
Maximal Clique Enumeration

in Finding Near Neighbourhoods�

Christopher J. Henry and Sheela Ramanna

University of Winnipeg, Department of Computer Science,
Winnipeg, Manitoba R3B 2E9, Canada
{ch.henry,s.ramanna}@uwinnipeg.ca

Abstract. The problem considered in this article stems from the obser-
vation that practical applications of near set theory require efficient de-
termination of all the tolerance classes containing objects from the union
of two disjoints sets. Near set theory consists in extracting perceptually
relevant information from groups of objects based on their descriptions.
Tolerance classes are sets where all the pairs of objects within a set
must satisfy the tolerance relation and the set is maximal with respect
to inclusion. Finding such classes is a computationally complex problem,
especially in the case of large data sets or sets of objects with similar
features. The contributions of this article are the observation that the
problem of finding tolerance classes is equivalent to the MCE problem,
empirical evidence verifying the conjecture from [15] that the extra per-
ceptual information obtained by finding all tolerance classes on a set of
objects obtained from a pair of images improves the CBIR results when
using the tolerance nearness measure, and a new application of MCE to
CBIR.

Keywords: Near sets, maximal clique enumeration, tolerance near sets,
tolerance space, tolerance relation, pre-class, nearness measure, CBIR.

1 Introduction

The problem considered in this article is one of finding all the tolerance classes
on a set of objects. In the proposed application to content-based image retrieval
(CBIR) [36], classes in image covers determined by a tolerance relation provide
the content used in CBIR and a feature-based tolerance space solution to detect-
ing and measuring similarities in digital images. Specifically, the tolerance classes
represent the extracted perceptual information which is used in quantizing the
nearness of sets. The notion of nearness in mathematics and the more general no-
tion of resemblance that is a dominant part of CBIR can be traced back to J.H.
Poincaré [32]. Our approach stems from a recent extension of J.H. Poincaré’s

� This research has been supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) grants 194376 and 418413. Also, special thanks to Tariq
Alusaifeer for recognizing the problem of finding tolerance classes is equivalent to
maximal clique enumeration.

J.F. Peters et al. (Eds.): Transactions on Rough Sets XVI, LNCS 7736, pp. 103–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 C.J. Henry and S. Ramanna

representative spaces, tolerance spaces [40,37,31] and near sets introduced by
J.F. Peters in 2007 [26,27], and elaborated in [28,30,7,29,11,39,9,33].

Tolerance classes are sets where all the pairs of objects within a set must
satisfy the tolerance relation and the set is maximal with respect to inclu-
sion. Finding such classes is a computationally complex problem, especially in
CBIR involving sets of objects with similar features [11,13,15,12,10,14]. Previ-
ous work into finding tolerance classes was based on the observation that all
tolerance classes containing an object are a subset of the neighbourhood of that
object [11,13]. Reported algorithms include a serial approach for finding most
tolerance classes using the Fast Library for Approximate Nearest Neighbours
(FLANN) [11,13], and a parallel computing approach for finding all tolerance
classes using NVIDIA’s Compute Unified Device Architecture (CUDA) Graphics
Processing Unit (GPU) [15]. This article presents a new solution to the problem
of finding tolerance classes by observing that this problem can be mapped to the
Maximal Clique Enumeration (MCE) problem. Consequently, the classes can be
found using an algorithm with reduced complexity based in graph theory. In
addition, the MCE approach to performing CBIR introduced in this article is
compared with the well known Earth Movers Distance and Integrated Region
Matching in [16]. Finally, the parallel approach is not considered in this article
since the runtimes of the serial and MCE algorithms are more than 10 times
faster.

The article is organized as follows: First, Section 2 introduces tolerance classes
by way of near set theory, providing the context in which tolerance classes are
used in this article. Next, previously reported algorithms for find tolerance classes
are given in Section 3. Section 4 provides a brief review of the problem of MCE.
Then, a discussion on the multitreaded implementation of each algorithm is
given in Section 5. Section 6 defines tolerance near sets and presents the near-
ness measure used to perform CBIR. Finally, Section 7 presents the results and
discussion. The contributions of this article are the observation that the problem
of finding tolerance classes is equivalent to the MCE problem, empirical evidence
verifying the conjecture from [15] that the extra perceptual information obtained
by finding all tolerance classes on a set of objects obtained from a pair of images
improves the CBIR results when using the tolerance nearness measure, and a
new application of MCE to CBIR.

2 Tolerance Classes

Disjoint sets containing objects with similar descriptions are near sets. Similarity
is determined quantitatively via some description of the objects. Near set theory
provides a formal basis for identifying, comparing, and measuring resemblance
of objects based on their descriptions, i.e. based on the features that describe
the objects. The discovery of near sets begins with identifying feature vectors
for describing and discerning affinities between sample objects. Objects that
have, in some degree, affinities in their features are considered perceptually near
each other. Groups of these objects, extracted from the disjoint sets, provide
information and reveal patterns of interest.

Maximal Clique Enumeration in Finding Near Neighbourhoods 105

Tolerance near sets are near sets defined by a description-based tolerance re-
lation. Tolerance relations provide a view of the world without transitivity [37].
Consequently, tolerance near sets provide a formal foundation for almost so-
lutions, solutions that are valid within some approximation, which is required
for real world problems and applications [37]. In other words, tolerance near
sets provide a basis for a quantitative approach for evaluating the similarity of
objects without requiring object descriptions to be exact.

Let us begin with defining the content of the sets. All sets in near set the-
ory consist of perceptual objects, which is anything in the physical world with
characteristics observable to the senses such that they can be measured and are
knowable to the mind. A feature characterizes some aspect of the makeup of
a perceptual object. A probe function is a real-valued function representing a
feature of a perceptual object [26]. In the context of near set theory, objects in
our visual field are always presented with respect to the selected probe functions,
which is in keeping with the approach to pattern recognition suggested by M.
Pavel [23] where the features of an object are quantified by probe functions. In
other words, probe functions are used to measure characteristics of visual objects
and similarities among perceptual objects.

A perceptual system is a set of perceptual objects, together with a set of
probe functions, i.e. a perceptual system 〈O,F〉 consists of a non-empty set O
of sample perceptual objects and a non-empty set F of real-valued functions
φ ∈ F such that φ : O → R [30]. The notion of a perceptual system admits a
wide variety of different interpretations that result from the selection of sample
perceptual objects contained in a particular sample space O. Two examples of
perceptual systems are: a set of images together with a set of image processing
probe functions, or a set of results from a web query together with some measures
(probe functions) indicating, e.g., relevancy or distance (i.e. geographical or
conceptual distance) between web sources. The description of a perceptual object
within a perceptual system can be defined as follows. Let 〈O,F〉 be a perceptual
system, and let B ⊆ F be a set of probe functions. Then, the description of a
perceptual object x ∈ O is a feature vector given by

φB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the vector φB, and each φi(x) in φB(x) is a probe
function value that is part of the description of the object x ∈ O. Note, the idea
of a feature space is implicitly introduced along with the definition of object
description. An object description is the same as a feature vector as described in
traditional pattern classification [5], yet different from the signature of an object
defined in [24] (due to the use of features instead of attributes1). The description
of an object can be considered a point in an l-dimensional Euclidean space R

l

called a feature space. Thus, the relationship between objects is discovered in a
feature space that is determined by the probe functions in B.

Formally, a tolerance space can be defined as follows [40,37,31]. Let O be a set
of sample perceptual objects, and let ξ be a binary relation (called a tolerance

1 See, [25,27,39] for a discussion on the difference between features and attributes.

106 C.J. Henry and S. Ramanna

relation) on X (ξ ⊂ X×X) that is reflexive (for all x ∈ X , xξx) and symmetric
(for all x, y ∈ X , if xξy, then yξx) but transitivity of ξ is not required. Then a
tolerance space is defined as 〈X, ξ〉. Considering the tolerance space definition,
a specific tolerance relation [28,29] (see [7,8] for applications in image analysis)
is given as follows. Let 〈O,F〉 be a perceptual system and let ε ∈ R

+
0 . For every

B ⊆ F, the perceptual tolerance relation ∼=B,ε is defined by:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖
2
≤ ε},

where ‖ · ‖2 is the L2 norm.
Finally, the algorithms presented in Section 3 are based on the propositions

involving neighbourhoods and tolerance classes. Formally, these concepts are
defined as follows. Let 〈O,F〉 be a perceptual system and let x ∈ O. For a set
B ⊆ F and ε ∈ R

+
0 , a neighbourhood is defined as

N(x) = {y ∈ O : x ∼=B,ε y}.

Note, all objects satisfy the tolerance relation with a single object in a neigh-
bourhood. In contrast, all the pairs of objects within a pre-class must satisfy
the tolerance relation. Thus, let 〈O,F〉 be a perceptual system. For B ⊆ F and
ε ∈ R

+
0 , a set X ⊆ O is a pre-class iff x ∼=B,ε y for any pair x, y ∈ X . Similarly,

a maximal pre-class with respect to inclusion is called a tolerance class.

3 Neighbourhood-Based Algorithms

The serial approach [11,13] and the parallel approach [15] to finding tolerance
classes are both based on the propositions (proved in [11]) that all tolerance
classes containing x ∈ O are subsets of the neighbourhood of x, N(x), and that
tolerance classes are formed from the query points of successive neighbourhoods,
i.e. from finding neighbourhoods within neighbourhoods. An illustrative example
of the propositions central to these algorithms is given in Fig. 1, Fig. 1(a) gives
a tolerance class from within a neighbourhood, Fig. 1(b) shows N(20) obtained
using only objects from N(1), and Fig. 1(c) shows successive neighbourhoods
using the objects within grey region as query points.

The serial approach attempted to mitigate the computational complexity of
finding tolerance classes by using FLANN searches to find neighbourhoods, as
well as a simple heuristic to reduce runtime. As a result, the serial approach
produced found most (but not all) tolerance classes (see, e.g. [11]). Algorithm 1
gives the serial approach to finding tolerance classes, where compsub is list of the
objects along the search path (i.e., the objects in the grey region of Fig. 1(c)),
and cand is a list objects that are not in compsub but satisfy the tolerance re-
lation with every object in compsub. Notice the similarity of this approach to
Algorithm 2, a similarity that was discovered independently of the body of litera-
ture devoted to the MCE problem [2,4]. Note, the variable names in Algorithm 1
were introduced here to maintain notational consistency with the algorithm re-
ported in [34]. Lastly, Algorithm 1 produces duplicate classes. Consequently, at

Maximal Clique Enumeration in Finding Near Neighbourhoods 107

0.45 0.5 0.55 0.6 0.65
0.2

0.25

0.3

0.35

0.4

Normalized feature

N
or

m
al

iz
ed

 fe
at

ur
e

ε = 0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

1

3

6
10
66

1516

20

(a)

0.45 0.5 0.55 0.6 0.65
0.2

0.25

0.3

0.35

0.4

Normalized feature

N
or

m
al

iz
ed

 fe
at

ur
e

ε = 0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

(b)

0.45 0.5 0.55 0.6 0.65
0.2

0.25

0.3

0.35

0.4

Normalized feature

N
or

m
al

iz
ed

 fe
at

ur
e

ε = 0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

(c)

Fig. 1. Algorithm foundational ideas: a) Neighbourhood N(1) in 2D feature space and
tolerance class shown in orange, b) N(20) found using only objects from N(1), and c)
series of successive neighbourhoods leading to the tolerance class depicted in (a), i.e.
N(3) ⊂ N(16) ⊂ N(15) ⊂ N(6) ⊂ N(10) ⊂ N(20).

Algorithm 1: Serial algorithm for finding tolerance classes

Input : Set of objects O
Output: Set of tolerance classes H∼=B,ε(O)

1 for x ∈ O do
2 for y ∈ N(x) do
3 compsub ← {x, y};
4 cand ← All objects in N(x) that satisfy ∼=B,ε with y;
5 GenerateRemaining(y, compsub, cand);

Procedure GenerateRemaining(y, compsub, cand)

1 if cand = {} then
2 Output compsub

3 else
4 new y ← Object in N(y) that is closest to y;
5 new cand ← All objects in N(y) that satisfy ∼=B,ε with new y;
6 new cs ← compsub ∪ new y;
7 GenerateRemaining(new y, new cs, new cand);

some point in the algorithm, the duplicate classes must be removed. In the case
of Algorithm 1, this step is performed after the for loop in line 1 has completed.

Next, the parallel approach depends on CUDA GPU programming [21,22].
Briefly, a GPU consists of hundreds of cores (processors) and these cores are
organized into groups call streaming multiprocessors that are capable of running
code that is called the kernel. The abstraction used to execute this code is
called a thread. To make full use of the GPU’s stream processors one must
generate 1000s of threads for execution. The parallel algorithm reported in [15]

108 C.J. Henry and S. Ramanna

consists of the following three stages: Finding object neighbourhoods, finding
pseudo neighbourhoods, deleting duplicate classes and subsets. While the first
and last step are self explanatory, the process of finding pseudo neighbourhoods
consists of initializing sets as neighbourhoods and, during each iteration of the
loop, these sets approach tolerance classes. This structure facilated the GPU
implementation and combined the compsub and cand sets described above, where
the loop iterator indicates the boundary between the two. Note, only the second
stage is executed on the GPU.

While this algorithm finds all the classes, it suffers from prohibitive runtimes.
As reported, using ε = 0.15, the runtime for a single pair of images is 10 seconds.
To generate the results in this article, tolerance classes need to be generated for
405,450 image pairs, giving a runtime of almost 47 days. As a result, the parallel
approach is not considered in this article since the runtimes of the serial and MCE
algorithms are 500 and 100 ms, respectively. Finally, note, a GPU approach to
MCE is reported in [17], however, Jenkins, et al. report an inability to provide
good performance against MCE algorithms that are non-GPU based.

4 Maximal Clique Enumeration Algorithm

The Maximal Clique Enumeration (MCE) problem consists of finding all maxi-
mal cliques among an undirected graph. Briefly, let G = (V,E) denote an undi-
rected graph, where V is a set of vertices and E is set of edges that connect
pairs of distinct vertices from V . A clique is a set of vertices where each pair of
vertices in the clique is connected by an edge in E. A maximal clique in G is a
clique whose vertices are not all contained in some larger clique, i.e. there is no
other vertex that is connected to all the vertices in the clique by edges in E.

The first serial algorithm for MCE was developed by Harary and Ross [6,2].
Since then, two main approaches have been established to solve the MCE prob-
lem [4], namely the greedy approach reported by Bron-Kerbosh [3] (and con-
current discovery by E. Akkoyunlu [1]), and output-sensitive approaches such as
those in [38,19]. The implementation of the MCE algorithm used to generate the
results in this paper is a modification of the one reported in [34], which is scalable
and parallel version of the the Bron-Kerbosh approach. The Bron-Kerbosh algo-
rithm is given in Algorithm 2 (again, we are using the same notation as in [34]).
The general idea is to use a tree structure to find all maximal cliques, where
each call to CliqueEnumerate creates a new child node. Each node in the tree
consists of four items: the current vertex used to make decisions (cur v), a list of
vertices consisting of the (non-maximal) clique formed up to the current node in
the tree (compsub), a list of potential vertices that are connected to every vertex
in compsub (cand), and a list of vertices that are connected to every vertex in
compsub, but, if followed, constitute a redundant path in the search tree. Notice,
in terms of the neighbourhood-based algorithms, that, at any given level in the
tree, new cand is the neighbourhood of cur v using only objects in the list cand.
Also, similar to the neighbourhood-based approach, both algorithms stop when
there are no candidates left to process. Finally, a connection predicate is nec-
essary for the repeated decisions on whether edges exist between vertices [34].

Maximal Clique Enumeration in Finding Near Neighbourhoods 109

Options include: A linear search of a linked list of adjacent vertices, a lookup us-
ing an adjacency bit matrix, and a lookup using a hash table of edges. Since the
number of objects generated from each image pair is small (456), the adjacency
matrix was used since it is the fastest. The adjacency matrix was constructed
by creating a |V | × |V | matrix, where a 1 (resp. 0) at position i, j represents the
existence (non-existence) of an edge between the vertices vi and vj .

Algorithm 2: The BK algorithm

Input : A graph G with vertex V and edge set E
Output: MCE for graph G

1 compsub ← {};
2 cand ← V ;
3 not ← {};
4 CliqueEnumerate(compsub, cand, not);

5 Multithreading Approach

As was mentioned, [34] presents a scalable and parallel, multi-threaded approach
to solving the MCE problem. The algorithm is parallel in two different aspects.
First, their algorithm generates multiple processes that communicate using the

Procedure CliqueEnumerate(compsub, cand, not)

1 if cand = {} then
2 if not = {} then
3 Output compsub

4 else
5 fixp ← The vertex in cand that is connected to the greatest number of other

vertices in cand ;
6 cur v ← fixp;
7 while cur v �= NULL do
8 new not ← All vertices in not that are connected to cur v ;
9 new cand ← All vertices in cand that are connected to cur v ;

10 new cs ← compsub ∪ cur v ;
11 CliqueEnumerate(new cs, new cand, new not);
12 not ← not ∪ cur v ;
13 cand ← cand \ cur v ;
14 if there is a vertex v in cand that is not connected to fixp then
15 cur v ← v;

16 else
17 cur v ← NULL;

110 C.J. Henry and S. Ramanna

Message Passing Interface (MPI), allowing their algorithm to run on a wide
variety of parallel and networked computers. Second, each process generates
multiple threads. To simplify the implementation, our results were generated
using a single process with multiple threads since the amount of objects ob-
tained from a pair of images in our experiments is 456, compared to the test
sets used by Schmidt et. al in which the number of objects (vertices) range from
3,472 to 193,568. In fact, both the MCE and neighbourhood-based algorithms
used a multi-thread approach to obtain results. The neighbourhood-based ap-
proach consisted of creating a stack of object to be processed. Then, each thread
pops an object from the stack and finds all the tolerance classes containing that
object. Thus, in the multi-threaded algorithm each thread runs an instance of
Algorithm 1, except x is obtained from the stack in line 1 (rather than looping
through all the objects in O). The MCE algorithm also uses a stack of struc-
ture. In this case, it contains the nodes in the tree and each thread process a
single node at a time. The modified version of the algorithm in [34] is given in
Algorithm 3.

Algorithm 3: The Multi-threaded BK algorithm

Input : A graph G with vertex V and edge set E
Output: MCE for graph G

1 for i = 0; i < num threads; i++ do
2 Spawn thread Ti;
3 Have Ti run MCliqueEnumerate();

4 Wait for threads to finish processing;

6 Quantifying Nearness

The following two definitions enunciate the fundamental notion of nearness be-
tween two sets and provide the foundation for applying near set theory to the
problem of CBIR.

Definition 1 Tolerance Nearness Relation [28,29]. Let 〈O,F〉 be a percep-
tual system and let X,Y ⊆ O, ε ∈ R

+
0 . A set X is near to a set Y within the

perceptual system 〈O,F〉 (X��
F
Y) iff there exists x ∈ X and y ∈ Y and there is

B ⊆ F such that x ∼=B,ε y.

Definition 2 Tolerance Near Sets [28,29]. Let 〈O,F〉 be a perceptual system
and let ε ∈ R

+
0 ,B ⊆ F. Further, let X,Y ⊆ O, denote disjoint sets with cov-

erings determined by the tolerance relation ∼=B,ε, and let H∼=B,ε
(X), H∼=B,ε

(Y)
denote the set of tolerance classes for X,Y , respectively. Sets X,Y are tolerance
near sets iff there are tolerance classes A ∈ H∼=B,ε

(X), B ∈ H∼=B,ε
(Y) such that

A��
F
B.

Maximal Clique Enumeration in Finding Near Neighbourhoods 111

Procedure MCliqueEnumerate

1 foreach vertex vi assigned to the thread do
2 cp ← New candidate path node structure for vi;
3 for vj ∈ V do
4 if connected(vi, vj) then
5 if i < j then
6 Vertex vj is in cp’s cand list;

7 else
8 Vertex vj is in cp’s not list;

9 Push cp onto shared stack;

10 while shared stack is not empty do
11 cur ← Pop a candidate path node structure from stack;
12 if cur ’s cand and not lists are empty then
13 Output cur ’s compsub

14 else
15 Generate all cur ’s children (create child nodes and push onto stack);

Observe that two sets X,Y ⊆ O are tolerance near sets, if they satisfy the
tolerance nearness relation.

The tolerance nearness measure was created out of a need to determine the
degree that near sets resemble each other, a need which arose during the appli-
cation of near set theory to the practical applications of image correspondence
(see, e.g. [7,11]). The tolerance nearness measure between two sets X,Y is based
on the idea that tolerance classes formed from objects in the union Z = X ∪ Y
should be evenly divided among X and Y if these sets are similar, where sim-
ilarity is always determined with respect to the selected probe functions. The
tolerance nearness measure is defined as follows. Let 〈O,F〉 be a perceptual sys-
tem, with ε ∈ R

+
0 , and B ⊆ F. Furthermore, let X and Y be two disjoint sets

and let Z = X∪Y . Then a tolerance nearness measure between two sets is given
by

tNM∼=B,ε(X,Y) =

1 −
(∑

C∈H∼=B,ε
(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X |, |[C ∩ Y |)
max(|C ∩X |, |C ∩ Y |) . (1)

Finally, new measures inspired by the tNM have been reported in [35,20]. A
systematic comparison of the tNM and these measures is outside the scope of
this paper and is left for future work.

112 C.J. Henry and S. Ramanna

7 Results and Discussion

The algorithms presented here are compared using CBIR, where the goal is to
retrieve images from databases based on the content of an image rather than
on some semantic string or keywords associated with the image. The content of
the image is determined by functions that characterize features such as colour,
texture, shape of objects, and edges. In our approach to CBIR, a search entails
analysis of content, based on the tNM nearness measure (see, e.g. [11]) between
a query image and test image. Moreover, the nearness measure on tolerance
classes of objects derived from two perspective images provides a quantitative
approach for accessing the similarity of images. To generate our results, the
SIMPLIcity image database [18], a database of images containing 10 categories
with 100 images in each category was used (shown in Fig. 2).

The results were generated by partitioning the images into subimages, where
each subimage was considered as an object in the near set sense, i.e. each subim-
age is a perceptual object, and each object description consists of the values
obtained from image processing techniques on the subimage. This technique
of partitioning an image, and assigning feature vectors to each subimage is an
approach that has also been traditionally used in CBIR. Formally, an RGB

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Examples of each category of images. (a) - (d) Categories 0 - 3, and (e) - (i)
categories 5 - 9.

Maximal Clique Enumeration in Finding Near Neighbourhoods 113

image is defined as f = {p1,p2, . . . ,pT }, where pi = (c, r, R,G, B)T, c ∈ [1,M],
r ∈ [1, N], R,G,B ∈ [0, 255], and M,N respectively denote the width and height
of the image and M ×N = T . Further, define a square subimage as fi ⊂ f such
that fi ∩ fj = {} for i
= j and f1 ∪ f2 . . . ∪ fs = f, where s is the number
of subimages in f . Next, O can be defined as the set of all subimages, i.e.,
O = {f1, . . . , fs}, and F is a set of image processing descriptors or functions
that operate on images. Then, the nearness of two images can be discovered by
partitioning each of the images into subimages and letting these represent ob-
jects in a perceptual system, i.e, let the sets X and Y represent the two images
to be compared where each set consists of the subimages obtained by partition-
ing the images. Then, the set of all objects in this perceptual system is given by
Z = X ∪ Y .

Fig. 3. Example demonstrating the application of near set theory to images, namely
the image is partitioned into subimages where each subimage is considered a perceptual
object, and object descriptions are the results of image processing techniques on the
subimage

The results in this article were obtained using a subimage size of 20× 20 (re-
sulting in 456 objects per image pair) and the 18 features used in [11], namely 4
texture features obtained from the grey-level co-occurrence matrix of a subim-
age, the first and second moments of u and v in the CIELUV colour space, an
edge based feature, and the Zernike moments of order 4, excluding Ã00. More-
over, the results are presented using precision vs. recall plots, where the idea
is to find tNM values between each pair of images in the database. Then, the
measure values are sorted in ascending order, and the smallest value represents
the results of the first query, the second value the results of the second query,
etc. Precision/recall plots are the common metric for evaluating CBIR systems
where precision and recall are defined as

precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images} ,

114 C.J. Henry and S. Ramanna

and

recall =
|{relevant images} ∩ {retrieved images}|

|{relevant images} .

In the ideal case, all images from the same category would be retrieved before
any images from other categories. In this case, precision would be 100% until
recall reached 100%, at which point precision would drop to # of images in query
category / # of images in the database. As a result, our final value of precision
will be ∼11% since we used 9 categories each containing 100 images. Note, only
9 categories were used since the category of images shown in Fig. 4 are easy to
retrieve and their inclusion in the test would only increase the runtime of the
experiment.

(a) (b) (c)

Fig. 4. Examples of images from category 4

The results are presented in Fig. 5 - 17, where the average precision vs. recall
plots are given in Fig. 5 & 7, the precision vs. recall results of the best query
image are given in Fig. 6 & 8, and Fig. 9 - 17 are the top 40 retrieved images
from the best search in each category2. These plots present a comparison of
the two approaches described in Sections 3 & 4 respectively: neighbourhood-
based (most tolerance classes) vs. MCE (all tolerance classes.) In the case of the
neighbourhood-based algorithm, only results for ε = 0.2 are given since it was
reported in [11] that this value produces the best results that are achievable with
reasonable runtime. In other words, the optimal value of ε for the neighbourhood
based algorithm on this test and feature set may be greater than ε = 0.2, but,
due to prohibitive runtimes, these experiments were not performed. Recall, in
any given application (regardless of the distance metric), there is always an opti-
mal ε when performing experiments using the perceptual tolerance relation [11].
For instance, a value of ε = 0 produces little or no pairs of objects that satisfy
the perceptual tolerance relation, and a value of ε =

√
l, means that all pairs of

objects satisfy the tolerance relation3. Consequently, ε should be selected such
that the objects that are relatively4 close in feature space satisfy the tolerance

2 The query image is in the top left position, where the images are ranked from the
top down, then left to right.

3 For normalized feature values, the largest distance between two objects occurs in
the interval [0,

√
l], where l is the length of the feature vectors.

4 Here, distance of “objects that are relatively close” will be determined by the appli-
cation.

Maximal Clique Enumeration in Finding Near Neighbourhoods 115

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 0

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 1

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 2

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(c)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 3

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(d)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 5

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(e)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 6

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(f)

Fig. 5. Average precision versus recall plots grouped by category. (a) - (f) Categories
0 - 6 (excluding category 4).

relation, and the rest of the pairs of objects do not. The selection of ε is straight-
forward when a metric is available for measuring the success of the experiment.
Thus, if runtime were not an issue, the value of ε should be selected based on
the best result of the evaluation metric, which, in the context of CBIR, is the
best results in terms of precision vs. recall.

Next, the following presents some observations of the reported results. First,
notice that some of the curves have a sharp point of inflection (see, e.g., ε = 0.05
at 20% recall in Fig. 5(b)). These points represents the location at which the re-
maining tNM values for a particular query become zero. In the case of Fig. 5 & 7,

116 C.J. Henry and S. Ramanna

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 0

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 1

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 2

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(c)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 3

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(d)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 5

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(e)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 6

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(f)

Fig. 6. Best precision versus recall plots grouped by category. (a) - (f) Categories 0 -
6 (excluding category 4).

these points represent the location at which all query images in the category pro-
duce a tNM value of zero. In order to provide this clear demarcation, any images
from the same category as the query image that produced a tNM value of zero
were ranked last in the search5. Next, results are not reported for ε = 0.3 for
images from category 7 (see, e.g. Fig. 2(g)), since the runtime was too large for
some of the images in this category. For instance, some image pairs produced

5 This was not the case in [11], which accounts for some small discrepencies in the
plots of this article near the end of the curve.

Maximal Clique Enumeration in Finding Near Neighbourhoods 117

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 7

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
Most Classes

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 8

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Avg. Cat. 9

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(c)

Fig. 7. Average precision versus recall plots grouped by category. (a) - (c) Categories
7 - 9 (excluding category 4).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 7

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
Most Classes

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 8

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Recall %

P
re

ci
si

on
 %

Best Results for Cat. 9

All Classes (ε=0.05)
All Classes (ε=0.1)
All Classes (ε=0.2)
All Classes (ε=0.3)
Most Classes

(c)

Fig. 8. Best precision versus recall plots grouped by category. (a) - (c) Categories 7 -
9 (excluding category 4).

118 C.J. Henry and S. Ramanna

(a) (b)

Fig. 9. Top 40 retrieved images using ε = 0.2 for category 0. (a) Results obtained using
all classes, and (b) results from using most classes.

(a) (b)

Fig. 10. Top 40 retrieved images using ε = 0.2 for category 1. (a) Results obtained
using all classes, and (b) results from using most classes.

Maximal Clique Enumeration in Finding Near Neighbourhoods 119

(a) (b)

Fig. 11. Top 40 retrieved images using ε = 0.2 for category 2. (a) Results obtained
using all classes, and (b) results from using most classes.

(a) (b)

Fig. 12. Top 40 retrieved images using ε = 0.2 for category 3. (a) Results obtained
using all classes, and (b) results from using most classes.

120 C.J. Henry and S. Ramanna

(a) (b)

Fig. 13. Top 40 retrieved images using ε = 0.2 for category 5. (a) Results obtained
using all classes, and (b) results from using most classes.

(a) (b)

Fig. 14. Top 40 retrieved images using ε = 0.2 for category 6. (a) Results obtained
using all classes, and (b) results from using most classes.

Maximal Clique Enumeration in Finding Near Neighbourhoods 121

(a) (b)

Fig. 15. Top 40 retrieved images using ε = 0.2 for category 7. (a) Results obtained
using all classes, and (b) results from using most classes.

(a) (b)

Fig. 16. Top 40 retrieved images using ε = 0.2 for category 8. (a) Results obtained
using all classes, and (b) results from using most classes.

122 C.J. Henry and S. Ramanna

(a) (b)

Fig. 17. Top 40 retrieved images using ε = 0.2 for category 9. (a) Results obtained
using all classes, and (b) results from using most classes.

in excess of 700,000 tolerance classes (on only 456 objects) and had runtimes of
over 2 hours. Finally, for ε = 0.2, the MCE approach significantly outperforms
the neighbourhood-based approach in all categories except category 7, which is
due to the value of ε. We conjecture the extra tolerance classes produced at
ε ≥ 0.3 would increase the performance due to the addition of more perceptual
information in calculating tNM . This conjecture is substantiated by the results
of every other category in which the extra tolerance classes produced better
precision vs. recall values. While, the results of the neighbourhood-based approah
may also increase with ε, the result from the other categories demonstrate the
additional information obtained using all the classes will produce better results.

8 Conclusion

This article presents results within the context of CBIR, where perceptual in-
formation within the framework of near set theory is used to discern affinities
between pairs of images. Specifically, perceptually relevant information was ex-
tracted from a set objects formed from pairs of images, where each object has
an associated object description. It is the information contained in these fea-
ture vectors that is used to extract perceptual information represented by the
discovered tolerance classes. The conjecture that the use of all tolerance classes
in a covering of image pairs increases the perceptual information available to
make decisions on nearness leading to an improvement of precision and recall

Maximal Clique Enumeration in Finding Near Neighbourhoods 123

was substantiated by the results presented here. This article also demonstrates
that discovery of all tolerance classes is equivalent to the MCE problem. Finally,
this article presents a new application of MCE.

References

1. Akkoyunlu, E.A.: The enumeration of maximal cliques of large graphs. SIAM Jour-
nal on Computing 2(1), 1–6 (1973)

2. Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem. In:
Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 4.
Kluwer (1999)

3. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16(9), 575–577 (1973)

4. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theoretical Computer Science 407(1), 564–568 (2008)

5. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley (2001)
6. Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix.

Sociometry 20(3), 205–215 (1957)
7. Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G., Henry, C.: Rough sets

and near sets in medical imaging: A review. IEEE Transactions on Information
Technology in Biomedicine 13(6), 955–968 (2009)

8. Henry, C.: Near set Evaluation And Recognition (NEAR) system. In: Pal, S.K.,
Peters, J.F. (eds.) Rough Fuzzy Analysis Foundations and Applications, pp. 7-1–
7-22. CRC Press, Taylor & Francis Group (2010), http://wren.ee.umanitoba.ca

9. Henry, C., Peters, J.F.: Perception-based image classification. International Journal
of Intelligent Computing and Cybernetics 3(3), 410–430 (2010), Emerald Literati
Network 2011 Award for Excellence

10. Henry, C., Peters, J.F.: Arthritic hand-finger movement similarity measures-
ments: Tolerance near set approach. Computational and Mathematical Methods in
Medicine, article ID 569898, 14 pp (2011)

11. Henry, C.J.: Near Sets: Theory and Applications. Ph.D. thesis (2010),
https://mspace.lib.umanitoba.ca/handle/1993/4267

12. Henry, C.J.: Neighbourhoods, classes and near sets. Applied Mathematical Sci-
ences 5(35), 1727–1732 (2011)

13. Henry, C.J.: Perceptual Indiscernibility, Rough Sets, Descriptively Near Sets, and
Image Analysis. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets
XV. LNCS, vol. 7255, pp. 41–121. Springer, Heidelberg (2012)

14. Henry, C.J., Peters, J.F.: Neighbourhood-based vision systems. Cybernetics and
Systems 42(1), 33–44 (2011)

15. Henry, C.J., Ramanna, S.: Parallel Computation in Finding Near Neighbourhoods.
In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954,
pp. 523–532. Springer, Heidelberg (2011)

16. Henry, C.J., Ramanna, S.: Signature-based perceptual nearness. Application of near
sets to image retrieval. Mathematics in Computer Science p. 21 (submitted, 2012)

17. Jenkins, J., Arkatkar, I., Owens, J.D., Choudhary, A., Samatova, N.F.: Lessons
learned from exploring the backtracking paradigm on the GPU. In: Proceedings of
the 17th International Conference on Parallel Processing, vol. II, pp. 425–437 (2011)

18. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical
modeling approach. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 25(9), 1075–1088 (2003)

http://wren.ee.umanitoba.ca
https://mspace.lib.umanitoba.ca/handle/1993/4267

124 C.J. Henry and S. Ramanna

19. Makino, K., Uno, T.: New Algorithms for Enumerating All Maximal Cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

20. Meghdadi, A.H.: Fuzzy Tolerance Neighborhood Approach to Image Similarity in
Content-based Image Retrieval. Ph.D. thesis (2012)

21. NVIDIA: NVIDIA CUDA programming guide v3.0 (2010),
http://docs.nvidia.com/cuda/index.html

22. Patel, S.J.: Applied parallel programming (2010),
http://courses.engr.illinois.edu/ece498/al/

23. Pavel, M.: Fundamentals of Pattern Recognition. Marcel Dekker, Inc., NY (1993)
24. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27

(2007)
25. Peters, J.F.: Classification of objects by means of features. In: Proceedings of

the IEEE Symposium Series on Foundations of Computational Intelligence (IEEE
SCCI 2007), pp. 1–8 (2007)

26. Peters, J.F.: Near sets. General theory about nearness of objects. Applied Mathe-
matical Sciences 1(53), 2609–2629 (2007)

27. Peters, J.F.: Near sets. Special theory about nearness of objects. Fundamenta In-
formaticae 75(1-4), 407–433 (2007)

28. Peters, J.F.: Tolerance near sets and image correspondence. International Journal
of Bio-Inspired Computation 1(4), 239–245 (2009)

29. Peters, J.F.: Corrigenda and addenda: Tolerance near sets and image correspon-
dence. International Journal of Bio-Inspired Computation 2(5), 310–318 (2010)

30. Peters, J.F., Wasilewski, P.: Foundations of near sets. Info. Sci. 179(18), 3091–3109
(2009)

31. Peters, J.F., Wasilewski, P.: Tolerance spaces: Origins, theoretical aspects and ap-
plications. Information Sciences 195, 211–225 (2012)

32. Poincaré, H.: L’espace et la géomètrie. Revue de métaphysique et de morale 3,
631–646 (1895)

33. Ramanna, S., Meghdadi, A.H., Peters, J.F.: Nature-inspired framework for mea-
suring image resemblance: A near rough set approach. Theoretical Computer Sci-
ence 412(42), 5926–5938 (2011), doi:10.1016/j.tcs.2011.05.044

34. Schmidt, M.C., Samatova, N.F., Thomas, K., Byung-Hoon, P.: A scalable, parallel
algorithm for maximal clique enumeration. Journal of Parallel and Distributed
Computing 69, 417–428 (2009)

35. Shahfar, S.: Near Images: A Tolerance Based Approach to Image Similarity and
Its Robustness to Noise and Lightening. M.Sc. thesis (2011)

36. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(12), 1349–1380 (2000)

37. Sossinsky, A.B.: Tolerance space theory and some applications. Acta Applicandae
Mathematicae: An International Survey Journal on Applying Mathematics and
Mathematical Applications 5(2), 137–167 (1986)

38. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing 6, 505–517 (1977)

39. Wolski, M.: Perception and classification. A Note on near sets and rough sets.
Fundamenta Informaticae 101, 143–155 (2010)

40. Zeeman, E.C.: The topology of the brain and the visual perception. In: Fort, K.M.
(ed.) Topoloy of 3-manifolds and Selected Topices, pp. 240–256. Prentice Hall, New
Jersey (1965)

http://docs.nvidia.com/cuda/index.html
http://courses.engr.illinois.edu/ece498/al/

	Maximal Clique Enumeration in Finding Near Neighbourhoods
	Introduction
	Tolerance Classes
	Neighbourhood-Based Algorithms
	Maximal Clique Enumeration Algorithm
	Multithreading Approach
	Quantifying Nearness
	Results and Discussion
	Conclusion
	References

