated with each other. These data were again aggregated
and cleaned using awk and imported to Matlab for results generation.

Phase 4 - Geographic distribution. We analyzed the geographic spread of users.
We used a userloc – text database of registered users containing all the user
information the SIP server stores (including IP addresses). We extracted the IP
addresses using awk and mapped them to their geographic locations using the
WebNET77 Multiple IP address lookup tool [22].

Phase 5 - Geographic locations. Finally, we wanted to obtain geographic loca-
tion for the caller and callee per every call observed. We did this by filtering the
INVITE and REGISTER messages and extracting information about mapping
of IP addresses to individual users. We also created a list of calls by separat-
ing unique INVITEs (e.g. filtering out re-INVITES). Then we loaded the IP
addresses into the webnet tool [22]. We saved the resulting IP to location map-
ping and replaced IP addresses with locations. Some calls were still unmappable
since there were also reserved and local IP addresses present, but for the rest we
obtained the list of calls in pairwise format (from country - to country).

5 SIP Server Traffic Analysis

5.1 General Properties

SIP traffic on the studied server is generated by about 3400 active SIP User
Agents, mostly in Europe (41%), North America (25%) and Asia (22%). Other
continents are less involved (South America 6%, Africa 3% and Oceania 3%).

Some of the clients are represented by bulk services, such as ipkall or virtu-
alpbx. The User Agents are represented by about 280 distinct SIP client im-
plementations. The distribution of client types can be seen in Fig. 2. The most
frequently used SIP clients are AVM Fritzbox and Draytek (about 10% each).

Characteristics of Real Open SIP-Server Traffic 191

Various Linksys devices represent a significant fraction (12%) as well. Another
interesting aspect is the presence of mobile clients, representing about 12% of
users. The most used mobile SIP client implementations are Comrex (7.7% of
all clients), Acrobits(2.2%) and sipdroid(1.4%).

For this signaling-traffic analysis, we prefer to focus on the count of signaling
messages rather than its (tiny) byte volume, as it is rather the former which
influences SIP-server performance.

The split of traffic among TCP and UDP in numbers of packets is about 9:91
(less than 10% of traffic consists of TCP packets). Interestingly, only 150 out
of the 3308 registered users were registered as using TCP (150/3308 = 4.5%),
showing that the TCP clients generate more traffic than the UDP ones.

A graph of a typical one-day traffic can be seen in Fig. 3(a). About 8600 calls
are made per day and there are about 3400 registered users (slight fluctuations,
but no big changes if we do not count server outages that were observed in
the traffic dumps - reason unknown, probably network failure). Calls express
very strong 24-hour stability with just a small increases during prime-time. This
is due to the high amount of options/keep-alives in the traffic (see Fig. 3(b)),
caused by the deployed NAT traversal solution (notice that number of clients
behind NAT does not fluctuate, so the generated keep-alive traffic is stable).

The division of load among the request and response message types can be
seen in Fig. 4(a) and 4(b).

5.2 NAT Traversal

NAT traversal is still generally an unsolved problem of SIP. STUN is not reliable,
ICE is often not implemented and usage of media-relays invokes notable over-
head. Many clients and servers thus implement proprietary solutions – the most
common one being periodic sending of “keep-alives” – messages with predefined
content (OPTIONS and REGISTER being used most often). These messages
are supposed to keep the NAT binding alive, thus solving the problem.

Fig. 2. Distribution of user devices

192 J. Stanek, L. Kencl, and J. Kuthan

(a) SIP traffic, total. (b) SIP traffic, OPTIONS only.

Fig. 3. Measurements of one day traffic

About 1500 out of the 3400 total users (44%) were detected to be behind NAT
(from the view of the SIP server, actual number might be higher as some clients
solve it on their own e.g. using ALGs). As the SIP server is open and supposed
to support even proprietary SIP clients, it must use its own keep-alive messages
to prevent eventual loss of NAT bindings. The clients, however, are not aware
of this proactive server solution and run their own proprietary keep-alives. If
the keep-alive messages were not sent in short intervals, NAT bindings would
expire and clients would become unavailable for incoming calls. This results in
an enormous part of the observed traffic (over 50%, see below for more detail)
being just an exchange of proprietary keep-alive messages.

Considering the server-side NAT keep-alives only, every 15s there is one OP-
TIONS message sent per every client detected as behind the NAT, resulting in
roughly 8.64 million keep-alive requests per day. Not counting the responses to
these requests, this corresponds to about 33% of the total server traffic (there
are about 16.2 million requests and 9 million responses per day in total). Only
about 10% of the clients were able to respond to them, meaning that about 90%
of this excessive traffic was effectively useless.

(a) SIP request types (b) SIP response types

Fig. 4. Overall distribution of SIP message types

Characteristics of Real Open SIP-Server Traffic 193

The REGISTER requests represent about 20% of total traffic. This is mainly
due to every client re-registering after a predefined amount of time (default
600s) and some clients using the REGISTER requests as their NAT keep-alive
mechanism. Note that a successful registration in SIP requires two REGISTER
messages (first response indicates that authorization is necessary and provides
necessary information) and a REGISTER request with the Expires attribute
set to 0 is used for deregistration. Concretely, we have about 3400 clients, so
counting two REGISTER requests per a successful registration this amounts to
about 979200 REGISTER requests per day. In fact we observe about 3.3 million
REGISTER messages per day, so probably the rest are client NAT keep-alives.
The INVITE and BYE messages together represent only about 0.19% of all
requests per day (30564 out of 16154468).

In summary, NAT traversal from the server causes overhead of 33%. The
keep-alives from clients we can only estimate, but thanks to the high numbers
of OPTIONS and REGISTERs we can conjecture that keep-alive messages may
amount to over 50% of the total traffic.

5.3 HTTP Server / SIP Server Workload Comparison

It is a well known observation that typical network traffic follows Zipf’s law. We
analyzed this aspect in SIP traffic as well. For comparison, we have used data of
HTTP traffic from a freely available source at [23]. These data show a very clear
Zipf’s law observable by a straight line in a graph on a log-log scale. We have
created log-log graphs of SIP traffic of the first day of our capture, isolating the
requests and responses, see Fig 5(a) and Fig.5(b).

Obviously, this traffic does not exhibit Zipf’s law characteristics. The differ-
ence is caused by absence of sources with very low packet count (“mice”). This
can be expected due to the periodic registration property of SIP that leads to
periodically generated traffic and so one can hardly find a user sending only a few
SIP packets (at least 2 packets are sent during registration and re-registration,
occurring every 10 minutes).

SIP traffic thus does not generally follow Zipf’s law and assumptions valid for
network traffic should be handled with care when applied to SIP.

(a) SIP requests (b) SIP responses

Fig. 5. Log-log scale graphs of captured SIP traffic, Day 1

194 J. Stanek, L. Kencl, and J. Kuthan

5.4 Geographic Traffic Distribution

We have analyzed the division of traffic among countries and continents. Due to
limited space in the paper, we present only the continental-level traffic division
in Tables 1– 3. Clearly, the traffic is typically intra-continental (the non-zero
numbers are on the diagonal in the tables). There is one large deviation though
and that is traffic from North America to Asia. We scrutinized this unexpected
phenomenon and found out a service called Virtualphoneline that offers Ameri-
can phoneline numbers and routes them via SIP anywhere the customers need.
This way, for example a Chinese merchant can have an American helpline for
his American customers automatically rerouted to his offices in China. Very use-
ful and very unexpected to be run on a public, test-oriented SIP server. With
Virtualphoneline traffic subtracted, however, the calls are basically carried-out
intra-continentally, thus exhibiting geographic locality.

5.5 Registration Storms

Our analysis has shown that there is a big difference between normal traffic
and traffic during an unexpected event such as a registration storm. Users are
enforced to renew their registrations periodically (once each 600s). Considering
a theoretical situation where every client re-registers exactly after 600s, then
having 3400 clients one would expect traffic of approximately 12 REGISTER
requests per second. Many users are however re-registering more often. Our data
show that over 35% of the users have their re-registration interval set under 540s.
When we measured the real registration load over a 600s period we obtained
load of approx 65 requests per second (rps), much higher than the theoretical
expectation. We have also observed a few server outages. When measuring load
after an outage longer than 600s, it reached up to 900 rps after service renewal!

For a SIP service to be reliable, the server must be able to process the traffic
even in the worst-case scenario of a registration storm. Filtering would not help
as all the REGISTER requests are valid and must be processed. Overprovisioning
is sure to help, but would be quite expensive. A highly distributed cluster might
work, splitting outages to small parts served from different locations.

Table 1. Day 1

AF AS EU NA OC SA

AF 1 0 2 4 0 0
AS 1 169 4 26 5 0
EU 20 19 213 0 0 0
NA 19 355 18 114 1 1
OC 1 8 0 0 0 0
SA 0 0 0 0 0 11

Table 2. Day 2

AF AS EU NA OC SA

AF 1 0 4 4 0 0
AS 0 71 1 3 23 0
EU 10 0 109 2 12 0
NA 16 589 26 74 0 18
OC 0 7 11 0 0 0
SA 0 0 1 4 0 3

Table 3. Day 3

AF AS EU NA OC SA

AF 2 0 0 8 0 0
AS 2 289 0 1 5 0
EU 8 0 135 4 2 1
NA 3 202 5 148 1 1
OC 1 1 2 0 1 0
SA 0 0 2 0 0 0

Continental-level division of SIP traffic observed. Abbreviations stand for continents.
AF Africa, AS Asia, EU Europe, NA N. America, OC Oceania, SA S. America.

Characteristics of Real Open SIP-Server Traffic 195

6 Conclusion

The biggest issue we encountered, a large amount of “waste” traffic, stems from
misconfiguration and poor implementation of user devices and improper use of
NAT traversal mechanisms. Requests are often invalid, user devices unable to
process valid but specific SIP messages. A large portion of the traffic is thus
“wasted”, as the requests are not properly handled (about 90% of servers’ keep-
alive traffic was effectively useless.). These results show that it is imperative to
filter SIP traffic, whereby overall traffic could potentially be reduced by 60-70%.
Note that in the case of the non-signaling, media traffic (e.g. VoIP calls), the
overhead analysis might end-up differently, however, this paper focuses solely on
issues of signaling.

Proper anomaly detection could help and it would also address another vital
issue – security and protection of SIP infrastructure. Anomaly detection is gen-
erally hard – a lot of wasteful traffic and proprietary behavior complicates the
analysis. A public SIP service must be very liberal in what traffic it receives, it
must be prepared to deal with clients’ imperfections and compensate for these,
but at the same time it must not be prone to DoS attacks. Therefore anomaly
detection should be carried out separately. These requirements should be always
considered when deploying a SIP server as improper anomaly detection leads to
unexpected problems. Some of the common security solutions, based on traffic
limiting, might conflict with the “unexpected but harmless” behavior of miscon-
figured clients, thus blocking the service for legitimate clients. Service outage
then exacerbates the problem as legitimate clients generate valid REGISTER
requests which might create a false positive flood attack.

Our analysis showed that it not necessarily advantageous for SIP servers to be
migrated into cloud datacenters, as SIP traffic is very stable and does not exhibit
excessive spikes in terms of resources consumption. However, SIP traffic and,
more importantly, media traffic, also exhibits strong geographic locality. This
could be exploited using a cloud-based architecture since cloud providers usually
allow the choice of a geographic location for running the services. Therefore we
propose using distributed media relays in cloud. These could then be positioned
according to the needs of the individual domains/zones and one could avoid the
triangular routing introduced by UDP relays.

As future work we intend to analyze the registration storms and possibilities of
minimizing their impact. We also plan to create a SIP-trace anonymizer so that
our SIP traffic data can be made publicly available. Due to the nature of SIP, it
is not possible to release the data simply IP-anonymized because it still contains
interconnected personal information (usernames, domains, locations etc.) spread
across different parts of multiple SIP messages. In spite of our every intention
for public release of the data, proper anonymization that would maintain the
analytical value appears to be a research problem on its own and will take some
time to solve. Until the anonymizer is finished (we plan for Q2 2013 the latest)
we can only share the data analyzed in this paper under NDA (please do not
hesitate to contact us, if interested).

196 J. Stanek, L. Kencl, and J. Kuthan

Acknowledgment. We thank iptel.org for generously providing access to its
SIP-server traffic records. We also thank P. Kasparek and V. Kubart for help
with data analysis.

References

1. Handley et. al. Sip: Session initiation protocol (rfc 2543),
http://www.ietf.org/rfc/rfc2543.txt

2. Rosenberg et. al. Sip: Session initiation protocol (rfc 3261),
http://www.ietf.org/rfc/rfc3261.txt

3. Rosenberg, J., et al.: Session traversal utilities for nat (stun),
http://tools.ietf.org/html/rfc5389

4. Mahy, R., et al.: Traversal using relays around nat (turn): Relay extensions to
session traversal utilities for nat (stun), http://tools.ietf.org/html/rfc5766

5. Rosenberg, J.: Ice: A protocol for network address translator traversal for of-
fer/answer protocols, http://tools.ietf.org/html/rfc5245

6. Sparks, R.: Sip: Basics and beyond. Queue 5(2), 22–33 (2007)
7. Prasad, J.K., Kumar, B.A.: Analysis of sip and realization of advanced ip-pbx

features. In: ICECT 2011, vol. 6, pp. 218–222 (April 2011)
8. Yeryomin, Y., Evers, F., Seitz, J.: Solving the firewall and nat traversal issues for

sip-based voip. In: ICT 2008, pp. 1–6 (June 2008)
9. Song, M., Chi, J., Pi, R., Song, J.: Implementing an express sip nat traversal server.

In: ICPCA 2007, pp. 527–529 (July 2007)
10. Heo, J., Chen, E.Y., Kusumoto, T., Itoh, M.: Statistical sip traffic modeling and

analysis system. In: ISCIT, pp. 1223 –1228 (2010)
11. Cortes, M., Ensor, J.R., Esteban, J.O.: On sip performance. Bell Labs Technical

Journal 9(3), 155–172 (2004)
12. Kang, H.J., Zhang, Z.-L., Ranjan, S., Nucci, A.: Sip-based voip traffic behavior

profiling and its applications. In: MineNet 2007, pp. 39–44 (2007)
13. Ehlert, S., Wang, C., Magedanz, T., Sisalem, D.: Specification-based denial-of-

service detection for sip voice-over-ip networks. In: Internet Monitoring and Pro-
tection, ICIMP 2008, June 29 -July 5, pp. 59–66 (2008)

14. Nassar, M., State, R., Festor, O.: Monitoring SIP Traffic Using Support Vector
Machines. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS,
vol. 5230, pp. 311–330. Springer, Heidelberg (2008)

15. Hentehzadeh, N., et al.: Statistical analysis of self-similar session initiation proto-
col (sip) messages for anomaly detection. In: 2011 4th IFIP Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5 (February 2011)

16. Ali Akbar, M., Farooq, M.: Application of evolutionary algorithms in detection of
sip based flooding attacks. In: GECCO 2009 (2009)

17. Sisalem, D., Kuthan, J., Ehlert, S.: Denial of service attacks targeting a sip voip
infrastructure: attack scenarios and prevention mechanisms. IEEE Network 20(5),
26–31 (2006)

18. Andel, L., Kuthan, J., Sisalem, D.: Distributed media server architecture for sip
using ip anycast. In: IPTComm 2009, pp. 5:1–5:11 (2009)

19. Community of developers. The sip router project (developed from openser),
http://sip-router.org/

http://www.ietf.org/rfc/rfc2543.txt
http://www.ietf.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5245
http://sip-router.org/

Characteristics of Real Open SIP-Server Traffic 197

20. Van Jacobson, Leres, C., McCanne, S., many later contributors: Tcpdump: Com-
mandline packet analyzer, http://www.tcpdump.org/

21. Combs, G., contributors: Wireshark - network protocol analyzer,
http://www.wireshark.org

22. WEBNet77. Ip to country multi-lookup tool,
http://software77.net/geo-ip/multi-lookup/

23. ACM SIGCOMM partners. The internet traffic archive,
http://ita.ee.lbl.gov/html/traces.html

http://www.tcpdump.org/
http://www.wireshark.org
http://software77.net/geo-ip/multi-lookup/
http://ita.ee.lbl.gov/html/traces.html

Trying Broadband Characterization at Home

Mario A. Sánchez, John S. Otto,
Zachary S. Bischof, and Fabián E. Bustamante

Northwestern University
{msanchez,jotto,zbischof,fabianb}@eecs.northwestern.edu

Abstract. In recent years the quantity and diversity of Internet-enabled
consumer devices in the home have increased significantly. These trends
complicate device usability and home resource management and have
implications for crowdsourced approaches to broadband characterization.

The UPnP protocol has emerged as an open standard for device and
service discovery to simplify device usability and resource management
in home networks. In this work, we leverage UPnP to understand the
dynamics of home device usage, both at a macro and micro level, and
to sketch an effective approach to broadband characterization that runs
behind the last meter.

Using UPnP measurements collected from over 13K end users, we
show that while home networks can be quite complex, the number of
devices that actively and regularly connect to the Internet is limited.
Furthermore, we find a high correlation between the number of UPnP-
enabled devices in home networks and the presence of UPnP-enabled
gateways, and show how this can be leveraged for effective broadband
characterization.

1 Introduction

Over the last few years we have seen a dramatic increase in the quantity and
diversity of Internet-enabled consumer devices in the home. Recent reports
suggest that shipments of Internet-ready electronic devices – such as televisions
and video game consoles – will surpass 500M units by 2013, triple the amount
shipped in 2010.1

This unparalleled growth challenges home network usability and resource
management, and has implications for broadband characterization behind the
last mile [1, 7, 8, 10].

The Universal Plug and Play (UPnP) protocol has emerged as an open
standard to address some of these challenges [11], with a growing number of
devices supporting it. 2 In this work, we leverage UPnP to understand the

1 http://www.isuppli.com/home-and-consumer-electronics/news/pages/

shipments-of-internet-enabled-consumer-devices-to-exceed-pcs-

in-2013.aspx
2 http://realwire.com/releases/UPnP-Technology-Adoption-Continues-to-Soar

-With-New-Areas-of-Growth

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 198–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.isuppli.com/home-and-consumer-electronics/news/pages/shipments-of-internet-enabled-consumer-devices-to-exceed-pcs-in-2013.aspx
http://www.isuppli.com/home-and-consumer-electronics/news/pages/shipments-of-internet-enabled-consumer-devices-to-exceed-pcs-in-2013.aspx
http://www.isuppli.com/home-and-consumer-electronics/news/pages/shipments-of-internet-enabled-consumer-devices-to-exceed-pcs-in-2013.aspx
http://realwire.com/releases/UPnP-Technology-Adoption-Continues-to-Soar-With-New-Areas-of-Growth
http://realwire.com/releases/UPnP-Technology-Adoption-Continues-to-Soar-With-New-Areas-of-Growth

Trying Broadband Characterization at Home 199

dynamics of home device usage and to sketch an effective approach to broadband
characterization that runs behind the last meter. Previous studies have used
UPnP data to better understand home networks, focusing on characterizing
the number and type of devices present [5] or inferring network characteristics
including bandwidth and packet loss rates [4]. However, these studies have
typically been based on single snapshot tests. In contrast, our analysis is based
on measurements collected continuously from over 13K Dasu [9] users and studies
the implications of this on broadband characterization.

We use the collected data to show the complexity of home networks in
terms of number and type of devices detected (Sec. 3). We classify the devices
found based on their likelihood of generating cross-traffic on the access link and
analyze the dynamics of devices usage both at a macro (when devices are on/off)
and micro level (when turned-on devices exchange data). We demonstrate that
while in many cases the number of devices in the network is high, only a few
of them actively and regularly connect to the Internet, potentially interfering
with network measurements (Sec. 4). Furthermore, we find a strong correlation
between the number of UPnP-enabled devices in the home network and the
presence of UPnP-enabled gateways and suggest how this can be leveraged for
effective broadband characterization from the home (Sec. 5).

2 Data Collection and Dataset

We conduct our analysis using data collected with Dasu, a platform aimed
at broadband characterization and network experimentation [9]. We use a
combination of passive and limited active measurements gathered over a 6-month
period between February 24, 2012 and August 23, 2012. This dataset includes
traces of BitTorrent and overall home network activity collected by Dasu from
13,605 homes spanning 151 countries.3

Each Dasu client periodically (at 30s intervals) collected anonymized traffic
traces from BitTorrent’s activity, including the number of bytes uploaded and
downloaded as well as the current transfer speed, the total number of bytes
sent/received was also captured using netstat. Beyond this passively collected
data, clients also scanned the local network in search of Internet gateway devices
using UPnP, following an approach based on DiCioccio et al. [5, 6].

For each gateway device responding to UPnP discovery messages, Dasu pulled
their device definition XML data and collected the following configuration
parameters: (a) current state of NAT for this connection, (b) external IP address,
(c) current connection type (Cable, DSL), (d) maximum upstream/downstream
bit rate available, (e) device model name and version. At the same rate, clients
also retrieved dynamic information from the gateway including (f) cumulative
count of bytes and packets received and (g) sent, as well as (h) the connection
status.

3 The dataset is available to other researchers upon request.

200 M.A. Sánchez et al.

-1 0 1 2 3 4 >=5

annouced UPnP devices

0

5

10

15

20

25

30

35

40

%
 h

o
m

e
 n

e
t
w

o
r
k
s

34.5%

28.8%

20.3%

10.2%

4.1%

2.1%

Fig. 1. UPnP-enabled devices
in home networks

Cable/DSL/ISP

78.7%NSP 14.7%

Educ./Research 3.3%

Content 3.3%

Fig. 2. Connection types for locations
with ≥ 5 UPnP devices

A subset of clients periodically broadcasted UPnP discovery messages and
recorded, for each responding device: (a) devices’ uuid and UDN, (b) device
type, (c) manufacturer, (d) model name and (e) model number.

Since Dasu is implemented as a BitTorrent client extension, there is a possible
concern that our conclusions could be affected by some type of bias common to
BitTorrent users, such as a particular set of countries, connection or user type.
We argue that BitTorrent users can be seen as early adopters and thus, in a
sense, worst-case scenarios in terms of the level of complexity in home networks.
In the following section we show that the collected dataset comes almost entirely
(93%) from clients in typical residential networks and spread over a diverse set
of nearly 100 countries.

3 The Home Network – A Complex Environment

In this section, we examine the complexity of home networks in terms of
number and diversity of connected devices. Given our end-goal of deriving an
effective approach to crowdsourced broadband characterization from end-hosts,
we present our findings in this context.

We first look at the number of networked devices found, which we estimate
for a subset of ≈4.6K of our client’s locations using UPnP discovery messages.
Figure 1 shows the distribution of clients’ locations by the number of UPnP
announced devices found. While 34.5% of sampled locations have no UPnP
devices announcing their presence, over 65% of them has at least 1 device, and
over 16% have 3 or more devices.

We know of two possible sources of errors in this estimation. By relying on
UPnP discovery messages, our measurement approach can miss devices that do
not support UPnP. On the other hand, it is also possible that multiple UPnP
services can be hosted by the same device, so that by counting each announced-
service as a different “device” we might be over-counting the number of UPnP-
enabled devices in the network. We plan to address both issues as part of our
future work.

To evaluate potential biases in our dataset, we analyze the distribution of
sampled locations based on type of network connection. Type of connection

Trying Broadband Characterization at Home 201

Australia USA S. Africa Japan France India Brazil
0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

um
be

r
of

 U
P

nP
-e

na
bl

ed
 d

ev
ic

es

Fig. 3. Mean number of announced de-
vices for homes across different countries

Table 1. Top ten countries with > 1%
of homes

Country % Country %
Italy 2.68% Switzerland 4.62%
Austria 2.95% Germany 4.91%
Portugal 2.95% Great Britain 6.42%
Canada 4.17% France 8.03%
Australia 4.35% USA 25.61%

can indicate something other than a residential network (such as educational
or enterprise) which could bias our results, especially for locations with large
number of UPnP devices. We focus thus our attention on those locations in
our dataset with five or more devices. There are 96 such locations distributed
over 61 different autonomous systems (ASes). We map most of these ASes to
their business type using the peeringDb4 database and manually label those for
which we could not find an entry. Figure 2 shows the percentage of location
per business type (i.e. Network Service Provider, Education/Research, Content,
and Cable/DSL/ISP). As the figure shows, the sampled dataset comes almost
entirely from broadband providers (i.e., Cable/DSL/ISP and NSP). Interestingly,
the average (and median) numbers of devices for each of these business types
are very similar ranging between 5 and 6.5 devices.

We now analyze the adoption of UPnP across different countries by looking
at the number of UPnP-enabled devices connected to the sampled locations in
different countries. For this analysis we restrict our set to countries with more
than 50 homes and select for each home the snapshot with the largest number
of announced devices across all samples. In terms of potential biases due to
the countries where our clients are located (such as an unexpected fraction of
locations in a few high-income countries), we find that the sampled locations
come from ≈100 different countries, with ten or more locations in nearly half of
them. Table 1 shows the top ten countries in our dataset with more than 1% of
sample locations.

Figure 3 plots the mean number of announced devices for homes across
different countries. The bars show the lower bound on the 1-sided 95% confidence
interval, the line shows the 2-sided 95% confidence interval, and the X plots the
mean value across all samples. We used the Student’s t-distribution to compute
the confidence intervals (as the population’s standard deviation is unknown).
The figure shows that high(er) income countries tend to have a higher number
of UPnP-enabled devices in the home network.

To study the diversity of home network devices we classify the found UPnP-
enabled devices and study their prevalence. For common devices we use the

4 https://www.peeringdb.com

https://www.peeringdb.com

202 M.A. Sánchez et al.

g
a
te

w
a
y

D
M

P

D
M

S

D
M

R

D
M

P
r

D
M

C

D
ig

it
a
lO

rg
a
n
iz

e
r

s
to

ra
g
e

g
a
m

e
C

o
n
s
o
le

T
V

c
a
m

e
ra

S
e
tu

p
B

o
x

H
o
u
s
e
A

u
to

m
a
ti

o
n

o
th

e
r0

10

20

30

40

50

60
p
e
rc

e
n
ta

g
e
 o

f
h
o
m

e
s
 (

%
) 58.4%57.0%

17.8%
15.4%

2.1% 2.2% 2.4% 2.0% 0.9% 0.7% 0.3% 0.2% 0.0%
1.7%

Fig. 4. The different UPnP devices and
their popularity

0 1 2 3 4 >=5

annouced UPnP devices

0

10

20

30

40

50

%
 h

o
m

e
s
 w

it
h
 a

n
 e

x
t
e
r
n
a
l
U

P
n
P
 d

e
v
ic

e

1.0%
2.6%

6.2%

15.3%

43.8%

Fig. 5. Percentage of homes with
external devices based on number
of UPnP-announced devices

DLNA’s “Home Network Device” specification5 to categorize them and divide
the rest into functional classes such as storage, cameras or television. We labeled
each device class as Internal and External based on their dominant network
role – externally-facing devices that exchange traffic with the outside world (e.g.
TV) or internally-facing devices that exchange traffic mostly within the home
network (e.g. Storage). Given that the purpose of DLNA devices is to share
media within the home (e.g. Digital Organizers, and Storage), each of these
device classes are labeled as Internal. We classify the remaining classes of devices
as external, including Others. We treat the Gateway category (e.g. DSL modems,
WiFi routers) as its own class.

Table 2. Different classes of UPnP-enabled devices and their prevalence

Device Type Connection Perc.
Gateway Gateway 36.7%
Digital Media Player (DMP) Internal 34.7%
Digital Media Server (DMS) Internal 10.2%
Digital Media Renderer (DMR) Internal 9.5%
Digital Media Printer (DMPr) Internal 1.2%
Digital Media Controller (DMC) Internal 1.2%
Digital Organizer Internal 1.3%
Storage Internal 1.1%
Game Console External 0.5%
TV External 0.3%
Camera External 0.2%
SetupBox External 0.1%
House Automation External < 0.1%
Other External 1.5%

Table 2 shows the different device classes identified in our traces. From the
≈6K devices seen across ≈3K peers the most popular device type are gateways
(over 35%) followed by a large number of DLNA-compliant devices, including
Digital Media Players (34.7%), Digital Media Servers (10.2%) and Digital Media

5 http://dlna.org/dlna-for-industry/digital-living/

how-it-works/dlna-device-classes

http://dlna.org/dlna-for-industry/digital-living/how-it-works/dlna-device-classes
http://dlna.org/dlna-for-industry/digital-living/how-it-works/dlna-device-classes

Trying Broadband Characterization at Home 203

Renderers (9.5%). Changing focus to the distribution of these devices in the
sampled locations, Fig. 4 plots the popularity of each device type across the
studied locations with at least one UPnP-enabled device in their network. We
note the high popularity of Digital Media Players, Servers and Renderers.

In the context of broadband characterization, we are particularly interested in
the distribution of internally- and externally-facing devices. Figure 5 shows the
fraction of home networks within each group for which at least one externally-
facing device was identified. Not surprisingly, as the number of announced devices
in the network increases so does the probability that at least one of those devices
be an external device.

3.1 Prevalence of UPnP-Enabled Gateways

UPnP-enabled gateways are helpful for managing resources and monitoring the
state of the network. Although UPnP-enabled gateways are not always available,
their presence is particularly important in home networks with high number of
devices, where cross-traffic could interfere with characterization.

Figure 6a shows the availability of UPnP-enabled home gateways in our
sample. The figure plots the fraction of homes, with a given number of UPnP
devices, in which such a gateway is present. As the number of UPnP-enabled
devices in the local network increases, so does the likelihood that the home
gateway supports UPnP.

0 1 2 3 4 >=5
annouced UPnP devices

0

10

20

30

40

50

60

70

80

90

%
 h

o
m

e
s
 w

it
h
 U

P
n
P
-e

n
a
b
le

d
 g

a
te

w
a
y

44.9%

63.0%

74.7%

81.5%

72.9%

(a) Homes

0 10 20 30 40 50 60 70 80 90 100
% of users with UPnP-enabled gateways

India

Algeria

S. Africa

Brazil

USA

Japan

France

Australia

(b) Countries

Fig. 6. Prevalence of UPnP-enabled gateways in sampled homes, clustered based on
number of UPnP-enabled devices announced (6a) and (for a subset) by country (6b)

Last, we examine variations in the prevalence of UPnP-enabled gateways
across countries. For this purpose, if a UPnP gateway is ever seen in a home
network, we consider that sample as having a UPnP-enabled gateway. We group
these homes by their ISP’s country, giving us an estimate of each country’s
percentage of homes with UPnP-enabled gateways. We treat the data for each
country as a sample from a binomial distribution and use the Wilson method to
estimate confidence intervals.

204 M.A. Sánchez et al.

Figure 6b plots the prevalence of UPnP-enabled gateways for several countries
in our dataset. To account for different sample sizes across countries, we use
the lower bound of the one-sided 95% confidence interval as a conservative
estimate of the percentage of homes with UPnP in a given country. This means
that there is a 95% chance that the actual percentage is at least the shown
value. On the x axis, we show the proportion of samples having UPnP-enabled
gateways and lines showing the extent of the two-sided 95% confidence intervals.
In general, we find that more developed countries tend to have higher rates of
UPnP-enabled gateways (as well as more complex home networks), hinting at a
possible trend towards better environments for broadband characterization from
end systems [2, 3].

4 Device Usage Dynamics

As the number of devices connected to the home network increases, so does the
likelihood that the access link will be used by multiple devices simultaneously,
potentially interfering with measurements looking to characterize the access link.
In this section, we analyze the macro dynamics of network device usage – the
frequency with which devices in the home network are active. We look at the
micro dynamics – the rate and volume of traffic generated by these device – in
the next section.

0 20 40 60 80 100
% of home's samples with 0 devices

0

20

40

60

80

100

%
 o

f
h
o
m

e
s

external_devices

all_devices

Fig. 7. Distribution of the fraction of
homes vs the fraction of samples for which
no other UPnP-device is present in the
network

To study device dynamics, we
leverage the fact that Dasu runs for
long periods at a time (the median
session time of a client is 178 minutes)
and is thus able to take multiple
snapshots of the active UPnP-enabled
devices present on the network over
time. We restrict the set of home
networks to those for which we have
at least 10 different sample snapshots
and where there is more than one
UPnP-enabled device announced and
at least one of those is outer-facing.
This set consists of 502 different home
networks.

We rank all locations based on the
percentage of measurement samples
where we find no other device/no external device active other than the host
machine. Figure 7 plots the CDF for both – any device active (labeled all devices)
and external device active (labeled external device). As the figure shows, for
nearly 85% of the locations, the host computer where our measurement client
is running is the only active external device in the network for at least 10% of
measurement samples. For the median location, about 20% of the measurement
samples occur when the host computer is the only active device in the network
and nearly 50% of them when there is no other external device present.

Trying Broadband Characterization at Home 205

5 Broadband Characterization with UPnP Help

The following two sections sketch an approach for effective end-system-based
broadband characterization that takes advantage of UPnP-enabled gateways and
illustrate its use with specific traffic scenarios.

Two sources of concern for broadband characterization from end systems are
the presence of cross-traffic from other applications in the hosting devices and
from other devices in the home network. We use netstat, a network statistics
tool available in most platforms, to capture the number of bytes sent and received
from the host and compare it against the amount of traffic monitored by our
client. This allows us to identify situations where significant amount of traffic is
being generated by other applications in the host device.

The second type of cross traffic is the one generated by other devices in the
network. To identify such cases we employ the technique described by DiCioccio
et al. [4] where UPnP-enabled home gateways are periodically queried to measure
traffic in the home network. In cases where the UPnP-supplied data is both
available and accurate, the authors showed that this technique provides a rich
source of information for inferring the presence of cross traffic in the home
network. Thus, for homes with UPnP-enabled gateways, we periodically query
for traffic counters across its WAN interface (the number of bytes and packets
sent and received). When we identify times where the number of packets or bytes
sent or received is high enough to affect our measurements we simply discard (if
passive) or postpone (if active) our measurements. While gateway UPnP traffic
counters are not always accurate [4], such instances can be easily identified and
accounted for.

5.1 The Value of UPnP-Counters

We now present some concrete examples of how traffic counters from UPnP-
enabled gateways allow us to disambiguate between different scenarios inside the
home network. Using data collected from our Dasu users we show, for instance,
how the presence of internal traffic can be identified and separated from traffic
that uses the access link, both from the local host and other devices within the
network.

No cross-traffic. As explained in Sec. 2, our traces contain the network activity as
seen by each individual Dasu client at three different granularities. (i) Because
Dasu runs as part of a network intensive application (BitTorrent) our traces
contain traffic statistics about the number of bytes sent and received by the
application alone. (ii) By using netstat, these traces also contain the overall
traffic activity of the host, including the traffic generated simultaneously by
all running applications at the time of collection. Finally, (iii) the client collects
UPnP-supplied traffic data from the gateway which includes the number of bytes
sent and received across the gateway’s WAN interface.

Figure 8a shows the simplest scenario – where BitTorrent is solely responsible
for the network traffic using the access link and the only source of traffic

206 M.A. Sánchez et al.

generated by the host. The figure plots the download activity of one Dasu client
in a span of 15 hours in August 2012. Each of the three signals in the graph
represents the number of downloaded bytes as reported by BitTorrent (blue),
netstat (black), and the gateway counters (red), respectively, in intervals of
30 seconds increment. As the figure shows, all three signals overlap when Dasu’
hosting application (BitTorrent) is the only network active application.

Local cross-traffic from other applications. Figure 8b plots the upload activity of
another client, also for a span of 15 hours in June 2012. As before, the client is
solely responsible for all the traffic present in the access link, but here BitTorrent
is not the only network active application. As the figure shows, the signals that
correspond to the local netstat counters (black) and the UPnP-counters at the
gateway (red) overlap through the entire collection period (i.e., the client is the
only device using the access link), but the signal that corresponds to BitTorrent
traffic (blue) is much lower than that of netstat for the first five hours (300
minutes) of the session.

0 100 200 300 400 500 600 700 800 900

elapsed time (minutes)

0

1

2

3

4

5

6

7

8

d
o
w

n
lo

a
d
e
d
 d

a
ta

 (
M

B
)

BitTorrent - local

Netstat - local

UPnP - gateway

(a) No cross-traffic.

0 100 200 300 400 500 600 700 800 900

elapsed time (minutes)

0

1

2

3

4

5

6

7

8

u
p
lo

a
d
e
d
 d

a
ta

 (
M

B
)

BitTorrent - local

Netstat - local

UPnP - gateway

(b) Local cross-traffic (up).

0 100 200 300 400 500 600

elapsed time (minutes)

0

5

10

15
d
o
w

n
lo

a
d
e
d
 d

a
ta

 (
M

B
)

BitTorrent - local

Netstat - local

UPnP - gateway

(c) Cross-traffic (down).

Fig. 8. Traffic scenarios within the home network: (8a) download with no cross-traffic,
(8b) local cross-traffic from other applications and (8c) download cross-traffic.

Cross-traffic from other devices. Figure 8c shows our last scenario, where there
is significant cross-traffic from other devices in the home network. The figure
plots download activity seen from a client over a span of five hours. In this
case, there’s no BitTorrent content being downloaded (the BitTorrent signal is a
flat horizontal line around 0 bytes), but there is local traffic being generated by
other applications in the host device (denoted by the black signal). However, for
the first ≈ 200 minutes of the session, the traffic generated by the host devices
represents only a small fraction of the total traffic present in the access link
(red signal). The figure also shows the easily identifiable point at which the
cross-traffic disappears.

6 Conclusion

The increasing complexity of home networks complicates device usability and
home resource management and has implications for crowdsourced approaches

Trying Broadband Characterization at Home 207

to broadband characterization. In this work, we rely on UPnP measurements
collected from over 13k end users study the complexity of home networks
around the world. We presented a first look at the home network usage, both
at a macro and micro level, and sketched an effective approach to broadband
characterization that runs behind the last meter.

Acknowledgements. We would like to thank our shepherd, Aaditeshwar Seth,
and the anonymous reviewers for their valuable feedback. We are always grateful
to Paul Gardner for his assistance with Vuze and the users of our software for
their invaluable data. This work was supported in part by the National Science
Foundation through Awards CNS 1218287, CNS 0917233 and II 0855253 and by
a generous Google Faculty Research Award.

References

1. Bischof, Z.S., Otto, J.S., Bustamante, F.E.: Up, down, and around the stack: ISP
characterization from network intensive applications. In: Proc. of W-MUST (2012)

2. Bischof, Z.S., Otto, J.S., Sánchez, M.A., Rula, J.P., Choffnes, D.R., Bustamante,
F.E.: Crowdsourcing ISP characterization to the network edge. In: Proc. of W-
MUST (2011).

3. Canadi, I., Barford, P., Sommers, J.: Revisiting broadband performance. In: Proc.
of IMC (2012)

4. DiCioccio, L., Teixeira, R., May, M., Kreibich, C.: Probe and Pray: Using UPnP for
Home Network Measurements. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS,
vol. 7192, pp. 96–105. Springer, Heidelberg (2012)

5. DiCioccio, L., Teixeira, R., Rosenberg, C.: Characterizing Home Networks With
HomeNet Profiler. Tech. rep., Technicolor, 09, CP-PRL-2011-09-0001 (2011)

6. DiCioccio, L., Teixeira, R., Rosenberg, C.: Measuring and characterizing home
networks. In: Proc. of ACM SIGMETRICS (2012)

7. Dischinger, M., Marcon, M., Guha, S., Gummadi, K.P., Mahajan, R., Saroiu, S.:
Glasnost: enabling end users to detect traffic differentiation. In: Proc. of USENIX
NSDI (2010)

8. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge
network. In: Proc. of IMC (2010)

9. Sánchez, M.A., Otto, J.S., Bischof, Z.S., Choffnes, D.R., Bustamante, F.E.,
Krishnamurthy, B., Willinger, W.: Dasu: Pushing experiments to the Internet’s
edge. In: Proc. of USENIX NSDI (2013)

10. Sundaresan, S., de Donato, W., Feamster, N., Teixeira, R., Crawford, S., Pescapè,
A.: Broadband Internet performance: a view from the gateway. In: Proc. of ACM
SIGCOMM (2011)

11. UPnP Forum. UPnP Device Management - Simplify the Administration of your
Devices. Tech. rep., University of Zurich, Department of Informatics (April 2011)

Searching for Spam: Detecting Fraudulent

Accounts via Web Search

Marcel Flores and Aleksandar Kuzmanovic

Northwestern University
marcel-flores@u.northwestern.edu, akuzma@cs.northwestern.edu

Abstract. Twitter users are harassed increasingly often by unsolicited
messages that waste time and mislead users into clicking nefarious links.
While increasingly powerful methods have been designed to detect spam,
many depend on complex methods that require training and analyzing
message content. While many of these systems are fast, implementing
them in real time could present numerous challenges.

Previous work has shown that large portions of spam originate from
fraudulent accounts. We therefore propose a system which uses web
searches to determine if a given account is fraudulent. The system uses
the web searches to measure the online presence of a user and labels
accounts with insufficient web presence to likely be fraudulent. Using
our system on a collection of actual Twitter messages, we are able to
achieve a true positive rate over 74% and a false positive rate below
11%, a detection rate comparable to those achieved by more expensive
methods.

Given its ability to operate before an account has produced a single
tweet, we propose that our system could be used most effectively by
combining it with slower more expensive machine learning methods as
a first line of defense, alerting the system of fraudulent accounts before
they have an opportunity to inject any spam into the ecosystem.

1 Introduction

As social networks have continued to grow in popularity, so has the problem of
spam. The Twitter social network presents a fresh set of challenges to the task
of spam detection [1]. The forced brevity of 140 characters has made many of
the tools for detecting email spam unusable, as one can no longer depend on
legitimate messages being longer [2]. The popularity of URL shorteners further
obfuscates messages, making the already difficult task of URL blacklisting even
more difficult [1,3]. Social links in the Twitter network are also non-symmetric,
complicating detection methods that depend on implicit trust in the network.

While often very effective, current spam detection strategies generally depend
on account features that manifest themselves after the account has been active,
such as message format and content, as well as position in the social graph. This
requirement creates a delay, and even detection methods which are able to train
rapidly are unable to stop the first volleys of spam that are injected into the
system.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 208–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Searching for Spam: Detecting Fraudulent Accounts via Web Search 209

However, the explosive popularity of Online Social Networks (OSNs) has had
another effect: legitimate users often participate in multiple, interlinking, online
services. Users will often use the same, or similar names, for various accounts
across the web. It is therefore not overly difficult to detect the presence of the
same user on multiple sites. In contrast, spammers would have difficulty emu-
lating such a dynamic web presence. While creating fraudulent accounts on a
single website may often be possible: creating a batch of coordinated accounts
across services would require defeating a varied array of spam detection systems.
To make matters worse for spammers, if they create an online persona across
services which is flagged as spam in one service, it could be easily linked to its
other accounts, making it easier to identify as spam in the remaining services.

Therefore, in order to detect fraudulent accounts, one could measure exactly
this distributed online presence. Not only is it extremely robust to any sort of
escalation by spammers, it can also be performed quickly and cheaply using
existing indices of web content. Through nothing more than a web search, one
can measure how frequently an account name, or similar identifier, appears on
the web, and therefore determine if the account is likely to be legitimate. Since
this check requires only that the user have an account, it does not depend on
social graph information or content posted by the user, and can therefore be
performed before the user has taken any actions in a particular network.

In this paper, we present a spam detection method which uses the results of
web searches for accounts to detect the presence of fraudulent accounts in the
Twitter social network. First we consider an overview of the current state-of-
the-art methods. We then discuss the in-depth design of our system, and some
of the challenges of measuring web presence. Next, we describe an analysis on
a collection of actual Twitter accounts, and show that we are able to detect
74.23% of the fraudulent accounts. Finally, we discuss how this procedure could
be integrated into existing spam detection workflows and be extended beyond
the Twitter network.

2 Background

One common form of spam on Twitter is a “mention,” an interaction in which a
user uses the name of another user in a message, generating a notification for the
user whose name was used. Since the user who performs the mention need not
be linked to the receiver in any way, these messages may be unsolicited. Often
times these mentions will come in response to the use of a keyword for which
lurking spam accounts are watching. For example, the use of the word “phone”
in the tweet “I recovered my phone!” by user1, received the reply “@user1 Check
out great phone cases! http://nefariouslink.info ” from a spam bot with no net-
work links to the original poster. While there are other ways for spam URLs
and messages to be distributed through Twitter, this method is both the most
disruptive and difficult to avoid.

Previous attempts to detect and measure spam in Twitter and other OSNs
have considered a number of information sources. Analysis of the URLs posted

210 M. Flores and A. Kuzmanovic

by spammers has proven effective in certain cases, and has enabled the catego-
rization of spam messages into larger spam campaigns [4,1]. Another method
explicitly analyzes the content of posted URLs and aims to determine if the
linked pages are spam [5]. While an important part of spam detection, these
techniques often perform too slowly to prevent users from being exposed to
spam links [1].

Others techniques use both the content of the messages, profile information,
and information from the Twitter social graph to try and determine the nature
of tweets [6,7,8,9,10,11]. Even more complex methods have further used similar
types of information to determine which large scale campaign a spam tweet
belongs [2,4,12,3]. These methods are often effective but rely on complex training
and analysis.

We propose the use of near-instantly available outside information to make an
initial call on the nature of an account. This system is designed to work along-
side existing, more computationally heavy systems that may require significant
training time. By combining such systems, one could avoid much of the initial
exposure to spam, while still accurately eliminating fraudulent accounts.

Outside information from the web has been used previously in determining
context of messages on Twitter [13], however it was largely used for the purposes
of classification and analysis of actual tweet text, rather than the detection of
spam. While past experiments have suggested that most spam originates from
compromised accounts [1], more recent studies have found that this may not be
the full picture and that fraudulent accounts contribute significantly to spam on
Twitter [3]. Our method therefore focuses on the detection of fraudulent accounts
created expressly for distributing spam, rather than a per-message analysis. This
decision could allow for accounts to be checked even before they are able to send
out any malicious messages, rather than attempting to classify messages as they
are sent.

3 Design

Our system is designed to work on the account granularity, and therefore an-
alyzes a given account and attempts to determine if the account is fraudulent.
We attempt to perform this determination by measuring a user’s web presence
beyond Twitter.

There are a number of reasons why one might expect that such information
could provide a reasonable means by which to differentiate spam from legitimate
users. First, creators and users of spam accounts have incentive to create accounts
which are not easily linked to other related entities on the web, as they could
then easily be flagged as spam and blacklisted. Furthermore, the cost of creating
matching fraudulent accounts on different services would be extremely high, as
in general each of these services employ their own spam detection algorithms.
Legitimate users, on the other hand, experience the exact opposite incentive:
linking a Twitter account to other web services (from forum accounts to blogs
to businesses), allows users to reach a larger audience.

Searching for Spam: Detecting Fraudulent Accounts via Web Search 211

Twitter
Stream

Search
Module

Analysis
Module

DecisionsAccount Status
Check

Accuracy
Check

Fig. 1. Spam detection system overview. Dotted lines indicate portions used only in
the experiment.

Our system detects these connections, or lack of connections, by use of a web
search. Accounts which are easily connected to outside portions of the web are
then likely to be legitimate users. We note that this system is not designed to
operate on its own as the sole arbiter of spam. Instead, it is designed to act as
an additional source of information in a comprehensive spam detection system.

3.1 Methods

We emphasize that our system needs no information from the Twitter network
aside from the account’s unique username and display name, and can therefore
be used on an account as soon as it is created. For our verification in Sect. 4, we
only consider accounts which have performed a mention which contains a URL.
However this was largely for data collection convenience and is not indicative of
any limitation in the system.

Figure 1 provides an overview of the system. First, we feed the input data
from Twitter through the search module. This module performs a web search
for the username (the unique account name that the user has selected) and the
display name (the non-unique name the user has selected for display). We note
that Twitter does not require a meaningful display name, and, as a result, many
are filled with business names, titles, and nicknames.

After the searches are performed, the result sets are fed into the analysis
module. We perform a number of noise-reduction techniques in order to elim-
inate results that are often returned for any search of a Twitter user, but do
not meaningfully distinguish spam and non-spam accounts. We describe these
techniques in more detail in Sect. 3.2. Finally, the analysis module examines the
remaining results for the account. If there are no results for either the username
and the display name, the account is marked as spam. Otherwise, the account
is presumed to be legitimate.

212 M. Flores and A. Kuzmanovic

3.2 Noise Reduction

The immense popularity of Twitter has resulted in not only many Twitter users,
but a number of services designed to add to the Twitter user experience. Many
of these services are directed, generating content for all users they find in the
network, not just users who actively seek out their service.1

Twitter’s popularity has also resulted in heavy integration with existing pages.
For example, many pages will include a Twitter feed on the page displaying any
messages seen relating to the content of the page. Since these services appear
in the results for all users, not just legitimate users, we consider them noise. In
order to eliminate this noise, we create a blacklist of the domains most commonly
returned in search results for all account queries. We then remove the domains
on the list from all results the system encounters. In Sect. 4.5 we show that this
blacklist can be generated extremely quickly and that a relatively short list is
effective in removing noise.

Additionally, it is common that the only result for both a username and a
display name is in fact the same page. While this may be the result of a users
web activity, we find that these are generally the result of pages which include
a Twitter stream that displays both the user’s username and display name.
Therefore, when a user has a single result for each query which refer to the same
page, we remove the matching URLs from both sets.

4 Experiment

4.1 Dataset

Our dataset was collected from the Twitter stream during March 2012. The ini-
tial collection contains over 20GB of data collected from a 1% random sample
of all Twitter messages. Since this data contain both Twitter control messages
and actual user posts, we filter through the set, collecting all messages which
contain both a mention (as described in the previous section) and a URL. Since
our method relies on the results of a search engine that biases towards results
in English, we also eliminate all tweets that are labeled as non-English. Since
our analysis is performed on the account level, we remove all messages from
accounts that have been seen previously. This filtering leaves us with approx-
imately 110, 000 messages, each corresponding to a unique account. While rel-
atively small, this dataset contains a sufficient number of both fraudulent and
legitimate accounts that we are able to observe the effectiveness of the system on
real accounts. Both the dataset and the analysis tools have been made available.2

4.2 Ground Truth Dataset

In order to measure the performance of our system, we must establish a ground
truth of which accounts are spam. Previous work [3] has made use of Twitter’s

1 For example: http://klout.com, http://favstar.fm, and
http://twittercounter.com.

2 http://eecs.northwestern.edu/~mef294/projects/twitter.html

Searching for Spam: Detecting Fraudulent Accounts via Web Search 213

current mechanisms by checking the accounts at least 2 weeks after the initial
collection and recording which accounts have been suspended. We repeat this
procedure here. Additionally, if any accounts were deleted between the initial
observation and the later check, we remove them from our set, as there is no
way to determine the reason or nature of their removal.

After the two week period, we find that 21.25% of accounts have been sus-
pended, and are therefore, for our experiment, considered fraudulent accounts.
It is, however, important to recognize that this includes (1) accounts that were
originally legitimate, but were compromised, (2) abusive users who are not nec-
essarily spammers, and (3) genuine fraudulent accounts. We explore the effects
of these issues in the next section.

In order to understand the number of spam messages Twitter has missed, we
perform a manual inspection of 200 randomly sampled un-suspended accounts.
We only mark accounts which are clearly fraudulent as spam. In particular, ac-
counts which started legitimate, but appear to have been compromised later are
ignored. In our sample, we find that 36 of the accounts are fraudulent, suggesting
that 18% of accounts which Twitter has not suspended are fraudulent. Therefore
we suspect that at least some of our false positives will result from this error.

4.3 Performance Measurement

In order to properly measure the performance of our system, we compute its
true-positive rate (TPR) and false-positive rate (FPR). The TPR is computed
as:

TPR =
of true positives

of true positives + # of false negatives
.

This tells us what fraction of the spam accounts we were able to correctly identify
as spam. The FPR is computed as

FPR =
of false positives

of false positives + # of true negatives
,

which tells us the fraction of messages that we incorrectly marked as spam.
As we noted in Sect. 4.2, our FPR may be inflated by the the presence of spam

accounts that have not yet been detected by Twitter. On the other hand our
TPR may be underestimating our performance for a number of reasons. First, it
is possible that accounts which have been suspended by Twitter are not actually
spam, but were suspended for other violations. Second, our system only detects
whether or not an account is fraudulent. If the account was once legitimate, i.e.
became compromised later, a web search, and therefore our system, will likely
indicate that the account is legitimate.

4.4 Results

When properly tuned, our system is able to achieve a TPR of 74.23% at a FPR of
10.67%. While the TPR is similar to those seen with other algorithms [6,2,8,10],

214 M. Flores and A. Kuzmanovic

direct comparison is difficult due to variations in methodologies. In particular,
differences in determining a suitable “ground truth” (Twitter suspension infor-
mation, URL blacklists, and manual verification) and granularity (account and
message levels) mean each study is measuring a slightly different value.

In order to understand how greatly our system is affected by the errors in
our ground truth set, we manually classify a random sample of 200 accounts
which are marked as being false positives. Again, we only classify an account as
fraudulent if it is clear that the account has never performed legitimate tweets.
We find that 123, or 61%, of the accounts are clearly fraudulent. Of the remaining
77, 15 had begun tweeting spam URLs after long periods of inactivity. This long
period of inactivity likely reduces the visible web presence of accounts, causing
our system to flag them as spam. We also note that of the further remaining 62
accounts, an additional 18 are non-English, which we have already indicated our
system is not designed to handle. If we consider only those accounts which the
Twitter ground truth has missed that were clearly fraudulent, we see that our
FPR is potentially as low as 4.5% and the TPR is potentially as high as 79.2%.

4.5 Blacklist Tuning

In order to eliminate much of the noise which results from performing a search
for a Twitter name, we generate a blacklist of the 10 most frequently occurring
domains for each type of query. These domains are then removed from all lists
when performing the analysis. Since we know that they will always constitute
noise, we always add the various forms of the Twitter domains to the blacklist
(“Twitter.com”, “Twitter.ru”, etc.). Additionally, we perform a reverse DNS on
any results which consist of an IP address. If the lookup resolves to an address
in the Twitter network, we also add it to the blacklist.

Table 1. A summary of the performance when toggling noise reduction techniques

Method TPR FPR

No Blacklist 62.64 2.61

Blacklist on Display Name 67.30 5.53

Blacklist on Username 70.86 8.22

No Blacklist Exceptions 72.92 9.64

Full 74.23 10.67

In order to prevent the blacklist from eliminating valid sites, we manually se-
lect 10 sites which are excluded from blacklist generation. These particular sites
were selected as they are among those that appear most often and clearly con-
stitute a web presence. These sites consist of other OSNs (Facebook, LinkedIn,
MySpace) and sites with OSN-like features (flickr.com, imdb.com, vimeo.com,
soundcloud.com, yelp.com, lockerz.com).

Searching for Spam: Detecting Fraudulent Accounts via Web Search 215

We note that the differences in form of the username and display name result
in vastly different results. The username results are often filled with Twitter
and other social networking services designed to target account holders. Display
name results, on the other hand, are often polluted with directory entries de-
signed to find individuals. We therefore generate separate blacklists, one for each
type of search. The performance of the system when each of these techniques is
deactivated can be seen in Table 1.

When tuning such a parameter, a natural question that arises, is which length
will result in the best performance? In order to test this, we perform the analysis
with lengths from 0 to 50 with intervals of size 5, comparing the results. A
blacklist length of 0 means that no domains were filtered out, 5 means that the
top 5 most common results are removed from each analyzed query, and so on.
The results of this analysis can be seen in Fig. 2. As expected, increasing the
size of the list lowers the threshold for what is considered spam, increasing both
TPR and FPR. However, we note that at 10 sites we achieve the best tradeoff.

Fig. 2. A blacklist length of 10 seems to provide the best balance between TPR and
FPR

Since we would like the list to be generated extremely rapidly so one can
obtain meaningful results with minimal delay, we also consider how many sets
of results must be considered to produce an effective blacklist. To test this, we
generate the blacklist using a random sample of accounts of varying sizes. Figure
3 shows the mean TPR and FPR values for varying sizes of training sets, starting
at 5, up to using the entire set of 100, 000. The figure also indicates the standard
deviations for each size after 10 iterations. We see that even with a set as small
as 500, the quality of the blacklist has already stabilized, as all sets larger than
500 result in similar performance. In an environment such as Twitter, a set of
this size could be obtained nearly instantly.

5 Discussion

Given that our method can be applied prior to any activity on the part of
the account holder, it would operate best if placed as a first line of defense in

216 M. Flores and A. Kuzmanovic

Fig. 3. Both the TPR and FPR stabilize with training sets as small as 500 accounts

spam detection. For example, one could perform our analysis at the time of
account creation, using it to inform a more complex system of which accounts
are likely fraudulent. Such a system could also be used to place accounts with
insufficient web presence on a new-account probation, restricting the amount of
spam that such an account could generate before more complex algorithms are
able to detect it. Alternatively, users flagged in this manner could be subject to
additional verifications in order to obtain full access to their accounts.

Furthermore, we note that our method is by no means limited to Twitter. As
it depends only on a broader, more general web presence, the system could be
used with any service. In particular, a trend of sites designed to perform single
tasks that combine to form a suite of complementary web services (for example
Twitter, Tumblr, and Instagram), will likely make web presence easier to detect.
In addition, we expect that the growing popularity of cross-logins, which allow
users to use the same account to log into multiple sites (popular with Google,
Facebook and Twitter accounts), will further aid in detection.

While spammers may attempt to subvert such a system by creating accounts
with usernames matching existing accounts on other services, they are still forced
to perform a greater amount of manual work for every new account and are
potentially limited to a smaller pool of possible accounts.

Additionally, there are natural improvements that could be made to this sys-
tem to enhance its performance. Rather than considering only the presence of
search results to determine if an account is spam, probabilistic methods could
be applied. Certain sites that are found to be good indicators could be weighted
more heavily, improving the quality of the analysis and further reducing noise.

6 Conclusion

We have presented a system which is able to measure the online presence of
a Twitter user by using a web search. By classifying accounts with insufficient
presence as spam, we are able to detect 74.67% of fraudulent accounts in a
collection of actual Twitter data. Our system is straightforward to implement,
and requires no additional content from the suspect accounts, and could therefore

Searching for Spam: Detecting Fraudulent Accounts via Web Search 217

be placed as a check at the very beginning of account creation. Furthermore,
it has the potential to work extremely well alongside heavier duty algorithms
to maximize the amount of spam detected, and minimize spam exposure for
legitimate users. Our methods are also generic, and are expected to work equally
well beyond Twitter on a number of other web services.

References

1. Grier, C., Thomas, K., Paxson, V., Zhang, M.: @spam: the underground on 140
characters or less. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 27–37. ACM, New York (2010)

2. Gao, H., Chen, Y., Lee, K., Palsetia, D., Choudhary, A.: Towards Online Spam
Filtering in Social Networks. In: Proceedings of the 19th Annual Network & Dis-
tributed System Security Symposium (February 2012)

3. Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect: an
analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference, IMC 2011, pp. 243–258. ACM, New York
(2011)

4. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.: Detecting and characterizing
social spam campaigns. In: Proceedings of the 10th Annual Conference on Internet
Measurement, IMC 2010, pp. 35–47. ACM, New York (2010)

5. Thomas, K., Grier, C., Ma, J., Vern, P., Song, D.: Design and evaluation of a real-
time url spam filtering service. In: 2011 IEEE Symposium on Security and Privacy,
SP, pp. 447–462 (May 2011)

6. Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting Spammers on
Twitter. In: Collaboration, Electronic Messaging, Anti-Abuse and Spam Confer-
ence, CEAS (July 2010)

7. Lee, K., Caverlee, J., Webb, S.: Uncovering social spammers: social honeypots
+ machine learning. In: Proceedings of the 33rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR 2010, pp.
435–442. ACM, New York (2010)

8. Song, J., Lee, S., Kim, J.: Spam Filtering in Twitter Using Sender-Receiver Re-
lationship. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS,
vol. 6961, pp. 301–317. Springer, Heidelberg (2011)

9. Wang, A.: Don’t follow me: Spam detection in twitter. In: Proceedings of the 2010
International Conference on Security and Cryptography, SECRYPT, pp. 1–10 (July
2010)

10. Yang, C., Harkreader, R.C., Gu, G.: Die Free or Live Hard? Empirical Evalua-
tion and New Design for Fighting Evolving Twitter Spammers. In: Sommer, R.,
Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 318–337. Springer,
Heidelberg (2011)

11. Yardi, C., Romero, D., Schoenebeck, G., Boyd, D.: Detecting spam in a twitter
network. First Monday 15(1) (2010)

12. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks.
In: Proceedings of the 26th Annual Computer Security Applications Conference,
ACSAC 2010, pp. 1–9. ACM, New York (2010)

13. Yerva, S., Miklós, Z., Aberer, K.: What have fruits to do with technology?: the case
of orange, blackberry and apple. In: Proceedings of the International Conference
on Web Intelligence, Mining and Semantics, WIMS 2011, pp. 48:1–48:10. ACM,
New York (2011)

Characterization of Blacklists

and Tainted Network Traffic

Jing Zhang1, Ari Chivukula1, Michael Bailey1,
Manish Karir2, and Mingyan Liu1

1 University of Michigan
Ann Arbor, Michigan, USA

2 Cyber Security Division, Department of Homeland Security,
Washington DC, USA

Abstract. Threats to the security and availability of the network have
contributed to the use of Real-time Blackhole Lists (RBLs) as an at-
tractive method for implementing dynamic filtering and blocking. While
RBLs have received considerable study, little is known about the impact
of these lists in practice. In this paper, we use nine different RBLs from
three different categories to perform the evaluation of RBL tainted traffic
at a large regional Internet Service Provider.

1 Introduction
A variety of threats, ranging from misconfiguration and mismanagement to
botnets, worms, SPAM, and denial of service attacks, threaten the security and
availability of today’s Internet. In response, network operators have sought to
adopt security policies that minimize their impact. Real-time Blackhole Lists
(RBLs) are a form of coarse-grained, reputation-based, dynamic policy enforce-
ment in which real-time feeds of malicious hosts are sent to networks so that
connections to these hosts may be rejected.

Existing work has studied how these lists can be created [14], evaluated
their effectiveness [17,23], and explored the properties of the networks that
make them effective [24,26,22]. In this paper, rather than focusing solely on
the lists themselves, we analyze the impact of nine popular blacklists on Merit
Network [8], a large Internet Service Provider (ISP). By examining what network
traffic is tainted by these blacklists, we gain better insight into the utility of these
mechanisms and the nature of malicious traffic on our networks. Our findings
include:

– While stable in size, the RBL populations are highly dynamic, growing
between 150% to 500% over a one week period.

– Classes of RBLs show significant internal entry overlap, but little similarity
is seen between classes.

– RBL classes share affinity for specific geographic distributions (e.g., RIPE
and APNIC dominate SPAM; ARIN and RIPE dominate phishing and mal-
ware).

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 218–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Characterization of Blacklists and Tainted Network Traffic 219

– A surprisingly high proportion, up to 17%, of the collected network traffic is
tainted by at least one of the nine RBLs.

– Our network only saw traffic to a small portion, between 3% and 51%, of IP
addresses within the blacklists.

– Heavy hitters account for a significant number of the tainted bytes to the
network.

2 Data Collection Methodology

Netflow. We collected records of the traffic at Merit to understand the impact
of RBLs. Merit is a large regional ISP, which provides high-performance com-
puter networking and related services to educational, government, healthcare,
and nonprofitable organizations located primarily in Michigan. This network
experiences a load which varies daily from a low of four Gbps to a high of eight
Gbps. Though Merit has over 100 customers, the top five make up more than
half of the total traffic, and HTTP accounts for more than half of the traffic
volume.

Our traffic data was collected via NetFlow [7] with a sampling ratio of 1:1.
The traffic was monitored at all peering edges of the network for a period of
one week, starting on June 20, 2012. During this period, we experienced several
collection failures, each lasting from one to seven hours, for a total of 17 hours
lost. The collected NetFlow represents 118.4TB of traffic with 5.7 billion flows
and 175 billion packets.

Table 1. Reputation data sources and types

RBL Type RBL Name
SPAM CBL[3], BRBL[2], SpamCop[16], WPBL[13], UCEPROTECT[12]
Phishing/Malware SURBL[11], PhishTank[9], hpHosts[5]
Active attack/probing behavior Dshield[4]

Reputation Black Lists. RBLs are lists managed by various organizations
that contain IP addresses believed to have originated some malicious behavior.
RBLs generally focus on some specific suspicious behavior. Merit collects nine
commonly used RBLs on a daily basis, which are typically fetched directly from
the publisher via rsync or wget. These lists can be categorized into three types:
SPAM, Phishing/Malware, or Active (and prolific) malicious activity (as shown
in Table 1).

3 Properties of Reputation Blacklists

Timing. We examined the stability of each RBL with respect to the daily
number of unique IP addresses. As shown in Figure 1a, the size varied across
RBLs with BRBL being much larger than the others, but the size of RBLs

220 J. Zhang et al.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

06/20 06/21 06/22 06/23 06/24 06/25 06/26

N
um

be
r

of
 u

ni
qu

e
en

tr
ie

s

Date

brbl
cbl

spamcop

uce
wpbl

hphosts

phisht
surbl

dshield

(a) Number of unique entries.

 100

 150

 200

 250

 300

 350

 400

 450

 500

06/20 06/21 06/22 06/23 06/24 06/25 06/26

C
um

ul
at

iv
e

si
ze

 (
%

)

Date

brbl
cbl

spamcop

uce
wpbl

hphosts

phisht
surbl

dshield

(b) Relative cumulative size (%).

Fig. 1. Daily size and cumulative size of RBLs

was consistent over the week measured. In order to understand the churn of
unique IP addresses, we calculated the relative size of cumulative entries in
Figure 1b. Spamcop and Dshield updated their entries aggressively, with nearly
500% turnover in one week, while BRBL, hpHosts, and SURBL were relatively
static during the week, with less than 110% turnover.

Table 2. Geographic distribution of IPs for each RBL (%)

Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

AFRINIC 3.02 7.70 5.89 6.37 4.19 0.20 0.58 0.04 2.19
APNIC 25.20 47.14 51.94 48.45 51.27 8.45 11.56 5.58 36.19
ARIN 6.23 1.05 2.53 1.84 6.17 53.32 43.93 54.70 13.54

LACNIC 17.11 16.19 12.15 15.89 10.59 1.66 5.32 1.44 8.54
RIPENCC 48.44 27.93 27.50 27.44 27.77 36.37 38.6 38.24 39.53

Regional Characteristics. We mapped the blacklisted IP addresses to their
registries by using the IP to ASN mapping services provided by Team Cymru [21].
Table 2 demonstrates that a given class of RBLs has consistent geographical prop-
erties. SPAM- and Active-attack-related lists have more entries in the APNIC
(Asia/Pacific) and RIPENCC (Europe) regions, while ARIN (North America)
and RIPENCC are the most common regions in Phishing/Malware RBLs. Even
though monitoring position and listing methodologies are different for each RBL,
they share consistent views of the regional distribution of malicious activity.

Overlap. We examined to what extent RBLs overlap with other; we expected
that overlap within the same category of RBLs would be significantly larger
than the overlap among different classes. Our results in Table 3 match our
expectation: BRBL and CBL, the two largest SPAM blacklists, cover about 90%
of other SPAM-related lists, and the intersection within hpHosts, PhishTank,
and SURBL is also large. Meanwhile, the overlaps between different classes are
trivial.

Characterization of Blacklists and Tainted Network Traffic 221

Table 3. The average % (of column) overlap between RBLs (row, column)

Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

BRBL 100.0 75.2 94.6 89.8 93.8 5.3 10.0 30.7 33.2
CBL 3.9 100.0 98.1 91.7 70.2 0.5 0.7 6.2 9.3

Spamcop 0.1 2.3 100.0 12.6 21.5 0.1 0.1 0.8 1.2
UCE 0.6 12.1 69.4 100.0 50.6 0.3 1.5 1.2 4.8

WPBL 0.0 0.7 8.8 3.7 100.0 0.0 0.2 0.9 0.4

hpHosts 0.0 0.0 0.0 0.0 0.0 100.0 33.7 7.3 0.0
Phisht 0.0 0.0 0.0 0.0 0.0 1.8 100.0 1.7 0.0
SURBL 0.0 0.0 0.3 0.1 0.7 11.8 52.8 100.0 0.1

Dshield 0.1 0.4 2.4 1.8 2.2 0.4 0.7 0.3 100.0

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 20 40 60 80 100 120 140 160
 0

 20

 40

 60

 80

 100

T
ra

ffi
c

vo
lu

m
e

pe
r

ho
ur

 (
B

yt
es

)

%
 o

f t
he

 tr
af

fic
 a

re
 b

lo
ck

ed
 b

y
si

ze

Time (hour)

Total NetFlow
Tainted Traffic

% of traffic are tainted by volume

(a) By traffic volume (bytes).

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 20 40 60 80 100 120 140 160
 0

 20

 40

 60

 80

 100

N
um

be
r

of
 N

et
F

lo
w

 p
er

 h
ou

r

%
 o

f t
he

 N
et

flo
w

 a
re

 b
lo

ck
ed

Time (hour)

Number of total Netflow
Number of tainted traffic Netflow

% of NetFlow are tainted

(b) By number of flows.

Fig. 2. Total traffic v.s. tainted traffic

4 Impact of Reputation

One of the key questions we considered in our study was, what fraction of traffic
carries a negative reputation? In our study, if one or both of the collected
NetFlow’s source and destination IPs are listed by any RBL, the NetFlow is
considered tainted. While we expected that perhaps as much as 10% of network
traffic might be potentially malicious [6], we found that tainted traffic accounted
for an average of 16.9% of the total traffic volume over the week. When measured
by flow count, the proportion is even larger, with 39.9% of the flows being tainted
(Figure 2b).

This is, of course, a very liberal approach to tainted traffic analysis: tainting all
the traffic of a host by all the entries in all the blacklists. We conjecture that there
may be several sources of overestimation: (i) some RBLs are intended to taint
only one kind of application traffic instead of an entire host, (ii) the RBLs may
contain false positives, (iii) some IP addresses are shared via mechanisms like
Network Address Translation (NAT) and therefore some traffic was tainted due
to “guilt by association”. To provide a tighter lower bound, we applied the RBLs
solely to the type of traffic they pertain to (e.g., SPAM blacklists are only applied
to SMTP traffic). The results show that 10.5% of total traffic was tainted by this
more conservative approach. Further we observed that several list entries were
for well known services on the network, such as Amazon Web Services, Facebook,
and CDNs. Although previous work has shown that the cloud services have been

222 J. Zhang et al.

used for malicious activities [25], we nevertheless conservatively whitelisted these
service providers. As a result, the volume of tainted traffic was reduced to 7.5%
of total traffic. Therefore, we believe a realistic value for tainted traffic is likely
to lie within the range of 7.5% to 17% of the total traffic by bytes.

Table 4. RBL entries touched by our network traffic

Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

Touched entries 4,142,394 577,583 44,383 134,024 16,288 13,989 983 14,043 105,918
% of the list 2.8% 7.7% 29.3% 39.5% 51.2% 25.2% 24.4% 13.9% 22.1%

Next, we investigated the potential impact of global reputation blacklists when
applied locally. Prior work in this area has suggested that there might be some
entries in global blacklists that are never used by an organization [26], and our
results validated this argument. In Table 4, we show the average number of daily
entries touched for each RBL. Only a small fraction of entries were touched by
our network traffic. For our ISP, only small portions of RBLs are relevant, even
though these portions may change over time.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 20 40 60 80 100 120 140 160

T
ra

ffi
c

vo
lu

m
e

pe
r

ho
ur

 (
B

yt
es

)

Time (hour)

brbl
cbl

dshield

hphosts
phisht

spamcop

surbl
uce

wpbl

(a) Total tainted traffic.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 tr
af

fic
 v

ol
um

e
pe

r
ho

ur
(B

yt
es

)

Time (hour)

brbl
cbl

dshield

hphosts
phisht

spamcop

surbl
uce

wpbl

(b) Normalized tainted traffic volume.

Fig. 3. Tainted traffic per RBL

Finally, we examined whether lists, or a class of lists, have the greatest impact
on our traffic. The traffic volume tainted by each RBL is shown in Figure 3a.
There is a clear variance among tainted traffic volumes, ranging from more than
ten GB per hour by Dshield, BRBL, and hpHosts to about tens of MB per hour
by Spamcop, PhishTank, and SURBL.

Since the number of entries in each RBL differs, we then normalized the
volume of tainted traffic per hour (i.e. V olume of tainted traffic by the RBL

Number of touched entries in the RBL) in
Figure 3b. Interestingly, we show that each entry in hpHosts, PhishTank, and
Dshield taints about one MB of traffic per hour on average; but, the contribution
of entries in the SPAM-related RBLs is about two orders of magnitude lower.

5 Impact of Heavy Hitting IPs

In this section, we investigate whether any specific IPs are responsible for skewing
the traffic distribution. Toward this end, we divided the traffic into two categories:

Characterization of Blacklists and Tainted Network Traffic 223

those IP addresses belonging to Merit (internal IP addresses) and those not
belonging to Merit (external IP addresses).

5.1 External IP Addresses

Of the 11,016,520 unique external IP addresses in the tainted traffic, 99.5%
of them had less than 10 MB of tainted traffic each (as shown in Figure 4a).
However, the top contributors had more than 100 GB of tainted traffic associ-
ated with each of them (Figure 4b). In fact, the top 50 external IP addresses
contributed about 40% of total tainted traffic. In the following analysis, we try
to define what these hitters are and what comprises their traffic.

 0

 20

 40

 60

 80

 100

10e+01 10e+03 10e+05 10e+07 10e+9 10e+11

%
 o

f M
er

it
IP

 a
dd

re
ss

es

Bytes

(a) CDF of traffic volume per IP.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 0 1 2 3 4 5

V
ol

um
n

of
 ta

in
te

d
tr

af
fic

 (
B

yt
es

)

Percentile of IP addresses ranked by tainted traffic volume (%)

(b) Tainted traffic volume of top 5% of
IPs.

Fig. 4. Tainted traffic to/from external IP addresses

External Heavy Hitters. Among the top 50 external IP addresses, 39 are
listed in at least one RBL. It is surprising to see that 27 of those are hosting ser-
vice providers or caching servers, including Amazon Web Services hosts (10 IPs
listed on hpHosts, Phisht, SURBL, or Dshield), Facebook content distribution
network (CDN) servers (six IPs listed on Dshield), Pandora media servers (six
IPs listed on Dshield), EDGECAST Network hosts (three IPs listed on hpHosts,
Phisht, or Dshield), and BOXNET servers (two IPs listed on BRBL). These
hosts are owned by popular service providers and their traffic is dominated by
HTTP, as shown in Table 5.

Table 5. Distribution over TCP/UDP ports for top blacklisted external IPs

Ports 80 443 1935 1256 1509 1046 1077 1224 1121 1065
% of volume 60.65 35.31 3.48 1.12 1.06 1.03 0.71 0.66 0.64 0.58

External Heavy Hitters Not on a RBL. The remaining 11 external IP
addresses in the top 50 are IP addresses communicating with tainted Merit
hosts, who send large volumes of traffic. Of these external destinations, 10 are
owned by Netflix and one belongs to Yahoo!. 99% of the tainted traffic within
these 11 IP addresses was over HTTP.

224 J. Zhang et al.

 0

 20

 40

 60

 80

 100

10e+01 10e+03 10e+05 10e+07 10e+9 10e+11

%
 o

f e
xt

er
na

l I
P

 a
dd

re
ss

es

Bytes

(a) CDF of traffic volume per IP.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 0 1 2 3 4 5

V
ol

um
e

of
 ta

in
te

d
tr

af
fic

 (
B

yt
es

)

Percentile of IP addresses ranked by tainted traffic volume (%)

(b) Tainted traffic volume of top 5% IPs.

Fig. 5. Tainted traffic to/from internal IP addresses

5.2 Internal IP Addresses

Analysis of the 2,515,080 Internal IP addresses observed in the tainted traffic
also showed the existence of heavy internal hitters (as shown in Figure 5). In
this case, the top 50 internal IP addresses contributed 38% of the total tainted
traffic.

Table 6. Organization of blacklisted internal IP addresses

Organization
CDN EDU

LIB MED
Akamai University College Intermediate Regional

Num of IPs 9 6 4 1 1 4 4
Total 9 12 4 4

Internal Heavy Hitters. Our results showed that there are only 35 IP ad-
dresses in the top 50 listed by the RBLs, and of the 35 IP addresses, only 29
were resolvable to host names. When categorized by owner (as shown in Table 6),
we see that nine of these blacklisted IP addresses are owned by Akamai [1], a
provider of content delivery network (CDN) and shared hosting services; others
are hosts registered by educational institutions, library network providers, and
medical centers. Interestingly, there are two Virtual Private Network servers, a
mail server, and one web site server from educational institutions.

Internal Heavy Hitters Not on a RBL. We found the top three internal
heavy hitters, which accounted for 12% of total tainted traffic, are not them-
selves on an RBL, and 81.6% of their traffic is HTTPS traffic. Furthermore, by
inspecting the blacklisted hosts they communicated with, we noticed that about
80% of their tainted traffic is to/from Amazon Web Services (AWS) IP addresses
that are blacklisted.

5.3 Heavy Hitter Distribution

Heavy hitters constitute a significant portion of tainted traffic. How are these
heavy hitters distributed across RBLs?

Characterization of Blacklists and Tainted Network Traffic 225

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

%
 o

f t
he

 tr
af

fic
 ta

in
te

d
by

 th
e

R
B

L

Top N IP addresses sorted by contribution

brbl
cbl

spamcop
uce

wpbl

(a) SPAM RBLs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

%
 o

f t
he

 tr
af

fic
 ta

in
te

d
by

 th
e

R
B

L

Top N IP addresses sorted by contribution

hphosts phisht surbl dshield

(b) Phishing/Malware and Active RBLs.

Fig. 6. Cumulative contributions of the top N entries per RBL

To understand the heavy hitters in each RBL, we defined the contribution

of entryi in RBLj as
Ventryi

VRBLj
, where Ventryi is the volume of traffic tainted by

entryi and VRBLj is the total volume of traffic tainted by RBLj. We then sorted
the entries by their contribution in decreasing order for each RBL, and then
derived the cumulative contribution of the top N entries (Figure 6). The top
entries contribute greatly to the RBLs — the traffic tainted by the top 50 entries
accounted for more than half of the total tainted traffic of each. In the case of
Phishing/Malware RBLs, the top 50 entries contributed even more (80%) of the
tainted traffic (as shown in Figure 6b). Once again, we find a small amount of
entries dominating the tainted traffic.

Table 7. Top TCP/UDP ports for traffic tainted by top 50 contributors per RBL
(a) SPAM.

BRBL CBL Spamcop UCE WPBL
80 (59.62) 80 (34.01) 80 (26.394) 3389 (27.03) 25 (26.71)
443 (22.30) 443 (21.26) 44794 (16.51) 53 (14.16) 80 (23.30)
1935 (2.22) 4444 (11.78) 4025 (16.16) 25345 (12.80) 44794 (19.30)
3578 (1.26) 25 (6.67) 25 (11.14) 80 (12.54) 4025 (18.89)
17391 (1.21) 3389 (4.96) 37101 (7.60) 25 (8.18) 1080 (9.73)

(b) Phishing/Malware.

hpHosts Phisht SURBL
80 (84.99) 80 (65.05) 443 (52.30)
443 (15.00) 443 (32.32) 80 (44.84)
1256 (1.95) 49729 (2.96) 25 (1.85)
1121 (1.10) 42652 (1.80) 1288 (1.51)
1605 (1.01) 52951 (1.48) 1032 (1.12)

(c) Active.

Dshield
80 (60.75)
443 (32.26)
1935 (3.55)
993 (1.68)
1509 (1.16)

Next, we characterized the tainted traffic by the top 50 contributors for each
RBL (Table 7). Though not dominating, SMTP (port 25) traffic occupied a
large proportion of the tainted traffic for each of the SPAM related blacklists
(except BRBL). This matches our expectation that SPAM related IP addresses
send email more aggressively than other hosts. In the other RBLs, we see a
higher proportion of Web related traffic. This could be associated with either
Phishing and Malware distribution activities or other, potentially benign, traffic
from these hosts.

226 J. Zhang et al.

Table 8. Service hosts in top 50 contributors for each RBL

Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

CDN 2 0 0 0 0 35 3 1 26
HOST 0 0 1 0 2 3 19 17 12
TOR 1 11 0 0 0 1 0 0 0
MAIL 0 0 0 3 5 0 1 0 1
VPN 3 0 0 1 0 0 0 0 0
Total 10 13 1 4 7 39 23 18 39

Finally, we looked at the network and domain information of the top con-
tributers (shown in Table 8). We found that 60 of these IP addresses are used
by content delivery networks and 51 of them are owned by hosting companies.
Four VPN servers are listed in BRBL and UCEProtector, while 11 Tor nodes are
shown in CBL. Nine different mail servers (some of them belonging to LinkedIn)
are also in the top 50 entries of some RBLs. These entries form a sizable fraction
of network traffic. This holds especially true for the Phishing/Malware and
Active RBLs, whose tainted traffic included from 29% to 68% of these heavy
hitters.

6 Related Work

While there is a great deal of prior work on generating reputation blacklists
[15,20,24,26], there are fewer studies which characterize the RBLs themselves or
their impact. Prior work has focused on understanding the makeup of RBLs from
geographical and topological perspectives [18], as well as the correlation between
seven popular RBLs [17]. Other related work has discussed the effectiveness and
limitation of blacklists. For example, researchers have shown that blacklists often
contain numerous false positives [23] and outdated entries [22]. The study in
[19] finds that very few sections of IP space account for the majority of SPAM
(meaning that a small, stable RBL would be highly effective at blocking SPAM),
and that a small, but increasing, amount of SPAM comes from random and short-
lived hijacked prefixes (whose entries in RBLs would quickly become outdated).
In [26], the author argues that entries in common blacklists which are never
used within an organization should be removed to reduce costs. Our work is
complementary to these efforts, as our focus in this study is to gain a better
understanding of the key properties of RBLs themselves and their impact on
traffic from the perspective of an ISP.

7 Conclusion

In this study, we characterized nine RBLs and their impacts on traffic from a live
operational network. The RBLs are highly dynamic, growing between 150% to
500% over a period of one week. While there is a significant overlap among RBLs
within the same class, little similarity is seen between classes. We demonstrated

Characterization of Blacklists and Tainted Network Traffic 227

that up to 17% of the traffic could be considered tainted, as it flowed to or from
addresses on various RBLs. We also show the relative contribution of different
entries on a RBL towards this tainted traffic, and we show that heavy hitters
dominate both tainted traffic as well as RBLs.

Reputation information is a useful resource for organizations to evaluate and
design their security policies. Our work indicates that an organizational view of
network threats can differ from the global perspective. Therefore, it is important
to consider local information in conjunction with global RBLs in order to build
more accurate reputation information.

Dataset Availability. Our RBLs are provided under a licensing agreement
that requires they not be publicized or redistributed. NetFlow data represents
potentially private information about users of our network. Therefore, we are
unable to provide the raw data of RBLs and traffic NetFlow used in our work.
An anonymized version of NetFlow traffic annotated with the RBL matches is
available through the PREDICT project [10].

Acknowledgments. This work was supported in part by the Department of
Homeland Security (DHS) under contract number D08PC75388; the National
Science Foundation (NSF) under contract numbers CNS 1111699, CNS 091639,
CNS 08311174, and CNS 0751116; and the Department of the Navy under
contract number N000.14-09-1-1042.

References

1. Akamai, http://www.akamai.com/
2. Barracuda reputation blocklist, http://www.barracudacentral.org/
3. Cbl: Composite blocking list, http://cbl.abuseat.org/
4. Dshield, http://www.dshield.org/
5. HpHosts for your pretection, http://hosts-file.net/
6. Internet has a garbage problem, researcher says,

http://www.pcworld.com/article/144006/article.html

7. Introduction to Cisco IOS NetFlow,
http://www.cisco.com/en/US/products/ps6601/prod_white_papers_list.html

8. Merit Network INC, http://www.merit.edu/
9. Phishtank, http://www.phishtank.com/

10. PREDICT: Protected Repository for the Defense of Infrastructure Against Cyber
Threats, https://www.predict.org/

11. SURBL: URL Reputation Data, http://www.surbl.org/
12. Uceprotector network, http://www.uceprotect.net/
13. Wpbl: Weighted private block list, http://www.wpbl.info/
14. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a

Dynamic Reputation System for DNS. In: USENIX Security Symposium, pp. 273–
290 (2010)

15. Esquivel, H., Akella, A., Mori, T.: On the effectiveness of IP reputation for spam
filtering. In: Proceedings of COMSNETS 2010, pp. 1–10 (2010)

16. Cisco Systems Inc. SpamCop Blocking List (SCBL), http://www.spamcop.net/

http://www.akamai.com/
http://www.barracudacentral.org/
http://cbl.abuseat.org/
http://www.dshield.org/
http://hosts-file.net/
http://www.pcworld.com/article/144006/article.html
http://www.cisco.com/en/US/products/ps6601/prod_white_papers_list.html
http://www.merit.edu/
http://www.phishtank.com/
https://www.predict.org/
http://www.surbl.org/
http://www.uceprotect.net/
http://www.wpbl.info/
http://www.spamcop.net/

228 J. Zhang et al.

17. Jung, J., Sit, E.: An empirical study of spam traffic and the use of DNS black lists.
In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement,
pp. 370–375. ACM, New York (2004)

18. Creyts, K., Karir, M., Mentley, N.: Towards network reputation - analyzing the
makeup of rbls (June 2011)

19. Ramachandran, A., Feamster, N.: Understanding the network-level behavior of
spammers. In: Proceedings of SIGCOMM 2006, pp. 291–302 (2006)

20. Ramachandran, A., Feamster, N., Vempala, S.: Filtering spam with behavioral
blacklisting. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security (2007)

21. Team Cymru Community Services. IP to ASN Mapping,
http://www.team-cymru.org/Services/ip-to-asn.html

22. Shue, C.A., Kalafut, A.J., Gupta, M.: Abnormally malicious autonomous systems
and their internet connectivity. IEEE/ACM Trans. Netw. 20(1), 220–230 (2012)

23. Sinha, S., Bailey, M., Jahanian, F.: Shades of Grey: On the Effectiveness of
Reputation-based ”blacklists”. In: Proceedings of MALWARE 2008, pp. 57–64
(October 2008)

24. Venkataraman, S., Sen, S., Spatscheck, O., Haffner, P., Song, D.: Exploiting
network structure for proactive spam mitigation. In: Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium. USENIX Association
(2007)

25. Xie, Y., Yu, F., Achan, K., Gillum, E., Goldszmidt, M., Wobber, T.: How dynamic
are ip addresses? In: Proceedings of SIGCOMM 2007, pp. 301–312 (2007)

26. Zhang, J., Porras, P., Ullrich, J.: Highly Predictive Blacklisting. In: Usenix Security
(August 2008)

http://www.team-cymru.org/Services/ip-to-asn.html

Characterizing Large-Scale Routing Anomalies:

A Case Study of the China Telecom Incident

Rahul Hiran1, Niklas Carlsson1, and Phillipa Gill2,�

1 Linköping University, Sweden
2 Citizen Lab, Munk School of Global Affairs

University of Toronto, Canada

Abstract. China Telecom’s hijack of approximately 50,000 IP prefixes
in April 2010 highlights the potential for traffic interception on the In-
ternet. Indeed, the sensitive nature of the hijacked prefixes, including US
government agencies, garnered a great deal of attention and highlights
the importance of being able to characterize such incidents after they oc-
cur. We use the China Telecom incident as a case study, to understand
(1) what can be learned about large-scale routing anomalies using public
data sets, and (2) what types of data should be collected to diagnose
routing anomalies in the future. We develop a methodology for infer-
ring which prefixes may be impacted by traffic interception using only
control-plane data and validate our technique using data-plane traces.
The key findings of our study of the China Telecom incident are: (1) The
geographic distribution of announced prefixes is similar to the global dis-
tribution with a tendency towards prefixes registered in the Asia-Pacific
region, (2) there is little evidence for subprefix hijacking which supports
the hypothesis that this incident was likely a leak of existing routes,
and (3) by preferring customer routes, providers inadvertently enabled
interception of their customer’s traffic.

Keywords: Measurement, Routing, Security, Border Gateway Protocol.

1 Introduction

On April 8, 2010, AS 23724, an autonomous system (AS) owned by China Tele-
com, announced approximately 50,000 prefixes registered to other ASes. These
prefixes included IPs registered to the US Department of Defense [8], which
caught the attention of the US-China Economic and Security Review Commis-
sion [5]. Unlike previous routing misconfigurations [6, 18], China Telecom’s net-
work had the capacity to support the additional traffic attracted [4]. Further,
there is ample data-plane evidence suggesting that during the incident, Internet
traffic was reaching its correct destination. This unique situation is what led
some to suggest this was an attempt to intercept Internet traffic.

While the China Telecom incident has garnered attention in blogs [4,8], news
outlets [17], and government reports [5], there has been no academic attempt

� Data sets available at: http://www.ida.liu.se/∼nikca/papers/pam13.html

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 229–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 R. Hiran, N. Carlsson, and P. Gill

to understand this incident. This dearth of understanding is especially appar-
ent when considering the many questions that remain unanswered about this
incident. These include (1) understanding properties of the hijacked prefixes,
(2) quantifying the impact of the event in terms of subprefix hijacking, and (3)
explaining how interception was possible. We tackle these questions using pub-
licly available control- and data-plane measurements and highlight what types of
data would be useful to better understand routing anomalies in the future. We
emphasize that while we are able to characterize the incident and show evidence
supporting the hypothesis that this incident appears to be an accident, there is
currently no way to distinguish between “fat finger” incidents and those that
have malicious intent based on empirical data alone.

1.1 Insecurity of the Internet’s Routing System

Routing security incidents have happened repeatedly over the past 15 years [6,13,
18]. These incidents involve an AS originating an IP prefix without permission of
the autonomous system (AS) to which the prefix is allocated: hijacking. Usually
when hijacks happen, the misconfigured network either does not have sufficient
capacity to handle the traffic [18] or does not have an alternate path to the
destination [6]. In these cases, the impact of the incident is immediately felt as
a service outage or interruption of connectivity.

More troubling, are cases of traffic interception, where traffic is able to flow
through the hijacking AS and on to the intended destination. Without contin-
uous monitoring of network delays or AS paths [3], incidents such as these are
difficult to detect, thus creating opportunity for the hijacker to monitor or alter
intercepted traffic. Traffic interception was demonstrated in 2008 [21] and more
recently occurred during the China Telecom incident [8].

Since the China Telecom incident involved interception, measuring its im-
pact is extremely difficult without extensive monitoring infrastructure. We de-
fine criteria that allow us to infer potential interceptions using only control-plane
data [19]. We use data-plane measurements [15] to validate our criteria and char-
acterize the AS topologies that allowed for inadvertent interception.

1.2 Key Insights

The Geographic Distribution of Announced Prefixes Does Not Sup-
port Targeted Hijacking. The distribution of announced prefixes is similar
to the geographic distribution of all globally routable prefixes with a tendency
towards prefixes in the Asia-Pacific region.

The Prefixes Announced Match Existing Routable Prefixes. We observe
that > 99% of the announced prefixes match those existing at the Routeviews
monitors. This supports the conclusion that the announced prefixes were a subset
of AS 23724’s routing table.

Providers Inadvertently Aided in the Interception of Their Customers’
Traffic. Many networks that routed traffic from China Telecom to the correct

Characterizing Large Scale Routing Anomalies 231

destination did so because the destination was reachable via a customer path
which was preferred over the path through China Telecom (a peer).

2 Related Work

While ChinaTelecom incident occurred inApril 2010, it received little attention [4,
17] until November 2010 when the US-China Economic and Security
Review Commission published their report to congress [5] which included a de-
scription of the event. After the release of the report, the incident received atten-
tion in news articles andwas investigatedby some technically-orientedblogs [8,14].

BGPMon, an organization that provides monitoring and analysis of BGP
data, performed the first investigation of the China Telecom incident [4]. Using
control-plane measurements of BGP messages, they were able to identify anoma-
lous updates as those where the path terminated in “4134 23724 23724.” They
also study the geographic distribution of the hijacked prefixes and find that the
majority of hijacked prefixes belong to organizations in the US and China.

Using both control- and data-plane data, Renesys confirmed the geographic
distribution of hijacked prefixes observed by BGPMon [8]. Using traceroute,
Renesys was also able to show that network traffic was able to pass into China
Telecom’s network and back out to the intended destination. Further analysis was
performed by Arbor Networks [14] which focused on understanding how much
traffic was diverted into China Telecom using traffic flows observed through
ASes participating in the ATLAS project [2]. They do not observe a significant
increase in traffic entering AS 4134 on the day of the incident.

In contrast to the blog entries, our focus is on analyzing the incident using
only publicly available data to understand what can be learned using today’s
public data and what types of data should be collected in the future.

3 Methodology

To characterize the events that took place on April 8, 2010, we use a combination
of publicly available control- and data-plane measurements [7, 15, 19].

3.1 Control-Plane Measurements

BGP Updates. We use Routeviews monitors as a source of BGP updates from
around the time of the attack. We consider updates with the path attribute end-
ing in “4134 23724 23724” as belonging to the incident [4].1 Table 1 summarizes
the updates and prefixes matching this signature from the Routeviews monitors.

Topology Data. We use the Cyclops AS-graph from April 8, 2010 [7] to infer
the set of neighbors of China Telecom and their associated business relationships.
Knowing the neighbors of China Telecom is particularly important when iden-
tifying ASes that potentially forwarded traffic in (and out of) China Telecom
during the incident.

1 All but 36 prefixes originated by AS 23724 match this signature.

232 R. Hiran, N. Carlsson, and P. Gill

Table 1. Summary of control-plane updates matching the attack signature

Monitor (Location) Number of Updates Number of Unique Prefixes

LINX (London, England) 60,221 11,413
DIXIE (Tokyo, Japan) 80,175 15,773
ISC PAIX (Palo Alto, CA) 123,723 35,957
Route-views2 (Eugene, OR) 216,196 29,998
Route-views4 (Eugene, OR) 49,290 18,624
Equinix (Ashburn, VA) 44,793 13,250

BGPMon list - 37,213

Total 574,398 43,357

4134

6461
7018

2914

9318
3 more hops
to destination

April 8, 2010

April 7, 9, 2010

Normal traceroute
Traceroute during hijack

Peer Peer

Norm

Pe
Cust Prov

Legend

AT&T
Hanaro Telecom
Korea

Fig. 1. Interception observed in the traceroute from planet2.pittsburgh.intel-
research.net to 125.246.217.1 (DACOM-PUBNETPLUS, KR)

3.2 Data-Plane Measurements

We use data-plane measurements from the iPlane project [15] and extract tracer-
outes transiting China Telecom’s network on April 8, 2010. We first map each IP
in the traceroute to the AS originating the closest covering prefix at the time of
the traceroute. If we observe a traceroute AS-path that does not contain China
Telecom (AS 4134 or AS 23724) on April 7 or 9, that does contain these networks
on April 8, we conclude that this traceroute was impacted by the incident. Fur-
ther, if we observe a traceroute that was impacted, and the final AS in the path
is not AS 4134 or 23724, we conclude that this traceroute was intercepted. Fig-
ure 1 shows a traceroute where interception was observed. This traceroute only
transits AS 4134 (China Telecom) on April 8 and is able to reach the destination
through AS 2914 (NTT) who provides transit for AS 9318 (Hanaro Telecom).
In total, we observed 1,575 traceroutes transiting China Telecom on April 8.
Of these, 1,124 were impacted by the routing incident and 479 were potentially
intercepted, with 357 of these receiving a successful response from the target.

3.3 Limitations

We face limitations in existing data sets as we reuse them for the unintended
task of analyzing a large-scale routing anomaly.

Inaccuracies in the AS-Graph. AS-graphs suffer from inaccuracies infer-
ring AS-relationships (e.g., because of Internet eXchange Points (IXPs) [1]) and

Characterizing Large Scale Routing Anomalies 233

0

0.1

0.2

0.3

0.4

0.5

0.6

US CN KR AU MX RU IN BR JP FR
Fr

ac
tio

n
of

 P
re

fix
es

Country

All Hijacked Prefixes
Hijacked prefixes excluding AS 4134
All Globally Routable Prefixes

Fig. 2. Top 10 countries impacted by the China Telecom incident

poor visibility into peering links [20]. These inaccuracies impact our analysis of
interception which uses the AS-graph to infer China Telecom’s existing path to
a destination. We discuss this limitation in more detail in Section 5.3.

Inaccurate IP to AS Mappings. We note that our mapping of IP addresses
to ASes may be impacted by IXPs or sibling ASes managed by the same insti-
tution [16]. Since our primary concern is paths that enter China Telecom only
on April 8 the impact of siblings (e.g., per-province ASes managed by China
Telecom) should be mitigated. This is because paths to China Telecom’s siblings
would normally transit China Telecom’s backbone AS 4134.

4 Impact of the China Telecom Hijack

We now consider the impact of the China Telecom incident in terms of the
prefixes that were announced.

4.1 What is the Geographic Distribution of the Announced
Prefixes?

Figure 2 shows a breakdown of the prefixes that were hijacked by country, with
and without excluding prefixes owned by AS 4134. We see the bulk of prefixes
are registered to organizations in US and China, followed by Korea, Australia
and Mexico, which is consistent with observations made by BGPMon [4].

Was it Random?. Figure 2 also plots the geographic distribution of all routable
prefixes on the Internet. Here we can see a disproportionate number of Chinese
prefixes (especially belonging to AS 4134) being hijacked. Additionally, when
comparing hijacked prefixes to the global distribution of prefixes there appears
to be little evidence for attack. Indeed, the US shows fewer prefixes being hijacked
than would be expected based on the global distribution, while countries in the
Asia-Pacific region (e.g., China, Korea, Australia) have more hijacked prefixes.

4.2 Which Organizations Were Most Impacted?

Organizations with the most prefixes announced tend to be peers of AS 4134
(table in full version [12]). Indeed, direct neighbors of China Telecom are most

234 R. Hiran, N. Carlsson, and P. Gill

413423724 6167 22394

3356, 6167, 22394, 22394
66.174.161.0/24

7018
3356

4134, 23724, 23724
66.174.161.0/24

Fig. 3. Example topology that allows for interception of traffic

adversely impacted with an average of 85 prefixes hijacked vs. 9 prefixes hijacked
for all impacted ASes.

Critical Networks Were Subject to Hijacking. While they do not make the
top five list, China Telecom announced some critical US prefixes. Government
agencies such as Department of Defense, United States Patent and Trademark
Office, and Department of Transport were impacted.

4.3 Were Any of the Announcements Subprefix Hijacks?

We now consider the length of the prefixes announced by China Telecom relative
to existing routes. If the event was simply a leak of routes contained in the routing
table, it should be the case that China Telecom’s prefixes will be the same length
as existing routes. Additionally, prefix length can shed light on the impact of the
incident since more specific prefixes are preferred. For each of the six Routeviews
monitors (Section 3.1), we use the RIB tables as seen on April 7 to derive the
existing prefix lengths. Route aggregation means that the prefix length observed
varies between the vantage points.

Subprefix Hijacking Was Extremely Rare. In total, 21% (9,082) of the pre-
fixes were longer than existing prefixes at all six monitors. However, 95% (8,614)
of these prefixes belong to China Telecom (table in full version [?]). Most of the
observed subprefix hijacking is due to poor visibility of Chinese networks (AS
4134, 4538, and 38283) at the monitors. Excluding these networks, we observe
< 1% (86) prefixes being subprefix hijacked. The lack of subprefix hijacks sup-
ports the conclusion that the incident was caused by a routing table leak.

5 The Mechanics of Interception

The fact that traffic was able to flow through China Telecom’s network and onto
the destination is highly unusual. We now discuss how interception may occur
accidentally, based on routing policies employed by networks.

5.1 How Was Interception Possible?

Two key decisions, when combined with inconsistent state within China Tele-
com’s network, allow for traffic to be intercepted. These properties have also
been discussed in related work [3]. We illustrate them with an example from the
China Telecom incident (Figure 3). This figure was derived using a combination
of BGP updates [19] and a traceroute observed during the incident [8].

Characterizing Large Scale Routing Anomalies 235

Table 2. Neighbors that routed the most prefixes to China Telecom

Rank # of Prefixes % of Prefixes Organization

1 32,599 75% Australian Acad./Res. Net. (AARNet) (AS 7575)
2 19,171 44% Hurricane Electric (AS 6939)
3 14,101 33% NTT (AS 2914)
4 14,025 32% National LambdaRail (AS 11164)
5 13,970 32% Deutsche Telekom (AS 3320)

Decision 1: AT&T (AS 7018) Chooses to Route to China Telecom. In
Figure 3, AT&T (AS 7018) has two available paths to the prefix. However, since
the path advertised by China Telecom (AS 4134) is shorter, AT&T (AS 7018)
chooses to route to China Telecom.

Decision 2: Level 3 (AS 3356) Chooses not to Route to China Telecom.
In order for traffic to leave China Telecom’s network and flow on to the intended
destination, China Telecom requires a neighbor that does not choose the path it
advertises. In the example above, this occurs when Level 3 (AS 3356) chooses to
route through its customer Verizon (AS 6167) instead of through its peer China
Telecom (AS 4134). Thus, China Telecom can send traffic towards Level 3 and
have it arrive at the intended destination.

We next characterize what causes these decisions to be made using a combi-
nation of control- and data-plane data.

5.2 How Many ISPs Chose to Route to China Telecom?

We first consider how many ISPs made Decision 1. We observe 44 ASes routing
traffic towards China Telecom, with each AS selecting the path through China
Telecom for an average of 4,342 prefixes. The distribution of prefixes each AS
routes to China Telecom is highly skewed, with some ASes being significantly
more impacted than others. The top five ASes are summarized in Table 2, which
highlights the role of geography in the hijack, with networks operating in Europe
and Asia-Pacific regions being most impacted. Academic networks (AARNet and
National LambdaRail) are also heavily impacted.

5.3 Which Prefixes Were Intercepted?

We develop amethodology to locate potentially intercepted prefixes using control-
plane data. Control-plane data has the advantage that it may be passively col-
lected in a scalable manner. We validate our technique and further analyze the
interception that occurred using data-plane measurements [15] (Section 5.4).

We use the following methodology to locate potentially intercepted prefixes
using only control-plane data. First, for each hijacked prefix, we use the Cyclops
AS-graph (discussed in Section 3.1) and a standard model of routing policies [9],
to compute China Telecom’s best path to the prefix.2 Next, for each of these

2 Since China Telecom does not normally transit traffic for the hijacked prefixes, we
were unable to extract the paths normally used by China Telecom from Routeviews.

236 R. Hiran, N. Carlsson, and P. Gill

paths, we check whether the next-hop on China Telecom’s best path to the
destination was observed routing to China Telecom for the given prefix.

We observe 68% of the hijacked prefixes potentially being intercepted; how-
ever, 85% of these prefixes are observed being intercepted via AS 9304, a cus-
tomer of China Telecom, which may be an artifact of poor visibility of the
Routeviews monitors. Excluding paths through AS 9304, we observe a total of
10% (4,430) prefixes potentially being intercepted. We observe direct neighbors
of China Telecom such as AT&T, Sprint and Level 3 being most impacted by
interception as they still provided China Telecom (a peer) with paths to their
prefixes. Additionally, some Department of Defense prefixes may have been in-
tercepted as China Telecom potentially still had a path through Verizon.

Limitations. Our method is limited in two key ways. First, we may not observe
all announcements made by China Telecom’s neighbors (i.e., we may incorrectly
infer that they are not routing to China Telecom because their announcement is
not seen by the Routeviews monitors). Second, we do not know which neighbor
China Telecom would normally use to transit traffic for a given prefix and thus
we have to infer it based on topology measurements and a routing policy model.

Validation. Without ground-truth data it is difficult to quantify the inaccura-
cies of our methodology as we may both over- or under-estimate the potential for
interception. We use the data-plane measurements described in Section 3.2 to val-
idate our methodology. Of the 479 traceroutes that were intercepted, 319 (66%)
were observed in prefixes detected as interceptedusing our criteria.This inaccuracy
stems from a lack of control-plane data which leads to the limitations mentioned
above.With more complete data, ourmethod could better identify potential inter-
ceptions.

5.4 Why Neighboring ASes Did Not Route to China Telecom?

We use data-plane measurements to understand why neighboring ASes chose
not to route to China Telecom (Decision 2). In Figures 3 and 1, the reason
that the neighboring AS does not route to China Telecom is because they have
a path through a customer to the destination. However, this is only one reason
an AS would choose not to route to China Telecom. We consider the cases of
interception observed in the iPlane data and determine why the neighboring AS
did not route to China Telecom using the Gao-Rexford routing policy model [9].

Table 3 summarizes the reasons neighbors of China Telecom did not route to
China Telecom. Here we only consider the 357 traceroutes where interception was
observed and a response was received from the target. The majority of neighbors
handling intercepted traffic did not choose the China Telecom route because it
was longer than their existing route for the prefix in question.

Providers Inadvertently Allowed Interception of Customer Traffic. A
significant fraction (39%) of neighbor ASes do not route to China Telecom be-
cause they have a path to the destination via a customer, such as AS 3356 in
Figure 3. These providers inadvertently aided in the interception of their cus-

Characterizing Large Scale Routing Anomalies 237

Table 3. Why networks chose not to route to China Telecom

Reason # of traceroutes % of traceroutes

Had a customer path 139 39%
Had a shorter path 193 54%
Had an equally good path 18 5%
Other 7 2%

tomer’s traffic by forwarding China Telecom’s traffic to the destination. While
providers cannot control the traffic sent to them by neighboring ASes, it may be
beneficial to monitor the neighbors sending traffic towards their customers for
anomalies, so that customers may be alerted to potential interception events.

We observe seven traceroutes where it is unclear why the China Telecom path
was not chosen. These traceroutes involved a provider to China Telecom who
chose to route towards other customers likely the result of traffic engineering or
static routes being used for the customer ASes.

6 Discussion

Using publicly available data sources we have characterized the China Telecom
incident that occurred in April 2010. Our study sheds light on properties of the
prefixes announced, and supports the conclusion that the incident was a leak of
random prefixes in the routing table, but does not rule out malicious intent.

On Diagnosing Routing Incidents. Our work highlights the challenge of
understanding large-scale routing incidents from a purely technical perspective.
While empirical analysis can provide evidence to support or refute hypotheses
about root cause, it cannot prove the intent behind the incident. However, em-
pirical analysis can provide a starting point for discussions about the incident.

On the Available Data. When the results of analysis can lead to real-world
reaction it is important that the data used for analysis is as complete as possible
and robustness/limitation of results are clearly stated. These two properties can
be achieved by increasing the number of BGP monitors [11] and performing
careful analysis of robustness and limitations [10].

Acknowledgments. The authors thank the reviewers and our shepherd Olaf
Maennel for constructive suggestions, that helped improve the paper. This work
benefited from discussions with Jennifer Rexford and Andy Ogielski. We thank
Monia Ghobadi, Sharon Goldberg, and Jennifer Rexford for comments on drafts.
We thank Doug Madory for assistance with the analysis in Section 3.2.

References

1. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy
of a large European IXP. In: Proc. of ACM SIGCOMM (2012)

2. ATLAS - Arbor Networks (2012), http://atlas.arbor.net

http://atlas.arbor.net

238 R. Hiran, N. Carlsson, and P. Gill

3. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the Internet. In: Proc. of ACM SIGCOMM (2007)

4. BGPMon. China telecom hijack (2010), http://bgpmon.net/blog/?p=282
5. Blumenthal, D., Brookes, P., Cleveland, R., Fiedler, J., Mulloy, P., Reinsch, W.,

Shea, D., Videnieks, P., Wessel, M., Wortzel, L.: Report to Congress of the US-
China Economic and Security Review Commission (2010),
http://www.uscc.gov/annual_report/2010/annual_report_full_10.pdf

6. Brown, M.: Renesys blog: Pakistan hijacks YouTube,
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

7. Chi, Y., Oliveira, R., Zhang, L.: Cyclops: The Internet AS-level observatory. ACM
SIGCOMM Computer Communication Review (2008)

8. Cowie, J.: Renesys blog: China’s 18-minute mystery,
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml

9. Gao, L., Rexford, J.: Stable Internet routing without global coordination. Trans-
actions on Networking (2001)

10. Gill, P., Schapira, M., Goldberg, S.: Modeling on quicksand: Dealing with the
scarcity of ground truth in interdomain routing data. ACM SIGCOMM Computer
Communication Review (2012)

11. Gregori, E., Improta, A., Lenzini, L., Rossi, L., Sani, L.: On the incompleteness of
the AS-level graph: a novel methodology for BGP route collector placement. In:
ACM Internet Measurement Conference (2012)

12. R. Hiran, N. Carlsson, and P. Gill. Characterizing large-scale routing anomalies:
A case study of the China Telecom incident (2012),
http://www.ida.liu.se/~nikca/papers/pam13.html

13. Khare, V., Ju, Q., Zhang, B.: Concurrent prefix hijacks: Occurrence and impacts.
In: ACM Internet Measurement Conference (2012)

14. Labovitz, C.: China hijacks 15% of Internet traffic (2010),
http://ddos.arbornetworks.com/2010/11/

china-hijacks-15-of-internet-traffic/

15. Madhyastha, H., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An information plane for distributed services. In:
Proc. of OSDI (2006)

16. Mao, Z., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level tracer-
oute tool. In: Proc. of ACM SIGCOMM (2003)

17. McMillan, R.: A Chinese ISP momentarily hijacks the Internet (2010),
http://www.nytimes.com/external/idg/2010/04/08/

08idg-a-chinese-isp-momentarily-hijacks-the-internet-33717.html

18. Misel, S.: Wow, AS7007! Merit NANOG Archive (1997),
http://www.merit.edu/mail.archives/nanog/1997-04/msg00340.html

19. U. of Oregon. Route views project, http://www.routeviews.org/
20. Oliveira, R., Pei, D., Willinger, W., Zhang, B., Zhang, L.: Quantifying the com-

pleteness of the observed internet AS-level structure. UCLA Computer Science
Department - Techical Report TR-080026-2008 (September 2008)

21. Pilosov, A., Kapela, T.: Stealing the Internet: An Internet-scale man in the middle
attack. Presentation at DefCon 16 (2008),
http://www.defcon.org/images/defcon-16/

dc16-presentations/defcon-16-pilosov-kapela.pdf

http://bgpmon.net/blog/?p=282
http://www.uscc.gov/annual_report/2010/annual_report_full_10.pdf
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.ida.liu.se/~nikca/ papers/pam13.html
http://ddos.arbornetworks.com/2010/11/china-hijacks-15-of-internet-traffic/
http://ddos.arbornetworks.com/2010/11/china-hijacks-15-of-internet-traffic/
http://www.nytimes.com/external/idg/2010/04/08/08idg-a-chinese-isp-momentarily-hijacks-the-internet-33717.html
http://www.nytimes.com/external/idg/2010/04/08/08idg-a-chinese-isp-momentarily-hijacks-the-internet-33717.html
http://www.merit.edu/mail.archives/nanog/1997-04/msg00340.html
http://www.routeviews.org/
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf

PhishLive: A View of Phishing and Malware Attacks
from an Edge Router

Lianjie Cao1, Thibaut Probst2, and Ramana Kompella1

1 Purdue University, West Lafayette, Indiana, USA
2 INSA de Toulouse, Toulouse, France

Abstract. Malicious website attacks including phishing, malware, and drive-by
downloads have become a huge security threat to today’s Internet. Various stud-
ies have been focused on approaches to prevent users from being attacked by
malicious websites. However, there exist few studies that focus on the prevalence
and temporal characteristics of such attack traffic. In this paper, we developed
the PhishLive system to study the behavior of malicious website attacks on users
and hosts of the campus network of a large University by monitoring the HTTP
connections for malicious accesses. During our experiment of one month, we
analyzed over 1 billion URLs. Our analysis reveals several interesting findings.

1 Introduction

The rapid development of the Web over the recent few decades has made the Internet
a hotbed for a wide range of criminal activities. Numerous types of attacks are hidden
behind HTTP connections such as phishing, cross-site scripting, malware, and botnet
attacks. The most commonly used solution to defend against such attacks is using black-
listing. A blacklist-based defense system contains a set of URLs that are identified as
malicious or suspicious, either through a human-vetting process or other mechanisms.
When users are trying to connect to such web pages, the browsers (e.g., Mozilla Firefox)
pop out warnings or block the web page directly.

Literature is ripe with several studies that focused on documenting the effective-
ness of such browser-based techniques in thwarting malicious website attacks. For ex-
ample, [1] discusses the effectiveness of passive and active warnings to users. Simi-
larly, [2] studies the efficacy of different anti-phishing tools. There also exist several
papers (e.g., [3–6]) proposing different solutions for improving the attack detection and
defense using enhanced blacklisting techniques. Other content-based techniques have
also been proposed (e.g., [7–12]) for detecting malicious webpages, while [13] com-
bines both URL-based and content-based methods.

Unfortunately, to date, there exists only a few studies that focus on understanding
temporal characteristics of phishing or malware accesses in an edge network such as
a campus or an enterprise network comprising of a few tens of thousand users. [14]
analyzes the malware serving infrastructure of drive-by downloads. The paper indicates
that the malware serving networks are composed of tree-like structure and malware
are delivered through several redirections. However, they focus only on drive-by down-
loads ignoring other malicious attacks delivered through webpages and the data set

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 239–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 L. Cao, T. Probst, and R. Kompella

they use is collected generally not from a specific network. [15] assesses the issue of
overt manifestation of three networks consisting of around 30,000 users in total. They
study risky behaviors of users including security threats such as scanning, spamming,
payload signature and botnet rendezvous. Nevertheless, they only study the probability
of triggering malicious activities of users without concluding any possible pattern of
vulnerable users and attackers.

There are however several questions that remain to be answered such as whether ma-
licious sites are accessed just once, or a few times, or are repeatedly accessed over time
across users, and whether other malicious website attacks are hidden between HTTP
redirects. We believe a study to answer such questions is important for many reasons:
First, it can help in sizing the resource requirements of security middleboxes that can
be deployed to defend against them. Second, the temporal characteristics can help gen-
erate insights to inform future defense mechanisms. Thus, in this paper, we focus on
studying and understanding the characteristics of HTTP accesses to malicious sites as
seen by the edge router of a large campus network comprising upwards of 50,000 users.

A key requirement for our study is the ability to identify whether a given access is
to a malicious site or not, for which, we leverage existing blacklisting tools such as
the Google Safe Browsing (GSB) [16] back-end server. Thus, we do not invent any
new mechanism for detecting malicious website attacks, but instead leverage exist-
ing techniques to continuously monitor the network for malicious accesses to phish-
ing/malware websites. Our system called PhishLive monitors the HTTP traffic going
through the gateway of the campus network and captures malicious URLs detected by
GSB database in HTTP requests and redirect responses in real-time. It analyzes the
statistical characteristics of dataset off-line including distribution of attacks over time,
geolocation distribution of attacking IP addresses, attacking hostnames clustering and
malicious redirect chain analysis.

We deployed PhishLive on a large university gateway for a month during which we
captured and analyzed about 1 billion URLs. Some of our key findings are:

• The fraction of URLs that are identified as belonging to phishing/malware sites is
relatively small; in our data, it is less than 0.038% of all URLs.

• There is a relatively higher number of malicious URLs accessed during 11:00pm-
5:00am compared to other times.

• Most domains (almost 50%) typically existed for less than 1 day. However, close to
10% of the domains were accessed for more than 15 days.

• An extremely small fraction of all HTTP redirection chains contain malicious URLs;
in our data less than 2,000 URLs are part of redirection chains out of about 50 mil-
lion redirection chains.

In the rest of the paper, we give an overview of the PhishLive system in Section 2 and
outline our observations from a real deployment of PhishLive in Section 3.

2 System Overview

In this section, we describe the design of the PhishLive system that can continuously
monitor HTTP traffic for phishing and malware attacks. We envision PhishLive to be

PhishLive: A View of Phishing and Malware Attacks from an Edge Router 241

Internet University
Network

Gateway

Output

Traffic
Monitor

Capture Module

Check Module
Update Module

Local database
Google server

HTTP
requests

Malicious
URLs

(a) System overview

IP j

RED

Mark Chain
as Malicious

Malicious URL

Malicious URL

Malicious URL

Hash table level 1 Hash table level 2 Pipe with check
module

IP2

GET RED

GET RED RED

GET REDIP i

GET RED

GET

GET

GET

RED

(b) Operations on two hash tables

Fig. 1. Internals of PhishLive system

deployed at an edge router, such as a campus gateway router, that can track the various
HTTP requests issued by a bunch of users. We assume the presence of a standard high-
speed capture device (e.g., Endace 10Gbps monitoring card) to collect each packet that
is going through the gateway router to the outside world, from which we filter the HTTP
traffic (port 80) and extract the URLs from HTTP GET requests. For verifying whether
a given URL is malicious or not, each URL is cross checked with the Google Safe
Browsing (GSB) database. Since HTTP redirects are also used to hide malicious content
[17–19] in some attacks, the system is designed to also track and analyze HTTP redirect
chains. We assume access to both directions of traffic for detecting redirects.

The PhishLive system comprises three components: a capture module, a check mod-
ule and an update module (shown in Figure 1(a)); we describe their details next.

Capture Module. The capture module of our system utilizes the libpcap library to cap-
ture the HTTP requests from the hosts inside the university and redirect responses from
the external hosts. As of now, the PhishLive system supports up to 5 types of HTTP
requests: GET, HEAD, POST, PUT, DELETE, and 4 types of HTTP redirect responses:
301, 302, 303, 307. As of now, we only investigate URL redirection based on HTTP
status code; other redirections based on HTML meta tag, Javascript and flash are not
studied in this paper. The capture module also uses network libraries and regular ex-
pressions to extract the URLs from HTTP requests or the URLs in redirect responses,
as well as source/destination IP addresses (SIP, DIP) and source/destination port num-
bers (SP, DP). For privacy reasons, all user-facing IP addresses are hashed.

As part of our analysis, we also wish to study the role of HTTP redirects in phishing
and malware attacks. A redirect chain is a sequence of URLs starting from the first re-
quested URL, ending with the last requested URL, that can be represented as follows:
GET (URL1) → REDIRECT (URL2) ... → GET (URLn), where n is the number
of different requested URLs in the chain. Although it appears simple, it is little tricky
to track HTTP redirects in an online fashion, since it requires correlation across TCP
connections (since each GET request is to a different hostname). Thus, in PhishLive,
we build two hash tables (denoted as level-1 hash table and level-2 hash table in Fig-
ure 1(b)) to store HTTP redirects. The level-1 hash table holds related information of a
HTTP request with a key of 〈SIP, SP,DIP,DP 〉. Because the request and the redirect
packet belong to the same TCP session, when a HTTP redirect response is captured, the

242 L. Cao, T. Probst, and R. Kompella

capture module checks if there is an existing record in the level-1 hash table with the
same key. If a match is found, it means that this redirect is the response for the matched
HTTP request. Then this pair (HTTP request and redirect response) is extracted from
the level-1 hash table and inserted into the level-2 hash table with the SIP as key.

The level-2 hash table keeps record of all HTTP redirect chains observed in the form
of a linked list. Each slot in the level-2 hash table corresponds to a user-facing IP address
(inside the network). When inserting a pair (HTTP request and redirect response) into
the level-2 hash table, it checks if the URL in the HTTP request matches the URL in the
last record with the same key. A match indicates current request is the HTTP request of
the URL in the last redirect response, and the redirect response is attached to the end
of the chain. If not, a new redirect chain is built. Therefore, one slot in the level-2 hash
table may contain more than one redirect chain. For instance, slot n in the level-2 hash
table includes redirect chains a→b→c and x→y. When a new pair of HTTP redirect
y→z is inserted, it searches for the first linked list entry a→b→c and finds that y does
not match c. Then it moves to next linked list x→y, which matches and the new pair
y→z is attached to the linked list resulting in x→y→z. The operations of the two hash
tables are illustrated in Figure 1(b) .

The capture module also receives feedback which includes the malicious URL and
the victim’s IP address from the check module. It then compares the malicious URL
with the records in the level-2 hash table. If the URL is found in the level-2 hash table,
it will be marked as malicious and dumped to a file later on. The implementation of
the capture module constitutes of three threads: one thread captures and extracts URLs
from HTTP packets and feeds them to check module; another thread receives results
from check module and scans level-2 hash table for a match; the last thread refreshes
the two hash tables periodically to prevent them from growing too large and a fatal
memory drop-off in a long-term running.

Check and Update Modules. The check module is based on the PHP API of Google
Safe Browsing database provided by Google. The check module maintains a local
database of malicious URLs verified by GSB server and interacts with the capture mod-
ule through two pipes. Once it receives a URL from capture module, it checks the URL
against the local database and feeds it back to capture module through a pipe if the URL
is identified as malicious. The check module also produces general real-time statistics.
The update module updates the local database with Google server periodically to ensure
that the content of the local database is up-to-date.

3 Experimental Results

We deployed the PhishLive system at the edge router of a large university network over
30 days from March 19, 2012 to April 18, 2012, during which the system analyzed
more than 1 billion HTTP requests (as summarized in Table 1). Out of the 1 billion
URLs, only about 0.0381% of all HTTP requests were classified as requests to mali-
cious webpages. We also observed about 50 million HTTP redirect chains out of which
only about 7,500 included malicious URLs.

Since PhishLive system only captures the HTTP requests from hosts and HTTP
redirect responses from servers and verifies the URL by querying GSB database, the

PhishLive: A View of Phishing and Malware Attacks from an Edge Router 243

Table 1. Statistics of the Experiment

Experiment Duration Mar 19, 2012 - Apr 18, 2012

of HTTP Requests 1,038,803,540
of Redirect Chains 50,204,174
of Malicious URLs 395,671 (0.0381%)
of Unique Malicious URLs 118,615
of Malicious Redirect Chains 7,497 (0.0149%)

accuracy of the dataset drawn from the experiment largely depends on the accuracy of
the GSB database. Previous studies [13] indicate that GSB database has a false negative
rate of less than 10%; so we believe that the results are more or less accurate. How-
ever, to improve the credibility of the results, we manually verified a small sample of
the URLs. Since there could be many malicious URLs with same hostname, we used
a stratified sampling approach to select samples across different hostnames while en-
suring larger number of samples for high volume hostnames. Specifically, we assign
a weight # of malicious webpages of the cluster

of malicious webpages overall for each cluster of URLs that share the
same hostname. We chose 400 samples to manually check whether they are malicious.
Since total number of hostnames is less than this number, we picked at least one URL
from each cluster. The remaining were sampled using the weight calculated above. We
found that 93 webpages belonged to a group of fast flux hostnames (discussed in sec-
tion 3.4), that we are quite certain that they are malicious. Out of the rest, we found that
more than 87% of the webpages are actually malicious.

3.1 Temporal Analysis

The PhishLive system computes the number of HTTP requests and number of malicious
URLs observed per hour. Host users behave very differently at different times of a
day, that could mean different fraction of malicious website accesses depending on the
time of day. To investigate this, we focus on the ratio of malicious website visits as a
proportion of the total number of HTTP requests (which we call malicious ratio in our
paper). From the perspective of an IDS, a higher malicious ratio at a certain time means
that a HTTP connection observed at this time has higher probability to be malicious
website attack.

Figure 2(a) shows the malicious ratio which varies from 0.008% to 0.257% over
the one month period. Users usually make more HTTP requests during daytime than
night, which could mean more malicious website accesses during daytime than night.
However, from Figure 2(b) which displays the average malicious ratio for 24 hours,
we observe that the malicious ratio is significantly higher (almost double) from 11 PM
to 5 AM compared to daytime. Upon further investigation, we found that the abso-
lute number of attacks is almost the same during daytime and night, with a slight edge
during night (average 11,460 during daytime compared with 12,098 during nighttime).
We believe the reason for this stems from the fact that these accesses could be auto-
matically initiated by malware already present on infected computers rather than via
human accesses. As the study [9] on malware infections indicates, about 58.6% of all

244 L. Cao, T. Probst, and R. Kompella

0

0.05

0.1

0.15

0.2

0.25

3−
19

−2
01

2

3−
20

−2
01

2

3−
21

−2
01

2

3−
22

−2
01

2

3−
23

−2
01

2

3−
24

−2
01

2

3−
25

−2
01

2

3−
26

−2
01

2

3−
27

−2
01

2

3−
28

−2
01

2

3−
29

−2
01

2

3−
30

−2
01

2

3−
31

−2
01

2

4−
01

−2
01

2

4−
02

−2
01

2

4−
03

−2
01

2

4−
04

−2
01

2

4−
05

−2
01

2

4−
06

−2
01

2

4−
07

−2
01

2

4−
08

−2
01

2

4−
09

−2
01

2

4−
10

−2
01

2

4−
11

−2
01

2

4−
12

−2
01

2

4−
13

−2
01

2

4−
14

−2
01

2

4−
15

−2
01

2

4−
16

−2
01

2

4−
17

−2
01

2

4−
18

−2
01

2

4−
19

−2
01

2

Malicious Ratio Over 31 days

Date

M
al

ic
io

us
 R

at
io

 (
%

)

(a) Malicious ratio

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Average Malicious Ratio Over 24 hours

01
:0

0
02

:0
0
03

:0
0
04

:0
0
05

:0
0
06

:0
0
07

:0
0
08

:0
0
09

:0
0
10

:0
0
11

:0
0
12

:0
0
13

:0
0
14

:0
0
15

:0
0
16

:0
0
17

:0
0
18

:0
0
19

:0
0
20

:0
0
21

:0
0
22

:0
0
23

:0
0
24

:0
0

Time

M
al

ic
io

us
 R

at
io

 (
%

)

(b) Time of day

Fig. 2. Prevalence and location of malicious websites in our dataset. Subplot (a) shows the ratio
of malicious URLs to benign over the month. (b) shows per-hour average malicious ratio.

malware make HTTP accesses, which partly explains our observations. In addition, we
found a non-negligible numbers of visits to pornographic websites at nights compared
to daytime, which are often associated with many types of malware.

3.2 Access Characteristics of Victims

We now analyze the malicious URL access characteristics. Specifically, we focus on
the timing of the user accesses to attacker domains (IP addresses) and the relationship
between victims (IP addresses) and attacker domains. Figure 3(a) displays the timing
characteristics of when the attacker domains have been accessed by users. The y-axis
represents distinct hostnames of attackers we observed in our data, while the x-axis is
the date, with a resolution of one day. We can see that there are roughly three types of
attacker domains. Type I attacker domains are those that users access frequently over a
long period of time; such domains are appear as a horizontal line in the figure. Attacker
domains of type II are those that may be intermittently accessed by users. They appear
as dashed horizontal line in the figure. Type III attackers scatter attacks infrequently, and
mostly appear as sparse points in the figure. Figure 3(b) shows the scatter plot between
victims and attacker domains. From the figure, we can see that a significant number of
victims seem to have contacted a few popular attacker IP addresses. Similarly, vertically,
many users seem to have contacted many different attacker IP addresses as well.

(a) Attacker hostnames (b) Victim Attacker scatter plot

Fig. 3. Behavior of attacker’s hostnames and IP addresses over time

PhishLive: A View of Phishing and Malware Attacks from an Edge Router 245

3.3 Persistence of Hostnames

The previous graphs used IP addresses; since a single IP address could host many dif-
ferent hostnames, we now switch to understanding the persistence characteristics of the
various hostnames we observed. Since we do not exactly know the lifetime of a host-
name, we only focus on duration between the first and last times a URL was observed
from a given hostname as an estimate of the lifetime of a given hostname. In Figure 4(a),
we plot a histogram of the number of days a particular hostname was observed in our
dataset. The x-axis is the number of days an attack hostname was observed, while the
y-axis shows the fraction of attacks. Since we have collected only one month’s trace,
we restrict ourselves to the hostnames collected in the first 15 days, so each hostname
has the same chance of appearing in the next 15 days from the first time a hostname
appears to eliminate the fringe bias in our data. In Figure 4(a), we found that almost
50% of the attacker hostnames were present for less than 1 day, which confirms the
fast-flux like behavior observed in previous studies [20, 21]. But there are a non-trivial
number of hostnames that were accessed persistently for a number of days. Close to
10% of the hostnames were accessed for all 15 days; due to lack of data beyond, we
cannot conclusively determine how long these campaigns actually persisted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Days Attacks Happened

P
ro

pt
io

n
of

 H
os

tn
am

es

(a) # of Days

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ranges

P
ro

pt
io

n
of

 H
os

tn
am

es

(b) Range of Days

1 10 100 1000 10000 1e+006
0

0.05

0.1

0.15

0.2

0.25

Number of Attacks

P
ro

pt
io

n
of

 H
os

tn
am

es

(c) # of HTTP accesses

Fig. 4. Temporal characteristics of malicious accesses. Subplot (a) shows distribution of host-
names in terms of number of days a hostname has been accessed. (b) shows the distribution of
range, and (c) shows distribution of number of accesses.

A similar behavior can be observed in Figure 4(b), where we plot the range of the
days between which we observed a given hostname. While this plot (in Figure 4(b) has
similar characteristics as the previous one (Figure 4(a)), the bar for 15 days, which in-
cludes all hostnames that were active for greater than or equal to 15 days, is significantly
taller (almost 30% compared to only 5%). But, the number of hostnames that were ac-
tive for only 15 days is small (<10%), leaving a significant number of hostnames (the
remaining 20%) active for >15 days.

Finally, we plot the distribution of the number of HTTP accesses to particular host-
names in Figure 4(c). From this figure, we can observe that most hostnames are accessed
relatively infrequently. Almost 70% of hostnames were seen only less than 10 times, and
90% were seen less than 100 times in our dataset. A small number of hostnames seem to
have been accessed a lot of times, greater than 33,000 times. We manually checked the
43 hostnames that were accessed more than a 1000 times. Those 43 hostnames belong
to 27 different websites. Among those websites we found 1 job hunting website, 1 local

246 L. Cao, T. Probst, and R. Kompella

forum, 2 file sharing websites, 3 porn websites, 3 news websites and the rest of them
are general websites with many different types of content.

3.4 Lexical Similarity of Domains

We now study the lexical similarity in attack domains we have observed in our data set.
We decompose a malicious URL into three components: hostname, file path and query
string, out of which our main interest is just the hostname. We lexically group together
hostnames that share some similarity in the form of a tree. All the 395,671 malicious
URLs we observed belong to 1686 distinct hostnames, 37 of which are IP addresses
that we exclude in the clustering process. We first split each hostname to several tokens
which are strings between two dots. For example, we break pann.nate.com into pann,
nate and com tokens. Then we start to build the tree in the reverse order, starting from
the top level domain name (e.g., com, nate and then pann).

End nodes in this tree are the hostnames we detected in our experiment. Children
sharing the same parent node contain the same upper-level domain names. By do-
ing this, we are trying to put different hostnames into clusters indicating the degree
of similarity. From the tree, we observed that some prefixes exhibited large subtrees.
For example, in our data, we observed PassingGas.net shared by 42 hostnames that
differed mainly in the third-level token, such as nealyxadxloa.PassingGas.net, hccayx-
adxloa.PassingGas.net and so on. We observe that their third-level domain names look
like they have been generated randomly; this discovery is not surprising as we observe
such occurrences even in public domain phishing blacklists such as PhishTank.

What was interesting, however, is that each unique hostname was accessed for no
more than 2 days by hosts in our network; such information cannot be obtained by ob-
serving blacklists such as PhishTank alone. The old hostnames became invalid, leading
to a page indicating that this website is using Sitelutions Redirection Engine and the
URL is either entered incorrectly or has been removed by itself. Another feature of
these hostnames is that they all share the same IP address (located in Herndon, VA)
no matter how they change the third level domain name. Obviously, this indicates that
the attackers are manipulating the DNS Resource Records dynamically, which is not
surprising as attackers often try to evade detection this way [3].

3.5 Redirect Chain Analysis

Researchers in [19] reported that attackers may use long redirect chains to hide ma-
licious content; we therefore study whether redirections are actively used in attacks
today. There are many ways to implement HTTP redirections, such as server-side 3XX
response, client-side scripting (javascript), META refresh tag and so on. Since, server-
side redirection is prominent in both legitimate and spam redirection [22], and since
content-based analysis has significant impact on the performance of a real-time system,
we choose to only focus on server-side HTTP redirects.

In our dataset, we observed a total of 7,497 redirect chains that contained at least one
malicious URL. However, in some of the redirect chains, the original HTTP requests
and redirect response belonged to the same hostname. If a redirect chain is created by
attackers intentionally, then: (i) the URL in the redirect response typically belongs to

PhishLive: A View of Phishing and Malware Attacks from an Edge Router 247

Table 2. Statistics of Effective Malicious Redirect Chain

Type Number

Total Redirect Chains 50,204,174
Malicious Redirect Chains 7,497
Effective Malicious Chains 1449
Average Number of Redirect 2.221
Number of Chains Longer Than 1 246
Max Number of Redirect 5
Start with Normal Request 988
301 Redirect 231
302 Redirect 1523
303 Redirect 6
307 Redirect 0

a different hostname; (ii) the last redirect is malicious; (iii) the redirect chain usually
contains more than one redirect. Therefore, we define a redirect chain to be a effective
malicious redirect chain if the URLs in the chain belong to at least two different host-
names, and the last redirect is malicious. However, we do not put any restriction on the
length of the redirect chain, since it usually does not matter.

For example, the chain consisting of redirecting http://www.dwnews.com/images/
news/blog.gif→ http://www.dwnews.com/ is not effective malicious redirect chain since
the two URLs belong to the same hostname. However, the chain that involves the fol-
lowing redirection, http://grannymovs.in/→ http://lotaz.in/MyTRAFF/apiLINK da.php
→ http://servantspywarekeep.info/755063395c4 a385d/ is an effective malicious redi-
rect chain, since the last URL is malicious. We also noticed a special case that the
redirect chains caused by the expiration of the hostnames mentioned before. Redirects
related to the expiration of those hostnames occurred 2,065 times, which we removed
from our set. Among the remaining, we identified 1,449 effective malicious redirect
chains, the statistics of whom are summarized in Table 2.

Several conclusions can be derived from our analysis on malicious redirect chains:
(1) The number of malicious redirect chains (7497) among all redirects (≈ 50 million)
is quite small (<0.0149%). (2) Only a small portion of malicious redirect chains (246
out of 7497) are effective malicious redirect chains and contain more than 1 redirect
(about 3.29%) in our experiment. (3) Most of the effective malicious chains (about 988
out of 1449) start from a normal HTTP request and end up with a malicious URL as
redirect response.

4 Conclusions

To date, no studies exist on how prevalent phishing/malware attacks are or on the tem-
poral characteristics of malware accesses in edge networks. We designed the Phish-
Live system for long-term monitoring of HTTP traffic of a large campus network that
enabled us to study various temporal characteristics of phishing/malware attacks.

248 L. Cao, T. Probst, and R. Kompella

Using a month-long deployment of the PhishLive system at the university gateway
router, we observed many interesting characteristics of phishing attacks. For example,
we found that malicious accesses are more common during 11:00-5:00pm than dur-
ing day times. Similarly, we found that most domains appeared only for one day and
redirection was not common among many of the malware URLs we detected.

Acknowledgements. We thank the anonymous reviewers and Changhyun Lee, our
shepherd, for their comments that improved the paper significantly. We thank the Purdue
University IT staff including Bill Harshbarger and Greg Hedrick for their support in
collecting the traces. This work was supported in part by NSF grant 1017915 and a
grant from Google.

References

1. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: An empirical study of the effec-
tiveness of web browser phishing warnings. In: CHI, 1065–1074 (April 2008)

2. Zhang, Y., Egelman, S., Cranor, L., Hong, J.: Phinding phish: Evaluating Anti-Phishing tools.
In: NDSS (February 2007)

3. Prakash, P., Kumar, M., Kompella, R., Gupta, M.: Phishnet: Predictive blacklisting to detect
phishing attacks. In: INFOCOM, pp. 1–5 (March 2010)

4. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: Learning to detect malicious
web sites from suspicious URLs. In: KDD, pp. 1245–1254 (June 2009)

5. Ramachandran, A., Feamster, N., Vempala, S.: Filtering spam with behavioral blacklisting.
In: CCS (October 2007)

6. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and measurement
of phishing attacks. In: WORM, 1–8 (2007)

7. Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: A content-based approach to detecting phishing
web sites. In: WWW, pp. 639–648 (May 2007)

8. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current malware
behaviors. In: LEET, pp. 1–11 (April 2009)

9. Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., et al.: Sandnet: network traffic analysis of
malicious software. In: BADGERS (April 2011)

10. Gu, G., Zhang, J., Wenke, L.: BotSniffer: Detecting botnet command and control channels in
network traffic. In: NDSS (February 2008)

11. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and signa-
ture generation using malicious network traces. In: NSDI (April 2010)

12. Song, C., Zhuge, J., Han, X., Ye, Z.: Preventing drive-by download via inter-module com-
munication monitoring. In: ASIACCS, pp. 124–134 (April 2010)

13. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phishing pages.
In: NDSS (February 2010)

14. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to us. In:
IEEE S&P Conference (Oakland), pp. 1–15 (May 2008)

15. Maier, G., Feldmann, A., Paxson, V., Sommer, R., Vallentin, M.: An Assessment of Overt
Malicious Activity Manifest in Residential Networks. In: Holz, T., Bos, H. (eds.) DIMVA
2011. LNCS, vol. 6739, pp. 144–163. Springer, Heidelberg (2011)

16. Google safe browsing API,
https://developers.google.com/safe-browsing/

PhishLive: A View of Phishing and Malware Attacks from an Edge Router 249

17. Webb, S., Caverlee, J., Pu, C.: Introducing the webb spam corpus: Using email spam to
identify web spam automatically. In: CEAS (July 2006)

18. Webb, S., Caverlee, J., Pu, C.: Characterizing web spam using content and http session anal-
ysis. In: CEAS (July 2007)

19. Lee, S., Kim, J.: Warningbird: Detecting suspicious URLs in twitter stream. In: NDSS, pp.
1–13 (February 2012)

20. Konte, M., Feamster, N., Jung, J.: Dynamics of Online Scam Hosting Infrastructure. In:
Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 219–228.
Springer, Heidelberg (2009)

21. Holz, T., Gorecki, C., Rieck, K., Freiling, F.: Measuring and detecting fast-flux service net-
works. In: NDSS (February 2008)

22. Bhargrava, K., Brewer, D., Li, K.: A study of URL redirection indicating spam. In: CEAS
(July 2009)

Remotely Gauging Upstream Bufferbloat Delays

C. Chirichella1, D. Rossi1, C. Testa1, T. Friedman2, and Antonio Pescapé3

1 Telecom ParisTech.
first.last@enst.fr

2 UPMC Sorbonne Universites
timur.friedman@upmc.fr

3 Univ. Federico II
pescape@unina.it

Abstract. “Bufferbloat” is the growth in buffer size that has led Internet delays
to occasionally exceed the light propagation delay from the Earth to the Moon.
Manufacturers have built in large buffers to prevent losses on Wi-Fi, cable and
ADSL links. But the combination of some links’ limited bandwidth with TCP’s
tendency to saturate that bandwidth results in excessive queuing delays. In re-
sponse, new congestion control protocols such as BitTorrent’s uTP/LEDBAT aim
at explicitly limiting the delay that they add over the bottleneck link. This work
proposes and validate a methodology to monitor the upstream queuing delay ex-
perienced by remote hosts, both those using LEDBAT, through LEDBAT’s native
one-way delay measurements, and those using TCP (via the Timestamp Option).

1 Problem Statement

As a recent CACM article points out, “Internet delays now are as common as they are
maddening” [3]. Currently, the combination of excessive buffer sizes (aka bufferbloat),
with TCP’s congestion control mechanism (which forces a bottleneck buffer to fill and
generate a loss before the sender reduces its rate), queuing delays can potentially reach
a few seconds [8]. This is confirmed by recent studies such as [5], showing that most
home gateways have a fixed buffer size, irrespective of the uplink capacity. With ca-
ble and ADSL modem buffers ranging from, on average, 120 KB to a maximum of
365 KB [5], and common uplink rates of 1 Mbps, worst case queuing delays can range
from 1 second on average to a maximum of 3 seconds.

To counter this problem, BitTorrent developers have proposed IETF LEDBAT [9] as
a TCP replacement for data transfer. Like TCP, LEDBAT maintains a congestion win-
dow – but whereas mainstream TCP variants use loss-based congestion control (grow-
ing with ACKs and shrinking with losses), LEDBAT estimates the queuing delay on the
bottleneck link and tunes the window size in an effort to achieve a target level of queu-
ing delay (100ms by default). By explicitly capping the queuing delay, LEDBAT aims
at protecting VoIP [2] and other interactive traffic (e.g., Web, Gaming) by congestion
self-induced by other traffic of the same user.

Although TCP’s loss-based congestion control, coupled with large buffers, can clearly
cause significant bufferbloat delays, it is unclear how often this happens in practice, and
how badly it hurts user performance. Indeed, active approaches such as Netalyzer [8],

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 250–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Remotely Gauging Upstream Bufferbloat Delays 251

trx,i-1 ttx,i-1 -

trx,i-1

ttx,i

ttx,i-1

ttx,i+1

trx,i

trx,i+1

ttx,i+1

ttx,i

trx,i ttx,i -

A B

i:

i+1:

(a)

 0

 2000

 4000

 6000

(L
E

D
B

A
T

,
B

ac
kl

og
ge

d)Inferred
Expected (kernel)
Expected (UDPing)

 0

 2000

 4000

 6000

(T
C

P,
C

hi
rp

)

 0

 2000

 4000

 6000

 0 20 40 60 80 100

Q
ue

ui
ng

 d
el

ay
 [

m
s]

(T
C

P,
B

ac
kl

og
ge

d)

time [s]

 0
 50

 100
 150

(b)

Fig. 1. Bufferbloat measurement methodology: illustration (left) and validation (right)

likely overestimate bufferbloat delay – by purposely filling the pipe, Netalyzer learns
the maximum bufferbloat delay, but not its typical range. To counter this limitation, we
design and validate a passive methodology for inferring the queuing delays encountered
by remote LEDBAT and TCP hosts.

2 Methodology

We estimate queuing delay by collecting one-way delay (OWD) samples, establishing
the minimum as a baseline delay, and then measuring the degree to which a sample
differs from the baseline. This is a classic approach used in congestion control to drive
congestion window dynamics since the late 1980s [7]. Our innovation is to demonstrate
how a passive observer of LEDBAT or TCP traffic can use this approach to estimate the
uplink delays experienced by a remote host.

To infer B queues, in our methodology an observer close to A sniffs the packets
and performs the same state updates as does the LEDBAT congestion control protocol
running on A. Our methodology is to sniff and inspect LEDBAT and TCP packets, and
mimick the way the LEDBAT sender computes queuing delay based on header fields.

Fig. 1(a) illustrates the methodology. On reception of a new packet, the receiver cal-
culates the OWD as the difference between its own local clock and the sender “times-
tamp” (the latter extracted from packet header1), and sends this “ack.delay” value back
to the sender (using another header field). At each packet reception, the observer up-
dates the base delay βBA as the minimum over all OWD B → A samples:

βBA = min(βBA, t
A
rx,i − tBtx,i), (1)

qBi = (tArx,i − tBtx,i)− βBA (2)

Then, the queuing delay qBi incurred by packet i can be inferred by subtracting βBA

from the timestamp difference carried in packet i+1.
Omitted here for lack of space but reported in [4], the methodology also applies to

TCP traffic provided that the flow has the Timestamps Option [6] enabled. This means

1 In the absence of a finalized LEDBAT standard, our protocol parser is based on BitTorrent’s
currently implemented BEP-29 definition [1].

252 C. Chirichella et al.

the observer must either be one of the hosts, work in cooperation with one of the hosts,
or opportunistically measure only those flows that have this option enabled.

3 Validation

We validate our methodology in Fig. 1(b), reporting testbed results with two ground
truths: (i) kernel level queue logs (hacking the sch_print function of the netem
emulator) and (ii) UDP ping-like measurements (as queuing occurs only at B, we have
qBi = RTTi −minj�iRTTj).

Host B has an ongoing backlogged LEDBAT flow to A (top plot), with possibly in-
terfering on/off TCP (middle) or backlogged-TCP (bottom) traffic models. As expected,
in the LEDBAT case queuing reaches the 100 ms target specified in the draft (top). In
the on/off case, queuing can possibly grow very large depending on the amount of
cross TCP traffic (middle). Finally, queuing delay attains the maximum value, that Ne-
talyzer [8] would report, under backlogged TCP (bottom). In all cases, we see that our
methodology is very reliable agains both ground truths (differences are on the order of
1 packet worth of queuing delay for LEDBAT).

In a typical scenario, however, the observerO will be able to observe only part of the
traffic generated by the host of interest B (say, the traffic B → A), but will miss another
part (say, B → C). Omitted here for lack of space but reported in [4], our validation
shows the methodology to be accurate even in case the observer O has only a partial
view of B traffic: the error in the inferred measure is negligible in cases where a sizable
amount of traffic makes it to the observer, but is still robust and reliable even when the
observer is able to sniff only very few samples.

Acknowledgement. This work has been carried out at LINCS http://www.lincs.
fr and funded by the FP7 mPlane project (grant agreement no. 318627).

References

1. http://bittorrent.org/beps/bep_0029.html
2. ITU Recommendation G.114, One Way Transmission Time.
3. Cerf, V., Jacobson, V., Weaver, N., Gettys, J.: Bufferbloat: what’s wrong with the internet?

Communications of the ACM 55(2), 40–47 (2012)
4. Chirichella, C., Rossi, D., Testa, C., Friedman, T., Pescape, A.: Passive bufferbloat measure-

ment exploiting transport layer information (2012),
http://www.enst.fr/ drossi/dataset/
bufferbloat-methodology/techrep.pdf

5. DiCioccio, L., Teixeira, R., May, M., Kreibich, C.: Probe and Pray: Using UPnP for Home
Network Measurements. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol. 7192, pp.
96–105. Springer, Heidelberg (2012)

6. Jacobson, V., et al.: TCP Extensions for High Performance. IETF RFC 1323 (1992)
7. Jain, R.: A delay-based approach for congestion avoidance in interconnected heterogeneous

computer networks. ACM SIGCOMM CCR 19(5), 56–71 (1989)
8. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: Illuminating the edge network.

In: ACM Internet Measurement Conference, ACM IMC 2010 (2010)
9. Shalunov, S., et al.: Low Extra Delay Background Transport (LEDBAT). IETF draft (2010)

http://www.lincs.fr
http://www.lincs.fr
http://bittorrent.org/beps/bep_0029.html
http://www.enst.fr/~drossi/dataset/bufferbloat-methodology/techrep.pdf
http://www.enst.fr/~drossi/dataset/bufferbloat-methodology/techrep.pdf

Scaling Out the Performance

of Service Monitoring Applications
with BlockMon

Davide Simoncelli1, Maurizio Dusi2,
Francesco Gringoli1, and Saverio Niccolini2,�

1 University of Brescia – CNIT, Brescia, Italy
netcelli.tux@gmail.com, francesco.gringoli@ing.unibs.it

2 NEC Laboratories Europe, Heidelberg, Germany
{maurizio.dusi,saverio.niccolini}@neclab.eu

Abstract. To cope with real-time data analysis as the amount of data
being exchanged over the network increases, an idea is to re-design al-
gorithms originally implemented on the monitoring probe to work in a
distributed manner over a stream-processing platform. In this paper we
show preliminary performance analysis of a Twitter trending algorithm
when running over BlockMon, an open-source monitoring platform which
we extended to run distributed data-analytics algorithms: we show that
it performs up to 23.5x and 34.2x faster on BlockMon than on Storm
and Apache S4 respectively, two emerging stream-processing platforms.

1 Introduction

Due to the tremendous growth of data exchanged on the Internet, the traditional
(monolytic) approach to data monitoring showed to be inadequate for collecting
and processing measurements on the fly and alternative designs based on dis-
tributed computing are being explored. While Hadoop and MapReduce [1,2] are
well-known frameworks oriented to the off-line (batch) processing of data, brand
new frameworks are emerging for the analysis of unbound streams of data, such
as Storm and Apache S4.

In this paper we evaluate the performance of Twitter trending, an applica-
tion that monitors and ranks on-the-fly topics discussed by Twitter users over
time. We run this application on top of Storm and Apache S4, platforms that
have been built around this use case, and on top of BlockMon [3], an open source
monitoring platform that we extended to execute distributed applications.

Here follows a quick overview of these three stream-processing systems.
BlockMon is an open-source modular system for flexible, high-performance

traffic monitoring and analysis, implemented in C++11 under BSD license, being
designed to run on a single multi-core machine. We added interfaces for connect-
ing blocks running on different machines, which allow to (de)serialize messages

� This work was supported in part by a grant from the European Commission, under
the EU FP7 project DEMONS (contract-no. 257315).

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 253–255, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

254 D. Simoncelli et al.

inside TCP sessions, so that users can now implement distributed applications
for monitoring unbound streams of data on top of it. We release improved Block-
Mon to the public [4].

Storm runs on Java Virtual Machine, is written in Clojure and Java and
supports multi-language programmability. Data are exchanged in form of tuples
through ZMQ sockets, which handle local and remote transmission on top of
TCP. We used release v0.8 of the software, available under the EPL license [5].

Apache S4 is written in Java. An external adapter converts data into
Apache S4 events and injects them into the cluster through the put method:
elements then exchange events using TCP (or UDP as well). We used version
v0.5 of the software, available under the Open Source Apache 2.0 license [6].

2 Experimental Analysis

We considered a dataset of around 20 million tweets in JSON format: as the
performance measures do not depend on actual data, we plan to not disclose
the dataset due to privacy concern. Our testbed is composed of 14 commodity
machines, each one hosting two AMD Opteron(tm) Processors 246 (single core)
and 4GB RAM. A 16-port switch connects the 1GbE interfaces of all machines.
We opted for a design with multiple JSON parsers (Hashtag Finder), one per
each Tweet Source, and a single Hashtag Counter as reported in Figure 1a.

2.1 Performance Tests

For every experiment, we assigned only one task per machine, and run the con-
troller of the platform under test on a dedicated machine, to avoid the load
introduced by the controller to affect our measurements. We also assumed no
failure during the experiments.

Hashtag
Counter

Hashtag
Finder

probes aggregation point

Hashtag
Finder

Hashtag
Finder

Tweet
Source

Tweet
Source

Tweet
Source

(a) Design: probes parse tweets and send the
hashtags to a central counter.

1 2 3 4 5 6
10

2

10
3

10
4

10
5

#Hashtag finders

P
ro

ce
ss

ed
 h

as
ht

ag
s

pe
r

se
co

nd

BlockMon
Storm
Apache S4

23.5x 34.2x

Theoretical

(b) Scalability (y-axis is in log scale).

Fig. 1. Performance of Twitter trending when running over the three platforms

Scaling Out the Performance of Service Monitoring Applications 255

Figure 1b reports performance of Twitter trending with an increasing number
of hashtag finders (HF): on all the platforms, the application scales linearly
(dashed line is the theoretical trend). BlockMon outperforms Storm (Apache S4)
with a gain in performance of 23.5x (34.2x). The CPU load of the hashtag counter
is in the worst case (with six HFs on Storm) below 4% (not shown here), thus
suggesting that one is enough to cope with multiple HFs, which account in turn
for around 75% of the total CPU resources. We note that in Apache S4 the source
is already a limiting factor; a look at the source code shows that sending out an
event requires nested copies, thus affecting performance: compared with Storm,
the other Java-based platform, the tweet source is 10x slower. As for Storm, the
bottleneck is related to the way the platform extracts messages coming from the
network and passes them to the HFs, as we verified that the rate of the sources
is higher than the one of the HFs, and that jackson, the Java-based JSON parser
library that we used in Storm, has the same performance of jsmn, the one used
in BlockMon, when they are used stand-alone. Users should consider this pitfall
in applications like Twitter trending, where moving data among nodes is crucial.

3 Conclusions

We believe this work can provide developers of monitoring applications with a
better insight of the distributed architecture to use, to target on-the-fly data pro-
cessing. Our preliminary results point out some pitfalls in the existing platforms,
and show that BlockMon achieves the best performance.

As future work, we plan to extend the analysis with more applications and
use specialized hardware, e.g., equipped with 10Gb/s network cards, to remove
the bottleneck represented by the network.

References

1. Apache Hadoop, http://hadoop.apache.org (accessed September 01, 2012)
2. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

Commun. ACM 51(1), 107–113 (2008)
3. di Pietro, A., Huici, F., Bonelli, N., Trammell, B., Kastovsky, P., Groleat, T., Vaton,

S., Dusi, M.: Blockmon: Toward high-speed composable network traffic measure-
ment. In: Proceedings of the IEEE Infocom Conference, Mini-conference (2013)

4. BlockMon, http://blockmon.github.com/blockmon (accessed August 30, 2012)
5. Storm, http://storm-project.net (accessed August 30, 2012)
6. Apache S4, http://incubator.apache.org/s4 (accessed August 30, 2012)

http://hadoop.apache.org
http://blockmon.github.com/blockmon
http://storm-project.net
http://incubator.apache.org/s4

Understanding IPv6 Populations in the Wild�

Manish Karir1, Geoff Huston2, George Michaelson2, and Michael Bailey3

1 Cyber Security Division, DHS, S&T, Washington DC, USA
2 Research and Development, APNIC, South Brisbane, Australia

3 EECS, University of Michigan, Ann Arbor, USA

Abstract. With the global exhaustion of the IPv4 address pool, there
has been significant interest in understanding the adoption of IPv6. Pre-
vious studies have shown that IPv6 traffic continues to be a very small
fraction of the overall total traffic in any network, but its use is gradu-
ally increasing. Utilizing a novel display advertising approach to reach
behind NAT and other firewall devices, we engage in a seven-month study
of IPv6 in which we observe 14M unique IPv6 addresses including na-
tive IPv6, teredo, as well as 6to4. We exploit the intrinsic information
within IPv6 addresses in order to infer IPv6 properties, such as, coarse
grained geographic location, ISPs, the use of native IPv6 versus transition
techniques, cone NAT usage, and even network interface manufacturer
identifiers. We find that while the number of native IPV6 addresses in
the wild is small (1.3%) a large number of IPv6 hosts are IPv6 capable
via transition techniques such as teredo and 6to4.

Keywords: IPv6, Transition, Teredo, 6to4, EUI-64.

1 Introduction

Due to the design of native IPv6 as well as the associated transition mechanisms
it is possible to infer a significant amount of information from just the address
itself by combining it with secondary sources of data. Based on an IPv6 address
it is possible to determine which geographic region, and organization it belongs
to, whether it was used as a part of a IPv6 transition service, in the case of
teredo whether a specific type of NAT was in use, what the public IP address
of that NAT was and the port number on the NAT. For 6to4 addresses it is
possible easily determine the related IPv4 address for a dual stack host, and in
the case of both 6to4 and native IPv6 the 48 bit MAC address of the network
interface on end hosts can also be decoded.

There are three primary goals of this study; first to understand the scope and
range of IPv6 capabilities that are currently usable; second, to characterize and
document the IPv6 capable population of the Internet at this critical moment in
the evolution of the Internet; and third to understand regional or technological
trends that might be driving IPv6 adoption.

� We would like to acknowledge the generous support that has been provided by
Google, the Internet Software Consortium and the RIPE NCC.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 256–259, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Understanding IPv6 Populations in the Wild 257

1.1 Understanding IPv6 Addressing

An IPv6 address consists of 128bits. There is however sufficient structure in an
IPv6 addresses to help us to understand certain trends in IPv6 adoption and
IPv6 capable host population. Some of these aspects are listed below.

Interface Identifier: The bottom 64 bits of the IPv6 address can be used to
represent an interface identifier. The interface identifier can be derived from a
48-bit IEEE 802 MAC address by mapping the least significant 24 bits into the
least significant 24 bits of a 64 bit identifier. The most significant 24 bits of the
MAC address are then mapped into the most significant 24bits of the identifier
except bit 7 which is set to 1. The middle bits 25 thru 40 of the modified EUI-64
address are then set to 0xFFFE in hexadecimal representation.

Native IPv6: In addition to the information embedded in the fundamental struc-
ture of the IPv6 address, there is additional information that can be obtained
about IPv6 global unicast addresses by matching a given IPv6 address with
the IANA allocation of the top level blocks to various regional Internet address
registries.

Teredo: Teredo relies on a set of configuration servers and relays to build IPv6
tunnels between IPv6 capable end hosts and the IPv6 enabled Internet. The
prefix 2001::/32 has been assigned by IANA for Teredo and this distinctive block
that allows such traffic to be easily identified. As part of its operation Teredo
encodes additional information into the IPv6 address. Bits 33-64 specify the
Teredo server being used, bits 65-80 identify whether the end host was behind a
cone NAT, bit 81-96 indicated an obscured port number that was in use by the
end host NAT, and the final 32 bits indicate the external IPv4 address of the
NAT gateway that was used by the end host.

6to4: 6to4 traffic can be easily identified as it uses IP addresses from the
2002::/16 IPv6 address range. The next 32 bits are used to represent the IPv4
address and next 16bits are chosen by the router.

Table 1. IPv6 capability population mix

Address Type Unique IPv6 Addresses Percentage

LACNIC.................1.3K
APNIC.................41.6K

Native RIPE....................90.9K 1.3
ARIN...................40.5K
AFRINIC...............0.1K
TOTAL..............174.4K

Teredo 11.12M 79.2
6to4 2.75M 19.5

Total IPv6 hosts 14.04M 100%

IPv6 Ready Hosts 1.37M 9.75%
Additional IPv6 Capable Hosts (Literal-only) 3.90M 27.7%

258 M. Karir et al.

1.2 Experimental Methodology

From January 2012 through July 2012 the Asia Pacific Network Information
Centre, (APNIC) ran a unique global experiment to try to understand the adop-
tion and use of IPv6 from the perspective of end hosts. In this experiment, web
browsers are used to load a small number images that expose the client’s ability
to successfully use IPv6. Specifically, the client loads images that are: only ac-
cessible using IPv4, accessible over IPv4 or IPv6, only accessible using IPv6, and
only accessible using IPv6 but without reliance on the Domain Name System. For
this experiment APNIC collaborated with a leading distributor of advertising to
develop an advertisement that would be distributed via the global distribution
network to various clients based on their advertisement to user matching criteria.

2 Data Analysis and Discussion

Overall Trends: Over the full six months we observed over 14M unique IPv6
addresses at our web servers. Table 1 shows the number of different types of
IPv6 addresses that were observed at our severs. Of the 174.4K native IPv6
addresses we observe over 90K from the RIPE region, roughly 40K each from
the ARIN and APNIC regions. LACNIC and AFRINIC regions account for very
small fraction of the native IPv6 addresses that we were able to observe. These
native IPv6 addresses appear to originate from only 1384 unique ASNs. This is
close to 23% of the 6K ASNs that are visible in the IPv6 BGP routing table.
We notice that RIPE region contains 708 unique AS numbers which reported
atleast 1 IPv6 address into our collection system. ARIN has 277 ASNs, APNIC
282, and finally LACNIC and AFRINIC have 109 and 8 ASNs respectively.

6to4 Usage: We observed roughly 2.78M unique IPv6 addresses that were from
the 6to4 transition address range. Our analysis indicates that of the 2.78M unique
6to4 addresses 92K could be attributed to the RIPE region, 1.39M to the AP-
NIC region, 112K to the ARIN region, 292K to the LACNIC region and 65.4K
to the AFRINIC region. We were able to identify 6to4 addresses from a total
of 205 unique country codes. Indonesia is by far the largest with over 500K
6to4 addresses (18%) followed by New Zealand (5%), Korea (5%), Brazil (4%),
Australia (4%), China (4%) and Taiwan (3%).

Teredo Servers and Cone NATs: There were over 11M IP addresses that were
observed to be from the Teredo IP address range. Overall we observed 258 unique
Teredo servers from 171 unique ASNs in 39 different countries. However, of the
11M Teredo IP addresses in our data, we observed the vast majority of them
to rely on only 4 or 5 key teredo servers. 150 of the 258 unique teredo servers
we were able to observe were in the RIPE region 86 in the ARIN region, 19
in APNIC and 3 in the AFRINIC region. Interestingly, we observed no Teredo
servers from the LACNIC region. Of the 11M Teredo IP addresses 14.9K had
the ”cone NAT” flag enabled to indicate that these connection attempts from
being originated by hosts behind a cone NAT. Overall we were able to identify
11.48K unique NAT devices from 1037 unique ASNs in 127 different countries.

Understanding IPv6 Populations in the Wild 259

MAC Addresses: Out of a total of 174K native IP addresses only 13.2K or less
than 10% contained this marker. Additionally, out of the 2.78M 6to4 addresses
that we were able to observe an EUI-64 tag marker on only 8.94K or less than
0.3% of the addresses.

Conclusions: As the Internet transitions slowly to IPv6, it is important to un-
derstand the characteristics of the IPv6 capable population. In this paper we
have presented results from a broad experiment that focused on understanding
the makeup, distribution and key features of this population. Our current results
represent a single sample of the observed IPv6 population in our 7 month time
frame. Our goal is to continue to study this data periodically.

On Weather and Internet Traffic Demand

Juan Camilo Cardona1,3, Rade Stanojevic2, and Rubén Cuevas1

1 Institute IMDEA Networks
2 Telefonica Research

3 UC3M

Abstract. The weather is known to have a major impact on demand
of utilities such as electricity or gas. Given that the Internet usage is
strongly tied with human activity, one could guess the existence of similar
correlation between its traffic demand and weather conditions. In this
paper, we empirically quantify such effects. We find that the influence
of precipitation depends on both time of the day as well as time of the
year, and is maximal in the late afternoon over summer months.

1 Introduction

The analysis and forecasting of the Internet traffic is a well studied topic with
a large number of applications [5]. Such studies have used statistical tools to
capture the dominant characteristics of the dynamics, without explicitly mod-
eling the dependence with external factors (e.g. social events, weather) that are
typically accounted as noise. While it has been known that these factors have a
significant impact on the demand of utilities [4] or TV ratings [6], their relation-
ship with the Internet traffic demand is not well understood. In this paper we
empirically study the relationship between the Internet traffic demand and one
of the factors that plays a significant role in traffic variability: weather.

The interaction between the weather conditions and the traffic demand hap-
pens on several timescales. Short term weather events, like precipitations, have
a direct effect on the traffic demand. Longer term effects, reflected through sea-
sonal changes in temperature and daylight duration, have a slower influence on
the Internet traffic. Here we study the short-term correlations. For the long-
term correlation between the traffic and weather and a deeper analysis of the
short-term effects we refer the interested reader to our technical report [3].

2 Datasets Description

As indicator of the Internet traffic demand in a particular area we use the traf-
fic data from three Internet eXchange Points (IXP): the Slovak-IX, FICIX and
INEX. We obtained 5-minute granular traffic from each IXP by storing and pro-
cessing their publicly available mrtg images. Our Internet traffic dataset includes
8 months of data from INEX and 18 months of data from Slovak-IX and FICIX.
Different from large IXPs [1], the traffic from these IXPs is highly local and thus
appropriate for our analysis.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 260–263, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Weather and Internet Traffic Demand 261

To obtain weather data, we use the data provided by the Weather Under-
ground, an easily accessible database available at http://www.wunderground.
com/. The wunderground.com publishes a considerable number of weather pa-
rameters with a granularity of 30 minutes. For the sake of this paper, we fetched
from this website the precipitation data for the cities where each IXP is located
over the period that covers our traffic data.

3 Short Term Correlations

The data described in Section 2 allows us to notice changes that happen on
the traffic of the three localities over short-time scales and compare them to the
weather conditions. For that purpose we split the time into 2-hour time-slots. We
denote by u(t) the total traffic transiting through the IXP. In order to remove
the seasonal effects we normalize u(t) with the average traffic over a two week
period centered at t:

ū(t) =
u(t)

average(u(t− 84), . . . , u(t+ 84))
.

Thus the normalized traffic ū(t) measures the variability of the traffic on the
short-term timescale, without the impact of long-term seasonality observable in
some regions.

For each 2-hour time-slot t there are 4 or more weather records in our dataset.
We set a binary variable wet(t) to be 1 if any of the weather records reports
precipitation (e.g. snow, shower, rain, storm) otherwise we set wet(t) = 0. This
binary variable helps us simplify the exposition of the results. Our goal is to
examine whether precipitation impacts the traffic, and quantify its effect. To that
end, we split the day in twelve 2-hour intervals, and calculate average normalized
traffic with and without precipitation for each of the twelve intervals:

A(i) =

∑
mod(s,12)=i

ū(s)wet(s)

∑
mod(s,12)=i

wet(s)
B(i) =

∑
mod(s,12)=i

ū(s)(1 − wet(s))

∑
modd(s,12)=i

(1− wet(s))
i = 0..11

thus for the twelve time intervals 0h− 2h, 2h− 4h, . . . , 22h− 24h, A(i) and B(i)
represent the average normalized load in the interval [2ih, (2i + 2)h] with and
without precipitation, respectively.

In Figure 1 we depict the values of A(i) and B(i) for the three IXPs. To de-
termine whether the difference between A(i) and B(i) is statistically significant
to claim that the means of the samples with and without precipitation are differ-
ent, we use Welch’s t-test [8], which is well-suited for this case as the number of
samples for each random variable is different and relatively large. Figure 1 also
includes the interval outside of which Welch’s t-test rejects the null-hypothesis
for a significance level of 0.05. Thus from early afternoon to early evening, with
95% of confidence we can affirm for all IXPs that the mean normalized traffic
is larger in timeslots with precipitation than in timeslots without precipitation.

http://www.wunderground.com/
http://www.wunderground.com/
wunderground.com

262 J.C. Cardona, R. Stanojevic, and R. Cuevas

0 2 4 6 8 10 12 14 16 18 20 22

0.4

0.6

0.8

1

1.2

1.4

1.6

Time of the day

N
or

m
al

iz
ed

A
ve

ra
ge

 T
ra

ffi
c

SIX

Without
Precipitation
With
Precipitation

0 2 4 6 8 10 12 14 16 18 20 22

0.4

0.6

0.8

1

1.2

1.4

1.6

Time of the day

N
or

m
al

iz
ed

A
ve

ra
ge

 T
ra

ffi
c

FICIX

Without
Precipitation
With
Precipitation

0 2 4 6 8 10 12 14 16 18 20 22

0.4

0.6

0.8

1

1.2

1.4

1.6

Time of the day

N
or

m
al

iz
ed

A
ve

ra
ge

 T
ra

ffi
c

INEX

Without
Precipitation
With
Precipitation

Fig. 1. Normalized daily demand of SIX, FICIX and INEX, with and without precip-
itation

Jan−Feb Mar−Apr May−Jun Jul−Aug Sep−Oct Nov−Dec

0

0.05

0.1

R
el

at
iv

e
C

ha
ng

e
w

ith
 P

re
ci

pi
ta

tio
n SIX

FICIX
INEX

Fig. 2. The relative change with precipitation during the 16h− 18h slot over the year

For the other periods of the day, the difference between the means is not statis-
tically significant to support that precipitation impacts the traffic.

Finally, we observe that the impact of precipitation is not uniform across
the year. Namely, in Figure 2 we depict the relative increment of precipitation
during the 16h− 18h interval for the 6 two-month periods and observe that the
impact of precipitation is most pronounced in the summer months, while it is
insignificant over the winter.

4 Conclusions

In this paper we examined the dependence between the Internet traffic and the
weather in short scales. While for other types of utilities the impact of external
factors has been studied in depth, our understanding on such relationship in
the Internet is very immature. The phenomena observed here is a step towards
filling that knowledge gap and affirms our conjecture that measurable external
factors are strongly related with the variability of the Internet traffic. Our work
complements other studies that analyze the impact of natural events on the
Internet [7,2]. We refer the reader to [3] for a more extensive analysis of the
impact of weather in Internet traffic over short and long scales.

On Weather and Internet Traffic Demand 263

References

1. Ager, B., et al.: Anatomy of a large european IXP. In: Proc. of ACM SIGCOMM
(2012)

2. Bischof, Z.S., Otto, J.S., Bustamante, F.E.: Distributed Systems and Natural Dis-
asters. In: Proc. ACM SWID (2011)

3. Cardona, J.C., Stanojevic, R., Cuevas, R.: OnWeather and Internet Traffic Demand.
T. Report (September 2012),
https://svnext.networks.imdea.org/repos/

WeatherAndInternet/TechReport.pdf

4. Feinberg, E., Genethliou, D.: Load forecasting. Applied Mathematics for Restruc-
tured Electric Power Systems (2005)

5. Papagiannaki, K., Taft, N., Zhang, Z.L., Diot, C.: Long-Term Forecasting of Internet
Backbone Traffic: Observations and Initial Models. In: Proc. of IEEE INFOCOM
(2003)

6. Roe, K., Vandebosch, H.: Weather to view or not: That is the question. European
Journal of Communication 11(2), 201–216 (1996)

7. Schulman, A., Spring, N.: Pingin’ in the Rain. In: Proc. of ACM IMC 2011 (2011)
8. Welch, B.L.: The generalization of Student’s problem when several dif-

ferent population variances are involved. Biometrika 34(1-2), 28–35 (1947),
doi:10.1093/biomet/34.1-2.28 MR19277

https://svnext.networks.imdea.org/repos/WeatherAndInternet/TechReport.pdf
https://svnext.networks.imdea.org/repos/WeatherAndInternet/TechReport.pdf

Spatial and Temporal Locality

of Swarm Dynamics in BitTorrent

Taejoong Chung1, Jinyoung Han1, Hojin Lee1,
Ted “Taekyoung” Kwon1, Yanghee Choi1, and Nakjung Choi2

1 School of Computer Science and Engineering, Seoul National University, Korea
2 Bell-Labs, Alcatel-Lucent, Seoul, Korea

1 Introduction

The locality in BitTorrent refers to how much disparity exists in swarm dynamics
from the spatial and temporal perspectives. According to [1], 30% more connec-
tions among peers in the same ISP compared to a random graph are observed
for more than 45% of peers, which indicates that BitTorrent connections among
peers are biased to local peers. [2] found that (1) substantial BitTorrent traffic
does not reach higher-tier ISPs, and (2) BitTorrent’s temporal usage patterns
vary in a diurnal fashion.

While these studies focus on showing how much localized phenomena occur in
swarm dynamics, we try to investigate the locality phenomena in BitTorrent from
a content perspective (i.e., content categories), which we call content locality.

We make the following contributions: (1) We observe that (i) locations of
consumers are spatially skewed and (ii) numbers of per-day swarm participants
is also temporally skewed, (2) We show that the cultural aspects of content affect
how users participate in swarms from a spatial perspective, and (3) We find that
the time-sensitivity of content (e.g., TV series) affects temporal locality.

2 Methodology

2.1 Data Collection

We use the same methodology to obtain the BitTorrent user traces as [3]. Our
datasets, which have been collected for 33 days for April 6 to May 9, 2011, consist
of 27,371 torrents and 2,247,035 peers (unique IP addresses). Using Maxmind,
we have identified the user’s locale, which maps each IP address (of a peer) to its
country or autonomous system (AS). There are 224 countries and 10,529 ASes
from the datasets. Throughtout this paper, we investigate the content locality
depending on the seven content categories: TV, Porn, E-book, Movie, Music,
Application, and Game.

2.2 Locality Metrics

Spatial Locality: We investigate the locality of a swarm by considering the con-
nectivity among peers who actually exchange data among one another.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 264–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Spatial and Temporal Locality of Swarm Dynamics in BitTorrent 265

continent country AS
0

0.1

0.2

0.3

0.4

0.5

0.6

sw
ar

m
 lo

ca
lit

y
of

 re
al

 s
w

ar
m

swarm locality of real swarm

0

2

4

6

8

10

12

ra
tio

 o
f s

w
ar

m
 lo

ca
lit

y

ratio of swarm locality

Fig. 1. Swarm and hypo-
thetical locality

TV Porn E−bookMovie Music App Game
0

0.05

0.1

0.15

0.2

0.25

sw
ar

m
 lo

ca
lit

y

(a) Spatial Locality

TV Porn E−bookMovie Music App Game
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

da
ily

 lo
ca

lit
y

(b) Temporal Locality

Fig. 2. Spatial and Temporal locality

To this end, we define the swarm locality as the probability that randomly-
selected two nodes (in the same swarm) have the same locale:

2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

δ (L (vi) , L (vj)),

where L(v) denote the locale (e.g., AS or country) of a peer v, δ(i, j) is the
Kronecker’s delta (δ(i, j) = 1 if i = j, and δ(i, j) = 0 otherwise).

Temporal Locality: To investigate how swarm dynamics is temporally charac-
terized, we define a metric: daily locality which indicates the probability whether
two peers in the same swarm download the torrent in the same day.

3 Spatial and Temporal Locality

Existence of Locality: To see whether the spatial and temporal locality exists
in a swarm, we first plot the swarm locality of the real swarms, compared with
that of hypothetical swarms where peers are uniformly distributed among the
observed locales and dates. In Figure 1, we observe that the swarm locality of the
real swarms is significantly higher than that of the hypothetical ones. In spatial
domain, as the locale is changed from continents to countries and to ASes, the
ratio between the swarm locality and the hypothetical one increases from 1.80
times to 4.56 times and to 11.49 times, respectively. Like spatial locality, we find
that the daily locality of swarm population is higher (1.46 times) than that of
the hypothetical uniform distribution, which indicates that the swarm dynamics
in terms of population is temporally skewed.

Spatial Locality: We next plot the average swarm locality for each content
category in Figure 2(a). We observe that torrents in Movie and TV categories
have the higher swarm locality while the ones in Porn category exhibit the lower
swarm locality, even though the three categories are video-centric. We believe
that the disparity across the three categories is due to the style of content con-
sumption; movies or video content typically requires the understanding of con-
tent by languages and cultures, while porn films typically do not need such

266 T. Chung et al.

backgrounds. Torrents in App and Game categories have low swarm locality as
shown in Figure 2(a). For the most of App and Game torrents, multi-language-
support packages are either included in the main program or downloadable from
the web sites. Hence, the language is not important for the App and Game
torrents.

Temporal Locality: Figure 2(b) shows the daily locality across the seven con-
tent categories. TV torrents exhibit higher temporal locality than torrents of
other content types except for E-book. To investigate why TV torrents show
high daily locality, we analyze and find that periodicity for a TV torrent make
higher temporal locality (58% of titles of TV torrents follow periodical naming
convention (i.e., ‘S**E**’, where ‘S’ and ‘E’ stand for series and episode, respec-
tively.)). Interestingly, E-book torrents also show high temporal locality because
the average lifetime of an E-book torrent is around 8∼9 days, which is shorter
than that of a torrent in other the categories (around 11∼12 days). The shorter
lifetimes of E-book swarms are likely to result in the high temporal locality.

4 Concluding Remarks

We conducted a measurement study to capture and quantify the swarm dynam-
ics in terms of spatial and temporal locality from a content perspective. We
found that cultural factors (e.g., language) heavily affect the pattern of swarm
dynamics, which results in diverse phenomena in the spatial locality. Also, we
observed that the content properties like periodic publication characterize the
temporal locality. Our ongoing work includes investigating the content locality
from a diverse perspective of content properties (e.g., content types, character-
istics of content publishers, or preferences of users) and exploring the possibility
to exploit the content locality for efficient content prefetching and caching.

Acknowledgements. This research was supported by the KCC(Korea Com-
munications Commission), Korea,under the R&D program supervised by the
KCA(Korea Communications Agency) (KCA-2012-11-911-05-002) and Seoul
R&BD Program (WR080951) funded by the Seoul Metropolitan Government.

References

1. Kryczka, et al.: Unrevealing the structure of live bittorrent swarms: Methodology
and analysis. In: IEEE P2P (2011)

2. Otto, J.S., et al.: On blind mice and the elephant: understanding the network impact
of a large distributed system. In: ACM SIGCOMM (2011)

3. Han, J., et al.: Bundling practice in bittorrent: What, how, and why. In: ACM
SIGMETRICS (2012)

What SNMP Data Can Tell

Us about Edge-to-Edge Network Performance

Demetris Antoniades1, Kejia Hu2, Alex Sim2, and Constantine Dovrolis1

1 College of Computing
Georgia Institute of Technology

{danton,constantine}@gatech.edu
2 Computational Research Division

Lawrence Berkeley National Laboratory
{kjhu,asim}@lbl.gov

With the high speeds of today’s networks, monitoring information is most of the
time either summarized or sampled. This policy is even more profound in network
backbones, where aggregation of data from several sources and in very high
speeds is often observed. The Simple Network Management Protocol (SNMP) [5]
is widely used to provide aggregated link usage data from network components.
These data, even without a great amount of detail, provide a valuable source
for network administrators, aiding decisions about network routing, provisioning
and configuration. SNMP data are simple to collect and maintain, providing a
low disk space for historical network usage log.

On the other end, Netflow data provides detailed information for end-to-end
performance. Using Netflow, one can have accurate information about a host pair
communication, the amount of data transferred back and forth. The enhanced
information given by Netflow requires a computationally expensive procedure
for its collection, and raises many privacy concerns that limit the accessibility
to the data. To reduce the cost of collecting Netflow data, aggressive sampling
(i.e. 1:1000 packets) is often employed, even for relatively low-speed networks [3].
Sampling significantly affects the accuracy of Netflow data and may limit the
usage of the data [1]. Netflow records of end-to-end information also include the
IP addresses and port numbers used by the participating parties. Such content
raises significant user privacy concerns [2,4]. As a result, there is a limitation of
Netflow data availability while private content is either censored or completely
removed.

In this paper we provide evidence that by using SNMP link counts edge-to-
edge (E2E) information about network transfers can be inferred. The motivation
for this work came from the need of a statistically significant set of E2E through-
put samples, allowing us to perform TCP throughput prediction in a monitored
network based on historical measurements [6]. The network wide availability of
SNMP data and the limited throughput performance samples from Netflow data
motivated us to explore different approaches for increasing our sample data set.

We propose a methodology for inferring network transfers from SNMP traffic
utilization time-series data. Our method is the result of two main observations.
First, looking at the time series data of a link’s usage, we observe events where the
usage of the link increases (or decreases) to a different level, deviating from the

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 267–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

268 D. Antoniades et al.

Fig. 1. Simple illustration: network events can be observed from SNMP link utilization
data. These events can, also, be tracked down along the network path that they are
traversing.

link’s normal behavior up to that time point. These events could be considered
as starting (or ending) points of high throughput transfers. Second, these events
propagate from the input links of a router to the output links of the same router,
and from there to the neighboring routers, allowing for the inference of the actual
route that the specific event followed.

Figure 1 presents a simple example. In this diagram, R1 is the edge router
for autonomous system AS1 and R2 is the edge router for autonomous system
AS2. Each router has several input and output interfaces, connecting to other
routers. The path R1−R2−R3−R4 connects the two ASes, carrying all traffic
exchanged between them. The graphs plot each link’s utilization during the
observation period. Each link carries the traffic between a variety of source and
destination pairs. Link R1 − R2 experiences three different events during the
observation period. The first and last events are not visible at link R2 − R3.
The middle event continues from R2 over the link R2 − R3 and from there
to R3 − R4. This event and its transfer route can be attributed to a network
transfer initiated at AS1 and destined to AS2. The magnitude of the deviation
on the utilization time series provides the information about the throughput
performance this transfer achieved. The time points of the increase and decrease
events provide the information regarding the starting and ending times of the
transfer.

Based on the two aforementioned observations our inference method involves
two stages. In the first stage, we identify events of significant changes of the
link’s utilization from the 1st-order differentiated time series V (t). The 1st order
differentiated time series is a transformation of the utilization time-series (U(t))
to the time series of the utilization difference between two consecutive measure-
ments (V (t) = U(t)−U(t−1)). Using an outlier detection method, we can detect
the events that deviate from the link’s utilization during an observation window.
After we have identified these events for an input link of a router, we try to find
an output link in the same router with an event of a similar magnitude. In case
of a match, we follow the output link to the neighboring router and repeat the
matching process. Iterating this process allows us to infer the path that the event
follows.

The work presented in this paper is, to the best of our knowledge, the first that
suggests the possibility of inferring edge-to-edge information from aggregated

What SNMP Data Can Tell Us about Edge-to-Edge Network Performance 269

link utilization measurements. Using our observations we propose a methodol-
ogy for identifying the increasing and decreasing events in the link’s traffic uti-
lization and tracking down the that links these events traverse in the network.
Preliminary results, over publicly available SNMP data from ESnet, a large Na-
tional Research and Educational Network (NREN), suggest that we can identify
and track up to 80% of the events that appear in a network link. Furthermore,
the magnitude of the identified events does not seem to be limited to the high
throughput ones.

Our ongoing work is designed to further evaluate our methodology, comparing
the identified transfers with Netflow and traceroute data. Furthermore, we plan
to test the performance of our method over a number of different conditions such
as (i) commercial networks where the traffic dynamics are very different from
the research and educational networks, (ii) the existence of multipath transfers
where a transfer may be split over different paths making both the start/end
time and route inference more challenging, and (iii) the case of incomplete net-
work data where information for all routers in the path may not be available.
Additionally, we plan to test the applicability of the inferred E2E data to a
number of applications such as throughput prediction, traffic matrix estimation
and anomaly detection.

References

1. Choi, B., Bhattacharyya, S.: On the accuracy and overhead of cisco sampled netflow.
In: Proceedings of ACM SIGMETRICSWorkshop on Large Scale Network Inference,
LSNI (2005)

2. Coull, S., Collins, M., Wright, C., Monrose, F., Reiter, M.: On web browsing privacy
in anonymized netflows. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, p. 23. USENIX Association (2007)

3. Estan, C., Varghese, G.: New directions in traffic measurement and accounting.
ACM SIGCOMM Computer Communication Review 32, 323–336 (2002)

4. Foukarakis, M., Antoniades, D., Antonatos, S., Markatos, E.: Flexible and high-
performance anonymization of netflow records using anontool. In: Third Interna-
tional Conference on Security and Privacy in Communications Networks and the
Workshops, SecureComm 2007, pp. 33–38. IEEE (2007)

5. Harrington, D., Presuhn, R., Wijnen, B.: An architecture for describing simple net-
work management protocol (snmp) management frameworks. Technical report, rfc
3411 (December 2002)

6. He, Q., Dovrolis, C., Ammar, M.: On the predictability of large transfer tcp through-
put. ACM SIGCOMM Computer Communication Review 35, 145–156 (2005)

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 270–272, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Pathperf: Path Bandwidth Estimation Utilizing Websites

Kun Yu, Congxiao Bao, and Xing Li

Tsinghua University, Beijing, P.R. China

Abstract. Most bandwidth estimation tools require access to both ends of a
measured path, which is increasingly difficult considering the constantly ex-
panding size of the Internet. We present Pathperf, a tool for estimating bulk
transfer capacity by downloading files from websites at one end of a path. We
collect 3.3 million websites in 22,656 ASes and leverage DNS infrastructure to
deliver website information. Comparing with Iperf, Pathperf saves more than
50% of the network traffic and its relative error rate is under 10%.

1 Introduction

Bandwidth estimation is essential for network management, negotiations of service
level agreement, traffic engineering and protocol design. There are three metrics de-
fining different aspects of bandwidth: capacity, available bandwidth and bulk transfer
capacity (referred as BTC hereafter). The differences between these metrics are tho-
roughly discussed in [1].

Iperf is one of the most successful tools to measure BTC, but it works on both ends
of the path so it is not applicable when this requirement is not satisfied. We present
Pathperf, a tool working on one end of a path to estimate the BTC of the path (re-
ferred as path BTC hereafter). Pathperf locates a website at the other end of the path
and chooses an appropriate file to download. Path BTC is derived by dividing the file
size by download time. The other end of the path could be anywhere, identified by
any globally routable IP address.

2 Design and Implementation of Pathperf

We divide Pathperf into two modules shown in Figure 1. Module 1 collects website in-
formation from three different sources and stores the information into a database. The
information contains IP address of the website, AS number (abbreviated as ASN hereaf-
ter) of the IP address, URL of a web file, file size, and download speed. When there is
more than one website available in an AS, module 1 ranks all candidate websites accord-
ing to download speed and file size; then chooses the best one as vantage website.

Website information comes from Google, FixedOrbit and ODP. After three months
of collection, information of 3,536,912 IPv4 websites was collected in 22,656 differ-
ent ASes; these ASes cover 94% of all IPv4 addresses in BGP RIB. We also tested
whether these websites are IPv6 accessible and found 28,552 IPv6 compatible web-
sites scattered in 904 different ASes. All the website information is publicly available
at Pathperf homepage [4].

 Pathperf: Path Bandwidth Estimation Utilizing Websites 271

Fig. 1. Modular design of Pathperf

In order to improve scalability, we use aggregation to manage website information.
The granularity we choose is AS, that is, we choose the best website in each AS as a
vantage website [2]. Using AS as aggregation granularity is fine enough to detect
inter-AS bottleneck and coarse enough to keep the number of websites moderate.

Module 2 delivers website information to Pathperf client by DNS [3]. It consists of
two parts, BGP RIB from a BGP router and a DNS authoritative server. Pathperf
looks up BGP RIB to map IP address to ASN. The DNS server responses queries
issued from Pathperf client. Pathperf client takes IP address as input, wraps it into a
DNS query and sends it to local DNS server. Local DNS server queries Authoritative
server iteratively or recursively and returns the response to Pathperf client. The re-
sponse contains information about the vantage website in the same AS specified by
the IP address. With the information Pathperf can estimate path BTC. Table 1 lists
currently available domains and their functions.

Table 1. domains used to query vantage website

Domain Function
ip2server.sasm4.net Maps an IPv4 address to website in the same AS
ip2asn.sasm4.net Maps an IPv4 address to AS number
ip6server.sasm4.net IPv6 version of ip2server.sasm4.net
ip6asn.sasm4.net IPv6 version of ip2asn.sasm4.net

3 Experiment Results and Evaluation

We evaluate the accuracy of Pathperf by comparing with Iperf. The experiment uses
two servers, called A and B. A attaches to a backbone of an ISP while B resides in
Tsinghua campus network. Both servers install Iperf and B uses apache to answer
HTTP requests. A runs Iperf in server mode; B acts as Iperf client and sends TCP
packets to A. Right after Iperf finishes the estimation, A acts as a web client, sends

272 K. Yu, C. Bao, and X. Li

HTTP GET request to B and downloads a 1600KB file. The experiment runs once an
hour for a week; the results are shown in Figure 2.

The first observation is that BTC estimated by Pathperf is comparatively smaller
than that of Iperf. One possible explanation is the overhead introduced by apache.
Secondly, BTC is a time variant metric affected by factors such as cross traffic. This
explains the zigzag curve in Figure 2. Third, Iperf takes 10 seconds and generates
approximately 3.3MB traffic, which is twice more than that of Pathperf; while the
relative error rate of these two results is less than 10%.

Fig. 2. BTC from Tsinghua campus to CERNET NOC

4 Conclusion

We present Pathperf to estimate BTC from one end of a path by downloading files
from vantage website at the other end. We collect 3,558,205 websites in 22,656 ASes
then rank them by file size and download speed. Website information is delivered to
Pathperf client via DNS protocol that improves the scalability of Pathperf and benefits
other network measurement tools such as Abget.

Acknowledgement. The authors would like to thank Hongqiang (Harry) Liu for his
advice during the design and implementation of Pathperf.

References

1. Prasad, R., Dovrolis, C., Murray, M., Claffy, K.: Bandwidth estimation: metrics, measure-
ment techniques, and tools. IEEE Network 17(6), 27–35 (2003)

2. Bao, C., Li, X., Jiang, J.: Scalable Application-Specific Measurement Framework for High
Performance Network Video. In: Proc. ACM NOSSDAV (2007)

3. Liu, H., Xiong, Y., Bao, C., Li, X., Shen, G., Li, D.: WIND: A Scalable and Lightweight
Network Topology Service for Peer-to-Peer Applications. In: Network Operations and
Management Symposium, NOMS (2010)

4. Pathperf homepage, http://search.sasm3.net/

The Day after Patch Tuesday:

Effects Observable in IP Darkspace Traffic

Tanja Zseby1,2, Alistair King2, Nevil Brownlee2,3, and KC Claffy2

1 Fraunhofer Institute FOKUS, 10589 Berlin, Germany
2 CAIDA, UCSD, San Diego, CA 92093, USA

3 The University of Auckland, Auckland, New Zealand

Abstract. We investigated how Patch Tuesday affects the volume and
characteristics of malicious and unwanted traffic as observed by a large
IPv4 (/8) darkspace monitor over the first six months of 2012. We did
not discover significant changes in overall traffic volume following Patch
Tuesday, but we found a significant increase of the number of active
hosts sending to our darkspace monitor the day after Patch Tuesday
for all six investigated months. Our early results suggest the effects of
Patch Tuesday are worth deeper investigation. Detecting time intervals
during which new sources become active can help tune sampling methods
toward activity periods that likely contain more interesting information
(i.e., many new malicious sources) than other time periods.

Microsoft releases accumulated security patches on the second Tuesday of each
month, termed “Patch Tuesday” (PT). Attackers can use the released patch
information to exploit vulnerabilities on machines that have not yet been patched
or to check whether security holes previously exploited are still open. Launching
new malware immediately after Patch Tuesday also maximizes the potential
lifetime of an exploit before a patch is deployed.

We investigated how Patch Tuesday affects the volume and characteristics
of malicious and unwanted traffic as observed by a large IPv4 (/8) darkspace
monitor [1] over the first six months of 2012. We used the tools corsaro [5],
MATLAB and Wireshark to analyze packet counts, number of unique source
addresses, top destination ports and packet content. We used the IATmon tool [3]
to classify IP source hosts that contributed to observed darkspace traffic into
18 mutually exclusive source types. The classification is based on protocol and
temporal patterns across a configured (in our case 1 hour) time interval.

First we analyzed the overall traffic without distinguishing among source
types. The overall packet count did not reveal any unusual behavior at all at
or around Patch Tuesday. But when we looked at the number of unique source
IP addresses we found an interesting pattern that was consistent across all six
months, shown in Figure 1. Specifically, immediately at midnight after PT, i.e.,
the first hour of “Exploit Wednesday” (EW), there was consistently a signifi-
cant increase in the overall number of active sources, which typically remained
elevated above its baseline value for several hours.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 273–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 T. Zseby et al.

1
2
3

Total Number of Source IPs (x106)

January 2012

1
2
3

Februay 2012

1
2
3

#
sr

c
IP

s
[1

0
6
]

March 2012

2

4

April 2012

2
4
6

May 2012

−300 −200 −100 0 100 200 300 400 500

2

4

time distance to patch release [hours]

June 2012

Fig. 1. Total number of unique source IP addresses per hour for 6 months. x-axis shows
the time distance (in hours) from the patch release. Each month exhibits a significant
increase in the number of unique source IPs shortly after PT. January and March have
two other large peaks many days later that are truncated in the graph.

The IATmon source type analysis revealed that for all six months, the in-
crease of active sources after Patch Tuesday is mainly caused by sources of the
types ‘1 or 2 packets’, i.e. all sources that send fewer than 3 packets, and ‘UDP
unknown’, i.e. UDP sources that send more than 2 packets and target multi-
ple destination addresses and destination ports (see [3]). In some months we
also saw a significant increase of other source types on Exploit Wednesday, e.g.,
UDP probes in February and May, UDP vertical scans in July, UDP horizontal
scans in May and μTorrent sources in April. But only the ‘UDP unknown’ and
‘1 or 2 packets’ sources consistently increased on EW for all six months.

We saw only a few potential Patch Tuesday effects in our analysis of the packet
count per source type. We saw an increase in UDP horizontal scans on EW in
June and an increase of packets from ‘TCP and UDP’ sources on EW in July.
The packet count for source type ‘1 or 2 packets’ increased in all six months on
EW, but just as a direct effect of the increase of the number of sources of this
type. The source analysis also showed that 32% (in June) up to 56% (in March)
of all darkspace packets originated from sources that performed TCP horizontal
scans to port 445, a long-standing behavior that became even more common
since the Conficker outbreak [2]. Between 13% (in January) and 42% (in April)
of all observed packets were TCP backscatter (TCP-ACK, TCP-RST).

In January 2012 we saw a significant reduction of DNS backscatter traffic
directly after PT. A DNS name server sent 4 to 6.5 million DNS backscatter
packets per hour throughout the 45 hours before PT in January and suddenly

The Day after Patch Tuesday 275

stopped sending within 2 hours after PT. These packets were standard DNS
query response packets with a format error, sent in response to a name request
for a porn web page. We assume that the queries to the name server were sent
with spoofed source addresses, because the response packets have destination
addresses in the darkspace. One possible explanation for this sudden drop in
backscatter is that a patch was deployed that prevented compromised hosts (in
a botnet) from continuing to participate in a DDoS attack against the name
server sending us backscatter traffic.

In order to see whether the sources that caused the peaks in the overall source
count aimed at specific vulnerabilities, we investigated how many of the sources
were targeting specific destination ports. We analyzed the destination ports for
all packets from sources of type ‘UDP unknown’ and from those sources of type
‘1 or 2 packets’ that sent only UDP packets. Since some ports are generally
more popular than others, we first calculated, as a baseline, the median number
of sources per destination port over the whole month. We then looked at the
number of sources per destination port on EW (midnight UTC) and PT (patch
release time), and compared it to the median. We saw a broad distribution of
destination ports targeted on EW; no ports had an especially high number of
sources across all six months. We looked at the payload for some of the UDP
packets sent to the top ten ports of the sources that became active every EW
in all six months. We did not discover any new or surprising pattern, just more
sources sending UDP packets that looked similar to those we see at other times.

Although we have only analyzed a slice of data, our preliminary results indi-
cate that Patch Tuesday effects merit further investigation, ideally on multiple
sources of darknet data or in combination with data from networks with active
hosts. Longitudinal trends of malicious behavior related to Patch Tuesday may
help quantitative assessments of the health of one component of the Internet.
Information about source activity patterns can also help to optimize measure-
ment methods, e.g. by tuning sampling techniques toward time periods with high
source activities. The data used in this analysis is available at [4].

References

1. UCSD Network Telescope (2010),
http://www.caida.org/data/passive/network_telescope.xml

2. Aben, E.: Conficker/Conflicker/Downadup as seen from the UCSD Network Tele-
scope. Technical report, CAIDA (February 2009),
http://www.caida.org/research/security/ms08-067/conficker.xml

3. Brownlee, N.: One-way Traffic Monitoring with iatmon. In: Taft, N., Ricciato, F.
(eds.) PAM 2012. LNCS, vol. 7192, pp. 179–188. Springer, Heidelberg (2012)

4. CAIDA. Patch Tuesday Dataset (2012),
http://www.caida.org/data/passive/telescope-patch-tuesday.xml

5. Alistair King. Corsaro (October 2012),
http://www.caida.org/tools/measurement/corsaro/

http://www.caida.org/data/passive/network_telescope.xml
http://www.caida.org/research/security/ms08-067/conficker.xml
http://www.caida.org/data/passive/telescope-patch-tuesday.xml
http://www.caida.org/tools/measurement/corsaro/

Towards Active Measurements

of Edge Network Outages�

Lin Quan, John Heidemann, and Yuri Pradkin

USC/Information Sciences Institute
{linquan,johnh,yuri}@isi.edu

1 Introduction

End-to-end reachability is a fundamental service of the Internet. We study net-
work outages caused by natural disasters [2, 5], and political upheavals [8].

We propose a new approach to outage detection using active probing. Like
prior outage detection methods [3, 4], our method uses ICMP echo requests
(“pings”) to detect outages, but we probe with greater density and finer granu-
larity, showing pings can detect outages without supplemental probing.

The main contribution of our work is to define how to interpret pings as out-
ages (§2): defining an outage as a sharp change in block responsiveness relative
to recent behavior. We also provide preliminary analysis of outage rate in the
Internet edge. Space constrains this poster abstract to only sketches of our ap-
proach; details and validation are in our technical report [6]. Our data is available
at no charge, see http://www.isi.edu/ant/traces/internet_outages/.

2 Methodology

Our method for outage detection begins with active probing, followed by outage
identification in individual blocks, and correlation into events.

For this paper, we define a network outage as problems in the network core
or near the target that prevent reachability from our vantage point. We watch
for and manually remove outages local to the monitors. We know that problems
often affect only part of the Internet; evaluation of outages from multiple vantage
points to distinguish partial and Internet-wide outages is future work.

2.1 Active Probing of Address Blocks

We collect data with active probing, extending our high-performance probing
software used to study the Internet address space [1].

� This work is based on research sponsored by the U.S. Dept. of Homeland Security,
S&T HSARPA, BAA 11-01-RIKA and Air Force Research Laboratory, Info. Dir.,
agreements FA8750-12-2-0344, and D08PC75599. The U.S. Gov’t is authorized to
reproduce and distribute reprints notwithstanding any copyright notation thereon.
The views herein are those of the authors and do not necessarily represent the official
policies or endorsements of the DHS or U.S. Government.

M. Roughan and R. Chang (Eds.) PAM 2013, LNCS 7799, pp. 276–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.isi.edu/ant/traces/internet_outages/

Towards Active Measurements of Edge Network Outages 277

 0
 0.2
 0.4
 0.6
 0.8

 0 500 1000 1500 2000

co
ve

ra
ge

 (
C

(i)
)

round (count, each 11 minutes)

block coverage (C(i))

outage threshold ((1-ρ)Cbar(i))
 0

 0.2
 0.4
 0.6
 0.8

 0 500 1000 1500 2000

co
ve

ra
ge

 (
C

(i)
)

round (count, each 11 minutes)

block coverage (C(i))

outage threshold ((1-ρ)Cbar(i))

 0

 500

 1000

 1500

 2000

2009-10-01

2010-01-01

2010-04-01

2010-07-01

2010-10-01

2011-01-01

2011-04-01

2011-07-01

2011-10-01

2012-01-01

 0

 1

 2

 3

N
um

be
r

of
 e

ve
nt

s
(x

1)
 a

nd
 o

ut
ag

es
 (

x1
0)

O
ut

ag
e

A
re

a
(%

)

Date

events

outages

outage area

29
wc

30
wc

31
w c

32
wc

33
w c

34
w c

35
wc

36
wc

37
wc

38
w c

39
wc

w2

40
wc

41
wc

42
wc

43
wcj

44
wc j

Fig. 1. Left, top: responses for one /24 block (green: positive, black: none, blue: not
probed). Left, bottom: coverage and outage thresholds per round. Right : outage events
and outage percentage, over 35 2-week surveys.

Reviewing Address Probing: We begin with active probing of addresses in
some or all analyzable /24 address blocks in the IPv4 address space. Probes are
ICMP echo requests (pings) at 11 minute intervals for one to 14 days. Probes
are spread over 11 minutes to minimize impact on the target and effects of burst
losses. We classify responses as: non-responses, network or host-specific negative
replies, other errors, and positive (echo reply). We interpret the first two as
an inaccessible network, and the later as a reachable network. We survey all
addresses in a random sample of 22k or 41k responding /24 blocks.

Outage-Specific Steps: For outage analysis, we map probe records into rounds
with index i. Each round is 11 minutes long, with Nr rounds in a dataset; we
account for clock drift and duplicate replies. Our whole-Internet outage system
probes 20 addresses in all 2.5M measurable /24 blocks for IPv4 [6].

2.2 Probes to Outages

We identify outages by a sharp drop in overall responsiveness of the block, and
recovery by an increase. Let rj(i) represent the state of each address j in a given
block at round i, taking 1 for a reply and 0 if down. Fig. 1 (left) shows a graphical
representation of rj(i): each green dot indicates a positive response, while black
dots are non-responsive (the blue area on the right is after the survey ends). In
this block many addresses are responsive or non-responsive for long periods, as
shown by long, horizontal green or black lines.

The coverage of a block at round i is defined as: C(i) = Ns
−1 ∑Ns

j=1 rj(i)
(where Ns is number targets probed in a block; 256 for experiments and 20
for operation). C(i) is a timeseries of block responsiveness over the observation
period. An outage starts when there is a severe drop (90% change or more) of
C(i), compared to a running average C̄ over the last two rounds. (Exact choice
of the threshold is not critical provided it is relatively large [6].) We graph C(i)
in Fig. 1 (bottom left), observing that it drops to zero for rounds 1640 to 1654,
an outage that shows as a black, vertical band in the top panel. Because we
must observe several targets, we exclude blocks that are too sparse. We consider
blocks where fewer than 10% of addresses historically respond to be too sparse.

278 L. Quan, J. Heidemann, and Y. Pradkin

Fig. 2. The 400 largest outages of S38c (see http://www.isi.edu/ant/outage/38c)

The result of this algorithm is a list of outages, represented as binary-valued
timeseries Ω(i), indicating when the block is down (Ω(i) = 1) or up (0). Out-
ages incorporate data measured over the course of a round. Through controlled
experiments we verify that we detect all controlled outages that last 1.9 rounds
(about 20 minutes), and typically underestimate duration by about 0.5 rounds.

3 Preliminary Analysis

As an example of our outage detection method, Fig. 2 visualizes outages during
the Jan. 2011 Egyptian revolution (Survey S38c). This visualization clusters
blocks by similarity (as previously described [7]); here we present this data to
illustrate outage detection. Fig. 2 shows the 400 blocks with the most outages,
with time on the x-axis and each row giving the Ωj downtime for some /24
block, and colors keyed to country. There are two clusters of blocks that have
near-identical outage end times. Cluster (a) covers 19 /24s, corresponding to the
Feb. 2011 Egyptian Internet shutdown. Cluster (b) covers 21 /24 blocks for a
slightly longer duration, related to flooding in eastern coast of Australia. Our
technical report validates these events with external data [6].

This event is one example of the kind of outages we observe. We have been
observing from three locations (southern California, Colorado, and Japan) for
over two years. Fig. 1 (right) shows data for three years, with different shapes
(open, closed, and asterisk) showing different locations. This figure suggests that
our results are similar regardless of probing site and date, after we remove out-
ages local to the prober (the dotted lines). Numerically, variation is low: mean
outage “area” is 0.33%, standard deviation is only 0.1%. Overall, our data shows
the Internet is about 99.7% up, or about 2.5 “nines” of availability.

References

1. Heidemann, J., Pradkin, Y., Govindan, R., Papadopoulos, C., Bartlett, G., Bannis-
ter, J.: Census and Survey of the Visible Internet. In: Proc. of ACM IMC (October
2008)

http://www.isi.edu/ant/outage/38c

Towards Active Measurements of Edge Network Outages 279

2. International Business Times. Optus, Telstra see service outages after Cyclone Yasi
(2011),
http://hken.ibtimes.com/articles/108249/20110203/

optus-telstra-see-service-outages-after-cyclone-yasi.htm

3. Katz-Bassett, E., Madhyastha, H.V., John, J.P., Krishnamurthy, A., Wetherall, D.,
Anderson, T.: Studying black holes in the internet with Hubble. In: NSDI (2008)

4. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: an information plane for distributed services. In:
OSDI (2006)

5. Malik, O.: In Japan, many undersea cables are damaged. GigaOM blog (March 14,
2011),
http://gigaom.com/broadband/

in-japan-many-under-sea-cables-are-damaged/

6. Quan, L., Heidemann, J., Pradkin, Y.: Detecting internet outages with precise active
probing (extended). Technical Report ISI-TR-2012-678, USC/ISI (February 2012)

7. Quan, L., Heidemann, J., Pradkin, Y.: Visualizing sparse internet events: Network
outages and route changes. In: ACM Workshop on Internet Visualization (November
2012)

8. Times, N.Y.: Egypt cuts off most internet and cell service,
http://www.nytimes.com/2011/01/29/technology/internet/29cutoff.html

http://hken.ibtimes.com/articles/108249/20110203/optus-telstra-see-service-outages-after-cyclone-yasi.htm
http://hken.ibtimes.com/articles/108249/20110203/optus-telstra-see-service-outages-after-cyclone-yasi.htm
http://gigaom.com/broadband/in-japan-many-under-sea-cables-are-damaged/
http://gigaom.com/broadband/in-japan-many-under-sea-cables-are-damaged/
http://www.nytimes.com/2011/01/29/technology/internet/29cutoff.html

Author Index

Alzoubi, Hussein A. 115
Antoniades, Demetris 267

Bailey, Michael 218, 256
Bao, Congxiao 270
Beverly, Robert 155
Bischof, Zachary S. 198
Bourgeau, Thomas 11
Brinkmeyer, William 155
Brownlee, Nevil 273
Bustamante, Fabián E. 198

Cao, Lianjie 239
Cardona, Juan Camilo 260
Carlsson, Niklas 229
Chandrashekar, Jaideep 83
Chemmagate, Binoy 94
Chen, Songqing 104
Chirichella, C. 250
Chivukula, Ari 218
Choi, Nakjung 264
Choi, Yanghee 264
Chung, Taejoong 264
Claffy, KC 273
Cuevas, Rubén 260
Cunha, Ítalo 83

Dai, Shuaifu 63
Daniel, Laila 94
de Donato, Walter 21
DiCioccio, Lucas 176
Ding, Aaron Yi 94
Dong, Wei 53
Dovrolis, Constantine 267
Drago, Idilio 1
Duan, Haixin 145
Duffield, Nick 53
Dusi, Maurizio 253

Erman, Jeffrey 42

Flores, Marcel 208
Friedman, Timur 11, 250
Fukuda, Kensuke 73

Gangam, Sriharsha 83
Ge, Zihui 53
Gill, Phillipa 229
Gringoli, Francesco 253
Guo, Lei 104
Guo, Zhida 166

Han, Jinyoung 264
He, Jian 166
Hei, Xiaojun 166
Heidemann, John 276
Hiran, Rahul 229
Hofstede, Rick 1
Hu, Kejia 267
Huang, Jian 166
Huang, Junxian 42
Huston, Geoff 256

Isomäki, Markus 94

Järvinen, Ilpo 94
Jiang, Guofei 31
Jiang, Jian 145

Karir, Manish 218, 256
Kencl, Lukas 187
King, Alistair 273
Kojo, Markku 94
Kompella, Ramana 239
Korhonen, Jouni 94
Kühlewind, Mirja 135
Kurose, Jim 83
Kuthan, Jiri 187
Kuzmanovic, Aleksandar 208
Kwon, Ted “Taekyoung” 264

Lee, Hojin 264
Lee, Seungjoon 53
Li, Fei 104
Li, Kang 145
Li, Xing 270
Liang, Jinjin 145
Liu, Mingyan 218
Liu, Yao 104
Luckie, Matthew 155
Lumezanu, Cristian 31

282 Author Index

Madhyastha, Harsha V. 31
Mao, Z. Morley 42
Marchetta, Pietro 21
Michaelson, George 256

Nagami, Kenichi 73
Neuner, Sebastian 135
Niccolini, Saverio 253
Nucci, Antonio 63

Otto, John S. 198

Pang, Jeffrey 53
Pescapé, Antonio 21, 250
Pradkin, Yuri 276
Pras, Aiko 1
Probst, Thibaut 239

Qian, Feng 42
Quan, Lin 276

Rabinovich, Michael 115
Rohrer, Justin P. 155
Rosenberg, Catherine 176
Rossi, D. 250

Sadre, Ramin 1
Sánchez, Mario A. 198

Sen, Subhabrata 42
Shen, Bo 104
Sim, Alex 267
Simoncelli, Davide 253
Singh, Vishal 31
Song, Dawn 63
Spatscheck, Oliver 42, 115
Sperotto, Anna 1
Stanek, Jan 187
Stanojevic, Rade 260

Teixeira, Renata 176
Testa, C. 250
Tongaonkar, Alok 63
Trammell, Brian 135

Wander, Matthäus 125
Weis, Torben 125
Wu, Di 166
Wu, Jianping 145

Yu, Curtis 31
Yu, Kun 270

Zhang, Jing 218
Zhang, Yueping 31
Zseby, Tanja 273

	Title
	Preface
	Organization
	Table of Contents
	Measurement Design, Experience and Analysis
	Measurement Artifacts in NetFlow Data
	Introduction
	Case Study: Cisco Catalyst 6500 (SUP720-3B)
	Experiment Setup
	Artifact Analysis
	Conclusions
	References

	Efficient IP-Level Network Topology Capture
	Introduction
	A Generic Distributed Tracing (GDT) Framework
	Related Work
	Network Topology Capture (NTC) Heuristics
	Performance Evaluation
	Summary and Future Work
	References

	Detecting Third-Party Addresses in Traceroute Traces with IP Timestamp Option
	Introduction
	Understanding TP Addresses and Their Impact
	Detecting TP Addresses
	Experimental Evaluation
	Measurement Campaign
	Main Findings
	Implications of the Results of Our Technique

	Conclusion
	References

	FlowSense: Monitoring Network Utilization with Zero Measurement Cost
	Introduction
	OpenFlow Overview
	Operation
	Monitoring with OpenFlow

	FlowSense
	Design
	Limitations

	Evaluation
	Accuracy
	Granularity
	Staleness

	Discussion
	Conclusions
	References

	Internet Wireless and Mobility
	How to Reduce Smartphone Traffic Volume by 30%?
	Introduction
	Related Work
	The Measurement Data
	Explored RE Techniques
	Measurement Results
	Evaluation Methodology
	Applying Individual RE Approaches
	Combining Multiple Approaches
	Performance

	Summary and Recommendations
	References

	Modeling Cellular User Mobility Using a Leap Graph
	Introduction
	Background and Challenges
	Soft Handover and Active set
	Challenges

	Mobility and Leaps
	Properties of Leap Traces and Leap-Based Mobility Prediction
	Data Set
	Characteristics of Leap Traces
	Mobility Prediction on Leap Graph

	Applications
	Prefetching
	Handover Optimization

	Related Work
	Conclusion
	References

	Understanding Mobile App Usage Patterns Using In-App Advertisements
	Introduction
	App Market Analysis
	Background
	Dissecting Google Play Store

	Network Trace Analysis
	Methodology
	Dissecting Real World Traces

	Limitations and Future Work
	Conclusion
	References

	A Measurement of Mobile Traffic Offloading
	Introduction
	Dataset and Preprocessing
	Results
	Global View
	Per-User View
	WiFi Usage

	Related Work
	Discussion
	Conclusion
	References

	Performance Measurement
	Estimating TCP Latency Approximately with Passive Measurements
	Introduction
	TCP Latency Estimation
	Evaluation
	Discussion
	References

	Effect of Competing TCP Traffic on Interactive Real-Time Communication
	Introduction
	Test Setup and Workloads
	Effects on One-Way Delay and Delay Variation
	Estimated Delay Induced Loss Period Effects
	Concluding Remarks
	References

	A Comparative Study of Android and iOS for Accessing Internet Streaming Services
	Introduction
	Server-Side Observations
	Analysis of Android and iOS Mediaplayers
	iOS and AppleCoreMedia
	Android and Stagefright
	Comparisons

	Related Work
	Conclusion
	References

	Performance Implications of Unilateral Enabling of IPv6
	Introduction
	Background
	Methodology
	The Dataset
	The Results
	DNS Resolution Penalty
	End-to-End Penalty

	Related Work
	Conclusion
	References

	Protocol and Application Behaviour
	Measuring Occurrence of DNSSEC Validation
	Introduction
	Methodology
	Scripted Test
	Hidden Test
	Accuracy

	Analysis
	Data Cleaning
	Results

	Related Work
	Passive Measurements
	Web-Based Tests

	Conclusions
	References

	On the State of ECN and TCP Options on the Internet
	Introduction
	Explicit Congestion Notification (ECN): A Review
	Measurement Methodology
	Active Probing of Web Servers
	Analysis of Aggregated Flow Data

	Results
	ECN and TCP Option Deployment
	ECN Deployment on IPv6
	Passive Measurement of ECN Adoption

	Identifying Conditions of Congestion: Burst Loss Study
	Conclusions and Future Work
	References

	Measuring Query Latency of Top Level DNS Servers
	Introduction
	Methodology
	Collecting Open Recursive Resolvers
	NXDOMAIN-Query Technique
	King Technique

	Measurements and Results
	Query Latency of Root and TLD Hierarchy
	Query Latency of Thirteen Root Servers
	Proximity of Root Anycast

	The Cause of Large Query Latency
	Buggy Implementation on IPv4/IPv6 Dual-Stack
	Filtering of DNSSEC Response

	Related Work
	Conclusion
	References

	IPv6 Alias Resolution via Induced Fragmentation
	Introduction
	Related Work
	Methodology
	Eliciting Fragmented Responses
	Ground-Truth Testing
	IPv6 Alias Resolution Algorithm

	Results
	Efficacy of TBT
	Accuracy of TBT Alias Resolution

	Conclusion
	References

	Characterization of Network Usage
	Unveiling the Patterns of Video Tweeting: A Sina Weibo-Based Measurement Study
	Introduction
	Methodology
	Patterns of Video Tweeting
	Statistics of Tweeted Videos
	Patterns of Viewer Behaviors
	Effects of Social Links
	Discussion

	Related Work
	Conclusion
	References

	Measuring Home Networks with HomeNet Profiler
	Introduction
	Design
	Requirements
	Design and Implementation Decisions
	Measurement Modules

	Measurements
	Set of Devices in Home Networks
	Completeness of Device Scans
	Set of Devices in Home Networks in France

	WiFi Neighborhood
	Accuracy of Neighborhood Characterization in One-Shot Measurements
	WiFi Neighborhood in France

	Conclusion
	References

	Characteristics of Real Open SIP-Server Traffic
	Introduction
	Related work
	SIP Server Setup and Dataset Description
	Data Analysis Methodology
	SIP Server Traffic Analysis
	General Properties
	NAT Traversal
	HTTP Server / SIP Server Workload Comparison
	Geographic Traffic Distribution
	Registration Storms

	Conclusion
	References

	Trying Broadband Characterization at Home
	Introduction
	Data Collection and Dataset
	The Home Network – A Complex Environment
	Prevalence of UPnP-Enabled Gateways

	Device Usage Dynamics
	Broadband Characterization with UPnP Help
	The Value of UPnP-Counters

	Conclusion
	References

	Network Security and Privacy
	Searching for Spam: Detecting Fraudulent Accounts via Web Search
	Introduction
	Background
	Design
	Methods
	Noise Reduction

	Experiment
	Dataset
	Ground Truth Dataset
	Performance Measurement
	Results
	Blacklist Tuning

	Discussion
	Conclusion
	References

	Characterization of Blacklists and Tainted Network Traffic
	Introduction
	Data Collection Methodology
	Properties of Reputation Blacklists
	Impact of Reputation
	Impact of Heavy Hitting IPs
	External IP Addresses
	Internal IP Addresses
	Heavy Hitter Distribution

	Related Work
	Conclusion
	References

	Characterizing Large-Scale Routing Anomalies: A Case Study of the China Telecom Incident
	Introduction
	Insecurity of the Internet's Routing System
	Key Insights

	Related Work
	Methodology
	Control-Plane Measurements
	Data-Plane Measurements
	Limitations

	Impact of the China Telecom Hijack
	What is the Geographic Distribution of the Announced Prefixes?
	Which Organizations Were Most Impacted?
	Were Any of the Announcements Subprefix Hijacks?

	The Mechanics of Interception
	How Was Interception Possible?
	How Many ISPs Chose to Route to China Telecom?
	Which Prefixes Were Intercepted?
	Why Neighboring ASes Did Not Route to China Telecom?

	Discussion
	References

	PhishLive: A View of Phishing and Malware Attacks from an Edge Router
	Introduction
	System Overview
	Experimental Results
	Temporal Analysis
	Access Characteristics of Victims
	Persistence of Hostnames
	Lexical Similarity of Domains
	Redirect Chain Analysis

	Conclusions
	References

	Poster Abstracts
	Remotely Gauging Upstream Bufferbloat Delays
	Problem Statement
	Methodology
	Validation
	References

	Scaling Out the Performance of Service Monitoring Applications with BlockMon
	Introduction
	Experimental Analysis
	Performance Tests

	Conclusions
	References

	Understanding IPv6 Populations in the Wild
	Introduction
	Understanding IPv6 Addressing
	Experimental Methodology

	Data Analysis and Discussion

	On Weather and Internet Traffic Demand
	Introduction
	Datasets Description
	Short Term Correlations
	Conclusions
	References

	Spatial and Temporal Locality of Swarm Dynamics in BitTorrent
	Introduction
	Methodology
	Data Collection
	Locality Metrics

	Spatial and Temporal Locality
	Concluding Remarks
	References

	What SNMP Data Can Tell Us about Edge-to-Edge Network Performance
	References

	Pathperf: Path Bandwidth Estimation Utilizing Websites
	Introduction
	Design and Implementation of Pathperf
	Experiment Results and Evaluation
	Conclusion
	References

	The Day after Patch Tuesday: Effects Observable in IP Darkspace Traffic
	References

	Towards Active Measurements of Edge Network Outages
	Introduction
	Methodology
	Active Probing of Address Blocks
	Probes to Outages

	Preliminary Analysis
	References

	Author Index

