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Abstract. Rough set approaches to data analysis involve removing re-
dundant attributes, redundant attribute-value pairs, and redundant rules
in order to obtain a minimal set of simple and general rules. Pawlak ar-
ranges these tasks into a three-step sequential process based on a central
notion of reducts. However, reducts used in different steps are defined
and formulated differently. Such an inconsistency in formulation may
unnecessarily affect the elegancy of the approach. Therefore, this paper
introduces a generic definition of reducts of a set, uniformly defines vari-
ous reducts used in rough set analysis, and examines several mathemat-
ically equivalent, but differently formulated, definitions of reducts. Each
definition captures a different aspect of a reduct and their integration
provides new insights.
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1 Introduction

In his seminal book, Rough Sets: Theoretical Aspects of Reasoning About Data,
Pawlak [13] provided a simple and elegant method for analyzing data represented
in a tabular form. The method can be applied to decision table simplification
and rule learning. In our previous paper [21], with a slightly different formula-
tion, we reviewed Pawlak approach and examined several of its variations. More
specifically, we introduced a generic notion of a reduct of a set and an explicit
expression of a concept by a pair of intension and extension of the concept.
We formulated Pawlak approach as a three-step method for analyzing an infor-
mation table. Our objective was to show that the three steps use three types
of reducts, namely, attribute reducts of the table with respect to decision at-
tributes, attribute reducts of an object with respect to decision attributes, and
rule reducts. However, due to space limitation, we were only able to provide an
outline of our argument. The objective of this paper is to expand our outline
into a more complete and thorough investigation.

This paper is different from and complementary to many other studies. It is
not intent on proposing a new method nor comparing different methods. The
main contribution is to provide a new interpretation of Pawlak approach to data
analysis. Our formulation starts with a generic notion of reducts of a set and an
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explicit expression of a concept as a pair of a logic formula (i.e., intension of the
concept) and a set of objects (i.e., the extension of the concept) [18]. We hope
that a reformulation and reinterpretation of Pawlak three-step approach will
offer several new insights. The generic notion of reducts unifies the three steps
and demonstrates the simplicity and reflexibility of Pawlak approach. Instead of
using several forms and definitions of reducts, we use only one general form and
one definition. The explicit expression of concepts, in terms of logic formulas
as intensions and subsets of objects as extensions, offers new understanding of
reducts and rules. In summary, our reformulation, based on a single notion and
a uniform exposition, aims at showing the simplicity, elegancy, and flexibility of
Pawlak three-step approach at a conceptual level, rather than demonstrating its
efficiency at an implementation level. This allows us to focus on the definition
of reducts, instead of designing methods for constructing reducts.

For simplicity and clarity, we restrict our discussion to the basic notion of
reducts in Pawlak’s book. As future work, it will be interesting and worthwhile
to investigate if the same argument, with some modifications, can be applied to
various generalized notions of reducts, including, dynamic reducts [1], associa-
tion reducts [16], approximate reducts [11], decision bireducts [17], and many
others [5,8,9,10,19,24]. The restriction allows us to concentrate on the basic is-
sues without being distracted by minute details of various generalizations. The
results of this paper can be used to relate Pawlak approach to other standard
rule learning algorithms, such as partition-based decision-tree methods [15,25]
and covering-based sequential covering methods [2,3,4,6,7,26]. While other meth-
ods focus mainly on rule learning algorithms, Pawlak approach emphasizes on
a study of intrinsic properties of rules independent of a particular rule learning
algorithm [14].

The rest of this paper is organized as follows. Section 2 presents an overview
of rough set analysis and explicitly expresses such an analysis into a sequential
three-step process. Section 3 introduces a general definition of a reduct of a
set, examines a simpler definition of a reduct when a monotonic evaluation is
used, and investigates an ∩-reduct and an ∪-reduct of a family of subsets of
a set. Section 4 is a critical analysis of Pawlak three-step approach. Based on
the generic definition of a reduct of a set introduced in Section 3, we study
about twenty different definitions of reducts used in rough set analysis. Each
definition interprets a reduct from an unique angle and, pooling together, all
interpretations provide new insights.

2 An Overview of Pawlak Rough Set Analysis

Rough set analysis (RSA) deals with a finite set of objects called the universe, in
which each object is described by values of a finite set of attributes. In his book,
Pawlak first used a subset of objects to represent a concept and a partition of
the universe to represent a classification at an abstract level. More specifically,
he called subsets categories, a partition or equivalently an equivalence relation
(classification) knowledge and a family of equivalence relations a knowledge base.
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Those notions were later explained by using an information table. Although such
a formulation, from abstract notions to concrete examples, provides a more gen-
eral framework, the meanings of various notions are not entirely clear when they
are introduced. For this reason, we start our formulation by directly referring to
an information table.

Definition 1. An information table is the following tuple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects called the universe, At is a finite
nonempty set of attributes, Va is a nonempty set of values for a ∈ At, and
Ia : U −→ Va is a complete information function that maps an object of U to
exactly one value in Va.

For an object x ∈ U , Ia(x) denotes the value of x on attribute a ∈ At. For
notational simplicity, for a subset of attributes A ⊆ At, IA(x) denotes the vector
value of x on A.

Definition 2. A classification table or a decision table is an information table
S = (U,At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}), where C is a set of
condition attributes and D is a set of classification or decision attributes. If for
all objects x, y ∈ U , IC(x) = IC(y) implies that ID(x) = ID(y), the table is called
a consistent classification table, and is called an inconsistent table otherwise.

An information table provides all available information about a set of objects. We
analyze attributes and objects based on the information functions in the table.
Pawlak investigated three main tasks of rough set analysis and presented them in
a sequential three steps [13], as shown in Figure 1. We use a naming system that
is slightly different from the one used in Pawlak’s book. More specifically, we use
“attribute reduction” and “attribute reduct” instead of “knowledge reduction”
and “reduct of knowledge,” respectively, and use “attribute-value-pair reduction”
and “attribute-value-pair reduct” instead of “reduction of categories” and “value
reducts,” respectively.

The first step analyzes attribute dependencies with an objective to simplify-
ing a table. The main tasks involving identifying superfluous (i.e., dispensable)
attributes and finding a minimal subset of attributes that preserves the same
information as the entire set of attributes for the purpose of classification. Such
a minimal set of attributes is called an attribute reduct of the table or a relative
attribute reduct of a classification table. There may exist more than one reduct
for each table. With respect to a reduced table with a minimal set of attributes
in a decision table, we can construct a set of decision rules. The left-hand-side
of each decision rule is a conjunction of a set of attribute-value pairs.

The second step analyzes dependencies of attribute values with an objective
to simplifying a decision rule. Similar to the notion of superfluous attribute in
a table, there may exist superfluous attribute-value pairs in the left-hand-side
of a decision rule. The main tasks of the second step are to identify superfluous
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An information table

Attribute reduction

A reduced information table defined by an attribute reduct
(a set of rules)

Attribute-value pair 
reduction for each rule

A set of minimal rules
(A minimal rule is defined by an attribute-value-pair reduct)

Rule reduction

A minimal set of minimal rules defined by a rule reduct

Concepts used:
dispensable attributes,
attribute reducts,
relative attribute reducts;

Concepts used:
dispensable attribute-value pairs,
attribute-value-pair reducts,
relative attribute-value pair reducts;

Concepts used:
dispensable rules,
rule reducts.

Fig. 1. Pawlak three-step rough set analysis

attribute-value pairs and to derive a minimal set of attribute-value pairs for each
decision rule. A minimal set of attribute-value pairs is called a relative attribute-
value-pair reduct. Again, there may exist more than one reduct. The result of
the second step is a set of minimal decision rules.

The third step analyzes dependencies of decision rules with an objective to
simplifying a set of decision rules. There may exist superfluous (i.e., dispens-
able) rules in the set of decision rules obtained in the second step. By removing
superfluous rules, one can obtain a minimal set of rules called a rule reduct.

In Pawlak’s book, the three steps are clearly separated. As pointed out by a
reviewer of this paper, the steps of attribute reduction, attribute-value reduction
and rule reduction do not need to follow each other. In applications they may oc-
cur optionally or independently. For example, attribute-value reduction may be
treated as a special case of attribute reduction, which leads toward merging the
first two above-mentioned steps together. In some cases, rule reduction may be
avoided; one may simply use techniques based on voting to deal with redundant
or conflicting rules.

Although each of the three steps involves different entities or subjects, they
share high-level similarities. All analyze relationships between entities with an
objective to make simplification by removing superfluous entities. More impor-
tantly, the result of simplification is a reduct, namely, an attribute reduct of
a table, an attribute-value-pair reduct of a rule, and a rule reduct of a set of
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rules. This observation suggests that one may unify the three steps. However, in
rough set literature, different forms and definitions are given for different types
of reducts. In rest of this paper, we present a generic definition of reducts and
show that Pawlak three-step analysis may be uniformly formulated based on a
generic definition of reducts.

3 A General Definition of Reducts

We introduce a general definition of reducts of a set and examine basic properties
of reducts.

3.1 Reducts of a Set

Reducts are a fundamental notion of rough set analysis. As showed in the last
section, different types of reducts have been proposed and studied. Consider an
attribute reduct of a table, intuitively speaking, an attribute reduct is a subset
of attributes that preserve the same information or property as the entire set
of attributes (i.e., the sufficiency condition) and at the same time contains no
superfluous attributes (i.e., non-redundancy condition). This interpretation of
an attribute reduct can be generalized into a generic definition of a reduct of
any set. First, we specify a property such that the entire set has the property.
Then, we state the sufficiency and non-redundancy conditions on a subset of the
set for it to be a reduct. The sufficiency condition suggests that a reduct has the
same property as the entire set. The non-redundancy condition requires that a
reduct must be a minimal subset having the property.

Definition 3. Suppose S is a finite set and 2S is the power set of S. Let P

denote a unary predicate on subsets of S, that is, for X ⊆ S,P(X) stands for the
statement that “subset X has the property P.” An evaluation e of P is understood
as a truth assignment for every subset of S: Pe(X) is true if X has property P,
otherwise, it is false.

An evaluation typically depends on a particular data set. For example, an eval-
uation of subsets of attributes is determined by a particular information table.
A reduct of S is therefore defined with respect to a given evaluation. We use a
subscript e to explicitly denote the evaluation.

Definition 4. Given an evaluation e of P, A subset R ⊆ S is called a reduct of
S if it satisfies the following conditions:

(w) Pe(S),
(s) Pe(R),
(n) ∀B ⊂ R, (¬Pe(B)).

Condition (w) requires that the whole set S must have the property P. In many
studies, this condition is typically implicitly assumed or embedded in P. It en-
sures that a reduct of S exists. Condition (s) is a sufficiency condition, stating
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that a reduct R of S is sufficient for preserving property P of S. Condition (n)
is a non-redundancy condition, indicating that none of the proper subsets of R
has the property.

According to Definition 4, it is necessary to check all proper subsets of R
in order to verify if R is a reduct. This imposes an unpractical computational
constraint. In many situations, one can study a special class of property P that
satisfies the monotonicity with respect to set inclusion.

Definition 5. A predicate P is said to be monotonic with respect to set inclusion
if it satisfies the following property:

∀A,B ⊆ S, (A ⊆ B =⇒ (P(A) =⇒ P(B))). (1)

The monotonicity states that if a subset has a property, then a superset of it
also has the property. It is important to point out that, unlike the definition of a
reduct, the monotonicity of P is defined based on all possible evaluations. That is,
the monotonicity must hold for all possible evaluations. In terms of information
tables, each table determines an evaluation and all possible tables determine all
possible evaluations. The monotonicity of a predicate must hold for all possible
information tables. The monotonicity can be equivalently re-expressed as

∀A,B ⊆ S, (A ⊆ B =⇒ (¬P(B) =⇒ ¬P(A))). (2)

That is, if a set does not have the property, then none of its subsets has the
property. Thus, once we know that a set does not have the property, we do not
need to check its subsets. This leads to a simplified definition of reducts.

Definition 6. Suppose P satisfies monotonicity. Given an evaluation e of P, a
subset R ⊆ S is called a reduct of S if it satisfies the following properties:

(w) Pe(S)
(s) Pe(R)
(n) ∀a ∈ R, (¬Pe(R − {a}))

Condition (n) shows that each element a ∈ R is necessary. That is, elements of
R are individually necessary. With the monotonicity, a verification of a reduct
becomes easier, one only needs to check individual elements from S based on
condition (n) instead of all subsets of R. A reduct is always defined with respect
to a particular evaluation. In the rest of this paper, for notational simplicity
we sometimes omit the subscript e by simply writing Pe(X) as P(X) for subset
X ⊆ S. It may be commented that many definitions of reducts in rough set
theory obey the monotonicity.

In the study of reducts, there are two additional important notions. The first
one is superfluous or redundant elements and the second one is core elements. The
concept of superfluous element is only applicable when considering monotonic
evaluations. One can also define generic notions of redundant elements and core
elements.
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Definition 7. Suppose P satisfies monotonicity. Given an evaluation e of P, an
element a is called a redundant element if it satisfies the following properties:

(r1) Pe(S)
(r2) Pe(S − {a})

Condition (r2) states that when removing an element a from the set S, the rest
elements of the set still satisfy the property P. That is to say, the element a
is unnecessary and dispensable for preserving the property P and one can have
a same result without considering the element a in S. Therefore, we say a is
redundant in S.

Definition 8. Suppose P satisfies monotonicity. Given an evaluation e of P, an
element a is called a core element if it satisfies the following properties:

(c1) Pe(S)
(c2) ¬Pe(S − {a})

That is, for a set S satisfying property P, if we remove element a from S, the
rest elements can no longer preserve property P. Therefore, the element a is
necessary and indispensable for keeping property P.

Definition 9. Given a set S, let RED(S) denote the family of all reducts of S,
the set of core elements of S can be defined as follows:

CORE(S) =
⋂
RED(S). (3)

The CORE is the intersection of all reducts, in other words, elements in CORE
are included in every reduct. Therefore, the CORE is the most important subset
that none of its elements can be eliminated for preserving a specific property.

3.2 Reducts of a Family of Subsets of a Set

The proposed definition of reducts is flexible. As an example, we consider a set S
whose elements are subsets of a set. Given a set W , suppose S ⊆ 2W is a family
of subsets of W . According to definition of reducts in Definition 6, we introduce
∩-reducts and ∪-reducts of S.

Definition 10. [13] Suppose W is a finite set and S ⊆ 2W . A set R ⊆ S is
called an ∩-reduct of S if it satisfies the following conditions:

(w) ∩S = ∩S,
(s) ∩R = ∩S,
(n) ∀a ∈ R, (¬(∩(R − {a}) = ∩S)).

A set Q ⊆ S is called an ∪-reduct of S if it satisfies the following conditions:

(w′) ∪S = ∪S,
(s′) ∪Q = ∪S,
(n′) ∀a ∈ Q, (¬(∪(Q− {a}) = ∪S)).
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Conditions (w) and (w′) simply state that S has the property. We explicit list
them to show the connection to Definition 6.

In some situations, we want to use a family of subset S to represent other
subsets of W . This leads to a definition of relative reducts.

Definition 11. [13] Suppose S ⊆ 2W is a family of subsets of a finite set W
and T ⊆ W is a subset of W . An ∩-reduct of S relative to T , or simply an
∩-relative-reduct is defined by the following conditions,

(w) ∩S ⊆ T,

(s) ∩R ⊆ T,

(n) ∀a ∈ R, (¬(∩(R − {a}) ⊆ T )).

Condition (w) states that the family S has the property of ∩S ⊆ T . We will
show later that those reducts form a basis of rough set analysis.

4 A Critical Analysis of Pawlak Three-Step Approach

In this section, we provide a critical analysis of Pawlak three-step approach based
on the notion of reducts introduced in the last section.

4.1 Rough Set Approximations

Rough set theory analyzes an information table based on equivalence relations
(i.e., reflexive, symmetric and transitive relations) induced by subsets of at-
tributes [12,13].

Definition 12. [13] Given an information table, a subset of attributes A ⊆ At
defines an equivalence relation on U as follows:

xEAy ⇐⇒ ∀a ∈ A, (Ia(x) = Ia(y))
⇐⇒ IA(x) = IA(y). (4)

That is, x and y are equivalent if and only if they have the same values on all
attributes in A. The equivalence relation EA induces a partition of the universe
and is denoted by U/EA = {[x]EA | x ∈ U}, where [x]EA = {y | xEAy} is the
equivalence class containing x.

There is a one-to-one correspondence between all equivalence relations on U and
all partitions of U . Therefore, we use equivalence relations and partitions inter-
changeably. An equivalence relation E is a set of pairs, that is, E ⊆ U×U , where
U × U is the cartesian product of U and U . One can apply set-theoretic oper-
ations and relations on equivalence relations. If E1 and E2 are two equivalence
relations, then E1 ∩ E2 is also an equivalence relation.

The standard set inclusion of equivalence relations defines a partial order on
partitions as follows: for two equivalence relations E1 and E2,

U/E1 � U/E2 ⇐⇒ E1 ⊆ E2. (5)
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If U/E1 � U/E2, each block of U/E2 must be a union of some blocks of U/E1,
and the partition U/E1 is called a refinement of U/E2 and U/E2 a coarsening
of U/E1.

With respect to different subsets of attributes, we can establish the following
relationships, for A,B ⊆ At, x ∈ U ,

(1) EA =
⋂

a∈A

E{a},

EA∪B = EA ∩EB ,

(2) [x]EA =
⋂

a∈A

[x]E{a} ,

[x]EA∪B = [x]EA ∩ [x]EB ,

(3) A ⊆ B ⇒ EB ⊆ EA,

A ⊆ B ⇒ U/EB � U/EA. (6)

Properties (1) and (2) show that the equivalence relation, or the corresponding
partition, defined by a subset of attributes can be constructed from the individual
equivalence relations or partitions defined by singleton subsets of attributes.
Property (3) states that the refinement-coarsening relation � is monotonic with
respect to set inclusion of sets of attributes.

Consider the equivalence relation EA defined by a subset of attributes A ⊆ At.
For a subset X ⊆ U , its lower and upper approximations are defined by [12,13]:

apr(X) =
⋃

{[x]EA ∈ U/EA | [x]EA ⊆ X};
apr(X) =

⋃
{[x]EA ∈ U/EA | [x]EA ∩X �= ∅}. (7)

That is, the lower approximation apr(X) is the union of those equivalence classes
that are subsets of X , and the upper approximation apr(X) is the union of those
equivalence classes that have nonempty intersection with X . By the lower and
upper approximation, one can divide the universe U into three pair-wise disjoint
regions [12], namely, the positive region POS(X), the boundary region BND(X),
and the negative region NEG(X):

POS(X) = apr(X),
BND(X) = apr(X) − apr(X),
NEG(X) = U − apr(X) = (apr(X))c, (8)

where (·)c denotes the set complement. Some of these regions may be empty. The
pair of lower and upper approximations and the three regions uniquely define
each other. One can formulate the theory of rough sets by using any one of them.

Based on these notions, we are ready to review Pawlak three-step approach
to data analysis.

4.2 Step 1: Analysis of Attribute Dependencies

Pawlak refers to partitions, or equivalently equivalence relations, defined by sub-
sets of attributes as classification knowledge or simply classification. Analysis of
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attribute dependencies is performed through equivalence relations defined by
subsets of attributes.

Reducts of an Information Table. Consider first the notion of reducts of
an information table. Pawlak introduces the notion of a reduct of a family of
partitions or equivalence relations. Since each attribute defines an equivalence
relation, we can use a Pawlak reduct of a family of equivalence relations to define
an attribute reduct of an information table.

Definition 13. Given an information table, consider the family of equivalence
relations defined by singleton subsets of attributes S = {E{a} | a ∈ At}. A reduct
of S is defined as a subset R ⊆ S satisfying the following conditions:

(s1) ∩R = ∩S,
(n1) ∀E ∈ R, (¬(∩(R − {E}) = ∩S)). (9)

In this definition, the condition ∩S = ∩S is not explicitly given. Recall that
an equivalence relation is a set of pairs. It follows that S ⊆ 2U×U . Therefore,
according to Definition 10, a reduct as defined by Definition 13 is in fact an
∩-reduct of S.

There is only a small problem when characterizing an information table by
the family of equivalence relations {E{a} | a ∈ At}. Two different attributes
a, b ∈ At may define the same equivalence relation, that is, E{a} = E{b}. To
resolve the problem, Pawlak treats all those attributes that define the same
equivalence relation as one attribute. According to Definition 6, the following
definition resolves this problem by directly referring to the set of attributes At.

Definition 14. In an information table, an attribute reduct is a subset of at-
tributes R ⊆ At satisfying each of the following equivalent pairs of conditions:

equivalence relation based conditions :
(s2) ER = EAt,

(n2) ∀a ∈ R, (¬(ER−{a} = EAt));
partition based conditions :

(s3) U/ER = U/EAt,

(n3) ∀a ∈ R, (¬(U/ER−{a} = U/EAt));
equivalence class based conditions :

(s4) ∀x ∈ U, ([x]RR = [x]EAt),
(n4) ∀a ∈ R∃x ∈ U, (¬([x]ER−{a} = [x]EAt)). (10)

The definition contains both commonly used conditions based on equivalence
relations or partitions and new conditions based on equivalence classes. Each
pair of conditions provides a different characterization and understanding of
a reduct. That is, a reduct is a minimal set of attributes that defines the same
equivalence relation as EAt. The last pair of conditions is particularly interesting
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and is closely related to the conditions for defining attribute-value-pair reducts.
Again, the first condition of a general reduct is not explicitly stated. For example,
we omit the condition EAt = EAt. By Definition 6, an attribute reduct is an
exapmle of a reduct of the set of attributes At.

Relative Reducts of a Consistent Classification Table. For analyzing a
classification table, Pawlak introduces the notion of a relative reduct. Based on
an equivalence relations defined by subsets of attributes, a classification table
with At = C ∪D is consistent if

EC ⊆ ED, or equivalently U/EC � U/ED. (11)

For a consistent classification table, similar to Definition 13, a relative reudct
can be defined according to Definition 11.

Definition 15. Consider the set of all equivalence relations defined by singleton
subsets of condition attributes S = {E{a} | a ∈ C}. A reduct of S relative to ED

is a subset R ⊆ S satisfying the following properties:

(w) ∩S ⊆ ED,

(s) ∩R ⊆ ED,

(n) ∀E ∈ R, (¬(∩(R − {E}) ⊆ ED)). (12)

Similar to Definition 14, a relative attribute reduct can also be equivalently
defined by using equivalence relations, partitions, and equivalence classes, re-
spectively.

Definition 16. Given a consistent classification table S = (U,At = C∪D, {Va |
a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative to D,
or simply a relative reduct, if R satisfies one of the following equivalent pairs of
conditions:

equivalence relation based conditions :
(s5) ER ⊆ ED,

(n5) ∀a ∈ R, (¬(ER−{a} ⊆ ED));
partition based conditions :

(s6) U/ER � U/ED; ,
(n6) ∀a ∈ R, (¬(U/ER−{a} � U/ED));

equivalence class based conditions :
(s7) ∀x ∈ U, ([x]ER ⊆ [x]ED ),
(n7) ∀a ∈ R∃x ∈ U, (¬([x]ER−{a} ⊆ [x]ED )). (13)

Conditions in the definition suggest that a relative reduct R is a minimal set
of attributes whose partition U/ER is the same or finer than ED. For example,
condition (s7) states that the equivalence class of ER containing x is a subset
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of the equivalence class of ED containing x. That means that one can infer the
equivalence class [x]ED from the equivalence class [x]ER so that it preserves the
descriptive ability for classification. Condition (n7) states that any attribute in
R is necessary for inferring [x]ED .

Relative Reducts of an Inconsistent Classification Table. For an incon-
sistent classification table, Pawlak defines a relative reduct by using the positive
region of the classification U/ED induced by EC :

POSEC (U/ED) =
⋃

{POSEC (K) | K ∈ U/ED}
=

⋃
{apr

EC
(K) | K ∈ U/ED}. (14)

More specifically, a relative reduct of an inconsistent classification table is a
minimal set of attributes that preserves the positive region of U/ED; there is
not consideration of objects not in the positive region.

Definition 17. [13] Given a consistent classification table S = (U,At = C ∪
D, {Va | a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative
to D if R satisfies the two conditions:

(s8) POSER(U/ED) = POSEC (U/ED),
(n8) ∀a ∈ R, (¬(POSER−{a}(U/ED) = POSEC (U/ED))).

For a consistent classification table, we have POSEC (U/ED) = U . Pawlak’s
definition is therefore applicable to both consistent and inconsistent classification
tables.

Although Pawlak’s definition is an example of a relative reduct of the set of
condition attribute C, it is very different in form from the definition of a relative
reduct of a consistent classification table as given by Definitions 15 and 16. By
insisting on having the same positive region, a relative reduct does not care
about objects in the boundary region. This observation provides a hint: one can
transform an inconsistent table into a consistent table by focusing on individual
positive regions of equivalence classes of ED so that the definition of a relative
reduct of a consistent table can be used. According to the positive regions of
equivalence classes in U/ED, we can form the following partition:

{POSEC (K) �= ∅ | K ∈ U/ED} ∪ ({∪{BNDEC (K) | K ∈ U/ED}} − {∅}).(15)

Suppose ED′ is the equivalence relation corresponding to this partition, and the
partition can be denoted by U/ED′ . According to the partition U/ED′ , a relative
reduct of an inconsistent table can be defined based on Definition 16.

Definition 18. Given a consistent classification table S = (U,At = C∪D, {Va |
a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative to D if
R satisfies any of the following equivalent pairs of conditions:
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equivalence relation based conditions :
(s9) ER ⊆ ED′ ,

(n9) ∀a ∈ R, (¬(ER−{a} ⊆ ED′));
partition based conditions :

(s10) U/ER � U/ED′ ,

(n10) ∀a ∈ R, (¬(U/ER−{a} � U/ED′));
equivalence class based conditions :

(s11) ∀x ∈ U, ([x]ER ⊆ [x]ED′ ),
(n11) ∀a ∈ R∃x ∈ U, (¬([x]R−{a} ⊆ [x]ED′ )). (16)

A consistent table is a special case of inconsistent tables. For a consistent table,
U/ED′ = U/ED and, hence, the definition is also valid for a consistent table.
An advantage of Definition 18 is that it is in a uniform format as relative of a
consistent table. However, we need to construct a partition U/ED′ originally not
in the table. If we examine the Pawlak definition again, we find that keeping the
positive region is equivalent to saying that ∀x ∈ U, ([x]EC ⊆ [x]ED =⇒ [x]ER ⊆
[x]ED ). Based on this observation, we can have another definition of a relative
reduct of an inconsistent table.

Definition 19. Given an inconsistent classification table S = (U,At = C ∪
D, {Va | a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative
to D if R satisfies the two conditions:

(s12) ∀x ∈ U, ([x]EC ⊆ [x]ED =⇒ [x]ER ⊆ [x]ED ),
(n12) ∀a ∈ R∃x ∈ U, (¬([x]EC ⊆ [x]ED =⇒ [x]ER−{a} ⊆ [x]ED )). (17)

For a consistent table, [x]EC ⊆ [x]ED is true for all x ∈ U . In this case, con-
ditions (s12) and (n12) are equivalent to conditions (s7) and (n7). Therefore,
Definition 19 is also valid for a consistent table. An advantage of this definition
is that we do not need to introduce any extra structures not given in the table.

Relative Reducts and Attribute Dependencies. The relationship between
the set of condition attributes C and the set of decision attributes D can be
easily extended to a study of dependency of any two sets of attributes in an
information table.

Consider two arbitrary subsets of attributes A,B ⊆ At in an information ta-
ble. The two subsets may have an nonempty intersection. If EA ⊆ EB holds, we
say that B depends on A. In this paper, we only consider two sets of attributes
with a full dependency. This is similar to a consistent classification table with
EC ⊆ ED. By applying the results of a relative reduct of a consistent classi-
fication table, it is straightforward to define a reduct of A relative to B for a
simplified attribute dependency.

Definition 20. For a pairs of subsets of attributes A,B ⊆ At in an information
table with EA ⊆ EB, a subset R ⊆ A is called a reduct of A relative to B if it
satisfies the following conditions:



66 Y. Yao and R. Fu

(s13) ER ⊆ EB,

(n13) ∀a ∈ R, (¬(ER−{a} ⊆ EB)). (18)

With this definition, we can interpret a reduct R ⊆ At of an information table as
a relative reduct with respect to the entire set of attributes At. Relative reducts
of a consistent classification table are also special cases.

Attribute dependencies can be formally studied through attribute-level rules
in a table [23]. In this way, we can unify notions of attribute reducts and
attribute-value-pair reducts in a common framework of rules. For such a pur-
pose, we need to introduce a decision logic language LA similar to the one used
in Pawlak’s book.

Definition 21. In an information table, a decision logic language LA is recur-
sively defined as follows: an atomic formula is given by =a, where a ∈ At. If p
and q are formulas, then p ∧ q is a formula.

By using language LA, we can express attribute dependency EA ⊆ EB as,
∧

a∈A

=a →
∧

b∈B

=b, (19)

or simply,
=A → =B, (20)

where both the left-hand-side and right-hand-side of → are formulas of LA.
Consequently, finding a relative reduct can be viewed as searching for a minimal
set of atomic formulas on the left-hand-side of an attribute-dependency rule.

The meaning of formulas of LA are given by pairs of objects. More specifically,
a pair of objects (x, y) is said to satisfy an atomic formula =a if and only if
Ia(x) = Ia(y). In general, the meanings of formulas can be recursively defined.

Definition 22. The meanings of formulas of LA are recursively computed as
follows:

m(=a) = {(x, y) ∈ U × U | Ia(x) = Ia(y)},
m(p ∧ q) = m(p) ∩m(q). (21)

A formula may be interpreted as the intension of a concept and the meanings
set is the extension of the concept. In this way, we express a concept jointly by
a pair of a formula and a set. A concept in the context of attribute-level rules is
an equivalence relation. By definition, it follows that,

m(=a) = E{a},

m(
∧

a∈A

=a) = EA. (22)

With respect to the left-hand-side of an attribute dependency rule given by
equation (20), we can define a set of atomic formulas and a set of the meaning
sets of atomic formulas:
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S = {=a| a ∈ A},
m(S) = {m(=a) | a ∈ A}. (23)

In this way, an attribute reduct of A relative to B can be interpreted as a) a
reduct of the set of atomic formulas S relative to the formula =B, and b) a reduct
of the family of equivalence relations m(S) relative to the equivalence relation
EB. According to Definition 6 and Definition 10, we have two more definitions
of a ruduct of an attribute dependency rule.

Definition 23. For an attribute dependency rule =A → =B, a subset R ⊆ S is
reduct of the set of atomic formulas S relative to =B if R satisfies the following
conditions:

(s14) ∩ {m(p) | p ∈ R} ⊆ m(=B),
(n14) ∀q ∈ R, (¬(∩{m(p) | p ∈ (R − {q})} ⊆ m(=B))). (24)

Definition 24. For an attribute dependency rule =A → =B, a subset R′ ⊆
m(S) is reduct of the set of equivalence relations m(S) relative to the equivalence
relation m(=B) if R′ satisfies the following conditions:

(s15) ∩R′ ⊆ m(=B),
(n15) ∀E ∈ R, (¬(∩(R′ − {E}) ⊆ m(=B))). (25)

Recall that different attributes may define the same equivalence relation, like
Definition 13, Definition 24 is not a very accurate characterization of a reduct
of an attribute dependency rule.

4.3 Step 2: Analysis of Attribute-Value Dependencies

For a classification table with At = C ∪ D, the result of Step 1 analysis is an
attribute reduct R ⊆ C. For an equivalence class [x]ER satisfying the condition
[x]ER ⊆ [x]ED , Pawlak constructs a classification rule showing a dependency
between values of x on attributes R and D, respectively. To represent formally
such classification rules, we consider a sub-language of the decision logic language
used Pawlak [13].

Definition 25. In an information table, a decision logic language LV is recur-
sively defined as follows: an atomic formula is given by a = v, where a ∈ At and
v ∈ Va. If φ and ψ are formulas, then φ ∧ ψ is a formula.

An atomic formula a = v is commonly known as an attribute-value pair, written
(a, v), or a descriptor. By restricting to the logic connective ∧, we only consider
a formula that is the conjunction of a family of atomic formulas. The meaning
of a formula is defined by the set of objects satisfying the formula.

Definition 26. The meanings of formulas of LV are recursively computed as
follows:

m(a = v) = {x ∈ U | Ia(x) = v},
m(φ ∧ ψ) = m(φ) ∩m(ψ). (26)
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With the introduced logic language LV , a classification rule can be defined as:
∧

a∈R

a = Ia(x) →
∧

d∈D

d = Id(x), (27)

or simply,
R = IR(x) → D = ID(x), (28)

The left-hand-side of the rule can be understood as a set of attribute value pairs,
namely, atomic formulas. A classification rule is therefore called an attribute-
value-level rule. Like an attribute-level rule, there may exist superfluous attribute-
value pairs on the left-hand-side of the rule. Pawlak calls m(a = v) a category
and introduces the notion of a reduct of categories to simplify a classification
rule.

By using the same argument for defining a reduct of an attribute dependency
rule, we can define a reduct of an attribute-value dependency rule. For an object
x ∈ U , we have:

m(a = Ia(x)) = [x]E{a} ,

m(
∧

a∈A

a = Ia(x)) = [x]EA . (29)

Based on these results, for rule R = IR(x) → D = ID(x), we introduce two
definitions of an attribute-value-pair reduct relative to [x]ED .

Definition 27. For a classification rule R = IR(x) → D = ID(x), a subset
of attributes R(x) ⊆ R is called an attribute reduct of x relative to D if R(x)
satisfies the two conditions:

(s16) [x]ER(x) ⊆ [x]ED ;
(n16) ∀a ∈ R(x), (¬([x]ER(x)−{a} ⊆ [x]ED )).

Note that (s16) and (n16) are related to (s7) and (n7) of Definition 16. By
comparison, an attribute reduct of an information table must be defined with
respect to all objects in the table and an attribute reduct of a classification rule
is defined with respect to only objects equivalent to x.

Given a classification rule R = IR(x) → D = ID(x), we can construct a set
of attribute-value pairs (i.e., atomic formulas) and the set of their meaning sets,
respectively, as follows:

S(x) = {a = Ia(x) | a ∈ R},
m(S(x)) = {m(a = Ia(x)) | a ∈ R}. (30)

We can use reducts of the two sets to define reducts of of a classification rule in
a similar manner as in Definitions 23 and 24.

Definition 28. For a classification rule R = IR(x) → D = ID(x), a subset
R(x) ⊆ S(x) is called an attribute-value-pair reduct relative to D = ID(x) if
R(x) satisfies the conditions:

(s17) ∩{m(φ) | φ ∈ R(x)} ⊆ m(D = ID(x));
(n17) ∀ψ ∈ R(x), (¬(∩{m(φ) | φ ∈ (R(x) − {ψ})} ⊆ m(D = ID(x)))). (31)
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Definition 29. For a classification rule R = IR(x) → D = ID(x), a subset
R′(x) ⊆ m(S(x)) is called a reduct of m(S(x)) relative to m(D = ID(x)) if
R′(x) satisfies the conditions:

(s18) ∩R′(x) ⊆ m(D = ID(x));
(n18) ∀K ∈ R′(x), (¬(∩(R′(x) − {K}) ⊆ m(D = ID(x)))). (32)

Definition 29 is in fact an ∩-reduct in Definition 11. Different attribute-value
pairs may have the same meaning set, Definition 29 as used by Pawlak is not a
very accurate characterization of a relative attribute-value-pair reduct.

In general, similar to the study of attribute-level rules in Section 4.2, we can
study attribute-value dependencies for any pair of sets of attributes A,B ⊆ At.
For example, one can consider attribute-value dependencies by using the set of
condition attributes C and the set of decision attributes D in a classification
table, instead of using a reduct R ⊆ C from Step 1.

4.4 Step 3: Analysis of Rule Dependencies

After Step 2 analysis, for an attribute reduct R(x) ⊆ R for an object x, we have
[x]ER(x) ⊆ [x]ED , which produces a classification rule:

R(x) = IR(x)(x) → D = ID(x). (33)

The third step of Pawlak data analysis consists of constructing a rule set and
simplifying the rule set by removing redundant rules. Pawlak compiles a set of
simplified rules by choosing one rule defined by an attributive-value-pair reduct
R(x) for each equivalence class [x]R, where R is a relative attribute reduct ob-
tained in Step 1. Let RS denote the rule set obtained in Step 2. There may exist
redundant rules in RS. It is therefore necessary to introduce the notion of a rule
reduct of RS.

For a classification rule c → d, we define its meaning as the set of correctly
classified objects:

m(c→ d) = m(c ∧ d) = m(c) ∩m(d). (34)

Pawlak only considers certain rules derived from the lower approximations. In
this case, we have m(c) ⊆ m(d) and m(c → d) = m(c). In general, this may
not be true. Based on the meaning sets of rules, a rule reduct is related to an
∪-reduct of the following family of subsets of U :

m(RS) = {m(c→ d) | (c→ d) ∈ RS}. (35)

For an inconsistent table, we have ∪m(RS) = POSEC (U/ED); for a consistent
table we have ∪m(RS) = U . According to Definition 6, we introduce the notion
of a reduct of a rule set.
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Definition 30. A subset of rules R ⊆ RS is called a rule reduct of a set of rules
RS if R satisfies the condition:

(s19) ∪m(R) = ∪m(RS),
(n19) ∀(c→ d) ∈ R, (¬(∪m(R − {c→ d}) = ∪m(RS))),

where m(R) = {m(c→ d) | (c→ d) ∈ R}.
Condition (s19) states that rules in R are sufficient for correctly classifying all
objects as the entire rule set RS and condition (n19) states that each rule in R
is necessary.

According to Definition 10, we can directly compute an ∪-reduct of the family
m(RS) to interpret a reduct of the rule set RS. However, since two rules may
have the same meaning set, such an interpretation is not precise.

5 Discussions and Conclusion

In our interpretation and formulations of Pawlak three-step approach, we use a
more general and generic notion of reducts. By exploring the monotonicity of
evaluations, a reduct of a set is defined as a subset of a set satisfying a pair of
conditions, namely, a jointly sufficient condition (s) and an individually necessary
condition (n). In total, we consider about twenty definitions of various reducts.

The unified framework based on reducts has a number of advantages. One
can apply a generic reduct construction algorithm for constructing any of the
three types of reducts. In particular, one may use any of the three classes of
algorithms, deletion, addition-deletion, and addition algorithms [22]. All three
steps of Pawlak analysis can be viewed as different applications of the same data
reduction method. The same framework can be further applied to new situations
where a reduct of a set is of interest.

In our formulation, we explicitly express intension and extension of a concept.
A classification rule is expressed as a pair of two rules, one for extension and the
other for intension: for x ∈ U,R ⊆ C,

{
[x]ER ⊆ [x]ED ,∧

a∈R a = Ia(x) → ∧
d∈D d = Id(x). (36)

It enables us to see additional insights into Pawlak three-step approach. Steps 1
and 2 use both intensions and extensions. Step 3 only uses extensions.

The Pawlak three-step approach can be modified in several ways. It can be
observed that the first step is not necessary. Thus, a two-step approach can be
derived based only on Steps 2 and 3. In Step 2, attribute-value-pair reducts are
constructed based on both intensions and extensions. One may consider only
extensions of concepts without reference to intensions. This can be formulated
as a search for a reduct of the family of subsets of U given by:

{[x]EA | A ⊆ C, [x]EA ⊆ [x]ED}. (37)
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The results are a new rule learning method [20]. In Step 3, a rule reduct is defined
independent of how a rule set is formed.

This paper contributes to Pawlak three-step rough set analysis by introducing
a generic notion of reducts, providing multiple interpretations of reducts, and
unifying different definitions of reducts in a common framework. We demonstrate
that rough set analysis can be formulated based on the central notion of reducts.
With some modifications, it is possible to investigate various generalized notions
of reducts by using the results from this paper.
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